Science.gov

Sample records for adenine dinucleotide nadph

  1. A comparative cluster analysis of nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase histochemistry in the brains of amphibians.

    PubMed

    Pinelli, Claudia; Rastogi, Rakesh K; Scandurra, Anna; Jadhao, Arun G; Aria, Massimo; D'Aniello, Biagio

    2014-09-01

    Nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) is a key enzyme in the synthesis of the gaseous neurotransmitter nitric oxide. We compare the distribution of NADPH-d in the brain of four species of hylid frogs. NADPH-d-positive fibers are present throughout much of the brain, whereas stained cell groups are distributed in well-defined regions. Whereas most brain areas consistently show positive neurons in all species, in some areas species-specific differences occur. We analyzed our data and those available for other amphibian species to build a matrix on NADPH-d brain distribution for a multivariate analysis. Brain dissimilarities were quantified by using the Jaccard index in a hierarchical clustering procedure. The whole brain dendrogram was compared with that of its main subdivisions by applying the Fowlkes-Mallows index for dendrogram similarity, followed by bootstrap replications and a permutation test. Despite the differences in the distribution map of the NADPH-d system among species, cluster analysis of data from the whole brain and hindbrain faithfully reflected the evolutionary history (framework) of amphibians. Dendrograms from the secondary prosencephalon, diencephalon, mesencephalon, and isthmus showed some deviation from the main scheme. Thus, the present analysis supports the major evolutionary stability of the hindbrain. We provide evidence that the NADPH-d system in main brain subdivisions should be cautiously approached for comparative purposes because specific adaptations of a single species could occur and may affect the NADPH-d distribution pattern in a brain subdivision. The minor differences in staining pattern of particular subdivisions apparently do not affect the general patterns of staining across species. PMID:24549578

  2. A COUPLED MICROSOMAL-ACTIVATING/EMBRYO CULTURE SYSTEM: TOXICITY OF REDUCED BETA-NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE (NADPH)

    EPA Science Inventory

    An NADPH-dependent microsomal-activating system has been coupled to a rat embryo culture in vitro. No embryonic morphological abnormalities or decrease in final yolk sac or embryo DNA and protein contents occurred when 0.2 mM NADPH was used in this coupled system. In contrast, 1....

  3. Induction of hepatoma carcinoma cell apoptosis through activation of the JNK-nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-ROS self-driven death signal circuit.

    PubMed

    Zeng, Ke-Wu; Song, Fang-Jiao; Wang, Ying-Hong; Li, Ning; Yu, Qian; Liao, Li-Xi; Jiang, Yong; Tu, Peng-Fei

    2014-10-28

    As an efficient method for inducing tumor cell apoptosis, ROS can be constantly formed and accumulated in NADPH oxidase overactivated-cells, resulting in further mitochondrial membrane damage and mitochondria-dependent apoptosis. In addition, JNK mitogen-activated protein kinase (JNK MAPK) signal also acts as a vital candidate pathway for inducing tumor cell apoptosis by targeting mitochondrial death pathway. However, the relationship between NADPH oxidase-ROS and JNK MAPK signal still remains unclear. Here, we discovered a novel self-driven signal circuit between NADPH oxidase-ROS and JNK MAPK, which was induced by a cytotoxic steroidal saponin (ASC) in hepatoma carcinoma cells. NADPH oxidase-dependent ROS production was markedly activated by ASC and directly led to JNK MAPK activation. Moreover, antioxidant, NADPH oxidase inhibitor and specific knock-out for p47 subunit of NADPH oxidase could effectively block NADPH oxidase-ROS-dependent JNK activation, suggesting that NADPH oxidase is an upstream regulator of JNK MAPK. Conversely, a specific JNK inhibitor could inhibit ASC-induced NADPH oxidase activation and down-regulate ROS levels as well, indicating that JNK might also regulate NADPH oxidase activity to some extent. These observations indicate that NADPH oxidase and JNK MAPK activate each other as a signal circuit. Furthermore, drug pretreatment experiments with ASC showed this signal circuit operated continuously via a self-driven mode and finally induced apoptosis in hepatoma carcinoma cells. Taken together, we provide a proof for inducing hepatoma carcinoma cell apoptosis by activating the JNK-NADPH oxidase-ROS-dependent self-driven signal circuit pathway. PMID:25064608

  4. Towards understanding the origins of the different specificities of binding the reduced (NADPH) and oxidised (NADP +) forms of nicotinamide adenine dinucleotide phosphate coenzyme to dihydrofolate reductase

    NASA Astrophysics Data System (ADS)

    Polshakov, Vladimir I.; Biekofsky, Rodolfo R.; Birdsall, Berry; Feeney, James

    2002-01-01

    Lactobacillus casei dihydrofolate reductase (DHFR) binds more than a thousand times tighter to NADPH than to NADP +. The origins of the difference in binding affinity to DHFR between NADPH and NADP + are investigated in the present study using experimental NMR data and hybrid density functional, B3LYP, calculations. Certain protein residues (Ala 6, Gln 7, Ile 13 and Gly 14) that are directly involved in hydrogen bonding with the nicotinamide carboxamide group show consistent differences in 1H and 15N chemical shift between NADPH and NADP + in a variety of ternary complexes. B3LYP calculations in model systems of protein-coenzyme interactions show differences in the H-bond geometry and differences in charge distribution between the oxidised and reduced forms of the nicotinamide ring. GIAO isotropic nuclear shieldings calculated for nuclei in these systems reproduce the experimentally observed trends in magnitudes and signs of the chemical shifts. The experimentally observed reduction in binding of NADP + compared with NADPH results partly from NADP + having to change its nicotinamide amide group from a cis- to a trans-conformation on binding and partly from the oxidised nicotinamide ring of NADP + being unable to take up its optimal hydrogen bonding geometry in its interactions with protein residues.

  5. Methemoglobinemia and eccentrocytosis in equine erythrocyte flavin adenine dinucleotide deficiency.

    PubMed

    Harvey, J W; Stockham, S L; Scott, M A; Johnson, P J; Donald, J J; Chandler, C J

    2003-11-01

    This report describes erythrocyte biochemical findings in an adult Spanish mustang mare that exhibited persistent methemoglobinemia, eccentrocytosis, and pyknocytosis that were not related to the consumption or administration of an exogenous oxidant. The methemoglobinemia was attributed to a deficiency in cytochrome-b5 reductase (Cb5R) activity, and the eccentrocytes and pyknocytes were attributed to a marked deficiency in reduced nicotinamide adenine dinucleotide phosphate-dependent glutathione reductase (GR) activity that resulted in decreased reduced glutathione concentration within erythrocytes. The GR activity increased to a near-normal value after addition of flavin adenine dinucleotide (FAD) to the enzyme assay, indicating a deficiency of FAD in erythrocytes. The methemoglobinemia, eccentrocytosis, and pyknocytosis were attributed to deficiency of FAD in erythrocytes because the GR and Cb5R enzymes use FAD as a cofactor. This deficiency in FAD results from a defect in erythrocyte riboflavin metabolism, which has not been documented previously in animals. PMID:14608016

  6. Orthophosphite-Nicotinamide Adenine Dinucleotide Oxidoreductase from Pseudomonas fluorescens

    PubMed Central

    Malacinski, George M.; Konetzka, W. A.

    1967-01-01

    Information was obtained on the general properties and specificity of orthophosphite-nicotinamide adenine dinucleotide oxidoreductase. The enzyme was extracted from Pseudomonas fluorescens 195 grown in medium containing orthophosphite as the sole source of phosphorus. An enzyme preparation suitable for characterization was obtained from crude extracts by use of high-speed centrifugation, protamine sulfate precipitation, ammonium sulfate fractionation, and Sephadex gel filtration. The enzyme exhibited maximal activity at pH 7.0, and was inactivated within 6 min at 37 C. Arsenite, hypophosphite, nitrite, selenite, and tellurite were not oxidized by the enzyme. Sulfite inhibited the enzymatic oxidation of orthophosphite in an apparent competitive manner. PMID:4381632

  7. Unusual folded conformation of nicotinamide adenine dinucleotide bound to flavin reductase P.

    PubMed Central

    Tanner, J. J.; Tu, S. C.; Barbour, L. J.; Barnes, C. L.; Krause, K. L.

    1999-01-01

    The 2.1 A resolution crystal structure of flavin reductase P with the inhibitor nicotinamide adenine dinucleotide (NAD) bound in the active site has been determined. NAD adopts a novel, folded conformation in which the nicotinamide and adenine rings stack in parallel with an inter-ring distance of 3.6 A. The pyrophosphate binds next to the flavin cofactor isoalloxazine, while the stacked nicotinamide/adenine moiety faces away from the flavin. The observed NAD conformation is quite different from the extended conformations observed in other enzyme/NAD(P) structures; however, it resembles the conformation proposed for NAD in solution. The flavin reductase P/NAD structure provides new information about the conformational diversity of NAD, which is important for understanding catalysis. This structure offers the first crystallographic evidence of a folded NAD with ring stacking, and it is the first enzyme structure containing an FMN cofactor interacting with NAD(P). Analysis of the structure suggests a possible dynamic mechanism underlying NADPH substrate specificity and product release that involves unfolding and folding of NADP(H). PMID:10493573

  8. Selective inhibition of nicotinamide adenine dinucleotide kinases by dinucleoside disulfide mimics of nicotinamide adenine dinucleotide analogues.

    PubMed

    Petrelli, Riccardo; Sham, Yuk Yin; Chen, Liqiang; Felczak, Krzysztof; Bennett, Eric; Wilson, Daniel; Aldrich, Courtney; Yu, Jose S; Cappellacci, Loredana; Franchetti, Palmarisa; Grifantini, Mario; Mazzola, Francesca; Di Stefano, Michele; Magni, Giulio; Pankiewicz, Krzysztof W

    2009-08-01

    Diadenosine disulfide (5) was reported to inhibit NAD kinase from Listeria monocytogenes and the crystal structure of the enzyme-inhibitor complex has been solved. We have synthesized tiazofurin adenosine disulfide (4) and the disulfide 5, and found that these compounds were moderate inhibitors of human NAD kinase (IC(50)=110 microM and IC(50)=87 microM, respectively) and Mycobacterium tuberculosis NAD kinase (IC(50)=80 microM and IC(50)=45 microM, respectively). We also found that NAD mimics with a short disulfide (-S-S-) moiety were able to bind in the folded (compact) conformation but not in the common extended conformation, which requires the presence of a longer pyrophosphate (-O-P-O-P-O-) linkage. Since majority of NAD-dependent enzymes bind NAD in the extended conformation, selective inhibition of NAD kinases by disulfide analogues has been observed. Introduction of bromine at the C8 of the adenine ring restricted the adenosine moiety of diadenosine disulfides to the syn conformation making it even more compact. The 8-bromoadenosine adenosine disulfide (14) and its di(8-bromoadenosine) analogue (15) were found to be the most potent inhibitors of human (IC(50)=6 microM) and mycobacterium NAD kinase (IC(50)=14-19 microM reported so far. None of the disulfide analogues showed inhibition of lactate-, and inosine monophosphate-dehydrogenase (IMPDH), enzymes that bind NAD in the extended conformation. PMID:19596199

  9. A method of preparation and purification of (4R)-deuterated-reduced nicotinamide adenine dinucleotide phosphate.

    PubMed

    Jeong, S S; Gready, J E

    1994-09-01

    (4R)-Deuterated-reduced nicotinamide adenine dinucleotide phosphate, (4R)-[2H]NADPH, was prepared by reduction of NADP+ using an NADP(+)-dependent alcohol dehydrogenase (EC 1.1.1.2) from Thermoanaerobium brockii and isopropanol-d8 as substrate at 43 degrees C, pH 9. More than 80% of the product was identified as reduced cofactor by reverse-phase (ODS) HPLC, and a 1H NMR study showed that all of the reduced cofactor was (4R)-deuterated. Less than 10% of the product was oxidized cofactor, the remainder being impurities from the breakdown of the dinucleotide compound. Subsequent purification carried out by semipreparative reverse-phase HPLC with 0.1 M NaCl at pH 8.5 gave a compound of more than 96% purity. Separated (4R)-[2H]NADPH fractions were freeze-dried and the white solid was stored at 5 degrees C with desiccant. PMID:7810866

  10. Production and characterization of reduced NAADP (nicotinic acid-adenine dinucleotide phosphate).

    PubMed Central

    Billington, Richard A; Thuring, Jan W; Conway, Stuart J; Packman, Len; Holmes, Andrew B; Genazzani, Armando A

    2004-01-01

    The pyridine nucleotide NAADP (nicotinic acid-adenine dinucleotide phosphate) has been shown to act as a Ca2+-releasing intracellular messenger in a wide variety of systems from invertebrates to mammals and has been implicated in a number of cellular processes. NAADP is structurally very similar to its precursor, the endogenous coenzyme NADP and while much is known about the reduced form of NADP, NADPH, it is not known whether NAADP can also exist in a reduced state. Here we report that NAADP can be reduced to NAADPH by endogenous cellular enzymes and that NAADPH is functionally inert at the NAADP receptor. These data suggest that NAADPH could represent a mechanism for rapidly inactivating NAADP in cells. PMID:14606955

  11. Intermolecular interactions of reduced nicotinamide adenine dinucleotide (NADH) in solution

    NASA Astrophysics Data System (ADS)

    Jasensky, Joshua; Junaid Farooqi, M.; Urayama, Paul

    2008-10-01

    Nicotinamide adenine dinucleotide (NAD^+/NADH) is a coenzyme involved in cellular respiration as an electron transporter. In aqueous solution, the molecule exhibits a folding transition characterized by the stacking of its aromatic moieties. A transition to an unfolded conformation is possible using chemical denaturants like methanol. Because the reduced NADH form is fluorescent, the folding transition can be monitored using fluorescence spectroscopy, e.g., via a blue-shift in the UV-excited emission peak upon methanol unfolding. Here we present evidence of interactions between NADH molecules in solution. We measure the excited-state emission from NADH at various concentrations (1-100 μM in MOPS buffer, pH 7.5; 337-nm wavelength excitation). Unlike for the folded form, the emission peak wavelength of the unfolded form is concentration dependent, exhibiting a red-shift with higher NADH concentration, suggesting the presence of intermolecular interactions. An understanding of NADH spectra in solution would assist in interpreting intercellular NADH measurements used for the in vivo monitoring cellular energy metabolism.

  12. Nicotinic acid adenine dinucleotide phosphate (NAADP) and Ca2+ mobilization.

    PubMed

    Mándi, Miklós; Bak, Judit

    2008-01-01

    Many physiological processes are controlled by a great diversity of Ca2+ signals that depend on Ca2+ entry into the cell and/or Ca2+ release from internal Ca2+ stores. Ca2+ mobilization from intracellular stores is gated by a family of messengers including inositol-1,4,5-trisphosphate (InsP3), cyclic ADP-ribose (cADPR), and nicotinic acid adenine dinucleotide phosphate (NAADP). There is increasing evidence for a novel intracellular Ca2+ release channel that may be targeted by NAADP and that displays properties distinctly different from the well-characterized InsP3 and ryanodine receptors. These channels appear to localize on a wider range of intracellular organelles, including the acidic Ca2+ stores. Activation of the NAADP-sensitive Ca2+ channels evokes complex changes in cytoplasmic Ca2+ levels by means of channel chatter with other intracellular Ca2+ channels. The recent demonstration of changes in intracellular NAADP levels in response to physiologically relevant extracellular stimuli highlights the significance of NAADP as an important regulator of intracellular Ca2+ signaling. PMID:18569524

  13. Replacement of Tyr50 stacked on the si-face of the isoalloxazine ring of the flavin adenine dinucleotide prosthetic group modulates Bacillus subtilis ferredoxin-NADP(+) oxidoreductase activity toward NADPH.

    PubMed

    Seo, Daisuke; Naito, Hiroshi; Nishimura, Erika; Sakurai, Takeshi

    2015-08-01

    Ferredoxin-NAD(P)(+) oxidoreductases ([EC 1.18.1.2], [EC 1.18.1.3], FNRs) from green sulfur bacteria, purple non-sulfur bacteria and most of Firmicutes, such as Bacillus subtilis (BsFNR) are homo-dimeric flavoproteins homologous to bacterial NADPH-thioredoxin reductase. These FNRs contain two unique aromatic residues stacked on the si- and re-face of the isoalloxazine ring moiety of the FAD prosthetic group whose configurations are often found among other types of flavoproteins including plant-type FNR and flavodoxin, but not in bacterial NADPH-thioredoxin reductase. To investigate the role of the si-face Tyr50 residue in BsFNR, we replaced Tyr50 with Gly, Ser, and Trp and examined its spectroscopic properties and enzymatic activities in the presence of NADPH and ferredoxin (Fd) from B. subtilis (BsFd). The replacement of Tyr50 to Gly (Y50G), Ser (Y50S), and Trp (Y50W) in BsFNR resulted in a blue shift of the FAD transition bands. The Y50G and Y50S mutations enhanced the FAD fluorescence emission, whereas those of the wild type and Y50W mutant were quenched. All three mutants decreased thermal stabilities compared to wild type. Using a diaphorase assay, the k cat values for the Y50G and Y50S mutants in the presence of NADPH and ferricyanide were decreased to less than 5 % of the wild type activity. The Y50W mutant retained approximately 20 % reactivity in the diaphorase assay and BsFd-dependent cytochrome c reduction assay relative to wild type. The present results suggest that Tyr50 modulates the electronic properties and positioning of the prosthetic group. PMID:25698107

  14. Ototoxic Model of Oxaliplatin and Protection from Nicotinamide Adenine Dinucleotide

    PubMed Central

    Dalian, Ding; Haiyan, Jiang; Yong, Fu; Yongqi, Li; Salvi, Richard

    2014-01-01

    Oxaliplatin, an anticancer drug commonly used to treat colorectal cancer and other tumors, has a number of serious side effects, most notably neuropathy and ototoxicity. To gain insights into its ototoxic profile, oxaliplatin was applied to rat cochlear organ cultures. Consistent with it neurotoxic propensity, oxaliplatin selectively damaged nerve fibers at a very low dose 1 μM. In contrast, the dose required to damage hair cells and spiral ganglion neurons was 50 fold higher (50 μM). Oxailiplatin-induced cochlear lesions initially increased with dose, but unexpectedly decreased at very high doses. This non-linear dose response could be related to depressed oxaliplatin uptake via active transport mechanisms. Previous studies have demonstrated that axonal degeneration involves biologically active processes which can be greatly attenuated by nicotinamide adenine dinucleotide (NAD+). To determine if NAD+ would protect spiral ganglion axons and the hair cells from oxaliplatin damage, cochlear cultures were treated with oxaliplatin alone at doses of 10 μM or 50 μM respectively as controls or combined with 20 mM NAD+. Treatment with 10 μM oxaliplatin for 48 hours resulted in minor damage to auditory nerve fibers, but spared cochlear hair cells. However, when cochlear cultures were treated with 10 μM oxaliplatin plus 20 mM NAD+, most auditory nerve fibers were intact. 50 μM oxaliplatin destroyed most of spiral ganglion neurons and cochlear hair cells with apoptotic characteristics of cell fragmentations. However, 50 μM oxaliplatin plus 20 mM NAD+ treatment greatly reduced neuronal degenerations and hair cell missing. The results suggested that NAD+ provides significant protection against oxaliplatin-induced neurotoxicity and ototoxicity, which may be due to its actions of antioxidant, antiapoptosis, and energy supply. PMID:25419212

  15. Biochemical characterization of a flavin adenine dinucleotide-dependent monooxygenase, ornithine hydroxylase from Pseudomonas aeruginosa, suggests a novel reaction mechanism.

    PubMed

    Meneely, Kathleen M; Lamb, Audrey L

    2007-10-23

    Pyoverdin is the hydroxamate siderophore produced by the opportunistic pathogen Pseudomonas aeruginosa under the iron-limiting conditions of the human host. This siderophore includes derivatives of ornithine in the peptide backbone that serve as iron chelators. PvdA is the ornithine hydroxylase, which performs the first enzymatic step in preparation of these derivatives. PvdA requires both flavin adenine dinucleotide (FAD) and nicotinamide adenine dinucleotide phosphate (NADPH) for activity; it was found to be a soluble monomer most active at pH 8.0. The enzyme demonstrated Michaelis-Menten kinetics in an NADPH oxidation assay, but a hydroxylation assay indicated substrate inhibition at high ornithine concentration. PvdA is highly specific for both substrate and coenzyme, and lysine was shown to be a nonsubstrate effector and mixed inhibitor of the enzyme with respect to ornithine. Chloride is a mixed inhibitor of PvdA with respect to ornithine but a competitive inhibitor with respect to NADPH, and a bulky mercurial compound (p-chloromercuribenzoate) is a mixed inhibitor with respect to ornithine. Steady-state experiments indicate that PvdA/FAD forms a ternary complex with NADPH and ornithine for catalysis. PvdA in the absence of ornithine shows slow substrate-independent flavin reduction by NADPH. Biochemical comparison of PvdA to p-hydroxybenzoate hydroxylase (PHBH, from Pseudomonas fluorescens) and flavin-containing monooxygenases (FMOs, from Schizosaccharomyces pombe and hog liver microsomes) leads to the hypothesis that PvdA catalysis proceeds by a novel reaction mechanism. PMID:17900176

  16. Binding of nicotinamide–adenine dinucleotides to diphtheria toxin

    PubMed Central

    Montanaro, L.; Sperti, Simonetta

    1967-01-01

    1. Changes in protein fluorescence have been utilized in determining the stoicheiometry and dissociation constants of the complexes of diphtheria toxin with NADH2, NAD, NADPH2 and NADP. 2. The binding stoicheiometry is 2moles of NADH2 and 1mole of NADPH2/mole of diphtheria toxin. The binding sites for NADH2 appear to be equivalent and independent. 3. The toxin shows a higher affinity for the reduced than for the oxidized forms of the nucleotides. 4. Dissociation constants at 0·01I, pH7 and 25° are 0·7×10−6m for NADH2 and 0·45×10−6m for NADPH2. Dissociation constants increase with increasing ionic strength, indicating that the binding is mainly electrostatic. 5. Bound NADH2 and NADPH2 may be activated to fluoresce by the transfer of energy from the excited aromatic amino acids of the toxin. Activation and emission spectra of bound and free nucleotides are compared. 6. Since NAD and NADH2 are cofactors specifically required for the inhibition of protein synthesis by diphtheria toxin, the possible role of toxin–nucleotide complexes is discussed in this regard. PMID:4384596

  17. Cleavage of nicotinamide adenine dinucleotide by the ribosome-inactivating protein from Momordica charantia.

    PubMed

    Vinkovic, M; Dunn, G; Wood, G E; Husain, J; Wood, S P; Gill, R

    2015-09-01

    The interaction of momordin, a type 1 ribosome-inactivating protein from Momordica charantia, with NADP(+) and NADPH has been investigated by X-ray diffraction analysis of complexes generated by co-crystallization and crystal soaking. It is known that the proteins of this family readily cleave the adenine-ribose bond of adenosine and related nucleotides in the crystal, leaving the product, adenine, bound to the enzyme active site. Surprisingly, the nicotinamide-ribose bond of oxidized NADP(+) is cleaved, leaving nicotinamide bound in the active site in the same position but in a slightly different orientation to that of the five-membered ring of adenine. No binding or cleavage of NADPH was observed at pH 7.4 in these experiments. These observations are in accord with current views of the enzyme mechanism and may contribute to ongoing searches for effective inhibitors. PMID:26323301

  18. Glutamate Synthase: Properties of the Reduced Nicotinamide Adenine Dinucleotide-Dependent Enzyme from Saccharomyces cerevisiae

    PubMed Central

    Roon, Robert J.; Even, Harvey L.; Larimore, Fred

    1974-01-01

    A reduced nicotinamide adenine dinucleotide (NADH)-dependent glutamate synthase has been detected and partially purified from crude extracts of Saccharomyces cerevisiae. The enzyme is specific for NADH, glutamine, and α-ketoglutarate (Km values of 2.6 μM, 1.0 mM, and 140 μM, respectively) and has a pH optimum between 7.1 and 7.7. The stoichiometry of the reaction has been determined as 2 mol of glutamate synthesized per mol of glutamine consumed. Glutamate synthase can be distinguished from either of the glutamate dehydrogenases of yeast on the basis of its substrate requirements and behavior during agarose gel and ion exchange chromatography. Variations in the specific activity of glutamate synthase, which occur in response to changes in the growth medium, are similar in character to those observed with the nicotinamide adenine dinucleotide phosphate-dependent (anabolic) glutamate dehydrogenase. PMID:4362465

  19. Affinity chromatography of nicotinamide–adenine dinucleotide-linked dehydrogenases on immobilized derivatives of the dinucleotide

    PubMed Central

    Barry, Standish; O'Carra, Pádraig

    1973-01-01

    1. Three established methods for immobilization of ligands through primary amino groups promoted little or no attachment of NAD+ through the 6-amino group of the adenine residue. Two of these methods (coupling to CNBr-activated agarose and to carbodi-imide-activated carboxylated agarose derivatives) resulted instead in attachment predominantly through the ribosyl residues. Other immobilized derivatives were prepared by azolinkage of NAD+ (probably through the 8 position of the adenine residue) to a number of different spacer-arm–agarose derivatives. 2. The effectiveness of these derivatives in the affinity chromatography of a variety of NAD-linked dehydrogenases was investigated, applying rigorous criteria to distinguish general or non-specific adsorption effects from truly NAD-specific affinity (bio-affinity). The ribosyl-attached NAD+ derivatives displayed negligible bio-affinity for any of the NAD-linked dehydrogenases tested. The most effective azo-linked derivative displayed strong bio-affinity for glycer-aldehyde 3-phosphate dehydrogenase, weaker bio-affinity for lactate dehydrogenase and none at all for malate dehydrogenase, although these three enzymes have very similar affinities for soluble NAD+. Alcohol dehydrogenase and xanthine dehydrogenase were subject to such strong non-specific interactions with the hydrocarbon spacer-arm assembly that any specific affinity was completely eclipsed. 3. It is concluded that, in practice, the general effectiveness of a general ligand may be considerably distorted and attenuated by the nature of the immobilization linkage. However, this attenuation can result in an increase in specific effectiveness, allowing dehydrogenases to be separated from one another in a manner unlikely to be feasible if the general effectiveness of the ligand remained intact. 4. The bio-affinity of the various derivatives for lactate dehydrogenase is correlated with the known structure of the NAD+-binding site of this enzyme. Problems

  20. Induction of nicotinamide-adenine dinucleotide phosphate oxidase and apoptosis by biodegradable polymers in macrophages: implications for stents.

    PubMed

    Potnis, Pushya A; Tesfamariam, Belay; Wood, Steven C

    2011-06-01

    The drug-eluting stent platform has a limited surface area, and a polymer carrier matrix is coated to enable sufficient loading of drugs. The development of a suitable polymer has been challenging because it must exhibit biocompatibility with the intravascular milieu. The use of biodegradable polymers seems to be attractive because it enables drug release as it degrades and is eventually eliminated from the body leaving the permanent metallic stent polymer-free. The aim of this study was to investigate the biocompatibility of biodegradable polymers using the human monocyte cell line. Cultured monocytes differentiated into functional macrophages (THP-1) were incubated with various polymers including poly-L-lactide (PLA), polycaprolactone (PCL), or poly-D, L-lactide-co-glycolide (PLGA) for up to 5 days. Exposure of cells to the polymers resulted in macrophage-polymer adhesion and induced marked pro-oxidant species as measured by calcein AM uptake assay and flow cytometric analysis of 2',7'-dichlorofluorescin fluorescence, respectively. Real-time reverse-transcription polymerase chain reaction and Western blot analysis of expression of nicotinamide-adenine dinucleotide phosphate (NADPH) oxidases revealed enhanced expression of NADPH oxidase subunits in response to PLA and PLGA compared with that of PCL. Flow cytometric analysis of fluorescein isothiocyanate-Annexin V and propium iodide-stained PLA and PGLA polymer-exposed THP-1 cells showed early and late apoptotic changes. Similarly, exposure to the PLA and PGLA polymers, but not to the PCL polymer, resulted in enhanced staining for cleaved poly(ADP-ribose) polymerase-1, a protein fragment produced by caspase cleavage. These results indicate that biodegradable polymers are associated with cell adhesion, NADPH oxidase-induced generation of reactive oxygen species and excess apoptosis. PMID:21436724

  1. Sample preparation workflow for the liquid chromatography tandem mass spectrometry based analysis of nicotinamide adenine dinucleotide phosphate cofactors in yeast.

    PubMed

    Ortmayr, Karin; Nocon, Justyna; Gasser, Brigitte; Mattanovich, Diethard; Hann, Stephan; Koellensperger, Gunda

    2014-08-01

    The accurate quantification of the highly unstable intracellular cofactor nicotinamide adenine dinucleotide phosphate in its oxidized and reduced forms demands a thorough evaluation of the analytical workflow and dedicated methods reflecting their solution chemistry as well as the biological importance of their ratio. In this work, we present a workflow for the analysis of intracellular levels of oxidized and reduced nicotinamide adenine dinucleotide phosphate in the yeast Pichia pastoris, including hot aqueous extraction, chromatographic separation in reversed-phase conditions employing a 100% wettable stationary phase, and subsequent tandem mass spectrometric analysis. A thorough evaluation and optimization of the sample preparation procedure resulted in excellent biological repeatabilities (on average <10%, N = 3) without employing an internal standardization approach. As a consequence, the methodology proved to be appropriate for the relative assessment of intracellular levels of oxidized and reduced nicotinamide adenine dinucleotide phosphate in different P. pastoris strains. The ratio of reduced versus oxidized nicotinamide adenine dinucleotide phosphate was significantly higher in an engineered strain overexpressing glucose-6-phosphate dehydrogenase than in the corresponding wildtype strain. Interestingly, a difference was also observed in the nicotinamide adenine dinucleotide phosphate pool size, which was significantly higher in the wildtype than in the modified strain. PMID:24841212

  2. Isotope effect studies of the chemical mechanism of nicotinamide adenine dinucleotide malic enzyme from Crassula

    SciTech Connect

    Grissom, C.B.; Willeford, O.; Wedding, R.T.

    1987-05-05

    The /sup 13/C primary kinetic isotope effect on the decarboxylation of malate by nicotinamide adenine dinucleotide malic enzyme from Crassula argentea is 1.0199 +/- 0.0006 with proteo L-malate-2-H and 1.0162 +/- 0.0003 with malate-2-d. The primary deuterium isotope effect is 1.45 +/- 0.10 on V/K and 1.93 +/- 0.13 on V/sub max/. This indicates a stepwise conversion of malate to pyruvate and CO/sub 2/ with hydride transfer preceding decarboxylation, thereby suggesting a discrete oxaloacetate intermediate. This is in agreement with the stepwise nature of the chemical mechanism of other malic enzymes despite the Crassula enzyme's inability to reduce or decarboxylate oxaloacetate. Differences in morphology and allosteric regulation between enzymes suggest specialization of the Crassula malic enzyme for the physiology of crassulacean and acid metabolism while maintaining the catalytic events founds in malic enzymes from animal sources.

  3. Conducting polymer and its composite materials based electrochemical sensor for Nicotinamide Adenine Dinucleotide (NADH).

    PubMed

    Omar, Fatin Saiha; Duraisamy, Navaneethan; Ramesh, K; Ramesh, S

    2016-05-15

    Nicotinamide Adenine Dinucleotide (NADH) is an important coenzyme in the human body that participates in many metabolic reactions. The impact of abnormal concentrations of NADH significantly causes different diseases in human body. Electrochemical detection of NADH using bare electrode is a challenging task especially in the presence of main electroactive interferences such as ascorbic acid (AA), uric acid (UA) and dopamine (DA). Modified electrodes have been widely explored to overcome the problems of poor sensitivity and selectivity occurred from bare electrodes. This review gives an overview on the progress of using conducting polymers, polyelectrolyte and its composites (co-polymer, carbonaceous, metal, metal oxide and clay) based modified electrodes for the sensing of NADH. In addition, developments on the fabrication of numerous conducting polymer composites based modified electrodes are clearly described. PMID:26774092

  4. Nicotinamide Adenine Dinucleotide Phosphate-Dependent Formate Dehydrogenase from Clostridium thermoaceticum: Purification and Properties

    PubMed Central

    Andreesen, Jan R.; Ljungdahl, Lars G.

    1974-01-01

    The nicotinamide adenine dinucleotide phosphate (NADP)-dependent formate dehydrogenase in Clostridium thermoaceticum used, in addition to its natural electron acceptor, methyl and benzyl viologen. The enzyme was purified to a specific activity of 34 (micromoles per minute per milligram of protein) with NADP as electron acceptor. Disc gel electrophoresis of the purified enzyme yielded two major and two minor protein bands, and during centrifugation in sucrose gradients two components of apparent molecular weights of 270,000 and 320,000 were obtained, both having formate dehydrogenase activity. The enzyme preparation catalyzed the reduction of riboflavine 5′-phosphate flavine adenine dinucleotide and methyl viologen by using reduced NADP as a source of electrons. It also had reduced NADP oxidase activity. The enzyme was strongly inhibited by cyanide and ethylenediaminetetraacetic acid. It was also inhibited by hypophosphite, an inhibition that was reversed by formate. Sulfite inhibited the activity with NADP but not with methyl viologen as acceptor. The apparent Km at 55 C and pH 7.5 for formate was 2.27 × 10−4 M with NADP and 0.83 × 10−4 with methyl viologen as acceptor. The apparent Km for NADP was 1.09 × 10−4 M and for methyl viologen was 2.35 × 10−3 M. NADP showed substrate inhibition at 5 × 10−3 M and higher concentrations. With NADP as electron acceptor, the enzyme had a broad pH optimum between 7 and 9.5. The apparent temperature optimum was 85 C. In the absence of substrates, the enzyme was stable at 70 C but was rapidly inactivated at temperatures above 73 C. The enzyme was very sensitive to oxygen but was stabilized by thiol-iron complexes and formate. PMID:4154039

  5. Reduction of mitomycin C is catalysed by human recombinant NRH:quinone oxidoreductase 2 using reduced nicotinamide adenine dinucleotide as an electron donating co-factor

    PubMed Central

    Jamieson, D; Tung, A T Y; Knox, R J; Boddy, A V

    2006-01-01

    NRH:Quinone Oxidoreductase 2 (NQO2) has been described as having no enzymatic activity with nicotinamide adenine dinucleotide (NADH) or NADPH as electron donating cosubstrates. Mitomycin C (MMC) is both a substrate for and a mechanistic inhibitor of the NQO2 homologue NQO1. NRH:quinone oxidoreductase 2 catalysed the reduction of MMC at pH 5.8 with NADH as a co-factor. This reaction results in species that inhibit the NQO2-mediated metabolism of CB1954. In addition, MMC caused an increase in DNA cross-links in a cell line transfected to overexpress NQO2 to an extent comparable to that observed with an isogenic NQO1-expressing cell line. These data indicate that NQO2 may contribute to the metabolism of MMC to cytotoxic species. PMID:17031400

  6. Magnitude of malate-aspartate reduced nicotinamide adenine dinucleotide shuttle activity in intact respiring tumor cells.

