Science.gov

Sample records for adenine dinucleotide dehydrogenase

  1. Nicotinamide adenine dinucleotide-dependent and nicotinamide adenine dinucleotide-independent lactate dehydrogenases in homofermentative and heterofermentative lactic acid bacteria.

    PubMed

    Doelle, H W

    1971-12-01

    Three homofermentative (Lactobacillus plantarum B38, L. plantarum B33, Pediococcus pentosaceus B30) and three heterofermentative (Leuconostoc mesenteroides 39, L. oenos B70, Lactobacillus brevis) lactic acid bacteria were examined for the presence or absence of nicotinamide adenine dinucleotide (NAD)-dependent and NAD-independent d- and l-lactate dehydrogenases. Two of the six strains investigated, P. pentosaceus and L. oenos, did not exhibit an NAD-independent enzyme activity capable of reducing dichlorophenol indophenol. The pH optima of the lactic dehydrogenases were determined. The NAD-dependent enzymes from homofermentative strains exhibited optima at pH 7.8 to 8.8, whereas values from 9.0 to 10.0 were noted for these enzymes from heterofermentative organisms. The optima for the NAD-independent enzymes were between 5.8 and 6.6. The apparent Michaelis-Menten constants determined for both NAD and the substrates demonstrated the existence of a greater affinity for d- than l-lactic acid. A comparison of the specific NAD-dependent and NAD-independent lactate dehydrogenase activities revealed a direct correlation of the d/l ratios of these activities with the type of lactic acid produced during the growth of the organism.

  2. Affinity chromatography of nicotinamide-adenine dinucleotide-linked dehydrogenases on immobilized derivatives of the dinucleotide.

    PubMed

    Barry, S; O'Carra, P

    1973-12-01

    1. Three established methods for immobilization of ligands through primary amino groups promoted little or no attachment of NAD(+) through the 6-amino group of the adenine residue. Two of these methods (coupling to CNBr-activated agarose and to carbodi-imide-activated carboxylated agarose derivatives) resulted instead in attachment predominantly through the ribosyl residues. Other immobilized derivatives were prepared by azolinkage of NAD(+) (probably through the 8 position of the adenine residue) to a number of different spacer-arm-agarose derivatives. 2. The effectiveness of these derivatives in the affinity chromatography of a variety of NAD-linked dehydrogenases was investigated, applying rigorous criteria to distinguish general or non-specific adsorption effects from truly NAD-specific affinity (bio-affinity). The ribosyl-attached NAD(+) derivatives displayed negligible bio-affinity for any of the NAD-linked dehydrogenases tested. The most effective azo-linked derivative displayed strong bio-affinity for glycer-aldehyde 3-phosphate dehydrogenase, weaker bio-affinity for lactate dehydrogenase and none at all for malate dehydrogenase, although these three enzymes have very similar affinities for soluble NAD(+). Alcohol dehydrogenase and xanthine dehydrogenase were subject to such strong non-specific interactions with the hydrocarbon spacer-arm assembly that any specific affinity was completely eclipsed. 3. It is concluded that, in practice, the general effectiveness of a general ligand may be considerably distorted and attenuated by the nature of the immobilization linkage. However, this attenuation can result in an increase in specific effectiveness, allowing dehydrogenases to be separated from one another in a manner unlikely to be feasible if the general effectiveness of the ligand remained intact. 4. The bio-affinity of the various derivatives for lactate dehydrogenase is correlated with the known structure of the NAD(+)-binding site of this enzyme. Problems

  3. Decrease in nicotinamide adenine dinucleotide dehydrogenase is related to skin pigmentation.

    PubMed

    Nakama, Mitsuo; Murakami, Yuhko; Tanaka, Hiroshi; Nakata, Satoru

    2012-03-01

    Skin pigmentation is caused by various physical and chemical factors. It might also be influenced by changes in the physiological function of skin with aging. Nicotinamide adenine dinucleotide (NADH) dehydrogenase is an enzyme related to the mitochondrial electron transport system and plays a key role in cellular energy production. It has been reported that the functional decrease in this system causes Parkinson's disease. Another study reports that the amount of NADH dehydrogenase in heart and skeletal muscle decreases with aging. A similar decrease in the skin would probably affect its physiological function. However, no reports have examined the age-related change in levels of NADH dehydrogenase in human skin. In this study, we investigated this change and its effect on skin pigmentation using cultured human epidermal keratinocytes. The mRNA expression of NDUFA1, NDUFB7, and NDUFS2, subunits of NADH dehydrogenase, and its activity were significantly decreased in late passage keratinocytes compared to early passage cells. Conversely, the mRNA expression of melanocyte-stimulating cytokines, interleukin-1 alpha and endothelin 1, was increased in late passage cells. On the other hand, the inhibition of NADH dehydrogenase upregulated the mRNA expression of melanocyte-stimulating cytokines. Moreover, the level of NDUFB7 mRNA was lower in pigmented than in nonpigmented regions of skin in vivo. These results suggest the decrease in NADH dehydrogenase with aging to be involved in skin pigmentation.

  4. The first step in polyethylene glycol degradation by sphingomonads proceeds via a flavoprotein alcohol dehydrogenase containing flavin adenine dinucleotide.

    PubMed

    Sugimoto, M; Tanabe, M; Hataya, M; Enokibara, S; Duine, J A; Kawai, F

    2001-11-01

    Several Sphingomonas spp. utilize polyethylene glycols (PEGs) as a sole carbon and energy source, oxidative PEG degradation being initiated by a dye-linked dehydrogenase (PEG-DH) that oxidizes the terminal alcohol groups of the polymer chain. Purification and characterization of PEG-DH from Sphingomonas terrae revealed that the enzyme is membrane bound. The gene encoding this enzyme (pegA) was cloned, sequenced, and expressed in Escherichia coli. The purified recombinant enzyme was vulnerable to aggregation and inactivation, but this could be prevented by addition of detergent. It is as a homodimeric protein with a subunit molecular mass of 58.8 kDa, each subunit containing 1 noncovalently bound flavin adenine dinucleotide but not Fe or Zn. PEG-DH recognizes a broad variety of primary aliphatic and aromatic alcohols as substrates. Comparison with known sequences revealed that PEG-DH belongs to the group of glucose-methanol-choline (GMC) flavoprotein oxidoreductases and that it is a novel type of flavoprotein alcohol dehydrogenase related (percent identical amino acids) to other, so far uncharacterized bacterial, membrane-bound, dye-linked dehydrogenases: alcohol dehydrogenase from Pseudomonas oleovorans (46%); choline dehydrogenase from E. coli (40%); L-sorbose dehydrogenase from Gluconobacter oxydans (38%); and 4-nitrobenzyl alcohol dehydrogenase from a Pseudomonas species (35%). PMID:11673442

  5. Redox State of Flavin Adenine Dinucleotide Drives Substrate Binding and Product Release in Escherichia coli Succinate Dehydrogenase

    PubMed Central

    Cheng, Victor W.T.; Piragasam, Ramanaguru Siva; Rothery, Richard A.; Maklashina, Elena; Cecchini, Gary; Weiner, Joel H.

    2016-01-01

    The Complex II family of enzymes, comprising the respiratory succinate dehydrogenases and fumarate reductases, catalyze reversible interconversion of succinate and fumarate. In contrast to the covalent flavin adenine dinucleotide (FAD) cofactor assembled in these enzymes, the soluble fumarate reductases (e.g. that from Shewanella frigidimarina) that assemble a noncovalent FAD cannot catalyze succinate oxidation but retain the ability to reduce fumarate. In this study, an SdhA-H45A variant that eliminates the site of the 8α-N3-histidyl covalent linkage between the protein and the FAD was examined. The variants SdhA-R286A/K/Y and -H242A/Y, that target residues thought to be important for substrate binding and catalysis were also studied. The variants SdhA-H45A and -R286A/K/Y resulted in assembly of a noncovalent FAD cofactor, which led to a significant decrease (−87 mV or more) in its reduction potential. The variant enzymes were studied by electron paramagnetic resonance spectroscopy following stand-alone reduction and potentiometric titrations. The “free” and “occupied” states of the active site were linked to the reduced and oxidized states of the FAD, respectively. Our data allows for a proposed model of succinate oxidation that is consistent with tunnel diode effects observed in the succinate dehydrogenase enzyme and a preference for fumarate reduction catalysis in fumarate reductase homologues that assemble a noncovalent FAD. PMID:25569225

  6. Electron-transfer studies with a new flavin adenine dinucleotide dependent glucose dehydrogenase and osmium polymers of different redox potentials.

    PubMed

    Zafar, Muhammad Nadeem; Wang, Xiaoju; Sygmund, Christoph; Ludwig, Roland; Leech, Dónal; Gorton, Lo

    2012-01-01

    A new extracellular flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenase from Glomerella cingulata (GcGDH) was electrochemically studied as a recognition element in glucose biosensors. The redox enzyme was recombinantly produced in Pichia pastoris and homogeneously purified, and its glucose-oxidizing properties on spectrographic graphite electrodes were investigated. Six different Os polymers, the redox potentials of which ranged in a broad potential window between +15 and +489 mV versus the normal hydrogen electrode (NHE), were used to immobilize and "wire" GcGDH to the spectrographic graphite electrode's surface. The GcGDH/Os polymer modified electrodes were evaluated by chronoamperometry using flow injection analysis. The current response was investigated using a stepwisely increased applied potential. It was observed that the ratio of GcGDH/Os polymer and the overall loading of the enzyme electrode significantly affect the performance of the enzyme electrode for glucose oxidation. The best-suited Os polymer [Os(4,4'-dimethyl-2,2'-bipyridine)(2)(PVI)Cl](+) had a potential of +309 mV versus NHE, and the optimum GcGDH/Os polymer ratio was 1:2 yielding a maximum current density of 493 μA·cm(-2) at a 30 mM glucose concentration.

  7. Electron-transfer studies with a new flavin adenine dinucleotide dependent glucose dehydrogenase and osmium polymers of different redox potentials.

    PubMed

    Zafar, Muhammad Nadeem; Wang, Xiaoju; Sygmund, Christoph; Ludwig, Roland; Leech, Dónal; Gorton, Lo

    2012-01-01

    A new extracellular flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenase from Glomerella cingulata (GcGDH) was electrochemically studied as a recognition element in glucose biosensors. The redox enzyme was recombinantly produced in Pichia pastoris and homogeneously purified, and its glucose-oxidizing properties on spectrographic graphite electrodes were investigated. Six different Os polymers, the redox potentials of which ranged in a broad potential window between +15 and +489 mV versus the normal hydrogen electrode (NHE), were used to immobilize and "wire" GcGDH to the spectrographic graphite electrode's surface. The GcGDH/Os polymer modified electrodes were evaluated by chronoamperometry using flow injection analysis. The current response was investigated using a stepwisely increased applied potential. It was observed that the ratio of GcGDH/Os polymer and the overall loading of the enzyme electrode significantly affect the performance of the enzyme electrode for glucose oxidation. The best-suited Os polymer [Os(4,4'-dimethyl-2,2'-bipyridine)(2)(PVI)Cl](+) had a potential of +309 mV versus NHE, and the optimum GcGDH/Os polymer ratio was 1:2 yielding a maximum current density of 493 μA·cm(-2) at a 30 mM glucose concentration. PMID:22091984

  8. Evidence for the Degradation of Nicotinamide Adenine Dinucleotide Phosphate-Dependent Glutamate Dehydrogenase of Candida utilis During Rapid Enzyme Inactivation

    PubMed Central

    Hemmings, Brian A.

    1978-01-01

    The nicotinamide adenine dinucleotide phosphate-dependent glutamate dehydrogenase (NADP-GDH) from the food yeast Candida utilis was found to be rapidly inactivated when cultures were starved of a carbon source. The addition of glutamate or alanine to the starvation medium stimulated the rate of inactivation. Loss of enzyme activity was irreversible since the reappearance of enzyme activity, following the addition of glucose to carbon-starved cultures, was blocked by cycloheximide. A specific rabbit antibody was prepared against the NADP-GDH from C. utilis and used to quantitate the enzyme during inactivation promoted by carbon starvation. The amount of precipitable antigenic material paralleled the rapid decrease of enzyme activity observed after transition of cells from NH4+-glucose to glutamate medium. No additional small-molecular-weight protein was precipitated by the antibody as a result of the inactivation, suggesting that the enzyme is considerably altered during the primary steps of the inactivation process. Analysis by immunoprecipitation of the reappearance of enzyme activity after enzyme inactivation showed that increase of NADP-GDH activity was almost totally due to de novo synthesis, ruling out the possibility that enzyme activity modulation is achieved by reversible covalent modification. Enzyme degradation was also measured during steady-state growth and other changes in nitrogen and carbon status of the culture media. In all instances so far estimated, the enzyme was found to be very stable and not normally subject to high rates of degradation. Therefore, the possibility that inactivation was caused by a change in the ratio of synthesis to degradation can be excluded. Images PMID:24041

  9. Inactivation of yeast alcohol dehydrogenase by alkylperoxyl radicals. Characteristics and influence of nicotinamide-adenine dinucleotides.

    PubMed

    Videla, L A; Salim-Hanna, M; Lissi, E A

    1992-10-01

    The study of the interaction of alkylperoxyl radicals generated by the aerobic thermolysis of 2,2'-azobis(2-amidinopropane) (AAP) with yeast alcohol dehydrogenase (YADH) revealed a high reactivity of the enzyme, with an average of about 20 radicals per added YADH tetramer being needed to elicit its total inactivation. NAD+ enhanced YADH inactivation at NAD+/YADH molar ratios from 0.25 to 1, decreasing the rate of the process when added in excess to the enzyme concentration. At NADH/YADH molar ratios greater than 1, NADH exhibited a protective effect characterized by a poorly defined induction time and lower inactivation rates, which progressively increased during the reaction period. These changes occurred concomitantly with the oxidation of NADH into NAD+, which might counteract the protective effect of NADH. Under similar conditions, NADP+ did not modify AAP-induced YADH inactivation, while NADPH exhibited a modest protection at NADPH/YADH molar ratios greater than 1. It is concluded that YADH inactivation by alkylperoxyl radicals is strongly dependent on the redox state of the NADH-NAD+ couple, as the rates of the process at different time intervals inversely correlate with the respective NADH/NAD+ ratios.

  10. The activity of liver alcohol dehydrogenase with nicotinamide–adenine dinucleotide phosphate as coenzyme

    PubMed Central

    Dalziel, K.; Dickinson, F. M.

    1965-01-01

    1. The separation of nucleotide impurities from commercial NADP preparations by chromatography is described. All the preparations studied contained 0·1–0·2% of NAD. 2. The activity of pure crystalline liver alcohol dehydrogenase with NADP as coenzyme has been confirmed. Initial-rate data are reported for the reaction at pH 6·0 and 7·0 with ethanol and acetaldehyde as substrates. With NADP and NADPH2 of high purity, the maximal specific rates were similar to those obtained with NAD and NADH2, but the Michaelis constants for the former coenzymes were much greater than those for the latter. 3. The oxidation of ethanol by NADP is greatly inhibited by NADH2, and this accounts for low values of certain initial-rate parameters obtained with commercial NADP preparations containing NAD. The kinetics of the inhibition are consistent with competitive inhibition in a compulsory-order mechanism. 4. Initial-rate data with NAD and NADPH2 do not conform to the requirements of the mechanism proposed by Theorell & Chance (1951), in contrast with results previously obtained with NAD and NADH2. The possibility that the deviations are due to competing nucleotide impurity in the oxidized coenzyme cannot be excluded. The data show that the enzyme reacts more slowly with, and has a smaller affinity for, NADP and NADPH2 than NAD and NADH2. 5. Phosphate behaves as a competitive inhibitor towards NADP. PMID:14340079

  11. Application of nicotin amide-adenine dinucleotide analogs for clinical enzymology: alcohol dehydrogenase activity in liver injury.

    PubMed

    Fujisawa, K; Kimura, A; Minato, S; Tamaoki, H; Mizushima, H

    1976-06-01

    The activities of alcohol dehydrogease(ADH) in serum and in the subcellular fractions of rat liver were determined with n-amyl alcohol or ethanol as substrate and thionicotinamide-adenine dinucleotide as coenzyme. It was found that the enzyme's activity ratio on the amyl alcohol and ethanol(A/E value) of serum and on the particulate fractions of the liver were different, but the A/E value of the soluble fraction was similar to that of serum. The A/E value of the particulate fractions were higher than that of the soluble fraction. From the results of experimental liver damage in the rat, it seems that estimation of the A/E value of ADH activity in serum is a useful parameter for the diagnosis of active liver injury. Since the A/E values of patients' sera differed from those of the normal subjects, the estimation of the A/E value of serum may give diagnostic information on liver injury, especially in chronic liver injury. PMID:179739

  12. The role of nicotinamide–adenine dinucleotide phosphate-dependent malate dehydrogenase and isocitrate dehydrogenase in the supply of reduced nicotinamide–adenine dinucleotide phosphate for steroidogenesis in the superovulated rat ovary

    PubMed Central

    Flint, A. P. F.; Denton, R. M.

    1970-01-01

    1. Superovulated rat ovary was found to contain high activities of NADP–malate dehydrogenase and NADP–isocitrate dehydrogenase. The activity of each enzyme was approximately four times that of glucose 6-phosphate dehydrogenase and equalled or exceeded the activities reported to be present in other mammalian tissues. Fractionation of a whole tissue homogenate of superovulated rat ovary indicated that both enzymes were exclusively cytoplasmic. The tissue was also found to contain pyruvate carboxylase (exclusively mitochondrial), NAD–malate dehydrogenase and aspartate aminotransferase (both mitochondrial and cytoplasmic) and ATP–citrate lyase (exclusively cytoplasmic). 2. The kinetic properties of glucose 6-phosphate dehydrogenase, NADP–malate dehydrogenase and NADP–isocitrate dehydrogenase were determined and compared with the whole-tissue concentrations of their substrates and NADPH; NADPH is a competitive inhibitor of all three enzymes. The concentrations of glucose 6-phosphate, malate and isocitrate in incubated tissue slices were raised at least tenfold by the addition of glucose to the incubation medium, from the values below to values above the respective Km values of the dehydrogenases. Glucose doubled the tissue concentration of NADPH. 3. Steroidogenesis from acetate is stimulated by glucose in slices of superovulated rat ovary incubated in vitro. It was found that this stimulatory effect of glucose can be mimicked by malate, isocitrate, lactate and pyruvate. 4. It is concluded that NADP–malate dehydrogenase or NADP–isocitrate dehydrogenase or both may play an important role in the formation of NADPH in the superovulated rat ovary. It is suggested that the stimulatory effect of glucose on steroidogenesis from acetate results from an increased rate of NADPH formation through one or both dehydrogenases, brought about by the increases in the concentrations of malate, isocitrate or both. Possible pathways involving the two enzymes are discussed

  13. Evaluation of equilibrium constants for the interaction of lactate dehydrogenase isoenzymes with reduced nicotinamide-adenine dinucleotide by affinity chromatography.

    PubMed Central

    Brinkworth, R I; Masters, C J; Winzor, D J

    1975-01-01

    Rabbit muscle lactate dehydrogenase was subjected to frontal affinity chromatography on Sepharose-oxamate in the presence of various concentrations of NADH and sodium phosphate buffer (0.05 M, pH 6.8) containing 0.5 M-NaCl. Quantitative interpretation of the results yields an intrinsic association constant of 9.0 x 10 (4)M-1 for the interaction of enzyme with NADH at 5 degrees C, a value that is confirmed by equilibrium-binding measurements. In a second series of experiments, zonal affinity chromatography of a mouse tissue extract under the same conditions was used to evaluate assoication constants of the order 2 x 10(5)M-1, 3 x 10(5)M-1, 4 x 10(5)M-1, 7 x 10(5)M-1 and 2 x 10(6)M-1 for the interaction of NADH with the M4, M3H, M2H2, MH3 and H4 isoenzymes respectively of lactate dehydrogenase. PMID:175784

  14. An investigation of the nicotinamide-adenine dinucleotide-induced 'tightening' of the structure of glyceraldehyde 3-phosphate dehydrogenase.

    PubMed Central

    Osborne, H H; Hollaway, M R

    1976-01-01

    An investigation was made of the effect of NAD+ analogues on subunit interactions in yeast and rabbit muscle glyceraldehyde 3-phosphate dehydrogenases by using the subunit exchange (hybridization) method described previously [e.g. see Osborne & Hollaway (1975) Biochem. J. 151, 37-45]. The ligands ATP, ITP, ADP, AMP, cyclic AMP and ADP-ribose like NADH, all caused an apparent weakening of intramolecular subunit interactions, whereas NAD+ caused an apparent increase in the stability of the tetrameric enzyme molecules. A mixture of NMN and AMP, although it did not simulate completely the NAD+-induced 'tightening' of the enzyme structure, did result in a more than 20-fold decrease in the rate of subunit exchange compared with that in the presence of AMP alone. These results show that occupancy of the NMN subsite of the enzyme NAD+-binding site is insufficient in itself to give the marked tightening of the enzyme structure induced by NAD+. The 'tightening' effect is specific in that it seems to require a phosphodiester link between NMN and ADP-ribose. These effects are discussed in terms of the detailed X-ray structure of the lobster holoenzyme [Buehner et al. (1974) J. Mol. Biol. 90, 25-49]. Images PLATE 1 PLATE 2 PMID:183744

  15. The purification and properties of the respiratory-chain reduced nicotinamide–adenine dinucleotide dehydrogenase of Torulopsis utilis

    PubMed Central

    Tottmar, S. O. C.; Ragan, C. I.

    1971-01-01

    1. An NADH–ferricyanide reductase activity has been isolated from the respiratory chain of Torulopsis utilis by using detergents. The isolated enzyme contains non-haem iron, acid-labile sulphide and FMN in the molar proportions 27.5:28.4:1. The preparation is free of FAD and largely free of cytochrome. 2. The enzyme catalyses ferricyanide reduction by NADPH at about 1% of the rate with NADH, and reacts poorly with acceptors other than ferricyanide. The rates of reduction of some acceptors are, as percentages of the rate with ferricyanide: menadione, 0.35%; lipoate, 0.01%; cytochrome c, 0.065%; dichlorophenolindophenol, 0.35%; ubiquinone-1, 0.08%. 3. Several properties of submitochondrial particles of T. utilis (non-haem iron, acid-labile sulphide, FMN and an NADH-reducible electron-paramagnetic-resonance signal) were found to co-purify with the NADH–ferricyanide reductase activity. Thus about 70% of the FMN and, within the limits of accuracy of the experiments, 100% of the non-haem iron and acid-labile sulphide of submitochondrial particles derived from T. utilis cells grown under conditions of glycerol limitation (but relatively low iron availability) can be attributed to the NADH–ferricyanide reductase. 4. It was also shown that the component of submitochondrial particles specifically bleached at 460nm by NADH [species 1 of Ragan & Garland (1971)] co-purifies with the NADH–ferricyanide reductase. 5. This successful purification of an NADH dehydrogenase from T. utilis forms a starting point for investigating the molecular properties of phenotypically modified mitochondrial NADH oxidation pathways that lack energy conservation between NADH and the cytochromes. PMID:4399788

  16. Molecular characterization of Fasciola hepatica and phylogenetic analysis based on mitochondrial (nicotiamide adenine dinucleotide dehydrogenase subunit I and cytochrome oxidase subunit I) genes from the North-East of Iran

    PubMed Central

    Reaghi, Saber; Haghighi, Ali; Harandi, Majid Fasihi; Spotin, Adel; Arzamani, Kourosh; Rouhani, Soheila

    2016-01-01

    Aim: Fascioliasis is one of the most zoonotic diseases with global extension. As the epidemiological distribution of Fasciola may lead to various genetic patterns of the parasite, the aim of this study is to identify Fasciola hepatica based on spermatogenesis, and phylogenetic analysis using mitochondrial (nicotiamide adenine dinucleotide dehydrogenase subunit I [ND1] and cytochrome oxidase subunit I) gene marker. Materials and Methods: In this study, 90 F. hepatica collected from 30 cattle at slaughterhouse located in three different geographical locations in the North-East of Iran were evaluated based on spermatogenetic ability and internal transcribed spacer 1 gene restriction fragment length polymorphism pattern. Genetic diversity and phylogenetic relationship using mtDNA gene marker for the isolates from the North-East of Iran, and other countries were then analyzed. Results: Partial sequences of mtDNA showed eight haplotypes in both genes. The phylogenic analysis using neighbor joining as well as maximum likelihood methods showed similar topologies of trees. Pairwise fixation index between different F. hepatica populations calculated from the nucleotide data set of ND1 gene are statistically significant and show the genetic difference. Conclusion: F. hepatica found in this region of Iran has different genetic structures through the other Fasciola populations in the world. PMID:27733809

  17. Nicotinamide Adenine Dinucleotide Based Therapeutics, Update.

    PubMed

    Pankiewicz, K W; Petrelli, R; Singh, R; Felczak, K

    2015-01-01

    About 500 NAD (P)-dependent enzymes in the cell use NAD (P) as a cofactor or a substrate. This family of broadly diversified enzymes is crucial for maintaining homeostasis of all living organisms. The NAD binding domain of these enzymes is conserved and it was believed that NAD mimics would not be of therapeutic value due to lack of selectivity. Consequently, only mycophenolic acid which selectively binds at the cofactor pocket of NAD-dependent IMP-dehydrogenase (IMPDH) has been approved as an immunosuppressant. Recently, it became clear that the NAD (P)-binding domain was structurally much more diversified than anticipated and numerous highly potent and selective inhibitors of NAD (P) dependent enzymes have been reported. It is likely, that as in the case of protein kinases inhibitors, inhibitors of NAD (P)-dependent enzymes would find soon their way to the clinic. In this review, recent developments of selective inhibitors of NAD-dependent human IMPDH, as well as inhibitors of IMPDHs from parasites, and from bacterial sources are reported. Therapies against Cryptosporidium parvum and the development of new antibiotics that are on the horizon will be discussed. New inhibitors of bacterial NAD-ligases, NAD-kinases, NMN-adenylyl transferases, as well as phosphoribosyl transferases are also described. Although none of these compounds has yet to be approved, the progress in revealing and understanding crucial factors that might allow for designing more potent and efficient drug candidates is enormous and highly encouraging. PMID:26295463

  18. The lactate dehydrogenase--reduced nicotinamide--adenine dinucleotide--pyruvate complex. Kinetics of pyruvate binding and quenching of coeznyme fluorescence.

    PubMed

    Südi, J

    1974-04-01

    The stopped-flow kinetic studies described in this and the following paper (Südi, 1974) demonstrate that a Haldane-type description of the reversible lactate dehydrogenase reaction presents an experimentally feasible task. Combined results of these two papers yield numerical values for the six rate constants defined by the following equilibrium scheme, where E represents lactate dehydrogenase: [Formula: see text] The experiments were carried out at pH8.4 at a relatively low temperature (6.3 degrees C) with the pig heart enzyme. Identification of the above two intermediates and determination of the corresponding rate constants actually involve four series of independent observations in these studies, since (a) the reaction can be followed in both directions, and (b) both the u.v. absorption and the fluorescence of the coenzymes are altered in the reaction, and it is shown that these two spectral changes do not occur simultaneously. Kinetic observations made in the reverse direction are reported in this paper. It is demonstrated that the fluorescence of NADH can no longer be observed in the ternary complex E(NADH) (Pyr). Even though the oxidation-reduction reaction rapidly follows the formation of this complex, the numerical values of k(-4) (8.33x10(5)m(-1).s(-1)) and k(+4) (222s(-1)) are easily obtained from a directly observed second-order reaction step in which fluorescent but not u.v.-absorbing material is disappearing. U.v.-absorption measurements do not clearly resolve the subsequent oxidation-reduction step from the dissociation of lactate. It is shown that this must be due partly to the instrumental dead time, and partly to a low transient concentration of E(NAD+) (Lac) in the two-step sequential reaction in which the detectable disappearance of u.v.-absorbing material takes place. It is estimated that about one-tenth of the total change in u.v. absorption is due to a ;burst reaction' in which E(NAD+) (Lac) is produced, and this estimation yields, from k

  19. Mutants of Neurospora deficient in nicotinamide adenine dinucleotide (phosphate) glycohydrolase.

    PubMed Central

    Nelson, R E; Selitrennikoff, C P; Siegel, R W

    1975-01-01

    A new screening technique has been developed for the rapid identification of Neurospora crassa mutants that are deficient in nicotinamide adenine dinucleotide glycohydrolase (NADase) and nicotinamide adenine dinucleotide phosphate glycohydrolase (NADPase) activities. Using this procedure, five single-gene mutants were isolated whose singular difference from wild type appeared to be the absence of NAD(P)ase (EC 3.2.2.6). All five mutants were found to be genetically allelic and did not complement in heterocaryons. This gene, nada [NAD(P)ase], was localized in linkage group IV. One of the nada alleles was found to specify an enzyme that was critically temperature sensitive and had altered substrate affinity. Mutations at the nada locus did not affect the genetic program for the expression of NAD(P)ase during cell differentiation, nor did they have a general effect on NAD catabolism. Nada mutations did not have simultaneous effects on other glycohydrolase activities. Tests of dominance (in heterocaryons) and in vitro mixing experiments did not provide evidence that nada mutations alter activators or inhibitors of NAD(P)ase. Thus, the nada gene appears to specify only the structure of N. crassa NAD(P)ase. Images PMID:165174

  20. Studies of yeast cell oxygenation and energetics by laser fluorometry of reduced nicotinamide adenine dinucleotide

    NASA Astrophysics Data System (ADS)

    Pan, Fu-shih; Chen, Stephen; Mintzer, Robert A.; Chen, Chin-Tu; Schumacker, Paul

    1991-03-01

    It is of fundamental importance for biological scientists to assess cellular energetics. Under aerobic conditions, the tricarboxylic acid cycle (TCA cycle) is coupled with the mitochondrial electron cascade pathway to provide the cell with energy. The nicotinamide adenine dinucleotide-conjugated pair (NAD and NADH) is the coenzyme in numerous important biomedical reactions which include several important dehydrogenase reactions in the TCA cycle. Based on Le Chatelier's principle, NADH will accumulate when this energy production mechanism is impaired. The relative amounts of NAD and NADH in a cell are defined as the redox state of the cell (Williamson et.al. 1967) which provides a valuable index of cellular energetics. The sum of the amounts of NAD and NADH in a cell may be assumed to be constant during a finite time; therefore, a reliable means of measuring the NADH concentration would provide us with a useful indicator of tissue viability. Traditionally, the quantities of NADH and NAD may be measured by chemical assay methods. We can avoid these tediois analyses by exploiting the significant difference between the ultraviolet absorption spectra of this redox pair. However, because of the opacity of biological samples and the interference of other biochemicals that also absorb ultraviolet radiation, measurement of NADH and NAD+ concentrations in vivo by absorption spectroscopy is not feasible.

  1. Oxidation of Reduced Nicotinamide Adenine Dinucleotide Phosphate by Isolated Corn Mitochondria 1

    PubMed Central

    Koeppe, D. E.; Miller, Raymond J.

    1972-01-01

    Isolated corn (Zea mays L.) mitochondria were found to oxidize reduced nicotinamide adenine dinucleotide phosphate in a KCl reaction medium. This oxidation was dependent on the presence of calcium or phosphate or both. Strontium and manganese substituted for calcium, but magnesium or barium did not. The oxidation of NADPH produced contraction of mitochondria swollen in KCl. Further evidence that the oxidation of NADPH was coupled was observed in respiratory control and adenosine diphosphate-oxygen ratios that were comparable to those reported for reduced nicotinamide adenine dinucleotide. The pathways of electron flow from NADH and NADPH were compared through the addition of electron transport inhibitors. The only difference between the two dinucleotides was that amytal was found to inhibit almost totally the state 3 oxidation of NADPH, but had little effect on the state 3 oxidation of NADH. The hypothetical pathways for electron flow from NADPH are discussed, as are the possible sites of calcium and phosphate stimulation. PMID:16657960

  2. Electrochemical oxidation of dihydronicotinamide adenine dinucleotide at nitrogen-doped carbon nanotube electrodes.

    PubMed

    Goran, Jacob M; Favela, Carlos A; Stevenson, Keith J

    2013-10-01

    Nitrogen-doped carbon nanotubes (N-CNTs) substantially lower the overpotential necessary for dihydronicotinamide adenine dinucleotide (NADH) oxidation compared to nondoped CNTs or traditional carbon electrodes such as glassy carbon (GC). We observe a 370 mV shift in the peak potential (Ep) from GC to CNTs and another 170 mV shift from CNTs to 7.4 atom % N-CNTs in a sodium phosphate buffer solution (pH 7.0) with 2.0 mM NADH (scan rate 10 mV/s). The sensitivity of 7.4 atom % N-CNTs to NADH was measured at 0.30 ± 0.04 A M(-1) cm(-2), with a limit of detection at 1.1 ± 0.3 μM and a linear range of 70 ± 10 μM poised at a low potential of -0.32 V (vs Hg/Hg2SO4). NADH fouling, known to occur to the electrode surface during NADH oxidation, was investigated by measuring both the change in Ep and the resulting loss of electrode sensitivity. NADH degradation, known to occur in phosphate buffer, was characterized by absorbance at 340 nm and correlated with the loss of NADH electroactivity. N-CNTs are further demonstrated to be an effective platform for dehydrogenase-based biosensing by allowing glucose dehydrogenase to spontaneously adsorb onto the N-CNT surface and measuring the resulting electrode's sensitivity to glucose. The glucose biosensor had a sensitivity of 0.032 ± 0.003 A M(-1) cm(-2), a limit of detection at 6 ± 1 μM, and a linear range of 440 ± 50 μM.

  3. Is Nicotinamide Adenine Dinucleotide Phosphate an Obligatory Intermediate in Photosynthesis?

    PubMed Central

    Ben-Amotz, Ami; Avron, Mordhay

    1972-01-01

    The site of action of the inhibitors disalicylidenepropanediamine and pyrophosphate was more closely defined as acting on ferredoxin. Three inhibitors which act on the electron transport path between ferredoxin and NADP: disalicylidenepropanediamine, pyrophosphate, and phosphoadenosinediphosphate ribose, had no effect on photosynthesis in cell free preparations of Dunaliela parva at concentrations which completely inhibited the enzymic activity on which each inhibitor acts. The addition of disalicylidenepropanediamine to dark-grown Euglena gracilis cells prevented the light-induced formation of NADP-dependent glyceraldehyde-3-phosphate dehydrogenase, but not of photosynthesis, chlorophyll synthesis, or NAD-dependent glyceraldehyde-3-phosphate dehydrogenase. The above results are interpreted as indicating that, at least under some conditions, a reduced product of photosystem I preceding ferredoxin in the electron transport path can serve as the reductant of CO2 in photosynthesis. PMID:16657933

  4. Development of an enzymatic chromatography strip with nicotinamide adenine dinucleotide-tetrazolium coupling reactions for quantitative l-lactate analysis.

    PubMed

    Kan, Shu-Chen; Chang, Wei-Feng; Lan, Min-Chi; Lin, Chia-Chi; Lai, Wei-Shiang; Shieh, Chwen-Jen; Hsiung, Kuang-Pin; Liu, Yung-Chuan

    2015-02-15

    In this study, a dry assay of l-lactate via the enzymatic chromatographic test (ECT) was developed. An l-lactate dehydrogenase plus a nicotinamide adenine dinucleotide (NADH) regeneration reaction were applied simultaneously. Various tetrazolium salts were screened to reveal visible color intensities capable of determining the lactate concentrations in the sample. The optimal analysis conditions were as follows. The diaphorase (0.5 μl, 2(-6)U/μl) was immobilized in the test line of the ECT strip. Nitrotetrazolium blue chloride (5 μl, 12 mM), l-lactate dehydrogenase (1 μl, 0.25U/μl), and NAD(+) (2μl, 1.5×10(-5)M) were added into the mobile phase (100 μl) composed of 0.1% (w/w) Tween 20 in 10mM phosphate buffer (pH 9.0), and the process was left to run for 10 min. This detection had a linear range of 0.039 to 5mM with a detection limit of 0.047 mM. This quantitative analysis process for l-lactate was easy to operate with good stability and was proper for the point-of-care testing applications. PMID:25454507

  5. Nicotinic acid adenine dinucleotide phosphate-mediated calcium signalling in effector T cells regulates autoimmunity of the central nervous system

    PubMed Central

    Cordiglieri, Chiara; Odoardi, Francesca; Zhang, Bo; Nebel, Merle; Kawakami, Naoto; Klinkert, Wolfgang E. F.; Lodygin, Dimtri; Lühder, Fred; Breunig, Esther; Schild, Detlev; Ulaganathan, Vijay Kumar; Dornmair, Klaus; Dammermann, Werner; Potter, Barry V. L.; Guse, Andreas H.

    2010-01-01

    Nicotinic acid adenine dinucleotide phosphate represents a newly identified second messenger in T cells involved in antigen receptor-mediated calcium signalling. Its function in vivo is, however, unknown due to the lack of biocompatible inhibitors. Using a recently developed inhibitor, we explored the role of nicotinic acid adenine dinucleotide phosphate in autoreactive effector T cells during experimental autoimmune encephalomyelitis, the animal model for multiple sclerosis. We provide in vitro and in vivo evidence that calcium signalling controlled by nicotinic acid adenine dinucleotide phosphate is relevant for the pathogenic potential of autoimmune effector T cells. Live two photon imaging and molecular analyses revealed that nicotinic acid adenine dinucleotide phosphate signalling regulates T cell motility and re-activation upon arrival in the nervous tissues. Treatment with the nicotinic acid adenine dinucleotide phosphate inhibitor significantly reduced both the number of stable arrests of effector T cells and their invasive capacity. The levels of pro-inflammatory cytokines interferon-gamma and interleukin-17 were strongly diminished. Consecutively, the clinical symptoms of experimental autoimmune encephalomyelitis were ameliorated. In vitro, antigen-triggered T cell proliferation and cytokine production were evenly suppressed. These inhibitory effects were reversible: after wash-out of the nicotinic acid adenine dinucleotide phosphate antagonist, the effector T cells fully regained their functions. The nicotinic acid derivative BZ194 induced this transient state of non-responsiveness specifically in post-activated effector T cells. Naïve and long-lived memory T cells, which express lower levels of the putative nicotinic acid adenine dinucleotide phosphate receptor, type 1 ryanodine receptor, were not targeted. T cell priming and recall responses in vivo were not reduced. These data indicate that the nicotinic acid adenine dinucleotide phosphate

  6. Two-dimensional infrared spectroscopy of azido-nicotinamide adenine dinucleotide in water

    NASA Astrophysics Data System (ADS)

    Dutta, Samrat; Rock, William; Cook, Richard J.; Kohen, Amnon; Cheatum, Christopher M.

    2011-08-01

    Mid-IR active analogs of enzyme cofactors have the potential to be important spectroscopic reporters of enzyme active site dynamics. Azido-nicotinamide adenine dinucleotide (NAD+), which has been recently synthesized in our laboratory, is a mid-IR active analog of NAD+, a ubiquitous redox cofactor in biology. In this study, we measure the frequency-frequency time correlation function for the antisymmetric stretching vibration of the azido group of azido-NAD+ in water. Our results are consistent with previous studies of pseudohalides in water. We conclude that azido-NAD+ is sensitive to local environmental fluctuations, which, in water, are dominated by hydrogen-bond dynamics of the water molecules around the probe. Our results demonstrate the potential of azido-NAD+ as a vibrational probe and illustrate the potential of substituted NAD+-analogs as reporters of local structural dynamics that could be used for studies of protein dynamics in NAD-dependent enzymes.

  7. Conducting polymer and its composite materials based electrochemical sensor for Nicotinamide Adenine Dinucleotide (NADH).

    PubMed

    Omar, Fatin Saiha; Duraisamy, Navaneethan; Ramesh, K; Ramesh, S

    2016-05-15

    Nicotinamide Adenine Dinucleotide (NADH) is an important coenzyme in the human body that participates in many metabolic reactions. The impact of abnormal concentrations of NADH significantly causes different diseases in human body. Electrochemical detection of NADH using bare electrode is a challenging task especially in the presence of main electroactive interferences such as ascorbic acid (AA), uric acid (UA) and dopamine (DA). Modified electrodes have been widely explored to overcome the problems of poor sensitivity and selectivity occurred from bare electrodes. This review gives an overview on the progress of using conducting polymers, polyelectrolyte and its composites (co-polymer, carbonaceous, metal, metal oxide and clay) based modified electrodes for the sensing of NADH. In addition, developments on the fabrication of numerous conducting polymer composites based modified electrodes are clearly described.

  8. Production and characterization of reduced NAADP (nicotinic acid-adenine dinucleotide phosphate).

    PubMed Central

    Billington, Richard A; Thuring, Jan W; Conway, Stuart J; Packman, Len; Holmes, Andrew B; Genazzani, Armando A

    2004-01-01

    The pyridine nucleotide NAADP (nicotinic acid-adenine dinucleotide phosphate) has been shown to act as a Ca2+-releasing intracellular messenger in a wide variety of systems from invertebrates to mammals and has been implicated in a number of cellular processes. NAADP is structurally very similar to its precursor, the endogenous coenzyme NADP and while much is known about the reduced form of NADP, NADPH, it is not known whether NAADP can also exist in a reduced state. Here we report that NAADP can be reduced to NAADPH by endogenous cellular enzymes and that NAADPH is functionally inert at the NAADP receptor. These data suggest that NAADPH could represent a mechanism for rapidly inactivating NAADP in cells. PMID:14606955

  9. Isotope effect studies of the chemical mechanism of nicotinamide adenine dinucleotide malic enzyme from Crassula

    SciTech Connect

    Grissom, C.B.; Willeford, O.; Wedding, R.T.

    1987-05-05

    The /sup 13/C primary kinetic isotope effect on the decarboxylation of malate by nicotinamide adenine dinucleotide malic enzyme from Crassula argentea is 1.0199 +/- 0.0006 with proteo L-malate-2-H and 1.0162 +/- 0.0003 with malate-2-d. The primary deuterium isotope effect is 1.45 +/- 0.10 on V/K and 1.93 +/- 0.13 on V/sub max/. This indicates a stepwise conversion of malate to pyruvate and CO/sub 2/ with hydride transfer preceding decarboxylation, thereby suggesting a discrete oxaloacetate intermediate. This is in agreement with the stepwise nature of the chemical mechanism of other malic enzymes despite the Crassula enzyme's inability to reduce or decarboxylate oxaloacetate. Differences in morphology and allosteric regulation between enzymes suggest specialization of the Crassula malic enzyme for the physiology of crassulacean and acid metabolism while maintaining the catalytic events founds in malic enzymes from animal sources.

  10. Flavin adenine dinucleotide content of quinone reductase 2: analysis and optimization for structure-function studies.

    PubMed

    Leung, Kevin Ka Ki; Litchfield, David W; Shilton, Brian H

    2012-01-01

    Quinone reductase 2 (NQO2) is a broadly expressed enzyme implicated in responses to a number of compounds, including protein kinase inhibitors, resveratrol, and antimalarial drugs. NQO2 includes a flavin adenine dinucleotide (FAD) cofactor, but X-ray crystallographic analysis of human NQO2 expressed in Escherichia coli showed that electron density for the isoalloxazine ring of FAD was weak and there was no electron density for the adenine mononucleotide moiety. Reversed-phase high-performance liquid chromatography (HPLC) of the NQO2 preparation indicated that FAD was not present and only 38% of the protomers contained flavin mononucleotide (FMN), explaining the weak electron density for FAD in the crystallographic analysis. A method for purifying NQO2 and reconstituting with FAD such that the final content approaches 100% occupancy with FAD is presented here. The enzyme prepared in this manner has a high specific activity, and there is strong electron density for the FAD cofactor in the crystal structure. Analysis of NQO2 crystal structures present in the Protein Data Bank indicates that many may have sub-stoichiometric cofactor content and/or contain FMN rather than FAD. This method of purification and reconstitution will help to optimize structural and functional studies of NQO2 and possibly other flavoproteins.

  11. Facile synthesis of near infrared fluorescent trypsin-stabilized Ag nanoclusters with tunable emission for 1,4-dihydronicotinamide adenine dinucleotide and ethanol sensing.

    PubMed

    Liu, Siyu; Wang, Hui; Cheng, Zhen; Liu, Hongguang

    2015-07-30

    A facile chemical synthetic route was developed to prepare near-infrared fluorescent trypsin-stabilized Ag nanoclusters (Try-Ag NCs). The fluorescence emission wavelength of the produced Try-Ag NCs is tunable by simple adjusting pH value of the synthesis system, and the Try-Ag NCs offer a symmetric fluorescent excitation and emission peak. The fluorescence of Try-Ag NCs remains constant in the presence of various ions and molecules, and it can be effectively quenched by 1,4-dihydronicotinamide adenine dinucleotide (NADH) instead of its oxidized forms nicotinamide adenine dinucleotide (NAD(+)). This property enables the Try-Ag NCs to be a novel analytical platform to monitor biological reaction involved with NADH. In this work, the Try-Ag NCs was also applied to analyze ethanol based on the generation of NADH which was the product of NAD(+) and ethanol in the catalysis of alcohol dehydrogenase. And the proposed platform allowed ethanol to be determined in the range from 10 to 300 μmol/L with 5 μmol/L detection limit.

  12. Magnitude of malate-aspartate reduced nicotinamide adenine dinucleotide shuttle activity in intact respiring tumor cells.

    PubMed

    Greenhouse, W V; Lehninger, A L

    1977-11-01

    Measurements of respiration, CO2 and lactate production, and changes in the levels of various key metabolites of the glycolytic sequence and tricarboxylic acid cycle were made on five lines of rodent ascites tumor cells (two strains of Ehrlich ascites tumor cells, Krebs II carcinoma, AS-30D carcinoma, and L1210 cells) incubated aerobically in the presence of uniformly labeled D-[14C]glucose. From these data, as well as earlier evidence demonstrating that the reduced nicotinamide adenine dinucleotide (NADH) shuttle in these cells requires a transaminase step and is thus identified as the malate-aspartate shuttle (W.V.V. Greenhouse and A.L. Lehninger, Cancer Res., 36: 1392-1396, 1976), metabolic flux diagrams were constructed for the five cell lines. These diagrams show the relative rates of glycolysis, the tricarboxylic acid cycle, electron transport, and the malate-aspartate shuttle in these tumors. Large amounts of cytosolic NADH were oxidized by the mitochondrial respiratory chain via the NADH shuttle, comprising anywhere from about 20 to 80% of the total flow of reducing equivalents to oxygen in these tumors. Calculations of the sources of energy for adenosine triphosphate synthesis indicated that on the average about one-third of the respiratory adenosine triphosphate is generated by electron flow originating from cytosolic NADH via the malate-aspartate shuttle.

  13. Preclinical evidence of mitochondrial nicotinamide adenine dinucleotide as an effective alarm parameter under hypoxia

    NASA Astrophysics Data System (ADS)

    Shi, Hua; Sun, Nannan; Mayevsky, Avraham; Zhang, Zhihong; Luo, Qingming

    2014-01-01

    Early detection of tissue hypoxia in the intensive care unit is essential for effective treatment. Reduced nicotinamide adenine dinucleotide (NADH) has been suggested to be the most sensitive indicator of tissue oxygenation at the mitochondrial level. However, no experimental evidence comparing the kinetics of changes in NADH and other physiological parameters has been provided. The aim of this study is to obtain the missing data in a systematic and reliable manner. We constructed four acute hypoxia models, including hypoxic hypoxia, hypemic hypoxia, circulatory hypoxia, and histogenous hypoxia, and measured NADH fluorescence, tissue reflectance, cerebral blood flow, respiration, and electrocardiography simultaneously from the induction of hypoxia until death. We found that NADH was not always the first onset parameter responding to hypoxia. The order of responses was mainly affected by the cause of hypoxia. However, NADH reached its alarm level earlier than the other monitored parameters, ranging from several seconds to >10 min. As such, we suggest that the NADH can be used as a hypoxia indicator, although the exact level that should be used must be further investigated. When the NADH alarm is detected, the body still has a chance to recover if appropriate and timely treatment is provided.

  14. Nicotinamide adenine dinucleotide fluorescence spectroscopy and imaging of isolated cardiac myocytes.

    PubMed Central

    Eng, J; Lynch, R M; Balaban, R S

    1989-01-01

    Nicotinamide adenine dinucleotide (NADH) plays a critical role in oxidative phosphorylation as the primary source of reducing equivalents to the respiratory chain. Using a modified fluorescence microscope, we have obtained spectra and images of the blue autofluorescence from single rat cardiac myocytes. The optical setup permitted rapid acquisition of fluorescence emission spectra (390-595 nm) or intensified digital video images of individual myocytes. The spectra showed a broad fluorescence centered at 447 +/- 0.2 nm, consistent with mitochondrial NADH. Addition of cyanide resulted in a 100 +/- 10% increase in fluorescence, while the uncoupler FCCP resulted in a 82 +/- 4% decrease. These two transitions were consistent with mitochondrial NADH and implied that the myocytes were 44 +/- 6% reduced under the resting control conditions. Intracellular fluorescent structures were observed that correlated with the distribution of a mitochondrial selective fluorescent probe (DASPMI), the mitochondrial distribution seen in published electron micrographs, and a metabolic digital subtraction image of the cyanide fluorescence transition. These data are consistent with the notion that the blue autofluorescence of rat cardiac myocytes originates from mitochondrial NADH. Images FIGURE 9 FIGURE 10 FIGURE 2 FIGURE 3 FIGURE 8 FIGURE 11 PMID:2720061

  15. Nicotinamide adenine dinucleotide: An essential factor in preserving hearing in cisplatin-induced ototoxicity.

    PubMed

    Kim, Hyung-Jin; Oh, Gi-Su; Shen, AiHua; Lee, Su-Bin; Khadka, Dipendra; Pandit, Arpana; Shim, Hyeok; Yang, Sei-Hoon; Cho, Eun-Young; Song, Jeho; Kwak, Tae Hwan; Choe, Seong-Kyu; Park, Raekil; So, Hong-Seob

    2015-08-01

    Ototoxicity is an important issue in patients receiving cisplatin chemotherapy. Numerous studies have demonstrated that several mechanisms, including oxidative stress, DNA damage, and inflammatory responses, are closely associated with cisplatin-induced ototoxicity. Although much attention has been directed at identifying ways to protect the inner ear from cisplatin-induced damage, the precise underlying mechanisms have not yet been elucidated. The cofactor nicotinamide adenine dinucleotide (NAD(+)) has emerged as an important regulator of cellular energy metabolism and homeostasis. NAD(+) acts as a cofactor for various enzymes including sirtuins (SIRTs) and poly(ADP-ribose) polymerases (PARPs), and therefore, maintaining adequate NAD(+) levels has therapeutic benefits because of its effect on NAD(+)-dependent enzymes. Recent studies demonstrated that disturbance in intracellular NAD(+) levels is critically involved in cisplatin-induced cochlear damage associated with oxidative stress, DNA damage, and inflammatory responses. In this review, we describe the importance of NAD(+) in cisplatin-induced ototoxicity and discuss potential strategies for the prevention or treatment of cisplatin-induced ototoxicity with a particular focus on NAD(+)-dependent cellular pathways. PMID:25891352

  16. Kinetic properties of nicotinic acid adenine dinucleotide phosphate-induced Ca2+ release.

    PubMed

    Genazzani, A A; Mezna, M; Summerhill, R J; Galione, A; Michelangeli, F

    1997-03-21

    Three endogenous molecules have now been shown to release Ca2+ in the sea urchin egg: inositol trisphosphate (InsP3), cyclic adenosine 5'-diphosphate ribose (cADPR), and nicotinic acid adenine dinucleotide phosphate (NAADP), a derivative of NADP. While the mechanism through which the first two molecules are able to release Ca2+ is established and well characterized with InsP3 and cADPR-activating InsP3 and ryanodine receptors, respectively, the newly described NAADP has been shown to release Ca2+ via an entirely different mechanism. The most striking feature of this novel Ca2+ release mechanism is its inactivation, since subthreshold concentrations of NAADP are able to fully and irreversibly desensitize the channel. In the present study we have investigated the fast kinetics of activation and inactivation of NAADP-induced Ca2+ release. NAADP was found to release Ca2+ in a biphasic manner, and such release was preceded by a pronounced latent period, which was inversely dependent on concentration. Moreover, the kinetic features of NAADP-induced Ca2+ release were not altered by pretreatment with low concentrations of NAADP, although the extent of Ca2+ release was greatly affected. Our data suggest that the inactivation of NAADP-induced Ca2+ release is an all-or-none phenomenon, and while some receptors have been fully inactivated, those that remain sensitive to NAADP do so without any change in kinetic features. PMID:9065423

  17. Reduced nicotinamide adenine dinucleotide-activated phosphoenolpyruvate carboxylase in Pseudomonas MA: potential regulation between carbon assimilation and energy production.

    PubMed Central

    Newaz, S S; Hersh, L B

    1975-01-01

    Comparison of enzyme activities in crude extracts of methylamine-grown Pseudomonas MA (ATCC 23319) to those in succinate-grown cells indicates the involvement of an acetyl coenzyme A-independent phosphoenolpyruvate carboxylase in one-carbon metabolism. The purified phosphoenolpyruvate carboxylase is activated specifically by reduced nicotinamide adenine dinucleotide (KA = 0.2 mM). The regulatory properties of this enzyme suggests that phosphoenolpyruvate serves as a focal point for both carbon assimilation and energy metabolism. PMID:171253

  18. RESPIRATORY PATHWAYS IN THE MYCOPLASMA. II. PATHWAY OF ELECTRON TRANSPORT DURING OXIDATION OF REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE BY MYCOPLASMA HOMINIS.

    PubMed

    VANDEMARK, P J; SMITH, P F

    1964-07-01

    VanDemark, P. J. (University of South Dakota, Vermillion), and P. F. Smith. Respiratory pathways in the Mycoplasma. II. Pathway of electron transport during oxidation of reduced nicotinamide adenine dinucleotide by Mycoplasma hominis. J. Bacteriol. 88:122-129. 1964.-Unlike the flavin-terminated respiratory pathway of the fermentative Mycoplasma, the respiratory chain of the nonfermentative M. hominis strain 07 appears to be more complex, involving quinones and cytochromes in addition to flavins. In addition to reduction by reduced nicotine adenine dinucleotide (NADH) and reduced nicotine adenine dinucleotide phosphate, nonpyridine nucleotide-linked reduction of the respiratory chain of this organism occurred with succinate, lactate, and short-chained acyl coenzyme A derivatives as electron donors. Enzymes catalyzing the oxidation of NADH included an NADH oxidase, a diaphorase, a quinone reductase, and a cytochrome c reductase. The oxidation of NADH was sensitive to a variety of inhibitors, including 10(-4)m Atabrine, 10(-3)m sodium amytal, 10(-5)mp-chloromercuribenzoate, 10(-4)m antimycin A, and 10(-4)m potassium cyanide. The oxidase was resolved by the addition of 5% trichloroacetic acid and reactivated by the addition of flavin adenine dinucleotide but not flavin mononucleotide. The M. hominis sonic extract contained an NADH-coenzyme Q reductase. The oxidation of NADH was stimulated by the addition of either menadione or vitamin K(2) (C(35)). The oxidase was inactivated by extraction with ether or irradiation at 360 mmu. The ether-inactivated enzyme was partially reactivated by the addition of "lipid" extract of the enzyme and coenzyme Q(6). Difference spectra of the cell extracts revealed the presence of "b" and "a" type cytochromes. These cell extracts were found to contain a cyanide-and azide-sensitive cytochrome oxidase and catalase. PMID:14197876

  19. Photoaffinity Labeling of High Affinity Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP)-Binding Proteins in Sea Urchin Egg*♦

    PubMed Central

    Walseth, Timothy F.; Lin-Moshier, Yaping; Jain, Pooja; Ruas, Margarida; Parrington, John; Galione, Antony; Marchant, Jonathan S.; Slama, James T.

    2012-01-01

    Nicotinic acid adenine dinucleotide phosphate (NAADP) is a messenger that regulates calcium release from intracellular acidic stores. Recent studies have identified two-pore channels (TPCs) as endolysosomal channels that are regulated by NAADP; however, the nature of the NAADP receptor binding site is unknown. To further study NAADP binding sites, we have synthesized and characterized [32P-5-azido]nicotinic acid adenine dinucleotide phosphate ([32P-5N3]NAADP) as a photoaffinity probe. Photolysis of sea urchin egg homogenates preincubated with [32P-5N3]NAADP resulted in specific labeling of 45-, 40-, and 30-kDa proteins, which was prevented by inclusion of nanomolar concentrations of unlabeled NAADP or 5N3-NAADP, but not by micromolar concentrations of structurally related nucleotides such as NAD, nicotinic acid adenine dinucleotide, nicotinamide mononucleotide, nicotinic acid, or nicotinamide. [32P-5N3]NAADP binding was saturable and displayed high affinity (Kd ∼10 nm) in both binding and photolabeling experiments. [32P-5N3]NAADP photolabeling was irreversible in a high K+ buffer, a hallmark feature of NAADP binding in the egg system. The proteins photolabeled by [32P-5N3]NAADP have molecular masses smaller than the sea urchin TPCs, and antibodies to TPCs do not detect any immunoreactivity that comigrates with either the 45-kDa or the 40-kDa photolabeled proteins. Interestingly, antibodies to TPC1 and TPC3 were able to immunoprecipitate a small fraction of the 45- and 40-kDa photolabeled proteins, suggesting that these proteins associate with TPCs. These data suggest that high affinity NAADP binding sites are distinct from TPCs. PMID:22117077

  20. Reduction of nicotinamide adenine dinucleotide by pyruvate:lipoate oxidoreductase in anaerobic, dark-grown Rhodospirillum rubrum mutant C.

    PubMed Central

    Gorrell, T E; Uffen, R L

    1978-01-01

    Cell extracts from fermentatively grown Rhodospirillum rubrum reduced about 80 nmol of nicotinamide adenine dinucleotide (NAD) per mg of protein per min under anaerobic conditions with sodium pyruvate. The reaction was specific for pyruvate and NAD; NAD phosphate was not reduced. Results indicated that pyruvate-linked NAD reduction occurred via pyruvate:lipoate oxidoreductase. The reaction required catalytic amounts of both coenzyme A and thiamine pyrophosphate. Addition of sodium arsenite inhibited enzyme activity by 90%. Pyruvate:lipoate oxidoreductase was the only system detected in anaerobic, dark-grown R. rubrum cell extracts which operated to produce reduced NAD. The low activity of the enzyme system suggested that it was not quantitatively important in ATP formation. PMID:207677

  1. Biochemical characterization of a flavin adenine dinucleotide-dependent monooxygenase, ornithine hydroxylase from Pseudomonas aeruginosa, suggests a novel reaction mechanism.

    PubMed

    Meneely, Kathleen M; Lamb, Audrey L

    2007-10-23

    Pyoverdin is the hydroxamate siderophore produced by the opportunistic pathogen Pseudomonas aeruginosa under the iron-limiting conditions of the human host. This siderophore includes derivatives of ornithine in the peptide backbone that serve as iron chelators. PvdA is the ornithine hydroxylase, which performs the first enzymatic step in preparation of these derivatives. PvdA requires both flavin adenine dinucleotide (FAD) and nicotinamide adenine dinucleotide phosphate (NADPH) for activity; it was found to be a soluble monomer most active at pH 8.0. The enzyme demonstrated Michaelis-Menten kinetics in an NADPH oxidation assay, but a hydroxylation assay indicated substrate inhibition at high ornithine concentration. PvdA is highly specific for both substrate and coenzyme, and lysine was shown to be a nonsubstrate effector and mixed inhibitor of the enzyme with respect to ornithine. Chloride is a mixed inhibitor of PvdA with respect to ornithine but a competitive inhibitor with respect to NADPH, and a bulky mercurial compound (p-chloromercuribenzoate) is a mixed inhibitor with respect to ornithine. Steady-state experiments indicate that PvdA/FAD forms a ternary complex with NADPH and ornithine for catalysis. PvdA in the absence of ornithine shows slow substrate-independent flavin reduction by NADPH. Biochemical comparison of PvdA to p-hydroxybenzoate hydroxylase (PHBH, from Pseudomonas fluorescens) and flavin-containing monooxygenases (FMOs, from Schizosaccharomyces pombe and hog liver microsomes) leads to the hypothesis that PvdA catalysis proceeds by a novel reaction mechanism. PMID:17900176

  2. Nicotinic Acid Adenine Dinucleotide Phosphate Analogs Substituted on the Nicotinic Acid and Adenine Ribosides. Effects on Receptor-Mediated Ca2+ release

    PubMed Central

    Trabbic, Christopher J.; Zhang, Fan; Walseth, Timothy F.; Slama, James T.

    2015-01-01

    Nicotinic acid adenine dinucleotide phosphate (NAADP) is a Ca2+ releasing intracellular second messenger in both mammals and echinoderms. We report that large functionalized substituents introduced at the nicotinic acid 5-position are recognized by the sea urchin receptor, albeit with a 20–500 fold loss in agonist potency. 5-(3-Azidopropyl)-NAADP was shown to release Ca2+ with an EC50 of 31 µM and to compete with NAADP for receptor binding with an IC50 of 56 nM. Attachment of charged groups to the nicotinic acid of NAADP is associated with loss of activity, suggesting that the nicotinate riboside moiety is recognized as a neutral zwitterion. Substituents (Br- and N3-) can be introduced at the 8-adenosyl position of NAADP while preserving high potency and agonist efficacy and an NAADP derivative substituted at both the 5-position of the nicotinic acid and at the 8-adenosyl position was also recognized although the agonist potency was significantly reduced. PMID:25826221

  3. Surface enhanced Raman scattering investigation of protein-bound flavin adenine dinucleotide structure

    NASA Astrophysics Data System (ADS)

    Maskevich, S. A.; Strekal, N. D.; Artsukevich, I. M.; Kivach, L. N.; Chernikevich, I. P.

    1995-04-01

    The SERS spectra of alcohol oxidase from Pichia pastoris adsorbed on a silver electrode were obtained. The similarities and differences of these spectra with the SERS spectrum of free flavin adenine dinucleiotide were considered. The dependence of relative intensity of 1258 cm -1 band from the electrode potential in the protein SERS spectra differed from that of free flavin. From the data on this band being sensitive to the protein-flavin interaction a suggestion was made about incomplete dissociation of flavin from the protein. This conclusion is confirmed both by the fluorescence data and the SERS data on alcohol oxidase purified from Candida boidinii. The results of the SERS investigation of the interaction between the substrate, ethanol and the cofactor, FAD, as well as between protein-bound cofactor with the substrate are presented. The problem of retaining the protein enzyme activity is discussed.

  4. Molecular beacon based bioassay for highly sensitive and selective detection of nicotinamide adenine dinucleotide and the activity of alanine aminotransferase.

    PubMed

    Tang, Zhiwen; Liu, Pei; Ma, Changbei; Yang, Xiaohai; Wang, Kemin; Tan, Weihong; Lv, Xiaoyuan

    2011-04-01

    We have developed a new approach to detect nicotinamide adenine dinucleotide (NAD(+)) with high specificity and sensitivity using molecular beacons (MBs) and employed it in the investigation of NAD(+) related biological processes, such as calorie restriction and alanine aminotransferase (ALT) activation. The E. coli DNA ligase would catalyze the ligation of two short oligonucleotides that complement with an MB only in the presence of NAD(+), resulting in the opening of the MB and the restoration of fluorescent signal. Thanks to the high sensitivity of the MB probe and the fidelity of E. coli DNA ligase toward its substrates, this approach can detect 0.3 nM NAD(+) with high selectivity against other NAD(+) analogs. This novel assay can also provide a convenient and robust way to analyze NAD(+) in biological samples such as cell lysate. As NAD(+) plays an essential role in many biochemical processes, this method can be used to investigate NAD(+) related life processes. For instance, the effect of calorie restriction on the intracellular NAD(+) level in MCF7 cells has been studied using this new assay. Moreover, this approach was also successfully used to analyze the activity of ALT. Therefore, this novel NAD(+) assay holds wide applicability as an analytical tool in biochemical and biomedical research.

  5. Electrochemical detection of nicotinamide adenine dinucleotide based on molecular beacon-like DNA and E. coli DNA ligase.

    PubMed

    He, Xiaoxiao; Ni, Xiaoqi; Wang, Yonghong; Wang, Kemin; Jian, Lixin

    2011-01-15

    An electrochemical method for nicotinamide adenine dinucleotide (NAD(+)) detection with high sensitivity and selectivity has been developed by using molecular beacon (MB)-like DNA and Escherichia coli DNA ligase. In this method, MB-like DNA labeled with 5'-SH and 3'-biotin was self-assembled onto a gold electrode in its duplex form by means of facile gold-thiol chemistry, which resulted in blockage of electronic transmission. It was eT OFF state. In the presence of NAD(+), E. coli DNA ligase was activated, and the two nucleotide fragments which were complementary to the loop of the MB-like DNA could be ligated by the NAD(+)-dependent E. coli DNA ligase. Hybridization of the ligated DNA with the MB-like DNA induced a large conformational change in this surface-confined DNA structure, which in turn pushed the biotin away from the electrode surface and made the electrons exchange freely with the electrode. Then the generated electrochemical signals can be measured by differential pulse voltammetry (DPV). Under optimized conditions, a linear response to logarithmic concentration of NAD(+) range from 3 nM to 5 μM and a detection limit of 1.8 nM were obtained. Furthermore, the proposed strategy had sufficient selectivity to discriminate NAD(+) from its analogues.

  6. Unique kinetics of nicotinic acid-adenine dinucleotide phosphate (NAADP) binding enhance the sensitivity of NAADP receptors for their ligand.

    PubMed Central

    Patel, S; Churchill, G C; Galione, A

    2000-01-01

    Nicotinic acid-adenine dinucleotide phosphate (NAADP) is a novel and potent Ca(2+)-mobilizing agent in sea urchin eggs and other cell types. Little is known, however, concerning the properties of the putative intracellular NAADP receptor. In the present study we have characterized NAADP binding sites in sea urchin egg homogenates. [(32)P]NAADP bound to a single class of high-affinity sites that were reversibly inhibited by NaCl but insensitive to pH and Ca(2+). Binding of [(32)P]NAADP was lost in preparations that did not mobilize Ca(2+) in response to NAADP, indicating that [(32)P]NAADP probably binds to a receptor mediating Ca(2+) mobilization. Addition of excess unlabelled NAADP, at various times after initiation of [(32)P]NAADP binding, did not result in displacement of bound [(32)P]NAADP. These data show that NAADP becomes irreversibly bound to its receptor immediately upon association. Accordingly, incubation of homogenates with low concentrations of NAADP resulted in maximal labelling of NAADP binding sites. This unique property renders NAADP receptors exquisitely sensitive to their ligand, thereby allowing detection of minute changes in NAADP levels. PMID:11104679

  7. Electrochemical behavior of flavin adenine dinucleotide adsorbed onto carbon nanotube and nitrogen-doped carbon nanotube electrodes.

    PubMed

    Goran, Jacob M; Stevenson, Keith J

    2013-11-01

    Flavin adenine dinucleotide (FAD) is a cofactor for many enzymes, but also an informative redox active surface probe for electrode materials such as carbon nanotubes (CNTs) and nitrogen-doped CNTs (N-CNTs). FAD spontaneously adsorbs onto the surface of CNTs and N-CNTs, displaying Langmuir adsorption characteristics. The Langmuir adsorption model provides a means of calculating the electroactive surface area (ESA), the equilibrium constant for the adsorption and desorption processes (K), and the Gibbs free energy of adsorption (ΔG°). Traditional ESA measurements based on the diffusional flux of a redox active molecule to the electrode surface underestimate the ESA of porous materials because pores are not penetrated. Techniques such as gas adsortion (BET) overestimate the ESA because it includes both electroactive and inactive areas. The ESA determined by extrapolation of the Langmuir adsorption model with the electroactive surface probe FAD will penetrate pores and only include electroactive areas. The redox activity of adsorbed FAD also displays a strong dependency on pH, which provides a means of determining the pKa of the surface confined species. The pKa of FAD decreases as the nitrogen content in the CNTs increases, suggesting a decreased hydrophobicity of the N-CNT surface. FAD desorption at N-CNTs slowly transforms the main FAD surface redox reaction with E1/2 at -0.84 V into two new, reversible, surface confined redox reactions with E1/2 at -0.65 and -0.76 V (vs Hg/Hg2SO4), respectively (1.0 M sodium phosphate buffer pH = 6.75). This is the first time these redox reactions have been observed. The new surface confined redox reactions were not observed during FAD desorption from nondoped CNTs.

  8. Eliciting the mitochondrial unfolded protein response by nicotinamide adenine dinucleotide repletion reverses fatty liver disease in mice

    PubMed Central

    Gariani, Karim; Menzies, Keir J.; Ryu, Dongryeol; Wegner, Casey J.; Wang, Xu; Ropelle, Eduardo R.; Moullan, Norman; Zhang, Hongbo; Perino, Alessia; Lemos, Vera; Kim, Bohkyung; Park, Young‐Ki; Piersigilli, Alessandra; Pham, Tho X.; Yang, Yue; Ku, Chai Siah; Koo, Sung I.; Fomitchova, Anna; Cantó, Carlos; Schoonjans, Kristina; Sauve, Anthony A.

    2015-01-01

    With no approved pharmacological treatment, nonalcoholic fatty liver disease (NAFLD) is now the most common cause of chronic liver disease in Western countries and its worldwide prevalence continues to increase along with the growing obesity epidemic. Here, we show that a high‐fat high‐sucrose (HFHS) diet, eliciting chronic hepatosteatosis resembling human fatty liver, lowers hepatic nicotinamide adenine dinucleotide (NAD+) levels driving reductions in hepatic mitochondrial content, function, and adenosine triphosphate (ATP) levels, in conjunction with robust increases in hepatic weight, lipid content, and peroxidation in C57BL/6J mice. To assess the effect of NAD+ repletion on the development of steatosis in mice, nicotinamide riboside, a precursor of NAD+ biosynthesis, was added to the HFHS diet, either as a preventive strategy or as a therapeutic intervention. We demonstrate that NR prevents and reverts NAFLD by inducing a sirtuin (SIRT)1‐ and SIRT3‐dependent mitochondrial unfolded protein response, triggering an adaptive mitohormetic pathway to increase hepatic β‐oxidation and mitochondrial complex content and activity. The cell‐autonomous beneficial component of NR treatment was revealed in liver‐specific Sirt1 knockout mice (Sirt1hep−/−), whereas apolipoprotein E‐deficient mice (Apoe −/−) challenged with a high‐fat high‐cholesterol diet affirmed the use of NR in other independent models of NAFLD. Conclusion: Our data warrant the future evaluation of NAD+ boosting strategies to manage the development or progression of NAFLD. (Hepatology 2016;63:1190–1204) PMID:26404765

  9. EPR and potentiometric studies of copper(II) binding to nicotinamide adenine dinucleotide (NAD+) in water solution.

    PubMed

    Hoffmann, Stanisław K; Goslar, Janina; Lijewski, Stefan; Basiński, Kamil; Gąsowska, Anna; Łomozik, Lechosław

    2012-06-01

    Coordination of Cu(II) by nicotinamide adenine dinucleotide (NAD(+)) molecule has been studied in water solutions of various pH by potentiometry and electron paramagnetic resonance (EPR) and electron spin echo (ESE) spectroscopy. Potentiometric results indicate Cu(II) coordination by protonated NAD(+) at low pH and by deprotonated NAD(+) at high pH. At medium pH value (around pH=7) NAD(+) is not able to coordinate Cu(II) ions effectively and mainly the Cu(H(2)O)(6) complexes exist in the studied solution. This has been confirmed by EPR results. Electronic structure of Cu(II)-NAD complex and coordination sites is determined from EPR and ESE measurements in frozen solutions (at 77K and 6K). EPR spectra exclude coordination with nitrogen atoms. Detailed analysis of EPR parameters (g(||)=2.420, g(perpendicular)==2.080, A(||)=-131×10(-4)cm(-1) and A(perpendicular)=8×10(-4)cm(-1)) performed in terms of molecular orbital (MO) theory shows that Cu(II)NAD complex has elongated axial octahedral symmetry with a relatively strong delocalization of unpaired electron density on in-plane and axial ligands. The distortion of octahedron is analyzed using A(||) vs. g(||) diagram for various CuO(x) complexes. Electron spin echo decay modulation excludes the coordination by oxygen atoms of phosphate groups. We postulate a coordination of Cu(II) by two hydroxyl oxygen atoms of two ribose moieties of the NAD molecules and four solvated water molecules both at low and high pH values with larger elongation of the octahedron at higher pH.

  10. Real-time measurements of nicotinamide adenine dinucleotide in live human trabecular meshwork cells: effects of acute oxidative stress.

    PubMed

    Masihzadeh, Omid; Ammar, David A; Lei, Tim C; Gibson, Emily A; Kahook, Malik Y

    2011-09-01

    The trabecular meshwork (TM) region of the eye is exposed to a constant low-level of oxidative insult. The cumulative damage may be the reason behind age-dependent risk for developing primary open angle glaucoma. Chronic and acute effects of hydrogen peroxide (H(2)O(2)) on TM endothelial cells include changes in viability, protein synthesis, and cellular adhesion. However, little if anything is known about the immediate effect of H(2)O(2) on the biochemistry of the TM cells and the initial response to oxidative stress. In this report, we have used two-photon excitation autofluorescence (2PAF) to monitor changes to TM cell nicotinamide adenine dinucleotide (NADPH). 2PAF allows non-destructive, real-time analysis of concentration of intracellular NADPH. Coupled to reduced glutathione, NADPH, is a major component in the anti-oxidant defense of TM cells. Cultured human TM cells were monitored for over 30 min in control and H(2)O(2)-containing solutions. Peroxide caused both a dose- and time-dependent decrease in NADPH signal. NADPH fluorescence in control and in 4 mM H(2)O(2) solutions showed little attenuation of NADPH signal (4% and 9% respectively). TM cell NADPH fluorescence showed a linear decrease with exposure to 20 mM H(2)O(2) (-29%) and 100 mM H(2)O(2) (37%) after a 30 min exposure. Exposure of TM cells to 500 mM H(2)O(2) caused an exponential decrease in NADPH fluorescence to a final attenuation of 46% of starting intensity. Analysis of individual TM cells indicates that cells with higher initial NADPH fluorescence are more refractive to the apparent loss of viability caused by H(2)O(2) than weakly fluorescing TM cells. We conclude that 2PAF of intracellular NADPH is a valuable tool for studying TM cell metabolism in response to oxidative insult. PMID:21354135

  11. ß-nicotinamide adenine dinucleotide is an enteric inhibitory neurotransmitter in human and non-human primate colons

    PubMed Central

    Hwang, Sung Jin; Durnin, Leonie; Dwyer, Laura; Rhee, Poong-Lyul; Ward, Sean M.; Koh, Sang Don; Sanders, Kenton M.; Mutafova-Yambolieva, Violeta N.

    2010-01-01

    Background & Aims An important component of enteric inhibitory neurotransmission is mediated by a purine neurotransmitter, such as adenosine 5’-triphosphate (ATP), binding to P2Y1 receptors and activating small conductance K+ channels. In murine colon ß-nicotinamide adenine dinucleotide (ß-NAD) is released with ATP and mimics the pharmacology of inhibitory neurotransmission better than ATP. Here ß-NAD and ATP were compared as possible inhibitory neurotransmitters in human and monkey colons. Methods A small-volume superfusion assay and HPLC with fluorescence detection were used to evaluate spontaneous and nerve-evoked overflow of ß-NAD, ATP and metabolites. Postjunctional responses to nerve stimulation, ß-NAD and ATP were compared using intracellular membrane potential and force measurements. Effects of ß-NAD on smooth muscle cells (SMCs) were recorded by patch clamp. P2Y receptor transcripts and proteins were assayed by RT-PCR. Results In contrast to ATP, overflow of ß-NAD evoked by electrical field stimulation correlated with stimulation frequency and was diminished by neurotoxins, tetrodotoxin and ω-conotoxin GVIA. Inhibitory junction potentials and responses to exogenous ß-NAD, but not ATP, were blocked by P2Y receptor antagonists suramin, PPADS, MRS2179 and MRS2500. ß-NAD activated non-selective cation currents in SMCs, but failed to activate outward currents. Conclusions ß-NAD meets the criteria for a neurotransmitter better than ATP in human and monkey colons and therefore may contribute to neural regulation of colonic motility. SMCs are unlikely targets for inhibitory purine neurotransmitters because dominant responses of SMCs were activation of net inward, rather than outward, current. PMID:20875415

  12. Morphological features, distribution and compartmental organization of the nicotinamide adenine dinucleotide phosphate reduced-diaphorase interneurons in the human striatum.

    PubMed

    Bernácer, Javier; Prensa, Lucía; Giménez-Amaya, José Manuel

    2005-08-29

    Striatal nicotinamide adenine dinucleotide phosphate reduced-diaphorase (NADPH-d)-positive (+) cells are one of the major classes of striatal interneurons. The present study analyzes their somatodendritic morphology, distribution pattern, and compartmental organization in the caudate nucleus (CN) and putamen (Put) of nine normal human brains. The following striatal territories are examined: 1) the precommissural head of the CN; 2) the postcommissural head of the CN; 3) the body of the CN; 4) the gyrus of the CN; 5) the tail of the CN; 6) the precommissural Put; and 7) the postcommissural Put. Three morphologically distinct types of NADPH-d+ neurons were found in each of these territories. The two most common NADPH-d+ neurons displayed an ovoid or triangular perikaryon from which several thick primary dendrites emerged, although much less numerous, bipolar-shaped NADPH-d+ cells were also observed. The highest density of NADPH-d+ neurons was found in the gyrus of the CN, followed by the body of the CN, tail of the CN, postcommissural head of the CN, postcommissural Put, precommissural head of the CN, and precommissural Put. The matrix was the striatal compartment with the densest NADPH-d+ neuronal population. Some of these cells also occurred in the center and peripheral regions of the striosomes located in the head of the CN and in the Put. In the body and gyrus of the CN, the striosomes were largely devoid of these striatal interneurons. Knowledge of the density and distribution of these interneurons should advance our understanding of the organization of the normal human striatum and help to evaluate the effects of neurodegenerative processes on cell density.

  13. Real-time measurements of nicotinamide adenine dinucleotide in live human trabecular meshwork cells: Effects of acute oxidative stress✩

    PubMed Central

    Masihzadeh, Omid; Ammar, David A.; Lei, Tim C.; Gibson, Emily A.; Kahook, Malik Y.

    2016-01-01

    The trabecular meshwork (TM) region of the eye is exposed to a constant low-level of oxidative insult. The cumulative damage may be the reason behind age-dependent risk for developing primary open angle glaucoma. Chronic and acute effects of hydrogen peroxide (H2O2) on TM endothelial cells include changes in viability, protein synthesis, and cellular adhesion. However, little if anything is known about the immediate effect of H2O2 on the biochemistry of the TM cells and the initial response to oxidative stress. In this report, we have used two-photon excitation autofluorescence (2PAF) to monitor changes to TM cell nicotinamide adenine dinucleotide (NADPH). 2PAF allows non-destructive, real-time analysis of concentration of intracellular NADPH. Coupled to reduced glutathione, NADPH, is a major component in the anti-oxidant defense of TM cells. Cultured human TM cells were monitored for over 30 min in control and H2O2-containing solutions. Peroxide caused both a dose- and time-dependent decrease in NADPH signal. NADPH fluorescence in control and in 4 mM H2O2 solutions showed little attenuation of NADPH signal (4% and 9% respectively). TM cell NADPH fluorescence showed a linear decrease with exposure to 20 mM H2O2 (−29%) and 100 mM H2O2 (37%) after a 30 min exposure. Exposure of TM cells to 500 mM H2O2 caused an exponential decrease in NADPH fluorescence to a final attenuation of 46% of starting intensity. Analysis of individual TM cells indicates that cells with higher initial NADPH fluorescence are more refractive to the apparent loss of viability caused by H2O2 than weakly fluorescing TM cells. We conclude that 2PAF of intracellular NADPH is a valuable tool for studying TM cell metabolism in response to oxidative insult. PMID:21354135

  14. A functional role for nicotinic acid adenine dinucleotide phosphate in oxytocin-mediated contraction of uterine smooth muscle from rat.

    PubMed

    Aley, Parvinder K; Noh, Hyun J; Gao, Xin; Tica, Andrei A; Brailoiu, Eugen; Churchill, Grant C

    2010-06-01

    Conventionally, G protein-coupled receptors are thought to increase calcium via inositol 1,4,5-trisphosphate (InsP(3)). More recent evidence shows that an alternative second messenger, nicotinic acid adenine dinucleotide phosphate (NAADP), also has a role to play, causing researchers to question established calcium releasing pathways. With the recent development, by our group, of cell-permeant NAADP (NAADP-aceteoxymethyl ester) and a selective NAADP receptor antagonist (Ned-19; 1-(3-((4-(2-fluorophenyl)piperazin-1-yl)methyl)-4-methoxyphenyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-3-carboxylic acid),the ability to investigate this signaling pathway has improved. Therefore, we investigated a role for NAADP in oxytocin-mediated responses in the rat uterus. Oxytocin- and NAADP-mediated effects were investigated by using contractile measurements of whole uterine strips from rat in organ baths. Responses were correlated to calcium release in cultured rat uterine smooth muscle cells measured by fluorescence microscopy. Inhibition of both oxytocin-induced contraction and calcium release by the traditional NAADP-signaling disrupter bafilomycin and the NAADP receptor antagonist Ned-19 clearly demonstrated a role for NAADP in oxytocin-induced signaling. A cell-permeant form of NAADP was able to produce both uterine contractions and calcium release. This response was unaffected by depletion of sarcoplasmic reticulum stores with thapsigargin, but was abolished by both bafilomycin and Ned-19. Crucially, oxytocin stimulated an increase in NAADP in rat uterine tissue. The present study demonstrates directly that NAADP signaling plays a role in rat uterine contractions. Moreover, investigation of this signaling pathway highlights yet another component of oxytocin-mediated signaling, stressing the need to consider the action of new components as they are discovered, even in signaling pathways that are thought to be well established.

  15. Interaction of reduced nicotinamide adenine dinucleotide with an antifreeze protein from Dendroides canadensis: mechanistic implication of antifreeze activity enhancement

    PubMed Central

    Wen, Xin; Wang, Sen; Amornwittawat, Natapol; Houghton, Eric A.; Sacco, Michael A.

    2016-01-01

    Antifreeze proteins (AFPs) found in many organisms can noncolligatively lower the freezing point of water without altering the melting point. The difference between the depressed freezing point and the melting point, termed thermal hysteresis (TH), is usually a measure of the antifreeze activity of AFPs. Certain low molecular mass molecules and proteins can further enhance the antifreeze activity of AFPs. Interaction between an enhancer and arginine is known to play an important role in enhancing the antifreeze activity of an AFP from the beetle Dendroides canadensis (DAFP-1). Here, we examined the enhancement effects of several prevalent phosphate-containing coenzymes on the antifreeze activity of DAFP-1. β-Nicotinamide adenine dinucleotide (reduced) (NADH) is identified as the most efficient enhancer of DAFP-1, which increases the antifreeze activity of DAFP-1 by around 10 times. Examination of the enhancement abilities of a series of NADH analogs and various molecular fragments of NADH reveals that the modifications of nicotinamide generate a series of highly efficient enhancers, though none as effective as NADH itself, and the whole molecular structure of NADH is necessary for its highly efficient enhancement effect. We also demonstrated a 1:1 binding between DAFP-1 and NADH. The binding was characterized by high-performance liquid chromatography (HPLC) using the gel filtration method of Hummel and Dreyer. The data analysis suggests binding between DAFP-1 and NADH with a dissociation constant in the micromolar range. Interactions between DAFP-1 and NADH are discussed along with molecular mechanisms of enhancer action. PMID:22038809

  16. Changes in phosphorylation of adenosine phosphate and redox state of nicotinamide-adenine dinucleotide (phosphate) in Geobacter sulfurreducens in response to electron acceptor and anode potential variation.

    PubMed

    Rose, Nicholas D; Regan, John M

    2015-12-01

    Geobacter sulfurreducens is one of the dominant bacterial species found in biofilms growing on anodes in bioelectrochemical systems. The intracellular concentrations of reduced and oxidized forms of nicotinamide-adenine dinucleotide (NADH and NAD(+), respectively) and nicotinamide-adenine dinucleotide phosphate (NADPH and NADP(+), respectively) as well as adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP) were measured in G. sulfurreducens using fumarate, Fe(III)-citrate, or anodes poised at different potentials (110, 10, -90, and -190 mV (vs. SHE)) as the electron acceptor. The ratios of CNADH/CNAD+ (0.088±0.022) and CNADPH/CNADP+ (0.268±0.098) were similar under all anode potentials tested and with Fe(III)-citrate (reduced extracellularly). Both ratios significantly increased with fumarate as the electron acceptor (0.331±0.094 for NAD and 1.96±0.37 for NADP). The adenylate energy charge (the fraction of phosphorylation in intracellular adenosine phosphates) was maintained near 0.47 under almost all conditions. Anode-growing biofilms demonstrated a significantly higher molar ratio of ATP/ADP relative to suspended cultures grown on fumarate or Fe(III)-citrate. These results provide evidence that the cellular location of reduction and not the redox potential of the electron acceptor controls the intracellular redox potential in G. sulfurreducens and that biofilm growth alters adenylate phosphorylation.

  17. Urea induced unfolding dynamics of flavin adenine dinucleotide (FAD): spectroscopic and molecular dynamics simulation studies from femto-second to nanosecond regime.

    PubMed

    Sengupta, Abhigyan; Singh, Reman K; Gavvala, Krishna; Koninti, Raj Kumar; Mukherjee, Arnab; Hazra, Partha

    2014-02-20

    Here, we investigate the effect of urea in the unfolding dynamics of flavin adenine dinucleotide (FAD), an important enzymatic cofactor, through steady state, time-resolved fluorescence spectroscopic and molecular dynamics (MD) simulation studies. Steady state results indicate the possibility of urea induced unfolding of FAD, inferred from increasing emission intensity of FAD with urea. The TCSPC and up-conversion results suggest that the stack-unstack dynamics of FAD severely gets affected in the presence of urea and leads to an increase in the unstack conformation population from 15% in pure water to 40% in 12 M urea. Molecular dynamics simulation was employed to understand the nature of the interaction between FAD and urea at the molecular level. Results depict that urea molecules replace many of the water molecules around adenine and isoalloxazine rings of FAD. However, the major driving force for the stability of this unstack conformations arises from the favorable stacking interaction of a significant fraction of the urea molecules with adenine and isoalloxazine rings of FAD, which overcomes the intramolecular stacking interaction between themselves observed in pure water.

