Sample records for adenine dinucleotide diaphorase

  1. The human amygdaloid complex: a cytologic and histochemical atlas using Nissl, myelin, acetylcholinesterase and nicotinamide adenine dinucleotide phosphate diaphorase staining.

    PubMed

    Sims, K S; Williams, R S

    1990-01-01

    We examined the distribution of acetylcholinesterase and nicotinamide adenine dinucleotide phosphate diaphorase enzyme activity in the human amygdala using histochemical techniques. Both methods revealed compartments of higher or lower enzyme activity, in cells or neuropil, which corresponded to the nuclear subdivisions of the amygdala as defined with classical Nissl and myelin methods. The boundaries between the histochemical compartments were usually so sharp that the identification of these nuclear subdivisions was enhanced. There was also variation of staining intensity within many of the nuclear subdivisions, such as the lateral and central nuclei, anterior amygdaloid area and the intercalated groups. This histochemical difference corresponded to more subtle differences in Nissl and myelin staining patterns, and suggests further structural subdivisions of potential functional significance. We present a revised scheme of anatomical parcellation of the human amygdala based upon serial analysis with all four techniques. Our expectation is that this will allow the delineation of a clearer homology between the cytoarchitectonic subdivisions of the human amygdala and those of experimental animals.

  2. Human sperm NADH and NADPH diaphorase cytochemistry: correlation with sperm motility.

    PubMed

    Zini, A; O'Bryan, M K; Israel, L; Schlegel, P N

    1998-03-01

    We have examined the correlation between the retention of residual sperm cytoplasm and sperm motility in semen from men presenting for infertility evaluation. Semen samples (n = 12) were obtained from nonazoospermic men presenting for infertility evaluation at our institution. Samples were fractionated into high-, intermediate-, and low-density subpopulations by Percoll gradients in order to examine the correlation between the retention of residual sperm cytoplasm and sperm motility. Residual sperm cytoplasm retention was detected by cytochemical staining of sperm for nicotinamide adenine dinucleotide (NADH)- or nicotinamide adenine dinucleotide phosphate (NADPH)-dependent diaphorase activity. The different sperm subpopulations (low, intermediate, and high density) had significantly different percentages of sperm with droplet retention (analysis of variance, P < 0.05). Using either NADH or NADPH diaphorase staining as a marker of the cytoplasmic space, a significant negative correlation was observed between the percentage of sperm with residual cytoplasmic droplets and the percentage of motile sperm (r = -0.58 and -0.61, respectively, P < 0.05). Assessment of residual sperm cytoplasm retention is a simple diagnostic test. Although this test is of unproven value in the management of infertile men, this and other studies suggest that it may provide useful data on sperm function.

  3. The distribution of nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) in the medulla oblongata, spinal cord, cranial and spinal nerves of frog, Microhyla ornata.

    PubMed

    Jadhao, Arun G; Biswas, Saikat P; Bhoyar, Rahul C; Pinelli, Claudia

    2017-04-01

    Nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) enzymatic activity has been reported in few amphibian species. In this study, we report its unusual localization in the medulla oblongata, spinal cord, cranial nerves, spinal nerves, and ganglions of the frog, Microhyla ornata. In the rhombencephalon, at the level of facial and vagus nerves, the NADPH-d labeling was noted in the nucleus of the abducent and facial nerves, dorsal nucleus of the vestibulocochlear nerve, the nucleus of hypoglossus nerve, dorsal and lateral column nucleus, the nucleus of the solitary tract, the dorsal field of spinal grey, the lateral and medial motor fields of spinal grey and radix ventralis and dorsalis (2-10). Many ependymal cells around the lining of the fourth ventricle, both facial and vagus nerves and dorsal root ganglion, were intensely labeled with NADPH-d. Most strikingly the NADPH-d activity was seen in small and large sized motoneurons in both medial and lateral motor neuron columns on the right and left sides of the brain. This is the largest stained group observed from the caudal rhombencephalon up to the level of radix dorsalis 10 in the spinal cord. The neurons were either oval or elongated in shape with long processes and showed significant variation in the nuclear and cellular diameter. A massive NADPH-d activity in the medulla oblongata, spinal cord, and spinal nerves implied an important role of this enzyme in the neuronal signaling as well as in the modulation of motor functions in the peripheral nervous systems of the amphibians. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Semisynthetic biosensors for mapping cellular concentrations of nicotinamide adenine dinucleotides.

    PubMed

    Sallin, Olivier; Reymond, Luc; Gondrand, Corentin; Raith, Fabio; Koch, Birgit; Johnsson, Kai

    2018-05-29

    We introduce a new class of semisynthetic fluorescent biosensors for the quantification of free nicotinamide adenine dinucleotide (NAD + ) and ratios of reduced to oxidized nicotinamide adenine dinucleotide phosphate (NADPH/NADP + ) in live cells. Sensing is based on controlling the spatial proximity of two synthetic fluorophores by binding of NAD(P) to the protein component of the sensor. The sensors possess a large dynamic range, can be excited at long wavelengths, are pH-insensitive, have tunable response range and can be localized in different organelles. Ratios of free NADPH/NADP + are found to be higher in mitochondria compared to those found in the nucleus and the cytosol. By recording free NADPH/NADP + ratios in response to changes in environmental conditions, we observe how cells can react to such changes by adapting metabolic fluxes. Finally, we demonstrate how a comparison of the effect of drugs on cellular NAD(P) levels can be used to probe mechanisms of action. © 2018, Sallin et al.

  5. The chemistry of nicotinamide adenine dinucleotide (NAD) analogues containing C-nucleosides related to nicotinamide riboside.

    PubMed

    Pankiewicz, Krzysztof W; Watanabe, Kyoichi A; Lesiak-Watanabe, Krystyna; Goldstein, Barry M; Jayaram, Hiremagalur N

    2002-04-01

    Oncolytic C-nucleosides, tiazofurin (2-beta-D-ribofuranosylthiazole-4-carboxamide) and benzamide riboside (3-beta-D-ribofuranosylbenzamide) are converted in cell into active metabolites thiazole-4-carboxamide- and benzamide adenine dinucleotide, TAD and BAD, respectively. TAD and BAD as NAD analogues were found to bind at the nicotinamide adenine dinucleotide (cofactor NAD) site of inosine monophosphate dehydrogenase (IMPDH), an important target in cancer treatment. The synthesis and evaluation of anticancer activity of a number of C-nucleosides related to tiazofurin and nicotinamide riboside then followed and are reviewed herein. Interestingly, pyridine C-nucleosides (such as C-nicotinamide riboside) are not metabolized into the corresponding NAD analogues in cell. Their conversion by chemical methods is described. As dinucleotides these compounds show inhibition of IMPDH in low micromolar level. Also, the synthesis of BAD in metabolically stable bis(phosphonate) form is discussed indicating the usefulness of such preformed inhibitors in drug development. Among tiazofurin analogues, Franchetti and Grifantini found, that the replacement of the sulfur by oxygen (as in oxazafurin) but not the removal of nitrogen (tiophenfurin) of the thiazole ring resulted in inactive compounds. The anti cancer activity of their synthetic dinucleotide analogues indicate that inactive compounds are not only poorly metabolized in cell but also are weak inhibitors of IMPDH as dinucleotides.

  6. Topographical distribution and morphology of NADPH-diaphorase-stained neurons in the human claustrum

    PubMed Central

    Hinova-Palova, Dimka V.; Edelstein, Lawrence; Landzhov, Boycho; Minkov, Minko; Malinova, Lina; Hristov, Stanislav; Denaro, Frank J.; Alexandrov, Alexandar; Kiriakova, Teodora; Brainova, Ilina; Paloff, Adrian; Ovtscharoff, Wladimir

    2014-01-01

    We studied the topographical distribution and morphological characteristics of NADPH-diaphorase-positive neurons and fibers in the human claustrum. These neurons were seen to be heterogeneously distributed throughout the claustrum. Taking into account the size and shape of stained perikarya as well as dendritic and axonal characteristics, Nicotinamide adenine dinucleotide phosphate-diaphorase (NADPHd)-positive neurons were categorized by diameter into three types: large, medium and small. Large neurons ranged from 25 to 35 μm in diameter and typically displayed elliptical or multipolar cell bodies. Medium neurons ranged from 20 to 25 μm in diameter and displayed multipolar, bipolar and irregular cell bodies. Small neurons ranged from 14 to 20 μm in diameter and most often displayed oval or elliptical cell bodies. Based on dendritic characteristics, these neurons were divided into spiny and aspiny subtypes. Our findings reveal two populations of NADPHd-positive neurons in the human claustrum—one comprised of large and medium cells consistent with a projection neuron phenotype, the other represented by small cells resembling the interneuron phenotype as defined by previous Golgi impregnation studies. PMID:24904317

  7. Distinctive Spectral Features of Exciton and Excimer States in the Ultrafast Electronic Deactivation of the Adenine Dinucleotide

    NASA Astrophysics Data System (ADS)

    Stuhldreier, Mayra C.; Röttger, Katharina; Temps, Friedrich

    We report the observation by transient absorption spectroscopy of distinctive spectro-temporal signatures of delocalized exciton versus relaxed, weakly bound excimer states in the ultrafast electronic deactivation after UV photoexcitation of the adenine dinucleotide.

  8. Selectivity and activity of adenine dinucleotides at recombinant P2X2 and P2Y1 purinoceptors.

    PubMed Central

    Pintor, J.; King, B. F.; Miras-Portugal, M. T.; Burnstock, G.

    1996-01-01

    1. Adenine dinucleotides (Ap3A, x = 2-6) are naturally-occurring polyphosphated nucleotidic substances which are found in the CNS and are known to be released in a calcium-dependent manner from storage vesicles in brain synaptosomes. The selectivity and activity of adenine dinucleotides for neuronally-derived recombinant P2 purinoceptors were studied using P2X2 and P2Y1 subtypes expressed in Xenopus oocytes. 2. For the P2Y1 subtype derived from chick brain, Ap3A was equipotent and as active as ATP (EC50 values: 375 +/- 86 nM and 334 +/- 25 nM, respectively). Ap4A was a weak partial agonist and other dinucleotides were inactive as agonists. None of the inactive dinucleotides were antagonists nor modulated the activity of Ap3A and ATP. 3. For the P2X2 subtype derived from rat PC12 cells, Ap4A was as active as ATP but less potent (EC50 values: 15.2 +/- 1 microM and 3.7 +/- 0.7 microM, respectively). Other adenosine dinucleotides were inactive as either agonists or antagonists. 4. Ap5A (1-100 nM) potentiated ATP-responses at the P2X2 subtype, showing an EC50 of 2.95 +/- 0.7 nM for this modulatory effect. Ap5A (10 nM) shifted the concentration-response curves for ATP to the left by one-half log10 unit but did not alter the Hill co-efficient for ATP (nH = 2.1 +/- 0.1). Ap5A (10 nM) failed to potentiate Ap4A-responses but did enhance the efficacy of the P2 purinoceptor antagonist, suramin, by 12 fold at the P2X2 subtype. 5. In conclusion, the results show that ionotropic (P2X2) and metabotropic (P2Y1) ATP receptors which occur in the CNS are activated selectively by naturally-occurring adenine dinucleotides which are known to be released with nucleotides from storage vesicles. The observed potentiation of P2X2-responses by Ap5A, where co-released with ATP by brain synaptosomes, may have a functional bearing in purinergic signalling in the CNS. PMID:8922753

  9. Nicotinamide adenine dinucleotide biosynthesis promotes liver regeneration

    PubMed Central

    Mukherjee, Sarmistha; Chellappa, Karthikeyani; Moffitt, Andrea; Ndungu, Joan; Dellinger, Ryan W.; Davis, James G.; Agarwal, Beamon; Baur, Joseph A.

    2016-01-01

    The regenerative capacity of the liver is essential for recovery from surgical resection or injuries induced by trauma or toxins. During liver regeneration, the concentration of nicotinamide adenine dinucleotide (NAD) falls, at least in part due to metabolic competition for precursors. To test whether NAD availability restricts the rate of liver regeneration, we supplied nicotinamide riboside (NR), an NAD precursor, in the drinking water of mice subjected to partial hepatectomy. NR increased DNA synthesis, mitotic index, and mass restoration in the regenerating livers. Intriguingly, NR also ameliorated the steatosis that normally accompanies liver regeneration. To distinguish the role of hepatocyte NAD levels from any systemic effects of NR, we generated mice overexpressing Nicotinamide phosphoribosyltransferase (Nampt), a rate-limiting enzyme for NAD synthesis, specifically in the liver. Nampt overexpressing mice were mildly hyperglycemic at baseline and, similarly to the mice treated with NR, exhibited enhanced liver regeneration and reduced steatosis following partial hepatectomy. Conversely, mice lacking Nampt in hepatocytes exhibited impaired regenerative capacity that was completely rescued by administering NR. Conclusion NAD availability is limiting during liver regeneration and supplementation with precursors such as NR may be therapeutic in settings of acute liver injury. PMID:27809334

  10. Nicotinamide adenine dinucleotide biosynthesis promotes liver regeneration.

    PubMed

    Mukherjee, Sarmistha; Chellappa, Karthikeyani; Moffitt, Andrea; Ndungu, Joan; Dellinger, Ryan W; Davis, James G; Agarwal, Beamon; Baur, Joseph A

    2017-02-01

    The regenerative capacity of the liver is essential for recovery from surgical resection or injuries induced by trauma or toxins. During liver regeneration, the concentration of nicotinamide adenine dinucleotide (NAD) falls, at least in part due to metabolic competition for precursors. To test whether NAD availability restricts the rate of liver regeneration, we supplied nicotinamide riboside (NR), an NAD precursor, in the drinking water of mice subjected to partial hepatectomy. NR increased DNA synthesis, mitotic index, and mass restoration in the regenerating livers. Intriguingly, NR also ameliorated the steatosis that normally accompanies liver regeneration. To distinguish the role of hepatocyte NAD levels from any systemic effects of NR, we generated mice overexpressing nicotinamide phosphoribosyltransferase, a rate-limiting enzyme for NAD synthesis, specifically in the liver. Nicotinamide phosphoribosyltransferase overexpressing mice were mildly hyperglycemic at baseline and, similar to mice treated with NR, exhibited enhanced liver regeneration and reduced steatosis following partial hepatectomy. Conversely, mice lacking nicotinamide phosphoribosyltransferase in hepatocytes exhibited impaired regenerative capacity that was completely rescued by administering NR. NAD availability is limiting during liver regeneration, and supplementation with precursors such as NR may be therapeutic in settings of acute liver injury. (Hepatology 2017;65:616-630). © 2016 by the American Association for the Study of Liver Diseases.

  11. Orofacial inflammatory pain affects the expression of MT1 and NADPH-d in rat caudal spinal trigeminal nucleus and trigeminal ganglion

    PubMed Central

    Huang, Fang; He, Hongwen; Fan, Wenguo; Liu, Yongliang; Zhou, Hongyu; Cheng, Bin

    2013-01-01

    Very little is known about the role of melatonin in the trigeminal system, including the function of melatonin receptor 1. In the present study, adult rats were injected with formaldehyde into the right vibrissae pad to establish a model of orofacial inflammatory pain. The distribution of melatonin receptor 1 and nicotinamide adenine dinucleotide phosphate diaphorase in the caudal spinal trigeminal nucleus and trigeminal ganglion was determined with immunohistochemistry and histochemistry. The results show that there are significant differences in melatonin receptor 1 expression and nicotinamide adenine dinucleotide phosphate diaphorase expression in the trigeminal ganglia and caudal spinal nucleus during the early stage of orofacial inflammatory pain. Our findings suggest that when melatonin receptor 1 expression in the caudal spinal nucleus is significantly reduced, melatonin's regulatory effect on pain is attenuated. PMID:25206619

  12. Development of a simple and efficient method for assaying cytidine monophosphate sialic acid synthetase activity using an enzymatic reduced nicotinamide adenine dinucleotide/oxidized nicotinamide adenine dinucleotide converting system.

    PubMed

    Fujita, Akiko; Sato, Chihiro; Münster-Kühnel, Anja-K; Gerardy-Schahn, Rita; Kitajima, Ken

    2005-02-01

    A new reliable method to assay the activity of cytidine monophosphate sialic acid (CMP-Sia) synthetase (CSS) has been developed. The activation of sialic acids (Sia) to CMP-Sia is a prerequisite for the de novo synthesis of sialoglycoconjugates. In vertebrates, CSS has been cloned from human, mouse, and rainbow trout, and the crystal structure has been resolved for the mouse enzyme. The mouse and rainbow trout enzyme have been compared with respect to substrate specificity, demonstrating that the mouse enzyme exhibits a pronounced specificity for N-acetylneuraminic acid (Neu5Ac), while the rainbow trout CSS is equally active with either of three Sia species, Neu5Ac, N-glycolylneuraminic acid (Neu5Gc), and deaminoneuraminic acid (KDN). However, molecular details that explain the pronounced substrate specificities are unknown. Understanding the catalytic mechanisms of these enzymes is of major importance, since CSSs play crucial roles in cellular sialylation patterns and thus are potential drug targets in a number of pathophysiological situations. The availability of the cDNAs and the obtained structural data enable rational approaches; however, these efforts are limited by the lack of a reliable high-throughput assay system. Here we describe a new assay system that allows product quantification in a reduced nicotinamide adenine dinucleotide (NADH)-dependent color reaction. The activation reaction catalyzed by CSS, CTP+Sia-->CMP-Sia+pyrophosphate, was evaluated by a consumption of Sia, which corresponds to that of NADH on the following two successive reactions: (i) Sia-->pyruvate+ManNAc (or Man), catalyzed by a sialic acid lyase (SAL), and (ii) pyruvate+NADH-->lactate+oxidized nicotinamide adenine dinucleotide (NAD+), catalyzed by a lactate dehydrogenase (LDH). Consumption of NADH can be photometrically monitored on a microtiter plate reader for a number of test samples at the same time. Furthermore, based on the quantification of CSS used in the SAL/LDH assay

  13. Diabetic complications within the context of aging: Nicotinamide adenine dinucleotide redox, insulin C-peptide, sirtuin 1-liver kinase B1-adenosine monophosphate-activated protein kinase positive feedback and forkhead box O3.

    PubMed

    Ido, Yasuo

    2016-07-01

    Recent research in nutritional control of aging suggests that cytosolic increases in the reduced form of nicotinamide adenine dinucleotide and decreasing nicotinamide adenine dinucleotide metabolism plays a central role in controlling the longevity gene products sirtuin 1 (SIRT1), adenosine monophosphate-activated protein kinase (AMPK) and forkhead box O3 (FOXO3). High nutrition conditions, such as the diabetic milieu, increase the ratio of reduced to oxidized forms of cytosolic nicotinamide adenine dinucleotide through cascades including the polyol pathway. This redox change is associated with insulin resistance and the development of diabetic complications, and might be counteracted by insulin C-peptide. My research and others' suggest that the SIRT1-liver kinase B1-AMPK cascade creates positive feedback through nicotinamide adenine dinucleotide synthesis to help cells cope with metabolic stress. SIRT1 and AMPK can upregulate liver kinase B1 and FOXO3, key factors that help residential stem cells cope with oxidative stress. FOXO3 directly changes epigenetics around transcription start sites, maintaining the health of stem cells. 'Diabetic memory' is likely a result of epigenetic changes caused by high nutritional conditions, which disturb the quiescent state of residential stem cells and impair tissue repair. This could be prevented by restoring SIRT1-AMPK positive feedback through activating FOXO3. © 2016 The Author. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  14. NADPH-Diaphorase Colocalizes with GPER and Is Modulated by the GPER Agonist G1 in the Supraoptic and Paraventricular Nuclei of Ovariectomized Female Rats.

    PubMed

    Grassi, Daniela; Lagunas, Natalia; Pinos, Helena; Panzica, GianCarlo; Garcia-Segura, Luis Miguel; Collado, Paloma

    2017-01-01

    Nitric oxide is produced in the brain by the neuronal nitric oxide synthase (nNOS) and carries out a wide range of functions by acting as a neurotransmitter-like molecule. Gonadal hormones are involved in the regulation of the brain nitrergic system. We have previously demonstrated that estradiol, via classical estrogen receptors (ERs), regulates NOS activity in the supraoptic (SON) and paraventricular (PVN) nuclei of the hypothalamus, acting through both ERα and ERβ. Magnocellular and parvocellular neurons in the SON and PVN also express the G protein-coupled ER (GPER). In this study, we have assessed whether GPER is also involved in the regulation of nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase in the SON and PVN. Adult female ovariectomized rats were treated with G1, a selective GPER agonist, or with G1 in combination with G15, a selective GPER antagonist. G1 treatment decreased NADPH-diaphorase expression in the SON and in all PVN subnuclei. The treatment with G1 + G15 effectively rescued the G1-dependent decrease in NADPH-diaphorase expression in both brain regions. In addition, the activation of extracellular signal-regulated kinase (ERK) 1/2, one of the kinases involved in the GPER-dependent intracellular signaling pathway and in NOS phosphorylation, was assessed in the same brain nuclei. Treatment with G1 significantly decreased the number of p-ERK 1/2-positive cells in the SON and PVN, while the treatment with G1 + G15 significantly recovered its number to control values. These findings suggest that the activation of GPER in the SON and PVN inhibits the phosphorylation of ERK 1/2, which induces a decrease in NADPH-diaphorase expression. © 2016 S. Karger AG, Basel.

  15. Relationships between laser powers and photoacoustic signal intensities of flavin adenine dinucleotide and beta-carotene dissolved in solutions

    NASA Astrophysics Data System (ADS)

    Imakubo, Keiichi

    1994-10-01

    Ar ion laser-induced photoacoustic spectroscopy has been performed on 0.01 mu M flavin adenine dinucleotide in H2O and 0.01 mu M beta-carotene in n-hexane where the optical absorption spectroscopy is not applicable. On the basis of the linear relationships between laser powers and photoacoustic signal intensities up to 500 mW, it may be concluded that laser power ranging from 10 to 50 mW is required for the successful observation of photoacoustic signals without any photochemical or photobiological effects.

  16. The conserved baculovirus protein p33 (Ac92) is a flavin adenine dinucleotide-linked sulfhydryl oxidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, C.M.; Rohrmann, G.F.; Merrill, G.F., E-mail: merrillg@onid.orst.ed

    2009-06-05

    Open reading frame 92 of the Autographa californica baculovirus (Ac92) is one of about 30 core genes present in all sequenced baculovirus genomes. Computer analyses predicted that the Ac92 encoded protein (called p33) and several of its baculovirus orthologs were related to a family of flavin adenine dinucleotide (FAD)-linked sulfhydryl oxidases. Alignment of these proteins indicated that, although they were highly diverse, a number of amino acids in common with the Erv1p/Alrp family of sulfhydryl oxidases are present. Some of these conserved amino acids are predicted to stack against the isoalloxazine and adenine components of FAD, whereas others are involvedmore » in electron transfer. To investigate this relationship, Ac92 was expressed in bacteria as a His-tagged fusion protein, purified, and characterized both spectrophotometrically and for its enzymatic activity. The purified protein was found to have the color (yellow) and absorption spectrum consistent with it being a FAD-containing protein. Furthermore, it was demonstrated to have sulfhydryl oxidase activity using dithiothreitol and thioredoxin as substrates.« less

  17. The conserved baculovirus protein p33 (Ac92) is a flavin adenine dinucleotide-linked sulfhydryl oxidase.

    PubMed

    Long, C M; Rohrmann, G F; Merrill, G F

    2009-06-05

    Open reading frame 92 of the Autographa californica baculovirus (Ac92) is one of about 30 core genes present in all sequenced baculovirus genomes. Computer analyses predicted that the Ac92 encoded protein (called p33) and several of its baculovirus orthologs were related to a family of flavin adenine dinucleotide (FAD)-linked sulfhydryl oxidases. Alignment of these proteins indicated that, although they were highly diverse, a number of amino acids in common with the Erv1p/Alrp family of sulfhydryl oxidases are present. Some of these conserved amino acids are predicted to stack against the isoalloxazine and adenine components of FAD, whereas others are involved in electron transfer. To investigate this relationship, Ac92 was expressed in bacteria as a His-tagged fusion protein, purified, and characterized both spectrophotometrically and for its enzymatic activity. The purified protein was found to have the color (yellow) and absorption spectrum consistent with it being a FAD-containing protein. Furthermore, it was demonstrated to have sulfhydryl oxidase activity using dithiothreitol and thioredoxin as substrates.

  18. In vivo native fluorescence spectroscopy and nicotinamide adinine dinucleotide/flavin adenine dinucleotide reduction and oxidation states of oral submucous fibrosis for chemopreventive drug monitoring

    NASA Astrophysics Data System (ADS)

    Sivabalan, Shanmugam; Vedeswari, C. Ponranjini; Jayachandran, Sadaksharam; Koteeswaran, Dornadula; Pravda, Chidambaranathan; Aruna, Prakasa Rao; Ganesan, Singaravelu

    2010-01-01

    Native fluorescence spectroscopy has shown potential to characterize and diagnose oral malignancy. We aim at extending the native fluorescence spectroscopy technique to characterize normal and oral submucous fibrosis (OSF) patients under pre- and post-treated conditions, and verify whether this method could also be considered in the monitoring of therapeutic prognosis noninvasively. In this study, 28 normal subjects and 28 clinically proven cases of OSF in the age group of 20 to 40 years are diagnosed using native fluorescence spectroscopy. The OSF patients are given dexamethasone sodium phosphate and hyaluronidase twice a week for 6 weeks, and the therapeutic response is monitored using fluorescence spectroscopy. The fluorescence emission spectra of normal and OSF cases of both pre- and post-treated conditions are recorded in the wavelength region of 350 to 600 nm at an excitation wavelength of 330 nm. The statistical significance is verified using discriminant analysis. The oxidation-reduction ratio of the tissue is also calculated using the fluorescence emission intensities of flavin adenine dinucleotide and nicotinamide adinine dinucleotide at 530 and 440 nm, respectively, and they are compared with conventional physical clinical examinations. This study suggests that native fluorescence spectroscopy could also be extended to OSF diagnosis and therapeutic prognosis.

  19. Inhibition of NAD glycohydrolase and ADP-ribosyl transferases by carbocyclic analogues of oxidized nicotinamide adenine dinucleotide.

    PubMed

    Slama, J T; Simmons, A M

    1989-09-19

    Analogues of oxidized nicotinamide adenine dinucleotide (NAD+) in which a 2,3-dihydroxycyclopentane ring replaces the beta-D-ribonucleotide ring of the nicotinamide riboside moiety of NAD+ have recently been synthesized [Slama, J. T., & Simmons, A. M. (1988) Biochemistry 27, 183]. Carbocyclic NAD+ analogues have been shown to inhibit NAD glycohydrolases and ADP-ribosyl transferases such as cholera toxin A subunit. In this study, the diastereomeric mixture of dinucleotides was separated, and the inhibitory capacity of each of the purified diastereomers was defined. The NAD+ analogue in which the D-dihydroxycyclopentane is substituted for the D-ribose is designated carba-NAD and was demonstrated to be a poor inhibitor of the Bungarus fasciatus venom NAD glycohydrolase. The diastereomeric dinucleotide pseudo-carbocyclic-NAD (psi-carba-NAD), containing L-dihydroxycyclopentane in place of the D-ribose of NAD+, was shown, however, to be a potent competitive inhibitor of the venom NAD glycohydrolase with an inhibitor dissociation constant (Ki) of 35 microM. This was surprising since psi-carba-NAD contains the carbocyclic analogue of the unnatural L-ribotide and was therefore expected to be a biologically inactive diastereomer. psi-Carba-NAD also competitively inhibited the insoluble brain NAD glycohydrolase from cow (Ki = 6.7 microM) and sheep (Ki = 31 microM) enzyme against which carba-NAD is ineffective. Sensitivity to psi-carba-NAD was found to parallel sensitivity to inhibition by isonicotinic acid hydrazide, another NADase inhibitor. psi-Carba-NAD is neither a substrate for nor an inhibitor of alcohol dehydrogenase, whereas carba-NAD is an efficient dehydrogenase substrate.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Coexistence of calbindin D-28k and NADPH-diaphorase in vagal and glossopharyngeal sensory neurons of the rat.

    PubMed

    Ichikawa, H; Helke, C J

    1996-10-07

    The presence and coexistence of calbindin D-28k-immunoreactivity (ir) and nicotinamide adenosine dinucleotide phosphate (NADPH)-diaphorase activity (a marker of neurons that are presumed to convert L-arginine to L-citrulline and nitric oxide) were examined in the glossopharyngeal and vagal sensory ganglia (jugular, petrosal and nodose ganglia) of the rat. Calbindin D-28k-ir nerve cells were found in moderate and large numbers in the petrosal and nodose ganglia, respectively. Some calbindin D-28k-ir nerve cells were also observed in the jugular ganglion. NADPH-diaphorase positive nerve cells were localized to the jugular and nodose ganglia and were rare in the petrosal ganglion. A considerable portion (33-51%) of the NADPH-diaphorase positive neurons in these ganglia colocalized calbindin D-28k-ir. The presence and colocalization of calbindin D-28k-ir and NADPH-diaphorase activity in neurotransmitter-identified subpopulations of visceral sensory neurons were also studied. In all three ganglia, calcitonin gene-related peptide (CGRP)-ir was present in many NADPH-diaphorase positive neurons, a subset of which also contained calbindin D-28k-ir. In the nodose ganglion, many (42%) of tyrosine hydroxylase (TH)-ir neurons also contained NADPH diaphorase activity but did not contain calbindin D-28k-ir. These data are consistent with a potential co-operative role for calbindin D-28k and NADPH-diaphorase in the functions of a subpopulation of vagal and glossopharyngeal sensory neurons.

  1. Nicotinic Acid Adenine Dinucleotide Phosphate Analogs Substituted on the Nicotinic Acid and Adenine Ribosides. Effects on Receptor-Mediated Ca2+ release

    PubMed Central

    Trabbic, Christopher J.; Zhang, Fan; Walseth, Timothy F.; Slama, James T.

    2015-01-01

    Nicotinic acid adenine dinucleotide phosphate (NAADP) is a Ca2+ releasing intracellular second messenger in both mammals and echinoderms. We report that large functionalized substituents introduced at the nicotinic acid 5-position are recognized by the sea urchin receptor, albeit with a 20–500 fold loss in agonist potency. 5-(3-Azidopropyl)-NAADP was shown to release Ca2+ with an EC50 of 31 µM and to compete with NAADP for receptor binding with an IC50 of 56 nM. Attachment of charged groups to the nicotinic acid of NAADP is associated with loss of activity, suggesting that the nicotinate riboside moiety is recognized as a neutral zwitterion. Substituents (Br- and N3-) can be introduced at the 8-adenosyl position of NAADP while preserving high potency and agonist efficacy and an NAADP derivative substituted at both the 5-position of the nicotinic acid and at the 8-adenosyl position was also recognized although the agonist potency was significantly reduced. PMID:25826221

  2. Curcumin and resveratrol rescue cortical-hippocampal system from chronic fluoride-induced neurodegeneration and enhance memory retrieval.

    PubMed

    Sharma, Chhavi; Suhalka, Pooja; Bhatnagar, Maheep

    2018-04-13

    The aim of this study was: (1) to evaluate the neuroprotective effect of resveratrol and curcumin on nicotinamide adenine dinucleotide phosphate diaphorase activity in neuronal cell in subregions of mice brain, (2) to evaluate the effects on antioxidant status and (3) to evaluate the protective effects of phytochemicals on learning and memory following fluoride exposure. Young mice (one month old, body weight (BW) 30 ± 5 mg) were provided with 120 ppm sodium fluoride dissolved in drinking water. They were given curcumin (30 mg/kg BW) or resveratrol (30 mg/kg BW) orally once in a day up to 30 days. Effects of resveratrol and curcumin on spatial learning and memory were studied using Morris water maze and classic maze test. Effects on brain antioxidants' (lactose dehydrogenase (LDH), malondialdehyde and reactive oxygen species) status were also studied in vitro. Histochemistry was done to assess the effect of treatments on nitric oxide neurotransmitter. Our study showed that in fluoride-treated animals, the number of nicotinamide adenine dinucleotide phosphate diaphorase positive neurons, intracellular Ca 2+ , reactive oxygen species level, LDH and malondialdehyde concentration increased significantly. Interestingly, after treatment with curcumin or resveratrol, a significant decrease in the number of nicotinamide adenine dinucleotide phosphate diaphorase positive neurons and antioxidant status was observed. This decrease was more considerable in resveratrol-treated group. Our study indicates that both antioxidants, curcumin and resveratrol, are useful in reducing neurodegeneration in selective areas of cornus ammonis 1 (CA1), CA3, dentate gyrus (DG) and the cortex of mice brain and in recuperating the loss of memory and learning caused due to fluoride exposure.

  3. Absorption and luminescence spectroscopy of mass-selected flavin adenine dinucleotide mono-anions

    NASA Astrophysics Data System (ADS)

    Giacomozzi, L.; Kjær, C.; Langeland Knudsen, J.; Andersen, L. H.; Brøndsted Nielsen, S.; Stockett, M. H.

    2018-06-01

    We report the absorption profile of isolated Flavin Adenine Dinucleotide (FAD) mono-anions recorded using photo-induced dissociation action spectroscopy. In this charge state, one of the phosphoric acid groups is deprotonated and the chromophore itself is in its neutral oxidized state. These measurements cover the first four optical transitions of FAD with excitation energies from 2.3 to 6.0 eV (210-550 nm). The S0 → S2 transition is strongly blue shifted relative to aqueous solution, supporting the view that this transition has a significant charge-transfer character. The remaining bands are close to their solution-phase positions. This confirms that the large discrepancy between quantum chemical calculations of vertical transition energies and solution-phase band maxima cannot be explained by solvent effects. We also report the luminescence spectrum of FAD mono-anions in vacuo. The gas-phase Stokes shift for S1 is 3000 cm-1, which is considerably larger than any previously reported for other molecular ions and consistent with a significant displacement of the ground and excited state potential energy surfaces. Consideration of the vibronic structure is thus essential for simulating the absorption and luminescence spectra of flavins.

  4. Eco-synthesis of graphene and its use in dihydronicotinamide adenine dinucleotide sensing.

    PubMed

    Amouzadeh Tabrizi, Mahmoud; Jalilzadeh Azar, Somayeh; Nadali Varkani, Javad

    2014-09-01

    In this paper, we report a green and eco-friendly approach to synthesize reduced graphene oxide (rGO) via a mild hydrothermal process using malt as a reduced agent. The proposed method is based on the reduction of graphene oxide (GO) in malt solution by making use of the reducing capability of phenolic compounds contained in malt solution. The obtained rGO was characterized by atomic force microscopy (AFM), ultraviolet-visible (UV-vis) absorption spectroscopy, X-ray diffraction spectroscopy (XRD), Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Electrochemical impedance spectroscopy analysis revealed that the charge transfer resistance of rGO modified glassy carbon (GC) electrode was much lower than that of the GC electrode. The electrochemical behavior of dihydronicotinamide adenine dinucleotide (NADH) on rGO modified GC electrode was investigated by cyclic voltammetry and amperometry. Electrochemical experiments indicated that rGO/GC electrode exhibited excellent electrocatalytic activity toward the NADH, which can be attributed to excellent electrical conductivity and high specific surface area of the rGO composite. The resulting biosensor showed highly sensitive amperometric response to NADH with a low detection limit (0.33μM). Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Isotope effect studies of the chemical mechanism of nicotinamide adenine dinucleotide malic enzyme from Crassula

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grissom, C.B.; Willeford, O.; Wedding, R.T.

    1987-05-05

    The /sup 13/C primary kinetic isotope effect on the decarboxylation of malate by nicotinamide adenine dinucleotide malic enzyme from Crassula argentea is 1.0199 +/- 0.0006 with proteo L-malate-2-H and 1.0162 +/- 0.0003 with malate-2-d. The primary deuterium isotope effect is 1.45 +/- 0.10 on V/K and 1.93 +/- 0.13 on V/sub max/. This indicates a stepwise conversion of malate to pyruvate and CO/sub 2/ with hydride transfer preceding decarboxylation, thereby suggesting a discrete oxaloacetate intermediate. This is in agreement with the stepwise nature of the chemical mechanism of other malic enzymes despite the Crassula enzyme's inability to reduce or decarboxylatemore » oxaloacetate. Differences in morphology and allosteric regulation between enzymes suggest specialization of the Crassula malic enzyme for the physiology of crassulacean and acid metabolism while maintaining the catalytic events founds in malic enzymes from animal sources.« less

  6. Roles of Nicotinamide Adenine Dinucleotide Phosphate (NADPH) Oxidase in Angiogenesis: Isoform-Specific Effects

    PubMed Central

    Wang, Haibo; Hartnett, M. Elizabeth

    2017-01-01

    Angiogenesis is the formation of new blood vessels from preexisting ones and is implicated in physiologic vascular development, pathologic blood vessel growth, and vascular restoration. This is in contrast to vasculogenesis, which is de novo growth of vessels from vascular precursors, or from vascular repair that occurs when circulating endothelial progenitor cells home into an area and develop into blood vessels. The objective of this review is to discuss the isoform-specific role of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) in physiologic and pathologic angiogenesis and vascular repair, but will not specifically address vasculogenesis. As the major source of reactive oxygen species (ROS) in vascular endothelial cells (ECs), NOX has gained increasing attention in angiogenesis. Activation of NOX leads to events necessary for physiologic and pathologic angiogenesis, including EC migration, proliferation and tube formation. However, activation of different NOX isoforms has different effects in angiogenesis. Activation of NOX2 promotes pathologic angiogenesis and vascular inflammation, but may be beneficial in revascularization in the hindlimb ischemic model. In contrast, activation of NOX4 appears to promote physiologic angiogenesis mainly by protecting the vasculature during ischemia, hypoxia and inflammation and by restoring vascularization, except in models of oxygen-induced retinopathy and diabetes where NOX4 activation leads to pathologic angiogenesis. PMID:28587189

  7. Preclinical evidence of mitochondrial nicotinamide adenine dinucleotide as an effective alarm parameter under hypoxia

    NASA Astrophysics Data System (ADS)

    Shi, Hua; Sun, Nannan; Mayevsky, Avraham; Zhang, Zhihong; Luo, Qingming

    2014-01-01

    Early detection of tissue hypoxia in the intensive care unit is essential for effective treatment. Reduced nicotinamide adenine dinucleotide (NADH) has been suggested to be the most sensitive indicator of tissue oxygenation at the mitochondrial level. However, no experimental evidence comparing the kinetics of changes in NADH and other physiological parameters has been provided. The aim of this study is to obtain the missing data in a systematic and reliable manner. We constructed four acute hypoxia models, including hypoxic hypoxia, hypemic hypoxia, circulatory hypoxia, and histogenous hypoxia, and measured NADH fluorescence, tissue reflectance, cerebral blood flow, respiration, and electrocardiography simultaneously from the induction of hypoxia until death. We found that NADH was not always the first onset parameter responding to hypoxia. The order of responses was mainly affected by the cause of hypoxia. However, NADH reached its alarm level earlier than the other monitored parameters, ranging from several seconds to >10 min. As such, we suggest that the NADH can be used as a hypoxia indicator, although the exact level that should be used must be further investigated. When the NADH alarm is detected, the body still has a chance to recover if appropriate and timely treatment is provided.

  8. Synthesis, conformational analysis, and biological activity of new analogues of thiazole-4-carboxamide adenine dinucleotide (TAD) as IMP dehydrogenase inhibitors.

    PubMed

    Franchetti, Palmarisa; Cappellacci, Loredana; Pasqualini, Michela; Petrelli, Riccardo; Jayaprakasan, Vetrichelvan; Jayaram, Hiremagalur N; Boyd, Donald B; Jain, Manojkumar D; Grifantini, Mario

    2005-03-15

    Thiazole-4-carboxamide adenine dinucleotide (TAD) analogues T-2'-MeAD (1) and T-3'-MeAD (2) containing, respectively, a methyl group at the ribose 2'-C-, and 3'-C-position of the adenosine moiety, were prepared as potential selective human inosine monophosphate dehydrogenase (IMPDH) type II inhibitors. The synthesis of heterodinucleotides was carried out by CDI-catalyzed coupling reaction of unprotected 2'-C-methyl- or 3'-C-methyl-adenosine 5'-monophosphate with 2',3'-O-isopropylidene-tiazofurin 5'-monophosphate, and then deisopropylidenation. Biological evaluation of dinucleotides 1 and 2 as inhibitors of recombinant human IMPDH type I and type II resulted in a good activity. Inhibition of both isoenzymes by T-2'-MeAD and T-3'-MeAD was noncompetitive with respect to NAD substrate. Binding of T-3'-MeAD was comparable to that of parent compound TAD, while T-2'-MeAD proved to be a weaker inhibitor. However, no significant difference was found in inhibition of the IMPDH isoenzymes. T-2'-MeAD and T-3'-MeAD were found to inhibit the growth of K562 cells (IC(50) 30.7 and 65.0muM, respectively).

  9. Minimizing photodecomposition of flavin adenine dinucleotide fluorescence by the use of pulsed LEDs.

    PubMed

    Rösner, J; Liotta, A; Angamo, E A; Spies, C; Heinemann, U; Kovács, R

    2016-11-01

    Dynamic alterations in flavin adenine dinucleotide (FAD) fluorescence permit insight into energy metabolism-dependent changes of intramitochondrial redox potential. Monitoring FAD fluorescence in living tissue is impeded by photobleaching, restricting the length of microfluorimetric recordings. In addition, photodecomposition of these essential electron carriers negatively interferes with energy metabolism and viability of the biological specimen. Taking advantage of pulsed LED illumination, here we determined the optimal excitation settings giving the largest fluorescence yield with the lowest photobleaching and interference with metabolism in hippocampal brain slices. The effects of FAD bleaching on energy metabolism and viability were studied by monitoring tissue pO 2 , field potentials and changes in extracellular potassium concentration ([K + ] o ). Photobleaching with continuous illumination consisted of an initial exponential decrease followed by a nearly linear decay. The exponential decay was significantly decelerated with pulsed illumination. Pulse length of 5 ms was sufficient to reach a fluorescence output comparable to continuous illumination, whereas further increasing duration increased photobleaching. Similarly, photobleaching increased with shortening of the interpulse interval. Photobleaching was partially reversible indicating the existence of a transient nonfluorescent flavin derivative. Pulsed illumination decreased FAD photodecomposition, improved slice viability and reproducibility of stimulus-induced FAD, field potential, [K + ] o and pO 2 changes as compared to continuous illumination. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  10. Characterization of Two Mitochondrial Flavin Adenine Dinucleotide-Dependent Glycerol-3-Phosphate Dehydrogenases in Trypanosoma brucei

    PubMed Central

    Škodová, Ingrid; Verner, Zdeněk; Bringaud, Fréderic; Fabian, Peter

    2013-01-01

    Glycerol-3-phosphate dehydrogenases (G3PDHs) constitute a shuttle that serves for regeneration of NAD+ reduced during glycolysis. This NAD-dependent enzyme is employed in glycolysis and produces glycerol-3-phosphate from dihydroxyacetone phosphate, while its flavin adenine dinucleotide (FAD)-dependent homologue catalyzes a reverse reaction coupled to the respiratory chain. Trypanosoma brucei possesses two FAD-dependent G3PDHs. While one of them (mitochondrial G3PDH [mtG3PDH]) has been attributed to the mitochondrion and seems to be directly involved in G3PDH shuttle reactions, the function of the other enzyme (putative G3PDH [putG3PDH]) remains unknown. In this work, we used RNA interference and protein overexpression and tagging to shed light on the relative contributions of both FAD-G3PDHs to overall cellular metabolism. Our results indicate that mtG3PDH is essential for the bloodstream stage of T. brucei, while in the procyclic stage the enzyme is dispensable. Expressed putG3PDH-V5 was localized to the mitochondrion, and the data obtained by digitonin permeabilization, Western blot analysis, and immunofluorescence indicate that putG3PDH is located within the mitochondrion. PMID:24142106

  11. [Influence exogenous nicotinamide adenine dinucleotide (NAD+) on contractile and bioelectric activity of the rat heart].

    PubMed

    Pustovit, K B; Kuz'min, V S; Sukhova, G S

    2014-04-01

    This study is aimed to the investigation of the nicotinamide adenine dinucleotide (NAD+) effects and mechanisms of action in a heart. NAD+ (mcM) induces multiphase alternation of contractile activity of isolated rat heart: short positive inotropic action is followed by a negative inotropic phase. NAD+ (1-100 mcM) induces decreasing of action potential duration (APD) in rat atrial myocardium (from 45 +/- 0.82 ms in control experiments to 39 +/- 1.05 (n = 8) and 32 +/- 2 (n = 8) during application of 10 and 100 mcM of NAD+, respectively). Significant APD increase (from 45 +/- 0.82 ms to 74 +/- 1.89 (n = 8) ms) was observed during washing out of NAD+ (100 mcM). ATP or adenosine was unable to increase APD both during application or washing out. NAD+ induced APD decrease was not suppressed by P1-antagonist theophylline. P1-purinoreceptor and metabolite independent direct action of NAD+ in rat heart is suggested. Activation of P2X or P2Y receptors, cyclic ADP-ribose accumulation in cardiomyocytes is proposed as a main mechanism of NAD(+)-induced effects in the heart.

  12. Visualization of Nicotine Adenine Dinucleotide Redox Homeostasis with Genetically Encoded Fluorescent Sensors.

    PubMed

    Zhao, Yuzheng; Zhang, Zhuo; Zou, Yejun; Yang, Yi

    2018-01-20

    Beyond their roles as redox currency in living organisms, pyridine dinucleotides (NAD + /NADH and NADP + /NADPH) are also precursors or cosubstrates of great significance in various physiologic and pathologic processes. Recent Advances: For many years, it was challenging to develop methodologies for monitoring pyridine dinucleotides in situ or in vivo. Recent advances in fluorescent protein-based sensors provide a rapid, sensitive, specific, and real-time readout of pyridine dinucleotide dynamics in single cells or in vivo, thereby opening a new era of pyridine dinucleotide bioimaging. In this article, we summarize the developments in genetically encoded fluorescent sensors for NAD + /NADH and NADP + /NADPH redox states, as well as their applications in life sciences and drug discovery. The strengths and weaknesses of individual sensors are also discussed. These sensors have the advantages of being specific and organelle targetable, enabling real-time monitoring and subcellular-level quantification of targeted molecules in living cells and in vivo. NAD + /NADH and NADP + /NADPH have distinct functions in metabolic and redox regulation, and thus, a comprehensive evaluation of metabolic and redox states must be multiplexed with a combination of various metabolite sensors in a single cell. Antioxid. Redox Signal. 28, 213-229.

  13. Stimulation of nicotinamide adenine dinucleotide biosynthetic pathways delays axonal degeneration after axotomy.

    PubMed

    Sasaki, Yo; Araki, Toshiyuki; Milbrandt, Jeffrey

    2006-08-16

    Axonal degeneration occurs in many neurodegenerative diseases and after traumatic injury and is a self-destructive program independent from programmed cell death. Previous studies demonstrated that overexpression of nicotinamide mononucleotide adenylyltransferase 1 (Nmnat1) or exogenous application of nicotinamide adenine dinucleotide (NAD) can protect axons of cultured dorsal root ganglion (DRG) neurons from degeneration caused by mechanical or neurotoxic injury. In mammalian cells, NAD can be synthesized from multiple precursors, including tryptophan, nicotinic acid, nicotinamide, and nicotinamide riboside (NmR), via multiple enzymatic steps. To determine whether other components of these NAD biosynthetic pathways are capable of delaying axonal degeneration, we overexpressed each of the enzymes involved in each pathway and/or exogenously administered their respective substrates in DRG cultures and assessed their capacity to protect axons after axotomy. Among the enzymes tested, Nmnat1 had the strongest protective effects, whereas nicotinamide phosphoribosyl transferase and nicotinic acid phosphoribosyl transferase showed moderate protective activity in the presence of their substrates. Strong axonal protection was also provided by Nmnat3, which is predominantly located in mitochondria, and an Nmnat1 mutant localized to the cytoplasm, indicating that the subcellular location of NAD production is not crucial for protective activity. In addition, we showed that exogenous application of the NAD precursors that are the substrates of these enzymes, including nicotinic acid mononucleotide, nicotinamide mononucleotide, and NmR, can also delay axonal degeneration. These results indicate that stimulation of NAD biosynthetic pathways via a variety of interventions may be useful in preventing or delaying axonal degeneration.

  14. [Effect of flavin adenine dinucleotide on ultraviolet B induced damage in cultured human corneal epithelial cells].

    PubMed

    Sakamoto, Asuka; Nakamura, Masatsugu

    2012-01-01

    This study evaluated the effects of flavin adenine dinucleotide (FAD) on ultraviolet B (UV-B)-induced damage in cultured human corneal epithelial (HCE-T) cells. The cultured HCE-T cells were treated with 0.003125-0.05% FAD before exposure to 80 mJ/cm2 UV-B. Cell viability was measured 24 h after UV-B irradiation using the MTS assay. Reactive oxygen species (ROS) were detected 30 min after UV-B irradiation using 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate acetyl ester. Apoptosis was evaluated 4 h after UV-B irradiation in the caspase-3/7 activity assay. UV-B irradiation reduced cell viability and stimulated ROS production and caspase-3/7 activity in HCE-T cells. Pretreatment of UV-B irradiated HCE-T cells with FAD significantly attenuated cell viability reduction and inhibited the stimulation of both ROS production and caspase-3/7 activity due to UV-B exposure compared with those with vehicle (0% FAD). These results clarified that FAD inhibits ROS-mediated apoptosis by UV-B irradiation in HCE-T cells and suggest that FAD may be effective as a radical scavenger in UV-B-induced corneal damage.

  15. A lectin receptor kinase as a potential sensor for extracellular nicotinamide adenine dinucleotide in Arabidopsis thaliana

    PubMed Central

    Wang, Chenggang; Zhou, Mingqi; Zhang, Xudong; Yao, Jin; Zhang, Yanping; Mou, Zhonglin

    2017-01-01

    Nicotinamide adenine dinucleotide (NAD+) participates in intracellular and extracellular signaling events unrelated to metabolism. In animals, purinergic receptors are required for extracellular NAD+ (eNAD+) to evoke biological responses, indicating that eNAD+ may be sensed by cell-surface receptors. However, the identity of eNAD+-binding receptors still remains elusive. Here, we identify a lectin receptor kinase (LecRK), LecRK-I.8, as a potential eNAD+ receptor in Arabidopsis. The extracellular lectin domain of LecRK-I.8 binds NAD+ with a dissociation constant of 436.5 ± 104.8 nM, although much higher concentrations are needed to trigger in vivo responses. Mutations in LecRK-I.8 inhibit NAD+-induced immune responses, whereas overexpression of LecRK-I.8 enhances the Arabidopsis response to NAD+. Furthermore, LecRK-I.8 is required for basal resistance against bacterial pathogens, substantiating a role for eNAD+ in plant immunity. Our results demonstrate that lectin receptors can potentially function as eNAD+-binding receptors and provide direct evidence for eNAD+ being an endogenous signaling molecule in plants. DOI: http://dx.doi.org/10.7554/eLife.25474.001 PMID:28722654

  16. Study of DT-diaphorase in pigment-producing cells.

    PubMed

    Smit, N P; Hoogduijn, M J; Riley, P A; Pavel, S

    1999-11-01

    DT-diaphorase is an FAD-containing enzyme capable of a two-electron reduction of ortho- and paraquinones. Nicotinamide coenzymes (NADH + H+ and NADPH + H+) serve as hydrogen sources in these reactions. The role of DT-diaphorase has been thoroughly investigated in situations when the enzyme is able to reduce exogenous and endogenous quinones, hence protecting the cells against these reactive intermediates. The enzyme has also been studied in connection with its ability to activate some quinoid cytostatics. It is surprising that DT-diaphorase has never been investigated in pigment-producing cells that are known to generate considerable amounts of ortho-quinones. Using a spectrophotometric method we could readily measure the activity of DT-diaphorase in epidermis and various cultured pigment cells. The melanocytes isolated from dark skin showed generally higher DT-diaphorase activity than those from fair skin samples. Also, darkly pigmented congenital naevus cells exhibited higher activity of this enzyme. The most striking was the high DT-diaphorase activity in melanoma cell cultures. In these cells DT-diaphorase activity could be induced by incubation of the cells with 4-hydroxyanisole. A similar effect was seen when a catechol-O-methyltransferase (COMT) inhibitor (3-(3,4-dihydroxy-5-nitrobenzylidene)-2,4-pentanedione (OR-462) was utilised. The induction was inhibited by cyclohexidine.

  17. Simultaneous quantitation of nicotinamide riboside, nicotinamide mononucleotide and nicotinamide adenine dinucleotide in milk by a novel enzyme-coupled assay.

    PubMed

    Ummarino, Simone; Mozzon, Massimo; Zamporlini, Federica; Amici, Adolfo; Mazzola, Francesca; Orsomando, Giuseppe; Ruggieri, Silverio; Raffaelli, Nadia

    2017-04-15

    Nicotinamide riboside, the most recently discovered form of vitamin B3, and its phosphorylated form nicotinamide mononucleotide, have been shown to be potent supplements boosting intracellular nicotinamide adenine dinucleotide (NAD) levels, thus preventing or ameliorating metabolic and mitochondrial diseases in mouse models. Here we report for the first time on the simultaneous quantitation of nicotinamide riboside, nicotinamide mononucleotide and NAD in milk by means of a fluorometric, enzyme-coupled assay. Application of this assay to milk from different species revealed that the three vitamers were present in human and donkey milk, while being selectively distributed in the other milks. Human milk was the richest source of nicotinamide mononucleotide. Overall, the three vitamers accounted for a significant fraction of total vitamin B3 content. Pasteurization did not affect the bovine milk content of nicotinamide riboside, whereas UHT processing fully destroyed the vitamin. In human milk, NAD levels were significantly affected by the lactation time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Flow-injection analysis with electrochemical detection of reduced nicotinamide adenine dinucleotide using 2,6-dichloroindophenol as a redox coupling agent.

    PubMed

    Tang, H T; Hajizadeh, K; Halsall, H B; Heineman, W R

    1991-01-01

    The determination of reduced nicotinamide adenine dinucleotide (NADH) by electrochemical oxidation requires a more positive potential than is predicted by the formal reduction potential for the NAD+/NADH couple. This problem is alleviated by use of 2,6-dichloroindophenol (DCIP) as a redox coupling agent for NADH. The electrochemical characteristics of DCIP at the glassy carbon electrode are examined by cyclic voltammetry and hydrodynamic voltammetry. NADH is determined by reaction with DCIP to form NAD+ and DCIPH2. DCIPH2 is then quantitated by flow-injection analysis with electrochemical detection by oxidation at a detector potential of +0.25 V at pH 7. NADH is determined over a linear range of 0.5 to 200 microM and with a detection limit of 0.38 microM. The lower detection potential for DCIPH2 compared to NADH helps to minimize interference from oxidizable components in serum samples.

  19. Comparison of oral nicotinamide adenine dinucleotide (NADH) versus conventional therapy for chronic fatigue syndrome.

    PubMed

    Santaella, María L; Font, Ivonne; Disdier, Orville M

    2004-06-01

    To compare effectiveness of oral therapy with reduced nicotinamide adenine dinucleotide (NADH) to conventional modalities of treatment in patients with chronic fatigue syndrome (CFS). CFS is a potentially disabling condition of unknown etiology. Although its clinical presentation is associated to a myriad of symptoms, fatigue is a universal and essential finding for its diagnosis. No therapeutic regimen has proven effective for this condition. A total of 31 patients fulfilling the Centers for Disease Control criteria for CFS, were randomly assigned to either NADH or nutritional supplements and psychological therapy for 24 months. A thorough medical history, physical examination and completion of a questionnaire on the severity of fatigue and other symptoms were performed each trimester of therapy. In addition, all of them underwent evaluation in terms of immunological parameters and viral antibody titers. Statistical analysis was applied to the demographic data, as well as to symptoms scores at baseline and at each trimester of therapy. The twelve patients who received NADH had a dramatic and statistically significant reduction of the mean symptom score in the first trimester (p < 0.001). However, symptom scores in the subsequent trimesters of therapy were similar in both treatment groups. Elevated IgG and Ig E antibody levels were found in a significant number of patients. Observed effectiveness of NADH over conventional treatment in the first trimester of the trial and the trend of improvement of that modality in the subsequent trimesters should be further assessed in a larger patient sample.

  20. Ca2+ release triggered by nicotinate adenine dinucleotide phosphate in intact sea urchin eggs.

    PubMed Central

    Perez-Terzic, C M; Chini, E N; Shen, S S; Dousa, T P; Clapham, D E

    1995-01-01

    Nicotinate adenine dinucleotide phosphate (NAADP) was recently identified [Lee and Aarhus (1995) J. Biol. Chem. 270, 2152-2157; Chini, Beers and Dousa (1995) J. Biol. Chem. 270, 3116-3223] as a potent Ca(2+)-releasing agent in sea urchin egg homogenates. NAADP triggered Ca2+ release by a mechanism that was distinct from inositol 1,4,5-trisphosphate (InsP3)- and cyclic ADP-ribose (cADPR)-induced Ca2+ release. When NAADP was microinjected into intact sea urchin eggs it induced a dose-dependent increase in cytoplasmic free Ca2+ which was independent of the extracellular [Ca2+]. The Ca2+ waves elicited by microinjections of NAADP originated at the site of injection and swept across the cytosol. As previously found in sea urchin egg homogenates, NAADP-induced Ca2+ release in intact eggs was not blocked by heparin or by prior desensitization to InsP3 or cADPR. Thio-NADP, a specific inhibitor of the NAADP-induced Ca2+ release in sea urchin homogenates [Chini, Beers and Dousa (1995) J. Biol. Chem. 270, 3116-3223] blocked NAADP (but not InsP3 or cADPR) injection-induced Ca2+ release in intact sea urchin eggs. Finally, fertilization of sea urchin eggs abrogated subsequent NAADP-induced Ca2+ release, suggesting that the NAADP-sensitive Ca2+ pool may participate in the fertilization response. This study demonstrates that NAADP acts as a selective Ca(2+)-releasing agonist in intact cells. Images Figure 2 PMID:8554544

  1. Localization of nitric oxide synthase and NADPH-diaphorase in guinea pig and human cochleae.

    PubMed

    Ruan, R S; Leong, S K; Yeoh, K H

    1997-01-01

    The distributions of nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) and nitric oxide synthase (NOS) in mammalian cochlea were studied at light and electron microscope levels by NADPH-d histochemistry and brain NOS (bNOS) immunohistochemistry. The cochleae from 15 albino guinea pigs were perilymphatically fixed with 2% periodate-lysine-paraformaldehyde, decalcified in 10% EDTA and processed for light and electron microscopy after NADPH-d or NOS staining in frozen and vibratome sections respectively. One human cochlea was available for light microscope examination of NADPH-d or bNOS stained sections. Light microscope results revealed that type I neurons and nerve fibers of the spiral ganglion cells were labeled by bNOS immunohistochemistry as well as NADPH-d histochemistry in both guinea pig and human cochleae. At subcellular level, NADPH-d reaction product was localized in the mitochondria of the neuronal cytoplasm and axoplasm and in the cytoplasm of the vascular endothelium. The immunoreaction products of bNOS were evenly distributed in the neuronal cytoplasm and axoplasm. Myelinated and unmyelinated fibers in the intraganglionic spiral bundle and the inner spiral and inner radial fibers below the inner hair cells were labeled for bNOS. The nerve endings below the outer hair cells were not stained. NOS immunoreaction product was also found in the outer hair cells, Schwann cells of myelinated nerve fibers, Deiter's cells, pillar cells and the tympanic lamina cells. No difference was found in the staining pattern of both NADPH-d and NOS reaction products between human and guinea pig cochleae at the light microscope level. The results suggest that NO plays an important role in the maintenance of auditory function in the mammal.

  2. Studies of yeast cell oxygenation and energetics by laser fluorometry of reduced nicotinamide adenine dinucleotide

    NASA Astrophysics Data System (ADS)

    Pan, Fu-shih; Chen, Stephen; Mintzer, Robert A.; Chen, Chin-Tu; Schumacker, Paul

    1991-03-01

    It is of fundamental importance for biological scientists to assess cellular energetics. Under aerobic conditions, the tricarboxylic acid cycle (TCA cycle) is coupled with the mitochondrial electron cascade pathway to provide the cell with energy. The nicotinamide adenine dinucleotide-conjugated pair (NAD and NADH) is the coenzyme in numerous important biomedical reactions which include several important dehydrogenase reactions in the TCA cycle. Based on Le Chatelier's principle, NADH will accumulate when this energy production mechanism is impaired. The relative amounts of NAD and NADH in a cell are defined as the redox state of the cell (Williamson et.al. 1967) which provides a valuable index of cellular energetics. The sum of the amounts of NAD and NADH in a cell may be assumed to be constant during a finite time; therefore, a reliable means of measuring the NADH concentration would provide us with a useful indicator of tissue viability. Traditionally, the quantities of NADH and NAD may be measured by chemical assay methods. We can avoid these tediois analyses by exploiting the significant difference between the ultraviolet absorption spectra of this redox pair. However, because of the opacity of biological samples and the interference of other biochemicals that also absorb ultraviolet radiation, measurement of NADH and NAD+ concentrations in vivo by absorption spectroscopy is not feasible.

  3. Purification and characterization of the enzymes involved in nicotinamide adenine dinucleotide degradation by Penicillium brevicompactum NRC 829.

    PubMed

    Ali, Thanaa Hamed; El-Ghonemy, Dina Helmy

    2016-06-01

    The present study was conducted to investigate a new pathway for the degradation of nicotinamide adenine dinucleotide (NAD) by Penicillium brevicompactum NRC 829 extracts. Enzymes involved in the hydrolysis of NAD, i.e. alkaline phosphatase, aminohydrolase and glycohydrolase were determined. Alkaline phosphatase was found to catalyse the sequential hydrolysis of two phosphate moieties of NAD molecule to nicotinamide riboside plus adenosine. Adenosine was then deaminated by aminohydrolase to inosine and ammonia. While glycohydrolase catalyzed the hydrolysis of the nicotinamide-ribosidic bond of NAD+ to produce nicotinamide and ADP-ribose in equimolar amounts, enzyme purification through a 3-step purification procedure revealed the existence of two peaks of alkaline phosphatases, and one peak contained deaminase and glycohydrolase activities. NAD deaminase was purified to homogeneity as estimated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis with an apparent molecular mass of 91 kDa. Characterization and determination of some of NAD aminohydrolase kinetic properties were conducted due to its biological role in the regulation of cellular NAD level. The results also revealed that NAD did not exert its feedback control on nicotinamide amidase produced by P. brevicompactum.

  4. Paper microfluidic-based enzyme catalyzed double microreactor.

    PubMed

    Ferrer, Ivonne M; Valadez, Hector; Estala, Lissette; Gomez, Frank A

    2014-08-01

    We describe a paper microfluidic-based enzyme catalyzed double microreactor assay using fluorescent detection. Here, solutions of lactate dehydrogenase (LDH) and diaphorase (DI) were directly spotted onto the microfluidic paper-based analytical device (μPAD). Samples containing lactic acid, resazurin, and nicotinamide adenine dinucleotide oxidized form (NAD(+) ), potassium chloride (KCl), and BSA, in MES buffer were separately spotted onto the μPAD and MES buffer flowed through the device. A cascade reaction occurs upon the sample spot overlapping with LDH to form pyruvate and nicotinamide adenine dinucleotide reduced form (NADH). Subsequently, NADH is used in the conversion of resazurin to fluorescent resorufin by DI. The μPAD avoids the need of surface functionalization or enzyme immobilization steps. These microreactor devices are low cost and easy to fabricate and effect reaction based solely on buffer capillary action. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Photosensitized oxidation of nicotinamide adenine dinucleotide by diethoxyphosphorus(V)tetraphenylporphyrin and its fluorinated derivative: Possibility of chain reaction

    NASA Astrophysics Data System (ADS)

    Hirakawa, Kazutaka; Murata, Atsushi

    2018-01-01

    Water-soluble porphyrins, diethoxyphosphorus(V)tetraphenylporphyrin (EtP(V)TPP) and its fluorinated analogue (FEtP(V)TPP), decreased the typical absorption around 340 nm of nicotinamide adenine dinucleotide (NADH) under visible light irradiation, indicating oxidative decomposition. A singlet oxygen quencher, sodium azide, and a triplet quencher, potassium iodide, slightly inhibited photosensitized NADH oxidation. However, these inhibitory effects were very small. Furthermore, the fluorescence lifetime of these P(V)porphyrins was decreased by NADH, suggesting the contribution of electron transfer to the singlet excited (S1) state of P(V)porphyrin. The redox potential measurement supports the electron transfer-mediated oxidation of NADH. The quantum yields of NADH photodecomposition by P(V)porphyrins could be estimated from the kinetic data and the effect of these quenchers on NADH oxidation. The obtained values suggest that the electron accepting by the S1 states of P(V)porphyrins triggers a chain reaction of NADH oxidation. This photosensitized reaction may play an important role in the photocytotoxicity of P(V)porphyrins. The axial ligand fluorination of P(V)porphyrins improved electron accepting ability. However, fluorination slightly suppressed static interaction with NADH, resulting in decreased oxidation quantum yield.

  6. Generation of Reduced Nicotinamide Adenine Dinucleotide for Nitrate Reduction in Green Leaves 1

    PubMed Central

    Klepper, Lowell; Flesher, Donna; Hageman, R. H.

    1971-01-01

    An in vivo assay of nitrate reductase activity was developed by vacuum infiltration of leaf discs or sections with a solution of 0.2 m KNO3 (with or without phosphate buffer, pH 7.5) and incubation of the infiltrated tissue and medium under essentially anaerobic conditions in the dark. Nitrite production, for computing enzyme activity, was determined on aliquots of the incubation media, removed at intervals. By adding, separately, various metabolites of the glycolytic, pentose phosphate, and citric acid pathways to the infiltrating media, it was possible to use the in vivo assay to determine the prime source of reduced nicotinamide adenine dinucleotide (NADH) required by the cytoplasmically located NADH-specific nitrate reductase. It was concluded that sugars that migrate from the chloroplast to the cytoplasm were the prime source of energy and that the oxidation of glyceraldehyde 3-phosphate was ultimately the in vivo source of NADH for nitrate reduction. This conclusion was supported by experiments that included: inhibition studies with iodoacetate; in vitro studies that established the presence and functionality of the requisite enzymes; and studies showing the effect of light (photosynthate) and exogenous carbohydrate on loss of endogenous nitrate from plant tissue. The level of nitrate reductase activity obtained with the in vitro assay is higher (2.5- to 20-fold) than with the in vivo assay for most plant species. The work done to date would indicate that the in vivo assays are proportional to the in vitro assays with respect to ranking genotypes for nitrate-reducing potential of a given species. The in vivo assay is especially useful in studying nitrate assimilation in species like giant ragweed from which only traces of active nitrate reductase can be extracted. PMID:16657841

  7. Cleavage of nicotinamide adenine dinucleotide by the ribosome-inactivating protein from Momordica charantia.

    PubMed

    Vinkovic, M; Dunn, G; Wood, G E; Husain, J; Wood, S P; Gill, R

    2015-09-01

    The interaction of momordin, a type 1 ribosome-inactivating protein from Momordica charantia, with NADP(+) and NADPH has been investigated by X-ray diffraction analysis of complexes generated by co-crystallization and crystal soaking. It is known that the proteins of this family readily cleave the adenine-ribose bond of adenosine and related nucleotides in the crystal, leaving the product, adenine, bound to the enzyme active site. Surprisingly, the nicotinamide-ribose bond of oxidized NADP(+) is cleaved, leaving nicotinamide bound in the active site in the same position but in a slightly different orientation to that of the five-membered ring of adenine. No binding or cleavage of NADPH was observed at pH 7.4 in these experiments. These observations are in accord with current views of the enzyme mechanism and may contribute to ongoing searches for effective inhibitors.

  8. Reduction of mitomycin C is catalysed by human recombinant NRH:quinone oxidoreductase 2 using reduced nicotinamide adenine dinucleotide as an electron donating co-factor

    PubMed Central

    Jamieson, D; Tung, A T Y; Knox, R J; Boddy, A V

    2006-01-01

    NRH:Quinone Oxidoreductase 2 (NQO2) has been described as having no enzymatic activity with nicotinamide adenine dinucleotide (NADH) or NADPH as electron donating cosubstrates. Mitomycin C (MMC) is both a substrate for and a mechanistic inhibitor of the NQO2 homologue NQO1. NRH:quinone oxidoreductase 2 catalysed the reduction of MMC at pH 5.8 with NADH as a co-factor. This reaction results in species that inhibit the NQO2-mediated metabolism of CB1954. In addition, MMC caused an increase in DNA cross-links in a cell line transfected to overexpress NQO2 to an extent comparable to that observed with an isogenic NQO1-expressing cell line. These data indicate that NQO2 may contribute to the metabolism of MMC to cytotoxic species. PMID:17031400

  9. UV-Vis Action Spectroscopy Reveals a Conformational Collapse in Hydrogen-Rich Dinucleotide Cation Radicals.

    PubMed

    Korn, Joseph A; Urban, Jan; Dang, Andy; Nguyen, Huong T H; Tureček, František

    2017-09-07

    We report the generation of deoxyriboadenosine dinucleotide cation radicals by gas-phase electron transfer to dinucleotide dications and their noncovalent complexes with crown ether ligands. Stable dinucleotide cation radicals of a novel hydrogen-rich type were generated and characterized by tandem mass spectrometry and UV-vis photodissociation (UVPD) action spectroscopy. Electron structure theory analysis indicated that upon electron attachment the dinucleotide dications underwent a conformational collapse followed by intramolecular proton migrations between the nucleobases to give species whose calculated UV-vis absorption spectra matched the UVPD action spectra. Hydrogen-rich cation radicals generated from chimeric riboadenosine 5'-diesters gave UVPD action spectra that pointed to novel zwitterionic structures consisting of aromatic π-electron anion radicals intercalated between stacked positively charged adenine rings. Analogies with DNA ionization are discussed.

  10. Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP)-mediated Calcium Signaling and Arrhythmias in the Heart Evoked by β-Adrenergic Stimulation*♦

    PubMed Central

    Nebel, Merle; Schwoerer, Alexander P.; Warszta, Dominik; Siebrands, Cornelia C.; Limbrock, Ann-Christin; Swarbrick, Joanna M.; Fliegert, Ralf; Weber, Karin; Bruhn, Sören; Hohenegger, Martin; Geisler, Anne; Herich, Lena; Schlegel, Susan; Carrier, Lucie; Eschenhagen, Thomas; Potter, Barry V. L.; Ehmke, Heimo; Guse, Andreas H.

    2013-01-01

    Nicotinic acid adenine dinucleotide phosphate (NAADP) is the most potent Ca2+-releasing second messenger known to date. Here, we report a new role for NAADP in arrhythmogenic Ca2+ release in cardiac myocytes evoked by β-adrenergic stimulation. Infusion of NAADP into intact cardiac myocytes induced global Ca2+ signals sensitive to inhibitors of both acidic Ca2+ stores and ryanodine receptors and to NAADP antagonist BZ194. Furthermore, in electrically paced cardiac myocytes BZ194 blocked spontaneous diastolic Ca2+ transients caused by high concentrations of the β-adrenergic agonist isoproterenol. Ca2+ transients were recorded both as increases of the free cytosolic Ca2+ concentration and as decreases of the sarcoplasmic luminal Ca2+ concentration. Importantly, NAADP antagonist BZ194 largely ameliorated isoproterenol-induced arrhythmias in awake mice. We provide strong evidence that NAADP-mediated modulation of couplon activity plays a role for triggering spontaneous diastolic Ca2+ transients in isolated cardiac myocytes and arrhythmias in the intact animal. Thus, NAADP signaling appears an attractive novel target for antiarrhythmic therapy. PMID:23564460

  11. Sensitive colorimetric visualization of dihydronicotinamide adenine dinucleotide based on anti-aggregation of gold nanoparticles via boronic acid-diol binding.

    PubMed

    Liu, Shufeng; Du, Zongfeng; Li, Peng; Li, Feng

    2012-05-15

    A facile, highly sensitive colorimetric strategy for dihydronicotinamide adenine dinucleotide (NADH) detection is proposed based on anti-aggregation of gold nanoparticles (AuNPs) via boronic acid-diol binding chemistry. The aggregation agent, 4-mercaptophenylboronic acid (MPBA), has specific affinity for AuNPs through Au-S interaction, leading to the aggregation of AuNPs by self-dehydration condensation at a certain concentration, which is responsible for a visible color change of AuNPs from wine red to blue. With the addition of NADH, MPBA would prefer reacting with NADH to form stable borate ester via boronic acid-diol binding dependent on the pH and solvent, revealing an obvious color change from blue to red with increasing the concentration of NADH. The anti-aggregation effect of NADH on AuNPs was seen by the naked eye and monitored by UV-vis extinction spectra. The linear range of the colorimetric sensor for NADH is from 8.0 × 10(-9)M to 8.0 × 10(-6)M, with a low detection limit of 2.0 nM. The as-established colorimetric strategy opened a new avenue for NADH determination. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Photosensitized oxidation of nicotinamide adenine dinucleotide by diethoxyphosphorus(V)tetraphenylporphyrin and its fluorinated derivative: Possibility of chain reaction.

    PubMed

    Hirakawa, Kazutaka; Murata, Atsushi

    2018-01-05

    Water-soluble porphyrins, diethoxyphosphorus(V)tetraphenylporphyrin (EtP(V)TPP) and its fluorinated analogue (FEtP(V)TPP), decreased the typical absorption around 340nm of nicotinamide adenine dinucleotide (NADH) under visible light irradiation, indicating oxidative decomposition. A singlet oxygen quencher, sodium azide, and a triplet quencher, potassium iodide, slightly inhibited photosensitized NADH oxidation. However, these inhibitory effects were very small. Furthermore, the fluorescence lifetime of these P(V)porphyrins was decreased by NADH, suggesting the contribution of electron transfer to the singlet excited (S 1 ) state of P(V)porphyrin. The redox potential measurement supports the electron transfer-mediated oxidation of NADH. The quantum yields of NADH photodecomposition by P(V)porphyrins could be estimated from the kinetic data and the effect of these quenchers on NADH oxidation. The obtained values suggest that the electron accepting by the S 1 states of P(V)porphyrins triggers a chain reaction of NADH oxidation. This photosensitized reaction may play an important role in the photocytotoxicity of P(V)porphyrins. The axial ligand fluorination of P(V)porphyrins improved electron accepting ability. However, fluorination slightly suppressed static interaction with NADH, resulting in decreased oxidation quantum yield. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Eliciting the mitochondrial unfolded protein response by nicotinamide adenine dinucleotide repletion reverses fatty liver disease in mice

    PubMed Central

    Gariani, Karim; Menzies, Keir J.; Ryu, Dongryeol; Wegner, Casey J.; Wang, Xu; Ropelle, Eduardo R.; Moullan, Norman; Zhang, Hongbo; Perino, Alessia; Lemos, Vera; Kim, Bohkyung; Park, Young‐Ki; Piersigilli, Alessandra; Pham, Tho X.; Yang, Yue; Ku, Chai Siah; Koo, Sung I.; Fomitchova, Anna; Cantó, Carlos; Schoonjans, Kristina; Sauve, Anthony A.

    2015-01-01

    With no approved pharmacological treatment, nonalcoholic fatty liver disease (NAFLD) is now the most common cause of chronic liver disease in Western countries and its worldwide prevalence continues to increase along with the growing obesity epidemic. Here, we show that a high‐fat high‐sucrose (HFHS) diet, eliciting chronic hepatosteatosis resembling human fatty liver, lowers hepatic nicotinamide adenine dinucleotide (NAD+) levels driving reductions in hepatic mitochondrial content, function, and adenosine triphosphate (ATP) levels, in conjunction with robust increases in hepatic weight, lipid content, and peroxidation in C57BL/6J mice. To assess the effect of NAD+ repletion on the development of steatosis in mice, nicotinamide riboside, a precursor of NAD+ biosynthesis, was added to the HFHS diet, either as a preventive strategy or as a therapeutic intervention. We demonstrate that NR prevents and reverts NAFLD by inducing a sirtuin (SIRT)1‐ and SIRT3‐dependent mitochondrial unfolded protein response, triggering an adaptive mitohormetic pathway to increase hepatic β‐oxidation and mitochondrial complex content and activity. The cell‐autonomous beneficial component of NR treatment was revealed in liver‐specific Sirt1 knockout mice (Sirt1hep−/−), whereas apolipoprotein E‐deficient mice (Apoe −/−) challenged with a high‐fat high‐cholesterol diet affirmed the use of NR in other independent models of NAFLD. Conclusion: Our data warrant the future evaluation of NAD+ boosting strategies to manage the development or progression of NAFLD. (Hepatology 2016;63:1190–1204) PMID:26404765

  14. Quantification of riboflavin, flavin mononucleotide, and flavin adenine dinucleotide in mammalian model cells by CE with LED-induced fluorescence detection.

    PubMed

    Hühner, Jens; Ingles-Prieto, Álvaro; Neusüß, Christian; Lämmerhofer, Michael; Janovjak, Harald

    2015-02-01

    Cultured mammalian cells essential are model systems in basic biology research, production platforms of proteins for medical use, and testbeds in synthetic biology. Flavin cofactors, in particular flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), are critical for cellular redox reactions and sense light in naturally occurring photoreceptors and optogenetic tools. Here, we quantified flavin contents of commonly used mammalian cell lines. We first compared three procedures for extraction of free and noncovalently protein-bound flavins and verified extraction using fluorescence spectroscopy. For separation, two CE methods with different BGEs were established, and detection was performed by LED-induced fluorescence with limit of detections (LODs 0.5-3.8 nM). We found that riboflavin (RF), FMN, and FAD contents varied significantly between cell lines. RF (3.1-14 amol/cell) and FAD (2.2-17.0 amol/cell) were the predominant flavins, while FMN (0.46-3.4 amol/cell) was found at markedly lower levels. Observed flavin contents agree with those previously extracted from mammalian tissues, yet reduced forms of RF were detected that were not described previously. Quantification of flavins in mammalian cell lines will allow a better understanding of cellular redox reactions and optogenetic tools. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Eliciting the mitochondrial unfolded protein response by nicotinamide adenine dinucleotide repletion reverses fatty liver disease in mice.

    PubMed

    Gariani, Karim; Menzies, Keir J; Ryu, Dongryeol; Wegner, Casey J; Wang, Xu; Ropelle, Eduardo R; Moullan, Norman; Zhang, Hongbo; Perino, Alessia; Lemos, Vera; Kim, Bohkyung; Park, Young-Ki; Piersigilli, Alessandra; Pham, Tho X; Yang, Yue; Ku, Chai Siah; Koo, Sung I; Fomitchova, Anna; Cantó, Carlos; Schoonjans, Kristina; Sauve, Anthony A; Lee, Ji-Young; Auwerx, Johan

    2016-04-01

    With no approved pharmacological treatment, nonalcoholic fatty liver disease (NAFLD) is now the most common cause of chronic liver disease in Western countries and its worldwide prevalence continues to increase along with the growing obesity epidemic. Here, we show that a high-fat high-sucrose (HFHS) diet, eliciting chronic hepatosteatosis resembling human fatty liver, lowers hepatic nicotinamide adenine dinucleotide (NAD(+) ) levels driving reductions in hepatic mitochondrial content, function, and adenosine triphosphate (ATP) levels, in conjunction with robust increases in hepatic weight, lipid content, and peroxidation in C57BL/6J mice. To assess the effect of NAD(+) repletion on the development of steatosis in mice, nicotinamide riboside, a precursor of NAD(+) biosynthesis, was added to the HFHS diet, either as a preventive strategy or as a therapeutic intervention. We demonstrate that NR prevents and reverts NAFLD by inducing a sirtuin (SIRT)1- and SIRT3-dependent mitochondrial unfolded protein response, triggering an adaptive mitohormetic pathway to increase hepatic β-oxidation and mitochondrial complex content and activity. The cell-autonomous beneficial component of NR treatment was revealed in liver-specific Sirt1 knockout mice (Sirt1(hep-/-) ), whereas apolipoprotein E-deficient mice (Apoe(-/-) ) challenged with a high-fat high-cholesterol diet affirmed the use of NR in other independent models of NAFLD. Our data warrant the future evaluation of NAD(+) boosting strategies to manage the development or progression of NAFLD. © 2015 The Authors. Hepatology published by Wiley Periodicals, Inc., on behalf of the American Association for the Study of Liver Diseases.

  16. Amperometric cholesterol biosensor based on in situ reconstituted cholesterol oxidase on an immobilized monolayer of flavin adenine dinucleotide cofactor.

    PubMed

    Vidal, Juan-C; Espuelas, Javier; Castillo, Juan-R

    2004-10-01

    A new amperometric biosensor for determining cholesterol based on deflavination of the enzyme cholesterol oxidase (ChOx) and subsequent reconstitution of the apo-protein with a complexed flavin adenine dinucleotide (FAD) monolayer is described. The charge transfer mediator pyrroquinoline quinone (PQQ) was covalently bound to a cystamine self-assembled monolayer (SAM) on an Au electrode. Boronic acid (BA) was then bound to PQQ using the carbodiimide procedure, and the BA ligand was complexed to the FAD molecules on which the apo-ChOx was subsequently reconstituted. The effective release of the FAD from the enzyme and the successful reconstitution were verified using molecular fluorescence and cyclic voltammetry. The optimal orientation of FAD toward the PQQ mediator and the distances between FAD and PQQ and between PQQ and electrode enhance the charge transfer, very high sensitivity (about 2,500 nAmM(-1)cm(-2)) being obtained for cholesterol determination. The biosensor is selective toward electroactive interferents (ascorbic acid and uric acid) and was tested in reference serum samples, demonstrating excellent accuracy (relative errors below 3% in all cases). The biosensor activity can be successfully regenerated in a simple process by successive reconstitution with batches of recently prepared apo-ChOx on the same immobilized Au/SAM-PQQ-BA-FAD monolayer (it was tested five times); the lifetime of the biosensor is about 45-60 days.

  17. Blue light induced reactive oxygen species from flavin mononucleotide and flavin adenine dinucleotide on lethality of HeLa cells.

    PubMed

    Yang, Ming-Yeh; Chang, Chih-Jui; Chen, Liang-Yü

    2017-08-01

    Photodynamic therapy (PDT) is a safe and non-invasive treatment for cancers and microbial infections. Various photosensitizers and light sources have been developed for clinical cancer therapies. Flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) are the cofactor of enzymes and are used as photosensitizers in this study. Targeting hypoxia and light-triggering reactive oxygen species (ROS) are experimental strategies for poisoning tumor cells in vitro. HeLa cells are committed to apoptosis when treated with FMN or FAD and exposed to visible blue light (the maximum emitted wavelength of blue light is 462nm). Under blue light irradiation at 3.744J/cm 2 (=0.52mW/cm 2 irradiated for 2h), the minimal lethal dose is 3.125μM and the median lethal doses (LD 50 ) for FMN and FAD are 6.5μM and 7.2μM, respectively. Individual exposure to visible blue light irradiation or riboflavin photosensitizers does not produce cytotoxicity and no side effects are observed in this study. The western blotting results also show that an intrinsic apoptosis pathway is activated by the ROS during photolysis of riboflavin analogues. Blue light triggers the cytotoxicity of riboflavins on HeLa cells in vitro. Based on these results, this is a feasible and efficient of PDT with an intrinsic photosensitizer for cancer research. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. [The release of flavin adenine dinucleotide upon local conformational transition in electron-transferring flavoprotein induced by trimethylamine dehydrogenase].

    PubMed

    Lomtev, A S; Bobrov, A G; Vekshin, N L

    2004-01-01

    The electron-transferring proteins, trimethylamine dehydrogenase (TMAD) and electron-transferring flavoprotein (ETF) from the bacterium Methylophilius methylotrophus, were studied in vitro by fluorescence spectroscopy. Flavin adenine dinucleotide (FAD) was found to be capable of a slow and spontaneous release from ETF, which is accompanied by an increase in flavin fluorescence. At a rather high ionic strength (0.1 M NaCl or 50 mM phosphate), the FAD release is sharply activated by TMAD preparations that induce a local conformational transition in ETF. The values of tryptophan fluorescence polarization and lifetime and the use of the Levshin-Perrin equation helped show that the size of protein particles remain unchanged upon the TMAD and ETF mixing; i.e., these proteins themselves do not form a stable complex with each other. The protein mixture did not release flavin from ETF in the presence of trimethylamine and formaldehyde. In this case, a stable complex between the proteins appeared to be formed under the action of formaldehyde. Upon a short-term incubation of ETF with ferricyanide, FAD was hydrolyzed to flavin mononucleotide (FMN) and AMP. This fact explains the previous detection of AMP in ETF preparations by some researches. A fluorescence method was proposed for distinguishing FAD from FMN in solution using ethylene glycol. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2004, vol. 30, no. 3; see also http://www.maik.ru.

  19. Transcriptional regulation of nicotinamide adenine dinucleotide phosphate: quinone oxidoreductase in murine hepatoma cells by 6-(methylsufinyl)hexyl isothiocyanate, an active principle of wasabi (Eutrema wasabi Maxim).

    PubMed

    Hou, D X; Fukuda, M; Fujii, M; Fuke, Y

    2000-12-20

    Wasabi is a very popular pungent spice in Japan. This study examined the ability of 6-(methylsufinyl)hexyl isothiocyanate (6-MITC), an active principle of wasabi, to induce the cellular expression of nicotinamide adenine dinucleotide phosphate: quinone oxidoreductase (QR) in Hepa 1c1c7 cells. The cells were treated with various concentrations of 6-MITC, and were then assessed for cell growth, QR activity and QR mRNA expression. The induction of QR activity and QR mRNA expression was time- and dose-responsive over a narrow range of 0.1-5 microM, with declining induction at higher concentrations due to cell toxicity. Furthermore, transfection studies demonstrated that the induction of transcription of the QR gene by 6-MITC involved an antioxidant/electrophile-responsive element (ARE/EpRE) activation. Our results suggest a novel mechanism by which dietary wasabi 6-MITC may be implicated in cancer chemoprevention.

  20. Auxotrophic Actinobacillus pleurpneumoniae grows in multispecies biofilms without the need for nicotinamide-adenine dinucleotide (NAD) supplementation.

    PubMed

    Loera-Muro, Abraham; Jacques, Mario; Avelar-González, Francisco J; Labrie, Josée; Tremblay, Yannick D N; Oropeza-Navarro, Ricardo; Guerrero-Barrera, Alma L

    2016-06-27

    Actinobacillus pleuropneumoniae is the etiologic agent of porcine contagious pleuropneumonia, which causes important worldwide economic losses in the swine industry. Several respiratory tract infections are associated with biofilm formation, and A. pleuropneumoniae has the ability to form biofilms in vitro. Biofilms are structured communities of bacterial cells enclosed in a self-produced polymer matrix that are attached to an abiotic or biotic surface. Virtually all bacteria can grow as a biofilm, and multi-species biofilms are the most common form of microbial growth in nature. The goal of this study was to determine the ability of A. pleuropneumoniae to form multi-species biofilms with other bacteria frequently founded in pig farms, in the absence of pyridine compounds (nicotinamide mononucleotide [NMN], nicotinamide riboside [NR] or nicotinamide adenine dinucleotide [NAD]) that are essential for the growth of A. pleuropneumoniae. For the biofilm assay, strain 719, a field isolate of A. pleuropneumoniae serovar 1, was mixed with swine isolates of Streptococcus suis, Bordetella bronchiseptica, Pasteurella multocida, Staphylococcus aureus or Escherichia coli, and deposited in 96-well microtiter plates. Based on the CFU results, A. pleuropneumoniae was able to grow with every species tested in the absence of pyridine compounds in the culture media. Interestingly, A. pleuropneumoniae was also able to form strong biofilms when mixed with S. suis, B. bronchiseptica or S. aureus. In the presence of E. coli, A. pleuropneumoniae only formed a weak biofilm. The live and dead populations, and the matrix composition of multi-species biofilms were also characterized using fluorescent markers and enzyme treatments. The results indicated that poly-N-acetyl-glucosamine remains the primary component responsible for the biofilm structure. In conclusion, A. pleuropneumoniae apparently is able to satisfy the requirement of pyridine compounds through of other swine pathogens by

  1. Nitric Oxide Synthase and Neuronal NADPH Diaphorase are Identical in Brain and Peripheral Tissues

    NASA Astrophysics Data System (ADS)

    Dawson, Ted M.; Bredt, David S.; Fotuhi, Majid; Hwang, Paul M.; Snyder, Solomon H.

    1991-09-01

    NADPH diaphorase staining neurons, uniquely resistant to toxic insults and neurodegenerative disorders, have been colocalized with neurons in the brain and peripheral tissue containing nitric oxide synthase (EC 1.14.23.-), which generates nitric oxide (NO), a recently identified neuronal messenger molecule. In the corpus striatum and cerebral cortex, NO synthase immunoreactivity and NADPH diaphorase staining are colocalized in medium to large aspiny neurons. These same neurons colocalize with somatostatin and neuropeptide Y immunoreactivity. NO synthase immunoreactivity and NADPH diaphorase staining are colocalized in the pedunculopontine nucleus with choline acetyltransferase-containing cells and are also colocalized in amacrine cells of the inner nuclear layer and ganglion cells of the retina, myenteric plexus neurons of the intestine, and ganglion cells of the adrenal medulla. Transfection of human kidney cells with NO synthase cDNA elicits NADPH diaphorase staining. The ratio of NO synthase to NADPH diaphorase staining in the transfected cells is the same as in neurons, indicating that NO synthase fully accounts for observed NADPH staining. The identity of neuronal NO synthase and NADPH diaphorase suggests a role for NO in modulating neurotoxicity.

  2. African Swine Fever Virus pB119L Protein Is a Flavin Adenine Dinucleotide-Linked Sulfhydryl Oxidase

    PubMed Central

    Rodríguez, Irene; Redrejo-Rodríguez, Modesto; Rodríguez, Javier M.; Alejo, Alí; Salas, José; Salas, María L.