    PubMed

    Greenhouse, W V; Lehninger, A L

    1977-11-01

    Measurements of respiration, CO2 and lactate production, and changes in the levels of various key metabolites of the glycolytic sequence and tricarboxylic acid cycle were made on five lines of rodent ascites tumor cells (two strains of Ehrlich ascites tumor cells, Krebs II carcinoma, AS-30D carcinoma, and L1210 cells) incubated aerobically in the presence of uniformly labeled D-[14C]glucose. From these data, as well as earlier evidence demonstrating that the reduced nicotinamide adenine dinucleotide (NADH) shuttle in these cells requires a transaminase step and is thus identified as the malate-aspartate shuttle (W.V.V. Greenhouse and A.L. Lehninger, Cancer Res., 36: 1392-1396, 1976), metabolic flux diagrams were constructed for the five cell lines. These diagrams show the relative rates of glycolysis, the tricarboxylic acid cycle, electron transport, and the malate-aspartate shuttle in these tumors. Large amounts of cytosolic NADH were oxidized by the mitochondrial respiratory chain via the NADH shuttle, comprising anywhere from about 20 to 80% of the total flow of reducing equivalents to oxygen in these tumors. Calculations of the sources of energy for adenosine triphosphate synthesis indicated that on the average about one-third of the respiratory adenosine triphosphate is generated by electron flow originating from cytosolic NADH via the malate-aspartate shuttle. PMID:198130

  7. Ligation-triggered fluorescent silver nanoclusters system for the detection of nicotinamide adenine dinucleotide.

    PubMed

    Cao, Zhijuan; Wang, Pei; Qiu, Xue; Lau, Choiwan; Lu, Jianzhong

    2014-03-01

    Herein, we demonstrate a novel silver nanocluster-based fluorescent system for the detection of nicotinamide adenine dinucleotide (NAD(+)), an important biological small molecule involved in a wide range of biological processes. A single-stranded dumbbell DNA probe was designed and used for the assay, which contained a nick in the stem, a poly-cytosine nucleotide loop close to 5' end as the template for the formation of highly fluorescent silver nanoclusters (Ag NCs) and another loop close to 3' end. Only in the presence of NAD(+), the probe was linked at 5' and 3' ends by Escherichia coli DNA ligase, which blocked the DNA polymerase-based extension reaction, ensuring the formation of fluorescent Ag NCs. This technique provided a logarithmic linear relationship in the range of 1 pM-500 nM with a detection limit of as low as 1 pM NAD(+), and exhibited high selectivity against its analogues, and was then successfully used for the detection of NAD(+) level in four kinds of cell homogenates. In addition, this new approach was conducted in an isothermal and homogeneous condition without the need of any thermal cycling, washing, and separation steps, making it very simple. Overall, this label-free protocol offers a promising alternative for the detection of NAD(+), taking advantage of specificity, sensitivity, cost-efficiency, and simplicity. PMID:24442015

  8. BRCA1 as a nicotinamide adenine dinucleotide (NAD)-dependent metabolic switch in ovarian cancer

    PubMed Central

    Li, Da; Chen, Na-Na; Cao, Ji-Min; Sun, Wu-Ping; Zhou, Yi-Ming; Li, Chun-Yan; Wang, Xiu-Xia

    2014-01-01

    Both hereditary factors (e.g., BRCA1) and nicotinamide adenine dinucleotide (NAD)-dependent metabolic pathways are implicated in the initiation and progression of ovarian cancer. However, whether crosstalk exists between BRCA1 and NAD metabolism remains largely unknown. Here, we showed that: (i) BRCA1 inactivation events (mutation and promoter methylation) were accompanied by elevated levels of NAD; (ii) the knockdown or overexpression of BRCA1 was an effective way to induce an increase or decrease of nicotinamide phosphoribosyltransferase (Nampt)-related NAD synthesis, respectively; and (iii) BRCA1 expression patterns were inversely correlated with NAD levels in human ovarian cancer specimens. In addition, it is worth noting that: (i) NAD incubation induced increased levels of BRCA1 in a concentration-dependent manner; (ii) Nampt knockdown-mediated reduction in NAD levels was effective at inhibiting BRCA1 expression; and (iii) the overexpression of Nampt led to higher NAD levels and a subsequent increase in BRCA1 levels in primary ovarian cancer cells and A2780, HO-8910 and ES2 ovarian cancer cell lines. These results highlight a novel link between BRCA1 and NAD. Our findings imply that genetic (e.g., BRCA1 inactivation) and NAD-dependent metabolic pathways are jointly involved in the malignant progression of ovarian cancer. PMID:25486197

  9. 3-Picolyl Azide Adenine Dinucleotide as a Probe of Femtosecond to Picosecond Enzyme Dynamics

    PubMed Central

    Dutta, Samrat; Li, Yun-Liang; Rock, William; Houtman, Jon C. D.; Kohen, Amnon; Cheatum, Christopher M.

    2012-01-01

    Functionally relevant femtosecond to picosecond dynamics in enzyme active sites can be difficult to measure because of a lack of spectroscopic probes that can be located in the active site without altering the behavior of the enzyme. We have developed a new NAD+ analog 3-Picolyl Azide Adenine Dinucleotide (PAAD+), which has the potential to be a general spectroscopic probe for NAD-dependent enzymes. This analog is stable and binds in the active site of a typical NAD-dependent enzyme formate dehydrogenase (FDH) with similar characteristics to natural NAD+. It has an isolated infrared transition with high molar absorptivity that makes it suitable for observing enzyme dynamics using 2D IR spectroscopy. 2D IR experiments show that in aqueous solution, the analog undergoes complete spectral diffusion within hundreds of femtoseconds consistent with the water hydrogen bonding dynamics that would be expected. When bound to FDH in a binary complex, it shows picosecond fluctuations and a large static offset, consistent with previous studies of the binary complexes of this enzyme. These results show that PAAD+ is an excellent probe of local dynamics and that it should be a general tool for probing the dynamics of a wide range of NAD-dependent enzymes. PMID:22126535

  10. Preclinical evidence of mitochondrial nicotinamide adenine dinucleotide as an effective alarm parameter under hypoxia

    NASA Astrophysics Data System (ADS)

    Shi, Hua; Sun, Nannan; Mayevsky, Avraham; Zhang, Zhihong; Luo, Qingming

    2014-01-01

    Early detection of tissue hypoxia in the intensive care unit is essential for effective treatment. Reduced nicotinamide adenine dinucleotide (NADH) has been suggested to be the most sensitive indicator of tissue oxygenation at the mitochondrial level. However, no experimental evidence comparing the kinetics of changes in NADH and other physiological parameters has been provided. The aim of this study is to obtain the missing data in a systematic and reliable manner. We constructed four acute hypoxia models, including hypoxic hypoxia, hypemic hypoxia, circulatory hypoxia, and histogenous hypoxia, and measured NADH fluorescence, tissue reflectance, cerebral blood flow, respiration, and electrocardiography simultaneously from the induction of hypoxia until death. We found that NADH was not always the first onset parameter responding to hypoxia. The order of responses was mainly affected by the cause of hypoxia. However, NADH reached its alarm level earlier than the other monitored parameters, ranging from several seconds to >10 min. As such, we suggest that the NADH can be used as a hypoxia indicator, although the exact level that should be used must be further investigated. When the NADH alarm is detected, the body still has a chance to recover if appropriate and timely treatment is provided.

  11. Electrochemical oxidation of dihydronicotinamide adenine dinucleotide at nitrogen-doped carbon nanotube electrodes.

    PubMed

    Goran, Jacob M; Favela, Carlos A; Stevenson, Keith J

    2013-10-01

    Nitrogen-doped carbon nanotubes (N-CNTs) substantially lower the overpotential necessary for dihydronicotinamide adenine dinucleotide (NADH) oxidation compared to nondoped CNTs or traditional carbon electrodes such as glassy carbon (GC). We observe a 370 mV shift in the peak potential (Ep) from GC to CNTs and another 170 mV shift from CNTs to 7.4 atom % N-CNTs in a sodium phosphate buffer solution (pH 7.0) with 2.0 mM NADH (scan rate 10 mV/s). The sensitivity of 7.4 atom % N-CNTs to NADH was measured at 0.30 ± 0.04 A M(-1) cm(-2), with a limit of detection at 1.1 ± 0.3 μM and a linear range of 70 ± 10 μM poised at a low potential of -0.32 V (vs Hg/Hg2SO4). NADH fouling, known to occur to the electrode surface during NADH oxidation, was investigated by measuring both the change in Ep and the resulting loss of electrode sensitivity. NADH degradation, known to occur in phosphate buffer, was characterized by absorbance at 340 nm and correlated with the loss of NADH electroactivity. N-CNTs are further demonstrated to be an effective platform for dehydrogenase-based biosensing by allowing glucose dehydrogenase to spontaneously adsorb onto the N-CNT surface and measuring the resulting electrode's sensitivity to glucose. The glucose biosensor had a sensitivity of 0.032 ± 0.003 A M(-1) cm(-2), a limit of detection at 6 ± 1 μM, and a linear range of 440 ± 50 μM. PMID:23991631

  12. Nicotinic acid-adenine dinucleotide phosphate activates the skeletal muscle ryanodine receptor.

    PubMed Central

    Hohenegger, Martin; Suko, Josef; Gscheidlinger, Regina; Drobny, Helmut; Zidar, Andreas

    2002-01-01

    Calcium is a universal second messenger. The temporal and spatial information that is encoded in Ca(2+)-transients drives processes as diverse as neurotransmitter secretion, axonal outgrowth, immune responses and muscle contraction. Ca(2+)-release from intracellular Ca(2+) stores can be triggered by diffusible second messengers like Ins P (3), cyclic ADP-ribose or nicotinic acid-adenine dinucleotide phosphate (NAADP). A target has not yet been identified for the latter messenger. In the present study we show that nanomolar concentrations of NAADP trigger Ca(2+)-release from skeletal muscle sarcoplasmic reticulum. This was due to a direct action on the Ca(2+)-release channel/ryanodine receptor type-1, since in single channel recordings, NAADP increased the open probability of the purified channel protein. The effects of NAADP on Ca(2+)-release and open probability of the ryanodine receptor occurred over a similar concentration range (EC(50) approximately 30 nM) and were specific because (i) they were blocked by Ruthenium Red and ryanodine, (ii) the precursor of NAADP, NADP, was ineffective at equimolar concentrations, (iii) NAADP did not affect the conductance and reversal potential of the ryanodine receptor. Finally, we also detected an ADP-ribosyl cyclase activity in the sarcoplasmic reticulum fraction of skeletal muscle. This enzyme was not only capable of synthesizing cyclic GDP-ribose but also NAADP, with an activity of 0.25 nmol/mg/min. Thus, we conclude that NAADP is generated in the vicinity of type 1 ryanodine receptor and leads to activation of this ion channel. PMID:12102654

  13. Relationships between laser powers and photoacoustic signal intensities of flavin adenine dinucleotide and beta-carotene dissolved in solutions

    NASA Astrophysics Data System (ADS)

    Imakubo, Keiichi

    1994-10-01

    Ar ion laser-induced photoacoustic spectroscopy has been performed on 0.01 mu M flavin adenine dinucleotide in H2O and 0.01 mu M beta-carotene in n-hexane where the optical absorption spectroscopy is not applicable. On the basis of the linear relationships between laser powers and photoacoustic signal intensities up to 500 mW, it may be concluded that laser power ranging from 10 to 50 mW is required for the successful observation of photoacoustic signals without any photochemical or photobiological effects.

  14. In vivo native fluorescence spectroscopy and nicotinamide adinine dinucleotide/flavin adenine dinucleotide reduction and oxidation states of oral submucous fibrosis for chemopreventive drug monitoring

    NASA Astrophysics Data System (ADS)

    Sivabalan, Shanmugam; Vedeswari, C. Ponranjini; Jayachandran, Sadaksharam; Koteeswaran, Dornadula; Pravda, Chidambaranathan; Aruna, Prakasa Rao; Ganesan, Singaravelu

    2010-01-01

    Native fluorescence spectroscopy has shown potential to characterize and diagnose oral malignancy. We aim at extending the native fluorescence spectroscopy technique to characterize normal and oral submucous fibrosis (OSF) patients under pre- and post-treated conditions, and verify whether this method could also be considered in the monitoring of therapeutic prognosis noninvasively. In this study, 28 normal subjects and 28 clinically proven cases of OSF in the age group of 20 to 40 years are diagnosed using native fluorescence spectroscopy. The OSF patients are given dexamethasone sodium phosphate and hyaluronidase twice a week for 6 weeks, and the therapeutic response is monitored using fluorescence spectroscopy. The fluorescence emission spectra of normal and OSF cases of both pre- and post-treated conditions are recorded in the wavelength region of 350 to 600 nm at an excitation wavelength of 330 nm. The statistical significance is verified using discriminant analysis. The oxidation-reduction ratio of the tissue is also calculated using the fluorescence emission intensities of flavin adenine dinucleotide and nicotinamide adinine dinucleotide at 530 and 440 nm, respectively, and they are compared with conventional physical clinical examinations. This study suggests that native fluorescence spectroscopy could also be extended to OSF diagnosis and therapeutic prognosis.

  15. Oxidized and Reduced Nicotinamide Adenine Dinucleotide Phosphate Levels of Plants Hardened and Unhardened Against Chilling Injury

    PubMed Central

    Kuraishi, Susumu; Arai, Noriko; Ushijima, Tadahiro; Tazaki, Tadayoshi

    1968-01-01

    Pea plants (Pisum sativum L. var. Alaska) subjected to low temperature (5°) in the light acquired resistance against chilling injury. Unhardened plants maintained high NADP and low NADPH levels during illumination at 25° but hardened plants had low NADP and high NADPH levels in the light. When the unhardened plants were transferred to the dark room at 25°, their NADPH levels decreased immediately. On the other hand, hardened plants maintained a high NADPH level for a few hours even in the dark. PMID:16656757

  16. Comparison of nicotinamide adenine dinucleotide phosphate-induced immune responses against biotrophic and necrotrophic pathogens in Arabidopsis thaliana.

    PubMed

    Wang, Chenggang; Zhang, Xudong; Mou, Zhonglin

    2016-06-01

    The pyridine nucleotide nicotinamide adenine dinucleotide phosphate (NADP) is a universal coenzyme in anabolic reactions and also functions in intracellular signaling by serving as a substrate for production of the Ca(2+)-mobilizing agent nicotinic acid adenine dinucleotide phosphate (NAADP). It has recently been shown that, in mammalian cells, cellular NADP can be released into the extracellular compartment (ECC) upon environmental stresses by active exocytosis or diffusion through transmembrane transporters in living cells or passive leakage across the membrane in dying cells. In the ECC, NADP can either serve as a substrate for production of NAADP or act directly on purinoceptors to activate transmembrane signaling. In the last several years, extracellular NADP has also been suggested to function in plant immune responses. Here, we compared exogenous NADP-induced immune responses against biotrophic and necrotrophic pathogens in the Arabidopsis thaliana ecotype Columbia and found that NADP addition induces salicylic acid-mediated defense signaling but not jasmonic acid/ethylene-mediated defense responses. These results suggest the specificity of exogenous NADP-activated signaling in plants. PMID:27031653

  17. Nicotinic Acid Adenine Dinucleotide Phosphate (Naadp+) Is an Essential Regulator of T-Lymphocyte Ca2+-Signaling

    PubMed Central

    Berg, Ingeborg; Potter, Barry V.L.; Mayr, Georg W.; Guse, Andreas H.

    2000-01-01

    Microinjection of human Jurkat T-lymphocytes with nicotinic acid adenine dinucleotide phosphate (NAADP+) dose-dependently stimulated intracellular Ca2+-signaling. At a concentration of 10 nM NAADP+ evoked repetitive and long-lasting Ca2+-oscillations of low amplitude, whereas at 50 and 100 nM, a rapid and high initial Ca2+-peak followed by trains of smaller Ca2+-oscillations was observed. Higher concentrations of NAADP+ (1 and 10 μM) gradually reduced the initial Ca2+-peak, and a complete self-inactivation of Ca2+-signals was seen at 100 μM. The effect of NAADP+ was specific as it was not observed with nicotinamide adenine dinucleotide phosphate. Both inositol 1,4,5-trisphosphate– and cyclic adenosine diphosphoribose–mediated Ca2+-signaling were efficiently inhibited by coinjection of a self-inactivating concentration of NAADP+. Most importantly, microinjection of a self-inactivating concentration of NAADP+ completely abolished subsequent stimulation of Ca2+-signaling via the T cell receptor/CD3 complex, indicating that a functional NAADP+ Ca2+-release system is essential for T-lymphocyte Ca2+-signaling. PMID:10931869

  18. Sleep Fragmentation in Mice Induces Nicotinamide Adenine Dinucleotide Phosphate Oxidase 2-Dependent Mobilization, Proliferation, and Differentiation of Adipocyte Progenitors in Visceral White Adipose Tissue

    PubMed Central

    Khalyfa, Abdelnaby; Wang, Yang; Zhang, Shelley X.; Qiao, Zhuanhong; Abdelkarim, Amal; Gozal, David

    2014-01-01

    Background: Chronic sleep fragmentation (SF) without sleep curtailment induces increased adiposity. However, it remains unclear whether mobilization, proliferation, and differentiation of adipocyte progenitors (APs) occurs in visceral white adipose tissue (VWAT), and whether nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (Nox2) activity plays a role. Methods: Changes in VWAT depot cell size and AP proliferation were assessed in wild-type and Nox2 null male mice exposed to SF and control sleep (SC). To assess mobilization, proliferation, and differentiation of bone marrow mesenchymal stem cells (BM-MSC), Sca-1+ bone marrow progenitors were isolated from GFP+ or RFP+ mice, and injected intravenously to adult male mice (C57BL/6) previously exposed to SF or SC. Results: In comparison with SC, SF was associated with increased weight accrual at 3 w and thereafter, larger subcutaneous and visceral fat depots, and overall adipocyte size at 8 w. Increased global AP numbers in VWAT along with enhanced AP BrDU labeling in vitro and in vivo emerged in SF. Systemic injections of GFP+ BM-MSC resulted in increased AP in VWAT, as well as in enhanced differentiation into adipocytes in SF-exposed mice. No differences occurred between SF and SC in Nox2 null mice for any of these measurements. Conclusions: Chronic sleep fragmentation (SF) induces obesity in mice and increased proliferation and differentiation of adipocyte progenitors (AP) in visceral white adipose tissue (VWAT) that are mediated by increased Nox2 activity. In addition, enhanced migration of bone marrow mesenchymal stem cells from the systemic circulation into VWAT, along with AP differentiation, proliferation, and adipocyte formation occur in SF-exposed wild-type but not in oxidase 2 (Nox2) null mice. Thus, Nox2 may provide a therapeutic target to prevent obesity in the context of sleep disorders. Citation: Khalyfa A, Wang Y, Zhang SX, Qiao Z, Abdelkarim A, Gozal D. Sleep fragmentation in mice induces

  19. NADPH oxidases are critical targets for prevention of ethanol-induced bone loss

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The molecular mechanisms through which chronic alcohol consumption induce bone loss and osteoporosis are largely unknown. Ethanol increases expression and activates NADPH (nicotinamide adenine dinucleotide phosphate) oxidase enzymes (Nox) in osteoblasts leading to accumulation of reactive oxygen spe...

  20. Separation of the primary dehydrogenase from the cytochromes of the nicotinamide adenine dinucleotide (reduced form) oxidase of Bacillus megaterium.

    PubMed

    Yu, L; Wolin, M J

    1972-01-01

    A selective extraction procedure was developed for sequentially extracting a fraction containing the primary dehydrogenase and a fraction containing the cytochromes of the nicotinamide adenine dinucleotide (reduced form) (NADH) oxidase of Bacillus megaterium KM membranes. The primary dehydrogenase (NADH-2,6-dichlorophenolindophenol oxidoreductase) activity was extracted from sonically treated membranes with 0.4% sodium deoxycholate for 30 min at 4 C. The insoluble residue was extracted with 0.4% sodium deoxycholate in 1 m KCl for 30 min at 25 C. A combination of the two extracts and dilution in Mg(2+) gave good recovery of the original membrane NADH oxidase activity. The primary dehydrogenase fraction contained 41% of the membrane protein, no cytochromes, flavine adenine dinucleotide as the sole acid-extractable flavine, and most of the membrane ribonucleic acid (RNA). The cytochrome-containing fraction had 16% of the membrane protein, 61% of the membrane cytochrome with the same relative amounts of cytochromes a and b as the original membrane, no acid-extractable flavine, little RNA, and no oxidoreductase activity. The oxidoreductase fraction remained soluble after removal of deoxycholate whereas the cytochrome fraction became insoluble after removal of deoxycholate-KCl, but the precipitated fraction could be redissolved in 0.4% sodium deoxycholate. Treatment of both fractions with ribonuclease to destroy all of the RNA present did not affect the ability of the fractions to recombine into a functional oxidase unit. Treatment of either fraction with phospholipase A prevented restoration of a functional oxidase when the oxidoreductase and cytochrome fractions were treated in solution, but no affect on restoration of oxidase was observed when the phospholipase A treatment was carried out with the soluble oxidoreductase fraction and the insoluble cytochrome fraction. PMID:4333382

  1. The conserved baculovirus protein p33 (Ac92) is a flavin adenine dinucleotide-linked sulfhydryl oxidase

    SciTech Connect

    Long, C.M.; Rohrmann, G.F.; Merrill, G.F.

    2009-06-05

    Open reading frame 92 of the Autographa californica baculovirus (Ac92) is one of about 30 core genes present in all sequenced baculovirus genomes. Computer analyses predicted that the Ac92 encoded protein (called p33) and several of its baculovirus orthologs were related to a family of flavin adenine dinucleotide (FAD)-linked sulfhydryl oxidases. Alignment of these proteins indicated that, although they were highly diverse, a number of amino acids in common with the Erv1p/Alrp family of sulfhydryl oxidases are present. Some of these conserved amino acids are predicted to stack against the isoalloxazine and adenine components of FAD, whereas others are involved in electron transfer. To investigate this relationship, Ac92 was expressed in bacteria as a His-tagged fusion protein, purified, and characterized both spectrophotometrically and for its enzymatic activity. The purified protein was found to have the color (yellow) and absorption spectrum consistent with it being a FAD-containing protein. Furthermore, it was demonstrated to have sulfhydryl oxidase activity using dithiothreitol and thioredoxin as substrates.

  2. Characterization of Chlorophenol 4-Monooxygenase (TftD) and NADH:Flavin Adenine Dinucleotide Oxidoreductase (TftC) of Burkholderia cepacia AC1100

    PubMed Central

    Gisi, Michelle R.; Xun, Luying

    2003-01-01

    Burkholderia cepacia AC1100 uses 2,4,5-trichlorophenoxyacetic acid, an environmental pollutant, as a sole carbon and energy source. Chlorophenol 4-monooxygenase is a key enzyme in the degradation of 2,4,5-trichlorophenoxyacetic acid, and it was originally characterized as a two-component enzyme (TftC and TftD). Sequence analysis suggests that they are separate enzymes. The two proteins were separately produced in Escherichia coli, purified, and characterized. TftC was an NADH:flavin adenine dinucleotide (FAD) oxidoreductase. A C-terminally His-tagged fusion TftC used NADH to reduce either FAD or flavin mononucleotide (FMN) but did not use NADPH or riboflavin as a substrate. Kinetic and binding property analysis showed that FAD was a better substrate than FMN. TftD was a reduced FAD (FADH2)-utilizing monooxygenase, and FADH2 was supplied by TftC. It converted 2,4,5-trichlorophenol to 2,5-dichloro-p-quinol and then to 5-chlorohydroxyquinol but converted 2,4,6-trichlorophenol only to 2,6-dichloro-p-quinol as the final product. TftD interacted with FADH2 and retarded its rapid oxidation by O2. A spectrum of possible TftD-bound FAD-peroxide was identified, indicating that the peroxide is likely the active oxygen species attacking the aromatic substrates. The reclassification of the two enzymes further supports the new discovery of FADH2-utilizing enzymes, which have homologues in the domains Bacteria and Archaea. PMID:12700257

  3. Purification and properties of 4-hydroxybenzoate 1-hydroxylase (decarboxylating), a novel flavin adenine dinucleotide-dependent monooxygenase from Candida parapsilosis CBS604.

    PubMed Central

    Eppink, M H; Boeren, S A; Vervoort, J; van Berkel, W J

    1997-01-01

    A novel flavoprotein monooxygenase, 4-hydroxybenzoate 1-hydroxylase (decarboxylating), from Candida parapsilosis CBS604 was purified to apparent homogeneity. The enzyme is induced when the yeast is grown on either 4-hydroxybenzoate, 2,4-dihydroxybenzoate, or 3,4-dihydroxybenzoate as the sole carbon source. The purified monooxygenase is a monomer of about 50 kDa containing flavin adenine dinucleotide as weakly bound cofactor. 4-Hydroxybenzoate 1-hydroxylase from C. parapsilosis catalyzes the oxidative decarboxylation of a wide range of 4-hydroxybenzoate derivatives with the stoichiometric consumption of NAD(P)H and oxygen. Optimal catalysis is reached at pH 8, with NADH being the preferred electron donor. By using (18)O2, it was confirmed that the oxygen atom inserted into the product 1,4-dihydroxybenzene is derived from molecular oxygen. 19F nuclear magnetic resonance spectroscopy revealed that the enzyme catalyzes the conversion of fluorinated 4-hydroxybenzoates to the corresponding hydroquinones. The activity of the enzyme is strongly inhibited by 3,5-dichloro-4-hydroxybenzoate, 4-hydroxy-3,5-dinitrobenzoate, and 4-hydroxyisophthalate, which are competitors with the aromatic substrate. The same type of inhibition is exhibited by chloride ions. Molecular orbital calculations show that upon deprotonation of the 4-hydroxy group, nucleophilic reactivity is located in all substrates at the C-1 position. This, and the fact that the enzyme is highly active with tetrafluoro-4-hydroxybenzoate and 4-hydroxy-3-nitrobenzoate, suggests that the phenolate forms of the substrates play an important role in catalysis. Based on the substrate specificity, a mechanism is proposed for the flavin-mediated oxidative decarboxylation of 4-hydroxybenzoate. PMID:9352916

  4. Nicotinic Acid Adenine Dinucleotide Phosphate Analogs Substituted on the Nicotinic Acid and Adenine Ribosides. Effects on Receptor-Mediated Ca2+ release

    PubMed Central

    Trabbic, Christopher J.; Zhang, Fan; Walseth, Timothy F.; Slama, James T.

    2015-01-01

    Nicotinic acid adenine dinucleotide phosphate (NAADP) is a Ca2+ releasing intracellular second messenger in both mammals and echinoderms. We report that large functionalized substituents introduced at the nicotinic acid 5-position are recognized by the sea urchin receptor, albeit with a 20–500 fold loss in agonist potency. 5-(3-Azidopropyl)-NAADP was shown to release Ca2+ with an EC50 of 31 µM and to compete with NAADP for receptor binding with an IC50 of 56 nM. Attachment of charged groups to the nicotinic acid of NAADP is associated with loss of activity, suggesting that the nicotinate riboside moiety is recognized as a neutral zwitterion. Substituents (Br- and N3-) can be introduced at the 8-adenosyl position of NAADP while preserving high potency and agonist efficacy and an NAADP derivative substituted at both the 5-position of the nicotinic acid and at the 8-adenosyl position was also recognized although the agonist potency was significantly reduced. PMID:25826221

  5. Surface enhanced Raman scattering investigation of protein-bound flavin adenine dinucleotide structure

    NASA Astrophysics Data System (ADS)

    Maskevich, S. A.; Strekal, N. D.; Artsukevich, I. M.; Kivach, L. N.; Chernikevich, I. P.

    1995-04-01

    The SERS spectra of alcohol oxidase from Pichia pastoris adsorbed on a silver electrode were obtained. The similarities and differences of these spectra with the SERS spectrum of free flavin adenine dinucleiotide were considered. The dependence of relative intensity of 1258 cm -1 band from the electrode potential in the protein SERS spectra differed from that of free flavin. From the data on this band being sensitive to the protein-flavin interaction a suggestion was made about incomplete dissociation of flavin from the protein. This conclusion is confirmed both by the fluorescence data and the SERS data on alcohol oxidase purified from Candida boidinii. The results of the SERS investigation of the interaction between the substrate, ethanol and the cofactor, FAD, as well as between protein-bound cofactor with the substrate are presented. The problem of retaining the protein enzyme activity is discussed.

  6. Redox State of Flavin Adenine Dinucleotide Drives Substrate Binding and Product Release in Escherichia coli Succinate Dehydrogenase

    PubMed Central

    Cheng, Victor W.T.; Piragasam, Ramanaguru Siva; Rothery, Richard A.; Maklashina, Elena; Cecchini, Gary; Weiner, Joel H.

    2016-01-01

    The Complex II family of enzymes, comprising the respiratory succinate dehydrogenases and fumarate reductases, catalyze reversible interconversion of succinate and fumarate. In contrast to the covalent flavin adenine dinucleotide (FAD) cofactor assembled in these enzymes, the soluble fumarate reductases (e.g. that from Shewanella frigidimarina) that assemble a noncovalent FAD cannot catalyze succinate oxidation but retain the ability to reduce fumarate. In this study, an SdhA-H45A variant that eliminates the site of the 8α-N3-histidyl covalent linkage between the protein and the FAD was examined. The variants SdhA-R286A/K/Y and -H242A/Y, that target residues thought to be important for substrate binding and catalysis were also studied. The variants SdhA-H45A and -R286A/K/Y resulted in assembly of a noncovalent FAD cofactor, which led to a significant decrease (−87 mV or more) in its reduction potential. The variant enzymes were studied by electron paramagnetic resonance spectroscopy following stand-alone reduction and potentiometric titrations. The “free” and “occupied” states of the active site were linked to the reduced and oxidized states of the FAD, respectively. Our data allows for a proposed model of succinate oxidation that is consistent with tunnel diode effects observed in the succinate dehydrogenase enzyme and a preference for fumarate reduction catalysis in fumarate reductase homologues that assemble a noncovalent FAD. PMID:25569225

  7. Application of nicotin amide-adenine dinucleotide analogs for clinical enzymology: alcohol dehydrogenase activity in liver injury.

    PubMed

    Fujisawa, K; Kimura, A; Minato, S; Tamaoki, H; Mizushima, H

    1976-06-01

    The activities of alcohol dehydrogease(ADH) in serum and in the subcellular fractions of rat liver were determined with n-amyl alcohol or ethanol as substrate and thionicotinamide-adenine dinucleotide as coenzyme. It was found that the enzyme's activity ratio on the amyl alcohol and ethanol(A/E value) of serum and on the particulate fractions of the liver were different, but the A/E value of the soluble fraction was similar to that of serum. The A/E value of the particulate fractions were higher than that of the soluble fraction. From the results of experimental liver damage in the rat, it seems that estimation of the A/E value of ADH activity in serum is a useful parameter for the diagnosis of active liver injury. Since the A/E values of patients' sera differed from those of the normal subjects, the estimation of the A/E value of serum may give diagnostic information on liver injury, especially in chronic liver injury. PMID:179739

  8. Population Genetics of Aedes albopictus (Diptera: Culicidae) Invading Populations, Using Mitochondrial nicotinamide Adenine Dinucleotide Dehydrogenase Subunit 5 Sequences

    PubMed Central

    Usmani-Brown, Sahar; Cohnstaedt, Lee; Munstermann, Leonard E.

    2012-01-01

    Aedes albopictus (Skuse) (Diptera: Culicidae), the Asian tiger mosquito indigenous to Asia, now an invasive species worldwide, is an important vector for several arboviruses. Genetic analysis using the mitochondrial nicotinamide adenine dinucleotide dehydrogenase subunit 5 (ND5) gene was carried out in populations from Cameroon (n = 50), Hawaii (n = 38), Italy (n = 20), the continental United States, Brazil, and its native range. Data for Brazil, the continental United States, and the native range was obtained from Birungi and Munstermann (2002). Direct sequencing was used to identity unique haplotypes. The limited phylogeographic partitioning of haplotypes with low levels of sequence divergence in both Cameroon and Hawaii was consistent with the population structure of Ae. albopictus in the United States and Brazil. Four new haplotypes were identified from the samples from Cameroon and Hawaii, adding to previously described haplotypes. Hawaii shared a haplotype with Cameroon that was unique to these two regions. Hawaii also had higher overall haplotype diversity than seen in previous continental United States, Brazil, or native range populations. Hawaiian, Cameroon, and Italian populations did not share haplotypes with Brazil, which validates the earlier mitochondrial DNA studies indicating a separate introduction of this species into Brazil. PMID:22544973

  9. The first step in polyethylene glycol degradation by sphingomonads proceeds via a flavoprotein alcohol dehydrogenase containing flavin adenine dinucleotide.