  18. Regulation of Enzymes Involved in the Conversion of Tryptophan to Nicotinamide Adenine Dinucleotide in a Colorless Strain of Xanthomonas pruni1

    PubMed Central

    Brown, Albert T.; Wagner, Conrad

    1970-01-01

    A colorless strain of Xanthomonas pruni was isolated which is capable of converting tryptophan to nicotinamide adenine dinucleotide (NAD). The enzymes responsible for the conversion of tryptophan to quinolinic acid were shown to be present. Nicotinic acid-requiring mutants were isolated, and it was found that the growth of these mutants can be supported by various intermediates on the pathway from tryptophan to NAD. The first three enzymes on this pathway are induced coordinately by l-tryptophan. Gratuitous inducers of these enzymes include d-tryptophan, α-methyl-dl-tryptophan, and 4-methyl-dl-tryptophan; formyl-l-kynurenine and l-kynurenine were not effective as inducers. These data suggest that at least the first three enzymes in the pathway from tryptophan to NAD are under common regulatory control. PMID:4313053

  19. Conformational change in cytochrome P450 reductase adsorbed at a Au(110)—phosphate buffer interface induced by interaction with nicotinamide adenine dinucleotide phosphate

    NASA Astrophysics Data System (ADS)

    Smith, C. I.; Convery, J. H.; Harrison, P.; Khara, B.; Scrutton, N. S.; Weightman, P.

    2014-08-01

    Changes observed in the reflection anisotropy spectroscopy (RAS) profiles of monolayers of cytochrome P450 reductase adsorbed at Au(110)-electrolyte interfaces at 0.056 V following the addition of nicotinamide adenine dinucleotide phosphate (NADP+) are explained in terms of a simple model as arising from changes in the orientation of an isoalloxazine ring located in the flavin mononucleotide binding domain of the protein. The model also accounts for the changes observed in the RAS as the potential applied to the Au(110) surface is varied and suggests that differences in the dependence of the RAS profile of the adsorbed protein on the potential applied to the electrode in the absence and presence of NADP+ are explicable as arising from a competition between the applied potential acting to reduce the protein and the NADP+ to oxidize it.

  20. Diabetic complications within the context of aging: Nicotinamide adenine dinucleotide redox, insulin C-peptide, sirtuin 1-liver kinase B1-adenosine monophosphate-activated protein kinase positive feedback and forkhead box O3.

    PubMed

    Ido, Yasuo

    2016-07-01

    Recent research in nutritional control of aging suggests that cytosolic increases in the reduced form of nicotinamide adenine dinucleotide and decreasing nicotinamide adenine dinucleotide metabolism plays a central role in controlling the longevity gene products sirtuin 1 (SIRT1), adenosine monophosphate-activated protein kinase (AMPK) and forkhead box O3 (FOXO3). High nutrition conditions, such as the diabetic milieu, increase the ratio of reduced to oxidized forms of cytosolic nicotinamide adenine dinucleotide through cascades including the polyol pathway. This redox change is associated with insulin resistance and the development of diabetic complications, and might be counteracted by insulin C-peptide. My research and others' suggest that the SIRT1-liver kinase B1-AMPK cascade creates positive feedback through nicotinamide adenine dinucleotide synthesis to help cells cope with metabolic stress. SIRT1 and AMPK can upregulate liver kinase B1 and FOXO3, key factors that help residential stem cells cope with oxidative stress. FOXO3 directly changes epigenetics around transcription start sites, maintaining the health of stem cells. 'Diabetic memory' is likely a result of epigenetic changes caused by high nutritional conditions, which disturb the quiescent state of residential stem cells and impair tissue repair. This could be prevented by restoring SIRT1-AMPK positive feedback through activating FOXO3. PMID:27181414

  1. Diabetic complications within the context of aging: Nicotinamide adenine dinucleotide redox, insulin C-peptide, sirtuin 1-liver kinase B1-adenosine monophosphate-activated protein kinase positive feedback and forkhead box O3.

    PubMed

    Ido, Yasuo

    2016-07-01

    Recent research in nutritional control of aging suggests that cytosolic increases in the reduced form of nicotinamide adenine dinucleotide and decreasing nicotinamide adenine dinucleotide metabolism plays a central role in controlling the longevity gene products sirtuin 1 (SIRT1), adenosine monophosphate-activated protein kinase (AMPK) and forkhead box O3 (FOXO3). High nutrition conditions, such as the diabetic milieu, increase the ratio of reduced to oxidized forms of cytosolic nicotinamide adenine dinucleotide through cascades including the polyol pathway. This redox change is associated with insulin resistance and the development of diabetic complications, and might be counteracted by insulin C-peptide. My research and others' suggest that the SIRT1-liver kinase B1-AMPK cascade creates positive feedback through nicotinamide adenine dinucleotide synthesis to help cells cope with metabolic stress. SIRT1 and AMPK can upregulate liver kinase B1 and FOXO3, key factors that help residential stem cells cope with oxidative stress. FOXO3 directly changes epigenetics around transcription start sites, maintaining the health of stem cells. 'Diabetic memory' is likely a result of epigenetic changes caused by high nutritional conditions, which disturb the quiescent state of residential stem cells and impair tissue repair. This could be prevented by restoring SIRT1-AMPK positive feedback through activating FOXO3.

  2. Influence of surface adsorption on the interfacial electron transfer of flavin adenine dinucleotide and glucose oxidase at carbon nanotube and nitrogen-doped carbon nanotube electrodes.

    PubMed

    Goran, Jacob M; Mantilla, Sandra M; Stevenson, Keith J

    2013-02-01

    The adsorption of flavin adenine dinucleotide (FAD) and glucose oxidase (GOx) onto carbon nanotube (CNT) and nitrogen-doped CNT (N-CNT) electrodes was investigated and found to obey Langmuir adsorption isotherm characteristics. The amount adsorbed and adsorption maximum are dependent on exposure time, the concentration of adsorbate, and the ionic strength of the solution. The formal potentials measured for FAD and GOx are identical, indicating that the observed electroactivity is from FAD, the redox reaction center of GOx. When glucose is added to GOx adsorbed onto CNT/N-CNT electrodes, direct electron transfer (DET) from enzyme-active FAD is not observed. However, efficient mediated electron transfer (MET) occurs if an appropriate electron mediator is placed in solution, or the natural electron mediator oxygen is used, indicating that GOx is adsorbed and active on CNT/N-CNT electrodes. The observed surface-confined redox reaction at both CNT and N-CNT electrodes is from FAD that either specifically adsorbs from solution or adsorbs from the holoprotein subsequently inactivating the enzyme. The splitting of cathodic and anodic peak potentials as a function of scan rate provides a way to measure the heterogeneous electron-transfer rate constant (k(s)) using Laviron's method. However, the measured k(s) was found to be under ohmic control, not under the kinetic control of an electron-transfer reaction, suggesting that k(s) for FAD on CNTs is faster than the measured value of 7.6 s(-1).

  3. Deficiency of the iron-sulfur clusters of mitochondrial reduced nicotinamide-adenine dinucleotide-ubiquinone oxidoreductase (complex I) in an infant with congenital lactic acidosis.

    PubMed

    Moreadith, R W; Batshaw, M L; Ohnishi, T; Kerr, D; Knox, B; Jackson, D; Hruban, R; Olson, J; Reynafarje, B; Lehninger, A L

    1984-09-01

    We report the case of an infant with hypoglycemia, progressive lactic acidosis, an increased serum lactate/pyruvate ratio, and elevated plasma alanine, who had a moderate to profound decrease in the ability of mitochondria from four organs to oxidize pyruvate, malate plus glutamate, citrate, and other NAD+-linked respiratory substrates. The capacity to oxidize the flavin adenine dinucleotide-linked substrate, succinate, was normal. The most pronounced deficiency was in skeletal muscle, the least in kidney mitochondria. Enzymatic assays on isolated mitochondria ruled out defects in complexes II, III, and IV of the respiratory chain. Further studies showed that the defect was localized in the inner membrane mitochondrial NADH-ubiquinone oxidoreductase (complex I). When ferricyanide was used as an artificial electron acceptor, complex I activity was normal, indicating that electrons from NADH could reduce the flavin mononucleotide cofactor. However, electron paramagnetic resonance spectroscopy performed on liver submitochondrial particles showed an almost total loss of the iron-sulfur clusters characteristic of complex I, whereas normal signals were noted for other mitochondrial iron-sulfur clusters. This infant is presented as the first reported case of congenital lactic acidosis caused by a deficiency of the iron-sulfur clusters of complex I of the mitochondrial electron transport chain.

  4. A label-free fluorescence strategy for selective detection of nicotinamide adenine dinucleotide based on a dumbbell-like probe with low background noise.

    PubMed

    Chen, Xuexu; Lin, Chunshui; Chen, Yiying; Wang, Yiru; Chen, Xi

    2016-03-15

    In this work we developed a novel label-free fluorescence sensing approach for the detection of nicotinamide adenine dinucleotide (NAD(+)) based on a dumbbell-like DNA probe designed for both ligation reaction and digestion reaction with low background noise. SYBR Green I (SG I), a double-helix dye, was chosen as the readout fluorescence signal. In the absence of NAD(+), the ligation reaction did not occur, but the probe was digested to mononucleotides after the addition of exonuclease I (Exo I) and exonuclease I (Exo III), resulting in a weak fluorescence intensity due to the weak interaction between SG I and mononucleotides. In the presence of NAD(+), the DNA probe was ligated by Escherichia coli DNA ligase, blocking the digestion by Exo I and Exo III. As a result, SG I was intercalated into the stem part of the DNA dumbbell probe and fluorescence enhancement was achieved. This method was simple in design, fast to operate, with good sensitivity and selectivity which could discriminate NAD(+) from its analogs. PMID:26454831

  5. Role of key residues at the flavin mononucleotide (FMN):adenylyltransferase catalytic site of the bifunctional riboflavin kinase/flavin adenine dinucleotide (FAD) Synthetase from Corynebacterium ammoniagenes.

    PubMed

    Serrano, Ana; Frago, Susana; Velázquez-Campoy, Adrián; Medina, Milagros

    2012-11-08

    In mammals and in yeast the conversion of Riboflavin (RF) into flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) is catalysed by the sequential action of two enzymes: an ATP:riboflavin kinase (RFK) and an ATP:FMN adenylyltransferase (FMNAT). However, most prokaryotes depend on a single bifunctional enzyme, FAD synthetase (FADS), which folds into two modules: the C-terminal associated with RFK activity and the N-terminal associated with FMNAT activity. Sequence and structural analysis suggest that the 28-HxGH-31, 123-Gx(D/N)-125 and 161-xxSSTxxR-168 motifs from FADS must be involved in ATP stabilisation for the adenylylation of FMN, as well as in FAD stabilisation for FAD phyrophosphorolysis. Mutants were produced at these motifs in the Corynebacterium ammoniagenes FADS (CaFADS). Their effects on the kinetic parameters of CaFADS activities (RFK, FMNAT and FAD pyrophosphorilase), and on substrates and product binding properties indicate that H28, H31, N125 and S164 contribute to the geometry of the catalytically competent complexes at the FMNAT-module of CaFADS.

  6. Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) and Endolysosomal Two-pore Channels Modulate Membrane Excitability and Stimulus-Secretion Coupling in Mouse Pancreatic β Cells.

    PubMed

    Arredouani, Abdelilah; Ruas, Margarida; Collins, Stephan C; Parkesh, Raman; Clough, Frederick; Pillinger, Toby; Coltart, George; Rietdorf, Katja; Royle, Andrew; Johnson, Paul; Braun, Matthias; Zhang, Quan; Sones, William; Shimomura, Kenju; Morgan, Anthony J; Lewis, Alexander M; Chuang, Kai-Ting; Tunn, Ruth; Gadea, Joaquin; Teboul, Lydia; Heister, Paula M; Tynan, Patricia W; Bellomo, Elisa A; Rutter, Guy A; Rorsman, Patrik; Churchill, Grant C; Parrington, John; Galione, Antony

    2015-08-28

    Pancreatic β cells are electrically excitable and respond to elevated glucose concentrations with bursts of Ca(2+) action potentials due to the activation of voltage-dependent Ca(2+) channels (VDCCs), which leads to the exocytosis of insulin granules. We have examined the possible role of nicotinic acid adenine dinucleotide phosphate (NAADP)-mediated Ca(2+) release from intracellular stores during stimulus-secretion coupling in primary mouse pancreatic β cells. NAADP-regulated Ca(2+) release channels, likely two-pore channels (TPCs), have recently been shown to be a major mechanism for mobilizing Ca(2+) from the endolysosomal system, resulting in localized Ca(2+) signals. We show here that NAADP-mediated Ca(2+) release from endolysosomal Ca(2+) stores activates inward membrane currents and depolarizes the β cell to the threshold for VDCC activation and thereby contributes to glucose-evoked depolarization of the membrane potential during stimulus-response coupling. Selective pharmacological inhibition of NAADP-evoked Ca(2+) release or genetic ablation of endolysosomal TPC1 or TPC2 channels attenuates glucose- and sulfonylurea-induced membrane currents, depolarization, cytoplasmic Ca(2+) signals, and insulin secretion. Our findings implicate NAADP-evoked Ca(2+) release from acidic Ca(2+) storage organelles in stimulus-secretion coupling in β cells. PMID:26152717

  7. Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP)-mediated Calcium Signaling and Arrhythmias in the Heart Evoked by β-Adrenergic Stimulation*♦

    PubMed Central

    Nebel, Merle; Schwoerer, Alexander P.; Warszta, Dominik; Siebrands, Cornelia C.; Limbrock, Ann-Christin; Swarbrick, Joanna M.; Fliegert, Ralf; Weber, Karin; Bruhn, Sören; Hohenegger, Martin; Geisler, Anne; Herich, Lena; Schlegel, Susan; Carrier, Lucie; Eschenhagen, Thomas; Potter, Barry V. L.; Ehmke, Heimo; Guse, Andreas H.

    2013-01-01

    Nicotinic acid adenine dinucleotide phosphate (NAADP) is the most potent Ca2+-releasing second messenger known to date. Here, we report a new role for NAADP in arrhythmogenic Ca2+ release in cardiac myocytes evoked by β-adrenergic stimulation. Infusion of NAADP into intact cardiac myocytes induced global Ca2+ signals sensitive to inhibitors of both acidic Ca2+ stores and ryanodine receptors and to NAADP antagonist BZ194. Furthermore, in electrically paced cardiac myocytes BZ194 blocked spontaneous diastolic Ca2+ transients caused by high concentrations of the β-adrenergic agonist isoproterenol. Ca2+ transients were recorded both as increases of the free cytosolic Ca2+ concentration and as decreases of the sarcoplasmic luminal Ca2+ concentration. Importantly, NAADP antagonist BZ194 largely ameliorated isoproterenol-induced arrhythmias in awake mice. We provide strong evidence that NAADP-mediated modulation of couplon activity plays a role for triggering spontaneous diastolic Ca2+ transients in isolated cardiac myocytes and arrhythmias in the intact animal. Thus, NAADP signaling appears an attractive novel target for antiarrhythmic therapy. PMID:23564460

  8. New insights into the analysis of the electrode kinetics of flavin adenine dinucleotide redox center of glucose oxidase immobilized on carbon electrodes.

    PubMed

    Simonov, Alexandr N; Grosse, Willo; Mashkina, Elena A; Bethwaite, Blair; Tan, Jeff; Abramson, David; Wallace, Gordon G; Moulton, Simon E; Bond, Alan M

    2014-03-25

    New insights into electrochemical kinetics of the flavin adenine dinucleotide (FAD) redox center of glucose-oxidase (GlcOx) immobilized on reduced graphene oxide (rGO), single- and multiwalled carbon nanotubes (SW and MWCNT), and combinations of rGO and CNTs have been gained by application of Fourier transformed AC voltammetry (FTACV) and simulations based on a range of models. A satisfactory level of agreement between experiment and theory, and hence establishment of the best model to describe the redox chemistry of FAD, was achieved with the aid of automated e-science tools. Although still not perfect, use of Marcus theory with a very low reorganization energy (≤0.3 eV) best mimics the experimental FTACV data, which suggests that the process is gated as also deduced from analysis of FTACV data obtained at different frequencies. Failure of the simplest models to fully describe the electrode kinetics of the redox center of GlcOx, including those based on the widely employed Laviron theory is demonstrated, as is substantial kinetic heterogeneity of FAD species. Use of a SWCNT support amplifies the kinetic heterogeneity, while a combination of rGO and MWCNT provides a more favorable environment for fast communication between FAD and the electrode. PMID:24571209

  9. Ordered carbohydrate-derived porous carbons immobilized gold nanoparticles as a new electrode material for electrocatalytical oxidation and determination of nicotinamide adenine dinucleotide.

    PubMed

    Hosseini, Hadi; Behbahani, Mohammad; Mahyari, Mojtaba; Kazerooni, Hanif; Bagheri, Akbar; Shaabani, Ahmad

    2014-09-15

    The ordered carbohydrate-derived porous carbons (OC-DPCs) were first functionalized with thiol groups (-SH) and then immobilized with gold nanoparticles (AuNPs). The Au-SH-OC-DPCs were characterized by CHN analysis, transmission electron microscopy (TEM), fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and x-ray diffraction (XRD). The Au-SH-OC-DPCs were applied for the fabrication of a new electrochemical sensor. The electrocatalytic capabilities of the new sensor were tested by the oxidation of nicotinamide adenine dinucleotide (NADH) in a 0.1 M Robinson buffer solution (pH 7.0) using cyclic voltammetry (CV), linear sweep voltammetry (LSV), and differential pulse voltammetry (DPV). The Au-SH-OC-DPCs showed a good voltammetric performance in the electrochemical detection of NADH with a low detection limit (1.0 nM), high sensitivity (4.934 μA/μM), and wide linear concentration range (5.0 nM-10 µM).

  10. Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) and Endolysosomal Two-pore Channels Modulate Membrane Excitability and Stimulus-Secretion Coupling in Mouse Pancreatic β Cells.

    PubMed

    Arredouani, Abdelilah; Ruas, Margarida; Collins, Stephan C; Parkesh, Raman; Clough, Frederick; Pillinger, Toby; Coltart, George; Rietdorf, Katja; Royle, Andrew; Johnson, Paul; Braun, Matthias; Zhang, Quan; Sones, William; Shimomura, Kenju; Morgan, Anthony J; Lewis, Alexander M; Chuang, Kai-Ting; Tunn, Ruth; Gadea, Joaquin; Teboul, Lydia; Heister, Paula M; Tynan, Patricia W; Bellomo, Elisa A; Rutter, Guy A; Rorsman, Patrik; Churchill, Grant C; Parrington, John; Galione, Antony

    2015-08-28

    Pancreatic β cells are electrically excitable and respond to elevated glucose concentrations with bursts of Ca(2+) action potentials due to the activation of voltage-dependent Ca(2+) channels (VDCCs), which leads to the exocytosis of insulin granules. We have examined the possible role of nicotinic acid adenine dinucleotide phosphate (NAADP)-mediated Ca(2+) release from intracellular stores during stimulus-secretion coupling in primary mouse pancreatic β cells. NAADP-regulated Ca(2+) release channels, likely two-pore channels (TPCs), have recently been shown to be a major mechanism for mobilizing Ca(2+) from the endolysosomal system, resulting in localized Ca(2+) signals. We show here that NAADP-mediated Ca(2+) release from endolysosomal Ca(2+) stores activates inward membrane currents and depolarizes the β cell to the threshold for VDCC activation and thereby contributes to glucose-evoked depolarization of the membrane potential during stimulus-response coupling. Selective pharmacological inhibition of NAADP-evoked Ca(2+) release or genetic ablation of endolysosomal TPC1 or TPC2 channels attenuates glucose- and sulfonylurea-induced membrane currents, depolarization, cytoplasmic Ca(2+) signals, and insulin secretion. Our findings implicate NAADP-evoked Ca(2+) release from acidic Ca(2+) storage organelles in stimulus-secretion coupling in β cells.

  11. Autocrine/paracrine function of nicotinic acid adenine dinucleotide phosphate (NAADP) for glucose homeostasis in pancreatic β-cells and adipocytes.

    PubMed

    Park, Kwang-Hyun; Kim, Byung-Ju; Shawl, Asif Iqbal; Han, Myung-Kwan; Lee, Hon Cheung; Kim, Uh-Hyun

    2013-12-01

    Nicotinic acid adenine dinucleotide phosphate (NAADP) is a second messenger for mobilizing Ca(2+) from intracellular stores in various cell types. Extracellular application of NAADP has been shown to elicit intracellular Ca(2+) signals, indicating that it is readily transported into cells. However, little is known about the functional role of this NAADP uptake system. Here, we show that NAADP is effectively transported into selected cell types involved in glucose homeostasis, such as adipocytes and pancreatic β-cells, but not the acinar cells, in a high glucose-dependent manner. NAADP uptake was inhibitable by Ned-19, a NAADP mimic; dipyridamole, a nucleoside inhibitor; or NaN3, a metabolic inhibitor or under Ca(2+)-free conditions. Furthermore, NAADP was found to be released from pancreatic islets upon stimulation by high glucose. Consistently, administration of NAADP to type 2 diabetic mice improved glucose tolerance. We propose that NAADP is functioning as an autocrine/paracrine hormone important in glucose homeostasis. NAADP is thus a potential antidiabetic agent with therapeutic relevance.

  12. Increase of reduced nicotinamide adenine dinucleotide fluorescence lifetime precedes mitochondrial dysfunction in staurosporine-induced apoptosis of HeLa cells

    NASA Astrophysics Data System (ADS)

    Yu, Jia-Sin; Guo, Han-Wen; Wang, Chih-Hao; Wei, Yau-Huei; Wang, Hsing-Wen

    2011-03-01

    In vivo noninvasive detection of apoptosis represents a new tool that may yield a more definite diagnosis, a more accurate prognosis, and help improve therapies for human diseases. The intrinsic fluorescence of reduced nicotinamide adenine dinucleotide (NADH) may be a potential optical biomarker for the apoptosis detection because NADH is involved in the respiration for the mitochondrial membrane potential (ΔΨ) formation and adenosine-5'-triphosphate (ATP) synthesis, and the depletion of ΔΨ and ATP level is the hallmark of apoptosis. We have previously observed the NADH fluorescence lifetime change is associated with staurosporine (STS)-induced mitochondria-mediated apoptosis. However, its relationship with mitochondrial functions such as ΔΨ, ATP, and oxygen consumption rate is not clear. In this study, we investigated this relationship. Our results indicate that the NADH fluorescence lifetime increased when ΔΨ and ATP levels were equal to or higher than their values of controls and decreased before the depletion of ΔΨ and ATP, and the oxygen consumption rate did not change. These findings suggest that the increased NADH fluorescence lifetime in STS-induced cell death occurred before the depletion of ΔΨ and ATP and activation of caspase 3, and was not simply caused by cellular metabolic change. Furthermore, the NADH fluorescence lifetime change is associated with the pace of apoptosis.

  13. Differential regulation of nicotinic acid-adenine dinucleotide phosphate and cADP-ribose production by cAMP and cGMP.

    PubMed Central

    Wilson, H L; Galione, A

    1998-01-01

    The sea urchin egg has been used as a system to study calcium-release mechanisms induced by inositol 1,4,5-trisphosphate (IP3), cADP-ribose (cADPR), and more recently, nicotinic acid-adenine dinucleotide phosphate (NAADP). In order that cADPR and NAADP may be established as endogenous messengers for calcium release, the existence of intracellular enzymes capable of metabolizing these molecules must be demonstrated. In addition, intracellular levels of cADPR and NAADP should be under the control of extracellular stimuli. It has been shown that cGMP stimulates the synthesis of cADPR in the sea urchin egg. The present study shows that the sea urchin egg is capable of synthesizing and degrading NAADP. cADPR and NAADP synthetic activities appear to be separate, with different cellular localizations, pH and temperature optima. We suggest that in the sea urchin egg, cADPR and NAADP production may be differentially regulated by receptor-coupled second messengers, with cADPR production being regulated by cGMP and NAADP production modulated by cAMP. PMID:9560312

  14. Differential effect of pH upon cyclic-ADP-ribose and nicotinate-adenine dinucleotide phosphate-induced Ca2+ release systems.

    PubMed Central

    Chini, E N; Liang, M; Dousa, T P

    1998-01-01

    We investigated the pH dependence and the effects of thimerosal and dithiothreitol (DTT) upon the Ca2+ release induced by cADP-ribose (cADPR) and nicotinate-adenine dinucleotide phosphate (NAADP) in sea urchin egg homogenates. Both Ca2+ release triggered by cADPR and the binding of [3H]cADPR to sea urchin egg homogenates were decreased by alkalization of the assay media from pH 7.2 to 8.9. In contrast, NAADP-triggered Ca2+ release was not influenced by changes in pH. The Ca2+ release induced by cADPR was potentiated by thimerosal and inhibited by DTT, but neither thimerosal nor DTT had any effect upon the Ca2+ release induced by NAADP. We conclude that cADPR-sensitive Ca2+-release mechanisms are dependent on pH of the assay media and are sensitive to thiol group modification. On the other hand, these functional properties are not shared by NAADP-regulated Ca2+ channels. PMID:9794787

  15. Electrochemical synthesis and characterization of TiO2 nanoparticles and their use as a platform for flavin adenine dinucleotide immobilization and efficient electrocatalysis

    NASA Astrophysics Data System (ADS)

    Ashok Kumar, S.; Lo, Po-Hsun; Chen, Shen-Ming

    2008-06-01

    Here, we report the electrochemical synthesis of TiO2 nanoparticles (NPs) using the potentiostat method. Synthesized particles have been characterized by using x-ray diffraction (XRD) studies, atomic force microscopy (AFM) and scanning electron microscopy (SEM). The results revealed that the TiO2 film produced was mainly composed of rutile and that the particles are of a size in the range of 100 ± 50 nm. TiO2 NPs were used for the modification of a screen printed carbon electrode (SPE). The resulting TiO2 film coated SPE was used to immobilize flavin adenine dinucleotide (FAD). The flavin enzyme firmly attached onto the metal oxide surface and this modified electrode showed promising electrocatalytic activities towards the reduction of hydrogen peroxide (H2O2) in physiological conditions. The electrochemistry of FAD confined in the oxide film was investigated. The immobilized FAD displayed a pair of redox peaks with a formal potential of -0.42 V in pH 7.0 oxygen-free phosphate buffers at a scan rate of 50 mV s-1. The FAD in the nanostructured TiO2 film retained its bioactivity and exhibited excellent electrocatalytic response to the reduction of H2O2, based on which a mediated biosensor for H2O2 was achieved. The linear range for the determination of H2O2 was from 0.15 × 10-6 to 3.0 × 10-3 M with the detection limit of 0.1 × 10-6 M at a signal-to-noise ratio of 3. The stability and repeatability of the biosensor is also discussed.

  16. Ryanodine receptor type I and nicotinic acid adenine dinucleotide phosphate receptors mediate Ca2+ release from insulin-containing vesicles in living pancreatic beta-cells (MIN6).

    PubMed

    Mitchell, Kathryn J; Lai, F Anthony; Rutter, Guy A

    2003-03-28

    We have demonstrated recently (Mitchell, K. J., Pinton, P., Varadi, A., Tacchetti, C., Ainscow, E. K., Pozzan, T., Rizzuto, R., and Rutter, G. A. (2001) J. Cell Biol. 155, 41-51) that ryanodine receptors (RyR) are present on insulin-containing secretory vesicles. Here we show that pancreatic islets and derived beta-cell lines express type I and II, but not type III, RyRs. Purified by subcellular fractionation and membrane immuno-isolation, dense core secretory vesicles were found to possess a similar level of type I RyR immunoreactivity as Golgi/endoplasmic reticulum (ER) membranes but substantially less RyR II than the latter. Monitored in cells expressing appropriately targeted aequorins, dantrolene, an inhibitor of RyR I channels, elevated free Ca(2+) concentrations in the secretory vesicle compartment from 40.1 +/- 6.7 to 90.4 +/- 14.8 microm (n = 4, p < 0.01), while having no effect on ER Ca(2+) concentrations. Furthermore, nicotinic acid adenine dinucleotide phosphate (NAADP), a novel Ca(2+)-mobilizing agent, decreased dense core secretory vesicle but not ER free Ca(2+) concentrations in permeabilized MIN6 beta-cells, and flash photolysis of caged NAADP released Ca(2+) from a thapsigargin-insensitive Ca(2+) store in single MIN6 cells. Because dantrolene strongly inhibited glucose-stimulated insulin secretion (from 3.07 +/- 0.51-fold stimulation to no significant glucose effect; n = 3, p < 0.01), we conclude that RyR I-mediated Ca(2+)-induced Ca(2+) release from secretory vesicles, possibly potentiated by NAADP, is essential for the activation of insulin secretion.

  17. Amelioration of nicotinamide adenine dinucleotide phosphate-oxidase mediated stress reduces cell death after blast-induced traumatic brain injury.

    PubMed

    Lucke-Wold, Brandon P; Naser, Zachary J; Logsdon, Aric F; Turner, Ryan C; Smith, Kelly E; Robson, Matthew J; Bailes, Julian E; Lee, John M; Rosen, Charles L; Huber, Jason D

    2015-12-01

    A total of 1.7 million traumatic brain injuries (TBIs) occur each year in the United States, but available pharmacologic options for the treatment of acute neurotrauma are limited. Oxidative stress is an important secondary mechanism of injury that can lead to neuronal apoptosis and subsequent behavioral changes. Using a clinically relevant and validated rodent blast model, we investigated how nicotinamide adenine dinucleotide phosphate oxidase (Nox) expression and associated oxidative stress contribute to cellular apoptosis after single and repeat blast injuries. Nox4 forms a complex with p22phox after injury, forming free radicals at neuronal membranes. Using immunohistochemical-staining methods, we found a visible increase in Nox4 after single blast injury in Sprague Dawley rats. Interestingly, Nox4 was also increased in postmortem human samples obtained from athletes diagnosed with chronic traumatic encephalopathy. Nox4 activity correlated with an increase in superoxide formation. Alpha-lipoic acid, an oxidative stress inhibitor, prevented the development of superoxide acutely and increased antiapoptotic markers B-cell lymphoma 2 (t = 3.079, P < 0.05) and heme oxygenase 1 (t = 8.169, P < 0.001) after single blast. Subacutely, alpha-lipoic acid treatment reduced proapoptotic markers Bax (t = 4.483, P < 0.05), caspase 12 (t = 6.157, P < 0.001), and caspase 3 (t = 4.573, P < 0.01) after repetitive blast, and reduced tau hyperphosphorylation indicated by decreased CP-13 and paired helical filament staining. Alpha-lipoic acid ameliorated impulsive-like behavior 7 days after repetitive blast injury (t = 3.573, P < 0.05) compared with blast exposed animals without treatment. TBI can cause debilitating symptoms and psychiatric disorders. Oxidative stress is an ideal target for neuropharmacologic intervention, and alpha-lipoic acid warrants further investigation as a therapeutic for prevention of chronic neurodegeneration.

  18. β-Nicotinamide adenine dinucleotide acts at prejunctional adenosine A1 receptors to suppress inhibitory musculomotor neurotransmission in guinea pig colon and human jejunum.

    PubMed

    Wang, Guo-Du; Wang, Xi-Yu; Liu, Sumei; Xia, Yun; Zou, Fei; Qu, Meihua; Needleman, Bradley J; Mikami, Dean J; Wood, Jackie D

    2015-06-01

    Intracellular microelectrodes were used to record neurogenic inhibitory junction potentials in the intestinal circular muscle coat. Electrical field stimulation was used to stimulate intramural neurons and evoke contraction of the smooth musculature. Exposure to β-nicotinamide adenine dinucleotide (β-NAD) did not alter smooth muscle membrane potential in guinea pig colon or human jejunum. ATP, ADP, β-NAD, and adenosine, as well as the purinergic P2Y1 receptor antagonists MRS 2179 and MRS 2500 and the adenosine A1 receptor agonist 2-chloro-N6-cyclopentyladenosine, each suppressed inhibitory junction potentials in guinea pig and human preparations. β-NAD suppressed contractile force of twitch-like contractions evoked by electrical field stimulation in guinea pig and human preparations. P2Y1 receptor antagonists did not reverse this action. Stimulation of adenosine A1 receptors with 2-chloro-N6-cyclopentyladenosine suppressed the force of twitch contractions evoked by electrical field stimulation in like manner to the action of β-NAD. Blockade of adenosine A1 receptors with 8-cyclopentyl-1,3-dipropylxanthine suppressed the inhibitory action of β-NAD on the force of electrically evoked contractions. The results do not support an inhibitory neurotransmitter role for β-NAD at intestinal neuromuscular junctions. The data suggest that β-NAD is a ligand for the adenosine A1 receptor subtype expressed by neurons in the enteric nervous system. The influence of β-NAD on intestinal motility emerges from adenosine A1 receptor-mediated suppression of neurotransmitter release at inhibitory neuromuscular junctions.

  19. A Novel Nicotinamide Adenine Dinucleotide Correction Method for Mitochondrial Ca(2+) Measurement with FURA-2-FF in Single Permeabilized Ventricular Myocytes of Rat.

    PubMed

    Lee, Jeong Hoon; Ha, Jeong Mi; Leem, Chae Hun

    2015-07-01

    Fura-2 analogs are ratiometric fluoroprobes that are widely used for the quantitative measurement of [Ca(2+)]. However, the dye usage is intrinsically limited, as the dyes require ultraviolet (UV) excitation, which can also generate great interference, mainly from nicotinamide adenine dinucleotide (NADH) autofluorescence. Specifically, this limitation causes serious problems for the quantitative measurement of mitochondrial [Ca(2+)], as no available ratiometric dyes are excited in the visible range. Thus, NADH interference cannot be avoided during quantitative measurement of [Ca(2+)] because the majority of NADH is located in the mitochondria. The emission intensity ratio of two different excitation wavelengths must be constant when the fluorescent dye concentration is the same. In accordance with this principle, we developed a novel online method that corrected NADH and Fura-2-FF interference. We simultaneously measured multiple parameters, including NADH, [Ca(2+)], and pH/mitochondrial membrane potential; Fura-2-FF for mitochondrial [Ca(2+)] and TMRE for Ψm or carboxy-SNARF-1 for pH were used. With this novel method, we found that the resting mitochondrial [Ca(2+)] concentration was 1.03 µM. This 1 µM cytosolic Ca(2+) could theoretically increase to more than 100 mM in mitochondria. However, the mitochondrial [Ca(2+)] increase was limited to ~30 µM in the presence of 1 µM cytosolic Ca(2+). Our method solved the problem of NADH signal contamination during the use of Fura-2 analogs, and therefore the method may be useful when NADH interference is expected.

  20. Effect of telmisartan on the expression of adiponectin receptors and nicotinamide adenine dinucleotide phosphate oxidase in the heart and aorta in type 2 diabetic rats

    PubMed Central

    2012-01-01

    Background Diabetic cardiovascular disease is associated with decreased adiponectin and increased oxidative stress. This study investigated the effect of telmisartan on the expression of adiponectin receptor 2 (adipoR2) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits in the heart and the expression of adiponectin receptor 1 (adipoR1) in aorta in type 2 diabetic rats. Methods Type 2 diabetes was induced by high-fat and high-sugar diet and intraperitoneal injection of a low dose of streptozotocin (STZ). Heart function, adipoR2, p22phox, NOX4, glucose transporter 4(GLUT4), monocyte chemoattractant protein-1(MCP-1) and connective tissue growth factor (CTGF)in the heart, and adipoR1, MCP-1 and nuclear factor kappa B (NF-κB) in aorta were analyzed in controls and diabetic rats treated with or without telmisartan (5mg/kg/d) by gavage for 12 weeks. Results Heart function, plasma and myocardial adiponectin levels, the expression of myocardial adipoR2 and GLUT4 were significantly decreased in diabetic rats (P <0.05). The expression of myocardial p22phox, NOX4, MCP-1, and CTGF was significantly increased in diabetic rats (P <0.05). The expression of adipoR1 was decreased and the expression of MCP-1 and NF-κB was increased in the abdominal aorta in diabetic rats (P <0.05). Telmisartan treatment significantly attenuated these changes in diabetic rats (P <0.05). Conclusions Our results suggest that telmisartan upregulates the expression of myocardial adiponectin, its receptor 2 and GLUT4. Simultaneously, it downregulates the expression of myocardial p22phox, NOX4, MCP-1, and CTGF, contributing so to the improvement of heart function in diabetic rats. Telmisartan also induces a protective role on the vascular system by upregulating the expression of adipoR1 and downregulating the expression of MCP-1 and NF-κB in the abdominal aorta in diabetic rats. PMID:22873349

  1. Fabrication and characterization of Meldola's blue/zinc oxide hybrid electrodes for efficient detection of the reduced form of nicotinamide adenine dinucleotide at low potential.

    PubMed

    Kumar, S Ashok; Chen, Shen-Ming

    2007-05-29

    We report the synthesis and the electrochemical properties of hybrid films made of zinc oxide (ZnO) and Meldola's blue dye (MB) using cyclic voltammetry (CV). MB/ZnO hybrid films were electrochemically deposited onto glassy carbon, gold and indium tin oxide-coated glass (ITO) electrodes at room temperature (25+/-2 degrees C) from the bath solution containing 0.1 M Zn(NO3)2, 0.1 M KNO3 and 1x10(-4) MMB. The surface morphology and deposition kinetics of MB/ZnO hybrid films were studied by means of scanning electron microscopy (SEM), atomic force microscopy (AFM) and electrochemical quartz crystal microbalance (EQCM) techniques, respectively. SEM and AFM images of MB/ZnO hybrid films have revealed that the surfaces are well crystallized, porous and micro structured. MB molecules were immobilized and strongly fixed in a transparent inorganic matrix. MB/ZnO hybrid films modified glassy carbon electrode (MB/ZnO/GC) showed one reversible redox couple centered at formal potential (E0') -0.12 V (pH 6.9). The surface coverage (gamma) of the MB immobilized on ZnO/GC was about 9.86x10(-12) mol cm(-2) and the electron transfer rate constant (ks) was determined to be 38.9 s(-1). The MB/ZnO/GC electrode acted as a sensor and displayed an excellent specific electrocatalytic response to the oxidation of nicotinamide adenine dinucleotide (NADH). The linear response range between 50 and 300 microM NADH concentration at pH 6.9 was observed with a detection limit of 10 microM (S/N=3). The electrode was stable during the time it was used for the full study (about 1 month) without a notable decrease in current. Indeed, dopamine (DA), ascorbic acid (AA), acetaminophen (AP) and uric acid (UA) did not show any interference during the detection of NADH at this modified electrode.

  2. The regulation of respiration of guinea pig taenia coli in high-K medium: the role of nicotinamide-adenine dinucleotide, adenosine diphosphate and Ca++.

    PubMed

    Tsuda, S; Urakawa, N; Saito, Y; Fukami, J

    1975-10-01

    In an attempt to elucidate the regulation mechanism of respiration in the smooth muscle cell, we investigated the roles of nicotinamide-adenine dinucleotide (NAD), adenosine diphosphate (ADP) and Ca++ in the muscle respiration using the tissues and subcellular fractions from guinea pig taenia coli. The tension in the strips of taenia coli increased with a concomitant increase in O2 consumption in high-K medium (40 mM K) containing 2.5 mM Ca. 10(-3) M amytal and 10(-5)M ouabain decreased the high-K induced tension and O2 consumption of the muscle. 10(-4)M 2,4-dinitrophenol (DNP) relieved the decreased respiration induced by ouabain, but not that with amytal. From these data it is suggested that NADH-linked respiration plays an important role in the respiration of the muscle. Ca++ in concentrations ranging from 0.5 to 2.5 mM in the high-K medium resulted in an increase in tension and in O2 concumption progressively. In spectrophotometric observations of subcellular fractions of the taenia coli, ADP increased in absorbance change at 340 m mu. Such occurred in mitochondrial fractions and was initiated by the addition of NADH. Therefore it is deduced that the increase in ADP level of the cytoplasm is primarily due to a contraction triggered by Ca++ thus stimulating respiration. On the other hand, at 0.1 mM of Ca++ concentration, the muscle strip increased O2 consumption without tension development in high-K medium. In the spectrophotometric observations, Ca++ and Sr++ increased the absorbance change in the homogenate and in the mitochondrial fraction. Hence, it seems that one part of the Ca++ entering into the smooth muscle treated with the high-K increased O2 consumption in mitochondia independent of an increase in muscle tension. From these results it is concluded that NADH-linked respiration plays an important role in the smooth muscle respiration in high-K medium and that ADP and Ca++ also play a role in regulating respiration. PMID:176493

  3. Nicotinamide Adenine Dinucleotide Phosphate Oxidase–Mediated Redox Signaling and Vascular Remodeling by 16α-Hydroxyestrone in Human Pulmonary Artery Cells

    PubMed Central

    Hood, Katie Y.; Montezano, Augusto C.; Harvey, Adam P.; Nilsen, Margaret; MacLean, Margaret R.

    2016-01-01

    Estrogen and oxidative stress have been implicated in pulmonary arterial hypertension (PAH). Mechanisms linking these systems are elusive. We hypothesized that estrogen metabolite, 16α-hydroxyestrone (16αOHE1), stimulates nicotinamide adenine dinucleotide phosphate oxidase (Nox)–induced reactive oxygen species (ROS) generation and proliferative responses in human pulmonary artery smooth muscle cells (hPASMCs) and that in PAH aberrant growth signaling promotes vascular remodeling. The pathophysiological significance of estrogen–Nox–dependent processes was studied in female Nox1−/− and Nox4−/− mice with PAH. PASMCs from control subjects (control hPASMCs) and PAH patients (PAH-hPASMCs) were exposed to estrogen and 16αOHE1 in the presence/absence of inhibitors of Nox, cytochrome P450 1B1, and estrogen receptors. Estrogen, through estrogen receptor-α, increased Nox-derived ROS and redox-sensitive growth in hPASMCs, with greater effects in PAH-hPASMCs versus control hPASMCs. Estrogen effects were inhibited by cytochrome P450 1B1 blockade. 16αOHE1 stimulated transient ROS production in hPASMCs, with sustained responses in PAH-hPASMCs. Basal expression of Nox1/Nox4 was potentiated in PAH-hPASMCs. In hPASMCs, 16αOHE1 increased Nox1 expression, stimulated irreversible oxidation of protein tyrosine phosphatases, decreased nuclear factor erythroid–related factor 2 activity and expression of nuclear factor erythroid–related factor 2–regulated antioxidant genes, and promoted proliferation. This was further amplified in PAH-hPASMCs. Nox1−/− but not Nox4−/− mice were protected against PAH and vascular remodeling. Our findings demonstrate that in PAH-hPASMCs, 16αOHE1 stimulates redox-sensitive cell growth primarily through Nox1. Supporting this, in vivo studies exhibited protection against pulmonary hypertension and remodeling in Nox1−/− mice. This study provides new insights through Nox1/ROS and nuclear factor erythroid–related factor 2

  4. Adenine nucleotide-dependent and redox-independent control of mitochondrial malate dehydrogenase activity in Arabidopsis thaliana.

    PubMed

    Yoshida, Keisuke; Hisabori, Toru

    2016-06-01

    Mitochondrial metabolism is important for sustaining cellular growth and maintenance; however, the regulatory mechanisms underlying individual processes in plant mitochondria remain largely uncharacterized. Previous redox-proteomics studies have suggested that mitochondrial malate dehydrogenase (mMDH), a key enzyme in the tricarboxylic acid (TCA) cycle and redox shuttling, is under thiol-based redox regulation as a target candidate of thioredoxin (Trx). In addition, the adenine nucleotide status may be another factor controlling mitochondrial metabolism, as respiratory ATP production in mitochondria is believed to be influenced by several environmental stimuli. Using biochemical and reverse-genetic approaches, we addressed the redox- and adenine nucleotide-dependent regulation of mMDH in Arabidopsis thaliana. Recombinant mMDH protein formed intramolecular disulfide bonds under oxidative conditions, but these bonds did not have a considerable effect on mMDH activity. Mitochondria-localized o-type Trx (Trx-o) did not facilitate re-reduction of oxidized mMDH. Determination of the in vivo redox state revealed that mMDH was stably present in the reduced form even in Trx-o-deficient plants. Accordingly, we concluded that mMDH is not in the class of redox-regulated enzymes. By contrast, mMDH activity was lowered by adenine nucleotides (AMP, ADP, and ATP). Each adenine nucleotide suppressed mMDH activity with different potencies and ATP exerted the largest inhibitory effect with a significantly lower K(I). Correspondingly, mMDH activity was inhibited by the increase in ATP/ADP ratio within the physiological range. These results suggest that mMDH activity is finely controlled in response to variations in mitochondrial adenine nucleotide balance. PMID:26946085

  5. Adenine nucleotide-dependent and redox-independent control of mitochondrial malate dehydrogenase activity in Arabidopsis thaliana.

    PubMed

    Yoshida, Keisuke; Hisabori, Toru

    2016-06-01

    Mitochondrial metabolism is important for sustaining cellular growth and maintenance; however, the regulatory mechanisms underlying individual processes in plant mitochondria remain largely uncharacterized. Previous redox-proteomics studies have suggested that mitochondrial malate dehydrogenase (mMDH), a key enzyme in the tricarboxylic acid (TCA) cycle and redox shuttling, is under thiol-based redox regulation as a target candidate of thioredoxin (Trx). In addition, the adenine nucleotide status may be another factor controlling mitochondrial metabolism, as respiratory ATP production in mitochondria is believed to be influenced by several environmental stimuli. Using biochemical and reverse-genetic approaches, we addressed the redox- and adenine nucleotide-dependent regulation of mMDH in Arabidopsis thaliana. Recombinant mMDH protein formed intramolecular disulfide bonds under oxidative conditions, but these bonds did not have a considerable effect on mMDH activity. Mitochondria-localized o-type Trx (Trx-o) did not facilitate re-reduction of oxidized mMDH. Determination of the in vivo redox state revealed that mMDH was stably present in the reduced form even in Trx-o-deficient plants. Accordingly, we concluded that mMDH is not in the class of redox-regulated enzymes. By contrast, mMDH activity was lowered by adenine nucleotides (AMP, ADP, and ATP). Each adenine nucleotide suppressed mMDH activity with different potencies and ATP exerted the largest inhibitory effect with a significantly lower K(I). Correspondingly, mMDH activity was inhibited by the increase in ATP/ADP ratio within the physiological range. These results suggest that mMDH activity is finely controlled in response to variations in mitochondrial adenine nucleotide balance.

  6. Protective effects of Guanxin Shutong capsule drug-containing serum on tumor necrosis factor-α-induced endothelial dysfunction through nicotinamide adenine dinucleotide phosphate oxidase and the nitric oxide pathway

    PubMed Central

    CAO, YANJUN; LIU, FENG; HUANG, ZHUANGZHUANG; ZHANG, YANMIN

    2014-01-01

    The Chinese medicinal formula Guanxin Shutong capsule (GXSTC) has been used for almost 10 years as a clinical treatment for chest pain, depression, palpitation and cardiovascular diseases. The aim of this study was to investigate the effects of GXSTC drug-containing serum on tumor necrosis factor-α (TNF-α)-stimulated endothelial cells. Cell viability was measured by MTT assay, and nitric oxide (NO) levels and NO synthase (NOS) activity were measured as standards of endothelial dysfunction. Malondialdehyde (MDA) levels and superoxide dismutase (SOD) activity were evaluated using commercial kits. In addition, the protein expression of endothelial NOS (eNOS), AKT and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits was examined to evaluate the effect of GXSTC drug-containing serum on ECV304 cells. GXSTC significantly reversed the decrease in NO production induced by TNF-α (5 ng/ml) in ECV304 cells. The expression of NADPH oxidase subunits was increased by TNF-α treatment, but markedly inhibited by treatment with GXSTC in TNF-α-stimulated cells. In summary, GXSTC increased the production of NO in ECV304 cells and exerted a protective effect on ECV304 cells stimulated with TNF-α by upregulating the mRNA and protein expression of eNOS. This was accompanied by increased SOD activity and reduced MDA levels. These results suggested that GXSTC protects the endothelium via the NO pathway and exhibits antioxidant effects. PMID:25120637

  7. Role of the C-terminal extension stacked on the re-face of the isoalloxazine ring moiety of the flavin adenine dinucleotide prosthetic group in ferredoxin-NADP(+) oxidoreductase from Bacillus subtilis.

    PubMed

    Seo, Daisuke; Asano, Tomoya; Komori, Hirofumi; Sakurai, Takeshi

    2014-08-01

    Ferredoxin-NADP(+) oxidoreductase [EC 1.18.1.2] from Bacillus subtilis (BsFNR) is homologous to the bacterial NADPH-thioredoxin reductase, but possesses a unique C-terminal extension that covers the re-face of the isoalloxazine ring moiety of the flavin adenine dinucleotide (FAD) prosthetic group. In this report, we utilize BsFNR mutants depleted of their C-terminal residues to examine the importance of the C-terminal extension in reactions with NADPH and ferredoxin (Fd) from B. subtilis by spectroscopic and steady-state reaction analyses. The depletions of residues Y313 to K332 (whole C-terminal extension region) and S325 to K332 (His324 intact) resulted in significant increases in the catalytic efficiency with NADPH in diaphorase assay with ferricyanide, whereas Km values for ferricyanide were increased. In the cytochrome c reduction assay in the presence of B. subtilis ferredoxin, the S325-K332 depleted mutant displayed a significant decrease in the turnover rate with an Fd concentration range of 1-10 μM. The Y313-K332 depleted mutant demonstrated an increase in the rate of the direct reduction of horse heart cytochrome c in the absence of Fd. These data indicated that depletion of the C-terminal extension plays an important role in the reaction of BsFNR with ferredoxin.

  8. Molecular characterization of the gene cluster coxMSL encoding the molybdenum-containing carbon monoxide dehydrogenase of Oligotropha carboxidovorans.

    PubMed Central

    Schübel, U; Kraut, M; Mörsdorf, G; Meyer, O

    1995-01-01

    The CO dehydrogenase structural genes (cox) and orf4 are clustered in the transcriptional order coxM--> coxS--> coxL--> orf4 on the 128-kb megaplasmid pHCG3 of the carboxidotroph Oligotropha carboxidovorans OM5. Sequence analysis suggested association of molybdopterin cytosine dinucleotide and flavin adenine dinucleotide with CoxL and of the [2Fe-2S] clusters with CoxS. PMID:7721710

  9. Alkaloid cluster gene ccsA of the ergot fungus Claviceps purpurea encodes chanoclavine I synthase, a flavin adenine dinucleotide-containing oxidoreductase mediating the transformation of N-methyl-dimethylallyltryptophan to chanoclavine I.

    PubMed

    Lorenz, Nicole; Olsovská, Jana; Sulc, Miroslav; Tudzynski, Paul

    2010-03-01

    Ergot alkaloids are indole-derived secondary metabolites synthesized by the phytopathogenic ascomycete Claviceps purpurea. In wild-type strains, they are exclusively produced in the sclerotium, a hibernation structure; for biotechnological applications, submerse production strains have been generated by mutagenesis. It was shown previously that the enzymes specific for alkaloid biosynthesis are encoded by a gene cluster of 68.5 kb. This ergot alkaloid cluster consists of 14 genes coregulated and expressed under alkaloid-producing conditions. Although the role of some of the cluster genes in alkaloid biosynthesis could be confirmed by a targeted knockout approach, further functional analyses are needed, especially concerning the early pathway-specific steps up to the production of clavine alkaloids. Therefore, the gene ccsA, originally named easE and preliminarily annotated as coding for a flavin adenine dinucleotide-containing oxidoreductase, was deleted in the C. purpurea strain P1, which is able to synthesize ergot alkaloids in axenic culture. Five independent knockout mutants were analyzed with regard to alkaloid-producing capability. Thin-layer chromatography (TLC), ultrapressure liquid chromatography (UPLC), and mass spectrometry (MS) analyses revealed accumulation of N-methyl-dimethylallyltryptophan (Me-DMAT) and traces of dimethylallyltryptophan (DMAT), the first pathway-specific intermediate. Since other alkaloid intermediates could not be detected, we conclude that deletion of ccsA led to a block in alkaloid biosynthesis beyond Me-DMAT formation. Complementation with a ccsA/gfp fusion construct restored alkaloid biosynthesis. These data indicate that ccsA encodes the chanoclavine I synthase or a component thereof catalyzing the conversion of N-methyl-dimethylallyltryptophan to chanoclavine I. PMID:20118373

  10. Purification and characterization of aldehyde dehydrogenase from rat liver mitochondria.

    PubMed

    Senior, D J; Tsai, C S

    1988-04-01

    Nicotinamide adenine dinucleotide- and nicotinamide adenine dinucleotide phosphate-dependent dehydrogenase activities from rat liver mitochondria have been copurified to homogeneity using combined DEAE, Sepharose, and affinity chromatographic procedures. The enzyme has a native molecular weight of 240,000 and subunit molecular weight of 60,000. The enzyme is tetrameric consisting of four identical subunits as revealed by electrophoresis and terminal analyses. A partial summary of physical properties is provided. The amino acid composition by acid hydrolysis is reported. Specific activities for various NAD(P)+ analogs and alkanal substrates were compared. The action of the effectors chloral hydrate, disulfiram, diethylstilbestrol, and Mg2+ and K+ ions were also investigated. PMID:3355167

  11. Unprecedented head-to-head right-handed cross-links between the antitumor bis(mu-N,N'-di-p-tolylformamidinate) dirhodium(II,II) core and the dinucleotide d(ApA) with the adenine bases in the rare imino form.

    PubMed

    Chifotides, Helen T; Dunbar, Kim R

    2007-10-17

    Reactions of the anticancer active compound cis-[Rh2(DTolF)2(CH3CN)6](BF4)2 with 9-ethyladenine (9-EtAdeH) or the dinucleotide d(ApA) proceed with bridging adenine bases in the rare imino form (A*), spanning the Rh-Rh bond at equatorial positions via N7/N6. The inflection points for the pH-dependent H2 and H8 NMR resonance curves of cis-[Rh2(DTolF)2(9-EtAdeH)2](BF4)2 correspond to N1H deprotonation of the metal-stabilized rare imino tautomer, which takes place at pKa approximately 7.5 in CD3CN-d3, a considerably reduced value as compared to that of the imino form of 9-EtAdeH. Similarly, coordination of the metal atoms to the N7/N6 adenine sites in Rh2(DTolF)2{d(ApA)} induces formation of the rare imino tautomer of the bases with a concomitant substantial decrease in the basicity of the N1H sites (pKa approximately 7.0 in CD3CN-d3), as compared to the imino form of the free dinucleotide. The presence of the adenine bases in the rare imino form, due to bidentate metalation of the N6/N7 sites, is further corroborated by DQF-COSY H2/N1H and ROE N1H/N6H cross-peaks in the 2D NMR spectra of Rh2(DTolF)2{d(ApA)} in CD3CN-d3 at -38 degrees C. Due to the N7/N6 bridging mode of the adenine bases in Rh2(DTolF)2{d(ApA)}, only the anti orientation of the imino tautomer is possible. The imino form A* of adenine in DNA may result in AT-->CG transversions or AT-->GC transitions, which can eventually lead to lethal mutations. The HH arrangement of the bases in Rh2(DTolF)2{d(ApA)} is indicated by the H8/H8 NOE cross-peaks in the 2D ROESY NMR spectrum, whereas the formamidinate bridging groups dictate the presence of one right-handed conformer HH1R in solution. Complete characterization of Rh2(DTolF)2{d(ApA)} by 2D NMR spectroscopy and molecular modeling supports the presence of the HH1R conformer, anti orientation of both sugar residues about the glycosyl bonds, and N-type conformation for the 5'-A base.

  12. Lactate dehydrogenase as a marker of Plasmodium infection in malaria vector Anopheles.

    PubMed

    Riandey, M F; Sannier, C; Peltre, G; Monteny, N; Cavaleyra, M

    1996-06-01

    Lactate dehydrogenase (Ldh) electrophoresis showed the presence of Plasmodium yoelii yoelii in Anopheles stephensi and An. gambiae. The Ldh appeared as an additional band (pLdh) whose activity was more intense with 3-acetyl pyridine adenine dinucleotide as coenzyme than with beta nicotin-amide adenine dinucleotide. Several allelic forms occurred both in the vector and the host. The isoelectric point of Ldh, similar in the vector and host, differed from those of Ldh from mosquito and mouse. The presence of pLdh was detected from the 2nd to the 28th day of infection. The pLdh appeared to be proportional to the number of sporozoites present in infected salivary glands. However, pLdh was not found in salivary glands or midguts, but it was detected in the rest of the corresponding mosquito. The origin and use of pLdh as a marker of Plasmodium in its vector is discussed. PMID:8827592

  13. Binding of nicotinamide–adenine dinucleotides to diphtheria toxin

    PubMed Central

    Montanaro, L.; Sperti, Simonetta

    1967-01-01

    1. Changes in protein fluorescence have been utilized in determining the stoicheiometry and dissociation constants of the complexes of diphtheria toxin with NADH2, NAD, NADPH2 and NADP. 2. The binding stoicheiometry is 2moles of NADH2 and 1mole of NADPH2/mole of diphtheria toxin. The binding sites for NADH2 appear to be equivalent and independent. 3. The toxin shows a higher affinity for the reduced than for the oxidized forms of the nucleotides. 4. Dissociation constants at 0·01I, pH7 and 25° are 0·7×10−6m for NADH2 and 0·45×10−6m for NADPH2. Dissociation constants increase with increasing ionic strength, indicating that the binding is mainly electrostatic. 5. Bound NADH2 and NADPH2 may be activated to fluoresce by the transfer of energy from the excited aromatic amino acids of the toxin. Activation and emission spectra of bound and free nucleotides are compared. 6. Since NAD and NADH2 are cofactors specifically required for the inhibition of protein synthesis by diphtheria toxin, the possible role of toxin–nucleotide complexes is discussed in this regard. PMID:4384596

  14. Phenyl-Adenine, Identified in a LIGHT-DEPENDENT SHORT HYPOCOTYLS4-Assisted Chemical Screen, Is a Potent Compound for Shoot Regeneration through the Inhibition of CYTOKININ OXIDASE/DEHYDROGENASE Activity1[W][OA

    PubMed Central

    Motte, Hans; Galuszka, Petr; Spíchal, Lukáš; Tarkowski, Petr; Plíhal, Ondřej; Šmehilová, Mária; Jaworek, Pavel; Vereecke, Danny; Werbrouck, Stefaan; Geelen, Danny

    2013-01-01

    In vitro shoot regeneration is implemented in basic plant research and commercial plant production, but for some plant species, it is still difficult to achieve by means of the currently available cytokinins and auxins. To identify novel compounds that promote shoot regeneration, we screened a library of 10,000 small molecules. The bioassay consisted of a two-step regeneration protocol adjusted and optimized for high-throughput manipulations of root explants of Arabidopsis (Arabidopsis thaliana) carrying the shoot regeneration marker LIGHT-DEPENDENT SHORT HYPOCOTYLS4. The screen revealed a single compound, the cytokinin-like phenyl-adenine (Phe-Ade), as a potent inducer of adventitious shoots. Although Phe-Ade triggered diverse cytokinin-dependent phenotypical responses, it did not inhibit shoot growth and was not cytotoxic at high concentrations. Transcript profiling of cytokinin-related genes revealed that Phe-Ade treatment established a typical cytokinin response. Moreover, Phe-Ade activated the cytokinin receptors ARABIDOPSIS HISTIDINE KINASE3 and ARABIDOPSIS HISTIDINE KINASE4 in a bacterial receptor assay, albeit at relatively high concentrations, illustrating that it exerts genuine but weak cytokinin activity. In addition, we demonstrated that Phe-Ade is a strong competitive inhibitor of CYTOKININ OXIDASE/DEHYDROGENASE enzymes, leading to an accumulation of endogenous cytokinins. Collectively, Phe-Ade exhibits a dual mode of action that results in a strong shoot-inducing activity. PMID:23288884

  15. The Contribution of Electrostatic and van der Waals Interactions to the Stereospecificity of the Reaction Catalyzed by Lactate Dehydrogenase

    PubMed Central

    van Beek, Jeroen; Callender, Robert; Gunner, M. R.

    1997-01-01

    Continuum electrostatic calculations in conjunction with molecular dynamics simulations have been used to investigate the source of the stereospecificity in the hydride transfer reaction catalyzed by lactate dehydrogenase (LDH). These studies show that favorable electrostatic interactions between the carboxamide group of the reduced nicotinamide adenine dinucleotide coenzyme and protein residues of the active site of LDH can account for much if not all of the stereospecificity of the LDH-catalyzed reaction, with A-side hydride transfer more than 107 times greater than B-side transfer. Unfavorable steric interactions within the binding complex for B-side transfer are not found. ImagesFIGURE 2 PMID:9017191

  16. Display of Bombyx mori Alcohol Dehydrogenases on the Bacillus subtilis Spore Surface to Enhance Enzymatic Activity under Adverse Conditions

    PubMed Central

    Wang, Nan; Chang, Cheng; Yao, Qin; Li, Guohui; Qin, Lvgao; Chen, Liang; Chen, Keping

    2011-01-01

    Alcohol dehydrogenases (ADHs) are oxidoreductases catalyzing the reversible oxidation of alcohols to corresponding aldehydes or ketones accompanied by nicotinamide adenine dinucleotide (NAD) or nicotinamide adenine dinucleotide phosphate (NADP) as coenzyme. ADHs attract major scientific and industrial interest for the evolutionary perspectives, afforded by their wide occurrence in nature, and for their use in industrial synthesis. However, the low activity of ADHs under extremes of pH and temperature often limits their application. To obtain ADH with high activity, in this study, we used Bombyx mori alcohol dehydrogenases (BmADH) as foreign gene and constructed a recombinant integrative plasmid pJS700-BmADH. This pJS700-BmADH was transformed into Bacillus subtilis by double cross-over and produced an amylase inactivated mutant. The fusion protein containing BmADH was expressed on the spore surface and recognized by BmADH-specific antibody. We also assayed the alcohol dehydrogenase activity of the fusion protein together with the native BmADH at different pH and temperature levels, which indicated the recombinant enzyme exhibits activity over wider ranges of temperature and pH than its native form, perhaps due to the resistance properties of B. subtilis spores against adverse conditions. PMID:21738670

  17. Nuclear magnetic resonance and molecular modeling study on mycophenolic acid: implications for binding to inosine monophosphate dehydrogenase.

    PubMed

    Makara, G M; Keserû, G M; Kajtár-Peredy, M; Anderson, W K

    1996-03-15

    The conformation of the sodium salt of mycophenolic acid (MPA), a potent inhibitor of inosine monophosphate dehydrogenase (IMPD), derived from 1D DIFNOE and 2D ROESY experiments in water and molecular dynamics (MD) is described. The hexenoic acid side chain conformation consistent with the NMR data was similar to that seen in the X-ray structure of MPA. The solution conformation was applied in a molecular modeling study in order to explore the potential features of enzyme binding. Our results, based on striking similarities in molecular volume and electrostatic isopotential between MPA and cofactor NAD+, lead to the suggestion that MPA is capable of binding to the nicotinamide site of IMPD and mimicking the NAD+ inverse regulation of the enzyme. In addition, our proposed model is in good agreement with the observed high affinity of the dinucleotide analogues thiazole- and selenazole-4-carboxamide adenine dinucleotide to IMPD.

  18. Properties of formate dehydrogenase in Methanobacterium formicicum.

    PubMed Central

    Schauer, N L; Ferry, J G

    1982-01-01

    Soluble formate dehydrogenase from Methanobacterium formicicum was purified 71-fold with a yield of 35%. Purification was performed anaerobically in the presence of 10 mM sodium azide which stabilized the enzyme. The purified enzyme reduced, with formate, 50 mumol of methyl viologen per min per mg of protein and 8.2 mumol of coenzyme F420 per min per mg of protein. The apparent Km for 7,8-didemethyl-8-hydroxy-5-deazariboflavin, a hydrolytic derivative of coenzyme F420, was 10-fold greater (63 microM) than for coenzyme F420 (6 microM). The purified enzyme also reduced flavin mononucleotide (Km = 13 microM) and flavin adenine dinucleotide (Km = 25 microM) with formate, but did not reduce NAD+ or NADP+. The reduction of NADP+ with formate required formate dehydrogenase, coenzyme F420, and coenzyme F420:NADP+ oxidoreductase. The formate dehydrogenase had an optimal pH of 7.9 when assayed with the physiological electron acceptor coenzyme F420. The optimal reaction rate occurred at 55 degrees C. The molecular weight was 288,000 as determined by gel filtration. The purified formate dehydrogenase was strongly inhibited by cyanide (Ki = 6 microM), azide (Ki = 39 microM), alpha,alpha-dipyridyl, and 1,10-phenanthroline. Denaturation of the purified formate dehydrogenase with sodium dodecyl sulfate under aerobic conditions revealed a fluorescent compound. Maximal excitation occurred at 385 nm, with minor peaks at 277 and 302 nm. Maximal fluorescence emission occurred at 455 nm. Images PMID:7061389

  19. Aldehyde dehydrogenases: From eye crystallins to metabolic disease and cancer stem cells

    PubMed Central

    Vasiliou, Vasilis; Thompson, David C.; Smith, Clay; Fujita, Mayumi; Chen, Ying

    2014-01-01

    The aldehyde dehydrogenase (ALDH) superfamily is composed of nicotinamide adenine dinucleotide (phosphate) (NAD(P)+)-dependent enzymes that catalyze the oxidation of aldehydes to their corresponding carboxylic acids. To date, 24 ALDH gene families have been identified in the eukaryotic genome. In addition to aldehyde metabolizing capacity, ALDHs have additional catalytic (e.g. esterase and reductase) and non-catalytic activities. The latter include functioning as structural elements in the eye (crystallins) and as binding molecules to endobiotics and xenobiotics. Mutations in human ALDH genes and subsequent inborn errors in aldehyde metabolism are the molecular basis of several diseases. Most recently ALDH polymorphisms have been associated with gout and osteoporosis. Aldehyde dehydrogenase enzymes also play important roles in embryogenesis and development, neurotransmission, oxidative stress and cancer. This article serves as a comprehensive review of the current state of knowledge regarding the ALDH superfamily and the contribution of ALDHs to various physiological and pathophysiological processes. PMID:23159885

  20. Betaine Accumulation and Betaine-Aldehyde Dehydrogenase in Spinach Leaves 1

    PubMed Central

    Pan, Shu-Mei; Moreau, Robert A.; Yu, Charles; Huang, Anthony H. C.

    1981-01-01

    Spinach leaf discs accumulated betaine when exposed to a mannitol solution of −20 bars. The accumulation was 12 micromoles per gram original fresh weight in a 24-hour period. Betaine-aldehyde dehydrogenase (EC 1.2.1.8) was assayed in various subcellular fractions prepared from spinach leaves, and it was found only in the soluble fraction. This cytosolic enzyme was purified 175-fold, and its properties were studied. The enzyme was relatively specific for betaine aldehyde as the substrate with an apparent Km value of 2.08 × 10−4 molar. It also exerted activity on other aldehyde analogs tested, but with lower Vmax and higher Km values. The enzyme was relatively specific for nicotinamide adenine dinucleotide as the coenzyme, having an apparent Km value of 9.46 × 10−6 molar; lower activities were observed when nicotinamide adenine dinucleotide phosphate or 3-acetyl pyridine adenine dinucleotide were tested as electron acceptors. The activity was enhanced by dithiothreitol and inhibited by p-chloromercuribenzoate, and the inhibition by p-chloromercuribenzoate was partially reversed by the subsequent addition of dithiothreitol. The activity was inhibited by high concentrations of NaCl and, to a lesser extent, proline. The equilibrium of the enzymic reaction was strongly in favor of betaine formation. The in vitro activity of the enzyme under optimal assay conditions was high enough to account for the amount of betaine accumulated under water stress conditions. The enzyme activity was the same in unstressed leaves and in leaves that had been water stressed for 24 hours. PMID:16661818

  1. Combining Laue diffraction and molecular dynamics to study enzyme intermediates: Formation of the Michaelis complex in isocitrate dehydrogenase

    SciTech Connect

    Bash, P.A.; Stoddard, B.L.; Dean, A.

    1996-12-31

    Two separate techniques, Lane diffraction and computational molecular dynamics (MD) simulations, have been developed to allow the visualization and assessment of transient structural states and conformations motions in macromolecules. Recent studies on isocitrate dehydrogenase show that computational MD simulations of an enzymatic Michaelis complex are consistent with difference Fourier election-density maps of the same structure from a Lane experiment. The use of MD facilitates modeling of atoms into regions of experimental density that are poorly defined, due to missing and inaccurate low-resolution diffraction terms that degrade the X-ray scattering contribution from mobile atoms in the active site. The combination of these techniques is used to generate a model for the Michaelis complex of the enzyme isocitrate dehydrogenase with substrate isocitrate and coenzyme nicotinamide-adenine dinucleotide phosphate (NADP). This concerted use of time-resolved X-ray crystallography and of MD simulations has clear importance for the study of enzyme dynamics and function.

  2. Crystal structure of homoisocitrate dehydrogenase from Schizosaccharomyces pombe

    SciTech Connect

    Bulfer, Stacie L.; Hendershot, Jenna M.; Trievel, Raymond C.

    2013-09-18

    Lysine biosynthesis in fungi, euglena, and certain archaebacteria occurs through the {alpha}-aminoadipate pathway. Enzymes in the first steps of this pathway have been proposed as potential targets for the development of antifungal therapies, as they are absent in animals but are conserved in several pathogenic fungi species, including Candida, Cryptococcus, and Aspergillus. One potential antifungal target in the {alpha}-aminoadipate pathway is the third enzyme in the pathway, homoisocitrate dehydrogenase (HICDH), which catalyzes the divalent metal-dependent conversion of homoisocitrate to 2-oxoadipate (2-OA) using nicotinamide adenine dinucleotide (NAD{sup +}) as a cofactor. HICDH belogns to a family of {beta}-hydroxyacid oxidative decarboxylases that includes malate dehydrogenase, tartrate dehydrogenase, 6-phosphogluconate dehydrogenase, isocitrate dehydrogenase (ICDH), and 3-isopropylmalte dehydrogenase (IPMDH). ICDH and IPMDH are well-characterized enzymes that catalyze the decarboxylation of isocitrate to yield 2-oxoglutarate (2-OG) in the citric acid cycle and the conversion of 3-isopropylmalate to 2-oxoisovalerate in the leucine biosynthetic pathway, respectively. Recent structural and biochemical studies of HICDH reveal that this enzyme shares sequence, structural, and mechanistic homology with ICDH and IPMDH. To date, the only published structures of HICDH are from the archaebacteria Thermus thermophilus (TtHICDH). Fungal HICDHs diverge from TtHICDH in several aspects, including their thermal stability, oligomerization state, and substrate specificity, thus warranting further characterization. To gain insights into these differences, they determined crystal structures of a fungal Schizosaccharomyces pombe HICDH (SpHICDH) as an apoenzyme and as a binary complex with additive tripeptide glycyl-glycyl-glycine (GGG) to 1.55 {angstrom} and 1.85 {angstrom} resolution, respectively. Finally, a comparison of the SpHICDH and TtHICDH structures reveal differences in

  3. Glyceraldehyde-3-phosphate dehydrogenase is regulated by ferredoxin-NADP reductase in the diatom Asterionella formosa.

    PubMed

    Mekhalfi, Malika; Puppo, Carine; Avilan, Luisana; Lebrun, Régine; Mansuelle, Pascal; Maberly, Stephen C; Gontero, Brigitte

    2014-07-01

    Diatoms are a widespread and ecologically important group of heterokont algae that contribute c. 20% to global productivity. Previous work has shown that regulation of their key Calvin cycle enzymes differs from that of the Plantae, and that in crude extracts, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) can be inhibited by nicotinamide adenine dinucleotide phosphate reduced (NADPH) under oxidizing conditions. The freshwater diatom, Asterionella formosa, was studied using enzyme kinetics, chromatography, surface plasmon resonance, mass spectrometry and sequence analysis to determine the mechanism behind this GAPDH inhibition. GAPDH interacted with ferredoxin-nicotinamide adenine dinucleotide phosphate (NADP) reductase (FNR) from the primary phase of photosynthesis, and the small chloroplast protein, CP12. Sequences of copurified GAPDH and FNR were highly homologous with published sequences. However, the widespread ternary complex among GAPDH, phosphoribulokinase and CP12 was absent. Activity measurements under oxidizing conditions showed that NADPH can inhibit GAPDH-CP12 in the presence of FNR, explaining the earlier observed inhibition within crude extracts. Diatom plastids have a distinctive metabolism, including the lack of the oxidative pentose phosphate pathway, and so cannot produce NADPH in the dark. The observed down-regulation of GAPDH in the dark may allow NADPH to be rerouted towards other reductive processes contributing to their ecological success.

  4. Search for interstellar adenine

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Sandip K.; Majumdar, Liton; Das, Ankan; Chakrabarti, Sonali

    2015-05-01

    It is long debated if pre-biotic molecules are indeed present in the interstellar medium. Despite substantial works pointing to their existence, pre-biotic molecules are yet to be discovered with a complete confidence. In this paper, our main aim is to study the chemical evolution of interstellar adenine under various circumstances. We prepare a large gas-grain chemical network by considering various pathways for the formation of adenine. Majumdar et al. (New Astron. 20:15, 2013) proposed that in the absence of adenine detection, one could try to trace two precursors of adenine, namely, HCCN and NH2CN. Recently Merz et al. (J. Phys. Chem. A 118:3637-3644, 2014), proposed another route for the formation of adenine in interstellar condition. They proposed two more precursor molecules. But it was not verified by any accurate gas-grain chemical model. Neither was it known if the production rate would be high or low. Our paper fills this important gap. We include this new pathways to find that the contribution through this pathways for the formation of Adenine is the most dominant one in the context of interstellar medium. We propose that observers may look for the two precursors (C3NH and HNCNH) in the interstellar media which are equally important for predicting abundances of adenine. We perform quantum chemical calculations to find out spectral properties of adenine and its two new precursor molecules in infrared, ultraviolet and sub-millimeter region. Our present study would be useful for predicting abundance of adenine.

  5. NADH dehydrogenase: a new molecular marker for homoeology group 4 in Triticeae. A map of the 4RS chromosome arm in rye.

    PubMed

    Figueiras, A M; Zaragoza, C; Gallego, F J; Benito, C

    1991-12-01

    Structural gene loci encoding the monomeric isozymes nicotin adenin dinucleotide dehydrogenase (NADH dehydrogenase or NDH) have been located on the 4AL, 4Bα, and 4DS chromosome arms of Triticum aestivum cv "Chinese Spring", on the 4RS chromosome arm of Secale cereale cultivars "Imperial", "King II", "Dakold," and "Ailes," on the 4S(1) S/7S(1) chromosome of Aegilops longissima, the 4E of Elytrigia elongata, and the CSU-A of Aegilops umbellulata. All the results support the homoeologous relationships among these chromosomes in the five species studied. In addition, a map of the 4RS chromosome arm in cv "Ailes" has been realized, linking loci Pgm-1 (located on the 4RS chromosome arm) and Ndh-1 (17.91 cM), with an estimated distance between both loci and the centromere of 20.00 cM and 32.12 cM, respectively. PMID:24202354

  6. An ultraviolet resonance Raman study of dehydrogenase enzymes and their interactions with coenzymes and substrates.

    PubMed

    Austin, J C; Wharton, C W; Hester, R E

    1989-02-21

    Ultraviolet resonance Raman (UVRR) spectra, with 260-nm excitation, are reported for oxidized and reduced nicotinamide adenine dinucleotides (NAD+ and NADH, respectively). Corresponding spectra are reported for these coenzymes when bound to the enzymes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and liver and yeast alcohol dehydrogenases (LADH and YADH). The observed differences between the coenzyme spectra are interpreted in terms of conformation, hydrogen bonding, and general environment polarity differences between bound and free coenzymes and between coenzymes bound to different enzymes. The possibility of adenine protonation is discussed. UVRR spectra with 220-nm excitation also are reported for holo- and apo-GAPDH (GAPDH-NAD+ and GAPDH alone, respectively). In contrast with the 260-nm spectra, these show only bands due to vibrations of aromatic amino acid residues of the protein. The binding of coenzyme to GAPDH has no significant effect on the aromatic amino acid bands observed. This result is discussed in the light of the known structural change of GAPDH on binding coenzyme. Finally, UVRR spectra with 240-nm excitation are reported for GAPDH and an enzyme-substrate intermediate of GAPDH. Perturbations are reported for tyrosine and tryptophan bands on forming the acyl enzyme.

  7. Effects of Macromolecular Crowding on Alcohol Dehydrogenase Activity Are Substrate-Dependent.

    PubMed

    Wilcox, A E; LoConte, Micaela A; Slade, Kristin M

    2016-06-28

    Enzymes operate in a densely packed cellular environment that rarely matches the dilute conditions under which they are studied. To better understand the ramifications of this crowding, the Michaelis-Menten kinetics of yeast alcohol dehydrogenase (YADH) were monitored spectrophotometrically in the presence of high concentrations of dextran. Crowding decreased the maximal rate of the reaction by 40% for assays with ethanol, the primary substrate of YADH. This observation was attributed to slowed release of the reduced β-nicotinamide adenine dinucleotide product, which is rate-limiting. In contrast, when larger alcohols were used as the YADH substrate, the rate-limiting step becomes hydride transfer and crowding instead increased the maximal rate of the reaction by 20-40%. This work reveals the importance of considering enzyme mechanism when evaluating the ways in which crowding can alter kinetics.

  8. Direct Electrochemical Addressing of Immobilized Alcohol Dehydrogenase for the Heterogeneous Bioelectrocatalytic Reduction of Butyraldehyde to Butanol

    PubMed Central

    Schlager, S; Neugebauer, H; Haberbauer, M; Hinterberger, G; Sariciftci, N S

    2015-01-01

    Modified electrodes using immobilized alcohol dehydrogenase enzymes for the efficient electroreduction of butyraldehyde to butanol are presented as an important step for the utilization of CO2-reduction products. Alcohol dehydrogenase was immobilized, embedded in an alginate–silicate hybrid gel, on a carbon felt (CF) electrode. The application of this enzyme to the reduction of an aldehyde to an alcohol with the aid of the coenzyme nicotinamide adenine dinucleotide (NADH), in analogy to the final step in the natural reduction cascade of CO2 to alcohol, has been already reported. However, the use of such enzymatic reductions is limited because of the necessity of providing expensive NADH as a sacrificial electron and proton donor. Immobilization of such dehydrogenase enzymes on electrodes and direct pumping of electrons into the biocatalysts offers an easy and efficient way for the biochemical recycling of CO2 to valuable chemicals or alternative synthetic fuels. We report the direct electrochemical addressing of immobilized alcohol dehydrogenase for the reduction of butyraldehyde to butanol without consumption of NADH. The selective reduction of butyraldehyde to butanol occurs at room temperature, ambient pressure and neutral pH. Production of butanol was detected by using liquid-injection gas chromatography and was estimated to occur with Faradaic efficiencies of around 40 %. PMID:26113881

  9. SAXS fingerprints of aldehyde dehydrogenase oligomers

    PubMed Central

    Tanner, John J.

    2015-01-01

    Enzymes of the aldehyde dehydrogenase (ALDH) superfamily catalyze the nicotinamide adenine dinucleotide-dependent oxidation of aldehydes to carboxylic acids. ALDHs are important in detoxification of aldehydes, amino acid metabolism, embryogenesis and development, neurotransmission, oxidative stress, and cancer. Mutations in genes encoding ALDHs cause metabolic disorders, including alcohol flush reaction (ALDH2), Sjögren–Larsson syndrome (ALDH3A2), hyperprolinemia type II (ALDH4A1), γ-hydroxybutyric aciduria (ALDH5A1), methylmalonic aciduria (ALDH6A1), pyridoxine dependent epilepsy (ALDH7A1), and hyperammonemia (ALDH18A1). We previously reported crystal structures and small-angle X-ray scattering (SAXS) analyses of ALDHs exhibiting dimeric, tetrameric, and hexameric oligomeric states (Luo et al., Biochemistry 54 (2015) 5513–5522; Luo et al., J. Mol. Biol. 425 (2013) 3106–3120). Herein I provide the SAXS curves, radii of gyration, and distance distribution functions for the three types of ALDH oligomer. The SAXS curves and associated analysis provide diagnostic fingerprints that allow rapid identification of the type of ALDH oligomer that is present in solution. The data sets provided here serve as a benchmark for characterizing oligomerization of ALDHs. PMID:26693506

  10. SAXS fingerprints of aldehyde dehydrogenase oligomers.

    PubMed

    Tanner, John J

    2015-12-01

    Enzymes of the aldehyde dehydrogenase (ALDH) superfamily catalyze the nicotinamide adenine dinucleotide-dependent oxidation of aldehydes to carboxylic acids. ALDHs are important in detoxification of aldehydes, amino acid metabolism, embryogenesis and development, neurotransmission, oxidative stress, and cancer. Mutations in genes encoding ALDHs cause metabolic disorders, including alcohol flush reaction (ALDH2), Sjögren-Larsson syndrome (ALDH3A2), hyperprolinemia type II (ALDH4A1), γ-hydroxybutyric aciduria (ALDH5A1), methylmalonic aciduria (ALDH6A1), pyridoxine dependent epilepsy (ALDH7A1), and hyperammonemia (ALDH18A1). We previously reported crystal structures and small-angle X-ray scattering (SAXS) analyses of ALDHs exhibiting dimeric, tetrameric, and hexameric oligomeric states (Luo et al., Biochemistry 54 (2015) 5513-5522; Luo et al., J. Mol. Biol. 425 (2013) 3106-3120). Herein I provide the SAXS curves, radii of gyration, and distance distribution functions for the three types of ALDH oligomer. The SAXS curves and associated analysis provide diagnostic fingerprints that allow rapid identification of the type of ALDH oligomer that is present in solution. The data sets provided here serve as a benchmark for characterizing oligomerization of ALDHs. PMID:26693506

  11. The structure of retinal dehydrogenase type II at 2.7 A resolution: implications for retinal specificity.

    PubMed

    Lamb, A L; Newcomer, M E

    1999-05-11

    Retinoic acid, a hormonally active form of vitamin A, is produced in vivo in a two step process: retinol is oxidized to retinal and retinal is oxidized to retinoic acid. Retinal dehydrogenase type II (RalDH2) catalyzes this last step in the production of retinoic acid in the early embryo, possibly producing this putative morphogen to initiate pattern formation. The enzyme is also found in the adult animal, where it is expressed in the testis, lung, and brain among other tissues. The crystal structure of retinal dehydrogenase type II cocrystallized with nicotinamide adenine dinucleotide (NAD) has been determined at 2.7 A resolution. The structure was solved by molecular replacement using the crystal structure of a mitochondrial aldehyde dehydrogenase (ALDH2) as a model. Unlike what has been described for the structures of two aldehyde dehydrogenases involved in the metabolism of acetaldehyde, the substrate access channel is not a preformed cavity into which acetaldehyde can readily diffuse. Retinal dehydrogenase appears to utilize a disordered loop in the substrate access channel to discriminate between retinaldehyde and short-chain aldehydes.

  12. Characterization of a pyridine nucleotide-nonspecific glutamate dehydrogenase from Bacteroides thetaiotaomicron.

    PubMed Central

    Glass, T L; Hylemon, P B

    1980-01-01

    An oxidized nicotinamide adenine dinucleotide phosphate/oxidized nicotinamide adenine dinucleotide (NADP+/NAD+) nonspecific L-glutamate dehydrogenase from Bacteroides thetaiotaomicron was purified 40-fold (NADP+ or NAD+ activity) over crude cell extract by heat treatment, (NH4)2SO2 fractionation, diethylaminoethyl-cellulose, Bio-Gel A 1.5m, and hydroxylapatite chromatography. Both NADP+- and NAD+-dependent activities coeluted from all chromatographic treatments. Moreover, a constant ratio of NADP+/NAD+ specific activities was demonstrated at each purification step. Both activities also comigrated in 6% nondenaturing polyacrylamide gels. Affinity chromatography of the 40-fold-purified enzyme using Procion RED HE-3B gave a preparation containing both NADP+- and NAD+-linked activities which showed a single protein band of 48,5000 molecular weight after sodium dodecyl sulfate-polyacrylamide gradient gel electrophoresis. The dual pyridine nucleotide nature of the enzyme was most readily apparent in the oxidative direction. Reductively, the enzyme was 30-fold more active with reduced NADP than with reduced NAD. Nonlinear concave 1/V versus 1/S plots were observed for reduced NADP and NH4Cl. Salts (0.1 M) stimulated the NADP+-linked reaction, inhibited the NAD+-linked reaction, and had little effect on the reduced NADP-dependent reaction. The stimulatory effect of salts (NADP+) was nonspecific, regardless of the anion or cation, whereas the degree of NAD+-linked inhibition decreased in the order to I- greater than Br- greater than Cl- greater than F-. Both NADP+ and NAD+ glutamate dehydrogenase activities were also detected in cell extracts from representative strains of other bacteroides deoxyribonucleic acid homology groups. Images PMID:7364728

  13. Evolution probabilities and phylogenetic distance of dinucleotides.

    PubMed

    Michel, Christian J

    2007-11-21

    We develop here an analytical evolution model based on a dinucleotide mutation matrix 16 x 16 with six substitution parameters associated with the three types of substitutions in the two dinucleotide sites. It generalizes the previous models based on the nucleotide mutation matrices 4 x 4. It determines at some time t the exact occurrence probabilities of dinucleotides mutating randomly according to these six substitution parameters. Furthermore, several properties and two applications of this model allow to derive 16 evolutionary analytical solutions of dinucleotides and also a dinucleotide phylogenetic distance. Finally, based on this mathematical model, the SED (Stochastic Evolution of Dinucleotides) web server has been developed for deriving evolutionary analytical solutions of dinucleotides.

  14. Structural analysis of fungus-derived FAD glucose dehydrogenase

    PubMed Central

    Yoshida, Hiromi; Sakai, Genki; Mori, Kazushige; Kojima, Katsuhiro; Kamitori, Shigehiro; Sode, Koji

    2015-01-01

    We report the first three-dimensional structure of fungus-derived glucose dehydrogenase using flavin adenine dinucleotide (FAD) as the cofactor. This is currently the most advanced and popular enzyme used in glucose sensor strips manufactured for glycemic control by diabetic patients. We prepared recombinant nonglycosylated FAD-dependent glucose dehydrogenase (FADGDH) derived from Aspergillus flavus (AfGDH) and obtained the X-ray structures of the binary complex of enzyme and reduced FAD at a resolution of 1.78 Å and the ternary complex with reduced FAD and D-glucono-1,5-lactone (LGC) at a resolution of 1.57 Å. The overall structure is similar to that of fungal glucose oxidases (GOxs) reported till date. The ternary complex with reduced FAD and LGC revealed the residues recognizing the substrate. His505 and His548 were subjected for site-directed mutagenesis studies, and these two residues were revealed to form the catalytic pair, as those conserved in GOxs. The absence of residues that recognize the sixth hydroxyl group of the glucose of AfGDH, and the presence of significant cavity around the active site may account for this enzyme activity toward xylose. The structural information will contribute to the further engineering of FADGDH for use in more reliable and economical biosensing technology for diabetes management. PMID:26311535

  15. Crystal structures of complexes of NAD+-dependent formate dehydrogenase from methylotrophic bacterium Pseudomonas sp. 101 with formate

    NASA Astrophysics Data System (ADS)

    Filippova, E. V.; Polyakov, K. M.; Tikhonova, T. V.; Stekhanova, T. N.; Boiko, K. M.; Sadykhov, I. G.; Tishkov, V. I.; Popov, V. O.; Labru, N.