    2006-01-01

    Protein pB119L of African swine fever virus belongs to the Erv1p/Alrp family of sulfhydryl oxidases and has been described as a late nonstructural protein required for correct virus assembly. To further our knowledge of the function of protein pB119L during the virus life cycle, we have investigated whether this protein possesses sulfhydryl oxidase activity, using a purified recombinant protein. We show that the purified protein contains bound flavin adenine dinucleotide and is capable of catalyzing the formation of disulfide bonds both in a protein substrate and in the small molecule dithiothreitol, the catalytic activity being comparable to that of the Erv1p protein. Furthermore, protein pB119L contains the cysteines of its active-site motif CXXC, predominantly in an oxidized state, and forms noncovalently bound dimers in infected cells. We also show in coimmunoprecipitation experiments that protein pB119L interacts with the viral protein pA151R, which contains a CXXC motif similar to that present in thioredoxins. Protein pA151R, in turn, was found to interact with the viral structural protein pE248R, which contains disulfide bridges and belongs to a class of myristoylated proteins related to vaccinia virus L1R, one of the substrates of the redox pathway encoded by this virus. These results suggest the existence in African swine fever virus of a system for the formation of disulfide bonds constituted at least by proteins pB119L and pA151R and identify protein pE248R as a possible final substrate of this pathway. PMID:16537584

  3. African swine fever virus pB119L protein is a flavin adenine dinucleotide-linked sulfhydryl oxidase.

    PubMed

    Rodríguez, Irene; Redrejo-Rodríguez, Modesto; Rodríguez, Javier M; Alejo, Alí; Salas, José; Salas, María L

    2006-04-01

    Protein pB119L of African swine fever virus belongs to the Erv1p/Alrp family of sulfhydryl oxidases and has been described as a late nonstructural protein required for correct virus assembly. To further our knowledge of the function of protein pB119L during the virus life cycle, we have investigated whether this protein possesses sulfhydryl oxidase activity, using a purified recombinant protein. We show that the purified protein contains bound flavin adenine dinucleotide and is capable of catalyzing the formation of disulfide bonds both in a protein substrate and in the small molecule dithiothreitol, the catalytic activity being comparable to that of the Erv1p protein. Furthermore, protein pB119L contains the cysteines of its active-site motif CXXC, predominantly in an oxidized state, and forms noncovalently bound dimers in infected cells. We also show in coimmunoprecipitation experiments that protein pB119L interacts with the viral protein pA151R, which contains a CXXC motif similar to that present in thioredoxins. Protein pA151R, in turn, was found to interact with the viral structural protein pE248R, which contains disulfide bridges and belongs to a class of myristoylated proteins related to vaccinia virus L1R, one of the substrates of the redox pathway encoded by this virus. These results suggest the existence in African swine fever virus of a system for the formation of disulfide bonds constituted at least by proteins pB119L and pA151R and identify protein pE248R as a possible final substrate of this pathway.

  4. β-Nicotinamide Adenine Dinucleotide (β-NAD) Inhibits ATP-Dependent IL-1β Release from Human Monocytic Cells.

    PubMed

    Hiller, Sebastian Daniel; Heldmann, Sarah; Richter, Katrin; Jurastow, Innokentij; Küllmar, Mira; Hecker, Andreas; Wilker, Sigrid; Fuchs-Moll, Gabriele; Manzini, Ivan; Schmalzing, Günther; Kummer, Wolfgang; Padberg, Winfried; McIntosh, J Michael; Damm, Jelena; Zakrzewicz, Anna; Grau, Veronika

    2018-04-10

    While interleukin-1β (IL-1β) is a potent pro-inflammatory cytokine essential for host defense, high systemic levels cause life-threatening inflammatory syndromes. ATP, a stimulus of IL-1β maturation, is released from damaged cells along with β-nicotinamide adenine dinucleotide (β-NAD). Here, we tested the hypothesis that β-NAD controls ATP-signaling and, hence, IL-1β release. Lipopolysaccharide-primed monocytic U937 cells and primary human mononuclear leukocytes were stimulated with 2'(3')- O -(4-benzoyl-benzoyl)ATP trieethylammonium salt (BzATP), a P2X7 receptor agonist, in the presence or absence of β-NAD. IL-1β was measured in cell culture supernatants. The roles of P2Y receptors, nicotinic acetylcholine receptors (nAChRs), and Ca 2+ -independent phospholipase A2 (iPLA2β, PLA2G6) were investigated using specific inhibitors and gene-silencing. Exogenous β-NAD signaled via P2Y receptors and dose-dependently (IC 50 = 15 µM) suppressed the BzATP-induced IL-1β release. Signaling involved iPLA2β, release of a soluble mediator, and nAChR subunit α9. Patch-clamp experiments revealed that β-NAD inhibited BzATP-induced ion currents. In conclusion, we describe a novel triple membrane-passing signaling cascade triggered by extracellular β-NAD that suppresses ATP-induced release of IL-1β by monocytic cells. This cascade links activation of P2Y receptors to non-canonical metabotropic functions of nAChRs that inhibit P2X7 receptor function. The biomedical relevance of this mechanism might be the control of trauma-associated systemic inflammation.

  5. Protective effect of nicotinamide adenine dinucleotide (NAD+) against spinal cord ischemia-reperfusion injury via reducing oxidative stress-induced neuronal apoptosis.

    PubMed

    Xie, Lei; Wang, Zhenfei; Li, Changwei; Yang, Kai; Liang, Yu

    2017-02-01

    As previous studies demonstrate that oxidative stress and apoptosis play crucial roles in ischemic pathogenesis and nicotinamide adenine dinucleotide (NAD + ) treatment attenuates oxidative stress-induced cell death among primary neurons and astrocytes as well as significantly reduce cerebral ischemic injury in rats. We used a spinal cord ischemia injury (SCII) model in rats to verify our hypothesis that NAD + could ameliorate oxidative stress-induced neuronal apoptosis. Adult male rats were subjected to transient spinal cord ischemia for 60min, and different doses of NAD + were administered intraperitoneally immediately after the start of reperfusion. Neurological function was determined by Basso, Beattie, Bresnahan (BBB) scores. The oxidative stress level was assessed by superoxide dismutase (SOD) activity and malondialdehyde (MDA) content. The degree of apoptosis was analyzed by deoxyuridinetriphosphate nick-end labeling (TUNEL) staining and protein levels of cleaved caspase-3 and AIF (apoptosis inducing factor). The results showed that NAD + at 50 or 100mg/kg significantly decreased the oxidative stress level and neuronal apoptosis in the spinal cord of ischemia-reperfusion rats compared with saline, as accompanied with the decreased oxidative stress, NAD + administration significantly restrained the neuronal apoptosis after ischemia injury while improved the neurological and motor function. These findings suggested that NAD + might protect against spinal cord ischemia-reperfusion via reducing oxidative stress-induced neuronal apoptosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Unprecedented head-to-head right-handed cross-links between the antitumor bis(mu-N,N'-di-p-tolylformamidinate) dirhodium(II,II) core and the dinucleotide d(ApA) with the adenine bases in the rare imino form.

    PubMed

    Chifotides, Helen T; Dunbar, Kim R

    2007-10-17

    Reactions of the anticancer active compound cis-[Rh2(DTolF)2(CH3CN)6](BF4)2 with 9-ethyladenine (9-EtAdeH) or the dinucleotide d(ApA) proceed with bridging adenine bases in the rare imino form (A*), spanning the Rh-Rh bond at equatorial positions via N7/N6. The inflection points for the pH-dependent H2 and H8 NMR resonance curves of cis-[Rh2(DTolF)2(9-EtAdeH)2](BF4)2 correspond to N1H deprotonation of the metal-stabilized rare imino tautomer, which takes place at pKa approximately 7.5 in CD3CN-d3, a considerably reduced value as compared to that of the imino form of 9-EtAdeH. Similarly, coordination of the metal atoms to the N7/N6 adenine sites in Rh2(DTolF)2{d(ApA)} induces formation of the rare imino tautomer of the bases with a concomitant substantial decrease in the basicity of the N1H sites (pKa approximately 7.0 in CD3CN-d3), as compared to the imino form of the free dinucleotide. The presence of the adenine bases in the rare imino form, due to bidentate metalation of the N6/N7 sites, is further corroborated by DQF-COSY H2/N1H and ROE N1H/N6H cross-peaks in the 2D NMR spectra of Rh2(DTolF)2{d(ApA)} in CD3CN-d3 at -38 degrees C. Due to the N7/N6 bridging mode of the adenine bases in Rh2(DTolF)2{d(ApA)}, only the anti orientation of the imino tautomer is possible. The imino form A* of adenine in DNA may result in AT-->CG transversions or AT-->GC transitions, which can eventually lead to lethal mutations. The HH arrangement of the bases in Rh2(DTolF)2{d(ApA)} is indicated by the H8/H8 NOE cross-peaks in the 2D ROESY NMR spectrum, whereas the formamidinate bridging groups dictate the presence of one right-handed conformer HH1R in solution. Complete characterization of Rh2(DTolF)2{d(ApA)} by 2D NMR spectroscopy and molecular modeling supports the presence of the HH1R conformer, anti orientation of both sugar residues about the glycosyl bonds, and N-type conformation for the 5'-A base.

  7. Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) and Endolysosomal Two-pore Channels Modulate Membrane Excitability and Stimulus-Secretion Coupling in Mouse Pancreatic β Cells*

    PubMed Central

    Arredouani, Abdelilah; Ruas, Margarida; Collins, Stephan C.; Parkesh, Raman; Clough, Frederick; Pillinger, Toby; Coltart, George; Rietdorf, Katja; Royle, Andrew; Johnson, Paul; Braun, Matthias; Zhang, Quan; Sones, William; Shimomura, Kenju; Morgan, Anthony J.; Lewis, Alexander M.; Chuang, Kai-Ting; Tunn, Ruth; Gadea, Joaquin; Teboul, Lydia; Heister, Paula M.; Tynan, Patricia W.; Bellomo, Elisa A.; Rutter, Guy A.; Rorsman, Patrik; Churchill, Grant C.; Parrington, John; Galione, Antony

    2015-01-01

    Pancreatic β cells are electrically excitable and respond to elevated glucose concentrations with bursts of Ca2+ action potentials due to the activation of voltage-dependent Ca2+ channels (VDCCs), which leads to the exocytosis of insulin granules. We have examined the possible role of nicotinic acid adenine dinucleotide phosphate (NAADP)-mediated Ca2+ release from intracellular stores during stimulus-secretion coupling in primary mouse pancreatic β cells. NAADP-regulated Ca2+ release channels, likely two-pore channels (TPCs), have recently been shown to be a major mechanism for mobilizing Ca2+ from the endolysosomal system, resulting in localized Ca2+ signals. We show here that NAADP-mediated Ca2+ release from endolysosomal Ca2+ stores activates inward membrane currents and depolarizes the β cell to the threshold for VDCC activation and thereby contributes to glucose-evoked depolarization of the membrane potential during stimulus-response coupling. Selective pharmacological inhibition of NAADP-evoked Ca2+ release or genetic ablation of endolysosomal TPC1 or TPC2 channels attenuates glucose- and sulfonylurea-induced membrane currents, depolarization, cytoplasmic Ca2+ signals, and insulin secretion. Our findings implicate NAADP-evoked Ca2+ release from acidic Ca2+ storage organelles in stimulus-secretion coupling in β cells. PMID:26152717

  8. Ultrafast photo-initiated molecular quantum dynamics in the DNA dinucleotide d(ApG) revealed by broadband transient absorption spectroscopy.

    PubMed

    Stuhldreier, Mayra C; Temps, Friedrich

    2013-01-01

    The ultrafast photo-initiated quantum dynamics of the adenine-guanine dinucleotide d(ApG) in aqueous solution (pH 7) has been studied by femtosecond time-resolved spectroscopy after excitation at lambda = 260 nm. The results reveal a hierarchy of processes on time scales from tau < 100 fs to tau > 100 ps. Characteristic spectro-temporal signatures are observed indicating the transformation of the molecules in the electronic relaxation from the photo-excited state to a long-lived exciplex. In particular, broadband UV/VIS excited-state absorption (ESA) measurements detected a distinctive absorption by the excited dinucleotide around lambda = 335 nm, approximately 0.5 eV to the blue compared to the maximum of the broad and unstructured ESA spectrum after excitation of an equimolar mixture of the mononucleotides dAMP and dGMP. A similar feature has been identified as signature of the excimer in the dynamics of the adenine dinucleotide d(ApA). The lifetime of the d(ApG) exciplex was found to be tau = 124 +/- 4 ps both from the ESA decay time and from the ground-state recovery time, far longer than the sub-picosecond lifetimes of excited dAMP or dGMP. Fluorescence-time profiles measured by the up-conversion technique indicate that the exciplex state is reached around approximately 6 ps after excitation. Very weak residual fluorescence at longer times red-shifted to the emission from the photo-excited state shows that the exciplex is almost optically dark, but still has enough oscillator strength to give rise to the dual fluorescence of the dinucleotide in the static fluorescence spectrum.

  9. Effects of Nicotinamide Adenine Dinucleotide (NAD(+)) and Diadenosine Tetraphosphate (Ap4A) on Electrical Activity of Working and Pacemaker Atrial Myocardium in Guinea Pigs.

    PubMed

    Pustovit, K B; Abramochkin, D V

    2016-04-01

    Effects of nucleotide polyphosphate compounds (nicotinamide adenine dinucleotide, NAD(+); diadenosine tetraphosphate, Ap4A) on the confi guration of action potentials were studied in isolated preparations of guinea pig sinoatrial node and right atrial appendage (auricle). In the working myocardium, NAD(+) and Ap4A in concentrations of 10(-5) and 10(-4) M had no effect on resting potential, but significantly reduced the duration of action potentials; the most pronounced decrease was found at 25% repolarization. In the primary pacemaker of the sinoatrial node, both concentrations of NAD(+) and Ap4A induced hyperpolarization and reduction in the rate of slow diastolic depolarization, but significant slowing of the sinus rhythm was produced by these substances only in the concentration of 10(-4) M. Moreover, AP shortening and marked acceleration of AP upstroke were observed in the pacemaker myocardium after application of polyphosphates. Comparative analysis of the effects of NAD(+) and Ap4A in the working and pacemaker myocardium drove us to a hypothesis on inhibitory effects of these substances on L-type calcium current accompanied by stimulation of one or several potassium currents, which induce enhancement of repolarization and hyperpolarization of membranes probably mediated by the activation of purine receptors.

  10. The effect of functional groups on reduction and activation of quinone bioreductive agents by DT-diaphorase.

    PubMed

    Fourie, Jeanne; Oleschuk, Curtis J; Guziec, Frank; Guziec, Lynn; Fiterman, Derek J; Monterrosa, Cielo; Begleiter, Asher

    2002-02-01

    Bioreductive antitumor agents are an important class of anticancer drugs that include the clinically used drug, mitomycin C, and new agents such as EO9 and tirapazamine that have recently been tested in clinical trials. These agents require activation by reductive enzymes such as DT-diaphorase or NADPH:cytochrome P450 reductase. A major focus for improving cancer chemotherapy has been to increase the selectivity and targeting of antitumor drugs to tumor cells. Bioreductive antitumor agents are ideally suited to improving tumor selectivity by an enzyme-directed approach to tumor targeting. However, none of the bioreductive agents developed to date has been specific for activation by a single reductive enzyme. This is in part due to a lack of knowledge about structural factors that confer selectivity for activation by reductive enzymes. The purpose of this study was to investigate the ability of specific functional groups to modify reduction and activation of quinone bioreductive agents by DT-diaphorase. We used a series of model benzoquinone mustard (BM) bioreductive agents and compared the parent compound BM to MBM, which has a strong electron-donating methoxy group, MeBM, which has a weaker electron-donating methyl group, CBM, which has an electron-withdrawing chloro group, and PBM and its structural isomer, meta-PBM (m-PBM), which both have sterically bulky benzene rings attached to the quinone moiety. We determined the rate of reduction of these agents by purified human DT-diaphorase under hypoxic and aerobic conditions. We also measured the cytotoxic activity of these agents in human tumor cell lines with and without the DT-diaphorase inhibitor, dicoumarol. Under hypoxic conditions in vitro, the t(1/2) values for reduction of the analogs by purified DT-diaphorase were 4, 6, 8, 9, 10 and 21 min for BM, MeBM, CBM, MBM, PBM and m-PBM, respectively. Under aerobic conditions the rank order of redox cycling after two-electron reduction by DT-diaphorase was MBM > Me

  11. Rho-kinase inhibitor and nicotinamide adenine dinucleotide phosphate oxidase inhibitor prevent impairment of endothelium-dependent cerebral vasodilation by acute cigarette smoking in rats.

    PubMed

    Iida, Hiroki; Iida, Mami; Takenaka, Motoyasu; Fukuoka, Naokazu; Dohi, Shuji

    2008-06-01

    We previously reported that acute cigarette smoking can cause a dysfunction of endothelium-dependent vasodilation in cerebral vessels, and that blocking the angiotensin II (Ang II) type 1 (AT1) receptor with valsartan prevented this impairment. Our aim was to investigate the effects of a Rho-kinase inhibitor (fasudil) and a Nicotinamide Adenine Dinucleotide PHosphate (NADPH) oxidase inhibitor (apocynin) on smoking-induced endothelial dysfunction in cerebral arterioles. In Sprague-Dawley rats, we used a closed cranial window preparation to measure changes in pial vessel diameters following topical acetylcholine (ACh) before smoking. After one-minute smoking, we again examined the arteriolar responses to ACh. Finally, after intravenous fasudil or apocynin pre-treatment we re-examined the vasodilator responses to topical ACh (before and after cigarette smoking). Under control conditions, cerebral arterioles were dose-dependently dilated by topical ACh (10(-6) M and 10(-5) M). One hour after a one-minute smoking (1 mg-nicotine cigarette), 10(-5) M ACh constricted cerebral arterioles. However, one hour after a one-minute smoking, 10(-5) M ACh dilated cerebral pial arteries both in the fasudil pre-treatment and the apocynin pre-treatment groups, responses that were significantly different from those obtained without fasudil or apocynin pre-treatment. Thus, inhibition of Rho-kinase and NADPH oxidase activities may prevent the above smoking-induced impairment of endothelium-dependent vasodilation.

  12. Enzyme-Mediated Conversion of Flavin Adenine Dinucleotide (FAD) to 8-Formyl FAD in Formate Oxidase Results in a Modified Cofactor with Enhanced Catalytic Properties.

    PubMed

    Robbins, John M; Souffrant, Michael G; Hamelberg, Donald; Gadda, Giovanni; Bommarius, Andreas S

    2017-07-25

    Flavins, including flavin adenine dinucleotide (FAD), are fundamental catalytic cofactors that are responsible for the redox functionality of a diverse set of proteins. Alternatively, modified flavin analogues are rarely found in nature as their incorporation typically results in inactivation of flavoproteins, thus leading to the disruption of important cellular pathways. Here, we report that the fungal flavoenzyme formate oxidase (FOX) catalyzes the slow conversion of noncovalently bound FAD to 8-formyl FAD and that this conversion results in a nearly 10-fold increase in formate oxidase activity. Although the presence of an enzyme-bound 8-formyl FMN has been reported previously as a result of site-directed mutagenesis studies of lactate oxidase, FOX is the first reported case of 8-formyl FAD in a wild-type enzyme. Therefore, the formation of the 8-formyl FAD cofactor in formate oxidase was investigated using steady-state kinetics, site-directed mutagenesis, ultraviolet-visible, circular dichroism, and fluorescence spectroscopy, liquid chromatography with mass spectrometry, and computational analysis. Surprisingly, the results from these studies indicate not only that 8-formyl FAD forms spontaneously and results in the active form of FOX but also that its autocatalytic formation is dependent on a nearby arginine residue, R87. Thus, this work describes a new enzyme cofactor and provides insight into the little-understood mechanism of enzyme-mediated 8α-flavin modifications.

  13. Overexpression of VMAT-2 and DT-diaphorase protects substantia nigra-derived cells against aminochrome neurotoxicity

    PubMed Central

    Muñoz, Patricia; Paris, Irmgard; Sanders, Laurie H.; Greenamyre, J. Timothy; Segura-Aguilar, Juan

    2013-01-01

    We tested the hypothesis that both VMAT-2 and DT-diaphorase are an important cellular defense against aminochrome-dependent neurotoxicity during dopamine oxidation. A cell line with VMAT-2 and DT-diaphorase over-expressed was created. The transfection of RCSN-3 cells with a bicistronic plasmid coding for VMAT-2 fused with GFP-IRES-DT-diaphorase cDNA induced a significant increase in protein expression of VMAT-2 (7-fold; P<0.001) and DT-diaphorase (9-fold; P<0.001), accompanied by a 4- and 5.5-fold significant increase in transport and enzyme activity, respectively. Studies with synaptic vesicles from rat substantia nigra revealed that VMAT-2 uptake of 3H-aminochrome 6.3 ± 0.4nmol/min/mg was similar to dopamine uptake 6.2 ± 0.3 nmol/min/mg that which were dependent on ATP. Interestingly, aminochrome uptake was inhibited by 2 μM lobeline but not reserpine (1 and 10 μM). Incubation of cells overexpressing VMAT-2 and DT-diaphorase with 20 μM aminochrome resulted in (i) a significant decrease in cell death (6-fold, P<0.001); (ii) normal ultra structure determined by transmission electron microscopy contrasting with a significant increase of autophagosome and a dramatic remodeling of the mitochondrial inner membrane in wild type cells; (iii) normal level of ATP (256 ± 11 μM) contrasting with a significant decrease in wild type cells (121 ± 11 μM, P<0.001); and (iv) a significant decrease in DNA laddering (21 ± 8 pixels, P<0.001) cells in comparison with wild type cells treated with 20 μM aminochrome (269 ± 9). These results support our hypothesis that VMAT-2 and DT-diaphorase are an important defense system against aminochrome formed during dopamine oxidation. PMID:22483869

  14. Nicotinic Acid Adenine Dinucleotide Phosphate Plays a Critical Role in Naive and Effector Murine T Cells but Not Natural Regulatory T Cells*

    PubMed Central

    Ali, Ramadan A.; Camick, Christina; Wiles, Katherine; Walseth, Timothy F.; Slama, James T.; Bhattacharya, Sumit; Giovannucci, David R.; Wall, Katherine A.

    2016-01-01

    Nicotinic acid adenine dinucleotide phosphate (NAADP), the most potent Ca2+ mobilizing second messenger discovered to date, has been implicated in Ca2+ signaling in some lymphomas and T cell clones. In contrast, the role of NAADP in Ca2+ signaling or the identity of the Ca2+ stores targeted by NAADP in conventional naive T cells is less clear. In the current study, we demonstrate the importance of NAADP in the generation of Ca2+ signals in murine naive T cells. Combining live-cell imaging methods and a pharmacological approach using the NAADP antagonist Ned-19, we addressed the involvement of NAADP in the generation of Ca2+ signals evoked by TCR stimulation and the role of this signal in downstream physiological end points such as proliferation, cytokine production, and other responses to stimulation. We demonstrated that acidic compartments in addition to the endoplasmic reticulum were the Ca2+ stores that were sensitive to NAADP in naive T cells. NAADP was shown to evoke functionally relevant Ca2+ signals in both naive CD4 and naive CD8 T cells. Furthermore, we examined the role of this signal in the activation, proliferation, and secretion of effector cytokines by Th1, Th2, Th17, and CD8 effector T cells. Overall, NAADP exhibited a similar profile in mediating Ca2+ release in effector T cells as in their counterpart naive T cells and seemed to be equally important for the function of these different subsets of effector T cells. This profile was not observed for natural T regulatory cells. PMID:26728458

  15. Tissue-specific regulation of sirtuin and nicotinamide adenine dinucleotide biosynthetic pathways identified in C57Bl/6 mice in response to high-fat feeding.

    PubMed

    Drew, Janice E; Farquharson, Andrew J; Horgan, Graham W; Williams, Lynda M

    2016-11-01

    The sirtuin (SIRT)/nicotinamide adenine dinucleotide (NAD) system is implicated in development of type 2 diabetes (T2D) and diet-induced obesity, a major risk factor for T2D. Mechanistic links have not yet been defined. SIRT/NAD system gene expression and NAD/NADH levels were measured in liver, white adipose tissue (WAT) and skeletal muscle from mice fed either a low-fat diet or high-fat diet (HFD) for 3 days up to 16 weeks. An in-house custom-designed multiplex gene expression assay assessed all 7 mouse SIRTs (SIRT1-7) and 16 enzymes involved in conversion of tryptophan, niacin, nicotinamide riboside and metabolic precursors to NAD. Significantly altered transcription was correlated with body weight, fat mass, plasma lipids and hormones. Regulation of the SIRT/NAD system was associated with early (SIRT4, SIRT7, NAPRT1 and NMNAT2) and late phases (NMNAT3, NMRK2, ABCA1 and CD38) of glucose intolerance. TDO2 and NNMT were identified as markers of HFD consumption. Altered regulation of the SIRT/NAD system in response to HFD was prominent in liver compared with WAT or muscle. Multiple components of the SIRTs and NAD biosynthetic enzymes network respond to consumption of dietary fat. Novel molecular targets identified above could direct strategies for dietary/therapeutic interventions to limit metabolic dysfunction and development of T2D. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. β-Nicotinamide adenine dinucleotide acts at prejunctional adenosine A1 receptors to suppress inhibitory musculomotor neurotransmission in guinea pig colon and human jejunum

    PubMed Central

    Wang, Guo-Du; Wang, Xi-Yu; Liu, Sumei; Xia, Yun; Zou, Fei; Qu, Meihua; Needleman, Bradley J.; Mikami, Dean J.

    2015-01-01

    Intracellular microelectrodes were used to record neurogenic inhibitory junction potentials in the intestinal circular muscle coat. Electrical field stimulation was used to stimulate intramural neurons and evoke contraction of the smooth musculature. Exposure to β-nicotinamide adenine dinucleotide (β-NAD) did not alter smooth muscle membrane potential in guinea pig colon or human jejunum. ATP, ADP, β-NAD, and adenosine, as well as the purinergic P2Y1 receptor antagonists MRS 2179 and MRS 2500 and the adenosine A1 receptor agonist 2-chloro-N6-cyclopentyladenosine, each suppressed inhibitory junction potentials in guinea pig and human preparations. β-NAD suppressed contractile force of twitch-like contractions evoked by electrical field stimulation in guinea pig and human preparations. P2Y1 receptor antagonists did not reverse this action. Stimulation of adenosine A1 receptors with 2-chloro-N6-cyclopentyladenosine suppressed the force of twitch contractions evoked by electrical field stimulation in like manner to the action of β-NAD. Blockade of adenosine A1 receptors with 8-cyclopentyl-1,3-dipropylxanthine suppressed the inhibitory action of β-NAD on the force of electrically evoked contractions. The results do not support an inhibitory neurotransmitter role for β-NAD at intestinal neuromuscular junctions. The data suggest that β-NAD is a ligand for the adenosine A1 receptor subtype expressed by neurons in the enteric nervous system. The influence of β-NAD on intestinal motility emerges from adenosine A1 receptor-mediated suppression of neurotransmitter release at inhibitory neuromuscular junctions. PMID:25813057

  17. Nicotinic Acid Adenine Dinucleotide Phosphate Plays a Critical Role in Naive and Effector Murine T Cells but Not Natural Regulatory T Cells.

    PubMed

    Ali, Ramadan A; Camick, Christina; Wiles, Katherine; Walseth, Timothy F; Slama, James T; Bhattacharya, Sumit; Giovannucci, David R; Wall, Katherine A

    2016-02-26

    Nicotinic acid adenine dinucleotide phosphate (NAADP), the most potent Ca(2+) mobilizing second messenger discovered to date, has been implicated in Ca(2+) signaling in some lymphomas and T cell clones. In contrast, the role of NAADP in Ca(2+) signaling or the identity of the Ca(2+) stores targeted by NAADP in conventional naive T cells is less clear. In the current study, we demonstrate the importance of NAADP in the generation of Ca(2+) signals in murine naive T cells. Combining live-cell imaging methods and a pharmacological approach using the NAADP antagonist Ned-19, we addressed the involvement of NAADP in the generation of Ca(2+) signals evoked by TCR stimulation and the role of this signal in downstream physiological end points such as proliferation, cytokine production, and other responses to stimulation. We demonstrated that acidic compartments in addition to the endoplasmic reticulum were the Ca(2+) stores that were sensitive to NAADP in naive T cells. NAADP was shown to evoke functionally relevant Ca(2+) signals in both naive CD4 and naive CD8 T cells. Furthermore, we examined the role of this signal in the activation, proliferation, and secretion of effector cytokines by Th1, Th2, Th17, and CD8 effector T cells. Overall, NAADP exhibited a similar profile in mediating Ca(2+) release in effector T cells as in their counterpart naive T cells and seemed to be equally important for the function of these different subsets of effector T cells. This profile was not observed for natural T regulatory cells. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Diaphorase Coupling Protocols for Red-Shifting Dehydrogenase Assays

    PubMed Central

    Davis, Mindy I.; Shen, Min; Simeonov, Anton

    2016-01-01

    Abstract Dehydrogenases are an important target for the development of cancer therapeutics. Dehydrogenases either produce or consume NAD(P)H, which is fluorescent but at a wavelength where many compounds found in chemical libraries are also fluorescent. By coupling dehydrogenases to diaphorase, which utilizes NAD(P)H to produce the fluorescent molecule resorufin from resazurin, the assay can be red-shifted into a spectral region that reduces interference from compound libraries. Dehydrogenases that produce NAD(P)H, such as isocitrate dehydrogenase 1 (IDH1), can be read in kinetic mode. Dehydrogenases that consume NAD(P)H, such as mutant IDH1 R132H, can be read in endpoint mode. Here, we report protocols for robust and miniaturized 1,536-well assays for WT IDH1 and IDH1 R132H coupled to diaphorase, and the counterassays used to further detect compound interference with the coupling reagents. This coupling technique is applicable to dehydrogenases that either produce or consume NAD(P)H, and the examples provided here can act as guidelines for the development of high-throughput screens against this enzyme class. PMID:27078681

  19. Immortalisation of a human diploid fibroblast cell strain: a DT-diaphorase paradox.

    PubMed Central

    Kuehl, B. L.; Brezden, C. B.; Traver, R. D.; Siegel, D.; Ross, D.; Renzing, J.; Rauth, A. M.

    1996-01-01

    Transfection of a normal human diploid fibroblast cell strain, GM38, with a simian virus 40 (SV40) large T antigen containing plasmid, yielded an immortal cell line, G38-8X, which had a similar sensitivity as the parental cell strain to the quinone-containing chemotherapeutic agent mitomycin C (MMC), under both aerobic and hypoxic exposure conditions. The activity level of DT-diaphorase was similar in both the parental GM38 and G38-8X cells. Although DT-diaphorase could be detected by Western blot analysis, using two mouse anti-human monoclonal antibodies, in GM38 cells, it was not detected in the G38-8X cells. G38-8X cells have a slightly increased P450R activity (2-fold), and have elevated P-glycoprotein levels compared with the parental GM38 cell strain. The immortal G38-8X cell line is 2-fold more resistant to ionising radiation than the parental GM38 cell strain (D10 approximately 5 Gy). Although these SV40 large T antigen immortalised human diploid fibroblasts behaved similarly to their parental cell strain in terms of MMC sensitivity and DT-diaphorase activity, careful characterisation revealed that these cells had enhanced P-glycoprotein activity and had a decreased sensitivity to ionising radiation. Images Figure 3 PMID:8763839

  20. Role of Nicotinamide Adenine Dinucleotide and Related Precursors as Therapeutic Targets for Age-Related Degenerative Diseases: Rationale, Biochemistry, Pharmacokinetics, and Outcomes.

    PubMed

    Braidy, Nady; Berg, Jade; Clement, James; Khorshidi, Fatemeh; Poljak, Anne; Jayasena, Tharusha; Grant, Ross; Sachdev, Perminder

    2018-05-11

    Nicotinamide adenine dinucleotide (NAD + ) is an essential pyridine nucleotide that serves as an essential cofactor and substrate for a number of critical cellular processes involved in oxidative phosphorylation and ATP production, DNA repair, epigenetically modulated gene expression, intracellular calcium signaling, and immunological functions. NAD + depletion may occur in response to either excessive DNA damage due to free radical or ultraviolet attack, resulting in significant poly(ADP-ribose) polymerase (PARP) activation and a high turnover and subsequent depletion of NAD + , and/or chronic immune activation and inflammatory cytokine production resulting in accelerated CD38 activity and decline in NAD + levels. Recent studies have shown that enhancing NAD + levels can profoundly reduce oxidative cell damage in catabolic tissue, including the brain. Therefore, promotion of intracellular NAD + anabolism represents a promising therapeutic strategy for age-associated degenerative diseases in general, and is essential to the effective realization of multiple benefits of healthy sirtuin activity. The kynurenine pathway represents the de novo NAD + synthesis pathway in mammalian cells. NAD + can also be produced by the NAD + salvage pathway. Recent Advances: In this review, we describe and discuss recent insights regarding the efficacy and benefits of the NAD + precursors, nicotinamide (NAM), nicotinic acid (NA), nicotinamide riboside (NR), and nicotinamide mononucleotide (NMN), in attenuating NAD + decline in degenerative disease states and physiological aging. Results obtained in recent years have shown that NAD + precursors can play important protective roles in several diseases. However, in some cases, these precursors may vary in their ability to enhance NAD + synthesis via their location in the NAD + anabolic pathway. Increased synthesis of NAD + promotes protective cell responses, further demonstrating that NAD + is a regulatory molecule associated with several

  1. CYTOCHEMICAL LOCALIZATION OF TWO GLYCOLYTIC DEHYDROGENASES IN WHITE SKELETAL MUSCLE

    PubMed Central

    Fahimi, H. Dariush; Karnovsky, Morris J.

    1966-01-01

    The cytochemical localization, by conventional methods, of lactate and glyceraldehyde-3-phosphate dehydrogenases is limited, firstly, by the solubility of these enzymes in aqueous media and, secondly, by the dependence of the final electron flow from reduced nicotinamide-adenine dinucleotide (NADH) to the tetrazolium on tissue diaphorase activity: localization is therefore that of the diaphorase, which in rabbit adductor magnus is mitochondrial. NADH has been found to have great affinity to bind in the sarcoplasmic reticulum, and, therefore, if it is generated freely in the incubation media containing 2,2',5,5'-tetra-p-nitrophenyl-3,3'-(3,3'-dimethoxy-4,4'-phenylene)-ditetrazolium chloride (TNBT) and N-methyl phenazonium methyl sulfate (PMS), it can bind there and cause a false staining. Since such a production of NADH can readily occur in the incubation media for glycolytic dehydrogenases due to diffusion of these soluble enzymes from tissue sections, the prevention of enzyme solubilization is extremely important. Fixation in formaldehyde prevented such enzyme diffusion, while at the same time sufficient activity persisted to allow for adequate staining. The incubation media contained PMS, so that the staining system was largely independent of tissue diaphorase activity. Application of these methods to adductor magnus of rabbit revealed by light microscopy, for both enzymes, a fine network which was shown by electron microscopy to represent staining of the sarcoplasmic reticulum. Mitochondria also reacted. These findings add further support for the notion that the sarcoplasmic reticulum is probably involved in glycolytic activity. PMID:4288329

  2. Purification and Characterization of Ferredoxin-Nicotinamide Adenine Dinucleotide Phosphate Reductase from a Nitrogen-Fixing Bacterium

    PubMed Central

    Yoch, Duane C.

    1973-01-01

    Evidence suggesting that Bacillus polymyxa has an active ferredoxin-NADP+ reductase (EC 1.6.99.4) was obtained when NADPH was found to provide reducing power for the nitrogenase of this organism; direct evidence was provided when it was shown that B. polymyxa extracts could substitute for the native ferredoxin-NADP+ reductase in the photochemical reduction of NADP+ by blue-green algal particles. The ferredoxin-NADP+ reductase was purified about 80-fold by a combination of high-speed centrifugation, ammonium sulfate fractionation, and chromatography on Sephadex G-100 and diethylaminoethyl-cellulose. The molecular weight was estimated by gel filtration to be 60,000. A small amount of the enzyme was further purified by polyacrylamide gel electrophoresis and shown to be a flavoprotein. The reductase was specific for NADPH in the ferredoxin-dependent reduction of cytochrome c and methyl viologen diaphorase reactions; furthermore, NADP+ was the acceptor of preference when the electron donor was photoreduced ferredoxin. The reductase also has an irreversible NADPH-NAD+ transhydrogenase (reduced-NADP:NAD oxidoreductase, EC 1.6.1.1) activity, the rate of which was proportional to the concentration of NAD (Km = 5.0 × 10−3M). The reductase catalyzed electron transfer from NADPH not only to B. polymyxa ferredoxin but also to the ferredoxins of Clostridium pasteurianum, Azotobacter vinelandii, and spinach chloroplasts, although less effectively. Rubredoxin from Clostridium acidi-urici and azotoflavin from A. vinelandii also accept electrons from the B. polymyxa reductase. The pH optima for the various reactions catalyzed by the B. polymyxa ferredoxin-NADP reductase are similar to those of the chloroplast reductase. NAD and acetyl-coenzyme A, which obligatorily activate NADPH- and NADH-ferredoxin reductases, respectively, in Clostridium kluyveri, have no effect on B. polymyxa reductase. PMID:4147648

  3. NADPH-diaphorase activity and NO synthase expression in the olfactory epithelium of the bovine.

    PubMed

    Wenisch, S; Arnhold, S

    2010-06-01

    NADPH-diaphorase (NADPH-d) staining of the bovine olfactory epithelium was compared with the immunohistochemical localization of nitric oxide synthase (NOS), soluble guanylyl cyclase, and cGMP (cyclic guanosine 3',5'-monophosphate). Out of the three isoforms, only the inducible NOS (NOS-II) was found at the epithelial surface correlating with the strong labelling for NADPH-d. In contrast, light diaphorase staining associated with deeper epithelial regions did not coincide with any NOS immunoreactivity. As there is overlapping expression of NOS-II, soluble guanylyl cyclase and cGMP at the luminal surface morphologically occupied by dendritic knobs of olfactory receptor neurons and microvillar endings of supporting cells, the nitric oxide (NO)/cGMP pathway is likely to be involved in modulating the odour signals during olfactory transduction.

  4. Detection and comparison of nitric oxide in clinically healthy horses and those with naturally acquired strangulating large colon volvulus

    PubMed Central

    2005-01-01

    Abstract The objective of the study was to determine whether nitric oxide (NO) is present in clinically healthy horses (control) under basal conditions, and if it increases secondary to naturally acquired strangulating large colon volvulus (affected). Eleven affected horses and 10 controls were studied. Jugular venous blood, abdominal fluid, and urine were collected. The NO concentrations were standardized to the creatinine concentration in the respective samples. A biopsy specimen collected from the large colon pelvic flexure at surgery was divided into subsections for processing for inducible nitric synthase (iNOS) and nitrotyrosine (NT) immunohistochemical staining and reduced nicotinamide adenine dinucleotide phosphate (NADPH) diaphorase histochemical staining. There were no significant differences in plasma, abdominal fluid, or urine NO concentrations between affected and control horses. There was a significant decrease in submucosal arteriolar and venular endothelium, submucosal plexus, mucosal leukocyte, mucosal and musclaris vasculature, and myenteric plexus NADPH diaphorase staining in affected versus control horses. There was a significant increase in iNOS staining in mucosal leukocytes and vasculature in affected versus control horses. Other than a greater number of positively stained mucosal leukocytes in affected horses, there were no significant differences between affected and control horses for NT staining. The presence of NADPH diaphorase staining in the endothelium and submucosal neurons suggests endothelial and neuronal NOS are present under basal conditions in the large colon of horses. Increased iNOS and NT staining in mucosal leukocytes of affected horses suggests involvement of the NO pathway in large colon volvulus. The reasons for the lack of a significant difference in plasma, abdominal fluid, and urine NO concentrations between affected and control horses are unknown. PMID:15971674

  5. Increased rate of adenine incorporation into adenine nucleotide pool in erythrocytes of patients with chronic renal failure.

    PubMed

    Marlewski, M; Smolenski, R T; Szolkiewicz, M; Aleksandrowicz, Z; Rutkowski, B; Swierczynski, J

    2000-11-01

    Elevated purine nucleotide pool (mainly ATP) in erythrocytes of patients with chronic renal failure (CRF) is a known phenomenon, however the mechanism responsible for this abnormality is far from being clear. We hypothesize that the increased rate of adenine incorporation into adenine nucleotide pool is responsible for the elevated level of ATP in uremic erythrocytes. In chronically uremic patients we evaluated using HPLC technique: (a) plasma adenine concentration; (b) the rate of adenine incorporation into adenine nucleotide pool in uremic erythrocytes. Additionally, the effect of higher than physiological phosphate concentration (2.4 mM) and lower than physiological pH (7.1) on adenine incorporation into erythrocytes adenine nucleotide pool was investigated. Healthy volunteers with normal renal function served as control. The concentration of adenine in plasma of CRF patients was found to be significantly higher than in plasma of healthy subjects. In contrast, adenosine concentration was similar both in healthy humans and in CRF patients. In isolated erythrocytes of uremic patients (incubated in the medium pH 7.4, containing 1.2 mM inorganic phosphate) adenine was incorporated into adenine nucleotide pool at a rate approximately 2-fold higher than in erythrocytes from healthy subjects. The rate of adenosine incorporation into adenine nucleotide pool was similar in erythrocytes of both studied groups. Incubation of erythrocytes obtained from healthy subjects in the medium pH 7.4, containing 2.4 mM inorganic phosphate, caused the increase of adenine incorporation into adenine nucleotide pool by about 60%. Incubation of the cells in the pH 7.1 buffer containing 2. 4 mM inorganic phosphate increased the rate of adenine incorporation into adenylate approximately 2-fold as compared to erythrocytes incubated in the medium pH 7.4 containing 1.2 mM inorganic phosphate. Erythrocytes obtained from uremic patients and incubated in the pH 7.1 medium containing 2.4 m

  6. A Single Primary Blast-Induced Traumatic Brain Injury in a Rodent Model Causes Cell-Type Dependent Increase in Nicotinamide Adenine Dinucleotide Phosphate Oxidase Isoforms in Vulnerable Brain Regions.

    PubMed

    Rama Rao, Kakulavarapu V; Iring, Stephanie; Younger, Daniel; Kuriakose, Matthew; Skotak, Maciej; Alay, Eren; Gupta, Raj K; Chandra, Namas

    2018-06-12

    Blast-induced traumatic brain injury (bTBI) is a leading cause of morbidity in soldiers on the battlefield and in training sites with long-term neurological and psychological pathologies. Previous studies from our laboratory demonstrated activation of oxidative stress pathways after blast injury, but their distribution among different brain regions and their impact on the pathogenesis of bTBI have not been explored. The present study examined the protein expression of two isoforms: nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 1 and 2 (NOX1, NOX2), corresponding superoxide production, a downstream event of NOX activation, and the extent of lipid peroxidation adducts of 4-hydroxynonenal (4HNE) to a range of proteins. Brain injury was evaluated 4 h after the shock-wave exposure, and immunofluorescence signal quantification was performed in different brain regions. Expression of NOX isoforms displayed a differential increase in various brain regions: in hippocampus and thalamus, there was the highest increase of NOX1, whereas in the frontal cortex, there was the highest increase of NOX2 expression. Cell-specific analysis of changes in NOX expression with respect to corresponding controls revealed that blast resulted in a higher increase of NOX1 and NOX 2 levels in neurons compared with astrocytes and microglia. Blast exposure also resulted in increased superoxide levels in different brain regions, and such changes were reflected in 4HNE protein adduct formation. Collectively, this study demonstrates that primary blast TBI induces upregulation of NADPH oxidase isoforms in different regions of the brain parenchyma and that neurons appear to be at higher risk for oxidative damage compared with other neural cells.

  7. Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) Activates Global and Heterogeneous Local Ca2+ Signals from NAADP- and Ryanodine Receptor-gated Ca2+ Stores in Pulmonary Arterial Myocytes*

    PubMed Central

    Jiang, Yong-Liang; Lin, Amanda H. Y.; Xia, Yang; Lee, Suengwon; Paudel, Omkar; Sun, Hui; Yang, Xiao-Ru; Ran, Pixin; Sham, James S. K.

    2013-01-01

    Nicotinic acid adenine dinucleotide phosphate (NAADP) is the most potent Ca2+-mobilizing messenger that releases Ca2+ from endolysosomal organelles. Recent studies showed that NAADP-induced Ca2+ release is mediated by the two-pore channels (TPCs) TPC1 and TPC2. However, the expression of TPCs and the NAADP-induced local Ca2+ signals have not been examined in vascular smooth muscle. Here, we found that both TPC1 and TPC2 are expressed in rat pulmonary arterial smooth muscle cells (PASMCs), with TPC1 being the major subtype. Application of membrane-permeant NAADP acetoxymethyl ester to PASMCs elicited a biphasic increase in global [Ca2+]i, which was independent of extracellular Ca2+ and blocked by the NAADP antagonist Ned-19 or the vacuolar H+-ATPase inhibitor bafilomycin A1, indicating Ca2+ release from acidic endolysosomal Ca2+ stores. The Ca2+ response was unaffected by xestospongin C but was partially blocked by ryanodine or thapsigargin. NAADP triggered heterogeneous local Ca2+ signals, including a diffuse increase in cytosolic [Ca2+], Ca2+ sparks, Ca2+ bursts, and regenerative Ca2+ release. The diffuse Ca2+ increase and Ca2+ bursts were ryanodine-insensitive, presumably arising from different endolysosomal sources. Ca2+ sparks and regenerative Ca2+ release were inhibited by ryanodine, consistent with cross-activation of loosely coupled ryanodine receptors. Moreover, Ca2+ release stimulated by endothelin-1 was inhibited by Ned-19, ryanodine, or xestospongin C, suggesting that NAADP-mediated Ca2+ signals interact with both ryanodine and inositol 1,4,5-trisphosphate receptors during agonist stimulation. Our results show that NAADP mediates complex global and local Ca2+ signals. Depending on the physiological stimuli, these diverse Ca2+ signals may serve to regulate different cellular functions in PASMCs. PMID:23443655

  8. A Hidden Transhydrogen Activity of a FMN-Bound Diaphorase under Anaerobic Conditions

    DTIC Science & Technology

    2016-05-04

    RESEARCH ARTICLE A Hidden Transhydrogen Activity of a FMN- Bound Diaphorase under Anaerobic Conditions John Collins1, Ting Zhang1, Scott Huston1... metabolic pathways for facilitating the electron transfer from one molecule to another in redox reactions. Transhy- drogenase plays an important role in...March 2, 2016 Accepted: April 20, 2016 Published: May 4, 2016 Copyright: © 2016 Collins et al. This is an open access article distributed under the

  9. Axotomy increases NADPH-diaphorase activity in the dorsal root ganglia and lumbar spinal cord of the turtle Trachemys dorbigni.

    PubMed

    Partata, W A; Krepsky, A M; Marques, M; Achaval, M

    1999-04-01

    Seven days after transection of the sciatic nerve NADPH-diaphorase activity increased in the small and medium neurons of the dorsal root ganglia of the turtle. However, this increase was observed only in medium neurons for up to 90 days. At this time a bilateral increase of NADPH-diaphorase staining was observed in all areas and neuronal types of the dorsal horn, and in positive motoneurons in the lumbar spinal cord, ipsilateral to the lesion. A similar increase was also demonstrable in spinal glial and endothelial cells. These findings are discussed in relation to the role of nitric oxide in hyperalgesia and neuronal regeneration or degeneration.

  10. Therapeutic potential of Mucuna pruriens (Linn.) on ageing induced damage in dorsal nerve of the penis and its implication on erectile function: an experimental study using albino rats.

    PubMed

    Seppan, Prakash; Muhammed, Ibrahim; Mohanraj, Karthik Ganesh; Lakshmanan, Ganesh; Premavathy, Dinesh; Muthu, Sakthi Jothi; Wungmarong Shimray, Khayinmi; Sathyanathan, Sathya Bharathy

    2018-02-15

    To study the effect of ethanolic seed extract of Mucuna pruriens on damaged dorsal nerve of the penis (DNP) in aged rat in relation to penile erection. The rats were divided into four groups Young (3 months), Aged (24 - 28 months), Aged + M. pruriens, and Young + M. pruriens (200 mg/kg b.w/60 days) and were subjected to the hypophysial - gonadal axis, nerve conduction velocity (NCV), and penile reflex. DNP sections were stained with nitric oxide synthase (nNOS), nicotinamide adenine dinucleotide phosphate (NaDPH) diaphorase, androgen receptor (AR), and osmium tetroxide. Terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL) staining, electron microscopy(EM) and histometric analyses were done. Significant disturbance in hypophysial - gonadal axis was noted in aged rat. With reduced number of myelinated fibers, diameter, vacuolization, indentation of the myelin sheath, and degeneration. nNOS and its cofactor (NaDPH diaphorase) were reduced in aged rat DNP. NCV was slow in aged rats and concomitant poor penile reflex was also noted. AR showed reduced expression in aged rat DNP when compared to young and control groups. TUNEL positive cells were increased in aged rat DNP. These pathological changes were remarkably reduced or recovered in M. pruriens treated aged rats. The results indicate a multi-factorial therapeutic activity in penile innervations towards sustaining the penile erection in the presence of the extract in aged rats and justifying the claim of traditional usage.

  11. Alkaloid cluster gene ccsA of the ergot fungus Claviceps purpurea encodes chanoclavine I synthase, a flavin adenine dinucleotide-containing oxidoreductase mediating the transformation of N-methyl-dimethylallyltryptophan to chanoclavine I.

    PubMed

    Lorenz, Nicole; Olsovská, Jana; Sulc, Miroslav; Tudzynski, Paul

    2010-03-01

    Ergot alkaloids are indole-derived secondary metabolites synthesized by the phytopathogenic ascomycete Claviceps purpurea. In wild-type strains, they are exclusively produced in the sclerotium, a hibernation structure; for biotechnological applications, submerse production strains have been generated by mutagenesis. It was shown previously that the enzymes specific for alkaloid biosynthesis are encoded by a gene cluster of 68.5 kb. This ergot alkaloid cluster consists of 14 genes coregulated and expressed under alkaloid-producing conditions. Although the role of some of the cluster genes in alkaloid biosynthesis could be confirmed by a targeted knockout approach, further functional analyses are needed, especially concerning the early pathway-specific steps up to the production of clavine alkaloids. Therefore, the gene ccsA, originally named easE and preliminarily annotated as coding for a flavin adenine dinucleotide-containing oxidoreductase, was deleted in the C. purpurea strain P1, which is able to synthesize ergot alkaloids in axenic culture. Five independent knockout mutants were analyzed with regard to alkaloid-producing capability. Thin-layer chromatography (TLC), ultrapressure liquid chromatography (UPLC), and mass spectrometry (MS) analyses revealed accumulation of N-methyl-dimethylallyltryptophan (Me-DMAT) and traces of dimethylallyltryptophan (DMAT), the first pathway-specific intermediate. Since other alkaloid intermediates could not be detected, we conclude that deletion of ccsA led to a block in alkaloid biosynthesis beyond Me-DMAT formation. Complementation with a ccsA/gfp fusion construct restored alkaloid biosynthesis. These data indicate that ccsA encodes the chanoclavine I synthase or a component thereof catalyzing the conversion of N-methyl-dimethylallyltryptophan to chanoclavine I.

  12. Alkaloid Cluster Gene ccsA of the Ergot Fungus Claviceps purpurea Encodes Chanoclavine I Synthase, a Flavin Adenine Dinucleotide-Containing Oxidoreductase Mediating the Transformation of N-Methyl-Dimethylallyltryptophan to Chanoclavine I ▿

    PubMed Central

    Lorenz, Nicole; Olšovská, Jana; Šulc, Miroslav; Tudzynski, Paul

    2010-01-01

    Ergot alkaloids are indole-derived secondary metabolites synthesized by the phytopathogenic ascomycete Claviceps purpurea. In wild-type strains, they are exclusively produced in the sclerotium, a hibernation structure; for biotechnological applications, submerse production strains have been generated by mutagenesis. It was shown previously that the enzymes specific for alkaloid biosynthesis are encoded by a gene cluster of 68.5 kb. This ergot alkaloid cluster consists of 14 genes coregulated and expressed under alkaloid-producing conditions. Although the role of some of the cluster genes in alkaloid biosynthesis could be confirmed by a targeted knockout approach, further functional analyses are needed, especially concerning the early pathway-specific steps up to the production of clavine alkaloids. Therefore, the gene ccsA, originally named easE and preliminarily annotated as coding for a flavin adenine dinucleotide-containing oxidoreductase, was deleted in the C. purpurea strain P1, which is able to synthesize ergot alkaloids in axenic culture. Five independent knockout mutants were analyzed with regard to alkaloid-producing capability. Thin-layer chromatography (TLC), ultrapressure liquid chromatography (UPLC), and mass spectrometry (MS) analyses revealed accumulation of N-methyl-dimethylallyltryptophan (Me-DMAT) and traces of dimethylallyltryptophan (DMAT), the first pathway-specific intermediate. Since other alkaloid intermediates could not be detected, we conclude that deletion of ccsA led to a block in alkaloid biosynthesis beyond Me-DMAT formation. Complementation with a ccsA/gfp fusion construct restored alkaloid biosynthesis. These data indicate that ccsA encodes the chanoclavine I synthase or a component thereof catalyzing the conversion of N-methyl-dimethylallyltryptophan to chanoclavine I. PMID:20118373

  13. Adenine specific DNA chemical sequencing reaction.

    PubMed Central

    Iverson, B L; Dervan, P B

    1987-01-01

    Reaction of DNA with K2PdCl4 at pH 2.0 followed by a piperidine workup produces specific cleavage at adenine (A) residues. Product analysis revealed the K2PdCl4 reaction involves selective depurination at adenine, affording an excision reaction analogous to the other chemical DNA sequencing reactions. Adenine residues methylated at the exocyclic amine (N6) react with lower efficiency than unmethylated adenine in an identical sequence. This simple protocol specific for A may be a useful addition to current chemical sequencing reactions. Images PMID:3671067

  14. Supramolecular polymer formation by cyclic dinucleotides and intercalators affects dinucleotide enzymatic processing

    PubMed Central

    Nakayama, Shizuka; Zhou, Jie; Zheng, Yue; Szmacinski, Henryk; Sintim, Herman O

    2016-01-01

    Background: Cyclic dinucleotides form supramolecular aggregates with intercalators, and this property could be utilized in nanotechnology and medicine. Methods & results: Atomic force microscopy and electrophoretic mobility shift assays were used to show that cyclic diguanylic acid (c-di-GMP) forms G-wires in the presence of intercalators. The average fluorescence lifetime of thiazole orange, when bound to c-di-GMP was greater than when bound to DNA G-quadruplexes or dsDNA. The stability of c-di-GMP supramolecular polymers is dependent on both the nature of the cation present and the intercalator. C-di-GMP or cyclic diadenylic acid/intercalator complexes are more resistant to cleavage by YybT, a phosphodiesterase, than the uncomplexed nucleotides. Conclusion: Cleavage of bacterial cyclic dinucleotides could be slowed down via complexation with small molecules and that this could be utilized for diverse applications in nanotechnology and medicine. PMID:28031943

  15. A mediator-adapted diaphorase variant for a glucose dehydrogenase-diaphorase biocatalytic system.

    PubMed

    Sugiyama, Taiki; Goto, Yoshio; Matsumoto, Ryuhei; Sakai, Hideki; Tokita, Yuichi; Hatazawa, Tsuyonobu

    2010-10-15

    Biofuel cell is an energy conversion device of the next generation which enables use of safer and higher energy-density fuels such as glucose. We have been developing a biofuel cell that comprises the three enzymes: glucose dehydrogenase (GDH) and diaphorase (DI) on anode, and bilirubin oxidase (BOD) on cathode. In this work, we have developed a DI variant suitable for our biofuel cell by using directed molecular evolution method. A gene library of DI variants was constructed by using error-prone PCR and the variant proteins were expressed in an Escherichia coli system. 8000 isolated variants have been screened with activity against 2-amino-1,4-naphthoquinone (ANQ), and 10 of them have been qualified which were then purified and examined their activities against ANQ. A highest activity was observed in G122D variant of which glycine residue at position 122 is substituted to aspartate. Enzymatic kinetic analyses show that KM for ANQ in G122D is 1/3 of that in wild type (G122D: 356 μM, wild type: 1.08 mM), whereas kcat and KM for NADH is almost the same, clearly showing that G122D mutation has given DI an improvement in enzymatic activity at lower ANQ concentration. The effect of this mutation was considered electrochemically in solution and in immobilized layer. The results show that G122D variant DI gave a higher current at lower ANQ concentration in solution, as well as in immobilized condition where GDH is co-immobilized within. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Cyclic Dinucleotides in Oral Bacteria and in Oral Biofilms.

    PubMed

    Gürsoy, Ulvi K; Gürsoy, Mervi; Könönen, Eija; Sintim, Herman O

    2017-01-01

    Oral cavity acts as a reservoir of bacterial pathogens for systemic infections and several oral microorganisms have been linked to systemic diseases. Quorum sensing and cyclic dinucleotides, two "decision-making" signaling systems, communicate to regulate physiological process in bacteria. Discovery of cyclic dinucleotides has a long history, but the progress in our understanding of how cyclic dinucleotides regulate bacterial lifestyle is relatively new. Oral microorganisms form some of the most intricate biofilms, yet c-di-GMP, and c-di-AMP signaling have been rarely studied in oral biofilms. Recent studies demonstrated that, with the aid of bacterial messenger molecules and their analogs, it is possible to activate host innate and adaptive immune responses and epithelial integrity with a dose that is relevant to inhibit bacterial virulence mechanisms, such as fimbriae and exopolysaccharide production, biofilm formation, and host cell invasion. The aim of this perspective article is to present available information on cyclic dinucleotides in oral bacteria and in oral biofilms. Moreover, technologies that can be used to detect cyclic dinucleotides in oral biofilms are described. Finally, directions for future research are highlighted.

  17. Radioresistance of Adenine to Cosmic Rays.

    PubMed

    Vignoli Muniz, Gabriel S; Mejía, Christian F; Martinez, Rafael; Auge, Basile; Rothard, Hermann; Domaracka, Alicja; Boduch, Philippe

    2017-04-01

    The presence of nucleobases in carbonaceous meteorites on Earth is an indication of the existence of this class of molecules in outer space. However, space is permeated by ionizing radiation, which can have damaging effects on these molecules. Adenine is a purine nucleobase that amalgamates important biomolecules such as DNA, RNA, and ATP. Adenine has a unique importance in biochemistry and therefore life. The aim of this work was to study the effects of cosmic ray analogues on solid adenine and estimate its survival when exposed to corpuscular radiation. Adenine films were irradiated at GANIL (Caen, France) and GSI (Darmstadt, Germany) by 820 MeV Kr 33+ , 190 MeV Ca 10+ , 92 MeV Xe 23+ , and 12 MeV C 4+ ion beams at low temperature. The evolution of adenine molecules under heavy ion irradiation was studied by IR absorption spectroscopy as a function of projectile fluence. It was found that the adenine destruction cross section (σ d ) follows an electronic stopping power (S e ) power law under the form: CS e n ; C is a constant, and the exponential n is a dimensionless quantity. Using the equation above to fit our results, we determined σ d  = 4 × 10 -17 S e 1.17 , with S e in kiloelectronvolts per micrometer (keV μm -1 ). New IR absorption bands arise under irradiation of adenine and can be attributed to HCN, CN - , C 2 H 4 N 4 , CH 3 CN, and (CH 3 ) 3 CNC. These findings may help to understand the stability and chemistry related to complex organic molecules in space. The half-life of solid adenine exposed to the simulated interstellar medium cosmic ray flux was estimated as (10 ± 8) × 10 6 years. Key Words: Heavy ions-Infrared spectroscopy-Astrochemistry-Cosmic rays-Nucleobases-Adenine. Astrobiology 17, 298-308.

  18. Responses of Adenine Nucleotides in Germinating Soybean Embryonic Axes to Exogenously Applied Adenine and Adenosine

    PubMed Central

    Anderson, James D.

    1977-01-01

    The ATP content of soybean (Glycine max [L.] Merr. cv. Kent) axes incubated for 3 hours in 1 mm solutions of adenine and adenosine increased over 100% and 75%, respectively, over axes incubated in water. The increase in ATP was primarily due to the conversion of these purines to nucleotides via the nucleotide salvage pathway. The ATP formed was in a metabolically active pool because label from adenine was incorporated into acid-insoluble material. Adenine also increased the levels of GTP, UTP, and CTP, but not to the extent of the ATP level. PMID:16660165

  19. Radioresistance of Adenine to Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Vignoli Muniz, Gabriel S.; Mejía, Christian F.; Martinez, Rafael; Auge, Basile; Rothard, Hermann; Domaracka, Alicja; Boduch, Philippe

    2017-04-01

    The presence of nucleobases in carbonaceous meteorites on Earth is an indication of the existence of this class of molecules in outer space. However, space is permeated by ionizing radiation, which can have damaging effects on these molecules. Adenine is a purine nucleobase that amalgamates important biomolecules such as DNA, RNA, and ATP. Adenine has a unique importance in biochemistry and therefore life. The aim of this work was to study the effects of cosmic ray analogues on solid adenine and estimate its survival when exposed to corpuscular radiation. Adenine films were irradiated at GANIL (Caen, France) and GSI (Darmstadt, Germany) by 820 MeV Kr33+, 190 MeV Ca10+, 92 MeV Xe23+, and 12 MeV C4+ ion beams at low temperature. The evolution of adenine molecules under heavy ion irradiation was studied by IR absorption spectroscopy as a function of projectile fluence. It was found that the adenine destruction cross section (σd) follows an electronic stopping power (Se) power law under the form: CSen; C is a constant, and the exponential n is a dimensionless quantity. Using the equation above to fit our results, we determined σd = 4 × 10-17 Se1.17, with Se in kiloelectronvolts per micrometer (keV μm-1). New IR absorption bands arise under irradiation of adenine and can be attributed to HCN, CN-, C2H4N4, CH3CN, and (CH3)3CNC. These findings may help to understand the stability and chemistry related to complex organic molecules in space. The half-life of solid adenine exposed to the simulated interstellar medium cosmic ray flux was estimated as (10 ± 8) × 106 years.

  20. Atomic substitution reveals the structural basis for substrate adenine recognition and removal by adenine DNA glycosylase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Seongmin; Verdine, Gregory L.; Harvard)

    2010-01-14

    Adenine DNA glycosylase catalyzes the glycolytic removal of adenine from the promutagenic A {center_dot} oxoG base pair in DNA. The general features of DNA recognition by an adenine DNA glycosylase, Bacillus stearothermophilus MutY, have previously been revealed via the X-ray structure of a catalytically inactive mutant protein bound to an A:oxoG-containing DNA duplex. Although the structure revealed the substrate adenine to be, as expected, extruded from the DNA helix and inserted into an extrahelical active site pocket on the enzyme, the substrate adenine engaged in no direct contacts with active site residues. This feature was paradoxical, because other glycosylases havemore » been observed to engage their substrates primarily through direct contacts. The lack of direct contacts in the case of MutY suggested that either MutY uses a distinctive logic for substrate recognition or that the X-ray structure had captured a noncatalytically competent state in lesion recognition. To gain further insight into this issue, we crystallized wild-type MutY bound to DNA containing a catalytically inactive analog of 2'-deoxyadenosine in which a single 2'-H atom was replaced by fluorine. The structure of this fluorinated lesion-recognition complex (FLRC) reveals the substrate adenine buried more deeply into the active site pocket than in the prior structure and now engaged in multiple direct hydrogen bonding and hydrophobic interactions. This structure appears to capture the catalytically competent state of adenine DNA glycosylases, and it suggests a catalytic mechanism for this class of enzymes, one in which general acid-catalyzed protonation of the nucleobase promotes glycosidic bond cleavage.« less

  1. Formation of the imidazolides of dinucleotides under potentially prebiotic conditions

    NASA Technical Reports Server (NTRS)

    Sleeper, H. L.; Lohrmann, R.; Orgel, L. E.

    1978-01-01

    Imidazolides of dinucleotides such as ImpApA can be formed from the corresponding dinucleotides in a two-stage process, which gives up to 15% yields under potentially prebiotic conditions. First a solution of the dinucleotide and sodium trimetaphosphate is dried out at constant temperature and humidity. This produces polyphosphates such as p(n)ApA in excellent yield (greater than or equal to 80%). The products are dissolved in water, imidazole is added, and the solution is dried out again. This yields the 5'-phosphorimidazolides.

  2. Multiple Animal Studies for Medical Chemical Defense Program in Soldier/ Patient Decontamination and Drug Development on Task Order 84-6: Pyruvate Dehydrogenase System for Determining the Effectiveness of Arsenic Antidotes

    DTIC Science & Technology

    1988-03-11

    adenine dinucleotide FAD = flavin-adenine dinucleotide iipS2 = lipoic acid lip(SH)2 = dihydrolipoic acid CoA = coenzyme A. SHepatic PDH complex activity...tissues has yet to be fully characterized, but it probably involves arsenic binding to the lipoic acid and dithiol moieties of the complex (Fluharty...covalently bound lipoic acid substrate of dihydrolipoyl transacetylase is greater per mole of L and CVAA than for sodium arsenite. This is possible

  3. Immobilization of flavin adenine dinucleotide (FAD) onto carbon cloth and its application as working electrode in an electroenzymatic bioreactor.

    PubMed

    Jayabalan, R; Sathishkumar, M; Jeong, E S; Mun, S P; Yun, S E

    2012-11-01

    A high porosity carbon cloth with immobilized FAD was employed as working electrode in electrochemical NADH-regeneration procedure. Carbon cloth was oxidized with hot acids to create surface carboxyl group and then coupled by adenine amino group of FAD with carbodiimide in the presence of N-hydroxysulfosuccinimide. The bioelectrocatalytic NADH-regeneration was coupled to the conversion of achiral substrate pyruvate into chiral product l-lactate by l-lactate dehydrogenase (l-LDH) within the same reactor. The conversion was completed at 96h in bioreactor with FAD-modified carbon cloth, resulting in about 6mM of l-lactate from 10mM of pyruvate. While with bare carbon cloth, the yield at 120h was around 5mM. Immobilized FAD on the surface of carbon cloth electrode facilitated it to carry electrons from electrode to electron transfer enzymes; thereby NADH-regeneration was accelerated to drive the enzymatic reaction efficiently. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Silver-induced reconstruction of an adeninate-based metal-organic framework for encapsulation of luminescent adenine-stabilized silver clusters.

    PubMed

    Jonckheere, Dries; Coutino-Gonzalez, Eduardo; Baekelant, Wouter; Bueken, Bart; Reinsch, Helge; Stassen, Ivo; Fenwick, Oliver; Richard, Fanny; Samorì, Paolo; Ameloot, Rob; Hofkens, Johan; Roeffaers, Maarten B J; De Vos, Dirk E

    2016-05-21

    Bright luminescent silver-adenine species were successfully stabilized in the pores of the MOF-69A (zinc biphenyldicarboxylate) metal-organic framework, starting from the intrinsically blue luminescent bio-MOF-1 (zinc adeninate 4,4'-biphenyldicarboxylate). Bio-MOF-1 is transformed to the MOF-69A framework by selectively leaching structural adenine linkers from the original framework using silver nitrate solutions in aqueous ethanol. Simultaneously, bright blue-green luminescent silver-adenine clusters are formed inside the pores of the recrystallized MOF-69A matrix in high local concentrations. The structural transition and concurrent changes in optical properties were characterized using a range of structural, physicochemical and spectroscopic techniques (steady-state and time-resolved luminescence, quantum yield determination, fluorescence microscopy). The presented results open new avenues for exploring the use of MOFs containing luminescent silver clusters for solid-state lighting and sensor applications.

  5. CpG Dinucleotide Frequencies Reveal the Role of Host Methylation Capabilities in Parvovirus Evolution

    PubMed Central

    Upadhyay, Mohita; Samal, Jasmine; Kandpal, Manish; Vasaikar, Suhas; Biswas, Banhi; Gomes, James

    2013-01-01

    Parvoviruses are rapidly evolving viruses that infect a wide range of hosts, including vertebrates and invertebrates. Extensive methylation of the parvovirus genome has been recently demonstrated. A global pattern of methylation of CpG dinucleotides is seen in vertebrate genomes, compared to “fractional” methylation patterns in invertebrate genomes. It remains unknown if the loss of CpG dinucleotides occurs in all viruses of a given DNA virus family that infect host species spanning across vertebrates and invertebrates. We investigated the link between the extent of CpG dinucleotide depletion among autonomous parvoviruses and the evolutionary lineage of the infected host. We demonstrate major differences in the relative abundance of CpG dinucleotides among autonomous parvoviruses which share similar genome organization and common ancestry, depending on the infected host species. Parvoviruses infecting vertebrate hosts had significantly lower relative abundance of CpG dinucleotides than parvoviruses infecting invertebrate hosts. The strong correlation of CpG dinucleotide depletion with the gain in TpG/CpA dinucleotides and the loss of TpA dinucleotides among parvoviruses suggests a major role for CpG methylation in the evolution of parvoviruses. Our data present evidence that links the relative abundance of CpG dinucleotides in parvoviruses to the methylation capabilities of the infected host. In sum, our findings support a novel perspective of host-driven evolution among autonomous parvoviruses. PMID:24109231

  6. CpG dinucleotide frequencies reveal the role of host methylation capabilities in parvovirus evolution.

    PubMed

    Upadhyay, Mohita; Samal, Jasmine; Kandpal, Manish; Vasaikar, Suhas; Biswas, Banhi; Gomes, James; Vivekanandan, Perumal

    2013-12-01

    Parvoviruses are rapidly evolving viruses that infect a wide range of hosts, including vertebrates and invertebrates. Extensive methylation of the parvovirus genome has been recently demonstrated. A global pattern of methylation of CpG dinucleotides is seen in vertebrate genomes, compared to "fractional" methylation patterns in invertebrate genomes. It remains unknown if the loss of CpG dinucleotides occurs in all viruses of a given DNA virus family that infect host species spanning across vertebrates and invertebrates. We investigated the link between the extent of CpG dinucleotide depletion among autonomous parvoviruses and the evolutionary lineage of the infected host. We demonstrate major differences in the relative abundance of CpG dinucleotides among autonomous parvoviruses which share similar genome organization and common ancestry, depending on the infected host species. Parvoviruses infecting vertebrate hosts had significantly lower relative abundance of CpG dinucleotides than parvoviruses infecting invertebrate hosts. The strong correlation of CpG dinucleotide depletion with the gain in TpG/CpA dinucleotides and the loss of TpA dinucleotides among parvoviruses suggests a major role for CpG methylation in the evolution of parvoviruses. Our data present evidence that links the relative abundance of CpG dinucleotides in parvoviruses to the methylation capabilities of the infected host. In sum, our findings support a novel perspective of host-driven evolution among autonomous parvoviruses.

  7. Biofuel cell backpacked insect and its application to wireless sensing.

    PubMed

    Shoji, Kan; Akiyama, Yoshitake; Suzuki, Masato; Nakamura, Nobuhumi; Ohno, Hiroyuki; Morishima, Keisuke

    2016-04-15

    This study investigated an enzymatic biofuel cell (BFC) which can be backpacked by cockroaches. The BFC generates electric power from trehalose in insect hemolymph by the trehalase and glucose dehydrogenase (GDH) reaction systems which dehydrogenate β-glucose obtained by hydrolyzing trehalose. First, an insect-mountable BFC (imBFC) was designed and fabricated with a 3D printer. The electrochemical reaction of anode-modified poly-L-lysine, vitamin K3, diaphorase, nicotinamide adenine dinucleotide, GDH and poly(sodium 4-styrenesulfonate) in the imBFC was evaluated and an oxidation current of 1.18 mAcm(-2) (at +0.6 V vs. Ag|AgCl) was observed. Then, the performance of the imBFC was evaluated and a maximum power output of 333 μW (285 μW cm(-)(2)) (at 0.5 V) was obtained. Furthermore, driving of both an LED device and a wireless temperature and humidity sensor device were powered by the imBFC. These results indicate that the imBFC has sufficient potential as a battery for novel ubiquitous robots such as insect cyborgs. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Influence of age-related changes in nitric oxide synthase-expressing neurons in the rat supraoptic nucleus on inhibition of salivary secretion.

    PubMed

    Tanaka, Takehiko; Tamada, Yoshitaka; Suwa, Fumihiko

    2008-02-01

    Age-related inhibition of salivary secretion has been demonstrated in rats, and the nitric oxide (NO) present in the supraoptic nucleus (SON) and the medial septal area has been reported to play an inhibitory role in the regulation of salivary secretion. In the present study, we investigated the age-related changes occurring in the NO synthase (NOS)-expressing neurons in the SON, which is related to the production of NO, and discussed the interrelation between the age-related changes in the NOS-expressing neurons and the age-related inhibition of salivary secretion. Nissl staining and reduced nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) histochemistry were performed for young adult and aged rats. Quantitative analysis was also performed using the Nissl-stained and NADPH-d-positive neurons. Although the numbers of the Nissl-stained neurons did not change, significant age-related increases were detected in cell number, cell size and reactive density of the NADPH-d-positive neurons. Therefore, the production of NO in the SON neurons increased with age. We concluded that the age-related increase in the NO in the SON might be a factor that contributes to the age-related inhibition of salivary secretion.

  9. Experimental microembolism induces localized neuritic pathology in guinea pig cerebrum

    PubMed Central

    Li, Jian-Ming; Cai, Yan; Liu, Fei; Yang, La; Hu, Xia; Patrylo, Peter R.; Cai, Huaibin; Luo, Xue-Gang; Xiao, Dong; Yan, Xiao-Xin

    2015-01-01

    Microbleeds are a common finding in aged human brains. In Alzheimer's disease (AD), neuritic plaques composed of β-amyloid (Aβ) deposits and dystrophic neurites occur frequently around cerebral vasculature, raising a compelling question as to whether, and if so, how, microvascular abnormality and amyloid/neuritic pathology might be causally related. Here we used a guinea pig model of cerebral microembolism to explore a potential inductive effect of vascular injury on neuritic and amyloid pathogenesis. Brains were examined 7-30 days after experimental microvascular embolization occupying ~0.5% of total cortical area. Compared to sham-operated controls, glial fibrillary acidic protein immunoreactivity was increased in the embolized cerebrum, evidently around intracortical vasculature. Swollen/sprouting neurites exhibiting increased reactivity of nicotinamide adenine dinucleotide phosphate diaphorase, parvalbumin, vesicular glutamate transporter 1 and choline acetyltransferase appeared locally in the embolized brains in proximity to intracortical vasculature. The embolization-induced swollen/sprouting neurites were also robustly immunoreactive for β-amyloid precursor protein and β-secretase-1, the substrate and initiating enzyme for Aβ genesis. These experimental data suggest that microvascular injury can induce multisystem neuritic pathology associated with an enhanced amyloidogenic potential in wild-type mammalian brain. PMID:25871402

  10. Experimental microembolism induces localized neuritic pathology in guinea pig cerebrum.

    PubMed

    Li, Jian-Ming; Cai, Yan; Liu, Fei; Yang, La; Hu, Xia; Patrylo, Peter R; Cai, Huaibin; Luo, Xue-Gang; Xiao, Dong; Yan, Xiao-Xin

    2015-05-10

    Microbleeds are a common finding in aged human brains. In Alzheimer's disease (AD), neuritic plaques composed of β-amyloid (Aβ) deposits and dystrophic neurites occur frequently around cerebral vasculature, raising a compelling question as to whether, and if so, how, microvascular abnormality and amyloid/neuritic pathology might be causally related. Here we used a guinea pig model of cerebral microembolism to explore a potential inductive effect of vascular injury on neuritic and amyloid pathogenesis. Brains were examined 7-30 days after experimental microvascular embolization occupying ~0.5% of total cortical area. Compared to sham-operated controls, glial fibrillary acidic protein immunoreactivity was increased in the embolized cerebrum, evidently around intracortical vasculature. Swollen/sprouting neurites exhibiting increased reactivity of nicotinamide adenine dinucleotide phosphate diaphorase, parvalbumin, vesicular glutamate transporter 1 and choline acetyltransferase appeared locally in the embolized brains in proximity to intracortical vasculature. The embolization-induced swollen/sprouting neurites were also robustly immunoreactive for β-amyloid precursor protein and β-secretase-1, the substrate and initiating enzyme for Aβ genesis. These experimental data suggest that microvascular injury can induce multisystem neuritic pathology associated with an enhanced amyloidogenic potential in wild-type mammalian brain.

  11. Transport of adenine, hypoxanthine and uracil into Escherichia coli.

    PubMed Central

    Burton, K

    1977-01-01

    Uptake of adenine, hypoxanthine and uracil by an uncA strain of Escherichia coli is inhibited by uncouplers or when phosphate in the medium is replaced by less than 1 mM-arsenate, indicating a need for both a protonmotive force and phosphorylated metabolites. The rate of uptake of adenine or hypoxanthine was not markedly affected by a genetic deficiency of purine nucleoside phosphorylase. In two mutants with undetected adenine phosphoribosyltransferase, the rate of adenine uptake was about 30% of that in their parent strain, and evidence was obtained to confirm that adenine had then been utilized via purine nucleoside phosphorylase. In a strain deficient in both enzymes adenine uptake was about 1% of that shown by wild-type strains. Uptake of hypoxanthine was similarly limited in a strain lacking purine nucleoside phosphorylase, hypoxanthine phosphoribosyltransferase and guanine phosphoribosyltransferase. Deficiency of uracil phosphoribosyltransferase severely limits uracil uptake, but the defect can be circumvented by addition of inosine, which presumably provides ribose 1-phosphate for reversal of uridine phosphorylase. The results indicate that there are porter systems for adenine, hypoxanthine and uracil dependent on a protonmotive force and facilitated by intracellular metabolism of the free bases. PMID:413544

  12. Preparation, purification and analyses of thirteen alkali-stable dinucleotides from ribonucleic acid

    PubMed Central

    Trim, A. R.; Parker, Janet E.

    1970-01-01

    Of the 16 alkali-stable dinucleotides known to be obtained by hydrolysis of commercial yeast RNA with alkali, 13 were prepared in quantities of the order of 10mg or more. The samples, with only one exception, contain at least 90% of dinucleotide, and spectroscopic constants and nucleotide-sequence determinations, although not conclusive, indicate a high degree of purity of these products. The small dinucleotide fraction in 150g of RNA hydrolysed with alkali (1–2% of the total nucleotides) was separated from the mononucleotides by stepwise ion-exchange chromatography on DEAE-cellulose columns and resolved into seven fractions containing from one to four different dinucleotides by electrophoresis on paper at pH3.0. These fractions were resolved into their constituent dinucleotides by chromatography in ammonium sulphate. Contamination of the products by impurities from the paper was minimized by washing it before using it for chromatography or electrophoresis and, by using a thick grade of paper (Whatman no. 17), it was possible to handle and purify relatively large quantities of nucleotides. PMID:5435489

  13. Biomarkers and Biological Spectral Imaging

    DTIC Science & Technology

    2001-01-23

    Image t iZ ~ Rotator SSteping r De m oo ontroler Frmegabe (single ams) ... Software -= • . ... PCCm ue Data acquisition Rotator control PC Co puterImage...the depth of bum injury", Bums, 7, pp. 197-202, 1981. 7. R. A. De Blasi, M. Cope, C. Elwell, F. Safoue and M. Ferrari, "Noninvasive measurement of...nicotinamide adenine dinucleotide (NADH), oxidized flavin adenine dinucleotide (FAD) and porphyrins. A number of studies have shown that the measured

  14. Dinucleotide Composition in Animal RNA Viruses Is Shaped More by Virus Family than by Host Species

    PubMed Central

    Di Giallonardo, Francesca; Schlub, Timothy E.; Shi, Mang

    2017-01-01

    ABSTRACT Viruses use the cellular machinery of their hosts for replication. It has therefore been proposed that the nucleotide and dinucleotide compositions of viruses should match those of their host species. If this is upheld, it may then be possible to use dinucleotide composition to predict the true host species of viruses sampled in metagenomic surveys. However, it is also clear that different taxonomic groups of viruses tend to have distinctive patterns of dinucleotide composition that may be independent of host species. To determine the relative strength of the effect of host versus virus family in shaping dinucleotide composition, we performed a comparative analysis of 20 RNA virus families from 15 host groupings, spanning two animal phyla and more than 900 virus species. In particular, we determined the odds ratios for the 16 possible dinucleotides and performed a discriminant analysis to evaluate the capability of virus dinucleotide composition to predict the correct virus family or host taxon from which it was isolated. Notably, while 81% of the data analyzed here were predicted to the correct virus family, only 62% of these data were predicted to their correct subphylum/class host and a mere 32% to their correct mammalian order. Similarly, dinucleotide composition has a weak predictive power for different hosts within individual virus families. We therefore conclude that dinucleotide composition is generally uniform within a virus family but less well reflects that of its host species. This has obvious implications for attempts to accurately predict host species from virus genome sequences alone. IMPORTANCE Determining the processes that shape virus genomes is central to understanding virus evolution and emergence. One question of particular importance is why nucleotide and dinucleotide frequencies differ so markedly between viruses. In particular, it is currently unclear whether host species or virus family has the biggest impact on dinucleotide

  15. Dinucleotide Composition in Animal RNA Viruses Is Shaped More by Virus Family than by Host Species.

    PubMed

    Di Giallonardo, Francesca; Schlub, Timothy E; Shi, Mang; Holmes, Edward C

    2017-04-15

    Viruses use the cellular machinery of their hosts for replication. It has therefore been proposed that the nucleotide and dinucleotide compositions of viruses should match those of their host species. If this is upheld, it may then be possible to use dinucleotide composition to predict the true host species of viruses sampled in metagenomic surveys. However, it is also clear that different taxonomic groups of viruses tend to have distinctive patterns of dinucleotide composition that may be independent of host species. To determine the relative strength of the effect of host versus virus family in shaping dinucleotide composition, we performed a comparative analysis of 20 RNA virus families from 15 host groupings, spanning two animal phyla and more than 900 virus species. In particular, we determined the odds ratios for the 16 possible dinucleotides and performed a discriminant analysis to evaluate the capability of virus dinucleotide composition to predict the correct virus family or host taxon from which it was isolated. Notably, while 81% of the data analyzed here were predicted to the correct virus family, only 62% of these data were predicted to their correct subphylum/class host and a mere 32% to their correct mammalian order. Similarly, dinucleotide composition has a weak predictive power for different hosts within individual virus families. We therefore conclude that dinucleotide composition is generally uniform within a virus family but less well reflects that of its host species. This has obvious implications for attempts to accurately predict host species from virus genome sequences alone. IMPORTANCE Determining the processes that shape virus genomes is central to understanding virus evolution and emergence. One question of particular importance is why nucleotide and dinucleotide frequencies differ so markedly between viruses. In particular, it is currently unclear whether host species or virus family has the biggest impact on dinucleotide frequencies and

  16. Catalytic carbene transfer allows the direct customization of cyclic purine dinucleotides.

    PubMed

    Fei, Na; Häussinger, Daniel; Blümli, Seraina; Laventie, Benoît-Joseph; Bizzini, Lorenzo D; Zimmermann, Kaspar; Jenal, Urs; Gillingham, Dennis

    2014-08-11

    We describe a simple method for the direct modification of nucleobases in cyclic purine dinucleotides, important signalling molecules in both prokaryotes and eukaryotes. The method tolerates all members of the cyclic dinucleotide family and could be used to modulate their function or introduce useful side-chains such as fluorophores and photo-crosslinking groups.

  17. A comparison of adenine and some derivatives on pig isolated tracheal muscle.

    PubMed Central

    Bach-Dieterle, Y.; Holden, W. E.; Junod, A. F.

    1983-01-01

    We studied the muscle relaxation induced by adenine and several adenine derivatives in strips of tracheal smooth muscle from pigs; in addition their metabolism by the tissue was examined. Adenine relaxed tissue which was contracted by carbachol, histamine, or KCl. Adenine's potency was similar to that of adenosine and ATP (threshold about 4 X 10(-5)M). In tissues with carbachol-induced tone, the adenine effect differed from adenosine and ATP by being slower in onset and in 'washout' time. Furthermore, neither dipyridamole nor theophylline modified the response to adenine. The relationship was examined between pharmacological effects and the metabolism of [3H]-adenosine and [3H]-adenine. Both substrates were taken up by the tissue and converted to nucleotides, but relaxation correlated with nucleotide accumulation only in the case of [3H]-adenine. We conclude that the site and mechanism of adenine-induced relaxation is different from that of adenosine and ATP in porcine tracheal muscle. PMID:6571222

  18. Base Excision Repair of Tandem Modifications in a Methylated CpG Dinucleotide*

    PubMed Central

    Sassa, Akira; Çağlayan, Melike; Dyrkheeva, Nadezhda S.; Beard, William A.; Wilson, Samuel H.

    2014-01-01

    Cytosine methylation and demethylation in tracks of CpG dinucleotides is an epigenetic mechanism for control of gene expression. The initial step in the demethylation process can be deamination of 5-methylcytosine producing the TpG alteration and T:G mispair, and this step is followed by thymine DNA glycosylase (TDG) initiated base excision repair (BER). A further consideration is that guanine in the CpG dinucleotide may become oxidized to 7,8-dihydro-8-oxoguanine (8-oxoG), and this could affect the demethylation process involving TDG-initiated BER. However, little is known about the enzymology of BER of altered in-tandem CpG dinucleotides; e.g. Tp8-oxoG. Here, we investigated interactions between this altered dinucleotide and purified BER enzymes, the DNA glycosylases TDG and 8-oxoG DNA glycosylase 1 (OGG1), apurinic/apyrimidinic (AP) endonuclease 1, DNA polymerase β, and DNA ligases. The overall TDG-initiated BER of the Tp8-oxoG dinucleotide is significantly reduced. Specifically, TDG and DNA ligase activities are reduced by a 3′-flanking 8-oxoG. In contrast, the OGG1-initiated BER pathway is blocked due to the 5′-flanking T:G mispair; this reduces OGG1, AP endonuclease 1, and DNA polymerase β activities. Furthermore, in TDG-initiated BER, TDG remains bound to its product AP site blocking OGG1 access to the adjacent 8-oxoG. These results reveal BER enzyme specificities enabling suppression of OGG1-initiated BER and coordination of TDG-initiated BER at this tandem alteration in the CpG dinucleotide. PMID:24695738

  19. Dinucleotide controlled null models for comparative RNA gene prediction.

    PubMed

    Gesell, Tanja; Washietl, Stefan

    2008-05-27

    Comparative prediction of RNA structures can be used to identify functional noncoding RNAs in genomic screens. It was shown recently by Babak et al. [BMC Bioinformatics. 8:33] that RNA gene prediction programs can be biased by the genomic dinucleotide content, in particular those programs using a thermodynamic folding model including stacking energies. As a consequence, there is need for dinucleotide-preserving control strategies to assess the significance of such predictions. While there have been randomization algorithms for single sequences for many years, the problem has remained challenging for multiple alignments and there is currently no algorithm available. We present a program called SISSIz that simulates multiple alignments of a given average dinucleotide content. Meeting additional requirements of an accurate null model, the randomized alignments are on average of the same sequence diversity and preserve local conservation and gap patterns. We make use of a phylogenetic substitution model that includes overlapping dependencies and site-specific rates. Using fast heuristics and a distance based approach, a tree is estimated under this model which is used to guide the simulations. The new algorithm is tested on vertebrate genomic alignments and the effect on RNA structure predictions is studied. In addition, we directly combined the new null model with the RNAalifold consensus folding algorithm giving a new variant of a thermodynamic structure based RNA gene finding program that is not biased by the dinucleotide content. SISSIz implements an efficient algorithm to randomize multiple alignments preserving dinucleotide content. It can be used to get more accurate estimates of false positive rates of existing programs, to produce negative controls for the training of machine learning based programs, or as standalone RNA gene finding program. Other applications in comparative genomics that require randomization of multiple alignments can be considered. SISSIz

  20. The requirement for bivalent cations in formation of nicotinamide–adenine dinucleotide by nicotinamide mononucleotide adenylyltransferase of pig-liver nuclei

    PubMed Central

    Jackson, J. F.; Atkinson, M. R.

    1966-01-01

    1. The requirement for bivalent cations in catalysis of NAD formation from ATP and NMN in the presence of NMN adenylyltransferase of pig-liver nuclei was studied. Rates of NAD formation in the presence of the activating cations Cd2+, Mn2+, Mg2+, Zn2+, Co2+ and Ni2+ were approximately a linear function of heats of hydration of the corresponding ions. Ba2+, Sr2+, Ca2+, Cu2+ and Be2+ did not activate the enzyme; Be2+ inhibited the reaction in the presence of Mg2+ and, to a greater extent, in the presence of Ni2+. 2. Michaelis constants for NAD formation, measured in a coupled assay with NMN adenylyltransferase and alcohol dehydrogenase at pH8·0 and 25°, in the presence of 3mm concentrations of the unvaried reactants, were 88±7μm-ATP, 42±4μm-NMN and 85±4μm-Mg2+. The results at this pH and at pH7·5 were consistent with mechanisms in which Mg2+–ATP complex is a reactant and free ATP a competitive inhibitor. 3. Formation of nicotinamide–hypoxanthine dinucleotide from NMN and ITP in the presence of the transferase was also more rapid with Ni2+ and Co2+ than with Mg2+. PMID:4291356

  1. [Localization of NADPH-diaphorase in the brain of the shore crab Hemigrapsus sanguineus].

    PubMed

    Kotsiuba, E P

    2005-01-01

    The presence and localization of NADPH-diaphorase in the cerebral ganglion of the shore crab Hemigrapsus sanguineus was investigated with histochemical and electron histochemical methods. The reactivity of this enzyme was found in the deutrocerebrum, mainly in neuropils of olfactory lobes, the lateral antennular neuropil, a laterodorsal group of cells, and in the oculomotor nerve nucleus. Ultrastructural localization of the enzyme was detected in neurons on the perinuclear membrane, and in membranes of endoplasmic reticulum, in mitochondria and cytosol. The enzyme was found in axons of the antennular nerve, and in terminals of receptor axons in the glomerulus. The obtained data testify to participation of NO in perception and processing of the olfactory information.