    PubMed

    Sugimoto, M; Tanabe, M; Hataya, M; Enokibara, S; Duine, J A; Kawai, F

    2001-11-01

    Several Sphingomonas spp. utilize polyethylene glycols (PEGs) as a sole carbon and energy source, oxidative PEG degradation being initiated by a dye-linked dehydrogenase (PEG-DH) that oxidizes the terminal alcohol groups of the polymer chain. Purification and characterization of PEG-DH from Sphingomonas terrae revealed that the enzyme is membrane bound. The gene encoding this enzyme (pegA) was cloned, sequenced, and expressed in Escherichia coli. The purified recombinant enzyme was vulnerable to aggregation and inactivation, but this could be prevented by addition of detergent. It is as a homodimeric protein with a subunit molecular mass of 58.8 kDa, each subunit containing 1 noncovalently bound flavin adenine dinucleotide but not Fe or Zn. PEG-DH recognizes a broad variety of primary aliphatic and aromatic alcohols as substrates. Comparison with known sequences revealed that PEG-DH belongs to the group of glucose-methanol-choline (GMC) flavoprotein oxidoreductases and that it is a novel type of flavoprotein alcohol dehydrogenase related (percent identical amino acids) to other, so far uncharacterized bacterial, membrane-bound, dye-linked dehydrogenases: alcohol dehydrogenase from Pseudomonas oleovorans (46%); choline dehydrogenase from E. coli (40%); L-sorbose dehydrogenase from Gluconobacter oxydans (38%); and 4-nitrobenzyl alcohol dehydrogenase from a Pseudomonas species (35%). PMID:11673442

  10. Redox state of flavin adenine dinucleotide drives substrate binding and product release in Escherichia coli succinate dehydrogenase.

    PubMed

    Cheng, Victor W T; Piragasam, Ramanaguru Siva; Rothery, Richard A; Maklashina, Elena; Cecchini, Gary; Weiner, Joel H

    2015-02-01

    The Complex II family of enzymes, comprising respiratory succinate dehydrogenases and fumarate reductases, catalyzes reversible interconversion of succinate and fumarate. In contrast to the covalent flavin adenine dinucleotide (FAD) cofactor assembled in these enzymes, soluble fumarate reductases (e.g., those from Shewanella frigidimarina) that assemble a noncovalent FAD cannot catalyze succinate oxidation but retain the ability to reduce fumarate. In this study, an SdhA-H45A variant that eliminates the site of the 8α-N3-histidyl covalent linkage between the protein and FAD was examined. Variants SdhA-R286A/K/Y and -H242A/Y that target residues thought to be important for substrate binding and catalysis were also studied. The variants SdhA-H45A and -R286A/K/Y resulted in the assembly of a noncovalent FAD cofactor, which led to a significant decrease (-87 mV or more) in its reduction potential. The variant enzymes were studied by electron paramagnetic resonance spectroscopy following stand-alone reduction and potentiometric titrations. The "free" and "occupied" states of the active site were linked to the reduced and oxidized states of FAD, respectively. Our data allow for a proposed model of succinate oxidation that is consistent with tunnel diode effects observed in the succinate dehydrogenase enzyme and a preference for fumarate reduction catalysis in fumarate reductase homologues that assemble a noncovalent FAD. PMID:25569225

  11. Development of an enzymatic chromatography strip with nicotinamide adenine dinucleotide-tetrazolium coupling reactions for quantitative l-lactate analysis.

    PubMed

    Kan, Shu-Chen; Chang, Wei-Feng; Lan, Min-Chi; Lin, Chia-Chi; Lai, Wei-Shiang; Shieh, Chwen-Jen; Hsiung, Kuang-Pin; Liu, Yung-Chuan

    2015-02-15

    In this study, a dry assay of l-lactate via the enzymatic chromatographic test (ECT) was developed. An l-lactate dehydrogenase plus a nicotinamide adenine dinucleotide (NADH) regeneration reaction were applied simultaneously. Various tetrazolium salts were screened to reveal visible color intensities capable of determining the lactate concentrations in the sample. The optimal analysis conditions were as follows. The diaphorase (0.5 μl, 2(-6)U/μl) was immobilized in the test line of the ECT strip. Nitrotetrazolium blue chloride (5 μl, 12 mM), l-lactate dehydrogenase (1 μl, 0.25U/μl), and NAD(+) (2μl, 1.5×10(-5)M) were added into the mobile phase (100 μl) composed of 0.1% (w/w) Tween 20 in 10mM phosphate buffer (pH 9.0), and the process was left to run for 10 min. This detection had a linear range of 0.039 to 5mM with a detection limit of 0.047 mM. This quantitative analysis process for l-lactate was easy to operate with good stability and was proper for the point-of-care testing applications. PMID:25454507

  12. Interaction of reduced nicotinamide adenine dinucleotide with an antifreeze protein from Dendroides canadensis: mechanistic implication of antifreeze activity enhancement

    PubMed Central

    Wen, Xin; Wang, Sen; Amornwittawat, Natapol; Houghton, Eric A.; Sacco, Michael A.

    2016-01-01

    Antifreeze proteins (AFPs) found in many organisms can noncolligatively lower the freezing point of water without altering the melting point. The difference between the depressed freezing point and the melting point, termed thermal hysteresis (TH), is usually a measure of the antifreeze activity of AFPs. Certain low molecular mass molecules and proteins can further enhance the antifreeze activity of AFPs. Interaction between an enhancer and arginine is known to play an important role in enhancing the antifreeze activity of an AFP from the beetle Dendroides canadensis (DAFP-1). Here, we examined the enhancement effects of several prevalent phosphate-containing coenzymes on the antifreeze activity of DAFP-1. β-Nicotinamide adenine dinucleotide (reduced) (NADH) is identified as the most efficient enhancer of DAFP-1, which increases the antifreeze activity of DAFP-1 by around 10 times. Examination of the enhancement abilities of a series of NADH analogs and various molecular fragments of NADH reveals that the modifications of nicotinamide generate a series of highly efficient enhancers, though none as effective as NADH itself, and the whole molecular structure of NADH is necessary for its highly efficient enhancement effect. We also demonstrated a 1:1 binding between DAFP-1 and NADH. The binding was characterized by high-performance liquid chromatography (HPLC) using the gel filtration method of Hummel and Dreyer. The data analysis suggests binding between DAFP-1 and NADH with a dissociation constant in the micromolar range. Interactions between DAFP-1 and NADH are discussed along with molecular mechanisms of enhancer action. PMID:22038809

  13. β-Nicotinamide adenine dinucleotide attenuates lipopolysaccharide-induced inflammatory effects in a murine model of acute lung injury.

    PubMed

    Umapathy, Nagavedi Siddaramappa; Gonzales, Joyce; Fulzele, Sadanand; Kim, Kyung-mi; Lucas, Rudolf; Verin, Alexander Dimitrievich

    2012-06-01

    Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) occur in approximately 200,000 patients per year. Studies indicate that lung endothelium plays a significant role in ALI. The authors' recent in vitro studies demonstrate a novel mechanism of β-nicotinamide adenine dinucleotide (β-NAD)-induced protection against gram-positive (pneumolysin, PLY) and gram-negative (lipopolysaccharide, LPS) toxin-induced lung endothelial cell (EC) barrier dysfunction. The objective of the current study was to evaluate the protective effect of β-NAD against LPS-induced ALI in mice. C57BL/6J mice were randomly divided into 4 groups: vehicle, β-NAD, LPS, and LPS/β-NAD. After surgery, mice were allowed to recover for 24 hours. Evans blue dye-albumin (EBA) was given through the internal jugular vein 2 hours prior to the termination of the experiments. Upon sacrificing the animals, bronchoalveolar lavage fluid (BALF) was collected and the lungs were harvested. β-NAD treatment significantly attenuated the inflammatory response by means of reducing the accumulation of cells and protein in BALF, blunting the parenchymal neutrophil infiltration, and preventing capillary leak. In addition, the histological examination demonstrated decreased interstitial edema in the LPS/β-NAD specimens, as compared to the LPS-only specimens. The mRNA levels of the anti-inflammatory cytokines were up-regulated in the LPS group treated with β-NAD compared to the LPS-only-treated group. β-NAD treatment down-regulated the mRNA levels of the proinflammatory cytokines. These findings suggest that β-NAD could be investigated as a therapeutic option against bacterial toxin-induced lung inflammation and ALI in mice. PMID:22563684

  14. Exceptionally high glucose current on a hierarchically structured porous carbon electrode with "wired" flavin adenine dinucleotide-dependent glucose dehydrogenase.

    PubMed

    Tsujimura, Seiya; Murata, Kazuki; Akatsuka, Wataru

    2014-10-15

    This article introduces a carbon electrode designed to achieve efficient enzymatic electrolysis by exploiting a hierarchical pore structure based on macropores for efficient mass transfer and mesopores for high enzyme loading. Magnesium oxide-templated mesoporous carbon (MgOC, mean pore diameter 38 nm) was used to increase the effective specific surface area for enzyme immobilization. MgOC particles were deposited on a current collector by an electrophoretic deposition method to generate micrometer-scale macropores to improve the mass transfer of glucose and electrolyte (buffer) ions. To create a glucose bioanode, the porous-carbon-modified electrode was further coated with a biocatalytic hydrogel composed of a conductive redox polymer, deglycosylated flavin adenine dinucleotide-dependent glucose dehydrogenase (d-FAD-GDH), and a cross-linker. Carbohydrate chains on the peripheral surfaces of the FAD-GDH molecules were removed by periodate oxidation before cross-linking. The current density for the oxidation of glucose was 100 mA cm(-2) at 25 °C and pH 7, with a hydrogel loading of 1.0 mg cm(-2). For the same hydrogel composition and loading, the current density on the MgOC-modified electrode was more than 30 times higher than that on a flat carbon electrode. On increasing the solution temperature to 45 °C, the catalytic current increased to 300 mA cm(-2), with a hydrogel loading of 1.6 mg cm(-2). Furthermore, the stability of the hydrogel electrode was improved by using the mesoporous carbon materials; more than 95% of the initial catalytic current remained after a 220-day storage test in 4 °C phosphate buffer, and 80% was observed after 7 days of continuous operation at 25 °C. PMID:25244161

  15. Modulation of nicotinamide adenine dinucleotide and poly(adenosine diphosphoribose) metabolism by the synthetic "C" nucleoside analogs, tiazofurin and selenazofurin. A new strategy for cancer chemotherapy.

    PubMed Central

    Berger, N A; Berger, S J; Catino, D M; Petzold, S J; Robins, R K

    1985-01-01

    Tiazofurin (2-beta-D-ribofuranosylthiazole-4-carboxamide) and selenazofurin (2-beta-D-ribofuranosylselenazole-4-carboxamide) are synthetic "C" nucleosides whose antineoplastic activity depends on their conversion to tiazofurin-adenine dinucleotide and selenazofurin-adenine dinucleotide which are analogs of NAD. The present study was conducted to determine whether these nucleoside analogs and their dinucleotide derivatives interfere with NAD metabolism and in particular with the NAD-dependent enzyme, poly(ADP-ribose) polymerase. Incubation of L1210 cells with 10 microM tiazofurin or selenazofurin resulted in inhibition of cell growth, reduction of cellular NAD content, and interference with NAD synthesis. Using [14C]nicotinamide to study the uptake of nicotinamide and its conversion to NAD, we showed that the analogs interfere with NAD synthesis, apparently by blocking formation of nicotinamide mononucleotide. The analogs also serve as weak inhibitors of poly(ADP-ribose) polymerase, which is an NAD-utilizing, chromatin-bound enzyme, whose function is required for normal DNA repair processes. Continuous incubation of L1210 cells in tiazofurin or selenazofurin resulted in progressive and synergistic potentiation of the cytotoxic effects of DNA-damaging agents, such as 1,3-bis(2-chloroethyl)-1-nitrosourea or N-methyl-N'-nitro-N-nitrosoguanidine. These studies provide a basis for designing chemotherapy combinations in which tiazofurin or selenazofurin are used to modulate NAD and poly(ADP-ribose) metabolism to synergistically potentiate the effects of DNA strand-disrupting agents. PMID:3919063

  16. Crystal structure of the catalytic domain of Pseudomonas exotoxin A complexed with a nicotinamide adenine dinucleotide analog: implications for the activation process and for ADP ribosylation.

    PubMed Central

    Li, M; Dyda, F; Benhar, I; Pastan, I; Davies, D R

    1996-01-01

    The catalytic, or third domain of Pseudomonas exotoxin A (PEIII) catalyzes the transfer of ADP ribose from nicotinamide adenine dinucleotide (NAD) to elongation factor-2 in eukaryotic cells, inhibiting protein synthesis. We have determined the structure of PEIII crystallized in the presence of NAD to define the site of binding and mechanism of activation. However, NAD undergoes a slow hydrolysis and the crystal structure revealed only the hydrolysis products, AMP and nicotinamide, bound to the enzyme. To better define the site of NAD binding, we have now crystallized PEIII in the presence of a less hydrolyzable NAD analog, beta-methylene-thiazole-4-carboxamide adenine dinucleotide (beta-TAD), and refined the complex structure at 2.3 angstroms resolution. There are two independent molecules of PEIII in the crystal, and the conformations of beta-TAD show some differences in the two binding sites. The beta-TAD attached to molecule 2 appears to have been hydrolyzed between the pyrophosphate and the nicotinamide ribose. However molecule 1 binds to an intact beta-TAD and has no crystal packing contacts in the vicinity of the binding site, so that the observed conformation and interaction with the PEIII most likely resembles that of NAD bound to PEIII in solution. We have compared this complex with the catalytic domains of diphtheria toxin, heat labile enterotoxin, and pertussis toxin, all three of which it closely resembles. Images Fig. 1 Fig. 3 PMID:8692916

  17. Simultaneous determination of purine nucleotides, their metabolites and beta-nicotinamide adenine dinucleotide in cerebellar granule cells by ion-pair high performance liquid chromatography.

    PubMed

    Giannattasio, Sergio; Gagliardi, Sara; Samaja, Michele; Marra, Ersilia

    2003-02-01

    The method described here allows the quantitative simultaneous determination of adenosine 5'-triphosphate, adenosine 5'-diphosphate, adenosine 5'-monophosphate, adenosine, guanosine 5'-triphosphate, guanosine 5'-diphosphate, guanosine, inosine 5'-monophosphate, inosine, uric acid, xanthine, hypoxanthine and beta-nicotinamide adenine dinucleotide by ion-pair high performance liquid chromatography. The chromatographic analysis requires 26 min per sample and allows the separation of the mentioned metabolites in a time as short as 16 min. Primary cultures of rat cerebellar granule cells were incubated in serum-free medium containing 25 mM KCl for 1.5-48 h and their acid extracts were injected onto column. Uric acid, inosine 5'-monophosphate, inosine, beta-nicotinamide adenine dinucleotide, adenosine, adenosine 5'-monophosphate, guanosine 5'-diphosphate, adenosine 5'-diphosphate, guanosine 5'-triphosphate and adenosine 5'-triphosphate were identified and quantified, while hypoxanthine, xanthine and guanosine were below the detection limit. This method makes use of a single-step sample pre-treatment procedure which allows a greater than 91% recovery of the compounds of interest and provides the assay of the metabolites of interest in little amounts of cell extracts. Therefore, this method is suitable to evaluate the energetic state in a variety of cell types, both under normal and dismetabolic conditions, such as after the induction of apoptosis or necrosis. PMID:12565687

  18. Facile synthesis of near infrared fluorescent trypsin-stabilized Ag nanoclusters with tunable emission for 1,4-dihydronicotinamide adenine dinucleotide and ethanol sensing.

    PubMed

    Liu, Siyu; Wang, Hui; Cheng, Zhen; Liu, Hongguang

    2015-07-30

    A facile chemical synthetic route was developed to prepare near-infrared fluorescent trypsin-stabilized Ag nanoclusters (Try-Ag NCs). The fluorescence emission wavelength of the produced Try-Ag NCs is tunable by simple adjusting pH value of the synthesis system, and the Try-Ag NCs offer a symmetric fluorescent excitation and emission peak. The fluorescence of Try-Ag NCs remains constant in the presence of various ions and molecules, and it can be effectively quenched by 1,4-dihydronicotinamide adenine dinucleotide (NADH) instead of its oxidized forms nicotinamide adenine dinucleotide (NAD(+)). This property enables the Try-Ag NCs to be a novel analytical platform to monitor biological reaction involved with NADH. In this work, the Try-Ag NCs was also applied to analyze ethanol based on the generation of NADH which was the product of NAD(+) and ethanol in the catalysis of alcohol dehydrogenase. And the proposed platform allowed ethanol to be determined in the range from 10 to 300 μmol/L with 5 μmol/L detection limit. PMID:26320647

  19. Oxidation of reduced cytosolic nicotinamide adenine dinucleotide by the malate-aspartate shuttle in the K-562 human leukemia cell line.

    PubMed

    López-Alarcón, L; Eboli, M L

    1986-11-01

    The activity of the malate-aspartate shuttle for the reoxidation of reduced cytosolic nicotinamide adenine dinucleotide (NADH) by mitochondria was studied in a line of human myeloid leukemia cells (K-562). The tumor cells showed mitochondrial reoxidation of cytosolic NADH, as evidenced by the accumulation of pyruvate, when incubated aerobically with L-lactate. The involvement of the respiratory chain in the reoxidation of cytosolic NADH was demonstrated by the action of rotenone, antimycin A, and oligomycin which strongly inhibited the formation of pyruvate from added L-lactate. Moreover, pyruvate production was greatly inhibited by the transaminase inhibitor, aminooxyacetate. Under glycolytic conditions, in the presence of aminooxyacetate, the rate of pyruvate production was also markedly inhibited, the rate of lactate accumulation was stimulated, and at 60 min the cytosolic NADH/nicotinamide adenine dinucleotide (NAD) ratio had increased progressively about 5-fold with respect to untreated cells. The maximal rate of the malate-aspartate shuttle has also been established by addition of arsenite to inhibit mitochondrial oxidation of the pyruvate formed from added L-lactate. PMID:3756905

  20. Biocomposite based on reduced graphene oxide film modified with phenothiazone and flavin adenine dinucleotide-dependent glucose dehydrogenase for glucose sensing and biofuel cell applications.

    PubMed

    Ravenna, Yehonatan; Xia, Lin; Gun, Jenny; Mikhaylov, Alexey A; Medvedev, Alexander G; Lev, Ovadia; Alfonta, Lital

    2015-10-01

    A novel composite material for the encapsulation of redox enzymes was prepared. Reduced graphene oxide film with adsorbed phenothiazone was used as a highly efficient composite for electron transfer between flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenase and electrodes. Measured redox potential for glucose oxidation was lower than 0 V vs Ag/AgCl electrode. The fabricated biosensor showed high sensitivity of 42 mA M(-1) cm(-2), a linear range of glucose detection of 0.5-12 mM, and good reproducibility and stability as well as high selectivity for different interfering compounds. In a semibiofuel cell configuration, the hybrid film generated high power output of 345 μW cm(-2). These results demonstrate a promising potential for this composition in various bioelectronic applications. PMID:26334692

  1. Modulation of spontaneous transmitter release from the frog neuromuscular junction by interacting intracellular Ca(2+) stores: critical role for nicotinic acid-adenine dinucleotide phosphate (NAADP).

    PubMed Central

    Brailoiu, Eugen; Patel, Sandip; Dun, Nae J

    2003-01-01

    Nicotinic acid-adenine dinucleotide phosphate (NAADP) is a recently described potent intracellular Ca(2+)-mobilizing messenger active in a wide range of diverse cell types. In the present study, we have investigated the interaction of NAADP with other Ca(2+)-mobilizing messengers in the release of transmitter at the frog neuromuscular junction. We show, for the first time, that NAADP enhances neurosecretion in response to inositol 1,4,5-trisphosphate (IP(3)), cADP-ribose (cADPR) and sphingosine 1-phosphate (S1P), but not sphingosylphosphorylcholine. Thapsigargin was without effect on transmitter release in response to NAADP, but blocked the responses to subsequent application of IP(3), cADPR and S1P and their potentiation by NAADP. Asynchronous neurotransmitter release may therefore involve functional coupling of endoplasmic reticulum Ca(2+) stores with distinct Ca(2+) stores targeted by NAADP. PMID:12749764

  2. Conformational change in cytochrome P450 reductase adsorbed at a Au(110)—phosphate buffer interface induced by interaction with nicotinamide adenine dinucleotide phosphate

    NASA Astrophysics Data System (ADS)

    Smith, C. I.; Convery, J. H.; Harrison, P.; Khara, B.; Scrutton, N. S.; Weightman, P.

    2014-08-01

    Changes observed in the reflection anisotropy spectroscopy (RAS) profiles of monolayers of cytochrome P450 reductase adsorbed at Au(110)-electrolyte interfaces at 0.056 V following the addition of nicotinamide adenine dinucleotide phosphate (NADP+) are explained in terms of a simple model as arising from changes in the orientation of an isoalloxazine ring located in the flavin mononucleotide binding domain of the protein. The model also accounts for the changes observed in the RAS as the potential applied to the Au(110) surface is varied and suggests that differences in the dependence of the RAS profile of the adsorbed protein on the potential applied to the electrode in the absence and presence of NADP+ are explicable as arising from a competition between the applied potential acting to reduce the protein and the NADP+ to oxidize it.

  3. Diabetic complications within the context of aging: Nicotinamide adenine dinucleotide redox, insulin C-peptide, sirtuin 1-liver kinase B1-adenosine monophosphate-activated protein kinase positive feedback and forkhead box O3.

    PubMed

    Ido, Yasuo

    2016-07-01

    Recent research in nutritional control of aging suggests that cytosolic increases in the reduced form of nicotinamide adenine dinucleotide and decreasing nicotinamide adenine dinucleotide metabolism plays a central role in controlling the longevity gene products sirtuin 1 (SIRT1), adenosine monophosphate-activated protein kinase (AMPK) and forkhead box O3 (FOXO3). High nutrition conditions, such as the diabetic milieu, increase the ratio of reduced to oxidized forms of cytosolic nicotinamide adenine dinucleotide through cascades including the polyol pathway. This redox change is associated with insulin resistance and the development of diabetic complications, and might be counteracted by insulin C-peptide. My research and others' suggest that the SIRT1-liver kinase B1-AMPK cascade creates positive feedback through nicotinamide adenine dinucleotide synthesis to help cells cope with metabolic stress. SIRT1 and AMPK can upregulate liver kinase B1 and FOXO3, key factors that help residential stem cells cope with oxidative stress. FOXO3 directly changes epigenetics around transcription start sites, maintaining the health of stem cells. 'Diabetic memory' is likely a result of epigenetic changes caused by high nutritional conditions, which disturb the quiescent state of residential stem cells and impair tissue repair. This could be prevented by restoring SIRT1-AMPK positive feedback through activating FOXO3. PMID:27181414

  4. Protonation mechanism and location of rate-determining steps for the Ascaris suum nicotinamide adenine dinucleotide-malic enzyme reaction from isotope effects and pH studies

    SciTech Connect

    Kiick, D.M.; Harris, B.G.; Cook, P.F.

    1986-01-14

    The pH dependence of the kinetic parameters and the primary deuterium isotope effects with nicotinamide adenine dinucleotide (NAD) and also thionicotinamide adenine dinucleotide (thio-NAD) as the nucleotide substrates were determined in order to obtain information about the chemical mechanism and location of rate-determining steps for the Ascaris suum NAD-malic enzyme reaction. The maximum velocity with thio-NAD as the nucleotide is pH-independent from pH 4.2 to 9.6, while with NAD, V decreases below a pK of 4.8. V/K for both nucleotides decreases below a pK of 5.6 and above a pK of 8.9. Both the tartronate pKi and V/Kmalate decrease below a pK of 4.8 and above a pK of 8.9. Oxalate is competitive vs. malate above pH 7 and noncompetitive below pH 7 with NAD as the nucleotide. The oxalate Kis increases from a constant value above a pK of 4.9 to another constant value above a pK of 6.7. The oxalate Kii also increases above a pK of 4.9, and this inhibition is enhanced by NADH. In the presence of thio-NAD the inhibition by oxalate is competitive vs. malate below pH 7. For thio-NAD, both DV and D(V/K) are pH-independent and equal to 1.7. With NAD as the nucleotide, DV decreases to 1.0 below a pK of 4.9, while D(V/KNAD) and D(V/Kmalate) are pH-independent. Above pH 7 the isotope effects on V and the V/K values for NAD and malate are equal to 1.45, the pH-independent value of DV above pH 7. Results indicate that substrates bind to only the correctly protonated form of the enzyme. Two enzyme groups are necessary for binding of substrates and catalysis. Both NAD and malate are released from the Michaelis complex at equal rates which are equal to the rate of NADH release from E-NADH above pH 7. Below pH 7 NADH release becomes more rate-determining as the pH decreases until at pH 4.0 it completely limits the overall rate of the reaction.

  5. Role of key residues at the flavin mononucleotide (FMN):adenylyltransferase catalytic site of the bifunctional riboflavin kinase/flavin adenine dinucleotide (FAD) Synthetase from Corynebacterium ammoniagenes.

    PubMed

    Serrano, Ana; Frago, Susana; Velázquez-Campoy, Adrián; Medina, Milagros

    2012-01-01

    In mammals and in yeast the conversion of Riboflavin (RF) into flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) is catalysed by the sequential action of two enzymes: an ATP:riboflavin kinase (RFK) and an ATP:FMN adenylyltransferase (FMNAT). However, most prokaryotes depend on a single bifunctional enzyme, FAD synthetase (FADS), which folds into two modules: the C-terminal associated with RFK activity and the N-terminal associated with FMNAT activity. Sequence and structural analysis suggest that the 28-HxGH-31, 123-Gx(D/N)-125 and 161-xxSSTxxR-168 motifs from FADS must be involved in ATP stabilisation for the adenylylation of FMN, as well as in FAD stabilisation for FAD phyrophosphorolysis. Mutants were produced at these motifs in the Corynebacterium ammoniagenes FADS (CaFADS). Their effects on the kinetic parameters of CaFADS activities (RFK, FMNAT and FAD pyrophosphorilase), and on substrates and product binding properties indicate that H28, H31, N125 and S164 contribute to the geometry of the catalytically competent complexes at the FMNAT-module of CaFADS. PMID:23203077

  6. A label-free fluorescence strategy for selective detection of nicotinamide adenine dinucleotide based on a dumbbell-like probe with low background noise.

    PubMed

    Chen, Xuexu; Lin, Chunshui; Chen, Yiying; Wang, Yiru; Chen, Xi

    2016-03-15

    In this work we developed a novel label-free fluorescence sensing approach for the detection of nicotinamide adenine dinucleotide (NAD(+)) based on a dumbbell-like DNA probe designed for both ligation reaction and digestion reaction with low background noise. SYBR Green I (SG I), a double-helix dye, was chosen as the readout fluorescence signal. In the absence of NAD(+), the ligation reaction did not occur, but the probe was digested to mononucleotides after the addition of exonuclease I (Exo I) and exonuclease I (Exo III), resulting in a weak fluorescence intensity due to the weak interaction between SG I and mononucleotides. In the presence of NAD(+), the DNA probe was ligated by Escherichia coli DNA ligase, blocking the digestion by Exo I and Exo III. As a result, SG I was intercalated into the stem part of the DNA dumbbell probe and fluorescence enhancement was achieved. This method was simple in design, fast to operate, with good sensitivity and selectivity which could discriminate NAD(+) from its analogs. PMID:26454831

  7. New insights into the analysis of the electrode kinetics of flavin adenine dinucleotide redox center of glucose oxidase immobilized on carbon electrodes.

    PubMed

    Simonov, Alexandr N; Grosse, Willo; Mashkina, Elena A; Bethwaite, Blair; Tan, Jeff; Abramson, David; Wallace, Gordon G; Moulton, Simon E; Bond, Alan M

    2014-03-25

    New insights into electrochemical kinetics of the flavin adenine dinucleotide (FAD) redox center of glucose-oxidase (GlcOx) immobilized on reduced graphene oxide (rGO), single- and multiwalled carbon nanotubes (SW and MWCNT), and combinations of rGO and CNTs have been gained by application of Fourier transformed AC voltammetry (FTACV) and simulations based on a range of models. A satisfactory level of agreement between experiment and theory, and hence establishment of the best model to describe the redox chemistry of FAD, was achieved with the aid of automated e-science tools. Although still not perfect, use of Marcus theory with a very low reorganization energy (≤0.3 eV) best mimics the experimental FTACV data, which suggests that the process is gated as also deduced from analysis of FTACV data obtained at different frequencies. Failure of the simplest models to fully describe the electrode kinetics of the redox center of GlcOx, including those based on the widely employed Laviron theory is demonstrated, as is substantial kinetic heterogeneity of FAD species. Use of a SWCNT support amplifies the kinetic heterogeneity, while a combination of rGO and MWCNT provides a more favorable environment for fast communication between FAD and the electrode. PMID:24571209

  8. Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) and Endolysosomal Two-pore Channels Modulate Membrane Excitability and Stimulus-Secretion Coupling in Mouse Pancreatic β Cells*

    PubMed Central

    Arredouani, Abdelilah; Ruas, Margarida; Collins, Stephan C.; Parkesh, Raman; Clough, Frederick; Pillinger, Toby; Coltart, George; Rietdorf, Katja; Royle, Andrew; Johnson, Paul; Braun, Matthias; Zhang, Quan; Sones, William; Shimomura, Kenju; Morgan, Anthony J.; Lewis, Alexander M.; Chuang, Kai-Ting; Tunn, Ruth; Gadea, Joaquin; Teboul, Lydia; Heister, Paula M.; Tynan, Patricia W.; Bellomo, Elisa A.; Rutter, Guy A.; Rorsman, Patrik; Churchill, Grant C.; Parrington, John; Galione, Antony

    2015-01-01

    Pancreatic β cells are electrically excitable and respond to elevated glucose concentrations with bursts of Ca2+ action potentials due to the activation of voltage-dependent Ca2+ channels (VDCCs), which leads to the exocytosis of insulin granules. We have examined the possible role of nicotinic acid adenine dinucleotide phosphate (NAADP)-mediated Ca2+ release from intracellular stores during stimulus-secretion coupling in primary mouse pancreatic β cells. NAADP-regulated Ca2+ release channels, likely two-pore channels (TPCs), have recently been shown to be a major mechanism for mobilizing Ca2+ from the endolysosomal system, resulting in localized Ca2+ signals. We show here that NAADP-mediated Ca2+ release from endolysosomal Ca2+ stores activates inward membrane currents and depolarizes the β cell to the threshold for VDCC activation and thereby contributes to glucose-evoked depolarization of the membrane potential during stimulus-response coupling. Selective pharmacological inhibition of NAADP-evoked Ca2+ release or genetic ablation of endolysosomal TPC1 or TPC2 channels attenuates glucose- and sulfonylurea-induced membrane currents, depolarization, cytoplasmic Ca2+ signals, and insulin secretion. Our findings implicate NAADP-evoked Ca2+ release from acidic Ca2+ storage organelles in stimulus-secretion coupling in β cells. PMID:26152717

  9. Deficiency of the iron-sulfur clusters of mitochondrial reduced nicotinamide-adenine dinucleotide-ubiquinone oxidoreductase (complex I) in an infant with congenital lactic acidosis.

    PubMed

    Moreadith, R W; Batshaw, M L; Ohnishi, T; Kerr, D; Knox, B; Jackson, D; Hruban, R; Olson, J; Reynafarje, B; Lehninger, A L

    1984-09-01

    We report the case of an infant with hypoglycemia, progressive lactic acidosis, an increased serum lactate/pyruvate ratio, and elevated plasma alanine, who had a moderate to profound decrease in the ability of mitochondria from four organs to oxidize pyruvate, malate plus glutamate, citrate, and other NAD+-linked respiratory substrates. The capacity to oxidize the flavin adenine dinucleotide-linked substrate, succinate, was normal. The most pronounced deficiency was in skeletal muscle, the least in kidney mitochondria. Enzymatic assays on isolated mitochondria ruled out defects in complexes II, III, and IV of the respiratory chain. Further studies showed that the defect was localized in the inner membrane mitochondrial NADH-ubiquinone oxidoreductase (complex I). When ferricyanide was used as an artificial electron acceptor, complex I activity was normal, indicating that electrons from NADH could reduce the flavin mononucleotide cofactor. However, electron paramagnetic resonance spectroscopy performed on liver submitochondrial particles showed an almost total loss of the iron-sulfur clusters characteristic of complex I, whereas normal signals were noted for other mitochondrial iron-sulfur clusters. This infant is presented as the first reported case of congenital lactic acidosis caused by a deficiency of the iron-sulfur clusters of complex I of the mitochondrial electron transport chain. PMID:6432847

  10. Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP)-mediated Calcium Signaling and Arrhythmias in the Heart Evoked by β-Adrenergic Stimulation*♦

    PubMed Central

    Nebel, Merle; Schwoerer, Alexander P.; Warszta, Dominik; Siebrands, Cornelia C.; Limbrock, Ann-Christin; Swarbrick, Joanna M.; Fliegert, Ralf; Weber, Karin; Bruhn, Sören; Hohenegger, Martin; Geisler, Anne; Herich, Lena; Schlegel, Susan; Carrier, Lucie; Eschenhagen, Thomas; Potter, Barry V. L.; Ehmke, Heimo; Guse, Andreas H.

    2013-01-01

    Nicotinic acid adenine dinucleotide phosphate (NAADP) is the most potent Ca2+-releasing second messenger known to date. Here, we report a new role for NAADP in arrhythmogenic Ca2+ release in cardiac myocytes evoked by β-adrenergic stimulation. Infusion of NAADP into intact cardiac myocytes induced global Ca2+ signals sensitive to inhibitors of both acidic Ca2+ stores and ryanodine receptors and to NAADP antagonist BZ194. Furthermore, in electrically paced cardiac myocytes BZ194 blocked spontaneous diastolic Ca2+ transients caused by high concentrations of the β-adrenergic agonist isoproterenol. Ca2+ transients were recorded both as increases of the free cytosolic Ca2+ concentration and as decreases of the sarcoplasmic luminal Ca2+ concentration. Importantly, NAADP antagonist BZ194 largely ameliorated isoproterenol-induced arrhythmias in awake mice. We provide strong evidence that NAADP-mediated modulation of couplon activity plays a role for triggering spontaneous diastolic Ca2+ transients in isolated cardiac myocytes and arrhythmias in the intact animal. Thus, NAADP signaling appears an attractive novel target for antiarrhythmic therapy. PMID:23564460

  11. Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) and Endolysosomal Two-pore Channels Modulate Membrane Excitability and Stimulus-Secretion Coupling in Mouse Pancreatic β Cells.