    2006-07-01

    Formate dehydrogenase (FDH) from the methylotrophic bacterium Pseudomonas sp. 101 catalyzes oxidation of formate to NI2 with the coupled reduction of nicotinamide adenine dinucleotide (NAD+). The three-dimensional structures of the apo form (the free enzyme) and the holo form (the ternary FDH-NAD+-azide complex) of FDH have been established earlier. In the present study, the structures of FDH complexes with formate are solved at 2.19 and 2.28 Å resolution by the molecular replacement method and refined to the R factors of 22.3 and 20.5%, respectively. Both crystal structures contain four protein molecules per asymmetric unit. These molecules form two dimers identical to the dimer of the apo form of FDH. Two possible formatebinding sites are found in the active site of the FDH structure. In the complexes the sulfur atom of residue Cys354 exists in the oxidized state.

  16. Crystal structures of complexes of NAD{sup +}-dependent formate dehydrogenase from methylotrophic bacterium Pseudomonas sp. 101 with formate

    SciTech Connect

    Filippova, E. V. Polyakov, K. M.; Tikhonova, T. V.; Stekhanova, T. N.; Boiko, K. M.; Sadykhov, I. G.; Tishkov, V. I.; Popov, V. O.; Labru, N.

    2006-07-15

    Formate dehydrogenase (FDH) from the methylotrophic bacterium Pseudomonas sp. 101 catalyzes oxidation of formate to NI{sub 2} with the coupled reduction of nicotinamide adenine dinucleotide (NAD{sup +}). The three-dimensional structures of the apo form (the free enzyme) and the holo form (the ternary FDH-NAD{sup +}-azide complex) of FDH have been established earlier. In the present study, the structures of FDH complexes with formate are solved at 2.19 and 2.28 A resolution by the molecular replacement method and refined to the R factors of 22.3 and 20.5%, respectively. Both crystal structures contain four protein molecules per asymmetric unit. These molecules form two dimers identical to the dimer of the apo form of FDH. Two possible formatebinding sites are found in the active site of the FDH structure. In the complexes the sulfur atom of residue Cys354 exists in the oxidized state.

  17. Photodissociation of dinucleotide ions in a storage ring

    NASA Astrophysics Data System (ADS)

    Worm, Esben S.; Andersen, Inge Hald; Andersen, Jens Ulrik; Holm, Anne I. S.; Hvelplund, Preben; Kadhane, Umesh; Nielsen, Steen Brøndsted; Poully, Jean-Christophe; Støchkel, Kristian

    2007-04-01

    The decay of protonated DNA dinucleotides, dA2+ , dG2+ , dT2+ , dC2+ and deprotonated ones, dA2- and dT2- , after 260nm photon absorption was measured in an electrostatic ion storage ring (A denotes adenine, G guanine, T thymine, and C cytosine). Fragmentation on the microsecond time scale was observed and assigned to statistical dissociation. Good fits to the decay spectra were obtained with a model based on microcanonical rate constants of the Arrhenius type with activation energies and preexponential factors for the dissociation that agree well with literature values. In accordance with results from other groups, dT2+ was found to have the longest lifetime among the cations. The importance of decay processes faster than the microsecond time scale is elucidated by a comparison between the total ion beam depletion and that due to the observed statistical decay. We find that such processes play a major role for all of the dinucleotides, being more than 25 times more probable than the microsecond statistical dissociation for dA2+ , dG2+ , and dC2+ , about 10 times for dT2+ , and between 2 and 6 times for dA2- and dT2- . For the cations, we ascribe these processes to nonstatistical dissociation prior to randomization of the excitation energy among all degrees of freedom whereas direct photoelectron detachment may play a role for the anions. Thus, our data indicate that the propensity for nonstatistical dissociation increases upon nucleobase protonation. Consistent with this trend, the propensity is less for dT2+ than for the other dinucleotide cations because the phosphoric acid group competes with thymine for the proton.

  18. A novel L-aspartate dehydrogenase from the mesophilic bacterium Pseudomonas aeruginosa PAO1: molecular characterization and application for L-aspartate production.

    PubMed

    Li, Yinxia; Kawakami, Norika; Ogola, Henry Joseph Oduor; Ashida, Hiroyuki; Ishikawa, Takahiro; Shibata, Hitoshi; Sawa, Yoshihiro

    2011-06-01

    L-aspartate dehydrogenase (EC 1.4.1.21; L: -AspDH) is a rare member of amino acid dehydrogenase superfamily and so far, two thermophilic enzymes have been reported. In our study, an ORF PA3505 encoding for a putative L-AspDH in the mesophilic bacterium Pseudomonas aeruginosa PAO1 was identified, cloned, and overexpressed in Escherichia coli. The homogeneously purified enzyme (PaeAspDH) was a dimeric protein with a molecular mass of about 28 kDa exhibiting a very high specific activity for L-aspartate (L-Asp) and oxaloacetate (OAA) of 127 and 147 U mg(-1), respectively. The enzyme was capable of utilizing both nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP) as coenzyme. PaeAspDH showed a T (m) value of 48°C for 20 min that was improved to approximately 60°C by the addition of 0.4 M NaCl or 30% glycerol. The apparent K (m) values for OAA, NADH, and ammonia were 2.12, 0.045, and 10.1 mM, respectively; comparable results were observed with NADPH. The L-Asp production system B consisting of PaeAspDH, Bacillus subtilis malate dehydrogenase and E. coli fumarase, achieved a high level of L-Asp production (625 mM) from fumarate in fed-batch process with a molar conversion yield of 89.4%. Furthermore, the fermentative production system C released 33 mM of L-Asp after 50 h by using succinate as carbon source. This study represented an extensive characterization of the mesophilic AspDH and its potential applicability for efficient and attractive production of L-Asp. Our novel production systems are also hopeful for developing the new processes for other compounds production.

  19. Structural and functional analysis of betaine aldehyde dehydrogenase from Staphylococcus aureus.

    PubMed

    Halavaty, Andrei S; Rich, Rebecca L; Chen, Chao; Joo, Jeong Chan; Minasov, George; Dubrovska, Ievgeniia; Winsor, James R; Myszka, David G; Duban, Mark; Shuvalova, Ludmilla; Yakunin, Alexander F; Anderson, Wayne F

    2015-05-01

    When exposed to high osmolarity, methicillin-resistant Staphylococcus aureus (MRSA) restores its growth and establishes a new steady state by accumulating the osmoprotectant metabolite betaine. Effective osmoregulation has also been implicated in the acquirement of a profound antibiotic resistance by MRSA. Betaine can be obtained from the bacterial habitat or produced intracellularly from choline via the toxic betaine aldehyde (BA) employing the choline dehydrogenase and betaine aldehyde dehydrogenase (BADH) enzymes. Here, it is shown that the putative betaine aldehyde dehydrogenase SACOL2628 from the early MRSA isolate COL (SaBADH) utilizes betaine aldehyde as the primary substrate and nicotinamide adenine dinucleotide (NAD(+)) as the cofactor. Surface plasmon resonance experiments revealed that the affinity of NAD(+), NADH and BA for SaBADH is affected by temperature, pH and buffer composition. Five crystal structures of the wild type and three structures of the Gly234Ser mutant of SaBADH in the apo and holo forms provide details of the molecular mechanisms of activity and substrate specificity/inhibition of this enzyme.

  20. A bifunctional enzyme from Rhodococcus erythropolis exhibiting secondary alcohol dehydrogenase-catalase activities.

    PubMed

    Martinez-Rojas, Enriqueta; Kurt, Tutku; Schmidt, Udo; Meyer, Vera; Garbe, Leif-Alexander

    2014-11-01

    Alcohol dehydrogenases have long been recognized as potential biocatalyst for production of chiral fine and bulk chemicals. They are relevant for industry in enantiospecific production of chiral compounds. In this study, we identified and purified a nicotinamide adenine dinucleotide (NAD)-dependent secondary alcohol dehydrogenase (SdcA) from Rhodococcus erythropolis oxidizing γ-lactols into γ-lactones. SdcA showed broad substrate specificity on γ-lactols; secondary aliphatic alcohols with 8 and 10 carbon atoms were also substrates and oxidized with (2S)-stereospecificity. The enzyme exhibited moderate stability with a half-life of 5 h at 40 °C and 20 days at 4 °C. Mass spectrometric identification revealed high sequence coverage of SdcA amino acid sequence to a highly conserved catalase from R. erythropolis. The corresponding encoding gene was isolated from genomic DNA and subsequently overexpressed in Escherichia coli BL21 DE3 cells. In addition, the recombinant SdcA was purified and characterized in order to confirm that the secondary alcohol dehydrogenase and catalase activity correspond to the same enzyme.

  1. Structural and functional analysis of betaine aldehyde dehydrogenase from Staphylococcus aureus

    PubMed Central

    Halavaty, Andrei S.; Rich, Rebecca L.; Chen, Chao; Joo, Jeong Chan; Minasov, George; Dubrovska, Ievgeniia; Winsor, James R.; Myszka, David G.; Duban, Mark; Shuvalova, Ludmilla; Yakunin, Alexander F.; Anderson, Wayne F.

    2015-01-01

    When exposed to high osmolarity, methicillin-resistant Staphylococcus aureus (MRSA) restores its growth and establishes a new steady state by accumulating the osmoprotectant metabolite betaine. Effective osmoregulation has also been implicated in the acquirement of a profound antibiotic resistance by MRSA. Betaine can be obtained from the bacterial habitat or produced intracellularly from choline via the toxic betaine aldehyde (BA) employing the choline dehydrogenase and betaine aldehyde dehydrogenase (BADH) enzymes. Here, it is shown that the putative betaine aldehyde dehydrogenase SACOL2628 from the early MRSA isolate COL (SaBADH) utilizes betaine aldehyde as the primary substrate and nicotinamide adenine dinucleotide (NAD+) as the cofactor. Surface plasmon resonance experiments revealed that the affinity of NAD+, NADH and BA for SaBADH is affected by temperature, pH and buffer composition. Five crystal structures of the wild type and three structures of the Gly234Ser mutant of SaBADH in the apo and holo forms provide details of the molecular mechanisms of activity and substrate specificity/inhibition of this enzyme. PMID:25945581

  2. DNA adenine hypomethylation leads to metabolic rewiring in Deinococcus radiodurans.

    PubMed

    Shaiwale, Nayana S; Basu, Bhakti; Deobagkar, Deepti D; Deobagkar, Dileep N; Apte, Shree K

    2015-08-01

    The protein encoded by DR_0643 gene from Deinococcus radiodurans was shown to be an active N-6 adenine-specific DNA methyltransferase (Dam). Deletion of corresponding protein reduced adenine methylation in the genome by 60% and resulted in slow-growth phenotype. Proteomic changes induced by DNA adenine hypomethylation were mapped by two-dimensional protein electrophoresis coupled with mass spectrometry. As compared to wild type D. radiodurans cells, at least 54 proteins were differentially expressed in Δdam mutant. Among these, 39 metabolic enzymes were differentially expressed in Δdam mutant. The most prominent change was DNA adenine hypomethylation induced de-repression of pyruvate dehydrogenase complex, E1 component (aceE) gene resulting in 10 fold increase in the abundance of corresponding protein. The observed differential expression profile of metabolic enzymes included increased abundance of enzymes involved in fatty acid and amino acid degradation to replenish acetyl Co-A and TCA cycle intermediates and diversion of phosphoenolpyruvate and pyruvate into amino acid biosynthesis, a metabolic rewiring attempt by Δdam mutant to restore energy generation via glycolysis-TCA cycle axis. This is the first report of DNA adenine hypomethylation mediated rewiring of metabolic pathways in prokaryotes.

  3. Fourier transform infrared spectroscopic studies of proton transfer processes and the dissociation of Zn2+-bound water in alcohol dehydrogenases.

    PubMed

    Nadolny, C; Zundel, G

    1997-08-01

    The following complexes were investigated by Fourier transform difference spectroscopy: binary complexes of alcohol dehydrogenases from yeast (YADH) and horse liver (LADH) with nicotinamide adenine dinucleotide (NAD+) and adenosine (5')-diphospho(5)-beta-D-ribose (ADP-Rib); the binary complex of Zn2+-free YADH with NAD+, the ternary complex of LADH with NAD+ and 2,2,2-trifluoroethanol. After addition of NAD+ to YADH and LADH, protonation of the N1 atom of the adenine ring of NAD+ is observed. It is shown that this proton arises from the dissociation of the Zn2+-bound water. The interaction of the Zn2+ ion with water is very strong, since this interaction is not just an electrostatic interaction. If the Zn2+ ions are in a tetrahedral environment, a large covalent contribution also occurs. If ADP-Rib is present instead of NAD+, no protonation of the N1 atom of the adenine ring of ADP-Rib is found, which demonstrates that the positively charged nicotinamide ring favors the conduction of the positive charge. All these results confirm the mechanism of Brändén et al. (1975): the Zn2+-bound water is split and the arising (OH)- deprotonates the alcohol. In the case of the ternary complex of LADH with NAD+ and 2,2,2-trifluoroethanol, we demonstrate that the alcohol is deprotonated and the alcoholate ion is bound directly to the Zn2+ ion. The conduction of the proton from the active site to the N1 atom of adenine occurs via a hydrogen-bonded chain with large proton polarizability due to collective proton motion. The nature and mechanism of this pathway are discussed on the basis of data from previous studies.

  4. Fructose 1,6-diphosphate-activated L-lactate dehydrogenase from Streptococcus lactis: kinetic properties and factors affecting activation.

    PubMed Central

    Crow, V L; Pritchard, G G

    1977-01-01

    The L-(+)-lactate dehydrogenase (L-lactate:NAD+ oxidoreductase, EC 1.1.1.27) of Streptococcus lactis C10, like that of other streptococci, was activated by fructose 1,6-diphosphate (FDP). The enzyme showed some activity in the absence of FDP, with a pH optimum of 8.2; FDP decreased the Km for both pyruvate and reduced nicotinamide adenine dinucleotide (NADH) and shifted the pH optimum to 6.9. Enzyme activity showed a hyperbolic response to both NADH and pyruvate in all the buffers tried except phosphate buffer, in which the response to increasing NADH was sigmoidal. The FDP concentration required for half-maximal velocity (FDP0.5V) was markedly influenced by the nature of the assay buffer used. Thus the FDP0.5V was 0.002 mM in 90 mM triethanolamine buffer, 0.2 mM in 90 mM tris(hydroxymethyl)aminomethanemaleate buffer, and 4.4 mM in 90 mM phosphate buffer. Phosphate inhibition of FDP binding is not a general property of streptococcal lactate dehydrogenase, since the FDP0.5V value for S. faecalis 8043 lactate dehydrogenase was not increased by phosphate. The S. faecalis and S. lactis lactate dehydrogenases also differed in that Mn2+ enhanced FDP binding in S. faecalis but had no effect on the S. lactis dehydrogenase. The FDP concentration (12 to 15 mM) found in S. lactis cells during logarithmic growth on a high-carbohydrate (3% lactose) medium would be adequate to give almost complete activation of the lactate dehydrogenase even if the high FDP0.5V value found in 90 mM phosphate were similar to the FDP requirement in vivo. PMID:17595

  5. Purification and Partial Kinetic and Physical Characterization of Two Chloroplast-Localized NADP-Specific Glutamate Dehydrogenase Isoenzymes and Their Preferential Accumulation in Chlorella sorokiniana Cells Cultured at Low or High Ammonium Levels 1

    PubMed Central

    Bascomb, Newell F.; Schmidt, Robert R.

    1987-01-01

    Two ammonium-inducible, chloroplast-localized NADP-specific glutamate dehydrogenase isoenzymes were purified to homogeneity from Chlorella sorokiniana. These isoenzymes were homopolymers of either α- or β-subunits with molecular weights of 55,500 or 53,000, respectively. The α-isoenzyme was preferentially induced at low ammonium concentrations (2 millimolar or lower), whereas only the β-isoenzyme accumulated after cells were fully induced (120 minutes) at high ammonium concentrations (29 millimolar). Purification of isoenzymes was achieved by (NH4)2SO4 fractionation, gel-filtration, anion-exchange fast protein liquid chromatography, and affinity chromatography. The α- and β-isoenzymes were separated by their differential binding to Type 4 nicotinamide adenine dinucleotide phosphate-Sepharose. Both isoenzymes bound to an antibody affinity column to which purified antibody (prepared against β-isoenzyme) was covalently attached. Peptide mapping of the subunits showed them to have a high degree of sequence homology. Both subunits were synthesized in vitro from precursor protein(s) with a molecular weight of 58,500. Although the subunits have similar chemical, physical, and antigenic properties, their holoenzymes have strikingly different ammonium Km values. The ammonium Km of the β-isoenzyme remained constant at approximately 75 millimolar, whereas this Km of the α-isoenzyme ranged from 0.02 to 3.5 millimolar, depending upon nicotinamide adenine dinucleotide phosphate concentration. Images Fig. 1 Fig. 2 Fig. 7 Fig. 8 PMID:16665219

  6. Structural determinants of stereospecificity in yeast alcohol dehydrogenase.

    PubMed Central

    Weinhold, E G; Glasfeld, A; Ellington, A D; Benner, S A

    1991-01-01

    Replacing Leu-182 by Ala in yeast alcohol dehydrogenase (YADH; alcohol:NAD+ oxidoreductase, EC 1.1.1.1) yields a mutant that retains 34% of its kcat value and makes one stereochemical "mistake" every 850,000 turnovers (instead of approximately 1 error every 7,000,000,000 turnovers in native YADH) in its selection of the 4-Re hydrogen of NADH. Half of the decrease in stereochemical fidelity comes from an increase in the rate of transfer of the 4-Si hydrogen of NADH. The mutant also accepts 5-methylnicotinamide adenine dinucleotide, a cofactor analog not accepted by native YADH. The stereospecificity of the mutant is lower still with analogs of NADH where the carboxamide group of the nicotinamide ring is replaced by groups with weaker hydrogen bonding potential. For example, with thio-NADH, the mutant enzyme makes 1 stereochemical "mistake" every 450 turnovers. Finally, the double mutant T157S/L182A, in which Thr-157 is replaced by Ser and Leu-182 is replaced by Ala, also shows decreased stereochemical fidelity. These results suggest that Si transfer in the mutant enzymes arises from NADH bound in a syn conformation in the active site and that this binding is not obstructed in native YADH by side chains essential for catalysis. PMID:1924300

  7. Structural determinants of stereospecificity in yeast alcohol dehydrogenase.

    PubMed

    Weinhold, E G; Glasfeld, A; Ellington, A D; Benner, S A

    1991-10-01

    Replacing Leu-182 by Ala in yeast alcohol dehydrogenase (YADH; alcohol:NAD+ oxidoreductase, EC 1.1.1.1) yields a mutant that retains 34% of its kcat value and makes one stereochemical "mistake" every 850,000 turnovers (instead of approximately 1 error every 7,000,000,000 turnovers in native YADH) in its selection of the 4-Re hydrogen of NADH. Half of the decrease in stereochemical fidelity comes from an increase in the rate of transfer of the 4-Si hydrogen of NADH. The mutant also accepts 5-methylnicotinamide adenine dinucleotide, a cofactor analog not accepted by native YADH. The stereospecificity of the mutant is lower still with analogs of NADH where the carboxamide group of the nicotinamide ring is replaced by groups with weaker hydrogen bonding potential. For example, with thio-NADH, the mutant enzyme makes 1 stereochemical "mistake" every 450 turnovers. Finally, the double mutant T157S/L182A, in which Thr-157 is replaced by Ser and Leu-182 is replaced by Ala, also shows decreased stereochemical fidelity. These results suggest that Si transfer in the mutant enzymes arises from NADH bound in a syn conformation in the active site and that this binding is not obstructed in native YADH by side chains essential for catalysis.

  8. Structure of rabbit-muscle glyceraldehyde-3-phosphate dehydrogenase.

    PubMed

    Cowan-Jacob, Sandra W; Kaufmann, Markus; Anselmo, Anthony N; Stark, Wilhelm; Grütter, Markus G

    2003-12-01

    The crystal structure of the tetrameric form of D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) isolated from rabbit muscle was solved at 2.4 A resolution after careful dynamic light-scattering experiments to find a suitable buffer for crystallization trials. The refined model has a crystallographic R factor of 20.3%. Here, the first detailed model of a mammalian GAPDH is presented. The cofactor NAD(+) (nicotinamide adenine dinucleotide) is bound to two subunits of the tetrameric enzyme, which is consistent with the negative cooperativity of NAD(+) binding to this enzyme. The structure of rabbit-muscle GAPDH is of interest because it shares 91% sequence identity with the human enzyme; human GAPDH is a potential target for the development of anti-apoptotic drugs. In addition, differences in the cofactor-binding pocket compared with the homology-model structure of GAPDH from the malaria parasite Plasmodium falciparum could be exploited in order to develop novel selective and potential antimalaria drugs.

  9. Nuclear lactate dehydrogenase modulates histone modification in human hepatocytes

    SciTech Connect

    Castonguay, Zachary; Auger, Christopher; Thomas, Sean C.; Chahma, M’hamed; Appanna, Vasu D.

    2014-11-07

    Highlights: • Nuclear LDH is up-regulated under oxidative stress. • SIRT1 is co-immunoprecipitated bound to nuclear LDH. • Nuclear LDH is involved in histone deacetylation and epigenetics. - Abstract: It is becoming increasingly apparent that the nucleus harbors metabolic enzymes that affect genetic transforming events. Here, we describe a nuclear isoform of lactate dehydrogenase (nLDH) and its ability to orchestrate histone deacetylation by controlling the availability of nicotinamide adenine dinucleotide (NAD{sup +}), a key ingredient of the sirtuin-1 (SIRT1) deacetylase system. There was an increase in the expression of nLDH concomitant with the presence of hydrogen peroxide (H{sub 2}O{sub 2}) in the culture medium. Under oxidative stress, the NAD{sup +} generated by nLDH resulted in the enhanced deacetylation of histones compared to the control hepatocytes despite no discernable change in the levels of SIRT1. There appeared to be an intimate association between nLDH and SIRT1 as these two enzymes co-immunoprecipitated. The ability of nLDH to regulate epigenetic modifications by manipulating NAD{sup +} reveals an intricate link between metabolism and the processing of genetic information.

  10. Effects of Molybdate, Tungstate, and Selenium Compounds on Formate Dehydrogenase and Other Enzyme Systems in Escherichia coli1

    PubMed Central

    Enoch, Harry G.; Lester, Robert L.

    1972-01-01

    The role of selenium and molybdenum in the metabolism of Escherichia coli was explored by growing cells in a simple salts medium and examining the metabolic consequences of altering the concentration of molybdenum and selenium compounds in the medium. The addition of tungstate increased the molybdate deficiency of this medium, as reflected by lowered levels of enzyme systems previously recognized to require compounds of molybdenum and selenium for their formation [formate-dependent oxygen reduction, formate dehydrogenase (FDH) (EC 1.2.2.1), and nitrate reductase (EC 1.9.6.1)]. The requirement for selenium and molybdenum appears to be unique to the enzymes of formate and nitrate metabolism since molybdate- and selenite-deficient medium had no effect on the level of several dehydrogenase and oxidase systems, for which the electron donors were reduced nicotinamide adenine dinucleotide, succinate, d- or l-lactate, and glycerol. In addition, no effect was observed on the growth rate or cell yield with any carbon source tested (glucose, glycerol, dl-lactate, acetate, succinate, and l-malate) when the medium was deficient in molybdenum and selenium. dl-Selenocystine was about as effective as selenite in stimulating the formation of formate dehydrogenase, whereas dl-selenomethionine was only 1% as effective. In aerobic cells, an amount of FDH was formed such that 3,200 or 3,800 moles of formate were oxidized per min per mole of added selenium (added as dl-selenocystine or selenite, respectively). PMID:4555402

  11. Vertical Ionization Energies of Adenine and 9-Methyl Adenine

    NASA Astrophysics Data System (ADS)

    Dolgounitcheva, O.; Zakrzewski, V. G.; Ortiz, J. V.

    2009-07-01

    Vertical ionization energies of 9-H adenine and 9-methyl adenine have been calculated with the following, ab initio, electron propagator methods: the outer valence Green's function (OVGF), partial third-order theory (P3), and the third-order algebraic diagrammatic construction, or ADC(3). Basis set effects have been systematically examined. All methods predict near degeneracy in the π2-n1 and π3-n2 pairs of cationic, adenine final states and larger splittings of the corresponding, cationic states of 9-methyl adenine. P3 results for adenine predict the following order of the first six final states: π1, n1, π2, n2, π3, n3. Coupled-cluster calculations on the first three cationic states of adenine confirm these predictions. OVGF and ADC(3) calculations reverse the order of the second and third states and of the fourth and fifth states. All results confirm previous interpretations of experiments in which the second and third spectral bands correspond to the aforementioned pairs of final states and disagree with a recent reassignment based on time-resolved photoelectron spectra. Lower ionization energies and larger splittings in the methylated molecule are interpreted in terms of phase relationships in the Dyson orbitals. ADC(3) results confirm the qualitative validity of the one-electron approximation for the first six final states of both molecules and disclose its inadequacies for higher ionization energies.

  12. The responses of isolated plant mitochondria to external nicotinamide adenine dinucleotide.

    PubMed

    Soole, K L; Dry, I B; Wiskich, J T

    1986-06-01

    The effects of added NAD on substrate oxidation by turnip (Brassica rapa L.) and beetroot (Beta vulgaris L.) mitochondria were investigated. State 3 malate and 2-oxoglutarate oxidation rates with turnip mitochondria were stimulated 25 to 40% by external NAD. Following NAD-depletion this stimulation by NAD was increased to 70 to 80%. With purified beetroot mitochondria, state 3 malate and 2-oxoglutarate oxidation rates were only marginally increased (10-15%) by the addition of NAD but after NAD-depletion treatments this stimulation increased to 55%. The effect of added NAD on oxidation rates could be reduced by preloading mitochondria with NAD in the presence of succinate. Oxidation rates were found to be most sensitive to the addition of external NAD when rotenone was present. The uptake of external NAD into beetroot mitochondria appeared to be composed of both an active and a diffusive component. The active component displayed saturation kinetics with an approximate K(m) of 0.105 +/- 0.046 millimolar. These results provide further evidence, reported previously with potato mitochondria, that NAD can move across the inner membrane of plant mitochondria. They are particularly significant with respect to beetroot mitochondria which in contrast to other plant mitochondria, have not demonstrated any response to added NAD.

  13. Modification of galactitol dehydrogenase from Rhodobacter sphaeroides D for immobilization on polycrystalline gold surfaces.

    PubMed

    Kornberger, P; Gajdzik, J; Natter, H; Wenz, G; Giffhorn, F; Kohring, G W; Hempelmann, R

    2009-10-20

    Galactitol dehydrogenase (GatDH) from Rhodobacter sphaeroides is a multifunctional enzyme that catalyzes in the presence of oxidized beta-nicotinamide adenine dinucleotide (NAD(+)) the interconversion of various multivalent aliphatic alcohols to the corresponding ketones. The recombinant GatDH was provided with an N-terminal His(6)-tag to which distally up to three cysteine residues were attached. This protein construct maintained nearly full enzymatic activity, and it could be covalently immobilized via thiol bonds onto the surface of a gold electrode. Binding of GatDH onto the gold electrode was verified by SPR measurements, and residual enzyme activity was measured by cyclic voltammetry using 1,2-hexanediol as substrate, the cofactor NAD(+) and the redox mediator CTFM (4-carboxy-2,5,7-trinitrofluorenyliden-malonnitrile) in solute form. The results demonstrate the possibility of a directed functional immobilization of proteins on gold surfaces, which represents a proof-of-concept for the development of reactors for electrochemical synthon preparation using dehydrogenases.

  14. Analyzing Xanthine Dehydrogenase Iron-Sulfur Clusters Using Electron Paramagnetic Resonance Spectroscopy

    SciTech Connect

    Hodson, R.

    2004-02-05

    Xanthine dehydrogenase is a metalloenzyme that is present in a variety of eukaryotic and prokaryotic organisms. The oxidation of the xanthine occurs at the molybdenum site, and the catalytic cycle is completed by electron transfer to the iron-sulfur (Fe/S) clusters and finally the flavin, where they are accepted by nicotinamide adenine dinucleotide (NAD). Since the site giving rise to the Fe/S I electron paramagnetic resonance (EPR) signal is thought to be the initial recipient of the electrons from the Mo, we wish to understand which EPR signal is associated with which Fe/S cluster in the structure in order to develop an understanding of the electron flow within the molecule. Samples of xanthine dehydrogenase wild-type and mutant forms were analyzed with EPR spectroscopy techniques at low and high temperatures. The results showed an altered Fe/S I signal along with an unaltered Fe/S II signal. The converted Cysteine, in the mutant, did affect the Fe/S cluster immediately adjacent to it. Therefore, the Fe/S I signal arises from the Fe/S cluster closest to the Mo and immediately adjacent to the mutated amino acid, and the Fe/S II signal must arise from the more distant Fe/S cluster.

  15. Ruling out pyridine dinucleotides as true TRPM2 channel activators reveals novel direct agonist ADP-ribose-2′-phosphate

    PubMed Central

    Tóth, Balázs; Iordanov, Iordan

    2015-01-01

    Transient receptor potential melastatin 2 (TRPM2), a Ca2+-permeable cation channel implicated in postischemic neuronal cell death, leukocyte activation, and insulin secretion, is activated by intracellular ADP ribose (ADPR). In addition, the pyridine dinucleotides nicotinamide-adenine-dinucleotide (NAD), nicotinic acid–adenine-dinucleotide (NAAD), and NAAD-2′-phosphate (NAADP) have been shown to activate TRPM2, or to enhance its activation by ADPR, when dialyzed into cells. The precise subset of nucleotides that act directly on the TRPM2 protein, however, is unknown. Here, we use a heterologously expressed, affinity-purified–specific ADPR hydrolase to purify commercial preparations of pyridine dinucleotides from substantial contaminations by ADPR or ADPR-2′-phosphate (ADPRP). Direct application of purified NAD, NAAD, or NAADP to the cytosolic face of TRPM2 channels in inside-out patches demonstrated that none of them stimulates gating, or affects channel activation by ADPR, indicating that none of these dinucleotides directly binds to TRPM2. Instead, our experiments identify for the first time ADPRP as a true direct TRPM2 agonist of potential biological interest. PMID:25918360

  16. Protein Modification by Adenine Propenal

    PubMed Central

    2015-01-01

    Base propenals are products of the reaction of DNA with oxidants such as peroxynitrite and bleomycin. The most reactive base propenal, adenine propenal, is mutagenic in Escherichia coli and reacts with DNA to form covalent adducts; however, the reaction of adenine propenal with protein has not yet been investigated. A survey of the reaction of adenine propenal with amino acids revealed that lysine and cysteine form adducts, whereas histidine and arginine do not. Nε-Oxopropenyllysine, a lysine–lysine cross-link, and S-oxopropenyl cysteine are the major products. Comprehensive profiling of the reaction of adenine propenal with human serum albumin and the DNA repair protein, XPA, revealed that the only stable adduct is Nε-oxopropenyllysine. The most reactive sites for modification in human albumin are K190 and K351. Three sites of modification of XPA are in the DNA-binding domain, and two sites are subject to regulatory acetylation. Modification by adenine propenal dramatically reduces XPA’s ability to bind to a DNA substrate. PMID:25211669

  17. Determination of serum delta 5-3 beta-hydroxysteroid sulphates by combined high-performance liquid chromatography and immobilized 3 beta,17 beta-hydroxysteroid dehydrogenase in column form.

    PubMed

    Wu, M C; Takagi, K; Okuyama, S; Ohsawa, M; Masahashi, T; Narita, O; Tomoda, Y

    1986-04-25

    We studied the use of an immobilized enzyme, covalently bound to aminopropyl-CPG, in the analysis of individual delta 5-3 beta-hydroxysteroid sulphates. A microcolumn with immobilized 3 beta,17 beta-hydroxysteroid dehydrogenase was prepared and used together with high-performance liquid chromatography (HPLC). The reduced nicotinamide-adenine dinucleotide produced from delta 5-3 beta-hydroxysteroids by this enzyme was fluorimetrically determined. The immobilized enzyme was sufficiently stable for at least one month or for 180 tests when used repeatedly. A clinical trial demonstrated that this HPLC-immobilized enzyme method is superior to the soluble enzyme method, giving reliable and reproducible results at a low cost. PMID:2940254

  18. Low-interference washing-free electrochemical immunosensor using glycerol-3-phosphate dehydrogenase as an enzyme label.

    PubMed

    Dutta, Gorachand; Park, Seonhwa; Singh, Amardeep; Seo, Jeongwook; Kim, Sinyoung; Yang, Haesik

    2015-04-01

    In washing-free electrochemical detection, various redox and reactive species cause significant interference. To minimize this interference, we report a washing-free electrochemical immunosensor using flavin adenine dinucleotide (FAD)-dependent glycerol-3-phosphate dehydrogenase (GPDH) and glycerol-3-phosphate (GP) as an enzyme label and its substrate, respectively, because the reaction of FAD-dependent dehydrogenases with dissolved O2 is slow and the level of GP preexisting in blood is low (<0.1 mM). A combination of a low electrocatalytic indium-tin oxide (ITO) electrode and fast electron-mediating Ru(NH3)6(3+) is employed to obtain a high signal-to-background ratio via proximity-dependent electron mediation of Ru(NH3)6(3+) between the ITO electrode and the GPDH label. Electrochemical oxidation of GPDH-generated Ru(NH3)6(2+) is performed at 0.05 V vs Ag/AgCl, at which point the electrochemical interference is very low. When a washing-free immunosensor is applied to cardiac troponin I detection in human serum, the calculated detection limit is approximately 10 pg/mL, indicating that the immunosensor is very sensitive in spite of the use of washing-free detection with a short detection period (10 min for incubation and 100 s for electrochemical measurement). The low-interference washing-free electrochemical immunosensor shows good promise for fast and simple point-of-care testing.

  19. Interaction of isocitrate dehydrogenase with (RS)-3-bromo-2-ketoglutarate. A potential affinity label for. cap alpha. -ketoglutarate binding sites

    SciTech Connect

    Hartman, F.C.

    1981-01-01

    The interaction of oxidize nicotine adenine dinucleotide phosphate dependent isocitrate dehydrogenase (from pig heart) with (RS)-3-bromo-2-ketoglutarate was investigated in an effort to evaluate the reagent's potential as a selective reagent for ..cap alpha..-ketoglutarate binding sites. The enzyme is rapidly inactivated by 0.1 mM bromoketoglutarate at pH 7.4. With increasing concentration of reagent, the reaction shows a rate saturation; the minimum inactivation half-time is 3 min and K/sub inact/ for bromoketoglutarate is 250 ..mu..M. Isocitrate and NADP/sup +/ protect against inactivation, while ketoglutarate does not. When tested in the assay that monitors isocitrate oxidation, bromoketoglutarate is a competitive inhibitor (K/sub i/=100 ..mu..M) of the dehydrogenase. As judged by oxidation of NADPH, bromoketoglutarate is also a substrate for isocitrate dehydrogenase, exhibiting a K/sub m/ of 250 ..mu..M and a V/sub max/ comparable to that for isocitrate oxidation. The reduction of bromoketoglutarate is competitively inhibited by isocitrate (K/sub i/=3 ..mu..M) and ketoglutarate (K/sub i/=50 ..mu..M). Like the enzyme-catalyzed oxidation of isocitrate, the reduction of bromoketoglutarate is stereospecific, requires divalent metal ions, and shows absolute specificity for NADPH. However, since CO/sub 2/ is not required for catalytic turnover of bromoketoglutarate, its reduction is likely comparable to that of oxalosuccinate rather than the reductive carboxylation of ketoglutarate. Although bromoketoglutarate, as a substrate for isocitrate dehydrogenase, clearly has affinity for the active site, the irreversible inactivation of the enzyme by the reagent may result from modification outside the active-site region, since inactivation during catalytic turnover of bromoketoglutarate is not observed.

  20. Quantum-chemical study of interactions of trans-resveratrol with guanine-thymine dinucleotide and DNA-nucleobases.

    PubMed

    Mikulski, Damian; Szeląg, Małgorzata; Molski, Marcin

    2011-12-01

    Trans-resveratrol, a natural phytoalexin present in red wine and grapes, has gained considerable attention because of its antiproliferative, chemopreventive and proapoptotic activity against human cancer cells. The accurate quantum-chemical computations based on the density functional theory (DFT) and ab initio second-order Møller-Plesset perturbation method (MP2) have been performed for the first time to study interactions of trans-resveratrol with guanine-thymine dinucleotide and DNA-derived nitrogenous bases: adenine, guanine, cytosine and thymine in vacuum and water medium. This compound is found to show high affinity to nitrogenous bases and guanine-thymine dinucleotide. The electrostatic interactions from intermolecular hydrogen bonding increase the stability of complexes studied. In particular, significantly strong hydrogen bonds between 4'-H atom of trans-resveratrol and imidazole nitrogen as well as carbonyl oxygen atoms of nucleobases studied stabilize these systems. The stabilization energies computed reveal that the negatively charged trans-resveratrol-dinucleotide complex is more energetically stable in water medium than in vacuum. MP2 method gives more reliable and significantly high values of stabilization energy of trans-resveratrol-dinucleotide, trans-resveratrol-guanine and trans-resveratrol-thymine complexes than B3LYP exchange-correlation functional because it takes into account London dispersion energy. According to the results, in the presence of trans-resveratrol the 3'-5' phosphodiester bond in dinucleotide can be cleaved and the proton from 4'-OH group of trans-resveratrol migrates to the 3'-O atom of dinucleotide. It is concluded that trans-resveratrol is able to break the DNA strand. Hence, the findings obtained help understand antiproliferative and anticancer properties of this polyphenol.

  1. Automated genotyping of dinucleotide repeat markers

    SciTech Connect

    Perlin, M.W.; Hoffman, E.P. |

    1994-09-01

    The dinucleotide repeats (i.e., microsatellites) such as CA-repeats are a highly polymorphic, highly abundant class of PCR-amplifiable markers that have greatly streamlined genetic mapping experimentation. It is expected that over 30,000 such markers (including tri- and tetranucleotide repeats) will be characterized for routine use in the next few years. Since only size determination, and not sequencing, is required to determine alleles, in principle, dinucleotide repeat genotyping is easily performed on electrophoretic gels, and can be automated using DNA sequencers. Unfortunately, PCR stuttering with these markers generates not one band for each allele, but a pattern of bands. Since closely spaced alleles must be disambiguated by human scoring, this poses a key obstacle to full automation. We have developed methods that overcome this obstacle. Our model is that the observed data is generated by arithmetic superposition (i.e., convolution) of multiple allele patterns. By quantitatively measuring the size of each component band, and exploiting the unique stutter pattern associated with each marker, closely spaced alleles can be deconvolved; this unambiguously reconstructs the {open_quotes}true{close_quotes} allele bands, with stutter artifact removed. We used this approach in a system for automated diagnosis of (X-linked) Duchenne muscular dystrophy; four multiplexed CA-repeats within the dystrophin gene were assayed on a DNA sequencer. Our method accurately detected small variations in gel migration that shifted the allele size estimate. In 167 nonmutated alleles, 89% (149/167) showed no size variation, 9% (15/167) showed 1 bp variation, and 2% (3/167) showed 2 bp variation. We are currently developing a library of dinucleotide repeat patterns; together with our deconvolution methods, this library will enable fully automated genotyping of dinucleotide repeats from sizing data.

  2. Probing conformational states of glutaryl-CoA dehydrogenase by fragment screening

    SciTech Connect

    Begley, Darren W.; Davies, Douglas R.; Hartley, Robert C.; Hewitt, Stephen N.; Rychel, Amanda L.; Myler, Peter J.; Van Voorhis, Wesley C.; Staker, Bart L.; Stewart, Lance J.

    2014-10-02

    Glutaric acidemia type 1 is an inherited metabolic disorder which can cause macrocephaly, muscular rigidity, spastic paralysis and other progressive movement disorders in humans. The defects in glutaryl-CoA dehydrogenase (GCDH) associated with this disease are thought to increase holoenzyme instability and reduce cofactor binding. Here, the first structural analysis of a GCDH enzyme in the absence of the cofactor flavin adenine dinucleotide (FAD) is reported. The apo structure of GCDH from Burkholderia pseudomallei reveals a loss of secondary structure and increased disorder in the FAD-binding pocket relative to the ternary complex of the highly homologous human GCDH. After conducting a fragment-based screen, four small molecules were identified which bind to GCDH from B. pseudomallei. Complex structures were determined for these fragments, which cause backbone and side-chain perturbations to key active-site residues. Structural insights from this investigation highlight differences from apo GCDH and the utility of small-molecular fragments as chemical probes for capturing alternative conformational states of preformed protein crystals.

  3. Free energy landscape of the Michaelis complex of lactate dehydrogenase: A network analysis of atomistic simulations

    NASA Astrophysics Data System (ADS)

    Pan, Xiaoliang; Schwartz, Steven

    2015-03-01

    It has long been recognized that the structure of a protein is a hierarchy of conformations interconverting on multiple time scales. However, the conformational heterogeneity is rarely considered in the context of enzymatic catalysis in which the reactant is usually represented by a single conformation of the enzyme/substrate complex. Lactate dehydrogenase (LDH) catalyzes the interconversion of pyruvate and lactate with concomitant interconversion of two forms of the cofactor nicotinamide adenine dinucleotide (NADH and NAD+). Recent experimental results suggest that multiple substates exist within the Michaelis complex of LDH, and they are catalytic competent at different reaction rates. In this study, millisecond-scale all-atom molecular dynamics simulations were performed on LDH to explore the free energy landscape of the Michaelis complex, and network analysis was used to characterize the distribution of the conformations. Our results provide a detailed view of the kinetic network the Michaelis complex and the structures of the substates at atomistic scale. It also shed some light on understanding the complete picture of the catalytic mechanism of LDH.

  4. Probing conformational states of glutaryl-CoA dehydrogenase by fragment screening

    PubMed Central

    Begley, Darren W.; Davies, Douglas R.; Hartley, Robert C.; Hewitt, Stephen N.; Rychel, Amanda L.; Myler, Peter J.; Van Voorhis, Wesley C.; Staker, Bart L.; Stewart, Lance J.

    2011-01-01

    Glutaric acidemia type 1 is an inherited metabolic disorder which can cause macrocephaly, muscular rigidity, spastic paralysis and other progressive movement disorders in humans. The defects in glutaryl-CoA dehydrogenase (GCDH) associated with this disease are thought to increase holoenzyme instability and reduce cofactor binding. Here, the first structural analysis of a GCDH enzyme in the absence of the cofactor flavin adenine dinucleotide (FAD) is reported. The apo structure of GCDH from Burkholderia pseudomallei reveals a loss of secondary structure and increased disorder in the FAD-binding pocket relative to the ternary complex of the highly homologous human GCDH. After conducting a fragment-based screen, four small molecules were identified which bind to GCDH from B. pseudomallei. Complex structures were determined for these fragments, which cause backbone and side-chain perturbations to key active-site residues. Structural insights from this investigation highlight differences from apo GCDH and the utility of small-molecular fragments as chemical probes for capturing alternative conformational states of preformed protein crystals. PMID:21904051

  5. Glyceraldehyde 3-phosphate dehydrogenase-telomere association correlates with redox status in Trypanosoma cruzi.

    PubMed

    Pariona-Llanos, Ricardo; Pavani, Raphael Souza; Reis, Marcelo; Noël, Vincent; Silber, Ariel Mariano; Armelin, Hugo Aguirre; Cano, Maria Isabel Nogueira; Elias, Maria Carolina

    2015-01-01

    Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a classical metabolic enzyme involved in energy production and plays a role in additional nuclear functions, including transcriptional control, recognition of misincorporated nucleotides in DNA and maintenance of telomere structure. Here, we show that the recombinant protein T. cruzi GAPDH (rTcGAPDH) binds single-stranded telomeric DNA. We demonstrate that the binding of GAPDH to telomeric DNA correlates with the balance between oxidized and reduced forms of nicotinamide adenine dinucleotides (NAD+/NADH). We observed that GAPDH-telomere association and NAD+/NADH balance changed throughout the T. cruzi life cycle. For example, in replicative epimastigote forms of T. cruzi, which show similar intracellular concentrations of NAD+ and NADH, GAPDH binds to telomeric DNA in vivo and this binding activity is inhibited by exogenous NAD+. In contrast, in the T. cruzi non-proliferative trypomastigote forms, which show higher NAD+ concentration, GAPDH was absent from telomeres. In addition, NAD+ abolishes physical interaction between recombinant GAPDH and synthetic telomere oligonucleotide in a cell free system, mimicking exogenous NAD+ that reduces GAPDH-telomere interaction in vivo. We propose that the balance in the NAD+/NADH ratio during T. cruzi life cycle homeostatically regulates GAPDH telomere association, suggesting that in trypanosomes redox status locally modulates GAPDH association with telomeric DNA. PMID:25775131

  6. Glyceraldehyde 3-Phosphate Dehydrogenase-Telomere Association Correlates with Redox Status in Trypanosoma cruzi

    PubMed Central

    Pariona-Llanos, Ricardo; Pavani, Raphael Souza; Reis, Marcelo; Noël, Vincent; Silber, Ariel Mariano; Armelin, Hugo Aguirre; Cano, Maria Isabel Nogueira; Elias, Maria Carolina

    2015-01-01

    Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a classical metabolic enzyme involved in energy production and plays a role in additional nuclear functions, including transcriptional control, recognition of misincorporated nucleotides in DNA and maintenance of telomere structure. Here, we show that the recombinant protein T. cruzi GAPDH (rTcGAPDH) binds single-stranded telomeric DNA. We demonstrate that the binding of GAPDH to telomeric DNA correlates with the balance between oxidized and reduced forms of nicotinamide adenine dinucleotides (NAD+/NADH). We observed that GAPDH-telomere association and NAD+/NADH balance changed throughout the T. cruzi life cycle. For example, in replicative epimastigote forms of T. cruzi, which show similar intracellular concentrations of NAD+ and NADH, GAPDH binds to telomeric DNA in vivo and this binding activity is inhibited by exogenous NAD+. In contrast, in the T. cruzi non-proliferative trypomastigote forms, which show higher NAD+ concentration, GAPDH was absent from telomeres. In addition, NAD+ abolishes physical interaction between recombinant GAPDH and synthetic telomere oligonucleotide in a cell free system, mimicking exogenous NAD+ that reduces GAPDH-telomere interaction in vivo. We propose that the balance in the NAD+/NADH ratio during T. cruzi life cycle homeostatically regulates GAPDH telomere association, suggesting that in trypanosomes redox status locally modulates GAPDH association with telomeric DNA. PMID:25775131

  7. Optical isopropanol biosensor using NADH-dependent secondary alcohol dehydrogenase (S-ADH).

    PubMed

    Chien, Po-Jen; Ye, Ming; Suzuki, Takuma; Toma, Koji; Arakawa, Takahiro; Iwasaki, Yasuhiko; Mitsubayashi, Kohji

    2016-10-01

    Isopropanol (IPA) is an important solvent used in industrial activity often found in hospitals as antiseptic alcohol rub. Also, IPA may have the potential to be a biomarker of diabetic ketoacidosis. In this study, an optical biosensor using NADH-dependent secondary alcohol dehydrogenase (S-ADH) for IPA measurement was constructed and evaluated. An ultraviolet light emitting diode (UV-LED, λ=340nm) was employed as the excitation light to excite nicotinamide adenine dinucleotide (NADH). A photomultiplier tube (PMT) was connected to a two-way branch optical fiber for measuring the fluorescence emitted from the NADH. S-ADH was immobilized on the membrane to catalyze IPA to acetone and reduce NAD(+) to be NADH. This IPA biosensor shows highly sensitivity and selectivity, the calibration range is from 500 nmol L(-1) to 1mmolL(-1). The optimization of buffer pH, temperature, and the enzyme-immobilized method were also evaluated. The detection of IPA in nail related cosmetic using our IPA biosensor was also carried out. The results showed that large amounts of IPA were used in these kinds of cosmetics. This IPA biosensor comes with the advantages of rapid reaction, good reproducibility, and wide dynamic range, and is also expected to use for clinical IPA detections in serum or other medical and health related applications.

  8. Optical isopropanol biosensor using NADH-dependent secondary alcohol dehydrogenase (S-ADH).

    PubMed

    Chien, Po-Jen; Ye, Ming; Suzuki, Takuma; Toma, Koji; Arakawa, Takahiro; Iwasaki, Yasuhiko; Mitsubayashi, Kohji

    2016-10-01

    Isopropanol (IPA) is an important solvent used in industrial activity often found in hospitals as antiseptic alcohol rub. Also, IPA may have the potential to be a biomarker of diabetic ketoacidosis. In this study, an optical biosensor using NADH-dependent secondary alcohol dehydrogenase (S-ADH) for IPA measurement was constructed and evaluated. An ultraviolet light emitting diode (UV-LED, λ=340nm) was employed as the excitation light to excite nicotinamide adenine dinucleotide (NADH). A photomultiplier tube (PMT) was connected to a two-way branch optical fiber for measuring the fluorescence emitted from the NADH. S-ADH was immobilized on the membrane to catalyze IPA to acetone and reduce NAD(+) to be NADH. This IPA biosensor shows highly sensitivity and selectivity, the calibration range is from 500 nmol L(-1) to 1mmolL(-1). The optimization of buffer pH, temperature, and the enzyme-immobilized method were also evaluated. The detection of IPA in nail related cosmetic using our IPA biosensor was also carried out. The results showed that large amounts of IPA were used in these kinds of cosmetics. This IPA biosensor comes with the advantages of rapid reaction, good reproducibility, and wide dynamic range, and is also expected to use for clinical IPA detections in serum or other medical and health related applications. PMID:27474326

  9. Novel glucose dehydrogenase from Mucor prainii: Purification, characterization, molecular cloning and gene expression in Aspergillus sojae.

    PubMed

    Satake, Ryoko; Ichiyanagi, Atsushi; Ichikawa, Keiichi; Hirokawa, Kozo; Araki, Yasuko; Yoshimura, Taro; Gomi, Keiko

    2015-11-01

    Glucose dehydrogenase (GDH) is of interest for its potential applications in the field of glucose sensors. To improve the performance of glucose sensors, GDH is required to have strict substrate specificity. A novel flavin adenine dinucleotide (FAD)-dependent GDH was isolated from Mucor prainii NISL0103 and its enzymatic properties were characterized. This FAD-dependent GDH (MpGDH) exhibited high specificity toward glucose. High specificity for glucose was also observed even in the presence of saccharides such as maltose, galactose and xylose. The molecular masses of the glycoforms of GDH ranged from 90 to 130 kDa. After deglycosylation, a single 80 kDa band was observed. The gene encoding MpGDH was cloned and expressed in Aspergillus sojae. The apparent kcat and Km values of recombinant enzyme for glucose were found to be 749.7 s(-1) and 28.3 mM, respectively. The results indicated that the characteristics of MpGDH were suitable for assaying blood glucose levels.

  10. miR-620 promotes tumor radioresistance by targeting 15-hydroxyprostaglandin dehydrogenase (HPGD)

    PubMed Central

    Huang, Xiaoyong; Taeb, Samira; Jahangiri, Sahar; Korpela, Elina; Cadonic, Ivan; Yu, Nancy; Krylov, Sergey N.; Fokas, Emmanouil; Boutros, Paul C.; Liu, Stanley K.

    2015-01-01

    MicroRNA contribute to tumor radiation resistance, which is an important clinical problem, and thus we are interested in identifying and characterizing their function. We demonstrate that miR-620 contributes to radiation resistance in cancer cells by increasing proliferation, and decreasing the G2/M block. We identify the hydroxyprostaglandin dehydrogenase 15-(nicotinamide adenine dinucleotide) (HPGD/15-PGDH) tumor suppressor gene as a direct miR-620 target, which results in increased prostaglandin E2 (PGE2) levels. Furthermore, we show that siRNA targeting of HPGD or administration of exogenous PGE2 recapitulates radioresistance. Targeting of the EP2 receptor that responds to PGE2 using pharmacological or genetic approaches, abrogates radioresistance. Tumor xenograft experiments confirm that miR-620 increases proliferation and tumor radioresistance in vivo. Regulation of PGE2 levels via targeting of HPGD by miR-620 is an innovative manner by which a microRNA can induce radiation resistance. PMID:26068950

  11. miR-620 promotes tumor radioresistance by targeting 15-hydroxyprostaglandin dehydrogenase (HPGD).

    PubMed

    Huang, Xiaoyong; Taeb, Samira; Jahangiri, Sahar; Korpela, Elina; Cadonic, Ivan; Yu, Nancy; Krylov, Sergey N; Fokas, Emmanouil; Boutros, Paul C; Liu, Stanley K

    2015-09-01

    MicroRNA contribute to tumor radiation resistance, which is an important clinical problem, and thus we are interested in identifying and characterizing their function. We demonstrate that miR-620 contributes to radiation resistance in cancer cells by increasing proliferation, and decreasing the G2/M block. We identify the hydroxyprostaglandin dehydrogenase 15-(nicotinamide adenine dinucleotide) (HPGD/15-PGDH) tumor suppressor gene as a direct miR-620 target, which results in increased prostaglandin E2 (PGE2) levels. Furthermore, we show that siRNA targeting of HPGD or administration of exogenous PGE2 recapitulates radioresistance. Targeting of the EP2 receptor that responds to PGE2 using pharmacological or genetic approaches, abrogates radioresistance. Tumor xenograft experiments confirm that miR-620 increases proliferation and tumor radioresistance in vivo. Regulation of PGE2 levels via targeting of HPGD by miR-620 is an innovative manner by which a microRNA can induce radiation resistance. PMID:26068950

  12. Common catabolic enzyme patterns in a microplankton community of the Humboldt Current System off northern and central-south Chile: Malate dehydrogenase activity as an index of water-column metabolism in an oxygen minimum zone

    NASA Astrophysics Data System (ADS)

    González, R. R.; Quiñones, R. A.

    2009-07-01

    An extensive subsurface oxygen minimum zone off northern and central-south Chile, associated with the Peru-Chile undercurrent, has important effects on the metabolism of the organisms inhabiting therein. Planktonic species deal with the hypoxic and anoxic environments by relying on biochemical as well as physiological processes related to their anaerobic metabolisms. Here we characterize, for the first time, the potential enzymatic activities involved in the aerobic and anaerobic energy production pathways of microplanktonic organisms (<100 μm), their relationship, and this relationship's association with the oxygen concentration and microplanktonic biomass in the oxygen minimum zone and adjacent areas of the Humboldt Current System water column. Our results demonstrate significant potential enzymatic activity of catabolic pathways in the oxygen minimum zone. Malate dehydrogenase had the highest oxidizing activity of nicotinamide adenine dinucleotide (reduced form) in the batch of catabolic enzymatic activities assayed, including potential pyruvate oxidoreductases activity, the electron transport system, and dissimilatory nitrate reductase. Malate dehydrogenase correlated significantly with almost all the enzymes analyzed within and above the oxygen minimum zone, and also with the oxygen concentration and microplankton biomass in the water column of the Humboldt Current System, especially in the oxygen minimum zone off Iquique. These results suggest a possible specific pattern for the catabolic activity of the microplanktonic realm associated with the oxygen minimum zone spread along the Humboldt Current System off Chile. We hypothesize that malate dehydrogenase activity could be an appropriate indicator of microplankton catabolism in the oxygen minimum zone and adjacent areas.

  13. Determination of Ammonium Ion Using a Reagentless Amperometric Biosensor Based on Immobilized Alanine Dehydrogenase

    PubMed Central

    Tan, Ling Ling; Musa, Ahmad; Lee, Yook Heng

    2011-01-01

    The use of the enzyme alanine dehydrogenase (AlaDH) for the determination of ammonium ion (NH4+) usually requires the addition of pyruvate substrate and reduced nicotinamide adenine dinucleotide (NADH) simultaneously to effect the reaction. This addition of reagents is inconvenient when an enzyme biosensor based on AlaDH is used. To resolve the problem, a novel reagentless amperometric biosensor using a stacked methacrylic membrane system coated onto a screen-printed carbon paste electrode (SPE) for NH4+ ion determination is described. A mixture of pyruvate and NADH was immobilized in low molecular weight poly(2-hydroxyethyl methacrylate) (pHEMA) membrane, which was then deposited over a photocured pHEMA membrane (photoHEMA) containing alanine dehydrogenase (AlaDH) enzyme. Due to the enzymatic reaction of AlaDH and the pyruvate substrate, NH4+ was consumed in the process and thus the signal from the electrocatalytic oxidation of NADH at an applied potential of +0.55 V was proportional to the NH4+ ion concentration under optimal conditions. The stacked methacrylate membranes responded rapidly and linearly to changes in NH4+ ion concentrations between 10–100 mM, with a detection limit of 0.18 mM NH4+ ion. The reproducibility of the amperometrical NH4+ biosensor yielded low relative standard deviations between 1.4–4.9%. The stacked membrane biosensor has been successfully applied to the determination of NH4+ ion in spiked river water samples without pretreatment. A good correlation was found between the analytical results for NH4+ obtained from the biosensor and the Nessler spectrophotometric method. PMID:22163699

  14. Vertical Singlet Excitations on Adenine Dimer: A Time Dependent Density Functional Study

    NASA Astrophysics Data System (ADS)

    Crespo-Hernández, Carlos E.; Marai, Christopher N. J.

    2007-12-01

    The condense phase, excited state dynamics of the adenylyl(3'→5')adenine (ApA) dinucleotide has been previously studied using transient absorption spectroscopy with femtosecond time resolution (Crespo-Hernández et al. Chem. Rev. 104, 1977-2019 (2004)). An ultrafast and a long-lived component were observed with time constants of <1 ps and 60±16 ps, respectively. Comparison of the time constants measured for the dinucleotide with that for the adenine nucleotide suggested that the fast component observed in ApA could be assigned to monomer dynamics. The long-lived component observed in ApA was assigned to an excimer state that originates from a fraction of base stacked conformations present at the time of excitation. In this contribution, supermolecule calculations using the time dependent implementation of density functional theory is used to provide more insights on the origin of the initial Franck-Condon excitations. Monomer-like, localized excitations are observed for conformations having negligible base stacking interactions, whereas delocalized excitations are predicted for conformations with significant vertical base-base overlap.

  15. Solution conformation of 2-aminopurine (2-AP) dinucleotide determined by ultraviolet 2D fluorescence spectroscopy (UV-2D FS)

    PubMed Central

    Widom, Julia R.; Johnson, Neil P.; von Hippel, Peter H.; Marcus, Andrew H.

    2013-01-01

    We have observed the conformation-dependent electronic coupling between the monomeric subunits of a dinucleotide of 2-aminopurine (2-AP), a fluorescent analog of the nucleic acid base adenine. This was accomplished by extending two-dimensional fluorescence spectroscopy (2D FS) – a fluorescence-detected variation of 2D electronic spectroscopy – to excite molecular transitions in the ultraviolet (UV) regime. A collinear sequence of four ultrafast laser pulses centered at 323 nm was used to resonantly excite the coupled transitions of 2-AP dinucleotide. The phases of the optical pulses were continuously swept at kilohertz frequencies, and the ensuing nonlinear fluorescence was phase-synchronously detected at 370 nm. Upon optimization of a point-dipole coupling model to our data, we found that in aqueous buffer the 2-AP dinucleotide adopts an average conformation in which the purine bases are non-helically stacked (center-to-center distance R12 = 3.5 Å ± 0.5 Å, twist angle θ12 = 5° ± 5°), which differs from the conformation of such adjacent bases in duplex DNA. These experiments establish UV-2D FS as a method for examining the local conformations of an adjacent pair of fluorescent nucleotides substituted into specific DNA or RNA constructs, which will serve as a powerful probe to interpret, in structural terms, biologically significant local conformational changes within the nucleic acid framework of protein-nucleic acid complexes. PMID:24223491

  16. Pyrene excimer fluorescence of yeast alcohol dehydrogenase: a sensitive probe to investigate ligand binding and unfolding pathway of the enzyme.

    PubMed

    Santra, Manas Kumar; Dasgupta, Debjani; Panda, Dulal

    2006-01-01

    The cysteine residues of yeast alcohol dehydrogenase (YADH) were covalently modified by N-(1-pyrenyl) maleimide (PM). A maximum of 3.4 cysteines per YADH monomer could be modified by PM. The secondary structure of PM-YADH was found to be similar to that of the native YADH using far-UV circular dichroism. The covalent modification of YADH by PM inhibited the enzymatic activity indicating that the active site of the enzyme was altered. PM-YADH displayed maximum excimer fluorescence at an incorporation ratio of 2.6 mol of PM per monomeric subunit of YADH. Nucleotide adenine dinucleotide (NAD) divalent zinc and ethanol reduced the excimer fluorescence of PM-YADH indicating that these agents induce conformational changes in the enzyme. Guanidinium hydrochloride (GdnHCl)-induced unfolding of YADH was analyzed using tryptophan fluorescence, pyrene excimer fluorescence and enzymatic activity. The unfolding of YADH was found to occur in a stepwise manner. The loss of enzymatic activity preceded the global unfolding of the protein. Further, changes in tryptophan fluorescence with increasing GdnHCl suggested that YADH was completely unfolded by 2.5 M GdnHCl. Interestingly, residual structures of YADH were detected even in the presence of 5 M GdnHCl using the excimer fluorescence of PM-YADH.

  17. Characterization of pyranose dehydrogenase from Agaricus meleagris and its application in the C-2 specific conversion of D-galactose.

    PubMed

    Sygmund, Christoph; Kittl, Roman; Volc, Jindrich; Halada, Petr; Kubátová, Elena; Haltrich, Dietmar; Peterbauer, Clemens K

    2008-02-01

    Pyranose dehydrogenase (PDH) of the mushroom Agaricus meleagris was purified from mycelial culture media to substantial homogeneity using ion-exchange and hydrophobic interaction chromatography. The native enzyme is a monomeric polypeptide with a molecular mass of 66,547Da as determined by matrix-assisted laser desorption/ionisation mass spectrometry containing approximately 7% carbohydrate and covalently bound flavin adenine dinucleotide. The enzyme exhibited a broad sugar substrate tolerance, oxidizing different aldopyranoses to the corresponding C-2 or C-2,3 (di)dehydro sugars. Preferred electron donors with the highest k(cat)/K(m) values were major sugar constituents of cellulose and hemicellulose, namely d-glucose, D-galactose, l-arabinose, D-xylose and cellobiose. This indicates a possible physiological role of the enzyme in lignocellulose breakdown. PDH showed no detectable activity with oxygen, and its reactivity towards electron acceptors was limited to various substituted benzoquinones and complexed metal ions, with the ferricenium ion and the benzoquinone imine 2,6-dichloroindophenole displaying the highest k(cat)/K(m). The enzyme catalyzed in up to 95% yields the regiospecific conversion of D-galactose to 2-dehydro-D-galactose, an intermediate in a possible biotechnologically interesting process for redox isomerization of D-galactose to the prebiotic sugar D-tagatose.

  18. Substitutions at the cofactor phosphate-binding site of a clostridial alcohol dehydrogenase lead to unexpected changes in substrate specificity.

    PubMed

    Maddock, Danielle J; Patrick, Wayne M; Gerth, Monica L

    2015-08-01

    Changing the cofactor specificity of an enzyme from nicotinamide adenine dinucleotide 2'-phosphate (NADPH) to the more abundant NADH is a common strategy for increasing overall enzyme efficiency in microbial metabolic engineering. The aim of this study was to switch the cofactor specificity of the primary-secondary alcohol dehydrogenase from Clostridium autoethanogenum, a bacterium with considerable promise for the bio-manufacturing of fuels and other petrochemicals, from strictly NADPH-dependent to NADH-dependent. We used insights from a homology model to build a site-saturation library focussed on residue S199, the position deemed most likely to disrupt binding of the 2'-phosphate of NADPH. Although the CaADH(S199X) library did not yield any NADH-dependent enzymes, it did reveal that substitutions at the cofactor phosphate-binding site can cause unanticipated changes in the substrate specificity of the enzyme. Using consensus-guided site-directed mutagenesis, we were able to create an enzyme that was stringently NADH-dependent, albeit with a concomitant reduction in activity. This study highlights the role that distal residues play in substrate specificity and the complexity of enzyme-cofactor interactions.

  19. Domain Motions and Functionally-Key Residues of l-Alanine Dehydrogenase Revealed by an Elastic Network Model

    PubMed Central

    Li, Xing-Yuan; Zhang, Jing-Chao; Zhu, Yan-Ying; Su, Ji-Guo

    2015-01-01

    Mycobacterium tuberculosis l-alanine dehydrogenase (l-MtAlaDH) plays an important role in catalyzing l-alanine to ammonia and pyruvate, which has been considered to be a potential target for tuberculosis treatment. In the present work, the functional domain motions encoded in the structure of l-MtAlaDH were investigated by using the Gaussian network model (GNM) and the anisotropy network model (ANM). The slowest modes for the open-apo and closed-holo structures of the enzyme show that the domain motions have a common hinge axis centered in residues Met133 and Met301. Accompanying the conformational transition, both the 1,4-dihydronicotinamide adenine dinucleotide (NAD)-binding domain (NBD) and the substrate-binding domain (SBD) move in a highly coupled way. The first three slowest modes of ANM exhibit the open-closed, rotation and twist motions of l-MtAlaDH, respectively. The calculation of the fast modes reveals the residues responsible for the stability of the protein, and some of them are involved in the interaction with the ligand. Then, the functionally-important residues relevant to the binding of the ligand were identified by using a thermodynamic method. Our computational results are consistent with the experimental data, which will help us to understand the physical mechanism for the function of l-MtAlaDH. PMID:26690143

  20. Structural and Biochemical Analyses of Shikimate Dehydrogenase AroE from Aquifex aeolicus: Implications for the Catalytic Mechanism

    SciTech Connect

    Gan,J.; Wu, Y.; Prabakaran, P.; Gu, Y.; Li, Y.; Andrykovitch, M.; Liu, H.; Gong, Y.; Yan, H.; Ji, X.

    2007-01-01

    The shikimate biosynthetic pathway is essential to microorganisms, plants, and parasites but absent from mammals. Therefore, shikimate dehydrogenase (SD) and other enzymes in the pathway are attractive targets for developing nontoxic antimicrobial agents, herbicides, and antiparasite drugs. SD catalyzes the fourth reaction in the pathway, the nicotinamide adenine dinucleotide phosphate- (NADP-) dependent reduction of 3-dehydroshikimic acid to shikimic acid (SA), as well as its reverse, by the transfer of a hydride. Previous structural studies reveal that the enzyme exists in two major conformations, an open and a closed form. For the reaction to occur, it is believed that the catalytic complex assumes the closed conformation. Nonetheless, the only structure containing both SA and NADP{sup +} exhibits an open conformation (PDB entry 2EV9). Here, we present two crystal structures of Aquifex aeolicus SD, including a ternary complex with both SA and NADP{sup +}, which assumes the closed conformation and therefore contains a catalytically competent active site. On the basis of preexisting and novel structural and biochemical data, a catalytic mechanism is proposed.

  1. Fast quantification of ethanol in whole blood specimens by the enzymatic alcohol dehydrogenase method. Optimization by experimental design.

    PubMed

    Kristoffersen, Lena; Skuterud, Bjørn; Larssen, Bente R; Skurtveit, Svetlana; Smith-Kielland, Anne

    2005-01-01

    A sensitive, fast, simple, and high-throughput enzymatic method for the quantification of ethanol in whole blood (blood) on Hitachi 917 is presented. Alcohol dehydrogenase (ADH) oxidizes ethanol to acetaldehyde using the coenzyme nicotinamide adenine dinucleotide (NAD), which is concurrently reduced to form NADH. Method development was performed with the aid of factorial design, varying pH, and concentrations of NAD+ and ADH. The linear range increased and reaction end point decreased with increasing NAD+ concentration and pH. The method was linear in the concentration range 0.0024-0.4220 g/dL. The limits of detection and quantification were 0.0007 g/dL and 0.0024 g/dL, respectively. Relative standard deviations for the repeatability and within-laboratory reproducibility were in the ranges 0.7-5.7% and 1.6-8.9%, respectively. The correlation coefficient when compared with headspace gas chromatography-flame ionization detection methods was 0.9903. Analysis of authentic positive blood specimens gave results that were slightly lower than those of the reference method.

  2. The kinetics behavior of the reduction of formaldehyde catalyzed by Alcohol Dehydrogenase (ADH) and partial uncompetitive substrate inhibition by NADH.

    PubMed

    Wen, Nuan; Liu, Wenfang; Hou, Yanhui; Zhao, Zhiping

    2013-05-01

    Alcohol dehydrogenase (ADH) catalyzes the final step in the biosynthesis of methanol from CO2. Here, we report the steady-state kinetics for ADH, using a homogeneous enzyme preparation with formaldehyde as the substrate and nicotinamide adenine dinucleotide (NADH) as the cofactor. When changing NADH concentrations with the fixed concentrations of HCHO (more or less than NADH), kinetic studies revealed a particular zigzag phenomenon for the first time. Increasing formaldehyde concentration can weaken substrate inhibition and improve catalytic efficiency. The kinetic mechanism of ADH was analyzed using the secondary fitting method. The double reciprocal plots (1/v∼1/[HCHO] and 1/[NADH]) strongly demonstrated that the substrate inhibition by NADH was uncompetitive versus formaldehyde and partial. In the direction of formaldehyde reduction, ADH has an ordered kinetic mechanism with formaldehyde adding to enzyme first and product methanol released last. The second reactant NADH can combine with the enzyme-methanol complex and then methanol dissociates from it at a slower rate than from enzyme-methanol. The reaction velocity depends on the relative rates of the alternative pathways. The addition of NADH also accelerates the releasing of methanol. As a result, substrate inhibition and activation occurred intermittently, and the zigzag double reciprocal plot (1/v∼1/[NADH]) was obtained.

  3. Employing FAD-dependent glucose dehydrogenase within a glucose/oxygen enzymatic fuel cell operating in human serum.

    PubMed

    Milton, Ross D; Lim, Koun; Hickey, David P; Minteer, Shelley D

    2015-12-01

    Flavin adenine dinucleotide-dependent glucose dehydrogenase (FAD-GDH) is emerging as an oxygen-insensitive alternative to glucose oxidase (GOx) as the biocatalyst for bioelectrodes and bioanodes in glucose sensing and glucose enzymatic fuel cells (EFCs). Glucose EFCs, which utilize oxygen as the oxidant and final electron acceptor, have the added benefit of being able to be implanted within living hosts. These can then produce electrical energy from physiological glucose concentrations and power internal or external devices. EFCs were prepared with FAD-GDH and bilirubin oxidase (BOx) to evaluate the suitability of FAD-GDH within an implantable setting. Maximum current and power densities of 186.6±7.1 μA cm(-2) and 39.5±1.3 μW cm(-2) were observed when operating in human serum at 21 °C, which increased to 285.7±31.3 μA cm(-2) and 57.5±5.4 μW cm(-2) at 37 °C. Although good stability was observed with continual near-optimal operation of the EFCs in human serum at 21 °C for 24 h, device failure was observed between 13-14 h when continually operated at 37 °C.

  4. Alteration of hydrogen metabolism of ldh-deleted Enterobacter aerogenes by overexpression of NAD+-dependent formate dehydrogenase.

    PubMed

    Lu, Yuan; Zhao, Hongxin; Zhang, Chong; Lai, Qiheng; Wu, Xi; Xing, Xin-Hui

    2010-03-01

    The NAD+-dependent formate dehydrogenase FDH1 gene (fdh1), cloned from Candida boidinii, was expressed in the ldh-deleted mutant of Enterobacter aerogenes IAM1183 strain. The plasmid of pCom10 driven by the PalkB promoter was used to construct the fdh1 expression system and thus introduce a new dihydronicotinamide adenine dinucleotide (NADH) regeneration pathway from formate in the ldh-deleted mutant. The knockout of NADH-consuming lactate pathway affected the whole cellular metabolism, and the hydrogen yield increased by 11.4% compared with the wild strain. Expression of fdh1 in the ldh-deleted mutant caused lower final cell concentration and final pH after 16 h cultivation, and finally resulted in 86.8% of increase in hydrogen yield per mole consumed glucose. The analysis of cellular metabolites and estimated redox state balance in the fdhl-expressed strain showed that more excess of reducing power was formed by the rewired NADH regeneration pathway, changing the metabolic distribution and promoting the hydrogen production.

  5. Bound anionic states of adenine

    SciTech Connect

    Haranczyk, Maciej; Gutowski, Maciej S; Li, Xiang; Bowen, Kit H

    2007-03-20

    Anionic states of nucleic acid bases are involved in DNA damage by low-energy electrons and in charge transfer through DNA. Previous gas phase studies of free, unsolvated nucleic acid base parent anions probed only dipole-bound states, which are not present in condensed phase environments, but did not observe valence anionic states, which for purine bases, are thought to be adiabatically unbound. Contrary to this expectation, we have demonstrated that some thus far ignored tautomers of adenine, which result from enamine-imine transformations, support valence anionic states with electron vertical detachment energies as large as 2.2 eV, and at least one of these anionic tautomers is adiabatically bound. Moreover, we predict that the new anionic tautomers should also dominate in solutions and should be characterized by larger values of electron vertical detachment energy than the canonical valence anion. All of the new-found anionic tautomers might be formed in the course of dissociative electron attachment followed by a hydrogen atom attachment to a carbon atom, and they might affect the structure and properties of DNA and RNA exposed to low-energy electrons. The discovery of these valence anionic states of adenine was facilitated by the development of: (i) a new experimental method for preparing parent anions of nucleic acid bases for photoelectron experiments, and (ii) a new combinatorial/ quantum chemical approach for identification of the most stable tautomers of organic molecules. The computational portion of this work was supported by the: (i) Polish State Committee for Scientific Research (KBN) Grants: DS/8000-4-0140-7 (M.G.) and N204 127 31/2963 (M.H.), (ii) European Social Funds (EFS) ZPORR/2.22/II/2.6/ARP/U/2/05 (M.H.), and (iii) US DOE Office of Biological and Environmental Research, Low Dose Radiation Research Program (M.G.). M.H. holds the Foundation for Polish Science (FNP) award for young scientists. The calculations were performed at the Academic

  6. DiProDB: a database for dinucleotide properties.

    PubMed

    Friedel, Maik; Nikolajewa, Swetlana; Sühnel, Jürgen; Wilhelm, Thomas

    2009-01-01

    DiProDB (http://diprodb.fli-leibniz.de) is a database of conformational and thermodynamic dinucleotide properties. It includes datasets both for DNA and RNA, as well as for single and double strands. The data have been shown to be important for understanding different aspects of nucleic acid structure and function, and they can also be used for encoding nucleic acid sequences. The database is intended to facilitate further applications of dinucleotide properties. A number of property datasets is highly correlated. Therefore, the database comes with a correlation analysis facility. Authors having determined new sets of dinucleotide property values are invited to submit these data to DiProDB.

  7. Formation of the imidazolides of dinucleotides under potentially prebiotic conditions

    NASA Technical Reports Server (NTRS)

    Sleeper, H. L.; Lohrmann, R.; Orgel, L. E.

    1978-01-01

    Imidazolides of dinucleotides such as ImpApA can be formed from the corresponding dinucleotides in a two-stage process, which gives up to 15% yields under potentially prebiotic conditions. First a solution of the dinucleotide and sodium trimetaphosphate is dried out at constant temperature and humidity. This produces polyphosphates such as p(n)ApA in excellent yield (greater than or equal to 80%). The products are dissolved in water, imidazole is added, and the solution is dried out again. This yields the 5'-phosphorimidazolides.

  8. JWH-018 ω-OH, a shared hydroxy metabolite of the two synthetic cannabinoids JWH-018 and AM-2201, undergoes oxidation by alcohol dehydrogenase and aldehyde dehydrogenase enzymes in vitro forming the carboxylic acid metabolite.

    PubMed

    Holm, Niels Bjerre; Noble, Carolina; Linnet, Kristian

    2016-09-30

    Synthetic cannabinoids are new psychoactive substances (NPS) acting as agonists at the cannabinoid receptors. The aminoalkylindole-type synthetic cannabinoid naphthalen-1-yl-(1-pentylindol-3-yl)methanone (JWH-018) was among the first to appear on the illicit drug market and its metabolism has been extensively investigated. The N-pentyl side chain is a major site of human cytochrome P450 (CYP)-mediated oxidative metabolism, and the ω-carboxylic acid metabolite appears to be a major in vivo human urinary metabolite. This metabolite is, however, not formed to any significant extent in human liver microsomal (HLM) incubations raising the possibility that the discrepancy is due to involvement of cytosolic enzymes. Here we demonstrate in incubations with human liver cytosol (HLC), that JWH-018 ω-OH, but not the JWH-018 parent compound, is a substrate for nicotinamide adenine dinucleotide (NAD(+))-dependent alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) enzymes. The sole end-product identified in HLC was the JWH-018 ω-COOH metabolite, while trapping tests with methoxyamine proved the presence of the aldehyde intermediate. ADH/ALDH and UDP-glucuronosyl-transferases (UGT) enzymes may therefore both act on the JWH-018 ω-OH substrate. Finally, we note that for [1-(5-fluoropentyl)indol-3-yl]-naphthalen-1-yl-methanone (AM-2201), the ω-fluorinated analog of JWH-018, a high amount of JWH-018 ω-OH was formed in HLM incubated without NADPH, suggesting that the oxidative defluorination is efficiently catalyzed by non-CYP enzyme(s). The pathway presented here may therefore be especially important for N-(5-fluoropentyl) substituted synthetic cannabinoids, because the oxidative defluorination can occur even if the CYP-mediated metabolism preferentially takes place on other parts of the molecule than the N-alkyl side chain. Controlled clinical studies in humans are ultimately required to demonstrate the in vivo importance of the oxidation pathway presented here

  9. JWH-018 ω-OH, a shared hydroxy metabolite of the two synthetic cannabinoids JWH-018 and AM-2201, undergoes oxidation by alcohol dehydrogenase and aldehyde dehydrogenase enzymes in vitro forming the carboxylic acid metabolite.

    PubMed

    Holm, Niels Bjerre; Noble, Carolina; Linnet, Kristian

    2016-09-30

    Synthetic cannabinoids are new psychoactive substances (NPS) acting as agonists at the cannabinoid receptors. The aminoalkylindole-type synthetic cannabinoid naphthalen-1-yl-(1-pentylindol-3-yl)methanone (JWH-018) was among the first to appear on the illicit drug market and its metabolism has been extensively investigated. The N-pentyl side chain is a major site of human cytochrome P450 (CYP)-mediated oxidative metabolism, and the ω-carboxylic acid metabolite appears to be a major in vivo human urinary metabolite. This metabolite is, however, not formed to any significant extent in human liver microsomal (HLM) incubations raising the possibility that the discrepancy is due to involvement of cytosolic enzymes. Here we demonstrate in incubations with human liver cytosol (HLC), that JWH-018 ω-OH, but not the JWH-018 parent compound, is a substrate for nicotinamide adenine dinucleotide (NAD(+))-dependent alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) enzymes. The sole end-product identified in HLC was the JWH-018 ω-COOH metabolite, while trapping tests with methoxyamine proved the presence of the aldehyde intermediate. ADH/ALDH and UDP-glucuronosyl-transferases (UGT) enzymes may therefore both act on the JWH-018 ω-OH substrate. Finally, we note that for [1-(5-fluoropentyl)indol-3-yl]-naphthalen-1-yl-methanone (AM-2201), the ω-fluorinated analog of JWH-018, a high amount of JWH-018 ω-OH was formed in HLM incubated without NADPH, suggesting that the oxidative defluorination is efficiently catalyzed by non-CYP enzyme(s). The pathway presented here may therefore be especially important for N-(5-fluoropentyl) substituted synthetic cannabinoids, because the oxidative defluorination can occur even if the CYP-mediated metabolism preferentially takes place on other parts of the molecule than the N-alkyl side chain. Controlled clinical studies in humans are ultimately required to demonstrate the in vivo importance of the oxidation pathway presented here.

  10. The synthesis of nicotinamide–adenine dinucleotide and poly(adenosine diphosphate ribose) in various classes of rat liver nuclei

    PubMed Central

    Haines, M. E.; Johnston, I. R.; Mathias, A. P.; Ridge, D.

    1969-01-01

    1. The activities of NMN adenylyltransferase and an enzyme that synthesizes poly (ADP-ribose) from NAD were investigated in the various classes of rat liver nuclei fractionated by zonal centrifugation. 2. The highest specific activities of these two nuclear enzymes occur in different classes of nuclei. In very young and in mature rats it was shown that a correlation exists between DNA synthesis and NMN adenylyltransferase activity, but in rats of intermediate age this correlation is less evident. The highest activities of the enzyme that catalyses formation of poly (ADP-ribose) are in the nuclei involved in the synthesis of RNA. 3. The significance of these results in relation to NAD metabolism is discussed. PMID:4311824

  11. Nicotinamide Adenine Dinucleotide Phosphate Oxidase (NOX) in Experimental Liver Fibrosis: GKT137831 as a Novel Potential Therapeutic Agent

    PubMed Central

    Aoyama, Tomonori; Paik, Yong-Han; Watanabe, Sumio; Laleu, Benoît; Gaggini, Francesca; Fioraso-Cartier, Laetitia; Molango, Sophie; Heitz, Freddy; Merlot, Cédric; Szyndralewiez, Cédric; Page, Patrick; Brenner, David A.

    2012-01-01

    Background & Aims NADPH oxidase (NOX) generates reactive oxygen species (ROS) in hepatic stellate cells (HSCs) during liver fibrosis. In response to fibrogenic agonists, such as angiotensin II (Ang II), the NOX1 components form an active complex including Rac1. Superoxide dismutase 1 (SOD1) interacts with the NOX-Rac1 complex to stimulate NOX activity. NOX4 is also induced in activated HSCs/myofibroblast by increased gene expression. Here, we investigate the role of an enhanced activity SOD1 G37R mutation (SODmu) and the effects of GKT137831, a dual NOX1/4 inhibitor, on HSCs and liver fibrosis. Methods To induce liver fibrosis, wild-type (WT) and SOD1mu mice were treated with carbon tetrachloride (CCl4) or bile duct ligation (BDL). Then, to address the role of NOX-SOD1-mediated ROS production in HSC activation and liver fibrosis, mice were treated with a NOX1/4 inhibitor. Fibrosis and ROS generation was assessed by histology and measurement of TBARS and NOX related genes. Primary cultured HSCs isolated from WT, SODmu, and NOX1 knock-out (KO) mice were assessed for ROS production, Rac1 activity, and NOX gene expression. Results Liver fibrosis was increased in SOD1mu mice, and ROS production and Rac1 activity were increased in SOD1mu HSCs. The NOX1/4 inhibitor GKT137831 attenuated liver fibrosis and ROS production in both SOD1mu and WT mice as well as mRNA expression of fibrotic and NOX genes. Treatment with GKT137831 suppressed ROS production and NOX and fibrotic gene expression, but not Rac1 activity, in SOD1mut and WT HSCs. Both Ang II and TGFb upregulated NOX4, but AngII required NOX1. Conclusions SOD1mu induces excessive NOX1 activation through Rac1 in HSCs, causing enhanced NOX4 upregulation, ROS generation, and liver fibrosis. Treatment targeting NOX1/4 may be a new therapy for liver fibrosis. PMID:22806357

  12. Enzymatic production by tissue extracts of a metabolite of nicotinamide adenine dinucleotide with calcium-releasing ability

    SciTech Connect

    Tich, N.R.

    1989-01-01

    This research investigated the occurrence and characterization of the metabolite in mammalian tissues. In all mammalian tissues tested, including rabbit liver, heart, spleen, kidney, and brain, the factor to convert NAD into its active metabolite was present. The conversion exhibited many characteristics of an enzymatic process such as temperature sensitivity, concentration dependence and protease sensitivity. Production of the NAD metabolite occurred within a time frame of 15-45 minutes at 37{degree}C, depending upon the particular preparation. The metabolite was isolated using high performance liquid chromatography from all mammalian tissues. This purified metabolite was then tested for its effectiveness in releasing intracellular calcium in an intact cell by microinjecting it into unfertilized sea urchin eggs. These eggs undergo a massive morphological change upon fertilization which is dependent upon the release of calcium from inside the cell. Upon injection of the NAD metabolite into unfertilized eggs, this same morphological change was observed showing indirectly that the metabolite released intracellular calcium from an intact, viable cell. In addition, radioactive studies using {sup 45}Ca{sup 2+} loaded into permeabilized hepatocytes, indicated in preliminary studies that the NAD metabolite could also release calcium from intracellular stores of mammalian cells.

  13. Syntheses of nicotinamide riboside and derivatives: effective agents for increasing nicotinamide adenine dinucleotide concentrations in mammalian cells.