  2. Novel tumor-ablation device for liver tumors utilizing heat energy generated under an alternating magnetic field.

    PubMed

    Sato, Koichi; Watanabe, Yuji; Horiuchi, Atsushi; Yukumi, Shungo; Doi, Takashi; Yoshida, Motohira; Yamamoto, Yuji; Maehara, Tsunehiro; Naohara, Takashi; Kawachi, Kanji

    2008-07-01

    We have developed a novel tumor-ablation device for liver tumors utilizing heat energy induced by magnesium ferrite (MgFe(2)O(4)) particles under an alternating magnetic field (AMF) produced by electric currents. This novel device can repeatedly heat liver tumors at lower temperature than usual heating devices, such as radiofrequency ablation therapy, with slight infliction of pain. This study assesses its heating effect on rat liver tumors as local therapy. The small needle was manufactured from MgFe(2)O(4) particles by sintering at 1100 degrees C. After a MgFe(2)O(4) needle was inserted into liver tumors comprising of dRLh-84 cells, the tumors were heated for 30 min under an AMF. We examined cellular activity by using nicotinamide adenine dinucleotide (NADH) diaphorase staining and terminal deoxynucleotidyl transferase-mediated digoxigenin-dUTP nick-end labeling (TUNEL) staining, and evaluated the effect of suppressing tumor growth by sequentially comparing the tumor diameter with that of the control group. The mean temperature of the heated tumors was 60.2 +/- 1.8 degrees C. The tumor cells were constricted, and chromatin of nuclei had shrunk immediately after heating. The heat-injury area that contained the tumors was negative for NADH diaphorase activity. After 3 days, the tumor cells in the heat-injury area became positive for TUNEL staining, which detects cell death. At 7 days, the mean tumor diameters were significantly smaller in the heating group than in the control group (6.15 +/- 0.47 mm vs 16.89 +/- 2.69 mm; P < 0.05). This device, utilizing heat energy induced by ferromagnetic metal under an AMF, appears useful as local thermotherapy for human liver cancer.

  3. Pilot study of radiofrequency ablation therapy without surgical excision for T1 breast cancer: evaluation with MRI and vacuum-assisted core needle biopsy and safety management.

    PubMed

    Yamamoto, Naohito; Fujimoto, Hiroshi; Nakamura, Rikiya; Arai, Manabu; Yoshii, Atsushi; Kaji, Sachiko; Itami, Makiko

    2011-01-01

    There is increasing demand for minimally invasive treatments for small breast cancer mainly because of the desire for better cosmetic results. Although radiofrequency ablation (RFA) is an attractive approach as a local control method for small breast cancer, the problems of histological effectiveness and safety management remain. A total of 29 patients including one patient with bilateral breast cancer were enrolled in this study. The mean tumor size of 30 breasts was 12.8 mm (range 5-19 mm). Under general anesthesia, RFA was performed with a Cool-tip RF system (Valleylab, Boulder, CO, USA) after sentinel lymph node biopsy. Postoperative evaluation with magnetic resonance imaging (MRI) and vacuum-assisted core needle biopsy was done 3-4 weeks after RFA before radiotherapy. Ablated tumors were evaluated with hematoxylin-eosin (H&E) and nicotinamide adenine dinucleotide (NADH)-diaphorase staining. If needed, adjuvant chemo and/or endocrine therapy was performed. All patients except one completed one session of RFA. The mean temperature near the center of the tumors was 89.6°C (range 78-100°C). Postoperative MRI showed the ablated zone clearly in all patients. MRI revealed no hypervascularity of the tumors in the ablated zone. Evaluation with H&E staining of the tumors showed remarkable degenerative changes in only three patients. NADH-diaphorase staining showed no viable tumor tissue in 24 patients out of 26 examined. Three patients received small diameter grade 3 skin burns, two on the outside of the thigh from the grounding pad and one on the breast skin. One patient had a breast lesion like a chronic granulomatous mastitis resulting from overreaction of the ablated zone. RFA therapy appeared relevant and applicable for patients with small breast cancer. Because small skin burns were observed as adverse events, close attention should be paid in the course of the RFA procedure.

  4. Depletion of CpG Dinucleotides in Papillomaviruses and Polyomaviruses: A Role for Divergent Evolutionary Pressures.

    PubMed

    Upadhyay, Mohita; Vivekanandan, Perumal

    2015-01-01

    Papillomaviruses and polyomaviruses are small ds-DNA viruses infecting a wide-range of vertebrate hosts. Evidence supporting co-evolution of the virus with the host does not fully explain the evolutionary path of papillomaviruses and polyomaviruses. Studies analyzing CpG dinucleotide frequencies in virus genomes have provided interesting insights on virus evolution. CpG dinucleotide depletion has not been extensively studied among papillomaviruses and polyomaviruses. We sought to analyze the relative abundance of dinucleotides and the relative roles of evolutionary pressures in papillomaviruses and polyomaviruses. We studied 127 full-length sequences from papillomaviruses and 56 full-length sequences from polyomaviruses. We analyzed the relative abundance of dinucleotides, effective codon number (ENC), differences in synonymous codon usage. We examined the association, if any, between the extent of CpG dinucleotide depletion and the evolutionary lineage of the infected host. We also investigated the contribution of mutational pressure and translational selection to the evolution of papillomaviruses and polyomaviruses. All papillomaviruses and polyomaviruses are CpG depleted. Interestingly, the evolutionary lineage of the infected host determines the extent of CpG depletion among papillomaviruses and polyomaviruses. CpG dinucleotide depletion was more pronounced among papillomaviruses and polyomaviruses infecting human and other mammals as compared to those infecting birds. Our findings demonstrate that CpG depletion among papillomaviruses is linked to mutational pressure; while CpG depletion among polyomaviruses is linked to translational selection. We also present evidence that suggests methylation of CpG dinucleotides may explain, at least in part, the depletion of CpG dinucleotides among papillomaviruses but not polyomaviruses. The extent of CpG depletion among papillomaviruses and polyomaviruses is linked to the evolutionary lineage of the infected host. Our

  5. Influence of large intrahepatic blood vessels on the gross and histological characteristics of lesions produced by radiofrequency ablation in a pig liver model.

    PubMed

    Tamaki, Katsuyoshi; Shimizu, Ichiro; Oshio, Atsuo; Fukuno, Hiroshi; Inoue, Hiroshi; Tsutsui, Akemi; Shibata, Hiroshi; Sano, Nobuya; Ito, Susumu

    2004-12-01

    To determine whether the presence of large intrahepatic blood vessels (>/=3 mm) affect radiofrequency (RF)-induced coagulation necrosis, the gross and histological characteristics of RF-ablated areas proximal to or around vessels were examined in normal pig livers. An RF ablation treatment using a two-stepwise extension technique produced 12 lesions: six contained vessels (Group A), and the other six were localized around vessels (Group B). Gross examination revealed that the longest and shortest diameters of the ablated lesions were significantly larger in Group B than in Group A. In Group A, patent vessels contiguous to the lesion were present in a tongue-shaped area, whereas the lesions in Group B were spherical. Staining with nicotinamide adenine dinucleotide diaphorase was negative within the ablated area; but, if vessels were present in the ablated area, the cells around the vessels in an opposite direction to the ablation were stained blue. Roll-off can be achieved with 100% cellular destruction within a lesion that does not contain large vessels. The ablated area was decreased in lesions that contained large vessels, suggesting that the presence of large vessels in the ablated area further increases the cooling effect and may require repeated RF ablation treatment to achieve complete coagulation necrosis.

  6. Effect of nitric oxide synthase inhibitor on increase in nasal mucosal blood flow induced by sensory and parasympathetic nerve stimulation in rats.

    PubMed

    Ogawa, Fumio; Hanamitsu, Masakazu; Ayajiki, Kazuhide; Aimi, Yoshinari; Okamura, Tomio; Shimizu, Takeshi

    2010-06-01

    Neural control of nasal blood flow (NBF) has not been systematically investigated. The aim of the present study was to evaluate the effect of electrical stimulation of both sensory and parasympathetic nerves innervating the nasal mucosal arteries on NBF in rats. In anesthetized rats, nasociliary (sensory) nerves and postganglionic (parasympathetic) nerves derived from the right sphenopalatine ganglion were electrically stimulated. We measured NBF with a laser-Doppler flowmeter. The nerve stimulation increased NBF on both sides and increased the mean arterial blood pressure. The increase in NBF was larger on the ipsilateral side than on the contralateral side. Hexamethonium bromide, a ganglion blocker, abolished the stimulation-induced pressure effect and the increase in NBF on the contralateral side, but did not abolish the increase in NBF on the ipsilateral side. The remaining increase in NBF was abolished by N(G)-nitro-L-arginine, a nitric oxide synthase inhibitor. Histochemical analysis with nicotinamide adenine dinucleotide phosphate-diaphorase showed neuronal nitric oxide synthase-containing nerves that innervate nasal mucosal arteries. Nitric oxide released from parasympathetic nitrergic nerves may contribute to an increase in NBF in rats. The afferent impulses induced by sensory nerve stimulation may lead to an increase in mean arterial blood pressure that is partly responsible for the increase in NBF.

  7. Heterogeneous distribution of type I nitric oxide synthase in pulmonary vasculature of ovine fetus.

    PubMed

    Tzao, C; Nickerson, P A; Russell, J A; Noble, B K; Steinhorn, R H

    2000-11-01

    The nitric oxide/guanosine 3',5'-cyclic monophosphate pathway plays an essential role in mediating pulmonary vasodilation at birth. Small resistance arteries in the fetal lung are vessels of major significance in the regulation of pulmonary vascular tone. The present study is to determine that type I nitric oxide synthase (NOS-I) is present in ovine fetal pulmonary vasculature and that NOS-I is distributed heterogeneously in ovine fetal pulmonary circulation. We used reduced nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) histochemistry and NOS-I immunohistochemistry to localize NOS-I in fetal sheep lungs and showed a colocalization for NADPH-d activity with NOS-I immunoreactivity. Strong NOS-I immunoreactivity was observed exclusively in the endothelium of the terminal bronchiole and respiratory bronchiole-associated arteries. As a comparison, adult sheep lung did not show positive immunoreactivity in the pulmonary endothelium. NOS-I was absent in the umbilical or systemic arteries from the ovine fetus, whereas abundant NOS-III immunoreactivity was present in these arteries. We conclude that NOS-I is present uniquely in the ovine fetal pulmonary circulation as opposed to the adult pulmonary or the fetal systemic circulation. NOS-I is distributed heterogeneously in the ovine pulmonary vasculature. We speculate that NOS-I plays an active role in the regulation of perinatal pulmonary circulation.

  8. A Bacterial Multidomain NAD-Independent d-Lactate Dehydrogenase Utilizes Flavin Adenine Dinucleotide and Fe-S Clusters as Cofactors and Quinone as an Electron Acceptor for d-Lactate Oxidization

    PubMed Central

    Jiang, Tianyi; Guo, Xiaoting; Yan, Jinxin; Zhang, Yingxin; Wang, Yujiao; Zhang, Manman; Sheng, Binbin; Ma, Cuiqing; Xu, Ping

    2017-01-01

    ABSTRACT Bacterial membrane-associated NAD-independent d-lactate dehydrogenase (Fe-S d-iLDH) oxidizes d-lactate into pyruvate. A sequence analysis of the enzyme reveals that it contains an Fe-S oxidoreductase domain in addition to a flavin adenine dinucleotide (FAD)-containing dehydrogenase domain, which differs from other typical d-iLDHs. Fe-S d-iLDH from Pseudomonas putida KT2440 was purified as a His-tagged protein and characterized in detail. This monomeric enzyme exhibited activities with l-lactate and several d-2-hydroxyacids. Quinone was shown to be the preferred electron acceptor of the enzyme. The two domains of the enzyme were then heterologously expressed and purified separately. The Fe-S cluster-binding motifs predicted by sequence alignment were preliminarily verified by site-directed mutagenesis of the Fe-S oxidoreductase domain. The FAD-containing dehydrogenase domain retained 2-hydroxyacid-oxidizing activity, although it decreased compared to the full Fe-S d-iLDH. Compared to the intact enzyme, the FAD-containing dehydrogenase domain showed increased catalytic efficiency with cytochrome c as the electron acceptor, but it completely lost the ability to use coenzyme Q10. Additionally, the FAD-containing dehydrogenase domain was no longer associated with the cell membrane, and it could not support the utilization of d-lactate as a carbon source. Based on the results obtained, we conclude that the Fe-S oxidoreductase domain functions as an electron transfer component to facilitate the utilization of quinone as an electron acceptor by Fe-S d-iLDH, and it helps the enzyme associate with the cell membrane. These functions make the Fe-S oxidoreductase domain crucial for the in vivo d-lactate utilization function of Fe-S d-iLDH. IMPORTANCE Lactate metabolism plays versatile roles in most domains of life. Lactate utilization processes depend on certain enzymes to oxidize lactate to pyruvate. In recent years, novel bacterial lactate-oxidizing enzymes have been

  9. Nicotinamide adenine dinucleotide is transported into mammalian mitochondria.

    PubMed

    Davila, Antonio; Liu, Ling; Chellappa, Karthikeyani; Redpath, Philip; Nakamaru-Ogiso, Eiko; Paolella, Lauren M; Zhang, Zhigang; Migaud, Marie E; Rabinowitz, Joshua D; Baur, Joseph A

    2018-06-12

    Mitochondrial NAD levels influence fuel selection, circadian rhythms, and cell survival under stress. It has alternately been argued that NAD in mammalian mitochondria arises from import of cytosolic nicotinamide (NAM), nicotinamide mononucleotide (NMN), or NAD itself. We provide evidence that murine and human mitochondria take up intact NAD. Isolated mitochondria preparations cannot make NAD from NAM, and while NAD is synthesized from NMN, it does not localize to the mitochondrial matrix or effectively support oxidative phosphorylation. Treating cells with nicotinamide riboside that is isotopically labeled on the nicotinamide and ribose moieties results in the appearance of doubly labeled NAD within mitochondria. Analogous experiments with doubly labeled nicotinic acid riboside (labeling cytosolic NAD without labeling NMN) demonstrate that NAD(H) is the imported species. Our results challenge the long-held view that the mitochondrial inner membrane is impermeable to pyridine nucleotides and suggest the existence of an unrecognized mammalian NAD (or NADH) transporter. © 2018, Davila et al.

  10. Synthesis of adenine-modified reduced graphene oxide nanosheets.

    PubMed

    Cao, Huaqiang; Wu, Xiaoming; Yin, Gui; Warner, Jamie H

    2012-03-05

    We report here a facile strategy to synthesize the nanocomposite of adenine-modified reduced graphene oxide (AMG) via reaction between adenine and GOCl which is generated from SOCl(2) reacted with graphite oxide (GO). The as-synthesized AMG was characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), UV-vis absorption spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), and galvanostatic discharge analysis. The AMG owns about one adenine group per 53 carbon atoms on a graphene sheet, which improves electronic conductivity compared with reduced graphene oxide (RGO). The AMG displays enhanced supercapacitor performance compared with RGO accompanying good stability and good cycling behavior in the supercapacitor.

  11. Glutamate Dehydrogenase from Apodachlya (Oomycetes) 1

    PubMed Central

    Price, Jeffrey S.; Gleason, Frank H.

    1972-01-01

    A glutamate dehydrogenase specific for nicotinamide-adenine-dinucleotide has been purified 50-fold from Apodachlya brachynema (Leptomitales). Certain physical, chemical, and kinetic properties of this enzyme have been studied, particularly specificity for coenzymes and substrates. With glucose as the sole carbon source, the synthesis of glutamate dehydrogenase was repressed, whereas glutamate, proline, alanine, or ornithine plus aspartate as sole carbon sources induced synthesis of the enzyme. These data indicate that the function of this enzyme is primarily degradative, although there is no evidence for a nicotinamide-adenine-dinucleotide-phosphate-specific biosynthetic glutamate dehydrogenase in Apodachlya. PMID:16657902

  12. Adenine and 2-aminopurine: paradigms of modern theoretical photochemistry.

    PubMed

    Serrano-Andrés, Luis; Merchán, Manuela; Borin, Antonio C

    2006-06-06

    Distinct photophysical behavior of nucleobase adenine and its constitutional isomer, 2-aminopurine, has been studied by using quantum chemical methods, in particular an accurate ab initio multiconfigurational second-order perturbation theory. After light irradiation, the efficient, ultrafast energy dissipation observed for nonfluorescent 9H-adenine is explained here by the nonradiative internal conversion process taking place along a barrierless reaction path from the initially populated 1(pipi* La) excited state toward a low-lying conical intersection (CI) connected with the ground state. In contrast, the strong fluorescence recorded for 2-aminopurine at 4.0 eV with large decay lifetime is interpreted by the presence of a minimum in the 1(pipi* La) hypersurface lying below the lowest CI and the subsequent potential energy barrier required to reach the funnel to the ground state. Secondary deactivation channels were found in the two systems related to additional CIs involving the 1(pipi* Lb) and 1(npi*) states. Although in 9H-adenine a population switch between both states is proposed, in 7H-adenine this may be perturbed by a relatively larger barrier to access the 1(npi*) state, and, therefore, the 1(pipi* Lb) state becomes responsible for the weak fluorescence measured in aqueous adenine at approximately 4.5 eV. In contrast to previous models that explained fluorescence quenching in adenine, unlike in 2-aminopurine, on the basis of the vibronic coupling of the nearby 1(pipi*) and 1(npi*) states, the present results indicate that the 1(npi*) state does not contribute to the leading photophysical event and establish the prevalence of a model based on the CI concept in modern photochemistry.

  13. One-pot synthesis of fluorescent polysaccharides: adenine grafted agarose and carrageenan.

    PubMed

    Oza, Mihir D; Prasad, Kamalesh; Siddhanta, A K

    2012-08-01

    New fluorescent polysaccharides were synthesized by grafting the nucleobase adenine on to the backbones of agarose and κ-carrageenan, which were characterized by FT-IR, (13)C NMR, TGA, XRD, UV, and fluorescence properties. The synthesis involved a rapid water based potassium persulfate (KPS) initiated method under microwave irradiation. The emission spectra of adenine grafted agarose and κ-carrageenan were recorded in aqueous (5×10(-5) M) solution, exhibiting λ(em,max) 347 nm by excitation at 261 nm, affording ca. 30% and 40% enhanced emission intensities, respectively compared to that of pure adenine solution in the same concentration. Similar emission intensity was recorded in the pure adenine solution at its molar equivalent concentrations present in the 5×10(-5) M solution of the agarose and carrageenan grafted products, that is, 3.28×10(-5) M and 4.5×10(-5) M respectively. These fluorescent adenine grafted products may have potential utility in various sensor applications. Copyright © 2012. Published by Elsevier Ltd.

  14. 3-base periodicity in coding DNA is affected by intercodon dinucleotides

    PubMed Central

    Sánchez, Joaquín

    2011-01-01

    All coding DNAs exhibit 3-base periodicity (TBP), which may be defined as the tendency of nucleotides and higher order n-tuples, e.g. trinucleotides (triplets), to be preferentially spaced by 3, 6, 9 etc, bases, and we have proposed an association between TBP and clustering of same-phase triplets. We here investigated if TBP was affected by intercodon dinucleotide tendencies and whether clustering of same-phase triplets was involved. Under constant protein sequence intercodon dinucleotide frequencies depend on the distribution of synonymous codons. So, possible effects were revealed by randomly exchanging synonymous codons without altering protein sequences to subsequently document changes in TBP via frequency distribution of distances (FDD) of DNA triplets. A tripartite positive correlation was found between intercodon dinucleotide frequencies, clustering of same-phase triplets and TBP. So, intercodon C|A (where “|” indicates the boundary between codons) was more frequent in native human DNA than in the codon-shuffled sequences; higher C|A frequency occurred along with more frequent clustering of C|AN triplets (where N jointly represents A, C, G and T) and with intense CAN TBP. The opposite was found for C|G, which was less frequent in native than in shuffled sequences; lower C|G frequency occurred together with reduced clustering of C|GN triplets and with less intense CGN TBP. We hence propose that intercodon dinucleotides affect TBP via same-phase triplet clustering. A possible biological relevance of our findings is briefly discussed. PMID:21814388

  15. NADPH-diaphorase activity increases during estrous phase in the bed nucleus of the accessory olfactory tract in the female rat.

    PubMed

    Collado, Paloma; Guillamón, Antonio; Pinos, Helena; Pérez-Izquierdo, M Angeles; García-Falgueras, Alicia; Carrillo, Beatriz; Rodríguez, Cilia; Panzica, GianCarlo

    2003-09-05

    We investigated the presence of nitric oxide in the bed nucleus of the accessory olfactory tract (BAOT) in males, diestrous females and estrous females using NADPH-diaphorase. Our results demonstrate a significant increase in the density of the medium-stained cells in the estrous female rats suggesting that during estrous a specific subpopulation of nitrinergic cells are activated in the BAOT. This might be related to the physiological and behavioral changes that occurs in estrous.

  16. Adenine and 2-aminopurine: Paradigms of modern theoretical photochemistry

    PubMed Central

    Serrano-Andrés, Luis; Merchán, Manuela; Borin, Antonio C.

    2006-01-01

    Distinct photophysical behavior of nucleobase adenine and its constitutional isomer, 2-aminopurine, has been studied by using quantum chemical methods, in particular an accurate ab initio multiconfigurational second-order perturbation theory. After light irradiation, the efficient, ultrafast energy dissipation observed for nonfluorescent 9H-adenine is explained here by the nonradiative internal conversion process taking place along a barrierless reaction path from the initially populated 1(ππ* La) excited state toward a low-lying conical intersection (CI) connected with the ground state. In contrast, the strong fluorescence recorded for 2-aminopurine at 4.0 eV with large decay lifetime is interpreted by the presence of a minimum in the 1(ππ* La) hypersurface lying below the lowest CI and the subsequent potential energy barrier required to reach the funnel to the ground state. Secondary deactivation channels were found in the two systems related to additional CIs involving the 1(ππ* Lb) and 1(nπ*) states. Although in 9H-adenine a population switch between both states is proposed, in 7H-adenine this may be perturbed by a relatively larger barrier to access the 1(nπ*) state, and, therefore, the 1(ππ* Lb) state becomes responsible for the weak fluorescence measured in aqueous adenine at ≈4.5 eV. In contrast to previous models that explained fluorescence quenching in adenine, unlike in 2-aminopurine, on the basis of the vibronic coupling of the nearby 1(ππ*) and 1(nπ*) states, the present results indicate that the 1(nπ*) state does not contribute to the leading photophysical event and establish the prevalence of a model based on the CI concept in modern photochemistry. PMID:16731617

  17. The catalase activity of diiron adenine deaminase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamat S. S.; Swaminathan S.; Holmes-Hampton, G. P.

    2011-12-01

    Adenine deaminase (ADE) from the amidohydrolase superfamily (AHS) of enzymes catalyzes the conversion of adenine to hypoxanthine and ammonia. Enzyme isolated from Escherichia coli was largely inactive toward the deamination of adenine. Molecular weight determinations by mass spectrometry provided evidence that multiple histidine and methionine residues were oxygenated. When iron was sequestered with a metal chelator and the growth medium supplemented with Mn{sup 2+} before induction, the post-translational modifications disappeared. Enzyme expressed and purified under these conditions was substantially more active for adenine deamination. Apo-enzyme was prepared and reconstituted with two equivalents of FeSO{sub 4}. Inductively coupled plasma mass spectrometrymore » and Moessbauer spectroscopy demonstrated that this protein contained two high-spin ferrous ions per monomer of ADE. In addition to the adenine deaminase activity, [Fe{sup II}/Fe{sup II}]-ADE catalyzed the conversion of H{sub 2}O{sub 2} to O{sub 2} and H{sub 2}O. The values of k{sub cat} and k{sub cat}/K{sub m} for the catalase activity are 200 s{sup -1} and 2.4 x 10{sup 4} M{sup -1} s{sup -1}, respectively. [Fe{sup II}/Fe{sup II}]-ADE underwent more than 100 turnovers with H{sub 2}O{sub 2} before the enzyme was inactivated due to oxygenation of histidine residues critical for metal binding. The iron in the inactive enzyme was high-spin ferric with g{sub ave} = 4.3 EPR signal and no evidence of anti-ferromagnetic spin-coupling. A model is proposed for the disproportionation of H{sub 2}O{sub 2} by [Fe{sup II}/Fe{sup II}]-ADE that involves the cycling of the binuclear metal center between the di-ferric and di-ferrous oxidation states. Oxygenation of active site residues occurs via release of hydroxyl radicals. These findings represent the first report of redox reaction catalysis by any member of the AHS.« less

  18. Catalytic Mechanism and Three-Dimensional Structure of Adenine Deaminase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamat, S.S.; Swaminathan, S.; Bagaria, A.

    2011-03-22

    Adenine deaminase (ADE) catalyzes the conversion of adenine to hypoxanthine and ammonia. The enzyme isolated from Escherichia coli using standard expression conditions was low for the deamination of adenine (k{sub cat} = 2.0 s{sup -1}; k{sub cat}/K{sub m} = 2.5 x 10{sup 3} M{sup -1} s{sup -1}). However, when iron was sequestered with a metal chelator and the growth medium was supplemented with Mn{sup 2+} prior to induction, the purified enzyme was substantially more active for the deamination of adenine with kcat and kcat/Km values of 200 s{sup -1} and 5 x 10{sup 5} M{sup -1} s{sup -1}, respectively. Themore » apoenzyme was prepared and reconstituted with Fe{sup 2+}, Zn{sup 2+}, or Mn{sup 2+}. In each case, two enzyme equivalents of metal were necessary for reconstitution of the deaminase activity. This work provides the first example of any member of the deaminase subfamily of the amidohydrolase superfamily to utilize a binuclear metal center for the catalysis of a deamination reaction. [Fe{sup II}/Fe{sup II}]-ADE was oxidized to [Fe{sup III}/Fe{sup III}]-ADE with ferricyanide with inactivation of the deaminase activity. Reducing [Fe{sup III}/Fe{sup III}]-ADE with dithionite restored the deaminase activity, and thus, the diferrous form of the enzyme is essential for catalytic activity. No evidence of spin coupling between metal ions was evident by electron paramagnetic resonance or Moessbauer spectroscopy. The three-dimensional structure of adenine deaminase from Agrobacterium tumefaciens (Atu4426) was determined by X-ray crystallography at 2.2 {angstrom} resolution, and adenine was modeled into the active site on the basis of homology to other members of the amidohydrolase superfamily. On the basis of the model of the adenine-ADE complex and subsequent mutagenesis experiments, the roles for each of the highly conserved residues were proposed. Solvent isotope effects, pH-rate profiles, and solvent viscosity were utilized to propose a chemical reaction mechanism

  19. Catalytic Mechanism and Three-Dimensional Structure of Adenine Deaminase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S Kamat; A Bagaria; D Kumaran

    2011-12-31

    Adenine deaminase (ADE) catalyzes the conversion of adenine to hypoxanthine and ammonia. The enzyme isolated from Escherichia coli using standard expression conditions was low for the deamination of adenine (k{sub cat} = 2.0 s{sup -1}; k{sub cat}/K{sub m} = 2.5 x 10{sup 3} M{sup -1} s{sup -1}). However, when iron was sequestered with a metal chelator and the growth medium was supplemented with Mn{sup 2+} prior to induction, the purified enzyme was substantially more active for the deamination of adenine with k{sub cat} and k{sub cat}/K{sub m} values of 200 s{sup -1} and 5 x 10{sup 5} M{sup -1} s{supmore » -1}, respectively. The apoenzyme was prepared and reconstituted with Fe{sup 2+}, Zn{sup 2+}, or Mn{sup 2+}. In each case, two enzyme equivalents of metal were necessary for reconstitution of the deaminase activity. This work provides the first example of any member of the deaminase subfamily of the amidohydrolase superfamily to utilize a binuclear metal center for the catalysis of a deamination reaction. [Fe{sup II}/Fe{sup II}]-ADE was oxidized to [Fe{sup III}/Fe{sup III}]-ADE with ferricyanide with inactivation of the deaminase activity. Reducing [Fe{sup III}/Fe{sup III}]-ADE with dithionite restored the deaminase activity, and thus, the diferrous form of the enzyme is essential for catalytic activity. No evidence of spin coupling between metal ions was evident by electron paramagnetic resonance or Moessbauer spectroscopy. The three-dimensional structure of adenine deaminase from Agrobacterium tumefaciens (Atu4426) was determined by X-ray crystallography at 2.2 {angstrom} resolution, and adenine was modeled into the active site on the basis of homology to other members of the amidohydrolase superfamily. On the basis of the model of the adenine-ADE complex and subsequent mutagenesis experiments, the roles for each of the highly conserved residues were proposed. Solvent isotope effects, pH-rate profiles, and solvent viscosity were utilized to propose a chemical

  20. Adenine alleviates iron overload by cAMP/PKA mediated hepatic hepcidin in mice.

    PubMed

    Zhang, Yingqi; Wang, Xudong; Wu, Qian; Wang, Hao; Zhao, Lu; Wang, Xinhui; Mu, Mingdao; Xie, Enjun; He, Xuyan; Shao, Dandan; Shang, Yanna; Lai, Yongrong; Ginzburg, Yelena; Min, Junxia; Wang, Fudi

    2018-03-30

    Hemochromatosis is prevalent and often associated with high rates of morbidity and mortality worldwide. The safe alternative iron-reducing approaches are urgently needed in order to better control iron overload. Our unbiased vitamin screen for modulators of hepcidin, a master iron regulatory hormone, identifies adenine (vitamin B4) as a potent hepcidin agonist. Adenine significantly induced hepcidin mRNA level and promoter activity activation in human cell lines, possibly through BMP/SMAD pathway. Further studies in mice validated the effect of adenine on hepcidin upregulation. Consistently, adenine dietary supplement in mice led to an increase of hepatic hepcidin expression compared with normal diet-fed mice via BMP/SMAD pathway. Notably, adenine-rich diet significantly ameliorated iron overload accompanied by the enhanced hepcidin expression in both high iron-fed mice and in Hfe -/- mice, a murine model of hereditary hemochromatosis. To further validate this finding, we selected pharmacological inhibitors against BMP (LDN193189). We found LDN193189 strongly blocked the hepcidin induction by adenine. Moreover, we uncovered an essential role of cAMP/PKA-dependent axis in triggering adenine-induced hepcidin expression in primary hepatocytes by using 8 br cAMP, a cAMP analog, and H89, a potent inhibitor for PKA signaling. These findings suggest a potential therapeutic role of adenine for hereditary hemochromatosis. © 2018 Wiley Periodicals, Inc.

  1. Oxidation of ethane by an Acremonium species.

    PubMed Central

    Davies, J S; Wellman, A M; Zajic, J E

    1976-01-01

    Ethane oxidation was studied in ethane-grown resting cells (mycelia) of an Acremonium sp. and in cell-free preparations of such mycelia. From resting cell experiments evidence was found for a pathway of ethane oxidation via ethanol, acetaldehyde, and acetic acid. In vitro studies indicated that ethane-oxidizing activity in such mycelia occurred predominantly in the microsomal fraction of crude homogenates. Microsomal preparations were inactive in the absence of added coenzyme. Marked stimulation of activity was obtained in such preparations with reduced nicotinamide adenine dinucleotide phosphate and to a much lesser degree with nicotinamide adenine dinucleotide phosphate. Ethane oxidation was inhibited by sodium azide and carbon monoxide. PMID:9900

  2. Dissociative Excitation of Adenine by Electron Impact

    NASA Astrophysics Data System (ADS)

    McConkey, J. William; Trocchi, Joshuah; Dech, Jeffery; Kedzierski, Wladek

    2017-04-01

    Dissociative excitation of adenine (C6H5NH2) into excited atomic fragments has been studied in the electron impact energy range from threshold to 300 eV. A crossed beam system coupled to a vacuum ultraviolet (VUV) monochromator is used to study emissions in the wavelength range from 110 to 200 nm. The beam of adenine vapor from a stainless steel oven is crossed at right angles by the electron beam and the resultant UV radiation is detected in a mutually orthogonal direction. The strongest feature in the spectrum is H Lyman- α. Financial support from NSERC and CFI, Canada, is gratefully acknowledged.

  3. Butyrate influences intracellular levels of adenine and adenine derivatives in the fungus Penicillium restrictum.

    PubMed

    Zutz, Christoph; Chiang, Yi Ming; Faehnrich, Bettina; Bacher, Markus; Hellinger, Roland; Kluger, Bernhard; Wagner, Martin; Strauss, Joseph; Rychli, Kathrin

    2017-04-01

    Butyrate, a small fatty acid, has an important role in the colon of ruminants and mammalians including the inhibition of inflammation and the regulation of cell proliferation. There is also growing evidence that butyrate is influencing the histone structure in mammalian cells by inhibition of histone deacetylation. Butyrate shows furthermore an antimicrobial activity against fungi, yeast and bacteria, which is linked to its toxicity at a high concentration. In fungi there are indications that butyrate induces the production of secondary metabolites potentially via inhibition of histone deacetylases. However, information about the influence of butyrate on growth, primary metabolite production and metabolism, besides lipid catabolism, in fungi is scarce. We have identified the filamentous fungus Penicillium (P.) restrictum as a susceptible target for butyrate treatment in an antimicrobial activity screen. The antimicrobial activity was detected only in the mycelium of the butyrate treated culture. We investigated the effect of butyrate ranging from low (0.001mM) to high (30mM), potentially toxic, concentrations on biomass and antimicrobial activity. Butyrate at high concentrations (3 and 30mM) significantly reduced the fungal biomass. In contrast P. restrictum treated with 0.03mM of butyrate showed the highest antimicrobial activity. We isolated three antimicrobial active compounds, active against Staphylococcus aureus, from P. restrictum cellular extracts treated with butyrate: adenine, its derivate hypoxanthine and the nucleoside derivate adenosine. Production of all three compounds was increased at low butyrate concentrations. Furthermore we found that butyrate influences the intracellular level of the adenine nucleoside derivate cAMP, an important signalling molecule in fungi and various organisms. In conclusion butyrate treatment increases the intracellular levels of adenine and its respective derivatives. Copyright © 2017 Elsevier GmbH. All rights reserved.

  4. Adenine formation from adenosine by mycoplasmas: adenosine phosphorylase activity.

    PubMed Central

    Hatanaka, M; Del Giudice, R; Long, C

    1975-01-01

    Mammalian cells have enzymes to convert adenosine to inosine by deamination and inosine to hypoxanthine by phosphorolysis, but they do not possess the enzymes necessary to form the free base, adenine, from adenosine. Mycoplasmas grown in broth or in cell cultures can produce adenine from adenosine. This activity was detected in a variety of mycoplasmatales, and the enzyme was shown to be adenosine phosphorylase. Adenosine formation from adenine and ribose 1-phosphate, the reverse reaction of adenine formation from adenosine, was also observed with the mycoplasma enzyme. Adenosine phosphorylase is apparently common to the mycoplasmatales but it is not universal, and the organisms can be divided into three groups on the basis of their use of adenosine as substrate. Thirteen of 16 Mycoplasma, Acholeplasma, and Siroplasma species tested exhibit adenosine phosphorylase activity. M. lipophilium differed from the other mycoplasmas and shared with mammalian cells the ability to convert adenosine to inosine by deamination. M. pneumoniae and the unclassified M. sp. 70-159 showed no reaction with adenosine. Adenosine phosphorylase activity offers an additional method for the detection of mycoplasma contamination of cells. The patterns of nucleoside metabolism will provide additional characteristics for identification of mycoplasmas and also may provide new insight into the classification of mycoplasmas. PMID:236559

  5. A periodic network of neurochemical modules in the inferior colliculus.

    PubMed

    Chernock, Michelle L; Larue, David T; Winer, Jeffery A

    2004-02-01

    A new organization has been found in shell nuclei of rat inferior colliculus. Chemically specific modules with a periodic distribution fill about half of layer 2 of external cortex and dorsal cortex. Modules contain clusters of small glutamic acid decarboxylase-positive neurons and large boutons at higher density than in other inferior colliculus subdivisions. The modules are also present in tissue stained for parvalbumin, cytochrome oxidase, nicotinamide adenine dinucleotide phosphate-diaphorase, and acetylcholinesterase. Six to seven bilaterally symmetrical modules extend from the caudal extremity of the external cortex of the inferior colliculus to its rostral pole. Modules are from approximately 800 to 2200 microm long and have areas between 5000 and 40,000 microm2. Modules alternate with immunonegative regions. Similar modules are found in inbred and outbred strains of rat, and in both males and females. They are absent in mouse, squirrel, cat, bat, macaque monkey, and barn owl. Modules are immunonegative for glycine, calbindin, serotonin, and choline acetyltransferase. The auditory cortex and ipsi- and contralateral inferior colliculi project to the external cortex. Somatic sensory influences from the dorsal column nuclei and spinal trigeminal nucleus are the primary ascending sensory input to the external cortex; ascending auditory input to layer 2 is sparse. If the immunopositive modular neurons receive this input, the external cortex could participate in spatial orientation and somatic motor control through its intrinsic and extrinsic projections.

  6. A disposable tear glucose biosensor--part 3: assessment of enzymatic specificity.

    PubMed

    Lan, Kenneth; McAferty, Kenyon; Shah, Pankti; Lieberman, Erica; Patel, Dharmendra R; Cook, Curtiss B; La Belle, Jeffrey T

    2011-09-01

    A concept for a tear glucose sensor based on amperometric measurement of enzymatic oxidation of glucose was previously presented, using glucose dehydrogenase flavin adenine dinucleotide (GDH-FAD) as the enzyme. Glucose dehydrogenase flavin adenine dinucleotide is further characterized in this article and evaluated for suitability in glucose-sensing applications in purified tear-like saline, with specific attention to the effect of interfering substances only. These interferents are specifically saccharides that could interact with the enzymatic activity seen in the sensor's performance. Bench top amperometric glucose assays were performed using an assay solution of GDH-FAD and ferricyanide redox mediator with samples of glucose, mannose, lactose, maltose, galactose, fructose, sucrose, and xylose at varying concentrations to evaluate specificity, linear dynamic range, signal size, and signal-to-noise ratio. A comparison study was done by substituting an equivalent activity unit concentration of glucose oxidase (GOx) for GDH-FAD. Glucose dehydrogenase flavin adenine dinucleotide was found to be more sensitive than GOx, producing larger oxidation currents than GOx on an identical glucose concentration gradient, and GDH-FAD exhibited larger slope response (-5.65 × 10(-7) versus -3.11 × 10(-7) A/mM), signal-to-noise ratio (18.04 versus 2.62), and linear dynamic range (0-30 versus 0-10 mM), and lower background signal (-7.12 versus -261.63 nA) than GOx under the same assay conditions. GDH-FAD responds equally to glucose and xylose but is otherwise specific for glucose. Glucose dehydrogenase flavin adenine dinucleotide compares favorably with GOx in many sensor-relevant attributes and may enable measurement of glucose concentrations both higher and lower than those measurable by GOx. GDH-FAD is a viable enzyme to use in the proposed amperometric tear glucose sensor system and perhaps also in detecting extreme hypoglycemia or hyperglycemia in blood. © 2011 Diabetes

  7. A Disposable Tear Glucose Biosensor—Part 3: Assessment of Enzymatic Specificity

    PubMed Central

    Lan, Kenneth; McAferty, Kenyon; Shah, Pankti; Lieberman, Erica; Patel, Dharmendra R; Cook, Curtiss B; La Belle, Jeffrey T

    2011-01-01

    Background A concept for a tear glucose sensor based on amperometric measurement of enzymatic oxidation of glucose was previously presented, using glucose dehydrogenase flavin adenine dinucleotide (GDH-FAD) as the enzyme. Glucose dehydrogenase flavin adenine dinucleotide is further characterized in this article and evaluated for suitability in glucose-sensing applications in purified tear-like saline, with specific attention to the effect of interfering substances only. These interferents are specifically saccharides that could interact with the enzymatic activity seen in the sensor's performance. Methods Bench top amperometric glucose assays were performed using an assay solution of GDH-FAD and ferricyanide redox mediator with samples of glucose, mannose, lactose, maltose, galactose, fructose, sucrose, and xylose at varying concentrations to evaluate specificity, linear dynamic range, signal size, and signal-to-noise ratio. A comparison study was done by substituting an equivalent activity unit concentration of glucose oxidase (GOx) for GDH-FAD. Results Glucose dehydrogenase flavin adenine dinucleotide was found to be more sensitive than GOx, producing larger oxidation currents than GOx on an identical glucose concentration gradient, and GDH-FAD exhibited larger slope response (-5.65 × 10-7 versus -3.11 × 10-7 A/mM), signal-to-noise ratio (18.04 versus 2.62), and linear dynamic range (0–30 versus 0–10 mM), and lower background signal (-7.12 versus -261.63 nA) than GOx under the same assay conditions. GDH-FAD responds equally to glucose and xylose but is otherwise specific for glucose. Conclusion Glucose dehydrogenase flavin adenine dinucleotide compares favorably with GOx in many sensor-relevant attributes and may enable measurement of glucose concentrations both higher and lower than those measurable by GOx. GDH-FAD is a viable enzyme to use in the proposed amperometric tear glucose sensor system and perhaps also in detecting extreme hypoglycemia or

  8. Profiling Redox and Energy Coenzymes in Whole Blood, Tissue and Cells Using NMR Spectroscopy.

    PubMed

    Gowda, G A Nagana

    2018-05-14

    Coenzymes of cellular redox reactions and cellular energy, as well as antioxidants mediate biochemical reactions fundamental to the functioning of all living cells. Conventional analysis methods lack the opportunity to evaluate these important redox and energy coenzymes and antioxidants in a single step. Major coenzymes include redox coenzymes: NAD⁺ (oxidized nicotinamide adenine dinucleotide), NADH (reduced nicotinamide adenine dinucleotide), NADP⁺ (oxidized nicotinamide adenine dinucleotide phosphate) and NADPH (reduced nicotinamide adenine dinucleotide phosphate); energy coenzymes: ATP (adenosine triphosphate), ADP (adenosine diphosphate) and AMP (adenosine monophosphate); and antioxidants: GSSG (oxidized glutathione) and GSH (reduced glutathione). We show here that a simple ¹H NMR experiment can measure these coenzymes and antioxidants in tissue and whole blood apart from a vast pool of other metabolites. In addition, focused on the goal of identification of coenzymes in subcellular fractions, we demonstrate analysis of coenzymes in the cytoplasm using breast cancer cells. Owing to their unstable nature, or low concentrations, most of the coenzymes either evade detection or lose their integrity when established sample preparation and analysis methods are used. To overcome this challenge, here we describe the development of new methods to detect these molecules without affecting the integrity of other metabolites. We used an array of 1D and 2D NMR methods, chemical shift databases, pH measurements and spiking with authentic compounds to establish the identity of peaks for the coenzymes and antioxidants in NMR spectra. Interestingly, while none of the coenzymes and antioxidants were detected in plasma, they were abundant in whole blood. Considering that the coenzymes and antioxidants represent a sensitive measure of human health and risk for numerous diseases, the presented NMR methods to measure them in one step potentially open new opportunities in the

  9. Multiple isotope effects with alternative dinucleotide substrates as a probe of the malic enzyme reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, P.M.; Urbauer, J.L.; Cleland, W.W.

    1991-06-11

    Deuterium isotope effects and {sup 13}C isotope effects with deuterium- and protium-labeled malate have been obtained for both NAD- and NADP-malic enzymes by using a variety of alternative dinucleotide substrates. With nicotinamide-containing dinucleotides as the oxidizing substrate, the {sup 13}C effect decreases when deuterated malate is the substrate compared to the value obtained with protium-labeled malate. These data are consistent with a stepwise chemical mechanism in which hydride transfer precedes decarboxylation of the oxalacetate intermediate as previously proposed. When dinucleotide substrates such as thio-NAD, 3-nicotinamide rings are used, the {sup 13}C effect increases when deuterated malate is the substrate comparedmore » to the value obtained with protium-labeled malate. These data, at face value, are consistent with a change in mechanism from stepwise to concerted for the oxidative decarboxylation portion of the mechanism. However, the increase in the deuterium isotope effect from 1.5 to 3 with a concomitant decrease in the {sup 13}C isotope effect from 1.034 to 1.003 as the dinucleotide substrate is changed suggests that the reaction may still be stepwise with the non-nicotinamide dinucleotides. A more likely explanation is that a {beta}-secondary {sup 13}C isotope effect accompanies hydride transfer as a result of hyperconjugation of the {beta}-carboxyl of malate as the transition state for the hydride transfer step is approached.« less

  10. Was adenine the first purine?

    NASA Technical Reports Server (NTRS)

    Schwartz, Alan W.; Bakker, C. G.

    1989-01-01

    Oligomerization of HCN (1 molar) in the presence of added formaldehyde (0.5 molar) produced an order of magnitude more 8-hydroxymethyladenine than adenine or any other biologically significant purine. This result suggests that on the prebiotic earth, nucleoside analogs may have been synthesized directly in more complex mixtures of HCN with other aldehydes.

  11. Singlet Oxygen Generation by UVA Light Exposure of Endogenous Photosensitizers

    PubMed Central

    Baier, Jürgen; Maisch, Tim; Maier, Max; Engel, Eva; Landthaler, Michael; Bäumler, Wolfgang

    2006-01-01

    UVA light (320–400 nm) has been shown to produce deleterious biological effects in tissue due to the generation of singlet oxygen by substances like flavins or urocanic acid. Riboflavin, flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD), β-nicotinamide adenine dinucleotide (NAD), and β-nicotinamide adenine dinucleotide phosphate (NADP), urocanic acid, or cholesterol in solution were excited at 355 nm. Singlet oxygen was directly detected by time-resolved measurement of its luminescence at 1270 nm. NAD, NADP, and cholesterol showed no luminescence signal possibly due to the very low absorption coefficient at 355 nm. Singlet oxygen luminescence of urocanic acid was clearly detected but the signal was too weak to quantify a quantum yield. The quantum yield of singlet oxygen was precisely determined for riboflavin (ΦΔ = 0.54 ± 0.07), FMN (ΦΔ = 0.51 ± 0.07), and FAD (ΦΔ = 0.07 ± 0.02). In aerated solution, riboflavin and FMN generate more singlet oxygen than exogenous photosensitizers such as Photofrin, which are applied in photodynamic therapy to kill cancer cells. With decreasing oxygen concentration, the quantum yield of singlet oxygen generation decreased, which must be considered when assessing the role of singlet oxygen at low oxygen concentrations (inside tissue). PMID:16751234

  12. Sequencing of adenine in DNA by scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiroyuki; Taniguchi, Masateru

    2017-08-01

    The development of DNA sequencing technology utilizing the detection of a tunnel current is important for next-generation sequencer technologies based on single-molecule analysis technology. Using a scanning tunneling microscope, we previously reported that dI/dV measurements and dI/dV mapping revealed that the guanine base (purine base) of DNA adsorbed onto the Cu(111) surface has a characteristic peak at V s = -1.6 V. If, in addition to guanine, the other purine base of DNA, namely, adenine, can be distinguished, then by reading all the purine bases of each single strand of a DNA double helix, the entire base sequence of the original double helix can be determined due to the complementarity of the DNA base pair. Therefore, the ability to read adenine is important from the viewpoint of sequencing. Here, we report on the identification of adenine by STM topographic and spectroscopic measurements using a synthetic DNA oligomer and viral DNA.

  13. Nicotinamide nucleotide transhydrogenase from Rhodobacter capsulatus; the H+/H- ratio and the activation state of the enzyme during reduction of acetyl pyridine adenine dinucleotide.

    PubMed

    Palmer, T; Jackson, J B

    1992-02-21

    Chromatophores from Rhodobacter capsulatus were incubated in the dark with NADPH and acetylpyridineadenine dinucleotide (AcPdAD+) in the presence of different concentrations of myxothiazol. The transhydrogenase activity was monitored until an appropriate mass action ratio, [AcPdAD+][NADPH]/[AcPdADH][NADP+], was reached. The sample was then illuminated and the initial rate of either AcPdAD+ reduction by NADPH or AcPdADH oxidation by NADP+ was recorded. The ratio of H+ translocated per H- equivalent transferred by transhydrogenase was calculated from the value of the membrane potential (delta pH = 0) at which illumination caused no net reaction in either direction. The mean value for the H+/H- ratio was 0.55. At greater values of [AcPdAD+][NADPH]/[AcPdADH][NADP+] than were employed in the above experiments and over a wider range of concentrations of myxothiazol, it was found that incremental increases in the membrane potential always gave rise to a decrease, never an increase in the rate of AcPdAD+ reduction. In contrast to the H(+)-ATP synthase, there is no evidence of any activation/deactivation of H(+)-transhydrogenase by the protonmotive force.

  14. NO nerves in a tapeworm. NADPH-diaphorase histochemistry in adult Hymenolepis diminuta.

    PubMed

    Gustafsson, M K; Lindholm, A M; Terenina, N B; Reuter, M

    1996-12-01

    The free radical nitric oxide (NO), which is synthesized by nitric oxide synthase (NOS), has recently been discovered to function as a neuronal messenger. The presence of NOS was detected in the nervous system of adult Hymenolepis diminuta with NADPH-diaphorase (NADPH-d) histochemistry. The NADPH-d histochemical reaction is regarded as a selective marker for NOS in neuronal tissue. NADPH-d staining was observed in nerve fibres in the main and minor nerve cords and the transverse ring commissures, and in cell bodies in the brain commissure, along the main nerve cords, in the suckers and the rostellar sac. NADPH-d staining was also observed in the wall of the internal seminal vesicle and the genital atrium. The pattern of NADPH-d staining was compared with that of the 5-HT immunoreactive nervous elements. The NADPH-d staining reaction and the 5-HT immunoreactivity occur in separate sets of neurons. This is the first time the NADPH-d reaction has been demonstrated in the nervous system of a flatworm, indicating that NOS is present and that NO can be produced at this level of evolution.

  15. Electron transfer driven decomposition of adenine and selected analogs as probed by experimental and theoretical methods

    NASA Astrophysics Data System (ADS)

    Cunha, T.; Mendes, M.; Ferreira da Silva, F.; Eden, S.; García, G.; Bacchus-Montabonel, M.-C.; Limão-Vieira, P.

    2018-04-01

    We report on a combined experimental and theoretical study of electron-transfer-induced decomposition of adenine (Ad) and a selection of analog molecules in collisions with potassium (K) atoms. Time-of-flight negative ion mass spectra have been obtained in a wide collision energy range (6-68 eV in the centre-of-mass frame), providing a comprehensive investigation of the fragmentation patterns of purine (Pu), adenine (Ad), 9-methyl adenine (9-mAd), 6-dimethyl adenine (6-dimAd), and 2-D adenine (2-DAd). Following our recent communication about selective hydrogen loss from the transient negative ions (TNIs) produced in these collisions [T. Cunha et al., J. Chem. Phys. 148, 021101 (2018)], this work focuses on the production of smaller fragment anions. In the low-energy part of the present range, several dissociation channels that are accessible in free electron attachment experiments are absent from the present mass spectra, notably NH2 loss from adenine and 9-methyl adenine. This can be understood in terms of a relatively long transit time of the K+ cation in the vicinity of the TNI tending to enhance the likelihood of intramolecular electron transfer. In this case, the excess energy can be redistributed through the available degrees of freedom inhibiting fragmentation pathways. Ab initio theoretical calculations were performed for 9-methyl adenine (9-mAd) and adenine (Ad) in the presence of a potassium atom and provided a strong basis for the assignment of the lowest unoccupied molecular orbitals accessed in the collision process.

  16. Transformation by Complementation of an Adenine Auxotroph of the Lignin-Degrading Basidiomycete Phanerochaete chrysosporium

    PubMed Central

    Alic, Margaret; Kornegay, Janet R.; Pribnow, David; Gold, Michael H.

    1989-01-01

    Swollen basidiospores of an adenine auxotroph of Phanerochaete chrysosporium were protoplasted with Novozyme 234 and transformed to prototrophy by using a plasmid containing the gene for an adenine biosynthetic enzyme from Schizophyllum commune. Transformation frequencies of 100 transformants per μg of DNA were obtained. Southern blot analysis of DNA extracted from transformants demonstrated that plasmid DNA was integrated into the chromosomal DNA in multiple tandem copies. Analysis of conidia and basidiospores from transformants demonstrated that the transforming character was mitotically and meiotically stable on both selective and nonselective media. Genetic crosses between double mutants transformed for adenine prototrophy and other auxotrophic strains yielded Ade− progeny, which indicated that integration occurred at a site(s) other than the resident adenine biosynthetic gene. Images PMID:16347848

  17. A mutational analysis of U12-dependent splice site dinucleotides

    PubMed Central

    DIETRICH, ROSEMARY C.; FULLER, JOHN D.; PADGETT, RICHARD A.

    2005-01-01

    Introns spliced by the U12-dependent minor spliceosome are divided into two classes based on their splice site dinucleotides. The /AU-AC/ class accounts for about one-third of U12-dependent introns in humans, while the /GU-AG/ class accounts for the other two-thirds. We have investigated the in vivo and in vitro splicing phenotypes of mutations in these dinucleotide sequences. A 5′ A residue can splice to any 3′ residue, although C is preferred. A 5′ G residue can splice to 3′ G or U residues with a preference for G. Little or no splicing was observed to 3′ A or C residues. A 5′ U or C residue is highly deleterious for U12-dependent splicing, although some combinations, notably 5′ U to 3′ U produced detectable spliced products. The dependence of 3′ splice site activity on the identity of the 5′ residue provides evidence for communication between the first and last nucleotides of the intron. Most mutants in the second position of the 5′ splice site and the next to last position of the 3′ splice site were defective for splicing. Double mutants of these residues showed no evidence of communication between these nucleotides. Varying the distance between the branch site and the 3′ splice site dinucleotide in the /GU-AG/ class showed that a somewhat larger range of distances was functional than for the /AU-AC/ class. The optimum branch site to 3′ splice site distance of 11–12 nucleotides appears to be the same for both classes. PMID:16043500

  18. TRAF6-Mediated SM22α K21 Ubiquitination Promotes G6PD Activation and NADPH Production, Contributing to GSH Homeostasis and VSMC Survival In Vitro and In Vivo.

    PubMed

    Dong, Li-Hua; Li, Liang; Song, Yu; Duan, Zhi-Li; Sun, Shao-Guang; Lin, Yan-Ling; Miao, Sui-Bing; Yin, Ya-Juan; Shu, Ya-Nan; Li, Huan; Chen, Peng; Zhao, Li-Li; Han, Mei

    2015-09-25

    Vascular smooth muscle cell (VSMC) survival under stressful conditions is integral to promoting vascular repair, but facilitates plaque stability during the development of atherosclerosis. The cytoskeleton-associated smooth muscle (SM) 22α protein is involved in the regulation of VSMC phenotypes, whereas the pentose phosphate pathway plays an essential role in cell proliferation through the production of dihydronicotinamide adenine dinucleotide phosphate. To identify the relationship between dihydronicotinamide adenine dinucleotide phosphate production and SM22α activity in the development and progression of vascular diseases. We showed that the expression and activity of glucose-6-phosphate dehydrogenase (G6PD) are promoted in platelet-derived growth factor (PDGF)-BB-induced proliferative VSMCs. PDGF-BB induced G6PD membrane translocation and activation in an SM22α K21 ubiquitination-dependent manner. Specifically, the ubiquitinated SM22α interacted with G6PD and mediated G6PD membrane translocation. Furthermore, we found that tumor necrosis factor receptor-associated factor (TRAF) 6 mediated SM22α K21 ubiquitination in a K63-linked manner on PDGF-BB stimulation. Knockdown of TRAF6 decreased the membrane translocation and activity of G6PD, in parallel with reduced SM22α K21 ubiquitination. Elevated levels of activated G6PD consequent to PDGF-BB induction led to increased dihydronicotinamide adenine dinucleotide phosphate generation through stimulation of the pentose phosphate pathway, which enhanced VSMC viability and reduced apoptosis in vivo and in vitro via glutathione homeostasis. We provide evidence that TRAF6-induced SM22α ubiquitination maintains VSMC survival through increased G6PD activity and dihydronicotinamide adenine dinucleotide phosphate production. The TRAF6-SM22α-G6PD pathway is a novel mechanism underlying the association between glucose metabolism and VSMC survival, which is beneficial for vascular repair after injury but facilitates

  19. Transformation by complementation of an adenine auxotroph of the lignin-degrading basidiomycete Phanerochaete chrysosporium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alic, M.; Kornegay, J.R.; Pribnow, D.

    1989-02-01

    Swollen basiodiospores of an adenine auxotroph of Phanerochaete chrysosporium were protoplasted with Novozyme 234 and transformed to prototrophy by using a plasmid containing the gene for an adenine biosynthetic enzyme from Schizophyllum commune. Transformation frequencies of 100 transformants per {mu}g of DNA were obtained. Southern blot analysis of DNA extracted from transformants demonstrated that plasmid DNA was integrated into the chromosomal DNA in multiple tandem copies. Analysis of conidia and basiodiospores from transformants demonstrated that the transforming character was mitotically and meiotically stable on both selective and nonselective media. Genetic crosses between double mutants transformed for adenine prototrophy and othermore » auxotrophic strains yielded Ade{sup {minus}} progeny, which indicated that integration occurred at a site(s) other than the resident adenine biosynthetic gene.« less

  20. Novel electrochemical sensor based on functionalized graphene for simultaneous determination of adenine and guanine in DNA.

    PubMed

    Huang, Ke-Jing; Niu, De-Jun; Sun, Jun-Yong; Han, Cong-Hui; Wu, Zhi-Wei; Li, Yan-Li; Xiong, Xiao-Qin

    2011-02-01

    A nano-material carboxylic acid functionalized graphene (graphene-COOH) was prepared and used to construct a novel biosensor for the simultaneous detection of adenine and guanine. The direct electrooxidation behaviors of adenine and guanine on the graphene-COOH modified glassy carbon electrode (graphene-COOH/GCE) were carefully investigated by cyclic voltammetry and differential pulse voltammetry. The results indicated that both adenine and guanine showed the increase of the oxidation peak currents with the negative shift of the oxidation peak potentials in contrast to that on the bare glassy carbon electrode. The electrochemical parameters of adenine and guanine on the graphene-COOH/GCE were calculated and a simple and reliable electroanalytical method was developed for the detection of adenine and guanine, respectively. The modified electrode exhibited good behaviors in the simultaneous detection of adenine and guanine with the peak separation as 0.334V. The detection limit for individual determination of guanine and adenine was 5.0×10(-8)M and 2.5×10(-8)M (S/N=3), respectively. Furthermore, the measurements of thermally denatured single-stranded DNA were carried out and the value of (G+C)/(A+T) of single-stranded DNA was calculated as 0.80. The biosensor exhibited some advantages, such as simplicity, rapidity, high sensitivity, good reproducibility and long-term stability. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Determination of adenine based on the fluorescence recovery of the L-Tryptophan-Cu(2+) complex.

    PubMed

    Duan, Ruilin; Li, Chunyan; Liu, Shaopu; Liu, Zhongfang; Li, Yuanfang; Yuan, Yusheng; Hu, Xiaoli

    2016-01-05

    A simple and sensitive method for determination of adenine was developed based on fluorescence quenching and recovery of L-Tryptophan (L-Trp). The fluorescence of L-Trp could efficiently quenched by copper ion compared with other common metal ions. Upon addition of adenine (Ade) in L-Trp-Cu(II) system, the fluorescence was reoccurred. Under the optimum conditions, the recovery fluorescence intensity was linearly correlated with the concentration of adenine in the range from 0.34 to 25.0μmolL(-1), with a correlation coefficient (R(2)) of 0.9994. The detection limit (3σ/k) was 0.046μmolL(-1), indicating that this method could applied to detect trace adenine. In this study, amino acids including L-Trp, D-Trp, L-Tyr, D-Tyr, L-Phe, D-Phe were investigated and only L-Trp could well chelated copper ion. Additionally, the mechanism of quench and recovery also were discussed and the method was successfully applied to detect the adenine in DNA with satisfactory results. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Preparation and storage of isotopically labeled reduced nicotinamide adenine dinucleotide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Northrop, D.B.; Duggleby, R.G.

    1987-09-01

    A method for obtaining highly purified NADH in a dry, solid, and stable form is described. The method involves improvements of the ion-exchange and reversed-phase chromatographic procedures of C. J. Newton and S. M. Faynor, and D. B. Northrop. The necessary time to prepare pure NADH has been reduced to a few hours. The final product, obtained by drying the nucleotide from absolute ethanol, shows no detectable decomposition either during the drying procedure or during storage under nitrogen gas at -20 degrees C for several months. Using dry product prepared from fixed volumes of ethanolic solution, standardized solutions of knownmore » amounts of the highly purified and stored NADH can be obtained in a few seconds.« less

  3. Salicylate Treatment Improves Age-Associated Vascular Endothelial Dysfunction: Potential Role of Nuclear Factor κB and Forkhead Box O Phosphorylation

    PubMed Central

    Durrant, Jessica R.; Connell, Melanie L.; Folian, Brian J.; Donato, Anthony J.; Seals, Douglas R.

    2011-01-01

    We hypothesized that I kappa B kinase (IKK)-mediated nuclear factor kappa B and forkhead BoxO3a phosphorylation will be associated with age-related endothelial dysfunction. Endothelium-dependent dilation and aortic protein expression/phosphorylation were determined in young and old male B6D2F1 mice and old mice treated with the IKK inhibitor, salicylate. IKK activation was greater in old mice and was associated with greater nitrotyrosine and cytokines. Endothelium-dependent dilation, nitric oxide (NO), and endothelial NO synthase phosphorylation were lower in old mice. Endothelium-dependent dilation and NO bioavailability were restored by a superoxide dismutase mimetic. Nuclear factor kappa B and forkhead BoxO3a phosphorylation were greater in old and were associated with increased expression/activity of nicotinamide adenine dinucleotide phosphate oxidase and lower manganese superoxide dismutase expression. Salicylate lowered IKK phosphorylation and reversed age-associated changes in nitrotyrosine, endothelium-dependent dilation, NO bioavailability, endothelial NO synthase, nuclear factor kappa B and forkhead BoxO3a phosphorylation, nicotinamide adenine dinucleotide phosphate oxidase, and manganese superoxide dismutase. Increased activation of IKK with advancing age stimulates nuclear factor kappa B and inactivates forkhead BoxO3a. This altered transcription factor activation contributes to a pro-inflammatory/pro-oxidative arterial phenotype that is characterized by increased cytokines and nicotinamide adenine dinucleotide phosphate oxidase and decreased manganese superoxide dismutase leading to oxidative stress-mediated endothelial dysfunction. PMID:21303813

  4. Characterization of the type 2 NADH:menaquinone oxidoreductases from Staphylococcus aureus and the bactericidal action of phenothiazines.

    PubMed

    Schurig-Briccio, Lici A; Yano, Takahiro; Rubin, Harvey; Gennis, Robert B

    2014-07-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is currently one of the principal multiple drug resistant bacterial pathogens causing serious infections, many of which are life-threatening. Consequently, new therapeutic targets are required to combat such infections. In the current work, we explore the type 2 Nicotinamide adenine dinucleotide reduced form (NADH) dehydrogenases (NDH-2s) as possible drug targets and look at the effects of phenothiazines, known to inhibit NDH-2 from Mycobacterium tuberculosis. NDH-2s are monotopic membrane proteins that catalyze the transfer of electrons from NADH via flavin adenine dinucleotide (FAD) to the quinone pool. They are required for maintaining the NADH/Nicotinamide adenine dinucleotide (NAD(+)) redox balance and contribute indirectly to the generation of proton motive force. NDH-2s are not present in mammals, but are the only form of respiratory NADH dehydrogenase in several pathogens, including S. aureus. In this work, the two putative ndh genes present in the S. aureus genome were identified, cloned and expressed, and the proteins were purified and characterized. Phenothiazines were shown to inhibit both of the S. aureus NDH-2s with half maximal inhibitory concentration (IC50) values as low as 8μM. However, evaluating the effects of phenothiazines on whole cells of S. aureus was complicated by the fact that they are also acting as uncouplers of oxidative phosphorylation. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Mannitol and Mannitol Dehydrogenases in Conidia of Aspergillus oryzae

    PubMed Central

    Horikoshi, Koki; Iida, Shigeji; Ikeda, Yonosuke

    1965-01-01

    Horikoshi, Koki (The Institute of Physical and Chemical Research, Tokyo, Japan), Shigeji Iida, and Yonosuke Ikeda. Mannitol and mannitol dehydrogenases in conidia of Aspergillus oryzae. J. Bacteriol. 89:326–330. 1965.—A sugar alcohol was isolated from the conidia of Aspergillus oryzae and identified as d-mannitol. Two types of d-mannitol dehydrogenases, nicotinamide adenine dinucleotide phosphate-linked and nicotinamide adenine dinucleotide-linked, were found in the conidia. Substrate specificities, pH optima, Michaelis-Menton constants, and the effects of inhibitors were studied. d-Mannitol was converted to fructose by the dehydrogenases. Synthesis of d-mannitol dehydrogenases was not observed during germination; the content of d-mannitol decreased at an early stage of germination. It was assumed, therefore, that d-mannitol might be used as the source of endogenous respiration and provide energy for the germination. PMID:14255698

  6. A dinucleotide motif in oligonucleotides shows potent immunomodulatory activity and overrides species-specific recognition observed with CpG motif.

    PubMed

    Kandimalla, Ekambar R; Bhagat, Lakshmi; Zhu, Fu-Gang; Yu, Dong; Cong, Yan-Ping; Wang, Daqing; Tang, Jimmy X; Tang, Jin-Yan; Knetter, Cathrine F; Lien, Egil; Agrawal, Sudhir

    2003-11-25

    Bacterial and synthetic DNAs containing CpG dinucleotides in specific sequence contexts activate the vertebrate immune system through Toll-like receptor 9 (TLR9). In the present study, we used a synthetic nucleoside with a bicyclic heterobase [1-(2'-deoxy-beta-d-ribofuranosyl)-2-oxo-7-deaza-8-methyl-purine; R] to replace the C in CpG, resulting in an RpG dinucleotide. The RpG dinucleotide was incorporated in mouse- and human-specific motifs in oligodeoxynucleotides (oligos) and 3'-3-linked oligos, referred to as immunomers. Oligos containing the RpG motif induced cytokine secretion in mouse spleen-cell cultures. Immunomers containing RpG dinucleotides showed activity in transfected-HEK293 cells stably expressing mouse TLR9, suggesting direct involvement of TLR9 in the recognition of RpG motif. In J774 macrophages, RpG motifs activated NF-kappa B and mitogen-activated protein kinase pathways. Immunomers containing the RpG dinucleotide induced high levels of IL-12 and IFN-gamma, but lower IL-6 in time- and concentration-dependent fashion in mouse spleen-cell cultures costimulated with IL-2. Importantly, immunomers containing GTRGTT and GARGTT motifs were recognized to a similar extent by both mouse and human immune systems. Additionally, both mouse- and human-specific RpG immunomers potently stimulated proliferation of peripheral blood mononuclear cells obtained from diverse vertebrate species, including monkey, pig, horse, sheep, goat, rat, and chicken. An immunomer containing GTRGTT motif prevented conalbumin-induced and ragweed allergen-induced allergic inflammation in mice. We show that a synthetic bicyclic nucleotide is recognized in the C position of a CpG dinucleotide by immune cells from diverse vertebrate species without bias for flanking sequences, suggesting a divergent nucleotide motif recognition pattern of TLR9.

  7. Alteration of adenyl dinucleotide metabolism by environmental stress.

    PubMed Central

    Baker, J C; Jacobson, M K

    1986-01-01

    Exposure of cultured mammalian cells to a variety of conditions that induce the synthesis of stress proteins, including hyperthermia, ethanol, cadmium, and arsenite resulted in an increased cellular content of adenyl dinucleotides including diadenosine tetraphosphate (Ap4A). Exposure to other agents that cause metabolic perturbations not known to induce the synthesis of stress proteins, such as cyclohexamide, cytosine arabinoside, hydroxyurea, and ultraviolet irradiation did not alter the content of these nucleotides. It is proposed that these unique nucleotides may mediate adaptive responses of mammalian cells to environmental stress. PMID:3458199

  8. NADPH-diaphorase activity and neurovascular coupling in the rat cerebral cortex.

    PubMed

    Vlasenko, O V; Maisky, V A; Maznychenko, A V; Pilyavskii, A I

    2008-01-01

    The distribution of NADPH-diaphorase-reactive (NADPH-dr) neurons and neuronal processes in the cerebral cortex and basal forebrain and their association with parenchymal vessels were studied in normal adult rats using NADPH-d histochemical protocol. The intensely stained cortical interneurons and reactive subcortically originating afferents, and stained microvessels were examined through a light microscope at law (x250) and high (x630) magnifications. NADPH-dr interneurons were concentrated in layers 2-6 of the M1 and M2 areas. However, clear predominance in their concentration (14 +/- 0.8 P < 0.05 per section) was found in layer 6. A mean number of labeled neurons in auditory (AuV), granular and agranular (GI, AIP) areas of the insular cortex was calculated to reach 12.3 +/- 0.7, 18.5 +/- 1.0 and 23.3 +/- 1.7 units per section, respectively (P < 0.05). The distinct apposition of labelled neurons to intracortical vessels was found in the M1, M2. The order of frequency of neurovascular coupling in different zones of the cerebral cortex was as following sequence: AuV (31.2%, n = 1040) > GI (18.0%, n = 640) > S1 (13.3%, n = 720) > M1 (6.3%, n = 1360). A large number of structural associations between labeled cells and vessels in the temporal and insular cortex indicate that NADPH-d-reactive interneurons can contribute to regulation of the cerebral regional blood flow in these areas.

  9. Prolonged Pulmonary Exposure to Diesel Exhaust Particles Exacerbates Renal Oxidative Stress, Inflammation and DNA Damage in Mice with Adenine-Induced Chronic Renal Failure.

    PubMed

    Nemmar, Abderrahim; Karaca, Turan; Beegam, Sumaya; Yuvaraju, Priya; Yasin, Javed; Hamadi, Naserddine Kamel; Ali, Badreldin H

    2016-01-01

    Epidemiological evidence indicates that patients with chronic kidney diseases have increased susceptibility to adverse outcomes related to long-term exposure to particulate air pollution. However, mechanisms underlying these effects are not fully understood. Presently, we assessed the effect of prolonged exposure to diesel exhaust particles (DEP) on chronic renal failure induced by adenine (0.25% w/w in feed for 4 weeks), which is known to involve inflammation and oxidative stress. DEP (0.5m/kg) was intratracheally (i.t.) instilled every 4th day for 4 weeks (7 i.t. instillation). Four days following the last exposure to either DEP or saline (control), various renal endpoints were measured. While body weight was decreased, kidney weight increased in DEP+adenine versus saline+adenine or DEP. Water intake, urine volume, relative kidney weight were significantly increased in adenine+DEP versus DEP and adenine+saline versus saline. Plasma creatinine and urea increased and creatinine clearance decreased in adenine+DEP versus DEP and adenine+saline versus saline. Tumor necrosis factor α, lipid peroxidation and reactive oxygen species were significantly increased in adenine+DEP compared with either DEP or adenine+saline. The antioxidant calase was significantly decreased in adenine+DEP compared with either adenine+saline or DEP. Notably, renal DNA damage was significantly potentiated in adenine+DEP compared with either adenine+saline or DEP. Similarly, systolic blood pressure was increased in adenine+DEP versus adenine+saline or DEP, and in DEP versus saline. Histological evaluation revealed more collagen deposition, higher number of necrotic cell counts and dilated tubules, cast formation and collapsing glomeruli in adenine+DEP versus adenine+saline or DEP. Prolonged pulmonary exposure to diesel exhaust particles worsen renal oxidative stress, inflammation and DNA damage in mice with adenine-induced chronic renal failure. Our data provide biological plausibility that air

  10. Communication: Site-selective bond excision of adenine upon electron transfer

    NASA Astrophysics Data System (ADS)

    Cunha, T.; Mendes, M.; Ferreira da Silva, F.; Eden, S.; García, G.; Limão-Vieira, P.

    2018-01-01

    This work demonstrates that selective excision of hydrogen atoms at a particular site of the DNA base adenine can be achieved in collisions with electronegative atoms by controlling the impact energy. The result is based on analysing the time-of-flight mass spectra yields of potassium collisions with a series of labeled adenine derivatives. The production of dehydrogenated parent anions is consistent with neutral H loss either from selective breaking of C-H or N-H bonds. These unprecedented results open up a new methodology in charge transfer collisions that can initiate selective reactivity as a key process in chemical reactions that are dominant in different areas of science and technology.

  11. Two-dimensional network stability of nucleobases and amino acids on graphite under ambient conditions: adenine, L-serine and L-tyrosine.

    PubMed

    Bald, Ilko; Weigelt, Sigrid; Ma, Xiaojing; Xie, Pengyang; Subramani, Ramesh; Dong, Mingdong; Wang, Chen; Mamdouh, Wael; Wang, Jianguo; Besenbacher, Flemming

    2010-04-14

    We have investigated the stability of two-dimensional self-assembled molecular networks formed upon co-adsorption of the DNA base, adenine, with each of the amino acids, L-serine and L-tyrosine, on a highly oriented pyrolytic graphite (HOPG) surface by drop-casting from a water solution. L-serine and L-tyrosine were chosen as model systems due to their different interaction with the solvent molecules and the graphite substrate, which is reflected in a high and low solubility in water, respectively, compared with adenine. Combined scanning tunneling microscopy (STM) measurements and density functional theory (DFT) calculations show that the self-assembly process is mainly driven by the formation of strong adenine-adenine hydrogen bonds. We find that pure adenine networks are energetically more stable than networks built up of either pure L-serine, pure L-tyrosine or combinations of adenine with L-serine or L-tyrosine, and that only pure adenine networks are stable enough to be observable by STM under ambient conditions.

  12. ON THE INTERACTION OF ADENINE WITH IONIZING RADIATION: MECHANISTICAL STUDIES AND ASTROBIOLOGICAL IMPLICATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, Nicholas L.; Ullrich, Susanne; Bennett, Chris J.

    2011-04-01

    The molecular inventory available on the prebiotic Earth was likely derived from both terrestrial and extraterrestrial sources. A complete description of which extraterrestrial molecules may have seeded early Earth is therefore necessary to fully understand the prebiotic evolution which led to life. Galactic cosmic rays (GCRs) are expected to cause both the formation and destruction of important biomolecules-including nucleic acid bases such as adenine-in the interstellar medium within the ices condensed on interstellar grains. The interstellar ultraviolet (UV) component is expected to photochemically degrade gas-phase adenine on a short timescale of only several years. However, the destruction rate is expectedmore » to be significantly reduced when adenine is shielded in dense molecular clouds or even within the ices of interstellar grains. Here, biomolecule destruction by the energetic charged particle component of the GCR becomes important as it is not fully attenuated. Presented here are results on the destruction rate of the nucleobase adenine in the solid state at 10 K by energetic electrons, as generated in the track of cosmic ray particles as they penetrate ices. When both UV and energetic charged particle destructive processes are taken into account, the half-life of adenine within dense interstellar clouds is found to be {approx}6 Myr, which is on the order of a star-forming molecular cloud. We also discuss chemical reaction pathways within the ices to explain the production of observed species, including the formation of nitriles (R-C{identical_to}N), epoxides (C-O-C), and carbonyl functions (R-C=O).« less

  13. Pleiotropic effects of the sirtuin inhibitor sirtinol involves concentration-dependent modulation of multiple nuclear receptor-mediated pathways in the androgen-responsive prostate cancer cell LNCaP

    USDA-ARS?s Scientific Manuscript database

    Sirtinol, a purported specific inhibitor of the nicotinamide adenine dinucleotide (NAD)-dependent type III histone deacetylase (also known as sirtuin), has been used extensively to identify chemopreventive/chemotherapeutic agents that modulate the activity of this group of enzymes. However, the mole...

  14. Adenine Inhibits TNF-α Signaling in Intestinal Epithelial Cells and Reduces Mucosal Inflammation in a Dextran Sodium Sulfate-Induced Colitis Mouse Model.

    PubMed

    Fukuda, Toshihiko; Majumder, Kaustav; Zhang, Hua; Turner, Patricia V; Matsui, Toshiro; Mine, Yoshinori

    2016-06-01

    Adenine (6-amino-6H-purine), found in molokheiya (Corchorus olitorius L.), has exerted vasorelaxation effects in the thoracic aorta. However, the mode of action of the anti-inflammatory effect of adenine is unclear. Thus, we investigated to clarify the effect of adenine on chronic inflammation of the gastrointestinal tract. In intestinal epithelial cells, adenine significantly inhibited tumor necrosis factor-α-induced interleukin-8 secretion. The inhibition of adenine was abolished under the treatment of inhibitors of adenyl cyclase (AC) and protein kinase A (PKA), indicating the effect of adenine was mediated through the AC/PKA pathway. Adenine (5, 10, and 50 mg/kg BW/day) was administered orally for 14 days to female BALB/c mice, and then 5% dextran sodium sulfate (DSS) was given to induce colitis. Adenine (5 mg/kg BW/day) significantly prevented DSS-induced colon shortening, expression of pro-inflammatory cytokines, and histological damage in the colon. These results suggest that adenine can be a promising nutraceutical for the prevention of intestinal inflammation.

  15. Structure-wise discrimination of adenine and guanine by proteins on the basis of their nonbonded interactions.

    PubMed

    Usha, S; Selvaraj, S

    2015-01-01

    We have analyzed the nonbonded interactions of the structurally similar moieties, adenine and guanine forming complexes with proteins. The results comprise (a) the amino acid-ligand atom preferences, (b) solvent accessibility of ligand atoms before and after complex formation with proteins, and (c) preferred amino acid residue atoms involved in the interactions. We have observed that the amino acid preferences involved in the hydrogen bonding interactions vary for adenine and guanine. The structural variation between the purine atoms is clearly reflected by their burial tendency in the solvent environment. Correlation of the mean amino acid preference values show the variation that exists between adenine and guanine preferences of all the amino acid residues. All our observations provide evidence for the discriminating nature of the proteins in recognizing adenine and guanine.

  16. Dietary L-lysine prevents arterial calcification in adenine-induced uremic rats.

    PubMed

    Shimomura, Akihiro; Matsui, Isao; Hamano, Takayuki; Ishimoto, Takuya; Katou, Yumiko; Takehana, Kenji; Inoue, Kazunori; Kusunoki, Yasuo; Mori, Daisuke; Nakano, Chikako; Obi, Yoshitsugu; Fujii, Naohiko; Takabatake, Yoshitsugu; Nakano, Takayoshi; Tsubakihara, Yoshiharu; Isaka, Yoshitaka; Rakugi, Hiromi

    2014-09-01

    Vascular calcification (VC) is a life-threatening complication of CKD. Severe protein restriction causes a shortage of essential amino acids, and exacerbates VC in rats. Therefore, we investigated the effects of dietary l-lysine, the first-limiting amino acid of cereal grains, on VC. Male Sprague-Dawley rats at age 13 weeks were divided randomly into four groups: low-protein (LP) diet (group LP), LP diet+adenine (group Ade), LP diet+adenine+glycine (group Gly) as a control amino acid group, and LP diet+adenine+l-lysine·HCl (group Lys). At age 18 weeks, group LP had no VC, whereas groups Ade and Gly had comparable levels of severe VC. l-Lysine supplementation almost completely ameliorated VC. Physical parameters and serum creatinine, urea nitrogen, and phosphate did not differ among groups Ade, Gly, and Lys. Notably, serum calcium in group Lys was slightly but significantly higher than in groups Ade and Gly. Dietary l-lysine strongly suppressed plasma intact parathyroid hormone in adenine rats and supported a proper bone-vascular axis. The conserved orientation of the femoral apatite in group Lys also evidenced the bone-protective effects of l-lysine. Dietary l-lysine elevated plasma alanine, proline, arginine, and homoarginine but not lysine. Analyses in vitro demonstrated that alanine and proline inhibit apoptosis of cultured vascular smooth muscle cells, and that arginine and homoarginine attenuate mineral precipitations in a supersaturated calcium/phosphate solution. In conclusion, dietary supplementation of l-lysine ameliorated VC by modifying key pathways that exacerbate VC. Copyright © 2014 by the American Society of Nephrology.

  17. Dietary l-Lysine Prevents Arterial Calcification in Adenine-Induced Uremic Rats

    PubMed Central

    Shimomura, Akihiro; Matsui, Isao; Hamano, Takayuki; Ishimoto, Takuya; Katou, Yumiko; Takehana, Kenji; Inoue, Kazunori; Kusunoki, Yasuo; Mori, Daisuke; Nakano, Chikako; Obi, Yoshitsugu; Fujii, Naohiko; Takabatake, Yoshitsugu; Nakano, Takayoshi; Tsubakihara, Yoshiharu; Rakugi, Hiromi

    2014-01-01

    Vascular calcification (VC) is a life-threatening complication of CKD. Severe protein restriction causes a shortage of essential amino acids, and exacerbates VC in rats. Therefore, we investigated the effects of dietary l-lysine, the first-limiting amino acid of cereal grains, on VC. Male Sprague-Dawley rats at age 13 weeks were divided randomly into four groups: low-protein (LP) diet (group LP), LP diet+adenine (group Ade), LP diet+adenine+glycine (group Gly) as a control amino acid group, and LP diet+adenine+l-lysine·HCl (group Lys). At age 18 weeks, group LP had no VC, whereas groups Ade and Gly had comparable levels of severe VC. l-Lysine supplementation almost completely ameliorated VC. Physical parameters and serum creatinine, urea nitrogen, and phosphate did not differ among groups Ade, Gly, and Lys. Notably, serum calcium in group Lys was slightly but significantly higher than in groups Ade and Gly. Dietary l-lysine strongly suppressed plasma intact parathyroid hormone in adenine rats and supported a proper bone-vascular axis. The conserved orientation of the femoral apatite in group Lys also evidenced the bone-protective effects of l-lysine. Dietary l-lysine elevated plasma alanine, proline, arginine, and homoarginine but not lysine. Analyses in vitro demonstrated that alanine and proline inhibit apoptosis of cultured vascular smooth muscle cells, and that arginine and homoarginine attenuate mineral precipitations in a supersaturated calcium/phosphate solution. In conclusion, dietary supplementation of l-lysine ameliorated VC by modifying key pathways that exacerbate VC. PMID:24652795

  18. Raman Spectroscopy of the Interferon-Induced 2’,5’-Oligoadenylates

    DTIC Science & Technology

    1987-06-25

    generation of the Raman spectrum of triethyl ammonium ion ••••••••••••••••••••••••••••••• 41 12. structures of purine, adenine, purine riboside , adenosine...ribose 5 1-phosphate, AMP, and ATP........ 48 13. Raman spectra of adenine and purine •••••••.••••••••• 49 14. Raman spectra of purine riboside and... nicotinamide adenine dinucleotide; TFAB, triethyl anunonium bicarbonate; TFA, triethyl amm::mium. ion; CD circular _dichroism; NMR, nuclear magnetic

  19. Selective intra-dinucleotide interactions and periodicities of bases separated by K sites: a new vision and tool for phylogeny analyses.

    PubMed

    Valenzuela, Carlos Y

    2017-02-13

    Direct tests of the random or non-random distribution of nucleotides on genomes have been devised to test the hypothesis of neutral, nearly-neutral or selective evolution. These tests are based on the direct base distribution and are independent of the functional (coding or non-coding) or structural (repeated or unique sequences) properties of the DNA. The first approach described the longitudinal distribution of bases in tandem repeats under the Bose-Einstein statistics. A huge deviation from randomness was found. A second approach was the study of the base distribution within dinucleotides whose bases were separated by 0, 1, 2… K nucleotides. Again an enormous difference from the random distribution was found with significances out of tables and programs. These test values were periodical and included the 16 dinucleotides. For example a high "positive" (more observed than expected dinucleotides) value, found in dinucleotides whose bases were separated by (3K + 2) sites, was preceded by two smaller "negative" (less observed than expected dinucleotides) values, whose bases were separated by (3K) or (3K + 1) sites. We examined mtDNAs, prokaryote genomes and some eukaryote chromosomes and found that the significant non-random interactions and periodicities were present up to 1000 or more sites of base separation and in human chromosome 21 until separations of more than 10 millions sites. Each nucleotide has its own significant value of its distance to neutrality; this yields 16 hierarchical significances. A three dimensional table with the number of sites of separation between the bases and the 16 significances (the third dimension is the dinucleotide, individual or taxon involved) gives directly an evolutionary state of the analyzed genome that can be used to obtain phylogenies. An example is provided.

  20. Malic enzyme: Tritium isotope effects with alternative dinucleotide substrates and divalent metal ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karsten, W.E.; Harris, B.G.; Cook, P.F.

    1992-01-01

    The NAD-malic enzyme from Ascaris suum catalyzes the divalent metal ion dependent oxidative decarboxylation of L-malate to yield pyruvate, carbon dioxide and NADH. Multiple isotope effect studies suggest a stepwise chemical mechanism with hydride transfer from L-malate to NAD occurring first to form oxalacetate, followed by decarboxylation. Utilizing L-malate-2-T, tritium V/K isotope effects have been determined for the hydride transfer step using a variety of alternative dinucleotide substrates and divalent metal ions. Combination of these data with deuterium isotope effects data and previously determined [sup 13]C isotope effects has allowed the calculation of intrinsic isotope effects for the malic enzymemore » catalyzed reaction. The identity of both the dinucleotide substrate and divalent metal ion has an effect of the size of the intrinsic isotope effect for hydride transfer.« less

  1. Methods for detection of methyl-CpG dinucleotides

    DOEpatents

    Dunn, John J

    2013-11-26

    The invention provides methods for enriching methyl-CpG sequences from a DNA sample. The method makes use of conversion of cytosine residues to uracil under conditions in which methyl-cytosine residues are preserved. Additional methods of the invention enable to preservation of the context of me-CpG dinucleotides. The invention also provides a recombinant, full length and substantially pure McrA protein (rMcrA) for binding and isolation of DNA fragments containing the sequence 5'-C.sup.MeCpGG-3'. Methods for making and using the rMcrA protein, and derivatives thereof are provided.

  2. Methods for detection of methyl-CpG dinucleotides

    DOEpatents

    Dunn, John J.

    2013-01-29

    The invention provides methods for enriching methyl-CpG sequences from a DNA sample. The method makes use of conversion of cytosine residues to uracil under conditions in which methyl-cytosine residues are preserved. Additional methods of the invention enable to preservation of the context of me-CpG dinucleotides. The invention also provides a recombinant, full length and substantially pure McrA protein (rMcrA) for binding and isolation of DNA fragments containing the sequence 5'-C.sup.MeCpGG-3'. Methods for making and using the rMcrA protein, and derivatives thereof are provided.

  3. Methods for detection of methyl-CpG dinucleotides

    DOEpatents

    Dunn, John J.

    2012-09-11

    The invention provides methods for enriching methyl-CpG sequences from a DNA sample. The method makes use of conversion of cytosine residues to uracil under conditions in which methyl-cytosine residues are preserved. Additional methods of the invention enable to preservation of the context of me-CpG dinucleotides. The invention also provides a recombinant, full length and substantially pure McrA protein (rMcrA) for binding and isolation of DNA fragments containing the sequence 5'-C.sup.MeCpGG-3'. Methods for making and using the rMcrA protein, and derivatives thereof are provided.

  4. Binding of adenine to Stx2, the protein toxin from Escherichia coli O157:H7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fraser, Marie E., E-mail: frasm@ucalgary.ca; Cherney, Maia M.; Marcato, Paola

    2006-07-01

    Crystals of Stx2 were grown in the presence of adenosine and adenine. In both cases, the resulting electron density showed only adenine bound at the active site of the A subunit, proving that the holotoxin is an active N-glycosidase. Stx2 is a protein toxin whose catalytic subunit acts as an N-glycosidase to depurinate a specific adenine base from 28S rRNA. In the holotoxin, the catalytic portion, A1, is linked to the rest of the A subunit, A2, and A2 interacts with the pentameric ring formed by the five B subunits. In order to test whether the holotoxin is active asmore » an N-glycosidase, Stx2 was crystallized in the presence of adenosine and adenine. The crystals diffracted to ∼1.8 Å and showed clear electron density for adenine in the active site. Adenosine had been cleaved, proving that Stx2 is an active N-glycosidase. While the holotoxin is active against small substrates, it would be expected that the B subunits would interfere with the binding of the 28S rRNA.« less

  5. Detection of ATP and NADH: A Bioluminescent Experience.

    ERIC Educational Resources Information Center

    Selig, Ted C.; And Others

    1984-01-01

    Described is a bioluminescent assay for adenosine triphosphate (ATP) and reduced nicotineamide-adenine dinucleotide (NADH) that meets the requirements of an undergraduate biochemistry laboratory course. The 3-hour experiment provides students with experience in bioluminescence and analytical biochemistry yet requires limited instrumentation,…

  6. Design and synthesis of novel adenine fluorescence probe based on Eu(III) complexes with dtpa-bis(guanine) ligand

    NASA Astrophysics Data System (ADS)

    Tian, Fengyun; Jiang, Xiaoqing; Dou, Xuekai; Wu, Qiong; Wang, Jun; Song, Youtao

    2017-05-01

    A novel adenine (Ad) fluorescence probe (EuIII-dtpa-bis(guanine)) was designed and synthesized by improving experimental method based on the Eu(III) complex and dtpa-bis(guanine) ligand. The dtpa-bis(guanine) ligand was first synthesized by the acylation action between dtpaa and guanine (Gu), and the corresponding Eu(III) complex was successfully prepared through heat-refluxing method with dtpa-bis(guanine) ligand. As a novel fluorescence probe, the EuIII-dtpa-bis(guanine) complex can detect adenine (Ad) with characteristics of strong targeting, high specificity and high recognition ability. The detection mechanism of the adenine (Ad) using this probe in buffer solution was studied by ultraviolet-visible (UV-vis) and fluorescence spectroscopy. When the EuIII-dtpa-bis(guanine) was introduced to the adenine (Ad) solution, the fluorescence emission intensity was significantly enhanced. However, adding other bases such as guanine (Gu), xanthine (Xa), hypoxanthine (Hy) and uric acid (Ur) with similar composition and structure to that of adenine (Ad) to the EuIII-dtpa-bis(guanine) solution, the fluorescence emission intensities are nearly invariable. Meanwhile, the interference of guanine (Gu), xanthine (Xa), hypoxanthine (Hy) and uric acid (Ur) on the detection of the adenine using EuIII-dtpa-bis(guanine) probe was also studied. It was found that presence of these bases does not affect the detection of adenine (Ad). A linear response of fluorescence emission intensities of EuIII-dtpa-bis(guanine) at 570 nm as a function of adenine (Ad) concentration in the range of 0.00-5.00 × 10- 5 mol L- 1 was observed. The detection limit is about 4.70 × 10- 7 mol L- 1.