    PubMed

    Arredouani, Abdelilah; Ruas, Margarida; Collins, Stephan C; Parkesh, Raman; Clough, Frederick; Pillinger, Toby; Coltart, George; Rietdorf, Katja; Royle, Andrew; Johnson, Paul; Braun, Matthias; Zhang, Quan; Sones, William; Shimomura, Kenju; Morgan, Anthony J; Lewis, Alexander M; Chuang, Kai-Ting; Tunn, Ruth; Gadea, Joaquin; Teboul, Lydia; Heister, Paula M; Tynan, Patricia W; Bellomo, Elisa A; Rutter, Guy A; Rorsman, Patrik; Churchill, Grant C; Parrington, John; Galione, Antony

    2015-08-28

    Pancreatic β cells are electrically excitable and respond to elevated glucose concentrations with bursts of Ca(2+) action potentials due to the activation of voltage-dependent Ca(2+) channels (VDCCs), which leads to the exocytosis of insulin granules. We have examined the possible role of nicotinic acid adenine dinucleotide phosphate (NAADP)-mediated Ca(2+) release from intracellular stores during stimulus-secretion coupling in primary mouse pancreatic β cells. NAADP-regulated Ca(2+) release channels, likely two-pore channels (TPCs), have recently been shown to be a major mechanism for mobilizing Ca(2+) from the endolysosomal system, resulting in localized Ca(2+) signals. We show here that NAADP-mediated Ca(2+) release from endolysosomal Ca(2+) stores activates inward membrane currents and depolarizes the β cell to the threshold for VDCC activation and thereby contributes to glucose-evoked depolarization of the membrane potential during stimulus-response coupling. Selective pharmacological inhibition of NAADP-evoked Ca(2+) release or genetic ablation of endolysosomal TPC1 or TPC2 channels attenuates glucose- and sulfonylurea-induced membrane currents, depolarization, cytoplasmic Ca(2+) signals, and insulin secretion. Our findings implicate NAADP-evoked Ca(2+) release from acidic Ca(2+) storage organelles in stimulus-secretion coupling in β cells. PMID:26152717

  12. Increase of reduced nicotinamide adenine dinucleotide fluorescence lifetime precedes mitochondrial dysfunction in staurosporine-induced apoptosis of HeLa cells

    NASA Astrophysics Data System (ADS)

    Yu, Jia-Sin; Guo, Han-Wen; Wang, Chih-Hao; Wei, Yau-Huei; Wang, Hsing-Wen

    2011-03-01

    In vivo noninvasive detection of apoptosis represents a new tool that may yield a more definite diagnosis, a more accurate prognosis, and help improve therapies for human diseases. The intrinsic fluorescence of reduced nicotinamide adenine dinucleotide (NADH) may be a potential optical biomarker for the apoptosis detection because NADH is involved in the respiration for the mitochondrial membrane potential (ΔΨ) formation and adenosine-5'-triphosphate (ATP) synthesis, and the depletion of ΔΨ and ATP level is the hallmark of apoptosis. We have previously observed the NADH fluorescence lifetime change is associated with staurosporine (STS)-induced mitochondria-mediated apoptosis. However, its relationship with mitochondrial functions such as ΔΨ, ATP, and oxygen consumption rate is not clear. In this study, we investigated this relationship. Our results indicate that the NADH fluorescence lifetime increased when ΔΨ and ATP levels were equal to or higher than their values of controls and decreased before the depletion of ΔΨ and ATP, and the oxygen consumption rate did not change. These findings suggest that the increased NADH fluorescence lifetime in STS-induced cell death occurred before the depletion of ΔΨ and ATP and activation of caspase 3, and was not simply caused by cellular metabolic change. Furthermore, the NADH fluorescence lifetime change is associated with the pace of apoptosis.

  13. Effects of Nicotinamide Adenine Dinucleotide (NAD(+)) and Diadenosine Tetraphosphate (Ap4A) on Electrical Activity of Working and Pacemaker Atrial Myocardium in Guinea Pigs.

    PubMed

    Pustovit, K B; Abramochkin, D V

    2016-04-01

    Effects of nucleotide polyphosphate compounds (nicotinamide adenine dinucleotide, NAD(+); diadenosine tetraphosphate, Ap4A) on the confi guration of action potentials were studied in isolated preparations of guinea pig sinoatrial node and right atrial appendage (auricle). In the working myocardium, NAD(+) and Ap4A in concentrations of 10(-5) and 10(-4) M had no effect on resting potential, but significantly reduced the duration of action potentials; the most pronounced decrease was found at 25% repolarization. In the primary pacemaker of the sinoatrial node, both concentrations of NAD(+) and Ap4A induced hyperpolarization and reduction in the rate of slow diastolic depolarization, but significant slowing of the sinus rhythm was produced by these substances only in the concentration of 10(-4) M. Moreover, AP shortening and marked acceleration of AP upstroke were observed in the pacemaker myocardium after application of polyphosphates. Comparative analysis of the effects of NAD(+) and Ap4A in the working and pacemaker myocardium drove us to a hypothesis on inhibitory effects of these substances on L-type calcium current accompanied by stimulation of one or several potassium currents, which induce enhancement of repolarization and hyperpolarization of membranes probably mediated by the activation of purine receptors. PMID:27165058

  14. Inhibition of NADPH oxidases prevents chronic ethanol-induced bone loss in female rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous in vitro data suggest that ethanol (EtOH) activates NADPH (nicotinamide adenine dinucleotide phosphate) oxidase (Nox) in osteoblasts leading to accumulation of reactive oxygen species (ROS). This might be a mechanism underlying inhibition of bone formation and increased bone resorption obse...

  15. β-Nicotinamide adenine dinucleotide acts at prejunctional adenosine A1 receptors to suppress inhibitory musculomotor neurotransmission in guinea pig colon and human jejunum.

    PubMed

    Wang, Guo-Du; Wang, Xi-Yu; Liu, Sumei; Xia, Yun; Zou, Fei; Qu, Meihua; Needleman, Bradley J; Mikami, Dean J; Wood, Jackie D

    2015-06-01

    Intracellular microelectrodes were used to record neurogenic inhibitory junction potentials in the intestinal circular muscle coat. Electrical field stimulation was used to stimulate intramural neurons and evoke contraction of the smooth musculature. Exposure to β-nicotinamide adenine dinucleotide (β-NAD) did not alter smooth muscle membrane potential in guinea pig colon or human jejunum. ATP, ADP, β-NAD, and adenosine, as well as the purinergic P2Y1 receptor antagonists MRS 2179 and MRS 2500 and the adenosine A1 receptor agonist 2-chloro-N6-cyclopentyladenosine, each suppressed inhibitory junction potentials in guinea pig and human preparations. β-NAD suppressed contractile force of twitch-like contractions evoked by electrical field stimulation in guinea pig and human preparations. P2Y1 receptor antagonists did not reverse this action. Stimulation of adenosine A1 receptors with 2-chloro-N6-cyclopentyladenosine suppressed the force of twitch contractions evoked by electrical field stimulation in like manner to the action of β-NAD. Blockade of adenosine A1 receptors with 8-cyclopentyl-1,3-dipropylxanthine suppressed the inhibitory action of β-NAD on the force of electrically evoked contractions. The results do not support an inhibitory neurotransmitter role for β-NAD at intestinal neuromuscular junctions. The data suggest that β-NAD is a ligand for the adenosine A1 receptor subtype expressed by neurons in the enteric nervous system. The influence of β-NAD on intestinal motility emerges from adenosine A1 receptor-mediated suppression of neurotransmitter release at inhibitory neuromuscular junctions. PMID:25813057

  16. Nicotinic Acid Adenine Dinucleotide Phosphate Plays a Critical Role in Naive and Effector Murine T Cells but Not Natural Regulatory T Cells.

    PubMed

    Ali, Ramadan A; Camick, Christina; Wiles, Katherine; Walseth, Timothy F; Slama, James T; Bhattacharya, Sumit; Giovannucci, David R; Wall, Katherine A

    2016-02-26

    Nicotinic acid adenine dinucleotide phosphate (NAADP), the most potent Ca(2+) mobilizing second messenger discovered to date, has been implicated in Ca(2+) signaling in some lymphomas and T cell clones. In contrast, the role of NAADP in Ca(2+) signaling or the identity of the Ca(2+) stores targeted by NAADP in conventional naive T cells is less clear. In the current study, we demonstrate the importance of NAADP in the generation of Ca(2+) signals in murine naive T cells. Combining live-cell imaging methods and a pharmacological approach using the NAADP antagonist Ned-19, we addressed the involvement of NAADP in the generation of Ca(2+) signals evoked by TCR stimulation and the role of this signal in downstream physiological end points such as proliferation, cytokine production, and other responses to stimulation. We demonstrated that acidic compartments in addition to the endoplasmic reticulum were the Ca(2+) stores that were sensitive to NAADP in naive T cells. NAADP was shown to evoke functionally relevant Ca(2+) signals in both naive CD4 and naive CD8 T cells. Furthermore, we examined the role of this signal in the activation, proliferation, and secretion of effector cytokines by Th1, Th2, Th17, and CD8 effector T cells. Overall, NAADP exhibited a similar profile in mediating Ca(2+) release in effector T cells as in their counterpart naive T cells and seemed to be equally important for the function of these different subsets of effector T cells. This profile was not observed for natural T regulatory cells. PMID:26728458

  17. β-Nicotinamide adenine dinucleotide acts at prejunctional adenosine A1 receptors to suppress inhibitory musculomotor neurotransmission in guinea pig colon and human jejunum

    PubMed Central

    Wang, Guo-Du; Wang, Xi-Yu; Liu, Sumei; Xia, Yun; Zou, Fei; Qu, Meihua; Needleman, Bradley J.; Mikami, Dean J.

    2015-01-01

    Intracellular microelectrodes were used to record neurogenic inhibitory junction potentials in the intestinal circular muscle coat. Electrical field stimulation was used to stimulate intramural neurons and evoke contraction of the smooth musculature. Exposure to β-nicotinamide adenine dinucleotide (β-NAD) did not alter smooth muscle membrane potential in guinea pig colon or human jejunum. ATP, ADP, β-NAD, and adenosine, as well as the purinergic P2Y1 receptor antagonists MRS 2179 and MRS 2500 and the adenosine A1 receptor agonist 2-chloro-N6-cyclopentyladenosine, each suppressed inhibitory junction potentials in guinea pig and human preparations. β-NAD suppressed contractile force of twitch-like contractions evoked by electrical field stimulation in guinea pig and human preparations. P2Y1 receptor antagonists did not reverse this action. Stimulation of adenosine A1 receptors with 2-chloro-N6-cyclopentyladenosine suppressed the force of twitch contractions evoked by electrical field stimulation in like manner to the action of β-NAD. Blockade of adenosine A1 receptors with 8-cyclopentyl-1,3-dipropylxanthine suppressed the inhibitory action of β-NAD on the force of electrically evoked contractions. The results do not support an inhibitory neurotransmitter role for β-NAD at intestinal neuromuscular junctions. The data suggest that β-NAD is a ligand for the adenosine A1 receptor subtype expressed by neurons in the enteric nervous system. The influence of β-NAD on intestinal motility emerges from adenosine A1 receptor-mediated suppression of neurotransmitter release at inhibitory neuromuscular junctions. PMID:25813057

  18. Oxidation of C1 Compounds by Particulate fractions from Methylococcus capsulatus: distribution and properties of methane-dependent reduced nicotinamide adenine dinucleotide oxidase (methane hydroxylase).

    PubMed Central

    Ribbons, D W

    1975-01-01

    Cell-free particulate fractions of extracts from the obligate methylotroph Methylococcus capsulatus catalyze the reduced nicotinamide adenine dinucleotide (NADH) and O2-dependent oxidation of methane (methane hydroxylase). The only oxidation product detected was formate. These preparations also catalyze the oxidation of methanol and formaldehyde to formate in the presence or absence of phenazine methosulphate with oxygen as the terminal electron acceptor. Methane hydroxylase activity cannot be reproducibly obtained from disintegrated cell suspensions even though the whole cells actively respired when methane was presented as a substrate. Varying the disintegration method or extraction medium had no significant effect on the activities obtained. When active particles were obtained, hydroxylase activity was stable at 0 C for days. Methane hydroxylase assays were made by measuring the methane-dependent oxidation of NADH by O2. In separate experiments, methane consumption and the accumulation of formate were also demonstrated. Formate is not oxidized by these particulate fractions. The effects of particle concentration, temperature, pH, and phosphate concentration on enzymic activity are described. Ethane is utilized in the presence of NADH and O2. The stoichiometric relationships of the reaction(s) with methane as substrate were not established since (i) the presumed initial product, methanol, is also oxidized to formate, and (ii) the contribution that NADH oxidase activity makes to the observed consumption of reactants could not be assessed in the presence of methane. Studies with known inhibitors of electron transport systems indicate that the path of electron flow from NADH to oxygen is different for the NADH oxidase, methane hydroxylase, and methanol oxidase activities. Images PMID:238946

  19. De-methylation of displacement loop of mitochondrial DNA is associated with increased mitochondrial copy number and nicotinamide adenine dinucleotide subunit 2 expression in colorectal cancer.

    PubMed

    Gao, Jinhang; Wen, Shilei; Zhou, Hongying; Feng, Shi

    2015-11-01

    DNA methylation occurs in the displacement loop (D-loop) region of mammals; however, D-loop regions of certain tumor tissue types were found to be de‑methylated. Whether hypomethylation of the D‑loop region is involved in the regulation of the mitochondrial DNA (mtDNA) copy number and nicotinamide adenine dinucleotide subunit 2 (ND‑2) expressions in colorectal cancer has remained elusive. In the present study, the association between methylation status of the D‑loop region, mtDNA copy number and ND‑2 expression was investigated in 65 colorectal cancer specimens and their corresponding non‑cancerous tissues. In addition, a de‑methylation experiment was performed on the Caco‑2 colorectal cancer cell line by using 5‑aza-2'-deoxycytidine (5‑Aza). The methylation rate of the D‑loop region in all 65 colorectal cancer tissues was markedly reduced when compared with that of their corresponding non‑cancerous tissues (13.8 vs. 81.5%; P<0.05). Furthermore, the methylation rate of the D‑loop region in colorectal cancer tissues was markedly decreased in clinicopathological stages III and IV compared with that in clinicopathological stages I and II (7.1 and 0% vs. 25 and 16%; P<0.05). In addition, the mean relative mtDNA copy number and ND‑2 expression in colorectal cancer tissues were increased compared with those in the corresponding non‑cancerous tissues. De‑methylation of the D‑loop region was associated with an elevated mtDNA copy number and an increased ND‑2 expression. Furthermore, the mtDNA copy number and ND‑2 expression in Caco‑2 cells were significantly increased after 5‑Aza treatment. In conclusion, de‑methylation of the D‑loop region is likely to be involved in the regulation of the mtDNA copy number and ND-2 expression. PMID:26323487

  20. Electrochemical synthesis and characterization of TiO2 nanoparticles and their use as a platform for flavin adenine dinucleotide immobilization and efficient electrocatalysis

    NASA Astrophysics Data System (ADS)

    Ashok Kumar, S.; Lo, Po-Hsun; Chen, Shen-Ming

    2008-06-01

    Here, we report the electrochemical synthesis of TiO2 nanoparticles (NPs) using the potentiostat method. Synthesized particles have been characterized by using x-ray diffraction (XRD) studies, atomic force microscopy (AFM) and scanning electron microscopy (SEM). The results revealed that the TiO2 film produced was mainly composed of rutile and that the particles are of a size in the range of 100 ± 50 nm. TiO2 NPs were used for the modification of a screen printed carbon electrode (SPE). The resulting TiO2 film coated SPE was used to immobilize flavin adenine dinucleotide (FAD). The flavin enzyme firmly attached onto the metal oxide surface and this modified electrode showed promising electrocatalytic activities towards the reduction of hydrogen peroxide (H2O2) in physiological conditions. The electrochemistry of FAD confined in the oxide film was investigated. The immobilized FAD displayed a pair of redox peaks with a formal potential of -0.42 V in pH 7.0 oxygen-free phosphate buffers at a scan rate of 50 mV s-1. The FAD in the nanostructured TiO2 film retained its bioactivity and exhibited excellent electrocatalytic response to the reduction of H2O2, based on which a mediated biosensor for H2O2 was achieved. The linear range for the determination of H2O2 was from 0.15 × 10-6 to 3.0 × 10-3 M with the detection limit of 0.1 × 10-6 M at a signal-to-noise ratio of 3. The stability and repeatability of the biosensor is also discussed.

  1. Amelioration of nicotinamide adenine dinucleotide phosphate-oxidase mediated stress reduces cell death after blast-induced traumatic brain injury.

    PubMed

    Lucke-Wold, Brandon P; Naser, Zachary J; Logsdon, Aric F; Turner, Ryan C; Smith, Kelly E; Robson, Matthew J; Bailes, Julian E; Lee, John M; Rosen, Charles L; Huber, Jason D

    2015-12-01

    A total of 1.7 million traumatic brain injuries (TBIs) occur each year in the United States, but available pharmacologic options for the treatment of acute neurotrauma are limited. Oxidative stress is an important secondary mechanism of injury that can lead to neuronal apoptosis and subsequent behavioral changes. Using a clinically relevant and validated rodent blast model, we investigated how nicotinamide adenine dinucleotide phosphate oxidase (Nox) expression and associated oxidative stress contribute to cellular apoptosis after single and repeat blast injuries. Nox4 forms a complex with p22phox after injury, forming free radicals at neuronal membranes. Using immunohistochemical-staining methods, we found a visible increase in Nox4 after single blast injury in Sprague Dawley rats. Interestingly, Nox4 was also increased in postmortem human samples obtained from athletes diagnosed with chronic traumatic encephalopathy. Nox4 activity correlated with an increase in superoxide formation. Alpha-lipoic acid, an oxidative stress inhibitor, prevented the development of superoxide acutely and increased antiapoptotic markers B-cell lymphoma 2 (t = 3.079, P < 0.05) and heme oxygenase 1 (t = 8.169, P < 0.001) after single blast. Subacutely, alpha-lipoic acid treatment reduced proapoptotic markers Bax (t = 4.483, P < 0.05), caspase 12 (t = 6.157, P < 0.001), and caspase 3 (t = 4.573, P < 0.01) after repetitive blast, and reduced tau hyperphosphorylation indicated by decreased CP-13 and paired helical filament staining. Alpha-lipoic acid ameliorated impulsive-like behavior 7 days after repetitive blast injury (t = 3.573, P < 0.05) compared with blast exposed animals without treatment. TBI can cause debilitating symptoms and psychiatric disorders. Oxidative stress is an ideal target for neuropharmacologic intervention, and alpha-lipoic acid warrants further investigation as a therapeutic for prevention of chronic neurodegeneration. PMID:26414010

  2. Bioluminescent Cell-Based NAD(P)/NAD(P)H Assays for Rapid Dinucleotide Measurement and Inhibitor Screening

    PubMed Central

    Leippe, Donna; Sobol, Mary; Vidugiris, Gediminas; Zhou, Wenhui; Meisenheimer, Poncho; Gautam, Prson; Wennerberg, Krister; Cali, James J.

    2014-01-01

    Abstract The central role of nicotinamide adenine dinucleotides in cellular energy metabolism and signaling makes them important nodes that link the metabolic state of cells with energy homeostasis and gene regulation. In this study, we describe the implementation of cell-based bioluminescence assays for rapid and sensitive measurement of those important redox cofactors. We show that the sensitivity of the assays (limit of detection ∼0.5 nM) enables the selective detection of total amounts of nonphosphorylated or phosphorylated dinucleotides directly in cell lysates. The total amount of NAD+NADH or NADP+NADPH levels can be detected in as low as 300 or 600 cells/well, respectively. The signal remains linear up to 5,000 cells/well with the maximum signal-to-background ratios ranging from 100 to 200 for NAD+NADH and from 50 to 100 for NADP+NADPH detection. The assays are robust (Z′ value >0.7) and the inhibitor response curves generated using a known NAD biosynthetic pathway inhibitor FK866 correlate well with the reported data. More importantly, by multiplexing the dinucleotide detection assays with a fluorescent nonmetabolic cell viability assay, we show that dinucleotide levels can be decreased dramatically (>80%) by FK866 treatment before changes in cell viability are detected. The utility of the assays to identify modulators of intracellular nicotinamide adenine dinucleotide levels was further confirmed using an oncology active compound library, where novel dinucleotide regulating compounds were identified. For example, the histone deacetylase inhibitor entinostat was a potent inhibitor of cellular nicotinamide adenine dinucleotides, whereas the selective estrogen receptor modulator raloxifene unexpectedly caused a twofold increase in cellular nicotinamide adenine dinucleotide levels. PMID:25506801

  3. Nicotinamide Adenine Dinucleotide Phosphate Oxidase-Mediated Redox Signaling and Vascular Remodeling by 16α-Hydroxyestrone in Human Pulmonary Artery Cells: Implications in Pulmonary Arterial Hypertension.

    PubMed

    Hood, Katie Y; Montezano, Augusto C; Harvey, Adam P; Nilsen, Margaret; MacLean, Margaret R; Touyz, Rhian M

    2016-09-01

    Estrogen and oxidative stress have been implicated in pulmonary arterial hypertension (PAH). Mechanisms linking these systems are elusive. We hypothesized that estrogen metabolite, 16α-hydroxyestrone (16αOHE1), stimulates nicotinamide adenine dinucleotide phosphate oxidase (Nox)-induced reactive oxygen species (ROS) generation and proliferative responses in human pulmonary artery smooth muscle cells (hPASMCs) and that in PAH aberrant growth signaling promotes vascular remodeling. The pathophysiological significance of estrogen-Nox-dependent processes was studied in female Nox1(-/-) and Nox4(-/-) mice with PAH. PASMCs from control subjects (control hPASMCs) and PAH patients (PAH-hPASMCs) were exposed to estrogen and 16αOHE1 in the presence/absence of inhibitors of Nox, cytochrome P450 1B1, and estrogen receptors. Estrogen, through estrogen receptor-α, increased Nox-derived ROS and redox-sensitive growth in hPASMCs, with greater effects in PAH-hPASMCs versus control hPASMCs. Estrogen effects were inhibited by cytochrome P450 1B1 blockade. 16αOHE1 stimulated transient ROS production in hPASMCs, with sustained responses in PAH-hPASMCs. Basal expression of Nox1/Nox4 was potentiated in PAH-hPASMCs. In hPASMCs, 16αOHE1 increased Nox1 expression, stimulated irreversible oxidation of protein tyrosine phosphatases, decreased nuclear factor erythroid-related factor 2 activity and expression of nuclear factor erythroid-related factor 2-regulated antioxidant genes, and promoted proliferation. This was further amplified in PAH-hPASMCs. Nox1(-/-) but not Nox4(-/-) mice were protected against PAH and vascular remodeling. Our findings demonstrate that in PAH-hPASMCs, 16αOHE1 stimulates redox-sensitive cell growth primarily through Nox1. Supporting this, in vivo studies exhibited protection against pulmonary hypertension and remodeling in Nox1(-/-) mice. This study provides new insights through Nox1/ROS and nuclear factor erythroid-related factor 2 whereby 16αOHE1 influences

  4. Nicotinamide Adenine Dinucleotide Phosphate Oxidase–Mediated Redox Signaling and Vascular Remodeling by 16α-Hydroxyestrone in Human Pulmonary Artery Cells

    PubMed Central

    Hood, Katie Y.; Montezano, Augusto C.; Harvey, Adam P.; Nilsen, Margaret; MacLean, Margaret R.

    2016-01-01

    Estrogen and oxidative stress have been implicated in pulmonary arterial hypertension (PAH). Mechanisms linking these systems are elusive. We hypothesized that estrogen metabolite, 16α-hydroxyestrone (16αOHE1), stimulates nicotinamide adenine dinucleotide phosphate oxidase (Nox)–induced reactive oxygen species (ROS) generation and proliferative responses in human pulmonary artery smooth muscle cells (hPASMCs) and that in PAH aberrant growth signaling promotes vascular remodeling. The pathophysiological significance of estrogen–Nox–dependent processes was studied in female Nox1−/− and Nox4−/− mice with PAH. PASMCs from control subjects (control hPASMCs) and PAH patients (PAH-hPASMCs) were exposed to estrogen and 16αOHE1 in the presence/absence of inhibitors of Nox, cytochrome P450 1B1, and estrogen receptors. Estrogen, through estrogen receptor-α, increased Nox-derived ROS and redox-sensitive growth in hPASMCs, with greater effects in PAH-hPASMCs versus control hPASMCs. Estrogen effects were inhibited by cytochrome P450 1B1 blockade. 16αOHE1 stimulated transient ROS production in hPASMCs, with sustained responses in PAH-hPASMCs. Basal expression of Nox1/Nox4 was potentiated in PAH-hPASMCs. In hPASMCs, 16αOHE1 increased Nox1 expression, stimulated irreversible oxidation of protein tyrosine phosphatases, decreased nuclear factor erythroid–related factor 2 activity and expression of nuclear factor erythroid–related factor 2–regulated antioxidant genes, and promoted proliferation. This was further amplified in PAH-hPASMCs. Nox1−/− but not Nox4−/− mice were protected against PAH and vascular remodeling. Our findings demonstrate that in PAH-hPASMCs, 16αOHE1 stimulates redox-sensitive cell growth primarily through Nox1. Supporting this, in vivo studies exhibited protection against pulmonary hypertension and remodeling in Nox1−/− mice. This study provides new insights through Nox1/ROS and nuclear factor erythroid–related factor 2

  5. [DISTRIBUTION OF NADPH-DIAPHORASE ACTIVITY IN TREMATODE CERCARIAE].

    PubMed

    Terenina, N B

    2015-01-01

    The presence and distribution of nitric oxide sinthase was studied in cercariae of trematodes from seven families using the nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) histochemical method. The positive NADPH-d staining has been observed in nerve fibers in main nerve chords and in fibers running to eyespots (pigmented eyes) as well as in muscles of the oral and ventral suckers. The obtained data support an important role of the NO-signalling in the physiology of trematode cercariae. PMID:27055331

  6. Application of the measurement of oxidized pyridine dinucleotides with high-performance liquid chromatography-fluorescence detection to assay the uncoupled oxidation of NADPH by neuronal nitric oxide synthase.

    PubMed

    Pálfi, Melinda; Halász, Attila Sándor; Tábi, Tamás; Magyar, Kálmán; Szöko, Eva

    2004-03-01

    A rapid and sensitive high-performance liquid chromatography method has been developed for the measurement of oxidized pyridine dinucleotides (NAD+, NADP+) in biological samples following fluorescence derivatization. Under strongly alkaline conditions the pyridinium ring of the nicotinamide moiety reacts with carbonyl compounds, resulting in stable fluorescent products. Upon subsequent addition of concentrated formic acid and treatment with heat, this fluorescence is further amplified and is shifted to higher-wavelength regions. From among the ketones assayed (acetone, ethylmethyl ketone, acetophenone) the condensation product with acetophenone possesses the highest molar relative fluorescence, thus allowing the most sensitive detection in our experimental setup (limit of detection: 0.02pmol/50 microliter injected volume). The fluorescent products have been separated on a reverse-phase C-18 column using 0.1M citric acid (pH 3.2)/acetonitrile (92/8, v/v) as mobile phase. Our method is suitable for assaying NADH- and NADPH-dependent enzyme reactions by quantifying oxidized coenzyme products. As an example, the activity of neuronal nitric oxide synthase (nNOS), a NADPH-requiring enzyme, has been assessed by measuring the products NADP+ and l-citrulline at various substrate (l-arginine) concentrations. The rate of the uncoupled NADPH oxidation by nNOS can be estimated from the ratio of NADP+/l-citrulline produced. PMID:14769337

  7. Activation of human neutrophil nicotinamide adenine dinucleotide phosphate, reduced (triphosphopyridine nucleotide, reduced) oxidase by arachidonic acid in a cell-free system.

    PubMed Central

    Curnutte, J T

    1985-01-01

    Sonicates from unstimulated human neutrophils produce no measurable superoxide since the superoxide-generating enzyme, NADPH oxidase, is inactive in these preparations. Previous attempts to activate the oxidase in disrupted cells with conventional neutrophil stimuli have been unsuccessful. This report describes a cell-free system in which arachidonic acid (82 microM) was able to activate superoxide generation that was dependent upon the presence of NADPH and the sonicate. For activation to occur, both the particulate and supernatant fractions of the sonicate must be present. Calcium ions, which are required for activation of intact neutrophils by arachidonate, were not necessary in the cell-free system. In quantitative terms, the superoxide-generating activity in the cell-free system could account for at least 20-50% of the superoxide rate observed in intact neutrophils stimulated with arachidonate. Sonicates from patients with chronic granulomatous disease (CGD) could not be activated by arachidonic acid in the cell-free system. In three patients representing both genetic forms of CGD, the defect appeared to reside in the particulate fraction. The soluble cofactor was normal in all three patients and could be used to activate normal neutrophil pellets in the presence of arachidonic acid. Thus, at least a portion of the activation mechanism in the neutrophil, that residing in the soluble phase, appeared to be normal in patients with CGD. PMID:2987311

  8. NADPH-generating systems in bacteria and archaea

    PubMed Central

    Spaans, Sebastiaan K.; Weusthuis, Ruud A.; van der Oost, John; Kengen, Servé W. M.

    2015-01-01

    Reduced nicotinamide adenine dinucleotide phosphate (NADPH) is an essential electron donor in all organisms. It provides the reducing power that drives numerous anabolic reactions, including those responsible for the biosynthesis of all major cell components and many products in biotechnology. The efficient synthesis of many of these products, however, is limited by the rate of NADPH regeneration. Hence, a thorough understanding of the reactions involved in the generation of NADPH is required to increase its turnover through rational strain improvement. Traditionally, the main engineering targets for increasing NADPH availability have included the dehydrogenase reactions of the oxidative pentose phosphate pathway and the isocitrate dehydrogenase step of the tricarboxylic acid (TCA) cycle. However, the importance of alternative NADPH-generating reactions has recently become evident. In the current review, the major canonical and non-canonical reactions involved in the production and regeneration of NADPH in prokaryotes are described, and their key enzymes are discussed. In addition, an overview of how different enzymes have been applied to increase NADPH availability and thereby enhance productivity is provided. PMID:26284036

  9. Enhancement of photophysical and photosensitizing properties of flavin adenine dinucleotide by mutagenesis of the C-terminal extension of a bacterial flavodoxin reductase.

    PubMed

    Valle, Lorena; Abatedaga, Inés; Vieyra, Faustino E Morán; Bortolotti, Ana; Cortez, Néstor; Borsarelli, Claudio D

    2015-03-16

    The role of the mobile C-terminal extension present in Rhodobacter capsulatus ferredoxin-NADP(H) reductase (RcFPR) was evaluated using steady-state and dynamic spectroscopies for both intrinsic Trp and FAD in a series of mutants in the absence of NADP(H). Deletion of the six C-terminal amino acids beyond Ala266 was combined with the replacement A266Y to emulate the structure of plastidic reductases. Our results show that these modifications of the wild-type RcFPR produce subtle global conformational changes, but strongly reduce the local rigidity of the FAD-binding pocket, exposing the isoalloxazine ring to the solvent. Thus, the ultrafast charge-transfer quenching of (1) FAD* by the conserved Tyr66 residue was absent in the mutant series, producing enhancement of the excited singlet- and triplet-state properties of FAD. This work highlights the delicate balance of the specific interactions between FAD and the surrounding amino acids, and how the functionality and/or photostability of redox flavoproteins can be modified. PMID:25641205

  10. Solubilization and Separation of a Plant Plasma Membrane NADPH-O2- Synthase from Other NAD(P)H Oxidoreductases.

    PubMed Central

    Van Gestelen, P.; Asard, H.; Caubergs, R. J.

    1997-01-01

    Solubilization and ion-exchange chromatography of plasma membrane proteins obtained from bean (Phaseolus vulgaris L.) seedlings resulted in a single NAD(P)H-O2--synthase protein peak. This enzyme showed a high preference toward NADPH as a substrate (reaction rate, 27.4 nmol O2- produced min-1 mg-1 protein), whereas NADH reactions ranged from 0 to maximally 15% of the NADPH reactions. The protein functions as an oxidase and it was clearly resolved from NAD(P)H dehydrogenases identified with commonly used strong oxidants (ferricyanide, cytochrome c, DCIP, and oxaloacetate). The involvement of peroxidases in O2- production is excluded on the basis of potassium-cyanide insensitivity and NADPH specificity. The NADPH oxidase is only moderately stimulated by flavins (1.5-fold with 25 [mu]M flavine adenine dinucleotide and 2.5-fold with 25 [mu]M flavin mononucleotide) and inhibited by 100 [mu]M p-chloromercuribenzenesulfonic acid, 200 [mu]M diphenyleneiodonium, 10 mM quinacrine, 40 mM pyridine, and 20 mM imidazole. The presence of flavins was demonstrated in the O2-synthase fraction, but no b-type cytochromes were detected. The effect of these inhibitors and the detection of flavins and cytochromes in the plant O2- synthase make it possible to compare this enzyme with the NADPH O2- synthase of animal neutrophil cells. PMID:12223822

  11. Two-pore Channels (TPC2s) and Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) at Lysosomal-Sarcoplasmic Reticular Junctions Contribute to Acute and Chronic β-Adrenoceptor Signaling in the Heart.