    PubMed

    Yang, Tianle; Chan, Noel Yan-Ki; Sauve, Anthony A

    2007-12-27

    A new two-step methodology achieves stereoselective synthesis of beta-nicotinamide riboside and a series of related amide, ester, and acid nucleosides. Compounds were prepared through a triacetylated-nicotinate ester nucleoside, via coupling of either ethylnicotinate or phenylnicotinate with 1,2,3,5-tetra-O-acetyl-beta-D-ribofuranose. Nicotinamide riboside, nicotinic acid riboside, O-ethylnicotinate riboside, O-methylnicotinate riboside, and several N-alkyl derivatives increased NAD+ concentrations from 1.2-2.7-fold in several mammalian cell lines. These findings establish bioavailability and potent effects of these nucleosides in stimulating the increase of NAD+ concentrations in mammalian cells. PMID:18052316

  14. Accumulation of DNA damage and reduced levels of nicotine adenine dinucleotide in the brains of Atm-deficient mice.

    PubMed

    Stern, Nora; Hochman, Ayala; Zemach, Naty; Weizman, Nir; Hammel, Ilan; Shiloh, Yosef; Rotman, Galit; Barzilai, Ari

    2002-01-01

    Ataxia-telangiectasia (A-T) is a human genetic disorder caused by mutational inactivation of the ATM gene. A-T patients display a pleiotropic phenotype, in which a major neurological feature is progressive ataxia due to degeneration of cerebellar Purkinje and granule neurons. Disruption of the mouse Atm locus creates a murine model of A-T that exhibits most of the clinical and cellular features of the human disease, but the neurological phenotype is barely expressed. We present evidence for the accumulation of DNA strand breaks in the brains of Atm(-/-), supporting the notion that ATM plays a major role in maintaining genomic stability. We also show a perturbation of the steady state levels of pyridine nucleotides. There is a significant decrease in both the reduced and the oxidized forms of NAD and in the total levels of NADP(T) and NADP(+) in the brains of Atm(-/-) mice. The changes in NAD(T), NADH, NAD(+), NADP(T), and NADP(+) were progressive and observed primarily in the cerebellum of 4-month-old Atm(-/-) mice. Higher rates of mitochondrial respiration were also recorded in 4-month-old Atm(-/-) cerebella. Taken together, our findings support the hypothesis that absence of functional ATM results in continuous stress, which may be an important cause of the degeneration of cerebellar neurons in A-T. PMID:11679583

  15. The ascorbic acid-dependent oxidation of reduced nicotinamide–adenine dinucleotide by ciliary and retinal microsomes

    PubMed Central

    Heath, H.; Fiddick, Rosemary

    1965-01-01

    1. The presence of an ascorbic acid-dependent NADH oxidation in ocular tissues has been established. Subcellular fractionation revealed that the enzyme is localized in the microsomes. The distribution of the enzyme in some ocular tissues has been determined; microsomes from the ciliary processes and the retina have comparable activities, which are much higher than those from the cornea or lens. 2. NADPH cannot replace NADH, and cysteine, reduced glutathione, ergothioneine and dehydroascorbic acid cannot be substituted for ascorbic acid in the reaction. The rate of NADH oxidation was greatly increased in the presence of cucumber ascorbate oxidase, and the enzyme appears to be NADH–monodehydroascorbate transhydrogenase. 3. Cytochrome b5 is present in retinal microsomes. 4. The enzyme is inhibited by p-chloromercuribenzoate and iodoacetate, but not by cyanide, Amytal or malonate. 5. High concentrations of chloroquine cause a partial inhibition of the reaction, probably owing to interaction of this compound with the enzyme thiol groups. Low concentrations of Diamox, comparable with those attained in tissues during therapy with this drug, bring about partial inhibition of the reaction. Eserine, cortisone, hydrocortisone, 11-deoxycorticosterone and dexamethasone have no effect on the rate of oxidation. 6. The possible role of ascorbic acid and NADH–monodehydroascorbate transhydrogenase in the formation of aqueous humour and secretory mechanisms is discussed. PMID:14345883

  16. Polyethyleneimine as a promoter layer for the immobilization of cellobiose dehydrogenase from Myriococcum thermophilum on graphite electrodes.

    PubMed

    Schulz, Christopher; Ludwig, Roland; Gorton, Lo

    2014-05-01

    Cellobiose dehydrogenase (CDH) is a promising enzyme for the construction of biofuel cell anodes and biosensors capable of oxidizing aldoses as cellobiose as well as lactose and glucose and with the ability to connect to an electrode through a direct electron transfer mechanism. In the present study, we point out the beneficial effect of a premodification of spectrographic graphite electrodes with the polycation polyethyleneimine (PEI) prior to adsorption of CDH from Myriococcum thermophilum (MtCDH). The application of PEI shifts the pH optimum of the response of the MtCDH modified electrode from pH 5.5 to 8. The catalytic currents to lactose were increased up to 140 times, and the K(M)(app) values were increased up to 9 times. The previously investigated, beneficial effect of divalent cations on the activity of CDH was also present for graphite/PEI/MtCDH electrodes but was less pronounced. Polarization curves revealed a second unexpected catalytic wave for graphite/PEI/MtCDH electrodes especially pronounced at pH 8. Square wave voltammetric studies revealed the presence of an unknown redox functionality present at 192 mV vs Ag|AgCl (0.1 M KCl) at pH 8, probably originating from an oxidized adenosine derivative. Adenosine is a structural part of the flavin adenine dinucleotide (FAD) cofactor of the dehydrogenase domain of CDH. It is suggested that for some enzyme molecules FAD leaks out from the active site, adsorbs onto graphite, and is oxidized on the electrode surface into a product able to mediate the electron transfer between CDH and the electrode. PEI is suggested and discussed to act in several manners by (a) increasing the surface loading of the enzyme, (b) possibly increasing the electron transfer rate between CDH and the electrode, and (c) facilitating the creation or immobilization of redox active adenosine derivatives able to additionally mediate the electron transfer between CDH and the electrode.

  17. Type 2 NADH dehydrogenases in the cyanobacterium Synechocystis sp. strain PCC 6803 are involved in regulation rather than respiration.

    PubMed

    Howitt, C A; Udall, P K; Vermaas, W F

    1999-07-01

    Analysis of the genome of Synechocystis sp. strain PCC 6803 reveals three open reading frames (slr0851, slr1743, and sll1484) that may code for type 2 NAD(P)H dehydrogenases (NDH-2). The sequence similarity between the translated open reading frames and NDH-2s from other organisms is low, generally not exceeding 30% identity. However, NAD(P)H and flavin adenine dinucleotide binding motifs are conserved in all three putative NDH-2s in Synechocystis sp. strain PCC 6803. The three open reading frames were cloned, and deletion constructs were made for each. An expression construct containing one of the three open reading frames, slr1743, was able to functionally complement an Escherichia coli mutant lacking both NDH-1s and NDH-2s. Therefore, slr0851, slr1743, and sll1484 have been designated ndbA, ndbB, and ndbC, respectively. Strains that lacked one or more of the ndb genes were created in wild-type and photosystem (PS) I-less backgrounds. Deletion of ndb genes led to small changes in photoautotrophic growth rates and respiratory activities. Electron transfer rates into the plastoquinone pool in thylakoids in darkness were consistent with the presence of a small amount of NDH-2 activity in thylakoids. No difference was observed between wild-type and the Ndb-less strains in the banding patterns seen on native gels when stained for either NADH or NADPH dehydrogenase activity, indicating that the Ndb proteins do not accumulate to high levels. A striking phenotype of the PS I-less background strains lacking one or more of the NDH-2s is that they were able to grow at high light intensities that were lethal to the control strain but they retained normal PS II activity. We suggest that the Ndb proteins in Synechocystis sp. strain PCC 6803 are redox sensors and that they play a regulatory role responding to the redox state of the plastoquinone pool.

  18. Tyrosine phosphorylation of dihydrolipoamide dehydrogenase as a potential cadmium target and its inhibitory role in regulating mouse sperm motility.

    PubMed

    Li, Xinhong; Wang, Lirui; Li, Yuhua; Fu, Jieli; Zhen, Linqing; Yang, Qiangzhen; Li, Sisi; Zhang, Yukun

    2016-05-16

    Cadmium (Cd) is reported to reduce sperm motility and functions. However, the molecular mechanisms of Cd-induced toxicity remain largely unknown, presenting a major knowledge gap in research on reproductive toxicology. In the present study, we identified a candidate protein, dihydrolipoamide dehydrogenase (DLD), which is a post-pyruvate metabolic enzyme, exhibiting tyrosine phosphorylation in mouse sperm exposed to Cd both in vivo and in vitro. Immunoprecipitation assay demonstrated DLD was phosphorylated in tyrosine residues without altered expression after Cd treatment, which further confirmed our identified result. However, the tyrosine phosphorylation of DLD did not participate in mouse sperm capacitation and Bovine Serum Albumin (BSA) effectively prevented the tyrosine phosphorylation of DLD. Moreover, Cd-induced tyrosine phosphorylation of DLD lowered its dehydrogenase activity and meanwhile, Nicotinamide Adenine Dinucleotide Hydrogen (NADH) content, Adenosine Triphosphate (ATP) production and sperm motility were all inhibited by Cd. Interestingly, when the tyrosine phosphorylation of DLD was blocked by BSA, the decrease of DLD activity, NADH and ATP content as well as sperm motility was also suppressed simultaneously. These results suggested that Cd-induced tyrosine phosphorylation of DLD inhibited its activity and thus suppressed the tricarboxylic acid (TCA) cycle, which resulted in the reduction of NADH and hence the ATP production generated through oxidative phosphorylation (OPHOXS). Taken together, our results revealed that Cd induced DLD tyrosine phosphorylation, in response to regulate TCA metabolic pathway, which reduced ATP levels and these negative effects led to decreased sperm motility. This study provided new understanding of the mechanisms contributing to the harmful effects of Cd on the motility and function of spermatozoa. PMID:27289041

  19. Photophysical deactivation pathways in adenine oligonucleotides.

    PubMed

    Spata, Vincent A; Matsika, Spiridoula

    2015-12-14

    In this work we study deactivation processes in adenine oligomers after absorption of UV radiation using Quantum Mechanics combined with Molecular Mechanics (QM/MM). Correlated electronic structure methods appropriate for describing the excited states are used to describe a π-stacked dimer of adenine bases incorporated into (dA)20(dT)20. The results of these calculations reveal three different types of excited state minima which play a role in deactivation processes. Within this set of minima there are minima where the excited state is localized on one adenine (monomer-like) as well as minima where the excited state is delocalized on two adenines, forming different types of excimers and bonded excimers of varying but inter-related character. The proximity of their energies reveals that the minima can decay into one another along a flat potential energy surface dependent on the interbase separation. Additionally, analysis of the emissive energies and other physical properties, including theoretical anisotropy calculations, and comparison with fluorescence experiments, provides evidence that excimers play an important role in long-lived signals in adenine oligonucleotides while the subpicosecond decay is attributed to monomer-like minima. The necessity for a close approach of the nucleobases reveals that the deactivation mechanism is tied to macro-molecular motion. PMID:26536353

  20. Characterization of Novel Acyl Coenzyme A Dehydrogenases Involved in Bacterial Steroid Degradation

    PubMed Central

    Ruprecht, Amanda; Maddox, Jaymie; Stirling, Alexander J.; Visaggio, Nicole

    2015-01-01

    ABSTRACT The acyl coenzyme A (acyl-CoA) dehydrogenases (ACADs) FadE34 and CasC, encoded by the cholesterol and cholate gene clusters of Mycobacterium tuberculosis and Rhodococcus jostii RHA1, respectively, were successfully purified. Both enzymes differ from previously characterized ACADs in that they contain two fused acyl-CoA dehydrogenase domains in a single polypeptide. Site-specific mutagenesis showed that only the C-terminal ACAD domain contains the catalytic glutamate base required for enzyme activity, while the N-terminal ACAD domain contains an arginine required for ionic interactions with the pyrophosphate of the flavin adenine dinucleotide (FAD) cofactor. Therefore, the two ACAD domains must associate to form a single active site. FadE34 and CasC were not active toward the 3-carbon side chain steroid metabolite 3-oxo-23,24-bisnorchol-4-en-22-oyl-CoA (4BNC-CoA) but were active toward steroid CoA esters containing 5-carbon side chains. CasC has similar specificity constants for cholyl-CoA, deoxycholyl-CoA, and 3β-hydroxy-5-cholen-24-oyl-CoA, while FadE34 has a preference for the last compound, which has a ring structure similar to that of cholesterol metabolites. Knockout of the casC gene in R. jostii RHA1 resulted in a reduced growth on cholate as a sole carbon source and accumulation of a 5-carbon side chain cholate metabolite. FadE34 and CasC represent unique members of ACADs with primary structures and substrate specificities that are distinct from those of previously characterized ACADs. IMPORTANCE We report here the identification and characterization of acyl-CoA dehydrogenases (ACADs) involved in the metabolism of 5-carbon side chains of cholesterol and cholate. The two homologous enzymes FadE34 and CasC, from M. tuberculosis and Rhodococcus jostii RHA1, respectively, contain two ACAD domains per polypeptide, and we show that these two domains interact to form a single active site. FadE34 and CasC are therefore representatives of a new class of

  1. Different rates of synthesis and degradation of two chloroplastic ammonium-inducible NADP-specific glutamate dehydrogenase isoenzymes during induction and deinduction in Chlorella sorokiniana cells

    SciTech Connect

    Bascomb, N.F.; Prunkard, D.E.; Schmidt, R.R.

    1987-01-01

    The kinetics of accumulation (per milliliter of culture) of the ..cap alpha..- and ..beta..-subunits, associated with chloroplast-localized ammonium inducible nicotinamide adenine dinucleotide phosphate-specific glutamate dehydrogenase (NADP-GDH) isoenzymes, were measured during a 3 hour induction of synchronized daughter cells of Chlorella sorokiniana in 29 millimolar ammonium medium under photoautotrophic conditions. The ..beta..-subunit holoenzyme(s) accumulated in a linear manner for 3 hours without an apparent induction lag. A 40 minute induction lag preceded the accumulation of the ..cap alpha..-subunit holoenzyme(s). After 120 minutes, the ..cap alpha..-subunit ceased accumulating and thereafter remained at a constant level. From pulse-chase experiments, using /sup 35/SO/sub 4/ and immunochemical procedures, the rate of synthesis of the ..cap alpha..-subunit was shown to be greater than the ..beta..-subunit during the first 80 minutes of induction. The ..cap alpha..- and ..beta..-subunits had different rates of degradation during the induction period (t/sub 1/2/ = 50 versus 150 minutes, respectively) and during the deinduction period (t/sub 1/2/ = 5 versus 13.5 minutes) after removal of ammonium from the culture. During deinduction, total NADP-GDH activity decreased with a half-time of 9 minutes. Cycloheximide completely inhibited the synthesis and degradation of both subunits. A model for regulation of expression of the NADP-GDH gene was proposed.

  2. Evidence for messenger ribonucleic acid of an ammonium-inducible glutamate dehydrogenase and synthesis, covalent modification, and degradation of enzyme subunits in uninduced Chlorella sorokiniana cells.

    PubMed Central

    Turner, K J; Bascomb, N F; Lynch, J J; Molin, W T; Thurston, C F; Schmidt, R R

    1981-01-01

    The cells of Chlorella sorokiniana cultured in nitrate medium contain no detectable catalytic activity of an ammonium-inducible nicotinamide adenine dinucleotide phosphate-specific glutamate dehydrogenase (NADP-GDH). However, several lines of experimental evidence indicated that the NADP-GDH messenger ribonucleic acid was present at high levels and was being translated in uninduced cells. First, binding studies with 125I-labeled anti-NADP-GDH immunoglobulin G and total polysomes isolated from uninduced and induced cells showed that NADP-GDH subunits were being synthesized on polysomes from both types of cells. Second, when polyadenylic acid-containing ribonucleic acid was extracted from polysomes from uninduced and induced cells and placed into a messenger ribonucleic acid-dependent in vitro translation system, NADP-GDH subunits were synthesized from the ribonucleic acid from both sources. Third, when ammonia was added to uninduced cells, NADP-GDH antigen accumulated without an apparent induction lag. Fourth, by use of a specific immunoprecipitation procedure coupled to pulse-chase studies with [35S]sulfate, it was shown that the NADP-GDH subunits are rapidly synthesized, covalently modified, and then degraded in uninduced cells. PMID:7217012

  3. The kinetic mechanism of ox liver glutamate dehydrogenase in the presence of the allosteric effector ADP. The oxidative deamination of L-glutamate.

    PubMed

    Hornby, D P; Aitchison, M J; Engel, P C

    1984-10-01

    In steady-state kinetic studies of ox liver glutamate dehydrogenase in 0.11 M-potassium phosphate buffer, pH7, at 25 degrees C, the concentration of ADP was varied from 0.5 to 1000 microM. Inhibition was observed except when the concentrations of both glutamate and coenzyme were high, when activation was seen. With NAD+ or NADP+ as coenzyme, 200 microM-ADP was sufficient to saturate the enzyme with respect to the major effect of this nucleotide. In the presence of 210 microM-ADP, widely varied concentrations of coenzyme give linear Lineweaver-Burk plots, in marked contrast with results obtained previously for kinetics without ADP. This has allowed evaluation for the reaction with NAD+, NADP+ and acetylpyridine-adenine dinucleotide (315 microM-ADP in the last case) of all four initial rate parameters, i.e. the phi coefficients in the equation: (Formula: see text) where A is coenzyme and B is glutamate. The relative constancy of phi B and of phi AB/phi A with the different coenzymes point to a compulsory-order mechanism with glutamate as the leading substrate. This conclusion, though unexpected, agrees well with various previous observations on the binding of oxidized coenzyme.

  4. Degradation of Swainsonine by the NADP-Dependent Alcohol Dehydrogenase A1R6C3 in Arthrobacter sp. HW08

    PubMed Central

    Wang, Yan; Zhai, A’guan; Zhang, Yanqi; Qiu, Kai; Wang, Jianhua; Li, Qinfan

    2016-01-01

    Swainsonine is an indolizidine alkaloid that has been found in locoweeds and some fungi. Our previous study demonstrated that Arthrobacter sp. HW08 or its crude enzyme extract could degrade swainsonie efficiently. However, the mechanism of swainsonine degradation in bacteria remains unclear. In this study, we used label-free quantitative proteomics method based on liquid chromatography-electrospray ionization-tandem mass spectrometry to dissect the mechanism of swainsonine biodegradation by Arthrobacter sp. HW08. The results showed that 129 differentially expressed proteins were relevant to swainsonine degradation. These differentially expressed proteins were mostly related to the biological process of metabolism and the molecular function of catalytic activity. Among the 129 differentially expressed proteins, putative sugar phosphate isomerase/epimerase A1R5X7, Acetyl-CoA acetyltransferase A0JZ95, and nicotinamide adenine dinucleotide phosphate (NADP)-dependent alcohol dehydrogenase A1R6C3 were found to contribute to the swainsonine degradation. Notably, NADP-dependent alcohol dehyrodgenase A1R6C3 appeared to play a major role in degrading swainsonine, but not as much as Arthrobacter sp. HW08 did. Collectively, our findings here provide insights to understand the mechanism of swainsonine degradation in bacteria. PMID:27196926

  5. Energy Landscape of the Michaelis Complex of Lactate Dehydrogenase: Relationship to Catalytic Mechanism

    PubMed Central

    2015-01-01

    Lactate dehydrogenase (LDH) catalyzes the interconversion between pyruvate and lactate with nicotinamide adenine dinucleotide (NAD) as a cofactor. Using isotope-edited difference Fourier transform infrared spectroscopy on the “live” reaction mixture (LDH·NADH·pyruvate ⇌ LDH·NAD+·lactate) for the wild-type protein and a mutant with an impaired catalytic efficiency, a set of interconverting conformational substates within the pyruvate side of the Michaelis complex tied to chemical activity is revealed. The important structural features of these substates include (1) electronic orbital overlap between pyruvate’s C2=O bond and the nicotinamide ring of NADH, as shown from the observation of a delocalized vibrational mode involving motions from both moieties, and (2) a characteristic hydrogen bond distance between the pyruvate C2=O group and active site residues, as shown by the observation of at least four C2=O stretch bands indicating varying degrees of C2=O bond polarization. These structural features form a critical part of the expected reaction coordinate along the reaction path, and the ability to quantitatively determine them as well as the substate population ratios in the Michaelis complex provides a unique opportunity to probe the structure–activity relationship in LDH catalysis. The various substates have a strong variance in their propensity toward on enzyme chemistry. Our results suggest a physical mechanism for understanding the LDH-catalyzed chemistry in which the bulk of the rate enhancement can be viewed as arising from a stochastic search through an available phase space that, in the enzyme system, involves a restricted ensemble of more reactive conformational substates as compared to the same chemistry in solution. PMID:24576110

  6. Aldehyde Dehydrogenase-2 Deficiency Aggravates Cardiac Dysfunction Elicited by Endoplasmic Reticulum Stress Induction

    PubMed Central

    Liao, Jianquan; Sun, Aijun; Xie, Yeqing; Isse, Toyoshi; Kawamoto, Toshihiro; Zou, Yunzeng; Ge, Junbo

    2012-01-01

    Mitochondrial aldehyde dehydrogenase-2 (ALDH2) has been characterized as an important mediator of endogenous cytoprotection in the heart. This study was designed to examine the role of ALDH2 knockout (KO) in the regulation of cardiac function after endoplasmic reticulum (ER) stress. Wild-type (WT) and ALDH2 KO mice were subjected to a tunicamycin challenge, and the echocardiographic property was examined. Protein levels of six items—78 kDa glucose-regulated protein (GRP78), phosphorylation of eukaryotic initiation factor 2 subunit α (p-eIF2α), CCAAT/enhancer-binding protein homologous protein (CHOP), phosphorylation of Akt, p47phox nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and 4-hydroxynonenal—were determined by using Western blot analysis. Cytotoxicity and apoptosis were estimated using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-tetrazolium bromide (MTT) assay and caspase-3 activity, respectively. ALDH2 deficiency exacerbated cardiac contractile dysfunction and promoted ER stress after ER stress induction, manifested by the changes of ejection fraction and fractional shortening. In vitro study revealed that tunicamycin significantly upregulated the levels of GRP78, p-eIF2α, CHOP, p47phox NADPH oxidase and 4-hydroxynonenal, which was exacerbated by ALDH2 knockdown and abolished by ALDH2 overexpression, respectively. Overexpression of ALDH2 abrogated tunicamycin-induced dephosphorylation Akt. Inhibition of phosphatidylinositol 3-kinase using LY294002 did not affect ALDH2-conferred protection against ER stress, although LY294002 reversed the antiapoptotic action of ALDH2 associated with p47phox NADPH oxidase. These results suggest a pivotal role of ALDH2 in the regulation of ER stress and ER stress–induced apoptosis. The protective role of ALDH2 against ER stress–induced cell death was probably mediated by Akt via a p47phox NADPH oxidase-dependent manner. These findings indicate the critical role of ALDH2 in the pathogenesis of ER stress

  7. Energy landscape of the Michaelis complex of lactate dehydrogenase: relationship to catalytic mechanism.

    PubMed

    Peng, Huo-Lei; Deng, Hua; Dyer, R Brian; Callender, Robert

    2014-03-25

    Lactate dehydrogenase (LDH) catalyzes the interconversion between pyruvate and lactate with nicotinamide adenine dinucleotide (NAD) as a cofactor. Using isotope-edited difference Fourier transform infrared spectroscopy on the "live" reaction mixture (LDH·NADH·pyruvate ⇌ LDH·NAD(+)·lactate) for the wild-type protein and a mutant with an impaired catalytic efficiency, a set of interconverting conformational substates within the pyruvate side of the Michaelis complex tied to chemical activity is revealed. The important structural features of these substates include (1) electronic orbital overlap between pyruvate's C2═O bond and the nicotinamide ring of NADH, as shown from the observation of a delocalized vibrational mode involving motions from both moieties, and (2) a characteristic hydrogen bond distance between the pyruvate C2═O group and active site residues, as shown by the observation of at least four C2═O stretch bands indicating varying degrees of C2═O bond polarization. These structural features form a critical part of the expected reaction coordinate along the reaction path, and the ability to quantitatively determine them as well as the substate population ratios in the Michaelis complex provides a unique opportunity to probe the structure-activity relationship in LDH catalysis. The various substates have a strong variance in their propensity toward on enzyme chemistry. Our results suggest a physical mechanism for understanding the LDH-catalyzed chemistry in which the bulk of the rate enhancement can be viewed as arising from a stochastic search through an available phase space that, in the enzyme system, involves a restricted ensemble of more reactive conformational substates as compared to the same chemistry in solution.

  8. The catalase activity of diiron adenine deaminase.

    PubMed

    Kamat, Siddhesh S; Holmes-Hampton, Gregory P; Bagaria, Ashima; Kumaran, Desigan; Tichy, Shane E; Gheyi, Tarun; Zheng, Xiaojing; Bain, Kevin; Groshong, Chris; Emtage, Spencer; Sauder, J Michael; Burley, Stephen K; Swaminathan, Subramanyam; Lindahl, Paul A; Raushel, Frank M

    2011-12-01

    Adenine deaminase (ADE) from the amidohydrolase superfamily (AHS) of enzymes catalyzes the conversion of adenine to hypoxanthine and ammonia. Enzyme isolated from Escherichia coli was largely inactive toward the deamination of adenine. Molecular weight determinations by mass spectrometry provided evidence that multiple histidine and methionine residues were oxygenated. When iron was sequestered with a metal chelator and the growth medium supplemented with Mn(2+) before induction, the post-translational modifications disappeared. Enzyme expressed and purified under these conditions was substantially more active for adenine deamination. Apo-enzyme was prepared and reconstituted with two equivalents of FeSO(4). Inductively coupled plasma mass spectrometry and Mössbauer spectroscopy demonstrated that this protein contained two high-spin ferrous ions per monomer of ADE. In addition to the adenine deaminase activity, [Fe(II) /Fe(II) ]-ADE catalyzed the conversion of H(2)O(2) to O(2) and H(2)O. The values of k(cat) and k(cat)/K(m) for the catalase activity are 200 s(-1) and 2.4 × 10(4) M(-1) s(-1), respectively. [Fe(II)/Fe(II)]-ADE underwent more than 100 turnovers with H(2)O(2) before the enzyme was inactivated due to oxygenation of histidine residues critical for metal binding. The iron in the inactive enzyme was high-spin ferric with g(ave) = 4.3 EPR signal and no evidence of anti-ferromagnetic spin-coupling. A model is proposed for the disproportionation of H(2)O(2) by [Fe(II)/Fe(II)]-ADE that involves the cycling of the binuclear metal center between the di-ferric and di-ferrous oxidation states. Oxygenation of active site residues occurs via release of hydroxyl radicals. These findings represent the first report of redox reaction catalysis by any member of the AHS. PMID:21998098

  9. SdhE-dependent formation of a functional Acetobacter pasteurianus succinate dehydrogenase in Gluconobacter oxydans--a first step toward a complete tricarboxylic acid cycle.

    PubMed

    Kiefler, Ines; Bringer, Stephanie; Bott, Michael

    2015-11-01

    The obligatory aerobic α-proteobacterium Gluconobacter oxydans 621H possesses an unusual metabolism in which the majority of the carbohydrate substrates are incompletely oxidized in the periplasm and only a small fraction is metabolized in the cytoplasm. The cytoplasmic oxidation capabilities are limited due to an incomplete tricarboxylic acid (TCA) cycle caused by the lack of succinate dehydrogenase (Sdh) and succinyl-CoA synthetase. As a first step to test the consequences of a functional TCA cycle for growth, metabolism, and bioenergetics of G. oxydans, we attempted to establish a heterologous Sdh in this species. Expression of Acetobacter pasteurianus sdhCDAB in G. oxydans did not yield an active succinate dehydrogenase. Co-expression of a putative sdhE gene from A. pasteurianus, which was assumed to encode an assembly factor for covalent attachment of flavin adenine dinucleotide (FAD) to SdhA, stimulated Sdh activity up to 400-fold to 4.0 ± 0.4 U (mg membrane protein)(‒1). The succinate/oxygen reductase activity of membranes was 0.68 ± 0.04 U (mg membrane protein)(‒1), indicating the formation of functional Sdh complex capable of transferring electrons from succinate to ubiquinone. A. pasteurianus SdhE could be functionally replaced by SdhE from the γ-proteobacterium Serratia sp. According to these results, the accessory protein SdhE was necessary and sufficient for heterologous synthesis of an active A. pasteurianus Sdh in G. oxydans. Studies with the Sdh-positive G. oxydans strain provided evidence for a limited functionality of the TCA cycle despite the absence of succinyl-CoA synthetase.

  10. Adenine auxotrophy--be aware: some effects of adenine auxotrophy in Saccharomyces cerevisiae strain W303-1A.

    PubMed

    Kokina, Agnese; Kibilds, Juris; Liepins, Janis

    2014-08-01

    Adenine auxotrophy is a commonly used genetic marker in haploid yeast strains. Strain W303-1A, which carries the ade2-1 mutation, is widely used in physiological and genetic research. Yeast extract-based rich medium contains a low level of adenine, so that adenine is often depleted before glucose. This could affect the cell physiology of adenine auxotrophs grown in rich medium. The aim of our study was to assess the effects of adenine auxotrophy on cell morphology and stress physiology. Our results show that adenine depletion halts cell division, but that culture optical density continues to increase due to cell swelling. Accumulation of trehalose and a coincident 10-fold increase in desiccation stress tolerance is observed in adenine auxotrophs after adenine depletion, when compared to prototrophs. Under adenine starvation, long-term survival of W303-1A is lower than during carbon starvation, but higher than during leucine starvation. We observed drastic adenine-dependent changes in cell stress physiology, suggesting that results may be biased when adenine auxotrophs are grown in rich media without adenine supplementation.

  11. Urease-glutamic dehydrogenase biosensor for screening heavy metals in water and soil samples.

    PubMed

    Rodriguez, Belen Bello; Bolbot, John A; Tothill, Ibtisam E

    2004-09-01

    A screen-printed three-electrode amperometric biosensor based on urease and the nicotinamide adenine dinucleotide hydrogen (NADH)-glutamic dehydrogenase system was developed and applied to the screening of heavy metals in environmental samples. The development of an amperometric sensor for the monitoring of urease activity was feasible by coupling the urea breakdown reaction catalysed by urease to the reductive ammination of ketoglutarate catalysed by glutamic dehydrogenase (GLDH). The ammonia provided by the urea conversion is required for the conversion of ketoglutarate to glutamate with the concomitant oxidation of the NADH cofactor. NADH oxidation is monitored amperometrically at 0.3 V (vs. Ag/AgCl) after urease immobilization onto the screen-printed three-electrode configuration. Immobilization of urease on the surface of screen-printed electrodes was performed by entrapment in alginate gel and adsorption on the electrode in a nafion film. Low sensitivity to inactivation by metals was recorded after urease entrapment in alginate gel with detection limits of 2.9 and 29.8 mg L(-1) for Hg(II) and Cu(II), respectively. The use of the negatively charged nafion film created a more concentrated environment of cations in proximity to the enzyme, thus enhancing the urease inhibition when compared to gel entrapment. The calculated detection limits were 63.6 and 55.3 microg L(-1) for Hg(II) and Cu(II), respectively, and 4.3 mg L(-1) for Cd(II). A significant urease inactivation was recorded in the presence of trace amounts of metals (microg L(-1)) when the enzyme was used free in solution. Analysis of water and soil samples with the developed nafion-based sensor produced inhibition on urease activity according to their metal contents. The obtained results were in agreement with the standard methods employed for sample analysis. Nevertheless, the use of the amperometric assay (with free urease) proved more feasible for the screening of trace amounts of metals in polluted

  12. Expression, purification and kinetic characterization of His-tagged glyceraldehyde-3-phosphate dehydrogenase from Trypanosoma cruzi.

    PubMed

    Cheleski, Juliana; Freitas, Renato F; Wiggers, Helton José; Rocha, Josmar R; de Araújo, Ana Paula Ulian; Montanari, Carlos A

    2011-04-01

    Trypanosomes are flagellated protozoa responsible for serious parasitic diseases that have been classified by the World Health Organization as tropical sicknesses of major importance. One important drug target receiving considerable attention is the enzyme glyceraldehyde-3-phosphate dehydrogenase from the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease (T. cruzi Glyceraldehyde-3-phosphate dehydrogenase (TcGAPDH); EC 1.2.1.12). TcGAPDH is a key enzyme in the glycolytic pathway of T. cruzi and catalyzes the oxidative phosphorylation of D-glyceraldehyde-3-phosphate (G3P) to 1,3-bisphosphoglycerate (1,3-BPG) coupled to the reduction of oxidized nicotinamide adenine dinucleotide, (NAD(+)) to NADH, the reduced form. Herein, we describe the cloning of the T. cruzi gene for TcGAPDH into the pET-28a(+) vector, its expression as a tagged protein in Escherichia coli, purification and kinetic characterization. The His(6)-tagged TcGAPDH was purified by affinity chromatography. Enzyme activity assays for the recombinant His(6)-TcGAPDH were carried out spectrophotometrically to determine the kinetic parameters. The apparent Michaelis-Menten constant (K(M)(app)) determined for D-glyceraldehyde-3-phosphate and NAD(+) were 352±21 and 272±25 μM, respectively, which were consistent with the values for the untagged enzyme reported in the literature. We have demonstrated by the use of Isothermal Titration Calorimetry (ITC) that this vector modification resulted in activity preserved for a higher period. We also report here the use of response surface methodology (RSM) to determine the region of optimal conditions for enzyme activity. A quadratic model was developed by RSM to describe the enzyme activity in terms of pH and temperature as independent variables. According to the RMS contour plots and variance analysis, the maximum enzyme activity was at 29.1°C and pH 8.6. Above 37°C, the enzyme activity starts to fall, which may be related to previous

  13. The catalase activity of diiron adenine deaminase

    SciTech Connect

    Kamat S. S.; Swaminathan S.; Holmes-Hampton, G. P.; Bagaria, A.; Kumaran, D.; Tichy, S. E.; Gheyi, T.; Zheng, X.; Bain, K.; Groshong, C.; Emtage, S.; Sauder, J. M.; Burley, S. K.; Lindahl, P. A.; Raushel, F. M.

    2011-12-01

    Adenine deaminase (ADE) from the amidohydrolase superfamily (AHS) of enzymes catalyzes the conversion of adenine to hypoxanthine and ammonia. Enzyme isolated from Escherichia coli was largely inactive toward the deamination of adenine. Molecular weight determinations by mass spectrometry provided evidence that multiple histidine and methionine residues were oxygenated. When iron was sequestered with a metal chelator and the growth medium supplemented with Mn{sup 2+} before induction, the post-translational modifications disappeared. Enzyme expressed and purified under these conditions was substantially more active for adenine deamination. Apo-enzyme was prepared and reconstituted with two equivalents of FeSO{sub 4}. Inductively coupled plasma mass spectrometry and Moessbauer spectroscopy demonstrated that this protein contained two high-spin ferrous ions per monomer of ADE. In addition to the adenine deaminase activity, [Fe{sup II}/Fe{sup II}]-ADE catalyzed the conversion of H{sub 2}O{sub 2} to O{sub 2} and H{sub 2}O. The values of k{sub cat} and k{sub cat}/K{sub m} for the catalase activity are 200 s{sup -1} and 2.4 x 10{sup 4} M{sup -1} s{sup -1}, respectively. [Fe{sup II}/Fe{sup II}]-ADE underwent more than 100 turnovers with H{sub 2}O{sub 2} before the enzyme was inactivated due to oxygenation of histidine residues critical for metal binding. The iron in the inactive enzyme was high-spin ferric with g{sub ave} = 4.3 EPR signal and no evidence of anti-ferromagnetic spin-coupling. A model is proposed for the disproportionation of H{sub 2}O{sub 2} by [Fe{sup II}/Fe{sup II}]-ADE that involves the cycling of the binuclear metal center between the di-ferric and di-ferrous oxidation states. Oxygenation of active site residues occurs via release of hydroxyl radicals. These findings represent the first report of redox reaction catalysis by any member of the AHS.

  14. A flow injection system, comprising a biosensor based on a screen-printed carbon electrode containing Meldola's Blue-Reinecke salt coated with glucose dehydrogenase, for the measurement of glucose.

    PubMed

    Piano, M; Serban, S; Biddle, N; Pittson, R; Drago, G A; Hart, J P

    2010-01-15

    A biosensor for the measurement of glucose in serum has been developed, based on a screen-printed carbon electrode modified with Meldola's Blue-Reinecke salt, coated with the enzyme glucose dehydrogenase (from Bacillus sp.), and nicotinamide adenine dinucleotide coenzyme (NAD+). A cellulose acetate layer was deposited on top of the device to act as a permselective membrane. The biosensor was incorporated into a commercially available, thin-layer, amperometric flow cell operated at a potential of only +0.05 V versus Ag/AgCl. The mobile phase consisted of 0.2 M phosphate buffer (pH 7.0) containing 0.1 M potassium chloride solution, and a flow rate of 0.8 ml min(-1) was used throughout the investigation. The biosensor response was linear over the range of 0.075-30 mM glucose, with the former representing the detection limit. The precision of the system was determined by carrying out 20 repeat injections of a 5-mM glucose standard, and the calculated coefficient of variation was 3.9%. It was demonstrated that this biosensor system could be applied to the direct measurement of glucose in serum without pretreatment. Therefore, this would allow high-throughput analysis, at low cost, for this clinically important analyte. PMID:19766585

  15. Identification and Characterization of the Glucose-6-Phosphate Dehydrogenase Gene Family in the Para Rubber Tree, Hevea brasiliensis

    PubMed Central

    Long, Xiangyu; He, Bin; Fang, Yongjun; Tang, Chaorong

    2016-01-01

    As a key enzyme in the pentose phosphate pathway (PPP), glucose-6-phosphate dehydrogenase (G6PDH) provides nicotinamide adenine dinucleotide phosphate (NADPH) and intermediary metabolites for rubber biosynthesis, and plays an important role in plant development and stress responses. In this study, four Hevea brasiliensis (Para rubber tree) G6PDH genes (HbG6PDH1 to 4) were identified and cloned using a genome-wide scanning approach. All four HbG6PDH genes encode functional G6PDH enzymes as shown by heterologous expression in E. coli. Phylogeny analysis and subcellular localization prediction show that HbG6PDH3 is a cytosolic isoform, while the other three genes (HbG6PDH1, 2 and 4) are plastidic isoforms. The subcellular locations of HbG6PDH3 and 4, two latex-abundant isoforms were further verified by transient expression in rice protoplasts. Enzyme activity assay and expression analysis showed HbG6PDH3 and 4 were implicated in PPP during latex regeneration, and to influence rubber production positively in rubber tree. The cytosolic HbG6PDH3 is a predominant isoform in latex, implying a principal role for this isoform in controlling carbon flow and NADPH production in the PPP during latex regeneration. The expression pattern of plastidic HbG6PDH4 correlates well with the degree of tapping panel dryness, a physiological disorder that stops the flow of latex from affected rubber trees. In addition, the four HbG6PDHs responded to temperature and drought stresses in root, bark, and leaves, implicating their roles in maintaining redox balance and defending against oxidative stress. PMID:26941770

  16. Aspirin inhibits glucose-6-phosphate dehydrogenase activity in HCT 116 cells through acetylation: Identification of aspirin-acetylated sites

    PubMed Central

    Ai, Guoqiang; Dachineni, Rakesh; Kumar, D. Ramesh; Alfonso, Lloyd F.; Marimuthu, Srinivasan; Bhat, G. Jayarama

    2016-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) catalyzes the first reaction in the pentose phosphate pathway, and generates ribose sugars, which are required for nucleic acid synthesis, and nicotinamide adenine dinucleotide phosphate (NADPH), which is important for neutralization of oxidative stress. The expression of G6PD is elevated in several types of tumor, including colon, breast and lung cancer, and has been implicated in cancer cell growth. Our previous study demonstrated that exposure of HCT 116 human colorectal cancer cells to aspirin caused acetylation of G6PD, and this was associated with a decrease in its enzyme activity. In the present study, this observation was expanded to HT-29 colorectal cancer cells, in order to compare aspirin-mediated acetylation of G6PD and its activity between HCT 116 and HT-29 cells. In addition, the present study aimed to determine the acetylation targets of aspirin on recombinant G6PD to provide an insight into the mechanisms of inhibition. The results demonstrated that the extent of G6PD acetylation was significantly higher in HCT 116 cells compared with in HT-29 cells; accordingly, a greater reduction in G6PD enzyme activity was observed in the HCT 116 cells. Mass spectrometry analysis of aspirin-acetylated G6PD (isoform a) revealed that aspirin acetylated a total of 14 lysine residues, which were dispersed throughout the length of the G6PD protein. One of the important amino acid targets of aspirin included lysine 235 (K235, in isoform a) and this corresponds to K205 in isoform b, which has previously been identified as being important for catalysis. Acetylation of G6PD at several sites, including K235 (K205 in isoform b), may mediate inhibition of G6PD activity, which may contribute to the ability of aspirin to exert anticancer effects through decreased synthesis of ribose sugars and NADPH. PMID:27356773

  17. Characterization of different FAD-dependent glucose dehydrogenases for possible use in glucose-based biosensors and biofuel cells.

    PubMed

    Zafar, Muhammad Nadeem; Beden, Najat; Leech, Dónal; Sygmund, Christoph; Ludwig, Roland; Gorton, Lo

    2012-02-01

    In this study, different flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenases (FADGDHs) were characterized electrochemically after "wiring" them with an osmium redox polymer [Os(4,4'-dimethyl-2,2'-bipyridine)(2)(PVI)(10)Cl](+) on graphite electrodes. One tested FADGDH was that recently discovered in Glomerella cingulata (GcGDH), another was the recombinant form expressed in Pichia pastoris (rGcGDH), and the third was a commercially available glycosylated enzyme from Aspergillus sp. (AspGDH). The performance of the Os-polymer "wired" GDHs on graphite electrodes was tested with glucose as the substrate. Optimal operational conditions and analytical characteristics like sensitivity, linear ranges and current density of the different FADGDHs were determined. The performance of all three types of FADGDHs was studied at physiological conditions (pH 7.4). The current densities measured at a 20 mM glucose concentration were 494 ± 17, 370 ± 24, and 389 ± 19 μA cm(-2) for GcGDH, rGcGDH, and AspGDH, respectively. The sensitivities towards glucose were 2.16, 1.90, and 1.42 μA mM(-1) for GcGDH, rGcGDH, and AspGDH, respectively. Additionally, deglycosylated rGcGDH (dgrGcGDH) was investigated to see whether the reduced glycosylation would have an effect, e.g., a higher current density, which was indeed found. GcGDH/Os-polymer modified electrodes were also used and investigated for their selectivity for a number of different sugars. PMID:22222911

  18. Aspirin and the risk of colorectal cancer in relation to the expression of 15-hydroxyprostaglandin dehydrogenase (HPGD).

    PubMed

    Fink, Stephen P; Yamauchi, Mai; Nishihara, Reiko; Jung, Seungyoun; Kuchiba, Aya; Wu, Kana; Cho, Eunyoung; Giovannucci, Edward; Fuchs, Charles S; Ogino, Shuji; Markowitz, Sanford D; Chan, Andrew T

    2014-04-23

    Aspirin use reduces the risk of colorectal neoplasia, at least in part, through inhibition of prostaglandin-endoperoxide synthase 2 (PTGS2, cyclooxygenase 2)-related pathways. Hydroxyprostaglandin dehydrogenase 15-(nicotinamide adenine dinucleotide) (15-PGDH, HPGD) is down-regulated in colorectal cancers and functions as a metabolic antagonist of PTGS2. We hypothesized that the effect of aspirin may be antagonized by low 15-PGDH expression in the normal colon. In the Nurses' Health Study and the Health Professionals Follow-Up Study, we collected data on aspirin use every 2 years and followed up participants for diagnoses of colorectal cancer. Duplication-method Cox proportional, multivariable-adjusted, cause-specific hazards regression for competing risks data was used to compute hazard ratios (HRs) for incident colorectal cancer according to 15-PGDH mRNA expression level measured in normal mucosa from colorectal cancer resections. Among 127,865 participants, we documented 270 colorectal cancer cases from which we could assess 15-PGDH expression. Compared with nonuse, regular aspirin use was associated with lower risk of colorectal cancer that developed within a background of colonic mucosa with high 15-PGDH expression [multivariable HR, 0.49; 95% confidence interval (CI), 0.34 to 0.71], but not with low 15-PGDH expression (multivariable HR, 0.90; 95% CI, 0.63 to 1.27) (P for heterogeneity = 0.018). Regular aspirin use was associated with lower incidence of colorectal cancers arising in association with high 15-PGDH expression, but not with low 15-PGDH expression in normal colon mucosa. This suggests that 15-PGDH expression level in normal colon mucosa may serve as a biomarker that may predict stronger benefit from aspirin chemoprevention. PMID:24760190

  19. Plastidial NAD-Dependent Malate Dehydrogenase Is Critical for Embryo Development and Heterotrophic Metabolism in Arabidopsis1[W][OPEN

    PubMed Central

    Beeler, Seraina; Liu, Hung-Chi; Stadler, Martha; Schreier, Tina; Eicke, Simona; Lue, Wei-Ling; Truernit, Elisabeth; Zeeman, Samuel C.; Chen, Jychian; Kötting, Oliver

    2014-01-01

    In illuminated chloroplasts, one mechanism involved in reduction-oxidation (redox) homeostasis is the malate-oxaloacetate (OAA) shuttle. Excess electrons from photosynthetic electron transport in the form of nicotinamide adenine dinucleotide phosphate, reduced are used by NADP-dependent malate dehydrogenase (MDH) to reduce OAA to malate, thus regenerating the electron acceptor NADP. NADP-MDH is a strictly redox-regulated, light-activated enzyme that is inactive in the dark. In the dark or in nonphotosynthetic tissues, the malate-OAA shuttle was proposed to be mediated by the constitutively active plastidial NAD-specific MDH isoform (pdNAD-MDH), but evidence is scarce. Here, we reveal the critical role of pdNAD-MDH in Arabidopsis (Arabidopsis thaliana) plants. A pdnad-mdh null mutation is embryo lethal. Plants with reduced pdNAD-MDH levels by means of artificial microRNA (miR-mdh-1) are viable, but dark metabolism is altered as reflected by increased nighttime malate, starch, and glutathione levels and a reduced respiration rate. In addition, miR-mdh-1 plants exhibit strong pleiotropic effects, including dwarfism, reductions in chlorophyll levels, photosynthetic rate, and daytime carbohydrate levels, and disordered chloroplast ultrastructure, particularly in developing leaves, compared with the wild type. pdNAD-MDH deficiency in miR-mdh-1 can be functionally complemented by expression of a microRNA-insensitive pdNAD-MDH but not NADP-MDH, confirming distinct roles for NAD- and NADP-linked redox homeostasis. PMID:24453164

  20. Often Ignored Facts about the Control of the 2-Oxoglutarate Dehydrogenase Complex

    ERIC Educational Resources Information Center

    Strumilo, Slawomir

    2005-01-01

    Information about the control of the activity of the 2-oxoglutarate dehydrogenase complex (OGDHC), a key enzyme in the citric acid cycle, is not well covered in the biochemical education literature, especially as it concerns the allosteric regulation of OGDHC by adenine nucleotide and ortophosphate. From experimental work published during the last…

  1. The Nature's Clever Trick for Making Cyclic Dinucleotide.

    PubMed

    Fang, Pengfei; Guo, Min

    2015-05-01

    Ever since their initial discovery few years ago, cyclic dinucleotides (cDNs), their biosynthesis, and their biological function have been in focus of intense research efforts. In this issue, Kato et al. (2015) present strong evidence that the key enzyme in cDN biosynthesis, DncV, is poised on a tipping point such that, given a nudge, the enzyme, can link the nucleotides into a distinct cyclic loop, leading to a specific innate immune response.

  2. Background correction using dinucleotide affinities improves the performance of GCRMA

    PubMed Central

    Gharaibeh, Raad Z; Fodor, Anthony A; Gibas, Cynthia J

    2008-01-01

    Background High-density short oligonucleotide microarrays are a primary research tool for assessing global gene expression. Background noise on microarrays comprises a significant portion of the measured raw data, which can have serious implications for the interpretation of the generated data if not estimated correctly. Results We introduce an approach to calculate probe affinity based on sequence composition, incorporating nearest-neighbor (NN) information. Our model uses position-specific dinucleotide information, instead of the original single nucleotide approach, and adds up to 10% to the total variance explained (R2) when compared to the previously published model. We demonstrate that correcting for background noise using this approach enhances the performance of the GCRMA preprocessing algorithm when applied to control datasets, especially for detecting low intensity targets. Conclusion Modifying the previously published position-dependent affinity model to incorporate dinucleotide information significantly improves the performance of the model. The dinucleotide affinity model enhances the detection of differentially expressed genes when implemented as a background correction procedure in GeneChip preprocessing algorithms. This is conceptually consistent with physical models of binding affinity, which depend on the nearest-neighbor stacking interactions in addition to base-pairing. PMID:18947404

  3. Cyclic Dinucleotide-Controlled Regulatory Pathways in Streptomyces Species

    PubMed Central

    2015-01-01

    The cyclic dinucleotides cyclic 3′,5′-diguanylate (c-di-GMP) and cyclic 3′,5′-diadenylate (c-di-AMP) have emerged as key components of bacterial signal transduction networks. These closely related second messengers follow the classical general principles of nucleotide signaling by integrating diverse signals into regulatory pathways that control cellular responses to changing environments. They impact distinct cellular processes, with c-di-GMP having an established role in promoting bacterial adhesion and inhibiting motility and c-di-AMP being involved in cell wall metabolism, potassium homeostasis, and DNA repair. The involvement of c-dinucleotides in the physiology of the filamentous, nonmotile streptomycetes remained obscure until recent discoveries showed that c-di-GMP controls the activity of the developmental master regulator BldD and that c-di-AMP determines the level of the resuscitation-promoting factor A(RpfA) cell wall-remodelling enzyme. Here, I summarize our current knowledge of c-dinucleotide signaling in Streptomyces species and highlight the important roles of c-di-GMP and c-di-AMP in the biology of these antibiotic-producing, multicellular bacteria. PMID:26216850

  4. Association of bone mineral density with a dinucleotide repeat polymorphism at the calcitonin (CT) locus.

    PubMed

    Miyao, M; Hosoi, T; Emi, M; Nakajima, T; Inoue, S; Hoshino, S; Shiraki, M; Orimo, H; Ouchi, Y

    2000-01-01

    Calcitonin (CT), a calcium-regulating hormone, lowers the calcium level in serum by inhibiting bone resorption. Because CT may play a role in the pathogenesis of osteoporosis, genetic variations in or adjacent to the CT gene may be associated with variations in bone mineral density (BMD). The present study examined the correlation between a dinucleotide (cytosine-adenine; CA) repeat polymorphism at the CT locus and BMD in 311 Japanese postmenopausal women (mean age, 64.1 years). Seven alleles were present in this population; each allele contained 10, 11, 16, 17, 18, 19, or 20 CA repeats. Thus, we designated the respective genotypes A10, A11, A16, A17, A18, A19, and A20. The A10 and A17 alleles were the predominant alleles in the population studied. Z scores (a parameter representing deviation from the age-specific weight-adjusted average BMD) were compared between individuals that possessed one or two alleles of each genotype and those that did not possess the allele. Subjects who possessed one or two A10 alleles had lower BMD Z scores than those who did not (lumbar 2-4 BMD Z score; -0.148 +/- 1.23 vs 0.182 +/- 1.54; P = 0.04). No significant relationships were observed between allelic status and background data or biochemical parameters. The significant association observed between BMD and genetic variations at the CT locus implies that polymorphism at this locus may be a useful marker for the genetic study of osteoporosis. PMID:11185743

  5. Co-immobilization of glucose oxidase and xylose dehydrogenase displayed whole cell on multiwalled carbon nanotube nanocomposite films modified electrode for simultaneous voltammetric detection of D-glucose and D-xylose.

    PubMed

    Li, Liang; Liang, Bo; Li, Feng; Shi, Jianguo; Mascini, Marco; Lang, Qiaolin; Liu, Aihua

    2013-04-15

    In this paper, we first report the construction of Nafion/glucose oxidase (GOD)/xylose dehydrogenase displayed bacteria (XDH-bacteria)/multiwalled carbon nanotubes (MWNTs) modified electrode for simultaneous voltammetric determination of D-glucose and D-xylose. The optimal conditions for the immobilized enzymes were established. Both enzymes retained their good stability and activities. In the mixture solution of D-glucose and D-xylose containing coenzyme NAD⁺ (the oxidized form of nicotinamide adenine dinucleotide), the Nafion/GOD/XDH-bacteria/MWNTs modified electrode exhibited quasi-reversible oxidation-reduction peak at -0.5 V (vs. saturated calomel electrode, SCE) originating from the catalytic oxidation of D-glucose, and oxidation peak at +0.55 V(vs. SCE) responding to the oxidation of NADH (the reduced form of nicotinamide adenine dinucleotide) by the carbon nanotubes, where NADH is the resultant product of coenzyme NAD⁺ involved in the catalysis of D-xylose by XDH-displayed bacteria. For the proposed biosensor, cathodic peak current at -0.5 V was linear with the concentration of D-glucose within the range of 0.25-6 mM with a low detection limit of 0.1 mM D-glucose (S/N=3), and the anodic peak current at +0.55 V was linear with the concentration of d-xylose in the range of 0.25∼4 mM with a low detection limit of 0.1 mM D-xylose (S/N=3). Further, D-xylose and D-glucose did not interfere with each other. 300-fold excess saccharides including D-maltose, D-galactose, D-mannose, D-sucrose, D-fructose, D-cellobiose, and 60-fold excess L-arabinose, and common interfering substances (100-fold excess ascorbic acid, dopamine, uric acid) as well as 300-fold excess D-xylitol did not affect the detection of D-glucose and D-xylose (both 1 mM). Therefore, the proposed biosensor is stable, specific, reproducible, simple, rapid and cost-effective, which holds great potential in real applications. PMID:23202346

  6. Glucose-6-phosphate dehydrogenase

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003671.htm Glucose-6-phosphate dehydrogenase test To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) is a type of ...

  7. Methods for detection of methyl-CpG dinucleotides

    SciTech Connect

    Dunn, John J

    2013-11-26

    The invention provides methods for enriching methyl-CpG sequences from a DNA sample. The method makes use of conversion of cytosine residues to uracil under conditions in which methyl-cytosine residues are preserved. Additional methods of the invention enable to preservation of the context of me-CpG dinucleotides. The invention also provides a recombinant, full length and substantially pure McrA protein (rMcrA) for binding and isolation of DNA fragments containing the sequence 5'-C.sup.MeCpGG-3'. Methods for making and using the rMcrA protein, and derivatives thereof are provided.

  8. Methods for detection of methyl-CpG dinucleotides

    SciTech Connect

    Dunn, John J.

    2013-01-29

    The invention provides methods for enriching methyl-CpG sequences from a DNA sample. The method makes use of conversion of cytosine residues to uracil under conditions in which methyl-cytosine residues are preserved. Additional methods of the invention enable to preservation of the context of me-CpG dinucleotides. The invention also provides a recombinant, full length and substantially pure McrA protein (rMcrA) for binding and isolation of DNA fragments containing the sequence 5'-C.sup.MeCpGG-3'. Methods for making and using the rMcrA protein, and derivatives thereof are provided.

  9. Methods for detection of methyl-CpG dinucleotides

    SciTech Connect

    Dunn, John J.

    2012-09-11

    The invention provides methods for enriching methyl-CpG sequences from a DNA sample. The method makes use of conversion of cytosine residues to uracil under conditions in which methyl-cytosine residues are preserved. Additional methods of the invention enable to preservation of the context of me-CpG dinucleotides. The invention also provides a recombinant, full length and substantially pure McrA protein (rMcrA) for binding and isolation of DNA fragments containing the sequence 5'-C.sup.MeCpGG-3'. Methods for making and using the rMcrA protein, and derivatives thereof are provided.

  10. Adenine nucleotide transporters in organelles: novel genes and functions.

    PubMed

    Traba, Javier; Satrústegui, Jorgina; del Arco, Araceli

    2011-04-01

    In eukaryotes, cellular energy in the form of ATP is produced in the cytosol via glycolysis or in the mitochondria via oxidative phosphorylation and, in photosynthetic organisms, in the chloroplast via photophosphorylation. Transport of adenine nucleotides among cell compartments is essential and is performed mainly by members of the mitochondrial carrier family, among which the ADP/ATP carriers are the best known. This work reviews the carriers that transport adenine nucleotides into the organelles of eukaryotic cells together with their possible functions. We focus on novel mechanisms of adenine nucleotide transport, including mitochondrial carriers found in organelles such as peroxisomes, plastids, or endoplasmic reticulum and also mitochondrial carriers found in the mitochondrial remnants of many eukaryotic parasites of interest. The extensive repertoire of adenine nucleotide carriers highlights an amazing variety of new possible functions of adenine nucleotide transport across eukaryotic organelles.

  11. Radiation and thermal stabilities of adenine nucleotides.

    PubMed

    Demidov, V V; Potaman, V N; Solyanina, I P; Trofimov, V I

    1995-03-01

    We have investigated in detail radiation and thermal stabilities and transformations of adenosine mono- and triphosphates in liquid and frozen solid aqueous solutions within a wide range of absorbed radiation dose (up to 75 kGy) and temperature (up to 160 degrees C). Dephosphorylation is the main pathway of high temperature hydrolysis of adenine nucleotides. Basic thermodynamic and kinetic parameters of this process have been determined. Radiolysis of investigated compounds at room temperature results in scission of N-glycosidic bond with a radiation yield about of 1 mol/100 eV. Solution freezing significantly enhances radiation stability of nucleotides as well as other biomolecules. This circumstance is essential in the discussion of panspermia concepts.

  12. CpG dinucleotide frequencies reveal the role of host methylation capabilities in parvovirus evolution.

    PubMed

    Upadhyay, Mohita; Samal, Jasmine; Kandpal, Manish; Vasaikar, Suhas; Biswas, Banhi; Gomes, James; Vivekanandan, Perumal

    2013-12-01

    Parvoviruses are rapidly evolving viruses that infect a wide range of hosts, including vertebrates and invertebrates. Extensive methylation of the parvovirus genome has been recently demonstrated. A global pattern of methylation of CpG dinucleotides is seen in vertebrate genomes, compared to "fractional" methylation patterns in invertebrate genomes. It remains unknown if the loss of CpG dinucleotides occurs in all viruses of a given DNA virus family that infect host species spanning across vertebrates and invertebrates. We investigated the link between the extent of CpG dinucleotide depletion among autonomous parvoviruses and the evolutionary lineage of the infected host. We demonstrate major differences in the relative abundance of CpG dinucleotides among autonomous parvoviruses which share similar genome organization and common ancestry, depending on the infected host species. Parvoviruses infecting vertebrate hosts had significantly lower relative abundance of CpG dinucleotides than parvoviruses infecting invertebrate hosts. The strong correlation of CpG dinucleotide depletion with the gain in TpG/CpA dinucleotides and the loss of TpA dinucleotides among parvoviruses suggests a major role for CpG methylation in the evolution of parvoviruses. Our data present evidence that links the relative abundance of CpG dinucleotides in parvoviruses to the methylation capabilities of the infected host. In sum, our findings support a novel perspective of host-driven evolution among autonomous parvoviruses.

  13. Hepatitis C virus RNA: dinucleotide frequencies and cleavage by RNase L.

    PubMed

    Washenberger, Christopher L; Han, Jian-Qiu; Kechris, Katherina J; Jha, Babal Kant; Silverman, Robert H; Barton, David J

    2007-12-01

    Ribonuclease L (RNase L) is an antiviral endoribonuclease that cleaves hepatitis C virus (HCV) RNA at single-stranded UA and UU dinucleotides throughout the open reading frame (ORF). To determine whether RNase L exerts evolutionary pressure on HCV we examined the frequencies of UA and UU dinucleotides in 162 RNA sequences from the Los Alamos National Labs HCV Database (http://hcv.lanl.gov). Considering the base composition of the HCV ORFs, both UA and UU dinucleotides were less frequent than predicted in each of 162 HCV RNAs. UA dinucleotides were significantly less frequent than predicted at each of the three codon positions while UU dinucleotides were less frequent than predicted predominantly at the wobble position of codons. UA and UU dinucleotides were among the least abundant dinucleotides in HCV RNA ORFs. Furthermore, HCV genotype 1 RNAs have a lower frequency of UA and UU dinucleotides than genotype 2 and 3 RNAs, perhaps contributing to increased resistance of HCV genotype 1 infections to interferon therapy. In vitro, RNase L cleaved both HCV genotype 1 and 2 RNAs efficiently. Thus, RNase L can cleave HCV RNAs efficiently and variably reduced frequencies of UA and UU dinucleotides in HCV RNA ORFs are consistent with the selective pressure of RNase L.

  14. Crystal structure of Arabidopsis thaliana cytokinin dehydrogenase

    SciTech Connect

    Bae, Euiyoung; Bingman, Craig A.; Bitto, Eduard; Aceti, David J.; Phillips, Jr., George N.

    2008-08-13

    Since first discovered in Zea mays, cytokinin dehydrogenase (CKX) genes have been identified in many plants including rice and Arabidopsis thaliana, which possesses CKX homologues (AtCKX1-AtCKX7). So far, the three-dimensional structure of only Z. mays CKX (ZmCKX1) has been determined. The crystal structures of ZmCKX1 have been solved in the native state and in complex with reaction products and a slowly reacting substrate. The structures revealed four glycosylated asparagine residues and a histidine residue covalently linked to FAD. Combined with the structural information, recent biochemical analyses of ZmCKX1 concluded that the final products of the reaction, adenine and a side chain aldehyde, are formed by nonenzymatic hydrolytic cleavage of cytokinin imine products resulting directly from CKX catalysis. Here, we report the crystal structure of AtCKX7 (gene locus At5g21482.1, UniProt code Q9FUJ1).

  15. Structure-Function Relationships in Lactate Dehydrogenase

    PubMed Central

    Adams, Margaret J.; Buehner, Manfred; Chandrasekhar, K.; Ford, Geoffrey C.; Hackert, Marvin L.; Liljas, Anders; Rossmann, Michael G.; Smiley, Ira E.; Allison, William S.; Everse, Johannes; Kaplan, Nathan O.; Taylor, Susan S.

    1973-01-01

    The binding of coenzyme and substrate are considered in relation to the known primary and tertiary structure of lactate dehydrogenase (EC 1.1.1.27). The adenine binds in a hydrophobic crevice, and the two coenzyme phosphates are oriented by interactions with the protein. The positively charged guanidinium group of arginine 101 then folds over the negatively charged phosphates, collapsing the loop region over the active center and positioning the unreactive B side of the nicotinamide in a hydrophobic protein environment. Collapse of the loop also introduces various charged groups into the vicinity of the substrate binding site. The substrate is situated between histidine 195 and the C4 position on the nicotinamide ring, and is partially oriented by interactions between its carboxyl group and arginine 171. The spatial arrangements of these groups may provide the specificity for the L-isomer of lactate. PMID:4146647

  16. Nickel-phendione complex covalently attached onto carbon nanotube/cross linked glucose dehydrogenase as bioanode for glucose/oxygen compartment-less biofuel cell

    NASA Astrophysics Data System (ADS)

    Korani, Aazam; Salimi, Abdollah; Hadadzadeh, Hasan

    2015-05-01

    Here, [Ni(phendion) (phen)]Cl2 complex, (phendion and phen are 1,10-phenanthroline-5,6-dione and 5-amino-1, 10-phenanthrolin) covalently attached onto carboxyl functionalized multi walls carbon nanotube modified glassy carbon electrode (GCE/MWCNTs-COOH) using solid phase interactions and combinatorial approaches.The attached [Ni(phendion) (phen)]Cl2 complex displays a surface controlled electrode process and it acts as an effective redox mediator for electrocatalytic oxidation of dihydronicotinamide adenine dinucleotide (NADH) at reduced overpotentials. With co-immobilization of glucose dehydrogenase enzyme (GDH) by crosslinking an effective biocatalyst for glucose oxidation designed. The onset potential and current density are -0.1 V versus Ag/AgCl electrode and 0.550 mA cm-2, which indicate the applicability of the proposed system as an efficient bioanode for biofuel cell (BFC) design. A GCE/MWCNTs modified with electrodeposited gold nanoparticles (AuNPs) as a platform for immobilization of bilirubin oxidase (BOD) and the prepared GCE/MWCNTs/AuNPs/BOD biocathode exhibits an onset potential of 0.56 V versus Ag/AgCl. The performance of the fabricated bioanode and biocathode in a membraneless enzyme based glucose/O2 biofuel cell is evaluated. The open circuit voltage of the cell and maximum current density are 520 mV and 0.233 mA cm-2, respectively, while maximum power density of 40 μWcm-2 achieves at voltage of 280 mV with stable output power after 24 h continues operation.

  17. Aspirin inhibits glucose‑6‑phosphate dehydrogenase activity in HCT 116 cells through acetylation: Identification of aspirin-acetylated sites.

    PubMed

    Ai, Guoqiang; Dachineni, Rakesh; Kumar, D Ramesh; Alfonso, Lloyd F; Marimuthu, Srinivasan; Bhat, G Jayarama

    2016-08-01

    Glucose-6-phosphate dehydrogenase (G6PD) catalyzes the first reaction in the pentose phosphate pathway, and generates ribose sugars, which are required for nucleic acid synthesis, and nicotinamide adenine dinucleotide phosphate (NADPH), which is important for neutralization of oxidative stress. The expression of G6PD is elevated in several types of tumor, including colon, breast and lung cancer, and has been implicated in cancer cell growth. Our previous study demonstrated that exposure of HCT 116 human colorectal cancer cells to aspirin caused acetylation of G6PD, and this was associated with a decrease in its enzyme activity. In the present study, this observation was expanded to HT‑29 colorectal cancer cells, in order to compare aspirin‑mediated acetylation of G6PD and its activity between HCT 116 and HT‑29 cells. In addition, the present study aimed to determine the acetylation targets of aspirin on recombinant G6PD to provide an insight into the mechanisms of inhibition. The results demonstrated that the extent of G6PD acetylation was significantly higher in HCT 116 cells compared with in HT‑29 cells; accordingly, a greater reduction in G6PD enzyme activity was observed in the HCT 116 cells. Mass spectrometry analysis of aspirin‑acetylated G6PD (isoform a) revealed that aspirin acetylated a total of 14 lysine residues, which were dispersed throughout the length of the G6PD protein. One of the important amino acid targets of aspirin included lysine 235 (K235, in isoform a) and this corresponds to K205 in isoform b, which has previously been identified as being important for catalysis. Acetylation of G6PD at several sites, including K235 (K205 in isoform b), may mediate inhibition of G6PD activity, which may contribute to the ability of aspirin to exert anticancer effects through decreased synthesis of ribose sugars and NADPH. PMID:27356773

  18. Glucose-6-Phosphate Dehydrogenase Enhances Antiviral Response through Downregulation of NADPH Sensor HSCARG and Upregulation of NF-κB Signaling

    PubMed Central

    Wu, Yi-Hsuan; Chiu, Daniel Tsun-Yee; Lin, Hsin-Ru; Tang, Hsiang-Yu; Cheng, Mei-Ling; Ho, Hung-Yao

    2015-01-01

    Glucose-6-phosphate dehydrogenase (G6PD)-deficient cells are highly susceptible to viral infection. This study examined the mechanism underlying this phenomenon by measuring the expression of antiviral genes—tumor necrosis factor alpha (TNF-α) and GTPase myxovirus resistance 1 (MX1)—in G6PD-knockdown cells upon human coronavirus 229E (HCoV-229E) and enterovirus 71 (EV71) infection. Molecular analysis revealed that the promoter activities of TNF-α and MX1 were downregulated in G6PD-knockdown cells, and that the IκB degradation and DNA binding activity of NF-κB were decreased. The HSCARG protein, a nicotinamide adenine dinucleotide phosphate (NADPH) sensor and negative regulator of NF-κB, was upregulated in G6PD-knockdown cells with decreased NADPH/NADP+ ratio. Treatment of G6PD-knockdown cells with siRNA against HSCARG enhanced the DNA binding activity of NF-κB and the expression of TNF-α and MX1, but suppressed the expression of viral genes; however, the overexpression of HSCARG inhibited the antiviral response. Exogenous G6PD or IDH1 expression inhibited the expression of HSCARG, resulting in increased expression of TNF-α and MX1 and reduced viral gene expression upon virus infection. Our findings suggest that the increased susceptibility of the G6PD-knockdown cells to viral infection was due to impaired NF-κB signaling and antiviral response mediated by HSCARG. PMID:26694452

  19. Aspirin inhibits glucose‑6‑phosphate dehydrogenase activity in HCT 116 cells through acetylation: Identification of aspirin-acetylated sites.

    PubMed

    Ai, Guoqiang; Dachineni, Rakesh; Kumar, D Ramesh; Alfonso, Lloyd F; Marimuthu, Srinivasan; Bhat, G Jayarama

    2016-08-01

    Glucose-6-phosphate dehydrogenase (G6PD) catalyzes the first reaction in the pentose phosphate pathway, and generates ribose sugars, which are required for nucleic acid synthesis, and nicotinamide adenine dinucleotide phosphate (NADPH), which is important for neutralization of oxidative stress. The expression of G6PD is elevated in several types of tumor, including colon, breast and lung cancer, and has been implicated in cancer cell growth. Our previous study demonstrated that exposure of HCT 116 human colorectal cancer cells to aspirin caused acetylation of G6PD, and this was associated with a decrease in its enzyme activity. In the present study, this observation was expanded to HT‑29 colorectal cancer cells, in order to compare aspirin‑mediated acetylation of G6PD and its activity between HCT 116 and HT‑29 cells. In addition, the present study aimed to determine the acetylation targets of aspirin on recombinant G6PD to provide an insight into the mechanisms of inhibition. The results demonstrated that the extent of G6PD acetylation was significantly higher in HCT 116 cells compared with in HT‑29 cells; accordingly, a greater reduction in G6PD enzyme activity was observed in the HCT 116 cells. Mass spectrometry analysis of aspirin‑acetylated G6PD (isoform a) revealed that aspirin acetylated a total of 14 lysine residues, which were dispersed throughout the length of the G6PD protein. One of the important amino acid targets of aspirin included lysine 235 (K235, in isoform a) and this corresponds to K205 in isoform b, which has previously been identified as being important for catalysis. Acetylation of G6PD at several sites, including K235 (K205 in isoform b), may mediate inhibition of G6PD activity, which may contribute to the ability of aspirin to exert anticancer effects through decreased synthesis of ribose sugars and NADPH.

  20. Liposomal encapsulation of yeast alcohol dehydrogenase with cofactor for stabilization of the enzyme structure and activity.

    PubMed

    Yoshimoto, Makoto; Sato, Mami; Yoshimoto, Noriko; Nakao, Katsumi

    2008-01-01

    Yeast alcohol dehydrogenase (YADH) with its cofactor nicotinamide adenine dinucleotide (NAD+) could be stably encapsulated in liposomes composed of POPC (1-palmitoyl-2-oleoyl-sn-glycero-3- phosphocholine). The YADH- and NAD+-containing liposomes (YADH-NADL) were 100 nm in mean diameter. The liposomal YADH and NAD+ concentrations were 2.3 mg/mL and 3.9 mM, respectively. A synergistic effect of the liposomal encapsulation and the presence of NAD+ was examined on the thermal stability of YADH at 45 and 50 degrees C. The enzyme stability of the YADH-NADL was compared to the stabilities of the liposomal YADH (YADHL) containing 3.3 mg/mL YADH without NAD+ as well as the free YADH with and without NAD+. Free YADH was increasingly deactivated during its incubation at 45 degrees C for 2 h with decrease of the enzyme concentration from 3.3 to 0.01 mg/mL because of the dissociation of tetrameric YADH into its subunits. At that temperature, the coexistence of free NAD+ at 3.9 mM improved the stability of free YADH at 2.3 mg/mL through forming their thermostable complex, although the stabilization effect of NAD+ was lowered at 50 degrees C. The turbidity measurements for the above free YADH solution with and without NAD+ revealed that the change in the enzyme tertiary structure was much more pronounced at 50 degrees C than at 45 degrees C even in the presence of NAD+. This suggests that YADH was readily deactivated in free solution due to a decrease in the inherent affinity of YADH with NAD+. On the other hand, both liposomal enzyme systems, YADH-NADL and YADHL, showed stabilities at both 45 and 50 degrees C much higher than those of the above free enzyme systems, YADH/NAD+ and YADH. These results imply that the liposome membranes stabilized the enzyme tertiary and thus quaternary structures. Furthermore, the enzyme activity of the YADH-NADL showed a stability higher than that of the YADHL with a more remarkable effect of NAD+ at 50 degrees C than at 45 degrees C. This was

  1. Modified electrodes for NADH oxidation and dehydrogenase-based biosensors.

    PubMed

    Bartlett, P N; Simon, E; Toh, C S

    2002-05-15

    The direct electrochemical oxidation of beta-nicotinamide adenine dinucleotide (NADH) at clean electrodes proceeds through a radical cation intermediate at high overpotentials and is subject to rapid fouling. Consequently, there has been a considerable body of work over the last 20 years looking at ways in which to catalyse the reaction using a wide variety of different types of modified electrode. These studies have resulted in a good knowledge of the essential features required for efficient catalysis. In designing modified electrodes for NADH oxidation, it is not only important to identify suitable redox groups, which can catalyse NADH oxidation and can be attached to the electrode surface; it is also important to ensure facile charge transport between the immobilised redox sites in order to ensure that, in multilayer systems, the whole of the redox film contributes to the catalytic oxidation. One way to achieve this is by the use of electronically conducting polymers such as poly(aniline).

  2. What is adenine doing in photolyase?

    PubMed

    Acocella, Angela; Jones, Garth A; Zerbetto, Francesco

    2010-03-25

    The short answer to the title question is that it acts as an electrostatic bouncer that shoves the charge flow from flavin toward the DNA lesion that photolyase repairs. This explanation is provided by an explicit time-dependent quantum mechanical approach, which is used to investigate the electron transfer process that triggers the repair mechanism. The transfer occurs from the flavin photolyase cofactor to the cyclobutane ring of DNA, previously formed by light-induced cycloaddition of adjacent pyrimidine bases. The electron wave function dynamics accurately accounts for the previously proposed mechanism of transfer via the terminal methyl group of the flavin moiety present in the catalytic electron-donor cofactor, FADH(-), which also contains adenine. This latter moiety, which has often been assumed to be present mainly for structural reasons, instantaneously modifies the interaction between acceptor and donor by a variation of the electrostatic interactions so that the presence of its local atomic charges is necessary to trigger the transfer. In principle, knowledge of the details of the electron transfer dynamics and of the important role of polarization effects can be exploited to improve the efficiency of the repair mechanism in artificial systems.

  3. Ultraviolet Photostability of Adenine on Gold and Silicon Surfaces

    NASA Astrophysics Data System (ADS)

    Mateo-Martí, Eva; Pradier, Claire-Marie; Martín-Gago, Jose-Angel

    2009-08-01

    The adenine molecule is a DNA nucleobase, an essential component of genetic material. Because of the important role of DNA nucleobases in terrestrial biochemistry, we have studied the molecular adsorption, orientation, and chemical binding of adenine on metallic and semiconducting surfaces, such as gold and silicon, respectively, and their stability toward ultraviolet radiation by X-ray photoelectron spectroscopy (XPS) and reflection absorption infrared spectroscopy (RAIRS) techniques. We have exposed the adenine surface system to UV radiation (200-400 nm) under a high-vacuum environment (10-7 mbar) to study the photostability and photochemistry of adenine on different surfaces. After 10 or 24 hours of exposure under interplanetary space conditions, UV radiation induces desorption and partial dissociation of the molecule, which is dependant on the nature of the surface. The electronic excitations, induced in the material by UV absorption, play a major role in the photodestruction of the absorbed molecules on the solid surfaces.

  4. Adenine adlayers on Cu(111): XPS and NEXAFS study

    SciTech Connect

    Tsud, Nataliya; Bercha, Sofiia; Ševčíková, Klára; Matolín, Vladimír; Acres, Robert G.; Prince, Kevin C.

    2015-11-07

    The adsorption of adenine on Cu(111) was studied by photoelectron and near edge x-ray absorption fine structure spectroscopy. Disordered molecular films were deposited by means of physical vapor deposition on the substrate at room temperature. Adenine chemisorbs on the Cu(111) surface with strong rehybridization of the molecular orbitals and the Cu 3d states. Annealing at 150 °C caused the desorption of weakly bonded molecules accompanied by formation of a short-range ordered molecular adlayer. The interface is characterized by the formation of new states in the valence band at 1.5, 7, and 9 eV. The present work complements and refines existing knowledge of adenine interaction with this surface. The coverage is not the main parameter that defines the adenine geometry and adsorption properties on Cu(111). Excess thermal energy can further rearrange the molecular adlayer and, independent of the initial coverage, the flat lying stable molecular adlayer is formed.

  5. Enzyme activities and adenine nucleotide content in aorta, heart muscle and skeletal muscle from uraemic rats.

    PubMed Central

    Krog, M.; Ejerblad, S.; Agren, A.

    1986-01-01

    A prominent feature of arterial and myocardial lesions in uraemia is necrosis of the smooth muscle cells. In this study the possibility of detecting metabolic disturbances before necroses appear was investigated. The investigation was made on rats with moderate uraemia (mean serum creatinine 165 mumol/l) of 12 weeks duration. Enzyme activities and concentrations of adenine nucleotides were measured in aorta, heart and skeletal muscles. Histological examination disclosed no changes in these organs. Hexokinase, an important glycolytic enzyme, showed decreased activity in the skeletal muscle and aorta, whereas the hexosemonophosphate shunt enzyme glucose-6-phosphate dehydrogenase remained unchanged. The aspartate aminotransferase was increased in the skeletal muscle. Fat metabolism was not disturbed as reflected by unchanged activity of hydroxyacyl-CoA-dehydrogenase. Adenylatekinase which is important for the energy supply showed markedly increased activities in all tissues examined from the uraemic rats. Decreased ATP levels were found in the heart muscle and the aorta of the uraemic animals, whereas the total pool of adenosine phosphates remained unchanged in all tissues. The animal model described offers a useful means of detecting early changes in uraemia and should be useful for studying the effects of different treatments of uraemic complications. PMID:3718844

  6. Sodium thiosulfate protects brain in rat model of adenine induced vascular calcification.

    PubMed

    Subhash, N; Sriram, R; Kurian, Gino A

    2015-11-01

    Vascular bed calcification is a common feature of ends stage renal disease that may lead to a complication in cardiovascular and cerebrovascular beds, which is a promoting cause of myocardial infarction, stroke, dementia and aneurysms. Sodium thiosulfate (STS) due to its multiple properties such as antioxidant and calcium chelation has been reported to prevent vascular calcification in uremic rats, without mentioning its impact on cerebral function. Moreover, the previous studies have not explored the effect of STS on the mitochondrial dysfunction, one of the main pathophysiological features associated with the disease and the main site for STS metabolism. The present study addresses this limitation by using a rat model where 0.75% adenine was administered to induce vascular calcification and 400 mg/kg b wt. of STS was given as preventive and curative agent. The blood and urine chemistries along with histopathology of aorta confirms the renal protective effect of STS in two modes of administration. The brain oxidative stress assessment was made through TBARS level, catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities, found to be in the near normal level. STS administration not only reduced the mitochondrial oxidative stress (measured by TBARS, SOD, GPx and CAT) but also preserved the mitochondrial respiratory enzyme activities (NADH dehydrogenase, Succinate dehydrogenase and Malate dehydrogenase) and its physiology (measured by P/O ratio and RCR). In fact, the protective effect of STS was prominent, when it was administered as a curative agent, where low H2S and high thiosulfate level was observed along with low cystathionine β synthase activity, confirms thiosulfate mediated renal protection. In conclusion, STS when given after induction of calcification is protective to the brain by preserving its mitochondria, compared to the treatment given concomitantly. PMID:26363090

  7. Sodium thiosulfate protects brain in rat model of adenine induced vascular calcification.

    PubMed

    Subhash, N; Sriram, R; Kurian, Gino A

    2015-11-01

    Vascular bed calcification is a common feature of ends stage renal disease that may lead to a complication in cardiovascular and cerebrovascular beds, which is a promoting cause of myocardial infarction, stroke, dementia and aneurysms. Sodium thiosulfate (STS) due to its multiple properties such as antioxidant and calcium chelation has been reported to prevent vascular calcification in uremic rats, without mentioning its impact on cerebral function. Moreover, the previous studies have not explored the effect of STS on the mitochondrial dysfunction, one of the main pathophysiological features associated with the disease and the main site for STS metabolism. The present study addresses this limitation by using a rat model where 0.75% adenine was administered to induce vascular calcification and 400 mg/kg b wt. of STS was given as preventive and curative agent. The blood and urine chemistries along with histopathology of aorta confirms the renal protective effect of STS in two modes of administration. The brain oxidative stress assessment was made through TBARS level, catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities, found to be in the near normal level. STS administration not only reduced the mitochondrial oxidative stress (measured by TBARS, SOD, GPx and CAT) but also preserved the mitochondrial respiratory enzyme activities (NADH dehydrogenase, Succinate dehydrogenase and Malate dehydrogenase) and its physiology (measured by P/O ratio and RCR). In fact, the protective effect of STS was prominent, when it was administered as a curative agent, where low H2S and high thiosulfate level was observed along with low cystathionine β synthase activity, confirms thiosulfate mediated renal protection. In conclusion, STS when given after induction of calcification is protective to the brain by preserving its mitochondria, compared to the treatment given concomitantly.

  8. Effect of Exogenous Extracellular Nicotinamide Adenine Dinucleotide (NAD⁺) on Bioelectric Activity of the Pacemaker and Conduction System of the Heart.

    PubMed

    Pustovit, K B; Kuz'min, V S; Sukhova, G S

    2015-06-01

    In rat sinoatrial node, NAD(+) (10 μM) reduced the rate of spontaneous action potentials, duration of action potentials, and the velocity of slow diastolic depolarization, but the rate of action potential front propagation increases. In passed rabbit Purkinje fibers, NAD(+) (10 μM) reduced the duration of action potentials. Under conditions of spontaneous activity of Purkinje fibers, NAD(+) reduced the fi ring rate and the rate of slow diastolic depolarization. The effects of extracellular NAD(+) on bioelectric activity of the pacemaker (sinoatrial node) and conduction system of the heart (Purkinje fibers) are probably related to activation of P1 and P2 purinoceptors.

  9. Novel concept of enzyme selective nicotinamide adenine dinucleotide (NAD)-modified inhibitors based on enzyme taxonomy from the diphosphate conformation of NAD.

    PubMed

    Fujii, Mikio; Kitagawa, Yasuyuki; Iida, Shui; Kato, Keisuke; Ono, Machiko

    2015-11-15

    The dihedral angle θ of the diphosphate part of NAD(P) were investigated to distinguish the differences in the binding-conformation of NAD(P) to enzymes and to create an enzyme taxonomy. Furthermore, new inhibitors with fixed dihedral angles showed that enzymes could recognize the differences in the dihedral angle θ. We suggest the taxonomy and the dihedral angle θ are important values for chemists to consider when designing inhibitors and drugs that target enzymes.

  10. Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) and Cyclic ADP-Ribose (cADPR) Mediate Ca2+ Signaling in Cardiac Hypertrophy Induced by β-Adrenergic Stimulation

    PubMed Central

    Shawl, Asif Iqbal; Im, Soo-Yeul; Nam, Tae-Sik; Lee, Sun-Hwa; Ko, Jae-Ki; Jang, Kyu Yoon; Kim, Donghee; Kim, Uh-Hyun

    2016-01-01

    Ca2+ signaling plays a fundamental role in cardiac hypertrophic remodeling, but the underlying mechanisms remain poorly understood. We investigated the role of Ca2+-mobilizing second messengers, NAADP and cADPR, in the cardiac hypertrophy induced by β-adrenergic stimulation by isoproterenol. Isoproterenol induced an initial Ca2+ transients followed by sustained Ca2+ rises. Inhibition of the cADPR pathway with 8-Br-cADPR abolished only the sustained Ca2+ increase, whereas inhibition of the NAADP pathway with bafilomycin-A1 abolished both rapid and sustained phases of the isoproterenol-mediated signal, indicating that the Ca2+ signal is mediated by a sequential action of NAADP and cADPR. The sequential production of NAADP and cADPR was confirmed biochemically. The isoproterenol-mediated Ca2+ increase and cADPR production, but not NAADP production, were markedly reduced in cardiomyocytes obtained from CD38 knockout mice. CD38 knockout mice were rescued from chronic isoproterenol infusion-induced myocardial hypertrophy, interstitial fibrosis, and decrease in fractional shortening and ejection fraction. Thus, our findings indicate that β-adrenergic stimulation contributes to the development of maladaptive cardiac hypertrophy via Ca2+ signaling mediated by NAADP-synthesizing enzyme and CD38 that produce NAADP and cADPR, respectively. PMID:26959359

  11. The role of Val-265 for flavin adenine dinucleotide (FAD) binding in pyruvate oxidase: FTIR, kinetic, and crystallographic studies on the enzyme variant V265A.

    PubMed

    Wille, Georg; Ritter, Michaela; Weiss, Manfred S; König, Stephan; Mäntele, Werner; Hübner, Gerhard

    2005-04-01

    In pyruvate oxidase (POX) from Lactobacillus plantarum, valine 265 participates in binding the cofactor FAD and is responsible for the strained conformation of its isoalloxazine moiety that is visible in the crystal structure of POX. The contrasting effects of the conservative amino acid exchange V265A on the enzyme's catalytic properties, cofactor affinity, and protein structure were investigated. The most prominent effect of the exchange was observed in the 2.2 A crystal structure of the mutant POX. While the overall structures of the wild-type and the variant are similar, flavin binding in particular is clearly different. Local disorder at the isoalloxazine binding site prevents modeling of the complete FAD cofactor and two protein loops of the binding site. Only the ADP moiety shows well-defined electron density, indicating an "anchor" function for this part of the molecule. This notion is corroborated by competition experiments where ADP was used to displace FAD from the variant enzyme. Despite the fact that the affinity of FAD binding in the variant is reduced, the catalytic properties are very similar to the wild-type, and the redox potential of the bound flavin is the same for both proteins. The rate of electron transfer toward the flavin during turnover is reduced to one-third compared to the wild-type, but k(cat) remains unchanged. Redox-triggered FTIR difference spectroscopy of free FAD shows the nu(C(10a)=N(1)) band at 1548 cm(-)(1). In POX-V265A, this band is found at 1538 cm(-)(1) and thus shifted less strongly than in wild-type POX where it is found at 1534 cm(-)(1). Taking these observations together, the conservative exchange V265A in POX has a surprisingly small effect on the catalytic properties of the enzyme, whereas the effect on the three-dimensional structure is rather big.

  12. Enhanced Reduced Nicotinamide Adenine Dinucleotide electrocatalysis onto multi-walled carbon nanotubes-decorated gold nanoparticles and their use in hybrid biofuel cell

    NASA Astrophysics Data System (ADS)

    Aquino Neto, S.; Almeida, T. S.; Belnap, D. M.; Minteer, S. D.; De Andrade, A. R.

    2015-01-01

    We report the preparation of Au nanoparticles synthetized by different protocols and supported on the surface of multi-walled carbon nanotubes containing different functional groups, focusing on their electrochemical performance towards NADH oxidation, ethanol bioelectrocatalysis, and ethanol/O2 biofuel cell. We describe four different synthesis protocols: microwave-assisted heating, water-in-oil, and dendrimer-encapsulated nanoparticles using acid or thiol species in the extraction step. The physical characterization of the metallic nanoparticles indicated that both the synthetic protocol as well as the type of functional groups on the carbon nanotubes affect the final particle size (varying from 13.4 to 2.4 nm) and their distribution onto the carbon surface. Moreover, the electrochemical data indicated that these two factors also influence their performance toward the electrooxidation of NADH. We observed that the samples containing Au nanoparticles with smaller size leads to higher catalytic currents and also shifts the oxidation potential of the targeted reaction, which varied from 0.13 to -0.06 V vs Ag/AgCl. Ethanol/O2 biofuel cell tests indicated that the hybrid bioelectrodes containing smaller and better distributed Au nanoparticles on the surface of carbon nanotubes generates higher power output, confirming that the electrochemical regeneration of NAD+ plays an important role in the overall biofuel cell performance.