  7. General approach to reversing ketol-acid reductoisomerase cofactor dependence from NADPH to NADH

    DOE PAGES

    Brinkmann-Chen, Sabine; Flock, Tilman; Cahn, Jackson K. B.; ...

    2013-06-17

    To date, efforts to switch the cofactor specificity of oxidoreductases from nicotinamide adenine dinucleotide phosphate (NADPH) to nicotinamide adenine dinucleotide (NADH) have been made on a case-by-case basis with varying degrees of success. Here we present a straightforward recipe for altering the cofactor specificity of a class of NADPH-dependent oxidoreductases, the ketol-acid reductoisomerases (KARIs). Combining previous results for an engineered NADH-dependent variant of Escherichia coli KARI with available KARI crystal structures and a comprehensive KARI-sequence alignment, we identified key cofactor specificity determinants and used this information to construct five KARIs with reversed cofactor preference. Additional directed evolution generated two enzymesmore » having NADH-dependent catalytic efficiencies that are greater than the wild-type enzymes with NADPH. As a result, high-resolution structures of a wild-type/variant pair reveal the molecular basis of the cofactor switch.« less

  8. Quercetin Attenuates Vascular Calcification through Suppressed Oxidative Stress in Adenine-Induced Chronic Renal Failure Rats.

    PubMed

    Chang, Xue-Ying; Cui, Lei; Wang, Xing-Zhi; Zhang, Lei; Zhu, Dan; Zhou, Xiao-Rong; Hao, Li-Rong

    2017-01-01

    This study investigated whether quercetin could alleviate vascular calcification in experimental chronic renal failure rats induced by adenine. 32 adult male Wistar rats were randomly divided into 4 groups fed normal diet, normal diet with quercetin supplementation (25 mg/kg·BW/d), 0.75% adenine diet, or adenine diet with quercetin supplementation. All rats were sacrificed after 6 weeks of intervention. Serum renal functions biomarkers and oxidative stress biomarkers were measured and status of vascular calcification in aorta was assessed. Furthermore, the induced nitric oxide synthase (iNOS)/p38 mitogen activated protein kinase (p38MAPK) pathway was determined to explore the potential mechanism. Adenine successfully induced renal failure and vascular calcification in rat model. Quercetin supplementation reversed unfavorable changes of phosphorous, uric acid (UA) and creatinine levels, malonaldehyde (MDA) content, and superoxide dismutase (SOD) activity in serum and the increases of calcium and alkaline phosphatase (ALP) activity in the aorta ( P < 0.05) and attenuated calcification and calcium accumulation in the medial layer of vasculature in histopathology. Western blot analysis showed that iNOS/p38MAPK pathway was normalized by the quercetin supplementation. Quercetin exerted a protective effect on vascular calcification in adenine-induced chronic renal failure rats, possibly through the modulation of oxidative stress and iNOs/p38MAPK pathway.

  9. Quercetin Attenuates Vascular Calcification through Suppressed Oxidative Stress in Adenine-Induced Chronic Renal Failure Rats

    PubMed Central

    Chang, Xue-ying; Cui, Lei; Wang, Xing-zhi; Zhang, Lei; Zhu, Dan

    2017-01-01

    Background This study investigated whether quercetin could alleviate vascular calcification in experimental chronic renal failure rats induced by adenine. Methods 32 adult male Wistar rats were randomly divided into 4 groups fed normal diet, normal diet with quercetin supplementation (25 mg/kg·BW/d), 0.75% adenine diet, or adenine diet with quercetin supplementation. All rats were sacrificed after 6 weeks of intervention. Serum renal functions biomarkers and oxidative stress biomarkers were measured and status of vascular calcification in aorta was assessed. Furthermore, the induced nitric oxide synthase (iNOS)/p38 mitogen activated protein kinase (p38MAPK) pathway was determined to explore the potential mechanism. Results Adenine successfully induced renal failure and vascular calcification in rat model. Quercetin supplementation reversed unfavorable changes of phosphorous, uric acid (UA) and creatinine levels, malonaldehyde (MDA) content, and superoxide dismutase (SOD) activity in serum and the increases of calcium and alkaline phosphatase (ALP) activity in the aorta (P < 0.05) and attenuated calcification and calcium accumulation in the medial layer of vasculature in histopathology. Western blot analysis showed that iNOS/p38MAPK pathway was normalized by the quercetin supplementation. Conclusions Quercetin exerted a protective effect on vascular calcification in adenine-induced chronic renal failure rats, possibly through the modulation of oxidative stress and iNOs/p38MAPK pathway. PMID:28691026

  10. Quantitative bioluminescent detection of bacteria

    NASA Technical Reports Server (NTRS)

    Chappelle, E. W.; Picciolo, G. L.

    1976-01-01

    Phosphoflavins in sample are measured using photobacterial luciferase assay technique for flavin mononucleotide (FMN). Boiling perchloric acid is used to rupture cells to free bound flavin and to hydrolyze flavin adenine dinucleotide to FMN. Base-stabilized water solution of sodium borohydride is used as reactant.

  11. The in vivo effects of adenine-induced chronic kidney disease on some renal and hepatic function and CYP450 metabolizing enzymes.

    PubMed

    Al Za'abi, M; Shalaby, A; Manoj, P; Ali, B H

    2017-05-04

    Adenine-induced model of chronic kidney disease (CKD) is a widely used model especially in studies testing novel nephroprotective agents. We investigated the effects of adenine-induced CKD in rats on the activities of some xenobiotic metabolizing enzymes in liver and kidneys, and on some in vivo indicators of drug metabolism (viz pentobarbitone sleeping time, and plasma concentration of theophylline 90 min post administration). CKD was induced by orally feeding adenine (0.25 % w/w) for 35 days. Adenine induced all the characteristics of CKD, which was confirmed by biochemical and histological findings. Glutathione concentration and activities of some enzymes involved in its metabolism were reduced in kidneys and livers of rats with CKD. Renal CYP450 1A1 activity was significantly inhibited by adenine, but other measured isoenzymes (1A2, 3A4 and 2E1) were not significantly affected. Adenine significantly prolonged pentobarbitone-sleeping time and increased plasma theophylline concentration 90 min post administration. Adenine also induced a moderate degree of hepatic damages as indicated histologically and by significant elevations in some plasma enzymes. The results suggest that adenine-induced CKD is associated with significant in vivo inhibitory activities on some drug-metabolizing enzymes, with most of the effect on the kidneys rather than the liver.

  12. Spectroscopic investigation on cocrystal formation between adenine and fumaric acid based on infrared and Raman techniques

    NASA Astrophysics Data System (ADS)

    Du, Yong; Fang, Hong Xia; Zhang, Qi; Zhang, Hui Li; Hong, Zhi

    2016-01-01

    As an important component of double-stranded DNA, adenine has powerful hydrogen-bond capability, due to rich hydrogen bond donors and acceptors existing within its molecular structure. Therefore, it is easy to form cocrystal between adenine and other small molecules with intermolecular hydrogen-bond effect. In this work, cocrystal of adenine and fumaric acid has been characterized as model system by FT-IR and FT-Raman spectral techniques. The experimental results show that the cocrystal formed between adenine and fumaric acid possesses unique spectroscopical characteristic compared with that of starting materials. Density functional theory (DFT) calculation has been performed to optimize the molecular structures and simulate vibrational modes of adenine, fumaric acid and the corresponding cocrystal. Combining the theoretical and experimental vibrational results, the characteristic bands corresponding to bending and stretching vibrations of amino and carbonyl groups within cocrystal are shifted into lower frequencies upon cocrystal formation, and the corresponding bond lengths show some increase due to the effect of intermolecular hydrogen bonding. Different vibrational modes shown in the experimental spectra have been assigned based on the simulation DFT results. The study could provide experimental and theoretical benchmarks to characterize cocrystal formed between active ingredients and cocrystal formers and also the intermolecular hydrogen-bond effect within cocrystal formation process by vibrational spectroscopic techniques.

  13. Synthesis, spectroscopic, structural and thermal characterizations of vanadyl(IV) adenine complex prospective as antidiabetic drug agent

    NASA Astrophysics Data System (ADS)

    El-Megharbel, Samy M.; Hamza, Reham Z.; Refat, Moamen S.

    2015-01-01

    The vanadyl(IV) adenine complex; [VO(Adn)2]ṡSO4; was synthesized and characterized. The molar conductivity of this complex was measured in DMSO solution that showed an electrolyte nature. Spectroscopic investigation of the green solid complex studied here indicate that the adenine acts as a bidentate ligand, coordinated to vanadyl(IV) ions through the nitrogen atoms N7 and nitrogen atom of amino group. Thus, from the results presented the vanadyl(IV) complex has square pyramid geometry. Further characterizations using thermal analyses and scanning electron techniques was useful. The aim of this paper was to introduce a new drug model for the diabetic complications by synthesized a novel mononuclear vanadyl(IV) adenine complex to mimic insulin action and reducing blood sugar level. The antidiabetic ability of this complex was investigated in STZ-induced diabetic mice. The results suggested that VO(IV)/adenine complex has antidiabetic activity, it improved the lipid profile, it improved liver and kidney functions, also it ameliorated insulin hormone and blood glucose levels. The vanadyl(IV) complex possesses an antioxidant activity and this was clear through studying SOD, CAT, MDA, GSH and methionine synthase. The current results support the therapeutic potentiality of vanadyl(IV)/adenine complex for the management and treatment of diabetes.

  14. Effect of atracylodes rhizome polysaccharide in rats with adenine-induced chronic renal failure.

    PubMed

    Yang, C; Liu, C; Zhou, Q; Xie, Y C; Qiu, X M; Feng, X

    2015-01-01

    The aim of the study was to elucidate the therapeutic effects of Atracylodes rhizome polysaccharide on adenine-induced chronic renal failure in rats. Fifty male Sprague Dawley rats were selected and randomly divided in to 5 groups (n=10 rats per group): The normal control group, the chronic renal failure pathological control group, the dexamethasone treatment group and two Atracylodes rhizome polysaccharide treatment groups, treated with two different concentrations of the polysaccharide, the Atracylodes rhizome polysaccharide high group and the Atracylodes rhizome polysaccharide low group. All the rats, except those in the normal control group were fed adenine-enriched diets, containing 10 g adenine per kg food for 3 weeks. After being fed with adenine, the dexamethasone treatment group, Atracylodes rhizome polysaccharide high group and Atracylodes rhizome polysaccharide low group rats were administered the drug orally for 2 weeks. On day 35, the kidney coefficient of the rats and the serum levels of creatinine, blood urea nitrogen, total protein and hemalbumin were determined. Subsequent to experimentation on a model of chronic renal failure in rats, the preparation was proven to be able to reduce serum levels of creatinine, blood urea nitrogen and hemalbumin levels (P<0.05) and improve renal function. Atracylodes rhizome polysaccharide had reversed the majority of the indices of chronic renal failure in rats.

  15. The Role of Nitric Oxide and Hydrogen Sulfide in Urinary Tract Function.

    PubMed

    Fernandes, Vítor S; Hernández, Medardo

    2016-10-01

    This MiniReview focuses on the role played by nitric oxide (NO) and hydrogen sulfide (H 2 S) in physiology of the upper and lower urinary tract. NO and H 2 S, together with carbon monoxide, belong to the group of gaseous autocrine/paracrine messengers or gasotransmitters, which are employed for intra- and intercellular communication in almost all organ systems. Because they are lipid-soluble gases, gaseous transmitters are not constrained by cellular membranes, so that their storage in vesicles for later release is not possible. Gasotransmitter signals are terminated by falling concentrations upon reduction in production that are caused by reacting with cellular components (essentially reactive oxygen species and NO), binding to cellular components or diffusing away. NO and, more recently, H 2 S have been identified as key mediators in neurotransmission of the urinary tract, involved in the regulation of ureteral smooth muscle activity and urinary flow ureteral resistance, as well as by playing a crucial role in the smooth muscle relaxation of bladder outlet region. Urinary bladder function is also dependent on integration of inhibitory mediators, such as NO, released from the urothelium. In the bladder base and distal ureter, the co-localization of neuronal NO synthase with substance P and calcitonin gene-related peptide in sensory nerves as well as the existence of a high nicotinamide adenine dinucleotide phosphate-diaphorase activity in dorsal root ganglion neurons also suggests the involvement of NO as a sensory neurotransmitter. © 2016 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  16. Development of an Amperometric Biosensor Platform for the Combined Determination of L-Malic, Fumaric, and L-Aspartic Acid.

    PubMed

    Röhlen, Désirée L; Pilas, Johanna; Schöning, Michael J; Selmer, Thorsten

    2017-10-01

    Three amperometric biosensors have been developed for the detection of L-malic acid, fumaric acid, and L -aspartic acid, all based on the combination of a malate-specific dehydrogenase (MDH, EC 1.1.1.37) and diaphorase (DIA, EC 1.8.1.4). The stepwise expansion of the malate platform with the enzymes fumarate hydratase (FH, EC 4.2.1.2) and aspartate ammonia-lyase (ASPA, EC 4.3.1.1) resulted in multi-enzyme reaction cascades and, thus, augmentation of the substrate spectrum of the sensors. Electrochemical measurements were carried out in presence of the cofactor β-nicotinamide adenine dinucleotide (NAD + ) and the redox mediator hexacyanoferrate (III) (HCFIII). The amperometric detection is mediated by oxidation of hexacyanoferrate (II) (HCFII) at an applied potential of + 0.3 V vs. Ag/AgCl. For each biosensor, optimum working conditions were defined by adjustment of cofactor concentrations, buffer pH, and immobilization procedure. Under these improved conditions, amperometric responses were linear up to 3.0 mM for L-malate and fumarate, respectively, with a corresponding sensitivity of 0.7 μA mM -1 (L-malate biosensor) and 0.4 μA mM -1 (fumarate biosensor). The L-aspartate detection system displayed a linear range of 1.0-10.0 mM with a sensitivity of 0.09 μA mM -1 . The sensor characteristics suggest that the developed platform provides a promising method for the detection and differentiation of the three substrates.

  17. Distribution of nitric oxide synthase and neuropeptide Y neurones during the development of the hippocampal formation in the rat.

    PubMed

    Moryś, Joanna M; Kowiański, Przemysław; Moryś, Janusz

    2002-01-01

    Nitric oxide (NO) is a short-lived radical, which modulates synaptic plasticity, neuronal oscillations and cerebral blood flow. NOS-containing neurones can be detected anatomically by nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) histochemistry or by NOS immunohistochemistry. Neuropeptide Y(NPY) is the most abundant peptide in the brain. NPY is connected with several vital functions, such as a feeding behaviour, sexual maturation, regulation of circadian rhythms, body temperature, blood pressure and neuroendocrine secretions. Neuropeptide Y also modulates anxiety-related disorders, limbic epileptic seizures as well as learning and memory processes. The study was performed on 45 Wistar rats of various ages (PO, P4, P7, P10, P14, P21, P30, P60, and P120; P--postnatal day). The free-floating sections were stained with standard immunohistochemistry methods. Thereafter the histological sections were studied using the confocal laser microscope equipped. For 3D reconstruction the image analysis program LaserSharp 2000v. 2.0 (Bio-Rad, UK) was used. We found that in the newborn rat both NOS- and NPY-immunoreactivity was weak. It had been increasing gradually until the 7th day of postnatal life, after that until P14 it was maintained on the similar level, and then the number of immunolabelled cells deceased. The developmental changes concerned cell morphology as well--until the 10th day of life the immunoreactive cells were immature, with round or oval bodies and had only a few fibres. From P14 the cells' morphology became similar to that in adult.

  18. Anti-stress effects of human placenta extract: possible involvement of the oxidative stress system in rats.

    PubMed

    Park, Hyun-Jung; Shim, Hyun Soo; Lee, Sunyoung; Hahm, Dae Hyun; Lee, Hyejung; Oh, Chang Taek; Han, Hae Jung; Ji, Hyi Jeong; Shim, Insop

    2018-05-08

    Human placenta hydrolysate (hPH) has been utilized to improve menopausal, fatigue, liver function. Its high concentration of bioactive substances is known to produce including antioxidant, anti-inflammatory and anti-nociceptive activities. However, its mechanisms of stress-induced depression remain unknown. The present study examined the effect of hPH on stress-induced depressive behaviors and biochemical parameters in rats. hPH (0.02 ml, 0.2 ml or 1 ml/rat) was injected intravenously 30 min before the daily stress session in male Sprague-Dawley rats exposed to repeated immobilization stress (4 h/day for 7 days). The depressive-like behaviors of all groups were measured by elevated plus maze (EPM) and forced swimming test (FST). After the behavior tests, brain samples of all groups were collected for the analysis of glutathione peroxidase (GPx) and nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) staining. Treatment with hPH produced a significant decrease of immobility time in the FST compared to the controls. Additionally, hPH treatment elicited a slightly decreasing trend in anxiety behavior on the EPM. Furthermore, hPH increased the level of GPx protein in the hippocampus, and decreased the expression of NADPH-d in the paraventricular nucleus (PVN). This study demonstrated that hPH has anti-stress effects via the regulation of nitric oxide (NO) synthase and antioxidant activity in the brain. These results suggest that hPH may be useful in the treatment of stress-related diseases such as chronic fatigue syndrome.

  19. Supramolecular polymeric chemosensor for biomedical applications: design and synthesis of a luminescent zinc metallopolymer as a chemosensor for adenine detection.

    PubMed

    Chow, Cheuk-Fai

    2012-11-01

    Adenine is an important bio-molecule that plays many crucial roles in food safety and biomedical diagnostics. Differentiating adenine from a mixture of adenosine and other nucleic bases (guanine, thymine, cytosine, and uracil) is particularly important for both biological and clinical applications. A neutral Zn(II) metallosupramolecular polymer based on acyl hydrazone derived coordination centres (P1) were generated through self-assembly polymerization. It is a linear coordination polymer that behaves like self-standing film. The synthesis, (1)H-NMR characterization, and spectroscopic properties of this supramolecular material are reported. P1 was found to be a chemosensor specific to adenine, with a luminescent enhancement. The binding properties of P1 with common nucleic bases and nucleosides reveal that this supramolecular polymer is very selective to adenine molecules (~20 to 420 times more selectivity than other nucleic bases). The formation constant (K) of P1 to adenine was found to be log K = 4.10 ± 0.02. This polymeric chemosensor produces a specific response to adenine down to 90 ppb. Spectrofluorimetric and (1)H-NMR titration studies showed that the P1 polymer allows each Zn(II) coordination centre to bind to two adenine molecules through hydrogen bonding with their imine and hydrazone protons.

  20. Heptacopper(II) and dicopper(II)-adenine complexes: synthesis, structural characterization, and magnetic properties

    DOE PAGES

    Leite Ferreira, B. J. M.; Brandão, Paula; Dos Santos, A. M.; ...

    2015-07-13

    The syntheses, crystal structures, and magnetic properties of two new copper(II) complexes with molecular formulas [Cu 7(μ 2-OH 2) 6(μ 3-O) 6(adenine) 6(NO 3) 26H 2O (1) and [Cu 2(μ 2-H 2O) 2(adenine) 2(H 2O) 4](NO 3) 42H 2O (2) are reported. We composed the heptanuclear compound of a central octahedral CuO 6 core sharing edges with six adjacent copper octahedra. In 2, the copper octahedra shares one equatorial edge. In both compounds, these basic copper cluster units are further linked by water bridges and bridging adenine ligands through N3 and N9 donors. All copper(II) centers exhibit Jahn-Teller distorted octahedralmore » coordination characteristic of a d 9 center. Our study of the magnetic properties of the heptacopper complex revealed a dominant ferromagnetic intra-cluster interaction, while the dicopper complex exhibits antiferromagnetic intra-dimer interactions with weakly ferromagnetic inter-dimer interaction.« less

  1. Thiamin and riboflavin vitamers in human milk: effects of lipid-based nutrient supplementation and stage of lactation on vitamer secretion and contributions to total vitamin content

    USDA-ARS?s Scientific Manuscript database

    While thiamin and riboflavin in breast milk have been analyzed for over 50 years, less attention has been given to the different forms of each vitamin. Thiamin-monophosphate (TMP) and free thiamin contribute to total thiamin content; flavin adenine-dinucleotide (FAD) and free riboflavin are the main...

  2. Nicotinamide Adenine Dinucleotide (NAD+) and Nicotinamide: Sex Differences in Cerebral Ischemia

    PubMed Central

    Siegel, Chad S.; McCullough, Louise D.

    2013-01-01

    Background Previous literature suggests that cell death pathways activated after cerebral ischemia differ between the sexes. While caspase-dependent mechanisms predominate in the female brain, caspase-independent cell death induced by activation of Poly (ADP-ribose) polymerase (PARP) predominates in the male brain. PARP-1 gene deletion decreases infarction volume in the male brain, but paradoxically increases damage in PARP-1 knockout females. Purpose This study examined stroke induced changes in NAD+, a key energy molecule involved in PARP-1 activation in both sexes. Methods Mice were subjected to Middle Cerebral Artery Occlusion and NAD+ levels were assessed. Caspase-3 activity and nuclear translocation was assessed 6 hours after ischemia. In additional cohorts, Nicotinamide (500mg/kg i.p.) a precursor of NAD+ or vehicle was administered and infarction volume was measured 24 hours after ischemia. Results Males have higher baseline NAD+ levels than females. Significant stroke-induced NAD+ depletion occurred in males and ovariectomized females but not in intact females. PARP-1 deletion prevented the stroke induced loss in NAD+ in males, but worsened NAD+ loss in PARP-1 deficient females. Preventing NAD+ loss with nicotinamide reduced infarct in wild-type males and PARP-1 knockout mice of both sexes, with no effect in WT females. Caspase-3 activity was significantly increased in PARP-1 knockout females compared to males and wild-type females, this was reversed with nicotinamide. Conclusions Sex differences exist in baseline and stroke-induced NAD+ levels. Nicotinamide protected males and PARP knockout mice, but had minimal effects in the wild-type female brain. This may be secondary to differences in energy metabolism between the sexes. PMID:23403179

  3. Improved Ethanol Production from Xylose by Candida shehatae Induced by Dielectric Barrier Discharge Air Plasma

    NASA Astrophysics Data System (ADS)

    Chen, Huixia; Xiu, Zhilong; Bai, Fengwu

    2014-06-01

    Xylose fermentation is essential for ethanol production from lignocellulosic biomass. Exposure of the xylose-fermenting yeast Candida shehatae (C. shehatae) CICC1766 to atmospheric pressure dielectric barrier discharge (DBD) air plasma yields a clone (designated as C81015) with stability, which exhibits a higher ethanol fermentation rate from xylose, giving a maximal enhancement in ethanol production of 36.2% compared to the control (untreated). However, the biomass production of C81015 is lower than that of the control. Analysis of the NADH (nicotinamide adenine dinucleotide)- and NADPH (nicotinamide adenine dinucleotide phosphate)-linked xylose reductases and NAD+-linked xylitol dehydrogenase indicates that their activities are enhanced by 34.1%, 61.5% and 66.3%, respectively, suggesting that the activities of these three enzymes are responsible for improving ethanol fermentation in C81015 with xylose as a substrate. The results of this study show that DBD air plasma could serve as a novel and effective means of generating microbial strains that can better use xylose for ethanol fermentation.

  4. Application of Negative Curvature Hollow-Core Fiber in an Optical Fiber Sensor Setup for Multiphoton Spectroscopy

    PubMed Central

    Stawska, Hanna Izabela; Mazur, Leszek Mateusz; Kosolapov, Alexey; Kolyadin, Anton; Bereś-Pawlik, Elżbieta

    2017-01-01

    In this paper, an application of negative curvature hollow core fiber (NCHCF) in an all-fiber, multiphoton fluorescence sensor setup is presented. The dispersion parameter (D) of this fiber does not exceed the value of 5 ps/nm × km across the optical spectrum of (680–750) nm, making it well suited for the purpose of multiphoton excitation of biological fluorophores. Employing 1.5 m of this fiber in a simple, all-fiber sensor setup allows us to perform multiphoton experiments without any dispersion compensation methods. Multiphoton excitation of nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) with this fiber shows a 6- and 9-fold increase, respectively, in the total fluorescence signal collected when compared with the commercial solution in the form of a hollow-core photonic band gap fiber (HCPBF). To the author’s best knowledge, this is the first time an NCHCF was used in an optical-fiber sensor setup for multiphoton fluorescence experiments. PMID:28984838

  5. Application of Negative Curvature Hollow-Core Fiber in an Optical Fiber Sensor Setup for Multiphoton Spectroscopy.

    PubMed

    Popenda, Maciej Andrzej; Stawska, Hanna Izabela; Mazur, Leszek Mateusz; Jakubowski, Konrad; Kosolapov, Alexey; Kolyadin, Anton; Bereś-Pawlik, Elżbieta

    2017-10-06

    In this paper, an application of negative curvature hollow core fiber (NCHCF) in an all-fiber, multiphoton fluorescence sensor setup is presented. The dispersion parameter (D) of this fiber does not exceed the value of 5 ps/nm × km across the optical spectrum of (680-750) nm, making it well suited for the purpose of multiphoton excitation of biological fluorophores. Employing 1.5 m of this fiber in a simple, all-fiber sensor setup allows us to perform multiphoton experiments without any dispersion compensation methods. Multiphoton excitation of nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) with this fiber shows a 6- and 9-fold increase, respectively, in the total fluorescence signal collected when compared with the commercial solution in the form of a hollow-core photonic band gap fiber (HCPBF). To the author's best knowledge, this is the first time an NCHCF was used in an optical-fiber sensor setup for multiphoton fluorescence experiments.

  6. Nonselective enrichment for yeast adenine mutants by flow cytometry

    NASA Technical Reports Server (NTRS)

    Bruschi, C. V.; Chuba, P. J.

    1988-01-01

    The expression of certain adenine biosynthetic mutations in the yeast Saccharomyces cerevisiae results in a red colony color. This phenomenon has historically provided an ideal genetic marker for the study of mutation, recombination, and aneuploidy in lower eukaryotes by classical genetic analysis. In this paper, it is reported that cells carrying ade1 and/or ade2 mutations exhibit primary fluorescence. Based on this observation, the nonselective enrichment of yeast cultures for viable adenine mutants by using the fluorescence-activated cell sorter has been achieved. The advantages of this approach over conventional genetic analysis of mutation, recombination, and mitotic chromosomal stability include speed and accuracy in acquiring data for large numbers of clones. By using appropriate strains, the cell sorter has been used for the isolation of both forward mutations and chromosomal loss events in S. cerevisiae. The resolving power of this system and its noninvasiveness can easily be extended to more complex organisms, including mammalian cells, in which analogous metabolic mutants are available.

  7. Spectroscopic investigation on cocrystal formation between adenine and fumaric acid based on infrared and Raman techniques.

    PubMed

    Du, Yong; Fang, Hong Xia; Zhang, Qi; Zhang, Hui Li; Hong, Zhi

    2016-01-15

    As an important component of double-stranded DNA, adenine has powerful hydrogen-bond capability, due to rich hydrogen bond donors and acceptors existing within its molecular structure. Therefore, it is easy to form cocrystal between adenine and other small molecules with intermolecular hydrogen-bond effect. In this work, cocrystal of adenine and fumaric acid has been characterized as model system by FT-IR and FT-Raman spectral techniques. The experimental results show that the cocrystal formed between adenine and fumaric acid possesses unique spectroscopical characteristic compared with that of starting materials. Density functional theory (DFT) calculation has been performed to optimize the molecular structures and simulate vibrational modes of adenine, fumaric acid and the corresponding cocrystal. Combining the theoretical and experimental vibrational results, the characteristic bands corresponding to bending and stretching vibrations of amino and carbonyl groups within cocrystal are shifted into lower frequencies upon cocrystal formation, and the corresponding bond lengths show some increase due to the effect of intermolecular hydrogen bonding. Different vibrational modes shown in the experimental spectra have been assigned based on the simulation DFT results. The study could provide experimental and theoretical benchmarks to characterize cocrystal formed between active ingredients and cocrystal formers and also the intermolecular hydrogen-bond effect within cocrystal formation process by vibrational spectroscopic techniques. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Improved Model for Predicting the Free Energy Contribution of Dinucleotide Bulges to RNA Duplex Stability.

    PubMed

    Tomcho, Jeremy C; Tillman, Magdalena R; Znosko, Brent M

    2015-09-01

    Predicting the secondary structure of RNA is an intermediate in predicting RNA three-dimensional structure. Commonly, determining RNA secondary structure from sequence uses free energy minimization and nearest neighbor parameters. Current algorithms utilize a sequence-independent model to predict free energy contributions of dinucleotide bulges. To determine if a sequence-dependent model would be more accurate, short RNA duplexes containing dinucleotide bulges with different sequences and nearest neighbor combinations were optically melted to derive thermodynamic parameters. These data suggested energy contributions of dinucleotide bulges were sequence-dependent, and a sequence-dependent model was derived. This model assigns free energy penalties based on the identity of nucleotides in the bulge (3.06 kcal/mol for two purines, 2.93 kcal/mol for two pyrimidines, 2.71 kcal/mol for 5'-purine-pyrimidine-3', and 2.41 kcal/mol for 5'-pyrimidine-purine-3'). The predictive model also includes a 0.45 kcal/mol penalty for an A-U pair adjacent to the bulge and a -0.28 kcal/mol bonus for a G-U pair adjacent to the bulge. The new sequence-dependent model results in predicted values within, on average, 0.17 kcal/mol of experimental values, a significant improvement over the sequence-independent model. This model and new experimental values can be incorporated into algorithms that predict RNA stability and secondary structure from sequence.

  9. Some reactions of the hydroxyl adduct of adenine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanhemmen, J.J.

    1975-01-01

    The chemical reactions of purine derivatives resulting from pulse radiolysis were studied. Some reactions of the hydroxyl adduct of adenine are described and one of these reactions was compared with similar reactions of hydroxyl adducts of other purine derivatives. Evidence is given that in various purines opening of the imidazole ring is due to unimolecular rearrangements of the hydroxyl adducts. (GRA)

  10. Protective effect of dietary potassium against vascular injury in salt-sensitive hypertension.

    PubMed

    Kido, Makiko; Ando, Katsuyuki; Onozato, Maristela L; Tojo, Akihiro; Yoshikawa, Masahiro; Ogita, Teruhiko; Fujita, Toshiro

    2008-02-01

    Hypertensive cardiovascular damage is accelerated by salt loading but counteracted by dietary potassium supplementation. We suggested recently that antioxidant actions of potassium contribute to protection against salt-induced cardiac dysfunction. Therefore, we examined whether potassium supplementation ameliorated cuff-induced vascular injury in salt-sensitive hypertension via suppression of oxidative stress. Four-week-old Dahl salt-sensitive rats were fed a normal-salt (0.3% NaCl), high-salt (8% NaCl), or high-salt plus high-potassium (8% KCl) diet for 5 weeks, and some of the rats fed a high-salt diet were also given antioxidants. One week after the start of the treatments, a silicone cuff was implanted around the femoral artery. Examination revealed increased cuff-induced neointimal proliferation with adventitial macrophage infiltration in arteries from salt-loaded Dahl salt-sensitive rats compared with that in arteries from non-salt-loaded animals (intima/media ratio: 0.471+/-0.070 versus 0.302+/-0.037; P<0.05), associated with regional superoxide overproduction and reduced nicotinamide-adenine dinucleotide phosphate oxidase activation and mRNA overexpression. On the other hand, simultaneous potassium supplementation attenuated salt-induced neointimal hyperplasia (intima/media ratio: 0.205+/-0.012; P<0.001), adventitial macrophage infiltration, superoxide overproduction, and reduced nicotinamide-adenine dinucleotide phosphate oxidase activation and overexpression. Antioxidants, which decrease vascular oxidative stress, also reduced neointima formation induced by salt excess. In conclusion, high-potassium diets seems to have a protective effect against the development of vascular damage induced by salt loading mediated, at least in part, through suppression of the production of reactive oxygen species probably generated by reduced nicotinamide-adenine dinucleotide phosphate oxidase.

  11. Adenine nucleotide-dependent and redox-independent control of mitochondrial malate dehydrogenase activity in Arabidopsis thaliana.

    PubMed

    Yoshida, Keisuke; Hisabori, Toru

    2016-06-01

    Mitochondrial metabolism is important for sustaining cellular growth and maintenance; however, the regulatory mechanisms underlying individual processes in plant mitochondria remain largely uncharacterized. Previous redox-proteomics studies have suggested that mitochondrial malate dehydrogenase (mMDH), a key enzyme in the tricarboxylic acid (TCA) cycle and redox shuttling, is under thiol-based redox regulation as a target candidate of thioredoxin (Trx). In addition, the adenine nucleotide status may be another factor controlling mitochondrial metabolism, as respiratory ATP production in mitochondria is believed to be influenced by several environmental stimuli. Using biochemical and reverse-genetic approaches, we addressed the redox- and adenine nucleotide-dependent regulation of mMDH in Arabidopsis thaliana. Recombinant mMDH protein formed intramolecular disulfide bonds under oxidative conditions, but these bonds did not have a considerable effect on mMDH activity. Mitochondria-localized o-type Trx (Trx-o) did not facilitate re-reduction of oxidized mMDH. Determination of the in vivo redox state revealed that mMDH was stably present in the reduced form even in Trx-o-deficient plants. Accordingly, we concluded that mMDH is not in the class of redox-regulated enzymes. By contrast, mMDH activity was lowered by adenine nucleotides (AMP, ADP, and ATP). Each adenine nucleotide suppressed mMDH activity with different potencies and ATP exerted the largest inhibitory effect with a significantly lower K(I). Correspondingly, mMDH activity was inhibited by the increase in ATP/ADP ratio within the physiological range. These results suggest that mMDH activity is finely controlled in response to variations in mitochondrial adenine nucleotide balance. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. The spectrum of genomic signatures: from dinucleotides to chaos game representation.

    PubMed

    Wang, Yingwei; Hill, Kathleen; Singh, Shiva; Kari, Lila

    2005-02-14

    In the post genomic era, access to complete genome sequence data for numerous diverse species has opened multiple avenues for examining and comparing primary DNA sequence organization of entire genomes. Previously, the concept of a genomic signature was introduced with the observation of species-type specific Dinucleotide Relative Abundance Profiles (DRAPs); dinucleotides were identified as the subsequences with the greatest bias in representation in a majority of genomes. Herein, we demonstrate that DRAP is one particular genomic signature contained within a broader spectrum of signatures. Within this spectrum, an alternative genomic signature, Chaos Game Representation (CGR), provides a unique visualization of patterns in sequence organization. A genomic signature is associated with a particular integer order or subsequence length that represents a measure of the resolution or granularity in the analysis of primary DNA sequence organization. We quantitatively explore the organizational information provided by genomic signatures of different orders through different distance measures, including a novel Image Distance. The Image Distance and other existing distance measures are evaluated by comparing the phylogenetic trees they generate for 26 complete mitochondrial genomes from a diversity of species. The phylogenetic tree generated by the Image Distance is compatible with the known relatedness of species. Quantitative evaluation of the spectrum of genomic signatures may be used to ultimately gain insight into the determinants and biological relevance of the genome signatures.

  13. An experimental and theoretical vibrational study of interaction of adenine and thymine with artificial seawaters: A prebiotic chemistry experiment.

    PubMed

    Anizelli, Pedro R; Baú, João P T; Nabeshima, Henrique S; da Costa, Marcello F; de Santana, Henrique; Zaia, Dimas A M

    2014-05-21

    Nucleic acid bases play important roles in living beings. Thus, their interaction with salts the prebiotic Earth could be an important issue for the understanding of origin of life. In this study, the effect of pH and artificial seawaters on the structure of adenine and thymine was studied via parallel determinations using FT-IR, Raman spectroscopy and theoretical calculations. Thymine and adenine lyophilized in solutions at basic and acidic conditions showed characteristic bands of the enol-imino tautomer due to the deprotonation and the hydrochloride form due to protonation, respectively. The interaction of thymine and adenine with different seawaters representative of different geological periods on Earth was also studied. In the case of thymine a strong interaction with Sr(2+) promoted changes in the Raman and infrared spectra. For adenine changes in infrared and Raman spectra were observed in the presence of salts from all seawaters tested. The experimental results were compared to theoretical calculations, which showed structural changes due to the presence of ions Na(+), Mg(2+), Ca(2+) and Sr(2+) of artificial seawaters. For thymine the bands arising from C4=C5 and C6=O stretching were shifted to lower values, and for adenine, a new band at 1310cm(-1) was observed. The reactivity of adenine and thymine was studied by comparing changes in nucleophilicity and energy of the HOMO orbital. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Hydrothermal stability of adenine under controlled fugacities of N2, CO2 and H2.

    PubMed

    Franiatte, Michael; Richard, Laurent; Elie, Marcel; Nguyen-Trung, Chinh; Perfetti, Erwan; LaRowe, Douglas E

    2008-04-01

    An experimental study has been carried out on the stability of adenine (one of the five nucleic acid bases) under hydrothermal conditions. The experiments were performed in sealed autoclaves at 300 degrees C under fugacities of CO(2), N(2) and H(2) supposedly representative of those in marine hydrothermal systems on the early Earth. The composition of the gas phase was obtained from the degradation of oxalic acid, sodium nitrite and ammonium chloride, and the oxidation of metallic iron. The results of the experiments indicate that after 200 h, adenine is still present in detectable concentration in the aqueous phase. In fact, the concentration of adenine does not seem to be decreasing after approximately 24 h, which suggests that an equilibrium state may have been established with the inorganic constituents of the hydrothermal fluid. Such a conclusion is corroborated by independent thermodynamic calculations.

  15. Randomised double-blind trial of acyclovir (Zovirax) and adenine arabinoside in herpes simplex amoeboid corneal ulceration.

    PubMed

    Collum, L M; Logan, P; McAuliffe-Curtin, D; Hung, S O; Patterson, A; Rees, P J

    1985-11-01

    Fifty-one patients were treated in a dual-centre, double-blind comparison of acyclovir and adenine arabinoside in herpetic amoeboid (geographic) corneal ulceration. Twenty-four of the 25 patients receiving acyclovir healed in a mean time of 12.2 days, while 24 of the 26 patients treated with adenine arabinoside healed in a mean time of 11.0 days. There was no statistically significant difference between the two groups in terms of healing. A second analysis, excluding any patients who had received antiviral treatment immediately prior to entry into the study, showed that 18 of the 19 who received acyclovir healed in an average of 11.7 days and 18 of the 19 recipients of adenine arabinoside healed in a mean time of 11.2 days. Again the difference was not statistically significant.

  16. Pulmonary preservation studies: effects on endothelial function and pulmonary adenine nucleotides.

    PubMed

    Paik, Hyo Chae; Hoffmann, Steven C; Egan, Thomas M

    2003-02-27

    Lung transplantation is an effective therapy plagued by a high incidence of early graft dysfunction, in part because of reperfusion injury. The optimal preservation solution for lung transplantation is unknown. We performed experiments using an isolated perfused rat lung model to test the effect of lung preservation with three solutions commonly used in clinical practice. Lungs were retrieved from Sprague-Dawley rats and flushed with one of three solutions: modified Euro-Collins (MEC), University of Wisconsin (UW), or low potassium dextran and glucose (LPDG), then stored cold for varying periods before reperfusion with Earle's balanced salt solution using the isolated perfused rat lung model. Outcome measures were capillary filtration coefficient (Kfc), wet-to-dry weight ratio, and lung tissue levels of adenine nucleotides and cyclic AMP. All lungs functioned well after 4 hr of storage. By 6 hr, UW-flushed lungs had a lower Kfc than LPDG-flushed lungs. After 8 hr of storage, only UW-flushed lungs had a measurable Kfc. Adenine nucleotide levels were higher in UW-flushed lungs after prolonged storage. Cyclic AMP levels correlated with Kfc in all groups. Early changes in endothelial permeability seemed to be better attenuated in lungs flushed with UW compared with LPDG or MEC; this was associated with higher amounts of adenine nucleotides. MEC-flushed lungs failed earlier than LPDG-flushed or UW-flushed lungs. The content of the solution may be more important for lung preservation than whether the ionic composition is intracellular or extracellular.

  17. The Local Dinucleotide Preference of APOBEC3G Can Be Altered from 5′-CC to 5′-TC by a Single Amino Acid Substitution

    PubMed Central

    Rathore, Anurag; Carpenter, Michael A; Demir, Özlem; Ikeda, Terumasa; Li, Ming; Shaban, Nadine; Law, Emily K.; Anokhin, Dmitry; Brown, William L.; Amaro, Rommie E.; Harris, Reuben S.

    2013-01-01

    APOBEC3A and APOBEC3G are DNA cytosine deaminases with biological functions in foreign DNA and retrovirus restriction, respectively. APOBEC3A has an intrinsic preference for cytosine preceded by thymine (5′-TC) in single-stranded DNA substrates, whereas APOBEC3G prefers the target cytosine to be preceded by another cytosine (5′-CC). To determine the amino acids responsible for these strong dinucleotide preferences, we analyzed a series of chimeras in which putative DNA binding loop regions of APOBEC3G were replaced with the corresponding regions from APOBEC3A. Loop 3 replacement enhanced APOBEC3G catalytic activity but did not alter its intrinsic 5′-CC dinucleotide substrate preference. Loop 7 replacement caused APOBEC3G to become APOBEC3A-like and strongly prefer 5′-TC substrates. Simultaneous loop 3/7 replacement resulted in a hyperactive APOBEC3G variant that also preferred 5′-TC dinucleotides. Single amino acid exchanges revealed D317 as a critical determinant of dinucleotide substrate specificity. Multi-copy explicitly solvated all-atom molecular dynamics simulations suggested a model in which D317 acts as a helix-capping residue by constraining the mobility of loop 7, forming a novel binding pocket that favorably accommodates cytosine. All catalytically active APOBEC3G variants, regardless of dinucleotide preference, retained HIV-1 restriction activity. These data support a model in which the loop 7 region governs the selection of local dinucleotide substrates for deamination but is unlikely to be part of the higher level targeting mechanisms that direct these enzymes to biological substrates such as HIV-1 cDNA. PMID:23938202

  18. Absorption by DNA single strands of adenine isolated in vacuo: The role of multiple chromophores

    NASA Astrophysics Data System (ADS)

    Nielsen, Lisbeth Munksgaard; Pedersen, Sara Øvad; Kirketerp, Maj-Britt Suhr; Nielsen, Steen Brøndsted

    2012-02-01

    The degree of electronic coupling between DNA bases is a topic being up for much debate. Here we report on the intrinsic electronic properties of isolated DNA strands in vacuo free of solvent, which is a good starting point for high-level excited states calculations. Action spectra of DNA single strands of adenine reveal sign of exciton coupling between stacked bases from blueshifted absorption bands (˜3 nm) relative to that of the dAMP mononucleotide (one adenine base). The bands are blueshifted by about 10 nm compared to those of solvated strands, which is a shift similar to that for the adenine molecule and the dAMP mononucleotide. Desolvation has little effect on the bandwidth, which implies that inhomogenous broadening of the absorption bands in aqueous solution is of minor importance compared to, e.g., conformational disorder. Finally, at high photon energies, internal conversion competes with electron detachment since dissociation of the bare photoexcited ions on the microsecond time scale is measured.

  19. Enzymatic Basis for Differentiation of Rhizobium into Fast- and Slow-Growing Groups

    PubMed Central

    Drets, G. Martinez-De; Arias, A.

    1972-01-01

    Glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and other enzymes related to carbohydrate metabolism were studied in rhizobia. A nicotinamide adenine dinucleotide phosphate-6-phosphogluconate dehydrogenase was detected in strains of the fast-growing group of Rhizobium but not in strains of the slow-growing group. An enzymatic differentiation of rhizobia was established. PMID:4400417

  20. Chronological changes of radiofrequency ablation zone in rabbit liver: an in vivo correlation between gross pathology and histopathology

    PubMed Central

    Song, Kyoung D; Rhim, Hyunchul; Kang, Tae Wook; Cha, Dong Ik; Yang, Jehoon

    2017-01-01

    Objective: To examine the gross pathology and histopathology of ablation zones created from radiofrequency (RF) ablation and to correlate their chronological changes. Methods: A total of 48 in vivo ablation zones (16 rabbit livers) were obtained immediately after and also 30 min, 1 h and 2 h after RF ablation and were subjected to haematoxylin and eosin (H&E) staining, nicotinamide adenine dinucleotide (NADH) diaphorase staining, terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) staining. Chronological changes in gross pathology and histopathology were evaluated and correlated with each other. Results: Peripheral red zones on gross pathology correlated with peripheral zones on H&E staining, lightly stained peripheral zones on NADH staining and peripheral positive zones on TUNEL staining. Central white zones on gross pathology correlated with combined central and border zones on H&E staining, central negative zones on NADH staining and combined central-positive and middle-negative zones on TUNEL staining. Boundary visibility between central white and peripheral red zones on gross pathology was significantly higher at 1 and 2 h than immediately after RF ablation. As time increased after RF ablation, visibility of the border zone on H&E staining and the grade of positively stained hepatocytes in the peripheral zone on TUNEL staining increased. Conclusion: Chronological changes in gross pathology of RF ablation zones correlated well with histopathology. The boundary between the central white and peripheral red zones tended to become clear at 1 h after RF ablation. Advances in knowledge: (1) RF ablation zones show chronological changes on gross pathology and histopathology. (2) Gross pathology and histopathology correlate well with each other. PMID:28139942

  1. Modular-extramodular organization in developing multisensory shell regions of the mouse inferior colliculus.

    PubMed

    Dillingham, Christopher H; Gay, Sean M; Behrooz, Roxana; Gabriele, Mark L

    2017-12-01

    The complex neuroanatomical connections of the inferior colliculus (IC) and its major subdivisions offer a juxtaposition of segregated processing streams with distinct organizational features. While the tonotopically layered central nucleus is well-documented, less is known about functional compartments in the neighboring lateral cortex (LCIC). In addition to a laminar framework, LCIC afferent-efferent patterns suggest a multimodal mosaic, consisting of a patchy modular network with surrounding extramodular domains. This study utilizes several neurochemical markers that reveal an emerging LCIC modular-extramodular microarchitecture. In newborn and post-hearing C57BL/6J and CBA/CaJ mice, histochemical and immunocytochemical stains were performed for acetylcholinesterase (AChE), nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d), glutamic acid decarboxylase (GAD), cytochrome oxidase (CO), and calretinin (CR). Discontinuous layer 2 modules are positive for AChE, NADPH-d, GAD, and CO throughout the rostrocaudal LCIC. While not readily apparent at birth, discrete cell clusters emerge over the first postnatal week, yielding an identifiable modular network prior to hearing onset. Modular boundaries continue to become increasingly distinct with age, as surrounding extramodular fields remain largely negative for each marker. Alignment of modular markers in serial sections suggests each highlight the same periodic patchy network throughout the nascent LCIC. In contrast, CR patterns appear complementary, preferentially staining extramodular LCIC zones. Double-labeling experiments confirm that NADPH-d, the most consistent developmental modular marker, and CR label separate, nonoverlapping LCIC compartments. Determining how this emerging modularity may align with similar LCIC patch-matrix-like Eph/ephrin guidance patterns, and how each interface with, and potentially influence developing multimodal LCIC projection configurations is discussed. © 2017 Wiley

  2. Nitric oxide system alteration at spinal cord as a result of perinatal asphyxia is involved in behavioral disabilities: hypothermia as preventive treatment.

    PubMed

    Dorfman, Verónica Berta; Rey-Funes, Manuel; Bayona, Julio César; López, Ester María; Coirini, Héctor; Loidl, César Fabián

    2009-04-01

    Perinatal asphyxia (PA) is able to induce sequelae such as spinal spasticity. Previously, we demonstrated hypothermia as a neuroprotective treatment against cell degeneration triggered by increased nitric oxide (NO) release. Because spinal motoneurons are implicated in spasticity, our aim was to analyze the involvement of NO system at cervical and lumbar motoneurons after PA as well as the application of hypothermia as treatment. PA was performed by immersion of both uterine horns containing full-term fetuses in a water bath at 37 degrees C for 19 or 20 min (PA19 or PA20) or at 15 degrees C for 20 min (hypothermia during PA-HYP). Some randomly chosen PA20 rats were immediately exposed for 5 min over grain ice (hypothermia after PA-HPA). Full-term vaginally delivered rats were used as control (CTL). We analyzed NO synthase (NOS) activity, expression and localization by nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) reactivity, inducible and neuronal NOS (iNOS and nNOS) by immunohistochemistry, and protein nitrotyrosilation state. We observed an increased NOS activity at cervical spinal cord of 60-day-old PA20 rats, with increased NADPH-d, iNOS, and nitrotyrosine expression in cervical motoneurons and increased NADPH-d in neurons of layer X. Lumbar neurons were not altered. Hypothermia was able to maintain CTL values. Also, we observed decreased forelimb motor potency in the PA20 group, which could be attributed to changes at cervical motoneurons. This study shows that PA can induce spasticity produced by alterations in the NO system of the cervical spinal cord. Moreover, this situation can be prevented by perinatal hypothermia.

  3. PERIAQUEDUCTAL GRAY NEUROPLASTICITY FOLLOWING CHRONIC MORPHINE VARIES WITH AGE: ROLE OF OXIDATIVE STRESS

    PubMed Central

    Bajic, Dusica; Berde, Charles B.; Commons, Kathryn G.

    2012-01-01

    The development of tolerance to the antinociceptive effects of morphine has been associated with networks within ventrolateral periaqueductal gray (vlPAG) and separately, nitric oxide signaling. Furthermore, it is known that the mechanisms that underlie tolerance differ with age. In this study, we used a rat model of antinociceptive tolerance to morphine at two ages, postnatal day (PD) 7 and adult, to determine if changes in the vlPAG related to nitric oxide signaling produced by chronic morphine exposure were age-dependent. Three pharmacological groups were analyzed: control, acute morphine, and chronic morphine group. Either morphine (10 mg/kg) or equal volume of normal saline was given subcutaneously twice daily for 6 ½ days. Animals were analyzed for morphine dose-response using Hot Plate test, and for the expression of several genes associated with nitric oxide metabolism was evaluated using rtPCR. In addition, the effect of morphine exposure on immunohistochemistry for Fos, and nNOS as well as nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) reaction at the vlPAG were measured. In both age groups acute morphine activated Fos in the vlPAG, and this effect was attenuated by chronic morphine, specifically in the vlPAG at the level of the laterodorsal tegmental nucleus (LDTg). In adults, but not PD7 rats, chronic morphine administration was associated with activation of nitric oxide function. In contrast, changes in the gene expression of PD7 rats suggested superoxide and peroxide metabolisms may be engaged. These data indicate that there is supraspinal neuroplasticity following morphine administration as early as PD7. Furthermore, oxidative stress pathways associated with chronic morphine exposure appear age-specific. PMID:22999971

  4. Structural energetics of the adenine tract from an intrinsic transcription terminator.

    PubMed

    Huang, Yuegao; Weng, Xiaoli; Russu, Irina M

    2010-04-02

    Intrinsic transcription termination sites generally contain a tract of adenines in the DNA template that yields a tract of uracils at the 3' end of the nascent RNA. To understand how this base sequence contributes to termination of transcription, we have investigated two nucleic acid structures. The first is the RNA-DNA hybrid that contains the uracil tract 5'-rUUUUUAU-3' from the tR2 intrinsic terminator of bacteriophage lambda. The second is the homologous DNA-DNA duplex that contains the adenine tract 5'-dATAAAAA-3'. This duplex is present at the tR2 site when the DNA is not transcribed. The opening and the stability of each rU-dA/dT-dA base pair in the two structures are characterized by imino proton exchange and nuclear magnetic resonance spectroscopy. The results reveal concerted opening of the central rU-dA base pairs in the RNA-DNA hybrid. Furthermore, the stability profile of the adenine tract in the RNA-DNA hybrid is very different from that of the tract in the template DNA-DNA duplex. In the RNA-DNA hybrid, the stabilities of rU-dA base pairs range from 4.3 to 6.5 kcal/mol (at 10 degrees C). The sites of lowest stability are identified at the central positions of the tract. In the template DNA-DNA duplex, the dT-dA base pairs are more stable than the corresponding rU-dA base pairs in the hybrid by 0.9 to 4.6 kcal/mol and, in contrast to the RNA-DNA hybrid, the central base pairs have the highest stability. These results suggest that the central rU-dA/dT-dA base pairs in the adenine tract make the largest energetic contributions to transcription termination by promoting both the dissociation of the RNA transcript and the closing of the transcription bubble. The results also suggest that the high stability of dT-dA base pairs in the DNA provides a signal for the pausing of RNA polymerase at the termination site. Copyright 2010 Elsevier Ltd. All rights reserved.

  5. Coordinated regulation of accessory genetic elements produces cyclic di-nucleotides for V. cholerae virulence.

    PubMed

    Davies, Bryan W; Bogard, Ryan W; Young, Travis S; Mekalanos, John J

    2012-04-13

    The function of the Vibrio 7(th) pandemic island-1 (VSP-1) in cholera pathogenesis has remained obscure. Utilizing chromatin immunoprecipitation sequencing and RNA sequencing to map the regulon of the master virulence regulator ToxT, we identify a TCP island-encoded small RNA that reduces the expression of a previously unrecognized VSP-1-encoded transcription factor termed VspR. VspR modulates the expression of several VSP-1 genes including one that encodes a novel class of di-nucleotide cyclase (DncV), which preferentially synthesizes a previously undescribed hybrid cyclic AMP-GMP molecule. We show that DncV is required for efficient intestinal colonization and downregulates V. cholerae chemotaxis, a phenotype previously associated with hyperinfectivity. This pathway couples the actions of previously disparate genomic islands, defines VSP-1 as a pathogenicity island in V. cholerae, and implicates its occurrence in 7(th) pandemic strains as a benefit for host adaptation through the production of a regulatory cyclic di-nucleotide. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Effective immobilization of alcohol dehydrogenase on carbon nanoscaffolds for ethanol biofuel cell.

    PubMed

    Umasankar, Yogeswaran; Adhikari, Bal-Ram; Chen, Aicheng

    2017-12-01

    An efficient approach for immobilizing alcohol dehydrogenase (ADH) while enhancing its electron transfer ability has been developed using poly(2-(trimethylamino)ethyl methacrylate) (MADQUAT) cationic polymer and carbon nanoscaffolds. The carbon nanoscaffolds were comprised of single-walled carbon nanotubes (SWCNTs) wrapped with reduced graphene oxide (rGO). The ADH entrapped within the MADQUAT that was present on the carbon nanoscaffolds exhibited a high electron exchange capability with the electrode through its cofactor β-nicotinamide adenine dinucleotide hydrate and β-nicotinamide adenine dinucleotide reduced disodium salt hydrate (NAD + /NADH) redox reaction. The advantages of the carbon nanoscaffolds used as the support matrix and the MADQUAT employed for the entrapment of ADH versus physisorption were demonstrated via cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Our experimental results showed a higher electron transfer, electrocatalytic activity, and rate constant for MADQUAT entrapped ADH on the carbon nanoscaffolds. The immobilization of ADH using both MADQUAT and carbon nanoscaffolds exhibited strong potential for the development of an efficient bio-anode for ethanol powered biofuel cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Fluorescence spectroscopy using excitation and emission matrix for quantification of tissue native fluorophores and cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Wu, Binlin; Gayen, S. K.; Xu, M.

    2014-03-01

    Native fluorescence spectrum of normal and cancerous human prostate tissues is studied to distinguish between normal and cancerous tissues, and cancerous tissues at different cancer grade. The tissue samples were obtained from Cooperative Human Tissue Network (CHTN) and National Disease Research Interchange(NDRI). An excitation and emission matrix (EEM) was generated for each tissue sample by acquiring native fluorescence spectrum of the sample using multiple excitation wavelengths. The non-negative matrix factorization algorithm was used to generate fluorescence EEMs that correspond to the fluorophores in biological tissues, including tryptophan, collagen, elastin, nicotinamide adenine dinucleotide (NADH), flavin adenine dinucleotide (FAD) and the background paraffin. We hypothesize that, as a consequence of metabolic changes associated with the development of cancer, the concentrations of NADH and FAD are different in normal and cancerous tissues, and also different for different cancer grades. We used the ratio of the abundances of FAD and NADH to distinguish between normal and cancerous tissues, and the tissue cancer grade. The FAD-to-NADH ratio was found to be the highest for normal tissue and decreased as the cancer grade increased.

  8. Correlating two-photon excited fluorescence imaging of breast cancer cellular redox state with seahorse flux analysis of normalized cellular oxygen consumption

    NASA Astrophysics Data System (ADS)

    Hou, Jue; Wright, Heather J.; Chan, Nicole; Tran, Richard; Razorenova, Olga V.; Potma, Eric O.; Tromberg, Bruce J.

    2016-06-01

    Two-photon excited fluorescence (TPEF) imaging of the cellular cofactors nicotinamide adenine dinucleotide and oxidized flavin adenine dinucleotide is widely used to measure cellular metabolism, both in normal and pathological cells and tissues. When dual-wavelength excitation is used, ratiometric TPEF imaging of the intrinsic cofactor fluorescence provides a metabolic index of cells-the "optical redox ratio" (ORR). With increased interest in understanding and controlling cellular metabolism in cancer, there is a need to evaluate the performance of ORR in malignant cells. We compare TPEF metabolic imaging with seahorse flux analysis of cellular oxygen consumption in two different breast cancer cell lines (MCF-7 and MDA-MB-231). We monitor metabolic index in living cells under both normal culture conditions and, for MCF-7, in response to cell respiration inhibitors and uncouplers. We observe a significant correlation between the TPEF-derived ORR and the flux analyzer measurements (R=0.7901, p<0.001). Our results confirm that the ORR is a valid dynamic index of cell metabolism under a range of oxygen consumption conditions relevant for cancer imaging.

  9. 3′-NADP and 3′-NAADP, Two Metabolites Formed by the Bacterial Type III Effector AvrRxo1*♦

    PubMed Central

    Schuebel, Felix; Rocker, Andrea; Edelmann, Daniel; Schessner, Julia; Brieke, Clara; Meinhart, Anton

    2016-01-01

    An arsenal of effector proteins is injected by bacterial pathogens into the host cell or its vicinity to increase virulence. The commonly used top-down approaches inferring the toxic mechanism of individual effector proteins from the host's phenotype are often impeded by multiple targets of different effectors as well as by their pleiotropic effects. Here we describe our bottom-up approach, showing that the bacterial type III effector AvrRxo1 of plant pathogens is an authentic phosphotransferase that produces two novel metabolites by phosphorylating nicotinamide/nicotinic acid adenine dinucleotide at the adenosine 3′-hydroxyl group. Both products of AvrRxo1, 3′-NADP and 3′-nicotinic acid adenine dinucleotide phosphate (3′-NAADP), are substantially different from the ubiquitous co-enzyme 2′-NADP and the calcium mobilizer 2′-NAADP. Interestingly, 3′-NADP and 3′-NAADP have previously been used as inhibitors or signaling molecules but were regarded as “artificial” compounds so far. Our findings now necessitate a shift in thinking about the biological importance of 3′-phosphorylated NAD derivatives. PMID:27621317

  10. Optical biopsy using fluorescence spectroscopy for prostate cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Wu, Binlin; Gao, Xin; Smith, Jason; Bailin, Jacob

    2017-02-01

    Native fluorescence spectra are acquired from fresh normal and cancerous human prostate tissues. The fluorescence data are analyzed using a multivariate analysis algorithm such as non-negative matrix factorization. The nonnegative spectral components are retrieved and attributed to the native fluorophores such as collagen, reduced nicotinamide adenine dinucleotide (NADH), and flavin adenine dinucleotide (FAD) in tissue. The retrieved weights of the components, e.g. NADH and FAD are used to estimate the relative concentrations of the native fluorophores and the redox ratio. A machine learning algorithm such as support vector machine (SVM) is used for classification to distinguish normal and cancerous tissue samples based on either the relative concentrations of NADH and FAD or the redox ratio alone. The classification performance is shown based on statistical measures such as sensitivity, specificity, and accuracy, along with the area under receiver operating characteristic (ROC) curve. A cross validation method such as leave-one-out is used to evaluate the predictive performance of the SVM classifier to avoid bias due to overfitting.

  11. 3'-NADP and 3'-NAADP, Two Metabolites Formed by the Bacterial Type III Effector AvrRxo1.

    PubMed

    Schuebel, Felix; Rocker, Andrea; Edelmann, Daniel; Schessner, Julia; Brieke, Clara; Meinhart, Anton

    2016-10-28

    An arsenal of effector proteins is injected by bacterial pathogens into the host cell or its vicinity to increase virulence. The commonly used top-down approaches inferring the toxic mechanism of individual effector proteins from the host's phenotype are often impeded by multiple targets of different effectors as well as by their pleiotropic effects. Here we describe our bottom-up approach, showing that the bacterial type III effector AvrRxo1 of plant pathogens is an authentic phosphotransferase that produces two novel metabolites by phosphorylating nicotinamide/nicotinic acid adenine dinucleotide at the adenosine 3'-hydroxyl group. Both products of AvrRxo1, 3'-NADP and 3'-nicotinic acid adenine dinucleotide phosphate (3'-NAADP), are substantially different from the ubiquitous co-enzyme 2'-NADP and the calcium mobilizer 2'-NAADP. Interestingly, 3'-NADP and 3'-NAADP have previously been used as inhibitors or signaling molecules but were regarded as "artificial" compounds so far. Our findings now necessitate a shift in thinking about the biological importance of 3'-phosphorylated NAD derivatives. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. [NADPH-diaphorase activity in digestive system of gastropod molluscs Achatina fulica and Littorina littorea].

    PubMed

    Zaĭtseva, O V; Kuznetsova, T V; Markosova, T G

    2009-01-01

    Localization and peculiarities of NO-ergic elements were studied for he first time throughout the entire length of digestive tract of the marine gastropod mollusc Achatina fulica (Prosobranchia) and the terrestrial molusc Littorina littorea (Pulmonata) by using histochemical method of detection of NADPH-diaphorase (NADPHd). NO-ergic cells and fibers were revealed in all parts of the mollusc digestive tract beginning from pharynx. An intensive NADPHd activity was found in many intraepithelial cells of the open type and in their processes in intra- and subepithelial nerve plexuses, single subepithelial neurons, granular connective tissue cells, and numerous nerve fibers among muscle elements of he digestive tract wall as well as in nerves innervating the tract. NADPHd was also present in receptor cells of he oral area and in the central A. fulica ganglia participating in innervation of the digestive tract. The digestive tract NO-ergic system ofA. fulica has a more complex organization that that of L. littorea. In the A. fulica pharynx, stomach, and midgut, directly beneath epithelium, there is revealed a complex system of glomerular structures formed by thin NADPHd-positive nerve fibers coming from the side of epithelium. More superficially under the main groups of muscle elements, small agglomerations of NADPHd-positive neurons are seen, which could be considered as primitive, non-formed microganglia. Peculiarities of distribution and a possible functional role of NO-ergic elements in the digestive tract of molluscs are discussed as compared with other invertebrate and vertebrate animals.

  13. Cyclic Dinucleotides in the Scope of the Mammalian Immune System.

    PubMed

    Mankan, Arun K; Müller, Martina; Witte, Gregor; Hornung, Veit

    2017-01-01

    First discovered in prokaryotes and more recently in eukaryotes, cyclic dinucleotides (CDNs) constitute a unique branch of second messenger signaling systems. Within prokaryotes CDNs regulate a wide array of different biological processes, whereas in the vertebrate system CDN signaling is largely dedicated to activation of the innate immune system. In this book chapter we summarize the occurrence and signaling pathways of these small-molecule second messengers, most importantly in the scope of the mammalian immune system. In this regard, our main focus is the role of the cGAS-STING axis in the context of microbial infection and sterile inflammation and its implications for therapeutic applications.

  14. Head-to-head right-handed cross-links of the antitumor-active bis(mu-N,N'-di-p-tolylformamidinato)dirhodium(II,II) unit with the dinucleotides d(GpA) and d(ApG).

    PubMed

    Chifotides, Helen T; Dunbar, Kim R

    2008-01-01

    Reactions of cis-[Rh(2)(DTolF)(2)(NCCH(3))(6)](BF(4))(2) with the dinucleotides d(GpA) and d(ApG) proceed to form [Rh(2)(DTolF)(2){d(GpA)}] and [Rh(2)(DTolF)(2){d(ApG)}], respectively, with bridging purine bases spanning the Rh-Rh unit in the equatorial positions. Both dirhodium adducts exhibit head-to-head (HH) arrangement of the bases, as indicated by the presence of H8/H8 NOE cross-peaks in the 2D ROESY NMR spectra. The guanine bases bind to the dirhodium core at positions N7 and O6, a conclusion that is supported by the absence of N7 protonation at low pH values and the notable increase in the acidity of the guanine N1H sites (pK(a) approximately 7.4 in 4:1 CD(3)CN/D(2)O), inferred from the pH-dependence titrations of the guanine H8 proton resonances. In both dirhodium adducts, the adenine bases coordinate to the metal atoms through N6 and N7, which induces stabilization of the rare imino tautomer of the bases with a concomitant substantial decrease in the basicity of the N1H adenine sites (pK(a) approximately 7.0-7.1 in 4:1 CD(3)CN/D(2)O), as compared to the imino form of free adenosine. The presence of the adenine bases in the rare imino form is further corroborated by the observation of DQF-COSY H2/N1H and ROE N1H/N6H cross-peaks in the 2D NMR spectra of [Rh(2)(DTolF)(2){d(GpA)}] and [Rh(2)(DTolF)(2){d(ApG)}] in CD(3)CN at -38 degrees C. The 2D NMR spectroscopic data and the molecular modeling results suggest the presence of right-handed variants, HH1R, in solution for both adducts (HH1R refers to the relative base canting and the direction of propagation of the phosphodiester backbone with respect to the 5' base). Complete characterization of [Rh(2)(DTolF)(2){d(GpA)}] and [Rh(2)(DTolF)(2){d(ApG)}] by 2D NMR spectroscopy and molecular modeling supports anti-orientation of the sugar residues for both adducts about the glycosyl bonds as well as N- and S-type conformations for the 5'- and 3'-deoxyribose residues, respectively.

  15. Expression of the P2X2 receptor in different classes of ileum myenteric neurons in the female obese ob/ob mouse

    PubMed Central

    Mizuno, Márcia Sanae; Crisma, Amanda Rabello; Borelli, Primavera; Castelucci, Patricia

    2012-01-01

    AIM: To examine whether the ob/ob mouse model of obesity is accompanied by enteric nervous system abnormalities such as altered motility. METHODS: The study examined the distribution of the P2X2 receptor (P2X2R) in myenteric neurons of female ob/ob mice. Specifically, we used immunohistochemistry to analyze the co-expression of the P2X2R with neuronal nitric oxide synthase (nNOS), choline acetyltransferase (ChAT), and calretinin (CalR) in neurons of the small intestine myenteric plexus in ob/ob and control female mice. In these sections, we used scanning confocal microscopy to analyze the co-localization of these markers as well as the neuronal density (cm2) and area profile (μm²) of P2X2R-positive neurons. In addition, enteric neurons were labeled using the nicotinamide adenine dinucleotide (NADH) diaphorase method and analyzed with light microscopy as an alternate means by which to analyze neuronal density and area. RESULTS: In the present study, we observed a 29.6% increase in the body weight of the ob/ob animals (OG) compared to the control group (CG). In addition, the average small intestine area was increased by approximately 29.6% in the OG compared to the CG. Immunoreactivity (IR) for the P2X2R, nNOS, ChAT and CalR was detectable in the myenteric plexus, as well as in the smooth muscle, in both groups. This IR appeared to be mainly cytoplasmic and was also associated with the cell membrane of the myenteric plexus neurons, where it outlined the neuronal cell bodies and their processes. P2X2R-IR was observed to co-localize 100% with that for nNOS, ChAT and CalR in neurons of both groups. In the ob/ob group, however, we observed that the neuronal density (neuron/cm2) of P2X2R-IR cells was increased by 62% compared to CG, while that of NOS-IR and ChAT-IR neurons was reduced by 49% and 57%, respectively, compared to control mice. The neuronal density of CalR-IR neurons was not different between the groups. Morphometric studies further demonstrated that the

  16. Ameliorative effect of ursolic acid on renal fibrosis in adenine-induced chronic kidney disease in rats.

    PubMed

    Thakur, Richa; Sharma, Anshuk; Lingaraju, Madhu C; Begum, Jubeda; Kumar, Dhirendra; Mathesh, Karikalan; Kumar, Pawan; Singh, Thakur Uttam; Kumar, Dinesh

    2018-05-01

    Ursolic acid (UA), an ursane-type pentacyclic triterpenoid commonly found in apple peels and holy basil has been shown to possess many beneficial effects. Renal fibrosis is a complication of kidney injury and associated with increased risk of morbidity and mortality. In our previous investigation, a lupane-type pentacyclic triterpenoid, betulinic acid (BA) was found to have protective effect on chronic kidney disease (CKD) and renal fibrosis. This prompted us to explore the therapeutic value of UA, a chemically related compound to BA in CKD. CKD was induced by feeding adenine with the feed at a concentration of 0.75% for 28 days. UA at the dose rate of 30 mg/kg in 0.5% carboxy methyl cellulose (CMC) was administered by oral route, simultaneously with adenine feeding for 28 days. Adenine feeding increased the kidney weight to body weight index, decreased the kidney function due to injury as indicated by increased markers like serum urea, uric acid, creatinine, cystatin C and neutrophil gelatinase-associated lipocalin (NGAL) and initiated the fibrotic response in kidney by increasing the profibrotic proteins viz. transforming growth factor-beta (TGF-β), connective tissue growth factor (CTGF), fibronectin and collagen. However, treatment with UA reversed the damage induced by adenine as shown by reduced kidney injury and fibrosis markers which was further clearly evident in histological picture indicating the suitability of UA for use in CKD. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  17. Selective self-assembly of adenine-silver nanoparticles forms rings resembling the size of cells

    NASA Astrophysics Data System (ADS)

    Choi, Sungmoon; Park, Soonyoung; Yang, Seon-Ah; Jeong, Yujin; Yu, Junhua

    2015-12-01

    Self-assembly has played critical roles in the construction of functional nanomaterials. However, the structure of the macroscale multicomponent materials built by the self-assembly of nanoscale building blocks is hard to predict due to multiple intermolecular interactions of great complexity. Evaporation of solvents is usually an important approach to induce kinetically stable assemblies of building blocks with a large-scale specific arrangement. During such a deweting process, we tried to monitor the possible interactions between silver nanoparticles and nucleobases at a larger scale by epifluorescence microscopy, thanks to the doping of silver nanoparticles with luminescent silver nanodots. ssDNA oligomer-stabilized silver nanoparticles and adenine self-assemble to form ring-like compartments similar to the size of modern cells. However, the silver ions only dismantle the self-assembly of adenine. The rings are thermodynamically stable as the drying process only enrich the nanoparticles-nucleobase mixture to a concentration that activates the self-assembly. The permeable membrane-like edge of the ring is composed of adenine filaments glued together by silver nanoparticles. Interestingly, chemicals are partially confined and accumulated inside the ring, suggesting that this might be used as a microreactor to speed up chemical reactions during a dewetting process.

  18. Selective self-assembly of adenine-silver nanoparticles forms rings resembling the size of cells

    PubMed Central

    Choi, Sungmoon; Park, Soonyoung; Yang, Seon-Ah; Jeong, Yujin; Yu, Junhua

    2015-01-01

    Self-assembly has played critical roles in the construction of functional nanomaterials. However, the structure of the macroscale multicomponent materials built by the self-assembly of nanoscale building blocks is hard to predict due to multiple intermolecular interactions of great complexity. Evaporation of solvents is usually an important approach to induce kinetically stable assemblies of building blocks with a large-scale specific arrangement. During such a deweting process, we tried to monitor the possible interactions between silver nanoparticles and nucleobases at a larger scale by epifluorescence microscopy, thanks to the doping of silver nanoparticles with luminescent silver nanodots. ssDNA oligomer-stabilized silver nanoparticles and adenine self-assemble to form ring-like compartments similar to the size of modern cells. However, the silver ions only dismantle the self-assembly of adenine. The rings are thermodynamically stable as the drying process only enrich the nanoparticles-nucleobase mixture to a concentration that activates the self-assembly. The permeable membrane-like edge of the ring is composed of adenine filaments glued together by silver nanoparticles. Interestingly, chemicals are partially confined and accumulated inside the ring, suggesting that this might be used as a microreactor to speed up chemical reactions during a dewetting process. PMID:26643504

  19. Restoring NAD(+) Levels with NAD(+) Intermediates, the Second Law of Thermodynamics and Aging Delay.

    PubMed

    Poljsak, Borut; Milisav, Irina

    2018-04-26

    The hypothesis regarding the role of increased nicotinamide adenine dinucleotide (NAD+) levels with reference to the fundamental concepts of ageing and entropy is presented. Considering the second law of thermodynamics, NAD+ seems the appropriate candidate for reversing many aging-associated pathologies. NAD+ is presented as an essential compound that enables organisms to stay highly organized and well-maintained, with a lower entropy state.

  20. An activity transition from NADH dehydrogenase to NADH oxidase during protein denaturation.

    PubMed

    Huston, Scott; Collins, John; Sun, Fangfang; Zhang, Ting; Vaden, Timothy D; Zhang, Y-H Percival; Fu, Jinglin

    2018-05-01

    A decrease in the specific activity of an enzyme is commonly observed when the enzyme is inappropriately handled or is stored over an extended period. Here, we reported a functional transition of an FMN-bound diaphorase (FMN-DI) that happened during the long-term storage process. It was found that FMN-DI did not simply lose its β-nicotinamide adenine diphosphate (NADH) dehydrogenase activity after a long-time storage, but obtained a new enzyme activity of NADH oxidase. Further mechanistic studies suggested that the alteration of the binding strength of an FMN cofactor with a DI protein could be responsible for this functional switch of the enzyme. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  1. Silver-induced reconstruction of an adeninate-based metal–organic framework for encapsulation of luminescent adenine-stabilized silver clusters† †Electronic supplementary information (ESI) available: Experimental details and additional structural, physicochemical and optical characterisation. See DOI: 10.1039/c6tc00260a Click here for additional data file.

    PubMed Central

    Jonckheere, Dries; Coutino-Gonzalez, Eduardo; Baekelant, Wouter; Bueken, Bart; Reinsch, Helge; Stassen, Ivo; Fenwick, Oliver; Richard, Fanny; Samorì, Paolo; Ameloot, Rob; Hofkens, Johan

    2016-01-01

    Bright luminescent silver-adenine species were successfully stabilized in the pores of the MOF-69A (zinc biphenyldicarboxylate) metal–organic framework, starting from the intrinsically blue luminescent bio-MOF-1 (zinc adeninate 4,4′-biphenyldicarboxylate). Bio-MOF-1 is transformed to the MOF-69A framework by selectively leaching structural adenine linkers from the original framework using silver nitrate solutions in aqueous ethanol. Simultaneously, bright blue-green luminescent silver-adenine clusters are formed inside the pores of the recrystallized MOF-69A matrix in high local concentrations. The structural transition and concurrent changes in optical properties were characterized using a range of structural, physicochemical and spectroscopic techniques (steady-state and time-resolved luminescence, quantum yield determination, fluorescence microscopy). The presented results open new avenues for exploring the use of MOFs containing luminescent silver clusters for solid-state lighting and sensor applications. PMID:28496980

  2. The Role of the Plant Hormone Benzyl Adenine to Promote Growth for the Diatom Thalassiosira pseudonana

    NASA Astrophysics Data System (ADS)

    Gutierrez Franco, D.; Vernet, M.; Walters, R. J.; Tan, M.

    2016-02-01

    This study was inspired by the establishment of autoinduction in the model diatom Thalassiosira pseudonana, and the identification of the cytokinin plant hormone benzyl adenine (BA) as a potential autoinducer in this species via comparative genome studies. The effects of a wide range (0.0017518 mg/L-500 mg/L) of concentrations of benzyl adenine on the growth dynamics of T. pseudonana have been explored. The results suggest that a concentration of 5 mg BA/L has the highest positive effect on the growth rate of T. pseudonana batch cultures, compared to the other concentrations tested. Furthermore, concentrations of >100 mg BA/L were lethal. No marked effects on the lag phase length were observed. However, it is possible that some trade-offs between growth rate and lag phase length exist as a result of benzyl adenine. For instance, the BA concentration that exhibited the highest growth rate (5mg BA/L; µ=1.06 d-1) had a negative effect on the lag phase length (6 days), as compared to our control (lag phase length = 5 d; µ=0.81 d-1). On the other hand, at 10 mg BA/L, a slightly smaller growth rate of 1.01 d-1 was observed, with a shorter lag phase length of 4 days, suggesting that benzyl adenine may not have a positive effect on all growth parameters at once. These results provide insight into the physiological and biochemical mechanisms of cell-to-cell communication employed by diatoms, and supports the hypothesis that hormones may play an important role in bloom development.

  3. Binding of pixantrone to DNA at CpA dinucleotide sequences and bulge structures.

    PubMed

    Konda, Shyam K; Wang, Haiqiang; Cutts, Suzanne M; Phillips, Don R; Collins, J Grant

    2015-06-07

    The binding of the anti-cancer drug pixantrone to three oligonucleotide sequences, d(TCATATGA)2, d(CCGAGAATTCCGG)2 {double bulge = DB} and the non-self complementary d(TACGATGAGTA) : d(TACCATCGTA) {single bulge = SB}, has been studied by NMR spectroscopy and molecular modelling. The upfield shifts observed for the aromatic resonances of pixantrone upon addition of the drug to each oligonucleotide confirmed the drug bound by intercalation. For the duplex sequence d(TCATATGA)2, NOEs were observed from the pixantrone aromatic H7/8 and aliphatic Ha/Hb protons to the H6/H8 and H1' protons of the C2, A3, T6 and G7 nucleotides, demonstrating that pixantrone preferentially binds at the symmetric CpA sites. However, weaker NOEs observed to various protons from the T4 and A5 residues indicated alternative minor binding sites. NOEs from the H7/H8 and Ha/Hb protons to both major (H6/H8) and minor groove (H1') protons indicated approximately equal proportions of intercalation was from the major and minor groove at the CpA sites. Intermolecular NOEs were observed between the H7/H8 and H4 protons of pixantrone and the A4H1' and G3H1' protons of the oligonucleotide that contains two symmetrically related bulge sites (DB), indicative of binding at the adenine bulge sites. For the oligonucleotide that only contains a single bulge site (SB), NOEs were observed from pixantrone protons to the SB G7H1', A8H1' and G9H1' protons, confirming that the drug bound selectively at the adenine bulge site. A molecular model of pixantrone-bound SB could be constructed with the drug bound from the minor groove at the A8pG9 site that was consistent with the observed NMR data. The results demonstrate that pixantrone preferentially intercalates at adenine bulge sites, compared to duplex DNA, and predominantly from the minor groove.

  4. Long-Range Charge Transport in Adenine-Stacked RNA:DNA Hybrids.

    PubMed

    Li, Yuanhui; Artés, Juan M; Hihath, Joshua

    2016-01-27

    An extremely important biological component, RNA:DNA can also be used to design nanoscale structures such as molecular wires. The conductance of single adenine-stacked RNA:DNA hybrids is rapidly and reproducibly measured using the break junction approach. The conductance decreases slightly over a large range of molecular lengths, suggesting that RNA:DNA can be used as an oligonucleotide wire. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Lack of hepcidin ameliorates anemia and improves growth in an adenine-induced mouse model of chronic kidney disease

    PubMed Central

    Sureshbabu, Angara; Doty, Steve B.; Zhu, Yuan-Shan; Patino, Edwin; Cunningham-Rundles, Susanna; Choi, Mary E.; Boskey, Adele; Rivella, Stefano

    2016-01-01

    Growth delay is common in children with chronic kidney disease (CKD), often associated with poor quality of life. The role of anemia in uremic growth delay is poorly understood. Here we describe an induction of uremic growth retardation by a 0.2% adenine diet in wild-type (WT) and hepcidin gene (Hamp) knockout (KO) mice, compared with their respective littermates fed a regular diet. Experiments were started at weaning (3 wk). After 8 wk, blood was collected and mice were euthanized. Adenine-fed WT mice developed CKD (blood urea nitrogen 82.8 ± 11.6 mg/dl and creatinine 0.57 ± 0.07 mg/dl) and were 2.1 cm shorter compared with WT controls. WT adenine-fed mice were anemic and had low serum iron, elevated Hamp, and elevated IL6 and TNF-α. WT adenine-fed mice had advanced mineral bone disease (serum phosphorus 16.9 ± 3.1 mg/dl and FGF23 204.0 ± 115.0 ng/ml) with loss of cortical and trabecular bone volume seen on microcomputed tomography. Hamp disruption rescued the anemia phenotype resulting in improved growth rate in mice with CKD, thus providing direct experimental evidence of the relationship between Hamp pathway and growth impairment in CKD. Hamp disruption ameliorated CKD-induced growth hormone-insulin-like growth factor 1 axis derangements and growth plate alterations. Disruption of Hamp did not mitigate the development of uremia, inflammation, and mineral and bone disease in this model. Taken together, these results indicate that an adenine diet can be successfully used to study growth in mice with CKD. Hepcidin appears to be related to pathways of growth retardation in CKD suggesting that investigation of hepcidin-lowering therapies in juvenile CKD is warranted. PMID:27440777

  6. Deproteinization is Necessary for the Accurate Determination of Ammonia Levels by Glutamate Dehydrogenase Assay in Blood Plasma From Subjects With Liver Injury.

    PubMed

    Vodenicarovova, Melita; Skalska, Hana; Holecek, Milan

    2017-11-08

    To determine the effect of presence of high concentrations of nicotinamide adenine dinucleotide (NADH)- and nicotinamide adenine dinucleotide phosphate (NADPH)-consuming enzymes on the accuracy of glutamate dehydrogenase (GLDH) assay for ammonia. We measured ammonia concentrations using GLDH and NADH or NADPH in blood-plasma specimens and specimens deproteinized by sulfosalicylic acid from CCl4-treated or control rats. The nonspecific oxidation of NADH and NADPH was measured in mixtures without GLDH. We observed a gradual decrease (~0.5%) in absorbance in the plasma of controls after the addition of NADH but not after adding NADPH. The decrease in absorbance in plasma of CCl4-treated animals was 13.2% and 5.2% after the addition of NADH and NADPH, respectively. The decrease in absorbance was not detected in deproteinized specimens. The values of ammonia concentration were higher in the plasma specimens compared with the deproteinized ones. Deproteinization is necessary for accurate measurement of ammonia using GLDH assay in the blood plasma of subjects with liver injury. © American Society for Clinical Pathology, 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  7. A continuous spectrophotometric assay for monitoring adenosine 5'-monophosphate production.

    PubMed

    First, Eric A

    2015-08-15

    A number of biologically important enzymes release adenosine 5'-monophosphate (AMP) as a product, including aminoacyl-tRNA synthetases, cyclic AMP (cAMP) phosphodiesterases, ubiquitin and ubiquitin-like ligases, DNA ligases, coenzyme A (CoA) ligases, polyA deadenylases, and ribonucleases. In contrast to the abundance of assays available for monitoring the conversion of adenosine 5'-triphosphate (ATP) to ADP, there are relatively few assays for monitoring the conversion of ATP (or cAMP) to AMP. In this article, we describe a homogeneous assay that continuously monitors the production of AMP. Specifically, we have coupled the conversion of AMP to inosine 5'-monophosphate (IMP) (by AMP deaminase) to the oxidation of IMP (by IMP dehydrogenase). This results in the reduction of oxidized nicotine adenine dinucleotide (NAD(+)) to reduced nicotine adenine dinucleotide (NADH), allowing AMP formation to be monitored by the change in the absorbance at 340 nm. Changes in AMP concentrations of 5 μM or more can be reliably detected. The ease of use and relatively low expense make the AMP assay suitable for both high-throughput screening and kinetic analyses. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Evaluation of actinic cheilitis using fluorescence lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Saito Nogueira, Marcelo; Cosci, Alessandro; Pratavieira, Sebastião.; Takahama, Ademar; Souza Azevedo, Rebeca; Kurachi, Cristina

    2016-03-01

    Actinic cheilitis is a potentially malignant disorder that mostly affects the vermilion border of the lower lip and can lead to squamous cell carcinoma. Because of its heterogeneous clinical aspect, it is difficult to indicate representative biopsy area. Late diagnosis is a limiting factor of therapeutic possibilities available to treat oral cancer. The diagnosis of actinic cheilitis is mainly based on clinical and histopathological analysis and it is a time consuming procedure to get the results. Information about the organization and chemical composition of the tissues can be obtained using fluorescence lifetime spectroscopy techniques without the need for biopsy. The main targeted fluorophores are NADH (nicotinamide adenine dinucleotide) and FAD (flavin adenine dinucleotide), which have free and bound states, each one with different average lifetimes. The average lifetimes for free and bound NADH and FAD change according to tissue metabolic alterations and allow a quick and non-invasive clinical investigation of injuries and to help clinicians with the early diagnosis of actinic cheilitis. This study aims to evaluate the fluorescence lifetime parameters at the discrimination of three degrees of epithelial dysplasia, the most important predictor of malignant development, described in up to 100% of actinic cheilitis cases.

  9. Mapping absolute tissue endogenous fluorophore concentrations with chemometric wide-field fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Xu, Zhang; Reilley, Michael; Li, Run; Xu, Min

    2017-06-01

    We report chemometric wide-field fluorescence microscopy for imaging the spatial distribution and concentration of endogenous fluorophores in thin tissue sections. Nonnegative factorization aided by spatial diversity is used to learn both the spectral signature and the spatial distribution of endogenous fluorophores from microscopic fluorescence color images obtained under broadband excitation and detection. The absolute concentration map of individual fluorophores is derived by comparing the fluorescence from "pure" fluorophores under the identical imaging condition following the identification of the fluorescence species by its spectral signature. This method is then demonstrated by characterizing the concentration map of endogenous fluorophores (including tryptophan, elastin, nicotinamide adenine dinucleotide, and flavin adenine dinucleotide) for lung tissue specimens. The absolute concentrations of these fluorophores are all found to decrease significantly from normal, perilesional, to cancerous (squamous cell carcinoma) tissue. Discriminating tissue types using the absolute fluorophore concentration is found to be significantly more accurate than that achievable with the relative fluorescence strength. Quantification of fluorophores in terms of the absolute concentration map is also advantageous in eliminating the uncertainties due to system responses or measurement details, yielding more biologically relevant data, and simplifying the assessment of competing imaging approaches.

  10. In vitro characterization of the NAD+ synthetase NadE1 from Herbaspirillum seropedicae.

    PubMed

    Laskoski, Kerly; Santos, Adrian R S; Bonatto, Ana C; Pedrosa, Fábio O; Souza, Emanuel M; Huergo, Luciano F

    2016-05-01

    Nicotinamide adenine dinucleotide synthetase enzyme (NadE) catalyzes the amination of nicotinic acid adenine dinucleotide (NaAD) to form NAD(+). This reaction represents the last step in the majority of the NAD(+) biosynthetic routes described to date. NadE enzymes typically use either glutamine or ammonium as amine nitrogen donor, and the reaction is energetically driven by ATP hydrolysis. Given the key role of NAD(+) in bacterial metabolism, NadE has attracted considerable interest as a potential target for the development of novel antibiotics. The plant-associative nitrogen-fixing bacteria Herbaspirillum seropedicae encodes two putative NadE, namely nadE1 and nadE2. The nadE1 gene is linked to glnB encoding the signal transduction protein GlnB. Here we report the purification and in vitro characterization of H. seropedicae NadE1. Gel filtration chromatography analysis suggests that NadE1 is an octamer. The NadE1 activity was assayed in vitro, and the Michaelis-Menten constants for substrates NaAD, ATP, glutamine and ammonium were determined. Enzyme kinetic and in vitro substrate competition assays indicate that H. seropedicae NadE1 uses glutamine as a preferential nitrogen donor.

  11. The impact of aging, hearing loss, and body weight on mouse hippocampal redox state, measured in brain slices using fluorescence imaging.