    PubMed

    Capel, Rebecca A; Bolton, Emma L; Lin, Wee K; Aston, Daniel; Wang, Yanwen; Liu, Wei; Wang, Xin; Burton, Rebecca-Ann B; Bloor-Young, Duncan; Shade, Kai-Ting; Ruas, Margarida; Parrington, John; Churchill, Grant C; Lei, Ming; Galione, Antony; Terrar, Derek A

    2015-12-11

    Ca(2+)-permeable type 2 two-pore channels (TPC2) are lysosomal proteins required for nicotinic acid adenine dinucleotide phosphate (NAADP)-evoked Ca(2+) release in many diverse cell types. Here, we investigate the importance of TPC2 proteins for the physiology and pathophysiology of the heart. NAADP-AM failed to enhance Ca(2+) responses in cardiac myocytes from Tpcn2(-/-) mice, unlike myocytes from wild-type (WT) mice. Ca(2+)/calmodulin-dependent protein kinase II inhibitors suppressed actions of NAADP in myocytes. Ca(2+) transients and contractions accompanying action potentials were increased by isoproterenol in myocytes from WT mice, but these effects of β-adrenoreceptor stimulation were reduced in myocytes from Tpcn2(-/-) mice. Increases in amplitude of L-type Ca(2+) currents evoked by isoproterenol remained unchanged in myocytes from Tpcn2(-/-) mice showing no loss of β-adrenoceptors or coupling mechanisms. Whole hearts from Tpcn2(-/-) mice also showed reduced inotropic effects of isoproterenol and a reduced tendency for arrhythmias following acute β-adrenoreceptor stimulation. Hearts from Tpcn2(-/-) mice chronically exposed to isoproterenol showed less cardiac hypertrophy and increased threshold for arrhythmogenesis compared with WT controls. Electron microscopy showed that lysosomes form close contacts with the sarcoplasmic reticulum (separation ∼ 25 nm). We propose that Ca(2+)-signaling nanodomains between lysosomes and sarcoplasmic reticulum dependent on NAADP and TPC2 comprise an important element in β-adrenoreceptor signal transduction in cardiac myocytes. In summary, our observations define a role for NAADP and TPC2 at lysosomal/sarcoplasmic reticulum junctions as unexpected but major contributors in the acute actions of β-adrenergic signaling in the heart and also in stress pathways linking chronic stimulation of β-adrenoceptors to hypertrophy and associated arrhythmias. PMID:26438825

  12. Biochemical Analysis of Recombinant AlkJ from Pseudomonas putida Reveals a Membrane-Associated, Flavin Adenine Dinucleotide-Dependent Dehydrogenase Suitable for the Biosynthetic Production of Aliphatic Aldehydes

    PubMed Central

    Kirmair, Ludwig

    2014-01-01

    The noncanonical alcohol dehydrogenase AlkJ is encoded on the alkane-metabolizing alk operon of the mesophilic bacterium Pseudomonas putida GPo1. To gain insight into the enzymology of AlkJ, we have produced the recombinant protein in Escherichia coli and purified it to homogeneity using His6 tag affinity and size exclusion chromatography (SEC). Despite synthesis in the cytoplasm, AlkJ was associated with the bacterial cell membrane, and solubilization with n-dodecyl-β-d-maltoside was necessary to liberate the enzyme. SEC and spectrophotometric analysis revealed a dimeric quaternary structure with stoichiometrically bound reduced flavin adenine dinucleotide (FADH2). The holoenzyme showed thermal denaturation at moderate temperatures around 35°C, according to both activity assay and temperature-dependent circular dichroism spectroscopy. The tightly bound coenzyme was released only upon denaturation with SDS or treatment with urea-KBr and, after air oxidation, exhibited the characteristic absorption spectrum of FAD. The enzymatic activity of purified AlkJ for 1-butanol, 1-hexanol, and 1-octanol as well as the n-alkanol derivative ω-hydroxy lauric acid methyl ester (HLAMe) was quantified in the presence of the artificial electron acceptors phenazine methosulfate (PMS) and 2,6-dichlorophenolindophenol (DCPIP), indicating broad substrate specificity with the lowest activity on the shortest alcohol, 1-butanol. Furthermore, AlkJ was able to accept as cosubstrates/oxidants the ubiquinone derivatives Q0 and Q1, also in conjunction with cytochrome c, which suggests coupling to the bacterial respiratory chain of this membrane-associated enzyme in its physiological environment. Using gas chromatographic analysis, we demonstrated specific biocatalytic conversion by AlkJ of the substrate HLAMe to the industrially relevant aldehyde, thus enabling the biotechnological production of 12-amino lauric acid methyl ester via subsequent enzymatic transamination. PMID:24509930

  13. Two-pore Channels (TPC2s) and Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) at Lysosomal-Sarcoplasmic Reticular Junctions Contribute to Acute and Chronic β-Adrenoceptor Signaling in the Heart*

    PubMed Central

    Capel, Rebecca A.; Bolton, Emma L.; Lin, Wee K.; Aston, Daniel; Wang, Yanwen; Liu, Wei; Wang, Xin; Burton, Rebecca-Ann B.; Bloor-Young, Duncan; Shade, Kai-Ting; Ruas, Margarida; Parrington, John; Churchill, Grant C.; Lei, Ming; Galione, Antony; Terrar, Derek A.

    2015-01-01

    Ca2+-permeable type 2 two-pore channels (TPC2) are lysosomal proteins required for nicotinic acid adenine dinucleotide phosphate (NAADP)-evoked Ca2+ release in many diverse cell types. Here, we investigate the importance of TPC2 proteins for the physiology and pathophysiology of the heart. NAADP-AM failed to enhance Ca2+ responses in cardiac myocytes from Tpcn2−/− mice, unlike myocytes from wild-type (WT) mice. Ca2+/calmodulin-dependent protein kinase II inhibitors suppressed actions of NAADP in myocytes. Ca2+ transients and contractions accompanying action potentials were increased by isoproterenol in myocytes from WT mice, but these effects of β-adrenoreceptor stimulation were reduced in myocytes from Tpcn2−/− mice. Increases in amplitude of L-type Ca2+ currents evoked by isoproterenol remained unchanged in myocytes from Tpcn2−/− mice showing no loss of β-adrenoceptors or coupling mechanisms. Whole hearts from Tpcn2−/− mice also showed reduced inotropic effects of isoproterenol and a reduced tendency for arrhythmias following acute β-adrenoreceptor stimulation. Hearts from Tpcn2−/− mice chronically exposed to isoproterenol showed less cardiac hypertrophy and increased threshold for arrhythmogenesis compared with WT controls. Electron microscopy showed that lysosomes form close contacts with the sarcoplasmic reticulum (separation ∼25 nm). We propose that Ca2+-signaling nanodomains between lysosomes and sarcoplasmic reticulum dependent on NAADP and TPC2 comprise an important element in β-adrenoreceptor signal transduction in cardiac myocytes. In summary, our observations define a role for NAADP and TPC2 at lysosomal/sarcoplasmic reticulum junctions as unexpected but major contributors in the acute actions of β-adrenergic signaling in the heart and also in stress pathways linking chronic stimulation of β-adrenoceptors to hypertrophy and associated arrhythmias. PMID:26438825

  14. Null mutation of the nicotinamide adenine dinucleotide phosphate-oxidase subunit p67phox protects the Dahl-S rat from salt-induced reductions in medullary blood flow and glomerular filtration rate.

    PubMed

    Evans, Louise C; Ryan, Robert P; Broadway, Elizabeth; Skelton, Meredith M; Kurth, Theresa; Cowley, Allen W

    2015-03-01

    Null mutations in the p67(phox) subunit of nicotinamide adenine dinucleotide phosphate-oxidase confer protection from salt sensitivity on Dahl salt-sensitive rats. Here, we track the sequential changes in medullary blood flow (MBF), glomerular filtration rate (GFR), urinary protein, and mean arterial pressure in SSp67(phox) null rats and wild-type littermates during 21 days of 4.0% NaCl high-salt (HS) diet. Optical fibers were implanted in the renal medulla and MBF was measured in conscious rats by laser Doppler flowmetry. Separate groups of rats were prepared with femoral venous catheters and GFR was measured by the transcutaneous assessment of fluorescein isothiocyanate-sinistrin disappearance curves. Mean arterial blood pressure was measured by telemetry. In wild-type rats, HS caused a rapid reduction in MBF, which was significantly lower than control values by HS day-6. Reduced MBF was associated with a progressive increase in mean arterial pressure, averaging 170±5 mm Hg by HS salt day-21. A significant reduction in GFR was evident on day-14 HS, after the onset of hypertension and reduced MBF. In contrast, HS had no significant effect on MBF in SSp67(phox) null rats and the pressor response to sodium was blunted, averaging 150±3 mm Hg on day-21 HS. GFR was maintained throughout the study and proteinuria was reduced. In summary, when p67(phox) is not functional in the salt-sensitive rats, HS does not cause reduced MBF and salt-sensitive hypertension is attenuated, and consequently renal injury is reduced and GFR is maintained. PMID:25489057

  15. NADPH Oxidases in Chronic Liver Diseases

    PubMed Central

    Jiang, Joy X.; Török, Natalie J.

    2015-01-01

    Oxidative stress is a common feature observed in a wide spectrum of chronic liver diseases including viral hepatitis, alcoholic, and nonalcoholic steatohepatitis. The nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) are emerging as major sources of reactive oxygen species (ROS). Several major isoforms are expressed in the liver, including NOX1, NOX2, and NOX4. While the phagocytic NOX2 has been known to play an important role in Kupffer cell and neutrophil phagocytic activity and inflammation, the nonphagocytic NOX homologues are increasingly recognized as key enzymes in oxidative injury and wound healing. In this review, we will summarize the current advances in knowledge on the regulatory pathways of NOX activation, their cellular distribution, and their role in the modulation of redox signaling in liver diseases. PMID:26436133

  16. Nicotinamide Adenine Dinucleotide Based Therapeutics, Update.

    PubMed

    Pankiewicz, K W; Petrelli, R; Singh, R; Felczak, K

    2015-01-01

    About 500 NAD (P)-dependent enzymes in the cell use NAD (P) as a cofactor or a substrate. This family of broadly diversified enzymes is crucial for maintaining homeostasis of all living organisms. The NAD binding domain of these enzymes is conserved and it was believed that NAD mimics would not be of therapeutic value due to lack of selectivity. Consequently, only mycophenolic acid which selectively binds at the cofactor pocket of NAD-dependent IMP-dehydrogenase (IMPDH) has been approved as an immunosuppressant. Recently, it became clear that the NAD (P)-binding domain was structurally much more diversified than anticipated and numerous highly potent and selective inhibitors of NAD (P) dependent enzymes have been reported. It is likely, that as in the case of protein kinases inhibitors, inhibitors of NAD (P)-dependent enzymes would find soon their way to the clinic. In this review, recent developments of selective inhibitors of NAD-dependent human IMPDH, as well as inhibitors of IMPDHs from parasites, and from bacterial sources are reported. Therapies against Cryptosporidium parvum and the development of new antibiotics that are on the horizon will be discussed. New inhibitors of bacterial NAD-ligases, NAD-kinases, NMN-adenylyl transferases, as well as phosphoribosyl transferases are also described. Although none of these compounds has yet to be approved, the progress in revealing and understanding crucial factors that might allow for designing more potent and efficient drug candidates is enormous and highly encouraging. PMID:26295463

  17. NADPH OXIDASE: STRUCTURE AND ACTIVATION MECHANISMS (REVIEW). NOTE I.

    PubMed

    Filip-Ciubotaru, Florina; Manciuc, Carmen; Stoleriu, Gabriela; Foia, Liliana

    2016-01-01

    NADPH oxidase (nicotinamide adenine dinucleotide phosphate-oxidase), with its generically termed NOX isoforms, is the major source of ROS (reactive oxigen species) in biological systems. ROS are small oxygen-derived molecules with an important role in various biological processes (physiological or pathological). If under physiological conditions some processes are beneficial and necessary for life, under pathophysiological conditions they are noxious, harmful. NADPH oxidases are present in phagocytes and in a wide variety of nonphagocytic cells. The enzyme generates superoxide by transferring electrons from NADPH inside the cell across the membrane and coupling them to molecular oxygen to produce superoxide anion, a reactive free-radical. Structurally, NADPH oxidase is a multicomponent enzyme which includes two integral membrane proteins, glycoprotein gp9 1 Phox and adaptor protein p22(phox), which together form the heterodimeric flavocytochrome b558 that constitutes the core of the enzyme. During the resting state, the multidomain regulatory subunits p40P(phox), p47(phox), p67(Phox) are located in the cytosol organized as a complex. The activation of phagocytic NADPH oxidase occurs through a complex series of protein interactions. PMID:27125069

  18. Oxidative stress, NADPH oxidases, and arteries.

    PubMed

    Sun, Qi-An; Runge, Marschall S; Madamanchi, Nageswara R

    2016-05-10

    Atherosclerosis and its major complications - myocardial infarction and stroke - remain major causes of death and disability in the United States and world-wide. Indeed, with dramatic increases in obesity and diabetes mellitus, the prevalence and public health impact of cardiovascular diseases (CVD) will likely remain high. Major advances have been made in development of new therapies to reduce the incidence of atherosclerosis and CVD, in particular for treatment of hypercholesterolemia and hypertension. Oxidative stress is the common mechanistic link for many CVD risk factors. However, only recently have the tools existed to study the interface between oxidative stress and CVD in animal models. The most important source of reactive oxygen species (and hence oxidative stress) in vascular cells are the multiple forms of enzymes nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase). Recently published and emerging studies now clearly establish that: 1) NADPH oxidases are of critical importance in atherosclerosis and hypertension in animal models; 2) given the tissue-specific expression of key components of NADPH oxidase, it may be possible to target vascular oxidative stress for prevention of CVD. PMID:25649240

  19. Nitric oxide synthase in rat brain: age comparisons quantitated with NADPH-diaphorase histochemistry.

    PubMed

    Kuo, H; Hengemihle, J; Ingram, D K

    1997-05-01

    We examined age-related differences in nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) containing neurons and neuropil in the striatum and hippocampus of male Fischer 344 rats at 6, 12, and 26 mo of age. NADPH-d staining is considered to be a marker for neurons and neuronal processes containing nitric oxide synthase. Rat brains were processed for NADPH-d histochemistry and analyzed morphometrically using computerized image analysis. The following NADPH-d histochemical parameters were examined: neuronal density, neuronal size, and neuropil staining optical density of selected regions. In the striatum, significant age-related declines were observed in NADPH-d-positive neuronal density and in neuropil staining, while neuronal size increased between 6 and 12 mo and then declined between 12 and 26 mo. In the hippocampus no significant age-related changes were noted in NADPH-d-positive neuronal density or size, or in the optical density of the molecular layer of the hippocampal dentate gyrus. Thus, age differences in NADPH-d histochemistry appear to be regionally specific in the Fischer 344 rat. PMID:9158548

  20. Neuronal NAD(P)H Oxidases Contribute to ROS Production and Mediate RGC Death after Ischemia

    PubMed Central

    Dvoriantchikova, Galina; Grant, Jeff; Santos, Andrea Rachelle C.; Hernandez, Eleut; Ivanov, Dmitry

    2012-01-01

    Purpose. To study the role of neuronal nicotinamide adenine dinucleotide phosphate [NAD(P)H] oxidase–dependent reactive oxygen species (ROS) production in retinal ganglion cell (RGC) death after ischemia. Methods. Ischemic injury was induced by unilateral elevation of intraocular pressure via direct corneal cannulation. For in vitro experiments, RGCs isolated by immunopanning from retinas were exposed to oxygen and glucose deprivation (OGD). The expression levels of NAD(P)H oxidase subunits were evaluated by quantitative PCR, immunocytochemistry, and immunohistochemistry. The level of ROS generated was assayed by dihydroethidium. The NAD(P)H oxidase inhibitors were then tested to determine if inhibition of NAD(P)H oxidase altered the production of ROS within the RGCs and promoted cell survival. Results. It was reported that RGCs express catalytic Nox1, Nox2, Nox4, Duox1, as well as regulatory Ncf1/p47phox, Ncf2/p67phox, Cyba/p22phox, Noxo1, and Noxa1 subunits of NAD(P)H oxidases under normal conditions and after ischemia. However, whereas RGCs express only low levels of catalytic Nox2, Nox4, and Duox1, and regulatory Ncf1/p47, Ncf2/p67 subunits, they exhibit significantly higher levels of catalytic subunit Nox1 and the subunits required for optimal activity of Nox1. It was observed that the nonselective NAD(P)H oxidase inhibitors VAS-2870, AEBSF, and the Nox1 NAD(P)H oxidase–specific inhibitor ML-090 decreased the ROS burst stimulated by OGD, which was associated with a decreased level of RGC death. Conclusions. The findings suggest that NAD(P)H oxidase activity in RGCs renders them vulnerable to ischemic death. Importantly, high levels of Nox1 NAD(P)H oxidase subunits in RGCs suggest that this enzyme could be a major source of ROS in RGCs produced by NAD(P)H oxidases. PMID:22467573

  1. Time-resolved spectroscopy of endogenous NAD(P)H in Gluconobacter oxydans

    NASA Astrophysics Data System (ADS)

    Horilova, J.; Kromkova, K.; Bucko, M.; Illesova, A.; Vikartovska, A.; Stefuca, V.; Mateasik, A.; Chorvat, D.; Chorvatova, A.

    2013-02-01

    The genus Gluconobacter is frequently used for biotechnological and/or nanotechnological applications. We studied endogenous fluorescence of nicotinamide adenine dinucleotide (phosphate) (NAD(P)H), indicator of the oxidative metabolic state in mammalian cells, in Gluconobacter oxydans (G. oxydans). Time-resolved measurements (excitation by 375nm pulsed diode laser) were employed to record the bacterial fluorescence intensity, as well as its modifications by metabolic modulation. Results were gathered on fresh bacteria, on de-frozen ones, as well as on bacteria encapsulated in alginate beads. NAD(P)H fluorescence increased linearly with the concentration of bacteria. Freezing, which has little effect on the viability of bacteria or the concentration-dependent fluorescence rise, affected the temperature-dependence of NAD(P)H fluorescence. Sodium cyanide (10 mM) provoked significant rise in the NAD(P)H fluorescence, while dinitrophenol (200 μM) induced its decrease, confirming the bacterial NAD(P)H fluorescence sensitivity to modulators of electron transport chain. Gathered results demonstrate that endogenous NAD(P)H fluorescence can be successfully recorded in the bacterial strain G. oxydans using time-resolved measurements.

  2. Localization of NADPH Oxidase in Sympathetic and Sensory Ganglion Neurons and Perivascular Nerve Fibers

    PubMed Central

    Cao, Xian; Demel, Stacie L.; Quinn, Mark T.; Galligan, James J.; Kreulen, David L.

    2009-01-01

    Superoxide anion (O2−•) production was previously reported to be increased in celiac ganglia (CG) during DOCA-salt hypertension, possibly via activation of the reduced nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase. This suggested a role for neuronal NADPH oxidase in autonomic neurovascular control. However, the expression and localization of NADPH oxidase in the peripheral neurons is not fully known. The purpose of this study was to examine the subcellular localization of NADPH oxidase in sympathetic and sensory ganglion neurons and perivascular nerve fibers. In rat CG, p22phox and neuropeptide Y (NPY) were colocalized in all neurons. P22phox was also localized to dorsal root ganglia (DRG) neurons that contain calcitonin gene related peptide (CGRP). In mesenteric arteries, p22phox and p47phox were colocalized with NPY or CGRP in perivascular nerve terminals. A similar pattern of nerve terminal staining of p22phox and p47phox was also found in cultured CG neurons and nerve growth factor (NGF)-differentiated PC12 cells. These data demonstrate a previously uncharacterized localization of NADPH oxidase in perivascular nerve fibers. The presence of a O2−• – generating enzyme in close vicinity to the sites of neurotransmitter handling in the nerve fibers suggests the possibility of novel redox-mediated mechanisms in peripheral neurovascular control. PMID:19716351

  3. Involvement of NADPH oxidases in suppression of cyclooxygenase-2 promoter-dependent transcriptional activities by sesamol

    PubMed Central

    Shimizu, Satomi; Ishigamori, Rikako; Fujii, Gen; Takahashi, Mami; Onuma, Wakana; Terasaki, Masaru; Yano, Tomohiro; Mutoh, Michihiro

    2015-01-01

    Cyclooxygenase-2 (COX-2) has been shown to play an important role in colon carcinogenesis. Moreover, one of the components of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, NADPH oxidase 1 (NOX1), dominantly expressed in the colon, is implicated in the pathogenesis of colon cancer. We have reported that sesamol, one of the lignans in sesame seeds, suppressed COX-2 gene transcriptional activity in human colon cancer cells, and also suppressed intestinal polyp formation in Apc-mutant mice. In the present study, we investigated the involvement of NADPH oxidase in the inhibition of COX-2 transcriptional activity by sesamol. We found that several NADPH oxidase inhibitors, such as apocynin, showed suppressive effects on COX-2 transcriptional activity. Moreover, sesamol significantly suppressed NOX1 mRNA levels in a dose-dependent manner. In addition, we demonstrated that knockdown of NOX1 successfully suppressed COX-2 transcriptional activity. These results suggest that inhibition of NADPH oxidase, especially NOX1, may be involved in the mechanism of the suppression of COX-2 transcriptional activity by sesamol. PMID:25759517

  4. Physiology-based kinetic modeling of neuronal energy metabolism unravels the molecular basis of NAD(P)H fluorescence transients.

    PubMed

    Berndt, Nikolaus; Kann, Oliver; Holzhütter, Hermann-Georg

    2015-09-01

    Imaging of the cellular fluorescence of the reduced form of nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) is one of the few metabolic readouts that enable noninvasive and time-resolved monitoring of the functional status of mitochondria in neuronal tissues. Stimulation-induced transient changes in NAD(P)H fluorescence intensity frequently display a biphasic characteristic that is influenced by various molecular processes, e.g., intracellular calcium dynamics, tricarboxylic acid cycle activity, the malate-aspartate shuttle, the glycerol-3-phosphate shuttle, oxygen supply or adenosine triphosphate (ATP) demand. To evaluate the relative impact of these processes, we developed and validated a detailed physiologic mathematical model of the energy metabolism of neuronal cells and used the model to simulate metabolic changes of single cells and tissue slices under different settings of stimulus-induced activity and varying nutritional supply of glucose, pyruvate or lactate. Notably, all experimentally determined NAD(P)H responses could be reproduced with one and the same generic cellular model. Our computations reveal that (1) cells with quite different metabolic status may generate almost identical NAD(P)H responses and (2) cells of the same type may quite differently contribute to aggregate NAD(P)H responses recorded in brain slices, depending on the spatial location within the tissue. Our computational approach reconciles different and sometimes even controversial experimental findings and improves our mechanistic understanding of the metabolic changes underlying live-cell NAD(P)H fluorescence transients. PMID:25899300

  5. Ascorbic acid reduction of compound I of mammalian catalases proceeds via specific binding to the NADPH binding pocket.

    PubMed

    Korth, Hans-Gert; Meier, Ann-Cathérine; Auferkamp, Oliver; Sicking, Willi; de Groot, Herbert; Sustmann, Reiner; Kirsch, Michael

    2012-06-12

    Mammalian (Clade 3) catalases utilize NADPH as a protective cofactor to prevent one-electron reduction of the central reactive intermediate Compound I (Cpd I) to the catalytically inactive Compound II (Cpd II) species by re-reduction of Cpd I to the enzyme's resting state (ferricatalase). It has long been known that ascorbate/ascorbic acid is capable of reducing Cpd I of NADPH-binding catalases to Cpd II, but the mode of this one-electron reduction had hitherto not been explored. We here demonstrate that ascorbate-mediated reduction of Cpd I, generated by addition of peroxoacetic acid to NADPH-free bovine liver catalase (BLC), requires specific binding of the ascorbate anion to the NADPH binding pocket. Ascorbate-mediated Cpd II formation was found to be suppressed by added NADPH in a concentration-dependent manner, for the achievement of complete suppression at a stoichiometric 1:1 NADPH:heme concentration ratio. Cpd I → Cpd II reduction by ascorbate was similarly inhibited by addition of NADH, NADP(+), thio-NADP(+), or NAD(+), though with 0.5-, 0.1-, 0.1-, and 0.01-fold reduced efficiencies, respectively, in agreement with the relative binding affinities of these dinucleotides. Unexpected was the observation that although Cpd II formation is not observed in the presence of NADP(+), the decay of Cpd I is slightly accelerated by ascorbate rather than retarded, leading to direct regeneration of ferricatalase. The experimental findings are supported by molecular mechanics docking computations, which show a similar binding of NADPH, NADP(+), and NADH, but not NAD(+), as found in the X-ray structure of NADPH-loaded human erythrocyte catalase. The computations suggest that two ascorbate molecules may occupy the empty NADPH pocket, preferably binding to the adenine binding site. The biological relevance of these findings is discussed. PMID:22616883

  6. The intimate and controversial relationship between voltage-gated proton channels and the phagocyte NADPH oxidase.

    PubMed

    DeCoursey, Thomas E

    2016-09-01

    One of the most fascinating and exciting periods in my scientific career entailed dissecting the symbiotic relationship between two membrane transporters, the Nicotinamide adenine dinucleotide phosphate reduced form (NADPH) oxidase complex and voltage-gated proton channels (HV 1). By the time I entered this field, there had already been substantial progress toward understanding NADPH oxidase, but HV 1 were known only to a tiny handful of cognoscenti around the world. Having identified the first proton currents in mammalian cells in 1991, I needed to find a clear function for these molecules if the work was to become fundable. The then-recent discoveries of Henderson, Chappell, and colleagues in 1987-1988 that led them to hypothesize interactions of both molecules during the respiratory burst of phagocytes provided an excellent opportunity. In a nutshell, both transporters function by moving electrical charge across the membrane: NADPH oxidase moves electrons and HV 1 moves protons. The consequences of electrogenic NADPH oxidase activity on both membrane potential and pH strongly self-limit this enzyme. Fortunately, both consequences specifically activate HV 1, and HV 1 activity counteracts both consequences, a kind of yin-yang relationship. Notwithstanding a decade starting in 1995 when many believed the opposite, these are two separate molecules that function independently despite their being functionally interdependent in phagocytes. The relationship between NADPH oxidase and HV 1 has become a paradigm that somewhat surprisingly has now extended well beyond the phagocyte NADPH oxidase - an industrial strength producer of reactive oxygen species (ROS) - to myriad other cells that produce orders of magnitude less ROS for signaling purposes. These cells with their seven NADPH oxidase (NOX) isoforms provide a vast realm of mechanistic obscurity that will occupy future studies for years to come. PMID:27558336

  7. NETosis and NADPH oxidase: at the intersection of host defense, inflammation, and injury

    PubMed Central

    Almyroudis, Nikolaos G.; Grimm, Melissa J.; Davidson, Bruce A.; Röhm, Marc; Urban, Constantin F.; Segal, Brahm H.

    2013-01-01

    Neutrophils are armed with both oxidant-dependent and -independent pathways for killing pathogens. Activation of the phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase constitutes an emergency response to infectious threat and results in the generation of antimicrobial reactive oxidants. In addition, NADPH oxidase activation in neutrophils is linked to activation of granular proteases and generation of neutrophil extracellular traps (NETs). NETosis involves the release of nuclear and granular components that can target extracellular pathogens. NETosis is activated during microbial threat and in certain conditions mimicking sepsis, and can result in both augmented host defense and inflammatory injury. In contrast, apoptosis, the physiological form of neutrophil death, not only leads to non-inflammatory cell death but also contributes to alleviate inflammation. Although there are significant gaps in knowledge regarding the specific contribution of NETs to host defense, we speculate that the coordinated activation of NADPH oxidase and NETosis maximizes microbial killing. Work in engineered mice and limited patient experience point to varying susceptibility of bacterial and fungal pathogens to NADPH oxidase versus NET constituents. Since reactive oxidants and NET constituents can injure host tissue, it is important that these pathways be tightly regulated. Recent work supports a role for NETosis in both acute lung injury and in autoimmunity. Knowledge gained about mechanisms that modulate NETosis may lead to novel therapeutic approaches to limit inflammation-associated injury. PMID:23459634

  8. Structure of conjugated polyketone reductase from Candida parapsilosis IFO 0708 reveals conformational changes for substrate recognition upon NADPH binding.

    PubMed

    Qin, Hui-Min; Yamamura, Akihiro; Miyakawa, Takuya; Kataoka, Michihiko; Nagai, Takahiro; Kitamura, Nahoko; Urano, Nobuyuki; Maruoka, Shintaro; Ohtsuka, Jun; Nagata, Koji; Shimizu, Sakayu; Tanokura, Masaru

    2014-01-01

    Conjugated polyketone reductase C2 (CPR-C2) from Candida parapsilosis IFO 0708, identified as a nicotinamide adenine dinucleotide phosphate (NADPH)-dependent ketopantoyl lactone reductase, belongs to the aldo-keto reductase superfamily. This enzyme reduces ketopantoyl lactone to D-pantoyl lactone in a strictly stereospecific manner. To elucidate the structural basis of the substrate specificity, we determined the crystal structures of the apo CPR-C2 and CPR-C2/NADPH complex at 1.70 and 1.80 Å resolutions, respectively. CPR-C2 adopted a triose-phosphate isomerase barrel fold at the core of the structure. Binding with the cofactor NADPH induced conformational changes in which Thr27 and Lys28 moved 15 and 5.0 Å, respectively, in the close vicinity of the adenosine 2'-phosphate group of NADPH to form hydrogen bonds. Based on the comparison of the CPR-C2/NADPH structure with 3-α-hydroxysteroid dehydrogenase and mutation analyses, we constructed substrate binding models with ketopantoyl lactone, which provided insight into the substrate specificity by the cofactor-induced structure. The results will be useful for the rational design of CPR-C2 mutants targeted for use in the industrial manufacture of ketopantoyl lactone. PMID:23828603

  9. Distribution of NADPH-diaphorase in the superior colliculus of Cebus monkeys, and co-localization with calcium-binding proteins.

    PubMed

    Soares, J G M; Mendez-Otero, R; Gattass, Ricardo

    2003-08-01

    We examined the distribution of the enzyme dihydronicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) in the superior colliculus (SC) of the New World monkey Cebus apella, and the co-localization of this enzyme with the calcium-binding proteins (CaBPs) calbindin-D28K, parvalbumin and calretinin. Despite the intensely labeled neuropil, rare NADPH-d-positive cells were observed in the stratum griseum superficiale (SGS). Most of the labeled cells in the SC were found in the intermediate layers, with a great number also in the deeper layers. This pattern is very similar to that described in the opossum (Didelphis marsupialis) and in the cat, and different from the pattern found in the rat, which shows labeled cells mainly in the SGS. Cells doubly stained for NADPH-d and CaBPs were observed throughout the SC, although in a small number. Of the NADPH-d-positive cells, 20.3% were doubly labeled for NADPH-d and parvalbumin, 10.2% revealed co-localization with calretinin, and 5.6% with calbindin. The low number of double-stained cells for NADPH-d and the CaBPs indicates that these molecules must participate in different functional circuits within the SC. PMID:12871769

  10. Amyloid β25-35 induced ROS-burst through NADPH oxidase is sensitive to iron chelation in microglial Bv2 cells.

    PubMed

    Part, Kristin; Künnis-Beres, Kai; Poska, Helen; Land, Tiit; Shimmo, Ruth; Zetterström Fernaeus, Sandra

    2015-12-10

    Iron chelation therapy and inhibition of glial nicotinamide adenine dinucleotide phosphate (NADPH) oxidase can both represent possible routes for Alzheimer's disease modifying therapies. The metal hypothesis is largely focused on direct binding of metals to the N-terminal hydrophilic 1-16 domain peptides of Amyloid beta (Aβ) and how they jointly give rise to reactive oxygen species (ROS) production. The cytotoxic effects of Aβ through ROS and metals are mainly studied in neuronal cells using full-length Aβ1-40/42 peptides. Here we study cellularly-derived ROS during 2-60min in response to non-metal associated mid domain Aβ25-35 in microglial Bv2 cells by fluorescence based spectroscopy. We analyze if Aβ25-35 induce ROS production through NADPH oxidase and if the production is sensitive to iron chelation. NADPH oxidase inhibitor diphenyliodonium (DPI) is used to confirm the production of ROS through NADPH oxidase. We modulate cellular iron homeostasis by applying cell permeable iron chelators desferrioxamine (DFO) and deferiprone (DFP). NADPH oxidase subunit gp91-phox level was analyzed by Western blotting. Our results show that Aβ25-35 induces strong ROS production through NADPH oxidase in Bv2 microglial cells. Intracellular iron depletion resulted in restrained Aβ25-35 induced ROS. PMID:26505916

  11. Nox NADPH Oxidases and the Endoplasmic Reticulum

    PubMed Central

    Araujo, Thaís L.S.; Abrahão, Thalita B.