  13. Induction of hepatoma carcinoma cell apoptosis through activation of the JNK-nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-ROS self-driven death signal circuit.

    PubMed

    Zeng, Ke-Wu; Song, Fang-Jiao; Wang, Ying-Hong; Li, Ning; Yu, Qian; Liao, Li-Xi; Jiang, Yong; Tu, Peng-Fei

    2014-10-28

    As an efficient method for inducing tumor cell apoptosis, ROS can be constantly formed and accumulated in NADPH oxidase overactivated-cells, resulting in further mitochondrial membrane damage and mitochondria-dependent apoptosis. In addition, JNK mitogen-activated protein kinase (JNK MAPK) signal also acts as a vital candidate pathway for inducing tumor cell apoptosis by targeting mitochondrial death pathway. However, the relationship between NADPH oxidase-ROS and JNK MAPK signal still remains unclear. Here, we discovered a novel self-driven signal circuit between NADPH oxidase-ROS and JNK MAPK, which was induced by a cytotoxic steroidal saponin (ASC) in hepatoma carcinoma cells. NADPH oxidase-dependent ROS production was markedly activated by ASC and directly led to JNK MAPK activation. Moreover, antioxidant, NADPH oxidase inhibitor and specific knock-out for p47 subunit of NADPH oxidase could effectively block NADPH oxidase-ROS-dependent JNK activation, suggesting that NADPH oxidase is an upstream regulator of JNK MAPK. Conversely, a specific JNK inhibitor could inhibit ASC-induced NADPH oxidase activation and down-regulate ROS levels as well, indicating that JNK might also regulate NADPH oxidase activity to some extent. These observations indicate that NADPH oxidase and JNK MAPK activate each other as a signal circuit. Furthermore, drug pretreatment experiments with ASC showed this signal circuit operated continuously via a self-driven mode and finally induced apoptosis in hepatoma carcinoma cells. Taken together, we provide a proof for inducing hepatoma carcinoma cell apoptosis by activating the JNK-NADPH oxidase-ROS-dependent self-driven signal circuit pathway. PMID:25064608

  14. Towards understanding the origins of the different specificities of binding the reduced (NADPH) and oxidised (NADP +) forms of nicotinamide adenine dinucleotide phosphate coenzyme to dihydrofolate reductase

    NASA Astrophysics Data System (ADS)

    Polshakov, Vladimir I.; Biekofsky, Rodolfo R.; Birdsall, Berry; Feeney, James

    2002-01-01

    Lactobacillus casei dihydrofolate reductase (DHFR) binds more than a thousand times tighter to NADPH than to NADP +. The origins of the difference in binding affinity to DHFR between NADPH and NADP + are investigated in the present study using experimental NMR data and hybrid density functional, B3LYP, calculations. Certain protein residues (Ala 6, Gln 7, Ile 13 and Gly 14) that are directly involved in hydrogen bonding with the nicotinamide carboxamide group show consistent differences in 1H and 15N chemical shift between NADPH and NADP + in a variety of ternary complexes. B3LYP calculations in model systems of protein-coenzyme interactions show differences in the H-bond geometry and differences in charge distribution between the oxidised and reduced forms of the nicotinamide ring. GIAO isotropic nuclear shieldings calculated for nuclei in these systems reproduce the experimentally observed trends in magnitudes and signs of the chemical shifts. The experimentally observed reduction in binding of NADP + compared with NADPH results partly from NADP + having to change its nicotinamide amide group from a cis- to a trans-conformation on binding and partly from the oxidised nicotinamide ring of NADP + being unable to take up its optimal hydrogen bonding geometry in its interactions with protein residues.

  15. The activity of uridine diphosphate-D-glucose: Nicotinamide-adenine dinucleotide oxidoreductase in cambial tissue and differentiating xylem isolated from sycamore trees.

    PubMed

    Rubery, P H

    1972-06-01

    The activity of UDPGlc: NAD oxidoreductase is measured in enzyme preparations obtained from sycamore cambium and xylem tissue. The activity of this enzyme is greater in xylem than in cambium whether expressed on a specific activity basis or on a per-cell basis. It is suggested that, in developing xylem, direct oxidation of UDPGlc may contribute significantly to the biosynthesis of polysaccharide precursors.

  16. Structural basis for the alteration of coenzyme specificity in a malate dehydrogenase mutant

    SciTech Connect

    Tomita, Takeo; Fushinobu, Shinya; Kuzuyama, Tomohisa; Nishiyama, Makoto . E-mail: umanis@mail.ecc.u-tokyo.ac.jp

    2006-08-25

    To elucidate the structural basis for the alteration of coenzyme specificity from NADH toward NADPH in a malate dehydrogenase mutant EX7 from Thermus flavus, we determined the crystal structures at 2.0 A resolution of EX7 complexed with NADPH and NADH, respectively. In the EX7-NADPH complex, Ser42 and Ser45 form hydrogen bonds with the 2'-phosphate group of the adenine ribose of NADPH, although the adenine moiety is not seen in the electron density map. In contrast, although Ser42 and Ser45 occupy a similar position in the EX7-NADH complex structure, both the adenine and adenine ribose moieties of NADH are missing in the map. These results and kinetic analysis of site-directed mutant enzymes indicate (1) that the preference of EX7 for NADPH over NADH is ascribed to the recognition of the 2'-phosphate group by two Ser and Arg44, and (2) that the adenine moiety of NADPH is not recognized in this mutant.

  17. Theoretical study on absorption and emission spectra of adenine analogues.

    PubMed

    Liu, Hongxia; Song, Qixia; Yang, Yan; Li, Yan; Wang, Haijun

    2014-04-01

    Fluorescent nucleoside analogues have attracted much attention in studying the structure and dynamics of nucleic acids in recent years. In the present work, we use theoretical calculations to investigate the structural and optical properties of four adenine analogues (termed as A1, A2, A3, and A4), and also consider the effects of aqueous solution and base pairing. The results show that the fluorescent adenine analogues can pair with thymine to form stable H-bonded WC base pairs. The excited geometries of both adenine analogues and WC base pairs are similar to the ground geometries. The absorption and emission maxima of adenine analogues are greatly red shifted compared with nature adenine, the oscillator strengths of A1 and A2 are stronger than A3 and A4 in both absorption and emission spectra. The calculated low-energy peaks in the absorption spectra are in good agreement with the experimental data. In general, the aqueous solution and base pairing can slightly red-shift both the absorption and emission maxima, and can increase the oscillator strengths of absorption spectra, but significantly decrease the oscillator strengths of A3 in emission spectra.

  18. Plant Formate Dehydrogenase

    SciTech Connect

    John Markwell

    2005-01-10

    The research in this study identified formate dehydrogenase, an enzyme that plays a metabolic role on the periphery of one-carbon metabolism, has an unusual localization in Arabidopsis thaliana and that the enzyme has an unusual kinetic plasticity. These properties make it possible that this enzyme could be engineered to attempt to engineer plants with an improved photosynthetic efficiency. We have produced transgenic Arabidopsis and tobacco plants with increased expression of the formate dehydrogenase enzyme to initiate further studies.

  19. Brain purine metabolism and xanthine dehydrogenase/oxidase conversion in hyperammonemia are under control of NMDA receptors and nitric oxide.

    PubMed

    Kaminsky, Yury; Kosenko, Elena

    2009-10-19

    In hyperammonemia, a decrease in brain ATP can be a result of adenine nucleotide catabolism. Xanthine dehydrogenase (XD) and xanthine oxidase (XO) are the end steps in the purine catabolic pathway and directly involved in depletion of the adenylate pool in the cell. Besides, XD can easily be converted to XO to produce reactive oxygen species in the cell. In this study, the effects of acute ammonia intoxication in vivo on brain adenine nucleotide pool and xanthine and hypoxanthine, the end degradation products of adenine nucleotides, during the conversion of XD to XO were studied. Injection of rats with ammonium acetate was shown to lead to the dramatic decrease in the ATP level, adenine nucleotide pool size and adenylate energy charge and to the great increase in hypoxanthine and xanthine 11 min after the lethal dose indicating rapid degradation of adenylates. Conversion of XD to XO in hyperammonemic rat brain was evidenced by elevated XO/XD activity ratio. Injection of MK-801, a NMDA receptor blocker, prevented ammonia-induced catabolism of adenine nucleotides and conversion of XD to XO suggesting that in vivo these processes are mediated by activation of NMDA receptors. The in vitro dose-dependent effects of sodium nitroprusside, a NO donor, on XD and XO activities are indicative of the direct modification of the enzymes by nitric oxide. This is the first report evidencing the increase in brain xanthine and hypoxanthine levels and adenine nucleotide breakdown in acute ammonia intoxication and NMDA receptor-mediated prevention of these alterations.

  20. Cerulenin-mediated apoptosis is involved in adenine metabolic pathway

    SciTech Connect

    Chung, Kyung-Sook; Sun, Nam-Kyu; Lee, Seung-Hee; Lee, Hyun-Jee; Choi, Shin-Jung; Kim, Sun-Kyung; Song, Ju-Hyun; Jang, Young-Joo; Song, Kyung-Bin; Yoo, Hyang-Sook; Simon, Julian . E-mail: jsimon@fhcrc.org; Won, Misun . E-mail: misun@kribb.re.kr

    2006-10-27

    Cerulenin, a fatty acid synthase (FAS) inhibitor, induces apoptosis of variety of tumor cells. To elucidate mode of action by cerulenin, we employed the proteomics approach using Schizosaccharomyces pombe. The differential protein expression profile of S. pombe revealed that cerulenin modulated the expressions of proteins involved in stresses and metabolism, including both ade10 and adk1 proteins. The nutrient supplementation assay demonstrated that cerulenin affected enzymatic steps transferring a phosphoribosyl group. This result suggests that cerulenin accumulates AMP and p-ribosyl-s-amino-imidazole carboxamide (AICAR) and reduces other necessary nucleotides, which induces feedback inhibition of enzymes and the transcriptional regulation of related genes in de novo and salvage adenine metabolic pathway. Furthermore, the deregulation of adenine nucleotide synthesis may interfere ribonucleotide reductase and cause defects in cell cycle progression and chromosome segregation. In conclusion, cerulenin induces apoptosis through deregulation of adenine nucleotide biosynthesis resulting in nuclear division defects in S. pombe.

  1. Possible prebiotic catalysts formed from adenine and aldehyde

    NASA Astrophysics Data System (ADS)

    Vergne, J.; Dumas, L.; Décout, J.-L.; Maurel, M.-C.

    2000-09-01

    Careful examination of the present metabolism and in vitro selection of various catalytic RNAs strongly support the "RNA World" hypothesis of the origin of life. However, in this scenario, the difficult prebiotic synthesis of ribose and consequently of nucleotides remain a major problem. In order to overcome this problem and obtain nucleoside analogs, we are investigating reactions of the nucleic acid base, adenine 1, with different aldehydes under presumably prebiotic conditions. In the reaction of adenine and pyruvaldehyde 2 in water, we report here the formation in high yield of two isomeric products. These compounds possessing alcohols functions as nucleosides result from condensation of two molecules of pyruvaldehyde on the 6-amino group of one adenine molecule. Their catalytic activities in the model hydrolysis of p-nitrophenylesters appeared interesting in the search of prebiotic catalysts.

  2. Structural basis for removal of adenine mispaired with 8-oxoguanine by MutY adenine DNA glycosylase.

    PubMed

    Fromme, J Christopher; Banerjee, Anirban; Huang, Susan J; Verdine, Gregory L

    2004-02-12

    The genomes of aerobic organisms suffer chronic oxidation of guanine to the genotoxic product 8-oxoguanine (oxoG). Replicative DNA polymerases misread oxoG residues and insert adenine instead of cytosine opposite the oxidized base. Both bases in the resulting A*oxoG mispair are mutagenic lesions, and both must undergo base-specific replacement to restore the original C*G pair. Doing so represents a formidable challenge to the DNA repair machinery, because adenine makes up roughly 25% of the bases in most genomes. The evolutionarily conserved enzyme adenine DNA glycosylase (called MutY in bacteria and hMYH in humans) initiates repair of A*oxoG to C*G by removing the inappropriately paired adenine base from the DNA backbone. A central issue concerning MutY function is the mechanism by which A*oxoG mispairs are targeted among the vast excess of A*T pairs. Here we report the use of disulphide crosslinking to obtain high-resolution crystal structures of MutY-DNA lesion-recognition complexes. These structures reveal the basis for recognizing both lesions in the A*oxoG pair and for catalysing removal of the adenine base. PMID:14961129

  3. Alterations in energy/redox metabolism induced by mitochondrial and environmental toxins: a specific role for glucose-6-phosphate-dehydrogenase and the pentose phosphate pathway in paraquat toxicity.

    PubMed

    Lei, Shulei; Zavala-Flores, Laura; Garcia-Garcia, Aracely; Nandakumar, Renu; Huang, Yuting; Madayiputhiya, Nandakumar; Stanton, Robert C; Dodds, Eric D; Powers, Robert; Franco, Rodrigo

    2014-09-19

    Parkinson's disease (PD) is a multifactorial disorder with a complex etiology including genetic risk factors, environmental exposures, and aging. While energy failure and oxidative stress have largely been associated with the loss of dopaminergic cells in PD and the toxicity induced by mitochondrial/environmental toxins, very little is known regarding the alterations in energy metabolism associated with mitochondrial dysfunction and their causative role in cell death progression. In this study, we investigated the alterations in the energy/redox-metabolome in dopaminergic cells exposed to environmental/mitochondrial toxins (paraquat, rotenone, 1-methyl-4-phenylpyridinium [MPP+], and 6-hydroxydopamine [6-OHDA]) in order to identify common and/or different mechanisms of toxicity. A combined metabolomics approach using nuclear magnetic resonance (NMR) and direct-infusion electrospray ionization mass spectrometry (DI-ESI-MS) was used to identify unique metabolic profile changes in response to these neurotoxins. Paraquat exposure induced the most profound alterations in the pentose phosphate pathway (PPP) metabolome. 13C-glucose flux analysis corroborated that PPP metabolites such as glucose-6-phosphate, fructose-6-phosphate, glucono-1,5-lactone, and erythrose-4-phosphate were increased by paraquat treatment, which was paralleled by inhibition of glycolysis and the TCA cycle. Proteomic analysis also found an increase in the expression of glucose-6-phosphate dehydrogenase (G6PD), which supplies reducing equivalents by regenerating nicotinamide adenine dinucleotide phosphate (NADPH) levels. Overexpression of G6PD selectively increased paraquat toxicity, while its inhibition with 6-aminonicotinamide inhibited paraquat-induced oxidative stress and cell death. These results suggest that paraquat "hijacks" the PPP to increase NADPH reducing equivalents and stimulate paraquat redox cycling, oxidative stress, and cell death. Our study clearly demonstrates that alterations in

  4. Role of aromatic stacking interactions in the modulation of the two-electron reduction potentials of flavin and substrate/product in Megasphaera elsdenii short-chain acyl-coenzyme A dehydrogenase.

    PubMed

    Pellett, J D; Becker, D F; Saenger, A K; Fuchs, J A; Stankovich, M T

    2001-06-26

    The effects of aromatic stacking interactions on the stabilization of reduced flavin adenine dinucleotide (FAD) and substrate/product have been investigated in short-chain acyl-coenzyme A dehydrogenase (SCAD) from Megasphaera elsdenii. Mutations were made at the aromatic residues Phe160 and Tyr366, which flank either face of the noncovalently bound flavin cofactor. The electrochemical properties of the mutants were then measured in the presence and absence of a butyryl-CoA/crotonyl-CoA mixture. Results from these redox studies suggest that the phenylalanine and tyrosine both engage in favorable pi-sigma interactions with the isoalloxazine ring of the flavin to help stabilize formation of the anionic flavin hydroquinone. Disruption of these interactions by replacing either residue with a leucine (F160L and Y366L) causes the midpoint potential for the oxidized/hydroquinone couple (E(ox/hq)) to shift negative by 44-54 mV. The E(ox/hq) value was also found to decrease when aromatic residues containing electron-donating heteroatoms were introduced at the 160 position. Potential shifts of -32 and -43 mV for the F160Y and F160W mutants, respectively, are attributed to increased pi-pi repulsive interactions between the ring systems. This study also provides evidence for thermodynamic regulation of the substrate/product couple in the active site of SCAD. Binding to the wild-type enzyme caused the midpoint potential for the butyryl-CoA/crotonyl-CoA couple (E(BCoA/CCoA)) to shift 14 mV negative, stabilizing the oxidized product. Formation of product was found to be even more favorable in complexes with the F160Y and F160W mutants, suggesting that the electrostatic environment around the flavin plays a role in substrate/product activation.

  5. A novel 3-sulfinopropionyl coenzyme A (3SP-CoA) desulfinase from Advenella mimigardefordensis strain DPN7T acting as a key enzyme during catabolism of 3,3'-dithiodipropionic acid is a member of the acyl-CoA dehydrogenase superfamily.

    PubMed

    Schürmann, Marc; Deters, Anika; Wübbeler, Jan Hendrik; Steinbüchel, Alexander

    2013-04-01

    3-Sulfinopropionyl coenzyme A (3SP-CoA) desulfinase (AcdDPN7) is a new desulfinase that catalyzes the sulfur abstraction from 3SP-CoA in the betaproteobacterium Advenella mimigardefordensis strain DPN7(T). During investigation of a Tn5::mob-induced mutant defective in growth on 3,3'-dithiodipropionate (DTDP) and also 3-sulfinopropionate (3SP), the transposon insertion was mapped to an open reading frame with the highest homology to an acyl-CoA dehydrogenase (Acd) from Burkholderia phenoliruptrix strain BR3459a (83% identical and 91% similar amino acids). An A. mimigardefordensis Δacd mutant was generated and verified the observed phenotype of the Tn5::mob-induced mutant. For enzymatic studies, AcdDPN7 was heterologously expressed in Escherichia coli BL21(DE3)/pLysS by using pET23a::acdDPN7. The purified protein is yellow and contains a noncovalently bound flavin adenine dinucleotide (FAD) cofactor, as verified by high-performance liquid chromatography-electrospray ionization mass spectrometry (HPLC-ESI-MS) analyses. Size-exclusion chromatography revealed a native molecular mass of about 173 kDa, indicating a homotetrameric structure (theoretically 179 kDa), which is in accordance with other members of the acyl-CoA dehydrogenase superfamily. In vitro assays unequivocally demonstrated that the purified enzyme converted 3SP-CoA into propionyl-CoA and sulfite (SO3(2-)). Kinetic studies of AcdDPN7 revealed a Vmax of 4.19 μmol min(-1) mg(-1), an apparent Km of 0.013 mM, and a kcat/Km of 240.8 s(-1) mM(-1) for 3SP-CoA. However, AcdDPN7 is unable to perform a dehydrogenation, which is the usual reaction catalyzed by members of the acyl-CoA dehydrogenase superfamily. Comparison to other known desulfinases showed a comparably high catalytic efficiency of AcdDPN7 and indicated a novel reaction mechanism. Hence, AcdDPN7 encodes a new desulfinase based on an acyl-CoA dehydrogenase (EC 1.3.8.x) scaffold. Concomitantly, we identified the gene product that is responsible for the

  6. A Novel 3-Sulfinopropionyl Coenzyme A (3SP-CoA) Desulfinase from Advenella mimigardefordensis Strain DPN7T Acting as a Key Enzyme during Catabolism of 3,3′-Dithiodipropionic Acid Is a Member of the Acyl-CoA Dehydrogenase Superfamily

    PubMed Central

    Schürmann, Marc; Deters, Anika; Wübbeler, Jan Hendrik

    2013-01-01

    3-Sulfinopropionyl coenzyme A (3SP-CoA) desulfinase (AcdDPN7) is a new desulfinase that catalyzes the sulfur abstraction from 3SP-CoA in the betaproteobacterium Advenella mimigardefordensis strain DPN7T. During investigation of a Tn5::mob-induced mutant defective in growth on 3,3′-dithiodipropionate (DTDP) and also 3-sulfinopropionate (3SP), the transposon insertion was mapped to an open reading frame with the highest homology to an acyl-CoA dehydrogenase (Acd) from Burkholderia phenoliruptrix strain BR3459a (83% identical and 91% similar amino acids). An A. mimigardefordensis Δacd mutant was generated and verified the observed phenotype of the Tn5::mob-induced mutant. For enzymatic studies, AcdDPN7 was heterologously expressed in Escherichia coli BL21(DE3)/pLysS by using pET23a::acdDPN7. The purified protein is yellow and contains a noncovalently bound flavin adenine dinucleotide (FAD) cofactor, as verified by high-performance liquid chromatography–electrospray ionization mass spectrometry (HPLC-ESI-MS) analyses. Size-exclusion chromatography revealed a native molecular mass of about 173 kDa, indicating a homotetrameric structure (theoretically 179 kDa), which is in accordance with other members of the acyl-CoA dehydrogenase superfamily. In vitro assays unequivocally demonstrated that the purified enzyme converted 3SP-CoA into propionyl-CoA and sulfite (SO32−). Kinetic studies of AcdDPN7 revealed a Vmax of 4.19 μmol min−1 mg−1, an apparent Km of 0.013 mM, and a kcat/Km of 240.8 s−1 mM−1 for 3SP-CoA. However, AcdDPN7 is unable to perform a dehydrogenation, which is the usual reaction catalyzed by members of the acyl-CoA dehydrogenase superfamily. Comparison to other known desulfinases showed a comparably high catalytic efficiency of AcdDPN7 and indicated a novel reaction mechanism. Hence, AcdDPN7 encodes a new desulfinase based on an acyl-CoA dehydrogenase (EC 1.3.8.x) scaffold. Concomitantly, we identified the gene product that is responsible for

  7. Mature Microsatellites: Mechanisms Underlying Dinucleotide Microsatellite Mutational Biases in Human Cells

    PubMed Central

    Baptiste, Beverly A.; Ananda, Guruprasad; Strubczewski, Noelle; Lutzkanin, Andrew; Khoo, Su Jen; Srikanth, Abhinaya; Kim, Nari; Makova, Kateryna D.; Krasilnikova, Maria M.; Eckert, Kristin A.

    2013-01-01

    Dinucleotide microsatellites are dynamic DNA sequences that affect genome stability. Here, we focused on mature microsatellites, defined as pure repeats of lengths above the threshold and unlikely to mutate below it in a single mutational event. We investigated the prevalence and mutational behavior of these sequences by using human genome sequence data, human cells in culture, and purified DNA polymerases. Mature dinucleotides (≥10 units) are present within exonic sequences of >350 genes, resulting in vulnerability to cellular genetic integrity. Mature dinucleotide mutagenesis was examined experimentally using ex vivo and in vitro approaches. We observe an expansion bias for dinucleotide microsatellites up to 20 units in length in somatic human cells, in agreement with previous computational analyses of germ-line biases. Using purified DNA polymerases and human cell lines deficient for mismatch repair (MMR), we show that the expansion bias is caused by functional MMR and is not due to DNA polymerase error biases. Specifically, we observe that the MutSα and MutLα complexes protect against expansion mutations. Our data support a model wherein different MMR complexes shift the balance of mutations toward deletion or expansion. Finally, we show that replication fork progression is stalled within long dinucleotides, suggesting that mutational mechanisms within long repeats may be distinct from shorter lengths, depending on the biochemistry of fork resolution. Our work combines computational and experimental approaches to explain the complex mutational behavior of dinucleotide microsatellites in humans. PMID:23450065

  8. Detection of electronically equivalent tautomers of adenine base: DFT study

    SciTech Connect

    Siddiqui, Shamoon Ahmad; Bouarissa, Nadir; Rasheed, Tabish; Al-Assiri, M.S.; Al-Hajry, A.

    2014-03-01

    Graphical abstract: - Highlights: • DFT calculations have been performed on adenine and its rare tautomer Cu{sup 2+} complexes. • Interaction of A-Cu{sup 2+} and rA-Cu{sup 2+} complexes with AlN modified fullerene (C{sub 60}) have been studied briefly. • It is found that AlN modified C{sub 60} could be used as a nanoscale sensor to detect these two A-Cu{sup 2+} and rA-Cu{sup 2+} complexes. - Abstract: In the present study, quantum chemical calculations were carried out to investigate the electronic structures and stabilities of adenine and its rare tautomer along with their Cu{sup 2+} complexes. Density Functional Theory (B3LYP method) was used in all calculations. The two Cu{sup 2+} complexes of adenine have almost similar energies and electronic structures; hence, their chemical differentiation is very difficult. For this purpose, interactions of these complexes with AlN modified fullerene (C{sub 60}) have been studied. Theoretical investigations reveal that AlN-doped C{sub 60} may serve as a potentially viable nanoscale sensor for detection of the two Cu{sup 2+} complexes of adenine.

  9. Thymine, adenine and lipoamino acid based gene delivery systems.

    PubMed

    Skwarczynski, Mariusz; Ziora, Zyta M; Coles, Daniel J; Lin, I-Chun; Toth, Istvan

    2010-05-14

    A novel class of thymine, adenine and lipoamino acid based non-viral carriers for gene delivery has been developed. Their ability to bind to DNA by hydrogen bonding was confirmed by NMR diffusion, isothermal titration calorimetry and transmission electron microscopy experiments.

  10. PolyAdenine cryogels for fast and effective RNA purification.

    PubMed

    Köse, Kazım; Erol, Kadir; Özgür, Erdoğan; Uzun, Lokman; Denizli, Adil

    2016-10-01

    Cryogels are used effectively for many diverse applications in a variety of fields. The isolation or purification of RNA, one of the potential utilizations for cryogels, is crucial due to their vital roles such as encoding, decoding, transcription and translation, and gene expression. RNA principally exists within every living thing, but their tendency to denaturation easily is still the most challenging issue. Herein, we aimed to develop adenine incorporated polymeric cryogels as an alternative sorbent for cost-friendly and fast RNA purification with high capacity. For this goal, we synthesized the polymerizable derivative of adenine called as adenine methacrylate (AdeM) through the substitution reaction between adenine and methacryloyl chloride. Then, 2-hydroxyethyl methacrylate (HEMA)-based cryogels were prepared in a partially frozen aqueous medium by copolymerization of monomers, AdeM, and HEMA. The cryogels were characterized by using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), surface area measurements, thermogravimetric analysis (TGA), and swelling tests. RNA adsorption experiments were performed via batch system while varying different conditions including pH, initial RNA concentration, temperature, and interaction time. We achieved high RNA adsorption capacity of cryogels, with the swelling ratio around 510%, as 11.86mg/g. The cryogels might be reused at least five times without significant decrease in adsorption capacity.

  11. PolyAdenine cryogels for fast and effective RNA purification.

    PubMed

    Köse, Kazım; Erol, Kadir; Özgür, Erdoğan; Uzun, Lokman; Denizli, Adil

    2016-10-01

    Cryogels are used effectively for many diverse applications in a variety of fields. The isolation or purification of RNA, one of the potential utilizations for cryogels, is crucial due to their vital roles such as encoding, decoding, transcription and translation, and gene expression. RNA principally exists within every living thing, but their tendency to denaturation easily is still the most challenging issue. Herein, we aimed to develop adenine incorporated polymeric cryogels as an alternative sorbent for cost-friendly and fast RNA purification with high capacity. For this goal, we synthesized the polymerizable derivative of adenine called as adenine methacrylate (AdeM) through the substitution reaction between adenine and methacryloyl chloride. Then, 2-hydroxyethyl methacrylate (HEMA)-based cryogels were prepared in a partially frozen aqueous medium by copolymerization of monomers, AdeM, and HEMA. The cryogels were characterized by using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), surface area measurements, thermogravimetric analysis (TGA), and swelling tests. RNA adsorption experiments were performed via batch system while varying different conditions including pH, initial RNA concentration, temperature, and interaction time. We achieved high RNA adsorption capacity of cryogels, with the swelling ratio around 510%, as 11.86mg/g. The cryogels might be reused at least five times without significant decrease in adsorption capacity. PMID:27434154

  12. Catalytic Mechanism and Three-Dimensional Structure of Adenine Deaminase

    SciTech Connect

    Kamat, S.S.; Swaminathan, S.; Bagaria, A.; Kumaran, D.; Holmes-Hampton, G. P.; Fan, H.; Sali, A.; Sauder, J. M.; Burley, S. K.; Lindahl, P. A.; Raushel, F. M.

    2011-03-22

    Adenine deaminase (ADE) catalyzes the conversion of adenine to hypoxanthine and ammonia. The enzyme isolated from Escherichia coli using standard expression conditions was low for the deamination of adenine (k{sub cat} = 2.0 s{sup -1}; k{sub cat}/K{sub m} = 2.5 x 10{sup 3} M{sup -1} s{sup -1}). However, when iron was sequestered with a metal chelator and the growth medium was supplemented with Mn{sup 2+} prior to induction, the purified enzyme was substantially more active for the deamination of adenine with kcat and kcat/Km values of 200 s{sup -1} and 5 x 10{sup 5} M{sup -1} s{sup -1}, respectively. The apoenzyme was prepared and reconstituted with Fe{sup 2+}, Zn{sup 2+}, or Mn{sup 2+}. In each case, two enzyme equivalents of metal were necessary for reconstitution of the deaminase activity. This work provides the first example of any member of the deaminase subfamily of the amidohydrolase superfamily to utilize a binuclear metal center for the catalysis of a deamination reaction. [Fe{sup II}/Fe{sup II}]-ADE was oxidized to [Fe{sup III}/Fe{sup III}]-ADE with ferricyanide with inactivation of the deaminase activity. Reducing [Fe{sup III}/Fe{sup III}]-ADE with dithionite restored the deaminase activity, and thus, the diferrous form of the enzyme is essential for catalytic activity. No evidence of spin coupling between metal ions was evident by electron paramagnetic resonance or Moessbauer spectroscopy. The three-dimensional structure of adenine deaminase from Agrobacterium tumefaciens (Atu4426) was determined by X-ray crystallography at 2.2 {angstrom} resolution, and adenine was modeled into the active site on the basis of homology to other members of the amidohydrolase superfamily. On the basis of the model of the adenine-ADE complex and subsequent mutagenesis experiments, the roles for each of the highly conserved residues were proposed. Solvent isotope effects, pH-rate profiles, and solvent viscosity were utilized to propose a chemical reaction mechanism and the

  13. Catalytic Mechanism and Three-Dimensional Structure of Adenine Deaminase

    SciTech Connect

    S Kamat; A Bagaria; D Kumaran; G Holmes-Hampton; H Fan; A Sali; J Sauder; S Burley; P Lindahl; et. al.

    2011-12-31

    Adenine deaminase (ADE) catalyzes the conversion of adenine to hypoxanthine and ammonia. The enzyme isolated from Escherichia coli using standard expression conditions was low for the deamination of adenine (k{sub cat} = 2.0 s{sup -1}; k{sub cat}/K{sub m} = 2.5 x 10{sup 3} M{sup -1} s{sup -1}). However, when iron was sequestered with a metal chelator and the growth medium was supplemented with Mn{sup 2+} prior to induction, the purified enzyme was substantially more active for the deamination of adenine with k{sub cat} and k{sub cat}/K{sub m} values of 200 s{sup -1} and 5 x 10{sup 5} M{sup -1} s{sup -1}, respectively. The apoenzyme was prepared and reconstituted with Fe{sup 2+}, Zn{sup 2+}, or Mn{sup 2+}. In each case, two enzyme equivalents of metal were necessary for reconstitution of the deaminase activity. This work provides the first example of any member of the deaminase subfamily of the amidohydrolase superfamily to utilize a binuclear metal center for the catalysis of a deamination reaction. [Fe{sup II}/Fe{sup II}]-ADE was oxidized to [Fe{sup III}/Fe{sup III}]-ADE with ferricyanide with inactivation of the deaminase activity. Reducing [Fe{sup III}/Fe{sup III}]-ADE with dithionite restored the deaminase activity, and thus, the diferrous form of the enzyme is essential for catalytic activity. No evidence of spin coupling between metal ions was evident by electron paramagnetic resonance or Moessbauer spectroscopy. The three-dimensional structure of adenine deaminase from Agrobacterium tumefaciens (Atu4426) was determined by X-ray crystallography at 2.2 {angstrom} resolution, and adenine was modeled into the active site on the basis of homology to other members of the amidohydrolase superfamily. On the basis of the model of the adenine-ADE complex and subsequent mutagenesis experiments, the roles for each of the highly conserved residues were proposed. Solvent isotope effects, pH-rate profiles, and solvent viscosity were utilized to propose a chemical reaction

  14. Dinucleotide Weight Matrices for Predicting Transcription Factor Binding Sites: Generalizing the Position Weight Matrix

    PubMed Central

    Siddharthan, Rahul

    2010-01-01

    Background Identifying transcription factor binding sites (TFBS) in silico is key in understanding gene regulation. TFBS are string patterns that exhibit some variability, commonly modelled as “position weight matrices” (PWMs). Though convenient, the PWM has significant limitations, in particular the assumed independence of positions within the binding motif; and predictions based on PWMs are usually not very specific to known functional sites. Analysis here on binding sites in yeast suggests that correlation of dinucleotides is not limited to near-neighbours, but can extend over considerable gaps. Methodology/Principal Findings I describe a straightforward generalization of the PWM model, that considers frequencies of dinucleotides instead of individual nucleotides. Unlike previous efforts, this method considers all dinucleotides within an extended binding region, and does not make an attempt to determine a priori the significance of particular dinucleotide correlations. I describe how to use a “dinucleotide weight matrix” (DWM) to predict binding sites, dealing in particular with the complication that its entries are not independent probabilities. Benchmarks show, for many factors, a dramatic improvement over PWMs in precision of predicting known targets. In most cases, significant further improvement arises by extending the commonly defined “core motifs” by about 10bp on either side. Though this flanking sequence shows no strong motif at the nucleotide level, the predictive power of the dinucleotide model suggests that the “signature” in DNA sequence of protein-binding affinity extends beyond the core protein-DNA contact region. Conclusion/Significance While computationally more demanding and slower than PWM-based approaches, this dinucleotide method is straightforward, both conceptually and in implementation, and can serve as a basis for future improvements. PMID:20339533

  15. Copper-Adenine Complex Catalyst for O2 Production from

    NASA Astrophysics Data System (ADS)

    Vergne, Jacques; Bruston, F.; Calvayrac, R.; Grajcar, L.; Baron, M.-H.; Maurel, M.-C.

    The advent of oxygen-evolving photosynthesis is one of the central event in the development of life on earth. The early atmosphere has been midly reducing or neutral in overall redox balance and water photolysis by UV light can produce hydrogen peroxide. Before oxidation of water, intermediate stages are proposed in which H_2^O_2 was oxidized. The oxidation of H_2^O_2 to oxygen can be carried out by a modestly oxidizing species in which a metal-catalase like enzyme could extract electrons from H_2^O_2 producing the first oxygen-evolving complex. After what, modern photosynthesis with chlorophyll, to help transform H_2^O in O_2 was ready to come to light. In preliminary UV studies we were able to show that [Cu(adenine)2] system, containing copper coordinated to nitrogen activates H_2^O_2 disappearance. This was confirmed with the help of Raman and polarographic studies. Raman spectroscopy shows the formation of [Cu(adenine)2] complex in solution, quantifies H_2^O_2 consumption, polarography quantifies O_2 production. In both cases CuCl_2 addition entails H_2^O_2 disappearance. Without adenine, Cu_2^+ has only a weak catalytic effect. The molar activity of the [Cu(adenine)2] complex is much larger and concentration dependent. We emphasize that Cu(adenine)2 may have mimicked enzyme properties in the first stage of life evolution, in order to split H_2^O_2 into O_2 and H_2^O. Moreover, diluted copper and adenine, in small ephemeral prebiotic ponds , could have preserved biologically active entities from H_2^O_2 damage via dual properties: catalyzing H_2^O_2 disproportionation and also directly acting as a reductant complex. Finally, the present Mars surface is considered to be both reactive and embedded with oxydants. As it has been shown that the depth of diffusion for H_2^O_2 is less than 3 meters, it is important to study all the ways of H_2^O_2 consumption.

  16. Cyclic (di)nucleotides: the common language shared by microbe and host.

    PubMed

    Gao, Juyi; Tao, Jianli; Liang, Weili; Jiang, Zhengfan

    2016-04-01

    Fluency in a common language allows individuals to convey information and carry out complex activities that otherwise would be difficult or even impossible without the benefit of shared communication. Cyclic (di)nucleotides have recently been recognized as such an accessible language understood by both microbe and the host, ever since remarkable progresses have revealed the molecular details of these nucleotide second messengers used in cellular communication systems. Though undergoing separate evolutionary pathways in prokaryotes and eukaryotes, cyclic (di)nucleotides enable microbes to influence host cells immediately and fiercely by modulating a variety of cellular activities. Here we highlight recent insights in cyclic (di)nucleotides and focus on the balancing of these indispensable signaling molecules by synthases and phosphodiesterases.

  17. Typing dinucleotide repeat loci using microplate array diagonal gel electrophoresis: proof of principle.

    PubMed

    Rodríguez, Santiago; Chen, Xiao-He; Day, Ian N M

    2004-04-01

    Polymorphic dinucleotide repeat loci ('microsatellite markers') are found in varying abundance throughout the genomes of most organisms. They have been extensively used for genetic studies, but conventional techniques used for their genotyping require sophisticated equipment. Microplate array diagonal gel electrophoresis (MADGE) has previously been extended to economical high-throughput genotyping of trinucleotide and tetranucleotide microsatellite amplicons. However, the capability of this technique to resolve the alleles of dinucleotide repeat loci has not been explored previously. Here we show that a modified microsatellite-MADGE approach can provide sufficient resolution for dinucleotide repeat typing. This enables economical and convenient set up for analysis of single markers in many samples in parallel, suitable, for example, for population association studies.

  18. Dynamics and reactivity in Thermus aquaticus N6-adenine methyltransferase.

    PubMed

    Aranda, Juan; Zinovjev, Kirill; Roca, Maite; Tuñón, Iñaki

    2014-11-19

    M.TaqI is a DNA methyltransferase from Thermus aquaticus that catalyzes the transfer of a methyl group from S-adenosyl-L-methionine to the N6 position of an adenine, a process described only in prokaryotes. We have used full atomistic classical molecular dynamics simulations to explore the protein-SAM-DNA ternary complex where the target adenine is flipped out into the active site. Key protein-DNA interactions established by the target adenine in the active site are described in detail. The relaxed structure was used for a combined quantum mechanics/molecular mechanics exploration of the reaction mechanism using the string method. According to our free energy calculations the reaction takes place through a stepwise mechanism where the methyl transfer precedes the abstraction of the proton from the exocyclic amino group. The methyl transfer is the rate-determining step, and the obtained free energy barrier is in good agreement with the value derived from the experimental rate constant. Two possible candidates to extract the leftover proton have been explored: a water molecule found in the active site and Asn105, a residue activated by the hydrogen bonds formed through the amide hydrogens. The barrier for the proton abstraction is smaller when Asn105 acts as a base. The reaction mechanisms can be different in other N6-DNA-methyltransferases, as determined from the exploration of the reaction mechanism in the Asn105Asp M.TaqI mutant. PMID:25347783

  19. High resolution dissociative electron attachment to gas phase adenine

    SciTech Connect

    Huber, D.; Beikircher, M.; Denifl, S.; Zappa, F.; Matejcik, S.; Bacher, A.; Grill, V.; Maerk, T. D.; Scheier, P.

    2006-08-28

    The dissociative electron attachment to the gas phase nucleobase adenine is studied using two different experiments. A double focusing sector field mass spectrometer is utilized for measurements requiring high mass resolution, high sensitivity, and relative ion yields for all the fragment anions and a hemispherical electron monochromator instrument for high electron energy resolution. The negative ion mass spectra are discussed at two different electron energies of 2 and 6 eV. In contrast to previous gas phase studies a number of new negative ions are discovered in the mass spectra. The ion efficiency curves for the negative ions of adenine are measured for the electron energy range from about 0 to 15 eV with an electron energy resolution of about 100 meV. The total anion yield derived via the summation of all measured fragment anions is compared with the total cross section for negative ion formation measured recently without mass spectrometry. For adenine the shape of the two cross section curves agrees well, taking into account the different electron energy resolutions; however, for thymine some peculiar differences are observed.

  20. Fragmentation mechanisms of cytosine, adenine and guanine ionized bases.

    PubMed

    Sadr-Arani, Leila; Mignon, Pierre; Chermette, Henry; Abdoul-Carime, Hassan; Farizon, Bernadette; Farizon, Michel

    2015-05-01

    The different fragmentation channels of cytosine, adenine and guanine have been studied through DFT calculations. The electronic structure of bases, their cations, and the fragments obtained by breaking bonds provides a good understanding of the fragmentation process that can complete the experimental approach. The calculations allow assigning various fragments to the given peaks. The comparison between the energy required for the formation of fragments and the peak intensity in the mass spectrum is used. For cytosine and guanine the elimination of the HNCO molecule is a major route of dissociation, while for adenine multiple loss of HCN or HNC can be followed up to small fragments. For cytosine, this corresponds to the initial bond cleavage of N3-C4/N1-C2, which represents the main dissociation route. For guanine the release of HNCO is obtained through the N1-C2/C5-C6 bond cleavage (reverse order also possible) leading to the largest peak of the spectrum. The corresponding energies of 3.5 and 3.9 eV are typically in the range available in the experiments. The loss of NH3 or HCN is also possible but requires more energy. For adenine, fragmentation consists of multiple loss of the HCN molecule and the main route corresponding to HC8N9 loss is followed by the release of HC2N1. PMID:25869111

  1. Stacking interactions in RNA and DNA: Roll-slide energy hyperspace for ten unique dinucleotide steps.

    PubMed

    Mukherjee, Sanchita; Kailasam, Senthilkumar; Bansal, Manju; Bhattacharyya, Dhananjay

    2015-03-01

    Understanding dinucleotide sequence directed structures of nuleic acids and their variability from experimental observation remained ineffective due to unavailability of statistically meaningful data. We have attempted to understand this from energy scan along twist, roll, and slide degrees of freedom which are mostly dependent on dinucleotide sequence using ab initio density functional theory. We have carried out stacking energy analysis in these dinucleotide parameter phase space for all ten unique dinucleotide steps in DNA and RNA using DFT-D by ωB97X-D/6-31G(2d,2p), which appears to satisfactorily explain conformational preferences for AU/AU step in our recent study. We show that values of roll, slide, and twist of most of the dinucleotide sequences in crystal structures fall in the low energy region. The minimum energy regions with large twist values are associated with the roll and slide values of B-DNA, whereas, smaller twist values correspond to higher stability to RNA and A-DNA like conformations. Incorporation of solvent effect by CPCM method could explain the preference shown by some sequences to occur in B-DNA or A-DNA conformations. Conformational preference of BII sub-state in B-DNA is preferentially displayed mainly by pyrimidine-purine steps and partly by purine-purine steps. The purine-pyrimidine steps show largest effect of 5-methyl group of thymine in stacking energy and the introduction of solvent reduces this effect significantly. These predicted structures and variabilities can explain the effect of sequence on DNA and RNA functionality.

  2. Cyanobacterial NADPH dehydrogenase complexes

    SciTech Connect

    Ogawa, Teruo; Mi, Hualing

    2007-07-01

    Cyanobacteria possess functionally distinct multiple NADPH dehydrogenase (NDH-1) complexes that are essential to CO2 uptake, photosystem-1 cyclic electron transport and respiration. The unique nature of cyanobacterial NDH-1 complexes is the presence of subunits involved in CO2 uptake. Other than CO2 uptake, chloroplastic NDH-1 complex has similar role as cyanobacterial NDH-1 complexes in photosystem-1 cyclic electron transport and respiration (chlororespiration). In this mini-review we focus on the structure and function of cyanobacterial NDH-1 complexes and their phylogeny. The function of chloroplastic NDH-1 complex and characteristics of plants defective in NDH-1 are also described forcomparison.

  3. Influence of hydrogen bonding on the geometry of the adenine fragment

    NASA Astrophysics Data System (ADS)

    Słowikowska, Joanna Maria; Woźniak, Krzysztof

    1996-01-01

    The crystal structures of two adenine derivatives, N(6),9-dimethyl-8-butyladenine (I) and its hydrate (1 : 1) (II), have been determined by single-crystal X-ray diffraction. The geometrical features of both structures are discussed. The influence of protonation, substitution and hydrogen bond formation on the geometry of the adenine fragment was studied, based on data retrieved from the Cambridge Structural Database. Total correlation analysis showed mutual correlation between the structural parameters in the adenine ring system; partial correlation calculations for the adenine nucleoside fragments suggest intercorrelation between the parameters of the hydrogen bonding involved in base pairing and the N(adenine)-C(sugar) bond through the adenine fragment; few such correlations were found for fragments without the sugar substituent.

  4. Examination of tyrosine/adenine stacking interactions in protein complexes.

    PubMed

    Copeland, Kari L; Pellock, Samuel J; Cox, James R; Cafiero, Mauricio L; Tschumper, Gregory S

    2013-11-14

    The π-stacking interactions between tyrosine amino acid side chains and adenine-bearing ligands are examined. Crystalline protein structures from the protein data bank (PDB) exhibiting face-to-face tyrosine/adenine arrangements were used to construct 20 unique 4-methylphenol/N9-methyladenine (p-cresol/9MeA) model systems. Full geometry optimization of the 20 crystal structures with the M06-2X density functional theory method identified 11 unique low-energy conformations. CCSD(T) complete basis set (CBS) limit interaction energies were estimated for all of the structures to determine the magnitude of the interaction between the two ring systems. CCSD(T) computations with double-ζ basis sets (e.g., 6-31G*(0.25) and aug-cc-pVDZ) indicate that the MP2 method overbinds by as much as 3.07 kcal mol(-1) for the crystal structures and 3.90 kcal mol(-1) for the optimized structures. In the 20 crystal structures, the estimated CCSD(T) CBS limit interaction energy ranges from -4.00 to -6.83 kcal mol(-1), with an average interaction energy of -5.47 kcal mol(-1), values remarkably similar to the corresponding data for phenylalanine/adenine stacking interactions. Geometry optimization significantly increases the interaction energies of the p-cresol/9MeA model systems. The average estimated CCSD(T) CBS limit interaction energy of the 11 optimized structures is 3.23 kcal mol(-1) larger than that for the 20 crystal structures.

  5. Biochemical Characterization of Putative Adenylate Dimethylallyltransferase and Cytokinin Dehydrogenase from Nostoc sp. PCC 7120.

    PubMed

    Frébortová, Jitka; Greplová, Marta; Seidl, Michael F; Heyl, Alexander; Frébort, Ivo

    2015-01-01

    Cytokinins, a class of phytohormones, are adenine derivatives common to many different organisms. In plants, these play a crucial role as regulators of plant development and the reaction to abiotic and biotic stress. Key enzymes in the cytokinin synthesis and degradation in modern land plants are the isopentyl transferases and the cytokinin dehydrogenases, respectively. Their encoding genes have been probably introduced into the plant lineage during the primary endosymbiosis. To shed light on the evolution of these proteins, the genes homologous to plant adenylate isopentenyl transferase and cytokinin dehydrogenase were amplified from the genomic DNA of cyanobacterium Nostoc sp. PCC 7120 and expressed in Escherichia coli. The putative isopentenyl transferase was shown to be functional in a biochemical assay. In contrast, no enzymatic activity was detected for the putative cytokinin dehydrogenase, even though the principal domains necessary for its function are present. Several mutant variants, in which conserved amino acids in land plant cytokinin dehydrogenases had been restored, were inactive. A combination of experimental data with phylogenetic analysis indicates that adenylate-type isopentenyl transferases might have evolved several times independently. While the Nostoc genome contains a gene coding for protein with characteristics of cytokinin dehydrogenase, the organism is not able to break down cytokinins in the way shown for land plants. PMID:26376297

  6. A comparison of adenine and some derivatives on pig isolated tracheal muscle.

    PubMed Central

    Bach-Dieterle, Y.; Holden, W. E.; Junod, A. F.

    1983-01-01

    We studied the muscle relaxation induced by adenine and several adenine derivatives in strips of tracheal smooth muscle from pigs; in addition their metabolism by the tissue was examined. Adenine relaxed tissue which was contracted by carbachol, histamine, or KCl. Adenine's potency was similar to that of adenosine and ATP (threshold about 4 X 10(-5)M). In tissues with carbachol-induced tone, the adenine effect differed from adenosine and ATP by being slower in onset and in 'washout' time. Furthermore, neither dipyridamole nor theophylline modified the response to adenine. The relationship was examined between pharmacological effects and the metabolism of [3H]-adenosine and [3H]-adenine. Both substrates were taken up by the tissue and converted to nucleotides, but relaxation correlated with nucleotide accumulation only in the case of [3H]-adenine. We conclude that the site and mechanism of adenine-induced relaxation is different from that of adenosine and ATP in porcine tracheal muscle. PMID:6571222

  7. Genetics Home Reference: pyruvate dehydrogenase deficiency

    MedlinePlus

    ... control the activity of the complex: pyruvate dehydrogenase phosphatase turns on (activates) the complex, while pyruvate dehydrogenase ... binding protein (the PDHX gene), and pyruvate dehydrogenase phosphatase (the PDP1 gene) have been identified in people ...

  8. Immune-Stimulatory Dinucleotide at the 5′-End of Oligodeoxynucleotides Is Critical for TLR9-Mediated Immune Responses

    PubMed Central

    2013-01-01

    Oligodeoxynucleotides (ODNs) containing a CpG or certain synthetic dinucleotides, referred to as immune-stimulatory dinucleotides, induce Toll-like receptor 9 (TLR9)-mediated immune responses. Chemical modifications such as 2′-O-methylribonucleotides incorporated adjacent to the immune-stimulatory dinucleotide on the 5′-side abrogate TLR9-mediated immune responses. In this study, we evaluated the effect of the location of immune-stimulatory dinucleotides in ODNs on TLR9-mediated immune responses. We designed and synthesized ODNs with two immune-stimulatory dinucleotides, one placed toward the 5′-end region and the other toward the 3′-end region, incorporated 2′-O-methylribonucleotides selectively preceding the 5′- or 3′-immune-stimulatory dinucleotide or both, and studied TLR9-mediated immune responses of these compounds in cell-based assays and in vivo in mice. These studies showed that an immune-stimulatory dinucleotide located closer to the 5′-end is critical for and dictates TLR9-mediated immune responses. These studies provide insights for the use of ODNs when employed as TLR9 agonists and antagonists or antisense agents. PMID:24900663

  9. Modelling proton tunnelling in the adenine-thymine base pair.

    PubMed

    Godbeer, A D; Al-Khalili, J S; Stevenson, P D

    2015-05-21

    The energies of the canonical (standard, amino-keto) and tautomeric (non-standard, imino-enol) charge-neutral forms of the adenine-thymine base pair (A-T and A*-T*, respectively) are calculated using density functional theory. The reaction pathway is then computed using a transition state search to provide the asymmetric double-well potential minima along with the barrier height and shape, which are combined to create the potential energy surface using a polynomial fit. The influence of quantum tunnelling on proton transfer within a base pair H-bond (modelled as the DFT deduced double-well potential) is then investigated by solving the time-dependent master equation for the density matrix. The effect on a quantum system by its surrounding water molecules is explored via the inclusion of a dissipative Lindblad term in the master equation, in which the environment is modelled as a heat bath of harmonic oscillators. It is found that quantum tunnelling, due to transitions to higher energy eigenstates with significant amplitudes in the shallow (tautomeric) side of the potential, is unlikely to be a significant mechanism for the creation of adenine-thymine tautomers within DNA, with thermally assisted coupling of the environment only able to boost the tunnelling probability to a maximum of 2 × 10(-9). This is barely increased for different choices of the starting wave function or when the geometry of the potential energy surface is varied.

  10. Nonselective enrichment for yeast adenine mutants by flow cytometry

    NASA Technical Reports Server (NTRS)

    Bruschi, C. V.; Chuba, P. J.

    1988-01-01

    The expression of certain adenine biosynthetic mutations in the yeast Saccharomyces cerevisiae results in a red colony color. This phenomenon has historically provided an ideal genetic marker for the study of mutation, recombination, and aneuploidy in lower eukaryotes by classical genetic analysis. In this paper, it is reported that cells carrying ade1 and/or ade2 mutations exhibit primary fluorescence. Based on this observation, the nonselective enrichment of yeast cultures for viable adenine mutants by using the fluorescence-activated cell sorter has been achieved. The advantages of this approach over conventional genetic analysis of mutation, recombination, and mitotic chromosomal stability include speed and accuracy in acquiring data for large numbers of clones. By using appropriate strains, the cell sorter has been used for the isolation of both forward mutations and chromosomal loss events in S. cerevisiae. The resolving power of this system and its noninvasiveness can easily be extended to more complex organisms, including mammalian cells, in which analogous metabolic mutants are available.

  11. Adenine nucleotides as allosteric effectors of pea seed glutamine synthetase.

    PubMed

    Knight, T J; Langston-Unkefer, P J

    1988-08-15

    The effects of adenine nucleotides on pea seed glutamine synthetase (EC 6.3.1.2) activity were examined as a part of our investigation of the regulation of this octameric plant enzyme. Saturation curves for glutamine synthetase activity versus ATP with ADP as the changing fixed inhibitor were not hyperbolic; greater apparent Vmax values were observed in the presence of added ADP than the Vmax observed in the absence of ADP. Hill plots of data with ADP present curved upward and crossed the plot with no added ADP. The stoichiometry of adenine nucleotide binding to glutamine synthetase was examined. Two molecules of [gamma-32P]ATP were bound per subunit in the presence of methionine sulfoximine. These ATP molecules were bound at an allosteric site and at the active site. One molecule of either [gamma-32P]ATP or [14C]ADP bound per subunit in the absence of methionine sulfoximine; this nucleotide was bound at an allosteric site. ADP and ATP compete for binding at the allosteric site, although ADP was preferred. ADP binding to the allosteric site proceeded in two kinetic phases. A Vmax value of 1.55 units/mg was measured for glutamine synthetase with one ADP tightly bound per enzyme subunit; a Vmax value of 0.8 unit/mg was measured for enzyme with no adenine nucleotide bound at the allosteric site. The enzyme activation caused by the binding of ADP to the allosteric sites was preceded by a lag phase, the length of which was dependent on the ADP concentration. Enzyme incubated in 10 mM ADP bound approximately 4 mol of ADP/mol of native enzyme before activation was observed; the activation was complete when 7-8 mol of ADP were bound per mol of the octameric, native enzyme. The Km for ATP (2 mM) was not changed by ADP binding to the allosteric sites. ADP was a simple competitive inhibitor (Ki = 0.05 mM) of ATP for glutamine synthetase with eight molecules of ADP tightly bound to the allosteric sites of the octamer. Binding of ATP to the allosteric sites led to marked

  12. Major and minor groove conformations of DNA trimers modified on guanine or adenine by 4-aminobiphenyl: Adenine adducts favor the minor groove

    SciTech Connect

    Shapiro, R.; Ellis, S.; Hingerty, B.E.

    1995-01-01

    We have studied the conformational effects of 4-aminobiphenyl modification at C-8 of guanine or adenine on double-stranded DNA trimers. We used sequences with the modified purine at the central base pair and all 16 possible neighboring sequences at the outer pairs. Minimized potential energy calculations were carried out using the molecular mechanics program DUPLEX to survey the conformation space of these adducts, using a total of 1280 starting structures both in the modified guanine series and in the modified adenine series. Conformer families in which the bound 4-aminobiphenyl was located in the DNA major groove, and in the minor groove, were located for both adenine and guanine modification. In the modified guanine series, the major and minor groove families were roughly comparable in energy, and the sequence context determined which was more stable in a particular case. In the modified adenine series, however, the minor groove structure was more that 10 kcal/mol more stable than the major groove for all sequences. As a result, minor groove adducts provided most of the global minima in the adenine-modified series. This result may be relevant to a previous mutagenesis study [Lasko et al. (1988) J. Biol. Chem. 263, 15429-15435] in which the hot spot of most frequent occurrence was located at an adenine, in the sequence GAT. 25 refs., 9 figs., 4 tabs.

  13. Dynamic changes in nicotinamide pyridine dinucleotide content in normal human epidermal keratinocytes and their effect on retinoic acid biosynthesis

    SciTech Connect

    Pinkas-Sarafova, Adriana . E-mail: apinkassaraf@notes.cc.sunysb.edu; Markova, N.G. . E-mail: nmarkova@notes.cc.sunysb.edu; Simon, M. . E-mail: marsimon@notes.cc.sunysb.edu

    2005-10-21

    The function of many enzymes that regulate metabolism and transcription depends critically on the nicotinamide pyridine dinucleotides. To understand the role of NAD(P)(H) in physiology and pathophysiology, it is imperative to estimate both their amount and ratios in a given cell type. In human epidermis and in cultured epidermal keratinocytes, we found that the total dinucleotide content is in the low millimolar range. The dinucleotide pattern changes during proliferation and maturation of keratinocytes in culture. Differences in the concentrations of NAD(P)(H) of 1.5- to 12-fold were observed. This resulted in alteration of the NAD(P)H/NAD(P) ratio, which could impact the differential regulation of both transcriptional and metabolic processes. In support of this notion, we provide evidence that the two-step oxidation of retinol to retinoic acid, a nuclear hormone critical for epidermal homeostasis, can be regulated by the relative physiological amounts of the pyridine dinucleotides.

  14. Interaction of sulfanilamide and sulfamethoxazole with bovine serum albumin and adenine: spectroscopic and molecular docking investigations.

    PubMed

    Rajendiran, N; Thulasidhasan, J

    2015-06-01

    Interaction between sulfanilamide (SAM) and sulfamethoxazole (SMO) with BSA and DNA base (adenine) was investigated by UV-visible, fluorescence, cyclic voltammetry and molecular docking studies. Stern-Volmer fluorescence quenching constant (Ka) suggests SMO is more quenched with BSA/adenine than that of SAM. The distance r between donor (BSA/adenine) and acceptor (SAM and SMO) was obtained according to fluorescence resonance energy transfer (FRET). The results showed that hydrophobic forces, electrostatic interactions, and hydrogen bonds played vital roles in the SAM and SMO with BSA/adenine binding interaction. During the interaction, sulfa drugs could insert into the hydrophobic pocket, where the non-radioactive energy transfer from BSA/adenine to sulfa drugs occurred with high possibility. Cyclic voltammetry results suggested that when the drug concentration is increased, the anodic electrode potential deceased. The docking method indicates aniline group is interacted with the BSA molecules. PMID:25754395

  15. Interaction of sulfanilamide and sulfamethoxazole with bovine serum albumin and adenine: Spectroscopic and molecular docking investigations

    NASA Astrophysics Data System (ADS)

    Rajendiran, N.; Thulasidhasan, J.

    2015-06-01

    Interaction between sulfanilamide (SAM) and sulfamethoxazole (SMO) with BSA and DNA base (adenine) was investigated by UV-visible, fluorescence, cyclic voltammetry and molecular docking studies. Stern-Volmer fluorescence quenching constant (Ka) suggests SMO is more quenched with BSA/adenine than that of SAM. The distance r between donor (BSA/adenine) and acceptor (SAM and SMO) was obtained according to fluorescence resonance energy transfer (FRET). The results showed that hydrophobic forces, electrostatic interactions, and hydrogen bonds played vital roles in the SAM and SMO with BSA/adenine binding interaction. During the interaction, sulfa drugs could insert into the hydrophobic pocket, where the non-radioactive energy transfer from BSA/adenine to sulfa drugs occurred with high possibility. Cyclic voltammetry results suggested that when the drug concentration is increased, the anodic electrode potential deceased. The docking method indicates aniline group is interacted with the BSA molecules.

  16. Saturation transfer difference NMR studies on substrates and inhibitors of succinic semialdehyde dehydrogenases

    SciTech Connect

    Jaeger, Martin Rothacker, Boris; Ilg, Thomas

    2008-08-01

    Saturation transfer difference (STD) NMR experiments on Escherichia coli and Drosophila melanogaster succinic semialdehyde dehydrogenase (SSADH, EC1.2.1.24) suggest that only the aldehyde forms and not the gem-diol forms of the specific substrate succinic semialdehyde (SSA), of selected aldehyde substrates, and of the inhibitor 3-tolualdehyde bind to these enzymes. Site-directed mutagenesis of the active site cysteine311 to alanine in D. melanogaster SSADH leads to an inactive product binding both SSA aldehyde and gem-diol. Thus, the residue cysteine311 is crucial for their discrimination. STD experiments on SSADH and NAD{sup +}/NADP{sup +} indicate differential affinity in agreement with the respective cosubstrate properties. Epitope mapping by STD points to a strong interaction of the NAD{sup +}/NADP{sup +} adenine H2 proton with SSADH. Adenine H8, nicotinamide H2, H4, and H6 also show STD signals. Saturation transfer to the ribose moieties is limited to the anomeric protons of E. coli SSADH suggesting that the NAD{sup +}/NADP{sup +} adenine and nicotinamide, but not the ribose moieties are important for the binding of the coenzymes.

  17. Catalytic reaction of cytokinin dehydrogenase: preference for quinones as electron acceptors.

    PubMed Central

    Frébortová, Jitka; Fraaije, Marco W; Galuszka, Petr; Sebela, Marek; Pec, Pavel; Hrbác, Jan; Novák, Ondrej; Bilyeu, Kristin D; English, James T; Frébort, Ivo

    2004-01-01

    The catalytic reaction of cytokinin oxidase/dehydrogenase (EC 1.5.99.12) was studied in detail using the recombinant flavoenzyme from maize. Determination of the redox potential of the covalently linked flavin cofactor revealed a relatively high potential dictating the type of electron acceptor that can be used by the enzyme. Using 2,6-dichlorophenol indophenol, 2,3-dimethoxy-5-methyl-1,4-benzoquinone or 1,4-naphthoquinone as electron acceptor, turnover rates with N6-(2-isopentenyl)adenine of approx. 150 s(-1) could be obtained. This suggests that the natural electron acceptor of the enzyme is quite probably a p-quinone or similar compound. By using the stopped-flow technique, it was found that the enzyme is rapidly reduced by N6-(2-isopentenyl)adenine (k(red)=950 s(-1)). Re-oxidation of the reduced enzyme by molecular oxygen is too slow to be of physiological relevance, confirming its classification as a dehydrogenase. Furthermore, it was established for the first time that the enzyme is capable of degrading aromatic cytokinins, although at low reaction rates. As a result, the enzyme displays a dual catalytic mode for oxidative degradation of cytokinins: a low-rate and low-substrate specificity reaction with oxygen as the electron acceptor, and high activity and strict specificity for isopentenyladenine and analogous cytokinins with some specific electron acceptors. PMID:14965342

  18. Alcohol Dehydrogenase from Methylobacterium organophilum

    PubMed Central

    Wolf, H. J.; Hanson, R. S.

    1978-01-01

    The alcohol dehydrogenase from Methylobacterium organophilum, a facultative methane-oxidizing bacterium, has been purified to homogeneity as indicated by sodium dodecyl sulfate-gel electrophoresis. It has several properties in common with the alcohol dehydrogenases from other methylotrophic bacteria. The active enzyme is a dimeric protein, both subunits having molecular weights of about 62,000. The enzyme exhibits broad substrate specificity for primary alcohols and catalyzes the two-step oxidation of methanol to formate. The apparent Michaelis constants of the enzyme are 2.9 × 10−5 M for methanol and 8.2 × 10−5 M for formaldehyde. Activity of the purified enzyme is dependent on phenazine methosulfate. Certain characteristics of this enzyme distinguish it from the other alcohol dehydrogenases of other methylotrophic bacteria. Ammonia is not required for, but stimulates the activity of newly purified enzyme. An absolute dependence on ammonia develops after storage of the purified enzyme. Activity is not inhibited by phosphate. The fluorescence spectrum of the enzyme indicates that it and the cofactor associated with it may be chemically different from the alcohol dehydrogenases from other methylotrophic bacteria. The alcohol dehydrogenases of Hyphomicrobium WC-65, Pseudomonas methanica, Methylosinus trichosporium, and several facultative methylotrophs are serologically related to the enzyme purified in this study. The enzymes of Rhodopseudomonas acidophila and of organisms of the Methylococcus group did not cross-react with the antiserum prepared against the alcohol dehydrogenase of M. organophilum. Images PMID:80974

  19. Association of poly(N-isopropylacrylamide) containing nucleobase multiple hydrogen bonding of adenine for DNA recognition

    NASA Astrophysics Data System (ADS)

    Yang, Hsiu-Wen; Chen, Jem-Kun; Cheng, Chih-Chia; Kuo, Shiao-Wei

    2013-04-01

    In this study we used the poly(N-isopropylacrylamide) (PNIPAAm) as a medium to generate PNIPAAm-adenine supramolecular complexes. A nucleobase-like hydrogen bonding (NLHB) between PNIPAAm and adenine was found that changed the morphology, crystalline structure, and temperature responsiveness of PNIPAAm microgels relatively to the adenine concentrations. With increasing the adenine concentration, the PNIPAAm-adenine supramolecular complexes gradually altered their morphologies from microgel particles to thin film structures and suppressed the thermodynamical coil-to-globule transition of PNIPAAm because of the NLHB existed between the PNIPAAm amide and ester groups and the adenine amide groups (Cdbnd O⋯Hsbnd N and Nsbnd H⋯Nsbnd R), verified by FTIR spectral analysis. NLHB was also diverse and extensive upon increasing the temperature; therefore, the thermoresponsive behavior of the complexes was altered with the NLBH intensity, evaluated by the inter-association equilibrium constant (Ka) above and below their LCST. Therefore, PNIPAAm can be as a medium to recognize adenine in various concentrations, which could potentially be applied in DNA recognition.

  20. Unraveling Cholesterol Catabolism in Mycobacterium tuberculosis: ChsE4-ChsE5 α2β2 Acyl-CoA Dehydrogenase Initiates β-Oxidation of 3-Oxo-cholest-4-en-26-oyl CoA

    PubMed Central

    2016-01-01

    The metabolism of host cholesterol by Mycobacterium tuberculosis (Mtb) is an important factor for both its virulence and pathogenesis, although how and why cholesterol metabolism is required is not fully understood. Mtb uses a unique set of catabolic enzymes that are homologous to those required for classical β-oxidation of fatty acids but are specific for steroid-derived substrates. Here, we identify and assign the substrate specificities of two of these enzymes, ChsE4-ChsE5 (Rv3504-Rv3505) and ChsE3 (Rv3573c), that carry out cholesterol side chain oxidation in Mtb. Steady-state assays demonstrate that ChsE4-ChsE5 preferentially catalyzes the oxidation of 3-oxo-cholest-4-en-26-oyl CoA in the first cycle of cholesterol side chain β-oxidation that ultimately yields propionyl-CoA, whereas ChsE3 specifically catalyzes the oxidation of 3-oxo-chol-4-en-24-oyl CoA in the second cycle of β-oxidation that generates acetyl-CoA. However, ChsE4-ChsE5 can catalyze the oxidation of 3-oxo-chol-4-en-24-oyl CoA as well as 3-oxo-4-pregnene-20-carboxyl-CoA. The functional redundancy of ChsE4-ChsE5 explains the in vivo phenotype of the igr knockout strain of Mycobacterium tuberculosis; the loss of ChsE1-ChsE2 can be compensated for by ChsE4-ChsE5 during the chronic phase of infection. The X-ray crystallographic structure of ChsE4-ChsE5 was determined to a resolution of 2.0 Å and represents the first high-resolution structure of a heterotetrameric acyl-CoA dehydrogenase (ACAD). Unlike typical homotetrameric ACADs that bind four flavin adenine dinucleotide (FAD) cofactors, ChsE4-ChsE5 binds one FAD at each dimer interface, resulting in only two substrate-binding sites rather than the classical four active sites. A comparison of the ChsE4-ChsE5 substrate-binding site to those of known mammalian ACADs reveals an enlarged binding cavity that accommodates steroid substrates and highlights novel prospects for designing inhibitors against the committed β-oxidation step in the first

  1. Adenine Nucleotide Levels, the Redox State of the NADP System, and Assimilatory Force in Nonaqueously Purified Mesophyll Chloroplasts from Maize Leaves under Different Light Intensities 1

    PubMed Central

    Usuda, Hideaki

    1988-01-01

    Recently, a nonaqueous fractionation method of obtaining highly purified mesophyll chloroplasts from maize leaves was established. This method is now used to determine adenine nucleotide levels, the redox states of the NADP system, Pi levels and dihydroxyacetone phosphate/3-phosphoglycerate ratios in mesophyll chloroplasts of Zea mays L. leaves under different light intensities. The sum of the ATP, ADP, and AMP levels was estimated to be 1.4 millimolar and the ATP/ADP ratio was 1 in the dark and 2.5 to 4 in the light. The adenine nucleotides were equilibrated by adenylate kinase. The total concentration of NADP(H) in the chloroplasts was 0.3 millimolar in the dark and 0.48 millimolar in the light. The ratio of NADPH/NADP was 0.1 to 0.18 in the dark and 0.23 to 0.48 in the light. The Pi level was estimated to be 20 millimolar in the dark and 10 to 17 millimolar in the light. The 3-phosphoglycerate reducing system was under thermodynamic equilibrium in the light. The calculated assimilatory forces were 8 per molar and 40 to 170 per molar in the dark and the light, respectively. There was no relationship between the degree of activation of pyruvate, Pi dikinase, and adenylate energy charge, or ATP/ADP ratio or ADP level under various light intensities. Only a weak relationship was found between the degree of activation of NADP-malate dehydrogenase and the NADPH/NADP ratio or NADP(H) level with increasing light intensity. A possible regulatory mechanism which is responsible for the regulation of activation of pyruvate,Pi dikinase and NADP-malate dehydrogenase is discussed. PMID:16666481

  2. Renoprotective effect of the xanthine oxidoreductase inhibitor topiroxostat on adenine-induced renal injury.

    PubMed

    Kamijo-Ikemori, Atsuko; Sugaya, Takeshi; Hibi, Chihiro; Nakamura, Takashi; Murase, Takayo; Oikawa, Tsuyoshi; Hoshino, Seiko; Hisamichi, Mikako; Hirata, Kazuaki; Kimura, Kenjiro; Shibagaki, Yugo

    2016-06-01

    The aim of the present study was to reveal the effect of a xanthine oxidoreductase (XOR) inhibitor, topiroxostat (Top), compared with another inhibitor, febuxostat (Feb), in an adenine-induced renal injury model. We used human liver-type fatty acid-binding protein (L-FABP) chromosomal transgenic mice, and urinary L-FABP, a biomarker of tubulointerstitial damage, was used to evaluate tubulointerstitial damage. Male transgenic mice (n = 24) were fed a 0.2% (wt/wt) adenine-containing diet. Two weeks after the start of this diet, renal dysfunction was confirmed, and the mice were divided into the following four groups: the adenine group was given only the diet containing adenine, and the Feb, high-dose Top (Top-H), and low-dose Top (Top-L) groups were given diets containing Feb (3 mg/kg), Top-H (3 mg/kg), and Top-L (1 mg/kg) in addition to adenine for another 2 wk. After withdrawal of the adenine diet, each medication was continued for 2 wk. Serum creatinine levels, the degree of macrophage infiltration, tubulointerstitial damage, renal fibrosis, urinary 15-F2t-isoprostane levels, and renal XOR activity were significantly attenuated in the kidneys of the Feb, Top-L, and Top-H groups compared with the adenine group. Serum creatinine levels in the Top-L and Top-H groups as well as renal XOR in the Top-H group were significantly lower than those in the Feb group. Urinary excretion of L-FABP in both the Top-H and Top-L groups was significantly lower than in the adenine and Feb groups. In conclusion, Top attenuated renal damage in an adenine-induced renal injury model. PMID:27029427

  3. Renoprotective effect of the xanthine oxidoreductase inhibitor topiroxostat on adenine-induced renal injury.

    PubMed

    Kamijo-Ikemori, Atsuko; Sugaya, Takeshi; Hibi, Chihiro; Nakamura, Takashi; Murase, Takayo; Oikawa, Tsuyoshi; Hoshino, Seiko; Hisamichi, Mikako; Hirata, Kazuaki; Kimura, Kenjiro; Shibagaki, Yugo

    2016-06-01

    The aim of the present study was to reveal the effect of a xanthine oxidoreductase (XOR) inhibitor, topiroxostat (Top), compared with another inhibitor, febuxostat (Feb), in an adenine-induced renal injury model. We used human liver-type fatty acid-binding protein (L-FABP) chromosomal transgenic mice, and urinary L-FABP, a biomarker of tubulointerstitial damage, was used to evaluate tubulointerstitial damage. Male transgenic mice (n = 24) were fed a 0.2% (wt/wt) adenine-containing diet. Two weeks after the start of this diet, renal dysfunction was confirmed, and the mice were divided into the following four groups: the adenine group was given only the diet containing adenine, and the Feb, high-dose Top (Top-H), and low-dose Top (Top-L) groups were given diets containing Feb (3 mg/kg), Top-H (3 mg/kg), and Top-L (1 mg/kg) in addition to adenine for another 2 wk. After withdrawal of the adenine diet, each medication was continued for 2 wk. Serum creatinine levels, the degree of macrophage infiltration, tubulointerstitial damage, renal fibrosis, urinary 15-F2t-isoprostane levels, and renal XOR activity were significantly attenuated in the kidneys of the Feb, Top-L, and Top-H groups compared with the adenine group. Serum creatinine levels in the Top-L and Top-H groups as well as renal XOR in the Top-H group were significantly lower than those in the Feb group. Urinary excretion of L-FABP in both the Top-H and Top-L groups was significantly lower than in the adenine and Feb groups. In conclusion, Top attenuated renal damage in an adenine-induced renal injury model.

  4. Isolation and characterization of dinucleotide microsatellite loci in the Asian elephant (Elephas maximus).

    PubMed

    Kongrit, C; Siripunkaw, C; Brockelman, W Y; Akkarapatumwong, V; Wright, T F; Eggert, L S

    2008-01-01

    The endangered Asian elephant is found today primarily in protected areas. We characterized 18 dinucleotide microsatellite loci in this species. Allelic diversity ranged from three to eight per locus, and observed heterozygosity ranged from 0.200 to 0.842 in a wild population. All loci were in Hardy-Weinberg equilibrium, but linkage disequilibrium was detected between two loci in the wild, but not in the zoo elephants. These loci will be useful for the population-level studies of this species.

  5. N6-methyl-adenine: an epigenetic signal for DNA-protein interactions.

    PubMed

    Wion, Didier; Casadesús, Josep

    2006-03-01

    N(6)-methyl-adenine is found in the genomes of bacteria, archaea, protists and fungi. Most bacterial DNA adenine methyltransferases are part of restriction-modification systems. Certain groups of Proteobacteria also harbour solitary DNA adenine methyltransferases that provide signals for DNA-protein interactions. In gamma-proteobacteria, Dam methylation regulates chromosome replication, nucleoid segregation, DNA repair, transposition of insertion elements and transcription of specific genes. In Salmonella, Haemophilus, Yersinia and Vibrio species and in pathogenic Escherichia coli, Dam methylation is required for virulence. In alpha-proteobacteria, CcrM methylation regulates the cell cycle in Caulobacter, Rhizobium and Agrobacterium, and has a role in Brucella abortus infection.

  6. Adenine Phosphoribosyltransferase in Plant Tissues: Some Effects of Kinetin on Enzymic Activity 1

    PubMed Central

    Nicholls, P. B.; Murray, A. W.

    1968-01-01

    Adenine phosphoribosyltransferase activity was measured in extracts of soybean (Glycine max var. Acme) callus and of senescing barley leaves (Hordeum distichon c.v. Prior). The enzyme from soybean callus had Michaelis constants for adenine and 5-phosphoribosyl pyrophosphate of 1.5 and 7.5 μm respectively and was inhibited by AMP and stimulated by ATP. The presence of kinetin was found to considerably increase the activity of adenine phosphoribosyltransferase in extracts of soybean callus and senescing barley leaves. PMID:16656820

  7. Michael hydratase alcohol dehydrogenase or just alcohol dehydrogenase?

    PubMed Central

    2014-01-01

    The Michael hydratase – alcohol dehydrogenase (MhyADH) from Alicycliphilus denitrificans was previously identified as a bi-functional enzyme performing a hydration of α,β-unsaturated ketones and subsequent oxidation of the formed alcohols. The investigations of the bi-functionality were based on a spectrophotometric assay and an activity staining in a native gel of the dehydrogenase. New insights in the recently discovered organocatalytic Michael addition of water led to the conclusion that the previously performed experiments to identify MhyADH as a bi-functional enzyme and their results need to be reconsidered and the reliability of the methodology used needs to be critically evaluated. PMID:24949265

  8. DNA methylation on N6-adenine in C. elegans

    PubMed Central

    Greer, Eric Lieberman; Blanco, Mario Andres; Gu, Lei; Sendinc, Erdem; Liu, Jianzhao; Aristizábal-Corrales, David; Hsu, Chih-Hung; Aravind, L.; He, Chuan; Shi, Yang

    2015-01-01

    Summary In mammalian cells, DNA methylation on the 5th position of cytosine (5mC) plays an important role as an epigenetic mark. However, DNA methylation was considered to be absent in C. elegans because of the lack of detectable 5mC as well as homologs of the cytosine DNA methyltransferases. Here, using multiple approaches, we demonstrate the presence of adenine N6-methylation (6mA) in C. elegans DNA. We further demonstrate that this modification increases trans-generationally in a paradigm of epigenetic inheritance. Importantly, we identify a DNA demethylase, NMAD-1, and a potential DNA methyltransferase, DAMT-1, which regulate 6mA levels and crosstalk between methylation of histone H3K4me2 and 6mA, and control the epigenetic inheritance of phenotypes associated with the loss of the H3K4me2 demethylase spr-5. Together, these data identify a DNA modification in C. elegans and raise the exciting possibility that 6mA may be a carrier of heritable epigenetic information in eukaryotes. PMID:25936839

  9. Coordinated regulation of accessory genetic elements produces cyclic di-nucleotides for V. cholerae virulence.

    PubMed

    Davies, Bryan W; Bogard, Ryan W; Young, Travis S; Mekalanos, John J

    2012-04-13

    The function of the Vibrio 7(th) pandemic island-1 (VSP-1) in cholera pathogenesis has remained obscure. Utilizing chromatin immunoprecipitation sequencing and RNA sequencing to map the regulon of the master virulence regulator ToxT, we identify a TCP island-encoded small RNA that reduces the expression of a previously unrecognized VSP-1-encoded transcription factor termed VspR. VspR modulates the expression of several VSP-1 genes including one that encodes a novel class of di-nucleotide cyclase (DncV), which preferentially synthesizes a previously undescribed hybrid cyclic AMP-GMP molecule. We show that DncV is required for efficient intestinal colonization and downregulates V. cholerae chemotaxis, a phenotype previously associated with hyperinfectivity. This pathway couples the actions of previously disparate genomic islands, defines VSP-1 as a pathogenicity island in V. cholerae, and implicates its occurrence in 7(th) pandemic strains as a benefit for host adaptation through the production of a regulatory cyclic di-nucleotide.

  10. Separation and characterization of oxaliplatin dinucleotides from DNA using HPLC-ESI ion trap mass spectrometry.

    PubMed

    Mowaka, Shereen; Linscheid, Michael

    2008-11-01

    Oxaliplatin is a third-generation platinum complex, and has a broad spectrum of antitumor activity. Such platinum complexes with the DACH carrier ligand have recently received increasing attention since they show efficacy against cisplatin-resistant cell lines. As the foremost indication of antitumor activity of platinum drugs is the formation of adducts with genomic DNA, calf thymus DNA-oxaliplatin adducts were the major target in this study. Calf thymus DNA was incubated with oxaliplatin, resulting in the formation of a large number of platinum-DNA adducts. Treated DNA was digested into the dinucleotides with a combination of enzymes, namely, benzonase, alkaline phosphatase, and nuclease S1. Using a high-performance liquid chromatography, we carried out the separation of individual platinum-DNA adducts which were concurrently identified using electrospray ionization ion trap mass spectrometry (MS). Both 1,2-intrastrand and 1,2-interstrand cross-linked adducts were found; however, those of the intrastrand nature have a considerably higher abundance than those of the interstrand cross-links. Among them, d(GpG)-oxaliplatin was the most abundant bifuctional adduct. To a lesser extent, a few monofunctional adducts were detected as well. MS(n) experiments served to ascertain the detailed structures of oxaliplatin adducts of dinucleoside monophosphates and of dinucleotides.

  11. Base-boronated dinucleotides: synthesis and effect of N7-cyanoborane substitution on the base protons.

    PubMed Central

    Hasan, A; Li, H; Tomasz, J; Shaw, B R

    1996-01-01

    Boron-modified nucleic acids comprise a new set of DNA mimics that have potential biological and therapeutic applications. A series of nine dinucleotides containing N7-cyanoborane-2'-deoxyguanosine ((7b)dG) at the 3', 5' or both positions of the phosphodiester linkage have been synthesized using solution phase phosphoramidite chemistry. Fmoc was used as the 5'-protecting group because of incompatibility of the cyanoborane moiety with 5'-DMT cations generated during the deprotection step. The presence of the cyanoborane group was confirmed on the basis of Fab-MS and 1H NMR spectroscopy. The H-8 proton of (7b)dG in the dinucleotides shifted 0.35-0.80 p.p.m. downfield relative to that of unmodified dG. A comparison of the D20 exchange kinetics of the H-8 proton at 60 degrees C showed that H-8 of (7b)dG is very labile relative to unmodified dG, indicating that the N7-cyanoborane modification increases the acidity of the H-8 proton of (7b)dG. These studies illustrate the feasibility of synthesizing boron-containing oligonucleotides which are modified at the N7-guanine to block Hoogsteen pairing in the DNA major groove. PMID:8668548

  12. Structural Flexibility and Conformation Features of Cyclic Dinucleotides in Aqueous Solutions.

    PubMed

    Che, Xing; Zhang, Jun; Zhu, Yanyu; Yang, Lijiang; Quan, Hui; Gao, Yi Qin

    2016-03-17

    Cyclic dinucleotides are able to trigger the innate immune system by activating STING. It was found that the binding affinity of asymmetric 2'3'-cGAMP to symmetric dimer of STING is 3 orders of magnitude higher than that of the symmetric 3'3'-cyclic dinucleotides. Such a phenomenon has not been understood yet. Here we show that the subtle changes in phosphodiester linkage of CDNs lead to their distinct structural properties which correspond to the varied binding affinities. 2'-5' and/or 3'-5' linked CDNs adopt specific while different types of ribose puckers and backbone conformations. That ribose conformations and base types have different propensities for anti or syn glycosidic conformations further affects the overall flexibility of CDNs. The counterbalance between backbone ring tension and electrostatic repulsion, both affected by the ring size, also contributes to the different flexibility of CDNs. Our calculations reveal that the free energy cost for 2'3'-cGAMP to adopt the STING-bound structure is smaller than that for 3'3'-cGAMP and cyclic-di-GMP. These findings may serve as a reference for design of CDN-analogues as vaccine adjuvants. Moreover, the cyclization pattern of CDNs closely related to their physiological roles suggests the importance of understanding structural properties in the study of protein-ligand interactions.

  13. A cluster of highly polymorphic dinucleotide repeats in intron 17b of the cystic fibrosis transmembrane conductance regulator (CFTR) gene.

    PubMed Central

    Zielenski, J; Markiewicz, D; Rininsland, F; Rommens, J; Tsui, L C

    1991-01-01

    A cluster of highly polymorphic dinucleotide repeats has been detected in intron 17b of the CFTR gene, 200 bp downstream from the preceding exon. At least 24 alleles, with sizes ranging from 7 to 56 units of a TA repeat, have been identified in a panel of 92 unrelated carriers of cystic fibrosis (CF). The common ones are those with 7, 30, and 31 dinucleotide units, with frequencies of .22, .19, and .12, respectively, among the non-CF chromosomes. Mendelian, codominant segregation of the alleles has been demonstrated in family studies, as expected. A less polymorphic dinucleotide (CA repeat) cluster has also been detected in a region 167 bp downstream from the TA repeat. The length of the CA repeat cluster varies from 11 to 17 dinucleotide units, and it appears to have an inverse relationship to that of the TA repeats. These dinucleotide repeats should be useful in genetic linkage studies, in counseling for CF families with unknown mutations, and in tracing the origins of the various mutant CF alleles. Images Figure 2 Figure 3 PMID:1720926

  14. Spin-dependent electron transport in zinc- and manganese-doped adenine molecules

    SciTech Connect

    Simchi, Hamidreza; Esmaeilzadeh, Mahdi Mazidabadi, Hossein

    2014-01-28

    The spin-dependent electron transport properties of zinc- and manganese-doped adenine molecules connected to zigzag graphene leads are studied in the zero bias regime using the non-equilibrium Green's function method. The conductance of the adenine molecule increased and became spin-dependent when a zinc or manganese atom was doped into the molecules. The effects of a transverse electric field on the spin-polarization of the transmitted electrons were investigated and the spin-polarization was controlled by changing the transverse electric field. Under the presence of a transverse electric field, both the zinc- and manganese-doped adenine molecules acted as spin-filters. The maximum spin-polarization of the manganese-doped adenine molecule was greater than the molecule doped with zinc.

  15. Identification of a mitochondrial ATP synthase-adenine nucleotide translocator complex in Leishmania.

    PubMed

    Detke, Siegfried; Elsabrouty, Rania

    2008-01-01

    The ATP synthasome is a macromolecular complex consisting of ATP synthase, adenine nucleotide translocator and phosphate carrier. To determine if this complex is evolutionary old or young, we searched for its presence in Leishmania, a mitochondria containing protozoan which evolved from the main eukaryote line soon after eukaryotes split from prokaryotes. Sucrose gradient centrifugation showed that the distribution of ANT among the fractions coincided with the distribution of ATP synthase. In addition, ATP synthase co-precipitated with FLAG tagged and wild type adenine nucleotide translocator isolated with anti FLAG and anti adenine nucleotide translocator antibodies, respectively. These data indicate that the adenine nucleotide translocator interacted with the ATP synthase to form a stable structure referred to as the ATP synthasome. The presence of the ATP synthasome in Leishmania, an organism branching off the main line of eukaryotes early in the development of eukaryotes, as well as in higher eukaryotes suggests that the ATP synthasome is a phylogenetically ancient structure. PMID:17920025

  16. Benchmark Thermochemistry for Biologically Relevant Adenine and Cytosine. A Combined Experimental and Theoretical Study.