    PubMed

    Stebbings, Kevin A; Choi, Hyun W; Ravindra, Aditya; Llano, Daniel Adolfo

    2016-06-01

    The relationships between oxidative stress in the hippocampus and other aging-related changes such as hearing loss, cortical thinning, or changes in body weight are not yet known. We measured the redox ratio in a number of neural structures in brain slices taken from young and aged mice. Hearing thresholds, body weight, and cortical thickness were also measured. We found striking aging-related increases in the redox ratio that were isolated to the stratum pyramidale, while such changes were not observed in thalamus or cortex. These changes were driven primarily by changes in flavin adenine dinucleotide, not nicotinamide adenine dinucleotide hydride. Multiple regression analysis suggested that neither hearing threshold nor cortical thickness independently contributed to this change in hippocampal redox ratio. However, body weight did independently contribute to predicted changes in hippocampal redox ratio. These data suggest that aging-related changes in hippocampal redox ratio are not a general reflection of overall brain oxidative state but are highly localized, while still being related to at least one marker of late aging, weight loss at the end of life. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Regulation of the Biosynthesis of Amino Acids of the Aspartate Family in Coliform Bacteria and Pseudomonads

    PubMed Central

    Cohen, G. N.; Stanier, R. Y.; Bras, Gisele Le

    1969-01-01

    The control of aspartokinase and homoserine dehydrogenase activities was compared in aerobic and fermentative pseudomonads (genera Pseudomonas and Aeromonas), and in coliform bacteria representative of the principal genera of the Enterobacteriaceae. Isofunctional aspartokinases subject to independent end-product control occur in the Enterobacteriaceae and in Aeromonas. In Pseudomonas, there appears to be a single aspartokinase, subject to concerted feedback inhibition by lysine and threonine. Within this genus, the sensitivity of aspartokinase to the single allosteric inhibitors varies considerably: the aspartokinase of the acidovorans group is little affected by the single inhibitors, whereas that of the fluorescent group is severely inhibited by either amino acid at high concentration. In all bacteria examined, homoserine dehydrogenase activity is inhibited by threonine; inhibition is more severe in aerobic pseudomonads than in the other groups. In most of the bacteria examined, either nicotinamide adenine dinucleotide (NAD) or nicotinamide adenine dinucleotide phosphate can serve as a cofactor for this enzyme, though the relative activity with the two pyridine nucleotides varies widely. Aerobic pseudomonads of the acidovorans group contain a homoserine dehydrogenase that is absolutely specific for NAD. The taxonomic implications of these findings are discussed. PMID:4391829

  13. Primitive Photosynthetic Architectures Based on Self-Organization and Chemical Evolution of Amino Acids and Metal Ions.

    PubMed

    Liu, Kai; Ren, Xiaokang; Sun, Jianxuan; Zou, Qianli; Yan, Xuehai

    2018-06-01

    The emergence of light-energy-utilizing metabolism is likely to be a critical milestone in prebiotic chemistry and the origin of life. However, how the primitive pigment is spontaneously generated still remains unknown. Herein, a primitive pigment model based on adaptive self-organization of amino acids (Cystine, Cys) and metal ions (zinc ion, Zn 2+ ) followed by chemical evolution under hydrothermal conditions is developed. The resulting hybrid microspheres are composed of radially aligned cystine/zinc (Cys/Zn) assembly decorated with carbonate-doped zinc sulfide (C-ZnS) nanocrystals. The part of C-ZnS can work as a light-harvesting antenna to capture ultraviolet and visible light, and use it in various photochemical reactions, including hydrogen (H 2 ) evolution, carbon dioxide (CO 2 ) photoreduction, and reduction of nicotinamide adenine dinucleotide (NAD + ) to nicotinamide adenine dinucleotide hydride (NADH). Additionally, guest molecules (e.g., glutamate dehydrogenase, GDH) can be encapsulated within the hierarchical Cys/Zn framework, which facilitates sustainable photoenzymatic synthesis of glutamate. This study helps deepen insight into the emergent functionality (conversion of light energy) and complexity (hierarchical architecture) from interaction and reaction of prebiotic molecules. The primitive pigment model is also promising to work as an artificial photosynthetic microreactor.

  14. Catabolism of phloroglucinol by the rumen anaerobe coprococcus.

    PubMed

    Patel, T R; Jure, K G; Jones, G A

    1981-12-01

    A rumen isolate, Coprococcus, sp. Pe(1)5, was found to carry phloroglucinol reductase, which catalyzed the initial step in the breakdown of phloroglucinol. The organism uses phloroglucinol as the sole source of carbon and energy when grown in the absence of oxygen. Induced levels of enzyme were detected in cells grown either on phloroglucinol or on other carbon sources in the presence of limiting quantities of phloroglucinol. Although the organism is a strict anaerobe, the enzyme from anaerobically grown cells was insensitive to air. The partially purified enzyme required reduced nicotinamide adenine dinucleotide phosphate as an electron donor and was specific for phloroglucinol. However, partial enzyme activity (14 to 17%) was also detected in the presence of 2-methyl-1,4-naphthoquinone but not in the presence of several other phenolic compounds. The enzyme exhibited a higher affinity for phloroglucinol than for reduced nicotinamide adenine dinucleotide phosphate, with K(m) values of 3.0 x 10 M and 29.0 x 10 M, respectively. The optimum pH for maximal enzyme activity was 7.4, and the molecular weight of the native protein was about 130,000, as determined by the Sephadex gel filtration technique.

  15. Electrochemical Detection of the Molecules of Life

    NASA Technical Reports Server (NTRS)

    Thomson, Seamus; Quinn, Richard; Koehne, Jessica

    2017-01-01

    All forms of life on Earth contain cellular machinery that can transform and regulate chemical energy through metabolic pathways. These processes are oxidation-reduction reactions that are performed by four key classes of molecules: flavins, nicotinamaides, porphyrins, and quinones. By detecting the electrochemical interaction of these redox-active molecules with an electrode, a method of differentiating them by their class could be established and incorporated into future life-detecting missions. This body of work investigates the electrochemistry of ubiquitous molecules found in life and how they may be detected. Molecules can oxidise or reduce the surface of an electrode - giving or receiving electrons - and these interactions are represented by changes in current with respect to an applied voltage. This relationship varies with: electrolyte type and concentration, working electrode material, the redox-active molecule itself, and scan rate. Flavin adenine dinucleotide (FAD), riboflavin, nicotinamide adenine dinucleotide (NADH), and anthraquinone are all molecules found intracellularly in almost all living organisms. An organism-synthesised extracellular redox-active molecule, Plumbagin, was also selected as part of this study. The goal of this work is to detect these molecules in seawater and assess its application in searching for life on Ocean Worlds.

  16. Energy level alignment at the interfaces between typical electrodes and nucleobases: Al/adenine/indium-tin-oxide and Al/thymine/indium-tin-oxide

    NASA Astrophysics Data System (ADS)

    Lee, Younjoo; Lee, Hyunbok; Park, Soohyung; Yi, Yeonjin

    2012-12-01

    We investigated the interfacial electronic structures of Al/adenine/indium-tin-oxide (ITO) and Al/thymine/ITO using in situ ultraviolet and x-ray photoemission spectroscopy and density functional theory calculations. Adenine shows both an interface dipole and level bending, whereas thymine shows only an interface dipole in contact with ITO. In addition, thymine possesses a larger ionization energy than adenine. These are understood with delocalized π states confirmed with theoretical calculations. For the interface between nucleobases and Al, both nucleobases show a prominent reduction of the electron injection barrier from Al to each base in accordance with a downward level shift.

  17. Adenine-functionalized Spongy Graphene for Green and High-Performance Supercapacitors

    PubMed Central

    El-Gendy, Dalia M.; Ghany, Nabil A. Abdel; El Sherbini, E. E. Foad; Allam, Nageh K.

    2017-01-01

    A simple method is demonstrated to prepare spongy adenine-functionalized graphene (SFG) as interconnected, porous 3-dimensional (3D) network crinkly sheets. Such 3D network structure provides better contact at the electrode/electrolyte interface and facilitates the charge transfer kinetics. The fabricated SFG was characterized by X-ray diffraction (XRD), FTIR, scanning electron microscopy (FESEM), Raman spectroscopy, thermogravimetric analysis (TGA), UV−vis absorption spectroscopy, and transmission electron microscopy (TEM). The synthesized materials have been evaluated as supercapacitor materials in 0.5 M H2SO4 using cyclic voltammetry (CV) at different potential scan rates, and galvanostatic charge/discharge tests at different current densities. The SFG electrodes showed a maximum specific capacitance of 333 F/g at scan rate of 1 mV/s and exhibited excellent cycling retention of 102% after 1000 cycles at 200 mV/s. The energy density was 64.42 Wh/kg with a power density of 599.8 W/kg at 1.0 A/g. Those figures of merit are much higher than those reported for graphene-based materials tested under similar conditions. The observed high performance can be related to the synergistic effects of the spongy structure and the adenine functionalization. PMID:28216668

  18. Kinetic and mechanistic analysis of dinucleotide and oligonucleotide formation from the 5'-phosphorimidazolide of adenosine on Na(+)-montmorillonite

    NASA Technical Reports Server (NTRS)

    Kawamura, K.; Ferris, J. P.

    1994-01-01

    The rate constants for the condensation reaction of the 5'-phosphorimidazolide of adenosine (ImpA) to form dinucleotides and oligonucleotides have been measured in the presence of Na(+)-volclay (a Na(+)-montmorillonite) in pH 8 aqueous solution at 25 degrees C. The rates of the reaction of ImpA with an excess of adenosine 5'-monophosphoramidate (NH2pA), P1,P2-diadenosine 5',5'-pyrophosphate (A5'ppA), or adenosine 5'-monophosphate (5'-AMP or pA) in the presence of the montmorillonite to form NH2pA3'pA, A5'ppA3'pA, and pA3'pA, respectively, were measured. Only 3',5'-linked products were observed. The magnitude of the rate constants decrease in the order NH2pA3'pA > A5'-ppA3'pA > pA3'pA. The binding of ImpA to montmorillonite was measured, and the adsorption isotherm was determined. The binding of ImpA to montmorillonite and the formation of higher oligonucleotides is not observed in the absence of salts. Mg2+ enhances binding and oligonucleotide formation more than Ca2+ and Na+. The rate constants for the oligonucleotide formation were determined from the reaction products formed from 10 to 40 mM ImpA in the presence of Na(+)-montmorillonite using the computer program SIMFIT. The magnitudes of the rate constants for the formation of oligonucleotides increased in the order 2-mer < 3-mer < 4-mer ... 7-mer. The rate constants for dinucleotide and trinucleotide formation are more than 1000 times larger than those measured in the absence of montmorillonite. The rate constants for the formation of dinucleotide, trinucleotide, and tetranucleotide are 41,2.6, and 3.7 times larger than those for the formation of oligo(G)s with a poly(C) template. The hydrolysis of ImpA was accelerated 35 times in the presence of the montmorillonite. The catalytic ability of montmorillonite to form dinucleotides and oligonucleotides is quantitatively evaluated and possible pathways for oligo(A) formation are proposed.

  19. Quantitative changes of nitrergic neurons during postnatal development of chicken myenteric plexus*

    PubMed Central

    Yang, Ping; Gandahi, Jameel Ahmed; Zhang, Qian; Zhang, Lin-li; Bian, Xun-guang; Wu, Li; Liu, Yi; Chen, Qiu-sheng

    2013-01-01

    Objective: Information regarding the development of the enteric nervous system (ENS) is important for understanding the functional abnormalities of the gut. Because fertilized chicken eggs provide easy access to embryos, chicken models have been widely used to study embryonic development of myenteric plexus; however, no study has been focused on the postnatal period. The aim of this study was to perform a qualitative and quantitative analysis of the nitrergic neurons in the myenteric plexus of developing chickens in the postnatal period. Methods: Whole-mount preparations of the myenteric plexus were made in 7-d, 15-d, and 40-d old (adult) chickens of either sex (n=15). The myenteric plexus was studied after nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) histochemistry using light microscopy, digital photography, and Image-Pro Plus 6.0 software. The numbers of positively stained neurons and ganglia were counted in the duodenum, jejunum, ileum, caecum, and colon in the different age groups. Data were expressed as mean±standard deviation (SD), and statistical analysis was performed using a one-way analysis of variance (ANOVA) test. Results: The positively stained neurons showed various morphologies and staining intensities, and formed bead-shaped and U-shaped arrangements in the myenteric plexus. The densities of neurons and ganglia increased with age. However, the number of positive neurons per ganglion increased. The number of NADPH-d-positive neurons was highest in the colon, followed by the ileum, the jejunum, the duodenum, and the caeca in all age groups. Conclusions: Developmental changes in the myenteric plexus of chickens continue in the postnatal period, indicating that the maturation process of the gastrointestinal function is gradual. In addition, no significant difference is happening among different intestinal segments during postnatal development, suggesting that the function of different intestinal segments had been determined after

  20. Neuronal nitric oxide synthase in the olfactory system of an adult teleost fish Oreochromis mossambicus.

    PubMed

    Singru, Praful S; Sakharkar, Amul J; Subhedar, Nishikant

    2003-07-11

    The aim of the present study is to explore the distribution of nitric oxide synthase in the olfactory system of an adult teleost, Oreochromis mossambicus using neuronal nitric oxide synthase (nNOS) immunocytochemistry and nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd) histochemistry methods. Intense nNOS immunoreactivity was noticed in several olfactory receptor neurons (ORNs), in their axonal extensions over the olfactory nerve and in some basal cells of the olfactory epithelium. nNOS containing fascicles of the ORNs enter the bulb from its rostral pole, spread in the olfactory nerve layer in the periphery of the bulb and display massive innervation of the olfactory glomeruli. Unilateral ablation of the olfactory organ resulted in dramatic loss of nNOS immunoreactivity in the olfactory nerve layer of the ipsilateral bulb. In the olfactory bulb of intact fish, some granule cells showed intense immunoreactivity; dendrites arising from the granule cells could be traced to the glomerular layer. Of particular interest is the occurrence of nNOS immunoreactivity in the ganglion cells of the nervus terminalis. nNOS containing fibers were also encountered in the medial olfactory tracts as they extend to the telencephalon. The NADPHd staining generally coincides with that of nNOS suggesting that it may serve as a marker for nNOS in the olfactory system of this fish. However, mismatch was encountered in the case of mitral cells, while all are nNOS-negative, few were NADPHd positive. The present study for the first time revealed the occurrence of nNOS immunoreactivity in the ORNs of an adult vertebrate and suggests a role for nitric oxide in the transduction of odor stimuli, regeneration of olfactory epithelium and processing of olfactory signals.

  1. Melatonin influences NO/NOS pathway and reduces oxidative and nitrosative stress in a model of hypoxic-ischemic brain damage.

    PubMed

    Blanco, Santos; Hernández, Raquel; Franchelli, Gustavo; Ramos-Álvarez, Manuel Miguel; Peinado, María Ángeles

    2017-01-30

    In this work, using a rat model combining ischemia and hypobaric hypoxia (IH), we evaluate the relationships between the antioxidant melatonin and the cerebral nitric oxide/nitric oxide synthase (NO/NOS) system seeking to ascertain whether melatonin exerts its antioxidant protective action by balancing this key pathway, which is highly involved in the cerebral oxidative and nitrosative damage underlying these pathologies. The application of the IH model increases the expression of the three nitric oxide synthase (NOS) isoforms, as well as nitrogen oxide (NOx) levels and nitrotyrosine (n-Tyr) impacts on the cerebral cortex. However, melatonin administration before IH makes nNOS expression response earlier and stronger, but diminishes iNOS and n-Tyr expression, while both eNOS and NOx remain unchanged. These results were corroborated by nicotine adenine dinucleotide phosphate diaphorase (NADPH-d) staining, as indicative of in situ NOS activity. In addition, the rats previously treated with melatonin exhibited a reduction in the oxidative impact evaluated by thiobarbituric acid reactive substances (TBARS). Finally, IH also intensified glial fibrillary acidic protein (GFAP) expression, reduced hypoxia-inducible factor-1alpha (HIF-1α), but did not change nuclear factor kappa B (NF-κB); meanwhile, melatonin did not significantly affect any of these patterns after the application of the IH model. The antioxidant melatonin acts on the NO/NOS system after IH injury balancing the release of NO, reducing peroxynitrite formation and protecting from nitrosative/oxidative damage. In addition, this paper raises questions concerning the classical role of some controversial molecules such as NO, which are of great consequence in the final fate of hypoxic neurons. We conclude that melatonin protects the brain from hypoxic/ischemic-derived damage in the first steps of the ischemic cascade, influencing the NO/NOS pathway and reducing oxidative and nitrosative stress. Copyright

  2. Effect of aqueous extract and anthocyanins of calyces of Hibiscus sabdariffa (Malvaceae) in rats with adenine-induced chronic kidney disease.

    PubMed

    Ali, Badreldin H; Cahliková, Lucie; Opletal, Lubomir; Karaca, Turan; Manoj, Priyadarsini; Ramkumar, Aishwarya; Al Suleimani, Yousuf M; Al Za'abi, Mohammed; Nemmar, Abderrahim; Chocholousova-Havlikova, Lucie; Locarek, Miroslav; Siatka, Tomas; Blunden, Gerald

    2017-09-01

    The aim of this work was to assess the possible beneficial effects of aqueous extracts of Hibiscus sabdariffa L. calyces and anthocyanins isolated therefrom in an adenine-induced chronic kidney disease (CKD) model. Rats were orally given, for 28 consecutive days, either adenine alone or together with either aqueous extract of H. sabdariffa calyces (5 and 10%) or anthocyanins (50, 100 and 200 mg/kg of anthocyanin concentrate). For comparative purposes, two groups of rats were given lisinopril (10 mg/kg). When either H. sabdariffa aqueous extract or the anthocyanins isolated from it was administered along with adenine, the adverse effects of adenine-induced CKD were significantly lessened, mostly in a dose-dependent manner. The positive effects were similar to those obtained by administration of lisinopril. The results obtained show that both H. sabdariffa and its anthocyanins could be considered as possible promising safe dietary agents that could be used to attenuate the progression of human CKD. This could have added significance as H. sabdariffa tea is widely consumed in many parts of Africa and Asia and is thus readily available. © 2017 Royal Pharmaceutical Society.

  3. STUDIES ON MAMMALIAN AND HUMAN PYRUVATE AND ALPHA-KETOGLUTARATE DEHYDROGENATION COMPLEXES.

    DTIC Science & Technology

    Enzyme systems that catalyze a coenzyme A- and nicotinamide adenine dinucleotide-linked oxidative decarboxylation of pyruvate and alpha - ketoglutarate ...The pig heart pyruvate dehydrogenase complex was strongly inhibited by EDTA at low concentration, but the pig heart alpha - ketoglutarate ...On the oxidative decarboxylation of alpha -keto acids in pig heart complexes, Ca(2+) was strongly stimulatory to the same or more extent than Mg(2

  4. Death by Protein Damage in Irradiated Cells

    DTIC Science & Technology

    2011-01-01

    tardigrades, J. Exp. Biol. 212 (2009) 4033– 4039. [63] A. Oren, N. Gunde-Cimerman, Mycosporines and mycosporine - like amino acids : UV protectants or...catalytically remove superoxide via a disproportionation mechanism [29,46]; and amino acids and peptides, which scav- enge hydroxyl radicals very efficiently...most radiation resistant mutants of B. pumilus displayed mul- tiple amino acid auxotrophies and a requirement for nicotinamide adenine dinucleotide

  5. Understanding the Sequence Preference of Recurrent RNA Building Blocks using Quantum Chemistry: The Intrastrand RNA Dinucleotide Platform.

    PubMed

    Mládek, Arnošt; Sponer, Judit E; Kulhánek, Petr; Lu, Xiang-Jun; Olson, Wilma K; Sponer, Jiřĺ

    2012-01-10

    Folded RNA molecules are shaped by an astonishing variety of highly conserved noncanonical molecular interactions and backbone topologies. The dinucleotide platform is a widespread recurrent RNA modular building submotif formed by the side-by-side pairing of bases from two consecutive nucleotides within a single strand, with highly specific sequence preferences. This unique arrangement of bases is cemented by an intricate network of noncanonical hydrogen bonds and facilitated by a distinctive backbone topology. The present study investigates the gas-phase intrinsic stabilities of the three most common RNA dinucleotide platforms - 5'-GpU-3', ApA, and UpC - via state-of-the-art quantum-chemical (QM) techniques. The mean stability of base-base interactions decreases with sequence in the order GpU > ApA > UpC. Bader's atoms-in-molecules analysis reveals that the N2(G)…O4(U) hydrogen bond of the GpU platform is stronger than the corresponding hydrogen bonds in the other two platforms. The mixed-pucker sugar-phosphate backbone conformation found in most GpU platforms, in which the 5'-ribose sugar (G) is in the C2'-endo form and the 3'-sugar (U) in the C3'-endo form, is intrinsically more stable than the standard A-RNA backbone arrangement, partially as a result of a favorable O2'…O2P intra-platform interaction. Our results thus validate the hypothesis of Lu et al. (Lu Xiang-Jun, et al. Nucleic Acids Res. 2010, 38, 4868-4876), that the superior stability of GpU platforms is partially mediated by the strong O2'…O2P hydrogen bond. In contrast, ApA and especially UpC platform-compatible backbone conformations are rather diverse and do not display any characteristic structural features. The average stabilities of ApA and UpC derived backbone conformers are also lower than those of GpU platforms. Thus, the observed structural and evolutionary patterns of the dinucleotide platforms can be accounted for, to a large extent, by their intrinsic properties as described by

  6. Gum acacia mitigates genetic damage in adenine-induced chronic renal failure in rats.

    PubMed

    Ali, B H; Al Balushi, K; Al-Husseini, I; Mandel, P; Nemmar, A; Schupp, N; Ribeiro, D A

    2015-12-01

    Subjects with chronic renal failure (CRF) exhibit oxidative genome damage, which may predispose to carcinogenesis, and Gum acacia (GumA) ameliorates this condition in humans and animals. We evaluated here renal DNA damage and urinary excretion of four nucleic acid oxidation adducts namely 8-oxoguanine (8-oxoGua), 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), 8-oxoguanosine (8-oxoGuo) and 8-hydroxy-2-deoxyguanisone (8-OHdg) in rats with adenine (ADE)-induced CRF with and without GumA treatment. Twenty-four rats were divided into four equal groups and treated for 4 weeks. The first group was given normal food and water (control). The second group was given normal food and GumA (15% w/v) in drinking water. The third group was fed powder diet containing adenine (ADE) (0·75% w/w in feed). The fourth group was fed like in the third group, plus GumA in drinking water (15%, w/v). ADE feeding induced CRF (as measured by several physiological, biochemical and histological indices) and also caused a significant genetic damage and significant decreases in urinary 8-oxo Gua and 8-oxoGuo, but not in the other nucleic acids. However, concomitant GumA treatment reduced the level of genetic damage in kidney cells as detected by Comet assay and significantly reversed the effect of adenine on urinary 8-oxoGuo. Treatment with GumA is able to mitigate genetic damage in renal tissues of rats with ADE-induced CRF. © 2015 Stichting European Society for Clinical Investigation Journal Foundation.

  7. Evidence of the Importance of Nox4 in Production of Hypertension in Dahl Salt-Sensitive Rats.

    PubMed

    Cowley, Allen W; Yang, Chun; Zheleznova, Nadezhda N; Staruschenko, Alexander; Kurth, Theresa; Rein, Lisa; Kumar, Vikash; Sadovnikov, Katherine; Dayton, Alex; Hoffman, Matthew; Ryan, Robert P; Skelton, Meredith M; Salehpour, Fahimeh; Ranji, Mahsa; Geurts, Aron

    2016-02-01

    This study reports the consequences of knocking out NADPH (nicotinamide adenine dinucleotide phosphate) oxidase 4 (Nox4) on the development of hypertension and kidney injury in the Dahl salt-sensitive (SS) rat. Zinc finger nuclease injection of single-cell SS embryos was used to create an 8 base-pair frame-shift deletion of Nox4, resulting in a loss of the ≈68 kDa band in Western blot analysis of renal cortical tissue of the knock out of Nox4 in the SS rat (SS(Nox4-/-)) rats. SS(Nox4-/-) rats exhibited a significant reduction of salt-induced hypertension compared with SS rats after 21 days of 4.0% NaCl diet (134±5 versus 151±3 mm Hg in SS) and a significant reduction of albuminuria, tubular casts, and glomerular injury. Optical fluorescence 3-dimensional cryoimaging revealed significantly higher redox ratios (NADH/FAD [reduced nicotinamide adenine dinucleotide/flavin adenine dinucleotide]) in the kidneys of SS(Nox4-/-) rats even when fed the 0.4% NaCl diet, indicating greater levels of mitochondrial electron transport chain metabolic activity and reduced oxidative stress compared with SS rats. Before the development of hypertension, RNA expression levels of Nox subunits Nox2, p67(phox), and p22(phox) were found to be significantly lower (P<0.05) in SS(Nox4-/-) compared with SS rats in the renal cortex. Thus, the mutation of Nox4 seems to modify transcription of several genes in ways that contribute to the protective effects observed in the SS(Nox4-/-) rats. We conclude that the reduced renal injury and attenuated blood pressure response to high salt in the SS(Nox4-/-) rat could be the result of multiple pathways, including gene transcription, mitochondrial energetics, oxidative stress, and protein matrix production impacted by the knock out of Nox4. © 2015 American Heart Association, Inc.

  8. Probing adenine rings and backbone linkages using base specific isotope-edited Raman spectroscopy: application to group II intron ribozyme domain V.

    PubMed

    Chen, Yuanyuan; Eldho, Nadukkudy V; Dayie, T Kwaku; Carey, Paul R

    2010-04-27

    Raman difference spectroscopy is used to probe the properties of a 36-nt RNA molecule, "D5", which lies at the heart of the catalytic apparatus in group II introns. For D5 that has all of its adenine residues labeled with (13)C and (15)N and utilizing Raman difference spectroscopy, we identify the conformationally sensitive -C-O-P-O-C- stretching modes of the unlabeled bonds adjacent to adenine bases, as well as the adenine ring modes themselves. The phosphodiester modes can be assigned to individual adenine residues based on earlier NMR data. The effect of Mg(2+) binding was explored by analyzing the Raman difference spectra for [D5 + Mg(2+)] minus [D5 no Mg(2+)], for D5 unlabeled, or D5 labeled with (13)C/(15)N-enriched adenine. In both sets of data we assign differential features to G ring modes perturbed by Mg(2+) binding at the N7 position. In the A-labeled spectra we attribute a Raman differential near 1450 cm(-1) and changes of intensity at 1296 cm(-1) to Mg binding at the N7 position of adenine bases. The A and G bases involved in Mg(2+) binding again can be identified using earlier NMR results. For the unlabeled D5, a change in the C-O-P-O-C stretch profile at 811 cm(-1) upon magnesium binding is due to a "tightening up" (in the sense of a more rigid molecule with less dynamic interchange among competing ribose conformers) of the D5 structure. For adenine-labeled D5, small changes in the adenine backbone bond signatures in the 810-830 cm(-1) region suggest that small conformational changes occur in the tetraloop and bulge regions upon binding of Mg(2+). The PO(2)(-) stretching vibration, near 1100 cm(-1), from the nonbridging phosphate groups, probes the effect of Mg(2+)-hydrate inner-sphere interactions that cause an upshift. In turn, the upshift is modulated by the presence of monovalent cations since in the presence of Na(+) and Li(+) the upshift is 23 +/- 2 cm(-1) while in the presence of K(+) and Cs(+) it is 13 +/- 3 cm(-1), a finding that correlates

  9. Streptozotocin Diabetes CORRELATION WITH EXTENT OF DEPRESSION OF PANCREATIC ISLET NICOTINAMIDE ADENINE DINUCLEOTIDE

    PubMed Central

    Anderson, Tom; Schein, Philip S.; McMenamin, Mary G.; Cooney, David A.

    1974-01-01

    The diabetogenic activity of streptozotocin has been correlated with a reduction in pyridine nucleotide synthesis in the mouse pancreatic islet. To determine the specificity of this reduction for diabetogenicity, a comparative study of streptozotocin, its cytotoxic moiety, 1-methyl-1-nitrosourea, and alloxan was performed. Streptozotocin administered intraperitoneally (i.p.) producd a dose-related reduction in islet NAD which was proportional to the degree of diabetogenicity. A diabetogenic dose, 200 mg/kg, attained a peak plasma N-nitroso intact streptozotocin concentration of 0.224 μmol/ml and reduced the mean islet NAD from a control of 0.78 to 0.15 pmol. At borderline, 150 mg/kg, and nondiabetogenic, 100 mg/kg, doses, plasma concentrations reached 0.161 and 0.136 μmol/ml, and NAD was 0.36 and 0.86 pmol/islet, respectively. 1-Methyl-1-nitrosourea, 100 mg/kg, attained a maximum N-nitroso intact 1-methyl-1-nitrosourea concentration of 0.162 μmol/ml and reduced the mean NAD to 0.58 pmol/islet, and was nondiabetogenic; 200 mg/kg attained a peak plasma concentration of 0.344 μmol/ml and depressed NAD to 0.38 pmol/islet, and was inconsistently diabetogenic. Islet NAD of 0.4 pmol/islet or greater is required for integrity of the beta cell. A diabetogenic dose of alloxan, 500 mg/kg, did not depress NAD, 0.85 pmol/islet, therefore confirming that its mechanism of diabetogenicity differs from that of streptozotocin. In vivo uptake of [methyl-14C]streptozotocin by islets was 3.8 times that of [methyl-14C]-1-methyl-1-nitrosourea, whereas uptake by the exocrine pancreas favored 1-methyl-1-nitrosourea over streptozotocin 2.4:1. The decreased islet uptake of 1-methyl-1-nitrosourea correlates with the 3.5 times increased molar dosage required to produce islet NAD depression comparable to that of streptozotocin, 150 mg/kg. These studies indicate that the glucose carrier of streptozotocin facilitates uptake of its cytotoxic group, 1-methyl-1-nitrosourea, into islets. PMID:4369217

  10. DNA adenine methylation of sams1 gene in symbiont-bearing Amoeba proteus.

    PubMed

    Jeon, Taeck J

    2008-10-01

    The expression of amoeba sams genes is switched from sams1 to sams2 when amoebae are infected with Legionella jeonii. To elucidate the mechanism for the inactivation of host sams1 gene by endosymbiotic bacteria, methylation states of the sams1 gene of D and xD amoebae was compared in this study. The sams1 gene of amoebae was methylated at an internal adenine residue of GATC site in symbiont-bearing xD amoebae but not in symbiont-free D amoebae, suggesting that the modification might have caused the inactivation of sams1 in xD amoebae. The sams1 gene of xD amoebae was inactivated at the transcriptional level. Analysis of DNA showed that adenine residues in L. jeonii sams were also methylated, implying that L. jeonii bacteria belong to a Dam methylase-positive strain. In addition, both SAM and Met appeared to act as negative regulators for the expression of sams1 whereas the expression of sams2 was not affected in amoebae.

  11. DNA adenine methylation modulates pathogenicity of Klebsiella pneumoniae genotype K1.

    PubMed

    Fang, Chi-Tai; Yi, Wen-Ching; Shun, Chia-Tung; Tsai, Shih-Feng

    2017-08-01

    Klebsiella pneumoniae genotype K1 is a highly virulent pathogen that causes liver abscess and metastatic endophthalmitis/meningitis. Whether its pathogenicity is controlled by DNA adenine methylase (Dam), an epigenetic regulator of bacterial virulence gene expression, is yet unknown. We aimed to study the role of DNA adenine methylation in the pathogenicity of K. pneumoniae genotype K1. We identified the dam gene in the prototype tissue-invasive strain (NTUH-K2044) of K. pneumoniae genotype K1, using the strain's complete genome sequence in GenBank. We constructed a dam - mutant and compared it with the wild type, in terms of in vitro serum resistance and in vivo BALB/cByl mice inoculation. Loss of Dam activity in the mutant was verified by MboI restriction digestion of the genomic DNA and a 1000-fold increase in spontaneous mutation rate. The dam mutant lost at least 68% of serum resistance when compared with the wild type (survival ratio at 1 hour: 2.6 ± 0.4 vs. 8.2 ± 1.9; at 2 hours: 3.9 ± 1.6 vs. 17.4 ± 3.6; p values < 0.05). Likewise, virulence to mice decreased by 40-fold in an intraperitoneal injection model [lethal dose, 50% (LD 50 ): 2 × 10 3 colony-forming units (CFUs) vs. 5 × 10 1 CFUs] and by sixfold in a gastric ingestion model (LD 50 : 3 × 10 4 CFUs vs. 5 × 10 3 CFUs). Attenuation of the dam mutant was not attributable to its growth rate, which was similar to that of the wild type. Our results support the view that DNA adenine methylation plays an important role in modulating the pathogenicity of K. pneumoniae genotype K1. The incomplete attenuation indicates the existence of other regulatory factors. Copyright © 2015. Published by Elsevier B.V.

  12. Efficacy of Adenine in the Treatment of Leukopenia and Neutropenia Associated with an Overdose of Antipsychotics or Discontinuation of Lithium Carbonate Administration: Three Case Studies.

    PubMed

    Tomita, Takashi; Goto, Hidekazu; Sumiya, Kenji; Yoshida, Tadashi; Tanaka, Katsuya; Kohda, Yukinao

    2016-11-30

    Because adenine is effective for managing cases of radiation-induced and drug-induced leukopenia, it may be effective in cases of antipsychotic-induced leukopenia and neutropenia. Here, we report our experience with patients with leukopenia and neutropenia caused by an antipsychotic overdose or discontinuation of lithium carbonate, in whom adenine administration ameliorated the white blood cell and neutrophil counts. The progress of patients suggests that adenine is effective in cases of leukopenia and neutropenia associated with lithium carbonate discontinuation and an antipsychotic overdose.

  13. Effects of low-molecular-weight-chitosan on the adenine-induced chronic renal failure rats in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Zhi, Xuan; Han, Baoqin; Sui, Xianxian; Hu, Rui; Liu, Wanshun

    2015-02-01

    The effects of low-molecular-weight-chitosan (LMWC) on chronic renal failure (CRF) rats induced by adenine were investigated in vivo and in vitro. Chitosan were hydrolyzed using chitosanase at pH 6-7 and 37° for 24 h to obtain LMWC. In vitro, the effect of LMWC on the proliferation of renal tubular epithelial cells (RTEC) showed that it had no cytotoxic effect and could promote cell growth. For the in vivo experiment, chronic renal failure rats induced by adenine were randomly divided into control group, Niaoduqing group, and high-, medium- and low-dose LMWC groups. For each group, we detected serum creatinine (SCR), blood urea nitrogen (BUN), and total superoxide dismutase (T-SOD), glutathione oxidase (GSH-Px) activities of renal tissue, and obtained the ratio of kidney weight/body weight, pathological changes of kidney. The levels of serum SCR, BUN were higher in the adenine-induced rats than those in the control group, indicating that the rat chronic renal failure model worked successfully. The results after treatment showed that LMWC could reduce the SCR and BUN levels and enhance the activities/levels of T-SOD and GSH-PX in kidney compared to control group. Histopathological examination revealed that adenine-induced renal alterations were restored by LMWC at three tested dosages, especially at the low dosage of 100 mg kg-1 d-1.

  14. Adenine radicals generated in alternating AT duplexes by direct absorption of low-energy UV radiation.

    PubMed

    Banyasz, Akos; Ketola, Tiia; Martínez-Fernández, Lara; Improta, Roberto; Markovitsi, Dimitra

    2018-04-17

    There is increasing evidence that the direct absorption of photons with energies that are lower than the ionization potential of nucleobases may result in oxidative damage to DNA. The present work, which combines nanosecond transient absorption spectroscopy and quantum mechanical calculations, studies this process in alternating adenine-thymine duplexes (AT)n. We show that the one-photon ionization quantum yield of (AT)10 at 266 nm (4.66 eV) is (1.5 ± 0.3) × 10-3. According to our PCM/TD-DFT calculations carried out on model duplexes composed of two base pairs, (AT)1 and (TA)1, simultaneous base pairing and stacking does not induce important changes in the absorption spectra of the adenine radical cation and deprotonated radical. The adenine radicals, thus identified in the time-resolved spectra, disappear with a lifetime of 2.5 ms, giving rise to a reaction product that absorbs at 350 nm. In parallel, the fingerprint of reaction intermediates other than radicals, formed directly from singlet excited states and assigned to AT/TA dimers, is detected at shorter wavelengths. PCM/TD-DFT calculations are carried out to map the pathways leading to such species and to characterize their absorption spectra; we find that, in addition to the path leading to the well-known TA* photoproduct, an AT photo-dimerization path may be operative in duplexes.

  15. Label-free in vivo flow cytometry in zebrafish using two-photon autofluorescence imaging.

    PubMed

    Zeng, Yan; Xu, Jin; Li, Dong; Li, Li; Wen, Zilong; Qu, Jianan Y

    2012-07-01

    We demonstrate a label-free in vivo flow cytometry in zebrafish blood vessels based on two-photon excited autofluorescence imaging. The major discovery in this work is the strong autofluorescence emission from the plasma in zebrafish blood. The plasma autofluorescence provides excellent contrast for visualizing blood vessels and counting blood cells. In addition, the cellular nicotinamide adenine dinucleotide autofluorescence enables in vivo imaging and counting of white blood cells (neutrophils).

  16. ROS open roads to roundworm infection.

    PubMed

    Feng, Baomin; Shan, Libo

    2014-04-08

    The rapid production of reactive oxygen species (ROS) upon pathogen attack is generally considered a defense mechanism for microbial killing and an initiation of host defense responses in plants and animals. In this issue, Siddique et al. show that nicotinamide adenine dinucleotide phosphate oxidase-derived ROS function as a pathogenicity factor to promote the roundworm nematode infection in Arabidopsis thaliana, revealing the complex action of ROS in host-pathogen interactions.

  17. Metabolic adaptation to long term changes in gravity environment

    NASA Astrophysics Data System (ADS)

    Slenzka, K.; Appel, R.; Rahmann, H.

    Biochemical analyses of the brain of Cichlid fish larvae, exposed during their very early development for 7 days to an increased acceleration of 3g (hyper-gravity), revealed a decrease in brain nucleoside diphosphate kinase (NDPK) as well as creatine kinase (BB-CK) activity. Using high performance liquid chromatography (HPLC) the concentrations of adenine nucleotides (AMP, ADP, ATP), phosphocreatine (CP), as well as of nicotineamide adenine dinucleotides (NAD, NADP) were analyzed in the brain of hyper-g exposed larvae vs. 1g controls. A slight reduction in the total adenine nucleotides (TAN) as well as the adenylate energy charge (AEC) was found. In parallel a significant increase in the NAD concentration and a corresponding decrease in NADP concentration occurred in larva's hyper-g brains vs. 1g controls. These results give further evidence for an influence of gravity on cellular level and furthermore contribute to a clarification of the cellular signal-response chain for gravity perception.

  18. The effect of swimming exercise on adenine-induced kidney disease in rats, and the influence of curcumin or lisinopril thereon

    PubMed Central

    Karaca, Turan; Al Suleimani, Yousuf; Al Za'abi, Mohammed; Al Kalbani, Jamila; Ashique, Mohammed; Nemmar, Abderrahim

    2017-01-01

    Patients with chronic kidney disease (CKD) have been reported to benefit from different types of exercises. It has also been shown that the ACE inhibitor lisinopril, and the natural product curcumin are also beneficial in different models of CKD in rats. We assessed the influence of moderate swimming exercise (SE) on rats with adenine-induced CKD, and tested the possible effects of lisinopril and/or curcumin thereon using several physiological, biochemical, histopathological and immunohistochemical parameters. Rats (either sedentary or subjected to SE) were randomly divided into several groups, and given for five weeks either normal food or food mixed with adenine (0.25% w/w) to induce CKD. Some of these groups were also concomitantly treated orally with curcumin (75 mg/kg), or lisinopril (10 mg/kg) and were subjected to moderate SE (45 min/day three days each week). Rats fed adenine showed the typical biochemical, histopathological signs of CKD such as elevations in blood pressure, urinary albumin / creatinine ratio, and plasma urea, creatinine, indoxyl sulfate and phosphorus. SE, curcumin or lisinopril, given singly, significantly ameliorated all the adenine-induced actions. Administering curcumin or lisinopril with SE improved the histopathology of the kidneys, a salutary effect not seen with SE alone. Combining SE to the nephroprotective agents’ curcumin or lisinopril might offer additional nephroprotection. PMID:28445490

  19. Development of bright fluorescent quadracyclic adenine analogues: TDDFT-calculation supported rational design

    NASA Astrophysics Data System (ADS)

    Foller Larsen, Anders; Dumat, Blaise; Wranne, Moa S.; Lawson, Christopher P.; Preus, Søren; Bood, Mattias; Gradén, Henrik; Marcus Wilhelmsson, L.; Grøtli, Morten

    2015-07-01

    Fluorescent base analogues (FBAs) comprise a family of increasingly important molecules for the investigation of nucleic acid structure and dynamics. We recently reported the quantum chemical calculation supported development of four microenvironment sensitive analogues of the quadracyclic adenine (qA) scaffold, the qANs, with highly promising absorptive and fluorescence properties that were very well predicted by TDDFT calculations. Herein, we report on the efficient synthesis, experimental and theoretical characterization of nine novel quadracyclic adenine derivatives. The brightest derivative, 2-CNqA, displays a 13-fold increased brightness (ɛΦF = 4500) compared with the parent compound qA and has the additional benefit of being a virtually microenvironment-insensitive fluorophore, making it a suitable candidate for nucleic acid incorporation and use in quantitative FRET and anisotropy experiments. TDDFT calculations, conducted on the nine novel qAs a posteriori, successfully describe the relative fluorescence quantum yield and brightness of all qA derivatives. This observation suggests that the TDDFT-based rational design strategy may be employed for the development of bright fluorophores built up from a common scaffold to reduce the otherwise costly and time-consuming screening process usually required to obtain useful and bright FBAs.

  20. Assessing the photoaging process at sun exposed and non-exposed skin using fluorescence lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Saito Nogueira, Marcelo; Kurachi, Cristina

    2016-03-01

    Photoaging is the skin premature aging due to exposure to ultraviolet light, which damage the collagen, elastin and can induce alterations on the skin cells DNA, and, then, it may evolve to precancerous lesions, which are widely investigated by fluorescence spectroscopy and lifetime. The fluorescence spectra and fluorescence lifetime analysis has been presented as a technique of great potential for biological tissue characterization at optical diagnostics. The main targeted fluorophores are NADH (nicotinamide adenine dinucleotide) and FAD (flavin adenine dinucleotide), which have free and bound states, each one with different average lifetimes. The average lifetimes for free and bound NADH and FAD change according to tissue metabolic alterations and may contribute to a non-invasive clinical investigation of injuries such as skin lesions. These lesions and the possible areas where they may develop can be interrogated using fluorescence lifetime spectroscopy taking into account the variability of skin phototypes and the changes related to melanin, collagen and elastin, endogenous fluorophores which have emissions that spectrally overlap to the NADH and FAD emission. The objective of this study is to assess the variation on fluorescence lifetimes of normal skin at sun exposed and non-exposed areas and associate this variation to the photoaging process.

  1. Rapid measurement of meat spoilage using fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Wu, Binlin; Dahlberg, Kevin; Gao, Xin; Smith, Jason; Bailin, Jacob

    2017-02-01

    Food spoilage is mainly caused by microorganisms, such as bacteria. In this study, we measure the autofluorescence in meat samples longitudinally over a week in an attempt to develop a method to rapidly detect meat spoilage using fluorescence spectroscopy. Meat food is a biological tissue, which contains intrinsic fluorophores, such as tryptophan, collagen, nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) etc. As meat spoils, it undergoes various morphological and chemical changes. The concentrations of the native fluorophores present in a sample may change. In particular, the changes in NADH and FAD are associated with microbial metabolism, which is the most important process of the bacteria in food spoilage. Such changes may be revealed by fluorescence spectroscopy and used to indicate the status of meat spoilage. Therefore, such native fluorophores may be unique, reliable and nonsubjective indicators for detection of spoiled meat. The results of the study show that the relative concentrations of all above fluorophores change as the meat samples kept in room temperature ( 19° C) spoil. The changes become more rapidly after about two days. For the meat samples kept in a freezer ( -12° C), the changes are much less or even unnoticeable over a-week-long storage.

  2. The Arabidopsis dwarf1 Mutant Is Defective in the Conversion of 24-Methylenecholesterol to Campesterol in Brassinosteroid Biosynthesis1

    PubMed Central

    Choe, Sunghwa; Dilkes, Brian P.; Gregory, Brian D.; Ross, Amanda S.; Yuan, Heng; Noguchi, Takahiro; Fujioka, Shozo; Takatsuto, Suguru; Tanaka, Atsushi; Yoshida, Shigeo; Tax, Frans E.; Feldmann, Kenneth A.

    1999-01-01

    Since the isolation and characterization of dwarf1-1 (dwf1-1) from a T-DNA insertion mutant population, phenotypically similar mutants, including deetiolated2 (det2), constitutive photomorphogenesis and dwarfism (cpd), brassinosteroid insensitive1 (bri1), and dwf4, have been reported to be defective in either the biosynthesis or the perception of brassinosteroids. We present further characterization of dwf1-1 and additional dwf1 alleles. Feeding tests with brassinosteroid-biosynthetic intermediates revealed that dwf1 can be rescued by 22α-hydroxycampesterol and downstream intermediates in the brassinosteroid pathway. Analysis of the endogenous levels of brassinosteroid intermediates showed that 24-methylenecholesterol in dwf1 accumulates to 12 times the level of the wild type, whereas the level of campesterol is greatly diminished, indicating that the defective step is in C-24 reduction. Furthermore, the deduced amino acid sequence of DWF1 shows significant similarity to a flavin adenine dinucleotide-binding domain conserved in various oxidoreductases, suggesting an enzymatic role for DWF1. In support of this, 7 of 10 dwf1 mutations directly affected the flavin adenine dinucleotide-binding domain. Our molecular characterization of dwf1 alleles, together with our biochemical data, suggest that the biosynthetic defect in dwf1 results in reduced synthesis of bioactive brassinosteroids, causing dwarfism. PMID:10069828

  3. Imaging Redox State in Mouse Muscles of Different Ages.

    PubMed

    Moon, Lily; Frederick, David W; Baur, Joseph A; Li, Lin Z

    2017-01-01

    Aging is the greatest risk factor for many diseases. Intracellular concentrations of nicotinamide adenine dinucleotide (NAD + ) and the NAD + -coupled redox state have been proposed to moderate many aging-related processes, yet the specific mechanisms remain unclear. The concentration of NAD + falls with age in skeletal muscle, yet there is no consensus on whether aging will increase or decrease the redox potential of NAD + /NADH. Oxidized flavin groups (Fp) (e.g. FAD, i.e., flavin adenine dinucleotide, contained in flavoproteins) and NADH are intrinsic fluorescent indicators of oxidation and reduction status of tissue, respectively. The redox ratio, i.e., the ratio of Fp to NADH, may be a surrogate indicator of the NAD + /NADH redox potential. In this study we used the Chance redox scanner (NADH/Fp fluorescence imaging at low temperature) to investigate the effect of aging on the redox state of mitochondria in skeletal muscles. The results showed that there are borderline significant differences in nominal concentrations of Fp and NADH, but not in the redox ratio s when comparing 3.5-month and 13-month old muscles of mice (n = 6). It may be necessary to increase the number of muscle samples and study mice of more advanced age.

  4. Non-Euclidean phasor analysis for quantification of oxidative stress in ex vivo human skin exposed to sun filters using fluorescence lifetime imaging microscopy

    NASA Astrophysics Data System (ADS)

    Osseiran, Sam; Roider, Elisabeth M.; Wang, Hequn; Suita, Yusuke; Murphy, Michael; Fisher, David E.; Evans, Conor L.

    2017-12-01

    Chemical sun filters are commonly used as active ingredients in sunscreens due to their efficient absorption of ultraviolet (UV) radiation. Yet, it is known that these compounds can photochemically react with UV light and generate reactive oxygen species and oxidative stress in vitro, though this has yet to be validated in vivo. One label-free approach to probe oxidative stress is to measure and compare the relative endogenous fluorescence generated by cellular coenzymes nicotinamide adenine dinucleotides and flavin adenine dinucleotides. However, chemical sun filters are fluorescent, with emissive properties that contaminate endogenous fluorescent signals. To accurately distinguish the source of fluorescence in ex vivo skin samples treated with chemical sun filters, fluorescence lifetime imaging microscopy data were processed on a pixel-by-pixel basis using a non-Euclidean separation algorithm based on Mahalanobis distance and validated on simulated data. Applying this method, ex vivo samples exhibited a small oxidative shift when exposed to sun filters alone, though this shift was much smaller than that imparted by UV irradiation. Given the need for investigative tools to further study the clinical impact of chemical sun filters in patients, the reported methodology may be applied to visualize chemical sun filters and measure oxidative stress in patients' skin.

  5. Electrocatalytic reaction of hydrogen peroxide and NADH based on poly(neutral red) and FAD hybrid film.

    PubMed

    Lin, Kuo Chiang; Lin, Yu Ching; Chen, Shen Ming

    2012-01-07

    A simple method to immobilize poly(neutral red) (PNR) and flavin adenine dinucleotide (FAD) hybrid film (PNR/FAD) by cyclic voltammetry is proposed. The PNR/FAD hybrid film can be easily prepared on an electrode surface involving electropolymerization of neutral red (NR) monomers and the electrostatic interaction between the positively charged PNR and the negatively charged FAD. It exhibits electroactive, stable, surface-confined, pH-dependent, nano-sized, and compatible properties. It provides good electrocatalytic properties to various species. It shows a sensitivity of 5.4 μA mM(-1) cm(-2) and 21.5 μA mM(-1) cm(-2) for hydrogen peroxide (H(2)O(2)) and nicotinamide adenine dinucleotide (NADH) with the linear range of 0.1 μM-39 mM and 5 × 10(-5) to 2.5 × 10(-4) M, respectively. It shows another linear range of 48.8-355.5 mM with the sensitivity of 12.3 μA mM(-1) cm(-2) for H(2)O(2). In particular, the PNR/FAD hybrid film has potential to replace some hemoproteins to be a cathode of biofuel cells and provide the biosensing system for glucose and ethanol. This journal is © The Royal Society of Chemistry 2012

  6. Non-Euclidean phasor analysis for quantification of oxidative stress in ex vivo human skin exposed to sun filters using fluorescence lifetime imaging microscopy.

    PubMed

    Osseiran, Sam; Roider, Elisabeth M; Wang, Hequn; Suita, Yusuke; Murphy, Michael; Fisher, David E; Evans, Conor L

    2017-12-01

    Chemical sun filters are commonly used as active ingredients in sunscreens due to their efficient absorption of ultraviolet (UV) radiation. Yet, it is known that these compounds can photochemically react with UV light and generate reactive oxygen species and oxidative stress in vitro, though this has yet to be validated in vivo. One label-free approach to probe oxidative stress is to measure and compare the relative endogenous fluorescence generated by cellular coenzymes nicotinamide adenine dinucleotides and flavin adenine dinucleotides. However, chemical sun filters are fluorescent, with emissive properties that contaminate endogenous fluorescent signals. To accurately distinguish the source of fluorescence in ex vivo skin samples treated with chemical sun filters, fluorescence lifetime imaging microscopy data were processed on a pixel-by-pixel basis using a non-Euclidean separation algorithm based on Mahalanobis distance and validated on simulated data. Applying this method, ex vivo samples exhibited a small oxidative shift when exposed to sun filters alone, though this shift was much smaller than that imparted by UV irradiation. Given the need for investigative tools to further study the clinical impact of chemical sun filters in patients, the reported methodology may be applied to visualize chemical sun filters and measure oxidative stress in patients' skin. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  7. Ebselen Reversibly Inhibits Human Glutamate Dehydrogenase at the Catalytic Site.

    PubMed

    Jin, Yanhong; Li, Di; Lu, Shiying; Zhao, Han; Chen, Zhao; Hou, Wei; Ruan, Benfang Helen

    Human glutamate dehydrogenase (GDH) plays an important role in neurological diseases, tumor metabolism, and hyperinsulinism-hyperammonemia syndrome (HHS). However, there are very few inhibitors known for human GDH. Recently, Ebselen was reported to crosslink with Escherichia coli GDH at the active site cysteine residue (Cys321), but the sequence alignment showed that the corresponding residue is Ala329 in human GDH. To investigate whether Ebselen could be an inhibitor for human GDH, we cloned and expressed an N-terminal His-tagged human GDH in E. coli. The recombinant human GDH enzyme showed expected properties such as adenosine diphosphate activation and nicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide phosphate dual recognition. Further, we developed a 2-(3-(2-methoxy-4-nitrophenyl)-2-(4-nitrophenyl)-2H-tetrazol-3-ium-5-yl) benzenesulfonate sodium salt (EZMTT)-based assay for human GDH, which was highly sensitive and is suitable for high-throughput screening for potent GDH inhibitors. In addition, ForteBio binding assays demonstrated that Ebselen is a reversible active site inhibitor for human GDH. Since Ebselen is a multifunctional organoselenium compound in Phase III clinical trials for inflammation, an Ebselen-based GDH inhibitor might be valuable for future drug discovery for HHS patients.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baig, M.; Brown, A.; Eswaramoorthy, S.

    Klebsiella pneumoniae, a gram-negative enteric bacterium, is found in nosocomial infections which are acquired during hospital stays for about 10% of hospital patients in the United States. The crystal structure of a putative oxidoreductase from K. pneumoniae has been determined. The structural information of this K. pneumoniae protein was used to understand its function. Crystals of the putative oxidoreductase enzyme were obtained by the sitting drop vapor diffusion method using Polyethylene glycol (PEG) 3350, Bis-Tris buffer, pH 5.5 as precipitant. These crystals were used to collect X-ray data at beam line X12C of the National Synchrotron Light Source (NSLS) atmore » Brookhaven National Laboratory (BNL). The crystal structure was determined using the SHELX program and refi ned with CNS 1.1. This protein, which is involved in the catalysis of an oxidation-reduction (redox) reaction, has an alpha/beta structure. It utilizes nicotinamide adenine dinucleotide phosphate (NADP) or nicotine adenine dinucleotide (NAD) to perform its function. This structure could be used to determine the active and co-factor binding sites of the protein, information that could help pharmaceutical companies in drug design and in determining the protein’s relationship to disease treatment such as that for pneumonia and other related pathologies.« less

  9. Fluorescence decay kinetics and imaging of NAD(P)H and flavins as metabolic indicators

    NASA Astrophysics Data System (ADS)

    Schneckenburger, Herbert; Koenig, Karsten

    1992-07-01

    The intrinsic fluorescence of various cell cultures in the blue and green spectral range has been attributed mainly to hydrated nicotinamide adenine dinucleotide (NADH) and flavin molecules. Their fluorescence decay curves were measured with subnanosecond resolution. The reduced coenzymes NADH and hydrated nicotinamide adenine dinucleotide phosphate NADPH, both showed a biexponential decay pattern in solution with similar time constants, but different relative intensities of the two components. They could thus be distinguished from one another as well as from their oxidized forms. The NADPH fluorescence of Saccharomyces cerevisiae was located within the cytoplasm and its organelles and was by about a factor of 4 higher for respiratory-deficient than for intact yeast strains. Intracellular flavin fluorescence showed a triexponential behavior--probably due to a superposition of protein-bound and free flavin molecules. The lifetime of the shortest component varied within the range of 0.20 to 0.50 ns between respiratory-deficient and intact yeast strains, and the relative intensity of this component was most pronounced for the intact strain DL1. Time- resolved fluorescence seems therefore to be an appropriate method of probe the function of the respiratory chain and--in the further step--to differentiate between various types of cells and tissues in medical diagnosis or environmental research.

  10. Catabolism of Phloroglucinol by the Rumen Anaerobe Coprococcus

    PubMed Central

    Patel, T. R.; Jure, K. G.; Jones, G. A.

    1981-01-01

    A rumen isolate, Coprococcus, sp. Pe15, was found to carry phloroglucinol reductase, which catalyzed the initial step in the breakdown of phloroglucinol. The organism uses phloroglucinol as the sole source of carbon and energy when grown in the absence of oxygen. Induced levels of enzyme were detected in cells grown either on phloroglucinol or on other carbon sources in the presence of limiting quantities of phloroglucinol. Although the organism is a strict anaerobe, the enzyme from anaerobically grown cells was insensitive to air. The partially purified enzyme required reduced nicotinamide adenine dinucleotide phosphate as an electron donor and was specific for phloroglucinol. However, partial enzyme activity (14 to 17%) was also detected in the presence of 2-methyl-1,4-naphthoquinone but not in the presence of several other phenolic compounds. The enzyme exhibited a higher affinity for phloroglucinol than for reduced nicotinamide adenine dinucleotide phosphate, with Km values of 3.0 × 10−5 M and 29.0 × 10−5 M, respectively. The optimum pH for maximal enzyme activity was 7.4, and the molecular weight of the native protein was about 130,000, as determined by the Sephadex gel filtration technique. PMID:16345897

  11. Blood modulates the kinetics of reactive oxygen release in pancreatic ischemia-reperfusion injury.

    PubMed

    Neeff, Hannes P; Sommer, Olaf; Meyer, Sebastian; Tinelli, Anja; Scholtes, Moritz; Hopt, Ulrich T; Drognitz, Oliver; von Dobschuetz, Ernst

    2012-10-01

    Reason for the unsuccessful use of antioxidants in transplantation might be the unknown kinetics of reactive oxygen species (ROS) release. In this study, we compared the kinetics of ROS release from rat pancreata in the presence and absence of blood. In vivo, ischemia-reperfusion injury (IRI) was induced in pancreata of male Wistar rats by occlusion of the arterial blood supply for 1 or 2 hours. In vitro, isolated pancreata were single-pass perfused with Krebs-Henseleit bicarbonate solution. Reactive oxygen species were quantified by electron spin resonance spectroscopy using CMH (1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine) as spin label. Thiols (glutathione), nicotinamide adenine dinucleotide phosphate-oxidase activity, myeloperoxidase activity, and adenosine triphosphate content were measured. During reperfusion, an increase in IRI-induced ROS in arterial blood was noted after 2 hours of warm ischemia. In sharp contrast, ROS release was immediate and short lived in blood-free perfused organs. The degree of tissue damage correlated with nicotinamide adenine dinucleotide phosphate-oxidase activity and adenosine triphosphate content. Antioxidative capacity of tissues was reduced. Electron spin resonance spectroscopy in conjunction with spin labels allows for the detection of ROS kinetics in pancreatic IRI. Reactive oxygen species kinetics are dependent on the length of the ischemic period and the presence or absence of blood.

  12. Hydration properties of natural and synthetic DNA sequences with methylated adenine or cytosine bases in the R.DpnI target and BDNF promoter studied by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Shanak, Siba; Helms, Volkhard

    2014-12-01

    Adenine and cytosine methylation are two important epigenetic modifications of DNA sequences at the levels of the genome and transcriptome. To characterize the differential roles of methylating adenine or cytosine with respect to their hydration properties, we performed conventional MD simulations and free energy perturbation calculations for two particular DNA sequences, namely the brain-derived neurotrophic factor (BDNF) promoter and the R.DpnI-bound DNA that are known to undergo methylation of C5-methyl cytosine and N6-methyl adenine, respectively. We found that a single methylated cytosine has a clearly favorable hydration free energy over cytosine since the attached methyl group has a slightly polar character. In contrast, capping the strongly polar N6 of adenine with a methyl group gives a slightly unfavorable contribution to its free energy of solvation. Performing the same demethylation in the context of a DNA double-strand gave quite similar results for the more solvent-accessible cytosine but much more unfavorable results for the rather buried adenine. Interestingly, the same demethylation reactions are far more unfavorable when performed in the context of the opposite (BDNF or R.DpnI target) sequence. This suggests a natural preference for methylation in a specific sequence context. In addition, free energy calculations for demethylating adenine or cytosine in the context of B-DNA vs. Z-DNA suggest that the conformational B-Z transition of DNA transition is rather a property of cytosine methylated sequences but is not preferable for the adenine-methylated sequences investigated here.

  13. Hydration properties of natural and synthetic DNA sequences with methylated adenine or cytosine bases in the R.DpnI target and BDNF promoter studied by molecular dynamics simulations.

    PubMed

    Shanak, Siba; Helms, Volkhard

    2014-12-14

    Adenine and cytosine methylation are two important epigenetic modifications of DNA sequences at the levels of the genome and transcriptome. To characterize the differential roles of methylating adenine or cytosine with respect to their hydration properties, we performed conventional MD simulations and free energy perturbation calculations for two particular DNA sequences, namely the brain-derived neurotrophic factor (BDNF) promoter and the R.DpnI-bound DNA that are known to undergo methylation of C5-methyl cytosine and N6-methyl adenine, respectively. We found that a single methylated cytosine has a clearly favorable hydration free energy over cytosine since the attached methyl group has a slightly polar character. In contrast, capping the strongly polar N6 of adenine with a methyl group gives a slightly unfavorable contribution to its free energy of solvation. Performing the same demethylation in the context of a DNA double-strand gave quite similar results for the more solvent-accessible cytosine but much more unfavorable results for the rather buried adenine. Interestingly, the same demethylation reactions are far more unfavorable when performed in the context of the opposite (BDNF or R.DpnI target) sequence. This suggests a natural preference for methylation in a specific sequence context. In addition, free energy calculations for demethylating adenine or cytosine in the context of B-DNA vs. Z-DNA suggest that the conformational B-Z transition of DNA transition is rather a property of cytosine methylated sequences but is not preferable for the adenine-methylated sequences investigated here.

  14. Proton-impact ionization cross sections of adenine measured at 0.5 and 2.0 MeV by electron spectroscopy

    NASA Astrophysics Data System (ADS)

    Iriki, Y.; Kikuchi, Y.; Imai, M.; Itoh, A.

    2011-11-01

    Double-differential ionization cross sections (DDCSs) of vapor-phase adenine molecules (C5H5N5) by 0.5- and 2.0-MeV proton impact have been measured by the electron spectroscopy method. Electrons ejected from adenine were analyzed by a 45∘ parallel-plate electrostatic spectrometer over an energy range of 1.0-1000 eV at emission angles from 15∘ to 165∘. Single-differential cross sections (SDCSs) and total ionization cross sections (TICSs) were also deduced. It was found from the Platzman plot, defined as SDCSs divided by the classical Rutherford knock-on cross sections per target electron, that the SDCSs at higher electron energies are proportional to the total number of valence electrons (50) of adenine, while those at low-energy electrons are highly enhanced due to dipole and higher-order interactions. The present results of TICS are in fairly good agreement with recent classical trajectory Monte Carlo calculations, and moreover, a simple analytical formula gives nearly equivalent cross sections in magnitude at the incident proton energies investigated.

  15. Kinetics and Thermodynamics of the Reaction between the (•)OH Radical and Adenine: A Theoretical Investigation.

    PubMed

    Milhøj, Birgitte O; Sauer, Stephan P A

    2015-06-18

    The accessibility of all possible reaction paths for the reaction between the nucleobase adenine and the (•)OH radical is investigated through quantum chemical calculations of barrier heights and rate constants at the ωB97X-D/6-311++G(2df,2pd) level with Eckart tunneling corrections. First the computational method is validated by considering the hydrogen abstraction from the heterocyclic N9 nitrogen in adenine as a test system. Geometries for all molecules in the reaction are optimized with four different DFT exchange-correlation functionals (B3LYP, BHandHLYP, M06-2X, and ωB97X-D), in combination with Pople and Dunning basis sets, all of which have been employed in similar investigations in the literature. Improved energies are obtained through single point calculations with CCSD(T) and the same basis sets, and reaction rate constants are calculated for all methods both without tunneling corrections and with the Wigner, Bell, and Eckart corrections. In comparison to CCSD(T)//BHandHLYP/aug-cc-pVTZ reference results, the ωB97X-D/6-311++G(2df,2pd) method combined with Eckart tunneling corrections provides a sensible compromise between accuracy and time. Using this method, all subreactions of the reaction between adenine and the (•)OH radical are investigated. The total rate constants for hydrogen abstraction and addition for adenine are predicted with this method to be 1.06 × 10(-12) and 1.10 × 10(-12) cm(3) molecules(-1) s(-1), respectively. Abstractions of H61 and H62 contribute the most, while only addition to the C8 carbon is found to be of any significance, in contrast to previous claims that addition is the dominant reaction pathway. The overall rate constant for the complete reaction is found to be 2.17 × 10(-12) cm(3) molecules(-1) s(-1), which agrees exceptionally well with experimental results.

  16. NAD(P)H-Independent Asymmetric C=C Bond Reduction Catalyzed by Ene Reductases by Using Artificial Co-substrates as the Hydrogen Donor

    PubMed Central

    Winkler, Christoph K; Clay, Dorina; Entner, Marcello; Plank, Markus; Faber, Kurt

    2014-01-01

    To develop a nicotinamide-independent single flavoenzyme system for the asymmetric bioreduction of C=C bonds, four types of hydrogen donor, encompassing more than 50 candidates, were investigated. Six highly potent, cheap, and commercially available co-substrates were identified that (under the optimized conditions) resulted in conversions and enantioselectivities comparable with, or even superior to, those obtained with traditional two-enzyme nicotinamide adenine dinucleotide phosphate (NAD(P)H)-recycling systems. PMID:24382795

  17. An Enzymatic Bioassay for Perchlorate

    DTIC Science & Technology

    2010-07-01

    redox active dye phenazine methosulfate (PMS) and nicotine adenine dinucleotide (NADH). By using a specific addition scheme and covering all...redox potentials determined from (Fultz and Durst, 1982)). The dye structures include an indole, a quinone, a bipyridinium, and two phenazine ...listed above, as well as 100 μM of the dye shown on the x-axis. As can be seen in figure 18, phenazine methosulfate (PMS, fourth from the left) is

  18. Native fluorescence spectroscopy of blood plasma of rats with experimental diabetes: identifying fingerprints of glucose-related metabolic pathways

    NASA Astrophysics Data System (ADS)

    Shirshin, Evgeny; Cherkasova, Olga; Tikhonova, Tatiana; Berlovskaya, Elena; Priezzhev, Alexander; Fadeev, Victor

    2015-05-01

    We present the results of a native fluorescence spectroscopy study of blood plasma of rats with experimental diabetes. It was shown that the fluorescence emission band shape at 320 nm excitation is the most indicative of hyperglycemia in the blood plasma samples. We provide the interpretation of this fact based on the changes in reduced nicotinamide adenine dinucleotide phosphate concentration due to glucose-related metabolic pathways and protein fluorescent cross-linking formation following nonenzymatic glycation.

  19. Spectroscopic study of intermolecular complexes between FAD and some β-carboline derivatives

    NASA Astrophysics Data System (ADS)

    Codoñer, Armando; Monzó, Isidro S.; Tomás, Francisco; Valero, Rosa

    The formation of molecular complexes between flavine adenine dinucleotide (FAD) and some β-carboline derivatives [antidepressant drugs that have a pronounced inhibition of monoamine oxidase (MAO)] has been studied by using electronic absorption and fluorescence spectroscopic methods. Thermodynamic parameters have been determined from the values of association constants for the molecular complexes at various temperatures. The influence of substituents in the β-carboline molecule on the stability of the complexes formed was also investigated.

  20. Theoretical Study of Tautomerization Reactions for the Ground and First Excited Electronic States of Adenine

    NASA Technical Reports Server (NTRS)

    Salter, Latasha M.; Chaban, Galina M.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Geometrical structures and energetic properties for different tautomers of adenine are calculated in this study, using multi-configurational wave functions. Both the ground and the lowest singlet excited state potential energy surfaces are studied. Four tautomeric forms are considered, and their energetic order is found to be different on the ground and the excited state potential energy surfaces. Minimum energy reaction paths are obtained for hydrogen atom transfer (tautomerization) reactions in the ground and the lowest excited electronic states. It is found that the barrier heights and the shapes of the reaction paths are different for the ground and the excited electronic states, suggesting that the probability of such tautomerization reaction is higher on the excited state potential energy surface. This tautomerization process should become possible in the presence of water or other polar solvent molecules and should play an important role in the photochemistry of adenine.

  1. A new microplatform based on titanium dioxide nanofibers/graphene oxide nanosheets nanocomposite modified screen printed carbon electrode for electrochemical determination of adenine in the presence of guanine.

    PubMed

    Arvand, Majid; Ghodsi, Navid; Zanjanchi, Mohammad Ali

    2016-03-15

    The current techniques for determining adenine have several shortcomings such as high cost, high time consumption, tedious pretreatment steps and the requirements for highly skilled personnel often restrict their use in routine analytical practice. This paper describes the development and utilization of a new nanocomposite consisting of titanium dioxide nanofibers (TNFs) and graphene oxide nanosheets (GONs) for screen printed carbon electrode (SPCE) modification. The synthesized GONs and TNFs were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). The modified electrode (TNFs/GONs/SPCE) was used for electrochemical characterization of adenine. The TNFs/GONs/SPCE exhibited an increase in peak current and the electron transfer kinetics and decrease in the overpotential for the oxidation reaction of adenine. Using differential pulse voltammetry (DPV), the prepared sensor showed good sensitivity for determining adenine in two ranges from 0.1-1 and 1-10 μM, with a detection limit (DL) of 1.71 nM. Electrochemical studies suggested that the TNFs/GONs/SPCE provided a synergistic augmentation on the voltammetric behavior of electrochemical oxidation of adenine, which was indicated by the improvement of anodic peak current and a decrease in anodic peak potential. The amount of adenine in pBudCE4.1 plasmid was determined via the proposed sensor and the result was in good compatibility with the sequence data of pBudCE4.1 plasmid. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Adenine derivatives as phosphate-activating groups for the regioselective formation of 3',5'-linked oligoadenylates on montmorillonite: possible phosphate-activating groups for the prebiotic synthesis of RNA

    NASA Technical Reports Server (NTRS)

    Prabahar, K. J.; Ferris, J. P.

    1997-01-01

    Methyladenine and adenine N-phosphoryl derivatives of adenosine 5'-monophosphate (5'-AMP) and uridine 5'-monophosphate (5'-UMP) are synthesized, and their structures are elucidated. The oligomerization reactions of the adenine derivatives of 5'-phosphoramidates of adenosine on montmorillonite are investigated. 1-Methyladenine and 3-methyladenine derivatives on montmorillonite yielded oligoadenylates as long as undecamer, and the 2-methyladenine and adenine derivatives on montmorillonite yielded oligomers up to hexamers and pentamers, respectively. The 1-methyladenine derivative yielded linear, cyclic, and A5'ppA-derived oligonucleotides with a regioselectivity for the 3',5'-phosphodiester linkages averaging 84%. The effect of pKa and amine structure of phosphate-activating groups on the montmorillonite-catalyzed oligomerization of the 5'-phosphoramidate of adenosine are discussed. The binding and reaction of methyladenine and adenine N-phosphoryl derivatives of adenosine are described.

  3. Zhen-wu-tang ameliorates adenine-induced chronic renal failure in rats: regulation of the canonical Wnt4/beta-catenin signaling in the kidneys.

    PubMed

    La, Lei; Wang, Lili; Qin, Fei; Jiang, Jian; He, Songqi; Wang, Chunxia; Li, Yuhao

    2018-06-12

    Zhen-wu-tang (ZWT), composed of Radix Aconiti lateralis, Rhizoma Atractylodis macrocephalae, Poria, Radix Paeoniae alba and ginger, is a classic Chinese herbal formula for the treatment of chronic kidney diseases that may cause chronic renal failure (CRF). To better understand its clinical use, this study investigated the effects and underlying mechanisms of action of ZWT on CRF. CRF was induced by adenine. ZWT was given via an oral gavage method. The serum biochemical parameters were measured enzymatically or by ELISA. The kidneys were examined pathohistologically. The gene expression was analyzed by real time PCR and Western blot. Similar to the positive control losartan, ZWT extract inhibited adenine-induced increase in serum concentrations of creatinine, BUN and advanced oxidation protein products in rats. These effects were accompanied by attenuation of proteinuria and renal pathological changes and suppression of renal mRNA and protein overexpression of Collagen IV and fibronectin, two of the key components of fibrosis. Mechanistically, renal mRNA and protein expression of Wnt4, a Wnt signaling ligand, was increased in the adenine-treated group, compared to the vehicle-treated control. Consistently, Wnt4 downstream genes beta-catenin and Axin were also overexpressed. Treatment with ZWT extract and losartan suppressed adenine-stimulated overexpression of these mRNAs and proteins. The present results demonstrate that ZWT extract ameliorates adenine-induced CRF in rats by regulation of the canonical Wnt4/beta-catenin signaling in the kidneys. Our findings provide new insight into the underlying renoprotective mechanisms of the ancient formula. Copyright © 2017. Published by Elsevier B.V.

  4. Cytosine methylation effects on the repair of O6-methylguanines within CG dinucleotides.

    PubMed

    Guza, Rebecca; Ma, Linan; Fang, Qingming; Pegg, Anthony E; Tretyakova, Natalia

    2009-08-21

    O(6)-alkyldeoxyguanine adducts induced by tobacco-specific nitrosamines are repaired by O(6)-alkylguanine DNA alkyltransferase (AGT), which transfers the O(6)-alkyl group from the damaged base to a cysteine residue within the protein. In the present study, a mass spectrometry-based approach was used to analyze the effects of cytosine methylation on the kinetics of AGT repair of O(6)-methyldeoxyguanosine (O(6)-Me-dG) adducts placed within frequently mutated 5'-CG-3' dinucleotides of the p53 tumor suppressor gene. O(6)-Me-dG-containing DNA duplexes were incubated with human recombinant AGT protein, followed by rapid quenching, acid hydrolysis, and isotope dilution high pressure liquid chromatography-electrospray ionization tandem mass spectrometry analysis of unrepaired O(6)-methylguanine. Second-order rate constants were calculated in the absence or presence of the C-5 methyl group at neighboring cytosine residues. We found that the kinetics of AGT-mediated repair of O(6)-Me-dG were affected by neighboring 5-methylcytosine ((Me)C) in a sequence-dependent manner. AGT repair of O(6)-Me-dG adducts placed within 5'-CG-3' dinucleotides of p53 codons 245 and 248 was hindered when (Me)C was present in both DNA strands. In contrast, cytosine methylation within p53 codon 158 slightly increased the rate of O(6)-Me-dG repair by AGT. The effects of (Me)C located immediately 5' and in the base paired position to O(6)-Me-dG were not additive as revealed by experiments with hypomethylated sequences. Furthermore, differences in dealkylation rates did not correlate with AGT protein affinity for cytosine-methylated and unmethylated DNA duplexes or with the rates of AGT-mediated nucleotide flipping, suggesting that (Me)C influences other kinetic steps involved in repair, e.g. the rate of alkyl transfer from DNA to AGT.

  5. Germination Requirements of Bacillus macerans Spores

    PubMed Central

    Sacks, L. E.; Thompson, P. A.

    1971-01-01

    2-Phenylacetamide is an effective germinant for spores of five strains of Bacillus macerans, particularly in the presence of fructose. Benzyl penicillin, the phenyl acetamide derivative of penicillin, and phenylacetic acid are also good germinants. l-Asparagine is an excellent germinant for four strains. α-Amino-butyric acid is moderately effective. Pyridoxine, pyridoxal, adenine, and 2,6-diaminopurine are potent germinants for NCA strain 7X1 only. d-Glucose is a powerful germinant for strain B-70 only. d-Fructose and d-ribose strongly potentiate germination induced by other germinants (except l-asparagine) but have only weak activity by themselves. Niacinamide and nicotinamide-adenine dinucleotide, inactive by themselves, are active in the presence of fructose or ribose. Effects of pH, ion concentration, and temperature are described. PMID:4251279

  6. Detection of Guanine and Adenine Using an Aminated Reduced Graphene Oxide Functional Membrane-Modified Glassy Carbon Electrode

    PubMed Central

    Li, Di; Yang, Xiao-Lu; Xiao, Bao-Lin; Geng, Fang-Yong; Hong, Jun; Sheibani, Nader; Moosavi-Movahedi, Ali Akbar

    2017-01-01

    A new electrochemical sensor based on a Nafion, aminated reduced graphene oxide and chitosan functional membrane-modified glassy carbon electrode was proposed for the simultaneous detection of adenine and guanine. Fourier transform-infrared spectrometry (FTIR), transmission electron microscopy (TEM), and electrochemical methods were utilized for the additional characterization of the membrane materials. The prepared electrode was utilized for the detection of guanine (G) and adenine (A). The anodic peak currents to G and A were linear in the concentrations ranging from 0.1 to 120 μM and 0.2 to 110 μM, respectively. The detection limits were found to be 0.1 μM and 0.2 μM, respectively. Moreover, the modified electrode could also be used to determine G and A in calf thymus DNA. PMID:28718793

  7. Fabrication of submicron proteinaceous structures by direct laser writing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serien, Daniela; Takeuchi, Shoji, E-mail: takeuchi@iis.u-tokyo.ac.jp; ERATO Takeuchi Biohybrid Innovation Project, Japan Science and Technology Agency, 4-6-1 Komaba, Meguro-ku, 153-8505 Tokyo

    In this paper, we provide a characterization of truly free-standing proteinaceous structures with submicron feature sizes depending on the fabrication conditions by model-based analysis. Protein cross-linking of bovine serum albumin is performed by direct laser writing and two-photon excitation of flavin adenine dinucleotide. We analyze the obtainable fabrication resolution and required threshold energy for polymerization. The applied polymerization model allows prediction of fabrication conditions and resulting fabrication size, alleviating the application of proteinaceous structure fabrication.

  8. Deconvoluting AMP-activated protein kinase (AMPK) adenine nucleotide binding and sensing

    PubMed Central

    Gu, Xin; Yan, Yan; Novick, Scott J.; Kovach, Amanda; Goswami, Devrishi; Ke, Jiyuan; Tan, M. H. Eileen; Wang, Lili; Li, Xiaodan; de Waal, Parker W.; Webb, Martin R.; Griffin, Patrick R.; Xu, H. Eric

    2017-01-01

    AMP-activated protein kinase (AMPK) is a central cellular energy sensor that adapts metabolism and growth to the energy state of the cell. AMPK senses the ratio of adenine nucleotides (adenylate energy charge) by competitive binding of AMP, ADP, and ATP to three sites (CBS1, CBS3, and CBS4) in its γ-subunit. Because these three binding sites are functionally interconnected, it remains unclear how nucleotides bind to individual sites, which nucleotides occupy each site under physiological conditions, and how binding to one site affects binding to the other sites. Here, we comprehensively analyze nucleotide binding to wild-type and mutant AMPK protein complexes by quantitative competition assays and by hydrogen-deuterium exchange MS. We also demonstrate that NADPH, in addition to the known AMPK ligand NADH, directly and competitively binds AMPK at the AMP-sensing CBS3 site. Our findings reveal how AMP binding to one site affects the conformation and adenine nucleotide binding at the other two sites and establish CBS3, and not CBS1, as the high affinity exchangeable AMP/ADP/ATP-binding site. We further show that AMP binding at CBS4 increases AMP binding at CBS3 by 2 orders of magnitude and reverses the AMP/ATP preference of CBS3. Together, these results illustrate how the three CBS sites collaborate to enable highly sensitive detection of cellular energy states to maintain the tight ATP homeostastis required for cellular metabolism. PMID:28615457

  9. Inhibition of bovine kidney alpha-ketoglutarate dehydrogenase complex by reduced nicotinamide adenine dinucleotide in the presence or absence of calcium ion and effect of adenosine 5'-diphosphate on reduced nicotinamide adenine dinucleotide inhibition.

    PubMed

    Lawlis, V B; Roche, T E

    1981-04-28

    Micromolar Ca2+ markedly reduces NADH inhibition of bovine kidney alpha-ketoglutarate dehydrogenase complex [Lawlis, V. B., & Roche, T. E. (1980) Mol. Cell. Biochem. 32, 147-152]. Product inhibition patterns from initial velocity studies conducted at less than 10(-9) M or at 1.5 X 10(-5) M Ca2+ with NAD+, CoA, or alpha-ketoglutarate as the variable substrate showed that NADH was a noncompetitive inhibitor with respect to each of these substrates, except at high NAD+ concentrations, where reciprocal plots were nonlinear and the inhibition pattern for NADH vs. NAD+ changed from a noncompetitive to a competitive pattern. From slope and intercept replots, 2-fold to 12-fold higher inhibition constants were estimated for inhibition by NADH vs. the various substrates in the presence of 1.5 X 10(-5) M Ca2+ than for inhibition at less than 10(-9) M Ca2+. These inhibition patterns and the lack of an effect of Ca2+ on the inhibition of the dihydrolipoyl dehydrogenase component suggested that Ca2+-modulated NADH inhibition occurs at an allosteric site with competitive binding at the site by high levels of NAD+. Decarboxylation of alpha-keto[1-14C]glutarate by the resolved alpha-ketoglutarate dehydrogenase component was investigated in the presence of 5.0 mM glyoxylate which served as an efficient acceptor. NADH (0.2 mM) or 1.0 mM ATP inhibited the partial reaction whereas 15 muM Ca2+, 1.0 mM ADP, or 10 mM NAD+ stimulated the partial reaction and reduced NADH inhibition of this reaction. Thus these effectors alter the activity of the alpha-ketoglutarate dehydrogenase complex by binding at allosteric sites on the alpha-ketoglutarate dehydrogenase component. Inhibition by NADH over a wide range of NADH/NAD+ ratios was measured under conditions in which the level of alpha-ketoglutarate was adjusted to give matching control activities at less than 10(-9) M Ca2+ or 1.5 X 10(-5) M Ca2+ in either the presence or the absence of 1.6 mM ADP. These studies establish that both Ca2+ and ADP decreased NADH inhibition under conditions compensating for the effects of Ca2+ and ADP on S0.5 for alpha-ketoglutarate. ADP was particularly effective in reducing NADH inhibition; further studies are required to determine whether this occurs through binding of NADH and ADP at the same, overlapping, or interacting sites.

  10. Influence of gamma irradiation and benzyl adenine on keeping quality of custard apple fruits during storage.

    PubMed

    Chouksey, Swati; Singh, Alpana; Thakur, Rajendra Singh; Deshmukh, Reena

    2013-10-01

    The custard apple (Annona squamosa) fruits were procured from local market, irradiated with radiation doses 0, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75 kGy and then treated with benzyl adenine (50 and 100 part per million) and stored at ambient temperature (25 ± 5 °C, Relative Humidity 90 ± 2%) for 12 days. The treated fruits were evaluated for sensory (viz; flavour, texture, internal and external colour) and chemical constituents (viz; Total Soluble Solids, titrable acidity, ascorbic acid, free soluble sugar, reducing sugar. non reducing sugar, carbohydrate) during storage. The study concluded that radiation dose of 1.5 kilo Gray along with 50 ppm benzyl adenine enhanced in shelf-life of custard apple fruits by 6 days at ambient temperature with good pulp texture, flavour, colour and nutritional quality as compared to control.

  11. Muscle adenine nucleotide degradation during submaximal treadmill exercise to fatigue.

    PubMed

    Essén-Gustavsson, B; Gottlieb-Vedi, M; Lindholm, A

    1999-07-01

    The aim was to investigate metabolic response in muscle during submaximal treadmill exercise to fatigue, with a special emphasis on adenine nucleotide degradation products such as inosine monophosphate (IMP) in muscle and hypoxanthine, xanthine and uric acid in plasma. Five Standardbred trotters performed treadmill exercise on 2 occasions, once at 7 m/s and once at 10 m/s. Venous blood samples were taken at rest, during exercise and at the end of exercise. Muscle biopsies were taken before and after exercise and muscle temperature was measured before and after exercise. Running time differed among horses and was 48-58 min at 7 m/s and 10-15.5 min at 10 m/s. Both lactate and uric acid concentrations in plasma showed a gradual increase during exercise at both 7 and 10 m/s. At the end of exercise, values for uric acid were higher and values for lactate lower at 7 m/s compared with at 10 m/s. No marked changes were seen in plasma concentrations of hypoxanthine or xanthine with exercise. Muscle glycogen decreased after exercise at both 7 and 10 m/s with a marked depletion seen in some fibres. Muscle lactate concentrations increased after exercise at both 7 m/s and at 10 m/s. No significant changes were seen in adenosine triphosphate (ATP), ADP and AMP concentrations, whereas IMP concentrations increased after exercise at both 7 m/s and at 10 m/s. The results of this study indicate that AMP deamination occurs with submaximal exercise and that development of fatigue may be related to adenine nucleotide degradation in muscle.

  12. Optical imaging of mitochondrial redox state in rodent model of retinitis pigmentosa

    NASA Astrophysics Data System (ADS)

    Maleki, Sepideh; Gopalakrishnan, Sandeep; Ghanian, Zahra; Sepehr, Reyhaneh; Schmitt, Heather; Eells, Janis; Ranji, Mahsa

    2013-01-01

    Oxidative stress (OS) and mitochondrial dysfunction contribute to photoreceptor cell loss in retinal degenerative disorders. The metabolic state of the retina in a rodent model of retinitis pigmentosa (RP) was investigated using a cryo-fluorescence imaging technique. The mitochondrial metabolic coenzymes nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) are autofluorescent and can be monitored without exogenous labels using optical techniques. The cryo-fluorescence redox imaging technique provides a quantitative assessment of the metabolism. More specifically, the ratio of the fluorescence intensity of these fluorophores (NADH/FAD), the NADH redox ratio (RR), is a marker of the metabolic state of the tissue. The NADH RR and retinal function were examined in an established rodent model of RP, the P23H rat compared to that of nondystrophic Sprague-Dawley (SD) rats. The NADH RR mean values were 1.11±0.03 in the SD normal and 0.841±0.01 in the P23H retina, indicating increased OS in the P23H retina. Electroretinographic data revealed a significant reduction in photoreceptor function in P23H animals compared to SD nozrmal rats. Thus, cryo-fluorescence redox imaging was used as a quantitative marker of OS in eyes from transgenic rats and demonstrated that alterations in the oxidative state of eyes occur during the early stages of RP.

  13. Optical imaging of tissue mitochondrial redox state in intact rat lungs in two models of pulmonary oxidative stress

    PubMed Central

    Sepehr, Reyhaneh; Staniszewski, Kevin; Maleki, Sepideh; Jacobs, Elizabeth R.; Audi, Said

    2012-01-01

    Abstract. Ventilation with enhanced fractions of O2 (hyperoxia) is a common and necessary treatment for hypoxemia in patients with lung failure, but prolonged exposure to hyperoxia causes lung injury. Ischemia-reperfusion (IR) injury of lung tissue is common in lung transplant or crush injury to the chest. These conditions are associated with apoptosis and decreased survival of lung tissue. The objective of this work is to use cryoimaging to evaluate the effect of exposure to hyperoxia and IR injury on lung tissue mitochondrial redox state in rats. The autofluorescent mitochondrial metabolic coenzymes nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) are electron carriers in ATP generation. These intrinsic fluorophores were imaged for rat lungs using low-temperature fluorescence imaging (cryoimaging). Perfused lungs from four groups of rats were studied: normoxia (control), control perfused with an mitochondrial complex IV inhibitor (potassium cyanide, KCN), rats exposed to hyperoxia (85% O2) for seven days, and from rats subjected to lung IR in vivo 24 hours prior to study. Each lung was sectioned sequentially in the transverse direction, and the images were used to reconstruct a three-dimensional (3-D) rendering. In KCN perfused lungs the respiratory chain was more reduced, whereas hyperoxic and IR lung tissue have a more oxidized respiratory chain than control lung tissue, consistent with previously measured mitochondrial dysfunction in both hyperoxic and IR lungs. PMID:22559688

  14. Ethanol and liver: Recent insights into the mechanisms of ethanol-induced fatty liver

    PubMed Central

    Liu, Jinyao

    2014-01-01

    Alcoholic fatty liver disease (AFLD), a potentially pathologic condition, can progress to steatohepatitis, fibrosis, and cirrhosis, leading to an increased probability of hepatic failure and death. Alcohol induces fatty liver by increasing the ratio of reduced form of nicotinamide adenine dinucleotide to oxidized form of nicotinamide adenine dinucleotide in hepatocytes; increasing hepatic sterol regulatory element-binding protein (SREBP)-1, plasminogen activator inhibitor (PAI)-1, and early growth response-1 activity; and decreasing hepatic peroxisome proliferator-activated receptor-α activity. Alcohol activates the innate immune system and induces an imbalance of the immune response, which is followed by activated Kupffer cell-derived tumor necrosis factor (TNF)-α overproduction, which is in turn responsible for the changes in the hepatic SREBP-1 and PAI-1 activity. Alcohol abuse promotes the migration of bone marrow-derived cells (BMDCs) to the liver and then reprograms TNF-α expression from BMDCs. Chronic alcohol intake triggers the sympathetic hyperactivity-activated hepatic stellate cell (HSC) feedback loop that in turn activates the HSCs, resulting in HSC-derived TNF-α overproduction. Carvedilol may block this feedback loop by suppressing sympathetic activity, which attenuates the progression of AFLD. Clinical studies evaluating combination therapy of carvedilol with a TNF-α inhibitor to treat patients with AFLD are warranted to prevent the development of alcoholic liver disease. PMID:25356030

  15. An Ancient Fingerprint Indicates the Common Ancestry of Rossmann-Fold Enzymes Utilizing Different Ribose-Based Cofactors

    PubMed Central

    Laurino, Paola; Tóth-Petróczy, Ágnes; Meana-Pañeda, Rubén; Lin, Wei; Truhlar, Donald G.; Tawfik, Dan S.