    2014-01-01

    Abstract Significance: Understanding isoform- and context-specific subcellular Nox reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase compartmentalization allows relevant functional inferences. This review addresses the interplay between Nox NADPH oxidases and the endoplasmic reticulum (ER), an increasingly evident player in redox pathophysiology given its role in redox protein folding and stress responses. Recent Advances: Catalytic/regulatory transmembrane subunits are synthesized in the ER and their processing includes folding, N-glycosylation, heme insertion, p22phox heterodimerization, as shown for phagocyte Nox2. Dual oxidase (Duox) maturation also involves the regulation by ER-resident Duoxa2. The ER is the activation site for some isoforms, typically Nox4, but potentially other isoforms. Such location influences redox/Nox-mediated calcium signaling regulation via ER targets, such as sarcoendoplasmic reticulum calcium ATPase (SERCA). Growing evidence suggests that Noxes are integral signaling elements of the unfolded protein response during ER stress, with Nox4 playing a dual prosurvival/proapoptotic role in this setting, whereas Nox2 enhances proapoptotic signaling. ER chaperones such as protein disulfide isomerase (PDI) closely interact with Noxes. PDI supports growth factor-dependent Nox1 activation and mRNA expression, as well as migration in smooth muscle cells, and PDI overexpression induces acute spontaneous Nox activation. Critical Issues: Mechanisms of PDI effects include possible support of complex formation and RhoGTPase activation. In phagocytes, PDI supports phagocytosis, Nox activation, and redox-dependent interactions with p47phox. Together, the results implicate PDI as possible Nox organizer. Future Directions: We propose that convergence between Noxes and ER may have evolutive roots given ER-related functional contexts, which paved Nox evolution, namely calcium signaling and pathogen killing. Overall, the interplay between

  12. NADPH oxidase controls neutrophilic response to sterile inflammation in mice by regulating the IL-1α/G-CSF axis.

    PubMed

    Bagaitkar, Juhi; Pech, Nancy K; Ivanov, Stoyan; Austin, Anthony; Zeng, Melody Yue; Pallat, Sabine; Huang, Guangming; Randolph, Gwendalyn J; Dinauer, Mary C

    2015-12-17

    The leukocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase generates reactive oxygen species essential in microbial killing and regulation of inflammation. Inactivating mutations in this enzyme lead to chronic granulomatous disease (CGD), associated with increased susceptibility to both pyogenic infections and to inflammatory disorders. The role of the NADPH oxidase in regulating inflammation driven by nonmicrobial stimuli is poorly understood. Here, we show that NADPH oxidase deficiency enhances the early local release of interleukin-1α (IL-1α) in response to damaged cells, promoting an excessive granulocyte colony-stimulating factor (G-CSF)-regulated neutrophilic response and prolonged inflammation. In peritoneal inflammation elicited by tissue injury, X-linked Cybb-null (X-CGD) mice exhibited increased release of IL-1α and IL-1 receptor -mediated G-CSF production. In turn, higher levels of systemic G-CSF increased peripheral neutrophilia, which amplified neutrophilic peritoneal inflammation in X-CGD mice. Dampening early neutrophil recruitment by neutralization of IL-1α, G-CSF, or neutrophil depletion itself promoted resolution of otherwise prolonged inflammation in X-CGD. IL-1β played little role. Thus, we identified an excessive IL-1α/G-CSF response as a major driver of enhanced sterile inflammation in CGD in the response to damaged cells. More broadly, these results provide new insights into the regulation of sterile inflammation, and identify the NADPH oxidase in regulating the amplitude of the early neutrophilic response. PMID:26443623

  13. Time-resolved fluorescence spectroscopy investigation of the effect of 4-hydroxynonenal on endogenous NAD(P)H in living cardiac myocytes

    NASA Astrophysics Data System (ADS)

    Chorvatova, Alzbeta; Aneba, Swida; Mateasik, Anton; Chorvat, Dusan; Comte, Blandine

    2013-06-01

    Lipid peroxidation is a major biochemical consequence of the oxidative deterioration of polyunsaturated lipids in cell membranes and causes damage to membrane integrity and loss of protein function. 4-hydroxy-2-nonenal (HNE), one of the most reactive products of n-6 polyunsaturated fatty acid peroxidation of membrane phospholipids, has been shown to be capable of affecting both nicotinamide adenine dinucleotide (phosphate) reduced [NAD(P)H] as well as NADH production. However, the understanding of its effects in living cardiac cells is still lacking. Our goal was to therefore investigate HNE effects on NAD(P)H noninvasively in living cardiomyocytes. Spectrally resolved lifetime detection of endogenous fluorescence, an innovative noninvasive technique, was employed. Individual fluorescence components were resolved by spectral linear unmixing approach. Gathered results revealed that HNE reduced the amplitude of both resolved NAD(P)H components in a concentration-dependent manner. In addition, HNE increased flavoprotein fluorescence and responsiveness of the NAD(P)H component ratio to glutathione reductase (GR) inhibitor. HNE also increased the percentage of oxidized nucleotides and decreased maximal NADH production. Presented data indicate that HNE provoked an important cell oxidation by acting on NAD(P)H regulating systems in cardiomyocytes. Understanding the precise role of oxidative processes and their products in living cells is crucial for finding new noninvasive tools for biomedical diagnostics of pathophysiological states.

  14. Ozone affects pollen viability and NAD(P)H oxidase release from Ambrosia artemisiifolia pollen.

    PubMed

    Pasqualini, Stefania; Tedeschini, Emma; Frenguelli, Giuseppe; Wopfner, Nicole; Ferreira, Fatima; D'Amato, Gennaro; Ederli, Luisa

    2011-10-01

    Air pollution is frequently proposed as a cause of the increased incidence of allergy in industrialised countries. We investigated the impact of ozone (O(3)) on reactive oxygen species (ROS) and allergen content of ragweed pollen (Ambrosia artemisiifolia). Pollen was exposed to acute O(3) fumigation, with analysis of pollen viability, ROS and nitric oxide (NO) content, activity of nicotinamide adenine dinucleotide phosphate (NAD[P]H) oxidase, and expression of major allergens. There was decreased pollen viability after O(3) fumigation, which indicates damage to the pollen membrane system, although the ROS and NO contents were not changed or were only slightly induced, respectively. Ozone exposure induced a significant enhancement of the ROS-generating enzyme NAD(P)H oxidase. The expression of the allergen Amb a 1 was not affected by O(3), determined from the mRNA levels of the major allergens. We conclude that O(3) can increase ragweed pollen allergenicity through stimulation of ROS-generating NAD(P)H oxidase. PMID:21605929

  15. Persistent activation of microglia and NADPH drive hippocampal dysfunction in experimental multiple sclerosis

    PubMed Central

    Di Filippo, Massimiliano; de Iure, Antonio; Giampà, Carmela; Chiasserini, Davide; Tozzi, Alessandro; Orvietani, Pier Luigi; Ghiglieri, Veronica; Tantucci, Michela; Durante, Valentina; Quiroga-Varela, Ana; Mancini, Andrea; Costa, Cinzia; Sarchielli, Paola; Fusco, Francesca Romana; Calabresi, Paolo

    2016-01-01

    Cognitive impairment is common in multiple sclerosis (MS). Unfortunately, the synaptic and molecular mechanisms underlying MS-associated cognitive dysfunction are largely unknown. We explored the presence and the underlying mechanism of cognitive and synaptic hippocampal dysfunction during the remission phase of experimental MS. Experiments were performed in a chronic-relapsing experimental autoimmune encephalomyelitis (EAE) model of MS, after the resolution of motor deficits. Immunohistochemistry and patch-clamp recordings were performed in the CA1 hippocampal area. The hole-board was utilized as cognitive/behavioural test. In the remission phase of experimental MS, hippocampal microglial cells showed signs of activation, CA1 hippocampal synapses presented an impaired long-term potentiation (LTP) and an alteration of spatial tests became evident. The activation of hippocampal microglia mediated synaptic and cognitive/behavioural alterations during EAE. Specifically, LTP blockade was found to be caused by the reactive oxygen species (ROS)-producing enzyme nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. We suggest that in the remission phase of experimental MS microglia remains activated, causing synaptic dysfunctions mediated by NADPH oxidase. Inhibition of microglial activation and NADPH oxidase may represent a promising strategy to prevent neuroplasticity impairment associated with active neuro-inflammation, with the aim to improve cognition and counteract MS disease progression. PMID:26887636

  16. Trimethyltin-Induced Microglial Activation via NADPH Oxidase and MAPKs Pathway in BV-2 Microglial Cells

    PubMed Central

    Kim, Da Jung; Kim, Yong Sik

    2015-01-01

    Trimethyltin (TMT) is known as a potent neurotoxicant that causes neuronal cell death and neuroinflammation, particularly in the hippocampus. Microglial activation is one of the prominent pathological features of TMT neurotoxicity. Nevertheless, it remains unclear how microglial activation occurs in TMT intoxication. In this study, we aimed to investigate the signaling pathways in TMT-induced microglial activation using BV-2 murine microglial cells. Our results revealed that TMT generates reactive oxygen species (ROS) and increases the expression of CD11b and nuclear factor-κB- (NF-κB-) mediated nitric oxide (NO) and tumor necrosis factor- (TNF-) α in BV-2 cells. We also observed that NF-κB activation was controlled by p38 and JNK phosphorylation. Moreover, TMT-induced ROS generation occurred via nicotinamide adenine dinucleotide phosphate (NADPH) oxidase in BV-2 cells. Interestingly, treatment with the NADPH oxidase inhibitor apocynin significantly suppressed p38 and JNK phosphorylation and NF-κB activation and ultimately the production of proinflammatory mediators upon TMT exposure. These findings indicate that NADPH oxidase-dependent ROS generation activated p38 and JNK mitogen-activated protein kinases (MAPKs), which then stimulated NF-κB to release proinflammatory mediators in the TMT-treated BV-2 cells. PMID:26221064

  17. Apocyanin, a Microglial NADPH Oxidase Inhibitor Prevents Dopaminergic Neuronal Degeneration in Lipopolysaccharide-Induced Parkinson's Disease Model.

    PubMed

    Sharma, Neha; Nehru, Bimla

    2016-07-01

    Microglia-associated inflammatory processes have been strongly implicated in the development and progression of Parkinson's disease (PD). Specifically, microglia are activated in response to lipopolysaccharide (LPS) and become chronic source of cytokines and reactive oxygen species (ROS) production. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex is responsible for extracellular as well as intracellular production of ROS by microglia and its expression is upregulated in PD. Therefore, targeting NADPH oxidase complex activation using an NADPH oxidase inhibitor, i.e., apocyanin seems to be an effective approach. The aim of present study was to investigate the neuroprotective effects of apocyanin in a LPS-induced PD model. LPS (5 μg) was injected intranigral and apocyanin was administered daily at a dose of 10 mg/kg b.wt (i.p.) during the experiment. LPS when injected into the substantia nigra (SN) reproduced the characteristic hallmark features of PD in rats. It elicited an inflammatory response characterized by glial cell activation (Iba-1, GFAP). Furthermore, LPS upregulated the gene expression of nuclear factor-κB (NFκB), iNOS, and gp91PHOX and resulted in an elevated total ROS production as well as NADPH oxidase activity. Subsequently, this resulted in dopaminergic loss as depicted by decreased tyrosine hydroxylase (TH) expression with substantial loss in neurotransmitter dopamine and its metabolites, whereas treatment with apocyanin significantly reduced the number of glial fibrillary acidic protein (GFAP) and Iba-1-positive cells in LPS-treated animals. It also mitigated microglial activation-induced inflammatory response and elevation in NADPH oxidase activity, thus reducing the extracellular as well as intracellular ROS production. The present study indicated that targeting NADPH oxidase can inhibit microglial activation and reduce a broad spectrum of toxic factors generation (i.e., cytokines, ROS, and reactive nitrogen species [RNS

  18. A LED-based method for monitoring NAD(P)H and FAD fluorescence in cell cultures and brain slices.

    PubMed

    Rösner, Jörg; Liotta, Agustin; Schmitz, Dietmar; Heinemann, Uwe; Kovács, Richard

    2013-01-30

    Nicotinamide- and flavine-adenine-dinucleotides (NAD(P)H and FADH₂) are electron carriers involved in cellular energy metabolism and in a multitude of enzymatic processes. As reduced NAD(P)H and oxidised FAD molecules are fluorescent, changes in tissue auto-fluorescence provide valuable information on the cellular redox state and energy metabolism. Since fluorescence excitation, by mercury arc lamps (HBO) is inherently coupled to photo-bleaching and photo-toxicity, microfluorimetric monitoring of energy metabolism might benefit from the replacement of HBO lamps by light emitting diodes (LEDs). Here we describe a LED-based custom-built setup for monitoring NAD(P)H and FAD fluorescence at the level of single cells (HEK293) and of brain slices. We compared NAD(P)H bleaching characteristics with two light sources (HBO lamp and LED) as well as sensitivity and signal to noise ratio of three different detector types (multi-pixel photon counter (MPPC), photomultiplier tube (PMT) and photodiode). LED excitation resulted in reduced photo-bleaching at the same fluorescence output in comparison to excitation with the HBO lamp. Transiently increasing LED power resulted in reversible bleaching of NAD(P)H fluorescence. Recovery kinetics were dependent on metabolic substrates indicating coupling of NAD(P)H fluorescence to metabolism. Electrical stimulation of brain slices induced biphasic redox changes, as indicated by NAD(P)H/FAD fluorescence transients. Increasing the gain of PMT and decreasing the LED power resulted in similar sensitivity as obtained with the MPPC and the photodiode, without worsening the signal to noise ratio. In conclusion, replacement of HBO lamp with LED might improve conventional PMT based microfluorimetry of tissue auto-fluorescence. PMID:23142181

  19. Mitochondrial NAD(P)H In vivo: Identifying Natural Indicators of Oxidative Phosphorylation in the 31P Magnetic Resonance Spectrum

    PubMed Central

    Conley, Kevin E.; Ali, Amir S.; Flores, Brandon; Jubrias, Sharon A.; Shankland, Eric G.

    2016-01-01

    Natural indicators provide intrinsic probes of metabolism, biogenesis and oxidative protection. Nicotinamide adenine dinucleotide metabolites (NAD(P)) are one class of indicators that have roles as co-factors in oxidative phosphorylation, glycolysis, and anti-oxidant protection, as well as signaling in the mitochondrial biogenesis pathway. These many roles are made possible by the distinct redox states (NAD(P)+ and NAD(P)H), which are compartmentalized between cytosol and mitochondria. Here we provide evidence for detection of NAD(P)+ and NAD(P)H in separate mitochondrial and cytosol pools in vivo in human tissue by phosphorus magnetic resonance spectroscopy (31P MRS). These NAD(P) pools are identified by chemical standards (NAD+, NADP+, and NADH) and by physiological tests. A unique resonance reflecting mitochondrial NAD(P)H is revealed by the changes elicited by elevation of mitochondrial oxidation. The decline of NAD(P)H with oxidation is matched by a stoichiometric rise in the NAD(P)+ peak. This unique resonance also provides a measure of the improvement in mitochondrial oxidation that parallels the greater phosphorylation found after exercise training in these elderly subjects. The implication is that the dynamics of the mitochondrial NAD(P)H peak provides an intrinsic probe of the reversal of mitochondrial dysfunction in elderly muscle. Thus, non-invasive detection of NAD(P)+ and NAD(P)H in cytosol vs. mitochondria yields natural indicators of redox compartmentalization and sensitive intrinsic probes of the improvement of mitochondrial function with an intervention in human tissues in vivo. These natural indicators hold the promise of providing mechanistic insight into metabolism and mitochondrial function in vivo in a range of tissues in health, disease and with treatment. PMID:27065875

  20. Role of NADPH Oxidases in Liver Fibrosis

    PubMed Central

    Paik, Yong-Han; Kim, Jonghwa; Aoyama, Tomonori; De Minicis, Samuele; Bataller, Ramon

    2014-01-01

    Abstract Significance: Hepatic fibrosis is the common pathophysiologic process resulting from chronic liver injury, characterized by the accumulation of an excessive extracellular matrix. Multiple lines of evidence indicate that oxidative stress plays a pivotal role in the pathogenesis of liver fibrosis. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) is a multicomponent enzyme complex that generates reactive oxygen species (ROS) in response to a wide range of stimuli. In addition to phagocytic NOX2, there are six nonphagocytic NOX proteins. Recent Advances: In the liver, NOX is functionally expressed both in the phagocytic form and in the nonphagocytic form. NOX-derived ROS contributes to various kinds of liver disease caused by alcohol, hepatitis C virus, and toxic bile acids. Recent evidence indicates that both phagocytic NOX2 and nonphagocytic NOX isoforms, including NOX1 and NOX4, mediate distinct profibrogenic actions in hepatic stellate cells, the main fibrogenic cell type in the liver. The critical role of NOX in hepatic fibrogenesis provides a rationale to assess pharmacological NOX inhibitors that treat hepatic fibrosis in patients with chronic liver disease. Critical Issues: Although there is compelling evidence indicating a crucial role for NOX-mediated ROS generation in hepatic fibrogenesis, little is known about the expression, subcellular localization, regulation, and redox signaling of NOX isoforms in specific cell types in the liver. Moreover, the exact mechanism of NOX-mediated fibrogenic signaling is still largely unknown. Future Directions: A better understanding through further research about NOX-mediated fibrogenic signaling may enable the development of novel anti-fibrotic therapy using NOX inhibition strategy. Antioxid. Redox Signal. 20, 2854–2872. PMID:24040957

  1. Evolution of NADPH Oxidase Inhibitors: Selectivity and Mechanisms for Target Engagement

    PubMed Central

    Altenhöfer, Sebastian; Radermacher, Kim A.; Kleikers, Pamela W.M.; Wingler, Kirstin

    2015-01-01

    Abstract Significance: Oxidative stress, an excess of reactive oxygen species (ROS) production versus consumption, may be involved in the pathogenesis of different diseases. The only known enzymes solely dedicated to ROS generation are nicotinamide adenine dinucleotide phosphate (NADPH) oxidases with their catalytic subunits (NOX). After the clinical failure of most antioxidant trials, NOX inhibitors are the most promising therapeutic option for diseases associated with oxidative stress. Recent Advances: Historical NADPH oxidase inhibitors, apocynin and diphenylene iodonium, are un-specific and not isoform selective. Novel NOX inhibitors stemming from rational drug discovery approaches, for example, GKT137831, ML171, and VAS2870, show improved specificity for NADPH oxidases and moderate NOX isoform selectivity. Along with NOX2 docking sequence (NOX2ds)-tat, a peptide-based inhibitor, the use of these novel small molecules in animal models has provided preliminary in vivo evidence for a pathophysiological role of specific NOX isoforms. Critical Issues: Here, we discuss whether novel NOX inhibitors enable reliable validation of NOX isoforms' pathological roles and whether this knowledge supports translation into pharmacological applications. Modern NOX inhibitors have increased the evidence for pathophysiological roles of NADPH oxidases. However, in comparison to knockout mouse models, NOX inhibitors have limited isoform selectivity. Thus, their use does not enable clear statements on the involvement of individual NOX isoforms in a given disease. Future Directions: The development of isoform-selective NOX inhibitors and biologicals will enable reliable validation of specific NOX isoforms in disease models other than the mouse. Finally, GKT137831, the first NOX inhibitor in clinical development, is poised to provide proof of principle for the clinical potential of NOX inhibition. Antioxid. Redox Signal. 23, 406–427. PMID:24383718

  2. Contusive spinal cord injury evokes localized changes in NADPH-d activity but extensive changes in Fos-like immunoreactivity in the rat.

    PubMed

    Allbutt, Haydn N; Siddall, Phillip J; Keay, Kevin A

    2007-09-01

    The histological detection of nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d), a marker for nitric oxide-producing cells, was used to evaluate ongoing changes in the neural biochemistry of the rat spinal cord 1 week following contusive spinal cord injury (SCI). In addition, the immunohistochemical detection of the immediate-early gene c-fos was used to identify basal patterns of neural activity at this time. The numbers and laminar locations of NADPH-d- and c-fos-positive cells were examined in spinal segments adjacent to the site of injury (T12-S3) as well as those distant from the injury (C3-C5) in both SCI and un-injured rats. Our data show that contusive SCI results in a significant reduction in NADPH-d labelling in the superficial dorsal horn, and a significant increase in NADPH-d expression in small bipolar neurons and large motoneurons in the ventral horn at the site of the injury. In spinal segments distant to the injury site (C3-C5), NADPH-d activity did not differ from that of uninjured controls. Furthermore, significant reductions in the levels of c-fos expression were observed in SCI rats, in spinal segments both at and distant to the site of injury for all spinal laminae. The only exception was a dramatic increase observed in the sacral parasympathetic nucleus. These data suggest that increased NADPH-d expression is related to conditions specific to the site of injury, whereas the changes in c-fos expression probably indicate more global changes in neuronal activity following SCI. PMID:17584182

  3. A Dedicated Type II NADPH Dehydrogenase Performs the Penultimate Step in the Biosynthesis of Vitamin K1 in Synechocystis and Arabidopsis

    PubMed Central

    Fatihi, Abdelhak; Latimer, Scott; Schmollinger, Stefan; Block, Anna; Dussault, Patrick H.; Vermaas, Wim F.J.; Merchant, Sabeeha S.; Basset, Gilles J.

    2015-01-01

    Mutation of Arabidopsis thaliana NAD(P)H DEHYDROGENASE C1 (NDC1; At5g08740) results in the accumulation of demethylphylloquinone, a late biosynthetic intermediate of vitamin K1. Gene coexpression and phylogenomics analyses showed that conserved functional associations occur between vitamin K biosynthesis and NDC1 homologs throughout the prokaryotic and eukaryotic lineages. Deletion of Synechocystis ndbB, which encodes for one such homolog, resulted in the same defects as those observed in the cyanobacterial demethylnaphthoquinone methyltransferase knockout. Chemical modeling and assay of purified demethylnaphthoquinone methyltransferase demonstrated that, by virtue of the strong electrophilic nature of S-adenosyl-l-methionine, the transmethylation of the demethylated precursor of vitamin K is strictly dependent on the reduced form of its naphthoquinone ring. NDC1 was shown to catalyze such a prerequisite reduction by using NADPH and demethylphylloquinone as substrates and flavine adenine dinucleotide as a cofactor. NDC1 displayed Michaelis-Menten kinetics and was markedly inhibited by dicumarol, a competitive inhibitor of naphthoquinone oxidoreductases. These data demonstrate that the reduction of the demethylnaphthoquinone ring represents an authentic step in the biosynthetic pathway of vitamin K, that this reaction is enzymatically driven, and that a selection pressure is operating to retain type II NAD(P)H dehydrogenases in this process. PMID:26023160

  4. An Unprecedented NADPH Domain Conformation in Lysine Monooxygenase NbtG Provides Insights into Uncoupling of Oxygen Consumption from Substrate Hydroxylation*

    PubMed Central

    Binda, Claudia; Robinson, Reeder M.; Martin del Campo, Julia S.; Keul, Nicholas D.; Rodriguez, Pedro J.; Robinson, Howard H.; Mattevi, Andrea; Sobrado, Pablo

    2015-01-01

    N-Hydroxylating monooxygenases are involved in the biosynthesis of iron-chelating hydroxamate-containing siderophores that play a role in microbial virulence. These flavoenzymes catalyze the NADPH- and oxygen-dependent hydroxylation of amines such as those found on the side chains of lysine and ornithine. In this work we report the biochemical and structural characterization of Nocardia farcinica Lys monooxygenase (NbtG), which has similar biochemical properties to mycobacterial homologs. NbtG is also active on d-Lys, although it binds l-Lys with a higher affinity. Differently from the ornithine monooxygenases PvdA, SidA, and KtzI, NbtG can use both NADH and NADPH and is highly uncoupled, producing more superoxide and hydrogen peroxide than hydroxylated Lys. The crystal structure of NbtG solved at 2.4 Å resolution revealed an unexpected protein conformation with a 30° rotation of the NAD(P)H domain with respect to the flavin adenine dinucleotide (FAD) domain that precludes binding of the nicotinamide cofactor. This “occluded” structure may explain the biochemical properties of NbtG, specifically with regard to the substantial uncoupling and limited stabilization of the C4a-hydroperoxyflavin intermediate. Biological implications of these findings are discussed. PMID:25802330

  5. A Dedicated Type II NADPH Dehydrogenase Performs the Penultimate Step in the Biosynthesis of Vitamin K1 in Synechocystis and Arabidopsis.

    PubMed

    Fatihi, Abdelhak; Latimer, Scott; Schmollinger, Stefan; Block, Anna; Dussault, Patrick H; Vermaas, Wim F J; Merchant, Sabeeha S; Basset, Gilles J

    2015-06-01

    Mutation of Arabidopsis thaliana NAD(P)H DEHYDROGENASE C1 (NDC1; At5g08740) results in the accumulation of demethylphylloquinone, a late biosynthetic intermediate of vitamin K1. Gene coexpression and phylogenomics analyses showed that conserved functional associations occur between vitamin K biosynthesis and NDC1 homologs throughout the prokaryotic and eukaryotic lineages. Deletion of Synechocystis ndbB, which encodes for one such homolog, resulted in the same defects as those observed in the cyanobacterial demethylnaphthoquinone methyltransferase knockout. Chemical modeling and assay of purified demethylnaphthoquinone methyltransferase demonstrated that, by virtue of the strong electrophilic nature of S-adenosyl-l-methionine, the transmethylation of the demethylated precursor of vitamin K is strictly dependent on the reduced form of its naphthoquinone ring. NDC1 was shown to catalyze such a prerequisite reduction by using NADPH and demethylphylloquinone as substrates and flavine adenine dinucleotide as a cofactor. NDC1 displayed Michaelis-Menten kinetics and was markedly inhibited by dicumarol, a competitive inhibitor of naphthoquinone oxidoreductases. These data demonstrate that the reduction of the demethylnaphthoquinone ring represents an authentic step in the biosynthetic pathway of vitamin K, that this reaction is enzymatically driven, and that a selection pressure is operating to retain type II NAD(P)H dehydrogenases in this process. PMID:26023160

  6. Ethanol increases matrix metalloproteinase-12 expression via NADPH oxidase-dependent ROS production in macrophages.

    PubMed

    Kim, Mi Jin; Nepal, Saroj; Lee, Eung-Seok; Jeong, Tae Cheon; Kim, Sang-Hyun; Park, Pil-Hoon

    2013-11-15

    Matrix metalloproteinase-12 (MMP-12), an enzyme responsible for degradation of extracellular matrix, plays an important role in the progression of various diseases, including inflammation and fibrosis. Although most of those are pathogenic conditions induced by ethanol ingestion, the effect of ethanol on MMP-12 has not been explored. In the present study, we investigated the effect of ethanol on MMP-12 expression and its potential mechanisms in macrophages. Here, we demonstrated that ethanol treatment increased MMP-12 expression in primary murine peritoneal macrophages and RAW 264.7 macrophages at both mRNA and protein levels. Ethanol treatment also significantly increased the activity of nicotinamide adenine dinucleotide (NADPH) oxidase and the expression of NADPH oxidase-2 (Nox2). Pretreatment with an anti-oxidant (N-acetyl cysteine) or a selective inhibitor of NADPH oxidase (diphenyleneiodonium chloride (DPI)) prevented ethanol-induced MMP-12 expression. Furthermore, knockdown of Nox2 by small interfering RNA (siRNA) prevented ethanol-induced ROS production and MMP-12 expression in RAW 264.7 macrophages, indicating a critical role for Nox2 in ethanol-induced intracellular ROS production and MMP-12 expression in macrophages. We also showed that ethanol-induced Nox2 expression was suppressed by transient transfection with dominant negative IκB-α plasmid or pretreatment with Bay 11-7082, a selective inhibitor of NF-κB, in RAW 264.7 macrophages. In addition, ethanol-induced Nox2 expression was also attenuated by treatment with a selective inhibitor of p38 MAPK, suggesting involvement of p38 MAPK/NF-κB pathway in ethanol-induced Nox2 expression. Taken together, these results demonstrate that ethanol treatment elicited increase in MMP-12 expression via increase in ROS production derived from Nox2 in macrophages. PMID:23978445

  7. fMLP-Induced IL-8 Release Is Dependent on NADPH Oxidase in Human Neutrophils.

    PubMed

    Hidalgo, María A; Carretta, María D; Teuber, Stefanie E; Zárate, Cristian; Cárcamo, Leonardo; Concha, Ilona I; Burgos, Rafael A

    2015-01-01

    N-Formyl-methionyl-leucyl-phenylalanine (fMLP) and platelet-activating factor (PAF) induce similar intracellular signalling profiles; but only fMLP induces interleukin-8 (IL-8) release and nicotinamide adenine dinucleotide phosphate reduced (NADPH) oxidase activity in neutrophils. Because the role of ROS on IL-8 release in neutrophils is until now controversial, we assessed if NADPH oxidase is involved in the IL-8 secretions and PI3K/Akt, MAPK, and NF-κB pathways activity induced by fMLP. Neutrophils were obtained from healthy volunteers. IL-8 was measured by ELISA, IL-8 mRNA by qPCR, and ROS production by luminol-amplified chemiluminescence, reduction of ferricytochrome c, and FACS. Intracellular pH changes were detected by spectrofluorescence. ERK1/2, p38 MAPK, and Akt phosphorylation were analysed by immunoblotting and NF-κB was analysed by immunocytochemistry. Hydroxy-3-methoxyaceto-phenone (HMAP), diphenyleneiodonium (DPI), and siRNA Nox2 reduced the ROS and IL-8 release in neutrophils treated with fMLP. HMAP, DPI, and amiloride (a Na(+)/H(+) exchanger inhibitor) inhibited the Akt phosphorylation and did not affect the p38 MAPK and ERK1/2 activity. DPI and HMAP reduced NF-κB translocation induced by fMLP. We showed that IL-8 release induced by fMLP is dependent on NADPH oxidase, and ROS could play a redundant role in cell signalling, ultimately activating the PI3K/Akt and NF-κB pathways in neutrophils. PMID:26634216

  8. fMLP-Induced IL-8 Release Is Dependent on NADPH Oxidase in Human Neutrophils

    PubMed Central

    Hidalgo, María A.; Carretta, María D.; Teuber, Stefanie E.; Zárate, Cristian; Cárcamo, Leonardo; Concha, Ilona I.; Burgos, Rafael A.

    2015-01-01

    N-Formyl-methionyl-leucyl-phenylalanine (fMLP) and platelet-activating factor (PAF) induce similar intracellular signalling profiles; but only fMLP induces interleukin-8 (IL-8) release and nicotinamide adenine dinucleotide phosphate reduced (NADPH) oxidase activity in neutrophils. Because the role of ROS on IL-8 release in neutrophils is until now controversial, we assessed if NADPH oxidase is involved in the IL-8 secretions and PI3K/Akt, MAPK, and NF-κB pathways activity induced by fMLP. Neutrophils were obtained from healthy volunteers. IL-8 was measured by ELISA, IL-8 mRNA by qPCR, and ROS production by luminol-amplified chemiluminescence, reduction of ferricytochrome c, and FACS. Intracellular pH changes were detected by spectrofluorescence. ERK1/2, p38 MAPK, and Akt phosphorylation were analysed by immunoblotting and NF-κB was analysed by immunocytochemistry. Hydroxy-3-methoxyaceto-phenone (HMAP), diphenyleneiodonium (DPI), and siRNA Nox2 reduced the ROS and IL-8 release in neutrophils treated with fMLP. HMAP, DPI, and amiloride (a Na+/H+ exchanger inhibitor) inhibited the Akt phosphorylation and did not affect the p38 MAPK and ERK1/2 activity. DPI and HMAP reduced NF-κB translocation induced by fMLP. We showed that IL-8 release induced by fMLP is dependent on NADPH oxidase, and ROS could play a redundant role in cell signalling, ultimately activating the PI3K/Akt and NF-κB pathways in neutrophils. PMID:26634216

  9. Tea polyphenols alleviate high fat and high glucose-induced endothelial hyperpermeability by attenuating ROS production via NADPH oxidase pathway

    PubMed Central

    2014-01-01

    Background Hyperglycemia-induced endothelial hyperpermeability is crucial to cardiovascular disorders and macro-vascular complications in diabetes mellitus. The objective of this study is to investigate the effects of green tea polyphenols (GTPs) on endothelial hyperpermeability and the role of nicotinamide adenine dinucleotide phosphate (NADPH) pathway. Methods Male Wistar rats fed on a high fat diet (HF) were treated with GTPs (0, 0.8, 1.6, 3.2 g/L in drinking water) for 26 weeks. Bovine aortic endothelial cells (BAECs) were treated with high glucose (HG, 33 mmol/L) and GTPs (0.0, 0.4, or 4 μg/mL) for 24 hours in vitro. The endothelial permeabilities in rat aorta and monolayer BAECs were measured by Evans blue injection method and efflux of fluorescein isothiocyanate (FITC)-dextran, respectively. The reactive oxygen species (ROS) levels in rat aorta and monolayer BAECs were measured by dihydroethidium (DHE) and 2′, 7′-dichloro-fluorescein diacetate (DCFH-DA) fluorescent probe, respectively. Protein levels of NADPH oxidase subunits were determined by Western-blot. Results HF diet-fed increased the endothelial permeability and ROS levels in rat aorta while HG treatments increased the endothelial permeability and ROS levels in cultured BAECs. Co-treatment with GTPs alleviated those changes both in vivo and in vitro. In in vitro studies, GTPs treatments protected against the HG-induced over-expressions of p22phox and p67phox. Diphenylene iodonium chloride (DPI), an inhibitor of NADPH oxidase, alleviated the hyperpermeability induced by HG. Conclusions GTPs could alleviate endothelial hyperpermeabilities in HF diet-fed rat aorta and in HG treated BAECs. The decrease of ROS production resulting from down-regulation of NADPH oxidase contributed to the alleviation of endothelial hyperpermeability. PMID:24580748

  10. Astragaloside IV prevents damage to human mesangial cells through the inhibition of the NADPH oxidase/ROS/Akt/NF‑κB pathway under high glucose conditions.

    PubMed

    Sun, Li; Li, Weiping; Li, Weizu; Xiong, Li; Li, Guiping; Ma, Rong

    2014-07-01

    Glomerular hypertrophy and hyperfiltration are the two major pathological characteristics of the early stages of diabetic nephropathy (DN), which are respectively related to mesangial cell (MC) proliferation and a decrease in calcium influx conducted by canonical transient receptor potential cation channel 6 (TRPC6). The marked increase in the production of reactive oxygen species (ROS) induced by hyperglycemia is the main sponsor of multiple pathological pathways in DN. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is an important source of ROS production in MCs. Astragaloside IV (AS‑IV) is an active ingredient of Radix Astragali which has a potent antioxidative effect. In this study, we aimed to investigate whether high glucose (HG)‑induced NADPH oxidase activation and ROS production contribute to MC proliferation and the downregulation of TRPC6 expression; we also wished to determine the effects of AS‑IV on MCs under HG conditions. Using a human glomerular mesangial cell line, we found that treatment with AS‑IV for 48 h markedly attenuated HG‑induced proliferation and the hypertrophy of MCs in a dose‑dependent manner. The intracellular ROS level was also markedly reduced following treatment with AS‑IV. In addition, the enhanced activity of NADPH oxidase and the expression level of NADPH oxidase 4 (Nox4) protein were decreased. Treatment with AS‑IV also inhibited the phosphorylation level of Akt and IκBα in the MCs. In addition, TRPC6 protein expression and the intracellular free calcium concentration were also markedly reduced following treatment with AS‑IV under HG conditions. These results suggest that AS‑IV inhibits HG‑induced mesangial cell proliferation and glomerular contractile dysfunction through the NADPH oxidase/ROS/Akt/nuclear factor‑κB (NF‑κB) pathway, providing a new perspective for the clinical treatment of DN. PMID:24718766

  11. Pigment epithelium-derived factor stimulates skeletal muscle glycolytic activity through NADPH oxidase-dependent reactive oxygen species production.