    PubMed

    Emel'yanenko, Vladimir N; Zaitsau, Dzmitry H; Shoifet, Evgeni; Meurer, Florian; Verevkin, Sergey P; Schick, Christoph; Held, Christoph

    2015-09-17

    The thermochemical properties available in the literature for adenine and cytosine are in disarray. A new condensed phase standard (p° = 0.1 MPa) molar enthalpy of formation at T = 298.15 K was measured by using combustion calorimetry. New molar enthalpies of sublimation were derived from the temperature dependence of vapor pressure measured by transpiration and by the quarz-crystal microbalance technique. The heat capacities of crystalline adenine and cytosine were measured by temperature-modulated DSC. Thermodynamic data on adenine and cytosine available in the literature were collected, evaluated, and combined with our experimental results. Thus, the evaluated collection of data together with the new experimental results reported here has helped to resolve contradictions in the available enthalpies of formation. A set of reliable thermochemical data is recommended for adenine and cytosine for further thermochemical calculations. Quantum-chemical calculations of the gas phase molar enthalpies of formation of adenine and cytosine have been performed by using the G4 method and results were in excellent agreement with the recommended experimental data. The standard molar entropies of formation and the standard molar Gibbs functions of formation in crystal and gas state have been calculated. Experimental vapor-pressure data measured in this work were used to estimate pure-component PC-SAFT parameters. This allowed modeling solubility of adenine and cytosine in water over the temperature interval 278-310 K. PMID:26317826

  17. Benchmark Thermochemistry for Biologically Relevant Adenine and Cytosine. A Combined Experimental and Theoretical Study.

    PubMed

    Emel'yanenko, Vladimir N; Zaitsau, Dzmitry H; Shoifet, Evgeni; Meurer, Florian; Verevkin, Sergey P; Schick, Christoph; Held, Christoph

    2015-09-17

    The thermochemical properties available in the literature for adenine and cytosine are in disarray. A new condensed phase standard (p° = 0.1 MPa) molar enthalpy of formation at T = 298.15 K was measured by using combustion calorimetry. New molar enthalpies of sublimation were derived from the temperature dependence of vapor pressure measured by transpiration and by the quarz-crystal microbalance technique. The heat capacities of crystalline adenine and cytosine were measured by temperature-modulated DSC. Thermodynamic data on adenine and cytosine available in the literature were collected, evaluated, and combined with our experimental results. Thus, the evaluated collection of data together with the new experimental results reported here has helped to resolve contradictions in the available enthalpies of formation. A set of reliable thermochemical data is recommended for adenine and cytosine for further thermochemical calculations. Quantum-chemical calculations of the gas phase molar enthalpies of formation of adenine and cytosine have been performed by using the G4 method and results were in excellent agreement with the recommended experimental data. The standard molar entropies of formation and the standard molar Gibbs functions of formation in crystal and gas state have been calculated. Experimental vapor-pressure data measured in this work were used to estimate pure-component PC-SAFT parameters. This allowed modeling solubility of adenine and cytosine in water over the temperature interval 278-310 K.

  18. Phosphonate analogues of dinucleotides as substrates for DNA-dependent RNA polymerase from Escherichia coli in primed abortive initiation reaction.

    PubMed

    Cvekl, A; Horská, K; Sebesta, K; Rosenberg, I; Holý, A

    1989-02-01

    Dinucleotides (3'-5')-ApU and UpA and their 3'-O-phosphonylmethyl and 5'-O-phosphonylmethyl analogues were studied as substrates in the primed abortive synthesis catalysed by Escherichia coli DNA-dependent RNA polymerase on poly[d(A-T)] template. All phosphonate analogues of dinucleotides containing the anomalous sugar-phosphate backbone are substrates for the holoenzyme as verified by RNase A and RNase T2 digestion of the trinucleotide analogues obtained. The finding that phosphonate dinucleotides act as primers for transcription indicates that steric requirements at the initiation site are not as specific as previously supposed. Analysis of kinetic constants of ordered bibi reaction Kia, KmA, KmB and Vmax suggests that the instability of short RNA-DNA hybrids contributes to the abortive release of trinucleotides formed.

  19. Genetics Home Reference: lactate dehydrogenase deficiency

    MedlinePlus

    ... dehydrogenase-B pieces (subunits) of the lactate dehydrogenase enzyme. This enzyme is found throughout the body and is important ... cells. There are five different forms of this enzyme, each made up of four protein subunits. Various ...

  20. Labeling of mitochondrial adenine nucleotides of bovine sperm

    SciTech Connect

    Cheetham, J.; Lardy, H.A.

    1986-05-01

    Incorporation of /sup 32/P/sub i/ into the adenine nucleotide pool of intact bovine spermatozoa utilizing endogenous substrates results in a specific activity (S.A.) ratio ATP/ADP of 0.3 to 0.5, suggesting compartmentation of nucleotide pools or a pathway for phosphorylation of AMP in addition to the myokinase reaction. Incubation of filipin-permeabilized cells with pyruvate, acetylcarnitine, or ..cap alpha..-ketoglutarate (..cap alpha..KG) resulted in ATP-ADP S.A. ratios of 0.5, 0.8, and 1.6, respectively, for mitochondrial nucleotides. However, when malate was included with pyruvate or acetylcarnitine, the ATP/ADP S.A. ratio increased by 400% to 2.0 for pyruvate/malate and by 290% to 2.8 for acetylcarnitine/malate, while the ATP/ADP ratio increased by less than 100% in both cases. These results may indicate that under conditions of limited flux through the citric acid cycle a pathway for phosphorylation of AMP from a precursor other than ATP exists or that ATP is compartmented within the mitochondrion. In the presence of uncoupler and oligomycin with ..cap alpha..KG, pyruvate/malate, or acetylcarnitine/malate, /sup 32/P/sub i/ is incorporated primarily into ATP, resulting in an ATP/ADP S.A. ratio of 4.0 for ..cap alpha..KG, 2.7 for pyruvate/malate, and 2.8 for acetylcarnitine/malate. These data are consistent with phosphorylation of ADP during substrate level phosphorylation in the citric acid cycle.

  1. Phenotype and Genotype Characterization of Adenine Phosphoribosyltransferase Deficiency

    PubMed Central

    Bollée, Guillaume; Dollinger, Cécile; Boutaud, Lucile; Guillemot, Delphine; Bensman, Albert; Harambat, Jérôme; Deteix, Patrice; Daudon, Michel; Knebelmann, Bertrand

    2010-01-01

    Adenine phosphoribosyltransferase (APRT) deficiency is a rare autosomal recessive disorder causing 2,8-dihydroxyadenine stones and renal failure secondary to intratubular crystalline precipitation. Little is known regarding the clinical presentation of APRT deficiency, especially in the white population. We retrospectively reviewed all 53 cases of APRT deficiency (from 43 families) identified at a single institution between 1978 and 2009. The median age at diagnosis was 36.3 years (range 0.5 to 78.0 years). In many patients, a several-year delay separated the onset of symptoms and diagnosis. Of the 40 patients from 33 families with full clinical data available, 14 (35%) had decreased renal function at diagnosis. Diagnosis occurred in six (15%) patients after reaching ESRD, with five diagnoses made at the time of disease recurrence in a renal allograft. Eight (20%) patients reached ESRD during a median follow-up of 74 months. Thirty-one families underwent APRT sequencing, which identified 54 (87%) mutant alleles on the 62 chromosomes analyzed. We identified 18 distinct mutations. A single T insertion in a splice donor site in intron 4 (IVS4 + 2insT), which produces a truncated protein, accounted for 40.3% of the mutations. We detected the IVS4 + 2insT mutation in two (0.98%) of 204 chromosomes of healthy newborns. This report, which is the largest published series of APRT deficiency to date, highlights the underdiagnosis and potential severity of this disease. Early diagnosis is crucial for initiation of effective treatment with allopurinol and for prevention of renal complications. PMID:20150536

  2. Detecting horizontally transferred and essential genes based on dinucleotide relative abundance.

    PubMed

    Baran, Robert H; Ko, Hanseok

    2008-10-01

    Various methods have been developed to detect horizontal gene transfer in bacteria, based on anomalous nucleotide composition, assuming that compositional features undergo amelioration in the host genome. Evolutionary theory predicts the inevitability of false positives when essential sequences are strongly conserved. Foreign genes could become more detectable on the basis of their higher order compositions if such features ameliorate more rapidly and uniformly than lower order features. This possibility is tested by comparing the heterogeneities of bacterial genomes with respect to strand-independent first- and second-order features, (i) G + C content and (ii) dinucleotide relative abundance, in 1 kb segments. Although statistical analysis confirms that (ii) is less inhomogeneous than (i) in all 12 species examined, extreme anomalies with respect to (ii) in the Escherichia coli K12 genome are typically co-located with essential genes.

  3. Sequence-dependent dynamics of duplex DNA: the applicability of a dinucleotide model.

    PubMed Central

    Okonogi, T M; Alley, S C; Reese, A W; Hopkins, P B; Robinson, B H

    2002-01-01

    The short-time (submicrosecond) bending dynamics of duplex DNA were measured to determine the effect of sequence on dynamics. All measurements were obtained from a single site on duplex DNA, using a single, site-specific modified base containing a rigidly tethered, electron paramagnetic resonance active spin probe. The observed dynamics are interpreted in terms of single-step sequence-dependent bending force constants, determined from the mean squared amplitude of bending relative to the end-to-end vector using the modified weakly bending rod model. The bending dynamics at a single site are a function of the sequence of the nucleotides constituting the duplex DNA. We developed and examined several dinucleotide-based models for flexibility. The models indicate that the dominant feature of the dynamics is best explained in terms of purine- and pyrimidine-type steps, although distinction is made among all 10 unique steps: It was found that purine-purine steps (which are the same as pyrimidine-pyrimidine steps) were near average in flexibility, but the pyrimidine-purine steps (5' to 3') were nearly twice as flexible, whereas purine-pyrimidine steps were more than half as flexible as average DNA. Therefore, the range of stepwise flexibility is approximately fourfold and is characterized by both the type of base pair step (pyrimidine/purine combination) and the identity of the bases within the pair (G, A, T, or C). All of the four models considered here underscore the complexity of the dependence of dynamics on DNA sequence with certain sequences not satisfactorily explainable in terms of any dinucleotide model. These findings provide a quantitative basis for interpreting the dynamics and kinetics of DNA-sequence-dependent biological processes, including protein recognition and chromatin packaging. PMID:12496111

  4. Dissection of the PHO pathway in Schizosaccharomyces pombe using epistasis and the alternate repressor adenine.

    PubMed

    Estill, Molly; Kerwin-Iosue, Christine L; Wykoff, Dennis D

    2015-05-01

    In Saccharomyces cerevisiae, intracellular phosphate levels are maintained by the PHO pathway, activation of which is assayed by increased phosphatase activity. The PHO pathway of Schizosaccharomyces pombe upregulates phosphatase activity (encoded by pho1 (+)) during low extracellular phosphate levels, but the underlying mechanism is poorly understood. We utilized an alternate repressor of pho1 (+) expression (adenine supplementation) along with epistasis analysis to develop a model of how S. pombe PHO pathway components interact. Analyzing Pho1 activity in S. pombe PHO pathway deletion mutants during adenine starvation, we observed most mutants with a phosphatase defect in phosphate starvation also had a defect in adenine starvation. Pho7, a transcription factor in the PHO pathway, is necessary for an adenine starvation-mediated increase in Pho1 activity. Comparing adenine starvation to phosphate starvation, there are differences in the degree to which individual mutants regulate the two responses. Through epistasis studies, we identified two positive regulatory arms and one repressive arm of the PHO pathway. PKA activation is a positive regulator of Pho1 activity under both environmental conditions and is critical for transducing adenine concentrations in the cell. The synthesis of IP7 also appears critical for the induction of Pho1 activity during adenine starvation, but IP7 is not critical during phosphate starvation, which differs from S. cerevisiae. Finally, Csk1 is critical for repression of pho1 (+) expression during phosphate starvation. We believe all of these regulatory arms converge to increase transcription of pho1 (+) and some of the regulation acts through pho7 (+).

  5. Convergent evolution of Trichomonas vaginalis lactate dehydrogenase from malate dehydrogenase

    PubMed Central

    Wu, Gang; Fiser, András; ter Kuile, Benno; Šali, Andrej; Müller, Miklós

    1999-01-01

    Lactate dehydrogenase (LDH) is present in the amitochondriate parasitic protist Trichomonas vaginalis and some but not all other trichomonad species. The derived amino acid sequence of T. vaginalis LDH (TvLDH) was found to be more closely related to the cytosolic malate dehydrogenase (MDH) of the same species than to any other LDH. A key difference between the two T. vaginalis sequences was that Arg91 of MDH, known to be important in coordinating the C-4 carboxyl of oxalacetate/malate, was replaced by Leu91 in LDH. The change Leu91Arg by site-directed mutagenesis converted TvLDH into an MDH. The reverse single amino acid change Arg91Leu in TvMDH, however, gave a product with no measurable LDH activity. Phylogenetic reconstructions indicate that TvLDH arose from an MDH relatively recently. PMID:10339579

  6. Sorbitol dehydrogenase is a zinc enzyme.

    PubMed Central

    Jeffery, J; Chesters, J; Mills, C; Sadler, P J; Jörnvall, H

    1984-01-01

    Evidence is given that tetrameric sorbitol dehydrogenase from sheep liver contains one zinc atom per subunit, most probably located at the active site, and no other specifically bound zinc or iron atom. In alcohol dehydrogenases that are structurally related to sorbitol dehydrogenase, more than one zinc atom per subunit can complicate investigations of zinc atom function. Therefore, sorbitol dehydrogenase will be particularly valuable for defining the precise roles of zinc in alcohol and polyol dehydrogenases, and for establishing correlations of structure and function with other important zinc-containing proteins. PMID:6370679

  7. Assignment of the Gene for Adenine Phosphoribosyltransferase to Human Chromosome 16 by Mouse-Human Somatic Cell Hybridization

    PubMed Central

    Tischfield, Jay A.; Ruddle, Frank H.

    1974-01-01

    A series of mouse-human hybrids was prepared from mouse cells deficient in adenine phosphoribosyltransferase (EC 2.4.2.7) and normal human cells. The hybrids were made in medium containing adenine and alanosine, an antimetabolite known to inhibit de novo adenylic acid biosynthesis. The mouse cells, unable to utilize exogenous adenine, were killed in this medium, but the hybrids proliferated as a consequence of their retaining the human aprt gene. The hybrids were then exposed to the adenine analogs 2,6-diaminopurine and 2-fluoroadenine to select for cells that had lost this gene. Before exposure to the adenine analogs, the expression of human adenine phosphoribosyltransferase by the hybrids was strongly associated only with the presence of human chromosome 16, and afterwards this was the only human chromosome consistently lost. This observation suggests that the human aprt gene can be assigned to chromosome 16. Images PMID:4129802

  8. Active mammalian replication origins are associated with a high-density cluster of mCpG dinucleotides.

    PubMed Central

    Rein, T; Zorbas, H; DePamphilis, M L

    1997-01-01

    ori-beta is a well-characterized origin of bidirectional replication (OBR) located approximately 17 kb downstream of the dihydrofolate reductase gene in hamster cell chromosomes. The approximately 2-kb region of ori-beta that exhibits greatest replication initiation activity also contains 12 potential methylation sites in the form of CpG dinucleotides. To ascertain whether DNA methylation might play a role at mammalian replication origins, the methylation status of these sites was examined with bisulfite to chemically distinguish cytosine (C) from 5-methylcytosine (mC). All of the CpGs were methylated, and nine of them were located within 356 bp flanking the minimal OBR, creating a high-density cluster of mCpGs that was approximately 10 times greater than average for human DNA. However, the previously reported densely methylated island in which all cytosines were methylated regardless of their dinucleotide composition was not detected and appeared to be an experimental artifact. A second OBR, located at the 5' end of the RPS14 gene, exhibited a strikingly similar methylation pattern, and the organization of CpG dinucleotides at other mammalian origins revealed the potential for high-density CpG methylation. Moreover, analysis of bromodeoxyuridine-labeled nascent DNA confirmed that active replication origins were methylated. These results suggest that a high-density cluster of mCpG dinucleotides may play a role in either the establishment or the regulation of mammalian replication origins. PMID:8972222

  9. Determination of adenine based on the fluorescence recovery of the L-Tryptophan-Cu(2+) complex.

    PubMed

    Duan, Ruilin; Li, Chunyan; Liu, Shaopu; Liu, Zhongfang; Li, Yuanfang; Yuan, Yusheng; Hu, Xiaoli

    2016-01-01

    A simple and sensitive method for determination of adenine was developed based on fluorescence quenching and recovery of L-Tryptophan (L-Trp). The fluorescence of L-Trp could efficiently quenched by copper ion compared with other common metal ions. Upon addition of adenine (Ade) in L-Trp-Cu(II) system, the fluorescence was reoccurred. Under the optimum conditions, the recovery fluorescence intensity was linearly correlated with the concentration of adenine in the range from 0.34 to 25.0μmolL(-1), with a correlation coefficient (R(2)) of 0.9994. The detection limit (3σ/k) was 0.046μmolL(-1), indicating that this method could applied to detect trace adenine. In this study, amino acids including L-Trp, D-Trp, L-Tyr, D-Tyr, L-Phe, D-Phe were investigated and only L-Trp could well chelated copper ion. Additionally, the mechanism of quench and recovery also were discussed and the method was successfully applied to detect the adenine in DNA with satisfactory results.

  10. Determination of adenine based on the fluorescence recovery of the L-Tryptophan-Cu2+ complex

    NASA Astrophysics Data System (ADS)

    Duan, Ruilin; Li, Chunyan; Liu, Shaopu; Liu, Zhongfang; Li, Yuanfang; Yuan, Yusheng; Hu, Xiaoli

    2016-01-01

    A simple and sensitive method for determination of adenine was developed based on fluorescence quenching and recovery of L-Tryptophan (L-Trp). The fluorescence of L-Trp could efficiently quenched by copper ion compared with other common metal ions. Upon addition of adenine (Ade) in L-Trp-Cu(II) system, the fluorescence was reoccurred. Under the optimum conditions, the recovery fluorescence intensity was linearly correlated with the concentration of adenine in the range from 0.34 to 25.0 μmol L-1, with a correlation coefficient (R2) of 0.9994. The detection limit (3σ/k) was 0.046 μmol L-1, indicating that this method could applied to detect trace adenine. In this study, amino acids including L-Trp, D-Trp, L-Tyr, D-Tyr, L-Phe, D-Phe were investigated and only L-Trp could well chelated copper ion. Additionally, the mechanism of quench and recovery also were discussed and the method was successfully applied to detect the adenine in DNA with satisfactory results.

  11. Adenine: an important drug scaffold for the design of antiviral agents

    PubMed Central

    Wang, Changyuan; Song, Zhendong; Yu, Haiqing; Liu, Kexin; Ma, Xiaodong

    2015-01-01

    Adenine derivatives, in particular the scaffold bearing the acyclic nucleoside phosphonates (ANPS), possess significant antiviral and cytostatic activity. Till now, several effective adenine derivatives have been marketed for the treatment of HIV, HBV, CMV and other virus-infected diseases. These compounds are represented by tenofovir (PMPA), a medicine for both HIV and HBV, and adefovir as an anti-HBV agent. More than this, other analogs, such as GS9148, GS9131, and GS7340, are also well-known anti-viral agents that have been progressed to the clinical studies for their excellent activity. In general, the structures of these compounds include an adenine nucleobase linked to a phosphonate side chain. Considerable structural modifications on the scaffold itself and the peripheral sections were made. The structure-activity relationships (SARs) of this skeleton will provide valuable clues to identify more effective adenine derivatives as antiviral drugs. Here, we systematically summarized the SARs of the adenine derivatives, and gave important information for further optimizing this template. PMID:26579473

  12. Temperature-dependent self-assembly of adenine derivative on HOPG.

    PubMed

    Mu, Zhongcheng; Rubner, Oliver; Bamler, Markus; Blömker, Tobias; Kehr, Gerald; Erker, Gerhard; Heuer, Andreas; Fuchs, Harald; Chi, Lifeng

    2013-08-27

    Temperature-dependent self-assembly formed by the adsorption of the nucleobase adenine derivative on a graphite surface were investigated by in situ scanning tunneling microscopy (STM). The high-resolution STM images reveal two types of structures, α phase and β phase, which are mainly driven by either hydrogen bonding or aromatic π-π interactions between adenine bases, respectively, as well as the interactions of alkyl chains. α-Phase structures can be transformed into β-phase structures by increasing temperature. The reverse is true for decreasing temperature. This reflects structural stabilities resulting from the different interactions. Density functional theory (DFT) calculations were performed to characterize possible arrangements of adjacent adenine moieties systematically in terms of binding energies and structural properties. Via a systematic search algorithm, all possible network structures were determined on a microscopic level. In this way, it is possible to rationalize the structural parameters as found in the STM images.

  13. Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays.

    PubMed

    Jha, Shankar K; Ahmed, Zeeshan; Agio, Mario; Ekinci, Yasin; Löffler, Jörg F

    2012-02-01

    We report the ultrasensitive detection of adenine using deep-UV surface-enhanced resonance Raman scattering on aluminum nanostructures. Well-defined Al nanoparticle arrays fabricated over large areas using extreme-UV interference lithography exhibited sharp and tunable plasmon resonances in the UV and deep-UV wavelength ranges. Theoretical modeling based on the finite-difference time-domain method was used to understand the near-field and far-field optical properties of the nanoparticle arrays. Raman measurements were performed on adenine molecules coated uniformly on the Al nanoparticle arrays at a laser excitation wavelength of 257.2 nm. With this technique, less than 10 amol of label-free adenine molecules could be detected reproducibly in real time. Zeptomole (~30,000 molecules) detection sensitivity was readily achieved proving that deep-UV surface-enhanced resonance Raman scattering is an extremely sensitive tool for the detection of biomolecules.

  14. Molecular cloning and characterization of human pyruvate dehydrogenase. beta. subunit gene

    SciTech Connect

    Koike, Kichiko; Urata, Yoshishige; Koike, Masahiko )

    1990-08-01

    A genomic clone encompassing the entire gene for the human pyruvate dehydrogenase {beta} subunit (PDH{beta}) has been isolated by screening a leukocyte genomic library with a nick-translated human foreskin fibroblast PDH{beta} cDNA probe. The 18-kilobase clone was characterized by restriction enzyme analysis, extensive DNA sequencing, and primer-extension analysis. The PDH{beta} structural gene is composed of 10 exons and 9 introns. All intron-exon splice junctions follow the GT/AG rule. The Alu family was found in introns 2 and 8. The 5{prime} flanking region of the PDH{beta} gene contains a CAAT consensus promoter sequence but no TATA sequence. Primer-extension analysis indicated the PDH{beta} gene transcription start site is an adenine residue located 132 bases upstream from the initiation codon in exon 1.

  15. Replacement of Tyr50 stacked on the si-face of the isoalloxazine ring of the flavin adenine dinucleotide prosthetic group modulates Bacillus subtilis ferredoxin-NADP(+) oxidoreductase activity toward NADPH.

    PubMed

    Seo, Daisuke; Naito, Hiroshi; Nishimura, Erika; Sakurai, Takeshi

    2015-08-01

    Ferredoxin-NAD(P)(+) oxidoreductases ([EC 1.18.1.2], [EC 1.18.1.3], FNRs) from green sulfur bacteria, purple non-sulfur bacteria and most of Firmicutes, such as Bacillus subtilis (BsFNR) are homo-dimeric flavoproteins homologous to bacterial NADPH-thioredoxin reductase. These FNRs contain two unique aromatic residues stacked on the si- and re-face of the isoalloxazine ring moiety of the FAD prosthetic group whose configurations are often found among other types of flavoproteins including plant-type FNR and flavodoxin, but not in bacterial NADPH-thioredoxin reductase. To investigate the role of the si-face Tyr50 residue in BsFNR, we replaced Tyr50 with Gly, Ser, and Trp and examined its spectroscopic properties and enzymatic activities in the presence of NADPH and ferredoxin (Fd) from B. subtilis (BsFd). The replacement of Tyr50 to Gly (Y50G), Ser (Y50S), and Trp (Y50W) in BsFNR resulted in a blue shift of the FAD transition bands. The Y50G and Y50S mutations enhanced the FAD fluorescence emission, whereas those of the wild type and Y50W mutant were quenched. All three mutants decreased thermal stabilities compared to wild type. Using a diaphorase assay, the k cat values for the Y50G and Y50S mutants in the presence of NADPH and ferricyanide were decreased to less than 5 % of the wild type activity. The Y50W mutant retained approximately 20 % reactivity in the diaphorase assay and BsFd-dependent cytochrome c reduction assay relative to wild type. The present results suggest that Tyr50 modulates the electronic properties and positioning of the prosthetic group.

  16. Counterregulation of nuclear 3,5,3'-triiodo-L-thyronine (T3) binding by oxidized and reduced-nicotinamide adenine dinucleotide phosphates in the presence of cytosolic T3-binding protein in vitro

    SciTech Connect

    Hashizume, K.; Miyamoto, T.; Yamauchi, K.; Ichikawa, K.; Kobayashi, M.; Ohtsuka, H.; Sakurai, A.; Suzuki, S.; Yamada, T.

    1989-04-01

    The role of cytosolic T3-binding protein (CTBP) in the regulation of nuclear T3 binding was studied in vitro. Nuclear (125I)T3 binding was observed in the presence of 1.0 mM dithiothreitol (DTT). When the nuclei prepared from rat kidney were incubated with inactive form of CTBP which was also prepared from rat kidney, (125I)T3 binding to nuclei was not affected. When the nuclei were incubated with inactive form of CTBP in the presence of NADP, (125I)T3 binding to nuclei was increased, whereas binding was diminished when nuclei were incubated with CTBP in the presence of NADPH. The inactive form of CTBP was activated by NADPH. NADP also activated CTBP in the presence of DTT. Both active forms of CTBP were again inactivated by extraction with charcoal, and these inactive forms were reactivated by NADPH or by NADP and DTT, but not by NADP alone. Although the nuclei treated with 0.3 M NaCl lost the binding activity for (125I)T3 in the absence of NADP, the nuclei retained the binding activity for (125I)T3 in the presence of NADP and the inactive form of CTBP. Treatment of the nuclei with 0.5 M NaCl lost the binding activity for (125I)T3 not only in the absence but also in the presence of NADP and CTBP. These results suggested that NADP and NADPH play roles as counterregulatory factors for nuclear T3 binding in the presence of CTBP. Further, it was speculated that binding sites for the T3-CTBP complex, which is generated in the presence of NADP and DTT, are present in nuclei, and that binding sites for the complex are different from nuclear T3 receptors.

  17. Ultra-performance liquid chromatography tandem mass-spectrometry (uplc-ms/ms) for the rapid, simultaneous analysis of thiamin, riboflavin, flavin adenine dinucleotide, nicotinamide and pyridoxal in human milk

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel, rapid and sensitive Ultra Performance Liquid-Chromatography tandem Mass-Spectrometry (UPLC-MS/MS) method for the simultaneous determination of several B-vitamins in human milk was developed. Resolution by retention time or multiple reaction monitoring (MRM) for thiamin, riboflavin, flavin a...

  18. PHYLOGEOGRAPHY OF A HOLARCTIC NEMATODE: SOBOLIPHYME BATURINI AMONG MUSTELIDS: CLIMATE CHANGE, EPISODIC COLONIZATION AND DIVERSIFICATION IN A COMPLEX HOST-PARASITE SYSTEM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    : Phylogeography of Soboliphyme baturini, a nematode parasite in mustelids, is explored across Beringia. Sequences of the mitochondrial cytochrome c oxidase subunit 1 (COI) and nicotinamide adenine dinucleotide dehydrogenase subunit 4 (ND4) genes were evaluated from 38 individuals representing 19 lo...

  19. DNA with adenine tracts contains poly(dA).poly(dT) conformational features in solution.

    PubMed

    Brahms, S; Brahms, J G

    1990-03-25

    The conformation of DNA's with adenine-thymine tracts exhibiting retardation in electrophoretic migration and considered as curved were investigated in solution by CD and RAMAN spectroscopy. The following curved multimers with adenine tracts but of different flanking sequences d(CA5TGCC)n, d(TCTCTA6TATATA5)n, d(GA4T4C)n yield CD spectroscopic features indicating a non-B structure of the dA.dT tract with similarities to polyd(A).polyd(T). We suggest that adenine-thymine bases in these multimers contain some of the distinctive conformational features of poly(A).polyd(T) probably with large propeller twist found by NMR (Behling and Kearns, 1987) and by X-ray diffraction on oligonucleotides containing a tract of adenines (Nelson et al. 1987, Coll et al; 1987; DiGabriele et al. 1989). Some elements of distinctive CD features of the contiguous adenines run are also observed in the straight multi-9-mer d(CA5GCC)n which lacks in-phase relation to the helical repeat. Despite the presence of the TpA step in the straight multimer d(GT4A4)n, the altered dA.dT conformation is not completely destroyed. Interruption of adenine tract by a guanine in d(CAAGAATGCC)n leads to a B-like conformation and to a normal electrophoretic mobility. The Raman spectra reveal a rearrangement of the sugar-phosphate backbone of dA.dT tract in the multimer d(CA5TGCC)n with respect to that of polydA.polydT. This is reflected in the presence of an unique Raman band associated to C2'-endo sugar with a predominant contribution of C1'-exo puckering which is exhibited by the multimer whereas two distinct Raman bands characterize poly(dA).poly(dT) backbone conformation.

  20. Solution structure of a five-adenine bulge loop within a DNA duplex.

    PubMed

    Dornberger, U; Hillisch, A; Gollmick, F A; Fritzsche, H; Diekmann, S

    1999-09-28

    The three-dimensional solution structure of a DNA molecule of the sequence 5'-d(GCATCGAAAAAGCTACG)-3' paired with 5'-d(CGTAGCCGATGC)-3' containing a five-adenine bulge loop (dA(5)-bulge) between two double helical stems was determined by 2D (1)H and (31)P NMR, infrared, and Raman spectroscopy. The DNA in both stems adopt a classical B-form double helical structure with Watson-Crick base pairing and C2'-endo sugar conformation. In addition, the two dG/dC base pairs framing the dA(5)-bulge loop are formed and are stable at least up to 30 degrees C. The five adenine bases of the bulge loop are localized at intrahelical positions within the double helical stems. Stacking on the double helical stem is continued for the first four 5'-adenines in the bulge loop. The total rise (the height) of these four stacked adenines roughly equals the diameter of the double helical stem. The stacking interactions are broken between the last of these four 5'-adenines and the fifth loop adenine at the 3'-end. This 3'-adenine partially stacks on the other stem. The angle between the base planes of the two nonstacking adenines (A10 and A11) in the bulge loop reflects the kinking angle of the global DNA structure. The neighboring cytosines opposite the dA(5)-bulge (being parts of the bulge flanking base pairs) do not stack on one another. This disruption of stacking is characterized by a partial shearing of these bases, such that certain sequential NOEs for this base step are preserved. In the base step opposite the loop, an extraordinary hydrogen bond is observed between the phosphate backbone of the 5'-dC and the amino proton of the 3'-dC in about two-thirds of the conformers. This hydrogen bond probably contributes to stabilizing the global DNA structure. The dA(5)-bulge induces a local kink into the DNA molecule of about 73 degrees (+/-11 degrees ). This kinking angle and the mutual orientation of the two double helical stems agree well with results from fluorescence resonance energy

  1. Comparative study of spontaneous deamination of adenine and cytosine in unbuffered aqueous solution at room temperature

    NASA Astrophysics Data System (ADS)

    Wang, Shiliang; Hu, Anguang

    2016-06-01

    Adenine in unbuffered nanopure water at a concentration of 2 mM is completely deaminated (>99%) to hypoxanthine at room temperature in ca. 10 weeks, with an estimated half-life (t1/2) less than 10 days, about six orders of magnitude faster than previously reported. Cytosine is not deaminated under the same condition, even after 3 years. This is in contrast to previous observations that cytosine deaminates 20-40 times faster than adenine free base, in nucleoside, in nucleotide and in single-stranded DNA in buffered neutral aqueous solutions.

  2. Copper-catalyzed intramolecular cyclization of N-propargyl-adenine: synthesis of purine-fused tricyclics.

    PubMed

    Li, Ren-Long; Liang, Lei; Xie, Ming-Sheng; Qu, Gui-Rong; Niu, Hong-Ying; Guo, Hai-Ming

    2014-04-18

    A novel protocol to construct fluorescent purine-fused tricyclic products via intramolecular cyclization of N-propargyl-adenine has been developed. With CuBr as the catalyst, a series of purine-fused tricyclic products were obtained in good to excellent yields (19 examples, 75-89% yields). When R2 was a hydrogen atom in N-propargyl-adenines, the reactions only afforded the endocyclic double bond products. When R2 was an aryl group, the electron-donating groups favored the endocyclic double bond products, while the electron-withdrawing groups favored the exocyclic double bond products. PMID:24678722

  3. A highly selective biosensor with nanomolar sensitivity based on cytokinin dehydrogenase.

    PubMed

    Tian, Faming; Greplová, Marta; Frébort, Ivo; Dale, Nicholas; Napier, Richard

    2014-01-01

    We have developed a N6-dimethylallyladenine (cytokinin) dehydrogenase-based microbiosensor for real-time determination of the family of hormones known as cytokinins. Cytokinin dehydrogenase from Zea mays (ZmCKX1) was immobilised concurrently with electrodeposition of a silica gel film on the surface of a Pt microelectrode, which was further functionalized by free electron mediator 2,6-dichlorophenolindophenol (DCPIP) in supporting electrolyte to give a bioactive film capable of selective oxidative cleavage of the N6- side chain of cytokinins. The rapid electron shuffling between freely diffusible DCPIP and the FAD redox group in ZmCKX1 endowed the microbiosensor with a fast response time of less than 10 s. The immobilised ZmCKX1 retained a high affinity for its preferred substrate N6-(Δ2-isopentenyl) adenine (iP), and gave the miniaturized biosensor a large linear dynamic range from 10 nM to 10 µM, a detection limit of 3.9 nM and a high sensitivity to iP of 603.3 µAmM-1cm-2 (n = 4, R2 = 0.9999). Excellent selectivity was displayed for several other aliphatic cytokinins and their ribosides, including N6-(Δ2-isopentenyl) adenine, N6-(Δ2-isopentenyl) adenosine, cis-zeatin, trans-zeatin and trans-zeatin riboside. Aromatic cytokinins and metabolites such as cytokinin glucosides were generally poor substrates. The microbiosensors exhibited excellent stability in terms of pH and long-term storage and have been used successfully to determine low nanomolar cytokinin concentrations in tomato xylem sap exudates.

  4. A Highly Selective Biosensor with Nanomolar Sensitivity Based on Cytokinin Dehydrogenase

    PubMed Central

    Tian, Faming; Greplová, Marta; Frébort, Ivo; Dale, Nicholas; Napier, Richard

    2014-01-01

    We have developed a N6-dimethylallyladenine (cytokinin) dehydrogenase-based microbiosensor for real-time determination of the family of hormones known as cytokinins. Cytokinin dehydrogenase from Zea mays (ZmCKX1) was immobilised concurrently with electrodeposition of a silica gel film on the surface of a Pt microelectrode, which was further functionalized by free electron mediator 2,6-dichlorophenolindophenol (DCPIP) in supporting electrolyte to give a bioactive film capable of selective oxidative cleavage of the N6- side chain of cytokinins. The rapid electron shuffling between freely diffusible DCPIP and the FAD redox group in ZmCKX1 endowed the microbiosensor with a fast response time of less than 10 s. The immobilised ZmCKX1 retained a high affinity for its preferred substrate N6-(Δ2-isopentenyl) adenine (iP), and gave the miniaturized biosensor a large linear dynamic range from 10 nM to 10 µM, a detection limit of 3.9 nM and a high sensitivity to iP of 603.3 µAmM−1cm−2 (n = 4, R2 = 0.9999). Excellent selectivity was displayed for several other aliphatic cytokinins and their ribosides, including N6-(Δ2-isopentenyl) adenine, N6-(Δ2-isopentenyl) adenosine, cis-zeatin, trans-zeatin and trans-zeatin riboside. Aromatic cytokinins and metabolites such as cytokinin glucosides were generally poor substrates. The microbiosensors exhibited excellent stability in terms of pH and long-term storage and have been used successfully to determine low nanomolar cytokinin concentrations in tomato xylem sap exudates. PMID:24595403

  5. Fed-Batch Production of Glucose 6-Phosphate Dehydrogenase Using Recombinant Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Das Neves, Luiz Carlos Martins; Pessoa, Adalberto; Vitolo, Michele

    The strain Saccharomyces cerevisiae W303-181, having the plasmid YEpPGK-G6P (built by coupling the vector YEPLAC 181 with the promoter phosphoglycerate kinase 1), was cultured by fed-batch process in order to evaluate its capability in the formation of glucose 6-phosphate dehydrogenase (EC.1.1.1.49). Two liters of culture medium (10.0 g/L glucose, 3.7 g/L yeast nitrogen broth (YNB), 0.02 g/L l-tryptophan, 0.02 g/L l-histidine, 0.02 g/L uracil, and 0.02 g/L adenine) were inoculated with 1.5 g dry cell/L and left fermenting in the batch mode at pH 5.7, aeration of 2.2 vvm, 30°C, and agitation of 400 rpm. After glucose concentration in the medium was lower than 1.0 g/L, the cell culture was fed with a solution of glucose (10.0 g/L) or micronutrients (l-tryptophan, l-histidine, uracil, and adenine each one at a concentration of 0.02 g/L) following the constant, linear, or exponential mode. The volume of the culture medium in the fed-batch process was varied from 2 L up to 3 L during 5 h. The highest glucose 6-phosphate dehydrogenase activity (350 U/L; 1 U=1 μmol of NADP/min) occurred when the glucose solution was fed into the fermenter through the decreasing linear mode.

  6. Predicting DNA Methylation State of CpG Dinucleotide Using Genome Topological Features and Deep Networks

    NASA Astrophysics Data System (ADS)

    Wang, Yiheng; Liu, Tong; Xu, Dong; Shi, Huidong; Zhang, Chaoyang; Mo, Yin-Yuan; Wang, Zheng

    2016-01-01

    The hypo- or hyper-methylation of the human genome is one of the epigenetic features of leukemia. However, experimental approaches have only determined the methylation state of a small portion of the human genome. We developed deep learning based (stacked denoising autoencoders, or SdAs) software named “DeepMethyl” to predict the methylation state of DNA CpG dinucleotides using features inferred from three-dimensional genome topology (based on Hi-C) and DNA sequence patterns. We used the experimental data from immortalised myelogenous leukemia (K562) and healthy lymphoblastoid (GM12878) cell lines to train the learning models and assess prediction performance. We have tested various SdA architectures with different configurations of hidden layer(s) and amount of pre-training data and compared the performance of deep networks relative to support vector machines (SVMs). Using the methylation states of sequentially neighboring regions as one of the learning features, an SdA achieved a blind test accuracy of 89.7% for GM12878 and 88.6% for K562. When the methylation states of sequentially neighboring regions are unknown, the accuracies are 84.82% for GM12878 and 72.01% for K562. We also analyzed the contribution of genome topological features inferred from Hi-C. DeepMethyl can be accessed at http://dna.cs.usm.edu/deepmethyl/.

  7. Predicting DNA Methylation State of CpG Dinucleotide Using Genome Topological Features and Deep Networks

    PubMed Central

    Wang, Yiheng; Liu, Tong; Xu, Dong; Shi, Huidong; Zhang, Chaoyang; Mo, Yin-Yuan; Wang, Zheng

    2016-01-01

    The hypo- or hyper-methylation of the human genome is one of the epigenetic features of leukemia. However, experimental approaches have only determined the methylation state of a small portion of the human genome. We developed deep learning based (stacked denoising autoencoders, or SdAs) software named “DeepMethyl” to predict the methylation state of DNA CpG dinucleotides using features inferred from three-dimensional genome topology (based on Hi-C) and DNA sequence patterns. We used the experimental data from immortalised myelogenous leukemia (K562) and healthy lymphoblastoid (GM12878) cell lines to train the learning models and assess prediction performance. We have tested various SdA architectures with different configurations of hidden layer(s) and amount of pre-training data and compared the performance of deep networks relative to support vector machines (SVMs). Using the methylation states of sequentially neighboring regions as one of the learning features, an SdA achieved a blind test accuracy of 89.7% for GM12878 and 88.6% for K562. When the methylation states of sequentially neighboring regions are unknown, the accuracies are 84.82% for GM12878 and 72.01% for K562. We also analyzed the contribution of genome topological features inferred from Hi-C. DeepMethyl can be accessed at http://dna.cs.usm.edu/deepmethyl/. PMID:26797014

  8. Structural and Functional Analysis of DDX41: a bispecific immune receptor for DNA and cyclic dinucleotide

    PubMed Central

    Omura, Hiroki; Oikawa, Daisuke; Nakane, Takanori; Kato, Megumi; Ishii, Ryohei; Ishitani, Ryuichiro; Tokunaga, Fuminori; Nureki, Osamu

    2016-01-01

    In the innate immune system, pattern recognition receptors (PRRs) specifically recognize ligands derived from bacteria or viruses, to trigger the responsible downstream pathways. DEAD box protein 41 (DDX41) is an intracellular PRR that triggers the downstream pathway involving the adapter STING, the kinase TBK1, and the transcription factor IRF3, to activate the type I interferon response. DDX41 is unique in that it recognizes two different ligands; i.e., double-stranded DNA (dsDNA) and cyclic dinucleotides (CDN), via its DEAD domain. However, the structural basis for the ligand recognition by the DDX41 DEAD domain has remained elusive. Here, we report two crystal structures of the DDX41 DEAD domain in apo forms, at 1.5 and 2.2 Å resolutions. A comparison of the two crystal structures revealed the flexibility in the ATP binding site, suggesting its formation upon ATP binding. Structure-guided functional analyses in vitro and in vivo demonstrated the overlapped binding surface for dsDNA and CDN, which is distinct from the ATP-binding site. We propose that the structural rearrangement of the ATP binding site is crucial for the release of ADP, enabling the fast turnover of DDX41 for the dsDNA/CDN-induced STING activation pathway. PMID:27721487

  9. bis-Molybdopterin Guanine Dinucleotide Is Required for Persistence of Mycobacterium tuberculosis in Guinea Pigs

    PubMed Central

    Williams, Monique J.; Shanley, Crystal A.; Zilavy, Andrew; Peixoto, Blas; Manca, Claudia; Kaplan, Gilla; Orme, Ian M.; Mizrahi, Valerie

    2014-01-01

    Mycobacterium tuberculosis is able to synthesize molybdopterin cofactor (MoCo), which is utilized by numerous enzymes that catalyze redox reactions in carbon, nitrogen, and sulfur metabolism. In bacteria, MoCo is further modified through the activity of a guanylyltransferase, MobA, which converts MoCo to bis-molybdopterin guanine dinucleotide (bis-MGD), a form of the cofactor that is required by the dimethylsulfoxide (DMSO) reductase family of enzymes, which includes the nitrate reductase NarGHI. In this study, the functionality of the mobA homolog in M. tuberculosis was confirmed by demonstrating the loss of assimilatory and respiratory nitrate reductase activity in a mobA deletion mutant. This mutant displayed no survival defects in human monocytes or mouse lungs but failed to persist in the lungs of guinea pigs. These results implicate one or more bis-MGD-dependent enzymes in the persistence of M. tuberculosis in guinea pig lungs and underscore the applicability of this animal model for assessing the role of molybdoenzymes in this pathogen. PMID:25404027

  10. bis-Molybdopterin guanine dinucleotide is required for persistence of Mycobacterium tuberculosis in guinea pigs.

    PubMed

    Williams, Monique J; Shanley, Crystal A; Zilavy, Andrew; Peixoto, Blas; Manca, Claudia; Kaplan, Gilla; Orme, Ian M; Mizrahi, Valerie; Kana, Bavesh D

    2015-02-01

    Mycobacterium tuberculosis is able to synthesize molybdopterin cofactor (MoCo), which is utilized by numerous enzymes that catalyze redox reactions in carbon, nitrogen, and sulfur metabolism. In bacteria, MoCo is further modified through the activity of a guanylyltransferase, MobA, which converts MoCo to bis-molybdopterin guanine dinucleotide (bis-MGD), a form of the cofactor that is required by the dimethylsulfoxide (DMSO) reductase family of enzymes, which includes the nitrate reductase NarGHI. In this study, the functionality of the mobA homolog in M. tuberculosis was confirmed by demonstrating the loss of assimilatory and respiratory nitrate reductase activity in a mobA deletion mutant. This mutant displayed no survival defects in human monocytes or mouse lungs but failed to persist in the lungs of guinea pigs. These results implicate one or more bis-MGD-dependent enzymes in the persistence of M. tuberculosis in guinea pig lungs and underscore the applicability of this animal model for assessing the role of molybdoenzymes in this pathogen.

  11. Measurement of liver adenine nucleotides and S-adenosyl amino acids by one-step high-performance liquid chromatography.

    PubMed

    Gourdeau, H; Lavoie, R; Grose, J H; Bélanger, L

    1986-10-01

    A reverse-phase isocratic HPLC method is described for direct simultaneous assay of ATP, ADP, AMP, S-adenosylmethionine, S-adenosylhomocysteine, S-adenosylethionine, and other adenine derivatives in liver microbiopsies. The procedure was tested in conditions which alter the hepatic content of adenine nucleotides and sulfur-adenosyl amino acids in humans, rats, and guinea pigs.

  12. Phosphorus-31 NMR visibility and characterization of rat liver mitochondrial matrix adenine nucleotides

    SciTech Connect

    Hutson, S.M.; Berkich, D.; Williams, G.D.; LaNoue, K.F.; Briggs, R.W. )

    1989-05-16

    Compartmentation and NMR visibility of mitochondrial adenine nucleotides were quantitated in isolated rat liver mitochondria respiring on succinate and glutamate in vitro at 8 and 25{degree}C. Intra- and extramitochondrial nucleotides were discriminated by adding the chelator trans-1,2-diaminocyclohexane-N,N,N{prime},N{prime}-tetraacetic acid (CDTA). T{sub 1} values of about 0.2-0.3 s for magnesium-bound matrix nucleotides were determined. Adenine nucleotide T{sub 1} values were influenced by the ionic environment; only magnesium-free ATP T{sub 1}'s were affected by temperature. Intra- and extramitochondrial adenine nucleotide ratios were varied in ATP-loaded mitochondria with added ATP and phosphate using the mitochondrial inhibitors oligomycin and carboxyatractyloside, and adenine nucleotides were quantitated by using NMR and enzymatic analysis. There was good agreement between matrix ATP concentrations (magnesium-bound ATP) calculated by using NMR and standard biochemical techniques. Although matrix ADP could be detected by NMR, it was difficult to quantitate accurately by NMR. The data indicate that mitochondrial ATP is NMR-visible in isolated mitochondria in vitro.

  13. Controlling two-phase self-assembly of an adenine derivative on HOPG via kinetic effects.

    PubMed

    Wang, Can; Jana, Pritam Kumar; Zhang, Haiming; Mu, Zhongcheng; Kehr, Gerald; Blömker, Tobias; Erker, Gerhard; Fuchs, Harald; Heuer, Andreas; Chi, Lifeng

    2014-08-21

    Large-area self-assembled structures of a nucleobase adenine derivative were successfully realized through vacuum deposition. STM images reveal two types of structures, which could be regulated by substrate temperature and the evaporation rate, indicating the relevance of kinetic effects. The results are supported by computer simulations.

  14. The effect of activated charcoal on adenine-induced chronic renal failure in rats.

    PubMed

    Ali, Badreldin H; Alza'abi, Mohamed; Ramkumar, Aishwarya; Al-Lawati, Intisar; Waly, Mostafa I; Beegam, Sumaya; Nemmar, Abderrahim; Brand, Susanne; Schupp, Nicole

    2014-03-01

    Activated charcoal (AC) is a sorbent that has been shown to remove urinary toxins like urea and indoxyl sulfate. Here, the influence of AC on kidney function of rats with experimental chronic renal failure (CRF) is investigated. CRF was induced in rats by feeding adenine (0.75%) for four weeks. As an intervention, AC was added to the feed at concentrations of 10%, 15% or 20%. Adenine treatment impaired kidney function: it lowered creatinine clearance and increased plasma concentrations of creatinine, urea, neutrophil gelatinase-associated lipocalin and vanin-1. Furthermore, it raised plasma concentrations of the uremic toxins indoxyl sulfate, phosphate and uric acid. Renal morphology was severely damaged and histopathological markers of inflammation and fibrosis were especially increased. In renal homogenates, antioxidant indices, including superoxide dismutase and catalase activity, total antioxidant capacity and reduced glutathione were adversely affected. Most of these changes were significantly ameliorated by dietary administration of AC at a concentration of 20%, while effects induced by lower doses of dietary AC on adenine nephrotoxicity were not statistically significant. The results suggest that charcoal is a useful sorbent agent in dietary adenine-induced CRF in rats and that its usability as a nephroprotective agent in human kidney disease should be studied.

  15. Effects of adenine arabinoside on lymphocytes infected with Epstein-Barr virus.

    PubMed Central

    Benz, W C; Siegel, P J; Baer, J

    1978-01-01

    Low concentrations of adenine arabinoside inhibited growth of two Epstein-Barr virus producer cell lines in culture, while not significantly affecting a nonproducer cell line and a B-cell-negative line. These observations were extended to include freshly infected cells. Mitogen-stimulated human umbilical cord blood lymphocytes were unaffected by the drug at concentration levels that inhibited [3H]thymidine incorporation into the DNA of Epstein-Barr virus-stimulated cells. DNA synthesis in Epstein-Barr virus-superinfected Raji cells was also adversely affected by adenine arabinoside. However, these same low concentrations of adenine arabinoside in the triphosphate form produced less effect on DNA synthesis in nuclear systems and DNA polymerase assays than on growth or DNA synthesis in whole cells. Therefore the effects reported here of low concentrations of the drug on whole cells may be only in part related to DNA polymerase inhibition. The work reported here suggests that adenine arabinoside has multiple sites of action in infected cells. PMID:212577

  16. Ameliorative Effect of Chrysin on Adenine-Induced Chronic Kidney Disease in Rats

    PubMed Central

    Ali, Badreldin H.; Adham, Sirin A.; Al Za’abi, Mohammed; Waly, Mostafa I.; Yasin, Javed; Nemmar, Abderrahim; Schupp, Nicole

    2015-01-01

    Chrysin (5, 7- dihydroxyflavone) is a flavonoid with several pharmacological properties that include antioxidant, anti-inflammatory and antiapoptotic activities. in this work, we investigated some effects of three graded oral doses of chrysin (10, 50 and 250 mg/kg) on kidney structure and function in rats with experimental chronic renal disease (CKD) induced by adenine (0.25% w/w in feed for 35 days), which is known to involve inflammation and oxidative stress. Using several indices in plasma, urine and kidney homogenates, adenine was found to impair kidney function as it lowered creatinine clearance and increased plasma concentrations of creatinine, urea, neutrophil gelatinase-associated lipocalin and N-Acetyl-beta-D-glucosaminidase activity. Furthermore, it raised plasma concentrations of the uremic toxin indoxyl sulfate, some inflammatory cytokines and urinary albumin concentration. Renal morphology was severely damaged and histopathological markers of inflammation and fibrosis were especially increased. In renal homogenates, antioxidant indices, including superoxide dismutase and catalase activities, total antioxidant capacity and reduced glutathione were all adversely affected. Most of these adenine – induced actions were moderately and dose -dependently mitigated by chrysin, especially at the highest dose. Chrysin did not cause any overt adverse effect on the treated rats. The results suggest that different doses of chrysin produce variable salutary effects against adenine-induced CKD in rats, and that, pending further pharmacological and toxicological studies, its usability as a possible ameliorative agent in human CKD should be considered. PMID:25909514

  17. Macrophage Trafficking as Key Mediator of Adenine-Induced Kidney Injury

    PubMed Central

    Braga, Tárcio Teodoro; Felizardo, Raphael José Ferreira; Andrade-Oliveira, Vinícius; Hiyane, Meire Ioshie; da Silva, João Santana; Câmara, Niels Olsen Saraiva

    2014-01-01

    Macrophages play a special role in the onset of several diseases, including acute and chronic kidney injuries. In this sense, tubule interstitial nephritis (TIN) represents an underestimated insult, which can be triggered by different stimuli and, in the absence of a proper regulation, can lead to fibrosis deposition. Based on this perception, we evaluated the participation of macrophage recruitment in the development of TIN. Initially, we provided adenine-enriched food to WT and searched for macrophage presence and action in the kidney. Also, a group of animals were depleted of macrophages with the clodronate liposome while receiving adenine-enriched diet. We collected blood and renal tissue from these animals and renal function, inflammation, and fibrosis were evaluated. We observed higher expression of chemokines in the kidneys of adenine-fed mice and a substantial protection when macrophages were depleted. Then, we specifically investigated the role of some key chemokines, CCR5 and CCL3, in this TIN experimental model. Interestingly, CCR5 KO and CCL3 KO animals showed less renal dysfunction and a decreased proinflammatory profile. Furthermore, in those animals, there was less profibrotic signaling. In conclusion, we can suggest that macrophage infiltration is important for the onset of renal injury in the adenine-induced TIN. PMID:25132730

  18. Structural and quantum chemical studies of 8-aryl-sulfanyl adenine class Hsp90 inhibitors.

    PubMed

    Immormino, Robert M; Kang, Yanlong; Chiosis, Gabriela; Gewirth, Daniel T

    2006-08-10

    Hsp90 chaperones play a critical role in modulating the activity of many cell signaling proteins and are an attractive target for anti-cancer therapeutics. We report here the structures of the water soluble 8-aryl-sulfanyl adenine class Hsp90 inhibitors, 1 (PU-H71) and 2 (PU-H64), in complex with the N-terminal domain of human Hsp90alpha. The conformation of 1 when bound to Hsp90 differs from previously reported 8-aryl adenine Hsp90 inhibitors including 3 (PU24FCl). While the binding mode for 3 places the 2'-halide of the 8-aryl group on top of the adenine ring, for 1 and 2, we show that the 2'-halide is rotated approximately 180 degrees away. This difference explains the opposing trends in Hsp90 inhibitory activity for the 2'-halo derivatives of the 3',4',5'-trimethoxy series where Cl > Br > I compared to the 4',5'-methylenedioxy series where I > Br > Cl. We also present quantum chemical calculations of 2 and its analogues that illuminate their basis for Hsp90 inhibition. The calculated conformation of 2 agreed well with the crystallographically observed conformations of 1 and 2. The predictive nature of the calculations has allowed the exploration of additional derivatives based on the 8-aryl adenine scaffold.

  19. SERS, XPS, and DFT Study of Adenine Adsorption on Silver and Gold Surfaces.

    PubMed

    Pagliai, Marco; Caporali, Stefano; Muniz-Miranda, Maurizio; Pratesi, Giovanni; Schettino, Vincenzo

    2012-01-19

    The adsorption of adenine on silver and gold surfaces has been investigated combining density functional theory calculations with surface-enhanced Raman scattering and angle-resolved X-ray photoelectron spectroscopy measurements, obtaining useful insight into the orientation and interaction of the nucleobase with the metal surfaces.

  20. Studies of Mg2+/Ca2+ complexes of naturally occurring dinucleotides: potentiometric titrations, NMR, and molecular dynamics.

    PubMed

    Stern, Noa; Major, Dan Thomas; Gottlieb, Hugo Emilio; Weizman, Daniel; Sayer, Alon Haim; Blum, Eliav; Fischer, Bilha

    2012-08-01

    Dinucleotides (Np(n)N'; N and N' are A, U, G, or C, n = 2-7) are naturally occurring physiologically active compounds. Despite the interest in dinucleotides, the composition of their complexes with metal ions as well as their conformations and species distribution in living systems are understudied. Therefore, we investigated a series of Mg(2+) and Ca(2+) complexes of Np(n)N's. Potentiometric titrations indicated that a longer dinucleotide polyphosphate (N is A or G, n = 3-5) linker yields more stable complexes (e.g., log K of 2.70, 3.27, and 3.73 for Ap(n)A-Mg(2+), n = 3, 4, 5, respectively). The base (A or G) or ion (Mg(2+) or Ca(2+)) has a minor effect on K(M)(ML) values. In a physiological medium, the longer Ap(n)As (n = 4, 5) are predicted to occur mostly as the Mg(2+)/Ca(2+) complexes. (31)P NMR monitored titrations of Np(n)N's with Mg(2+)/Ca(2+) ions showed that the middle phosphates of the dinucleotides coordinate with Mg(2+)/Ca(2+). Multidimensional potential of mean force (PMF) molecular dynamics (MD) simulations suggest that Ap(2)A and Ap(4)A coordinate Mg(2+) and Ca(2+) ions in both inner-sphere and outer-sphere modes. The PMF MD simulations additionally provide a detailed picture of the possible coordination sites, as well as the cation binding process. Moreover, both NMR and MD simulations showed that the conformation of the nucleoside moieties in Np(n)N'-Mg(2+)/Ca(2+) complexes remains the same as that of free mononucleotides.

  1. Optical spectroscopy of nicotinoprotein alcohol dehydrogenase from Amycolatopsis methanolica: a comparison with horse liver alcohol dehydrogenase and UDP-galactose epimerase.

    PubMed

    Piersma, S R; Visser, A J; de Vries, S; Duine, J A

    1998-03-01

    The NADH absorbance spectrum of nicotinoprotein (NADH-containing) alcohol dehydrogenase from Amycolatopsis methanolica has a maximum at 326 nm. Reduced enzyme-bound pyridine dinucleotide could be reversibly oxidized by acetaldehyde. The fluorescence excitation spectrum for NADH bound to the enzyme has a maximum at 325 nm. Upon excitation at 290 nm, energy transfer from tryptophan to enzyme-bound NADH was negligible. The fluorescence emission spectrum (excitation at 325 nm) for NADH bound to the enzyme has a maximum at 422 nm. The fluorescence intensity is enhanced by a factor of 3 upon binding of isobutyramide (Kd = 59 microM). Isobutyramide acts as competitive inhibitor (Ki = 46 microM) with respect to the electron acceptor NDMA (N,N-dimethyl-p-nitrosoaniline), which binds to the enzyme containing the reduced cofactor. The nonreactive substrate analogue trifluoroethanol acts as a competitive inhibitor with respect to the substrate ethanol (Ki = 1.6 microM), which binds to the enzyme containing the oxidized cofactor. Far-UV circular dichroism spectra of the enzyme containing NADH and the enzyme containing NAD+ were identical, indicating that no major conformational changes occur upon oxidation or reduction of the cofactor. Near-UV circular dichroism spectra of NADH bound to the enzyme have a minimum at 323 nm (Deltaepsilon = -8.6 M-1 cm-1). The fluorescence anisotropy decay of enzyme-bound NADH showed no rotational freedom of the NADH cofactor. This implies a rigid environment as well as lack of motion of the fluorophore. The average fluorescence lifetime of NADH bound to the enzyme is 0.29 ns at 20 degreesC and could be resolved into at least three components (in the range 0.13-0.96 ns). Upon binding of isobutyramide to the enzyme-containing NADH, the average excited-state lifetime increased to 1.02 ns and could be resolved into two components (0.37 and 1.11 ns). The optical spectra of NADH bound to nicotinoprotein alcohol dehydrogenase have blue-shifted maxima

  2. Cyclic dinucleotides bind the C-linker of HCN4 to control channel cAMP responsiveness.

    PubMed

    Lolicato, Marco; Bucchi, Annalisa; Arrigoni, Cristina; Zucca, Stefano; Nardini, Marco; Schroeder, Indra; Simmons, Katie; Aquila, Marco; DiFrancesco, Dario; Bolognesi, Martino; Schwede, Frank; Kashin, Dmitry; Fishwick, Colin W G; Johnson, A Peter; Thiel, Gerhard; Moroni, Anna

    2014-06-01

    cAMP mediates autonomic regulation of heart rate by means of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which underlie the pacemaker current If. cAMP binding to the C-terminal cyclic nucleotide binding domain enhances HCN open probability through a conformational change that reaches the pore via the C-linker. Using structural and functional analysis, we identified a binding pocket in the C-linker of HCN4. Cyclic dinucleotides, an emerging class of second messengers in mammals, bind the C-linker pocket (CLP) and antagonize cAMP regulation of the channel. Accordingly, cyclic dinucleotides prevent cAMP regulation of If in sinoatrial node myocytes, reducing heart rate by 30%. Occupancy of the CLP hence constitutes an efficient mechanism to hinder β-adrenergic stimulation on If. Our results highlight the regulative role of the C-linker and identify a potential drug target in HCN4. Furthermore, these data extend the signaling scope of cyclic dinucleotides in mammals beyond their first reported role in innate immune system. PMID:24776929

  3. Administration of α-Galactosylceramide Improves Adenine-Induced Renal Injury

    PubMed Central

    Aguiar, Cristhiane Favero; Naffah-de-Souza, Cristiane; Castoldi, Angela; Corrêa-Costa, Matheus; Braga, Tárcio T; Naka, Érika L; Amano, Mariane T; Abate, Débora T R S; Hiyane, Meire I; Cenedeze, Marcos A; Filho, Alvaro Pacheco e Silva; Câmara, Niels O S

    2015-01-01

    Natural killer T (NKT) cells are a subset of lymphocytes that reacts to glycolipids presented by CD1d. Invariant NKT cells (iNKT) correspond to >90% of the total population of NKTs and reacts to α-galactosylceramide (αGalCer). αGalCer promotes a complex mixture of Th1 and Th2 cytokines, as interferon (IFN)-γ and interleukin (IL)-4. NKT cells and IFN-γ are known to participate in some models of renal diseases, but further studies are still necessary to elucidate their mechanisms. The aim of our study was to analyze the participation of iNKT cells in an experimental model of tubule-interstitial nephritis. We used 8-wk-old C57BL/6j, Jα18KO and IFN-γKO mice. They were fed a 0.25% adenine diet for 10 d. Both adenine-fed wild-type (WT) and Jα18KO mice exhibited renal dysfunction, but adenine-fed Jα18KO mice presented higher expression of kidney injury molecule-1 (KIM-1), tumor necrosis factor (TNF)-α and type I collagen. To analyze the role of activated iNKT cells in our model, we administered αGalCer in WT mice during adenine ingestion. After αGalCer injection, we observed a significant reduction in serum creatinine, proinflammatory cytokines and renal fibrosis. However, this improvement in renal function was not observed in IFN-γKO mice after αGalCer treatment and adenine feeding, illustrating that this cytokine plays a role in our model. Our findings may suggest that IFN-γ production is one of the factors contributing to improved renal function after αGalCer administration. PMID:26101952

  4. ON THE INTERACTION OF ADENINE WITH IONIZING RADIATION: MECHANISTICAL STUDIES AND ASTROBIOLOGICAL IMPLICATIONS

    SciTech Connect

    Evans, Nicholas L.; Ullrich, Susanne; Bennett, Chris J.; Kaiser, Ralf I.

    2011-04-01

    The molecular inventory available on the prebiotic Earth was likely derived from both terrestrial and extraterrestrial sources. A complete description of which extraterrestrial molecules may have seeded early Earth is therefore necessary to fully understand the prebiotic evolution which led to life. Galactic cosmic rays (GCRs) are expected to cause both the formation and destruction of important biomolecules-including nucleic acid bases such as adenine-in the interstellar medium within the ices condensed on interstellar grains. The interstellar ultraviolet (UV) component is expected to photochemically degrade gas-phase adenine on a short timescale of only several years. However, the destruction rate is expected to be significantly reduced when adenine is shielded in dense molecular clouds or even within the ices of interstellar grains. Here, biomolecule destruction by the energetic charged particle component of the GCR becomes important as it is not fully attenuated. Presented here are results on the destruction rate of the nucleobase adenine in the solid state at 10 K by energetic electrons, as generated in the track of cosmic ray particles as they penetrate ices. When both UV and energetic charged particle destructive processes are taken into account, the half-life of adenine within dense interstellar clouds is found to be {approx}6 Myr, which is on the order of a star-forming molecular cloud. We also discuss chemical reaction pathways within the ices to explain the production of observed species, including the formation of nitriles (R-C{identical_to}N), epoxides (C-O-C), and carbonyl functions (R-C=O).

  5. Agonists of Toll-like receptor 9 containing synthetic dinucleotide motifs.

    PubMed

    Yu, Dong; Putta, Mallikarjuna R; Bhagat, Lakshmi; Li, Yukui; Zhu, Fugang; Wang, Daqing; Tang, Jimmy X; Kandimalla, Ekambar R; Agrawal, Sudhir

    2007-12-13

    Oligodeoxynucleotides (ODNs) containing unmethylated CpG motifs activate Toll-like receptor 9 (TLR9). Our previous studies have shown that ODNs containing two 5'-ends are more immunostimulatory than those with one 5'-end. In the present study, to understand the role of functional groups in TLR9 recognition and subsequent immune response, we substituted C or G of a CpG dinucleotide with 5-OH-dC, 5-propyne-dC, furano-dT, 1-(2'-deoxy-beta- d-ribofuranosyl)-2-oxo-7-deaza-8-methyl-purine, dF, 4-thio-dU, N(3)-Me-dC, N (4)-Et-dC, Psi-iso-dC, and arabinoC or 7-deaza-dG, 7-deaza-8-aza-dG, 9-deaza-dG, N(1)-Me-dG, N(2)-Me-dG, 6-Thio-dG, dI, 8-OMe-dG, 8-O-allyl-dG, and arabinoG in ODN containing two 5'-ends. Agonists of TLR9 containing cytosine or guanine modification showed activity in HEK293 cells expressing TLR9, mouse spleen, and human cell-based assays and in vivo in mice. The results presented here provide insight into which specific chemical modifications at C or G of the CpG motif are recognized by TLR9 and the ability to modulate immune responses substituting natural C or G in immune modulatory oligonucleotides. PMID:17988082

  6. Rationale, progress and development of vaccines utilizing STING-activating cyclic dinucleotide adjuvants

    PubMed Central

    Kanne, David B.; Leong, Meredith L.

    2013-01-01

    A principal barrier to the development of effective vaccines is the availability of adjuvants and formulations that can elicit both effector and long-lived memory CD4 and CD8 T cells. Cellular immunity is the presumptive immune correlate of protection against intracellular pathogens: a group composed of bacteria, viruses and protozoans that is responsible for a staggering level of morbidity and mortality on a global scale. T-cell immunity is also correlated with clinical benefit in cancer, and the development of therapeutic strategies to harness the immune system to treat diverse malignancies is currently undergoing a renaissance. Cyclic dinucleotides (CDNs) are ubiquitous small molecule second messengers synthesized by bacteria that regulate diverse processes and are a relatively new class of adjuvants that have been shown to increase vaccine potency. CDNs activate innate immunity by directly binding the endoplasmic reticulum-resident receptor STING (stimulator of interferon genes), activating a signaling pathway that induces the expression of interferon-β (IFN-β) and also nuclear factor-κB (NF-κB) dependent inflammatory cytokines. The STING signaling pathway has emerged as a central Toll-like receptor (TLR) independent mediator of host innate defense in response to sensing cytosolic nucleic acids, either through direct binding of CDNs secreted by bacteria, or, as shown recently, through binding of a structurally distinct CDN produced by a host cell receptor in response to binding cytosolic double-stranded (ds)DNA. Although this relatively new class of adjuvants has to date only been evaluated in mice, newly available CDN-STING cocrystal structures will likely intensify efforts in this field towards further development and evaluation in human trials both in preventive vaccine and immunotherapy settings. PMID:24757520

  7. A molybdenum and a tungsten isoenzyme of formylmethanofuran dehydrogenase in the thermophilic archaeon Methanobacterium wolfei.

    PubMed

    Schmitz, R A; Albracht, S P; Thauer, R K

    1992-11-01

    We have recently reported that the thermophilic archaeon Methanobacterium wolfei contains two formylmethanofuran dehydrogenases, I and II. Formylmethanofuran dehydrogenase II, which is preferentially expressed in tungsten-grown cells, has been purified and shown to be a tungsten-iron-sulfur protein. We have now purified and characterized formylmethanofuran dehydrogenase I from molybdenum-grown cells and shown that it is a molybdenum-iron-sulfur protein. The purified enzyme, with a specific activity of 27 U/mg protein, was found to be composed of three subunits of apparent molecular mass 64 kDa, 51 kDa, and 31 kDa and to contain per mol 146-kDa molecule approximately 0.23 mol molybdenum, 0.46 mol molybdopterin guanine dinucleotide, and 6.6 mol non-heme iron but no tungsten (< 0.01 mol). The molybdenum enzyme differed from the tungsten enzyme (8 U/mg) in that it catalyzed the oxidation of N-furfurylformamide and formate and was inactivated by cyanide. The two enzymes also differed significantly in the pH optimum, in the apparent Km for the electron acceptor, and in the chromatographic behaviour. The molybdenum enzyme and the tungsten enzyme were similar, however, in that the N-terminal amino acid sequences determined for the alpha and beta subunits were identical up to residue 23, indicating that the two proteins are isoenzymes. The molybdenum enzyme, as isolated, was found to display an EPR signal derived from molybdenum as evidenced by isotope substitution.

  8. Isocitrate dehydrogenases and oxoglutarate dehydrogenase activities of baker's yeast grown in a variety of hypoxic conditions.

    PubMed

    Machado, A; Nuñez de Castro, I; Mayor, F

    1975-02-28

    The activities of isocitrate dehydrogenase (NAD), isocitrate dehydrogenase (NADP) and oxoglutarate dehydrogenase have been investigated in Saccharomyces cerevisiae grown in a variety of aerobic and hypoxic conditions, the latter including oxygen deprivation, high glucose concentration, addition of inhibitors of mitochondrial protein synthesis, respiratory inhibition by azide, and impaired respiration mutants. All hypoxic conditions led to a marked decrease of oxoglutarate dehydrogenase and significant decreases of the two isocitrate dehydrogenases. According to its kinetic properties, the NAD-isocitrate dehydrogenase will not be operative in hypoxia "in vivo". From these and other related facts it is concluded that hypoxic conditions in yeast generally lead to a splitting of the tricarboxylic acid cycle and that glutamate synthesis in these conditions takes place through the coupling of the NADP-linked isocitrate and glutamate dehydrogenases.

  9. [The PQQ-dehydrogenases. A novel example of bacterial quinoproteins].

    PubMed

    Flores-Encarnación, Marcos; Sánchez-Cuevas, Mariano; Ortiz-Gutiérrez, Felipe

    2004-01-01

    The word "quinoprotein" describes four groups of different enzymes which have cofactors containing o-quinones. Pyrrolo-quinoline quinone (PQQ) is not covalently attached. PQQ is the cofactor of several quinoprotein bacterial dehydrogenases including glucose dehydrogenase (G-DH), alcohol dehydrogenase (A-DH) and aldehyde dehydrogenase (AL-DH). These dehydrogenases are located in the periplasm of Gram-negative bacteria. This report summarises the structural properties of quinoprotein dehydrogenases, such as the biological functions and biotechnological aspects more important.

  10. 21 CFR 862.1445 - Lactate dehydrogenase isoenzymes test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... dehydrogenase isoenzymes test system is a device intended to measure the activity of lactate dehydrogenase isoenzymes (a group of enzymes with similar biological activity) in serum. Measurements of...

  11. 21 CFR 862.1445 - Lactate dehydrogenase isoenzymes test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... dehydrogenase isoenzymes test system is a device intended to measure the activity of lactate dehydrogenase isoenzymes (a group of enzymes with similar biological activity) in serum. Measurements of...

  12. 21 CFR 862.1445 - Lactate dehydrogenase isoenzymes test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... dehydrogenase isoenzymes test system is a device intended to measure the activity of lactate dehydrogenase isoenzymes (a group of enzymes with similar biological activity) in serum. Measurements of...

  13. 21 CFR 862.1445 - Lactate dehydrogenase isoenzymes test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... dehydrogenase isoenzymes test system is a device intended to measure the activity of lactate dehydrogenase isoenzymes (a group of enzymes with similar biological activity) in serum. Measurements of...

  14. 21 CFR 862.1445 - Lactate dehydrogenase isoenzymes test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... dehydrogenase isoenzymes test system is a device intended to measure the activity of lactate dehydrogenase isoenzymes (a group of enzymes with similar biological activity) in serum. Measurements of...

  15. Formate dehydrogenase from Pseudomonas oxalaticus.

    PubMed

    Müller, U; Willnow, P; Ruschig, U; Höpner, T

    1978-02-01

    Formate dehydrogenase (EC 1.2.1.2) from Pseudomonas oxalaticus has been isolated and characterized. The enzyme (molecular weight 315000) is a complex flavoprotein containing 2 FMN, 18--25 non-heme iron atoms and 15--20 acid-labile sulphides. In the last step of the purification, a sucrose gradient centrifugation, a second catalytically active species has been found apparently originating from a dissociation of the enzyme into two equal subunits. The enzyme is specific toward its natural substrate formate. It transfers electrons to NAD+, oxygen, ferricyanide, and a lot of nonphysiological acceptors (dyes). In addition electrons are transferred from NADH to these acceptors. The (reversible) removal of FMN requires a reduction step. Reincorporation has been followed by the reappearance of the reactivity against formate and by fluorescence titration. The deflavo enzyme also binds FAD and riboflavin. The resulting enzyme species show characteristic catalytic abilities. Activity against formate is peculiar to the FMN species. PMID:631130

  16. Opine dehydrogenases in marine invertebrates.

    PubMed

    Harcet, Matija; Perina, Drago; Pleše, Bruna

    2013-10-01

    It is well known today that opine production anaerobic pathways are analogs to the classical glycolytic pathway (lactate production pathway). These pathways, catalyzed by a group of enzymes called opine dehydrogenases (OpDHs), ensure continuous flux of glycolysis and a constant supply of ATP by maintaining the NADH/NAD(+) ratio during exercise and hypoxia, thus regulating the cytosolic redox balance in glycolysis under anoxia. OpDHs are distributed in a wide range of marine invertebrate phyla, including sponges (Porifera). Phylogenetic analyses supported with enzymatic assays strongly indicate that sponge OpDHs constitute an enzyme class unrelated to other OpDHs. Therefore, OpDHs in marine invertebrates are divided into two groups, a mollusk/annelid type and a sponge type, which belongs to the OCD/mu-crystallin family.

  17. ENZYMATIC BASIS FOR D-ARBITOL PRODUCTION BY SACCHAROMYCES ROUXII.

    PubMed

    INGRAM, J M; WOOD, W A

    1965-05-01

    Ingram, Jordan M. (Michigan State University, East Lansing), and W. A. Wood. Enzymatic basis for d-arabitol production by Saccharomyces rouxii. J. Bacteriol. 89:1186-1194. 1965.-The enzymatic steps in d-arabitol synthesis by Saccharomyces rouxii were studied. The fermentation of d-glucose-6-C(14) gave rise to d-arabitol labeled at C-5; d-ribose of ribonucleic acid had the same isotope pattern. Crude extracts were able to reduce d-ribulose with reduced nicotinamide adenine dinucleotide phosphate (NADPH(2)) and d-xylulose with reduced nicotinamide adenine dinucleotide (NADH(2)). These extracts also oxidized d-arabitol with nicotinamide adenine dinucleotide phosphate and xylitol with nicotinamide adenine dinucleotide. No reduction of d-ribulose-5-phosphate or d-xylulose-5-phosphate was observed. An enzyme which reduced d-xylulose with NADH(2) was purified 33-fold and characterized as a xylitol (--> d-xylulose) dehydrogenase. Similarly, an enzyme reducing d-ribulose with NADPH(2) was purified 12-fold and characterized as a d-arabitol (--> d-ribulose) dehydrogenase. Alkaline and acid phosphatases were purified 50- and 40-fold, respectively, and their specificities were determined. Only the acid phosphatase had detectable activity on d-ribulose-5-phosphate. The data support the postulate that d-arabitol arises by dephosphorylation of d-ribulose-5-phosphate and reduction of d-ribulose by a NADPH(2)-linked d-arabitol (--> d-ribulose) dehydrogenase.

  18. Structural Studies of the Final Enzyme in the alpha-Aminoadipate Pathway-Saccharopine Dehydrogenase from Saccharomyces cerevisiae

    SciTech Connect

    Burk,D.; Hwang, J.; Kwok, E.; Marrone, L.; Goodfellow, V.; Dmitrienko, G.; Berghuis, A.

    2007-01-01

    The 1.64 Angstroms structure of the apoenzyme form of saccharopine dehydrogenase (SDH) from Saccharomyces cerevisiae shows the enzyme to be composed of two domains with similar dinucleotide binding folds with a deep cleft at the interface. The structure reveals homology to alanine dehydrogense, despite low primary sequence similarity. A model of the ternary complex of SDH, NAD, and saccharopine identifies residues Lys77 and Glu122 as potentially important for substrate binding and/or catalysis, consistent with a proton shuttle mechanism. Furthermore, the model suggests that a conformational change is required for catalysis and that residues Lys99 and Asp281 may be instrumental in mediating this change. Analysis of the crystal structure in the context of other homologous enzymes from pathogenic fungi and human sources sheds light into the suitability of SDH as a target for antimicrobial drug development.

  19. Characterization of Glycerol Dehydrogenase from Thermoanaerobacterium thermosaccharolyticum DSM 571 and GGG Motif Identification.

    PubMed

    Wang, Liangliang; Wang, Jiajun; Shi, Hao; Gu, Huaxiang; Zhang, Yu; Li, Xun; Wang, Fei

    2016-06-28

    Glycerol dehydrogenases (GlyDHs) are essential for glycerol metabolism in vivo, catalyzing its reversible reduction to 1,3-dihydroxypropranone (DHA). The gldA gene encoding a putative GlyDH was cloned from Thermoanaerobacterium thermosaccharolyticum DSM 571 (TtGlyDH) and expressed in Escherichia coli. The presence of Mn(2+) enhanced its enzymatic activity by 79.5%. Three highly conserved residues (Asp(171), His(254), and His(271)) in TtGlyDH were associated with metal ion binding. Based on an investigation of glycerol oxidation and DHA reduction, TtGlyDH showed maximum activity towards glycerol at 60°C and pH 8.0 and towards DHA at 60°C and pH 6.0. DHA reduction was the dominant reaction, with a lower Km(DHA) of 1.08 ± 0.13 mM and Vmax of 0.0053 ± 0.0001 mM/s, compared with glycerol oxidation, with a Km(glycerol) of 30.29 ± 3.42 mM and Vmax of 0.042 ± 0.002 mM/s. TtGlyDH had an apparent activation energy of 312.94 kJ/mol. The recombinant TtGlyDH was thermostable, maintaining 65% of its activity after a 2-h incubation at 60°C. Molecular modeling and site-directed mutagenesis analyses demonstrated that TtGlyDH had an atypical dinucleotide binding motif (GGG motif) and a basic residue Arg(43), both related to dinucleotide binding. PMID:26975764

  20. Molecular characterization of benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase II of Acinetobacter calcoaceticus.

    PubMed Central

    Gillooly, D J; Robertson, A G; Fewson, C A

    1998-01-01

    The nucleotide sequences of xylB and xylC from Acinetobacter calcoaceticus, the genes encoding benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase II, were determined. The complete nucleotide sequence indicates that these two genes form part of an operon and this was supported by heterologous expression and physiological studies. Benzaldehyde dehydrogenase II is a 51654 Da protein with 484 amino acids per subunit and it is typical of other prokaryotic and eukaryotic aldehyde dehydrogenases. Benzyl alcohol dehydrogenase has a subunit Mr of 38923 consisting of 370 amino acids, it stereospecifically transfers the proR hydride of NADH, and it is a member of the family of zinc-dependent long-chain alcohol dehydrogenases. The enzyme appears to be more similar to animal and higher-plant alcohol dehydrogenases than it is to most other microbial alcohol dehydrogenases. Residue His-51 of zinc-dependent alcohol dehydrogenases is thought to be necessary as a general base for catalysis in this category of alcohol dehydrogenases. However, this residue was found to be replaced in benzyl alcohol dehydrogenase from A. calcoaceticus by an isoleucine, and the introduction of a histidine residue in this position did not alter the kinetic coefficients, pH optimum or substrate specificity of the enzyme. Other workers have shown that His-51 is also absent from the TOL-plasmid-encoded benzyl alcohol dehydrogenase of Pseudomonas putida and so these two closely related enzymes presumably have a catalytic mechanism that differs from that of the archetypal zinc-dependent alcohol dehydrogenases. PMID:9494109

  1. iRSpot-PseDNC: identify recombination spots with pseudo dinucleotide composition.

    PubMed

    Chen, Wei; Feng, Peng-Mian; Lin, Hao; Chou, Kuo-Chen

    2013-04-01

    Meiotic recombination is an important biological process. As a main driving force of evolution, recombination provides natural new combinations of genetic variations. Rather than randomly occurring across a genome, meiotic recombination takes place in some genomic regions (the so-called 'hotspots') with higher frequencies, and in the other regions (the so-called 'coldspots') with lower frequencies. Therefore, the information of the hotspots and coldspots would provide useful insights for in-depth studying of the mechanism of recombination and the genome evolution process as well. So far, the recombination regions have been mainly determined by experiments, which are both expensive and time-consuming. With the avalanche of genome sequences generated in the postgenomic age, it is highly desired to develop automated methods for rapidly and effectively identifying the recombination regions. In this study, a predictor, called 'iRSpot-PseDNC', was developed for identifying the recombination hotspots and coldspots. In the new predictor, the samples of DNA sequences are formulated by a novel feature vector, the so-called 'pseudo dinucleotide composition' (PseDNC), into which six local DNA structural properties, i.e. three angular parameters (twist, tilt and roll) and three translational parameters (shift, slide and rise), are incorporated. It was observed by the rigorous jackknife test that the overall success rate achieved by iRSpot-PseDNC was >82% in identifying recombination spots in Saccharomyces cerevisiae, indicating the new predictor is promising or at least may become a complementary tool to the existing methods in this area. Although the benchmark data set used to train and test the current method was from S. cerevisiae, the basic approaches can also be extended to deal with all the other genomes. Particularly, it has not escaped our notice that the PseDNC approach can be also used to study many other DNA-related problems. As a user-friendly web-server, i

  2. The negative impact of α-ketoglutarate dehydrogenase complex deficiency on matrix substrate-level phosphorylation

    PubMed Central

    Kiss, Gergely; Konrad, Csaba; Doczi, Judit; Starkov, Anatoly A.; Kawamata, Hibiki; Manfredi, Giovanni; Zhang, Steven F.; Gibson, Gary E.; Beal, M. Flint; Adam-Vizi, Vera; Chinopoulos, Christos

    2013-01-01

    A decline in α-ketoglutarate dehydrogenase complex (KGDHC) activity has been associated with neurodegeneration. Provision of succinyl-CoA by KGDHC is essential for generation of matrix ATP (or GTP) by substrate-level phosphorylation catalyzed by succinyl-CoA ligase. Here, we demonstrate ATP consumption in respiration-impaired isolated and in situ neuronal somal mitochondria from transgenic mice with a deficiency of either dihydrolipoyl succinyltransferase (DLST) or dihydrolipoyl dehydrogenase (DLD) that exhibit a 20–48% decrease in KGDHC activity. Import of ATP into the mitochondrial matrix of transgenic mice was attributed to a shift in the reversal potential of the adenine nucleotide translocase toward more negative values due to diminished matrix substrate-level phosphorylation, which causes the translocase to reverse prematurely. Immunoreactivity of all three subunits of succinyl-CoA ligase and maximal enzymatic activity were unaffected in transgenic mice as compared to wild-type littermates. Therefore, decreased matrix substrate-level phosphorylation was due to diminished provision of succinyl-CoA. These results were corroborated further by the finding that mitochondria from wild-type mice respiring on substrates supporting substrate-level phosphorylation exhibited ∼30% higher ADP-ATP exchange rates compared to those obtained from DLST+/− or DLD+/− littermates. We propose that KGDHC-associated pathologies are a consequence of the inability of respiration-impaired mitochondria to rely on “in-house” mitochondrial ATP reserves.—Kiss, G., Konrad, C., Doczi, J., Starkov, A. A., Kawamata, H., Manfredi, G., Zhang, S. F., Gibson, G. E., Beal, M. F., Adam-Vizi, V., Chinopoulos, C. The negative impact of α-ketoglutarate dehydrogenase complex deficiency on matrix substrate-level phosphorylation. PMID:23475850

  3. BII stability and base step flexibility of N6-adenine methylated GATC motifs.

    PubMed

    Karolak, Aleksandra; van der Vaart, Arjan

    2015-01-01

    The effect of N6-adenine methylation on the flexibility and shape of palindromic GATC sequences has been investigated by molecular dynamics simulations. Variations in DNA backbone geometry were observed, which were dependent on the degree of methylation and the identity of the bases. While the effect was small, more frequent BI to BII conversions were observed in the GA step of hemimethylated DNA. The increased BII population of the hemimethylated system positively correlated with increased stacking interactions between methylated adenine and guanine, while stacking interactions decreased at the TC step for the fully methylated strand. The flexibility of the AT and TC steps was marginally affected by methylation, in a fashion that was correlated with stacking interactions. The facilitated BI to BII conversion in hemimethylated strands might be of importance for SeqA selectivity and binding. PMID:26004863

  4. Role of vacuum ultraviolet (VUV) radiation in abiogenic synthesis of adenine nucleotides

    NASA Astrophysics Data System (ADS)

    Kuzicheva, E. A.; Simakov, M. B.; Mal'Ko, I. L.; Dodonova, N. Ya.; Gontareva, N. B.

    With the use of high performance liquid chromatography the products of abiogenic synthesis of adenine nucleotides in solid films were indentified and estimated quantitatively. The main products of photosynthesis appeared to be adenosine and deoxyadenosine monophosphates. Maximal yield of these products in case of adenosine has been 0.36 for 5'AMP, 0.41% for 2'(3')AMP, 0.20 for 2'3'cAMP in case of deoxyadenosine 0.13% for 5'dAMP, 0.15% for 3'dAMP, 0.24% for 3'5'cdAMP. The destruction of initial adenosine and deoxyadenosine by the end of the experiment was 10 and 15%, respectively. By the increasing of irradiation dose, 5'AMP and 5'dAMP synthesized in the cource of VUV photolysis were destructed up to adenine, its yield being 15% in both cases.

  5. Theoretical Study of Tautomerization Reactions for the Ground and First Excited Electronic States of Adenine

    NASA Technical Reports Server (NTRS)

    Salter, Latasha M.; Chaban, Galina M.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Geometrical structures and energetic properties for different tautomers of adenine are calculated in this study, using multi-configurational wave functions. Both the ground and the lowest singlet excited state potential energy surfaces are studied. Four tautomeric forms are considered, and their energetic order is found to be different on the ground and the excited state potential energy surfaces. Minimum energy reaction paths are obtained for hydrogen atom transfer (tautomerization) reactions in the ground and the lowest excited electronic states. It is found that the barrier heights and the shapes of the reaction paths are different for the ground and the excited electronic states, suggesting that the probability of such tautomerization reaction is higher on the excited state potential energy surface. This tautomerization process should become possible in the presence of water or other polar solvent molecules and should play an important role in the photochemistry of adenine.