    2016-01-01

    Nucleoside-based cofactors are presumed to have preceded proteins. The Rossmann fold is one of the most ancient and functionally diverse protein folds, and most Rossmann enzymes utilize nucleoside-based cofactors. We analyzed an omnipresent Rossmann ribose-binding interaction: a carboxylate side chain at the tip of the second β-strand (β2-Asp/Glu). We identified a canonical motif, defined by the β2-topology and unique geometry. The latter relates to the interaction being bidentate (both ribose hydroxyls interacting with the carboxylate oxygens), to the angle between the carboxylate and the ribose, and to the ribose’s ring configuration. We found that this canonical motif exhibits hallmarks of divergence rather than convergence. It is uniquely found in Rossmann enzymes that use different cofactors, primarily SAM (S-adenosyl methionine), NAD (nicotinamide adenine dinucleotide), and FAD (flavin adenine dinucleotide). Ribose-carboxylate bidentate interactions in other folds are not only rare but also have a different topology and geometry. We further show that the canonical geometry is not dictated by a physical constraint—geometries found in noncanonical interactions have similar calculated bond energies. Overall, these data indicate the divergence of several major Rossmann-fold enzyme classes, with different cofactors and catalytic chemistries, from a common pre-LUCA (last universal common ancestor) ancestor that possessed the β2-Asp/Glu motif. PMID:26938925

  16. Mitochondrial respiratory complex I probed by delayed luminescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Baran, Irina; Ionescu, Diana; Privitera, Simona; Scordino, Agata; Mocanu, Maria Magdalena; Musumeci, Francesco; Grasso, Rosaria; Gulino, Marisa; Iftime, Adrian; Tofolean, Ioana Teodora; Garaiman, Alexandru; Goicea, Alexandru; Irimia, Ruxandra; Dimancea, Alexandru; Ganea, Constanta

    2013-12-01

    The role of mitochondrial complex I in ultraweak photon-induced delayed photon emission [delayed luminescence (DL)] of human leukemia Jurkat T cells was probed by using complex I targeting agents like rotenone, menadione, and quercetin. Rotenone, a complex I-specific inhibitor, dose-dependently increased the mitochondrial level of reduced nicotinamide adenine dinucleotide (NADH), decreased clonogenic survival, and induced apoptosis. A strong correlation was found between the mitochondrial levels of NADH and oxidized flavin mononucleotide (FMNox) in rotenone-, menadione- and quercetin-treated cells. Rotenone enhanced DL dose-dependently, whereas quercetin and menadione inhibited DL as well as NADH or FMNox. Collectively, the data suggest that DL of Jurkat cells originates mainly from mitochondrial complex I, which functions predominantly as a dimer and less frequently as a tetramer. In individual monomers, both pairs of pyridine nucleotide (NADH/reduced nicotinamide adenine dinucleotide phosphate) sites and flavin (FMN-a/FMN-b) sites appear to bind cooperatively their specific ligands. Enhancement of delayed red-light emission by rotenone suggests that the mean time for one-electron reduction of ubiquinone or FMN-a by the terminal Fe/S center (N2) is 20 or 284 μs, respectively. All these findings suggest that DL spectroscopy could be used as a reliable, sensitive, and robust technique to probe electron flow within complex I in situ.

  17. Two continuous coupled assays for ornithine-δ-aminotransferase.

    PubMed

    Juncosa, Jose I; Lee, Hyunbeom; Silverman, Richard B

    2013-09-15

    We have developed two new continuous coupled assays for ornithine-δ-aminotransferase (OAT) that are more sensitive than previous methods, measure activity in real time, and can be carried out in multiwell plates for convenience and high throughput. The first assay is based on the reduction of Δ(1)-pyrroline-5-carboxylate (P5C), generated from ornithine by OAT, using human pyrroline 5-carboxylate reductase 1 (PYCR1), which results in the concomitant oxidation of NADH (nicotinamide adenine dinucleotide, reduced form) to NAD⁺ (nicotinamide adenine dinucleotide, oxidized form). This procedure was found to be three times more sensitive than previous methods and is suitable for the study of small molecules as inhibitors or inactivators of OAT or as a method to determine OAT activity in unknown samples. The second method involves the detection of L-glutamate, produced during the regeneration of the cofactor pyridoxal 5'-phosphate (PLP) of OAT by an unamplified modification of the commercially available Amplex Red L-glutamate detection kit (Life Technologies). This assay is recommended for the determination of the substrate activity of small molecules against OAT; measuring the transformation of L-ornithine at high concentrations by this assay is complicated by the fact that it also acts as a substrate for the L-glutamate oxidase (GluOx) reporter enzyme. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Protein kinase C epsilon regulates mitochondrial pools of Nampt and NAD following resveratrol and ischemic preconditioning in the rat cortex

    PubMed Central

    Morris-Blanco, Kahlilia C; Cohan, Charles H; Neumann, Jake T; Sick, Thomas J; Perez-Pinzon, Miguel A

    2014-01-01

    Preserving mitochondrial pools of nicotinamide adenine dinucleotide (NAD) or nicotinamide phosphoribosyltransferase (Nampt), an enzyme involved in NAD production, maintains mitochondrial function and confers neuroprotection after ischemic stress. However, the mechanisms involved in regulating mitochondrial-localized Nampt or NAD have not been defined. In this study, we investigated the roles of protein kinase C epsilon (PKCɛ) and AMP-activated protein kinase (AMPK) in regulating mitochondrial pools of Nampt and NAD after resveratrol or ischemic preconditioning (IPC) in the cortex and in primary neuronal-glial cortical cultures. Using the specific PKCɛ agonist ψɛRACK, we found that PKCɛ induced robust activation of AMPK in vitro and in vivo and that AMPK was required for PKCɛ-mediated ischemic neuroprotection. In purified mitochondrial fractions, PKCɛ enhanced Nampt levels in an AMPK-dependent manner and was required for increased mitochondrial Nampt after IPC or resveratrol treatment. Analysis of intrinsic NAD autofluorescence using two-photon microscopy revealed that PKCɛ modulated NAD in the mitochondrial fraction. Further assessments of mitochondrial NAD concentrations showed that PKCɛ has a key role in regulating the mitochondrial NAD+/nicotinamide adenine dinucleotide reduced (NADH) ratio after IPC and resveratrol treatment in an AMPK- and Nampt-dependent manner. These findings indicate that PKCɛ is critical to increase or maintain mitochondrial Nampt and NAD after pathways of ischemic neuroprotection in the brain. PMID:24667915

  19. Interactive response of photosynthetic characteristics in Haloxylon ammodendron and Hedysarum scoparium exposed to soil water and air vapor pressure deficits.

    PubMed

    Gong, Chunmei; Wang, Jiajia; Hu, Congxia; Wang, Junhui; Ning, Pengbo; Bai, Juan

    2015-08-01

    C4 plants possess better drought tolerance than C3 plants. However, Hedysarum scoparium, a C3 species, is dominant and widely distributed in the desert areas of northwestern China due to its strong drought tolerance. This study compared it with Haloxylon ammodendron, a C4 species, regarding the interactive effects of drought stress and different leaf-air vapor pressure deficits. Variables of interest included gas exchange, the activity levels of key C4 photosynthetic enzymes, and cellular anatomy. In both species, gas exchange parameters were more sensitive to high vapor pressure deficit than to strong water stress, and the net CO2 assimilation rate (An) was enhanced as vapor pressure deficits increased. A close relationship between An and stomatal conductance (gs) suggested that the species shared a similar response mechanism. In H. ammodendron, the activity levels of key C4 enzymes were higher, including those of phosphoenolpyruvate carboxylase (PEPC) and nicotinamide adenine dinucleotide phosphate-malate enzyme (NADP-ME), whereas in H. scoparium, the activity level of nicotinamide adenine dinucleotide-malate enzyme (NAD-ME) was higher. Meanwhile, H. scoparium utilized adaptive structural features, including a larger relative vessel area and a shorter distance from vein to stomata, which facilitated the movement of water. These findings implied that some C4 biochemical pathways were present in H. scoparium to respond to environmental challenges. Copyright © 2015. Published by Elsevier B.V.

  20. A second target of benzamide riboside: dihydrofolate reductase.

    PubMed

    Roussel, Breton; Johnson-Farley, Nadine; Kerrigan, John E; Scotto, Kathleen W; Banerjee, Debabrata; Felczak, Krzysztof; Pankiewicz, Krzysztof W; Gounder, Murugesan; Lin, HongXia; Abali, Emine Ercikan; Bertino, Joseph R

    2012-11-01

    Dihydrofolate reductase (DHFR) is an essential enzyme involved in de novo purine and thymidine biosynthesis. For several decades, selective inhibition of DHFR has proven to be a potent therapeutic approach in the treatment of various cancers including acute lymphoblastic leukemia, non-Hodgkin's lymphoma, osteogenic sarcoma, carcinoma of the breast, and head and neck cancer. Therapeutic success with DHFR inhibitor methotrexate (MTX) has been compromised in the clinic, which limits the success of MTX treatment by both acquired and intrinsic resistance mechanisms. We report that benzamide riboside (BR), via anabolism to benzamide adenine dinucleotide (BAD) known to potently inhibit inosine monophosphate dehydrogenase (IMPDH), also inhibits cell growth through a mechanism involving downregulation of DHFR protein. Evidence to support this second site of action of BR includes the finding that CCRF-CEM/R human T-cell lymphoblasic leukemia cells, resistant to MTX as a consequence of gene amplification and overexpression of DHFR, are more resistant to BR than are parental cells. Studies of the mechanism by which BR lowers DHFR showed that BR, through its metabolite BAD, reduced NADP and NADPH cellular levels by inhibiting nicotinamide adenine dinucleotide kinase (NADK). As consequence of the lack of NADPH, DHFR was shown to be destabilized. We suggest that, inhibition of NADK is a new approach to downregulate DHFR and to inhibit cell growth.

  1. PnuC and the utilization of the nicotinamide riboside analog 3-aminopyridine in Haemophilus influenzae.

    PubMed

    Sauer, Elizabeta; Merdanovic, Melisa; Mortimer, Anne Price; Bringmann, Gerhard; Reidl, Joachim

    2004-12-01

    The utilization pathway for the uptake of NAD and nicotinamide riboside was previously characterized for Haemophilus influenzae. We now report on the cellular location, topology, and substrate specificity of PnuC. pnuC of H. influenzae is only distantly related to pnuC of Escherichia coli and Salmonella enterica serovar Typhimurium. When E. coli PnuC was expressed in an H. influenzae pnuC mutant, it was able to take up only nicotinamide riboside and not nicotinamide mononucleotide. Therefore, we postulated that PnuC transporters in general possess specificity for nicotinamide riboside. Earlier studies showed that 3-aminopyridine derivatives (e.g., 3-aminopyridine adenine dinucleotide) are inhibitory for H. influenzae growth. By testing characterized strains with mutations in the NAD utilization pathway, we show that 3-aminopyridine riboside is inhibitory to H. influenzae and is taken up by the NAD-processing and nicotinamide riboside route. 3-Aminopyridine riboside is utilized effectively in a pnuC+ background. In addition, we demonstrate that 3-aminopyridine adenine dinucleotide resynthesis is produced by NadR. 3-Aminopyridine riboside-resistant H. influenzae isolates were characterized, and mutations in nadR could be detected. We also tested other species of the family Pasteurellaceae, Pasteurella multocida and Actinobacillus actinomycetemcomitans, and found that 3-aminopyridine riboside does not act as a growth inhibitor; hence, 3-aminopyridine riboside represents an anti-infective agent with a very narrow host range.

  2. Binding of p-mercaptobenzoic acid and adenine to gold-coated electroless etched silicon nanowires studied by surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Mohaček-Grošev, Vlasta; Gebavi, Hrvoje; Bonifacio, Alois; Sergo, Valter; Daković, Marko; Bajuk-Bogdanović, Danica

    2018-07-01

    Modern diagnostic tools ever aim to reduce the amount of analyte and the time needed for obtaining the result. Surface-enhanced Raman spectroscopy is a method that could satisfy both of these requirements, provided that for each analyte an adequate substrate is found. Here we demonstrate the ability of gold-sputtered silicon nanowires (SiNW) to bind p-mercaptobenzoic acid in 10-3, 10-4 and 10-5 M and adenine in 30 and 100 μM concentrations. Based on the normal mode analysis, presented here for the first time, the binding of p-mercaptobenzoic acid is deduced. The intensity enhancement of the 1106 cm-1 band is explained by involvement of the Csbnd S stretching deformation, and the appearance of the broad 300 cm-1 band attributed to Ssbnd Au stretching mode. Adenine SERS spectra demonstrate the existence of the 7H tautomer since the strongest band observed is at 736 cm-1. The adenine binding is likely to occur in several ways, because the number of observed bands in the 1200-1600 cm-1 interval exceeds the number of observed bands in the normal Raman spectrum of the free molecule.

  3. Dynamics of dipole- and valence bound anions in iodide-adenine binary complexes: A time-resolved photoelectron imaging and quantum mechanical investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephansen, Anne B.; King, Sarah B.; Li, Wei-Li

    2015-09-14

    Dipole bound (DB) and valence bound (VB) anions of binary iodide-adenine complexes have been studied using one-color and time-resolved photoelectron imaging at excitation energies near the vertical detachment energy. The experiments are complemented by quantum chemical calculations. One-color spectra show evidence for two adenine tautomers, the canonical, biologically relevant A9 tautomer and the A3 tautomer. In the UV-pump/IR-probe time-resolved experiments, transient adenine anions can be formed by electron transfer from the iodide. These experiments show signals from both DB and VB states of adenine anions formed on femto- and picosecond time scales, respectively. Analysis of the spectra and comparison withmore » calculations suggest that while both the A9 and A3 tautomers contribute to the DB signal, only the DB state of the A3 tautomer undergoes a transition to the VB anion. The VB anion of A9 is higher in energy than both the DB anion and the neutral, and the VB anion is therefore not accessible through the DB state. Experimental evidence of the metastable A9 VB anion is instead observed as a shape resonance in the one-color photoelectron spectra, as a result of UV absorption by A9 and subsequent electron transfer from iodide into the empty π-orbital. In contrast, the iodide-A3 complex constitutes an excellent example of how DB states can act as doorway state for VB anion formation when the VB state is energetically available.« less

  4. Catalytic properties of the isolated diaphorase fragment of the NAD-reducing [NiFe]-hydrogenase from Ralstonia eutropha.

    PubMed

    Lauterbach, Lars; Idris, Zulkifli; Vincent, Kylie A; Lenz, Oliver

    2011-01-01

    The NAD+-reducing soluble hydrogenase (SH) from Ralstonia eutropha H16 catalyzes the H₂-driven reduction of NAD+, as well as reverse electron transfer from NADH to H+, in the presence of O₂. It comprises six subunits, HoxHYFUI₂, and incorporates a [NiFe] H+/H₂ cycling catalytic centre, two non-covalently bound flavin mononucleotide (FMN) groups and an iron-sulfur cluster relay for electron transfer. This study provides the first characterization of the diaphorase sub-complex made up of HoxF and HoxU. Sequence comparisons with the closely related peripheral subunits of Complex I in combination with UV/Vis spectroscopy and the quantification of the metal and FMN content revealed that HoxFU accommodates a [2Fe2S] cluster, FMN and a series of [4Fe4S] clusters. Protein film electrochemistry (PFE) experiments show clear electrocatalytic activity for both NAD+ reduction and NADH oxidation with minimal overpotential relative to the potential of the NAD+/NADH couple. Michaelis-Menten constants of 56 µM and 197 µM were determined for NADH and NAD+, respectively. Catalysis in both directions is product inhibited with K(I) values of around 0.2 mM. In PFE experiments, the electrocatalytic current was unaffected by O₂, however in aerobic solution assays, a moderate superoxide production rate of 54 nmol per mg of protein was observed, meaning that the formation of reactive oxygen species (ROS) observed for the native SH can be attributed mainly to HoxFU. The results are discussed in terms of their implications for aerobic functioning of the SH and possible control mechanism for the direction of catalysis.

  5. A hepcidin lowering agent mobilizes iron for incorporation into red blood cells in an adenine-induced kidney disease model of anemia in rats

    PubMed Central

    Sun, Chia Chi; Vaja, Valentina; Chen, Shanzhuo; Theurl, Igor; Stepanek, Aaron; Brown, Diane E.; Cappellini, Maria D.; Weiss, Guenter; Hong, Charles C.; Lin, Herbert Y.; Babitt, Jodie L.

    2013-01-01

    Background Anemia is a common complication of chronic kidney disease (CKD) that negatively impacts the quality of life and is associated with numerous adverse outcomes. Excess levels of the iron regulatory hormone hepcidin are thought to contribute to anemia in CKD patients by decreasing iron availability from the diet and from body stores. Adenine treatment in rats has been proposed as an animal model of anemia of CKD with high hepcidin levels that mirrors the condition in human patients. Methods We developed a modified adenine-induced kidney disease model with a higher survival rate than previously reported models, while maintaining persistent kidney disease and anemia. We then tested whether the small molecule bone morphogenetic protein (BMP) inhibitor LDN-193189, which was previously shown to lower hepcidin levels in rodents, mobilized iron into the plasma and improved iron-restricted erythropoiesis in this model. Results Adenine-treated rats exhibited increased hepatic hepcidin mRNA, decreased serum iron, increased spleen iron content, low hemoglobin (Hb) and inappropriately low erythropoietin (EPO) levels relative to the degree of anemia. LDN-193189 administration to adenine-treated rats lowered hepatic hepcidin mRNA, mobilized stored iron into plasma and increased Hb content of reticulocytes. Conclusions Our data suggest that hepcidin lowering agents may provide a new therapeutic strategy to improve iron availability for erythropoiesis in CKD. PMID:23345622

  6. Parvovirus B19 DNA CpG Dinucleotide Methylation and Epigenetic Regulation of Viral Expression

    PubMed Central

    Bonvicini, Francesca; Manaresi, Elisabetta; Di Furio, Francesca; De Falco, Luisa; Gallinella, Giorgio

    2012-01-01

    CpG DNA methylation is one of the main epigenetic modifications playing a role in the control of gene expression. For DNA viruses whose genome has the ability to integrate in the host genome or to maintain as a latent episome, a correlation has been found between the extent of DNA methylation and viral quiescence. No information is available for Parvovirus B19, a human pathogenic virus, which is capable of both lytic and persistent infections. Within Parvovirus B19 genome, the inverted terminal regions display all the characteristic signatures of a genomic CpG island; therefore we hypothesised a role of CpG dinucleotide methylation in the regulation of viral genome expression. The analysis of CpG dinucleotide methylation of Parvovirus B19 DNA was carried out by an aptly designed quantitative real-time PCR assay on bisulfite-modified DNA. The effects of CpG methylation on the regulation of viral genome expression were first investigated by transfection of either unmethylated or in vitro methylated viral DNA in a model cell line, showing that methylation of viral DNA was correlated to lower expression levels of the viral genome. Then, in the course of in vitro infections in different cellular environments, it was observed that absence of viral expression and genome replication were both correlated to increasing levels of CpG methylation of viral DNA. Finally, the presence of CpG methylation was documented in viral DNA present in bioptic samples, indicating the occurrence and a possible role of this epigenetic modification in the course of natural infections. The presence of an epigenetic level of regulation of viral genome expression, possibly correlated to the silencing of the viral genome and contributing to the maintenance of the virus in tissues, can be relevant to the balance and outcome of the different types of infection associated to Parvovirus B19. PMID:22413013

  7. Multiple Decay Mechanisms and 2D-UV Spectroscopic Fingerprints of Singlet Excited Solvated Adenine-Uracil Monophosphate.

    PubMed

    Li, Quansong; Giussani, Angelo; Segarra-Martí, Javier; Nenov, Artur; Rivalta, Ivan; Voityuk, Alexander A; Mukamel, Shaul; Roca-Sanjuán, Daniel; Garavelli, Marco; Blancafort, Lluís

    2016-05-23

    The decay channels of singlet excited adenine uracil monophosphate (ApU) in water are studied with CASPT2//CASSCF:MM potential energy calculations and simulation of the 2D-UV spectroscopic fingerprints with the aim of elucidating the role of the different electronic states of the stacked conformer in the excited state dynamics. The adenine (1) La state can decay without a barrier to a conical intersection with the ground state. In contrast, the adenine (1) Lb and uracil S(U) states have minima that are separated from the intersections by sizeable barriers. Depending on the backbone conformation, the CT state can undergo inter-base hydrogen transfer and decay to the ground state through a conical intersection, or it can yield a long-lived minimum stabilized by a hydrogen bond between the two ribose rings. This suggests that the (1) Lb , S(U) and CT states of the stacked conformer may all contribute to the experimental lifetimes of 18 and 240 ps. We have also simulated the time evolution of the 2D-UV spectra and provide the specific fingerprint of each species in a recommended probe window between 25 000 and 38 000 cm(-1) in which decongested, clearly distinguishable spectra can be obtained. This is expected to allow the mechanistic scenarios to be discerned in the near future with the help of the corresponding experiments. Our results reveal the complexity of the photophysics of the relatively small ApU system, and the potential of 2D-UV spectroscopy to disentangle the photophysics of multichromophoric systems. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  8. Cytosine Methylation Effects on the Repair of O6-Methylguanines within CG Dinucleotides*

    PubMed Central

    Guza, Rebecca; Ma, Linan; Fang, Qingming; Pegg, Anthony E.; Tretyakova, Natalia

    2009-01-01

    O6-Alkyldeoxyguanine adducts induced by tobacco-specific nitrosamines are repaired by O6-alkylguanine DNA alkyltransferase (AGT), which transfers the O6-alkyl group from the damaged base to a cysteine residue within the protein. In the present study, a mass spectrometry-based approach was used to analyze the effects of cytosine methylation on the kinetics of AGT repair of O6-methyldeoxyguanosine (O6-Me-dG) adducts placed within frequently mutated 5′-CG-3′ dinucleotides of the p53 tumor suppressor gene. O6-Me-dG-containing DNA duplexes were incubated with human recombinant AGT protein, followed by rapid quenching, acid hydrolysis, and isotope dilution high pressure liquid chromatography-electrospray ionization tandem mass spectrometry analysis of unrepaired O6-methylguanine. Second-order rate constants were calculated in the absence or presence of the C-5 methyl group at neighboring cytosine residues. We found that the kinetics of AGT-mediated repair of O6-Me-dG were affected by neighboring 5-methylcytosine (MeC) in a sequence-dependent manner. AGT repair of O6-Me-dG adducts placed within 5′-CG-3′ dinucleotides of p53 codons 245 and 248 was hindered when MeC was present in both DNA strands. In contrast, cytosine methylation within p53 codon 158 slightly increased the rate of O6-Me-dG repair by AGT. The effects of MeC located immediately 5′ and in the base paired position to O6-Me-dG were not additive as revealed by experiments with hypomethylated sequences. Furthermore, differences in dealkylation rates did not correlate with AGT protein affinity for cytosine-methylated and unmethylated DNA duplexes or with the rates of AGT-mediated nucleotide flipping, suggesting that MeC influences other kinetic steps involved in repair, e.g. the rate of alkyl transfer from DNA to AGT. PMID:19531487

  9. Concerted regulation of renal plasma flow and glomerular filtration rate by renal dopamine and NOS I in rats on high salt intake.

    PubMed

    Ibarra, Mariano E; Albertoni Borghese, Maria F; Majowicz, Mónica P; Ortiz, María C; Loidl, Fabián; Rey-Funes, Manuel; Di Ciano, Luis A; Ibarra, Fernando R

    2017-03-01

    Under high sodium intake renal dopamine (DA) increases while NOS I expression in macula densa cells (MD) decreases. To explore whether renal DA and NOS I, linked to natriuresis and to the stability of the tubuloglomerular feedback, respectively, act in concert to regulate renal plasma flow (RPF) and glomerular filtration rate (GFR). Male Wistar rats were studied under a normal sodium intake (NS, NaCl 0.24%) or a high sodium intake (HS, NaCl 1% in drinking water) during the 5 days of the study. For the last two days, the specific D 1 -like receptor antagonist SCH 23390 (1 mg kg bwt -1  day -1 , sc) or a vehicle was administered. HS intake increased natriuresis, diuresis, and urinary DA while it decreased cortical NOS I expression ( P  < 0.05 vs. NS), Nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) activity in MD ( P  < 0.001 vs. NS) and cortical nitrates+nitrites (NOx) production (NS 2.04 ± 0.22 vs. HS 1.28 ± 0.10 nmol mg protein -1 , P  < 0.01). Treatment with SCH 23390 to rats on HS sharply decreased hydroelectrolyte excretion ( P  < 0.001 vs. HS) while NOS I expression, NADPH-d activity and NOx production increased ( P  < 0.05 vs. HS for NOS I and P  < 0.001 vs. HS for NADPH-d and NOx). SCH 23390 increased RPF and GFR in HS rats ( P  < 0.01 HS+SCH vs. HS). It did not cause variations in NS rats. Results indicate that when NS intake is shifted to a prolonged high sodium intake, renal DA through the D 1 R, and NOS I in MD cells act in concert to regulate RPF and GFR to stabilize the delivery of NaCl to the distal nephron. © 2017 Universidad De Buenos Aires. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  10. Correlation of enteric NADPH-d positive cell counts with the duration of incubation period in NADPH-d histochemistry.

    PubMed

    Cserni, Tamas; O' Donnel, Annemarie; Paran, Sri; Puri, Prem

    2009-03-01

    Nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) staining can be used in the enteric nervous system to determine nitrergic neuronal counts, critical in motility disorders such as intestinal neuronal dysplasia and hypoganglionosis. The reported incubation periods of specimens with NADPH-d staining solution has varied from 2 to 24 h. The aim of this study is to investigate the impact of the incubation period on the overall NADPH-d positive cell counts in porcine rectal submucosal plexus. The submucosal plexus of rectal specimens from 12-week-old pigs (n = 5) were studied. Conventional frozen sections were used to identify nitrergic neurons while whole-mount preparations were used to quantify the effect of prolonged duration of incubation on positively identified ganglion cells with NADPH-d histochemistry. The same submucosal ganglia on the conventional sections, and a minimum of 12 ganglia per whole-mount preparation specimen were photographed sequentially at 2, 6, and 24 h and used to count the number of nitrergic cells per ganglion. The same staining solution was used throughout the experiment. Results were analysed using a one-way ANOVA test. Prolonged incubation with the staining solution revealed new NADPH-d positive cells in the ganglia on the conventional sections. The total number of neurons counted in the 12 adjacent ganglia in the whole-mount specimens was 180 +/- 55, the mean neuronal cell per ganglion was 15 +/- 8 after 2 h of incubation. This increased to 357 +/- 17, and to 29 +/- 12 after 6 h (p < 0.05). A further increase was observed of 515 +/- 19 and 43 +/- 17 after 24 h (p < 0.05). When the photomicrographs were retrospectively analysed, not even the outline of the neuronal cells that stained with prolonged incubation was evident at the earlier time points. NADPH-d positive cell counts increase in proportion to the duration of incubation in NADPH-d histochemistry. Comparative studies attempting to quantify nitrergic cell counts in

  11. Mono- and bifunctional binding of cis-diamminedichloroplatinum(II) to dinucleotides.

    PubMed

    Försti, A; Laatikainen, R; Hemminki, K

    1987-01-01

    cis-Diamminedichloroplatinum(II) (cis-Pt) was reacted with four homodinucleotides (GpG, ApA, CpC, and UpU) and six heterodinucleotides (GpC, CpG, GpU, UpG, GpA, and ApG) at pH 6, and the reaction products were purified by HPLC. The most important products were characterized by 1H-NMR spectra. In all the heterodinucleotides except the ones containing uridine the main Pt-adduct was an intramolecular cross-link, but monofunctional adducts and intermolecular cross-links were also detected. Intramolecular cross-links were also formed with GpU and UpG but the amounts of them were about the same as the amounts of intermolecular cross-links. In the case of homodinucleotides GpG gave almost entirely intramolecular cross-links, in which cis-Pt was chelated between the N-7 atoms of two guanines. cis-Pt reacted also with ApA forming both monofunctional and bifunctional Pt-adducts. The main adducts were intramolecular cross-links. cis-Pt reacted equally well with all guanosine-containing dinucleotides, while the reaction with ApA was much slower. With CpC and UpU no reaction products were formed.

  12. Progress in utilisation of graphene for electrochemical biosensors.

    PubMed

    Lawal, Abdulazeez T

    2018-05-30

    This review discusses recent graphene (GR) electrochemical biosensor for accurate detection of biomolecules, including glucose, hydrogen peroxide, dopamine, ascorbic acid, uric acid, nicotinamide adenine dinucleotide, DNA, metals and immunosensor through effective immobilization of enzymes, including glucose oxidase, horseradish peroxidase, and haemoglobin. GR-based biosensors exhibited remarkable performance with high sensitivities, wide linear detection ranges, low detection limits, and long-term stabilities. Future challenges for the field include miniaturising biosensors and simplifying mass production are discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Pressure-tuning infrared and Raman microscopy study of the DNA bases: adenine, guanine, cytosine, and thymine.

    PubMed

    Yang, Seung Yun; Butler, Ian S

    2013-12-01

    Diamond-anvil cell, pressure-tuning infrared (IR), and Raman microspectroscopic measurements have been undertaken to examine the effects of high pressures up to about 45 kbar on the vibrational spectra of the four DNA bases, adenine, cytosine, guanine, and thymine. Small structural changes were evident for all the four bases, viz., for adenine and cytosine at 28-31 kbar; for guanine at 16-19 kbar; and for thymine at 25-26 kbar. These changes are most likely associated with alterations in the intermolecular hydrogen-bonding interactions. The pressure dependences of the main peaks observed in the IR spectra of the two phases of guanine lie in the -0.07-0.66 (low-pressure phase) and 0.06-0.91 (high-pressure phase) cm⁻¹/kbar ranges. Also, in the Raman spectra of this nucleoside base, the dν/dP values range from -0.07-0.31 (low-pressure phase) to 0.08-0.50 (high-pressure phase) cm⁻¹/kbar. Similar ranges of dν/dP values were obtained for the other three nucleoside bases.

  14. Effect of Electronic Excitation on Hydrogen Atom Transfer (Tautomerization) Reactions for the DNA Base Adenine

    NASA Technical Reports Server (NTRS)

    Chaban, Galina M.; Salter, Latasha M.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Geometrical structures and energetic properties for four different tautomers of adenine are calculated in this study, using multi-configurational wave functions. Both the ground and the lowest single excited state potential energy surface are studied. The energetic order of the tautomers on the ground state potential surface is 9H less than 7H less than 3H less than 1H, while on the excited state surface this order is found to be different: 3H less than 1H less than 9H less than 7H. Minimum energy reaction paths are obtained for hydrogen atom transfer (9 yields 3 tautomerization) reactions in the ground and the lowest excited electronic state. It is found that the barrier heights and the shapes of the reaction paths are different for the ground and the excited electronic state, suggesting that the probability of such tautomerization reaction is higher on the excited state potential energy surface. The barrier for this reaction in the excited state may become very low in the presence of water or other polar solvent molecules, and therefore such tautomerization reaction may play an important role in the solution phase photochemistry of adenine.

  15. Salmonella DNA Adenine Methylase Mutants Confer Cross-Protective Immunity

    PubMed Central

    Heithoff, Douglas M.; Enioutina, Elena Y.; Daynes, Raymond A.; Sinsheimer, Robert L.; Low, David A.; Mahan, Michael J.

    2001-01-01

    Salmonella isolates that lack or overproduce DNA adenine methylase (Dam) elicited a cross-protective immune response to different Salmonella serovars. The protection afforded by the Salmonella enterica serovar Typhimurium Dam vaccine was greater than that elicited in mice that survived a virulent infection. S. enterica serovar Typhimurium Dam mutant strains exhibited enhanced sensitivity to mediators of innate immunity such as antimicrobial peptides, bile salts, and hydrogen peroxide. Also, S. enterica serovar Typhimurium Dam− vaccines were not immunosuppressive; unlike wild-type vaccines, they failed to induce increased nitric oxide levels and permitted a subsequent robust humoral response to diptheria toxoid antigen in infected mice. Dam mutant strains exhibited a low-grade persistence which, coupled with the nonimmunosuppression and the ectopic protein expression caused by altered levels of Dam, may provide an expanded source of potential antigens in vaccinated hosts. PMID:11598044

  16. Erhuang Formula ameliorates renal damage in adenine-induced chronic renal failure rats via inhibiting inflammatory and fibrotic responses.

    PubMed

    Zhang, Chun-Yan; Zhu, Jian-Yong; Ye, Ying; Zhang, Miao; Zhang, Li-Jun; Wang, Su-Juan; Song, Ya-Nan; Zhang, Hong

    2017-11-01

    The present study aimed to evaluate the protective effects of Erhuang Formula (EHF) and explore its pharmacological mechanisms on adenine-induced chronic renal failure (CRF). The compounds in EHF were analyzed by HPLC/MS. Adenine-induced CRF rats were administrated by EHF. The effects were evaluated by renal function examination and histology staining. Immunostaining of some proteins related cell adhesion was performedin renal tissues, including E-cadherin, β-catenin, fibronectin and laminin. The qRT-PCR was carried out determination of gene expression related inflammation and fibrosis including NF-κB, TNF-α, TGF-β1, α-SMA and osteopontin (OPN). Ten compounds in EHF were identified including liquiritigenin, farnesene, vaccarin, pachymic acid, cycloastragenol, astilbin, 3,5,6,7,8,3',4'-heptemthoxyflavone, physcion, emodin and curzerene. Abnormal renal function and histology had significant improvements by EHF treatment. The protein expression of β-catenin, fibronectin and laminin were significantly increased and the protein expression of E-cadherin significantly decreased in CRF groups. However, these protein expressions were restored to normal levels in EHF group. Furthermore, low expression of PPARγ and high expression of NF-κB, TNF-α, TGF-β1, α-SMA and OPN were substantially restored by EHF treatment in a dose-dependent manner. EHF ameliorated renal damage in adenine-induced CRF rats, and the mechanisms might involve in the inhibition of inflammatory and fibrotic responses and the regulation of PPARγ, NF-κB and TGF-β signaling pathways. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Identification and Characterization of Daurichromenic Acid Synthase Active in Anti-HIV Biosynthesis.

    PubMed

    Iijima, Miu; Munakata, Ryosuke; Takahashi, Hironobu; Kenmoku, Hiromichi; Nakagawa, Ryuichi; Kodama, Takeshi; Asakawa, Yoshinori; Abe, Ikuro; Yazaki, Kazufumi; Kurosaki, Fumiya; Taura, Futoshi

    2017-08-01

    Daurichromenic acid (DCA) synthase catalyzes the oxidative cyclization of grifolic acid to produce DCA, an anti-HIV meroterpenoid isolated from Rhododendron dauricum We identified a novel cDNA encoding DCA synthase by transcriptome-based screening from young leaves of R. dauricum The gene coded for a 533-amino acid polypeptide with moderate homologies to flavin adenine dinucleotide oxidases from other plants. The primary structure contained an amino-terminal signal peptide and conserved amino acid residues to form bicovalent linkage to the flavin adenine dinucleotide isoalloxazine ring at histidine-112 and cysteine-175. In addition, the recombinant DCA synthase, purified from the culture supernatant of transgenic Pichia pastoris , exhibited structural and functional properties as a flavoprotein. The reaction mechanism of DCA synthase characterized herein partly shares a similarity with those of cannabinoid synthases from Cannabis sativa , whereas DCA synthase catalyzes a novel cyclization reaction of the farnesyl moiety of a meroterpenoid natural product of plant origin. Moreover, in this study, we present evidence that DCA is biosynthesized and accumulated specifically in the glandular scales, on the surface of R. dauricum plants, based on various analytical studies at the chemical, biochemical, and molecular levels. The extracellular localization of DCA also was confirmed by a confocal microscopic analysis of its autofluorescence. These data highlight the unique feature of DCA: the final step of biosynthesis is completed in apoplastic space, and it is highly accumulated outside the scale cells. © 2017 American Society of Plant Biologists. All Rights Reserved.

  18. Time-gated FLIM microscope for corneal metabolic imaging

    NASA Astrophysics Data System (ADS)

    Silva, Susana F.; Batista, Ana; Domingues, José Paulo; Quadrado, Maria João.; Morgado, António Miguel

    2016-03-01

    Detecting corneal cells metabolic alterations may prove a valuable tool in the early diagnosis of corneal diseases. Nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) are autofluorescent metabolic co-factors that allow the assessment of metabolic changes through non-invasive optical methods. These co-factors exhibit double-exponential fluorescence decays, with well-separated short and lifetime components, which are related to their protein-bound and free-states. Corneal metabolism can be assessed by measuring the relative contributions of these two components. For that purpose, we have developed a wide-field time-gated fluorescence lifetime microscope based on structured illumination and one-photon excitation to record FAD lifetime images from corneas. NADH imaging was not considered as its UV excitation peak is regarded as not safe for in vivo measurements. The microscope relies on a pulsed blue diode laser (λ=443 nm) as excitation source, an ultra-high speed gated image intensifier coupled to a CCD camera to acquire fluorescence signals and a Digital Micromirror Device (DMD) to implement the Structured Illumination technique. The system has a lateral resolution better than 2.4 μm, a field of view of 160 per 120 μm and an optical sectioning of 6.91 +/- 0.45 μm when used with a 40x, 0.75 NA, Water Immersion Objective. With this setup we were able to measure FAD contributions from ex-vivo chicken corneas collected from a local slaughterhouse..

  19. Novel fiber optic-based needle redox imager for cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Kanniyappan, Udayakumar; Xu, He N.; Tang, Qinggong; Gaitan, Brandon; Liu, Yi; Li, Lin Z.; Chen, Yu

    2018-02-01

    Despite various technological advancements in cancer diagnosis, the mortality rates were not decreased significantly. We aim to develop a novel optical imaging tool to assist cancer diagnosis effectively. Fluorescence spectroscopy/imaging is a fast, rapid, and minimally invasive technique which has been successfully applied to diagnosing cancerous cells/tissues. Recently, the ratiometric imaging of intrinsic fluorescence of reduced nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD), as pioneered by Britton Chance and the co-workers in 1950-70's, has gained much attention to quantify the physiological parameters of living cells/tissues. The redox ratio, i.e., FAD/(FAD+NADH) or FAD/NADH, has been shown to be sensitive to various metabolic changes in in vivo and in vitro cells/tissues. Optical redox imaging has also been investigated for providing potential imaging biomarkers for cancer transformation, aggressiveness, and treatment response. Towards this goal, we have designed and developed a novel fiberoptic-based needle redox imager (NRI) that can fit into an 11G clinical coaxial biopsy needle for real time imaging during clinical cancer surgery. In the present study, the device is calibrated with tissue mimicking phantoms of FAD and NADH along with various technical parameters such as sensitivity, dynamic range, linearity, and spatial resolution of the system. We also conducted preliminary imaging of tissues ex vivo for validation. We plan to test the NRI on clinical breast cancer patients. Once validated this device may provide an effective tool for clinical cancer diagnosis.

  20. Multiphoton fluorescence lifetime imaging of metabolic status in mesenchymal stem cell during adipogenic differentiation

    NASA Astrophysics Data System (ADS)

    Meleshina, A. V.; Dudenkova, V. V.; Shirmanova, M. V.; Bystrova, A. S.; Zagaynova, E. V.

    2016-03-01

    Non-invasive imaging of cell metabolism is a valuable approach to assess the efficacy of stem cell therapy and understand the tissue development. In this study we analyzed metabolic trajectory of the mesenchymal stem cells (MCSs) during differentiation into adipocytes by measuring fluorescence lifetimes of free and bound forms of the reduced nicotinamide adenine dinucleotide (NAD(P)H) and flavine adenine dinucleotide (FAD). Undifferentiated MSCs and MSCs on the 5, 12, 19, 26 days of differentiation were imaged on a Zeiss 710 microscope with fluorescence lifetime imaging (FLIM) system B&H (Germany). Fluorescence of NAD(P)H and FAD was excited at 750 nm and 900 nm, respectively, by a femtosecond Ti:sapphire laser and detected in a range 455-500 nm and 500-550 nm, correspondingly. We observed the changes in the NAD(P)H and FAD fluorescence lifetimes and their relative contributions in the differentiated adipocytes compare to undifferentiated MSCs. Increase of fluorescence lifetimes of the free and bound forms of NAD(P)H and the contribution of protein-bound NAD(P)H was registered, that can be associated with a metabolic switch from glycolysis to oxidative phosphorylation and/or synthesis of lipids in adipogenically differentiated MSCs. We also found that the contribution of protein-bound FAD decreased during differentiation. After carrying out appropriate biochemical measurements, the observed changes in cellular metabolism can potentially serve to monitor stem cell differentiation by FLIM.

  1. RNA interference of NADPH-cytochrome P450 reductase of the rice brown planthopper, Nilaparvata lugens, increases susceptibility to insecticides.

    PubMed

    Liu, Su; Liang, Qing-Mei; Zhou, Wen-Wu; Jiang, Yan-Dong; Zhu, Qing-Zi; Yu, Hang; Zhang, Chuan-Xi; Gurr, Geoff M; Zhu, Zeng-Rong

    2015-01-01

    NADPH-cytochrome P450 reductase (CPR) is essential for numerous biological reactions catalysed by microsomal cytochrome P450 monooxygenases (P450s). Knockdown of CPR in several insects leads to developmental defects and increased susceptibility to insecticides. However, information about the role of CPR in the brown planthopper, Nilaparvata lugens, is still unavailable. A full-length cDNA encoding CPR was cloned from N. lugens (NlCPR). The deduced amino acid sequence showed marked features of classical CPRs, such as an N-terminus membrane anchor, conserved domains for flavin mononucleotide, flavin adenine dinucleotide (FAD) and nicotinamide adenine dinucleotide phosphate binding, as well as an FAD-binding motif and catalytic residues. Phylogenetic analysis revealed that NlCPR was located in a branch along with bed bug and pea aphid hemipteran insects. NlCPR mRNA was detectable in all tissues and developmental stages of N. lugens, as determined by real-time quantitative PCR. NlCPR transcripts were most abundant in the abdomen in adults, and in first-instar nymphs. Injection of N. lugens with double-strand RNA (dsRNA) against NlCPR significantly reduced the transcription level of the mRNA, and silencing of NlCPR resulted in increased susceptibility in N. lugens to beta-cypermethrin and imidacloprid. The results provide first evidence that NlCPR contributes to the susceptibility to beta-cypermethrin and imidacloprid in N. lugens. © 2014 Society of Chemical Industry.

  2. Oxygen sensing PLIM together with FLIM of intrinsic cellular fluorophores for metabolic mapping

    NASA Astrophysics Data System (ADS)

    Kalinina, Sviatlana; Schaefer, Patrick; Breymayer, Jasmin; Bisinger, Dominik; Chakrabortty, Sabyasachi; Rueck, Angelika

    2018-02-01

    Otical imaging techniques based on time correlated single photon counting (TCSPC) has found wide applications in medicine and biology. Non-invasive and information-rich fluorescence lifetime imaging microscopy (FLIM) is successfully used for monitoring fluorescent intrinsic metabolic coenzymes as NAD(P)H (nicotinamide adenine dinucleotide (phosphate)) and FAD+ (flavin adenine dinucleotide) in living cells and tissues. The ratio between proteinbound and free coenzymes gives an information about the balance between oxidative phosphorylation and glycolysis in the cells. The changes of the ratio reflects major cellular disorders. A correlation exists between metabolic activity, redox ratio and fluorescence lifetime during stem cell differentiation, neurodegenerative diseases, and carcinogenesis. A multichannel FLIM detection system was designed for monitoring the redox state of NAD(P)H and FAD+ and other intrinsic fluorophores as protoporphyrin IX. In addition, the unique upgrade is useful to perform FLIM and PLIM (phosphorescence lifetime imaging microscopy) simultaneously. PLIM is a promising method to investigate oxygen sensing in biomedical samples. In detail, the oxygen-dependent quenching of phosphorescence of some compounds as transition metal complexes enables measuring of oxygen partial pressure (pO2). Using a two-channel FLIM/PLIM system we monitored intrinsic pO2 by PLIM simultaneously with NAD(P)H by FLIM providing complex metabolic and redox imaging of living cells. Physico-chemical properties of oxygen sensitive probes define certain parameters including their localisation. We present results of some ruthenium based complexes including those specifically bound to mitochondria.

  3. Fluorescence lifetime imaging ophthalmoscopy in type 2 diabetic patients who have no signs of diabetic retinopathy

    NASA Astrophysics Data System (ADS)

    Schweitzer, Dietrich; Deutsch, Lydia; Klemm, Matthias; Jentsch, Susanne; Hammer, Martin; Peters, Sven; Haueisen, Jens; Müller, Ulrich A.; Dawczynski, Jens

    2015-06-01

    The time-resolved autofluorescence of the eye is used for the detection of metabolic alteration in diabetic patients who have no signs of diabetic retinopathy. One eye from 37 phakic and 11 pseudophakic patients with type 2 diabetes, and one eye from 25 phakic and 23 pseudophakic healthy subjects were included in the study. After a three-exponential fit of the decay of autofluorescence, histograms of lifetimes τi, amplitudes αi, and relative contributions Qi were statistically compared between corresponding groups in two spectral channels (490450 ps, and the shift of τ3 from ˜3000 to 3700 ps in ch1 of diabetic patients when compared with healthy subjects indicate an increased production of free flavin adenine dinucleotide, accumulation of advanced glycation end products (AGE), and, probably, a change from free to protein-bound reduced nicotinamide adenine dinucleotide at the fundus. AGE also accumulated in the crystalline lens.

  4. Cu2+ -Modified Metal-Organic Framework Nanoparticles: A Peroxidase-Mimicking Nanoenzyme.

    PubMed

    Chen, Wei-Hai; Vázquez-González, Margarita; Kozell, Anna; Cecconello, Alessandro; Willner, Itamar

    2018-02-01

    The synthesis and characterization of UiO-type metal-organic framework nanoparticles (NMOFs) composed of Zr 4+ ions bridged by 2,2'-bipyridine-5,5'-dicarboxylic acid ligands and the postmodification of the NMOFs with Cu 2+ ions are described. The resulting Cu 2+ -modified NMOFs, Cu 2+ -NMOFs, exhibit peroxidase-like catalytic activities reflected by the catalyzed oxidation of Amplex-Red to the fluorescent Resorufin by H 2 O 2 , the catalyzed oxidation of dopamine to aminochrome by H 2 O 2 , and the catalyzed generation of chemiluminescence in the presence of luminol/H 2 O 2 . Also, the Cu 2+ -NMOFs mimic NADH peroxidase functions and catalyze the oxidation of dihydronicotinamide adenine dinucleotide, NADH, to nicotinamide adenine dinucleotide, NAD + , in the presence of H 2 O 2 . The Cu 2+ -NMOFs-catalyzed generation of chemiluminescence in the presence of luminol/H 2 O 2 is used to develop a glucose sensor by monitoring the H 2 O 2 formed by the aerobic oxidation of glucose to gluconic acid in the presence of glucose oxidase. Furthermore, loading the Cu 2+ -NMOFs with fluorescein and activating the catalyzed generation of chemiluminescence in the presence of luminol/H 2 O 2 yield an efficient chemiluminescence resonance energy transfer (CRET) process to the fluorescein reflected by the activation of the fluorescence of the dye (λ = 520 nm, CRET efficiency 35%). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Calcium Signaling and Reactive Oxygen Species in Mitochondria.

    PubMed

    Bertero, Edoardo; Maack, Christoph

    2018-05-11

    In heart failure, alterations of Na + and Ca 2+ handling, energetic deficit, and oxidative stress in cardiac myocytes are important pathophysiological hallmarks. Mitochondria are central to these processes because they are the main source for ATP, but also reactive oxygen species (ROS), and their function is critically controlled by Ca 2+ During physiological variations of workload, mitochondrial Ca 2+ uptake is required to match energy supply to demand but also to keep the antioxidative capacity in a reduced state to prevent excessive emission of ROS. Mitochondria take up Ca 2+ via the mitochondrial Ca 2+ uniporter, which exists in a multiprotein complex whose molecular components were identified only recently. In heart failure, deterioration of cytosolic Ca 2+ and Na + handling hampers mitochondrial Ca 2+ uptake and the ensuing Krebs cycle-induced regeneration of the reduced forms of NADH (nicotinamide adenine dinucleotide) and NADPH (nicotinamide adenine dinucleotide phosphate), giving rise to energetic deficit and oxidative stress. ROS emission from mitochondria can trigger further ROS release from neighboring mitochondria termed ROS-induced ROS release, and cross talk between different ROS sources provides a spatially confined cellular network of redox signaling. Although low levels of ROS may serve physiological roles, higher levels interfere with excitation-contraction coupling, induce maladaptive cardiac remodeling through redox-sensitive kinases, and cell death through mitochondrial permeability transition. Targeting the dysregulated interplay between excitation-contraction coupling and mitochondrial energetics may ameliorate the progression of heart failure. © 2018 American Heart Association, Inc.

  6. A fiber-optic sorbitol biosensor based on NADH fluorescence detection toward rapid diagnosis of diabetic complications.

    PubMed

    Gessei, Tomoko; Arakawa, Takahiro; Kudo, Hiroyuki; Mitsubayashi, Kohji

    2015-09-21

    Accumulation of sorbitol in the tissue is known to cause microvascular diabetic complications. In this paper, a fiber-optic biosensor for sorbitol which is used as a biomarker of diabetic complications was developed and tested. The biosensor used a sorbitol dehydrogenase from microorganisms of the genus Flavimonas with high substrate specificity and detected the fluorescence of reduced nicotinamide adenine dinucleotide (NADH) by the enzymatic reaction. An ultraviolet light emitting diode (UV-LED) was used as the excitation light source of NADH. The fluorescence of NADH was detected using a spectrometer or a photomultiplier tube (PMT). The UV-LED and the photodetector were coupled using a Y-shaped optical fiber. In the experiment, an optical fiber probe with a sorbitol dehydrogenase immobilized membrane was placed in a cuvette filled with a phosphate buffer containing the oxidized form of nicotinamide adenine dinucleotide (NAD(+)). The changes in NADH fluorescence intensity were measured after adding a standard sorbitol solution. According to the experimental assessment, the calibration range of the sorbitol biosensor systems using a spectrometer and a PMT was 5.0-1000 μmol L(-1) and 1.0-1000 μmol L(-1), respectively. The sorbitol biosensor system using the sorbitol dehydrogenase from microorganisms of the genus Flavimonas has high selectivity and sensitivity compared with that from sheep liver. The sorbitol biosensor allows for point-of-care testing applications or daily health care tests for diabetes patients.

  7. Time-dependent disturbances of chloride salts on overall redox reaction and luminescence in Vibrio fischeri.

    PubMed

    Yu, Zhenyang; Zhang, Jing; Hou, Meifang

    2018-05-01

    The redox state of NADH/NADPH balance (nicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide phosphate) is crucial in cellular homeostasis. Recent studies reported that sodium halide ions (NaX, X = F - , Cl - , Br - and I - ) stimulated NAD(P)H in Vibrio fischeri (VF). However, it remained unanswered whether this pattern applied in salts with other cations, e.g., K + , Mg 2+ and Ca 2+ , whose aquatic concentrations were increased by anthropogenic activities and climate change. Currently, VF were incubated with chloride salts, including KCl, MgCl 2 and CaCl 2 , and effects were measured in a time-dependent fashion. Both NADH and NADPH showed stimulation that increased over time, and the greatest maximum stimulation at 24 h was CaCl 2  > MgCl 2  > KCl. The changes of NADH/NADPH ratios over time in CaCl 2 , MgCl 2 and KCl were descendent, ascendant and stable, respectively. Simultaneously, FMN:NAD(P)H reaction catalyst (luciferase, in the form of expression levels of lux A and lux B), adenosine triphosphate and the expression levels of its regulating gene adk were also stimulated. The luminescence showed even more significant stimulations than the overall redox reaction. Together with earlier reported effects of NaCl, the chloride salts commonly disturbed the redox state and influenced the adaption of organisms to challenging environments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. The effect of pi-stacking, h-bonding, and electrostatic interactions on the ionization energies of nucleic acid bases: adenine-adenine, thymine-thymine and adenine-thymine dimers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bravaya, Ksenia B.; Kostko, Oleg; Ahmed, Musahid

    A combined theoretical and experimental study of the ionized dimers of thymine and adenine, TT, AA, and AT, is presented. Adiabatic and vertical ionization energies(IEs) for monomers and dimers as well as thresholds for the appearance of the protonated species are reported and analyzed. Non-covalent interactions stronglyaffect the observed IEs. The magnitude and the nature of the effect is different for different isomers of the dimers. The computations reveal that for TT, the largestchanges in vertical IEs (0.4 eV) occur in asymmetric h-bonded and symmetric pi- stacked isomers, whereas in the lowest-energy symmetric h-bonded dimer the shiftin IEs is muchmore » smaller (0.1 eV). The origin of the shift and the character of the ionized states is different in asymmetric h-bonded and symmetric stacked isomers. Inthe former, the initial hole is localized on one of the fragments, and the shift is due to the electrostatic stabilization of the positive charge of the ionized fragment by thedipole moment of the neutral fragment. In the latter, the hole is delocalized, and the change in IE is proportional to the overlap of the fragments' MOs. The shifts in AAare much smaller due to a less effcient overlap and a smaller dipole moment. The ionization of the h-bonded dimers results in barrierless (or nearly barrierless) protontransfer, whereas the pi-stacked dimers relax to structures with the hole stabilized by the delocalization or electrostatic interactions.« less

  9. Molecular and Biochemical Characterization of a Cytokinin Oxidase from Maize1

    PubMed Central

    Bilyeu, Kristin D.; Cole, Jean L.; Laskey, James G.; Riekhof, Wayne R.; Esparza, Thomas J.; Kramer, Michelle D.; Morris, Roy O.

    2001-01-01

    It is generally accepted that cytokinin oxidases, which oxidatively remove cytokinin side chains to produce adenine and the corresponding isopentenyl aldehyde, play a major role in regulating cytokinin levels in planta. Partially purified fractions of cytokinin oxidase from various species have been studied for many years, but have yet to clearly reveal the properties of the enzyme or to define its biological significance. Details of the genomic organization of the recently isolated maize (Zea mays) cytokinin oxidase gene (ckx1) and some of its Arabidopsis homologs are now presented. Expression of an intronless ckx1 in Pichia pastoris allowed production of large amounts of recombinant cytokinin oxidase and facilitated detailed kinetic and cofactor analysis and comparison with the native enzyme. The enzyme is a flavoprotein containing covalently bound flavin adenine dinucleotide, but no detectable heavy metals. Expression of the oxidase in maize tissues is described. PMID:11154345

  10. Oligomerization reactions of deoxyribonucleotides on montmorillonite clay: The effect of mononucleotide structure on phosphodiester bond formation

    NASA Astrophysics Data System (ADS)

    Ferris, James P.; Kamaluddin

    1989-11-01

    Adenine deoxynucleotides bind more strongly to Na+-montmorillonite than do the corresponding ribonucleotides. Thymidine nucleotides binds less strongly to Na+-montmorillonite than do the corresponding adenine deoxynucleotides. Oligomers of 2'-dpA up to the tetramer were detected in the reaction 2'-d-5'-AMP with EDAC (a water-soluble carbodiimide) in the presence of Na+-montmorillonite. Reaction of 3'-d-5'-AMP with EDAC on Na+-montmorillonite yields 3'-d-2',5'-pApA while the reaction of 2'-d-3'-AMP yields almost exclusively 3',5'-cdAMP. The reaction of 5'-TMP under the same reaction conditions give 3',5'-cpTpT and 3',5'-pTpT while 3'-TMP gives mainly 3',5'-cpT. The yield of dinucleotide products (dpNpN) containing the phosphodiester bond is 1% or less when Na+-montmorillonite is omitted from the reaction mixture.

  11. Immobilisation of enzymes on poly(aniline)-poly(anion) composite films. Preparation of bioanodes for biofuel cell applications.

    PubMed

    Simon, Evelyne; Halliwell, Catherine M; Toh, Chee Seng; Cass, Anthony E G; Bartlett, Philip N

    2002-01-01

    Immobilisation of enzymes is important for applications such as biosensors or biofuel cells. A poly(histidine) tag had been introduced on the C terminus of a lactate dehydrogenase enzyme. This mutant enzyme was then immobilised onto poly(aniline) (PANi)-poly(anion) composite films, PANi-poly(vinylsulfonate) (PVS) or PANi-poly(acrylate) (PAA). The NADH produced by the immobilised enzyme in the presence of beta-nicotinamide adenine dinucleotide (NAD(+)) and lactate is oxidised at the poly(aniline)-coated electrode at 0.05 to 0.1 V vs. saturated calomel electrode (SCE) at 35 degrees C.

  12. Label-free assessment of endothelial cell metabolic state using autofluorescent microscopy

    NASA Astrophysics Data System (ADS)

    Pullen, Benjamin J.; Nguyen, Tam; Gosnell, Martin; Anwer, Ayad G.; Goldys, Ewa; Nicholls, Stephen J.; Psaltis, Peter J.

    2016-12-01

    To examine the process of endothelial cell aging we utilised hyperspectral imaging to collect broad autofluorescence emission at the individual cellular level and mathematically isolate the characteristic spectra of nicotinamide and flavin adenine dinucleotides (NADH and FAD, respectively). Quantitative analysis of this data provides the basis for a non-destructive spatial imaging method for cells and tissue. FAD and NADH are important factors in cellular metabolism and have been shown to be involved with the redox state of the cell; with the ratio between the two providing the basis for an `optical redox ratio'.

  13. The role of β-adrenergic blockers in Parkinson's disease: possible genetic and cell-signaling mechanisms.

    PubMed

    Luong, Khanh vinh quoc; Nguyen, Lan Thi Hoàng

    2013-06-01

    Genetic studies have identified numerous factors linking β-adrenergic blockade to Parkinson's disease (PD), including human leukocyte antigen genes, the renin-angiotensin system, poly(adenosine diphosphate-ribose) polymerase 1, nerve growth factor, vascular endothelial growth factor, and the reduced form of nicotinamide adenine dinucleotide phosphate. β-Adrenergic blockade has also been implicated in PD via its effects on matrix metalloproteinases, mitogen-activated protein kinase pathways, prostaglandins, cyclooxygenase 2, and nitric oxide synthase. β-Adrenergic blockade may have a significant role in PD; therefore, the characterization of β-adrenergic blockade in patients with PD is needed.

  14. Cassava root diet induces low pyruvate levels.

    PubMed

    Golay, Van K

    2010-01-01

    The high cyanogenic-glucoside carbohydrate of the cassava root (Manihot esculenta) has special properties that make it an ideal therapeutic food for lowering nicotinamide adenine dinucleotide reduced form (NADH) and inducing Sirtuin (Sirt) gene overexpression when eaten in an exclusive mono-food diet regime. The author, using himself as the sole test subject, repeatedly induced low pyruvate levels (reflective of NADH levels) after being on the diet for 1-2 weeks at a time. The possible influences of exclusive cassava dieting on redox control and Sirtuin activation will be discussed.

  15. Laser induced fluorescence of biochemical for UV LIDAR application.

    PubMed

    Gupta, L; Sharma, R C; Razdan, A K; Maini, A K

    2014-05-01

    Laser induced fluorescence spectroscopy in the ultraviolet regime has been used for the detection of biochemical through a fiber coupled CCD detector from a distance of 2 m. The effect of concentration and laser excitation energy on the fluorescence spectra of nicotinamide adenine dinucleotide (NADH) has been investigated. The signature fluorescence peak of NADH was centred about 460 nm. At lower concentration Raman peak centred at 405 nm was also observed. The origin of this peak has been discussed. Detection limit with the proposed set up is found to be 1 ppm.

  16. What is the tryptophan kynurenine pathway and why is it important to neurotherapy?

    PubMed Central

    Davis, Ian

    2015-01-01

    The kynurenine pathway has received increasing attention as its connection to inflammation, the immune system, and neurological conditions became more apparent. It is the primary route for tryptophan catabolism in the liver and the starting point for the synthesis of nicotinamide adenine dinucleotide in mammals. Dysregulation or overactivation of this pathway can lead to immune system activation and accumulation of potentially neurotoxic compounds. These aspects make the kynurenine pathway a promising target for therapeutic development to treat inflammation and some diseases with neurological aspects, especially in cancer patients undergoing chemotherapy. PMID:26004930

  17. Control of box C/D snoRNP assembly by N6-methylation of adenine.

    PubMed

    Huang, Lin; Ashraf, Saira; Wang, Jia; Lilley, David Mj

    2017-09-01

    N 6 -methyladenine is the most widespread mRNA modification. A subset of human box C/D snoRNA species have target GAC sequences that lead to formation of N 6 -methyladenine at a key trans Hoogsteen-sugar A·G base pair, of which half are methylated in vivo The GAC target is conserved only in those that are methylated. Methylation prevents binding of the 15.5-kDa protein and the induced folding of the RNA Thus, the assembly of the box C/D snoRNP could in principle be regulated by RNA methylation at its critical first stage. Crystallography reveals that N 6 -methylation of adenine prevents the formation of trans Hoogsteen-sugar A·G base pairs, explaining why the box C/D RNA cannot adopt its kinked conformation. More generally, our data indicate that sheared A·G base pairs (but not Watson-Crick base pairs) are more susceptible to disruption by N 6 mA methylation and are therefore possible regulatory sites. The human signal recognition particle RNA and many related Alu retrotransposon RNA species are also methylated at N6 of an adenine that forms a sheared base pair with guanine and mediates a key tertiary interaction. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  18. Examining the base stacking interaction in a dinucleotide context via reversible cyclobutane dimer analogue formation under UV irradiation.

    PubMed

    Liu, Degang; Li, Lei

    2013-11-14

    Substituted tolyl groups are considered as close isosteres of the thymine (T) residue. They can be recognized by DNA polymerases as if they were thymine. Although these toluene derivatives are relatively inert toward radical additions, our recent finding suggests that the dinucleotide analogue TpTo (To = 2'-deoxy-1-(3-tolyl)-β-D-ribofuranose) supports an ortho photocycloaddition reaction upon UV irradiation, producing two cyclobutane pyrimidine dimer (CPD) analogues 2 and 3 . Our report here further shows that formation of these CPD species is reversible under UVC irradiation, resembling the photochemical property of the CPD species formed between two Ts. Analyzing the stability of these CPD analogues suggests that one ( 2 ) is more stable than the other ( 3 ). The TpTo conformer responsible for 2 formation is also more stable than that responsible for 3 formation, as indicated by the Gibbs free energy change calculated from the constructed Bordwell thermodynamic cycle. These different stabilities are not due to the varying photochemical properties, as proved by quantum yields determined from the corresponding photoreactions. Instead, they are ascribed to the different stacking interaction between the T and the To rings both in the TpTo dinucleotide as well as in the formed CPD analogues. Factors contributing to the ring stacking interactions are also discussed. Our proof-of-concept approach suggests that a carefully designed Bordwell cycle coupled with reversible CPD formations under UV irradiation can be very useful in studying DNA base interactions.

  19. Examining the base stacking interaction in a dinucleotide context via reversible cyclobutane dimer analogue formation under UV irradiation

    PubMed Central

    Liu, Degang; Li, Lei

    2013-01-01

    Substituted tolyl groups are considered as close isosteres of the thymine (T) residue. They can be recognized by DNA polymerases as if they were thymine. Although these toluene derivatives are relatively inert toward radical additions, our recent finding suggests that the dinucleotide analogue TpTo (To = 2'-deoxy-1-(3-tolyl)-β-D-ribofuranose) supports an ortho photocycloaddition reaction upon UV irradiation, producing two cyclobutane pyrimidine dimer (CPD) analogues 2 and 3. Our report here further shows that formation of these CPD species is reversible under UVC irradiation, resembling the photochemical property of the CPD species formed between two Ts. Analyzing the stability of these CPD analogues suggests that one (2) is more stable than the other (3). The TpTo conformer responsible for 2 formation is also more stable than that responsible for 3 formation, as indicated by the Gibbs free energy change calculated from the constructed Bordwell thermodynamic cycle. These different stabilities are not due to the varying photochemical properties, as proved by quantum yields determined from the corresponding photoreactions. Instead, they are ascribed to the different stacking interaction between the T and the To rings both in the TpTo dinucleotide as well as in the formed CPD analogues. Factors contributing to the ring stacking interactions are also discussed. Our proof-of-concept approach suggests that a carefully designed Bordwell cycle coupled with reversible CPD formations under UV irradiation can be very useful in studying DNA base interactions. PMID:24223299

  20. High-NaCl diet impairs dynamic renal blood flow autoregulation in rats with adenine-induced chronic renal failure.

    PubMed

    Saeed, Aso; DiBona, Gerald F; Grimberg, Elisabeth; Nguy, Lisa; Mikkelsen, Minne Line Nedergaard; Marcussen, Niels; Guron, Gregor

    2014-03-15

    This study examined the effects of 2 wk of high-NaCl diet on kidney function and dynamic renal blood flow autoregulation (RBFA) in rats with adenine-induced chronic renal failure (ACRF). Male Sprague-Dawley rats received either chow containing adenine or were pair-fed an identical diet without adenine (controls). After 10 wk, rats were randomized to either remain on the same diet (0.6% NaCl) or to be switched to high 4% NaCl chow. Two weeks after randomization, renal clearance experiments were performed under isoflurane anesthesia and dynamic RBFA, baroreflex sensitivity (BRS), systolic arterial pressure variability (SAPV), and heart rate variability were assessed by spectral analytical techniques. Rats with ACRF showed marked reductions in glomerular filtration rate and renal blood flow (RBF), whereas mean arterial pressure and SAPV were significantly elevated. In addition, spontaneous BRS was reduced by ∼50% in ACRF animals. High-NaCl diet significantly increased transfer function fractional gain values between arterial pressure and RBF in the frequency range of the myogenic response (0.06-0.09 Hz) only in ACRF animals (0.3 ± 4.0 vs. -4.4 ± 3.8 dB; P < 0.05). Similarly, a high-NaCl diet significantly increased SAPV in the low-frequency range only in ACRF animals. To conclude, a 2-wk period of a high-NaCl diet in ACRF rats significantly impaired dynamic RBFA in the frequency range of the myogenic response and increased SAPV in the low-frequency range. These abnormalities may increase the susceptibility to hypertensive end-organ injury and progressive renal failure by facilitating pressure transmission to the microvasculature.

  1. Approach to the unfolding and folding dynamics of add A-riboswitch upon adenine dissociation using a coarse-grained elastic network model

    NASA Astrophysics Data System (ADS)

    Li, Chunhua; Lv, Dashuai; Zhang, Lei; Yang, Feng; Wang, Cunxin; Su, Jiguo; Zhang, Yang

    2016-07-01

    Riboswitches are noncoding mRNA segments that can regulate the gene expression via altering their structures in response to specific metabolite binding. We proposed a coarse-grained Gaussian network model (GNM) to examine the unfolding and folding dynamics of adenosine deaminase (add) A-riboswitch upon the adenine dissociation, in which the RNA is modeled by a nucleotide chain with interaction networks formed by connecting adjoining atomic contacts. It was shown that the adenine binding is critical to the folding of the add A-riboswitch while the removal of the ligand can result in drastic increase of the thermodynamic fluctuations especially in the junction regions between helix domains. Under the assumption that the native contacts with the highest thermodynamic fluctuations break first, the iterative GNM simulations showed that the unfolding process of the adenine-free add A-riboswitch starts with the denature of the terminal helix stem, followed by the loops and junctions involving ligand binding pocket, and then the central helix domains. Despite the simplified coarse-grained modeling, the unfolding dynamics and pathways are shown in close agreement with the results from atomic-level MD simulations and the NMR and single-molecule force spectroscopy experiments. Overall, the study demonstrates a new avenue to investigate the binding and folding dynamics of add A-riboswitch molecule which can be readily extended for other RNA molecules.

  2. Fluorometric detection of adenine in target DNA by exciplex formation with fluorescent 8-arylethynylated deoxyguanosine.

    PubMed

    Saito, Yoshio; Kugenuma, Kenji; Tanaka, Makiko; Suzuki, Azusa; Saito, Isao

    2012-06-01

    We demonstrated an intriguing method to discriminate adenine by incident appearance of an intense new emission via exciplex formation in hybridization of target DNA with newly designed fluorescent 8-arylethynylated deoxyguanosine derivatives. We described the synthesis of such highly electron donating fluorescent guanosine derivatives and their incorporation into DNA oligomers which may be used for the structural study and the fluorometric analysis of nucleic acids. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Crystallization and preliminary X-ray diffraction study of recombinant adenine phosphoribosyltransferase from the thermophilic bacterium Thermus thermophilus strain HB27

    NASA Astrophysics Data System (ADS)

    Sinitsyna, E. V.; Timofeev, V. I.; Tuzova, E. S.; Kostromina, M. A.; Murav'eva, T. I.; Esipov, R. S.; Kuranova, I. P.

    2017-07-01

    Adenine phosphoribosyltransferase (APRT) belongs to the type I phosphoribosyltransferase family and catalyzes the formation of adenosine monophosphate via transfer of the 5-phosphoribosyl group from phosphoribosyl pyrophosphate to the nitrogen atom N9 of the adenine base. Proteins of this family are involved in a salvage pathway of nucleotide synthesis, thus providing purine base utilization and maintaining the optimal level of purine bases in the body. Adenine phosphoribosyltransferase from the extremely thermophilic Thermus thermophilus strain HB27 was produced using a highly efficient E. coli producer strain and was then purified by affinity and gel-filtration chromatography. This enzyme was successfully employed as a catalyst for the cascade biosynthesis of biologically important nucleotides. The screening of crystallization conditions for recombinant APRT from T. thermophilus HB27 was performed in order to determine the enzyme structure by X-ray diffraction. The crystallization conditions, which were found by the vapor-diffusion technique, were then optimized to apply the counter-diffusion technique. The crystals of the enzyme were grown by the capillary counter-diffusion method. The crystals belong to sp. gr. P1211 and have the following unitcell parameters: a = 69.86 Å, b = 82.16 Å, c = 91.39 Å, α = γ = 90°, β = 102.58°. The X-ray diffraction data set suitable for the determination of the APRT structure at 2.6 Å resolution was collected from the crystals at the SPring-8 synchrotron facility (Japan).

  4. Constitutional self-organization of adenine-uracil-derived hybrid materials.

    PubMed

    Arnal-Hérault, Carole; Barboiu, Mihai; Pasc, Andreea; Michau, Mathieu; Perriat, Pascal; van der Lee, Arie

    2007-01-01

    The alkoxysilane nucleobase adenine (A) and uracil (U) precursors described in this paper generate in solution a complex library of hydrogen-bonded aggregates, which can be expressed in the solid state as discrete higher oligomers. The different interconverting outputs that nucleobases may form by oligomerization define a dynamic polyfunctional diversity that may be "extracted selectively" in solid state by sol-gel transcription, under the intrinsic stability of the system. After the sol-gel process, unique constitutional preference for specific geometries in hybrid materials is consistent with a preferential arrangement of nucleobase systems, favoring the self-assembly by the Hoogsteen geometry. FTIR and NMR spectroscopy and X-ray powder diffraction experiments demonstrate the formation of self-organized hybrid supramolecular materials. Electron microscopy reveals the micrometric platelike morphology of the hybrid materials. The M(A-U) hybrid material is nanostructured in ordered circular domains of 5 nm in diameter of alternative light and dark rows with an one-dimensional periodicity of 3.5 A.

  5. Degradation of Adenine on the Martian Surface in the Presence of Perchlorates and Ionizing Radiation: A Reflectron Time-of-flight Mass Spectrometric Study

    NASA Astrophysics Data System (ADS)

    Góbi, Sándor; Bergantini, Alexandre; Kaiser, Ralf I.

    2017-04-01

    The aim of the present work is to unravel the radiolytic decomposition of adenine (C5H5N5) under conditions relevant to the Martian surface. Being the fundamental building block of (deoxy)ribonucleic acids, the possibility of survival of this biomolecule on the Martian surface is of primary importance to the astrobiology community. Here, neat adenine and adenine-magnesium perchlorate mixtures were prepared and irradiated with energetic electrons that simulate the secondary electrons originating from the interaction of the galactic cosmic rays with the Martian surface. Perchlorates were added to the samples since they are abundant—and therefore relevant oxidizers on the surface of Mars—and they have been previously shown to facilitate the radiolysis of organics such as glycine. The degradation of the samples were monitored in situ via Fourier transformation infrared spectroscopy and the electron ionization quadruple mass spectrometric method; temperature-programmed desorption profiles were then collected by means of the state-of-the-art single photon photoionization reflectron time-of-flight mass spectrometry (PI-ReTOF-MS), allowing for the detection of the species subliming from the sample. The results showed that perchlorates do increase the destruction rate of adenine by opening alternative reaction channels, including the concurrent radiolysis/oxidation of the sample. This new pathway provides a plethora of different radiolysis products that were identified for the first time. These are carbon dioxide (CO2), isocyanic acid (HNCO), isocyanate (OCN-), carbon monoxide (CO), and nitrogen monoxide (NO); an oxidation product containing carbonyl groups (R1R2-C=O) with a constrained five-membered cyclic structure could also be observed. Cyanamide (H2N-C≡N) was detected in both irradiated samples as well.

  6. Dietary adenine controls adult lifespan via adenosine nucleotide biosynthesis and AMPK, and regulates the longevity benefit of caloric restriction

    PubMed Central

    Stenesen, Drew; Suh, Jae Myoung; Seo, Jin; Yu, Kweon; Lee, Kyu-Sun; Kim, Jong-Seok; Min, Kyung-Jin; Graff, Jonathan M.

    2012-01-01

    SUMMARY A common thread among conserved lifespan regulators lies within intertwined roles in metabolism and energy homeostasis. We show that heterozygous mutations of adenosine monophosphate (AMP) biosynthetic enzymes extend Drosophila lifespan. The lifespan benefit of these mutations depends upon increased AMP to adenosine triphosphate (ATP) and adenosine diphosphate (ADP) to ATP ratios and adenosine monophosphate-activated protein kinase (AMPK). Transgenic expression of AMPK in adult fat body or adult muscle, key metabolic tissues, extended lifespan, while AMPK RNAi reduced lifespan. Supplementing adenine, a substrate for AMP biosynthesis, to the diet of long-lived AMP biosynthesis mutants reversed lifespan extension. Remarkably, this simple change in diet also blocked the pro-longevity effects of dietary restriction. These data establish AMP biosynthesis, adenosine nucleotide ratios, and AMPK as determinants of adult lifespan, provide a mechanistic link between cellular anabolism and energy sensing pathways, and indicate that dietary adenine manipulations might alter metabolism to influence animal lifespan. PMID:23312286

  7. When does the lung die? Kfc, cell viability, and adenine nucleotide changes in the circulation-arrested rat lung.

    PubMed

    Jones, D R; Becker, R M; Hoffmann, S C; Lemasters, J J; Egan, T M

    1997-07-01

    Lungs harvested from cadaveric circulation-arrested donors may increase the donor pool for lung transplantation. To determine the degree and time course of ischemia-reperfusion injury, we evaluated the effect of O2 ventilation on capillary permeability [capillary filtration coefficient (Kfc)], cell viability, and total adenine nucleotide (TAN) levels in in situ circulation-arrested rat lungs. Kfc increased with increasing postmortem ischemic time (r = 0.88). Lungs ventilated with O2 1 h postmortem had similar Kfc and wet-to-dry ratios as controls. Nonventilated lungs had threefold (P < 0.05) and sevenfold (P < 0.0001) increases in Kfc at 30 and 60 min postmortem compared with controls. Cell viability decreased in all groups except for 30-min postmortem O2-ventilated lungs. TAN levels decreased with increasing ischemic time, particularly in nonventilated lungs. Loss of adenine nucleotides correlated with increasing Kfc values (r = 0.76). This study indicates that lungs retrieved 1 h postmortem may have normal Kfc with preharvest O2 ventilation. The relationship between Kfc and TAN suggests that vascular permeability may be related to lung TAN levels.

  8. Characterization of a DNA Adenine Methyltransferase Gene of Borrelia hermsii and Its Dispensability for Murine Infection and Persistence.

    PubMed

    James, Allison E; Rogovskyy, Artem S; Crowley, Michael A; Bankhead, Troy

    2016-01-01

    DNA methyltransferases have been implicated in the regulation of virulence genes in a number of pathogens. Relapsing fever Borrelia species harbor a conserved, putative DNA methyltransferase gene on their chromosome, while no such ortholog can be found in the annotated genome of the Lyme disease agent, Borrelia burgdorferi. In the relapsing fever species Borrelia hermsii, the locus bh0463A encodes this putative DNA adenine methyltransferase (dam). To verify the function of the BH0463A protein product as a Dam, the gene was cloned into a Dam-deficient strain of Escherichia coli. Restriction fragment analysis subsequently demonstrated that complementation of this E. coli mutant with bh0463A restored adenine methylation, verifying bh0463A as a Dam. The requirement of bh0463A for B. hermsii viability, infectivity, and persistence was then investigated by genetically disrupting the gene. The dam- mutant was capable of infecting immunocompetent mice, and the mean level of spirochetemia in immunocompetent mice was not significantly different from wild type B. hermsii. Collectively, the data indicate that dam is dispensable for B. hermsii viability, infectivity, and persistence.

  9. Prebiotic synthesis of adenine and amino acids under Europa-like conditions

    NASA Technical Reports Server (NTRS)

    Levy, M.; Miller, S. L.; Brinton, K.; Bada, J. L.

    2000-01-01

    In order to simulate prebiotic synthetic processes on Europa and other ice-covered planets and satellites, we have investigated the prebiotic synthesis of organic compounds from dilute solutions of NH4CN frozen for 25 years at -20 and -78 degrees C. In addition, the aqueous products of spark discharge reactions from a reducing atmosphere were frozen for 5 years at -20 degrees C. We find that both adenine and guanine, as well as a simple set of amino acids dominated by glycine, are produced in substantial yields under these conditions. These results indicate that some of the key components necessary for the origin of life may have been available on Europa throughout its history and suggest that the circumstellar zone where life might arise may be wider than previously thought.

  10. Prebiotic synthesis of adenine and amino acids under Europa-like conditions.

    PubMed

    Levy, M; Miller, S L; Brinton, K; Bada, J L

    2000-06-01

    In order to simulate prebiotic synthetic processes on Europa and other ice-covered planets and satellites, we have investigated the prebiotic synthesis of organic compounds from dilute solutions of NH4CN frozen for 25 years at -20 and -78 degrees C. In addition, the aqueous products of spark discharge reactions from a reducing atmosphere were frozen for 5 years at -20 degrees C. We find that both adenine and guanine, as well as a simple set of amino acids dominated by glycine, are produced in substantial yields under these conditions. These results indicate that some of the key components necessary for the origin of life may have been available on Europa throughout its history and suggest that the circumstellar zone where life might arise may be wider than previously thought.

  11. 8-(2-Furyl)adenine derivatives as A₂A adenosine receptor ligands.

    PubMed

    Dal Ben, Diego; Buccioni, Michela; Lambertucci, Catia; Thomas, Ajiroghene; Klotz, Karl-Norbert; Federico, Stephanie; Cacciari, Barbara; Spalluto, Giampiero; Volpini, Rosaria

    2013-01-01

    Selective adenosine receptor modulators are potential tools for numerous therapeutic applications, including cardiovascular, inflammatory, and neurodegenerative diseases. In this work, the synthesis and biological evaluation at the four human adenosine receptor subtypes of a series of 9-substituted 8-(2-furyl)adenine derivatives are reported. Results show that 8-(2-furyl)-9-methyladenine is endowed with high affinity at the A₂A subtype. Further modification of this compound with introduction of arylacetyl or arylcarbamoyl groups in N(6)-position takes to different effects on the A₂A affinity and in particular on the selectivity versus the other three adenosine receptor subtypes. A molecular modelling analysis at three different A₂A receptor crystal structures provides an interpretation of the obtained biological results. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  12. Prebiotic Synthesis of Adenine and Amino Acids Under Europa-like Conditions

    NASA Technical Reports Server (NTRS)

    Levy, Matthew; Miller, Stanley L.; Brinton, Karen; Bada, Jeffrey L.

    2003-01-01

    In order to simulate prebiotic synthetic processes on Europa and other ice-covered planets and satellites. we have investigated the prebiotic synthesis of organic compounds from dilute solutions of NH4CN frozen for 25 year at -20 and -78 C. In addition the aqueous products of spark discharge reactions from a reducing atmosphere were frozen for 5 years at -20%. We find that both adenine and guanine, as well as a simple set of amino acids dominated by glycine, are produced in substantial yields under these conditions. These results indicate that some of the key components necessary for the origin of life may have been available on Europa throughout its history and suggest that the circumstellar zone where life might arise may be m der than previously thought.

  13. Molecular recognition modes between adenine or adeniniun(1+) ion and binary M(II)(pdc) chelates (MCoZn; pdc=pyridine-2,6-dicarboxylate(2-) ion).

    PubMed

    Del Pilar Brandi-Blanco, María; Choquesillo-Lazarte, Duane; Domínguez-Martín, Alicia; Matilla-Hernández, Antonio; González-Pérez, Josefa María; Castiñeiras, Alfonso; Niclós-Gutiérrez, Juan

    2013-10-01

    Mixed ligand M(II)-complexes (MCoZn) with pyridine-2,6-dicarboxylate(2-) chelator (pdc) and adenine (Hade) have been synthesized and studied by X-ray diffraction and other spectral and thermal methods: [Cu(pdc)(H(N9)ade)(H2O)] (1), [Cu2(pdc)2(H2O)2(μ2-N3,N7-H(N9)ade)]·3H2O (2), trans-[M(pdc)(H(N9)ade)(H2O)2]·nH2O for MCo (3-L, 3-M, 3-H) or Zn (4-L, 4-H), where n is 0, 1 or 3 for the 'lowest' (L), 'medium' (M) and 'highest' (H) hydrated forms, and the salt trans-[Ni(pdc)(H2(N1,N9)ade)(H2O)2]Cl·2H2O (5). In all the nine compounds, both neutral and cationic adenine exist as their most stable tautomer and the molecular recognition pattern between the metal-pdc chelates and the adenine or adeninium(1+) ligands involves the MN7 bond in cooperation with an intra-molecular N6H⋯O(coordinated carboxylate) interligand interaction. In addition the dinuclear copper(II) compound (2) has the CuN3 bond and the N9H⋯O(coord. carboxylate) interaction. The structures of mononuclear ternary complexes proved that the molecular recognition pattern is the same irrespective of (a) the coordination geometry of the complex molecule, (b) the different hydrated forms of crystals with Co or Zn, and (c) the neutral of cationic form of the adenine ligand. These features are related to the mer-NO2 chelating ligand conformation (imposed by the planar rigidity of pdc) as a driving force for the observed metal binding mode. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. A novel adenine-based metal organic framework derived nitrogen-doped nanoporous carbon for flexible solid-state supercapacitor.

    PubMed

    Li, Haowen; Fu, Dongying; Zhang, Xian-Ming

    2018-01-01

    In this article, we have synthesized a series of nitrogen-doped nanoporous carbon (NPC) from metal organic framework of UiO-66 with different ratios of adenine and 1,4-benzendicarboxylate (H 2 BDC) coated on carbon nanotube film (CNTF) to obtain a flexible porous electrode (NPC/CNTF). It is worth noting that the introduction of adenine at different ratios did not change the structure of UiO-66. We also investigated the effect of carbonization temperature from 800 to 1000°C on the electrochemical properties of the NPC. The ratio (H 2 BDC:adenine) 9 : 1 and the NPC carbonized at 900°C (denoted as NPC-1-900) exhibits better electrochemical properties. The results show that NPC-1-900/CNTF electrode exhibits an exceptional areal capacitance of 121.5 mF cm -2 compared to that of PC-900/CNTF electrode (22.8 mF cm -2 ) at 5 mV s -1 in a three-electrode system, indicating that the incorporation of nitrogen is beneficial to the electrochemical properties of nanoporous carbon. A symmetric flexible solid-state supercapacitor of NPC-1-900/CNTF has also been assembled and tested. Electrochemical data show that the device exhibited superior areal capacitance (43.2 mF cm -2 ) at the scan rate of 5 mV s -1 ; the volumetric energy density is 57.3 µWh cm -3 and the volumetric power density is 2.4 mW cm -3 at the current density of 0.5 mA cm -2 based on poly(vinyl alcohol)/H 3 PO 4 gel electrolyte. For practical application, we have also studied the bending tests of the device, which show that the device exhibits outstanding mechanical stability under different bending angles. Furthermore, the flexible device shows excellent cyclic stability, which can retain 91.5% of the initial capacitance after 2000 cycles.

  15. A novel adenine-based metal organic framework derived nitrogen-doped nanoporous carbon for flexible solid-state supercapacitor

    PubMed Central

    Li, Haowen; Zhang, Xian-Ming

    2018-01-01

    In this article, we have synthesized a series of nitrogen-doped nanoporous carbon (NPC) from metal organic framework of UiO-66 with different ratios of adenine and 1,4-benzendicarboxylate (H2BDC) coated on carbon nanotube film (CNTF) to obtain a flexible porous electrode (NPC/CNTF). It is worth noting that the introduction of adenine at different ratios did not change the structure of UiO-66. We also investigated the effect of carbonization temperature from 800 to 1000°C on the electrochemical properties of the NPC. The ratio (H2BDC:adenine) 9 : 1 and the NPC carbonized at 900°C (denoted as NPC-1-900) exhibits better electrochemical properties. The results show that NPC-1-900/CNTF electrode exhibits an exceptional areal capacitance of 121.5 mF cm−2 compared to that of PC-900/CNTF electrode (22.8 mF cm−2) at 5 mV s−1 in a three-electrode system, indicating that the incorporation of nitrogen is beneficial to the electrochemical properties of nanoporous carbon. A symmetric flexible solid-state supercapacitor of NPC-1-900/CNTF has also been assembled and tested. Electrochemical data show that the device exhibited superior areal capacitance (43.2 mF cm−2) at the scan rate of 5 mV s−1; the volumetric energy density is 57.3 µWh cm−3 and the volumetric power density is 2.4 mW cm−3 at the current density of 0.5 mA cm−2 based on poly(vinyl alcohol)/H3PO4 gel electrolyte. For practical application, we have also studied the bending tests of the device, which show that the device exhibits outstanding mechanical stability under different bending angles. Furthermore, the flexible device shows excellent cyclic stability, which can retain 91.5% of the initial capacitance after 2000 cycles. PMID:29410815

  16. Optical imaging of metabolic adaptability in metastatic and non-metastatic breast cancer

    NASA Astrophysics Data System (ADS)

    Rebello, Lisa; Rajaram, Narasimhan

    2018-02-01

    Accurate methods for determining metastatic risk from the primary tumor are crucial for patient survival. Cell metabolism could potentially be used as a marker of metastatic risk. Optical imaging of the endogenous fluorescent molecules nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) provides a non-destructive and label-free method for determining cell metabolism. The optical redox ratio (FAD/FAD+NADH) is sensitive to the balance between glycolysis and oxidative phosphorylation (OXPHOS). We have previously established that hypoxia-reoxygenation stress leads to metastatic potential-dependent changes in optical redox ratio. The objective of this study was to monitor the changes in optical redox ratio in breast cancer cells in response to different periods of hypoxic stress as well various levels of hypoxia to establish an optimal protocol. We measured the optical redox ratio of highly metastatic 4T1 murine breast cancer cells under normoxic conditions and after exposure to 30, 60, and 120 minutes of 0.5% O2. This was followed by an hour of reoxygenation. We found an increase in the optical redox ratio following reoxygenation from hypoxia for all durations. Statistically significant differences were observed at 60 and 120 minutes (p˂0.01) compared with normoxia, implying an ability to adapt to OXPHOS after reoxygenation. The switch to OXPHOS has been shown to be a key promoter of cell invasion. We will present our results from these investigations in human breast cancer cells as well as non-metastatic breast cancer cells exposed to various levels of hypoxia.

  17. Mitochondrial and nuclear localization of a novel pea thioredoxin: identification of its mitochondrial target proteins.

    PubMed

    Martí, María C; Olmos, Enrique; Calvete, Juan J; Díaz, Isabel; Barranco-Medina, Sergio; Whelan, James; Lázaro, Juan J; Sevilla, Francisca; Jiménez, Ana

    2009-06-01

    Plants contain several genes encoding thioredoxins (Trxs), small proteins involved in the regulation of the activity of many enzymes through dithiol-disulfide exchange. In addition to chloroplastic and cytoplasmic Trx systems, plant mitochondria contain a reduced nicotinamide adenine dinucleotide phosphate-dependent Trx reductase and a specific Trx o, and to date, there have been no reports of a gene encoding a plant nuclear Trx. We report here the presence in pea (Pisum sativum) mitochondria and nuclei of a Trx isoform (PsTrxo1) that seems to belong to the Trx o group, although it differs from this Trx type by its absence of introns in the genomic sequence. Western-blot analysis with isolated mitochondria and nuclei, immunogold labeling, and green fluorescent protein fusion constructs all indicated that PsTrxo1 is present in both cell compartments. Moreover, the identification by tandem mass spectrometry of the native mitochondrial Trx after gel filtration using the fast-protein liquid chromatography system of highly purified mitochondria and the in vitro uptake assay into isolated mitochondria also corroborated a mitochondrial location for this protein. The recombinant PsTrxo1 protein has been shown to be reduced more effectively by the Saccharomyces cerevisiae mitochondrial Trx reductase Trr2 than by the wheat (Triticum aestivum) cytoplasmic reduced nicotinamide adenine dinucleotide phosphate-dependent Trx reductase. PsTrxo1 was able to activate alternative oxidase, and it was shown to interact with a number of mitochondrial proteins, including peroxiredoxin and enzymes mainly involved in the photorespiratory process.

  18. Intrinsic fluorescence biomarkers in cells treated with chemopreventive drugs

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, Nathaniel D.; Brands, William R.; Zou, Changping; Brewer, Molly A.; Utzinger, Urs

    2005-03-01

    Non-invasive monitoring of cellular metabolism offers promising insights into areas ranging from biomarkers for drug activity to cancer diagnosis. Fluorescence spectroscopy can be utilized in order to exploit endogenous fluorophores, typically metabolic co-factors nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD), and estimate the redox status of the sample. Fluorescence spectroscopy was applied to follow metabolic changes in epithelial ovarian cells as well as bladder epithelial cancer cells during treatment with a chemopreventive drug that initiates cellular quiescence. Fluorescence signals consistent with NADH, FAD, and tryptophan were measured to monitor cellular activity, redox status, and protein content. Cells were treated with varying concentrations of N-4-(hydroxyphenyl) retinamide (4-HPR) and measured in a stable environment with a sensitive fluorescence spectrometer. A subset of measurements was completed on a low concentration of cells to demonstrate feasibility for medical application such as in bladder or ovary washes. Results suggest that all of the cells responded with similar dose dependence but started at different estimated redox ratio baseline levels correlating with cell cycle, growth inhibition, and apoptosis assays. NADH and tryptophan related fluorescence changed significantly while FAD related fluorescence remained unaltered. Fluorescence data collected from approximately 1000 - 2000 cells, comparable to a bladder or ovary wash, was measurable and useful for future experiments. This study suggests that future intrinsic biomarker measurements may need to be most sensitive to changes in NADH and tryptophan related fluorescence while using FAD related fluorescence to help estimate the baseline redox ratio and predict response to chemopreventive agents.