    PubMed

    Carnagarin, Revathy; Carlessi, Rodrigo; Newsholme, Philip; Dharmarajan, Arun M; Dass, Crispin R

    2016-09-01

    Pigment epithelium-derived factor is a multifunctional serpin implicated in insulin resistance in metabolic disorders. Recent evidence suggests that exposure of peripheral tissues such as skeletal muscle to PEDF has profound metabolic consequences with predisposition towards chronic conditions such as obesity, type 2 diabetes, metabolic syndrome and polycystic ovarian syndrome. Chronic inflammation shifts muscle metabolism towards increased glycolysis and decreased oxidative metabolism. In the present study, we demonstrate a novel effect of PEDF on cellular metabolism in mouse cell line (C2C12) and human primary skeletal muscle cells. PEDF addition to skeletal muscle cells induced enhanced phospholipase A2 activity. This was accompanied with increased production of reactive oxygen species in a nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-dependent manner that triggered a shift towards a more glycolytic phenotype. Extracellular flux analysis and glucose consumption assays demonstrated that PEDF treatment resulted in enhanced glycolysis but did not change mitochondrial respiration. Our results demonstrate that skeletal muscle cells express a PEDF-inducible oxidant generating system that enhances glycolysis but is sensitive to antioxidants and NADPH oxidase inhibition. PMID:27343430

  12. Dynamic changes in nicotinamide pyridine dinucleotide content in normal human epidermal keratinocytes and their effect on retinoic acid biosynthesis

    SciTech Connect

    Pinkas-Sarafova, Adriana . E-mail: apinkassaraf@notes.cc.sunysb.edu; Markova, N.G. . E-mail: nmarkova@notes.cc.sunysb.edu; Simon, M. . E-mail: marsimon@notes.cc.sunysb.edu

    2005-10-21

    The function of many enzymes that regulate metabolism and transcription depends critically on the nicotinamide pyridine dinucleotides. To understand the role of NAD(P)(H) in physiology and pathophysiology, it is imperative to estimate both their amount and ratios in a given cell type. In human epidermis and in cultured epidermal keratinocytes, we found that the total dinucleotide content is in the low millimolar range. The dinucleotide pattern changes during proliferation and maturation of keratinocytes in culture. Differences in the concentrations of NAD(P)(H) of 1.5- to 12-fold were observed. This resulted in alteration of the NAD(P)H/NAD(P) ratio, which could impact the differential regulation of both transcriptional and metabolic processes. In support of this notion, we provide evidence that the two-step oxidation of retinol to retinoic acid, a nuclear hormone critical for epidermal homeostasis, can be regulated by the relative physiological amounts of the pyridine dinucleotides.

  13. Search for interstellar adenine

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Sandip K.; Majumdar, Liton; Das, Ankan; Chakrabarti, Sonali

    2015-05-01

    It is long debated if pre-biotic molecules are indeed present in the interstellar medium. Despite substantial works pointing to their existence, pre-biotic molecules are yet to be discovered with a complete confidence. In this paper, our main aim is to study the chemical evolution of interstellar adenine under various circumstances. We prepare a large gas-grain chemical network by considering various pathways for the formation of adenine. Majumdar et al. (New Astron. 20:15, 2013) proposed that in the absence of adenine detection, one could try to trace two precursors of adenine, namely, HCCN and NH2CN. Recently Merz et al. (J. Phys. Chem. A 118:3637-3644, 2014), proposed another route for the formation of adenine in interstellar condition. They proposed two more precursor molecules. But it was not verified by any accurate gas-grain chemical model. Neither was it known if the production rate would be high or low. Our paper fills this important gap. We include this new pathways to find that the contribution through this pathways for the formation of Adenine is the most dominant one in the context of interstellar medium. We propose that observers may look for the two precursors (C3NH and HNCNH) in the interstellar media which are equally important for predicting abundances of adenine. We perform quantum chemical calculations to find out spectral properties of adenine and its two new precursor molecules in infrared, ultraviolet and sub-millimeter region. Our present study would be useful for predicting abundance of adenine.

  14. NCB5OR Is a Novel Soluble NAD(P)H Reductase Localized in the Endoplasmic Reticulum*S

    PubMed Central

    Zhu, Hao; Larade, Kevin; Jackson, Timothy A.; Xie, Jianxin; Ladoux, Annie; Acker, Helmut; Berchner-Pfannschmidt, Utta; Fandrey, Joachim; Cross, Andrew R.; Lukat-Rodgers, Gudrun S.; Rodgers, Kenton R.; Bunn, H. Franklin

    2011-01-01

    The NAD(P)H cytochrome b5 oxidoreductase, Ncb5or (previously named b5+b5R), is widely expressed in human tissues and broadly distributed among the animal kingdom. NCB5OR is the first example of an animal flavohemoprotein containing cytochrome b5 and cytochrome b5 reductase domains. We initially reported human NCB5OR to be a 487-residue soluble protein that reduces cytochrome c, methemoglobin, ferricyanide, and molecular oxygen in vitro. Bioinformatic analysis of genomic sequences suggested the presence of an upstream start codon. We confirm that endogenous NCB5OR indeed has additional NH2-terminal residues. By performing fractionation of subcellular organelles and confocal microscopy, we show that NCB5OR colocalizes with calreticulin, a marker for endoplasmic reticulum. Recombinant NCB5OR is soluble and has stoichiometric amounts of heme and flavin adenine dinucleotide. Resonance Raman spectroscopy of NCB5OR presents typical signatures of a six-coordinate low-spin heme similar to those found in other cytochrome b5 proteins. Kinetic measurements showed that full-length and truncated NCB5OR reduce cytochrome c actively in vitro. However, both full-length and truncated NCB5OR produce superoxide from oxygen with slow turnover rates: kcat = ~0.05 and ~1 s−1, respectively. The redox potential at the heme center of NCB5OR is −108 mV, as determined by potentiometric titrations. Taken together, these data suggest that endogenous NCB5OR is a soluble NAD(P)H reductase preferentially reducing substrate(s) rather than transferring electrons to molecular oxygen and therefore not an NAD(P)H oxidase for superoxide production. The subcellular localization and redox properties of NCB5OR provide important insights into the biology of NCB5OR and the phenotype of the Ncb5or-null mouse. PMID:15131110

  15. Topographical distribution and morphology of NADPH-diaphorase-stained neurons in the human claustrum

    PubMed Central

    Hinova-Palova, Dimka V.; Edelstein, Lawrence; Landzhov, Boycho; Minkov, Minko; Malinova, Lina; Hristov, Stanislav; Denaro, Frank J.; Alexandrov, Alexandar; Kiriakova, Teodora; Brainova, Ilina; Paloff, Adrian; Ovtscharoff, Wladimir

    2014-01-01

    We studied the topographical distribution and morphological characteristics of NADPH-diaphorase-positive neurons and fibers in the human claustrum. These neurons were seen to be heterogeneously distributed throughout the claustrum. Taking into account the size and shape of stained perikarya as well as dendritic and axonal characteristics, Nicotinamide adenine dinucleotide phosphate-diaphorase (NADPHd)-positive neurons were categorized by diameter into three types: large, medium and small. Large neurons ranged from 25 to 35 μm in diameter and typically displayed elliptical or multipolar cell bodies. Medium neurons ranged from 20 to 25 μm in diameter and displayed multipolar, bipolar and irregular cell bodies. Small neurons ranged from 14 to 20 μm in diameter and most often displayed oval or elliptical cell bodies. Based on dendritic characteristics, these neurons were divided into spiny and aspiny subtypes. Our findings reveal two populations of NADPHd-positive neurons in the human claustrum—one comprised of large and medium cells consistent with a projection neuron phenotype, the other represented by small cells resembling the interneuron phenotype as defined by previous Golgi impregnation studies. PMID:24904317

  16. NADPH oxidase enzymes in skin fibrosis: molecular targets and therapeutic agents.

    PubMed

    Babalola, Olubukola; Mamalis, Andrew; Lev-Tov, Hadar; Jagdeo, Jared

    2014-05-01

    Fibrosis is characterized by the excessive deposition of extracellular matrix components eventually resulting in organ dysfunction and failure. In dermatology, fibrosis is the hallmark component of many skin diseases, including systemic sclerosis, graft-versus-host disease, hypertrophic scars, keloids, nephrogenic systemic fibrosis, porphyria cutanea tarda, restrictive dermopathy and other conditions. Fibrotic skin disorders may be debilitating and impair quality of life. There are few FDA-approved anti-fibrotic drugs; thus, research in this area is crucial in addressing this deficiency. Recent investigations elucidating the pathogenesis of skin fibrosis have implicated endogenous reactive oxygen species produced by the multicomponent nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) enzyme complex. In this review, we discuss Nox enzymes and their role in skin fibrosis. An overview of the Nox enzyme family is presented and their role in the pathogenesis of skin fibrosis is discussed. The mechanisms by which Nox enzymes influence specific fibrotic skin disorders are also reviewed. Finally, we describe the therapeutic approaches to ameliorate skin fibrosis by directly targeting Nox enzymes with the use of statins, p47phox subunit modulators, or GKT137831, a competitive inhibitor of Nox enzymes. Nox enzymes can also be targeted indirectly via scavenging ROS with antioxidants. We believe that Nox modulators are worthy of further investigation and have the potential to transform the management of skin fibrosis by dermatologists. PMID:24155025

  17. Fate of prebiotic adenine.

    PubMed

    Cohn, C A; Hansson, T K; Larsson, H S; Sowerby, S J; Holm, N G

    2001-01-01

    Equilibrium adsorption isotherm data for the purine base adenine has been obtained on several prebiotically relevant minerals by frontal analysis using water as a mobile phase. Adenine is far displaced toward adsorption on pyrite (FeS2), quartz (SiO2), and pyrrhotite (FeS), but somewhat less for magnetite (Fe3O4) and forsterite (Mg2SiO4). The prebiotic prevalence of these minerals would have allowed them to act as a sink for adenine; removal from the aqueous phase would confer protection from hydrolysis as well, establishing a nonequilibrium thermodynamic framework for increased adenine synthesis. Our results provide evidence that adsorption phenomena may have been critical for the primordial genetic architecture. PMID:12448980

  18. Priming of the neutrophil NADPH oxidase activation: role of p47phox phosphorylation and NOX2 mobilization to the plasma membrane.

    PubMed

    El-Benna, Jamel; Dang, Pham My-Chan; Gougerot-Pocidalo, Marie-Anne

    2008-07-01

    Neutrophils play an essential role in host defense against microbial pathogens and in the inflammatory reaction. Upon activation, neutrophils produce superoxide anion (O*2), which generates other reactive oxygen species (ROS) such as hydrogen peroxide (H2O2), hydroxyl radical (OH*) and hypochlorous acid (HOCl), together with microbicidal peptides and proteases. The enzyme responsible for O2* production is called the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase or respiratory burst oxidase. This multicomponent enzyme system is composed of two trans-membrane proteins (p22phox and gp91phox/NOX2, which form the cytochrome b558), three cytosolic proteins (p47phox, p67phox, p40phox) and a GTPase (Rac1 or Rac2), which assemble at membrane sites upon cell activation. NADPH oxidase activation in phagocytes can be induced by a large number of soluble and particulate factors. Three major events accompany NAPDH oxidase activation: (1) protein phosphorylation, (2) GTPase activation, and (3) translocation of cytosolic components to the plasma membrane to form the active enzyme. Actually, the neutrophil NADPH oxidase exists in different states: resting, primed, activated, or inactivated. The resting state is found in circulating blood neutrophils. The primed state can be induced by neutrophil adhesion, pro-inflammatory cytokines, lipopolysaccharide, and other agents and has been characterized as a "ready to go" state, which results in a faster and higher response upon exposure to a second stimulus. The active state is found at the inflammatory or infection site. Activation is induced by the pathogen itself or by pathogen-derived formylated peptides and other agents. Finally, inactivation of NADPH oxidase is induced by anti-inflammatory agents to limit inflammation. Priming is a "double-edged sword" process as it contributes to a rapid and efficient elimination of the pathogens but can also induce the generation of large quantities of toxic ROS by hyperactivation of

  19. NADPH oxidase activation contributes to native low-density lipoprotein-induced proliferation of human aortic smooth muscle cells

    PubMed Central

    Park, Il Hwan; Hwang, Hye Mi; Jeon, Byeong Hwa; Kwon, Hyung-Joo; Hoe, Kwang Lae; Kim, Young Myeong; Ryoo, Sungwoo

    2015-01-01

    Elevated plasma concentration of native low-density lipoprotein (nLDL) is associated with vascular smooth muscle cell (VSMC) activation and cardiovascular disease. We investigated the mechanisms of superoxide generation and its contribution to pathophysiological cell proliferation in response to nLDL stimulation. Lucigenin-induced chemiluminescence was used to measure nLDL-induced superoxide production in human aortic smooth muscle cells (hAoSMCs). Superoxide production was increased by nicotinamide adenine dinucleotide phosphate (NADPH) and decreased by NADPH oxidase inhibitors in nLDL-stimulated hAoSMC and hAoSMC homogenates, as well as in prepared membrane fractions. Extracellular signal-regulated kinase 1/2 (Erk1/2), protein kinase C-θ (PKCθ) and protein kinase C-β (PKCβ) were phosphorylated and maximally activated within 3 min of nLDL stimulation. Phosphorylated Erk1/2 mitogen-activated protein kinase, PKCθ and PKCβ stimulated interactions between p47phox and p22phox; these interactions were prevented by MEK and PKC inhibitors (PD98059 and calphostin C, respectively). These inhibitors decreased nLDL-dependent superoxide production and blocked translocation of p47phox to the membrane, as shown by epifluorescence imaging and cellular fractionation experiments. Proliferation assays showed that a small interfering RNA against p47phox, as well as superoxide scavenger and NADPH oxidase inhibitors, blocked nLDL-induced hAoSMC proliferation. The nLDL stimulation in deendothelialized aortic rings from C57BL/6J mice increased dihydroethidine fluorescence and induced p47phox translocation that was blocked by PD98059 or calphostin C. Isolated aortic SMCs from p47phox−/− mice (mAoSMCs) did not respond to nLDL stimulation. Furthermore, NADPH oxidase 1 (Nox1) was responsible for superoxide generation and cell proliferation in nLDL-stimulated hAoSMCs. These data demonstrated that NADPH oxidase activation contributed to cell proliferation in nLDL-stimulated h

  20. A DFT study of 2-aminopurine-containing dinucleotides: prediction of stacked conformations with B-DNA structure.

    PubMed

    Smith, Darren A; Holroyd, Leo F; van Mourik, Tanja; Jones, Anita C

    2016-05-25

    The fluorescence properties of dinucleotides incorporating 2-aminopurine (2AP) suggest that the simplest oligonucleotides adopt conformations similar to those found in duplex DNA. However, there is a lack of structural data for these systems. We report a density functional theory (DFT) study of the structures of 2AP-containing dinucleotides (deoxydinucleoside monophosphates), including full geometry optimisation of the sugar-phosphate backbone. Our DFT calculations employ the M06-2X functional for reliable treatment of dispersion interactions and include implicit aqueous solvation. Dinucleotides with 2AP in the 5'-position and each of the natural bases in the 3'-position are examined, together with the analogous 5'-adenine-containing systems. Computed structures are compared in detail with typical B-DNA base-step parameters, backbone torsional angles and sugar pucker, derived from crystallographic data. We find that 2AP-containing dinucleotides adopt structures that closely conform to B-DNA in all characteristic parameters. The structures of 2AP-containing dinucleotides closely resemble those of their adenine-containing counterparts, demonstrating the fidelity of 2AP as a mimic of the natural base. As a first step towards exploring the conformational heterogeneity of dinucleotides, we also characterise an imperfectly stacked conformation and one in which the bases are completely unstacked. PMID:27186599

  1. Relationship between NADPH and Th1/Th2 ratio in patients with non-Hodgkin lymphoma who have been exposed to pesticides

    PubMed Central

    Zahzeh, Meriem Rabia; Loukidi, Bouchra; Meziane, Warda; Haddouche, Mustapha; Mesli, Naima; Zouaoui, Zahia; Aribi, Mourad

    2015-01-01

    The effect of pesticides on nicotinamide adenine dinucleotide phosphate hydrogen (NADPH), including its level and relationship with the T helper 1 (Th1)/Th2 ratio, in patients suffering from non-Hodgkin lymphoma (NHL) was investigated. One hundred newly diagnosed patients with aggressive NHL (53 men, 47 women) and 40 healthy age-, sex-, and body mass index-matched controls (23 men, 17 women), exposed or not to pesticides, were recruited for a cross-sectional study conducted at the Clinical Hematology Departments of Tlemcen and Sidi Bel-Abbès University Medical Centers in the northwest of Algeria. NADPH levels were significantly increased in patients compared with controls; and in exposed patients compared with those not exposed, and controls (one-way analysis of variance; P=0.000). Albumin, glutathione peroxidase, superoxide dismutase, catalase activity, and oxygen radical absorbance capacity levels were significantly decreased in patients compared with in the control group. Oxygen radical absorbance capacity levels were significantly decreased in exposed patients compared with in unexposed patients; however, malondialdehyde levels were significantly increased in exposed patients when compared with controls and unexposed patients. Protein carbonyl and xanthine oxidase levels were significantly increased in exposed patients compared with controls; meanwhile, there were no significant differences between the two patient groups or between unexposed patients and controls. The Th1/Th2 ratio was significantly decreased in patients when compared with controls; the neutrophil-to-lymphocyte ratio was significantly increased (for both comparisons, P<0.001). In addition, NADPH was strongly associated with NHL (Mantel–Haenszel common odds ratio estimate =5.55; 95% confidence interval, 2.22–13.88; P=0.000). Moreover, NADPH levels were significantly negatively related to the Th1/Th2 ratio, either in exposed patients or in unexposed patients (respectively, r=−0.498 [P=0

  2. Relationship between NADPH and Th1/Th2 ratio in patients with non-Hodgkin lymphoma who have been exposed to pesticides.

    PubMed

    Zahzeh, Meriem Rabia; Loukidi, Bouchra; Meziane, Warda; Haddouche, Mustapha; Mesli, Naima; Zouaoui, Zahia; Aribi, Mourad

    2015-01-01

    The effect of pesticides on nicotinamide adenine dinucleotide phosphate hydrogen (NADPH), including its level and relationship with the T helper 1 (Th1)/Th2 ratio, in patients suffering from non-Hodgkin lymphoma (NHL) was investigated. One hundred newly diagnosed patients with aggressive NHL (53 men, 47 women) and 40 healthy age-, sex-, and body mass index-matched controls (23 men, 17 women), exposed or not to pesticides, were recruited for a cross-sectional study conducted at the Clinical Hematology Departments of Tlemcen and Sidi Bel-Abbès University Medical Centers in the northwest of Algeria. NADPH levels were significantly increased in patients compared with controls; and in exposed patients compared with those not exposed, and controls (one-way analysis of variance; P=0.000). Albumin, glutathione peroxidase, superoxide dismutase, catalase activity, and oxygen radical absorbance capacity levels were significantly decreased in patients compared with in the control group. Oxygen radical absorbance capacity levels were significantly decreased in exposed patients compared with in unexposed patients; however, malondialdehyde levels were significantly increased in exposed patients when compared with controls and unexposed patients. Protein carbonyl and xanthine oxidase levels were significantly increased in exposed patients compared with controls; meanwhile, there were no significant differences between the two patient groups or between unexposed patients and controls. The Th1/Th2 ratio was significantly decreased in patients when compared with controls; the neutrophil-to-lymphocyte ratio was significantly increased (for both comparisons, P<0.001). In addition, NADPH was strongly associated with NHL (Mantel-Haenszel common odds ratio estimate =5.55; 95% confidence interval, 2.22-13.88; P=0.000). Moreover, NADPH levels were significantly negatively related to the Th1/Th2 ratio, either in exposed patients or in unexposed patients (respectively, r=-0.498 [P=0.004] and

  3. Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress induces monocyte adhesion by stimulating reactive oxygen species production from a nox1-based NADPH oxidase.

    PubMed

    Sorescu, George P; Song, Hannah; Tressel, Sarah L; Hwang, Jinah; Dikalov, Sergey; Smith, Debra A; Boyd, Nolan L; Platt, Manu O; Lassègue, Bernard; Griendling, Kathy K; Jo, Hanjoong

    2004-10-15

    Atherosclerosis is an inflammatory disease occurring preferentially in arterial regions exposed to disturbed flow conditions including oscillatory shear stress (OS). OS exposure induces endothelial expression of bone morphogenic protein 4 (BMP4), which in turn may activate intercellular adhesion molecule-1 (ICAM-1) expression and monocyte adhesion. OS is also known to induce monocyte adhesion by producing reactive oxygen species (ROS) from reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, raising the possibility that BMP4 may stimulate the inflammatory response by ROS-dependent mechanisms. Here we show that ROS scavengers blocked ICAM-1 expression and monocyte adhesion induced by BMP4 or OS in endothelial cells (ECs). Similar to OS, BMP4 stimulated H2O2 and O2- production in ECs. Next, we used ECs obtained from p47phox-/- mice (MAE-p47-/-), which do not produce ROS in response to OS, to determine the role of NADPH oxidases. Similar to OS, BMP4 failed to induce monocyte adhesion in MAE-p47-/-, but it was restored when the cells were transfected with p47phox plasmid. Moreover, OS-induced O2- production was blocked by noggin (a BMP antagonist), suggesting a role for BMP. Furthermore, OS increased gp91phox (nox2) and nox1 mRNA levels while decreasing nox4. In contrast, BMP4 induced nox1 mRNA expression, whereas nox2 and nox4 were decreased or not affected, respectively. Also, OS-induced monocyte adhesion was blocked by knocking down nox1 with the small interfering RNA (siRNA). Finally, BMP4 siRNA inhibited OS-induced ROS production and monocyte adhesion. Together, these results suggest that BMP4 produced in ECs by OS stimulates ROS release from the nox1-dependent NADPH oxidase leading to inflammation, a critical early atherogenic step. PMID:15388638

  4. Region-specific localization of NOS isoforms and NADPH-diaphorase activity in the intratesticular and excurrent duct systems of adult domestic cats (Felis catus).

    PubMed

    Liman, Narin; Alan, Emel

    2016-03-01

    Nitric oxide (NO) is produced by nitric oxide synthases (NOSs) and plays an important role in all levels of reproduction from the brain to the reproductive organs. Recently, it has been discovered that all germ cells and Leydig cells in the cat testis exhibit stage-dependent nuclear and cytoplasmic endothelial (eNOS) and inducible (iNOS)-NOS immunoreactivity and cytoplasmic nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) reactivity. As a continuation of this finding, in this study, cellular localization of NADPH-d and immunolocalization and expression of all three NOS isoforms were investigated in the intratesticular (tubuli recti and rete testis), and excurrent ducts (efferent ductules, epididymal duct and vas deferens) of adult cats using histochemistry, immunohistochemistry and western blotting. NADPH-d activity was found in the midpiece of the spermatozoa tail and epithelial cells of all of ducts, except for nonciliated cells of the efferent ductules. Even though the immunoblotting results revealed similar levels of nNOS, eNOS and iNOS in the caput, corpus and cauda segments of epididymis and the vas deferens, immunostainings showed cell-specific localization in the efferent ductules and region- and cell-specific localization in the epididymal duct. All of three NOS isoforms were immunolocalized to the nuclear membrane and cytoplasm of the epithelial cells in all ducts, but were found in the tail and the cytoplasmic droplets of spermatozoa. These data suggest that NO/NOS activity might be of importance not only for the functions of the intratesticular and excurrent ducts but also for sperm maturation. PMID:26910642

  5. Ethanol increases matrix metalloproteinase-12 expression via NADPH oxidase-dependent ROS production in macrophages

    SciTech Connect

    Kim, Mi Jin; Nepal, Saroj; Lee, Eung-Seok; Jeong, Tae Cheon; Kim, Sang-Hyun; Park, Pil-Hoon

    2013-11-15

    Matrix metalloproteinase-12 (MMP-12), an enzyme responsible for degradation of extracellular matrix, plays an important role in the progression of various diseases, including inflammation and fibrosis. Although most of those are pathogenic conditions induced by ethanol ingestion, the effect of ethanol on MMP-12 has not been explored. In the present study, we investigated the effect of ethanol on MMP-12 expression and its potential mechanisms in macrophages. Here, we demonstrated that ethanol treatment increased MMP-12 expression in primary murine peritoneal macrophages and RAW 264.7 macrophages at both mRNA and protein levels. Ethanol treatment also significantly increased the activity of nicotinamide adenine dinucleotide (NADPH) oxidase and the expression of NADPH oxidase-2 (Nox2). Pretreatment with an anti-oxidant (N-acetyl cysteine) or a selective inhibitor of NADPH oxidase (diphenyleneiodonium chloride (DPI)) prevented ethanol-induced MMP-12 expression. Furthermore, knockdown of Nox2 by small interfering RNA (siRNA) prevented ethanol-induced ROS production and MMP-12 expression in RAW 264.7 macrophages, indicating a critical role for Nox2 in ethanol-induced intracellular ROS production and MMP-12 expression in macrophages. We also showed that ethanol-induced Nox2 expression was suppressed by transient transfection with dominant negative IκB-α plasmid or pretreatment with Bay 11-7082, a selective inhibitor of NF-κB, in RAW 264.7 macrophages. In addition, ethanol-induced Nox2 expression was also attenuated by treatment with a selective inhibitor of p38 MAPK, suggesting involvement of p38 MAPK/NF-κB pathway in ethanol-induced Nox2 expression. Taken together, these results demonstrate that ethanol treatment elicited increase in MMP-12 expression via increase in ROS production derived from Nox2 in macrophages. - Highlights: • Ethanol increases ROS production through up-regulation of Nox2 in macrophages. • Enhanced oxidative stress contributes to ethanol

  6. Photodissociation of dinucleotide ions in a storage ring

    NASA Astrophysics Data System (ADS)

    Worm, Esben S.; Andersen, Inge Hald; Andersen, Jens Ulrik; Holm, Anne I. S.; Hvelplund, Preben; Kadhane, Umesh; Nielsen, Steen Brøndsted; Poully, Jean-Christophe; Støchkel, Kristian

    2007-04-01

    The decay of protonated DNA dinucleotides, dA2+ , dG2+ , dT2+ , dC2+ and deprotonated ones, dA2- and dT2- , after 260nm photon absorption was measured in an electrostatic ion storage ring (A denotes adenine, G guanine, T thymine, and C cytosine). Fragmentation on the microsecond time scale was observed and assigned to statistical dissociation. Good fits to the decay spectra were obtained with a model based on microcanonical rate constants of the Arrhenius type with activation energies and preexponential factors for the dissociation that agree well with literature values. In accordance with results from other groups, dT2+ was found to have the longest lifetime among the cations. The importance of decay processes faster than the microsecond time scale is elucidated by a comparison between the total ion beam depletion and that due to the observed statistical decay. We find that such processes play a major role for all of the dinucleotides, being more than 25 times more probable than the microsecond statistical dissociation for dA2+ , dG2+ , and dC2+ , about 10 times for dT2+ , and between 2 and 6 times for dA2- and dT2- . For the cations, we ascribe these processes to nonstatistical dissociation prior to randomization of the excitation energy among all degrees of freedom whereas direct photoelectron detachment may play a role for the anions. Thus, our data indicate that the propensity for nonstatistical dissociation increases upon nucleobase protonation. Consistent with this trend, the propensity is less for dT2+ than for the other dinucleotide cations because the phosphoric acid group competes with thymine for the proton.

  7. Effects of D-kyotorphin on nociception and NADPH-d neurons in rat's periaqueductal gray after immobilization stress.

    PubMed

    Dzambazova, Elena B; Landzhov, Boycho V; Bocheva, Adriana I; Bozhilova-Pastirova, Anastasia A

    2011-10-01

    D-kyotorphin (D-Kyo) is a synthetic analogue of the neuropeptide kyotorphin and produces naloxone reversible analgesia. Stress-induced analgesia (SIA) is an in-built mammalian pain-suppression response that occurs during or following exposure to a stressful stimulus. The periaqueductal gray (PAG) is implicated as a critical site for processing strategies for coping with different types of stress and pain and NO affects its activity. The objectives of the present study were twofold: (1) to examine the effects of D-Kyo (5 mg/kg) on acute immobilization SIA; (2) to investigate the effect of peptide on NO activity in rat PAG after the stress procedure mentioned above. All drugs were injected intraperitoneally in male Wistar rats. The nociception was measured by the paw pressure and hot plate tests. A histochemical procedure for nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d)-reactive neurons was used as indirect marker of NO activity. Our results revealed that D-Kyo has modulating effects on acute immobilization stress-induced analgesia in rats may be by opioid and non-opioid systems. Although D-Kyo is incapable of crossing the blood-brain barrier it showed an increased number of NADPH-d reactive neurons in dorsolateral periaqueductal gray (dlPAG) in control but not in stressed groups. We may speculate that the effect of D-Kyo in the brain is due to structural and functional interaction between opioidergic and NO-ergic systems or D-Kyo appears itself as a stressor. Further studies are needed to clarify the exact mechanisms of its action. PMID:21046177

  8. Photoinduced Electron Transfer in DNA: Charge Shift Dynamics Between 8-Oxo-Guanine Anion and Adenine.

    PubMed

    Zhang, Yuyuan; Dood, Jordan; Beckstead, Ashley A; Li, Xi-Bo; Nguyen, Khiem V; Burrows, Cynthia J; Improta, Roberto; Kohler, Bern

    2015-06-18

    Femtosecond time-resolved IR spectroscopy is used to investigate the excited-state dynamics of a dinucleotide containing an 8-oxoguanine anion at the 5'-end and neutral adenine at the 3'-end. UV excitation of the dinucleotide transfers an electron from deprotonated 8-oxoguanine to its π-stacked neighbor adenine in less than 1 ps, generating a neutral 8-oxoguanine radical and an adenine radical anion. These species are identified by the excellent agreement between the experimental and calculated IR difference spectra. The quantum efficiency of this ultrafast charge shift reaction approaches unity. Back electron transfer from the adenine radical anion to the 8-oxguanine neutral radical occurs in 9 ps, or approximately 6 times faster than between the adenine radical anion and the 8-oxoguanine radical cation (Zhang, Y. et al. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 11612-11617). The large asymmetry in forward and back electron transfer rates is fully rationalized by semiclassical nonadiabatic electron transfer theory. Forward electron transfer is ultrafast because the driving force is nearly equal to the reorganization energy, which is estimated to lie between 1 and 2 eV. Back electron transfer is highly exergonic and takes place much more slowly in the Marcus inverted region. PMID:25660103

  9. Maximal dinucleotide and trinucleotide circular codes.

    PubMed

    Michel, Christian J; Pellegrini, Marco; Pirillo, Giuseppe

    2016-01-21

    We determine here the number and the list of maximal dinucleotide and trinucleotide circular codes. We prove that there is no maximal dinucleotide circular code having strictly less than 6 elements (maximum size of dinucleotide circular codes). On the other hand, a computer calculus shows that there are maximal trinucleotide circular codes with less than 20 elements (maximum size of trinucleotide circular codes). More precisely, there are maximal trinucleotide circular codes with 14, 15, 16, 17, 18 and 19 elements and no maximal trinucleotide circular code having less than 14 elements. We give the same information for the maximal self-complementary dinucleotide and trinucleotide circular codes. The amino acid distribution of maximal trinucleotide circular codes is also determined. PMID:26382231

  10. Allelic variations in the CYBA gene of NADPH oxidase and risk of kidney complications in patients with type 1 diabetes.

    PubMed

    Patente, Thiago A; Mohammedi, Kamel; Bellili-Muñoz, Naïma; Driss, Fathi; Sanchez, Manuel; Fumeron, Frédéric; Roussel, Ronan; Hadjadj, Samy; Corrêa-Giannella, Maria Lúcia; Marre, Michel; Velho, Gilberto

    2015-09-01

    Oxidative stress plays a pivotal role in the pathophysiology of diabetic nephropathy, and the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase system is an important source of reactive oxygen species in hyperglycemic conditions in the kidney. Plasma concentration of advanced oxidation protein products (AOPP), a marker of oxidative stress, is increased in patients with diabetic nephropathy. We investigated associations of variants in the CYBA gene, encoding the regulatory subunit p22(phox) of NADPH oxidase, with diabetic nephropathy and plasma AOPP and myeloperoxidase (MPO) concentrations in type 1 diabetic patients. Seven SNPs in the CYBA region were analyzed in 1357 Caucasian subjects with type 1 diabetes from the SURGENE (n=340), GENEDIAB (n=444), and GENESIS (n=573) cohorts. Duration of follow-up was 10, 9, and 6 years, respectively. Cox proportional hazards and logistic regression analyses were used to estimate hazard ratios (HR) or odds ratios (OR) for incidence and prevalence of diabetic nephropathy. The major G-allele of rs9932581 was associated with the incidence of renal events defined as new cases of microalbuminuria or the progression to a more severe stage of nephropathy during follow-up (HR 1.59, 95% CI 1.17-2.18, P=0.003) in SURGENE. The same allele was associated with established/advanced nephropathy (OR 1.52, 95% CI 1.22-1.92, P=0.0001) and with the incidence of end-stage renal disease (ESRD) (HR 2.01, 95% CI 1.30-3.24, P=0.001) in GENEDIAB/GENESIS pooled studies. The risk allele was also associated with higher plasma AOPP concentration in subsets of SURGENE and GENEDIAB, with higher plasma MPO concentration in a subset of GENEDIAB, and with lower estimated glomerular filtration rate (eGFR) in the three cohorts. In conclusion, a functional variant in the promoter of the CYBA gene was associated with lower eGFR and with prevalence and incidence of diabetic nephropathy and ESRD in type 1 diabetic patients. These results are consistent with

  11. Glucose-6-Phosphate Dehydrogenase Enhances Antiviral Response through Downregulation of NADPH Sensor HSCARG and Upregulation of NF-κB Signaling

    PubMed Central

    Wu, Yi-Hsuan; Chiu, Daniel Tsun-Yee; Lin, Hsin-Ru; Tang, Hsiang-Yu; Cheng, Mei-Ling; Ho, Hung-Yao

    2015-01-01

    Glucose-6-phosphate dehydrogenase (G6PD)-deficient cells are highly susceptible to viral infection. This study examined the mechanism underlying this phenomenon by measuring the expression of antiviral genes—tumor necrosis factor alpha (TNF-α) and GTPase myxovirus resistance 1 (MX1)—in G6PD-knockdown cells upon human coronavirus 229E (HCoV-229E) and enterovirus 71 (EV71) infection. Molecular analysis revealed that the promoter activities of TNF-α and MX1 were downregulated in G6PD-knockdown cells, and that the IκB degradation and DNA binding activity of NF-κB were decreased. The HSCARG protein, a nicotinamide adenine dinucleotide phosphate (NADPH) sensor and negative regulator of NF-κB, was upregulated in G6PD-knockdown cells with decreased NADPH/NADP+ ratio. Treatment of G6PD-knockdown cells with siRNA against HSCARG enhanced the DNA binding activity of NF-κB and the expression of TNF-α and MX1, but suppressed the expression of viral genes; however, the overexpression of HSCARG inhibited the antiviral response. Exogenous G6PD or IDH1 expression inhibited the expression of HSCARG, resulting in increased expression of TNF-α and MX1 and reduced viral gene expression upon virus infection. Our findings suggest that the increased susceptibility of the G6PD-knockdown cells to viral infection was due to impaired NF-κB signaling and antiviral response mediated by HSCARG. PMID:26694452

  12. Glucose-6-Phosphate Dehydrogenase Enhances Antiviral Response through Downregulation of NADPH Sensor HSCARG and Upregulation of NF-κB Signaling.