  6. First prebiotic generation of a ribonucleotide from adenine, D-ribose and trimetaphosphate.

    PubMed

    Baccolini, Graziano; Boga, Carla; Micheletti, Gabriele

    2011-03-28

    Adenosine monophosphate isomers are obtained by self-assembling of adenine, D-ribose and trimetaphosphate in aqueous solution in good yields. This generation of a ribonucleotide from its three molecular components occurs in a one-pot reaction at room temperature for about 30-40 days and with high chemio-, regio-, and stereo-selectivity. Similar results are obtained with guanine. A mechanism is also proposed. PMID:21305098

  7. Protection of Chinese herbs against adenine-induced chronic renal failure in rats.

    PubMed

    Tong, Yanqing; Han, Bing; Guo, Hongyang; Liu, Yanru

    2010-01-01

    The aim of the study is to evaluate the efficacy of Chinese herbs (Angelica sinensis, Ligusticum wallichii, Salvia miltiorrhiza, Rhizoma dioscoreae, Rhodiola crenilata, Astragalus membranaceus and Angelica sinensis) on adenine-induced chronic renal failure in rats. 30 age-matched male Wistar rats were divided into three groups. Rats in group A (n = 10), B (n = 10) and C (n = 10) were fed a standard laboratory chow and allowed tap water ad libitum. In group B and C, renal failure was induced by the administration of a diet containing 0.75% adenine for 28 days which began at day 0. Rats in group C were given Chinese herbs (40 ml/kg with drug concentration 1.75 g/ml) beginning at day 0. Urine albumin, blood urea nitrogen (BUN) and creatinine were determined at days 0, 14 and 28. At day 28, the animals were killed and their kidneys removed for light microscope evaluation. Body weight in Group B decreased more significantly than that in Group C (p = 0.032) at day 28. The rats in group B demonstrated more severe proteinuria and higher Serum creatinine and BUN levels than group C at day 14 and day 28 (P < 0.05, 0.01). All rats given adenine developed marked structural renal damage involving the tubule and interstitium. The values were much less severe in group C than those in group B. In adenine-induced chronic renal failure rats, the protective effects of these Chinese herbs were of a significant nature. Our results do support the notion that these Chinese herbs are useful in deferring the advance of chronic renal failure. We recommend Chinese herbs as a beneficial treatment for pre-end stage chronic renal failure.

  8. Selective self-assembly of adenine-silver nanoparticles forms rings resembling the size of cells

    PubMed Central

    Choi, Sungmoon; Park, Soonyoung; Yang, Seon-Ah; Jeong, Yujin; Yu, Junhua

    2015-01-01

    Self-assembly has played critical roles in the construction of functional nanomaterials. However, the structure of the macroscale multicomponent materials built by the self-assembly of nanoscale building blocks is hard to predict due to multiple intermolecular interactions of great complexity. Evaporation of solvents is usually an important approach to induce kinetically stable assemblies of building blocks with a large-scale specific arrangement. During such a deweting process, we tried to monitor the possible interactions between silver nanoparticles and nucleobases at a larger scale by epifluorescence microscopy, thanks to the doping of silver nanoparticles with luminescent silver nanodots. ssDNA oligomer-stabilized silver nanoparticles and adenine self-assemble to form ring-like compartments similar to the size of modern cells. However, the silver ions only dismantle the self-assembly of adenine. The rings are thermodynamically stable as the drying process only enrich the nanoparticles-nucleobase mixture to a concentration that activates the self-assembly. The permeable membrane-like edge of the ring is composed of adenine filaments glued together by silver nanoparticles. Interestingly, chemicals are partially confined and accumulated inside the ring, suggesting that this might be used as a microreactor to speed up chemical reactions during a dewetting process. PMID:26643504

  9. Ethanol-induced activation of adenine nucleotide turnover. Evidence for a role of acetate

    SciTech Connect

    Puig, J.G.; Fox, I.H.

    1984-09-01

    Consumption of alcohol causes hyperuricemia by decreasing urate excretion and increasing its production. Our previous studies indicate that ethanol administration increases uric acid production by increasing ATP degradation to uric acid precursors. To test the hypothesis that ethanol-induced increased urate production results from acetate metabolism and enhanced adenosine triphosphate turnover, we gave intravenous sodium acetate, sodium chloride and ethanol (0.1 mmol/kg per min for 1 h) to five normal subjects. Acetate plasma levels increased from 0.04 +/- 0.01 mM (mean +/- SE) to peak values of 0.35 +/- 0.07 mM and to 0.08 +/- 0.01 mM during acetate and ethanol infusions, respectively. Urinary oxypurines increased to 223 +/- 13% and 316 +/- 44% of the base-line values during acetate and ethanol infusions, respectively. Urinary radioactivity from the adenine nucleotide pool labeled with (8-14C) adenine increased to 171 +/- 27% and to 128 +/- 8% of the base-line values after acetate and ethanol infusions. These data indicate that both ethanol and acetate increase purine nucleotide degradation by enhancing the turnover of the adenine nucleotide pool. They support the hypothesis that acetate metabolism contributes to the increased production of urate associated with ethanol intake.

  10. Stability Constants of Mixed Ligand Complexes of Nickel(II) with Adenine and Some Amino Acids

    PubMed Central

    Türkel, Naciye

    2015-01-01

    Nickel is one of the essential trace elements found in biological systems. It is mostly found in nickel-based enzymes as an essential cofactor. It forms coordination complexes with amino acids within enzymes. Nickel is also present in nucleic acids, though its function in DNA or RNA is still not clearly understood. In this study, complex formation tendencies of Ni(II) with adenine and certain L-amino acids such as aspartic acid, glutamic acid, asparagine, leucine, phenylalanine, and tryptophan were investigated in an aqueous medium. Potentiometric equilibrium measurements showed that both binary and ternary complexes of Ni(II) form with adenine and the above-mentioned L-amino acids. Ternary complexes of Ni(II)-adenine-L-amino acids are formed by stepwise mechanisms. Relative stabilities of the ternary complexes are compared with those of the corresponding binary complexes in terms of Δlog10⁡K, log10⁡X, and % RS values. It was shown that the most stable ternary complex is Ni(II):Ade:L-Asn while the weakest one is Ni(II):Ade:L-Phe in aqueous solution used in this research. In addition, results of this research clearly show that various binary and ternary type Ni(II) complexes are formed in different concentrations as a function of pH in aqueous solution. PMID:26843852

  11. Chemical evolution: The mechanism of the formation of adenine under prebiotic conditions

    PubMed Central

    Roy, Debjani; Najafian, Katayoun; von Ragué Schleyer, Paul

    2007-01-01

    Fundamental building blocks of life have been detected extraterrestrially, even in interstellar space, and are known to form nonenzymatically. Thus, the HCN pentamer, adenine (a base present in DNA and RNA), was first isolated in abiogenic experiments from an aqueous solution of ammonia and HCN in 1960. Although many variations of the reaction conditions giving adenine have been reported since then, the mechanistic details remain unexplored. Our predictions are based on extensive computations of sequences of reaction steps along several possible mechanistic routes. H2O- or NH3-catalyzed pathways are more favorable than uncatalyzed neutral or anionic alternatives, and they may well have been the major source of adenine on primitive earth. Our report provides a more detailed understanding of some of the chemical processes involved in chemical evolution, and a partial answer to the fundamental question of molecular biogenesis. Our investigation should trigger similar explorations of the detailed mechanisms of the abiotic formation of the remaining nucleic acid bases and other biologically relevant molecules. PMID:17951429

  12. Identification and characterization of a novel plastidic adenine nucleotide uniporter from Solanum tuberosum.

    PubMed

    Leroch, Michaela; Kirchberger, Simon; Haferkamp, Ilka; Wahl, Markus; Neuhaus, H Ekkehard; Tjaden, Joachim

    2005-05-01

    Homologs of BT1 (the Brittle1 protein) are found to be phylogenetically related to the mitochondrial carrier family and appear to occur in both mono- and dicotyledonous plants. Whereas BT1 from cereals is probably involved in the transport of ADP-glucose, which is essential for starch metabolism in endosperm plastids, BT1 from a noncereal plant, Solanum tuberosum (StBT1), catalyzes an adenine nucleotide uniport when functionally integrated into the bacterial cytoplasmic membrane. Import studies into intact Escherichia coli cells harboring StBT1 revealed a narrow substrate spectrum with similar affinities for AMP, ADP, and ATP of about 300-400 mum. Transiently expressed StBT1-green fluorescent protein fusion protein in tobacco leaf protoplasts showed a plastidic localization of the StBT1. In vitro synthesized radioactively labeled StBT1 was targeted to the envelope membranes of isolated spinach chloroplasts. Furthermore, we showed by real time reverse transcription-PCR a ubiquitous expression pattern of the StBT1 in autotrophic and heterotrophic potato tissues. We therefore propose that StBT1 is a plastidic adenine nucleotide uniporter used to provide the cytosol and other compartments with adenine nucleotides exclusively synthesized inside plastids.

  13. Selective self-assembly of adenine-silver nanoparticles forms rings resembling the size of cells.

    PubMed

    Choi, Sungmoon; Park, Soonyoung; Yang, Seon-Ah; Jeong, Yujin; Yu, Junhua

    2015-12-08

    Self-assembly has played critical roles in the construction of functional nanomaterials. However, the structure of the macroscale multicomponent materials built by the self-assembly of nanoscale building blocks is hard to predict due to multiple intermolecular interactions of great complexity. Evaporation of solvents is usually an important approach to induce kinetically stable assemblies of building blocks with a large-scale specific arrangement. During such a deweting process, we tried to monitor the possible interactions between silver nanoparticles and nucleobases at a larger scale by epifluorescence microscopy, thanks to the doping of silver nanoparticles with luminescent silver nanodots. ssDNA oligomer-stabilized silver nanoparticles and adenine self-assemble to form ring-like compartments similar to the size of modern cells. However, the silver ions only dismantle the self-assembly of adenine. The rings are thermodynamically stable as the drying process only enrich the nanoparticles-nucleobase mixture to a concentration that activates the self-assembly. The permeable membrane-like edge of the ring is composed of adenine filaments glued together by silver nanoparticles. Interestingly, chemicals are partially confined and accumulated inside the ring, suggesting that this might be used as a microreactor to speed up chemical reactions during a dewetting process.

  14. Adenine Synthesis in a Model Prebiotic Reaction: Connecting Origin of Life Chemistry with Biology

    PubMed Central

    2011-01-01

    Many high school laboratory experiments demonstrate concepts related to biological evolution, but few exist that allow students to investigate life’s chemical origins. This series of laboratory experiments has been developed to allow students to explore and appreciate the deep connection that exists between prebiotic chemistry, chemical evolution, and contemporary biological systems. In the first experiment of the series, students synthesize adenine, one of the purine nucleobases of DNA and RNA, from plausibly prebiotic precursor molecules. Students compare their product to authentic standards using thin-layer chromatography. The second and third experiments of the series allow students to extract DNA from a familiar organism, the strawberry, and hydrolyze it, releasing adenine, which they can then compare to the previously chemically-synthesized adenine. A fourth, optional experiment is included where the technique of thin-layer chromatography is introduced and chromatographic skills are developed for use in the other three experiments that comprise this series. Concepts relating to organic and analytical chemistry, as well as biochemistry and DNA structure, are incorporated throughout, allowing this series of laboratory experiments to be easily inserted into existing laboratory courses and to reinforce concepts already included in any high school chemistry or biology curriculum. PMID:22075932

  15. Monitoring potential molecular interactions of adenine with other amino acids using Raman spectroscopy and DFT modeling.

    PubMed

    Singh, Shweta; Donfack, P; Srivastava, Sunil K; Singh, Dheeraj K; Materny, A; Asthana, B P; Mishra, P C

    2015-01-01

    We report on the modes of inter-molecular interaction between adenine (Ade) and the amino acids: glycine (Gly), lysine (Lys) and arginine (Arg) using Raman spectroscopy of binary mixtures of adenine and each of the three amino acids at varying molar ratios in the spectral region 1550-550 cm(-1). We focused our attention on certain specific changes in the Raman bands of adenine arising due to its interaction with the amino acids. While the changes are less apparent in the Ade/Gly system, in the Ade/Lys or Ade/Arg systems, significant changes are observed, particularly in the Ade Raman bands that involve the amino group moiety and the N7 and N1 atoms of the purine ring. The ν(N1-C6), ν(N1-C2), δ(C8-H) and δ(N7-C8-N9) vibrations at 1486, 1332, 1253 and 948 cm(-1) show spectral changes on varying the Ade to amino acid molar ratio, the extent of variation being different for the three amino acids. This observation suggests a specific interaction mode between Ade and Lys or Arg, which is due to the hydrogen bonding. The measured spectral changes provide a clear indication that the interaction of Ade depends strongly on the structures of the amino acids, especially their side chains. Density functional theory (DFT) calculations were carried out to elucidate the most probable interaction modes of Ade with the different amino acids.

  16. Structure-wise discrimination of adenine and guanine by proteins on the basis of their nonbonded interactions.

    PubMed

    Usha, S; Selvaraj, S

    2015-01-01

    We have analyzed the nonbonded interactions of the structurally similar moieties, adenine and guanine forming complexes with proteins. The results comprise (a) the amino acid-ligand atom preferences, (b) solvent accessibility of ligand atoms before and after complex formation with proteins, and (c) preferred amino acid residue atoms involved in the interactions. We have observed that the amino acid preferences involved in the hydrogen bonding interactions vary for adenine and guanine. The structural variation between the purine atoms is clearly reflected by their burial tendency in the solvent environment. Correlation of the mean amino acid preference values show the variation that exists between adenine and guanine preferences of all the amino acid residues. All our observations provide evidence for the discriminating nature of the proteins in recognizing adenine and guanine. PMID:25245205

  17. Structure-wise discrimination of adenine and guanine by proteins on the basis of their nonbonded interactions.

    PubMed

    Usha, S; Selvaraj, S

    2015-01-01

    We have analyzed the nonbonded interactions of the structurally similar moieties, adenine and guanine forming complexes with proteins. The results comprise (a) the amino acid-ligand atom preferences, (b) solvent accessibility of ligand atoms before and after complex formation with proteins, and (c) preferred amino acid residue atoms involved in the interactions. We have observed that the amino acid preferences involved in the hydrogen bonding interactions vary for adenine and guanine. The structural variation between the purine atoms is clearly reflected by their burial tendency in the solvent environment. Correlation of the mean amino acid preference values show the variation that exists between adenine and guanine preferences of all the amino acid residues. All our observations provide evidence for the discriminating nature of the proteins in recognizing adenine and guanine.

  18. Structure of STING bound to cyclic di-GMP reveals the mechanism of cyclic dinucleotide recognition by the immune system.

    PubMed

    Shu, Chang; Yi, Guanghui; Watts, Tylan; Kao, C Cheng; Li, Pingwei

    2012-06-24

    STING (stimulator of interferon genes) is an innate immune sensor of cyclic dinucleotides that regulates the induction of type I interferons. STING's C-terminal domain forms a V-shaped dimer and binds a cyclic diguanylate monophosphate (c-di-GMP) at the dimer interface by both direct and solvent-mediated hydrogen bonds. Guanines of c-di-GMP stack against the phenolic rings of a conserved tyrosine, and mutations at the c-di-GMP binding surface reduce nucleotide binding and affect signaling.

  19. Kinetic and mechanistic analysis of dinucleotide and oligonucleotide formation from the 5'-phosphorimidazolide of adenosine on Na(+)-montmorillonite

    NASA Technical Reports Server (NTRS)

    Kawamura, K.; Ferris, J. P.

    1994-01-01

    The rate constants for the condensation reaction of the 5'-phosphorimidazolide of adenosine (ImpA) to form dinucleotides and oligonucleotides have been measured in the presence of Na(+)-volclay (a Na(+)-montmorillonite) in pH 8 aqueous solution at 25 degrees C. The rates of the reaction of ImpA with an excess of adenosine 5'-monophosphoramidate (NH2pA), P1,P2-diadenosine 5',5'-pyrophosphate (A5'ppA), or adenosine 5'-monophosphate (5'-AMP or pA) in the presence of the montmorillonite to form NH2pA3'pA, A5'ppA3'pA, and pA3'pA, respectively, were measured. Only 3',5'-linked products were observed. The magnitude of the rate constants decrease in the order NH2pA3'pA > A5'-ppA3'pA > pA3'pA. The binding of ImpA to montmorillonite was measured, and the adsorption isotherm was determined. The binding of ImpA to montmorillonite and the formation of higher oligonucleotides is not observed in the absence of salts. Mg2+ enhances binding and oligonucleotide formation more than Ca2+ and Na+. The rate constants for the oligonucleotide formation were determined from the reaction products formed from 10 to 40 mM ImpA in the presence of Na(+)-montmorillonite using the computer program SIMFIT. The magnitudes of the rate constants for the formation of oligonucleotides increased in the order 2-mer < 3-mer < 4-mer ... 7-mer. The rate constants for dinucleotide and trinucleotide formation are more than 1000 times larger than those measured in the absence of montmorillonite. The rate constants for the formation of dinucleotide, trinucleotide, and tetranucleotide are 41,2.6, and 3.7 times larger than those for the formation of oligo(G)s with a poly(C) template. The hydrolysis of ImpA was accelerated 35 times in the presence of the montmorillonite. The catalytic ability of montmorillonite to form dinucleotides and oligonucleotides is quantitatively evaluated and possible pathways for oligo(A) formation are proposed.

  20. Shikimate dehydrogenase from Pinu sylvestris L. needles

    SciTech Connect

    Osipov, V.I.; Shein, I.V.

    1986-07-10

    Shikimate dehydrogenase was isolated by extraction from pine needles and partially purified by fractionation with ammonium sulfate. In conifers, in contrast to other plants, all three isoenzymes of shikimate dehydrogenase exhibit activity not only with NADP/sup +/, but also with NAD/sup +/. The values of K/sub m/ for shikimate, when NADP/sup +/ and NAD/sup +/ are used as cofactors, are 0.22 and 1.13 mM, respectively. The enzyme is maximally active at pH 10 with both cofactors. It is suggested that NAD-dependent shikimate dehydrogenase catalyzes the initial reaction of the alternative pathway of the conversion of shikimic acid to hydroxybenzoic acid. The peculiarities of the organization and regulation of the initial reactions of the shikimate pathway in conifers and in plants with shikimate dehydrogenase absolutely specific for NADP are discussed.

  1. Adenine photodimerization in deoxyadenylate sequences: elucidation of the mechanism through structural studies of a major d(ApA) photoproduct.

    PubMed Central

    Kumar, S; Joshi, P C; Sharma, N D; Bose, S N; Jeremy, R; Davies, H; Takeda, N; McCloskey, J A

    1991-01-01

    The mechanism of the photodimerization of adjacent adenine bases on the same strand of DNA has been elucidated by determining the structure of one of the two major photoproducts that are formed by UV irradiation of the deoxydinucleoside monophosphate d(ApA). The photoproduct, denoted d(ApA)*, corresponds to a species of adenine photodimer first described by Pörschke (Pörschke, D. (1973) J.Am.Chem.Soc. 95, 8440-8446). From a detailed examination of its chemical and spectroscopic properties, including comparisons with the model compound N-cyano-N1-(1-methylimidazol-5-yl)formamidine, it is deduced that d(ApA)* contains a deoxyadenosine unit covalently linked through its C(8) position to C(4) of an imidazole N(1) deoxyribonucleoside moiety bearing an N-cyanoformamidino substituent at C(5). On treatment with acid, d(ApA)* is degraded with high specificity to 8-(5-amino-imidazol-4-yl)adenine whose identity has been confirmed by independent chemical synthesis. It is concluded that the primary event in adenine photodimerization entails photoaddition of the N(7)-C(8) double bond of the 5'-adenine across the C(6) and C(5) positions of the 3'-adenine. The azetidine species thus generated acts as a common precursor to both types of d(ApA) photoproduct which are formed from it by competing modes of azetidine ring fission. PMID:2057348

  2. Movement and Metabolism of Kinetin-14C and of Adenine-14C in Coleus Petiole Segments of Increasing Age 1

    PubMed Central

    Veen, Henk; Jacobs, William P.

    1969-01-01

    To see if polar movement was typical of growth-regulators other than auxins, the movement of adenine-8-14C and of kinetin-8-14C was studied in segments cut from petioles of increasing age. No polarity was found. In time-course experiments lasting 24 hr, kinetin showed a progressive increase of radioactivity in receiver blocks, while adenine showed a maximum at 8 hr with a decline thereafter. More kinetin moved through older segments than through younger ones. There was no difference in net loss as far as the position of the donor block is concerned. However, the loss of radioactivity from adenine donor blocks was much higher than the loss of radioactivity from kinetin donor blocks. The radioactivity in receiver blocks after 24 hr treatment with kinetin-14C was still with kinetin, judging by location on chromatograms. By the same criterion, adenine and a smaller amount of some other compound were in receiver blocks after a 6 hr transport with adenine-14C in the donors. By contrast, more zones of radioactivity were extracted from petiole segments to which kinetin or adenine had been added. For both purine derivatives the original compound represented no more than 20% of the total radioactivity extracted from the tissue after a transport period of 24 hr. PMID:16657203

  3. Phosphorylation site on yeast pyruvate dehydrogenase complex

    SciTech Connect

    Uhlinger, D.J.

    1986-01-01

    The pyruvate dehydrogenase complex was purified to homogeneity from baker's yeast (Saccharomyces cerevisiae). Yeast cells were disrupted in a Manton-Gaulin laboratory homogenizer. The pyruvate dehydrogenase complex was purified by fractionation with polyethylene glycol, isoelectric precipitation, ultracentrifugation and chromatography on hydroxylapatite. Final purification of the yeast pyruvate dehydrogenase complex was achieved by cation-exchange high pressure liquid chromatography (HPLC). No endogenous pyruvate dehydrogenase kinase activity was detected during the purification. However, the yeast pyruvate dehydrogenase complex was phosphorylated and inactivated with purified pyruvate dehydrogenase kinase from bovine kidney. Tryptic digestion of the /sup 32/P-labeled complex yielded a single phosphopeptide which was purified to homogeniety. The tryptic digest was subjected to chromatography on a C-18 reverse phase HPLC column with a linear gradient of acetonitrile. Radioactive fractions were pooled, concentrated, and subjected to anion-exchange HPLC. The column was developed with a linear gradient of ammonium acetate. Final purification of the phosphopeptide was achieved by chromatography on a C-18 reverse phase HPLC column developed with a linear gradient of acetonitrile. The amino acid sequence of the homogeneous peptide was determined by manual modified Edman degradation.

  4. Insight into Coenzyme A cofactor binding and the mechanism of acyl-transfer in an acylating aldehyde dehydrogenase from Clostridium phytofermentans

    PubMed Central

    Tuck, Laura R.; Altenbach, Kirsten; Ang, Thiau Fu; Crawshaw, Adam D.; Campopiano, Dominic J.; Clarke, David J.; Marles-Wright, Jon

    2016-01-01

    The breakdown of fucose and rhamnose released from plant cell walls by the cellulolytic soil bacterium Clostridium phytofermentans produces toxic aldehyde intermediates. To enable growth on these carbon sources, the pathway for the breakdown of fucose and rhamnose is encapsulated within a bacterial microcompartment (BMC). These proteinaceous organelles sequester the toxic aldehyde intermediates and allow the efficient action of acylating aldehyde dehydrogenase enzymes to produce an acyl-CoA that is ultimately used in substrate-level phosphorylation to produce ATP. Here we analyse the kinetics of the aldehyde dehydrogenase enzyme from the fucose/rhamnose utilisation BMC with different short-chain fatty aldehydes and show that it has activity against substrates with up to six carbon atoms, with optimal activity against propionaldehyde. We have also determined the X-ray crystal structure of this enzyme in complex with CoA and show that the adenine nucleotide of this cofactor is bound in a distinct pocket to the same group in NAD+. This work is the first report of the structure of CoA bound to an aldehyde dehydrogenase enzyme and our crystallographic model provides important insight into the differences within the active site that distinguish the acylating from non-acylating aldehyde dehydrogenase enzymes. PMID:26899032

  5. UU/UA dinucleotide frequency reduction in coding regions results in increased mRNA stability and protein expression.

    PubMed

    Al-Saif, Maher; Khabar, Khalid S A

    2012-05-01

    UU and UA dinucleotides are rare in mammalian genes and may offer natural selection against endoribonuclease-mediated mRNA decay. This study hypothesized that reducing UU and UA (UW) dinucleotides in the mRNA-coding sequence, including the codons and the dicodon boundaries, may promote resistance to mRNA decay, thereby increasing protein production. Indeed, protein expression from UW-reduced coding regions of enhanced green fluorescent protein (EGFP), luciferase, interferon-α, and hepatitis B surface antigen (HBsAg) was higher when compared to the wild-type protein expression. The steady-state level of UW-reduced EGFP mRNA was higher and the mRNA half-life was also longer. Ectopic expression of the endoribonuclease, RNase L, did not reduce the wild type or UW-reduced mRNA. A mutant form of the mRNA decay-promoting protein, tristetraprolin (TTP/ZFP36), which has a point mutation in the zinc-finger domain (C124R), was used. The wild-type EGFP mRNA but not the UW-reduced mRNA responded to the dominant negative action of the C124R ZFP36/TTP mutant. The results indicate the efficacy of the described rational approach to formulate a general scheme for boosting recombinant protein production in mammalian cells.

  6. Undetectable levels of N6-methyl adenine in mouse DNA: Cloning and analysis of PRED28, a gene coding for a putative mammalian DNA adenine methyltransferase.

    PubMed

    Ratel, David; Ravanat, Jean-Luc; Charles, Marie-Pierre; Platet, Nadine; Breuillaud, Lionel; Lunardi, Joël; Berger, François; Wion, Didier

    2006-05-29

    Three methylated bases, 5-methylcytosine, N4-methylcytosine and N6-methyladenine (m6A), can be found in DNA. However, to date, only 5-methylcytosine has been detected in mammalian genomes. To reinvestigate the presence of m6A in mammalian DNA, we used a highly sensitive method capable of detecting one N6-methyldeoxyadenosine per million nucleosides. Our results suggest that the total mouse genome contains, if any, less than 10(3) m6A. Experiments were next performed on PRED28, a putative mammalian N6-DNA methyltransferase. The murine PRED28 encodes two alternatively spliced RNA. However, although recombinant PRED28 proteins are found in the nucleus, no evidence for an adenine-methyltransferase activity was detected. PMID:16684535

  7. Kinetic and chemical analyses of the cytokinin dehydrogenase-catalysed reaction: correlations with the crystal structure

    PubMed Central

    Popelková, Hana; Fraaije, Marco W.; Novák, Ondřej; Frébortová, Jitka; Bilyeu, Kristin D.; Frébort, Ivo

    2006-01-01

    CKX (cytokinin dehydrogenase) is a flavoprotein that cleaves cytokinins to adenine and the corresponding side-chain aldehyde using a quinone-type electron acceptor. In the present study, reactions of maize (Zea mays) CKX with five different substrates (N6-isopentenyladenine, trans-zeatin, kinetin, p-topolin and N-methyl-isopentenyladenine) were studied. By using stopped-flow analysis of the reductive half-reaction, spectral intermediates were observed indicative of the transient formation of a binary enzyme–product complex between the cytokinin imine and the reduced enzyme. The reduction rate was high for isoprenoid cytokinins that showed formation of a charge-transfer complex of reduced enzyme with bound cytokinin imine. For the other cytokinins, flavin reduction was slow and no charge-transfer intermediates were observed. The binary complex of reduced enzyme and imine product intermediate decays relatively slowly to form an unbound product, cytokinin imine, which accumulates in the reaction mixture. The imine product only very slowly hydrolyses to adenine and an aldehyde derived from the cytokinin N6 side-chain. Mixing of the substrate-reduced enzyme with Cu2+/imidazole as an electron acceptor to monitor the oxidative half-reaction revealed a high rate of electron transfer for this type of electron acceptor when using N6-isopentenyladenine. The stability of the cytokinin imine products allowed their fragmentation analysis and structure assessment by Q-TOF (quadrupole–time-of-flight) MS/MS. Correlations of the kinetic data with the known crystal structure are discussed for reactions with different cytokinins. PMID:16686601

  8. Xanthine dehydrogenase and aldehyde oxidase impact plant hormone homeostasis and affect fruit size in 'Hass' avocado.

    PubMed

    Taylor, Nicky J; Cowan, A Keith

    2004-04-01

    The contribution of xanthine dehydrogenase (XDH, EC 1.1.1.204) to fruit size was investigated using the normal and small-fruit variants of Persea americana Mill. cv. 'Hass'. Inhibition of XDH by treatment of normal fruit, in the linear phase of growth (phase II), with allopurinol (Allo) arrested fruit growth. Adenine (Ade), a less effective inhibitor of this enzyme, also arrested fruit growth when applied in phase II and slowed fruit growth when applied in phase III. A time-course study on the activity of XDH in mesocarp tissue from normal and small fruit showed that maximum activity occurred late in phase II and that the peak in activity was absent in mesocarp of the small fruit. Feeding Ade to growing fruit in phase III caused a transient decline in fruit growth (measured as change in fruit length). Thereafter, growth resumed although fruit size was irreversibly affected. Treatment of fruit with Ade and Ade-containing cytokinins altered activity of another molybdenum enzyme, aldehyde oxidase (EC 1.2.3.1). Cytokinin oxidase was induced by cytokinin and auxin. Purine catabolism via hypoxanthine/xanthine was operative in normal fruit and in mesocarp from the small-fruit variant and as expected, Allo treatment caused accumulation of xanthine and adenine. In the absence of an increase in XDH during growth of the small-fruit phenotype, low levels of Ade were interpreted as resulting from respiration-enhanced adenylate depletion. Stress and/or pathogen induction of the alternative oxidase pathway is proposed as a possible cause.

  9. Alteration of substrate specificity of alanine dehydrogenase

    PubMed Central

    Fernandes, Puja; Aldeborgh, Hannah; Carlucci, Lauren; Walsh, Lauren; Wasserman, Jordan; Zhou, Edward; Lefurgy, Scott T.; Mundorff, Emily C.

    2015-01-01

    The l-alanine dehydrogenase (AlaDH) has a natural history that suggests it would not be a promising candidate for expansion of substrate specificity by protein engineering: it is the only amino acid dehydrogenase in its fold family, it has no sequence or structural similarity to any known amino acid dehydrogenase, and it has a strong preference for l-alanine over all other substrates. By contrast, engineering of the amino acid dehydrogenase superfamily members has produced catalysts with expanded substrate specificity; yet, this enzyme family already contains members that accept a broad range of substrates. To test whether the natural history of an enzyme is a predictor of its innate evolvability, directed evolution was carried out on AlaDH. A single mutation identified through molecular modeling, F94S, introduced into the AlaDH from Mycobacterium tuberculosis (MtAlaDH) completely alters its substrate specificity pattern, enabling activity toward a range of larger amino acids. Saturation mutagenesis libraries in this mutant background additionally identified a double mutant (F94S/Y117L) showing improved activity toward hydrophobic amino acids. The catalytic efficiencies achieved in AlaDH are comparable with those that resulted from similar efforts in the amino acid dehydrogenase superfamily and demonstrate the evolvability of MtAlaDH specificity toward other amino acid substrates. PMID:25538307

  10. Benzene toxicity: emphasis on cytosolic dihydrodiol dehydrogenases

    SciTech Connect

    Bolcsak, L.E.

    1982-01-01

    Blood dyscrasias such as leukopenia and anemia have been clearly identified as consequences of chronic benzene exposure. The metabolites, phenol, catechol, and hydroquinone produced inhibition of /sup 59/Fe uptake in mice which followed the same time course as that produced by benzene. The inhibitor of benzene oxidation, 3-amino-1,2,4-triazole, mitigated the inhibitory effects of benzene and phenol only. These data support the contention that benzene toxicity is mediated by a metabolite and suggest that the toxicity of phenol is a consequence of its metabolism to hydroquinone and that the route of metabolism to catechol may also contribute to the production of toxic metabolite(s). The properties of mouse liver cytosolic dihydrodiol dehydrogenases were examined. These enzymes catalyze the NADP/sup +/-dependent oxidation of trans-1,2-dihydro-1,2-dihydroxybenzene (BDD) to catechol, a possible toxic metabolite of benzene produced via this metabolic route. Four distinct dihydrodiol dehydrogenases (DD1, DD2, DD3, and DD4) were purified to apparent homogeneity as judged by SDS polyacrylamide gel electrophoresis and isoelectric focusing. DD1 appeared to be identical to the major ketone reductase and 17..beta..-hydroxysteroid dehydrogenase activity in the liver. DD2 exhibited aldehyde reductase activity. DD3 and DD4 oxidized 17..beta..-hydroxysteroids, but no carbonyl reductase activity was detected. These relationships between BDD dehydrogenases and carbonyl reductase and/or 17..beta..-hydroxysteroid dehydrogenase activities were supported by several lines of evidence.

  11. Fragmentation of the adenine and guanine molecules induced by electron collisions

    NASA Astrophysics Data System (ADS)

    Minaev, B. F.; Shafranyosh, M. I.; Svida, Yu. Yu; Sukhoviya, M. I.; Shafranyosh, I. I.; Baryshnikov, G. V.; Minaeva, V. A.

    2014-05-01

    Secondary electron emission is the most important stage in the mechanism of radiation damage to DNA biopolymers induced by primary ionizing radiation. These secondary electrons ejected by the primary electron impacts can produce further ionizations, initiating an avalanche effect, leading to genome damage through the energy transfer from the primary objects to sensitive biomolecular targets, such as nitrogenous bases, saccharides, and other DNA and peptide components. In this work, the formation of positive and negative ions of purine bases of nucleic acids (adenine and guanine molecules) under the impact of slow electrons (from 0.1 till 200 eV) is studied by the crossed electron and molecular beams technique. The method used makes it possible to measure the molecular beam intensity and determine the total cross-sections for the formation of positive and negative ions of the studied molecules, their energy dependences, and absolute values. It is found that the maximum cross section for formation of the adenine and guanine positive ions is reached at about 90 eV energy of the electron beam and their absolute values are equal to 2.8 × 10-15 and 3.2 × 10-15 cm2, respectively. The total cross section for formation of the negative ions is 6.1 × 10-18 and 7.6 × 10-18 cm2 at the energy of 1.1 eV for adenine and guanine, respectively. The absolute cross-section values for the molecular ions are measured and the cross-sections of dissociative ionization are determined. Quantum chemical calculations are performed for the studied molecules, ions and fragments for interpretation of the crossed beams experiments.

  12. Fragmentation of the adenine and guanine molecules induced by electron collisions

    SciTech Connect

    Minaev, B. F. E-mail: boris@theochem.kth.se; Shafranyosh, M. I.; Svida, Yu. Yu; Sukhoviya, M. I.; Shafranyosh, I. I.; Baryshnikov, G. V.; Minaeva, V. A.

    2014-05-07

    Secondary electron emission is the most important stage in the mechanism of radiation damage to DNA biopolymers induced by primary ionizing radiation. These secondary electrons ejected by the primary electron impacts can produce further ionizations, initiating an avalanche effect, leading to genome damage through the energy transfer from the primary objects to sensitive biomolecular targets, such as nitrogenous bases, saccharides, and other DNA and peptide components. In this work, the formation of positive and negative ions of purine bases of nucleic acids (adenine and guanine molecules) under the impact of slow electrons (from 0.1 till 200 eV) is studied by the crossed electron and molecular beams technique. The method used makes it possible to measure the molecular beam intensity and determine the total cross-sections for the formation of positive and negative ions of the studied molecules, their energy dependences, and absolute values. It is found that the maximum cross section for formation of the adenine and guanine positive ions is reached at about 90 eV energy of the electron beam and their absolute values are equal to 2.8 × 10{sup −15} and 3.2 × 10{sup −15} cm{sup 2}, respectively. The total cross section for formation of the negative ions is 6.1 × 10{sup −18} and 7.6 × 10{sup −18} cm{sup 2} at the energy of 1.1 eV for adenine and guanine, respectively. The absolute cross-section values for the molecular ions are measured and the cross-sections of dissociative ionization are determined. Quantum chemical calculations are performed for the studied molecules, ions and fragments for interpretation of the crossed beams experiments.

  13. NF-κB activation mediates crystal translocation and interstitial inflammation in adenine overload nephropathy.

    PubMed

    Okabe, Cristiene; Borges, Raquel Lerner; de Almeida, Danilo Candido; Fanelli, Camilla; Barlette, Grasiela Pedreira; Machado, Flavia Gomes; Arias, Simone Costa Alarcon; Malheiros, Denise Maria Avancini Costa; Camara, Niels Olsen Saraiva; Zatz, Roberto; Fujihara, Clarice Kazue

    2013-07-15

    Adenine overload promotes intratubular crystal precipitation and interstitial nephritis. We showed recently that these abnormalities are strongly attenuated in mice knockout for Toll-like receptors-2, -4, MyD88, ASC, or caspase-1. We now investigated whether NF-κB activation also plays a pathogenic role in this model. Adult male Munich-Wistar rats were distributed among three groups: C (n = 17), receiving standard chow; ADE (n = 17), given adenine in the chow at 0.7% for 1 wk and 0.5% for 2 wk; and ADE + pyrrolidine dithiocarbamate (PDTC; n = 14), receiving adenine as above and the NF-κB inhibitor PDTC (120 mg·kg⁻¹·day⁻¹ in the drinking water). After 3 wk, widespread crystal deposition was seen in tubular lumina and in the renal interstitium, along with granuloma formation, collagen accumulation, intense tubulointerstitial proliferation, and increased interstitial expression of inflammatory mediators. Part of the crystals were segregated from tubular lumina by a newly formed cell layer and, at more advanced stages, appeared to be extruded to the interstitium. p65 nuclear translocation and IKK-α increased abundance indicated activation of the NF-κB system. PDTC treatment prevented p65 migration and normalized IKK-α, limited crystal shift to the interstitium, and strongly attenuated interstitial fibrosis/inflammation. These findings indicate that the complex inflammatory phenomena associated with this model depend, at least in part, on NF-κB activation, and suggest that the NF-κB system may become a therapeutic target in the treatment of chronic kidney disease.

  14. The effect of pi-stacking, h-bonding, and electrostatic interactions on the ionization energies of nucleic acid bases: adenine-adenine, thymine-thymine and adenine-thymine dimers

    SciTech Connect

    Bravaya, Ksenia B.; Kostko, Oleg; Ahmed, Musahid; Krylov, Anna I.

    2009-09-02

    A combined theoretical and experimental study of the ionized dimers of thymine and adenine, TT, AA, and AT, is presented. Adiabatic and vertical ionization energies(IEs) for monomers and dimers as well as thresholds for the appearance of the protonated species are reported and analyzed. Non-covalent interactions stronglyaffect the observed IEs. The magnitude and the nature of the effect is different for different isomers of the dimers. The computations reveal that for TT, the largestchanges in vertical IEs (0.4 eV) occur in asymmetric h-bonded and symmetric pi- stacked isomers, whereas in the lowest-energy symmetric h-bonded dimer the shiftin IEs is much smaller (0.1 eV). The origin of the shift and the character of the ionized states is different in asymmetric h-bonded and symmetric stacked isomers. Inthe former, the initial hole is localized on one of the fragments, and the shift is due to the electrostatic stabilization of the positive charge of the ionized fragment by thedipole moment of the neutral fragment. In the latter, the hole is delocalized, and the change in IE is proportional to the overlap of the fragments' MOs. The shifts in AAare much smaller due to a less effcient overlap and a smaller dipole moment. The ionization of the h-bonded dimers results in barrierless (or nearly barrierless) protontransfer, whereas the pi-stacked dimers relax to structures with the hole stabilized by the delocalization or electrostatic interactions.

  15. The structure, stability, H-bonding pattern, and electrostatic potential of adenine tetrads

    NASA Astrophysics Data System (ADS)

    Gu, Jiande; Leszczynski, Jerzy

    2001-03-01

    Two conformations of the adenine tetrad were investigated at the HF and B3LYP/6-311G(d,p) levels of theory. Both conformations are predicted to be stable only in the nonplanar form. They adopt the bowl type structure. Since the planar form offers better geometry for stacking with the adjacent G-tetrad, both planar forms are expected to be important in the formation of the tetraplexes. Based on electrostatic potential map the positive electrostatic potential in the central area of both conformations is expected to reinforce the stacking between the A-tetrads and the G-tetrads in the tetraplexes.

  16. Strong coupling between adenine nucleobases in DNA single strands revealed by circular dichroism using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Kadhane, Umesh; Holm, Anne I. S.; Hoffmann, Søren Vrønning; Nielsen, Steen Brøndsted

    2008-02-01

    Circular dichroism (CD) experiments on DNA single strands (dAn) at the ASTRID synchrotron radiation facility reveal that eight adenine (A) bases electronically couple upon 190nm excitation. After n=8 , the CD signal increases linearly with n with a slope equal to the sum of the coupling terms. Nearest neighbor interactions account for only 24% of the CD signal whereas electronic communication is limited to nearest neighbors for two other exciton bands observed at 218 and 251nm (i.e., dimer excited states). Electronic coupling between bases in DNA is important for nonradiative deexcitation of electronically excited states since the hazardous energy is spread over a larger spatial region.

  17. Purification and characterization of a tungsten-containing formate dehydrogenase from Desulfovibrio gigas.

    PubMed

    Almendra, M J; Brondino, C D; Gavel, O; Pereira, A S; Tavares, P; Bursakov, S; Duarte, R; Caldeira, J; Moura, J J; Moura, I

    1999-12-01

    An air-stable formate dehydrogenase (FDH), an enzyme that catalyzes the oxidation of formate to carbon dioxide, was purified from the sulfate reducing organism Desulfovibrio gigas (D. gigas) NCIB 9332. D. gigas FDH is a heterodimeric protein [alpha (92 kDa) and beta (29 kDa) subunits] and contains 7 +/- 1 Fe/protein and 0.9 +/- 0.1 W/protein. Selenium was not detected. The UV/visible absorption spectrum of D. gigas FDH is typical of an iron-sulfur protein. Analysis of pterin nucleotides yielded a content of 1.3 +/- 0.1 guanine monophosphate/mol of enzyme, which suggests a tungsten coordination with two molybdopterin guanine dinucleotide cofactors. Both Mössbauer spectroscopy performed on D. gigas FDH grown in a medium enriched with (57)Fe and EPR studies performed in the native and fully reduced state of the protein confirmed the presence of two [4Fe-4S] clusters. Variable-temperature EPR studies showed the presence of two signals compatible with an atom in a d(1) configuration albeit with an unusual relaxation behavior as compared to the one generally observed for W(V) ions.

  18. Affinity chromatography of bacterial lactate dehydrogenases.

    PubMed Central

    Kelly, N; Delaney, M; O'Carra, P

    1978-01-01

    The affinity system used was the immobilized oxamate derivative previously used to purify mammalian lactate dehydrogenases. The bacterial dehydrogenases specific for the L-stereoisomer of lactate behaved in the same way as the mammalian enzymes, binding strongly in the presence of NADH. The D-lactate-specific enzymes, however, did not show any biospecific affinity for this gel. The L-specific enzymes could be purified to homogeneity in one affinity-chromatographic step. The D-specific enzymes could be efficiently separated from the L-specific ones and could then be further purified on an immobilized NAD derivative. The mechanism of activation of the lactate dehydrogenase from Streptococcus faecalis by fructose 1,6-bisphosphate was investigated by using the immobilized oxamate gel. PMID:666726

  19. Affinity chromatography of bacterial lactate dehydrogenases.

    PubMed

    Kelly, N; Delaney, M; O'Carra, P

    1978-06-01

    The affinity system used was the immobilized oxamate derivative previously used to purify mammalian lactate dehydrogenases. The bacterial dehydrogenases specific for the L-stereoisomer of lactate behaved in the same way as the mammalian enzymes, binding strongly in the presence of NADH. The D-lactate-specific enzymes, however, did not show any biospecific affinity for this gel. The L-specific enzymes could be purified to homogeneity in one affinity-chromatographic step. The D-specific enzymes could be efficiently separated from the L-specific ones and could then be further purified on an immobilized NAD derivative. The mechanism of activation of the lactate dehydrogenase from Streptococcus faecalis by fructose 1,6-bisphosphate was investigated by using the immobilized oxamate gel. PMID:666726

  20. Molybdopterin cofactor from Methanobacterium formicicum formate dehydrogenase.

    PubMed Central

    May, H D; Schauer, N L; Ferry, J G

    1986-01-01

    The molybdopterin cofactor from the formate dehydrogenase of Methanobacterium formicicum was studied. The cofactor was released by guanidine denaturation of homogeneous enzyme, which also released greater than 80% of the molybdenum present in the enzyme. The anoxically isolated cofactor was nonfluorescent, but after exposure to air it fluoresced with spectra similar to those of described molybdopterin cofactors. Aerobic release from acid-denatured formate dehydrogenase in the presence of I2 and potassium iodide produced a mixture of fluorescent products. Alkaline permanganate oxidation of the mixture yielded pterin-6-carboxylic acid as the only detectable fluorescent product. The results showed that the cofactor from formate dehydrogenase contained a pterin nucleus with a 6-alkyl side chain of unknown structure. Covalently bound phosphate was also present. The isolated cofactor was unable to complement the cofactor-deficient nitrate reductase of the Neurospora crassa nit-1 mutant. PMID:3700335

  1. NAD + -dependent Formate Dehydrogenase from Plants

    PubMed Central

    Alekseeva, A.A.; Savin, S.S.; Tishkov, V.I.

    2011-01-01

    NAD+-dependent formate dehydrogenase (FDH, EC 1.2.1.2) widely occurs in nature. FDH consists of two identical subunits and contains neither prosthetic groups nor metal ions. This type of FDH was found in different microorganisms (including pathogenic ones), such as bacteria, yeasts, fungi, and plants. As opposed to microbiological FDHs functioning in cytoplasm, plant FDHs localize in mitochondria. Formate dehydrogenase activity was first discovered as early as in 1921 in plant; however, until the past decade FDHs from plants had been considerably less studied than the enzymes from microorganisms. This review summarizes the recent results on studying the physiological role, properties, structure, and protein engineering of plant formate dehydrogenases. PMID:22649703

  2. Synthesis, spectroscopic, structural and thermal characterizations of vanadyl(IV) adenine complex prospective as antidiabetic drug agent

    NASA Astrophysics Data System (ADS)

    El-Megharbel, Samy M.; Hamza, Reham Z.; Refat, Moamen S.

    2015-01-01

    The vanadyl(IV) adenine complex; [VO(Adn)2]ṡSO4; was synthesized and characterized. The molar conductivity of this complex was measured in DMSO solution that showed an electrolyte nature. Spectroscopic investigation of the green solid complex studied here indicate that the adenine acts as a bidentate ligand, coordinated to vanadyl(IV) ions through the nitrogen atoms N7 and nitrogen atom of amino group. Thus, from the results presented the vanadyl(IV) complex has square pyramid geometry. Further characterizations using thermal analyses and scanning electron techniques was useful. The aim of this paper was to introduce a new drug model for the diabetic complications by synthesized a novel mononuclear vanadyl(IV) adenine complex to mimic insulin action and reducing blood sugar level. The antidiabetic ability of this complex was investigated in STZ-induced diabetic mice. The results suggested that VO(IV)/adenine complex has antidiabetic activity, it improved the lipid profile, it improved liver and kidney functions, also it ameliorated insulin hormone and blood glucose levels. The vanadyl(IV) complex possesses an antioxidant activity and this was clear through studying SOD, CAT, MDA, GSH and methionine synthase. The current results support the therapeutic potentiality of vanadyl(IV)/adenine complex for the management and treatment of diabetes.

  3. Simultaneous Determination of Adenine and Guanine Using Cadmium Selenide Quantum Dots-Graphene Oxide Nanocomposite Modified Electrode.

    PubMed

    Kalaivani, Arumugam; Narayanan, Sangilimuthu Sriman

    2015-06-01

    A novel electrochemical sensor was fabricated by immobilizing Cadmium Selenide Quantum Dots (CdSe QDs)-Graphene Oxide (GO) nanocomposite on a paraffin wax impregnated graphite electrode (PIGE) and was used for the simultaneous determination of adenine and guanine. The CdSe QDs-GO nanocomposite was prepared by ultrasonication and was characterized with spectroscopic and microscopic techniques. The nanocomposite modified electrode was characterized by cyclic voltammetry (CV). The modified electrode showed excellent electrocatalytic activity towards the oxidative determination of adenine and guanine with a good peak separation of 0.31 V. This may be due to the high surface area and fast electron transfer kinetics of the nanocomposite. The modified electrode exhibited wide linear ranges from 0.167 μM to 245 μM for Guanine and 0.083 μM to 291 μM for Adenine with detection limits of 0.055 μM Guanine and 0.028 μM of Adenine (S/N = 3) respectively. Further, the modified electrode was used for the quantitative determination of adenine and guanine in herring sperm DNA with satisfactory results. The modified electrode showed acceptable selectivity, reproducibility and stability under optimal conditions. PMID:26369099

  4. The isolation and characterisation of a new type of dimeric adenine photoproduct in UV-irradiated deoxyadenylates.

    PubMed Central

    Kumar, S; Sharma, N D; Davies, R J; Phillipson, D W; McCloskey, J A

    1987-01-01

    A new type of dimeric adenine photoproduct has been isolated from d(ApA) irradiated at 254 nm in neutral aqueous solution. It is formed in comparable amounts to another, quite distinct, adenine photoproduct first described by Pörschke (J. Am. Chem. Soc. (1973), 95, 8440-8446). Results from high resolution mass spectrometry and 1H NMR indicate that the new photoproduct comprises a mixture of two stereoisomers whose formation involves covalent coupling of the adenine bases in d(ApA) and concomitant incorporation of the elements of one molecule of water. The photoproduct is degraded specifically by acid to 4,6-diamino-5-guanidinopyrimidine (DGPY) whose identity has been confirmed by independent chemical synthesis. Formation of the new photoproduct in UV-irradiated d(pA)2 and poly(dA), but not poly(rA), has been demonstrated by assaying their acid hydrolysates for the presence of DGPY. The properties of the photoproduct are consistent with it being generated by the hydrolytic fission of an azetidine photoadduct in which the N(7) and C(8) atoms of the 5'-adenine in d(ApA) are linked respectively to the C(6) and C(5) positions of the 3'-adenine. PMID:3822822

  5. Metabolic fate of 14C-labelled nicotinamide and adenine in germinating propagules of the mangrove Bruguiera gymnorrhiza.

    PubMed

    Yin, Yuling; Watanabe, Shin; Ashihara, Hiroshi

    2012-01-01

    We studied the metabolic fate of [carbonyl-14C]nicotinamide and [8-(14)C]adenine in segments taken from young and developing leaves, stem, hypocotyls, and roots of a shoot-root type emerging propagule of the mangrove plant Bruguiera gymnorrhiza. Thin-layer chromatography was used together with a bioimaging analyser system. During 4 h of incubation, incorporation of radioactivity from [carbonyl-14C]nicotinamide into NAD and trigonelline was found in all parts of the propagules; the highest incorporation rates into NAD and trigonelline were found in newly emerged stem and young leaves, respectively. Radioactivity from [8-(14)C]adenine was distributed mainly in the salvage products (adenine nucleotides and RNA), and incorporation was less in catabolites (allantoin, allantoic acid, and CO2). Adenine salvage activity was higher in young leaves and stem than in hypocotyls and roots. Over a short time, the effect of 500 mM NaCl on nicotinamide and adenine metabolism indicated that NaCl inhibits both salvage and degradation activities in roots. PMID:22888538

  6. Accurate crystal molecular dynamics simulations using particle-mesh-Ewald: RNA dinucleotides — ApU and GpC

    NASA Astrophysics Data System (ADS)

    Lee, Hsing; Darden, Thomas; Pedersen, Lee

    1995-09-01

    Long molecular dynamics (MD) simulations for two crystal RNA dinucleotides ApU (2.0 ns) and GpC (1.5 ns) were performed, starting from the crystallographic positions of all heavy atoms in the crystals. By employing the particle-mesh-Ewald algorithm [Darden et al., J. Chem. Phys. 98 (1993) 10089] to accommodate the long-range Coulomb interactions, highly accurate MD structures were obtained for both crystals. The instantaneous root-mean-square positional deviations of the heavy atoms equilibrate at approximately 0.4 Å for both systems, while the experimental and calculated temperature factors are comparable in size. These results describe the first successful crystal MD simulation of RNA molecules.

  7. Bacteriophage adenine methyltransferase: a life cycle regulator? Modelled using Vibrio harveyi myovirus like.

    PubMed

    Bochow, S; Elliman, J; Owens, L

    2012-11-01

    The adenine methyltransferase (DAM) gene methylates GATC sequences that have been demonstrated in various bacteria to be a powerful gene regulator functioning as an epigenetic switch, particularly with virulence gene regulation. However, overproduction of DAM can lead to mutations, giving rise to variability that may be important for adaptation to environmental change. While most bacterial hosts carry a DAM gene, not all bacteriophage carry this gene. Currently, there is no literature regarding the role DAM plays in life cycle regulation of bacteriophage. Vibrio campbellii strain 642 carries the bacteriophage Vibrio harveyi myovirus like (VHML) that has been proven to increase virulence. The complete genome sequence of VHML bacteriophage revealed a putative adenine methyltransferase gene. Using VHML, a new model of phage life cycle regulation, where DAM plays a central role between the lysogenic and lytic states, will be hypothesized. In short, DAM methylates the rha antirepressor gene and once methylation is removed, homologous CI repressor protein becomes repressed and non-functional leading to the switching to the lytic cycle. Greater understanding of life cycle regulation at the genetic level can, in the future, lead to the genesis of chimeric bacteriophage with greater control over their life cycle for their safe use as probiotics within the aquaculture industry. PMID:22681538

  8. 3D Magnetically Ordered Open Supramolecular Architectures Based on Ferrimagnetic Cu/Adenine/Hydroxide Heptameric Wheels.

    PubMed

    Pérez-Aguirre, Rubén; Beobide, Garikoitz; Castillo, Oscar; de Pedro, Imanol; Luque, Antonio; Pérez-Yáñez, Sonia; Rodríguez Fernández, Jesús; Román, Pascual

    2016-08-01

    The present work provides two new examples of supramolecular metal-organic frameworks consisting of three-dimensional extended noncovalent assemblies of wheel-shaped heptanuclear [Cu7(μ-H2O)6(μ3-OH)6(μ-adeninato-κN3:κN9)6](2+) entities. The heptanuclear entity consists of a central [Cu(OH)6](4-) core connected to six additional copper(II) metal centers in a radial and planar arrangement through the hydroxides. It generates a wheel-shaped entity in which water molecules and μ-κN3:κN9 adeninato ligands bridge the peripheral copper atoms. The magnetic characterization indicates the central copper(II) center is anti-ferromagnetically coupled to external copper(II) centers, which are ferromagnetically coupled among them leading to an S = 5/2 ground state. The packing of these entities is sustained by π-π stacking interactions between the adenine nucleobases and by hydrogen bonds established among the hydroxide ligands, sulfate anions, and adenine nucleobases. The sum of both types of supramolecular interactions creates a rigid synthon that in combination with the rigidity of the heptameric entity generates an open supramolecular structure (40-50% of available space) in which additional sulfate and triethylammonium ions are located altogether with solvent molecules. These compounds represent an interesting example of materials combining both porosity and magnetic relevant features.

  9. Differentiation alters the unstable expression of adenine phosphoribosyltransferase in mouse teratocarcinoma cells.

    PubMed

    Turker, M S; Tischfield, J A; Rabinovitch, P; Stambrook, P J; Trill, J J; Smith, A C; Ogburn, C E; Martin, G M

    1986-01-01

    Three multipotent mouse teratocarcinoma stem lines, all exhibiting unstable expression for the purine salvage enzyme adenine phosphoribosyltransferase (APRT) were used for the isolation of differentiated cell lines from neoplasms developed in syngeneic mice. Two of the stem cell lines (DAP1B and DAP1C) exhibited homozygous deficiencies for APRT expression while the third stem cell line (E140) exhibited a heterozygous deficiency (Turker, M.S., Smith, A.C., and Martin, G.M.; Somat. Cell Mol. Genet.; 10:55-69; 1984). A total of 16 morphologically differentiated cell lines were established from these neoplasms; most were no longer tumorigenic. Differentiated cell lines derived from the E140-induced tumors segregated homozygous deficient mutants in a single step, consistent with their retention of the heterozygous deficient state. Differentiated homozygous deficient cell lines gave rise to phenotypic revertants at very high frequencies (10(-1) to 10(-2)). The majority of these putative revertants, however, yielded cell-free extracts with little or no detectable APRT activity. These putative revertants were capable of adenine salvage and were therefore termed APRT pseudorevertants. Since the APRT pseudorevertant phenotype was only observed in the differentiated progeny of the APRT deficient stem cell lines, we conclude that this change in the nature of the revertant phenotype was a consequence of cellular differentiation.

  10. Effect of Electronic Excitation on Hydrogen Atom Transfer (Tautomerization) Reactions for the DNA Base Adenine

    NASA Technical Reports Server (NTRS)

    Chaban, Galina M.; Salter, Latasha M.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Geometrical structures and energetic properties for four different tautomers of adenine are calculated in this study, using multi-configurational wave functions. Both the ground and the lowest single excited state potential energy surface are studied. The energetic order of the tautomers on the ground state potential surface is 9H less than 7H less than 3H less than 1H, while on the excited state surface this order is found to be different: 3H less than 1H less than 9H less than 7H. Minimum energy reaction paths are obtained for hydrogen atom transfer (9 yields 3 tautomerization) reactions in the ground and the lowest excited electronic state. It is found that the barrier heights and the shapes of the reaction paths are different for the ground and the excited electronic state, suggesting that the probability of such tautomerization reaction is higher on the excited state potential energy surface. The barrier for this reaction in the excited state may become very low in the presence of water or other polar solvent molecules, and therefore such tautomerization reaction may play an important role in the solution phase photochemistry of adenine.

  11. Development of bright fluorescent quadracyclic adenine analogues: TDDFT-calculation supported rational design

    PubMed Central

    Foller Larsen, Anders; Dumat, Blaise; Wranne, Moa S.; Lawson, Christopher P.; Preus, Søren; Bood, Mattias; Gradén, Henrik; Marcus Wilhelmsson, L.; Grøtli, Morten

    2015-01-01

    Fluorescent base analogues (FBAs) comprise a family of increasingly important molecules for the investigation of nucleic acid structure and dynamics. We recently reported the quantum chemical calculation supported development of four microenvironment sensitive analogues of the quadracyclic adenine (qA) scaffold, the qANs, with highly promising absorptive and fluorescence properties that were very well predicted by TDDFT calculations. Herein, we report on the efficient synthesis, experimental and theoretical characterization of nine novel quadracyclic adenine derivatives. The brightest derivative, 2-CNqA, displays a 13-fold increased brightness (εΦF = 4500) compared with the parent compound qA and has the additional benefit of being a virtually microenvironment-insensitive fluorophore, making it a suitable candidate for nucleic acid incorporation and use in quantitative FRET and anisotropy experiments. TDDFT calculations, conducted on the nine novel qAs a posteriori, successfully describe the relative fluorescence quantum yield and brightness of all qA derivatives. This observation suggests that the TDDFT-based rational design strategy may be employed for the development of bright fluorophores built up from a common scaffold to reduce the otherwise costly and time-consuming screening process usually required to obtain useful and bright FBAs. PMID:26227585

  12. Development of bright fluorescent quadracyclic adenine analogues: TDDFT-calculation supported rational design

    NASA Astrophysics Data System (ADS)

    Foller Larsen, Anders; Dumat, Blaise; Wranne, Moa S.; Lawson, Christopher P.; Preus, Søren; Bood, Mattias; Gradén, Henrik; Marcus Wilhelmsson, L.; Grøtli, Morten

    2015-07-01

    Fluorescent base analogues (FBAs) comprise a family of increasingly important molecules for the investigation of nucleic acid structure and dynamics. We recently reported the quantum chemical calculation supported development of four microenvironment sensitive analogues of the quadracyclic adenine (qA) scaffold, the qANs, with highly promising absorptive and fluorescence properties that were very well predicted by TDDFT calculations. Herein, we report on the efficient synthesis, experimental and theoretical characterization of nine novel quadracyclic adenine derivatives. The brightest derivative, 2-CNqA, displays a 13-fold increased brightness (ɛΦF = 4500) compared with the parent compound qA and has the additional benefit of being a virtually microenvironment-insensitive fluorophore, making it a suitable candidate for nucleic acid incorporation and use in quantitative FRET and anisotropy experiments. TDDFT calculations, conducted on the nine novel qAs a posteriori, successfully describe the relative fluorescence quantum yield and brightness of all qA derivatives. This observation suggests that the TDDFT-based rational design strategy may be employed for the development of bright fluorophores built up from a common scaffold to reduce the otherwise costly and time-consuming screening process usually required to obtain useful and bright FBAs.

  13. Probing ultrafast dynamics in adenine with mid-UV four-wave mixing spectroscopies.

    PubMed

    West, Brantley A; Womick, Jordan M; Moran, Andrew M

    2011-08-11

    Heterodyne-detected transient grating (TG) and two-dimensional photon echo (2DPE) spectroscopies are extended to the mid-UV spectral range in this investigation of photoinduced relaxation processes of adenine in aqueous solution. These experiments are the first to combine a new method for generating 25 fs laser pulses (at 263 nm) with the passive phase stability afforded by diffractive optics-based interferometry. We establish a set of conditions (e.g., laser power density, solute concentration) appropriate for the study of dynamics involving the neutral solute. Undesired solute photoionization is shown to take hold at higher peak powers of the laser pulses. Signatures of internal conversion and vibrational cooling dynamics are examined using TG measurements with signal-to-noise ratios as high as 350 at short delay times. In addition, 2DPE line shapes reveal correlations between excitation and emission frequencies in adenine, which reflect electronic and nuclear relaxation processes associated with particular tautomers. Overall, this study demonstrates the feasibility of techniques that will hold many advantages for the study of biomolecules whose lowest-energy electronic resonances are found in the mid-UV (e.g., DNA bases, amino acids).

  14. Microwave-assisted stereospecific synthesis of novel tetrahydropyran adenine isonucleosides and crystal structures determination

    NASA Astrophysics Data System (ADS)

    Silva, Fábio P. L.; Cirqueira, Marilia L.; Martins, Felipe T.; Vasconcellos, Mário L. A. A.

    2013-11-01

    We describe in this article stereospecific syntheses for new isonucleosides analogs of adenine 5-7 from tosyl derivatives 2-4 accessing by microwave irradiations (50-80%). The adenine reacts entirely at the N(9) position. Compounds 2-4 were prepared in two steps from the corresponding alcohols 1, 8 and 9 (81-92%). These tetrahydropyrans alcohols 1, 8 and 9 are achiral (Meso compounds) and were prepared in two steps with complete control of 2,4,6-cis relative configuration by Prins cyclization reaction (60-63%) preceded by the Barbier reaction between allyl bromide with benzaldehyde, 4-fluorobenzaldehyde and 2-naphthaldehyde respectively under Lewis acid conditions (96-98%). The configurations and preferential conformations of 5-7 were determined by crystal structure of 6. These novel isonucleosides 5-7 present in silico potentiality to act as GPCR ligand, kinase inhibitor and enzyme inhibitor, evaluated by Molinspiration program, consistent with the expected antiviral and anticancer bioactivities.

  15. Ultraviolet photolysis of adenine: Dissociation via the {sup 1}{pi}{sigma}{sup *} state

    SciTech Connect

    Nix, Michael G. D.; Devine, Adam L.; Cronin, Brid; Ashfold, Michael N. R.

    2007-03-28

    High resolution total kinetic energy release (TKER) spectra of the H atom fragments resulting from photodissociation of jet-cooled adenine molecules at 17 wavelengths in the range 280>{lambda}{sub phot}>214 nm are reported. TKER spectra obtained at {lambda}{sub phot}>233 nm display broad, isotropic profiles that peak at low TKER ({approx}1800 cm{sup -1}) and are largely insensitive to the choice of excitation wavelength. The bulk of these products is attributed to unintended multiphoton dissociation processes. TKER spectra recorded at {lambda}{sub phot}{<=}233 nm display additional fast structure, which is attributed to N{sub 9}-H bond fission on the {sup 1}{pi}{sigma}{sup *} potential energy surface (PES). Analysis of the kinetic energies and recoil anisotropies of the H atoms responsible for the fast structure suggests excitation to two {sup 1}{pi}{pi}{sup *} excited states (the {sup 1}L{sub a} and {sup 1}B{sub b} states) at {lambda}{sub phot}{approx}230 nm, both of which dissociate to yield H atoms together with ground state adeninyl fragments by radiationless transfer through conical intersections with the {sup 1}{pi}{sigma}{sup *} PES. Parallels with the photochemistry exhibited by other, smaller heteroaromatics (pyrrole, imidazole, phenol, etc.) are highlighted, as are inconsistencies between the present conclusions and those reached in two other recent studies of excited state adenine molecules.

  16. 3D Magnetically Ordered Open Supramolecular Architectures Based on Ferrimagnetic Cu/Adenine/Hydroxide Heptameric Wheels.

    PubMed

    Pérez-Aguirre, Rubén; Beobide, Garikoitz; Castillo, Oscar; de Pedro, Imanol; Luque, Antonio; Pérez-Yáñez, Sonia; Rodríguez Fernández, Jesús; Román, Pascual

    2016-08-01

    The present work provides two new examples of supramolecular metal-organic frameworks consisting of three-dimensional extended noncovalent assemblies of wheel-shaped heptanuclear [Cu7(μ-H2O)6(μ3-OH)6(μ-adeninato-κN3:κN9)6](2+) entities. The heptanuclear entity consists of a central [Cu(OH)6](4-) core connected to six additional copper(II) metal centers in a radial and planar arrangement through the hydroxides. It generates a wheel-shaped entity in which water molecules and μ-κN3:κN9 adeninato ligands bridge the peripheral copper atoms. The magnetic characterization indicates the central copper(II) center is anti-ferromagnetically coupled to external copper(II) centers, which are ferromagnetically coupled among them leading to an S = 5/2 ground state. The packing of these entities is sustained by π-π stacking interactions between the adenine nucleobases and by hydrogen bonds established among the hydroxide ligands, sulfate anions, and adenine nucleobases. The sum of both types of supramolecular interactions creates a rigid synthon that in combination with the rigidity of the heptameric entity generates an open supramolecular structure (40-50% of available space) in which additional sulfate and triethylammonium ions are located altogether with solvent molecules. These compounds represent an interesting example of materials combining both porosity and magnetic relevant features. PMID:27409976

  17. Yeast surface display of dehydrogenases in microbial fuel-cells.

    PubMed

    Gal, Idan; Schlesinger, Orr; Amir, Liron; Alfonta, Lital

    2016-12-01

    Two dehydrogenases, cellobiose dehydrogenase from Corynascus thermophilus and pyranose dehydrogenase from Agaricus meleagris, were displayed for the first time on the surface of Saccharomyces cerevisiae using the yeast surface display system. Surface displayed dehydrogenases were used in a microbial fuel cell and generated high power outputs. Surface displayed cellobiose dehydrogenase has demonstrated a midpoint potential of -28mV (vs. Ag/AgCl) at pH=6.5 and was used in a mediator-less anode compartment of a microbial fuel cell producing a power output of 3.3μWcm(-2) using lactose as fuel. Surface-displayed pyranose dehydrogenase was used in a microbial fuel cell and generated high power outputs using different substrates, the highest power output that was achieved was 3.9μWcm(-2) using d-xylose. These results demonstrate that surface displayed cellobiose dehydrogenase and pyranose dehydrogenase may successfully be used in microbial bioelectrochemical systems.

  18. Yeast surface display of dehydrogenases in microbial fuel-cells.

    PubMed

    Gal, Idan; Schlesinger, Orr; Amir, Liron; Alfonta, Lital

    2016-12-01

    Two dehydrogenases, cellobiose dehydrogenase from Corynascus thermophilus and pyranose dehydrogenase from Agaricus meleagris, were displayed for the first time on the surface of Saccharomyces cerevisiae using the yeast surface display system. Surface displayed dehydrogenases were used in a microbial fuel cell and generated high power outputs. Surface displayed cellobiose dehydrogenase has demonstrated a midpoint potential of -28mV (vs. Ag/AgCl) at pH=6.5 and was used in a mediator-less anode compartment of a microbial fuel cell producing a power output of 3.3μWcm(-2) using lactose as fuel. Surface-displayed pyranose dehydrogenase was used in a microbial fuel cell and generated high power outputs using different substrates, the highest power output that was achieved was 3.9μWcm(-2) using d-xylose. These results demonstrate that surface displayed cellobiose dehydrogenase and pyranose dehydrogenase may successfully be used in microbial bioelectrochemical systems. PMID:27459246

  19. 21 CFR 866.5560 - Lactic dehydrogenase immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... immunological test system is a device that consists of the reagents used to measure by immunochemical techniques the activity of the lactic dehydrogenase enzyme in serum. Increased levels of lactic dehydrogenase...

  20. A van der Waals density functional study of adenine on graphene: Single molecular adsorption and overlayer binding

    SciTech Connect

    Berland, Kristian; Cooper, Valentino R; Langreth, David C.; Schroder, Prof. Elsebeth; Chakarova-Kack, Svetla

    2011-01-01

    The adsorption of an adenine molecule on graphene is studied using a first-principles van der Waals functional (vdW-DF) [Dion et al., Phys. Rev. Lett. 92, 246401 (2004)]. The cohesive energy of an ordered adenine overlayer is also estimated. For the adsorption of a single molecule, we determine the optimal binding configuration and adsorption energy by translating and rotating the molecule. The adsorption energy for a single molecule of adenine is found to be 711 meV, which is close to the calculated adsorption energy of the similar-sized naphthalene. Based on the single molecular binding configuration, we estimate the cohesive energy of a two-dimensional ordered overlayer. We find a significantly stronger binding energy for the ordered overlayer than for single-molecule adsorption.

  1. DFT Studies of the Extent of Hole Delocalization in One-electron Oxidized Adenine and Guanine base Stacks

    PubMed Central

    Kumar, Anil

    2011-01-01

    This study investigates the extent of hole delocalization in one-electron oxidized adenine (A)- and guanine (G)-stacks and shows that new IR vibrational bands are predicted that are characteristic of hole delocalization within A-stacks. The geometries of A-stack (Ai; i = 2 – 8) and G-stack (GG and GGG) in their neutral and one-electron oxidized states were optimized with the bases in a B-DNA conformation using the M06-2X/6-31G* method. The highest occupied molecular orbital (HOMO) is localized on a single adenine in A-stacks and on a single guanine in GG and GGG stacks; located at the 5′-site of the stack. On one-electron oxidation (removal of an electron from the HOMO of the neutral A- and G-stacks) a “hole” is created. Mulliken charge analysis shows that these “holes” are delocalized over 2 – 3 adenine bases in the A-stack. The calculated spin density distribution of (Ai)•+ (i = 2 – 8), also, showed delocalization of the hole predominantly on two adenine bases with some delocalization on a neighboring base. For GG and GGG radical cations, the hole was found to be localized on a single G in the stack. The calculated HFCCs of GG and GGG are in good agreement with the experiment. Further, from the vibrational frequency analysis, it was found that IR spectra of neutral and the corresponding one-electron oxidized adenine stacks are quite different. The IR spectra of (A2)•+ has intense IR peaks between 900 – 1500 cm−1 which are not present in the neutral A2 stack. The presence of (A2)•+ in the adenine stack has a characteristic intense peak at ~1100 cm−1. Thus IR and Raman spectroscopy has potential for monitoring the extent of hole delocalization in A stacks. PMID:21417208

  2. Development of a new model for the induction of chronic kidney disease via intraperitoneal adenine administration, and the effect of treatment with gum acacia thereon

    PubMed Central

    Al Za’abi, Mohammed; Al Busaidi, Mahfouda; Yasin, Javid; Schupp, Nicole; Nemmar, Abderrahim; Ali, Badreldin H

    2015-01-01

    Oral adenine (0.75% w/w in feed), is an established model for human chronic kidney disease (CKD). Gum acacia (GA) has been shown to be a nephroprotective agent in this model. Here we aimed at developing a new adenine-induced CKD model in rats via a systemic route (intraperitoneal, i.p.) and to test it with GA to obviate the possibility of a physical interaction between GA and adenine in the gut. Adenine was injected i.p. (50 or 100 mg/Kg for four weeks), and GA was given concomitantly in drinking water at a concentration of 15%, w/v. Several plasma and urinary biomarkers of oxidative stress were measured and the renal damage was assessed histopathologically. Adenine, at the two given i.p. doses, significantly reduced body weight, and increased relative kidney weight, water intake and urine output. It dose-dependently increased plasma and urinary inflammatory and oxidative stress biomarkers, and caused morphological and histological damage resembling that which has been reported with oral adenine. Concomitant treatment with GA significantly mitigated almost all the above measured indices. Administration of adenine i.p. induced CKD signs very similar to those induced by oral adenine. Therefore, this new model is quicker, more practical and accurate than the original (oral) model. GA ameliorates the CKD effects caused by adenine given i.p. suggesting that the antioxidant and anti-inflammatory properties possessed by oral GA are the main mechanism for its salutary action in adenine-induced CKD, an action that is independent of its possible interaction with adenine in the gut. PMID:25755826

  3. Development of a new model for the induction of chronic kidney disease via intraperitoneal adenine administration, and the effect of treatment with gum acacia thereon.

    PubMed

    Al Za'abi, Mohammed; Al Busaidi, Mahfouda; Yasin, Javid; Schupp, Nicole; Nemmar, Abderrahim; Ali, Badreldin H

    2015-01-01

    Oral adenine (0.75% w/w in feed), is an established model for human chronic kidney disease (CKD). Gum acacia (GA) has been shown to be a nephroprotective agent in this model. Here we aimed at developing a new adenine-induced CKD model in rats via a systemic route (intraperitoneal, i.p.) and to test it with GA to obviate the possibility of a physical interaction between GA and adenine in the gut. Adenine was injected i.p. (50 or 100 mg/Kg for four weeks), and GA was given concomitantly in drinking water at a concentration of 15%, w/v. Several plasma and urinary biomarkers of oxidative stress were measured and the renal damage was assessed histopathologically. Adenine, at the two given i.p. doses, significantly reduced body weight, and increased relative kidney weight, water intake and urine output. It dose-dependently increased plasma and urinary inflammatory and oxidative stress biomarkers, and caused morphological and histological damage resembling that which has been reported with oral adenine. Concomitant treatment with GA significantly mitigated almost all the above measured indices. Administration of adenine i.p. induced CKD signs very similar to those induced by oral adenine. Therefore, this new model is quicker, more practical and accurate than the original (oral) model. GA ameliorates the CKD effects caused by adenine given i.p. suggesting that the antioxidant and anti-inflammatory properties possessed by oral GA are the main mechanism for its salutary action in adenine-induced CKD, an action that is independent of its possible interaction with adenine in the gut.

  4. Effects of herbal infusions, tea and carbonated beverages on alcohol dehydrogenase and aldehyde dehydrogenase activity.

    PubMed

    Li, Sha; Gan, Li-Qin; Li, Shu-Ke; Zheng, Jie-Cong; Xu, Dong-Ping; Li, Hua-Bin

    2014-01-01

    Various alcoholic beverages containing different concentrations of ethanol are widely consumed, and excessive alcohol consumption may result in serious health problems. The consumption of alcoholic beverages is often accompanied by non-alcoholic beverages, such as herbal infusions, tea and carbonated beverages to relieve drunk symptoms. The aim of this study was to supply new information on the effects of these beverages on alcohol metabolism for nutritionists and the general public, in order to reduce problems associated with excessive alcohol consumption. The effects of 57 kinds of herbal infusions, tea and carbonated beverages on alcohol dehydrogenase and aldehyde dehydrogenase activity were evaluated. Generally, the effects of these beverages on alcohol dehydrogenase and aldehyde dehydrogenase activity are very different. The results suggested that some beverages should not be drank after excessive alcohol consumption, and several beverages may be potential dietary supplements for the prevention and treatment of problems related to excessive alcohol consumption.

  5. Multiple retinoid dehydrogenases in testes cytosol from alcohol dehydrogenase negative or positive deermice.

    PubMed

    Posch, K C; Napoli, J L

    1992-05-28

    Retinoic acid syntheses from retinol by cytosol from testes of alcohol dehydrogenase negative or positive deermice were similar in specific activity and in their insensitivity to 1 M ethanol or 100 mM 4-methylpyrazole. Anion-exchange followed by size-exclusion chromatography revealed multiple and similarly migrating peaks in each cytosol that had both retinol and retinal dehydrogenase activities. Thus, the effects of ethanol on testes cannot be caused by direct inhibition of cytosolic retinoic acid synthesis because retinoid dehydrogenases distinct from mouse class A2 alcohol dehydrogenases, which corresponds to human class I, occurred in testes and they were not inhibited by ethanol. These data also demonstrate the occurrence of multiple cytosolic retinoic acid synthesis activities and indicate that the two reactions of cytosolic retinoic acid synthesis, retinol and retinal dehydrogenation, may be catalyzed by enzymes that occur as complexes. PMID:1599517

  6. Crystal structures of apo-form and binary/ternary complexes of Podophyllum secoisolariciresinol dehydrogenase, an enzyme involved in formation of health-protecting and plant defense lignans.

    PubMed

    Youn, Buhyun; Moinuddin, Syed G A; Davin, Laurence B; Lewis, Norman G; Kang, Chulhee

    2005-04-01

    (-)-Matairesinol is a central biosynthetic intermediate to numerous 8-8'-lignans, including the antiviral agent podophyllotoxin in Podophyllum species and its semi-synthetic anticancer derivatives teniposide, etoposide, and Etopophos. It is formed by action of an enantiospecific secoisolariciresinol dehydrogenase, an NAD(H)-dependent oxidoreductase that catalyzes the conversion of (-)-secoisolariciresinol. Matairesinol is also a plant-derived precursor of the cancer-preventative "mammalian" lignan or "phytoestrogen" enterolactone, formed in the gut following ingestion of high fiber dietary foodstuffs, for example. Additionally, secoisolariciresinol dehydrogenase is involved in pathways to important plant defense molecules, such as plicatic acid in the western red cedar (Thuja plicata) heartwood. To understand the molecular and enantiospecific basis of Podophyllum secoisolariciresinol dehydrogenase, crystal structures of the apo-form and binary/ternary complexes were determined at 1.6, 2.8, and 2.0 angstrom resolution, respectively. The enzyme is a homotetramer, consisting of an alpha/beta single domain monomer containing seven parallel beta-strands flanked by eight alpha-helices on both sides. Its overall monomeric structure is similar to that of NAD(H)-dependent short-chain dehydrogenases/reductases, with a conserved Asp47 forming a hydrogen bond with both hydroxyl groups of the adenine ribose of NAD(H), and thus specificity toward NAD(H) instead of NADP(H). The highly conserved catalytic triad (Ser153, Tyr167, and Lys171) is adjacent to both NAD(+) and substrate molecules, where Tyr167 functions as a general base. Following analysis of high resolution structures of the apo-form and two complex forms, the molecular basis for both the enantio-specificity and the reaction mechanism of secoisolariciresinol dehydrogenase is discussed and compared with that of pinoresinol-lariciresinol reductase.

  7. The physiological role of liver alcohol dehydrogenase.

    PubMed

    Krebs, H A; Perkins, J R

    1970-07-01

    1. Yeast alcohol dehydrogenase was used to determine ethanol in the portal and hepatic veins and in the contents of the alimentary canal of rats given a diet free from ethanol. Measurable amounts of a substance behaving like ethanol were found. Its rate of interaction with yeast alcohol dehydrogenase and its volatility indicate that the substance measured was in fact ethanol. 2. The mean alcohol concentration in the portal blood of normal rats was 0.045mm. In the hepatic vein, inferior vena cava and aorta it was about 15 times lower. 3. The contents of all sections of the alimentary canal contained measurable amounts of ethanol. The highest values (average 3.7mm) were found in the stomach. 4. Infusion of pyrazole (an inhibitor of alcohol dehydrogenase) raised the alcohol concentration in the portal vein 10-fold and almost removed the difference between portal and hepatic venous blood. 5. Addition of antibiotics to the food diminished the ethanol concentration of the portal blood to less than one-quarter and that of the stomach contents to less than one-fortieth. 6. The concentration of alcohol in the alimentary canal and in the portal blood of germ-free rats was much decreased, to less than one-tenth in the alimentary canal and to one-third in the portal blood, but detectable quantities remained. These are likely to arise from acetaldehyde formed by the normal pathways of degradation of threonine, deoxyribose phosphate and beta-alanine. 7. The results indicate that significant amounts of alcohol are normally formed in the gastro-intestinal tract. The alcohol is absorbed into the circulation and almost quantitatively removed by the liver. Thus the function, or a major function, of liver alcohol dehydrogenase is the detoxication of ethanol normally present. 8. The alcohol concentration in the stomach of alloxan-diabetic rats was increased about 8-fold. 9. The activity of liver alcohol dehydrogenase is generally lower in carnivores than in herbivores and omnivores

  8. Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli.

    PubMed

    Bastian, Sabine; Liu, Xiang; Meyerowitz, Joseph T; Snow, Christopher D; Chen, Mike M Y; Arnold, Frances H

    2011-05-01

    2-methylpropan-1-ol (isobutanol) is a leading candidate biofuel for the replacement or supplementation of current fossil fuels. Recent work has demonstrated glucose to isobutanol conversion through a modified amino acid pathway in a recombinant organism. Although anaerobic conditions are required for an economically competitive process, only aerobic isobutanol production has been feasible due to an imbalance in cofactor utilization. Two of the pathway enzymes, ketol-acid reductoisomerase and alcohol dehydrogenase, require nicotinamide dinucleotide phosphate (NADPH); glycolysis, however, produces only nicotinamide dinucleotide (NADH). Here, we compare two solutions to this imbalance problem: (1) over-expression of pyridine nucleotide transhydrogenase PntAB and (2) construction of an NADH-dependent pathway, using engineered enzymes. We demonstrate that an NADH-dependent pathway enables anaerobic isobutanol production at 100% theoretical yield and at higher titer and productivity than both the NADPH-dependent pathway and transhydrogenase over-expressing strain. Our results show how engineering cofactor dependence can overcome a critical obstacle to next-generation biofuel commercialization.

  9. The structure of Haemophilus influenzae prephenate dehydrogenase suggests unique features of bifunctional TyrA enzymes

    PubMed Central

    Chiu, Hsiu-Ju; Abdubek, Polat; Astakhova, Tamara; Axelrod, Herbert L.; Carlton, Dennis; Clayton, Thomas; Das, Debanu; Deller, Marc C.; Duan, Lian; Feuerhelm, Julie; Grant, Joanna C.; Grzechnik, Anna; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K.; Klock, Heath E.; Knuth, Mark W.; Kozbial, Piotr; Krishna, S. Sri; Kumar, Abhinav; Marciano, David; McMullan, Daniel; Miller, Mitchell D.; Morse, Andrew T.; Nigoghossian, Edward; Okach, Linda; Reyes, Ron; Tien, Henry J.; Trame, Christine B.; van den Bedem, Henry; Weekes, Dana; Xu, Qingping; Hodgson, Keith O.; Wooley, John; Elsliger, Marc-André; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.

    2010-01-01

    Chorismate mutase/prephenate dehydrogenase from Haemophilus influenzae Rd KW20 is a bifunctional enzyme that catalyzes the rearrangement of chorismate to prephenate and the NAD(P)+-dependent oxidative decarboxyl­ation of prephenate to 4-hydroxyphenylpyruvate in tyrosine biosynthesis. The crystal structure of the prephenate dehydrogenase component (HinfPDH) of the TyrA protein from H. influenzae Rd KW20 in complex with the inhibitor tyrosine and cofactor NAD+ has been determined to 2.0 Å resolution. HinfPDH is a dimeric enzyme, with each monomer consisting of an N-terminal α/β dinucleotide-binding domain and a C-terminal α-helical dimerization domain. The structure reveals key active-site residues at the domain interface, including His200, Arg297 and Ser179 that are involved in catalysis and/or ligand binding and are highly conserved in TyrA proteins from all three kingdoms of life. Tyrosine is bound directly at the catalytic site, suggesting that it is a competitive inhibitor of HinfPDH. Comparisons with its structural homologues reveal important differences around the active site, including the absence of an α–β motif in HinfPDH that is present in other TyrA proteins, such as Synechocystis sp. arogenate dehydrogenase. Residues from this motif are involved in discrimination between NADP+ and NAD+. The loop between β5 and β6 in the N-terminal domain is much shorter in HinfPDH and an extra helix is present at the C-terminus. Furthermore, HinfPDH adopts a more closed conformation compared with TyrA proteins that do not have tyrosine bound. This conformational change brings the substrate, cofactor and active-site residues into close proximity for catalysis. An ionic network consisting of Arg297 (a key residue for tyrosine binding), a water molecule, Asp206 (from the loop between β5 and β6) and Arg365′ (from the additional C-terminal helix of the adjacent monomer) is observed that might be involved in gating the active site. PMID:20944228

  10. REVERSAL BY ADENINE OF THE ETHIONINE-INDUCED LIPID ACCUMULATION IN THE ENDOPLASMIC RETICULUM OF THE RAT LIVER

    PubMed Central

    Baglio, Corrado M.; Farber, Emmanuel

    1965-01-01

    Within 3.5 to 4 hours after thionine administration, numerous small osmiophilic bodies, liposomes, appear in the endoplasmic reticulum of the liver cells. By fusion, the liposomes lead to the formation of larger collections of fat, giant liposomes. Adenine administration to ethionine-treated rats removes the liposomes from the hepatocytes and causes the transitory appearance of osmiophilic droplets in the sinusoidal space of Disse. The characteristic disaggregation of hepatic polysomes seen in the liver after ethionine administration is corrected by the injection of adenine. PMID:5885431

  11. Progesterone-adenine hybrids as bivalent inhibitors of P-glycoprotein-mediated multidrug efflux: design, synthesis, characterization and biological evaluation.

    PubMed

    Zeinyeh, Waël; Mahiout, Zahia; Radix, Sylvie; Lomberget, Thierry; Dumoulin, Axel; Barret, Roland; Grenot, Catherine; Rocheblave, Luc; Matera, Eva-Laure; Dumontet, Charles; Walchshofer, Nadia

    2012-10-01

    Bivalent ligands were designed on the basis of the described close proximity of the ATP-site and the putative steroid-binding site of P-glycoprotein (ABCB1). The syntheses of 19 progesterone-adenine hybrids are described. Their abilities to inhibit P-glycoprotein-mediated daunorubicin efflux in K562/R7 human leukemic cells overexpressing P-glycoprotein were evaluated versus progesterone. The hybrid with a hexamethylene linker chain showed the best inhibitory potency. The efficiency of these progesterone-adenine hybrids depends on two main factors: (i) the nature of the linker and (ii) its attachment point on the steroid skeleton.