  19. Optical diagnosis of the progression and reversal of CCl4-induced liver injury in rodent model using minimally invasive autofluorescence spectroscopy.

    PubMed

    Nazeer, Shaiju S; Sandhyamani, S; Jayasree, Ramapurath S

    2015-06-07

    Worldwide, liver cancer is the fifth most common cancer in men and seventh most common cancer in women. Intoxicant-induced liver injury is one of the major causes for severe structural damage with fibrosis and functional derangement of the liver leading to cancer in its later stages. This report focuses on the minimally invasive autofluorescence spectroscopic (AFS) studies on intoxicant, carbon tetrachloride (CCl4)-induced liver damage in a rodent model. Different stages of liver damage, including the reversed stage, on stoppage of the intoxicant are examined. Emission from prominent fluorophores, such as collagen, nicotinamide adenine dinucleotide (NADH), and flavin adenine dinucleotide (FAD), and variations in redox ratio have been studied. A direct correlation between the severity of the disease and the levels of collagen and redox ratio was observed. On withdrawal of the intoxicant, a gradual reversal of the disease to normal conditions was observed as indicated by the decrease in collagen levels and redox ratio. Multivariate statistical techniques and principal component analysis followed by linear discriminant analysis (PC-LDA) were used to develop diagnostic algorithms for distinguishing different stages of the liver disease based on spectral features. The PC-LDA modeling on a minimally invasive AFS dataset yielded diagnostic sensitivities of 93%, 87% and 87% and specificities of 90%, 98% and 98% for pairwise classification among normal, fibrosis, cirrhosis and reversal conditions. We conclude that AFS along with PC-LDA algorithm has the potential for rapid and accurate minimally invasive diagnosis and detection of structural changes due to liver injury resulting from various intoxicants.

  20. Quantitative neonatal glucose-6-phosphate dehydrogenase screening: distribution, reference values, and classification by phenotype.

    PubMed

    Algur, Nurit; Avraham, Irit; Hammerman, Cathy; Kaplan, Michael

    2012-08-01

    To determine enzyme assay reference values for newborns in a Sephardic Jewish population at high risk for glucose-6-phosphate dehydrogenase (G6PD) deficiency. Quantitative G6PD testing was performed on umbilical cord blood. The reduction of nicotinamide adenine dinucleotide phosphate to nicotinamide adenine dinucleotide phosphate-oxidase, reflecting G6PD activity, was measured spectrophotometrically. Hemoglobin (Hb) was measured on the same sample. G6PD activity was recorded as U/g Hb. Males (N = 1502) were separated into 2 distinct groups: those <7 U/g Hb (n = 243 [16.2%], median 0.28 U/g Hb), designated G6PD deficient, presumably hemizygotes; and those ≥ 9 U/g Hb (n = 1256 [83.8%], 18.76 U/g Hb), designated G6PD normal, presumably hemizygotes. Female (n = 1298) values were a continuum and were categorized based on the male distribution: those <7 U/g Hb (n = 81 [6.2%], 4.84 U/g Hb), G6PD deficient, probably homozogytes; those ≥ 9.5 U/g Hb, equivalent to 50% of the male normal value, (n = 1153 (88.8%), 18.36 U/g Hb), G6PD normal, probably homozygotes; and those with intermediate values (n = 64 [4.9%], 8.61 U/g Hb), probable heterozygotes. Accurate identification of the male G6PD-deficient state was possible despite high normal neonatal G6PD values. Female values were presented as a continuum preventing accurate classification but were classified based on male phenotype for practical use. Copyright © 2012 Mosby, Inc. All rights reserved.

  1. Physical limits to autofluorescence signals in vivo recordings in the rat olfactory bulb: a Monte Carlo study

    NASA Astrophysics Data System (ADS)

    L'Heureux, B.; Gurden, H.; Pinot, L.; Mastrippolito, R.; Lefebvre, F.; Lanièce, P.; Pain, F.

    2007-07-01

    Understanding the cellular mechanisms of energy supply to neurons following physiological activation is still challenging and has strong implications to the interpretation of clinical functional images based on metabolic signals such as Blood Oxygen Level Dependent Magnetic Resonance Imaging or 18F-Fluorodexoy-Glucose Positron Emission Tomography. Intrinsic Optical Signal Imaging provides with high spatio temporal resolution in vivo imaging in the anaesthetized rat. In that context, intrinsic signals are mainly related to changes in the optical absorption of haemoglobin depending on its oxygenation state. This technique has been validated for imaging of the rat olfactory bulb, providing with maps of the actived olfactory glomeruli, the functional modules involved in the first step of olfactory coding. A complementary approach would be autofluorescence imaging relying on the fluorescence properties of endogenous Flavin Adenine Dinucleotide (FAD) or Nicotinamide Adenine Dinucleotide (NADH) both involved in intracellular metabolic pathways. The purpose of the present study was to investigate the feasibility of in vivo autofluorescence imaging in the rat olfactory bulb. We performed standard Monte Carlo simulations of photons scattering and absorption at the excitation and emission wavelengths of FAD and NADH fluorescence. Characterization of the fluorescence distribution in the glomerulus, effect of hemoglobin absorption at the excitation and absorption wavelengths as well as the effect of the blurring due to photon scattering and the depth of focus of the optical apparatus have been studied. Finally, optimal experimental parameters are proposed to achieve in vivo validation of the technique in the rat olfactory bulb.

  2. Compact point-detection fluorescence spectroscopy system for quantifying intrinsic fluorescence redox ratio in brain cancer diagnostics

    NASA Astrophysics Data System (ADS)

    Liu, Quan; Grant, Gerald; Li, Jianjun; Zhang, Yan; Hu, Fangyao; Li, Shuqin; Wilson, Christy; Chen, Kui; Bigner, Darell; Vo-Dinh, Tuan

    2011-03-01

    We report the development of a compact point-detection fluorescence spectroscopy system and two data analysis methods to quantify the intrinsic fluorescence redox ratio and diagnose brain cancer in an orthotopic brain tumor rat model. Our system employs one compact cw diode laser (407 nm) to excite two primary endogenous fluorophores, reduced nicotinamide adenine dinucleotide, and flavin adenine dinucleotide. The spectra were first analyzed using a spectral filtering modulation method developed previously to derive the intrinsic fluorescence redox ratio, which has the advantages of insensitivty to optical coupling and rapid data acquisition and analysis. This method represents a convenient and rapid alternative for achieving intrinsic fluorescence-based redox measurements as compared to those complicated model-based methods. It is worth noting that the method can also extract total hemoglobin concentration at the same time but only if the emission path length of fluorescence light, which depends on the illumination and collection geometry of the optical probe, is long enough so that the effect of absorption on fluorescence intensity due to hemoglobin is significant. Then a multivariate method was used to statistically classify normal tissues and tumors. Although the first method offers quantitative tissue metabolism information, the second method provides high overall classification accuracy. The two methods provide complementary capabilities for understanding cancer development and noninvasively diagnosing brain cancer. The results of our study suggest that this portable system can be potentially used to demarcate the elusive boundary between a brain tumor and the surrounding normal tissue during surgical resection.

  3. iSS-PseDNC: identifying splicing sites using pseudo dinucleotide composition.

    PubMed

    Chen, Wei; Feng, Peng-Mian; Lin, Hao; Chou, Kuo-Chen

    2014-01-01

    In eukaryotic genes, exons are generally interrupted by introns. Accurately removing introns and joining exons together are essential processes in eukaryotic gene expression. With the avalanche of genome sequences generated in the postgenomic age, it is highly desired to develop automated methods for rapid and effective detection of splice sites that play important roles in gene structure annotation and even in RNA splicing. Although a series of computational methods were proposed for splice site identification, most of them neglected the intrinsic local structural properties. In the present study, a predictor called "iSS-PseDNC" was developed for identifying splice sites. In the new predictor, the sequences were formulated by a novel feature-vector called "pseudo dinucleotide composition" (PseDNC) into which six DNA local structural properties were incorporated. It was observed by the rigorous cross-validation tests on two benchmark datasets that the overall success rates achieved by iSS-PseDNC in identifying splice donor site and splice acceptor site were 85.45% and 87.73%, respectively. It is anticipated that iSS-PseDNC may become a useful tool for identifying splice sites and that the six DNA local structural properties described in this paper may provide novel insights for in-depth investigations into the mechanism of RNA splicing.

  4. Carboxylation of cytosine (5caC) in the CG dinucleotide in the E-box motif (CGCAG|GTG) increases binding of the Tcf3|Ascl1 helix-loop-helix heterodimer 10-fold.

    PubMed

    Golla, Jaya Prakash; Zhao, Jianfei; Mann, Ishminder K; Sayeed, Syed K; Mandal, Ajeet; Rose, Robert B; Vinson, Charles

    2014-06-27

    Three oxidative products of 5-methylcytosine (5mC) occur in mammalian genomes. We evaluated if these cytosine modifications in a CG dinucleotide altered DNA binding of four B-HLH homodimers and three heterodimers to the E-Box motif CGCAG|GTG. We examined 25 DNA probes containing all combinations of cytosine in a CG dinucleotide and none changed binding except for carboxylation of cytosine (5caC) in the strand CGCAG|GTG. 5caC enhanced binding of all examined B-HLH homodimers and heterodimers, particularly the Tcf3|Ascl1 heterodimer which increased binding ~10-fold. These results highlight a potential function of the oxidative products of 5mC, changing the DNA binding of sequence-specific transcription factors. Published by Elsevier Inc.

  5. NAD+ : A key metabolic regulator with great therapeutic potential.

    PubMed

    Sultani, G; Samsudeen, A F; Osborne, B; Turner, N

    2017-10-01

    Nicotinamide adenine dinucleotide (NAD + ) is a ubiquitous metabolite that serves an essential role in the catabolism of nutrients. Recently, there has been a surge of interest in NAD + biology, with the recognition that NAD + influences many biological processes beyond metabolism, including transcription, signalling and cell survival. There are a multitude of pathways involved in the synthesis and breakdown of NAD + , and alterations in NAD + homeostasis have emerged as a common feature of a range of disease states. Here, we provide an overview of NAD + metabolism and summarise progress on the development of NAD + -related therapeutics. © 2017 British Society for Neuroendocrinology.

  6. Uptake and Metabolism of Antibiotics Roseoflavin and 8-Demethyl-8-Aminoriboflavin in Riboflavin-Auxotrophic Listeria monocytogenes.

    PubMed

    Matern, Andreas; Pedrolli, Danielle; Großhennig, Stephanie; Johansson, Jörgen; Mack, Matthias

    2016-12-01

    The riboflavin analogs roseoflavin (RoF) and 8-demethyl-8-aminoriboflavin (AF) are produced by the bacteria Streptomyces davawensis and Streptomyces cinnabarinus Riboflavin analogs have the potential to be used as broad-spectrum antibiotics, and we therefore studied the metabolism of riboflavin (vitamin B 2 ), RoF, and AF in the human pathogen Listeria monocytogenes, a bacterium which is a riboflavin auxotroph. We show that the L. monocytogenes protein Lmo1945 is responsible for the uptake of riboflavin, RoF, and AF. Following import, these flavins are phosphorylated/adenylylated by the bifunctional flavokinase/flavin adenine dinucleotide (FAD) synthetase Lmo1329 and adenylylated by the unique FAD synthetase Lmo0728, the first monofunctional FAD synthetase to be described in bacteria. Lmo1329 generates the cofactors flavin mononucleotide (FMN) and FAD, whereas Lmo0728 produces FAD only. The combined activities of Lmo1329 and Lmo0728 are responsible for the intracellular formation of the toxic cofactor analogs roseoflavin mononucleotide (RoFMN), roseoflavin adenine dinucleotide (RoFAD), 8-demethyl-8-aminoriboflavin mononucleotide (AFMN), and 8-demethyl-8-aminoriboflavin adenine dinucleotide (AFAD). In vivo reporter gene assays and in vitro transcription/translation experiments show that the L. monocytogenes FMN riboswitch Rli96, which controls expression of the riboflavin transport gene lmo1945, is negatively affected by riboflavin/FMN and RoF/RoFMN but not by AF/AFMN. Treatment of L. monocytogenes with RoF or AF leads to drastically reduced FMN/FAD levels. We suggest that the reduced flavin cofactor levels in combination with concomitant synthesis of inactive cofactor analogs (RoFMN, RoFAD, AFMN, and AFAD) explain why RoF and AF contribute to antibiotic activity in L. monocytogenes IMPORTANCE: The riboflavin analogs roseoflavin (RoF) and 8-demethyl-8-aminoriboflavin (AF) are small molecules which are produced by Streptomyces davawensis and Streptomyces cinnabarinus

  7. Interaction of Pd(II) and Pt(II) Amino Acid Complexes With Dinucleotides

    PubMed Central

    Vicens, Margarita; Caubet, Amparo

    1997-01-01

    The interaction of the dinucleotides d(ApG) and d(ApA) with [Pd(aa)Cl2], where aa = L- or D-histidine or the methyl ester of L-histidine, and with [Pt(Met)Cl2], where Met = L-methionine was studied by 1H and 13C NMR and CD measurements. In the case of the L-histidine and L-histidineOMe, the reaction with d(ApG) appeared to give the bifunctional adducts Pd(L-Histidine)N1(1)N7(2) and Pd(L-HisOMe)N1(1)N7(2), but the behavior with D-histidine suggested the formation of the monofunctional adduct Pd(D-His)N7(2). The reaction of L-histidine with d(ApA) seemed to form the bimetallic adduct (L-His)PdN7(1)N7(2)Pd(L-His). The Pt(II)-L-methionine complex in both reactions with d(ApG) and d(ApA) seemed to yield mainly adducts Pt(L-Met)N7(1)N7(2) but the existence of adducts Pt(L-Met)N1(1)N7(2) cannot be ruled out. PMID:18475765

  8. Chiral pathways in DNA dinucleotides using gradient optimized refinement along metastable borders

    NASA Astrophysics Data System (ADS)

    Romano, Pablo; Guenza, Marina

    We present a study of DNA breathing fluctuations using Markov state models (MSM) with our novel refinement procedure. MSM have become a favored method of building kinetic models, however their accuracy has always depended on using a significant number of microstates, making the method costly. We present a method which optimizes macrostates by refining borders with respect to the gradient along the free energy surface. As the separation between macrostates contains highest discretization errors, this method corrects for any errors produced by limited microstate sampling. Using our refined MSM methods, we investigate DNA breathing fluctuations, thermally induced conformational changes in native B-form DNA. Running several microsecond MD simulations of DNA dinucleotides of varying sequences, to include sequence and polarity effects, we've analyzed using our refined MSM to investigate conformational pathways inherent in the unstacking of DNA bases. Our kinetic analysis has shown preferential chirality in unstacking pathways that may be critical in how proteins interact with single stranded regions of DNA. These breathing dynamics can help elucidate the connection between conformational changes and key mechanisms within protein-DNA recognition. NSF Chemistry Division (Theoretical Chemistry), the Division of Physics (Condensed Matter: Material Theory), XSEDE.

  9. Mechanism of epoxide hydrolysis in microsolvated nucleotide bases adenine, guanine and cytosine: a DFT study.

    PubMed

    Vijayalakshmi, Kunduchi P; Mohan, Neetha; Ajitha, Manjaly J; Suresh, Cherumuttathu H

    2011-07-21

    Six water molecules have been used for microsolvation to outline a hydrogen bonded network around complexes of ethylene epoxide with nucleotide bases adenine (EAw), guanine (EGw) and cytosine (ECw). These models have been developed with the MPWB1K-PCM/6-311++G(3df,2p)//MPWB1K/6-31+G(d,p) level of DFT method and calculated S(N)2 type ring opening of the epoxide due to amino group of the nucleotide bases, viz. the N6 position of adenine, N2 position of guanine and N4 position of cytosine. Activation energy (E(act)) for the ring opening was found to be 28.06, 28.64, and 28.37 kcal mol(-1) respectively for EAw, EGw and ECw. If water molecules were not used, the reactions occurred at considerably high value of E(act), viz. 53.51 kcal mol(-1) for EA, 55.76 kcal mol(-1) for EG and 56.93 kcal mol(-1) for EC. The ring opening led to accumulation of negative charge on the developing alkoxide moiety and the water molecules around the charge localized regions showed strong hydrogen bond interactions to provide stability to the intermediate systems EAw-1, EGw-1 and ECw-1. This led to an easy migration of a proton from an activated water molecule to the alkoxide moiety to generate a hydroxide. Almost simultaneously, a proton transfer chain reaction occurred through the hydrogen bonded network of water molecules and resulted in the rupture of one of the N-H bonds of the quaternized amino group. The highest value of E(act) for the proton transfer step of the reaction was 2.17 kcal mol(-1) for EAw, 2.93 kcal mol(-1) for EGw and 0.02 kcal mol(-1) for ECw. Further, the overall reaction was exothermic by 17.99, 22.49 and 13.18 kcal mol(-1) for EAw, EGw and ECw, respectively, suggesting that the reaction is irreversible. Based on geometric features of the epoxide-nucleotide base complexes and the energetics, the highest reactivity is assigned for adenine followed by cytosine and guanine. Epoxide-mediated damage of DNA is reported in the literature and the present results suggest that

  10. Probing phenylalanine/adenine pi-stacking interactions in protein complexes with explicitly correlated and CCSD(T) computations.

    PubMed

    Copeland, Kari L; Anderson, Julie A; Farley, Adam R; Cox, James R; Tschumper, Gregory S

    2008-11-13

    To examine the effects of pi-stacking interactions between aromatic amino acid side chains and adenine bearing ligands in crystalline protein structures, 26 toluene/(N9-methyl)adenine model configurations have been constructed from protein/ligand crystal structures. Full geometry optimizations with the MP2 method cause the 26 crystal structures to collapse to six unique structures. The complete basis set (CBS) limit of the CCSD(T) interaction energies has been determined for all 32 structures by combining explicitly correlated MP2-R12 computations with a correction for higher-order correlation effects from CCSD(T) calculations. The CCSD(T) CBS limit interaction energies of the 26 crystal structures range from -3.19 to -6.77 kcal mol (-1) and average -5.01 kcal mol (-1). The CCSD(T) CBS limit interaction energies of the optimized complexes increase by roughly 1.5 kcal mol (-1) on average to -6.54 kcal mol (-1) (ranging from -5.93 to -7.05 kcal mol (-1)). Corrections for higher-order correlation effects are extremely important for both sets of structures and are responsible for the modest increase in the interaction energy after optimization. The MP2 method overbinds the crystal structures by 2.31 kcal mol (-1) on average compared to 4.50 kcal mol (-1) for the optimized structures.

  11. High-Spin Ferric Ions in Saccharomyces cerevisiae Vacuoles Are Reduced to the Ferrous State during Adenine-Precursor Detoxification

    PubMed Central

    2015-01-01

    The majority of Fe in Fe-replete yeast cells is located in vacuoles. These acidic organelles store Fe for use under Fe-deficient conditions and they sequester it from other parts of the cell to avoid Fe-associated toxicity. Vacuolar Fe is predominantly in the form of one or more magnetically isolated nonheme high-spin (NHHS) FeIII complexes with polyphosphate-related ligands. Some FeIII oxyhydroxide nanoparticles may also be present in these organelles, perhaps in equilibrium with the NHHS FeIII. Little is known regarding the chemical properties of vacuolar Fe. When grown on adenine-deficient medium (A↓), ADE2Δ strains of yeast such as W303 produce a toxic intermediate in the adenine biosynthetic pathway. This intermediate is conjugated with glutathione and shuttled into the vacuole for detoxification. The iron content of A↓ W303 cells was determined by Mössbauer and EPR spectroscopies. As they transitioned from exponential growth to stationary state, A↓ cells (supplemented with 40 μM FeIII citrate) accumulated two major NHHS FeII species as the vacuolar NHHS FeIII species declined. This is evidence that vacuoles in A↓ cells are more reducing than those in adenine-sufficient cells. A↓ cells suffered less oxidative stress despite the abundance of NHHS FeII complexes; such species typically promote Fenton chemistry. Most Fe in cells grown for 5 days with extra yeast-nitrogen-base, amino acids and bases in minimal medium was HS FeIII with insignificant amounts of nanoparticles. The vacuoles of these cells might be more acidic than normal and can accommodate high concentrations of HS FeIII species. Glucose levels and rapamycin (affecting the TOR system) affected cellular Fe content. This study illustrates the sensitivity of cellular Fe to changes in metabolism, redox state and pH. Such effects broaden our understanding of how Fe and overall cellular metabolism are integrated. PMID:24919141

  12. The Effect of Nucleotides and Inhibitors on Respiration in Isolated Wheat Mitochondria 1

    PubMed Central

    Pomeroy, M. Keith

    1975-01-01

    The effect of mono-, di-, and trinucleoside phosphates and respiratory inhibitors on respiration in winter wheat (Triticum aestivum L. cv. Rideau) mitochondria has been examined. When added during state 4 respiration, subsequent to addition of ADP, all of the dinucleotides stimulated oxidation and induced respiratory control with all substrates examined. Similar results were obtained with AMP, but other mononucleotides and all trinucleotides did not affect the rate of oxidation. Nucleoside diphosphates did not stimulate respiration when added prior to the addition of ADP, but subsequent addition of AMP, ADP, or ATP re-established coupled respiration in the presence of the dinucleotides. The duration of 2, 4-dinitrophenol stimulated respiration during oxidation of α-ketoglutarate was found to be dependent on the amount of AMP, ADP, or ATP added, either prior, or subsequent to, addition of the uncoupler. The addition of oligomycin during 2, 4-dinitrophenol stimulated respiration reestablished coupled respiration with low ADP/O ratios, when added after addition of ATP or conditions which allow formation of ATP from added ADP. The nucleoside diphosphates, other than ADP, did not stimulate oxidation of α-ketoglutarate in the presence of 2, 4-dinitrophenol until a small amount of adenine nucleotide was added to the system. The results suggest that dinucleotides other than ADP, are able to participate in the energy conversion processs of the mitochondria, probably via transphosphorylation reactions. Images PMID:16659027

  13. Populations of subplate and interstitial neurons in fetal and adult human telencephalon.

    PubMed

    Judaš, Miloš; Sedmak, Goran; Pletikos, Mihovil; Jovanov-Milošević, Nataša

    2010-10-01

    In the adult human telencephalon, subcortical (gyral) white matter contains a special population of interstitial neurons considered to be surviving descendants of fetal subplate neurons [Kostovic & Rakic (1980) Cytology and the time of origin of interstitial neurons in the white matter in infant and adult human and monkey telencephalon. J Neurocytol9, 219]. We designate this population of cells as superficial (gyral) interstitial neurons and describe their morphology and distribution in the postnatal and adult human cerebrum. Human fetal subplate neurons cannot be regarded as interstitial, because the subplate zone is an essential part of the fetal cortex, the major site of synaptogenesis and the 'waiting' compartment for growing cortical afferents, and contains both projection neurons and interneurons with distinct input-output connectivity. However, although the subplate zone is a transient fetal structure, many subplate neurons survive postnatally as superficial (gyral) interstitial neurons. The fetal white matter is represented by the intermediate zone and well-defined deep periventricular tracts of growing axons, such as the corpus callosum, anterior commissure, internal and external capsule, and the fountainhead of the corona radiata. These tracts gradually occupy the territory of transient fetal subventricular and ventricular zones.The human fetal white matter also contains distinct populations of deep fetal interstitial neurons, which, by virtue of their location, morphology, molecular phenotypes and advanced level of dendritic maturation, remain distinct from subplate neurons and neurons in adjacent structures (e.g. basal ganglia, basal forebrain). We describe the morphological, histochemical (nicotinamide-adenine dinucleotide phosphate-diaphorase) and immunocytochemical (neuron-specific nuclear protein, microtubule-associated protein-2, calbindin, calretinin, neuropeptide Y) features of both deep fetal interstitial neurons and deep (periventricular

  14. Obstructive uropathy and severe acute kidney injury from renal calculi due to adenine phosphoribosyltransferase deficiency.

    PubMed

    Chong, Siew Le; Ng, Yong Hong

    2016-05-01

    Adenine phosphoribosyltransferase (APRT) deficiency is an uncommon genetic cause of chronic kidney disease due to crystalline nephropathy. A case of a Chinese boy with APRT deficiency presenting with severe acute kidney injury secondary to obstructive uropathy from multiple renal calculi was reviewed. The patient underwent staged removal of the calculi. Infrared spectrometry of the renal calculi showed 2,8-dihydroxyadenine. APRT deficiency was confirmed with abolished APRT enzyme activity in red blood cells. He was started on allopurinol and low purine diet with complete resolution of the residual calculi. APRT deficiency should be considered in patients with multiple radiolucent renal calculi.

  15. Influence of long-term hyper-gravity on the reactivity of succinic acid dehydrogenase and NADPH-diaphorase in the central nervous system of fish: a histochemical study

    NASA Astrophysics Data System (ADS)

    Anken, R. H.; Rahmann, H.

    In the course of a densitometric evaluation, the histochemically demonstrated reactivity of succinic acid dehydrogenase (SDH) and of NADPH-diaphorase (NADPHD) was determined in different brain nuclei of two teleost fish (cichlid fish Oreochromis mossambicus, swordtail fish Xiphophorus helleri), which had been kept under 3g hyper-gravity for 8 days. SDH was chosen since it is a rate limiting enzyme of the Krebs cycle and therefore it is regarded as a marker for metabolic and neuronal activity. NADPHD reactivity reflects the activity of nitric oxide synthase. Nitric oxide (NO) is a gaseous intercellular messenger that has been suggested to play a major role in several different in vivo models of neuronal plasticity including learning. Within particular vestibulum-connected brain centers, significant effects of hyper-gravity were obtained, e.g., in the magnocellular nucleus, a primary vestibular relay ganglion of the brain stem octavolateralis area, in the superior rectus subdivision of the oculomotoric nucleus and within cerebellar eurydendroid cells, which in teleosts possibly resemble the deep cerebellar nucleus of higher vertebrates. Non-vestibulum related nuclei did not respond to hypergravity in a significant way. The effect of hyper-gravity found was much less distinct in adult animals as compared to the circumstances seen in larval fish (Anken et al., Adv. Space Res. 17, 1996), possibly due to a development correlated loss of neuronal plasticity.

  16. Baccharis trimera inhibits reactive oxygen species production through PKC and down-regulation p47 phox phosphorylation of NADPH oxidase in SK Hep-1 cells.

    PubMed

    de Araújo, Glaucy Rodrigues; Rabelo, Ana Carolina Silveira; Meira, Janaína Serenato; Rossoni-Júnior, Joamyr Victor; Castro-Borges, William de; Guerra-Sá, Renata; Batista, Maurício Azevedo; Silveira-Lemos, Denise da; Souza, Gustavo Henrique Bianco de; Brandão, Geraldo Célio; Chaves, Míriam Martins; Costa, Daniela Caldeira

    2017-02-01

    Baccharis trimera, popularly known as "carqueja", is a native South-American plant possessing a high concentration of polyphenolic compounds and therefore high antioxidant potential. Despite the antioxidant potential described for B. trimera, there are no reports concerning the signaling pathways involved in this process. So, the aim of the present study was to assess the influence of B. trimera on the modulation of PKC signaling pathway and to characterize the effect of the nicotinamide adenine dinucleotide phosphate oxidase enzyme (NOX) on the generation of reactive oxygen species in SK Hep-1 cells. SK-Hep 1 cells were treated with B. trimera, quercetin, or rutin and then stimulated or not with PMA/ionomycin and labeled with carboxy H 2 DCFDA for detection of reactive oxygen species by flow cytometer. The PKC expression by Western blot and enzyme activity was performed to evaluate the influence of B. trimera and quercetin on PKC signaling pathway. p47 phox and p47 phox phosphorylated expression was performed by Western blot to evaluate the influence of B. trimera on p47 phox phosphorylation. The results showed that cells stimulated with PMA/ionomycin (activators of PKC) showed significantly increased reactive oxygen species production, and this production returned to baseline levels after treatment with DPI (NOX inhibitor). Both B. trimera and quercetin modulated reactive oxygen species production through the inhibition of PKC protein expression and enzymatic activity, also with inhibition of p47 phox phosphorylation. Taken together, these results suggest that B. trimera has a potential mechanism for inhibiting reactive oxygen species production through the PKC signaling pathway and inhibition subunit p47 phox phosphorylation of nicotinamide adenine dinucleotide phosphate oxidase.

  17. Sirtuins, Cell Senescence, and Vascular Aging.

    PubMed

    Kida, Yujiro; Goligorsky, Michael S

    2016-05-01

    The sirtuins (SIRTs) constitute a class of proteins with nicotinamide adenine dinucleotide-dependent deacetylase or adenosine diphosphate-ribosyltransferase activity. Seven SIRT family members have been identified in mammals, from SIRT1, the best studied for its role in vascular aging, to SIRT7. SIRT1 and SIRT2 are localized in the nucleus and cytoplasm. SIRT3, SIRT4, and SIRT5 are mitochondrial, and SIRT6 and SIRT7 are nuclear. Extensive studies have clearly revealed that SIRT proteins regulate diverse cell functions and responses to stressors. Vascular aging involves the aging process (senescence) of endothelial and vascular smooth muscle cells. Two types of cell senescence have been identified: (1) replicative senescence with telomere attrition; and (2) stress-induced premature senescence without telomere involvement. Both types of senescence induce vascular cell growth arrest and loss of vascular homeostasis, and contribute to the initiation and progression of cardiovascular diseases. Previous mechanistic studies have revealed in detail that SIRT1, SIRT3, and SIRT6 show protective functions against vascular aging, and definite vascular function of other SIRTs is under investigation. Thus, direct SIRT modulation and nicotinamide adenine dinucleotide stimulation of SIRT are promising candidates for cardiovascular disease therapy. A small number of pilot studies have been conducted to assess SIRT modulation in humans. These clinical studies have not yet provided convincing evidence that SIRT proteins alleviate morbidity and mortality in patients with cardiovascular diseases. The outcomes of multiple ongoing clinical trials are awaited to define the efficacy of SIRT modulators and SIRT activators in cardiovascular diseases, along with the potential adverse effects of chronic SIRT modulation. Copyright © 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  18. Raman spectroscopic study of acute oxidative stress induced changes in mice skeletal muscles

    NASA Astrophysics Data System (ADS)

    Sriramoju, Vidyasagar; Alimova, Alexandra; Chakraverty, Rahul; Katz, A.; Gayen, S. K.; Larsson, L.; Savage, H. E.; Alfano, R. R.

    2008-02-01

    The oxidative stress due to free radicals is implicated in the pathogenesis of tissue damage in diseases such as muscular dystrophy, Alzheimer dementia, diabetes mellitus, and mitochrondrial myopathies. In this study, the acute oxidative stress induced changes in nicotinamide adenine dinucleotides in mouse skeletal muscles are studied in vitro using Raman spectroscopy. Mammalian skeletal muscles are rich in nicotinamide adenine dinucleotides in both reduced (NADH) and oxidized (NAD) states, as they are sites of aerobic and anaerobic respiration. The relative levels of NAD and NADH are altered in certain physiological and pathological conditions of skeletal muscles. In this study, near infrared Raman spectroscopy is used to identify the molecular fingerprints of NAD and NADH in five-week-old mice biceps femoris muscles. A Raman vibrational mode of NADH is identified in fresh skeletal muscle samples suspended in buffered normal saline. In the same samples, when treated with 1% H IIO II for 5 minutes and 15 minutes, the Raman spectrum shows molecular fingerprints specific to NAD and the disappearance of NADH vibrational bands. The NAD bands after 15 minutes were more intense than after 5 minutes. Since NADH fluoresces and NAD does not, fluorescence spectroscopy is used to confirm the results of the Raman measurements. Fluorescence spectra exhibit an emission peak at 460 nm, corresponding to NADH emission wavelength in fresh muscle samples; while the H IIO II treated muscle samples do not exhibit NADH fluorescence. Raman spectroscopy may be used to develop a minimally invasive, in vivo optical biopsy method to measure the relative NAD and NADH levels in muscle tissues. This may help to detect diseases of muscle, including mitochondrial myopathies and muscular dystrophies.

  19. Effects of argan oil on the mitochondrial function, antioxidant system and the activity of NADPH- generating enzymes in acrylamide treated rat brain.

    PubMed

    Aydın, Birsen

    2017-03-01

    Argan oil (AO) is rich in minor compounds such as polyphenols and tocopherols which are powerful antioxidants. Acrylamide (ACR) has been classified as a neurotoxic agent in animals and humans. Mitochondrial oxidative stress and dysfunction is one of the most probable molecular mechanisms of neurodegenerative diseases. Female Sprague Dawley rats were exposed to ACR (50mg/kg i.p. three times a week), AO (6ml/kg,o.p, per day) or together for 30days. The activities of cytosolic enzymes such as xanthine oxidase (XO), glucose 6-phosphate dehydrogenase (G6PDH), glutathione-S-transferase (GST), mitochondrial oxidative stress, oxidative phosphorylation (OXPHOS) and tricarboxylic acid cycle (TCA) enzymes, mitochondrial metabolic function, adenosine triphosphate (ATP) level and acetylcholinesterase (AChE) activity were assessed in rat brain. Cytosolic and mitochondrial antioxidant enzymes were significantly diminished in the brains of rats treated with ACR compared to those in control. Besides, ACR treatment resulted in a significant reduction in brain ATP level, mitochondrial metabolic function, OXPHOS and TCA enzymes. Administration of AO restored both the cytosolic and mitochondrial oxidative stress by normalizing nicotinamide adenine dinucleotide phosphate (NADPH) generating enzymes. In addition, improved mitochondrial function primarily enhancing nicotinamide adenine dinucleotide (NADH) generated enzymes activities and ATP level in the mitochondria. The reason for AO's obvious beneficial effects in this study may be due to synergistic effects of its different bioactive compounds which is especially effective on mitochondria. Modulation of the brain mitochondrial functions and antioxidant systems by AO may lead to the development of new mitochondria-targeted antioxidants in the future. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. Effect of two intermediate electron donors, NADPH and FADH(2), on Spirulina Delta (6)-desaturase co-expressed with two different immediate electron donors, cytochrome b (5) and ferredoxin, in Escherichia coli.

    PubMed

    Kurdrid, Pavinee; Subudhi, Sanjukta; Cheevadhanarak, Supapon; Tanticharoen, Morakot; Hongsthong, Apiradee

    2007-12-01

    When the gene desD encoding Spirulina Delta(6)-desaturase was heterologously expressed in E. coli, the enzyme was expressed without the ability to function. However, when this enzyme was co-expressed with an immediate electron donor, i.e. the cytochrome b (5) domain from Mucor rouxii, the results showed the production of GLA (gamma-linolenic acid), the product of the reaction catalyzed by Delta(6)-desaturase. The results revealed that in E. coli cells, where cytochrome b (5) is absent and ferredoxin, a natural electron donor of Delta(6)-desaturase, is present at a very low level, the cytochrome b (5) domain can complement for the function of ferredoxin in the host cells. In the present study, the Spirulina-ferredoxin gene was cloned and co-expressed with the Delta(6)-desaturase in E. coli. In comparison to the co-expression of cytochrome b ( 5 ) with the Delta(6)-desaturase, the co-expression with ferredoxin did not cause any differences in the GLA level. Moreover, the cultures containing the Delta(6)-desaturase co-expressed with cytochrome b (5) and ferredoxin were exogenously supplied with the intermediate electron donors, NADPH (nicotinamide adenine dinucleotide phosphate, reduced form) and FADH(2) (flavin adenine dinucleotide, reduced form), respectively. The GLA level in these host cells increased drastically, by approximately 50%, compared to the cells without the intermediate electron donors. The data indicated that besides the level of immediate electron donors, the level of intermediate electron donors is also critical for GLA production. Therefore, if the pools of the immediate and intermediate electron donors in the cells are manipulated, the GLA production in the heterologous host will be affected.

  1. Carbon Monoxide Oxidation by Clostridium thermoaceticum and Clostridium formicoaceticum

    PubMed Central

    Diekert, Gabriele B.; Thauer, Rudolf K.

    1978-01-01

    Cultures of Clostridium formicoaceticum and C. thermoaceticum growing on fructose and glucose, respectively, were shown to rapidly oxidize CO to CO2. Rates up to 0.4 μmol min−1 mg of wet cells−1 were observed. Carbon monoxide oxidation by cell suspensions was found (i) to be dependent on pyruvate, (ii) to be inhibited by alkyl halides and arsenate, and (iii) to stimulate CO2 reduction to acetate. Cell extracts catalyzed the oxidation of carbon monoxide with methyl viologen at specific rates up to 10 μmol min−1 mg of protein−1 (35°C, pH 7.2). Nicotinamide adenine dinucleotide, nicotinamide adenine dinucleotide phosphate and ferredoxin from C. pasteurianum were ineffective as electron acceptors. The catalytic mechanism of carbon monoxide oxidation was “ping-pong,” indicating that the enzyme catalyzing carbon monoxide oxidation can be present in an oxidized and a reduced form. The oxidized form was shown to react reversibly with cyanide, and the reduced form was shown to react reversibly with alkyl halides: cyanide inactivated the enzyme only in the absence of carbon monoxide, and alkyl halides inactivated it only in the presence of carbon monoxide. Extracts inactivated by alkyl halides were reactivated by photolysis. The findings are interpreted to indicate that carbon monoxide oxidation in the two bacteria is catalyzed by a corrinoid enzyme and that in vivo the reaction is coupled with the reduction of CO2 to acetate. Cultures of C. acidi-urici and C. cylindrosporum growing on hypoxanthine were found not to oxidize CO, indicating that clostridia mediating a corrinoid-independent total synthesis of acetate from CO2 do not possess a CO-oxidizing system. PMID:711675

  2. Metal plasmon-coupled fluorescence imaging and label free coenzyme detection in cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jian, E-mail: jian@cfs.bioment.umaryland.edu; Fu, Yi; Li, Ge

    2012-08-31

    Highlights: Black-Right-Pointing-Pointer Metal nanoparticle for fluorescence cell imaging. Black-Right-Pointing-Pointer Non-invasive emission detection of coenzyme in cell on time-resolved confocal microscope. Black-Right-Pointing-Pointer Near-field interaction of flavin adenine dinucleotide with silver substrate. Black-Right-Pointing-Pointer Isolation of emissions by coenzymes from cellular autofluorescence on fluorescence cell imaging. -- Abstract: Flavin adenine dinucleotide (FAD) is a key metabolite in cellular energy conversion. Flavin can also bind with some enzymes in the metabolic pathway and the binding sites may be changed due to the disease progression. Thus, there is interest on studying its expression level, distribution, and redox state within the cells. FAD is naturally fluorescent,more » but it has a modest extinction coefficient and quantum yield. Hence the intrinsic emission from FAD is generally too weak to be isolated distinctly from the cellular backgrounds in fluorescence cell imaging. In this article, the metal nanostructures on the glass coverslips were used as substrates to measure FAD in cells. Particulate silver films were fabricated with an optical resonance near the absorption and the emission wavelengths of FAD which can lead to efficient coupling interactions. As a result, the emission intensity and quantum yield by FAD were greatly increased and the lifetime was dramatically shortened resulting in less interference from the longer lived cellular background. This feature may overcome the technical limits that hinder the direct observation of intrinsically fluorescent coenzymes in the cells by fluorescence microscopy. Fluorescence cell imaging on the metallic particle substrates may provide a non-invasive strategy for collecting the information of coenzymes in cells.« less

  3. Resolution of mitochondrial oxidant stress improves aged-cardiovascular performance

    PubMed Central

    Owada, Takashi; Yamauchi, Hiroyuki; Miura, Shunsuke; Machii, Hirofumi; Takeishi, Yasuchika

    2017-01-01

    Background Senescence is a major factor that increases oxidative stress in mitochondria, which contributes toward the pathogenesis of heart disease. However, the effect of antioxidant therapy on cardiac mitochondria in aged-cardiac performance remains elusive. Objectives We postulated that the mitochondrial targeting of superoxide scavenging would have benefits in the aged heart. Methods and results Generation of superoxide in the mitochondria and nicotinamide adenine dinucleotide phosphate oxidase activity increased in the heart of old mice compared with that in young mice. In old mice treated with a mitochondria-targeted antioxidant MitoTEMPO (180 µg/kg/day, 28 days) co-infusion using a subcutaneously implanted minipump, levels of superoxide in the mitochondria and nicotinamide adenine dinucleotide phosphate oxidase activity as well as hydrogen peroxide decreased markedly in cardiomyocytes. Treatment with MitoTEMPO in old mice improved the systolic and diastolic function assessed by echocardiography. Endothelium-dependent vasodilation in isolated coronary arteries and endothelial nitric-oxide synthase phosphorylation were impaired in old mice compared with that in young mice and were improved by MitoTEMPO treatment. Mitochondria from the old mice myocardium showed lower rates of complex I-dependent and II-dependent respiration compared with that from young mice. Supplementation of MitoTEMPO in old mice improved the respiration rates and efficiency of ATP generation in mitochondria to a level similar to that of young mice. Conclusion Resolution of oxidative stress in mitochondria by MitoTEMPO in old mice restored cardiac function and the capacity of coronary vasodilation to the same magnitude observed in young mice. An antioxidant strategy targeting mitochondria could have a therapeutic benefit in heart disease with senescence. PMID:27740971

  4. Supra-molecular architecture in a co-crystal of the N(7)-H tautomeric form of N (6)-benzoyl-adenine with adipic acid (1/0.5).

    PubMed

    Swinton Darious, Robert; Thomas Muthiah, Packianathan; Perdih, Franc

    2016-06-01

    The asymmetric unit of the title co-crystal, C12H9N5O·0.5C6H10O4, consists of one mol-ecule of N (6)-benzoyl-adenine (BA) and one half-mol-ecule of adipic acid (AA), the other half being generated by inversion symmetry. The dihedral angle between the adenine and phenyl ring planes is 26.71 (7)°. The N (6)-benzoyl-adenine mol-ecule crystallizes in the N(7)-H tautomeric form with three non-protonated N atoms. This tautomeric form is stabilized by intra-molecular N-H⋯O hydrogen bonding between the carbonyl (C=O) group and the N(7)-H hydrogen atom on the Hoogsteen face of the purine ring, forming an S(7) ring motif. The two carboxyl groups of adipic acid inter-act with the Watson-Crick face of the BA mol-ecules through O-H⋯N and N-H⋯O hydrogen bonds, generating an R 2 (2)(8) ring motif. The latter units are linked by N-H⋯N hydrogen bonds, forming layers parallel to (10-5). A weak C-H⋯O hydrogen bond is also present, linking adipic acid mol-ecules in neighbouring layers, enclosing R (2) 2(10) ring motifs and forming a three-dimensional structure. C=O⋯π and C-H⋯π inter-actions are also present in the structure.

  5. Resonant two-photon ionization and laser induced fluorescence spectroscopy of jet-cooled adenine

    NASA Astrophysics Data System (ADS)

    Kim, Nam Joon; Jeong, Gawoon; Kim, Yung Sam; Sung, Jiha; Keun Kim, Seong; Park, Young Dong

    2000-12-01

    Electronic spectra of the jet-cooled DNA base adenine were obtained by the resonant two-photon ionization (R2PI) and the laser induced fluorescence (LIF) techniques. The 0-0 band to the lowest electronically excited state was found to be located at 35 503 cm-1. Well-resolved vibronic structures were observed up to 1100 cm-1 above the 0-0 level, followed by a slow rise of broad structureless absorption. The lowest electronic state was proposed to be of nπ* character, which lies ˜600 cm-1 below the onset of the ππ* state. The broad absorption was attributed to the extensive vibronic mixing between the nπ* state and the high-lying ππ* state.

  6. Genetic evidence for the essential role of PfNT1 in the transport and utilization of xanthine, guanine, guanosine and adenine by Plasmodium falciparum.

    PubMed

    El Bissati, Kamal; Downie, Megan J; Kim, Seong-Kyoun; Horowitz, Michael; Carter, Nicola; Ullman, Buddy; Ben Mamoun, Choukri

    2008-10-01

    The malaria parasite, Plasmodium falciparum, is unable to synthesize the purine ring de novo and is therefore wholly dependent upon purine salvage from the host for survival. Previous studies have indicated that a P. falciparum strain in which the purine transporter PfNT1 had been disrupted was unable to grow on physiological concentrations of adenosine, inosine and hypoxanthine. We have now used an episomally complemented pfnt1Delta knockout parasite strain to confirm genetically the functional role of PfNT1 in P. falciparum purine uptake and utilization. Episomal complementation by PfNT1 restored the ability of pfnt1Delta parasites to transport and utilize adenosine, inosine and hypoxanthine as purine sources. The ability of wild-type and pfnt1Delta knockout parasites to transport and utilize the other physiologically relevant purines adenine, guanine, guanosine and xanthine was also examined. Unlike wild-type and complemented P. falciparum parasites, pfnt1Delta parasites could not proliferate on guanine, guanosine or xanthine as purine sources, and no significant transport of these substrates could be detected in isolated parasites. Interestingly, whereas isolated pfnt1Delta parasites were still capable of adenine transport, these parasites grew only when adenine was provided at high, non-physiological concentrations. Taken together these results demonstrate that, in addition to hypoxanthine, inosine and adenosine, PfNT1 is essential for the transport and utilization of xanthine, guanine and guanosine.

  7. Surface-Enhanced Hyper-Raman Spectra of Adenine, Guanine, Cytosine, Thymine, and Uracil

    PubMed Central

    2016-01-01

    Using picosecond excitation at 1064 nm, surface-enhanced hyper-Raman scattering (SEHRS) spectra of the nucleobases adenine, guanine, cytosine, thymine, and uracil with two different types of silver nanoparticles were obtained. Comparing the SEHRS spectra with SERS data from the identical samples excited at 532 nm and with known infrared spectra, the major bands in the spectra are assigned. Due to the different selection rules for the one- and two-photon excited Raman scattering, we observe strong variation in relative signal strengths of many molecular vibrations obtained in SEHRS and SERS spectra. The two-photon excited spectra of the nucleobases are found to be very sensitive with respect to molecule–nanoparticle interactions. Using both the SEHRS and SERS data, a comprehensive vibrational characterization of the interaction of nucleobases with silver nanostructures can be achieved. PMID:28077982

  8. DNA bases thymine and adenine in bio-organic light emitting diodes.

    PubMed

    Gomez, Eliot F; Venkatraman, Vishak; Grote, James G; Steckl, Andrew J

    2014-11-24

    We report on the use of nucleic acid bases (NBs) in organic light emitting diodes (OLEDs). NBs are small molecules that are the basic building blocks of the larger DNA polymer. NBs readily thermally evaporate and integrate well into the vacuum deposited OLED fabrication. Adenine (A) and thymine (T) were deposited as electron-blocking/hole-transport layers (EBL/HTL) that resulted in increases in performance over the reference OLED containing the standard EBL material NPB. A-based OLEDs reached a peak current efficiency and luminance performance of 48 cd/A and 93,000 cd/m(2), respectively, while T-based OLEDs had a maximum of 76 cd/A and 132,000 cd/m(2). By comparison, the reference OLED yielded 37 cd/A and 113,000 cd/m(2). The enhanced performance of T-based devices is attributed to a combination of energy levels and structured surface morphology that causes more efficient and controlled hole current transport to the emitting layer.

  9. Syntheses of nicotinamide riboside and derivatives: effective agents for increasing nicotinamide adenine dinucleotide concentrations in mammalian cells.

    PubMed

    Yang, Tianle; Chan, Noel Yan-Ki; Sauve, Anthony A

    2007-12-27

    A new two-step methodology achieves stereoselective synthesis of beta-nicotinamide riboside and a series of related amide, ester, and acid nucleosides. Compounds were prepared through a triacetylated-nicotinate ester nucleoside, via coupling of either ethylnicotinate or phenylnicotinate with 1,2,3,5-tetra-O-acetyl-beta-D-ribofuranose. Nicotinamide riboside, nicotinic acid riboside, O-ethylnicotinate riboside, O-methylnicotinate riboside, and several N-alkyl derivatives increased NAD+ concentrations from 1.2-2.7-fold in several mammalian cell lines. These findings establish bioavailability and potent effects of these nucleosides in stimulating the increase of NAD+ concentrations in mammalian cells.

  10. The prokaryotic FAD synthetase family: a potential drug target.

    PubMed

    Serrano, Ana; Ferreira, Patricia; Martínez-Júlvez, Marta; Medina, Milagros

    2013-01-01

    Disruption of cellular production of the flavin cofactors, flavin adenine mononucleotide (FMN) and flavin adenine dinucleotide(FAD) will prevent the assembly of a large number of flavoproteins and flavoenzymes involved in key metabolic processes in all types of organisms. The enzymes responsible for FMN and FAD production in prokaryotes and eukaryotes exhibit various structural characteristics to catalyze the same chemistry, a fact that converts the prokaryotic FAD synthetase (FADS) in a potential drug target for the development of inhibitors endowed with anti-pathogenic activity. The first step before searching for selective inhibitors of FADS is to understand the structural and functional mechanisms for the riboflavin kinase and FMN adenylyltransferase activities of the prokaryotic enzyme, and particularly to identify their differential functional characteristics with regard to the enzymes performing similar functions in other organisms, particularly humans. In this paper, an overview of the current knowledge of the structure-function relationships in prokaryotic FADS has been presented, as well as of the state of the art in the use of these enzymes as drug targets.

  11. Quantum-chemical studies on the favored and rare tautomers of neutral and redox adenine.

    PubMed

    Raczyńska, Ewa D; Makowski, Mariusz; Zientara-Rytter, Katarzyna; Kolczyńska, Katarzyna; Stępniewski, Tomasz M; Hallmann, Małgorzata

    2013-02-21

    All possible twenty-three prototropic tautomers of neutral and redox adenine (nine amine and fourteen imine forms, including geometric isomerism of the exo ═NH group) were examined in vacuo {DFT(B3LYP)/6-311+G(d,p)}. The NH → NH conversions as well as those usually omitted, NH → CH and CH → CH, were considered. An interesting change of the tautomeric preference occurs when proceeding from neutral to reduced adenine. One-electron reduction favors the nonaromatic amine C8H-N10H tautomer. This tautomeric preference is similar to that (C2H) for reduced imidazole. Water molecules (PCM model) seem to not change this trend. They influence solely the relative energies. The DFT vertical detachment energy in the gas phase is positive for each tautomer, e.g., 0.03 eV for N9H-N10H and 1.84 eV for C8H-N10H. The DFT adiabatic electron affinity for the favored process, neutral N9H-N10H → reduced C8H-N10H (ground states), is equal to 0.18 eV at 0 K (ZPE included). One-electron oxidation does not change the tautomeric preference in the gas phase. The aromatic amine N9H-N10H tautomer is favored for the oxidized molecule similarly as for the neutral one. The DFT adiabatic ionization potential for the favored process, neutral N9H-N10H → oxidized N9H-N10H (ground states), is equal to 8.12 eV at 0 K (ZPE included). Water molecules (PCM model) seem to influence solely the composition of the tautomeric mixture and the relative energies. They change the energies of the oxidation and reduction processes by ca. 2 eV.

  12. Effects of caffeine and adenine nucleotides on Ca2+ release by the sarcoplasmic reticulum in saponin-permeabilized frog skeletal muscle fibres

    PubMed Central

    Duke, Adrian M; Steele, Derek S

    1998-01-01

    The effect of caffeine and adenine nucleotides on the sarcoplasmic reticulum (SR) Ca2+ release mechanism was investigated in permeabilized frog skeletal muscle fibres. Caffeine was rapidly applied and the resulting release of Ca2+ from the SR detected using fura-2 fluorescence. Decreasing the [ATP] from 5 to 0.1 mm reduced the caffeine-induced Ca2+ transient by 89 ± 1.4 % (mean ± s.e.m., n = 16), while SR Ca2+ uptake was unaffected.The dependence of caffeine-induced Ca2+ release on cytosolic [ATP] was used to study the relative ability of other structurally related compounds to substitute for, or compete with, ATP at the adenine nucleotide binding site. It was found that AMP, ADP and the non-hydrolysable analogue adenylyl imidodiphosphate (AMP-PNP) partially substituted for ATP, although none was as potent in facilitating the Ca2+-releasing action of caffeine.Adenosine reversibly inhibited caffeine-induced Ca2+ release, without affecting SR Ca2+ uptake. Five millimolar adenosine markedly reduced the amplitude of the caffeine-induced Ca2+ transient by 64 ± 4 % (mean ± s.e.m., n = 11). The degree of inhibition was dependent upon the cytosolic [ATP], suggesting that adenosine may act as a competitive antagonist at the adenine nucleotide binding site.These data show that (i) the sensitivity of the in situ SR Ca2+ channel to caffeine activation is strongly dependent upon the cytosolic [ATP], (ii) the number of phosphates attached to the 5′ carbon of the ribose ring influences the efficacy of the ligand, and (iii) removal of a single phosphate group transforms AMP from a partial agonist, to adenosine, which acts as a competitive antagonist under these conditions. PMID:9782158

  13. Effects of caffeine and adenine nucleotides on Ca2+ release by the sarcoplasmic reticulum in saponin-permeabilized frog skeletal muscle fibres.

    PubMed

    Duke, A M; Steele, D S

    1998-11-15

    1. The effect of caffeine and adenine nucleotides on the sarcoplasmic reticulum (SR) Ca2+ release mechanism was investigated in permeabilized frog skeletal muscle fibres. Caffeine was rapidly applied and the resulting release of Ca2+ from the SR detected using fura-2 fluorescence. Decreasing the [ATP] from 5 to 0.1 mM reduced the caffeine-induced Ca2+ transient by 89 +/- 1.4% (mean +/- s.e.m., n = 16), while SR Ca2+ uptake was unaffected. 2. The dependence of caffeine-induced Ca2+ release on cytosolic [ATP] was used to study the relative ability of other structurally related compounds to substitute for, or compete with, ATP at the adenine nucleotide binding site. It was found that AMP, ADP and the non-hydrolysable analogue adenylyl imidodiphosphate (AMP-PNP) partially substituted for ATP, although none was as potent in facilitating the Ca2+-releasing action of caffeine. 3. Adenosine reversibly inhibited caffeine-induced Ca2+ release, without affecting SR Ca2+ uptake. Five millimolar adenosine markedly reduced the amplitude of the caffeine-induced Ca2+ transient by 64 +/- 4% (mean +/- s.e.m., n = 11). The degree of inhibition was dependent upon the cytosolic [ATP], suggesting that adenosine may act as a competitive antagonist at the adenine nucleotide binding site. 4. These data show that (i) the sensitivity of the in situ SR Ca2+ channel to caffeine activation is strongly dependent upon the cytosolic [ATP], (ii) the number of phosphates attached to the 5' carbon of the ribose ring influences the efficacy of the ligand, and (iii) removal of a single phosphate group transforms AMP from a partial agonist, to adenosine, which acts as a competitive antagonist under these conditions.

  14. Biofuel cell anode: NAD +/glucose dehydrogenase-coimmobilized ketjenblack electrode

    NASA Astrophysics Data System (ADS)

    Miyake, T.; Oike, M.; Yoshino, S.; Yatagawa, Y.; Haneda, K.; Kaji, H.; Nishizawa, M.

    2009-09-01

    We have studied the coimmobilization of glucose dehydrogenase (GDH) and its cofactor, oxidized nicotinamide adenine dinucleotide (NAD +), on a ketjenblack (KB) electrode as a step toward a biofuel cell anode that works without mediators. A KB electrode was first treated with a sulfuric acid/nitric acid/water mixture to lower the overvoltage for NADH oxidation, and was next chemically modified with NAD + and GDH. The improved GDH/NAD +/KB electrode is found to oxidize glucose around 0 V vs. Ag/AgCl. A biofuel cell constructed with a bilirubin oxidase-immobilized KB cathode showed a maximum power density of 52 μW/cm 2 at 0.3 V.

  15. Sirtuins in neurodegenerative diseases: an update on potential mechanisms

    PubMed Central

    Min, Sang-Won; Sohn, Peter D.; Cho, Seo-Hyun; Swanson, Raymond A.; Gan, Li

    2013-01-01

    Silent information regulator 2 proteins (sirtuins or SIRTs) are a group of deacetylases (or deacylases) whose activities are dependent on and regulated by nicotinamide adenine dinucleotide (NAD+). Compelling evidence supports that sirtuins play major roles in many aspects of physiology, especially in pathways related to aging – the predominant and unifying risk factor for neurodegenerative diseases. In this review, we highlight the molecular mechanisms underlying the protective effects of sirtuins in neurodegenerative diseases, focusing on protein homeostasis, neural plasticity, mitochondrial function, and sustained chronic inflammation. We will also examine the potential and challenges of targeting sirtuin pathways to block these pathogenic pathways. PMID:24093018

  16. Application of a coupled enzyme assay to characterize nicotinamide riboside kinases.

    PubMed

    Dölle, Christian; Ziegler, Mathias

    2009-02-15

    The recently identified nicotinamide riboside kinases (Nrks) constitute a distinct pathway of nicotinamide adenine dinucleotide (NAD) biosynthesis. Here we present the combination of an established optical adenosine triphosphatase (ATPase) test, the pyruvate kinase/lactate dehydrogenase system, with the Nrk-catalyzed reaction to determine kinetic properties of these enzymes, in particular affinities for ATP. The assay allows variation of both nucleoside and phosphate donor substrates, thereby providing major advantages for the characterization of these enzymes. We confirm previously established kinetic parameters and identify differences in substrate selectivity between the two human Nrk isoforms. The proposed assay is inexpensive and may be applied for high-throughput screening.

  17. The Emergence of the Nicotinamide Riboside Kinases in the regulation of NAD+ Metabolism.

    PubMed

    Fletcher, Rachel S; Lavery, Gareth

    2018-05-30

    The concept of replenishing or elevating nicotinamide adenine dinucleotide (NAD+) availability to combat metabolic disease and ageing (described extensively in recent reviews [1, 2]) is an area of intense research. This has led to a need to define the endogenous regulatory pathways and mechanisms cell and tissues utilise to maximise NAD+ availability such that strategies to intervene in the clinical setting are able to be fully realised. This review discusses the importance of different salvage pathways involved in metabolising the vitamin B3 class of NAD+ precursor molecules, with a particular focus on the recently identified nicotinamide riboside kinase (NRK) pathway at both a tissue-specific and systemic level.

  18. Comparison of neutrophil functions between two strains of inbred mice.

    PubMed

    Zhang, Xiaohuan; Zhao, Sainan; Sun, Luping; Li, Wenqing; Glogauer, Michael; Hu, Yan

    2016-12-01

    In this study, differences between two strains of inbred mice in aspects of neutrophil function, namely Rac1 expression, chemotaxis, nicotinamide adenine dinucleotide phosphate oxidase activity and formation of neutrophil extracellular traps (NETs), were determined. Neutrophils from CBA/CaH mice exhibited weaker Rac1 expression and a slower chemotactic gradient than BALB/c mice. Furthermore, PMA- or fMLP-stimulated neutrophils from CBA/CaH mice generated much less superoxide and NETs than similarly stimulated neutrophils from BALB/c mice. These findings suggest that neutrophils from BALB/c mice are functionally more efficient than those from CBA/CaH mice. © 2016 The Societies and John Wiley & Sons Australia, Ltd.

  19. Binding of Substrate Locks the Electrochemistry of CRY-DASH into DNA Repair.

    PubMed

    Gindt, Yvonne M; Messyasz, Adriana; Jumbo, Pamela I

    2015-05-12

    VcCry1, a member of the CRY-DASH family, may serve two diverse roles in vivo, including blue-light signaling and repair of UV-damaged DNA. We have discovered that the electrochemistry of the flavin adenine dinucleotide cofactor of VcCry1 is locked to cycle only between the hydroquinone and neutral semiquinone states when UV-damaged DNA is present. Other potential substrates, including undamaged DNA and ATP, have no discernible effect on the electrochemistry, and the kinetics of the reduction is unaffected by damaged DNA. Binding of the damaged DNA substrate determines the role of the protein and prevents the presumed photochemistry required for blue-light signaling.

  20. New insights on the regulation of the adenine nucleotide pool of erythrocytes in mouse models

    PubMed Central

    O’Brien, William G.; Ling, Han Shawn; Lee, Cheng Chi

    2017-01-01

    The observation that induced torpor in non-hibernating mammals could result from an increased AMP concentration in circulation led our investigation to reveal that the added AMP altered oxygen transport of erythrocytes. To further study the effect of AMP in regulation of erythrocyte function and systemic metabolism, we generated mouse models deficient in key erythrocyte enzymes in AMP metabolism. We have previously reported altered erythrocyte adenine nucleotide levels corresponding to altered oxygen saturation in mice deficient in both CD73 and AMPD3. Here we further investigate how these Ampd3-/-/Cd73-/- mice respond to the administered dose of AMP in comparison with the control models of single enzyme deficiency and wild type. We found that Ampd3-/-/Cd73-/- mice are more sensitive to AMP-induced hypometabolism than mice with a single enzyme deficiency, which are more sensitive than wild type. A dose-dependent rightward shift of erythrocyte p50 values in response to increasing amounts of extracellular AMP was observed. We provide further evidence for the direct uptake of AMP by erythrocytes that is insensitive to dipyridamole, a blocker for ENT1. The uptake of AMP by the erythrocytes remained linear at the highest concentration tested, 10mM. We also observed competitive inhibition of AMP uptake by ATP and ADP but not by the other nucleotides and metabolites tested. Importantly, our studies suggest that AMP uptake is associated with an erythrocyte ATP release that is partially sensitive to inhibition by TRO19622 and Ca++ ion. Taken together, our study suggests a novel mechanism by which erythrocytes recycle and maintain their adenine nucleotide pool through AMP uptake and ATP release. PMID:28746349

  1. New insights on the regulation of the adenine nucleotide pool of erythrocytes in mouse models.

    PubMed

    O'Brien, William G; Ling, Han Shawn; Zhao, Zhaoyang; Lee, Cheng Chi

    2017-01-01

    The observation that induced torpor in non-hibernating mammals could result from an increased AMP concentration in circulation led our investigation to reveal that the added AMP altered oxygen transport of erythrocytes. To further study the effect of AMP in regulation of erythrocyte function and systemic metabolism, we generated mouse models deficient in key erythrocyte enzymes in AMP metabolism. We have previously reported altered erythrocyte adenine nucleotide levels corresponding to altered oxygen saturation in mice deficient in both CD73 and AMPD3. Here we further investigate how these Ampd3-/-/Cd73-/- mice respond to the administered dose of AMP in comparison with the control models of single enzyme deficiency and wild type. We found that Ampd3-/-/Cd73-/- mice are more sensitive to AMP-induced hypometabolism than mice with a single enzyme deficiency, which are more sensitive than wild type. A dose-dependent rightward shift of erythrocyte p50 values in response to increasing amounts of extracellular AMP was observed. We provide further evidence for the direct uptake of AMP by erythrocytes that is insensitive to dipyridamole, a blocker for ENT1. The uptake of AMP by the erythrocytes remained linear at the highest concentration tested, 10mM. We also observed competitive inhibition of AMP uptake by ATP and ADP but not by the other nucleotides and metabolites tested. Importantly, our studies suggest that AMP uptake is associated with an erythrocyte ATP release that is partially sensitive to inhibition by TRO19622 and Ca++ ion. Taken together, our study suggests a novel mechanism by which erythrocytes recycle and maintain their adenine nucleotide pool through AMP uptake and ATP release.

  2. Adenine phosphoribosyltransferase deficiency in the United Kingdom: two novel mutations and a cross-sectional survey

    PubMed Central

    Arenas-Hernandez, Monica; Escuredo, Emilia; Fairbanks, Lynette; Marinaki, Tony; Mapplebeck, Sarah; Sheaff, Michael; Almond, Michael K.

    2016-01-01

    Background Adenine phosphoribosyltransferase deficiency is an inborn error of metabolism that can cause kidney disease from crystalline nephropathy or kidney stones. Methods We present three cases from a single centre with varied presentations to illustrate how increasing awareness led to better patient identification. We then undertook a cross-sectional survey of all the patients identified from the Purine Research Laboratory in the UK since 1974. Results Our index case presented with recurrent nephrolithiasis and was diagnosed on stone analysis, the second case presented with acute kidney injury and the third case was identified from a biopsy undertaken for acute on chronic kidney injury. Genetic studies identified two novel mutations. Twenty patients were retrospectively identified. The mean age at diagnosis was 25 years (range 2–70); eight were <20 years, seven were 20–40 years and five were >40 years. Five of the 20 patients were deceased, 3 after end-stage renal disease (ESRD). Twelve have normal renal function, one had CKD stage 3, one had severe kidney disease and one was on dialysis. Conclusions Adenine phosphoribosyltransferase deficiency presents in a wide spectrum in all age groups. Patients can be completely asymptomatic and kidney disease may be incorrectly attributed to other conditions. Outcome is poor in late diagnosis and there is a high prevalence of ESRD. Patients with unexplained renal stone disease or deterioration in kidney function should be considered for screening. Identification and surveillance of patients in the UK can improve. There is now a rare disease registry with meetings organized that include patients, families and health care providers to improve awareness. PMID:27994857

  3. Acceleration of adventitious shoots by interaction between exogenous hormone and adenine sulphate in Althaea officinalis L.

    PubMed

    Naz, Ruphi; Anis, M

    2012-11-01

    In the current study attempts were made to investigate the effects of three different phases of callus induction followed by adventitious regeneration from leaf segments (central and lateral vein). Callus induction was observed in Murashige and Skoog's (MS) medium supplemented with 15.0 μM 2,4-dichloro phenoxy acetic acid (2,4-D). Adventitious shoot buds formation was achieved on MS medium supplemented with 7.5 μM 2,4-D and 20.0 μM AdS in liquid medium as it induced 19.2 ± 0.58 buds in central vein explants. Addition of different growth regulators (cytokinins-6-benzyladenine, kinetin and 2-isopentenyl adenine alone or in combination with auxins-indole-3-acetic acid, indole-3-butyric acid and α-naphthalene acetic acid, improved the shoot regeneration efficiency, in which 5.0 μM 6-benzyl adenine along with 0.25 μM α-naphthalene acetic acid was shown to be the most effective medium for maximum shoot regeneration (81.3 %) with 24.6 number of shoots and 4.4 ± 0.08 cm shoot length per explant. Leaf culture of central veins led to better shoot formation capacity in comparison to lateral vein. Rooting was readily achieved on the differentiated shoots on 1/2 MS medium augmented with 20.0 μM indole-3-butyric acid. The plants were successfully hardened off in sterile soilrite followed by their establishment in garden soil with 80 % survival rate.

  4. Adenine phosphoribosyltransferase from Sulfolobus solfataricus is an enzyme with unusual kinetic properties and a crystal structure that suggests it evolved from a 6-oxopurine phosphoribosyltransferase.

    PubMed

    Jensen, Kaj Frank; Hansen, Michael Riis; Jensen, Kristine Steen; Christoffersen, Stig; Poulsen, Jens-Christian Navarro; Mølgaard, Anne; Kadziola, Anders

    2015-04-14

    The adenine phosphoribosyltransferase (APRTase) encoded by the open reading frame SSO2342 of Sulfolobus solfataricus P2 was subjected to crystallographic, kinetic, and ligand binding analyses. The enzyme forms dimers in solution and in the crystals, and binds one molecule of the reactants 5-phosphoribosyl-α-1-pyrophosphate (PRPP) and adenine or the product adenosine monophosphate (AMP) or the inhibitor adenosine diphosphate (ADP) in each active site. The individual subunit adopts an overall structure that resembles a 6-oxopurine phosphoribosyltransferase (PRTase) more than known APRTases implying that APRT functionality in Crenarchaeotae has its evolutionary origin in this family of PRTases. Only the N-terminal two-thirds of the polypeptide chain folds as a traditional type I PRTase with a five-stranded β-sheet surrounded by helices. The C-terminal third adopts an unusual three-helix bundle structure that together with the nucleobase-binding loop undergoes a conformational change upon binding of adenine and phosphate resulting in a slight contraction of the active site. The inhibitor ADP binds like the product AMP with both the α- and β-phosphates occupying the 5'-phosphoribosyl binding site. The enzyme shows activity over a wide pH range, and the kinetic and ligand binding properties depend on both pH and the presence/absence of phosphate in the buffers. A slow hydrolysis of PRPP to ribose 5-phosphate and pyrophosphate, catalyzed by the enzyme, may be facilitated by elements in the C-terminal three-helix bundle part of the protein.

  5. Kidney Disease in Adenine Phosphoribosyltransferase Deficiency.

    PubMed

    Runolfsdottir, Hrafnhildur Linnet; Palsson, Runolfur; Agustsdottir, Inger M; Indridason, Olafur S; Edvardsson, Vidar O

    2016-03-01

    Adenine phosphoribosyltransferase (APRT) deficiency is a purine metabolism disorder causing kidney stones and chronic kidney disease (CKD). The course of nephrolithiasis and CKD has not been well characterized. The objective of this study was to examine long-term kidney outcomes in patients with APRT deficiency. An observational cohort study. All patients enrolled in the APRT Deficiency Registry of the Rare Kidney Stone Consortium. Kidney stones, acute kidney injury (AKI), stage of CKD, end-stage renal disease, estimated glomerular filtration rate (eGFR), and changes in eGFR. Serum creatinine and eGFR calculated using creatinine-based equations. Of 53 patients, 30 (57%) were females and median age at diagnosis was 37.0 (range, 0.6-67.9) years. Median duration of follow-up was 10.3 (range, 0.0-31.5) years. At diagnosis, kidney stones had developed in 29 (55%) patients and 20 (38%) had CKD stages 3 to 5, including 11 (21%) patients with stage 5. At latest follow-up, 33 (62%) patients had experienced kidney stones; 18 (34%), AKI; and 22 (42%), CKD stages 3 to 5. Of 14 (26%) patients with stage 5 CKD, 12 had initiated renal replacement therapy. Kidney stones recurred in 18 of 33 (55%) patients. The median eGFR slope was -0.38 (range, -21.99 to 1.42) mL/min/1.73m(2) per year in patients receiving treatment with an xanthine dehydrogenase inhibitor and -5.74 (range, -75.8 to -0.10) mL/min/1.73m(2) per year in those not treated prior to the development of stage 5 CKD (P=0.001). Use of observational registry data. Progressive CKD and AKI episodes are major features of APRT deficiency, whereas nephrolithiasis is the most common presentation. Advanced CKD without a history of kidney stones is more prevalent than previously reported. Our data suggest that timely therapy may retard CKD progression. Copyright © 2016 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  6. The initial uridine of primary piRNAs does not create the tenth adenine that Is the hallmark of secondary piRNAs.

    PubMed

    Wang, Wei; Yoshikawa, Mayu; Han, Bo W; Izumi, Natsuko; Tomari, Yukihide; Weng, Zhiping; Zamore, Phillip D

    2014-12-04

    PIWI-interacting RNAs (piRNAs) silence transposons in animal germ cells. PIWI proteins bind and amplify piRNAs via the "Ping-Pong" pathway. Because PIWI proteins cleave RNAs between target nucleotides t10 and t11-the nucleotides paired to piRNA guide positions g10 and g11-the first ten nucleotides of piRNAs participating in the Ping-Pong amplification cycle are complementary. Drosophila piRNAs bound to the PIWI protein Aubergine typically begin with uridine (1U), while piRNAs bound to Argonaute3, which are produced by Ping-Pong amplification, often have adenine at position 10 (10A). The Ping-Pong model proposes that the 10A is a consequence of 1U. We find that 10A is not caused by 1U. Instead, fly Aubergine as well as its homologs, Siwi in silkmoth and MILI in mice, have an intrinsic preference for adenine at the t1 position of their target RNAs; during Ping-Pong amplification, this t1A subsequently becomes the g10A of a piRNA bound to Argonaute3. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Novel Flurometric Tool to Assess Mitochondrial Redox State of Isolated Perfused Rat Lungs After Exposure to Hyperoxia

    PubMed Central

    Audi, Said H.; Staniszewski, Kevin S.; Haworth, Steven T.; Jacobs, Elizabeth R.; Ranji, Mahsa; Zablocki, Clement J.

    2013-01-01

    Recently, we demonstrated the utility of optical fluorometry to detect a change in the redox status of mitochondrial autofluorescent coenzymes nicotinamide adenine dinucleotide (NADH) and oxidized form of flavin adenine dinucleotide \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$({\\rm FADH}_{2})$\\end{document} (FAD), as a measure of mitochondrial function in isolated perfused rat lungs (IPL). The objective of this paper was to utilize optical fluorometry to evaluate the effect of rat exposure to hyperoxia (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${>}{95\\%}~{\\rm O}_{2}$\\end{document} for 48 h) on lung tissue mitochondrial redox status of NADH and FAD in a nondestructive manner in IPL. Surface NADH and FAD signals were measured before and after lung perfusion with perfusate containing rotenone (ROT, complex I inhibitor), potassium cyanide (KCN, complex IV inhibitor), and/or pentachlorophenol (PCP, uncoupler). ROT- or KCN-induced increase in NADH signal is considered a measure of complex I activity, and KCN-induced decrease in FAD signal is considered a measure of complex II activity. The results show that hyperoxia decreased complex I and II activities by 63% and 55%, respectively, when compared to lungs of rats exposed to room air (normoxic rats). Mitochondrial complex I and II activities in lung homogenates were also lower (77% and 63%, respectively) for hyperoxic than for normoxic lungs. These results suggest that the mitochondrial matrix is more reduced in hyperoxic lungs than in normoxic lungs, and demonstrate the ability of optical fluorometry to detect a change

  8. Therapeutic effect of enhancing endothelial nitric oxide synthase (eNOS) expression and preventing eNOS uncoupling

    PubMed Central

    Förstermann, Ulrich; Li, Huige

    2011-01-01

    Nitric oxide (NO) produced by the endothelium is an important protective molecule in the vasculature. It is generated by the enzyme endothelial NO synthase (eNOS). Similar to all NOS isoforms, functional eNOS transfers electrons from nicotinamide adenine dinucleotide phosphate (NADPH), via the flavins flavin adenine dinucleotide and flavin mononucleotide in the carboxy-terminal reductase domain, to the heme in the amino-terminal oxygenase domain. Here, the substrate L-arginine is oxidized to L-citrulline and NO. Cardiovascular risk factors such as diabetes mellitus, hypertension, hypercholesterolaemia or cigarette smoking reduce bioactive NO. These risk factors lead to an enhanced production of reactive oxygen species (ROS) in the vessel wall. NADPH oxidases represent major sources of this ROS and have been found upregulated in the presence of cardiovascular risk factors. NADPH-oxidase-derived superoxide avidly reacts with eNOS-derived NO to form peroxynitrite (ONOO-). The essential NOS cofactor (6R-)5,6,7,8-tetrahydrobiopterin (BH4) is highly sensitive to oxidation by this ONOO-. In BH4 deficiency, oxygen reduction uncouples from NO synthesis, thereby converting NOS to a superoxide-producing enzyme. Among conventional drugs, compounds interfering with the renin-angiotensin-aldosterone system and statins can reduce vascular oxidative stress and increase bioactive NO. In recent years, we have identified a number of small molecules that have the potential to prevent eNOS uncoupling and, at the same time, enhance eNOS expression. These include the protein kinase C inhibitor midostaurin, the pentacyclic triterpenoids ursolic acid and betulinic acid, the eNOS enhancing compounds AVE9488 and AVE3085, and the polyphenolic phytoalexin trans-resveratrol. Such compounds enhance NO production from eNOS also under pathophysiological conditions and may thus have therapeutic potential. PMID:21198553

  9. Time-domain laser-induced fluorescence spectroscopy apparatus for clinical diagnostics

    NASA Astrophysics Data System (ADS)

    Fang, Qiyin; Papaioannou, Thanassis; Jo, Javier A.; Vaitha, Russel; Shastry, Kumar; Marcu, Laura

    2004-01-01

    We report the design and development of a compact optical fiber-based apparatus for in situ time-resolved laser-induced fluorescence spectroscopy (tr-LIFS) of biological systems. The apparatus is modular, optically robust, and compatible with the clinical environment. It incorporates a dual output imaging spectrograph, a gated multichannel plate photomultiplier (MCP-PMT), an intensified charge-coupled-device (ICCD) camera, and a fast digitizer. It can accommodate various types of light sources and optical fiber probes for selective excitation and remote light delivery/collection as required by different applications. The apparatus allows direct recording of the entire fluorescence decay with high sensitivity (nM range fluorescein dye concentration with signal-to-noise ratio of 46) and with four decades dynamic range. It is capable of resolving a broad range of fluorescence lifetimes from hundreds of picoseconds (as low as 300 ps) using the MCP-PMT coupled to the digitizer to milliseconds using the ICCD. The data acquisition and analysis process is fully automated, enabling fast recording of fluorescence intensity decay across the entire emission spectrum (0.8 s per wavelength or ˜40 s for a 200 nm wavelength range at 5 nm increments). The spectral and temporal responses of the apparatus were calibrated and its performance was validated using fluorescence lifetime standard dyes (Rhodamin B, 9-cyanoanthracene, and rose Bengal) and tissue endogenous fluorophores (elastin, collagen, nicotinamide adenine dinucleotide, and flavin adenine dinucleotide). Fluorescence decay lifetimes and emission spectra of all tested compounds measured with the current tr-LIFS apparatus were found in good agreement with the values reported in the literature. The design and performance of tr-LIFS apparatus have enabled in vivo studies of atherosclerotic plaques and brain tumors.

  10. Role of Microsomal Retinol/Sterol Dehydrogenase-Like Short-Chain Dehydrogenases/Reductases in the Oxidation and Epimerization of 3α-Hydroxysteroids in Human Tissues

    PubMed Central

    Belyaeva, Olga V.; Chetyrkin, Sergei V.; Clark, Amy L.; Kostereva, Natalia V.; SantaCruz, Karen S.; Chronwall, Bibie M.; Kedishvili, Natalia Y.

    2008-01-01

    Allopregnanolone (ALLO) and androsterone (ADT) are naturally occurring 3α-hydroxysteroids that act as positive allosteric regulators of γ-aminobutyric acid type A receptors. In addition, ADT activates nuclear farnesoid X receptor and ALLO activates pregnane X receptor. At least with respect to γ-aminobutyric acid type A receptors, the biological activity of ALLO and ADT depends on the 3α-hydroxyl group and is lost upon its conversion to either 3-ketosteroid or 3β-hydroxyl epimer. Such strict structure-activity relationships suggest that the oxidation or epimerization of 3α-hydroxysteroids may serve as physiologically relevant mechanisms for the control of the local concentrations of bioactive 3α-hydroxysteroids. The exact enzymes responsible for the oxidation and epimerization of 3α-hydroxysteroids in vivo have not yet been identified, but our previous studies showed that microsomal nicotinamide adenine dinucleotide-dependent short-chain dehydrogenases/reductases (SDRs) with dual retinol/sterol dehydrogenase substrate specificity (RoDH-like group of SDRs) can oxidize and epimerize 3α-hydroxysteroids in vitro. Here, we present the first evidence that microsomal nicotinamide adenine dinucleotide-dependent 3α-hydroxysteroid dehydrogenase/epimerase activities are widely distributed in human tissues with the highest activity levels found in liver and testis and lower levels in lung, spleen, brain, kidney, and ovary. We demonstrate that RoDH-like SDRs contribute to the oxidation and epimerization of ALLO and ADT in living cells, and show that RoDH enzymes are expressed in tissues that have microsomal 3α-hydroxysteroid dehydrogenase/epimerase activities. Together, these results provide further support for the role of RoDH-like SDRs in human metabolism of 3α-hydroxysteroids and offer a new insight into the enzymology of ALLO and ADT inactivation. PMID:17289849

  11. Role of microsomal retinol/sterol dehydrogenase-like short-chain dehydrogenases/reductases in the oxidation and epimerization of 3alpha-hydroxysteroids in human tissues.

    PubMed

    Belyaeva, Olga V; Chetyrkin, Sergei V; Clark, Amy L; Kostereva, Natalia V; SantaCruz, Karen S; Chronwall, Bibie M; Kedishvili, Natalia Y

    2007-05-01

    Allopregnanolone (ALLO) and androsterone (ADT) are naturally occurring 3alpha-hydroxysteroids that act as positive allosteric regulators of gamma-aminobutyric acid type A receptors. In addition, ADT activates nuclear farnesoid X receptor and ALLO activates pregnane X receptor. At least with respect to gamma-aminobutyric acid type A receptors, the biological activity of ALLO and ADT depends on the 3alpha-hydroxyl group and is lost upon its conversion to either 3-ketosteroid or 3beta-hydroxyl epimer. Such strict structure-activity relationships suggest that the oxidation or epimerization of 3alpha-hydroxysteroids may serve as physiologically relevant mechanisms for the control of the local concentrations of bioactive 3alpha-hydroxysteroids. The exact enzymes responsible for the oxidation and epimerization of 3alpha-hydroxysteroids in vivo have not yet been identified, but our previous studies showed that microsomal nicotinamide adenine dinucleotide-dependent short-chain dehydrogenases/reductases (SDRs) with dual retinol/sterol dehydrogenase substrate specificity (RoDH-like group of SDRs) can oxidize and epimerize 3alpha-hydroxysteroids in vitro. Here, we present the first evidence that microsomal nicotinamide adenine dinucleotide-dependent 3alpha-hydroxysteroid dehydrogenase/epimerase activities are widely distributed in human tissues with the highest activity levels found in liver and testis and lower levels in lung, spleen, brain, kidney, and ovary. We demonstrate that RoDH-like SDRs contribute to the oxidation and epimerization of ALLO and ADT in living cells, and show that RoDH enzymes are expressed in tissues that have microsomal 3alpha-hydroxysteroid dehydrogenase/epimerase activities. Together, these results provide further support for the role of RoDH-like SDRs in human metabolism of 3alpha-hydroxysteroids and offer a new insight into the enzymology of ALLO and ADT inactivation.

  12. Isoflurane postconditioning prevents opening of the mitochondrial permeability transition pore through inhibition of glycogen synthase kinase 3beta.

    PubMed

    Feng, Jianhua; Lucchinetti, Eliana; Ahuja, Preeti; Pasch, Thomas; Perriard, Jean-Claude; Zaugg, Michael

    2005-11-01

    Postischemic administration of volatile anesthetics activates reperfusion injury salvage kinases and decreases myocardial damage. However, the mechanisms underlying anesthetic postconditioning are unclear. Isolated perfused rat hearts were exposed to 40 min of ischemia followed by 1 h of reperfusion. Anesthetic postconditioning was induced by 15 min of 2.1 vol% isoflurane (1.5 minimum alveolar concentration) administered at the onset of reperfusion. In some experiments, atractyloside (10 microm), a mitochondrial permeability transition pore (mPTP) opener, and LY294002 (15 microm), a phosphatidylinositol 3-kinase inhibitor, were coadministered with isoflurane. Western blot analysis was used to determine phosphorylation of protein kinase B/Akt and its downstream target glycogen synthase kinase 3beta after 15 min of reperfusion. Myocardial tissue content of nicotinamide adenine dinucleotide served as a marker for mPTP opening. Accumulation of MitoTracker Red 580 (Molecular Probes, Invitrogen, Basel, Switzerland) was used to visualize mitochondrial function. Anesthetic postconditioning significantly improved functional recovery and decreased infarct size (36 +/- 1% in unprotected hearts vs. 3 +/- 2% in anesthetic postconditioning; P < 0.05). Isoflurane-mediated protection was abolished by atractyloside and LY294002. LY294002 inhibited isoflurane-induced phosphorylation of protein kinase B/Akt and glycogen synthase kinase 3beta and opened mPTP as determined by nicotinamide adenine dinucleotide measurements. Atractyloside, a direct opener of the mPTP, did not inhibit phosphorylation of protein kinase B/Akt and glycogen synthase kinase 3beta by isoflurane but reversed isoflurane-mediated cytoprotection. Microscopy showed accumulation of the mitochondrial tracker in isoflurane-protected functional mitochondria but no staining in mitochondria of unprotected hearts. Anesthetic postconditioning by isoflurane effectively protects against reperfusion damage by preventing

  13. Isolation and Expression Analysis of CYP9A11 and Cytochrome P450 Reductase Gene in the Beet Armyworm (Lepidoptera: Noctuidae)

    PubMed Central

    Zhao, Chunqing; Feng, Xiaoyun; Tang, Tao; Qiu, Lihong

    2015-01-01

    Cytochrome P450 monooxygenases (CYPs), as an enzyme superfamily, is widely distributed in organisms and plays a vital function in the metabolism of exogenous and endogenous compounds by interacting with its obligatory redox partner, CYP reductase (CPR). A novel CYP gene (CYP9A11) and CPR gene from the agricultural pest insect Spodoptera exigua were cloned and characterized. The complete cDNA sequences of SeCYP9A11 and SeCPR are 1,931 and 3,919 bp in length, respectively, and contain open reading frames of 1,593 and 2,070 nucleotides, respectively. Analysis of the putative protein sequences indicated that SeCYP9A11 contains a heme-binding domain and the unique characteristic sequence (SRFALCE) of the CYP9 family, in addition to a signal peptide and transmembrane segment at the N-terminal. Alignment analysis revealed that SeCYP9A11 shares the highest sequence similarity with CYP9A13 from Mamestra brassicae, which is 66.54%. The putative protein sequence of SeCPR has all of the classical CPR features, such as an N-terminal membrane anchor; three conserved domain flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN), and nicotinamide adenine dinucleotide phosphate (NADPH) domain; and characteristic binding motifs. Phylogenetic analysis revealed that SeCPR shares the highest identity with HaCPR, which is 95.21%. The SeCYP9A11 and SeCPR genes were detected in the midgut, fat body, and cuticle tissues, and throughout all of the developmental stages of S. exigua. The mRNA levels of SeCYP9A11 and SeCPR decreased remarkably after exposure to plant secondary metabolites quercetin and tannin. The results regarding SeCYP9A11 and SeCPR genes in the current study provide foundation for the further study of S. exigua P450 system. PMID:26320261

  14. Optical biopsy - a new armamentarium to detect disease using light

    NASA Astrophysics Data System (ADS)

    Pu, Yang; Alfano, Robert R.

    2015-03-01

    Optical spectroscopy has been considered a promising method for cancer detection for past thirty years because of its advantages over the conventional diagnostic methods of no tissue removal, minimal invasiveness, rapid diagnoses, less time consumption and reproducibility since the first use in 1984. It offers a new armamentarium. Human tissue is mainly composed of extracellular matrix of collagen fiber, proteins, fat, water, and epithelial cells with key molecules in different structures. Tissues contain a number of key fingerprint native endogenous fluorophore molecules, such as tryptophan, collagen, elastin, reduced nicotinamide adenine dinucleotide (NADH), flavin adenine dinucleotide (FAD) and porphyrins. It is well known that abnormalities in metabolic activity precede the onset of a lot of main diseases: carcinoma, diabetes mellitus, atherosclerosis, Alzheimer, and Parkinson's disease, etc. Optical spectroscopy may help in detecting various disorders. Conceivably the biochemical or morphologic changes that cause the spectra variations would appear earlier than the histological aberration. Therefore, "optical biopsy" holds a great promise as clinical tool for diagnosing early stage of carcinomas and other deceases by combining with available photonic technology (e.g. optical fibers, photon detectors, spectrographs spectroscopic ratiometer, fiber-optic endomicroscope and nasopharyngoscope) for in vivo use. This paper focuses on various methods available to detect spectroscopic changes in tissues, for example to distinguish cancerous prostate tissues and/or cells from normal prostate tissues and/or cells. The methods to be described are fluorescence, stokes shift, scattering, Raman, and time-resolved spectroscopy will be reviewed. The underlying physical and biological basis for these optical approaches will be discussed with examples. The idea is to present some of the salient works to show the usefulness and methods of Optical Biopsy for cancer detection and

  15. Lipoxin A4 inhibits UV radiation-induced skin inflammation and oxidative stress in mice.

    PubMed

    Martinez, R M; Fattori, V; Saito, P; Melo, C B P; Borghi, S M; Pinto, I C; Bussmann, A J C; Baracat, M M; Georgetti, S R; Verri, W A; Casagrande, R

    2018-04-27

    Lipoxin A4 (LXA 4 ) is a metabolic product of arachidonic acid. Despite potent anti-inflammatory and pro-resolution activities, it remains to be determined if LXA 4 has effect on ultraviolet (UV) radiation-induced skin inflammation. To investigate the effects of systemic administration with LXA 4 on UV radiation-induced inflammation and oxidative damage in the skin of mice. Varied parameters of inflammation and oxidative stress in the skin of mice were evaluated after UV radiation (4.14 J/cm 2 ). Pretreatment with LXA 4 significantly inhibited UV radiation-induced skin edema and myeloperoxidase activity. LXA 4 efficacy was enhanced by increasing the time of pre-treatment to up to 72 h. LXA 4 reduced UV radiation-induced skin edema, neutrophil recruitment (myeloperoxidase activity and LysM-eGFP + cells), MMP-9 activity, deposition of collagen fibers, epidermal thickness, sunburn cell counts, and production of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6 and IL-33). Depending on the time point, LXA 4 increased the levels of anti-inflammatory cytokines (TGF-β and IL-10). LXA 4 significantly attenuated UV radiation-induced oxidative damage returning the oxidative status to baseline levels in parameters such as ferric reducing ability, scavenging of free radicals, GSH levels, catalase activity and superoxide anion production. LXA 4 also reduced UV radiation-induced gp91 phox [nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) subunit] mRNA expression and enhanced nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream target enzyme nicotinamide adenine dinucleotide (phosphate) quinone oxidoreductase (Nqo1) mRNA expression. LXA 4 inhibited UV radiation-induced skin inflammation by diminishing pro-inflammatory cytokine production and oxidative stress as well as inducing anti-inflammatory cytokines and Nrf2. Copyright © 2018. Published by Elsevier B.V.

  16. Slc25a12 disruption alters myelination and neurofilaments: a model for a hypomyelination syndrome and childhood neurodevelopmental disorders.

    PubMed

    Sakurai, Takeshi; Ramoz, Nicolas; Barreto, Marta; Gazdoiu, Mihaela; Takahashi, Nagahide; Gertner, Michael; Dorr, Nathan; Gama Sosa, Miguel A; De Gasperi, Rita; Perez, Gissel; Schmeidler, James; Mitropoulou, Vivian; Le, H Carl; Lupu, Mihaela; Hof, Patrick R; Elder, Gregory A; Buxbaum, Joseph D

    2010-05-01

    SLC25A12, a susceptibility gene for autism spectrum disorders that is mutated in a neurodevelopmental syndrome, encodes a mitochondrial aspartate-glutamate carrier (aspartate-glutamate carrier isoform 1 [AGC1]). AGC1 is an important component of the malate/aspartate shuttle, a crucial system supporting oxidative phosphorylation and adenosine triphosphate production. We characterized mice with a disruption of the Slc25a12 gene, followed by confirmatory in vitro studies. Slc25a12-knockout mice, which showed no AGC1 by immunoblotting, were born normally but displayed delayed development and died around 3 weeks after birth. In postnatal day 13 to 14 knockout brains, the brains were smaller with no obvious alteration in gross structure. However, we found a reduction in myelin basic protein (MBP)-positive fibers, consistent with a previous report. Furthermore, the neocortex of knockout mice contained abnormal neurofilamentous accumulations in neurons, suggesting defective axonal transport and/or neurodegeneration. Slice cultures prepared from knockout mice also showed a myelination defect, and reduction of Slc25a12 in rat primary oligodendrocytes led to a cell-autonomous reduction in MBP expression. Myelin deficits in slice cultures from knockout mice could be reversed by administration of pyruvate, indicating that reduction in AGC1 activity leads to reduced production of aspartate/N-acetylaspartate and/or alterations in the dihydronicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide(+) ratio, resulting in myelin defects. Our data implicate AGC1 activity in myelination and in neuronal structure and indicate that while loss of AGC1 leads to hypomyelination and neuronal changes, subtle alterations in AGC1 expression could affect brain development, contributing to increased autism susceptibility. Copyright 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  17. Differential effects of exposure to parasites and bacteria on stress response in turbot Scophthalmus maximus simultaneously stressed by low water depth.

    PubMed

    Rodríguez-Quiroga, J J; Otero-Rodiño, C; Suárez, P; Nieto, T P; García Estévez, J M; San Juan, F; Soengas, J L

    2017-07-01

    The stress response of turbot Scophthalmus maximus was evaluated in fish maintained 8 days under different water depths, normal (NWD, 30 cm depth, total water volume 40 l) or low (LWD, 5 cm depth, total water volume 10 l), in the additional presence of infection-infestation of two pathogens of this species. This was caused by intraperitoneal injection of sublethal doses of the bacterium Aeromonas salmonicida subsp. salmonicida or the parasite Philasterides dicentrarchi (Ciliophora:Scuticociliatida). The LWD conditions were stressful for fish, causing increased levels of cortisol in plasma, decreased levels of glycogen in liver and nicotinamide adenine dinucleotide phosphate (NADP) and increased activities of G6Pase and GSase. The presence of bacteria or parasites in fish under NWD resulted in increased cortisol levels in plasma whereas in liver, changes were of minor importance including decreased levels of lactate and GSase activity. The simultaneous presence of bacteria and parasites in fish under NWD resulted a sharp increase in the levels of cortisol in plasma and decreased levels of glucose. Decreased levels of glycogen and lactate and activities of GSase and glutathione reductase (GR), as well as increased activities of glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH) and levels of nicotinamide adenine dinucleotide phosphate (NADPH) occurred in the same fish in liver. Finally, the presence of pathogens in S. maximus under stressful conditions elicited by LWD resulted in synergistic actions of both type of stressors in cortisol levels. In liver, the presence of bacteria or parasites induced a synergistic action on several variables such as decreased activities of G6Pase and GSase as well as increased levels of NADP and NADPH and increased activities of GPase, G6PDH and 6PGDH. © 2017 The Fisheries Society of the British Isles.

  18. Effect on oxidative stress, hepatic chemical metabolizing parameters, and genotoxic damage of mad honey intake in rats.

    PubMed

    Eraslan, G; Kanbur, M; Karabacak, M; Arslan, K; Siliğ, Y; Soyer Sarica, Z; Tekeli, M Y; Taş, A

    2017-01-01

    A total of 66 male Wistar rats were used and six groups (control: 10 animals and experimental: 12 animals) were formed. While a separate control group was established for each study period, mad honey application to the animals in the experimental group was carried out with a single dose (12.5 g kg -1 body weight (b.w.); acute stage), at a dose of 7.5 g kg -1 b.w. for 21 days (subacute stage), and at a dose of 5 g kg -1 b.w. for 60 days (chronic stage). Tissue and blood oxidative stress markers (malondialdehyde (MDA), nitric oxide (NO), 4-hydroxynonenal (HNE), superoxide dismutase, catalase, glutathione (GSH) peroxidase, and glucose-6-phosphate dehydrogenase), hepatic chemical metabolizing parameters in the liver (cytochrome P450 2E1, nicotinamide adenine dinucleotide (NADH)-cytochrome b5 reductase, nicotinamide adenine dinucleotide phosphate (NADPH)-cytochrome c reductase (CYTC), GSH S-transferase (GST), and GSH), and micronucleus and comet test in some samples were examined. Findings from the study showed that single and repeated doses given over the period increased MDA, NO, and HNE levels while decreasing/increasing tissue and blood antioxidant enzyme activities. From hepatic chemical metabolizing parameters, GST activity increased in the subacute and chronic stages and CYTC activity increased in the acute period, whereas GSH level decreased in the subacute stage. Changes in tail and head intensities were found in most of the comet results. Mad honey caused oxidative stresses for each exposure period and made some significant changes on the comet test in certain periods for some samples obtained. In other words, according to the available research results obtained, careless consumption of mad honey for different medical purposes is not appropriate.

  19. Identification of a flavin-containing S-oxygenating monooxygenase involved in alliin biosynthesis in garlic.

    PubMed

    Yoshimoto, Naoko; Onuma, Misato; Mizuno, Shinya; Sugino, Yuka; Nakabayashi, Ryo; Imai, Shinsuke; Tsuneyoshi, Tadamitsu; Sumi, Shin-ichiro; Saito, Kazuki

    2015-09-01

    S-Alk(en)yl-l-cysteine sulfoxides are cysteine-derived secondary metabolites highly accumulated in the genus Allium. Despite pharmaceutical importance, the enzymes that contribute to the biosynthesis of S-alk-(en)yl-l-cysteine sulfoxides in Allium plants remain largely unknown. Here, we report the identification of a flavin-containing monooxygenase, AsFMO1, in garlic (Allium sativum), which is responsible for the S-oxygenation reaction in the biosynthesis of S-allyl-l-cysteine sulfoxide (alliin). Recombinant AsFMO1 protein catalyzed the stereoselective S-oxygenation of S-allyl-l-cysteine to nearly exclusively yield (RC SS )-S-allylcysteine sulfoxide, which has identical stereochemistry to the major natural form of alliin in garlic. The S-oxygenation reaction catalyzed by AsFMO1 was dependent on the presence of nicotinamide adenine dinucleotide phosphate (NADPH) and flavin adenine dinucleotide (FAD), consistent with other known flavin-containing monooxygenases. AsFMO1 preferred S-allyl-l-cysteine to γ-glutamyl-S-allyl-l-cysteine as the S-oxygenation substrate, suggesting that in garlic, the S-oxygenation of alliin biosynthetic intermediates primarily occurs after deglutamylation. The transient expression of green fluorescent protein (GFP) fusion proteins indicated that AsFMO1 is localized in the cytosol. AsFMO1 mRNA was accumulated in storage leaves of pre-emergent nearly sprouting bulbs, and in various tissues of sprouted bulbs with green foliage leaves. Taken together, our results suggest that AsFMO1 functions as an S-allyl-l-cysteine S-oxygenase, and contributes to the production of alliin both through the conversion of stored γ-glutamyl-S-allyl-l-cysteine to alliin in storage leaves during sprouting and through the de novo biosynthesis of alliin in green foliage leaves. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  20. Severe glucose-6-phosphate dehydrogenase deficiency leads to susceptibility to infection and absent NETosis.

    PubMed

    Siler, Ulrich; Romao, Susana; Tejera, Emilio; Pastukhov, Oleksandr; Kuzmenko, Elena; Valencia, Rocio G; Meda Spaccamela, Virginia; Belohradsky, Bernd H; Speer, Oliver; Schmugge, Markus; Kohne, Elisabeth; Hoenig, Manfred; Freihorst, Joachim; Schulz, Ansgar S; Reichenbach, Janine

    2017-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymatic disorder of red blood cells in human subjects, causing hemolytic anemia linked to impaired nicotinamide adenine dinucleotide phosphate (NADPH) production and imbalanced redox homeostasis in erythrocytes. Because G6PD is expressed by a variety of hematologic and nonhematologic cells, a broader clinical phenotype could be postulated in G6PD-deficient patients. We describe 3 brothers with severe G6PD deficiency and susceptibility to bacterial infection. We sought to study the molecular pathophysiology leading to susceptibility to infection in 3 siblings with severe G6PD deficiency. Blood samples of 3 patients with severe G6PD deficiency were analyzed for G6PD enzyme activity, cellular oxidized nicotinamide adenine dinucleotide phosphate/NADPH levels, phagocytic reactive oxygen species production, neutrophil extracellular trap (NET) formation, and neutrophil elastase translocation. In these 3 brothers strongly reduced NADPH oxidase function was found in granulocytes, leading to impaired NET formation. Defective NET formation has thus far been only observed in patients with the NADPH oxidase deficiency chronic granulomatous disease, who require antibiotic and antimycotic prophylaxis to prevent life-threatening bacterial and fungal infections. Because severe G6PD deficiency can be a phenocopy of chronic granulomatous disease with regard to the cellular and clinical phenotype, careful evaluation of neutrophil function seems mandatory in these patients to decide on appropriate anti-infective preventive measures. Determining the level of G6PD enzyme activity should be followed by analysis of reactive oxygen species production and NET formation to decide on required antibiotic and antimycotic prophylaxis. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  1. Strong coupling between adenine nucleobases in DNA single strands revealed by circular dichroism using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Kadhane, Umesh; Holm, Anne I. S.; Hoffmann, Søren Vrønning; Nielsen, Steen Brøndsted

    2008-02-01

    Circular dichroism (CD) experiments on DNA single strands (dAn) at the ASTRID synchrotron radiation facility reveal that eight adenine (A) bases electronically couple upon 190nm excitation. After n=8 , the CD signal increases linearly with n with a slope equal to the sum of the coupling terms. Nearest neighbor interactions account for only 24% of the CD signal whereas electronic communication is limited to nearest neighbors for two other exciton bands observed at 218 and 251nm (i.e., dimer excited states). Electronic coupling between bases in DNA is important for nonradiative deexcitation of electronically excited states since the hazardous energy is spread over a larger spatial region.

  2. Degradation of Adenine on the Martian Surface in the Presence of Perchlorates and Ionizing Radiation: A Reflectron Time-of-flight Mass Spectrometric Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Góbi, Sándor; Bergantini, Alexandre; Kaiser, Ralf I., E-mail: ralfk@hawaii.edu

    The aim of the present work is to unravel the radiolytic decomposition of adenine (C{sub 5}H{sub 5}N{sub 5}) under conditions relevant to the Martian surface. Being the fundamental building block of (deoxy)ribonucleic acids, the possibility of survival of this biomolecule on the Martian surface is of primary importance to the astrobiology community. Here, neat adenine and adenine–magnesium perchlorate mixtures were prepared and irradiated with energetic electrons that simulate the secondary electrons originating from the interaction of the galactic cosmic rays with the Martian surface. Perchlorates were added to the samples since they are abundant—and therefore relevant oxidizers on the surfacemore » of Mars—and they have been previously shown to facilitate the radiolysis of organics such as glycine. The degradation of the samples were monitored in situ via Fourier transformation infrared spectroscopy and the electron ionization quadruple mass spectrometric method; temperature-programmed desorption profiles were then collected by means of the state-of-the-art single photon photoionization reflectron time-of-flight mass spectrometry (PI-ReTOF-MS), allowing for the detection of the species subliming from the sample. The results showed that perchlorates do increase the destruction rate of adenine by opening alternative reaction channels, including the concurrent radiolysis/oxidation of the sample. This new pathway provides a plethora of different radiolysis products that were identified for the first time. These are carbon dioxide (CO{sub 2}), isocyanic acid (HNCO), isocyanate (OCN{sup −}), carbon monoxide (CO), and nitrogen monoxide (NO); an oxidation product containing carbonyl groups (R{sub 1}R{sub 2}–C=O) with a constrained five-membered cyclic structure could also be observed. Cyanamide (H{sub 2}N–C≡N) was detected in both irradiated samples as well.« less

  3. N-Sulfomethylation of guanine, adenine and cytosine with formaldehyde-bisulfite. A selective modification of guanine in DNA.

    PubMed

    Hayatsu, H; Yamashita, Y; Yui, S; Yamagata, Y; Tomita, K; Negishi, K

    1982-10-25

    When guanine-, adenine- and cytosine-nucleosides and nucleotides were treated with formaldehyde and then with bisulfite, stable N-sulfomethyl compounds were formed. N2-Sulfomethylguanine, N6-sulfomethyladenine, N4-sulfomthylcytosine and N6-sulfomethyl-9-beta-D-arabinofuranosyladenine were isolated as crystals and characterized. A guanine-specific sulfomethylation was brought about by treatment and denatured single-stranded DNA with formaldehyde and then with bisulfite at pH 7 and 4 degrees C. Since native double-stranded DNA was not modified by this treatment, this new method of modification is expected to be useful as a conformational probe for polynucleotides.

  4. N-Sulfomethylation of guanine, adenine and cytosine with formaldehyde-bisulfite. A selective modification of guanine in DNA.

    PubMed Central

    Hayatsu, H; Yamashita, Y; Yui, S; Yamagata, Y; Tomita, K; Negishi, K

    1982-01-01

    When guanine-, adenine- and cytosine-nucleosides and nucleotides were treated with formaldehyde and then with bisulfite, stable N-sulfomethyl compounds were formed. N2-Sulfomethylguanine, N6-sulfomethyladenine, N4-sulfomthylcytosine and N6-sulfomethyl-9-beta-D-arabinofuranosyladenine were isolated as crystals and characterized. A guanine-specific sulfomethylation was brought about by treatment and denatured single-stranded DNA with formaldehyde and then with bisulfite at pH 7 and 4 degrees C. Since native double-stranded DNA was not modified by this treatment, this new method of modification is expected to be useful as a conformational probe for polynucleotides. PMID:7177848

  5. Multiphoton autofluorescence lifetime imaging of induced pluripotent stem cells

    NASA Astrophysics Data System (ADS)

    Uchugonova, Aisada

    2017-06-01

    The multiphoton fluorescence lifetime imaging tomograph MPTflex with its flexible 360-deg scan head, articulated arm, and tunable femtosecond laser source was employed to study induced pluripotent stem cell (iPS) cultures. Autofluorescence (AF) lifetime imaging was performed with 250-ps temporal resolution and submicron spatial resolution using time-correlated single-photon counting. The two-photon excited AF was based on the metabolic coenzymes NAD(P)H and flavin adenine dinucleotide/flavoproteins. iPS cells generated from mouse embryonic fibroblasts (MEFs) and cocultured with growth-arrested MEFs as feeder cells have been studied. Significant differences on AF lifetime signatures were identified between iPS and feeder cells as well as between their differentiating counterparts.

  6. [Perspectives on pharmacological and clinical benefits from sirtuin 1 activators in oxidative damage].

    PubMed

    Kutinová, Canová Nikolina; Gaier, Norbert; Farghali, Hassan

    2012-01-01

    Sirtuins, named after their homology to the Saccharomyces cerevisiae Silent Information Regulator Two, constitute a family of highly conserved nicotinamide adenine dinucleotide-dependent enzymes that deacetylate histones and residues of acetylated lysine. The main aim of this article is to put forward the pharmacological importance of major sirtuin 1 activators of natural or synthetic origin tested in last years in cases of oxidative tissue damage. The related bioactivity of these activators as "leading" compounds in the search for new drugs and remedies is also described. With the recent development of our knowledge on the cross talks between sirtuin 1 and its modulators (e.g. resveratrol), pharmacological and clinical research on this topic is getting a new horizon.

  7. Slowing ageing by design: the rise of NAD+ and sirtuin-activating compounds

    PubMed Central

    Bonkowski, Michael S.; Sinclair, David A.

    2016-01-01

    The sirtuins (SIRT1–7) are a family of nicotinamide adenine dinucleotide (NAD+)-dependent deacylases with remarkable abilities to prevent diseases and even reverse aspects of ageing. Mice engineered to express additional copies of SIRT1 or SIRT6, or treated with sirtuin-activating compounds (STACs) such as resveratrol and SRT2104 or with NAD+ precursors, have improved organ function, physical endurance, disease resistance and longevity. Trials in non-human primates and in humans have indicated that STACs may be safe and effective in treating inflammatory and metabolic disorders, among others. These advances have demonstrated that it is possible to rationally design molecules that can alleviate multiple diseases and possibly extend lifespan in humans. PMID:27552971

  8. Enhancement of ethanol-oxygen biofuel cell output using a CNT based nano-composite as bioanode.

    PubMed

    Gouranlou, Farideh; Ghourchian, Hedayatollah

    2016-04-15

    The present research, describes preparation and application of a novel bioanode for ethanol-oxygen biofuel cells. We applied an enzyme based nanocomposite consisting of polymethylene green as electron transfer mediator, carboxylated-multiwall carbon nanotubes as electron transfer accelerator, alcohol dehydrogenase as biocatalyst and polydiallyldimethylammonium chloride as supporting agent. In the presence of β-nicotinamide adenine dinucleotide as cofactor, and ethanol as fuel, the feasibility of the bioanode for increasing the power was evaluated under the ambient conditions. In the optimum conditions the biofuel cell produced the power density of 1.713 mW cm(-2) and open circuit voltage of 0.281 V. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. A 1:2 crystalline complex of ApA:proflavine: a model for binding to single-stranded regions in RNA.

    PubMed Central

    Neidle, S; Taylor, G; Sanderson, M

    1978-01-01

    The structure of a 1"2 complex of adenylyl-(3',5')-adenosine phosphate and proflavine hemisulfate has been determined using the methods of x-ray crystallography. Since the ApA does not form a mini double helix, it may serve as a model for the interaction of planar molecules with single stranded nucleic acids. The dinucleotide adopts an extended conformation with the adenines in adjacent molecules forming base pairs. A most unusual feature of the molecule is that it does not obey the "rigid nucleotide" concept although none of the torsion angles occur in energetically unfavourable regions. This is most probably due to the strong interactions between the proflavine and the oligonucleotide. PMID:724521

  10. Regenerative capability of skeletal muscle in chicken muscular dystrophy.

    PubMed

    Nonaka, I; Fujita, T; Sugita, H

    1984-06-01

    To examine the morphological sequence of regenerating fibers after myonecrosis in dystrophic muscles, 0.5 ml of 0.5% bupivacaine hydrochloride (BPVC) (Marcaine) solution, a local anesthetic with a cytotoxic effect on the muscle fibers, was injected directly into the dystrophic (line 413) and nondystrophic (line 412) posterior latissimus dorsi (PLD) muscles of young and adult chickens. Although the dystrophic muscles after BPVC injection showed a rapid recovery with a similar tempo to that of nondystrophic ones, they showed different morphological behavior in the early phase of regeneration, including marked variability in the size of fibers and in the intracytoplasmic enzyme activities of nicotinamide adenine dinucleotide, reduced-tetrazolium reductase (NADH-TR), acetylcholinesterase (AChE), and nonspecific esterase (NSE).

  11. Time-resolved spectroscopic imaging reveals the fundamentals of cellular NADH fluorescence.

    PubMed

    Li, Dong; Zheng, Wei; Qu, Jianan Y

    2008-10-15

    A time-resolved spectroscopic imaging system is built to study the fluorescence characteristics of nicotinamide adenine dinucleotide (NADH), an important metabolic coenzyme and endogenous fluorophore in cells. The system provides a unique approach to measure fluorescence signals in different cellular organelles and cytoplasm. The ratios of free over protein-bound NADH signals in cytosol and nucleus are slightly higher than those in mitochondria. The mitochondrial fluorescence contributes about 70% of overall cellular fluorescence and is not a completely dominant signal. Furthermore, NADH signals in mitochondria, cytosol, and the nucleus respond to the changes of cellular activity differently, suggesting that cytosolic and nuclear fluorescence may complicate the well-known relationship between mitochondrial fluorescence and cellular metabolism.

  12. Construction of a restriction map and gene map of the lettuce chloroplast small single-copy region using Southern cross-hybridization.

    PubMed

    Mitchelson, K R

    1996-01-01

    The small single-copy region (SSCR) of the chloroplast genome of many higher plants typically contain ndh genes encoding proteins that share homology with subunits of the respiratory-chain reduced nicotinamide adenine dinucleotide (NADH) dehydrogenase complex of mitochondria. A map of the lettuce chloroplast SSCR has been determined by Southern cross-hybridization, taking advantage of the high degree of homology between a tobacco small single-copy fragment and a corresponding lettuce chloroplast fragment. The gene order of the SSCR of lettuce and tobacco chloroplasts is similar. The cross-hybridization method can rapidly create a primary gene map of unknown chloroplast fragments, thus providing detailed information of the localization and arrangement of genes and conserved open reading frame regions.

  13. CRISPR/Cas9-generated p47phox-deficient cell line for Chronic Granulomatous Disease gene therapy vector development.

    PubMed

    Wrona, Dominik; Siler, Ulrich; Reichenbach, Janine

    2017-03-13

    Development of gene therapy vectors requires cellular models reflecting the genetic background of a disease thus allowing for robust preclinical vector testing. For human p47 phox -deficient chronic granulomatous disease (CGD) vector testing we generated a cellular model using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 to introduce a GT-dinucleotide deletion (ΔGT) mutation in p47 phox encoding NCF1 gene in the human acute myeloid leukemia PLB-985 cell line. CGD is a group of hereditary immunodeficiencies characterized by impaired respiratory burst activity in phagocytes due to a defective phagocytic nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. In Western countries autosomal-recessive p47 phox -subunit deficiency represents the second largest CGD patient cohort with unique genetics, as the vast majority of p47 phox CGD patients carries ΔGT deletion in exon two of the NCF1 gene. The established PLB-985 NCF1 ΔGT cell line reflects the most frequent form of p47 phox -deficient CGD genetically and functionally. It can be differentiated to granulocytes efficiently, what creates an attractive alternative to currently used iPSC models for rapid testing of novel gene therapy approaches.

  14. Rationalizing the structural variability of the exocyclic amino groups in nucleobases and their metal complexes: cytosine and adenine.

    PubMed

    Fonseca Guerra, Célia; Sanz Miguel, Pablo J; Cebollada, Andrea; Bickelhaupt, F Matthias; Lippert, Bernhard

    2014-07-28

    The exocyclic amino groups of cytosine and adenine nucleobases are normally almost flat, with the N atoms essentially sp(2) hybridized and the lone pair largely delocalized into the heterocyclic rings. However, a change to marked pyramidality of the amino group (N then sp(3) hybridized, lone pair essentially localized at N) occurs during i) involvement of an amino proton in strong hydrogen bonding donor conditions or ii) with monofunctional metal coordination following removal of one of the two protons. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Effects of exogenous nicotinamide adenine dinucleotide (NAD+) in the rat heart are mediated by P2 purine receptors.

    PubMed

    Kuzmin, Vladislav S; Pustovit, Ksenia B; Abramochkin, Denis V

    2016-06-27

    Recently, NAD+ has been considered as an essential factor, participating in nerve control of physiological functions and intercellular communication. NAD+ also has been supposed as endogenous activator of P1 and P2 purinoreceptors. Effects of extracellular NAD+ remain poorly investigated in cardiac tissue. This study aims to investigate the effects of extracellular NAD+ in different types of supraventricular and ventricular working myocardium from rat and their potential mechanisms. The standard technique of sharp microelectrode action potential recording in cardiac multicellular preparations was used to study the effects of NAD+. Extracellular NAD+ induced significant changes in bioelectrical activity of left auricle (LA), right auricle (RA), pulmonary veins (PV) and right ventricular wall (RV) myocardial preparations. 10-100 μM NAD+ produced two opposite effects in LA and RA - quickly developing and transient prolongation of action potentials (AP) and delayed sustained AP shortening, which follows the initial positive effect. In PV and RV only AP shortening was observed in response to NAD+ application. In PV preparations AP shortening induced by NAD+ may be considered as a potential proarrhythmic effect. Revealed cardiotropic effects of NAD+ are likely to be mediated by P2 purine receptors, since P1 blocker DPCPX failed to affect them and P2 antagonist suramin abolished NAD + -induced alterations of electrical activity. P2X receptors may be responsible for NAD + -induced short-lasting AP prolongation, while P2Y receptors mediate persistent AP shortening. The latter effect is partially removed by PLC inhibitor U73122 showing the potential involvement of phosphoinositide signaling pathway in mediation of NAD+ cardiotropic effects. Extracellular NAD+ is supposed to be a novel regulator of cardiac electrical activity. P2 receptors represent the main target of NAD+ at least in the rat heart.

  16. Characterization of Biosynthetic Genes of Ascamycin/Dealanylascamycin Featuring a 5′-O-Sulfonamide Moiety in Streptomyces sp. JCM9888

    PubMed Central

    Zhao, Chunhua; Qi, Jianzhao; Tao, Weixing; He, Lei; Xu, Wei; Chan, Jason; Deng, Zixin

    2014-01-01

    Ascamycin (ACM) and dealanylascamycin (DACM) are nucleoside antibiotics elaborated by Streptomyces sp. JCM9888. The later shows broad spectrum inhibition activity to various gram-positive and gram-negative bacteria, eukaryotic Trypanosoma and is also toxic to mice, while ascamycin is active against very limited microorganisms, such as Xanthomonas. Both compounds share an unusual 5′-O-sulfonamide moiety which is attached to an adenosine nucleoside. In this paper, we first report on the 30 kb gene cluster (23 genes, acmA to acmW) involved in the biosynthesis of these two antibiotics and a biosynthetic assembly line was proposed. Of them, six genes (AcmABGKIW) are hypothetical genes involved in 5′-O-sulfonamide formation. Two flavin adenine dinucleotide (FAD)-dependent chlorinase genes acmX and acmY were characterized which are significantly remote from acmA-W and postulated to be required for adenine C2-halogenation. Notably gene disruption of acmE resulted in a mutant which could only produce dealanylascamycin but was blocked in its ability to biosynthesize ascamycin, revealing its key role of conversion of dealanylascamycin to ascamycin. PMID:25479601

  17. Exchange transfusion with red blood cells preserved in adenine clears a child of severe falciparum malaria.

    PubMed

    Boctor, F N; Ali, N M; Choi, Y J; Morse, E E

    1997-01-01

    Falciparum malaria may be associated with significant morbidity and mortality. The degree of mortality and morbidity usually corresponds to the degree of parasitemia. Quinine and other antimalarial drugs are relatively slow acting and not always effective owing to the presence of drug resistance falciparum. Rapid reduction of the number of circulating parasites may be required. Exchange transfusion has been used as a safe and quick approach to decreasing the parasitemia and antimalaria drugs used to eradicate the rest of the Plasmodium. In the present report, a case is described of a child with severe falciparum malaria who was successfully treated with exchange transfusion using the new adenine and mannitol enriched preservative media, Adsol.

  18. Quantitative DNA Methylation Analysis Identifies a Single CpG Dinucleotide Important for ZAP-70 Expression and Predictive of Prognosis in Chronic Lymphocytic Leukemia

    PubMed Central

    Claus, Rainer; Lucas, David M.; Stilgenbauer, Stephan; Ruppert, Amy S.; Yu, Lianbo; Zucknick, Manuela; Mertens, Daniel; Bühler, Andreas; Oakes, Christopher C.; Larson, Richard A.; Kay, Neil E.; Jelinek, Diane F.; Kipps, Thomas J.; Rassenti, Laura Z.; Gribben, John G.; Döhner, Hartmut; Heerema, Nyla A.; Marcucci, Guido; Plass, Christoph; Byrd, John C.

    2012-01-01

    Purpose Increased ZAP-70 expression predicts poor prognosis in chronic lymphocytic leukemia (CLL). Current methods for accurately measuring ZAP-70 expression are problematic, preventing widespread application of these tests in clinical decision making. We therefore used comprehensive DNA methylation profiling of the ZAP-70 regulatory region to identify sites important for transcriptional control. Patients and Methods High-resolution quantitative DNA methylation analysis of the entire ZAP-70 gene regulatory regions was conducted on 247 samples from patients with CLL from four independent clinical studies. Results Through this comprehensive analysis, we identified a small area in the 5′ regulatory region of ZAP-70 that showed large variability in methylation in CLL samples but was universally methylated in normal B cells. High correlation with mRNA and protein expression, as well as activity in promoter reporter assays, revealed that within this differentially methylated region, a single CpG dinucleotide and neighboring nucleotides are particularly important in ZAP-70 transcriptional regulation. Furthermore, by using clustering approaches, we identified a prognostic role for this site in four independent data sets of patients with CLL using time to treatment, progression-free survival, and overall survival as clinical end points. Conclusion Comprehensive quantitative DNA methylation analysis of the ZAP-70 gene in CLL identified important regions responsible for transcriptional regulation. In addition, loss of methylation at a specific single CpG dinucleotide in the ZAP-70 5′ regulatory sequence is a highly predictive and reproducible biomarker of poor prognosis in this disease. This work demonstrates the feasibility of using quantitative specific ZAP-70 methylation analysis as a relevant clinically applicable prognostic test in CLL. PMID:22564988

  19. Amperometric biosensor based on glassy carbon electrode modified with long-length carbon nanotube and enzyme

    NASA Astrophysics Data System (ADS)

    Furutaka, Hajime; Nemoto, Kentaro; Inoue, Yuki; Hidaka, Hiroki; Muguruma, Hitoshi; Inoue, Hitoshi; Ohsawa, Tatsuya

    2016-05-01

    An amperometric biosensor based on a glassy carbon electrode modified with long-length multiwalled carbon nanotubes (MWCNTs) and enzyme nicotinamide-adenine-dinucleotide-dependent glucose dehydrogenase (GDH) is presented. We demonstrate the effect of the MWCNT length on the amperometric response of the enzyme biosensor. The long length of MWCNT is 200 µm (average), whereas the normal length of MWCNT is 1 µm (average). The response of the long MWCNT-GDH electrode is 2 times more sensitive than that of the normal-length MWCNT-GDH electrode in the concentration range from 0.25-35 mM. The result of electrochemical impedance spectroscopy measurements suggest that the long-length MWCNT-GDH electrode formed a better electron transfer network than the normal-length one.

  20. The succinate dehydrogenase assembly factor, SdhE, is required for the flavinylation and activation of fumarate reductase in bacteria.

    PubMed

    McNeil, Matthew B; Hampton, Hannah G; Hards, Kiel J; Watson, Bridget N J; Cook, Gregory M; Fineran, Peter C

    2014-01-31

    The activity of the respiratory enzyme fumarate reductase (FRD) is dependent on the covalent attachment of the redox cofactor flavin adenine dinucleotide (FAD). We demonstrate that the FAD assembly factor SdhE, which flavinylates and activates the respiratory enzyme succinate dehydrogenase (SDH), is also required for the complete activation and flavinylation of FRD. SdhE interacted with, and flavinylated, the flavoprotein subunit FrdA, whilst mutations in a conserved RGxxE motif impaired the complete flavinylation and activation of FRD. These results are of widespread relevance because SDH and FRD play an important role in cellular energetics and are required for virulence in many important bacterial pathogens. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  1. Carbon nanopipettes characterize calcium release pathways in breast cancer cells

    NASA Astrophysics Data System (ADS)

    Schrlau, Michael G.; Brailoiu, Eugen; Patel, Sandip; Gogotsi, Yury; Dun, Nae J.; Bau, Haim H.

    2008-08-01

    Carbon-based nanoprobes are attractive for minimally invasive cell interrogation but their application in cell physiology has thus far been limited. We have developed carbon nanopipettes (CNPs) with nanoscopic tips and used them to inject calcium-mobilizing messengers into cells without compromising cell viability. We identify pathways sensitive to cyclic adenosine diphosphate ribose (cADPr) and nicotinic acid adenine dinucleotide phosphate (NAADP) in breast carcinoma cells. Our findings demonstrate the superior utility of CNPs for intracellular delivery of impermeant molecules and, more generally, for cell physiology studies. The CNPs do not appear to cause any lasting damage to cells. Their advantages over commonly used glass pipettes include smaller size, breakage and clogging resistance, and potential for multifunctionality such as in concurrent injection and electrical measurements.

  2. Carbon nanopipettes characterize calcium release pathways in breast cancer cells.

    PubMed

    Schrlau, Michael G; Brailoiu, Eugen; Patel, Sandip; Gogotsi, Yury; Dun, Nae J; Bau, Haim H

    2008-08-13

    Carbon-based nanoprobes are attractive for minimally invasive cell interrogation but their application in cell physiology has thus far been limited. We have developed carbon nanopipettes (CNPs) with nanoscopic tips and used them to inject calcium-mobilizing messengers into cells without compromising cell viability. We identify pathways sensitive to cyclic adenosine diphosphate ribose (cADPr) and nicotinic acid adenine dinucleotide phosphate (NAADP) in breast carcinoma cells. Our findings demonstrate the superior utility of CNPs for intracellular delivery of impermeant molecules and, more generally, for cell physiology studies. The CNPs do not appear to cause any lasting damage to cells. Their advantages over commonly used glass pipettes include smaller size, breakage and clogging resistance, and potential for multifunctionality such as in concurrent injection and electrical measurements.

  3. Formate Dehydrogenase of Clostridium thermoaceticum: Incorporation of Selenium-75, and the Effects of Selenite, Molybdate, and Tungstate on the Enzyme

    PubMed Central

    Andreesen, Jan R.; Ljungdahl, Lars G.

    1973-01-01

    The formation of the nicotinamide adenine dinucleotide phosphate-dependent formate dehydrogenase in Clostridium thermoaceticum is stimulated by the presence of molybdate and selenite in the growth medium. The highest formate dehydrogenase activity was obtained with 2.5 × 10−4 M Na2MoO4 and 5 × 10−5 Na2SeO3. Tungstate but not vanadate could replace molybdate and stimulate the formation of formate dehydrogenase. Tungstate stimulated activity more than molybdate, and in combination with molybdate the stimulation of formation of formate dehydrogenase was additive. Formate dehydrogenase was isolated from cells grown in the presence of Na275SeO2, and a correlation was observed between bound 75Se and enzyme activity. PMID:4147651

  4. Purification, crystallization and preliminary crystallographic study of a recombinant plant aminoaldehyde dehydrogenase from Pisum sativum

    PubMed Central

    Tylichová, Martina; Briozzo, Pierre; Kopečný, David; Ferrero, Julien; Moréra, Solange; Joly, Nathalie; Snégaroff, Jacques; Šebela, Marek

    2008-01-01

    Aminoaldehydes are products of polyamine degradation and are known to be reactive metabolites that are toxic to living cells at high concentrations. These compounds are catabolized by aminoaldehyde dehydrogenases, which are enzymes that contain a nicotinamide adenine dinucleotide coenzyme. Amino­aldehyde dehydrogenase from Pisum sativum was overexpressed in Escherichia coli, purified and crystallized using the hanging-drop method. A complete data set was collected to 2.8 Å resolution at 100 K. Crystals belong to the monoclinic space group P21, with unit-cell parameters a = 86.4, b = 216.6, c = 205.4 Å, β = 98.1°. Molecular replacement was performed and led to the identification of six dimers per asymmetric unit. PMID:18259056

  5. Frex and FrexH: Indicators of metabolic states in living cells.

    PubMed

    Zhao, Yuzheng; Yang, Yi

    2012-01-01

    Reduced nicotinamide adenine dinucleotide (NADH) and its oxidized form play central roles in energy and redox metabolisms. For many years, researchers have relied on the weak NADH endogenous fluorescence signal to determine the NADH level in living cells. We recently reported a series of genetically encoded fluorescent sensors highly specific for NADH. These sensors allow real-time, quantitative measurement of this significant molecule in different subcellular compartments. In this study, we provide a more detailed discussion of the benefits and limitations of these genetically encoded fluorescent sensors. These sensors are utilized in most laboratories without the need for sophisticated instruments because of their superior sensitivity and specificity. They are also viable alternatives to existing techniques for measuring the endogenous fluorescence of intracellular NAD(P)H.

  6. Enzymatic formation of the bisfuran structure in aflatoxin biosynthesis.

    PubMed Central

    Wan, N C; Hsieh, D P

    1980-01-01

    A relatively stable enzyme system that converts versiconal hemiacetal acetate to versicolorin A was isolated from the soluble fraction of the homogenized cells of Aspergillus parasiticus ATCC 15517. The cell-free preparation did not require oxygen or oxidized nicotinamide adenine dinucleotide phosphate for activity, nor did it require dithiothreitol, polyclar (polyvinyl pyrrolidone), or glycerol for stabilization of activity. It was susceptible to inhibition by dichlorvos and cysteine. Isotope tracer studies revealed involvement of several intermediates in the conversion of versiconal hemiacetal acetate to versicolorin A. These findings confirm the biogenetic relationship of versiconal hemiacetal acetate and versicolorin A, and they confirm that the bisfuran ring structure in aflatoxins and related fungal metabolites is derived from the hemiacetal structure of versiconal hemiacetal acetate. Images PMID:7356313

  7. Dual emission fluorescent silver nanoclusters for sensitive detection of the biological coenzyme NAD+/NADH.

    PubMed

    Yuan, Yufeng; Huang, Kehan; Chang, Mengfang; Qin, Cuifang; Zhang, Sanjun; Pan, Haifeng; Chen, Yan; Xu, Jianhua

    2016-02-01

    Fluorescent silver nanoclusters (Ag NCs) displaying dual-excitation and dual-emission properties have been developed for the specific detection of NAD(+) (nicotinamide adenine dinucleotide, oxidized form). With the increase of NAD(+) concentrations, the longer wavelength emission (with the peak at 550 nm) was gradually quenched due to the strong interactions between the NAD(+) and Ag NCs, whereas the shorter wavelength emission (peaking at 395 nm) was linearly enhanced. More important, the dual-emission intensity ratio (I395/I550), fitting by a single-exponential decay function, can efficiently detect various NAD(+) levels from 100 to 4000 μM, as well as label NAD(+)/NADH (reduced form of NAD) ratios in the range of 1-50. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Modulating NAD+ metabolism, from bench to bedside.

    PubMed

    Katsyuba, Elena; Auwerx, Johan

    2017-09-15

    Discovered in the beginning of the 20 th century, nicotinamide adenine dinucleotide (NAD + ) has evolved from a simple oxidoreductase cofactor to being an essential cosubstrate for a wide range of regulatory proteins that include the sirtuin family of NAD + -dependent protein deacylases, widely recognized regulators of metabolic function and longevity. Altered NAD + metabolism is associated with aging and many pathological conditions, such as metabolic diseases and disorders of the muscular and neuronal systems. Conversely, increased NAD + levels have shown to be beneficial in a broad spectrum of diseases. Here, we review the fundamental aspects of NAD + biochemistry and metabolism and discuss how boosting NAD + content can help ameliorate mitochondrial homeostasis and as such improve healthspan and lifespan. © 2017 The Authors.

  9. CD38 Dictates Age-Related NAD Decline and Mitochondrial Dysfunction through an SIRT3-Dependent Mechanism.

    PubMed

    Camacho-Pereira, Juliana; Tarragó, Mariana G; Chini, Claudia C S; Nin, Veronica; Escande, Carlos; Warner, Gina M; Puranik, Amrutesh S; Schoon, Renee A; Reid, Joel M; Galina, Antonio; Chini, Eduardo N

    2016-06-14

    Nicotinamide adenine dinucleotide (NAD) levels decrease during aging and are involved in age-related metabolic decline. To date, the mechanism responsible for the age-related reduction in NAD has not been elucidated. Here we demonstrate that expression and activity of the NADase CD38 increase with aging and that CD38 is required for the age-related NAD decline and mitochondrial dysfunction via a pathway mediated at least in part by regulation of SIRT3 activity. We also identified CD38 as the main enzyme involved in the degradation of the NAD precursor nicotinamide mononucleotide (NMN) in vivo, indicating that CD38 has a key role in the modulation of NAD-replacement therapy for aging and metabolic diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Carbon Nanotubes (CNTs) for the Development of Electrochemical Biosensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Yuehe; Yantasee, Wassana; Wang, Joseph

    2005-01-01

    Carbon nanotube (CNT) is a very attractive material for the development of biosensors because of its capability to provide strong electrocatalytic activity and minimize surface fouling of the sensors. This article reviews our recent developments of oxidase- and dehydrogenase-amperometric biosensors based on the immobilization of CNTs, the co-immobilization of enzymes on the CNTs/Nafion or the CNT/Teflon composite materials, or the attachment of enzymes on the controlled-density aligned CNT-nanoelectrode arrays. The excellent electrocatalytic activities of the CNTs on the redox reactions of hydrogen peroxide, nicotinamide adenine dinucleotide (NADH), and homocysteine have been demonstrated. Successful applications of the CNT-based biosensors reviewed hereinmore » include the low-potential detections of glucose, organophosphorus compounds, and alcohol.« less

  11. STUDIES ON THE INFLUENCE OF X-RAY IRRADIATION IN VIT. B$sub 2$ METABOLISM. I. INFLUENCE OF VIT. B$sub 2$ DISTRIBUTION IN ORGANS OF RATS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokoyama, K.; Kusumoto, T.; Nakamura, J.

    X rays were directed to the liver region of albino rats. The distribution of vitamin B/sub 2/ in the liver, kidney, intestine, heart, spleen, and blood was investigated 6, 12, 18, and 24 hr after the irradiation. Total vitamin B/sub 2/ increased in these organs except in the blood; flavin mononucleotide (FMN) and free riboflavin (FR) increased without exception, and flavin adenine dinucleotide (FAD) decreased except in the spleen, that is, abnormal distribution of vitamin B/sub 2/ fractions was significant except in the spleen. Successive estimations of the fractions suggest that the metabolic disturbances by irradiation occur in the reactionmore » FMN - FAD initially, then in FR - FMN and FR - FAD. (Absts. Japan. Med., 1: No. 7, 1960.)« less

  12. Visfatin and cardio-cerebro-vascular disease.

    PubMed

    Wang, Pei; Vanhoutte, Paul M; Miao, Chao-Yu

    2012-01-01

    Nicotinamide phosphoribosyltransferase is the rate-limiting enzyme that catalyzes the first step in the biosynthesis of nicotinamide adenine dinucleotide from nicotinamide. This protein was originally cloned as a putative pre-B cell colony-enhancing factor and also found to be a visceral fat-derived adipokine (visfatin). As a multifunctional protein, visfatin plays an important role in immunity, metabolism, aging, inflammation, and responses to stress. Visfatin also participates in several pathophysiological processes contributing to cardio-cerebro-vascular diseases, including hypertension, atherosclerosis, ischemic heart disease, and ischemic stroke. However, whether visfatin is a friend or a foe in these diseases remains uncertain. This brief review focuses on the current understanding of the complex role of visfatin in the cardio-cerebro-vascular system under normal and pathophysiological conditions.

  13. Synthesis and characterization of zinc adeninate metal-organic frameworks (bioMOF1) as potential anti-inflammatory drug delivery material

    NASA Astrophysics Data System (ADS)

    Usman, Ken Aldren S.; Buenviaje, Salvador C.; Razal, Joselito M.; Conato, Marlon T.; Payawan, Leon M.

    2018-05-01

    Zn8(ad)4(BPDC)6O•2Me2NH2 (bioMOF1), a porous metal-organic framework with zinc-adeninate secondary building units (SBUs), interconnected via biphenyldicarboxylate linkers, shows great potential for drug delivery applications due to its non-toxic and biocompatible components (zinc and adenine). In this study, bioMOF1 crystals synthesized solvothermally at 130°C for 24 hours, were characterized thoroughly and loaded with a known anti-inflammatory drug, nimesulide (NIM). The crystalline nature of the material was confirmed using powder x-ray diffraction crystallography (PXRD) along with morphology assessment using focused-ion beam/field emission scanning electron microscopy (FIB/FESEM). NIM was introduced to the crystals via solvent exchange accompanied with vigorous stirring and quantified using thermogravimetric analysis (TGA) with loading saturation of ˜30% attained during the 2nd to 3rd day of drug immersion. Drug release in phosphate buffer saline and in deionized water was done to monitor the kinetic of drug release in vitro. The drug release showed a controlled discharge profile which slowed down at the 24th and 48th hour of release. Drug release in buffer showed a faster release of drug from the material, which means that the presence of cations in the solution could further trigger the release of drug. Slow drug release was observed for all of the set-ups with maximum % drug release of 24.47%, and 16.14% for the bioMOF1 in buffer and bioMOF1 in water respectively for the span of 48 hours.

  14. Reaction of. beta. -propiolactone with derivatives of adenine and with DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, R.; Mieyal, J.J.; Goldthwait, D.A.

    1982-01-01

    The reaction of deoxyadenosine with ..beta..-propiolactone produces two derivatives. One is 1-(2-carboxyethyl)-2-deoxyadenosine (CEdA). The proposed structure for the other is 3-(..beta..-D-2-deoxyribosyl)-7,8-dihydropyrimido-(2,l-i)purine-9-one (dDPP). Spectral characteristics of both compounds are presented. These include u.v. spectra of each in acidic, neutral and alkaline solutions, i.r. spectra, fluorescence spectra, and n.m.r. spectra. The dDPP can be converted to CEdA by mild acid hydrolysis, and the CEdA can be converted to dDPP by reaction with a carbodiimide derivative. When poly A was reacted with ..beta..-propiolactone, the yield of dDPP in the polymer was 7-9%. When double-stranded DNA was alkylated by (/sup 3/H)..beta..-propiolactone at relatively highmore » concentrations and then acid hydrolyzed to separate 1-(2-carboxyethyl)adenine (CEA) and 7-(2-carboxyethyl)guanine (CEG), and CEA to CEG ratio of up to 0.62 was obtained. With relatively low concentrations of (/sup 3/H)..beta..-propiolactone, the yield of CEA was low with double-stranded DNA but was 5-6 fold greater with single-stranded DNA.« less

  15. Analysis of Functional Coupling: Mitochondrial Creatine Kinase and Adenine Nucleotide Translocase

    PubMed Central

    Vendelin, Marko; Lemba, Maris; Saks, Valdur A.

    2004-01-01

    The mechanism of functional coupling between mitochondrial creatine kinase (MiCK) and adenine nucleotide translocase (ANT) in isolated heart mitochondria is analyzed. Two alternative mechanisms are studied: 1), dynamic compartmentation of ATP and ADP, which assumes the differences in concentrations of the substrates between intermembrane space and surrounding solution due to some diffusion restriction and 2), direct transfer of the substrates between MiCK and ANT. The mathematical models based on these possible mechanisms were composed and simulation results were compared with the available experimental data. The first model, based on a dynamic compartmentation mechanism, was not sufficient to reproduce the measured values of apparent dissociation constants of MiCK reaction coupled to oxidative phosphorylation. The second model, which assumes the direct transfer of substrates between MiCK and ANT, is shown to be in good agreement with experiments—i.e., the second model reproduced the measured constants and the estimated ADP flux, entering mitochondria after the MiCK reaction. This model is thermodynamically consistent, utilizing the free energy profiles of reactions. The analysis revealed the minimal changes in the free energy profile of the MiCK-ANT interaction required to reproduce the experimental data. A possible free energy profile of the coupled MiCK-ANT system is presented. PMID:15240503

  16. Infrared thermography and thermocouple mapping of radiofrequency renal ablation to assess treatment adequacy and ablation margins.

    PubMed

    Ogan, Kenneth; Roberts, William W; Wilhelm, David M; Bonnell, Leonard; Leiner, Dennis; Lindberg, Guy; Kavoussi, Louis R; Cadeddu, Jeffrey A

    2003-07-01

    The primary disadvantage of renal tumor RF ablation is the inability to monitor the intraoperative propagation of the RF lesion with real-time imaging. We sought to assess whether adequately lethal temperatures are obtained at the margins of the intended ablation zone using laparoscopic thermography to monitor radiofrequency (RF) lesions in real time, thermocouple measurements, and histopathologic evaluation. Renal RF lesions were created under direct laparoscopic vision in the upper (1 cm diameter) and lower (2 cm) poles of the right kidney in 5 female pigs. The RF lesions were produced with the RITA generator and probe, set at 105 degrees C for 5-minute ablations. During RF treatment, a laparoscopic infrared (IR) camera measured the surface parenchymal temperatures, as did multiple thermocouples. The pigs were then either immediately killed (n = 3) or allowed to live for 2 weeks (n = 2). The kidneys were removed to correlate the temperature measurements with histologic analysis of the ablated lesion. Using a threshold temperature of greater than 70 degrees C for visual "temperature" color change, the IR camera identified the region of pathologic necrosis of the renal parenchyma during RF ablation. Thermocouple measurements demonstrated that the temperatures at the intended ablation radius reached 77.5 degrees C at the renal surface and 83.7 degrees C centrally, and temperatures 5 mm beyond the set radius reached 52.6 degrees C at the surface and 47.7 degrees C centrally. The average diameter of the gross lesion on the surface of the kidney measured 17.1 mm and 22.4 mm for 1-cm and 2-cm ablations, respectively. These surface measurements correlated with an average diameter of 16.1 mm and 15.9 mm (1-cm and 2-cm ablations, respectively) as measured with the IR camera. All cells within these ablation zones were nonviable by nicotinamide adenine dinucleotide diaphorase analysis. The average depth of the lesions measured 19 mm (1-cm ablation) and 25 mm (2-cm ablation

  17. Febuxostat for the Prevention of Recurrent 2,8-dihydroxyadenine Nephropathy due to Adenine Phosphoribosyltransferase Deficiency Following Kidney Transplantation.

    PubMed

    Nanmoku, Koji; Kurosawa, Akira; Shinzato, Takahiro; Shimizu, Toshihiro; Kimura, Takaaki; Yagisawa, Takashi

    2017-01-01

    Adenine phosphoribosyltransferase (APRT) deficiency is a rare autosomal recessive disorder that results in irreversible renal damage due to 2,8-dihydroxyadenine (DHA) nephropathy. A 28-year-old man underwent living-related kidney transplantation for chronic kidney disease of unknown etiology. Numerous spherical brownish crystals observed in his urinary sediment on postoperative day 3 and were observed within the tubular lumen of renal allograft biopsy specimens on postoperative day 7. After a genetic diagnosis, febuxostat treatment was started on postoperative day 7, with the dosage gradually increased to 80 mg/day until complete the disappearance of 2,8-DHA crystals. Febuxostat prevented secondary 2,8-DHA nephropathy after kidney transplantation.

  18. Febuxostat for the Prevention of Recurrent 2,8-dihydroxyadenine Nephropathy due to Adenine Phosphoribosyltransferase Deficiency Following Kidney Transplantation

    PubMed Central

    Nanmoku, Koji; Kurosawa, Akira; Shinzato, Takahiro; Shimizu, Toshihiro; Kimura, Takaaki; Yagisawa, Takashi

    2017-01-01

    Adenine phosphoribosyltransferase (APRT) deficiency is a rare autosomal recessive disorder that results in irreversible renal damage due to 2,8-dihydroxyadenine (DHA) nephropathy. A 28-year-old man underwent living-related kidney transplantation for chronic kidney disease of unknown etiology. Numerous spherical brownish crystals observed in his urinary sediment on postoperative day 3 and were observed within the tubular lumen of renal allograft biopsy specimens on postoperative day 7. After a genetic diagnosis, febuxostat treatment was started on postoperative day 7, with the dosage gradually increased to 80 mg/day until complete the disappearance of 2,8-DHA crystals. Febuxostat prevented secondary 2,8-DHA nephropathy after kidney transplantation. PMID:28566603

  19. HMG-D is an architecture-specific protein that preferentially binds to DNA containing the dinucleotide TG.

    PubMed Central

    Churchill, M E; Jones, D N; Glaser, T; Hefner, H; Searles, M A; Travers, A A

    1995-01-01

    The high mobility group (HMG) protein HMG-D from Drosophila melanogaster is a highly abundant chromosomal protein that is closely related to the vertebrate HMG domain proteins HMG1 and HMG2. In general, chromosomal HMG domain proteins lack sequence specificity. However, using both NMR spectroscopy and standard biochemical techniques we show that binding of HMG-D to a single DNA site is sequence selective. The preferred duplex DNA binding site comprises at least 5 bp and contains the deformable dinucleotide TG embedded in A/T-rich sequences. The TG motif constitutes a common core element in the binding sites of the well-characterized sequence-specific HMG domain proteins. We show that a conserved aromatic residue in helix 1 of the HMG domain may be involved in recognition of this core sequence. In common with other HMG domain proteins HMG-D binds preferentially to DNA sites that are stably bent and underwound, therefore HMG-D can be considered an architecture-specific protein. Finally, we show that HMG-D bends DNA and may confer a superhelical DNA conformation at a natural DNA binding site in the Drosophila fushi tarazu scaffold-associated region. Images PMID:7720717

  20. Adenosine and adenine nucleotides as regulators of cerebral blood flow: roles of acidosis, cell swelling, and KATP channels.

    PubMed

    Phillis, John W

    2004-01-01

    A considerable volume of evidence implicates the purine adenosine in the regulation of cerebral blood flow during states such as hypotension, neural activation, hypoxia/ischemia, and hypercapnia/acidosis. The aim of this review is to describe developments in our understanding of the roles that adenosine and the adenine nucleotides play in cerebral blood flow control, with some comparisons to coronary blood flow. The first part of the review focuses on the categorization of receptors for adenosine (A1, A2A, A2B, and A3) and the adenine nucleotides, ATP and ADP (P2X and P2Y). Frequently used agonists and antagonists for these different receptors are mentioned. A description follows of the distribution of these different receptors in cerebral arterioles. The second part of the review initially deals with the literature on the release of adenosine and adenine nucleotides into the extracellular space of the brain, describing the various techniques used to make these measurements and assessing the pitfalls associated with their use. This is followed by a discussion of the factors affecting purine release, which include cell swelling and acidosis. The third section evaluates the role of smooth muscle potassium channels in controlling arteriolar diameter. There is evidence for an important role of KATP and KCa channels, but less is known about the contributions of voltage-dependent (KV) and inwardly rectifying (KIR) channels. This section ends with a discussion on the reported inhibitory effect of nitric oxide synthase inhibitors on the KATP channel and the consequences of such an action for the interpretation of much of the published work on nitric oxide as a regulator of cerebral blood flow. The fourth section evaluates the data supporting a role of adenosine and ATP in the regulation of cerebral blood flow during autoregulation, hypotension, neural activity, hypoxia/ ischemia, and hypercapnia. Studies using antagonists and potentiators of adenosine's actions have led to

  1. Evidence for the absence of the terminal adenine nucleotide at the amino acid-acceptor end of transfer ribonucleic acid in non-lactating bovine mammary gland and its inhibitory effect on the aminoacylation of rat liver transfer ribonucleic acid

    PubMed Central

    Herrington, M. D.; Hawtrey, A. O.

    1970-01-01

    1. tRNA isolated from non-lactating bovine mammary gland competitively inhibits the formation of aminoacyl-tRNA in the rat liver system. 2. Non-lactating bovine mammary gland tRNA and twice-pyrophosphorolysed rat liver tRNA are unable to accept amino acids in a reaction catalysed by aminoacyl-tRNA synthetases from either rat liver or bovine mammary gland. Deacylated rat liver tRNA can however be aminoacylated in the presence of either enzyme. 3. Bovine mammary gland tRNA lacks the terminal adenine nucleotide at the 3′-terminus amino acid acceptor end, which can be replaced by incubation in the presence of rat liver nucleotide-incorporating enzyme, ATP and CTP. 4. The enzymically modified bovine tRNA (tRNApCpCpA) can bind labelled amino acids to form aminoacyl-tRNA, which can then transfer its labelled amino acids to growing polypeptide chains on ribosomes. 5. Molecules of rat liver tRNA or bovine mammary gland tRNA that lack the terminal adenine nucleotide or the terminal cytosine and adenine nucleotides inhibit the aminoacylation of normal rat liver tRNA to varying degrees. tRNA molecules lacking the terminal −pCpCpA nucleotide sequence exhibit the major inhibitory effect. 6. The enzyme fraction from bovine mammary gland corresponding to that containing the nucleotide-incorporating enzyme in rat liver is unable to catalyse the incorporation of cytosine and adenine nucleotides in pyrophosphorolysed rat liver tRNA and deacylated bovine tRNA. This fraction also markedly inhibits the action of the rat liver nucleotide-incorporating enzyme. PMID:5435687

  2. Acidity and complex formation studies of 3-(adenine-9-yl)-propionic and 3-(thymine-1-yl)-propionic acids in ethanol-water media

    NASA Astrophysics Data System (ADS)

    Hammud, Hassan H.; El Shazly, Shawky; Sonji, Ghassan; Sonji, Nada; Bouhadir, Kamal H.

    2015-05-01

    The ligands 3-(adenine-9-yl)propionic acid (AA) and 3-(thymine-1-yl)propionic acid (TA) were prepared by N9-alkylation of adenine and N1-alkylation of thymine with ethylacrylate in presence of a base catalyst, followed by acid hydrolysis of the formed ethyl esters to give the corresponding propionic acid derivatives. The products were characterized by spectral methods (FTIR, 1H NMR and 13C NMR), which confirm their structures. The dissociation constants of ligands, were potentiometrically determined in 0.3 M KCl at 20-50 °C temperature range. The work was extended to study complexation behavior of AA and TA with various biologically important divalent metal ions (Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Mn2+ and Pb2+) in 50% v/v water-ethanol medium at four different temperatures, keeping ionic strength constant (0.3 M KCl). The order of the stability constants of the formed complexes decreases in the sequence Cu2+ > Pb2+ > Zn2+ > Ni2+ > Co2+ > Mn2+ > Cd2+ for both ligands. The effect of temperature was also studied and the corresponding thermodynamic functions (ΔG, ΔH, ΔS) were derived and discussed. The formation of metal complexes has been found to be spontaneous, and the stability constants were dependant markedly on the basicity of the ligands.

  3. Pd-catalyzed versus uncatalyzed, PhI(OAc)2-mediated cyclization reactions of N6-([1,1'-biaryl]-2-yl)adenine nucleosides.

    PubMed

    Satishkumar, Sakilam; Poudapally, Suresh; Vuram, Prasanna K; Gurram, Venkateshwarlu; Pottabathini, Narender; Sebastian, Dellamol; Yang, Lijia; Pradhan, Padmanava; Lakshman, Mahesh K

    2017-11-09

    In this work we have assessed reactions of N 6 -([1,1'-biaryl]-2-yl)adenine nucleosides with Pd(OAc) 2 and PhI(OAc) 2 , via a Pd II /Pd IV redox cycle. The substrates are readily obtained by Pd/Xantphos-catalyzed reaction of adenine nucleosides with 2-bromo-1,1'-biaryls. In PhMe, the N 6 -biarylyl nucleosides gave C6-carbazolyl nucleoside analogues by C-N bond formation with the exocyclic N 6 nitrogen atom. In the solvent screening for the Pd-catalyzed reactions, an uncatalyzed process was found to be operational. It was observed that the carbazolyl products could also be obtained in the absence of a metal catalyst by reaction with PhI(OAc) 2 in 1,1,1,3,3,3-hexafluoroisopropanol (HFIP). Thus, under Pd catalysis and in HFIP, reactions proceed to provide carbazolyl nucleoside analogues, with some differences. If reactions of N 6 -biarylyl nucleoside substrates were conducted in MeCN, formation of aryl benzimidazopurinyl nucleoside derivatives was observed in many cases by C-N bond formation with the N 1 ring nitrogen atom of the purine (carbazole and benzimidazole isomers are readily separated by chromatography). Whereas Pd II /Pd IV redox is responsible for carbazole formation under the metal-catalyzed conditions, in HFIP and MeCN radical cations and/or nitrenium ions can be intermediates. An extensive set of radical inhibition experiments was conducted and the data are presented.

  4. Crystal structure of an intermolecular 2:1 complex between adenine and thymine. Evidence for both Hoogsteen and 'quasi-Watson-Crick' interactions.

    PubMed

    Chandrasekhar, Sosale; Naik, Tangali R Ravikumar; Nayak, Susanta K; Row, Tayur N Guru

    2010-06-15

    The titled complex, obtained by co-crystallization (EtOH/25 degrees C), is apparently the only known complex of the free bases. Its crystal structure, as determined by X-ray diffraction at both 90 K and 313 K, showed that one A-T pair involves a Hoogsteen interaction, and the other a Watson-Crick interaction but only with respect to the adenine unit. The absence of a clear-cut Watson-Crick base pair raises intriguing questions about the basis of the DNA double helix. Copyright 2010 Elsevier Ltd. All rights reserved.

  5. DNA Adenine Methylase Is Essential for Viability and Plays a Role in the Pathogenesis of Yersinia pseudotuberculosis and Vibrio cholerae

    PubMed Central

    Julio, Steven M.; Heithoff, Douglas M.; Provenzano, Daniele; Klose, Karl E.; Sinsheimer, Robert L.; Low, David A.; Mahan, Michael J.

    2001-01-01

    Salmonella strains that lack or overproduce DNA adenine methylase (Dam) elicit a protective immune response to different Salmonella species. To generate vaccines against other bacterial pathogens, the dam genes of Yersinia pseudotuberculosis and Vibrio cholerae were disrupted but found to be essential for viability. Overproduction of Dam significantly attenuated the virulence of these two pathogens, leading to, in Yersinia, the ectopic secretion of virulence proteins (Yersinia outer proteins) and a fully protective immune response in vaccinated hosts. Dysregulation of Dam activity may provide a means for the development of vaccines against varied bacterial pathogens. PMID:11705940

  6. Characterization of plant carotenoid cyclases as members of the flavoprotein family functioning with no net redox change.

    PubMed

    Mialoundama, Alexis Samba; Heintz, Dimitri; Jadid, Nurul; Nkeng, Paul; Rahier, Alain; Deli, Jozsef; Camara, Bilal; Bouvier, Florence

    2010-07-01

    The later steps of carotenoid biosynthesis involve the formation of cyclic carotenoids. The reaction is catalyzed by lycopene beta-cyclase (LCY-B), which converts lycopene into beta-carotene, and by capsanthin-capsorubin synthase (CCS), which is mainly dedicated to the synthesis of kappa-cyclic carotenoids (capsanthin and capsorubin) but also has LCY-B activity. Although the peptide sequences of plant LCY-Bs and CCS contain a putative dinucleotide-binding motif, it is believed that these two carotenoid cyclases proceed via protic activation and stabilization of resulting carbocation intermediates. Using pepper (Capsicum annuum) CCS as a prototypic carotenoid cyclase, we show that the monomeric protein contains one noncovalently bound flavin adenine dinucleotide (FAD) that is essential for enzyme activity only in the presence of NADPH, which functions as the FAD reductant. The reaction proceeds without transfer of hydrogen from the dinucleotide cofactors to beta-carotene or capsanthin. Using site-directed mutagenesis, amino acids potentially involved in the protic activation were identified. Substitutions of alanine, lysine, and arginine for glutamate-295 in the conserved 293-FLEET-297 motif of pepper CCS or LCY-B abolish the formation of beta-carotene and kappa-cyclic carotenoids. We also found that mutations of the equivalent glutamate-196 located in the 194-LIEDT-198 domain of structurally divergent bacterial LCY-B abolish the formation of beta-carotene. The data herein reveal plant carotenoid cyclases to be novel enzymes that combine characteristics of non-metal-assisted terpene cyclases with those attributes typically found in flavoenzymes that catalyze reactions, with no net redox, such as type 2 isopentenyl diphosphate isomerase. Thus, FAD in its reduced form could be implicated in the stabilization of the carbocation intermediate.

  7. Generation of reactive oxygen species in the reaction catalyzed by alpha-ketoglutarate dehydrogenase.

    PubMed

    Tretter, Laszlo; Adam-Vizi, Vera

    2004-09-08

    Alpha-ketoglutarate dehydrogenase (alpha-KGDH), a key enzyme in the Krebs' cycle, is a crucial early target of oxidative stress (Tretter and Adam-Vizi, 2000). The present study demonstrates that alpha-KGDH is able to generate H(2)O(2) and, thus, could also be a source of reactive oxygen species (ROS) in mitochondria. Isolated alpha-KGDH with coenzyme A (HS-CoA) and thiamine pyrophosphate started to produce H(2)O(2) after addition of alpha-ketoglutarate in the absence of nicotinamide adenine dinucleotide-oxidized (NAD(+)). NAD(+), which proved to be a powerful inhibitor of alpha-KGDH-mediated H(2)O(2) formation, switched the H(2)O(2) forming mode of the enzyme to the catalytic [nicotinamide adenine dinucleotide-reduced (NADH) forming] mode. In contrast, NADH stimulated H(2)O(2) formation by alpha-KGDH, and for this, neither alpha-ketoglutarate nor HS-CoA were required. When all of the substrates and cofactors of the enzyme were present, the NADH/NAD(+) ratio determined the rate of H(2)O(2) production. The higher the NADH/NAD(+) ratio the higher the rate of H(2)O(2) production. H(2)O(2) production as well as the catalytic function of the enzyme was activated by Ca(2+). In synaptosomes, using alpha-ketoglutarate as respiratory substrate, the rate of H(2)O(2) production increased by 2.5-fold, and aconitase activity decreased, indicating that alpha-KGDH can generate H(2)O(2) in in situ mitochondria. Given the NADH/NAD(+) ratio as a key regulator of H(2)O(2) production by alpha-KGDH, it is suggested that production of ROS could be significant not only in the respiratory chain but also in the Krebs' cycle when oxidation of NADH is impaired. Thus alpha-KGDH is not only a target of ROS but could significantly contribute to generation of oxidative stress in the mitochondria.

  8. Optical metabolic imaging of irradiated rat heart exposed to ischemia-reperfusion injury

    NASA Astrophysics Data System (ADS)

    la Cour, Mette Funding; Mehrvar, Shima; Heisner, James S.; Motlagh, Mohammad Masoudi; Medhora, Meetha; Ranji, Mahsa; Camara, Amadou K. S.

    2018-01-01

    Whole thoracic irradiation (WTI) is known to cause deterioration in cardiac function. Whether irradiation predisposes the heart to further ischemia and reperfusion (IR) injury is not well known. The aim of this study is to examine the susceptibility of rat hearts to IR injury following a single fraction of 15 Gy WTI and to investigate the role of mitochondrial metabolism in the differential susceptibility to IR injury. After day 35 of irradiation, ex vivo hearts from irradiated and nonirradiated rats (controls) were exposed to 25-min global ischemia followed by 60-min IR, or hearts were perfused without IR for the same protocol duration [time controls (TC)]. Online fluorometry of metabolic indices [redox state: reduced nicotinamide adenine dinucleotide (NADH), oxidized flavin adenine dinucleotide (FAD), and NADH/FAD redox ratio] and functional variables [systolic left ventricular pressure (LVP), diastolic LVP (diaLVP), coronary flow (CF), and heart rate were recorded in the beating heart; developed LVP (dLVP) and rate pressure product (RPP)] were derived. At the end of each experimental protocol, hearts were immediately snap frozen in liquid N2 for later three-dimensional imaging of the mitochondrial redox state using optical cryoimaging. Irradiation caused a delay in recovery of dLVP and RPP after IR when compared to nonirradiated hearts but recovered to the same level at the end of reperfusion. CF in the irradiated hearts recovered better than the control hearts after IR injury. Both fluorometry and 3-D cryoimaging showed that in WTI and control hearts, the redox ratio increased during ischemia (reduced) and decreased on reperfusion (oxidized) when compared to their respective TCs; however, there was no significant difference in the redox state between WTI and controls. In conclusion, our results show that although irradiation of rat hearts compromised baseline cardiovascular function, it did not alter cardiac mitochondrial redox state and induce greater

  9. Co-immobilization of glucose oxidase and xylose dehydrogenase displayed whole cell on multiwalled carbon nanotube nanocomposite films modified electrode for simultaneous voltammetric detection of D-glucose and D-xylose.

    PubMed

    Li, Liang; Liang, Bo; Li, Feng; Shi, Jianguo; Mascini, Marco; Lang, Qiaolin; Liu, Aihua

    2013-04-15

    In this paper, we first report the construction of Nafion/glucose oxidase (GOD)/xylose dehydrogenase displayed bacteria (XDH-bacteria)/multiwalled carbon nanotubes (MWNTs) modified electrode for simultaneous voltammetric determination of D-glucose and D-xylose. The optimal conditions for the immobilized enzymes were established. Both enzymes retained their good stability and activities. In the mixture solution of D-glucose and D-xylose containing coenzyme NAD⁺ (the oxidized form of nicotinamide adenine dinucleotide), the Nafion/GOD/XDH-bacteria/MWNTs modified electrode exhibited quasi-reversible oxidation-reduction peak at -0.5 V (vs. saturated calomel electrode, SCE) originating from the catalytic oxidation of D-glucose, and oxidation peak at +0.55 V(vs. SCE) responding to the oxidation of NADH (the reduced form of nicotinamide adenine dinucleotide) by the carbon nanotubes, where NADH is the resultant product of coenzyme NAD⁺ involved in the catalysis of D-xylose by XDH-displayed bacteria. For the proposed biosensor, cathodic peak current at -0.5 V was linear with the concentration of D-glucose within the range of 0.25-6 mM with a low detection limit of 0.1 mM D-glucose (S/N=3), and the anodic peak current at +0.55 V was linear with the concentration of d-xylose in the range of 0.25∼4 mM with a low detection limit of 0.1 mM D-xylose (S/N=3). Further, D-xylose and D-glucose did not interfere with each other. 300-fold excess saccharides including D-maltose, D-galactose, D-mannose, D-sucrose, D-fructose, D-cellobiose, and 60-fold excess L-arabinose, and common interfering substances (100-fold excess ascorbic acid, dopamine, uric acid) as well as 300-fold excess D-xylitol did not affect the detection of D-glucose and D-xylose (both 1 mM). Therefore, the proposed biosensor is stable, specific, reproducible, simple, rapid and cost-effective, which holds great potential in real applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Progressive thermopreconditioning attenuates rat cardiac ischemia/reperfusion injury by mitochondria-mediated antioxidant and antiapoptotic mechanisms.

    PubMed

    Chien, Chen-Yen; Chien, Chiang-Ting; Wang, Shoei-Shen

    2014-08-01

    Progressive thermal preconditioning (PTP) provides vascular protection with less hemodynamic fluctuations, endoplasmic reticulum (ER), and oxidative stress compared with whole body hyperthermia. We suggest PTP might efficiently diminish cardiac ischemia/reperfusion-induced apoptosis and autophagy injury. A total of 67 male Wistar rats were divided into a non-PTP control group, 24 or 72 hours after a single cycle or 3 consecutive cycles of PTP in a 42°C water bath (1-24, 1-72, 3-24, and 3-72 groups). We measured the cardiac O2(-) amount in vivo in response to left anterior descending coronary artery ligation for 2 hours and reperfusion for 3 hours. Cardiac function and injury were determined by microcirculation, electrocardiography, and infarct size. The PTP-induced protective effects on nicotinamide adenine dinucleotide phosphate oxidase gp91-mediated oxidative stress, ER stress, and apoptosis- and autophagy-related mechanisms were examined using Western blot and immunohistochemistry. Coronary arterial ischemia/reperfusion depressed cardiac microcirculation, induced ST-segment elevation and increased infarct size in non-PTP and PTP rats. Ischemia/reperfusion enhanced the cardiac O2(-) levels by enhanced nicotinamide adenine dinucleotide phosphate oxidase gp91 expression, cytosolic cytochrome C release, and decreased mitochondrial Bcl-2 expression. Cardiac injury activated ER stress-78-kDa glucose-regulated protein expression, increased the Bax/Bcl-2 ratio, cleaved caspase 3 expression and poly-(ADP-ribose)-polymerase fragments, leading to apoptosis formation, and promoted LC3-II expression, resulting in autophagy formation. PTP treatment elevated heat shock protein 70, heat shock protein 32, Bcl-2, Bcl-xL, and manganese superoxide dismutase in the rat heart, especially in the 3-72 group. PTP treatment significantly restored cardiac microcirculation, decreased oxidative stress, ER stress, apoptosis, autophagy, and infarct size. PTP significantly reduced cardiac

  11. Effects of idebenone (CV-2619) and its metabolites on respiratory activity and lipid peroxidation in brain mitochondria from rats and dogs.

    PubMed

    Sugiyama, Y; Fujita, T; Matsumoto, M; Okamoto, K; Imada, I

    1985-12-01

    The effects of idebenone (CV-2619) and its metabolites on respiratory activity and lipid peroxidation in isolated brain mitochondria from rats and dogs were studied. CV-2619 was easily reduced by canine brain mitochondria in the presence of respiratory substrates. Reduced CV-2619 (2H-CV-2619) was rapidly oxidized through the cytochrome b chain, indicating that the compound functioned simply as an electron carrier of mitochondrial respiratory system. Both nicotinamide adenine dinucleotide (NADH)- and nicotinamide adenine dinucleotide phosphate (NADPH)-dependent lipid peroxidations were examined in canine brain mitochondria in the presence of adenosine diphosphate (ADP) and Fe3+. NADH-cytochrome c reductase activity was sensitive to NADPH-dependent lipid peroxidation. CV-2619 (10(-5)M) strongly inhibited both types of the lipid peroxidation reactions and protected the resultant inactivation of the NADH-cytochrome c reductase activity. Activities of succinate oxidase in rat and canine brain mitochondria were virtually unaffected by CV-2619 and its metabolites (10(-5)-10(-6) M). On the other hand, CV-2619 markedly suppressed the state 3 respiration in glutamate oxidation in a dose dependent manner without any effect on the state 4 respiration and the ADP/O ratio in intact rat brain mitochondria. The inhibitory effect of CV-2619 was also observed in NADH-cytochrome c reductase, but not in NADH-2,6-dichlorophenolindophenol (DCIP) and NADH-ubiquinone reductases in canine brain mitochondria. These facts and results of inhibitor analysis suggest that the action site of CV-2619 is NADH-linked complex I in the mitochondrial respiratory chain and is different from that of inhibitors of oxidative phosphorylation such as rotenone, oligomycin and 2,4-dinitrophenol. Finally, the above findings suggest that CV-2619 acts as an electron carrier in respiratory chains and functions as an antioxidant against membrane damage caused by lipid peroxidation in brain mitochondria. It appears

  12. Retinoic acid-related orphan receptor alpha reprograms glucose metabolism in glutamine-deficient hepatoma cells.

    PubMed

    Byun, Jun-Kyu; Choi, Yeon-Kyung; Kang, Yu Na; Jang, Byoung Kuk; Kang, Koo Jeong; Jeon, Yong Hyun; Lee, Ho-Won; Jeon, Jae-Han; Koo, Seung-Hoi; Jeong, Won-Il; Harris, Robert A; Lee, In-Kyu; Park, Keun-Gyu

    2015-03-01

    The metabolism of glutamine and glucose is recognized as a promising therapeutic target for the treatment of cancer; however, targeted molecules that mediate glutamine and glucose metabolism in cancer cells have not been addressed. Here, we show that restricting the supply of glutamine in hepatoma cells, including HepG2 and Hep3B cells, markedly increased the expression of retinoic acid-related orphan receptor alpha (RORα). Up-regulation of RORα in glutamine-deficient hepatoma cells resulted from an increase in the level of cellular reactive oxygen species and in the nicotinamide adenine dinucleotide phosphate/nicotinamide adenine dinucleotide phosphate reduced (NADP+ /NADPH) ratio, which was consistent with a reduction in the glutathione/glutathione disulfide (GSH/GSSG) ratio. Adenovirus (Ad)-mediated overexpression of RORα (Ad-RORα) or treatment with the RORα activator, SR1078, reduced aerobic glycolysis and down-regulated biosynthetic pathways in hepatoma cells. Ad-RORα and SR1078 reduced the expression of pyruvate dehydrogenase kinase 2 (PDK2) and inhibited the phosphorylation of pyruvate dehydrogenase and subsequently shifted pyruvate to complete oxidation. The RORα-mediated decrease in PDK2 levels was caused by up-regulation of p21, rather than p53. Furthermore, RORα inhibited hepatoma growth both in vitro and in a xenograft model in vivo. We also found that suppression of PDK2 inhibited hepatoma growth in a xenograft model. These findings mimic the altered glucose utilization and hepatoma growth caused by glutamine deprivation. Finally, tumor tissue from 187 hepatocellular carcinoma patients expressed lower levels of RORα than adjacent nontumor tissue, supporting a potential beneficial effect of RORα activation in the treatment of liver cancer. RORα mediates reprogramming of glucose metabolism in hepatoma cells in response to glutamine deficiency. The relationships established here between glutamine metabolism, RORα expression and signaling, and

  13. A selective and sensitive D-xylose electrochemical biosensor based on xylose dehydrogenase displayed on the surface of bacteria and multi-walled carbon nanotubes modified electrode.

    PubMed

    Li, Liang; Liang, Bo; Shi, Jianguo; Li, Feng; Mascini, Marco; Liu, Aihua

    2012-03-15

    A novel Nafion/bacteria-displaying xylose dehydrogenase (XDH)/multi-walled carbon nanotubes (MWNTs) composite film-modified electrode was fabricated and applied for the sensitive and selective determination of d-xylose (INS 967), where the XDH-displayed bacteria (XDH-bacteria) was prepared using a newly identified ice nucleation protein from Pseudomonas borealis DL7 as an anchoring motif. The XDH-displayed bacteria can be used directly, eliminating further enzyme-extraction and purification, thus greatly improved the stability of the enzyme. The optimal conditions for the construction of biosensor were established: homogeneous Nafion-MWNTs composite dispersion (10 μL) was cast onto the inverted glassy carbon electrode, followed by casting 10-μL of XDH-bacteria aqueous solution to stand overnight to dry, then a 5-μL of Nafion solution (0.05 wt%) is syringed to the electrode surface. The bacteria-displaying XDH could catalyze the oxidization of xylose to xylonolactone with coenzyme NAD(+) in 0.1M PBS buffer (pH7.4), where NAD(+) (nicotinamide adenine dinucleotide) is reduced to NADH (the reduced form of nicotinamide adenine dinucleotide). The resultant NADH is further electrocatalytically oxidized by MWNTs on the electrode, resulting in an obvious oxidation peak around 0.50 V (vs. Ag/AgCl). In contrast, the bacteria-XDH-only modified electrode showed oxidation peak at higher potential of 0.7 V and less sensitivity. Therefore, the electrode/MWNTs/bacteria-XDH/Nafion exhibited good analytical performance such as long-term stability, a wide dynamic range of 0.6-100 μM and a low detection limit of 0.5 μM D-xylose (S/N=3). No interference was observed in the presence of 300-fold excess of other saccharides including D-glucose, D-fructose, D-maltose, D-galactose, D-mannose, D-sucrose, and D-cellbiose as well as 60-fold excess of L-arabinose. The proposed microbial biosensor is stable, specific, sensitive, reproducible, simple, rapid and cost-effective, which holds

  14. Intraoperative microwave ablation of pulmonary malignancies with tumor permittivity feedback control: ablation and resection study in 10 consecutive patients.

    PubMed

    Wolf, Farrah J; Aswad, Bassam; Ng, Thomas; Dupuy, Damian E

    2012-01-01

    To determine histologic changes induced by microwave ablation (MWA) in patients with pulmonary malignancy by using an ablation system with tumor permittivity feedback control, enabling real-time modulation of energy power and frequency. Institutional review board approval and patient informed consent were obtained for this prospective HIPAA-complaint ablation and resection study. Between March 2009 and January 2010, 10 patients (four women, six men; mean age, 71 years; age range, 52-82 years) underwent intraoperative MWA of pulmonary malignancies. Power (10-32 W) and frequency (908-928 MHz) were continuously adjusted by the generator to maintain a temperature of 110°-120°C at the 14-gauge antenna tip for one 10-minute application. After testing for an air leak, tumors were resected surgically. Gross inspection, slicing, and hematoxylin-eosin (10 specimens) and nicotinamide adenine dinucleotide (six specimens) staining were performed. Tumors included adenocarcinomas (n = 5), squamous cell carcinomas (n = 3), and metastases from endometrial (n = 1) and colorectal (n = 1) primary carcinomas. Mean maximum tumor diameter was 2.4 cm (range, 0.9-5.0 cm), and mean maximum volume was 8.6 cm(3) (range, 0.5-52.7 cm(3)). One air leak was detected. Five of 10 specimens were grossly measurable, revealing a mean maximum ablation zone diameter of 4.8 cm (range, 3.0-6.5 cm) and a mean maximum ablation zone volume of 15.1 cm(3) (range, 7.3-25.1 cm(3)). At hematoxylin-eosin staining, coagulation necrosis was observed in all ablation zones, extended into the normal lung in nine of 10 specimens, and up to blood vessel walls without evidence of vessel (>4 mm) thrombosis. Nicotinamide adenine dinucleotide staining enabled confirmation of no viability within ablation zones extending into normal lung in five of six specimens. MWA with tumor permittivity feedback control results in cytotoxic intratumoral temperatures and extension of ablation zones into aerated peritumoral pulmonary

  15. [Reference values of niacin for the Venezuelan population].

    PubMed

    Carias, Diamela; García-Casal, María Nieves; Soto de Sanabria, Ingrid; López Rodríguez, Ana Victoria

    2013-12-01

    Niacin is a water soluble vitamin, also known as nicotinic acid or Vitamin B3. Nicotinamide is a derivative of niacin (amide of nicotinic acid), and is used by the body to produce the coenzyme nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP), In preparing this review about the niacin requirements for Venezuela, it was found that there is not enough national data to establish recommendations, therefore, as in the 2000 review of the Venezuelan Recommended Dietary Allowances (RDAs), the actual recommendations for intake of niacin, are based on those reported for the United States population. The RDAs for Venezuela are: 2-4 mg/day for infants less than 1 year old, 6-8 mg/day for children between 1 and 8 years, 12 mg/day for children between 9 and 13 years, 14 mg/day for adolescents and female adults, 16 mg/day for adolescents and adult males, 18 mg/day during pregnancy and 17 mg/day during lactation. The estimated average requirement (EAR) is: 6-9 mg/day for children, 11 mg/ day for adolescents and female adults and 12 mg/day for adolescents and adult males, increasing to 14 mg/day during pregnancy and to 13 mg/day during lactation. The niacin Tolerable Upper Intake Levels (UL) are: 10 mg/day for children between 1 and 3 years, 15 mg/day for children between 4 and 8 years, 20 mg/day for children between 9 and 13 years, 30 mg/day for adolescents and 35 mg/day for adults. It is necessary to perform studies where the nutritional status of this vitamin is evaluated for different population groups, including not only the estimation of consumption, but the use of biochemical indicators, such as measuring the levels of the coenzymes NAD and NADP in erythrocytes or whole blood and determination of the major urinary metabolites of the vitamin.

  16. Predicting DNA Methylation State of CpG Dinucleotide Using Genome Topological Features and Deep Networks

    NASA Astrophysics Data System (ADS)

    Wang, Yiheng; Liu, Tong; Xu, Dong; Shi, Huidong; Zhang, Chaoyang; Mo, Yin-Yuan; Wang, Zheng

    2016-01-01

    The hypo- or hyper-methylation of the human genome is one of the epigenetic features of leukemia. However, experimental approaches have only determined the methylation state of a small portion of the human genome. We developed deep learning based (stacked denoising autoencoders, or SdAs) software named “DeepMethyl” to predict the methylation state of DNA CpG dinucleotides using features inferred from three-dimensional genome topology (based on Hi-C) and DNA sequence patterns. We used the experimental data from immortalised myelogenous leukemia (K562) and healthy lymphoblastoid (GM12878) cell lines to train the learning models and assess prediction performance. We have tested various SdA architectures with different configurations of hidden layer(s) and amount of pre-training data and compared the performance of deep networks relative to support vector machines (SVMs). Using the methylation states of sequentially neighboring regions as one of the learning features, an SdA achieved a blind test accuracy of 89.7% for GM12878 and 88.6% for K562. When the methylation states of sequentially neighboring regions are unknown, the accuracies are 84.82% for GM12878 and 72.01% for K562. We also analyzed the contribution of genome topological features inferred from Hi-C. DeepMethyl can be accessed at http://dna.cs.usm.edu/deepmethyl/.

  17. Predicting DNA Methylation State of CpG Dinucleotide Using Genome Topological Features and Deep Networks.

    PubMed

    Wang, Yiheng; Liu, Tong; Xu, Dong; Shi, Huidong; Zhang, Chaoyang; Mo, Yin-Yuan; Wang, Zheng

    2016-01-22

    The hypo- or hyper-methylation of the human genome is one of the epigenetic features of leukemia. However, experimental approaches have only determined the methylation state of a small portion of the human genome. We developed deep learning based (stacked denoising autoencoders, or SdAs) software named "DeepMethyl" to predict the methylation state of DNA CpG dinucleotides using features inferred from three-dimensional genome topology (based on Hi-C) and DNA sequence patterns. We used the experimental data from immortalised myelogenous leukemia (K562) and healthy lymphoblastoid (GM12878) cell lines to train the learning models and assess prediction performance. We have tested various SdA architectures with different configurations of hidden layer(s) and amount of pre-training data and compared the performance of deep networks relative to support vector machines (SVMs). Using the methylation states of sequentially neighboring regions as one of the learning features, an SdA achieved a blind test accuracy of 89.7% for GM12878 and 88.6% for K562. When the methylation states of sequentially neighboring regions are unknown, the accuracies are 84.82% for GM12878 and 72.01% for K562. We also analyzed the contribution of genome topological features inferred from Hi-C. DeepMethyl can be accessed at http://dna.cs.usm.edu/deepmethyl/.

  18. Sequence-dependent folding landscapes of adenine riboswitch aptamers.

    PubMed

    Lin, Jong-Chin; Hyeon, Changbong; Thirumalai, D

    2014-04-14

    Expression of a large fraction of genes in bacteria is controlled by riboswitches, which are found in the untranslated region of mRNA. Structurally riboswitches have a conserved aptamer domain to which a metabolite binds, resulting in a conformational change in the downstream expression platform. Prediction of the functions of riboswitches requires a quantitative description of the folding landscape so that the barriers and time scales for the conformational change in the switching region in the aptamer can be estimated. Using a combination of all atom molecular dynamics (MD) and coarse-grained model simulations we studied the response of adenine (A) binding add and pbuE A-riboswitches to mechanical force. The two riboswitches contain a structurally similar three-way junction formed by three paired helices, P1, P2, and P3, but carry out different functions. Using pulling simulations, with structures generated in MD simulations, we show that after P1 rips the dominant unfolding pathway in the add A-riboswitch is the rupture of P2 followed by unraveling of P3. In the pbuE A-riboswitch, after P1 unfolds P3 ruptures ahead of P2. The order of unfolding of the helices, which is in accord with single molecule pulling experiments, is determined by the relative stabilities of the individual helices. Our results show that the stability of isolated helices determines the order of assembly and response to force in these non-coding regions. We use the simulated free energy profile for the pbuE A-riboswitch to estimate the time scale for allosteric switching, which shows that this riboswitch is under kinetic control lending additional support to the conclusion based on single molecule pulling experiments. A consequence of the stability hypothesis is that a single point mutation (U28C) in the P2 helix of the add A-riboswitch, which increases the stability of P2, would make the folding landscapes of the two riboswitches similar. This prediction can be tested in single molecule

  19. Structural and Functional Analysis of DDX41: a bispecific immune receptor for DNA and cyclic dinucleotide

    PubMed Central

    Omura, Hiroki; Oikawa, Daisuke; Nakane, Takanori; Kato, Megumi; Ishii, Ryohei; Ishitani, Ryuichiro; Tokunaga, Fuminori; Nureki, Osamu

    2016-01-01

    In the innate immune system, pattern recognition receptors (PRRs) specifically recognize ligands derived from bacteria or viruses, to trigger the responsible downstream pathways. DEAD box protein 41 (DDX41) is an intracellular PRR that triggers the downstream pathway involving the adapter STING, the kinase TBK1, and the transcription factor IRF3, to activate the type I interferon response. DDX41 is unique in that it recognizes two different ligands; i.e., double-stranded DNA (dsDNA) and cyclic dinucleotides (CDN), via its DEAD domain. However, the structural basis for the ligand recognition by the DDX41 DEAD domain has remained elusive. Here, we report two crystal structures of the DDX41 DEAD domain in apo forms, at 1.5 and 2.2 Å resolutions. A comparison of the two crystal structures revealed the flexibility in the ATP binding site, suggesting its formation upon ATP binding. Structure-guided functional analyses in vitro and in vivo demonstrated the overlapped binding surface for dsDNA and CDN, which is distinct from the ATP-binding site. We propose that the structural rearrangement of the ATP binding site is crucial for the release of ADP, enabling the fast turnover of DDX41 for the dsDNA/CDN-induced STING activation pathway. PMID:27721487

  20. Histochemical characteristics of a tonic smooth muscle.

    PubMed

    Gilloteaux, J; Stalmans-Falys, M

    1979-09-01

    It is suggested that ABRM, smooth muscle of Mytilus edulis L. and Mytilus galloprovincialis Lmk. (Mollusca Pelecypoda), is composed of one histochemical fibre type. The fibres are characterized by a low myofibrillar ATPase activity. Succinic and nicotinamide adenine dinucleotide oxidoreductase activities are distributed in a reverse pattern than that of the ATPase activity. Glycogen phosphorylase is richly represented in ABRM fibres and this detection is in opposition with the negative detection of alkaline phosphatase activity. These preliminary histochemical observations are similar to those found in some vertebrate smooth muscles. Mitochondrial glycerol-3-phosphate, 6-phosphogluconate, lactate and octopine dehydrogenases are not detected in muscle fibres whereas glio-interstitial tissues show weak but distinct reactivity. These last results especially characterize Mytilus catch fibres and are briefly discussed in relationship with previous physiological, biochemical and morphological observations.