  12. 21 CFR 866.5560 - Lactic dehydrogenase immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5560 Lactic dehydrogenase immunological test system. (a) Identification. A lactic dehydrogenase... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Lactic dehydrogenase immunological test...

  13. Characterization of xylitol dehydrogenase from Debaryomyces hansenii

    SciTech Connect

    Girio, F.M.; Amaral-Collaco, M.T.; Pelica, F.

    1996-01-01

    The xylitol dehydrogenase (EC 1.1.1.9) from xylose-grown cells of Debaryomyces hansenii was partially purified in two chromatographic steps, and characterization studies were carried out in order to investigate the role of the xylitol dehydrogenase-catalyzed step in the regulation of D-xylose metabolism. The enzyme was most active at pH 9.0-9.5, and exhibited a broad polyol specificity. The Michaelis constants for xylitol and NAD{sup +} were 16.5 and 0.55 mM, respectively. Ca{sup 2+}, Mg{sup 2+}, and Mn{sup 2+} did not affect the enzyme activity. Conversely, Zn{sup 2+}, Cd{sup 2+}, and Co{sup 2+} strongly inhibited the enzyme activity. It was concluded that NAD{sup +}-xylitol dehydrogenase from D. hansenii has similarities with other xylose-fermenting yeasts in respect to optimal pH, substrate specificity, and K{sub m} value for xylitol, and therefore should be named L-iditol:NAD{sup +}-5-oxidoreductase (EC 1.1.1.14). The reason D. hansenii is a good xylitol producer is not because of its value of K for xylitol, which is low enough to assure its fast oxidation by NAD{sup +}-xylitol dehydrogenase. However, a higher K{sub m} value of xylitol dehydrogenase for NAD{sup +} compared to the K{sub m} values of other xylose-fermenting yeasts may be responsible for the higher xylitol yields. 22 refs., 4 figs., 2 tabs.

  14. Succinate-dependent energy generation and pyruvate dehydrogenase complex activity in isolated Ascaris suum mitochondria

    SciTech Connect

    Campbell, T.A.

    1988-01-01

    Body wall muscle from the parasitic nematode, Ascaris suum, contain unique anaerobic mitochondria that preferentially utilize fumarate and branched-chain enoyl CoA's as terminal electron acceptors instead of oxygen. While electron transport in these organelles is well characterized, the role of oxygen in succinate-dependent phosphorylation is still not clearly defined. Therefore, the present study was designed to more fully characterize succinate metabolism in these organelles as well as the in vitro regulation of a key mitochondrial enzyme, the pyruvate dehydrogenase complex (PDC). In the absence of added adenine nucleotides, incubations in succinate resulted in substantial elevations in intramitochrondrial ATP levels, but ATP/ADP ratios were considerably higher in incubations with malate. The stimulation of phosphorylation in aerobic incubations with succinate was rotenone sensitive and appears to be Site I dependent. Increase substrate level phosphorylation, coupled to propionate formation, or additional sites of electron-transport associated ATP synthesis were not significant. Under aerobic conditions, {sup 14}CO{sub 2} evolution from 1,4-({sup 14}C)succinate was stimulated and NADH/NAD{sup +} ratios were elevated, but the formation of {sup 14}C propionate was unchanged.

  15. Potato tuber cytokinin oxidase/dehydrogenase genes: biochemical properties, activity, and expression during tuber dormancy progression.

    PubMed

    Suttle, Jeffrey C; Huckle, Linda L; Lu, Shunwen; Knauber, Donna C

    2014-03-15

    The enzymatic and biochemical properties of the proteins encoded by five potato cytokinin oxidase/dehydrogenase (CKX)-like genes functionally expressed in yeast and the effects of tuber dormancy progression on StCKX expression and cytokinin metabolism were examined in lateral buds isolated from field-grown tubers. All five putative StCKX genes encoded proteins with in vitro CKX activity. All five enzymes were maximally active at neutral to slightly alkaline pH with 2,6-dichloro-indophenol as the electron acceptor. In silico analyses indicated that four proteins were likely secreted. Substrate dependence of two of the most active enzymes varied; one exhibiting greater activity with isopentenyl-type cytokinins while the other was maximally active with cis-zeatin as a substrate. [(3)H]-isopentenyl-adenosine was readily metabolized by excised tuber buds to adenine/adenosine demonstrating that CKX was active in planta. There was no change in apparent in planta CKX activity during either natural or chemically forced dormancy progression. Similarly although expression of individual StCKX genes varied modestly during tuber dormancy, there was no clear correlation between StCKX gene expression and tuber dormancy status. Thus although CKX gene expression and enzyme activity are present in potato tuber buds throughout dormancy, they do not appear to play a significant role in the regulation of cytokinin content during tuber dormancy progression.

  16. Potato tuber cytokinin oxidase/dehydrogenase genes: biochemical properties, activity, and expression during tuber dormancy progression.

    PubMed

    Suttle, Jeffrey C; Huckle, Linda L; Lu, Shunwen; Knauber, Donna C

    2014-03-15

    The enzymatic and biochemical properties of the proteins encoded by five potato cytokinin oxidase/dehydrogenase (CKX)-like genes functionally expressed in yeast and the effects of tuber dormancy progression on StCKX expression and cytokinin metabolism were examined in lateral buds isolated from field-grown tubers. All five putative StCKX genes encoded proteins with in vitro CKX activity. All five enzymes were maximally active at neutral to slightly alkaline pH with 2,6-dichloro-indophenol as the electron acceptor. In silico analyses indicated that four proteins were likely secreted. Substrate dependence of two of the most active enzymes varied; one exhibiting greater activity with isopentenyl-type cytokinins while the other was maximally active with cis-zeatin as a substrate. [(3)H]-isopentenyl-adenosine was readily metabolized by excised tuber buds to adenine/adenosine demonstrating that CKX was active in planta. There was no change in apparent in planta CKX activity during either natural or chemically forced dormancy progression. Similarly although expression of individual StCKX genes varied modestly during tuber dormancy, there was no clear correlation between StCKX gene expression and tuber dormancy status. Thus although CKX gene expression and enzyme activity are present in potato tuber buds throughout dormancy, they do not appear to play a significant role in the regulation of cytokinin content during tuber dormancy progression. PMID:24594397

  17. Modeling the high-energy electronic state manifold of adenine: Calibration for nonlinear electronic spectroscopy

    SciTech Connect

    Nenov, Artur Giussani, Angelo; Segarra-Martí, Javier; Jaiswal, Vishal K.; Rivalta, Ivan; Cerullo, Giulio; Mukamel, Shaul; Garavelli, Marco E-mail: marco.garavelli@ens-lyon.fr

    2015-06-07

    Pump-probe electronic spectroscopy using femtosecond laser pulses has evolved into a standard tool for tracking ultrafast excited state dynamics. Its two-dimensional (2D) counterpart is becoming an increasingly available and promising technique for resolving many of the limitations of pump-probe caused by spectral congestion. The ability to simulate pump-probe and 2D spectra from ab initio computations would allow one to link mechanistic observables like molecular motions and the making/breaking of chemical bonds to experimental observables like excited state lifetimes and quantum yields. From a theoretical standpoint, the characterization of the electronic transitions in the visible (Vis)/ultraviolet (UV), which are excited via the interaction of a molecular system with the incoming pump/probe pulses, translates into the determination of a computationally challenging number of excited states (going over 100) even for small/medium sized systems. A protocol is therefore required to evaluate the fluctuations of spectral properties like transition energies and dipole moments as a function of the computational parameters and to estimate the effect of these fluctuations on the transient spectral appearance. In the present contribution such a protocol is presented within the framework of complete and restricted active space self-consistent field theory and its second-order perturbation theory extensions. The electronic excited states of adenine have been carefully characterized through a previously presented computational recipe [Nenov et al., Comput. Theor. Chem. 1040–1041, 295-303 (2014)]. A wise reduction of the level of theory has then been performed in order to obtain a computationally less demanding approach that is still able to reproduce the characteristic features of the reference data. Foreseeing the potentiality of 2D electronic spectroscopy to track polynucleotide ground and excited state dynamics, and in particular its expected ability to provide

  18. Modeling the high-energy electronic state manifold of adenine: Calibration for nonlinear electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Nenov, Artur; Giussani, Angelo; Segarra-Martí, Javier; Jaiswal, Vishal K.; Rivalta, Ivan; Cerullo, Giulio; Mukamel, Shaul; Garavelli, Marco

    2015-06-01

    Pump-probe electronic spectroscopy using femtosecond laser pulses has evolved into a standard tool for tracking ultrafast excited state dynamics. Its two-dimensional (2D) counterpart is becoming an increasingly available and promising technique for resolving many of the limitations of pump-probe caused by spectral congestion. The ability to simulate pump-probe and 2D spectra from ab initio computations would allow one to link mechanistic observables like molecular motions and the making/breaking of chemical bonds to experimental observables like excited state lifetimes and quantum yields. From a theoretical standpoint, the characterization of the electronic transitions in the visible (Vis)/ultraviolet (UV), which are excited via the interaction of a molecular system with the incoming pump/probe pulses, translates into the determination of a computationally challenging number of excited states (going over 100) even for small/medium sized systems. A protocol is therefore required to evaluate the fluctuations of spectral properties like transition energies and dipole moments as a function of the computational parameters and to estimate the effect of these fluctuations on the transient spectral appearance. In the present contribution such a protocol is presented within the framework of complete and restricted active space self-consistent field theory and its second-order perturbation theory extensions. The electronic excited states of adenine have been carefully characterized through a previously presented computational recipe [Nenov et al., Comput. Theor. Chem. 1040-1041, 295-303 (2014)]. A wise reduction of the level of theory has then been performed in order to obtain a computationally less demanding approach that is still able to reproduce the characteristic features of the reference data. Foreseeing the potentiality of 2D electronic spectroscopy to track polynucleotide ground and excited state dynamics, and in particular its expected ability to provide

  19. Hydroxyl radical reactions with adenine: reactant complexes, transition states, and product complexes.

    PubMed

    Cheng, Qianyi; Gu, Jiande; Compaan, Katherine R; Schaefer, Henry F

    2010-10-18

    In order to address problems such as aging, cell death, and cancer, it is important to understand the mechanisms behind reactions causing DNA damage. One specific reaction implicated in DNA oxidative damage is hydroxyl free-radical attack on adenine (A) and other nucleic acid bases. The adenine reaction has been studied experimentally, but there are few theoretical results. In the present study, adenine dehydrogenation at various sites, and the potential-energy surfaces for these reactions, are investigated theoretically. Four reactant complexes [A···OH]* have been found, with binding energies relative to A+OH* of 32.8, 11.4, 10.7, and 10.1 kcal mol(-1). These four reactant complexes lead to six transition states, which in turn lie +4.3, -5.4, (-3.7 and +0.8), and (-2.3 and +0.8) kcal mol(-1) below A+OH*, respectively. Thus the lowest lying [A···OH]* complex faces the highest local barrier to formation of the product (A-H)*+H(2)O. Between the transition states and the products lie six product complexes. Adopting the same order as the reactant complexes, the product complexes [(A-H)···H(2)O]* lie at -10.9, -22.4, (-24.2 and -18.7), and (-20.5 and -17.5) kcal mol(-1), respectively, again relative to separated A+OH*. All six A+OH* → (A-H)*+H(2)O pathways are exothermic, by -0.3, -14.7, (-17.4 and -7.8), and (-13.7 and -7.8) kcal mol(-1), respectively. The transition state for dehydrogenation at N(6) lies at the lowest energy (-5.4 kcal mol(-1) relative to A+OH*), and thus reaction is likely to occur at this site. This theoretical prediction dovetails with the observed high reactivity of OH radicals with the NH(2) group of aromatic amines. However, the high barrier (37.1 kcal mol(-1)) for reaction at the C(8) site makes C(8) dehydrogenation unlikely. This last result is consistent with experimental observation of the imidazole ring opening upon OH radical addition to C(8). In addition, TD-DFT computed electronic transitions of the N(6) product around 420 nm

  20. Chronic kidney disease induced by adenine: a suitable model of growth retardation in uremia.

    PubMed

    Claramunt, Débora; Gil-Peña, Helena; Fuente, Rocío; García-López, Enrique; Loredo, Vanessa; Hernández-Frías, Olaya; Ordoñez, Flor A; Rodríguez-Suárez, Julián; Santos, Fernando

    2015-07-01

    Growth retardation is a major manifestation of chronic kidney disease (CKD) in pediatric patients. The involvement of the various pathogenic factors is difficult to evaluate in clinical studies. Here, we present an experimental model of adenine-induced CKD for the study of growth failure. Three groups (n = 10) of weaning female rats were studied: normal diet (control), 0.5% adenine diet (AD), and normal diet pair fed with AD (PF). After 21 days, serum urea nitrogen, creatinine, parathyroid hormone (PTH), weight and length gains, femur osseous front advance as an index of longitudinal growth rate, growth plate histomorphometry, chondrocyte proliferative activity, bone structure, aorta calcifications, and kidney histology were analyzed. Results are means ± SE. AD rats developed renal failure (serum urea nitrogen: 70 ± 6 mg/dl and creatinine: 0.6 ± 0.1 mg/dl) and secondary hyperparathyroidism (PTH: 480 ± 31 pg/ml). Growth retardation of AD rats was demonstrated by lower weight (AD rats: 63.3 ± 4.8 g, control rats: 112.6 ± 4.7 g, and PF rats: 60.0 ± 3.8 g) and length (AD rats: 7.2 ± 0.2 cm, control rats: 11.1 ± 0.3 cm, and PF rats: 8.1 ± 0.3 cm) gains as well as lower osseous front advances (AD rats: 141 ± 13 μm/day, control rats: 293 ± 16 μm/day, and PF rats: 251 ± 10 μm/day). The processes of chondrocyte maturation and proliferation were impaired in AD rats, as shown by lower growth plate terminal chondrocyte height (21.7 ± 2.3 vs. 26.2 ± 1.9 and 23.9 ± 1.3 μm in control and PF rats) and proliferative activity index (AD rats: 30 ± 2%, control rats: 38 ± 2%, and PF rats: 42 ± 3%). The bone primary spongiosa structure of AD rats was markedly disorganized. In conclusion, adenine-induced CKD in young rats is associated with growth retardation and disturbed endochondral ossification. This animal protocol may be a useful new experimental model to study growth in CKD.

  1. Converting NAD-specific inositol dehydrogenase to an efficient NADP-selective catalyst, with a surprising twist.

    PubMed

    Zheng, Hongyan; Bertwistle, Drew; Sanders, David A R; Palmer, David R J

    2013-08-27

    myo-Inositol dehydrogenase (IDH, EC 1.1.1.18) from Bacillus subtilis converts myo-inositol to scyllo-inosose and is strictly dependent on NAD for activity. We sought to alter the coenzyme specificity to generate an NADP-dependent enzyme in order to enhance our understanding of coenzyme selectivity and to create an enzyme capable of recycling NADP in biocatalytic processes. Examination of available structural information related to the GFO/MocA/IDH family of dehydrogenases and precedents for altering coenzyme selectivity allowed us to select residues for substitution, and nine single, double, and triple mutants were constructed. Mutagenesis experiments with B. subtilis IDH proved extremely successful; the double mutant D35S/V36R preferred NADP to NAD by a factor of 5. This mutant is an excellent catalyst with a second-order rate constant with respect to NADP of 370 000 s⁻¹ M⁻¹, and the triple mutant A12K/D35S/V36R had a value of 570 000 s⁻¹ M⁻¹, higher than that of the wild-type IDH with NAD. The high-resolution X-ray crystal structure of the double mutant A12K/D35S was solved in complex with NADP. Surprisingly, the binding of the coenzyme is altered such that although the nicotinamide ring maintains the required position for catalysis, the coenzyme has twisted by nearly 90°, so the adenine moiety no longer binds to a hydrophobic cleft in the Rossmann fold as in the wild-type enzyme. This change in binding conformation has not previously been observed in mutated dehydrogenases.

  2. L-Malate dehydrogenase activity in the reductive arm of the incomplete citric acid cycle of Nitrosomonas europaea.

    PubMed

    Deutch, Charles E

    2013-11-01

    The autotrophic nitrifying bacterium Nitrosomonas europaea does not synthesize 2-oxoglutarate (α-ketoglutarate) dehydrogenase under aerobic conditions and so has an incomplete citric acid cycle. L-malate (S-malate) dehydrogenase (MDH) from N. europaea was predicted to show similarity to the NADP(+)-dependent enzymes from chloroplasts and was separated from the NAD(+)-dependent proteins from most other bacteria or mitochondria. MDH activity in a soluble fraction from N. europaea ATCC 19718 was measured spectrophotometrically and exhibited simple Michaelis-Menten kinetics. In the reductive direction, activity with NADH increased from pH 6.0 to 8.5 but activity with NADPH was consistently lower and decreased with pH. At pH 7.0, the K m for oxaloacetate was 20 μM; the K m for NADH was 22 μM but that for NADPH was at least 10 times higher. In the oxidative direction, activity with NAD(+) increased with pH but there was very little activity with NADP(+). At pH 7.0, the K m for L-malate was 5 mM and the K m for NAD(+) was 24 μM. The reductive activity was quite insensitive to inhibition by L-malate but the oxidative activity was very sensitive to oxaloacetate. MDH activity was not strongly activated or inhibited by glycolytic or citric acid cycle metabolites, adenine nucleotides, NaCl concentrations, or most metal ions, but increased with temperature up to about 55 °C. The reductive activity was consistently 10-20 times higher than the oxidative activity. These results indicate that the L-malate dehydrogenase in N. europaea is similar to other NAD(+)-dependent MDHs (EC 1.1.1.37) but physiologically adapted for its role in a reductive biosynthetic sequence.

  3. External electric field promotes proton transfer in the radical cation of adenine-thymine

    NASA Astrophysics Data System (ADS)

    Zhang, Guiqing; Xie, Shijie

    2016-07-01

    According to pKa measurements, it has been predicted that proton transfer would not occur in the radical cation of adenine-thymine (A:T). However, recent theoretical calculations indicate that proton transfer takes place in the base pair in water below the room temperature. We have performed simulations of proton transfer in the cation of B-DNA stack composed of 10 A:T base pairs in water from 20 K to 300 K. Proton transfer occurs below the room temperature, meanwhile it could also be observed at the room temperature under the external electric field. Another case that interests us is that proton transfer bounces back after ˜300 fs from the appearance of proton transfer at low temperatures.

  4. Prebiotic synthesis of adenine and amino acids under Europa-like conditions

    NASA Technical Reports Server (NTRS)

    Levy, M.; Miller, S. L.; Brinton, K.; Bada, J. L.

    2000-01-01

    In order to simulate prebiotic synthetic processes on Europa and other ice-covered planets and satellites, we have investigated the prebiotic synthesis of organic compounds from dilute solutions of NH4CN frozen for 25 years at -20 and -78 degrees C. In addition, the aqueous products of spark discharge reactions from a reducing atmosphere were frozen for 5 years at -20 degrees C. We find that both adenine and guanine, as well as a simple set of amino acids dominated by glycine, are produced in substantial yields under these conditions. These results indicate that some of the key components necessary for the origin of life may have been available on Europa throughout its history and suggest that the circumstellar zone where life might arise may be wider than previously thought.

  5. Vacuum-ultraviolet circular dichroism reveals DNA duplex formation between short strands of adenine and thymine.

    PubMed

    Nielsen, Lisbeth Munksgaard; Hoffmann, Søren Vrønning; Brøndsted Nielsen, Steen

    2012-11-21

    Absorbance spectroscopy is used extensively to tell when two DNA single strands come together and form a double strand. Here we show that circular dichroism in the vacuum ultraviolet region provides an even stronger indication for duplex formation in the case of short strands of adenine and thymine (4 to 16 bases in each strand). Indeed, our results show that a strong positive CD band appears at 179 nm when double strands are formed. Melting experiments were done in aqueous solution with and without added Na(+) counter ions. With additional salt present a huge increase in the 179 nm CD band was observed when lowering the temperature. A 179 nm CD marker band for duplex formation can be used to measure the kinetics for the association of two single strands. Such experiments rely on large changes at one particular wavelength since it is too time-consuming to record a full-wavelength spectrum.

  6. Metal-adeninate vertices for the construction of an exceptionally porous metal-organic framework.

    PubMed

    An, Jihyun; Farha, Omar K; Hupp, Joseph T; Pohl, Ehmke; Yeh, Joanne I; Rosi, Nathaniel L

    2012-01-03

    Metal-organic frameworks comprising metal-carboxylate cluster vertices and long, branched organic linkers are the most porous materials known, and therefore have attracted tremendous attention for many applications, including gas storage, separations, catalysis and drug delivery. To increase metal-organic framework porosity, the size and complexity of linkers has increased. Here we present a promising alternative strategy for constructing mesoporous metal-organic frameworks that addresses the size of the vertex rather than the length of the organic linker. This approach uses large metal-biomolecule clusters, in particular zinc-adeninate building units, as vertices to construct bio-MOF-100, an exclusively mesoporous metal-organic framework. Bio-MOF-100 exhibits a high surface area (4,300 m(2) g(-1)), one of the lowest crystal densities (0.302 g cm(-3)) and the largest metal-organic framework pore volume reported to date (4.3 cm(3) g(-1)).

  7. The isolation and characterization of the Escherichia coli DNA adenine methylase (dam) gene.

    PubMed Central

    Brooks, J E; Blumenthal, R M; Gingeras, T R

    1983-01-01

    The E. coli dam (DNA adenine methylase) enzyme is known to methylate the sequence GATC. A general method for cloning sequence-specific DNA methylase genes was used to isolate the dam gene on a 1.14 kb fragment, inserted in the plasmid vector pBR322. Subsequent restriction mapping and subcloning experiments established a set of approximate boundaries of the gene. The nucleotide sequence of the dam gene was determined, and analysis of that sequence revealed a unique open reading frame which corresponded in length to that necessary to code for a protein the size of dam. Amino acid composition derived from this sequence corresponds closely to the amino acid composition of the purified dam protein. Enzymatic and DNA:DNA hybridization methods were used to investigate the possible presence of dam genes in a variety of prokaryotic organisms. PMID:6300769

  8. Synthesis and enzymatic incorporation of α-L-threofuranosyl adenine triphosphate (tATP).

    PubMed

    Zhang, Su; Chaput, John C

    2013-03-01

    Threose nucleic acid (TNA) is an artificial genetic polymer in which the natural ribose sugar found in RNA has been replaced with an unnatural threose sugar. TNA can be synthesized enzymatically using Therminator DNA polymerase to copy DNA templates into TNA. Here, we expand the substrate repertoire of Therminator DNA polymerase to include threofuranosyl adenine 3'-triphsophate (tATP). We chemically synthesized tATP by two different methods from the 2'-O-acetyl derivative. Enzyme-mediated polymerization reveals that tATP functions as an efficient substrate for Therminator DNA polymerase, indicating that tATP can replace the diaminopurine analogue (tDTP) in TNA transcription reactions. PMID:23352269

  9. Adaptive ligand binding by the purine riboswitch in the recognition of guanine and adenine analogs

    PubMed Central

    Gilbert, Sunny D.; Reyes, Francis E.; Edwards, Andrea L.; Batey, Robert T.

    2009-01-01

    SUMMARY Purine riboswitches discriminate between guanine and adenine by at least 10,000-fold based on the identity of a single pyrimidine (Y74) that forms a Watson-Crick base pair with the ligand. To understand how this high degree of specificity for closely related compounds is achieved through simple pairing, we investigated their interaction with purine analogs with varying functional groups at the 2- and 6-positions that have the potential to alter interactions with Y74. Using a combination of crystallographic and calorimetric approaches, we find that binding these purines is often facilitated by either small structural changes in the RNA or tautomeric changes in the ligand. This work also reveals that, along with base pairing, conformational restriction of Y74 significantly contributes to nucleobase selectivity. These results reveal that compounds that exploit the inherent local flexibility within riboswitch binding pockets can alter their ligand specificity. PMID:19523903

  10. Prebiotic Synthesis of Adenine and Amino Acids Under Europa-like Conditions

    NASA Technical Reports Server (NTRS)

    Levy, Matthew; Miller, Stanley L.; Brinton, Karen; Bada, Jeffrey L.

    2003-01-01

    In order to simulate prebiotic synthetic processes on Europa and other ice-covered planets and satellites. we have investigated the prebiotic synthesis of organic compounds from dilute solutions of NH4CN frozen for 25 year at -20 and -78 C. In addition the aqueous products of spark discharge reactions from a reducing atmosphere were frozen for 5 years at -20%. We find that both adenine and guanine, as well as a simple set of amino acids dominated by glycine, are produced in substantial yields under these conditions. These results indicate that some of the key components necessary for the origin of life may have been available on Europa throughout its history and suggest that the circumstellar zone where life might arise may be m der than previously thought.

  11. [Absolute bioavailability of the adenine derivative VMA-99-82 possessing antiviral activity].

    PubMed

    Smirnova, L A; Suchkov, E A; Riabukha, A F; Kuznetsov, K A; Ozerov, A A

    2013-01-01

    Investigation of the main pharmacokinetic parameters of adenine derivative VMA-99-82 in rats showed large values of the half-life (T1/2 = 11.03 h) and the mean retention time of drug molecules in the organism (MRT = 9.53 h). A high rate of the drug concentration decrease in the plasma determines a small value of the area under the pharmacokinetic curve (AUC = 74.96 mg h/ml). The total distribution volume (V(d) = 10.61 l/kg) is 15.8 times greater than the volume of extracellular fluid in the body of rat, which is indicative of a high ability of VMA-99-82 to be distributed and accumulated in the organs and tissues. The absolute bioavailability of VMA-99-82 is 66%. PMID:24605425

  12. Animal models of pediatric chronic kidney disease. Is adenine intake an appropriate model?

    PubMed

    Claramunt, Débora; Gil-Peña, Helena; Fuente, Rocío; Hernández-Frías, Olaya; Santos, Fernando

    2015-01-01

    Pediatric chronic kidney disease (CKD) has peculiar features. In particular, growth impairment is a major clinical manifestation of CKD that debuts in pediatric age because it presents in a large proportion of infants and children with CKD and has a profound impact on the self-esteem and social integration of the stunted patients. Several factors associated with CKD may lead to growth retardation by interfering with the normal physiology of growth plate, the organ where longitudinal growth rate takes place. The study of growth plate is hardly possible in humans and justifies the use of animal models. Young rats made uremic by 5/6 nephrectomy have been widely used as a model to investigate growth retardation in CKD. This article examines the characteristics of this model and analyzes the utilization of CKD induced by high adenine diet as an alternative research protocol.

  13. Intriguing radical-radical interactions among double-electron oxidized adenine-thymine base pairs

    NASA Astrophysics Data System (ADS)

    Wang, Mei; Zhao, Jing; Zhang, Laibin; Su, Xiyu; Su, Hanlei; Bu, Yuxiang

    2015-01-01

    We present a theoretical investigation of the structural and electronic properties of double-electron oxidized adenine-thymine base pair as well as its deprotonated Watson-Crick derivatives. Double-electron oxidation can destabilize the AT unit, leading to a barrier-hindered metastable A+T+ state with a dissociation channel featuring negative dissociation energy. This unusual energetic phenomenon originates from the competition of electrostatic repulsion and attractively hydrogen-bonding interaction co-existing between Arad + and Trad +. The associated double-proton-transfer process is also explored, suggesting a possible two-step mechanism. Magnetic coupling interactions of various diradical structures are controlled by both intra- and inter-molecular interactions.

  14. Sites of Adsorption of Adenine, Uracil, and Their Corresponding Derivatives on Sodium Montmorillonite

    NASA Astrophysics Data System (ADS)

    Perezgasga, L.; Serrato-Díaz, A.; Negrón-Mendoza, A.; Gal'N, L. De Pablo; Mosqueira, F. G.

    2005-04-01

    Clay minerals are considered important to chemical evolution processes due to their properties, ancient origin, and wide distribution. To extend the knowledge of their role in the prebiotic epoch, the adsorption sites of adenine, adenosine, AMP, ADP, ATP, Poly A, uracil, uridine, UMP, UDP, UTP and Poly U on sodium montmorillonite are investigated. X-ray diffraction, ultraviolet and infrared spectroscopy studies indicate that these molecules distribute into the interlamellar channel and the edge of the clay crystals. Monomers are adsorbed predominantly in the interlamellar channel, whereas polymers adsorb along the crystal edges. Such behavior is discussed mainly in terms of bulk pH, pKa of the adsorbate, and Van der Waals interactions.

  15. Similarities between UDP-Glucose and Adenine Nucleotide Release in Yeast

    PubMed Central

    Esther, Charles R.; Sesma, Juliana I.; Dohlman, Henrik G.; Ault, Addison D.; Clas, Marién L.; Lazarowski, Eduardo R.; Boucher, Richard C.

    2008-01-01

    Extracellular UDP-glucose is a natural purinergic receptor agonist, but its mechanisms of cellular release remain unclear. We studied these mechanisms in Saccharomyces cerevisiae, a simple model organism that releases ATP, another purinergic agonist. Similar to ATP, UDP-glucose was released by S. cerevisiae at a rate that was linear over time. However, unlike ATP release, UDP-glucose release was not dependent on glucose stimulation. This discrepancy was resolved by demonstrating the apparent glucose stimulation of ATP release reflected glucose-dependent changes in the intracellular pattern of adenine nucleotides, with AMP release dominating in the absence of glucose. Indeed, total adenine nucleotide release, like UDP-glucose release, did not vary with glucose concentration over the short term. The genetic basis of UDP-glucose release was explored through analysis of deletion mutants, aided by development of a novel bioassay for UDP-glucose based on signaling through heterologously expressed human P2Y14 receptors. Using this assay, an elevated rate of UDP-glucose release was demonstrated in mutants lacking the putative Golgi nucleotide sugar transporter YMD8. An increased rate of UDP-glucose release in ymd8Δ was reduced by deletion of the YEA4 UDP-N-acetylglucosamine or the HUT1 UDP-galactose transporters, and overexpression of YEA4 or HUT1 increased the rate of UDP-glucose release. These findings suggest an exocytotic release mechanism similar to that of ATP, a conclusion supported by decreased rates of ATP, AMP, and UDP-glucose release in response to the secretory inhibitor Brefeldin A. These studies demonstrate the involvement of the secretory pathway in nucleotide and nucleotide sugar efflux in yeast and offer a powerful model system for further investigation. PMID:18693752

  16. Acceleration of adventitious shoots by interaction between exogenous hormone and adenine sulphate in Althaea officinalis L.

    PubMed

    Naz, Ruphi; Anis, M

    2012-11-01

    In the current study attempts were made to investigate the effects of three different phases of callus induction followed by adventitious regeneration from leaf segments (central and lateral vein). Callus induction was observed in Murashige and Skoog's (MS) medium supplemented with 15.0 μM 2,4-dichloro phenoxy acetic acid (2,4-D). Adventitious shoot buds formation was achieved on MS medium supplemented with 7.5 μM 2,4-D and 20.0 μM AdS in liquid medium as it induced 19.2 ± 0.58 buds in central vein explants. Addition of different growth regulators (cytokinins-6-benzyladenine, kinetin and 2-isopentenyl adenine alone or in combination with auxins-indole-3-acetic acid, indole-3-butyric acid and α-naphthalene acetic acid, improved the shoot regeneration efficiency, in which 5.0 μM 6-benzyl adenine along with 0.25 μM α-naphthalene acetic acid was shown to be the most effective medium for maximum shoot regeneration (81.3 %) with 24.6 number of shoots and 4.4 ± 0.08 cm shoot length per explant. Leaf culture of central veins led to better shoot formation capacity in comparison to lateral vein. Rooting was readily achieved on the differentiated shoots on 1/2 MS medium augmented with 20.0 μM indole-3-butyric acid. The plants were successfully hardened off in sterile soilrite followed by their establishment in garden soil with 80 % survival rate.

  17. Regulation of Salmonella enterica pathogenicity island 1 by DNA adenine methylation.

    PubMed

    López-Garrido, Javier; Casadesús, Josep

    2010-03-01

    DNA adenine methylase (Dam(-)) mutants of Salmonella enterica are attenuated in the mouse model and present multiple virulence-related defects. Impaired interaction of Salmonella Dam(-) mutants with the intestinal epithelium has been tentatively correlated with reduced secretion of pathogenicity island 1 (SPI-1) effectors. In this study, we show that S. enterica Dam(-) mutants contain lowered levels of the SPI-1 transcriptional regulators HilA, HilC, HilD, and InvF. Epistasis analysis indicates that Dam-dependent regulation of SPI-1 requires HilD, while HilA, HilC, and InvF are dispensable. A transcriptional hilDlac fusion is expressed at similar levels in Dam(+) and Dam(-) hosts. However, lower levels of hilD mRNA are found in a Dam(-) background, thus providing unsuspected evidence that Dam methylation might exert post-transcriptional regulation of hilD expression. This hypothesis is supported by the following lines of evidence: (i) lowered levels of hilD mRNA are found in Salmonella Dam(-) mutants when hilD is transcribed from a heterologous promoter; (ii) increased hilD mRNA turnover is observed in Dam(-) mutants; (iii) lack of the Hfq RNA chaperone enhances hilD mRNA instability in Dam(-) mutants; and (iv) lack of the RNA degradosome components polynucleotide phosphorylase and ribonuclease E suppresses hilD mRNA instability in a Dam(-) background. Our report of Dam-dependent control of hilD mRNA stability suggests that DNA adenine methylation plays hitherto unknown roles in post-transcriptional control of gene expression.

  18. Herpes simplex type 1 defective interfering particles do not affect the antiviral activity of acyclovir, foscarnet and adenine arabinoside.

    PubMed

    Harmenberg, J G; Svensson, L T

    1988-03-01

    The concentration of defective interfering particles (DI-particles) of herpes simplex type 1 virus was analysed by electron microscopy and plaque titration. Fifteen consecutive passages of undiluted virus in green monkey kidney cells were followed. No relationship was found between the concentration of DI-particles and the activity of antiviral substances such as acyclovir, foscarnet and adenine arabinoside.

  19. Peafowl lactate dehydrogenase: problem of isoenzyme identification.

    PubMed

    Rose, R G; Wilson, A C

    1966-09-16

    Peafowl, like other vertebrates, contain multiple forms of lactate dehydrogenase. The electrophoretic properties of the peafowl isoenzymes are unusual in that the isoenzyme from heart tissue can be either more or less anodic than that of muscle, depending on the pH. This finding focuses attention on the problem of isoenzyme identification. It is suggested that isoenzymes be identified on the basis of properties that are chemically and biologically more significant than electrophoretic mobility.

  20. Peafowl lactate dehydrogenase: problem of isoenzyme identification.

    PubMed

    Rose, R G; Wilson, A C

    1966-09-16

    Peafowl, like other vertebrates, contain multiple forms of lactate dehydrogenase. The electrophoretic properties of the peafowl isoenzymes are unusual in that the isoenzyme from heart tissue can be either more or less anodic than that of muscle, depending on the pH. This finding focuses attention on the problem of isoenzyme identification. It is suggested that isoenzymes be identified on the basis of properties that are chemically and biologically more significant than electrophoretic mobility. PMID:5917779

  1. Succinate dehydrogenase-deficient gastrointestinal stromal tumors

    PubMed Central

    Wang, Ya-Mei; Gu, Meng-Li; Ji, Feng

    2015-01-01

    Most gastrointestinal stromal tumors (GISTs) are characterized by KIT or platelet-derived growth factor alpha (PDGFRA) activating mutations. However, there are still 10%-15% of GISTs lacking KIT and PDGFRA mutations, called wild-type GISTs (WT GISTs). Among these so-called WT GISTs, a small subset is associated with succinate dehydrogenase (SDH) deficiency, known as SDH-deficient GISTs. In addition, GISTs that occur in Carney triad and Carney-Stratakis syndrome represent specific examples of SDH-deficient GISTs. SDH-deficient GISTs locate exclusively in the stomach, showing predilection for children and young adults with female preponderance. The tumor generally pursues an indolent course and exhibits primary resistance to imatinib therapy in most cases. Loss of succinate dehydrogenase subunit B expression and overexpression of insulin-like growth factor 1 receptor (IGF1R) are common features of SDH-deficient GISTs. In WT GISTs without succinate dehydrogenase activity, upregulation of hypoxia-inducible factor 1α may lead to increased growth signaling through IGF1R and vascular endothelial growth factor receptor (VEGFR). As a result, IGF1R and VEGFR are promising to be the novel therapeutic targets of GISTs. This review will update the current knowledge on characteristics of SDH-deficient GISTs and further discuss the possible mechanisms of tumorigenesis and clinical management of SDH-deficient GISTs. PMID:25741136

  2. Prenatal presentation of pyruvate dehydrogenase complex deficiency.

    PubMed

    Natarajan, Niranjana; Tully, Hannah M; Chapman, Teresa

    2016-08-01

    We present the case of a female infant referred for prenatal MR evaluation of ventriculomegaly, which had been attributed by the referring obstetrician to aqueductal stenosis. Fetal MR confirmed ventriculomegaly but also demonstrated cerebral volume loss and white matter abnormalities. After birth, the infant developed persistent lactic acidosis. A diagnosis of pyruvate dehydrogenase complex deficiency was made on the basis of metabolic and molecular genetic studies. Ventriculomegaly is a common referral reason for fetal MR, yet there are few published reports of the radiographic findings that accompany inborn errors of metabolism, one potentially under-recognized cause of enlarged ventricles. This case contributes to this small body of literature on the imaging features of pyruvate dehydrogenase complex deficiency by describing pre- and postnatal MR findings and key clinical details. Our report emphasizes the necessity of considering pyruvate dehydrogenase complex deficiency and other metabolic disorders as potential etiologies for fetal ventriculomegaly since prompt diagnosis may allow for early initiation of treatment and improve outcome. PMID:27026023

  3. Dihydrodiol dehydrogenase and polycyclic aromatic hydrocarbon metabolism

    SciTech Connect

    Smithgall, T.E.

    1986-01-01

    Carcinogenic activation of polycyclic aromatic hydrocarbons by microsomal monoxygenases proceeds through trans-dihydrodiol metabolites to diol-epoxide ultimate carcinogens. This thesis directly investigated the role of dihydrodiol dehydrogenase, a cytosolic NAD(P)-linked oxidoreductase, in the detoxification of polycyclic aromatic trans-dihydrodiols. A wide variety of non-K-region trans-dihydrodiols were synthesized and shown to be substrates for the homogeneous rat liver dehydrogenase, including several potent proximate carcinogens derived from 7,12-dimethylbenz(a)anthracene, 5-methylchrysene, and benzo(a)pyrene. Since microsomal activation of polycyclic aromatic hydrocarbons is highly stereospecific, the stereochemical course of enzymatic trans-dihydrodiol oxidation was monitored using circular dichroism spectropolarimetry. The major product formed from the dehydrogenase-catalyzed oxidation of the trans-1,2-dihydrodiol of naphthalene was characterized using UV, IR, NMR, and mass spectroscopy, and appears to be 4-hydroxy-1,2-naphthoquinone. Mass spectral analysis suggests that an analogous hydroxylated o-quinone is formed as the major product of benzo(a)pyrene-7,8-dihydrodiol oxidation. Enzymatic oxidation of trans-dihydrodiols was shown to be potently inhibited by all of the major classes of the nonsteroidal antiinflammatory drugs. Enhancement of trans-dihydrodiol proximate carcinogen oxidation may protect against possible adverse effects of the aspirin-like drugs, and help maintain the balance between activation and detoxification of polycyclic aromatic hydrocarbons.

  4. Relationships within the aldehyde dehydrogenase extended family.

    PubMed

    Perozich, J; Nicholas, H; Wang, B C; Lindahl, R; Hempel, J

    1999-01-01

    One hundred-forty-five full-length aldehyde dehydrogenase-related sequences were aligned to determine relationships within the aldehyde dehydrogenase (ALDH) extended family. The alignment reveals only four invariant residues: two glycines, a phenylalanine involved in NAD binding, and a glutamic acid that coordinates the nicotinamide ribose in certain E-NAD binary complex crystal structures, but which may also serve as a general base for the catalytic reaction. The cysteine that provides the catalytic thiol and its closest neighbor in space, an asparagine residue, are conserved in all ALDHs with demonstrated dehydrogenase activity. Sixteen residues are conserved in at least 95% of the sequences; 12 of these cluster into seven sequence motifs conserved in almost all ALDHs. These motifs cluster around the active site of the enzyme. Phylogenetic analysis of these ALDHs indicates at least 13 ALDH families, most of which have previously been identified but not grouped separately by alignment. ALDHs cluster into two main trunks of the phylogenetic tree. The largest, the "Class 3" trunk, contains mostly substrate-specific ALDH families, as well as the class 3 ALDH family itself. The other trunk, the "Class 1/2" trunk, contains mostly variable substrate ALDH families, including the class 1 and 2 ALDH families. Divergence of the substrate-specific ALDHs occurred earlier than the division between ALDHs with broad substrate specificities. A site on the World Wide Web has also been devoted to this alignment project.

  5. Characterization of an unbalanced de novo rearrangement, initially by dinucleotide repeat polymorphism typing and subsequent confirmation by FISH

    SciTech Connect

    Zhao, J.; Gordon, P.L.; Wilroy, R.S.

    1994-09-01

    Unbalanced de novo rearrangements not amenable to characterization by conventional cytogenetics can be elucidated using molecular techniques. By microsatellite polymorphism typing, we initially determined the origin and composition of an unbalanced de novo translocation (46,XX,15q+) in a child with multiple congenital anomalies. Microsatellite polymorphism for D5S208 (localized to 5p15) and polymerase chain reaction (PCR) analysis showed that the extra segment originated from the short arm of chromosome 5. Amplification of patient`s DNA with primers for dinucleotide repeats D5S350 and D5S118 showed that most of the short arm of chromosome 5 was present in three copies. The PCR findings were then reconfirmed by a battery of fluorescence in situ hybridizations (FISH). FISH analyses were further helpful in accurately defining the precise trisomic region as well as elucidating the dicentric nature of 46,XX,-15,+der dic (15)t(5;15)(q11.1;p12) de novo translocation. This work demonstrates the benefit of microsatellite polymorphism typing for the identification and characterization of de novo unbalanced rearrangements and apparent tandem duplications in which conventional cytogenetic techniques are usually uninformative. Such study design in cytogenetically equivocal cases could undoubtedly aid in patient management, family counseling and benefit gene mapping studies through accurate genotype-phenotype correlation.

  6. The cyclic di-nucleotide c-di-AMP is an allosteric regulator of metabolic enzyme function

    PubMed Central

    Precit, Mimi; Delince, Matthieu; Pensinger, Daniel; Huynh, TuAnh Ngoc; Jurado, Ashley R.; Goo, Young Ah; Sadilek, Martin; Iavarone, Anthony T.; Sauer, John-Demian; Tong, Liang; Woodward, Joshua J.

    2014-01-01

    SUMMARY Cyclic di-adenosine monophosphate (c-di-AMP) is a broadly conserved second messenger required for bacterial growth and infection. However, the molecular mechanisms of c-di-AMP signaling are still poorly understood. Using a chemical proteomics screen for c-di-AMP interacting proteins in the pathogen Listeria monocytogenes, we identified several broadly conserved protein receptors, including the central metabolic enzyme pyruvate carboxylase (LmPC). Biochemical and crystallographic studies of the LmPC-c-di-AMP interaction revealed a previously unrecognized allosteric regulatory site 25 Å from the active site. Mutations in this site disrupted c-di-AMP binding and affected enzyme catalysis of LmPC as well as PC from pathogenic Enterococcus faecalis. C-di-AMP depletion resulted in altered metabolic activity in L. monocytogenes. Correction of this metabolic imbalance rescued bacterial growth, reduced bacterial lysis, and resulted in enhanced bacterial burdens during infection. These findings greatly expand the c-di-AMP signaling repertoire and reveal a central metabolic regulatory role for a cyclic di-nucleotide. PMID:25215494

  7. Xanthine dehydrogenase and 2-furoyl-coenzyme A dehydrogenase from Pseudomonas putida Fu1: two molybdenum-containing dehydrogenases of novel structural composition.

    PubMed Central

    Koenig, K; Andreesen, J R

    1990-01-01

    The constitutive xanthine dehydrogenase and the inducible 2-furoyl-coenzyme A (CoA) dehydrogenase could be labeled with [185W]tungstate. This labeling was used as a reporter to purify both labile proteins. The radioactivity cochromatographed predominantly with the residual enzymatic activity of both enzymes during the first purification steps. Both radioactive proteins were separated and purified to homogeneity. Antibodies raised against the larger protein also exhibited cross-reactivity toward the second smaller protein and removed xanthine dehydrogenase and 2-furoyl-CoA dehydrogenase activity up to 80 and 60% from the supernatant of cell extracts, respectively. With use of cell extract, Western immunoblots showed only two bands which correlated exactly with the activity stains for both enzymes after native polyacrylamide gel electrophoresis. Molybdate was absolutely required for incorporation of 185W, formation of cross-reacting material, and enzymatic activity. The latter parameters showed a perfect correlation. This evidence proves that the radioactive proteins were actually xanthine dehydrogenase and 2-furoyl-CoA dehydrogenase. The apparent molecular weight of the native xanthine dehydrogenase was about 300,000, and that of 2-furoyl-CoA dehydrogenase was 150,000. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of both enzymes revealed two protein bands corresponding to molecular weights of 55,000 and 25,000. The xanthine dehydrogenase contained at least 1.6 mol of molybdenum, 0.9 ml of cytochrome b, 5.8 mol of iron, and 2.4 mol of labile sulfur per mol of enzyme. The composition of the 2-furoyl-CoA dehydrogenase seemed to be similar, although the stoichiometry was not determined. The oxidation of furfuryl alcohol to furfural and further to 2-furoic acid by Pseudomonas putida Fu1 was catalyzed by two different dehydrogenases. Images PMID:2170335

  8. NADP+ and NAD+ binding to the dual coenzyme specific enzyme Leuconostoc mesenteroides glucose 6-phosphate dehydrogenase: different interdomain hinge angles are seen in different binary and ternary complexes.

    PubMed

    Naylor, C E; Gover, S; Basak, A K; Cosgrove, M S; Levy, H R; Adams, M J

    2001-05-01

    The reduced coenzymes NADH and NADPH only differ by one phosphate, but in the cell NADH provides reducing power for catabolism while NADPH is utilized in biosynthetic pathways. Enzymes almost invariably discriminate between the coenzymes, but glucose 6-phosphate dehydrogenase (G6PD) from Leuconostoc mesenteroides is rare in being functionally dual specific. In order to elucidate the coenzyme selectivity, the structures of NADP(+)- and NAD(+)-complexed L. mesenteroides G6PD have been determined including data to 2.2 and 2.5 A resolution, respectively, and compared with unliganded G6PD crystallized in the same space groups. Coenzyme binding is also compared with that in a ternary complex of a mutant in which Asp177 in the active site has been mutated to asparagine. There are no gross structural differences between the complexes. In both binary complexes, the enzyme interdomain hinge angle has opened. NADP(+) binds to the furthest open form; of the residues within the coenzyme domain, only Arg46 moves, interacting with the 2'-phosphate and adenine. NAD(+) is less well defined in the binding site; smaller hinge opening is seen but larger local changes: Arg46 is displaced, Thr14 bonds the 3'-hydroxyl and Gln47 bonds the 2'-hydroxyl. In the ternary complex, the hinge angle has closed; only the adenine nucleotide is ordered in the binding site. Arg46 again provides most binding interactions.

  9. Insight into G-quadruplex-hemin DNAzyme/RNAzyme: adjacent adenine as the intramolecular species for remarkable enhancement of enzymatic activity.

    PubMed

    Li, Wang; Li, Yong; Liu, Zhuoliang; Lin, Bin; Yi, Haibo; Xu, Feng; Nie, Zhou; Yao, Shouzhuo

    2016-09-01

    G-quadruplex (G4) with stacked G-tetrads structure is able to bind hemin (iron (III)-protoporphyrin IX) to form a unique type of DNAzyme/RNAzyme with peroxidase-mimicking activity, which has been widely employed in multidisciplinary fields. However, its further applications are hampered by its relatively weak activity compared with protein enzymes. Herein, we report a unique intramolecular enhancement effect of the adjacent adenine (EnEAA) at 3' end of G4 core sequences that significantly improves the activity of G4 DNAzymes. Through detailed investigations of the EnEAA, the added 3' adenine was proved to accelerate the compound I formation in catalytic cycle and thus improve the G4 DNAzyme activity. EnEAA was found to be highly dependent on the unprotonated state of the N1 of adenine, substantiating that adenine might function as a general acid-base catalyst. Further adenine analogs analysis supported that both N1 and exocyclic 6-amino groups in adenine played key role in the catalysis. Moreover, we proved that EnEAA was generally applicable for various parallel G-quadruplex structures and even G4 RNAzyme. Our studies implied that adenine might act analogously as the distal histidine in protein peroxidases, which shed light on the fundamental understanding and rational design of G4 DNAzyme/RNAzyme catalysts with enhanced functions. PMID:27422869

  10. Insight into G-quadruplex-hemin DNAzyme/RNAzyme: adjacent adenine as the intramolecular species for remarkable enhancement of enzymatic activity

    PubMed Central

    Li, Wang; Li, Yong; Liu, Zhuoliang; Lin, Bin; Yi, Haibo; Xu, Feng; Nie, Zhou; Yao, Shouzhuo

    2016-01-01

    G-quadruplex (G4) with stacked G-tetrads structure is able to bind hemin (iron (III)-protoporphyrin IX) to form a unique type of DNAzyme/RNAzyme with peroxidase-mimicking activity, which has been widely employed in multidisciplinary fields. However, its further applications are hampered by its relatively weak activity compared with protein enzymes. Herein, we report a unique intramolecular enhancement effect of the adjacent adenine (EnEAA) at 3′ end of G4 core sequences that significantly improves the activity of G4 DNAzymes. Through detailed investigations of the EnEAA, the added 3′ adenine was proved to accelerate the compound I formation in catalytic cycle and thus improve the G4 DNAzyme activity. EnEAA was found to be highly dependent on the unprotonated state of the N1 of adenine, substantiating that adenine might function as a general acid–base catalyst. Further adenine analogs analysis supported that both N1 and exocyclic 6-amino groups in adenine played key role in the catalysis. Moreover, we proved that EnEAA was generally applicable for various parallel G-quadruplex structures and even G4 RNAzyme. Our studies implied that adenine might act analogously as the distal histidine in protein peroxidases, which shed light on the fundamental understanding and rational design of G4 DNAzyme/RNAzyme catalysts with enhanced functions. PMID:27422869

  11. A comparison of potato and vertebrate lactate dehydrogenases.

    PubMed Central

    Poerio, E; Davies, D D

    1980-01-01

    A 2000-fold purification of L(+)-lactate dehydrogenase from potatoes is reported. Five isoenzymes of lactate dehydrogenase can be detected in crude extracts of potato, and three of these are present in the purified preparation. The enzyme (mol.wt. 150 000), which is composed of four subunits (mol.wt. 37 500), is active with the same oxo acids and hydroxy acids that have been reported as substrates with the same oxo acids and hydroxy acids that have been reported as substrates for vertebrate lactate dehydrogenases. These similarities between potato and vertebrate lactate dehydrogenases contrast sharply with some other reports on potato lactate dehydrogenase. These discrepancies are discussed in relation to the proposition that vertebrate and potato lactate dehydrogenases share a common evolutionary origin. PMID:7236200

  12. The rate of ATP export in the extramitochondrial phase via the adenine nucleotide translocator changes in aging in mitochondria isolated from heart left ventricle of either normotensive or spontaneously hypertensive rats.

    PubMed

    Atlante, Anna; Seccia, Teresa Maria; Marra, Ersilia; Passarella, Salvatore

    2011-10-01

    To find out whether and how deficit of cellular energy supply from mitochondria to cytosol occurs in aging and hypertension, we used mitochondria isolated from 5 to 72 week-old heart left ventricle of either normotensive (WKY) or spontaneous hypertensive (SH) rats as a model system. Measurements were made of the rate of ATP appearance outside mitochondria, due to externally added ADP, as an increase of NADPH absorbance which occurs when ATP is produced in the presence of glucose, hexokinase and glucose-6-phosphate dehydrogenase. Such a rate proved to mirror the function of the adenine nucleotide translocator (ANT) rather than other processes linked to the both oxidative and substrate level phosphorylation. The changes in both Ki for atractyloside and Km for ADP suggest the occurrence of modification of the ANT conformation during aging in which the ANT Vmax was found to decrease in normotensive but to increase under spontaneously hypertension in 24 week-old rats with a subsequent decrease in both cases. ANT function, as investigated in the ADP physiological range (20-60μM), is expected to decrease in normotensive, but to increase in hypertensive rats up to 48 weeks. Later a decrease in the ATP rate of export outside mitochondria should occur in both cases. PMID:21855562

  13. Rigid Adenine Nucleoside Derivatives as Novel Modulators of the Human Sodium Symporters for Dopamine and Norepinephrine.

    PubMed

    Janowsky, Aaron; Tosh, Dilip K; Eshleman, Amy J; Jacobson, Kenneth A

    2016-04-01

    Thirty-two congeneric rigid adenine nucleoside derivatives containing a North (N)-methanocarba ribose substitution and a 2-arylethynyl group either enhanced (up to 760% of control) or inhibited [(125)I] methyl (1R,2S,3S)-3-(4-iodophenyl)-8-methyl-8-azabicyclo[3.2.1]octane-2-carboxylate (RTI-55) binding at the human dopamine (DA) transporter (DAT) and inhibited DA uptake. Several nucleosides also enhanced [(3)H]mazindol [(±)-5-(4-chlorophenyl)-3,5-dihydro-2H-imidazo[2,1-a]isoindol-5-ol] binding to the DAT. The combination of binding enhancement and functional inhibition suggests possible allosteric interaction with the tropanes. The structure-activity relationship of this novel class of DAT ligands was explored: small N(6)-substition (methyl or ethyl) was favored, while the N1 of the adenine ring was essential. Effective terminal aryl groups include thien-2-yl (compounds 9 and 16), with EC50 values of 35.1 and 9.1 nM, respectively, in [(125)I]RTI-55 binding enhancement, and 3,4-difluorophenyl as in the most potent DA uptake inhibitor (compound 6) with an IC50 value of 92 nM (3-fold more potent than cocaine), but not nitrogen heterocycles. Several compounds inhibited or enhanced binding at the norepinephrine transporter (NET) and serotonin transporter (SERT) and inhibited function in the micromolar range; truncation at the 4'-position in compound 23 allowed for weak inhibition of the SERT. We have not yet eliminated adenosine receptor affinity from this class of DAT modulators, but we identified modifications that remove DAT inhibition as an off-target effect of potent adenosine receptor agonists. Thus, we have identified a new class of allosteric DAT ligands, rigidified adenosine derivatives, and explored their initial structural requirements. They display a very atypical pharmacological profile, i.e., either enhancement by increasing affinity or inhibition of radioligand binding at the DAT, and in some cases the NET and SERT, and inhibition of neurotransmitter

  14. Poly-adenine-based programmable engineering of gold nanoparticles for highly regulated spherical DNAzymes

    NASA Astrophysics Data System (ADS)

    Zhu, Dan; Pei, Hao; Chao, Jie; Su, Shao; Aldalbahi, Ali; Rahaman, Mostafizur; Wang, Lihua; Wang, Lianhui; Huang, Wei; Fan, Chunhai; Zuo, Xiaolei

    2015-11-01

    Enzyme complexes are assembled at the two-dimensional lipid membrane or prearranged on three-dimensional scaffolding proteins to regulate their catalytic activity in cells. Inspired by nature, we have developed gold nanoparticle-based spherical DNAzymes (SNAzymes) with programmably engineered activities by exploiting poly-adenine (polyA)-Au interactions. In a SNAzyme, AuNPs serve as the metal core, which is decorated with a functional shell of DNAzymes. Conventional thiolated DNAzyme-based assembly leads to disordered structures with suppressed activity. In contrast, by using an anchoring block of polyA tails, we find that the activity of SNAzymes can be programmably regulated. By using a polyA30 tail, SNAzymes demonstrated remarkably enhanced binding affinity compared to the thiolated DNAzyme-based assembly (~75-fold) or individual DNAzymes in the solution phase (~10-fold). More significantly, this increased affinity is directly translated to the sensitivity improvement in the SNAzyme-based lead sensor. Hence, this design of SNAzymes may provide new opportunities for developing biosensors and bioimaging probes for theranostic applications.Enzyme complexes are assembled at the two-dimensional lipid membrane or prearranged on three-dimensional scaffolding proteins to regulate their catalytic activity in cells. Inspired by nature, we have developed gold nanoparticle-based spherical DNAzymes (SNAzymes) with programmably engineered activities by exploiting poly-adenine (polyA)-Au interactions. In a SNAzyme, AuNPs serve as the metal core, which is decorated with a functional shell of DNAzymes. Conventional thiolated DNAzyme-based assembly leads to disordered structures with suppressed activity. In contrast, by using an anchoring block of polyA tails, we find that the activity of SNAzymes can be programmably regulated. By using a polyA30 tail, SNAzymes demonstrated remarkably enhanced binding affinity compared to the thiolated DNAzyme-based assembly (~75-fold) or

  15. Rigid Adenine Nucleoside Derivatives as Novel Modulators of the Human Sodium Symporters for Dopamine and Norepinephrine

    PubMed Central

    Tosh, Dilip K.; Eshleman, Amy J.; Jacobson, Kenneth A.

    2016-01-01

    Thirty-two congeneric rigid adenine nucleoside derivatives containing a North (N)-methanocarba ribose substitution and a 2-arylethynyl group either enhanced (up to 760% of control) or inhibited [125I] methyl (1R,2S,3S)-3-(4-iodophenyl)-8-methyl-8-azabicyclo[3.2.1]octane-2-carboxylate (RTI-55) binding at the human dopamine (DA) transporter (DAT) and inhibited DA uptake. Several nucleosides also enhanced [3H]mazindol [(±)-5-(4-chlorophenyl)-3,5-dihydro-2H-imidazo[2,1-a]isoindol-5-ol] binding to the DAT. The combination of binding enhancement and functional inhibition suggests possible allosteric interaction with the tropanes. The structure-activity relationship of this novel class of DAT ligands was explored: small N6-substition (methyl or ethyl) was favored, while the N1 of the adenine ring was essential. Effective terminal aryl groups include thien-2-yl (compounds 9 and 16), with EC50 values of 35.1 and 9.1 nM, respectively, in [125I]RTI-55 binding enhancement, and 3,4-difluorophenyl as in the most potent DA uptake inhibitor (compound 6) with an IC50 value of 92 nM (3-fold more potent than cocaine), but not nitrogen heterocycles. Several compounds inhibited or enhanced binding at the norepinephrine transporter (NET) and serotonin transporter (SERT) and inhibited function in the micromolar range; truncation at the 4′-position in compound 23 allowed for weak inhibition of the SERT. We have not yet eliminated adenosine receptor affinity from this class of DAT modulators, but we identified modifications that remove DAT inhibition as an off-target effect of potent adenosine receptor agonists. Thus, we have identified a new class of allosteric DAT ligands, rigidified adenosine derivatives, and explored their initial structural requirements. They display a very atypical pharmacological profile, i.e., either enhancement by increasing affinity or inhibition of radioligand binding at the DAT, and in some cases the NET and SERT, and inhibition of neurotransmitter uptake

  16. Efficacy of Adenine in the Treatment of Leukopenia and Neutropenia Associated with an Overdose of Antipsychotics or Discontinuation of Lithium Carbonate Administration: Three Case Studies

    PubMed Central

    Tomita, Takashi; Goto, Hidekazu; Sumiya, Kenji; Yoshida, Tadashi; Tanaka, Katsuya; Kohda, Yukinao

    2016-01-01

    Because adenine is effective for managing cases of radiation-induced and drug-induced leukopenia, it may be effective in cases of antipsychotic-induced leukopenia and neutropenia. Here, we report our experience with patients with leukopenia and neutropenia caused by an antipsychotic overdose or discontinuation of lithium carbonate, in whom adenine administration ameliorated the white blood cell and neutrophil counts. The progress of patients suggests that adenine is effective in cases of leukopenia and neutropenia associated with lithium carbonate discontinuation and an antipsychotic overdose. PMID:27776394

  17. A comparison of genetic map distance and linkage disequilibrium between 15 polymorphic dinucleotide repeat loci in two populations

    SciTech Connect

    Urbanek, M.; Goldman, D.; Long, J.C.

    1994-09-01

    Linkage disequilibrium has recently been used to map the diastrophic dysplasia gene in a Finnish sample. One advantage of this method is that the large pedigrees required by some other methods are unnecessary. Another advantage is that linkage disequilibrium mapping capitalizes on the cumulative history of recombination events, rather than those occurring within the sampled individuals. A potential limitation of linkage disequilibrium mapping is that linkage equilibrium is likely to prevail in all but the most isolated populations, e.g., those which have recently experienced founder effects or severe population bottlenecks. In order to test the method`s generality, we examined patterns of linkage disequilibrium between pairs of loci within a known genetic map. Two populations were analyzed. The first population, Navajo Indians (N=45), is an isolate that experienced a severe bottleneck in the 1860`s. The second population, Maryland Caucasians (N=45), is cosmopolitan. We expected the Navajo sample to display more linkage disequilibrium than the Caucasian sample, and possibly that the Navajo disequilibrium pattern would reflect the genetic map. Linkage disequilibrium coefficients were estimated between pairs of alleles at different loci using maximum likelihood. The genetic isolate structure of Navajo Indians is confirmed by the DNA typings. Heterozygosity is lower than in the Caucasians, and fewer different alleles are observed. However, a relationship between genetic map distance and linkage disequilibrium could be discerned in neither the Navajo nor the Maryland samples. Slightly more linkage disequilibrium was observed in the Navajos, but both data sets were characterized by very low disequilibrium levels. We tentatively conclude that linkage disequilibrium mapping with dinucleotide repeats will only be useful with close linkage between markers and diseases, even in very isolated populations.

  18. Partial Similarities Between Yeast and Liver Alcohol Dehydrogenases

    PubMed Central

    Jörnvall, Hans

    1973-01-01

    The primary structure of about half of the protein chain of yeast alcohol dehydrogenase has been determined and compared with the amino-acid sequences of other dehydrogenases. The enzyme is found to be distantly related to horse-liver alcohol dehydrogenase, although these two proteins have different quaternary structures and subunit sizes. Some regions show no significant similarities, but long segments within the N-terminal parts of the molecules are homologous, suggesting a common and important function for these segments. Ancestral connections between some different dehydrogenases can be concluded and the degree of evolutionary changes may be estimated. PMID:4599620

  19. 21 CFR 862.1500 - Malic dehydrogenase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... plasma. Malic dehydrogenase measurements are used in the diagnosis and treatment of muscle and liver diseases, myocardial infarctions, cancer, and blood disorders such as myelogenous (produced in the...

  20. 21 CFR 862.1500 - Malic dehydrogenase test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... plasma. Malic dehydrogenase measurements are used in the diagnosis and treatment of muscle and liver diseases, myocardial infarctions, cancer, and blood disorders such as myelogenous (produced in the...

  1. 21 CFR 862.1500 - Malic dehydrogenase test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... plasma. Malic dehydrogenase measurements are used in the diagnosis and treatment of muscle and liver diseases, myocardial infarctions, cancer, and blood disorders such as myelogenous (produced in the...

  2. 21 CFR 862.1420 - Isocitric dehydrogenase test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... and plasma. Isocitric dehydrogenase measurements are used in the diagnosis and treatment of liver disease such as viral hepatitis, cirrhosis, or acute inflammation of the biliary tract; pulmonary...

  3. 21 CFR 862.1420 - Isocitric dehydrogenase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... and plasma. Isocitric dehydrogenase measurements are used in the diagnosis and treatment of liver disease such as viral hepatitis, cirrhosis, or acute inflammation of the biliary tract; pulmonary...

  4. The Molybdenum Active Site of Formate Dehydrogenase Is Capable of Catalyzing C-H Bond Cleavage and Oxygen Atom Transfer Reactions.

    PubMed

    Hartmann, Tobias; Schrapers, Peer; Utesch, Tillmann; Nimtz, Manfred; Rippers, Yvonne; Dau, Holger; Mroginski, Maria Andrea; Haumann, Michael; Leimkühler, Silke

    2016-04-26

    Formate dehydrogenases (FDHs) are capable of performing the reversible oxidation of formate and are enzymes of great interest for fuel cell applications and for the production of reduced carbon compounds as energy sources from CO2. Metal-containing FDHs in general contain a highly conserved active site, comprising a molybdenum (or tungsten) center coordinated by two molybdopterin guanine dinucleotide molecules, a sulfido and a (seleno-)cysteine ligand, in addition to a histidine and arginine residue in the second coordination sphere. So far, the role of these amino acids in catalysis has not been studied in detail, because of the lack of suitable expression systems and the lability or oxygen sensitivity of the enzymes. Here, the roles of these active site residues is revealed using the Mo-containing FDH from Rhodobacter capsulatus. Our results show that the cysteine ligand at the Mo ion is displaced by the formate substrate during the reaction, the arginine has a direct role in substrate binding and stabilization, and the histidine elevates the pKa of the active site cysteine. We further found that in addition to reversible formate oxidation, the enzyme is further capable of reducing nitrate to nitrite. We propose a mechanistic scheme that combines both functionalities and provides important insights into the distinct mechanisms of C-H bond cleavage and oxygen atom transfer catalyzed by formate dehydrogenase. PMID:27054466

  5. Structure-guided alteration of coenzyme specificity of formate dehydrogenase by saturation mutagenesis to enable efficient utilization of NADP+.

    PubMed

    Andreadeli, Aggeliki; Platis, Dimitris; Tishkov, Vladimir; Popov, Vladimir; Labrou, Nikolaos E

    2008-08-01

    Formate dehydrogenase from Candida boidinii (CboFDH) catalyses the oxidation of formate anion to carbon dioxide with concomitant reduction of NAD(+) to NADH. CboFDH is highly specific to NAD(+) and virtually fails to catalyze the reaction with NADP(+). Based on structural information for CboFDH, the loop region between beta-sheet 7 and alpha-helix 10 in the dinucleotide-binding fold was predicted as a principal determinant of coenzyme specificity. Sequence alignment with other formate dehydrogenases revealed two residues (Asp195 and Tyr196) that could account for the observed coenzyme specificity. Positions 195 and 196 were subjected to two rounds of site-saturation mutagenesis and screening and enabled the identification of a double mutant Asp195Gln/Tyr196His, which showed a more than 2 x 10(7)-fold improvement in overall catalytic efficiency with NADP(+) and a more than 900-fold decrease in the efficiency with NAD(+) as cofactors. The results demonstrate that the combined polar interactions and steric factors comprise the main structural determinants responsible for coenzyme specificity. The double mutant Asp195Gln/Tyr196His was tested for practical applicability in a cofactor recycling system composed of cytochrome P450 monooxygenase from Bacillus subtilis, (CYP102A2), NADP(+), formic acid and omega-(p-nitrophenyl)dodecanoic acid (12-pNCA). Using a 1250-fold excess of 12-pNCA over NADP(+) the first order rate constant was determined to be equal to k(obs) = 0.059 +/- 0.004 min(-1).

  6. Periplasmic nitrate reductase and formate dehydrogenase: similar molecular architectures with very different enzymatic activities.

    PubMed

    Cerqueira, Nuno M F S A; Gonzalez, Pablo J; Fernandes, Pedro A; Moura, José J G; Ramos, Maria João

    2015-11-17

    It is remarkable how nature has been able to construct enzymes that, despite sharing many similarities, have simple but key differences that tune them for completely different functions in living cells. Periplasmic nitrate reductase (Nap) and formate dehydrogenase (Fdh) from the DMSOr family are representative examples of this. Both enzymes share almost identical three-dimensional protein foldings and active sites, in terms of coordination number, geometry and nature of the ligands. The substrates of both enzymes (nitrate and formate) are polyatomic anions that also share similar charge and stereochemistry. In terms of the catalytic mechanism, both enzymes have a common activation mechanism (the sulfur-shift mechanism) that ensures a constant coordination number around the metal ion during the catalytic cycle. In spite of these similarities, they catalyze very different reactions: Nap abstracts an oxygen atom from nitrate releasing nitrite, whereas FdH catalyzes a hydrogen atom transfer from formate and releases carbon dioxide. In this Account, a critical analysis of structure, function, and catalytic mechanism of the molybdenum enzymes periplasmic nitrate reductase (Nap) and formate dehydrogenase (Fdh) is presented. We conclude that the main structural driving force that dictates the type of reaction, catalyzed by each enzyme, is a key difference on one active site residue that is located in the top region of the active sites of both enzymes. In both enzymes, the active site is centered on the metal ion of the cofactor (Mo in Nap and Mo or W in Fdh) that is coordinated by four sulfur atoms from two pyranopterin guanosine dinucleotide (PGD) molecules and by a sulfido. However, while in Nap there is a Cys directly coordinated to the Mo ion, in FdH there is a SeCys instead. In Fdh there is also an important His that interacts very closely with the SeCys, whereas in Nap the same position is occupied by a Met. The role of Cys in Nap and SeCys in FdH is similar in both

  7. A DNA adenine methylase mutant of Shigella flexneri shows no significant attenuation of virulence.

    PubMed

    Honma, Yasuko; Fernández, Reinaldo E; Maurelli, Anthony T

    2004-04-01

    Mutants of Salmonella defective in DNA adenine methylase (dam) have been reported to be attenuated for virulence and to provide protective immunity when used as vaccine strains. To determine whether these observations could be extended to Shigella, a dam mutant of Shigella flexneri 2a was characterized and examined for the role of dam in pathogenesis. The Shigella dam mutant showed some unique characteristics; however, it retained virulence in vivo as well as in vitro. The mutant invaded cultured L2 monolayer cells as efficiently as the wild-type parent, but its intracellular growth was suppressed up to 7 h post-invasion. Furthermore, the invading dam mutant formed smaller plaques in cell monolayers compared to the parent strain. However, the mutant produced keratoconjunctivitis in the Sereny test in guinea pigs only slightly more slowly than the wild-type. While the effect of the dam mutation on virulence was modest, the rate of spontaneous mutation in the dam mutant was 1000-fold greater compared with the wild-type. The virulence and high mutability displayed by the dam mutant of Sh. flexneri suggest that a general anti-bacterial pathogen vaccine strategy based on mutations in dam needs to be re-evaluated.

  8. Electron impact fragmentation of adenine: partial ionization cross sections for positive fragments

    NASA Astrophysics Data System (ADS)

    van der Burgt, Peter J. M.; Finnegan, Sinead; Eden, Samuel

    2015-07-01

    Using computer-controlled data acquisition we have measured mass spectra of positive ions for electron impact on adenine, with electron energies up to 100 eV. Ion yield curves for 50 ions have been obtained and normalized by comparing their sum to the average of calculated total ionization cross sections. Appearance energies have been determined for 37 ions; for 20 ions for the first time. All appearance energies are consistent with the fragmentation pathways identified in the literature. Second onset energies have been determined for 12 fragment ions (for 11 ions for the first time), indicating the occurrence of more than one fragmentation process e.g. for 39 u (C2HN+) and 70 u (C2H4N3+). Matching ion yield shapes (118-120 u, 107-108 u, 91-92 u, and 54-56 u) provide new evidence supporting closely related fragmentation pathways and are attributed to hydrogen rearrangement immediately preceding the fragmentation. We present the first measurement of the ion yield curve of the doubly charged parent ion (67.5 u), with an appearance energy of 23.5 ± 1.0 eV. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey Solov'yov, Nigel Mason, Gustavo García, Eugene Surdutovich.

  9. PsANT, the adenine nucleotide translocase of Puccinia striiformis, promotes cell death and fungal growth

    PubMed Central

    Tang, Chunlei; Wei, Jinping; Han, Qingmei; Liu, Rui; Duan, Xiaoyuan; Fu, Yanping; Huang, Xueling; Wang, Xiaojie; Kang, Zhensheng

    2015-01-01

    Adenine nucleotide translocase (ANT) is a constitutive mitochondrial component that is involved in ADP/ATP exchange and mitochondrion-mediated apoptosis in yeast and mammals. However, little is known about the function of ANT in pathogenic fungi. In this study, we identified an ANT gene of Puccinia striiformis f. sp. tritici (Pst), designated PsANT. The PsANT protein contains three typical conserved mitochondrion-carrier-protein (mito-carr) domains and shares more than 70% identity with its orthologs from other fungi, suggesting that ANT is conserved in fungi. Immuno-cytochemical localization confirmed the mitochondrial localization of PsANT in normal Pst hyphal cells or collapsed cells. Over-expression of PsANT indicated that PsANT promotes cell death in tobacco, wheat and fission yeast cells. Further study showed that the three mito-carr domains are all needed to induce cell death. qRT-PCR analyses revealed an in-planta induced expression of PsANT during infection. Knockdown of PsANT using a host-induced gene silencing system (HIGS) attenuated the growth and development of virulent Pst at the early infection stage but not enough to alter its pathogenicity. These results provide new insight into the function of PsANT in fungal cell death and growth and might be useful in the search for and design of novel disease control strategies. PMID:26058921

  10. Content of Adenine Nucleotides and Orthophosphate in Exporting and Importing Mature Maize Leaves 1

    PubMed Central

    Eschrich, Walter; Fromm, Joerg

    1985-01-01

    Events of reactivation by re-illumination were studied in predarkened detached mature maize leaves, which were arranged as distal sources and proximal sinks; the latter were kept in CO2-free atmosphere and were either illuminated or darkened. Adenine nucleotide (AdN) content and orthophosphate (Pi) concentrations were measured 10 minutes, 30 minutes, and 2, 7, and 14 hours after the onset of re-illumination. For comparison, mature leaves attached to the plant were analyzed. The sum of AdN increased up to 7 hours of re-illumination, then dark sinks and their sources showed decreasing amounts of AdN, while the increase continued up to 14 hours in sources and illuminated sinks. In leaves attached to the plant, no further increase in AdN level followed the 7-hour mark. The amount of individual AdN (ATP, ADP, AMP) differed considerably in sources and sinks of the detached leaves. Although both the source supplying the illuminated sink and the source supplying the dark sink were treated the same, they showed striking differences in AdN contents. Such relations were also observed, when ATP/ADP ratios and Pi concentrations were compared. The influence a sink can exert on its source suggests a participation of the physiological events in the sink on the regulation of AdN and Pi metabolism in the source. PMID:16664246

  11. Adenine methylation in eukaryotes: Apprehending the complex evolutionary history and functional potential of an epigenetic modification

    PubMed Central

    Iyer, Lakshminarayan M.; Zhang, Dapeng

    2015-01-01

    While N6‐methyladenosine (m6A) is a well‐known epigenetic modification in bacterial DNA, it remained largely unstudied in eukaryotes. Recent studies have brought to fore its potential epigenetic role across diverse eukaryotes with biological consequences, which are distinct and possibly even opposite to the well‐studied 5‐methylcytosine mark. Adenine methyltransferases appear to have been independently acquired by eukaryotes on at least 13 occasions from prokaryotic restriction‐modification and counter‐restriction systems. On at least four to five instances, these methyltransferases were recruited as RNA methylases. Thus, m6A marks in eukaryotic DNA and RNA might be more widespread and diversified than previously believed. Several m6A‐binding protein domains from prokaryotes were also acquired by eukaryotes, facilitating prediction of potential readers for these marks. Further, multiple lineages of the AlkB family of dioxygenases have been recruited as m6A demethylases. Although members of the TET/JBP family of dioxygenases have also been suggested to be m6A demethylases, this proposal needs more careful evaluation. Also watch the Video Abstract. PMID:26660621

  12. Structural Basis for Avoidance of Promutagenic DNA Repair by MutY Adenine DNA Glycosylase*

    PubMed Central

    Wang, Lan; Lee, Seung-Joo; Verdine, Gregory L.

    2015-01-01

    The highly mutagenic A:oxoG (8-oxoguanine) base pair in DNA most frequently arises by aberrant replication of the primary oxidative lesion C:oxoG. This lesion is particularly insidious because neither of its constituent nucleobases faithfully transmit genetic information from the original C:G base pair. Repair of A:oxoG is initiated by adenine DNA glycosylase, which catalyzes hydrolytic cleavage of the aberrant A nucleobase from the DNA backbone. These enzymes, MutY in bacteria and MUTYH in humans, scrupulously avoid processing of C:oxoG because cleavage of the C residue in C:oxoG would actually promote mutagenic conversion to A:oxoG. Here we analyze the structural basis for rejection of C:oxoG by MutY, using a synthetic crystallography approach to capture the enzyme in the process of inspecting the C:oxoG anti-substrate, with which it ordinarily binds only fleetingly. We find that MutY uses two distinct strategies to avoid presentation of C to the enzyme active site. Firstly, MutY possesses an exo-site that serves as a decoy for C, and secondly, repulsive forces with a key active site residue prevent stable insertion of C into the nucleobase recognition pocket within the enzyme active site. PMID:25995449

  13. Mutations in adenine-binding pockets enhance catalytic properties of NAD(P)H-dependent enzymes.

    PubMed

    Cahn, J K B; Baumschlager, A; Brinkmann-Chen, S; Arnold, F H

    2016-01-01

    NAD(P)H-dependent enzymes are ubiquitous in metabolism and cellular processes and are also of great interest for pharmaceutical and industrial applications. Here, we present a structure-guided enzyme engineering strategy for improving catalytic properties of NAD(P)H-dependent enzymes toward native or native-like reactions using mutations to the enzyme's adenine-binding pocket, distal to the site of catalysis. Screening single-site saturation mutagenesis libraries identified mutations that increased catalytic efficiency up to 10-fold in 7 out of 10 enzymes. The enzymes improved in this study represent three different cofactor-binding folds (Rossmann, DHQS-like, and FAD/NAD binding) and utilize both NADH and NADPH. Structural and biochemical analyses show that the improved activities are accompanied by minimal changes in other properties (cooperativity, thermostability, pH optimum, uncoupling), and initial tests on two enzymes (ScADH6 and EcFucO) show improved functionality in Escherichia coli. PMID:26512129

  14. DNA Bases Thymine and Adenine in Bio-Organic Light Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Gomez, Eliot F.; Venkatraman, Vishak; Grote, James G.; Steckl, Andrew J.

    2014-11-01

    We report on the use of nucleic acid bases (NBs) in organic light emitting diodes (OLEDs). NBs are small molecules that are the basic building blocks of the larger DNA polymer. NBs readily thermally evaporate and integrate well into the vacuum deposited OLED fabrication. Adenine (A) and thymine (T) were deposited as electron-blocking/hole-transport layers (EBL/HTL) that resulted in increases in performance over the reference OLED containing the standard EBL material NPB. A-based OLEDs reached a peak current efficiency and luminance performance of 48 cd/A and 93,000 cd/m2, respectively, while T-based OLEDs had a maximum of 76 cd/A and 132,000 cd/m2. By comparison, the reference OLED yielded 37 cd/A and 113,000 cd/m2. The enhanced performance of T-based devices is attributed to a combination of energy levels and structured surface morphology that causes more efficient and controlled hole current transport to the emitting layer.

  15. Poly-adenine-based programmable engineering of gold nanoparticles for highly regulated spherical DNAzymes.

    PubMed

    Zhu, Dan; Pei, Hao; Chao, Jie; Su, Shao; Aldalbahi, Ali; Rahaman, Mostafizur; Wang, Lihua; Wang, Lianhui; Huang, Wei; Fan, Chunhai; Zuo, Xiaolei

    2015-11-28

    Enzyme complexes are assembled at the two-dimensional lipid membrane or prearranged on three-dimensional scaffolding proteins to regulate their catalytic activity in cells. Inspired by nature, we have developed gold nanoparticle-based spherical DNAzymes (SNAzymes) with programmably engineered activities by exploiting poly-adenine (polyA)-Au interactions. In a SNAzyme, AuNPs serve as the metal core, which is decorated with a functional shell of DNAzymes. Conventional thiolated DNAzyme-based assembly leads to disordered structures with suppressed activity. In contrast, by using an anchoring block of polyA tails, we find that the activity of SNAzymes can be programmably regulated. By using a polyA30 tail, SNAzymes demonstrated remarkably enhanced binding affinity compared to the thiolated DNAzyme-based assembly (∼75-fold) or individual DNAzymes in the solution phase (∼10-fold). More significantly, this increased affinity is directly translated to the sensitivity improvement in the SNAzyme-based lead sensor. Hence, this design of SNAzymes may provide new opportunities for developing biosensors and bioimaging probes for theranostic applications.

  16. Comparison of glycogen and adenine nucleotides as indicators of metabolis stress in mummichogs

    SciTech Connect

    Vetter, R.D.; Hwang, H.M.; Hodson, R.E.

    1986-01-01

    Adenine nucleotide and glycogen concentrations were measured concurrently in white muscle of mummichogs Fundulus heteroclitus after the fish were exposed to stressors that either caused an increase in energy use (metabolic loading) or damaged metabolic function (toxic inhibition). When fish were exposed 4 h to 1% unbleached kraft mill effluent in the presence of 6 mg/L dissolved oxygen, glycogen and AMP concentrations significantly decreased below control values, whereas ATP, ADP, and total adenylate (TA) concentrations as well as the adenylate energy charge (AEC = (ATP + 1/2ADP)/TA) were unchanged. When dissolved oxygen was below 1 mg/L, the effluent caused significant decreases in glycogen, ATP, and TA, but not in ADP, AMP, or the AEC. The combined effect of effluent and hypoxia caused more significant drops in ATP or TA pool. When fish were exposed to 60..mu..g/L DDT for 4 h, none of the measured energy variables changed even though this concentration was lethal after several days. At a concentration of 100 ..mu..g/L DDT, all variables except ADP decreased significantly from control values, which may have reflected energy depletion of the muscle in response to nerve spasms rather than a direct toxic effect on the muscle itself.

  17. DNA Adenine Methylase Mutants of Salmonella Typhimurium and a Novel Dam-Regulated Locus

    PubMed Central

    Torreblanca, J.; Casadesus, J.

    1996-01-01

    Mutants of Salmonella typhimurium lacking DNA adenine methylase were isolated; they include insertion and deletion alleles. The dam locus maps at 75 min between cysG and aroB, similar to the Escherichia coli dam gene. Dam(-) mutants of S. typhimurium resemble those of E. coli in the following phenotypes: (1) increased spontaneous mutations, (2) moderate SOS induction, (3) enhancement of duplication segregation, (4) inviability of dam recA and dam recB mutants, and (5) suppression of the inviability of the dam recA and dam recB combinations by mutations that eliminate mismatch repair. However, differences between S. typhimurium and E. coli dam mutants are also found: (1) S. typhimurium dam mutants do not show increased UV sensitivity, suggesting that methyl-directed mismatch repair does not participate in the repair of UV-induced DNA damage in Salmonella. (2) S. typhimurium dam recJ mutants are viable, suggesting that the Salmonella RecJ function does not participate in the repair of DNA strand breaks formed in the absence of Dam methylation. We also describe a genetic screen for detecting novel genes regulated by Dam methylation and a locus repressed by Dam methylation in the S. typhimurium virulence (or ``cryptic'') plasmid. PMID:8878670

  18. High-mobility Group Box-1 Protein Promotes Granulomatous Nephritis in Adenine-induced nephropathy

    PubMed Central

    Oyama, Yoko; Hashiguchi, Teruto; Taniguchi, Noboru; Tancharoen, Salunya; Uchimura, Tomonori; Biswas, Kamal K.; Kawahara, Ko-ichi; Nitanda, Takao; Umekita, Yoshihisa; Lotz, Martin; Maruyama, Ikuro

    2011-01-01

    Granulomatous nephritis can be triggered by diverse factors and results in kidney failure. However, despite accumulating data about granulomatous inflammation, pathogenetic mechanisms in nephritis remain unclear. The DNA-binding high-mobility group box-1 protein (HMGB1) initiates and propagates inflammation when released by activated macrophages, functions as an “alarm cytokine” signaling tissue damage. In this study, we demonstrated elevated HMGB1 expression in renal granulomas in rats with crystal-induced granulomatous nephritis caused by feeding an adenine-rich diet. HMGB1 levels were also raised in urine and serum, as well as monocyte chemoattractant protein-1 (MCP-1), a mediator of granulomatous inflammation. Injection of HMGB1 worsened renal function and upregulated MCP-1 in rats with crystal-induced granulomatous nephritis. HMGB1 also induced MCP-1 secretion through mitogen-activated protein kinase (MAPK) and phosphoinositide-3-kinase (PI3K) pathways in rat renal tubular epithelial cells in vitro. Hmgb1+/− mice with crystal-induced nephritis displayed reduced MCP-1 expression in the kidneys and in urine and the number of macrophages in the kidneys was significantly decreased. We conclude that HMGB1 is a new mediator involved in crystal-induced nephritis that amplifies granulomatous inflammation in a cycle where MCP-1 attracts activated macrophages, resulting in excessive and sustained HMGB1 release. HMGB1 could be a novel target for inhibiting chronic granulomatous diseases. PMID:20231821

  19. Partial purification of a 6-methyladenine mRNA methyltransferase which modifies internal adenine residues.

    PubMed Central

    Tuck, M T

    1992-01-01

    Two forms of a 6-methyladenine mRNA methyltransferase have been partially purified using a T7 transcript coding for mouse dihydrofolate reductase as an RNA substrate. Both enzyme forms modify internal adenine residues within the RNA substrate. The enzymes were purified 357- and 37-fold respectively from nuclear salt extracts prepared from HeLa cells using DEAE-cellulose and phosphocellulose chromatography. The activity of the first form of the enzyme eluted from DEAE-cellulose (major form) was at least 3-fold greater than that of the second (minor form). H.p.l.c. analysis of the hydrolysed, methylated mRNA substrates demonstrated that both forms of the enzyme produced only 6-methyladenine. The two forms of the enzyme differed in their RNA substrate specificity as well as in the dependence for a 5' cap structure. The 6-methyladenine mRNA methyltransferase activity was found to be elevated in HeLa nuclei as compared with nuclear extracts from rat kidney and brain. Enzymic activity could not be detected in nuclei from either normal rat liver or regenerating rat liver. In the case of the HeLa cell, activity could only be detected in nuclear extracts, with a small amount in the ribosomal fraction. Other HeLa subcellular fractions were void of activity. PMID:1445268

  20. DNA Bases Thymine and Adenine in Bio-Organic Light Emitting Diodes

    PubMed Central

    Gomez, Eliot F.; Venkatraman, Vishak; Grote, James G.; Steckl, Andrew J.

    2014-01-01

    We report on the use of nucleic acid bases (NBs) in organic light emitting diodes (OLEDs). NBs are small molecules that are the basic building blocks of the larger DNA polymer. NBs readily thermally evaporate and integrate well into the vacuum deposited OLED fabrication. Adenine (A) and thymine (T) were deposited as electron-blocking/hole-transport layers (EBL/HTL) that resulted in increases in p