    PubMed

    Wu, Yi-Hsuan; Chiu, Daniel Tsun-Yee; Lin, Hsin-Ru; Tang, Hsiang-Yu; Cheng, Mei-Ling; Ho, Hung-Yao

    2015-12-01

    Glucose-6-phosphate dehydrogenase (G6PD)-deficient cells are highly susceptible to viral infection. This study examined the mechanism underlying this phenomenon by measuring the expression of antiviral genes-tumor necrosis factor alpha (TNF-α) and GTPase myxovirus resistance 1 (MX1)-in G6PD-knockdown cells upon human coronavirus 229E (HCoV-229E) and enterovirus 71 (EV71) infection. Molecular analysis revealed that the promoter activities of TNF-α and MX1 were downregulated in G6PD-knockdown cells, and that the IκB degradation and DNA binding activity of NF-κB were decreased. The HSCARG protein, a nicotinamide adenine dinucleotide phosphate (NADPH) sensor and negative regulator of NF-κB, was upregulated in G6PD-knockdown cells with decreased NADPH/NADP⁺ ratio. Treatment of G6PD-knockdown cells with siRNA against HSCARG enhanced the DNA binding activity of NF-κB and the expression of TNF-α and MX1, but suppressed the expression of viral genes; however, the overexpression of HSCARG inhibited the antiviral response. Exogenous G6PD or IDH1 expression inhibited the expression of HSCARG, resulting in increased expression of TNF-α and MX1 and reduced viral gene expression upon virus infection. Our findings suggest that the increased susceptibility of the G6PD-knockdown cells to viral infection was due to impaired NF-κB signaling and antiviral response mediated by HSCARG. PMID:26694452

  13. NADPH oxidase 2-derived reactive oxygen species in the hippocampus might contribute to microglial activation in postoperative cognitive dysfunction in aged mice.

    PubMed

    Qiu, Li-Li; Ji, Mu-Huo; Zhang, Hui; Yang, Jiao-Jiao; Sun, Xiao-Ru; Tang, Hui; Wang, Jing; Liu, Wen-Xue; Yang, Jian-Jun

    2016-01-01

    Microglial activation plays a key role in the development of postoperative cognitive dysfunction (POCD). Nox2, one of the main isoforms of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase in the central nervous system, is a predominant source of reactive oxygen species (ROS) overproduction in phagocytes including microglia. We therefore hypothesized that Nox2-induced microglial activation is involved in the development of POCD. Sixteen-month-old C57BL/6 mice were subjected to exploratory laparotomy with isoflurane anesthesia to mimic the clinical human abdominal surgery. Behavioral tests were performed at 6 and 7 d post-surgery with open field and fear conditioning tests, respectively. The levels of Nox2, 8-hydroxy-2'-deoxyguanosine (8-OH-dG, a marker of DNA oxidation), CD11b (a marker of microglial activation), interleukin-1β (IL-1β), and brain-derived neurotrophic factor (BDNF) were determined in the hippocampus and prefrontal cortex at 1 d and 7 d post-surgery, respectively. For the interventional study, mice were treated with a NADPH oxidase inhibitor apocynin (APO). Our results showed that exploratory laparotomy with isoflurane anesthesia impaired the contextual fear memory, increased expression of Nox2, 8-OH-dG, CD11b, and IL-1β, and down-regulated BDNF expression in the hippocampus at 7 d post-surgery. The surgery-induced microglial activation and neuroinflammation persisted to 7 d after surgery in the hippocampus, but only at 1 d in the prefrontal cortex. Notably, administration with APO could rescue these surgery-induced cognitive impairments and associated brain pathology. Together, our data suggested that Nox2-derived ROS in hippocampal microglia, at least in part, contributes to subsequent neuroinflammation and cognitive impairments induced by surgery in aged mice. PMID:26254234

  14. NAD(P)H oxidase-dependent intracellular and extracellular O2·- production in coronary arterial myocytes from CD38 knockout mice

    PubMed Central

    Xu, Ming; Zhang, Yang; Xia, Min; Li, Xiao-Xue; Ritter, Joseph K; Zhang, Fan; Li, Pin-Lan

    2011-01-01

    Activation of NAD(P)H oxidase has been reported to produce superoxide (O2 ·-) extracellularly as an autocrine/paracrine regulator or intracellularly as a signaling messenger in a variety of mammalian cells. However, it remains unknown how the activity of NAD(P)H oxidase is regulated in arterial myocytes. Recently, CD38-associated ADP-ribosylcyclase has been reported to use NAD(P)H oxidase product, NAD+ or NADP+ to produce cyclic ADP-ribose (cADPR) or nicotinic acid adenine dinucleotide phosphate (NAADP), which mediates intracellular Ca2+ signaling. The present study was designed to test a hypothesis that CD38/cADPR pathway as a downstream event exerts feedback regulatory action on the NAD(P)H oxidase activity in production of extra- or intracellular O2 ·-in mouse coronary arterial myocytes (CAMs). By fluorescent microscopic imaging, we simultaneously monitored extra- and intracellular O2 ·-production in wild-type (CD38+/+) and CD38 knockout (CD38-/-) CAMs in response to oxotremorine (OXO), a muscarinic type 1 (M1) receptor agonist. It was found that CD38 deficiency prevented OXO-induced intracellular but not extracellular O2 ·-production in CAMs. Consistently, the OXO-induced intracellular O2 ·-production was markedly inhibited by CD38 shRNA or CD38 inhibitor nicotinamide in CD38+/+ CAMs. Further, Nox4 siRNA inhibited OXO-induced intracellular but not extracellular O2 ·- production, whereas Nox1 siRNA attenuated both intracellular and extracellular O2 ·-production in CD38+/+ CAMs. Direct delivery of exogenous cADPR into CAMs markedly elevated intracellular Ca2+ concentration and restored intracellular O2 ·-production in CD38-/- CAMs. Functionally, CD38 deficiency or Nox1 siRNA and Nox4 siRNA prevented OXO-induced contraction in isolated perfused coronary arteries in CD38 WT mice. These results provide direct evidence that CD38/cADPR pathway importantly controls Nox4-mediated intracellular O2 ·-production and that CD38-dependent intracellular O2

  15. Studies on free and enzyme-bound nicotinamide adenine dinucleotide free radicals

    SciTech Connect

    Bielski, B.H.J.; Chan, P.C.

    1980-02-27

    The spectral and kinetic properties of the NAD free radical have been studied as a function of temperature and pH. The radical decays by second-order kinetics to an enzymatically inactive dimer (NAD)/sub 2/. At 23.5/sup 0/C and pH 7.3 the corresponding rate constant is k/sub 9/ = (7.72 +- 0.78) x 10/sup 7/ M/sup -1/s/sup -1/ with an activation energy E/sub a/ = 3.4 +- 0.4 kcal/mol. Upon attachment of the NAD radical to an enzyme active site, the radical becomes stabilized. The stabilization effect (ratio of the rate of NAD disappearance in the absence and presence of an enzyme) depends upon the nature of the enzyme and varies from 1.54 x 10/sup 2/ for alcohol dehydrogenase, 2.57 x 10/sup 2/ for malate dehydrogenase, 1.1 x 10/sup 3/ for lactate dehydrogenase, to 1.54 x 10/sup 4/ for glyceraldehyde-3-phosphate dehydrogenase. The observed second-order disappearance of enzyme-stabilized NAD is explained by a mechanism that is dependent upon the dissociation constant of the enzyme-NAD complex. 6 figures

  16. Glyceraldehyde-3-phosphate dehydrogenase-catalyzed chain oxidation of reduced nicotinamide adenine dinucleotide by perhydroxyl radicals

    SciTech Connect

    Chan, P.C.

    1980-02-10

    The chain oxidation of glyceraldehyde-3-phosphate dehydrogenase NADH by perhydroxyl radicals and propagated by molecular oxygen was studied by the xanthine-xanthine oxidase system, /sup 60/Co ..gamma..-ray, and pulse radiolysis. The chain length, amount of NADH oxidized per HO/sub 2/ generated, increases with increasing acidity of the medium and reaches a value of 73 at pH 5.0. The rate constant for the oxidation of the glyceraldehyde-3-phosphate dehydrogenase NADH complex by HO/sub 2/ was estimated to be 2 x 10/sup 7/ m/sup -1/s/sup -1/ at ambient temperatures (23-24/sup 0/C). Rate studies as a function of pH indicate that O/sub 2//sup -/ is unreactive toward the glyceraldehyde-3-phosphate dehydrogenase NADH complex. Other dehydrogenases (malate dehydrogenase, glutamate dehydrogenase, and isocitric dehydrogenase) studied showed no catalytic activity in the oxidation of NADH by HO/sub 2//O/sub 2//sup -/.

  17. Interaction of pigeon-liver nicotinamide-adenine dinucleotide kinase with cibacron blue F3GA.

    PubMed Central

    Apps, D K; Gleed, C D

    1976-01-01

    The interaction of pigeon liver NAD kinase with Cibacron Blue F3GA was investigated. By using steady-state rate measurements, spectrophotometric titration and chromatography of the enzyme on immobilized dye, it was shown that binding occurs at two nucleotide sites with different affinities, and also at a site distinct from the substrate-binding region. PMID:187176

  18. Predicting Flavin and Nicotinamide Adenine Dinucleotide-Binding Sites in Proteins Using the Fragment Transformation Method

    PubMed Central

    Lin, Yu-Feng; Chen, Jin-Yi

    2015-01-01

    We developed a computational method to identify NAD- and FAD-binding sites in proteins. First, we extracted from the Protein Data Bank structures of proteins that bind to at least one of these ligands. NAD-/FAD-binding residue templates were then constructed by identifying binding residues through the ligand-binding database BioLiP. The fragment transformation method was used to identify structures within query proteins that resembled the ligand-binding templates. By comparing residue types and their relative spatial positions, potential binding sites were identified and a ligand-binding potential for each residue was calculated. Setting the false positive rate at 5%, our method predicted NAD- and FAD-binding sites at true positive rates of 67.1% and 68.4%, respectively. Our method provides excellent results for identifying FAD- and NAD-binding sites in proteins, and the most important is that the requirement of conservation of residue types and local structures in the FAD- and NAD-binding sites can be verified. PMID:26000290

  19. [Synthesis of nicotinamide adenine dinucleotide in the nuclei of pigeon erythrocytes].

    PubMed

    Nemchinskaia, V L; Makarova, T G; Mozhenok, T P; Braun, A D

    1975-08-01

    The nuclei of pigeon erythrocytes are capable of synthesizing NAD from nicotinamid-mononucleotides and ATP. Some data on the kinetics of NAD-pyrophosphorylase have been obtained: the optimal concentration of nuclei and the effect of various incubation time. The pretreatment of nuclei by Triton X-100, or by ultrasonics enhances NAD synthesis. The results suggest that cyclic 3',5'-AMP (Fluka) may have no effect on NAD synthesis. The control of the cell metabolism by NAD formation is considered. PMID:181878

  20. Aging-related nicotinamide adenine dinucleotide oxidase response to dietary supplementation: the French paradox revisited.

    PubMed

    Morré, D James; Morré, Dorothy M; Shelton, Thomas B

    2010-01-01

    Aging-related cell-surface NADH oxidase (arNOX)-specific activities increase with age between age 30 and ages 50-65. The protein is shed and circulates. Activity correlates with a number of aging-related disorders including low-density lipoprotein (LDL) oxidation as a precondition to atherosclerosis as well as oxidation of collagen and elastin as a major contributor to skin aging. arNOX inhibitors formulated for sustained release are capable of maintaining circulating arNOX at low levels with regular use as food supplements formulated with natural compounds. Among the best sources are certain culinary seasonings, all of which are ingredients used extensively in the French kitchen. Their regular use may contribute to an understanding of the nutritional basis for the French Paradox. PMID:19954304

  1. Modification of Metabolic Pattern by Variation of Nicotinamide Adenine Dinucleotide Phosphate Level 1

    PubMed Central

    Yamamoto, Yukio

    1969-01-01

    The experiments were designed to get some information on the metabolism controlled by variation of the NADP level, which is known to change with the variation of environmental factors. The exogenous NADP added to the mitochondria prepared from Vigna sesquipedalis cotyledons was associated with and/or penetrated into the mitochondria. The combined NADP served in the operation of the mitochondrial NADP-isocitric acid dehydrogenase. The variation of NADP level by exogenous NADP was observed to modify the rates of metabolic processes. The increase of exogenous NADP in Vigna hypocotyl slices lowered malic- and citric-acid contents and raised the α-ketoglutaric acid content. The incorporation of 14C from acetate-2-14C into lipid, organic acid, amino acid, was promoted with the exogenous NADP. The 14C-incorporation into glycolic acid, malic acid and glutamic acid was accelerated. In the mannitol homogenate of Vigna cotyledon, 14CO2 evolution and 14C-incorporation into lipid, sugar, and glycolic acid from acetate-2-14C were promoted with the exogenous NADP. Endogenous citric acid content was lowered by NADP, while malic acid content was increased. The activation of NADP-enzymes by NADP was discussed to be involved in these variations. PMID:16657076

  2. Antimutagenic activity of oxidase enzymes

    SciTech Connect

    Agabeili, R.A.

    1986-11-01

    By means of a cytogenetic analysis of chromosomal aberrations in plant cells (Welsh onion, wheat) it was found that the cofactors nicotinamide adenine phosphate (NAD), nicotinamide adenine dinucleotide phosphate (NADPH), and riboflavin possess antimutagenic activity.

  3. Identification of the NAD(P)H binding site of eukaryotic UDP-galactopyranose mutase.

    PubMed

    Dhatwalia, Richa; Singh, Harkewal; Solano, Luis M; Oppenheimer, Michelle; Robinson, Reeder M; Ellerbrock, Jacob F; Sobrado, Pablo; Tanner, John J

    2012-10-31

    UDP-galactopyranose mutase (UGM) plays an essential role in galactofuranose biosynthesis in microorganisms by catalyzing the conversion of UDP-galactopyranose to UDP-galactofuranose. The enzyme has gained attention recently as a promising target for the design of new antifungal, antitrypanosomal, and antileishmanial agents. Here we report the first crystal structure of UGM complexed with its redox partner NAD(P)H. Kinetic protein crystallography was used to obtain structures of oxidized Aspergillus fumigatus UGM (AfUGM) complexed with NADPH and NADH, as well as reduced AfUGM after dissociation of NADP(+). NAD(P)H binds with the nicotinamide near the FAD isoalloxazine and the ADP moiety extending toward the mobile 200s active site flap. The nicotinamide riboside binding site overlaps that of the substrate galactopyranose moiety, and thus NADPH and substrate binding are mutually exclusive. On the other hand, the pockets for the adenine of NADPH and uracil of the substrate are distinct and separated by only 6 Å, which raises the possibility of designing novel inhibitors that bind both sites. All 12 residues that contact NADP(H) are conserved among eukaryotic UGMs. Residues that form the AMP pocket are absent in bacterial UGMs, which suggests that eukaryotic and bacterial UGMs have different NADP(H) binding sites. The structures address the longstanding question of how UGM binds NAD(P)H and provide new opportunities for drug discovery. PMID:23036087

  4. Kaempferol modulates pro-inflammatory NF-κB activation by suppressing advanced glycation endproducts-induced NADPH oxidase

    PubMed Central

    Kim, Ji Min; Lee, Eun Kyeong; Kim, Dae Hyun; Yu, Byung Pal

    2010-01-01

    Advanced glycation endproducts (AGE) are oxidative products formed from the reaction between carbohydrates and a free amino group of proteins that are provoked by reactive species (RS). It is also known that AGE enhance the generation of RS and that the binding of AGE to a specific AGE receptor (RAGE) induces the activation of the redox-sensitive, pro-inflammatory transcription factor, nuclear factor-kappa B (NF-ĸB). In this current study, we investigated the anti-oxidative effects of short-term kaempferol supplementation on the age-related formation of AGE and the binding activity of RAGE in aged rat kidney. We further investigated the suppressive action of kaempferol against AGE's ability to stimulate activation of pro-inflammatory NF-ĸB and its molecular mechanisms. For this study, we utilized young (6 months old), old (24 months old), and kaempferol-fed (2 and 4 mg/kg/day for 10 days) old rats. In addition, for the molecular work, the rat endothelial cell line, YPEN-1 was used. The results show that AGE and RAGE were increased during aging and that these increases were blunted by kaempferol. In addition, dietary kaempferol reduced age-related increases in NF-κB activity and NF-ĸB-dependant pro-inflammatory gene activity. The most significant new finding from this study is that kaempferol supplementation prevented age-related NF-κB activation by suppressing AGE-induced nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase). Taken together, our results demonstrated that dietary kaempferol exerts its anti-oxidative and anti-inflammatory actions by modulating the age-related NF-κB signaling cascade and its pro-inflammatory genes by suppressing AGE-induced NADPH oxidase activation. Based on these data, dietary kaempferol is proposed as a possible anti-AGE agent that may have the potential for use in anti-inflammation therapies. PMID:20431987

  5. Automated genotyping of dinucleotide repeat markers

    SciTech Connect

    Perlin, M.W.; Hoffman, E.P. |

    1994-09-01

    The dinucleotide repeats (i.e., microsatellites) such as CA-repeats are a highly polymorphic, highly abundant class of PCR-amplifiable markers that have greatly streamlined genetic mapping experimentation. It is expected that over 30,000 such markers (including tri- and tetranucleotide repeats) will be characterized for routine use in the next few years. Since only size determination, and not sequencing, is required to determine alleles, in principle, dinucleotide repeat genotyping is easily performed on electrophoretic gels, and can be automated using DNA sequencers. Unfortunately, PCR stuttering with these markers generates not one band for each allele, but a pattern of bands. Since closely spaced alleles must be disambiguated by human scoring, this poses a key obstacle to full automation. We have developed methods that overcome this obstacle. Our model is that the observed data is generated by arithmetic superposition (i.e., convolution) of multiple allele patterns. By quantitatively measuring the size of each component band, and exploiting the unique stutter pattern associated with each marker, closely spaced alleles can be deconvolved; this unambiguously reconstructs the {open_quotes}true{close_quotes} allele bands, with stutter artifact removed. We used this approach in a system for automated diagnosis of (X-linked) Duchenne muscular dystrophy; four multiplexed CA-repeats within the dystrophin gene were assayed on a DNA sequencer. Our method accurately detected small variations in gel migration that shifted the allele size estimate. In 167 nonmutated alleles, 89% (149/167) showed no size variation, 9% (15/167) showed 1 bp variation, and 2% (3/167) showed 2 bp variation. We are currently developing a library of dinucleotide repeat patterns; together with our deconvolution methods, this library will enable fully automated genotyping of dinucleotide repeats from sizing data.

  6. Cyanobacterial NADPH dehydrogenase complexes

    SciTech Connect

    Ogawa, Teruo; Mi, Hualing

    2007-07-01

    Cyanobacteria possess functionally distinct multiple NADPH dehydrogenase (NDH-1) complexes that are essential to CO2 uptake, photosystem-1 cyclic electron transport and respiration. The unique nature of cyanobacterial NDH-1 complexes is the presence of subunits involved in CO2 uptake. Other than CO2 uptake, chloroplastic NDH-1 complex has similar role as cyanobacterial NDH-1 complexes in photosystem-1 cyclic electron transport and respiration (chlororespiration). In this mini-review we focus on the structure and function of cyanobacterial NDH-1 complexes and their phylogeny. The function of chloroplastic NDH-1 complex and characteristics of plants defective in NDH-1 are also described forcomparison.

  7. NADPH Oxidase and Neurodegeneration

    PubMed Central

    Hernandes, Marina S; Britto, Luiz R G

    2012-01-01

    NADPH oxidase (Nox) is a unique, multi-protein, electron transport system that produces large amounts of superoxide via the reduction of molecular oxygen. Nox-derived reactive oxygen species (ROS) are known to be involved in a variety of physiological processes, including host defense and signal transduction. However, over the past decade, the involvement of (Nox)-dependent oxidative stress in the pathophysiology of several neurodegenerative diseases has been increasingly recognized. ROS produced by Nox proteins contribute to neurodegenerative diseases through distinct mechanisms, such as oxidation of DNA, proteins, lipids, amino acids and metals, in addition to activation of redox-sensitive signaling pathways. In this review, we discuss the recent literature on Nox involvement in neurodegeneration, focusing on Parkinson and Alzheimer diseases. PMID:23730256

  8. Identification of structural determinants of NAD(P)H selectivity and lysine binding in lysine N(6)-monooxygenase.

    PubMed

    Abdelwahab, Heba; Robinson, Reeder; Rodriguez, Pedro; Adly, Camelia; El-Sohaimy, Sohby; Sobrado, Pablo

    2016-09-15

    l-lysine (l-Lys) N(6)-monooxygenase (NbtG), from Nocardia farcinica, is a flavin-dependent enzyme that catalyzes the hydroxylation of l-Lys in the presence of oxygen and NAD(P)H in the biosynthetic pathway of the siderophore nocobactin. NbtG displays only a 3-fold preference for NADPH over NADH, different from well-characterized related enzymes, which are highly selective for NADPH. The structure of NbtG with bound NAD(P)(+) or l-Lys is currently not available. Herein, we present a mutagenesis study targeting M239, R301, and E216. These amino acids are conserved and located in either the NAD(P)H binding domain or the l-Lys binding pocket. M239R resulted in high production of hydrogen peroxide and little hydroxylation with no change in coenzyme selectivity. R301A caused a 300-fold decrease on kcat/Km value with NADPH but no change with NADH. E216Q increased the Km value for l-Lys by 30-fold with very little change on the kcat value or in the binding of NAD(P)H. These results suggest that R301 plays a major role in NADPH selectivity by interacting with the 2'-phosphate of the adenine-ribose moiety of NADPH, while E216 plays a role in l-Lys binding. PMID:27503802

  9. Molybdopterin Dinucleotide Biosynthesis in Escherichia coli

    PubMed Central

    Neumann, Meina; Seduk, Farida; Iobbi-Nivol, Chantal; Leimkühler, Silke

    2011-01-01

    The molybdenum cofactor is modified by the addition of GMP or CMP to the C4′ phosphate of molybdopterin forming the molybdopterin guanine dinucleotide or molybdopterin cytosine dinucleotide cofactor, respectively. The two reactions are catalyzed by specific enzymes as follows: the GTP:molybdopterin guanylyltransferase MobA and the CTP:molybdopterin cytidylyltransferase MocA. Both enzymes show 22% amino acid sequence identity and are specific for their respective nucleotides. Crystal structure analysis of MobA revealed two conserved motifs in the N-terminal domain of the protein involved in binding of the guanine base. Based on these motifs, we performed site-directed mutagenesis studies to exchange the amino acids to the sequence found in the paralogue MocA. Using a fully defined in vitro system, we showed that the exchange of five amino acids was enough to obtain activity with both GTP and CTP in either MocA or MobA. Exchange of the complete N-terminal domain of each protein resulted in the total inversion of nucleotide specificity activity, showing that the N-terminal domain determines nucleotide recognition and binding. Analysis of protein-protein interactions showed that the C-terminal domain of either MocA or MobA determines the specific binding to the respective acceptor protein. PMID:21081498

  10. A time course of NADPH-oxidase up-regulation and endothelial nitric oxide synthase activation in the hippocampus following neurotrauma

    PubMed Central

    Ansari, Mubeen A.; Roberts, Kelly N.; Scheff, Stephen W.

    2015-01-01

    Nicotinamide adenine dinucleotide phosphate oxidase (NADPH-oxidase; NOX) is a complex enzyme responsible for increased levels of reactive oxygen species (ROS), superoxide (O2.−). NOX derived O2.− is a key player in oxidative stress and inflammation mediated multiple secondary injury cascades (SIC) following traumatic brain injury (TBI). The O2.− reacts with nitric oxide (NO), produces various reactive nitrogen species (RNS), and contributes to apoptotic cell death. Following a unilateral cortical contusion, young adult rats were killed at various times post injury (1, 3, 6, 12, 24, 48, 72, and 96 h). Fresh tissue from the hippocampus was analyzed for NOX activity, and level of O2.−. In addition we evaluated the translocation of cytosolic NOX proteins (p67Phox, p47Phox and p40Phox) to the membrane, along with total NO and the activation (phosphorylation) of endothelial nitric oxide synthase (p-eNOS). Results show that both enzymes and levels of O2.− and NO have time dependent injury effects in the hippocampus. Translocation of cytosolic NOX proteins into membrane, NOX activity and O2.− were also increased in a time dependent fashion. Both, NOX activity and O2.− were increased at 6 h. Levels of p-eNOS increased within 1 h, with significant elevation of NO at 12 h post TBI. Levels of NO failed to show a significant association with p-eNOS, but did associate with O2.−. NOX up-regulation strongly associated with both the levels of O2.− and also total NO. The initial 12 hours post TBI are very important as a possible window of opportunity to interrupt SIC. It may be important to selectively target the translocation of cytosolic subunits for the modulation of NOX function. PMID:25224032

  11. Potential role of NADPH oxidase in pathogenesis of pancreatitis

    PubMed Central

    Cao, Wei-Li; Xiang, Xiao-Hui; Chen, Kai; Xu, Wei; Xia, Shi-Hai

    2014-01-01

    Studies have demonstrated that reactive oxygen species (ROS) are closely related to inflammatory disorders. Nicotinamide adenine dinucleotide phosphate oxidase (NOX), originally found in phagocytes, is the main source of ROS in nonphagocytic cells. Besides directly producing the detrimental highly reactive ROS to act on biomolecules (lipids, proteins, and nucleic acids), NOX can also activate multiple signal transduction pathways, which regulate cell growth, proliferation, differentiation and apoptosis by producing ROS. Recently, research on pancreatic NOX is no longer limited to inflammatory cells, but extends to the aspect of pancreatic acinar cells and pancreatic stellate cells, which are considered to be potentially associated with pancreatitis. In this review, we summarize the literature on NOX protein structure, activation, function and its role in the pathogenesis of pancreatitis. PMID:25133019

  12. Vertical Singlet Excitations on Adenine Dimer: A Time Dependent Density Functional Study

    NASA Astrophysics Data System (ADS)

    Crespo-Hernández, Carlos E.; Marai, Christopher N. J.

    2007-12-01

    The condense phase, excited state dynamics of the adenylyl(3'→5')adenine (ApA) dinucleotide has been previously studied using transient absorption spectroscopy with femtosecond time resolution (Crespo-Hernández et al. Chem. Rev. 104, 1977-2019 (2004)). An ultrafast and a long-lived component were observed with time constants of <1 ps and 60±16 ps, respectively. Comparison of the time constants measured for the dinucleotide with that for the adenine nucleotide suggested that the fast component observed in ApA could be assigned to monomer dynamics. The long-lived component observed in ApA was assigned to an excimer state that originates from a fraction of base stacked conformations present at the time of excitation. In this contribution, supermolecule calculations using the time dependent implementation of density functional theory is used to provide more insights on the origin of the initial Franck-Condon excitations. Monomer-like, localized excitations are observed for conformations having negligible base stacking interactions, whereas delocalized excitations are predicted for conformations with significant vertical base-base overlap.

  13. Solution conformation of 2-aminopurine (2-AP) dinucleotide determined by ultraviolet 2D fluorescence spectroscopy (UV-2D FS)

    PubMed Central

    Widom, Julia R.; Johnson, Neil P.; von Hippel, Peter H.; Marcus, Andrew H.

    2013-01-01

    We have observed the conformation-dependent electronic coupling between the monomeric subunits of a dinucleotide of 2-aminopurine (2-AP), a fluorescent analog of the nucleic acid base adenine. This was accomplished by extending two-dimensional fluorescence spectroscopy (2D FS) – a fluorescence-detected variation of 2D electronic spectroscopy – to excite molecular transitions in the ultraviolet (UV) regime. A collinear sequence of four ultrafast laser pulses centered at 323 nm was used to resonantly excite the coupled transitions of 2-AP dinucleotide. The phases of the optical pulses were continuously swept at kilohertz frequencies, and the ensuing nonlinear fluorescence was phase-synchronously detected at 370 nm. Upon optimization of a point-dipole coupling model to our data, we found that in aqueous buffer the 2-AP dinucleotide adopts an average conformation in which the purine bases are non-helically stacked (center-to-center distance R12 = 3.5 Å ± 0.5 Å, twist angle θ12 = 5° ± 5°), which differs from the conformation of such adjacent bases in duplex DNA. These experiments establish UV-2D FS as a method for examining the local conformations of an adjacent pair of fluorescent nucleotides substituted into specific DNA or RNA constructs, which will serve as a powerful probe to interpret, in structural terms, biologically significant local conformational changes within the nucleic acid framework of protein-nucleic acid complexes. PMID:24223491

  14. Adenine Aminohydrolase from Leishmania donovani

    PubMed Central

    Boitz, Jan M.; Strasser, Rona; Hartman, Charles U.; Jardim, Armando; Ullman, Buddy

    2012-01-01

    Adenine aminohydrolase (AAH) is an enzyme that is not present in mammalian cells and is found exclusively in Leishmania among the protozoan parasites that infect humans. AAH plays a paramount role in purine metabolism in this genus by steering 6-aminopurines into 6-oxypurines. Leishmania donovani AAH is 38 and 23% identical to Saccharomyces cerevisiae AAH and human adenosine deaminase enzymes, respectively, catalyzes adenine deamination to hypoxanthine with an apparent Km of 15.4 μm, and does not recognize adenosine as a substrate. Western blot analysis established that AAH is expressed in both life cycle stages of L. donovani, whereas subcellular fractionation and immunofluorescence studies confirmed that AAH is localized to the parasite cytosol. Deletion of the AAH locus in intact parasites established that AAH is not an essential gene and that Δaah cells are capable of salvaging the same range of purine nucleobases and nucleosides as wild type L. donovani. The Δaah null mutant was able to infect murine macrophages in vitro and in mice, although the parasite loads in both model systems were modestly reduced compared with wild type infections. The Δaah lesion was also introduced into a conditionally lethal Δhgprt/Δxprt mutant in which viability was dependent on pharmacologic ablation of AAH by 2′-deoxycoformycin. The Δaah/Δhgprt/Δxprt triple knock-out no longer required 2′-deoxycoformycin for growth and was avirulent in mice with no persistence after a 4-week infection. These genetic studies underscore the paramount importance of AAH to purine salvage by L. donovani. PMID:22238346

  15. Transient congenital hypothyroidism caused by compound heterozygous mutations affecting the NADPH-oxidase domain of DUOX2.

    PubMed

    Yoshizawa-Ogasawara, Atsuko; Abe, Kiyomi; Ogikubo, Sayaka; Narumi, Satoshi; Hasegawa, Tomonobu; Satoh, Mari

    2016-03-01

    Here, we describe three cases of loss-of-function mutations in the nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase (NOX) domain of dual oxidase 2 (DUOX2) occurring along with concurrent missense mutations in thyroid peroxidase (TPO), leading to transient congenital hypothyroidism (CH). Three Japanese boys with nonconsanguineous parents were diagnosed with CH during their neonatal screenings. All patients presented with moderate-to-severe neonatal hypothyroidism and were diagnosed with transient CH after re-evaluation of thyroid function. Two siblings were compound heterozygous for p.[R1110Q]+[Y1180X] in DUOX2; one of them was also heterozygous for p.[R361L] in TPO. The third patient was compound heterozygous for p.[L1160del]+[R1334W] in DUOX2 and heterozygous for p.[P883S] in TPO. This is the first report of a de novo L1160del mutation affecting the DUOX2 gene and of the novel mutations Y1180X in DUOX2 and R361L in TPO. R1110Q and L1160del were found to reduce H2O2 production (5%-9%, p<0.01), while Y1180X, which introduces a premature stop codon, did not confer detectable H2O2 production (-0.7%±0.6%, p<0.01). Moreover, R1334W, a missense mutation possibly affecting electron transfer, led to reduced H2O2 production (24%±0.9%, p<0.01) in vitro, and R1110Q and R1334W resulted in reduced protein expression. Y1180X was detected in a 120 kDa truncated form, whereas L1160del expression was maintained. Further, R361L, a novel missense mutation in TPO, caused partial reduction in peroxidase activity (20.6%±0.8%, p=0.01), whereas P883S, a missense variant, increased it (133.7%±2.8%, p=0.02). The protein expression levels in the case of R361L and P883S were maintained. In conclusion, we provide clinical and in vitro demonstrations of different functional defects and phenotypic heterogeneity in the same thyroid hormonogenesis pathway. PMID:26565538

  16. Bound anionic states of adenine

    SciTech Connect

    Haranczyk, Maciej; Gutowski, Maciej S; Li, Xiang; Bowen, Kit H

    2007-03-20

    Anionic states of nucleic acid bases are involved in DNA damage by low-energy electrons and in charge transfer through DNA. Previous gas phase studies of free, unsolvated nucleic acid base parent anions probed only dipole-bound states, which are not present in condensed phase environments, but did not observe valence anionic states, which for purine bases, are thought to be adiabatically unbound. Contrary to this expectation, we have demonstrated that some thus far ignored tautomers of adenine, which result from enamine-imine transformations, support valence anionic states with electron vertical detachment energies as large as 2.2 eV, and at least one of these anionic tautomers is adiabatically bound. Moreover, we predict that the new anionic tautomers should also dominate in solutions and should be characterized by larger values of electron vertical detachment energy than the canonical valence anion. All of the new-found anionic tautomers might be formed in the course of dissociative electron attachment followed by a hydrogen atom attachment to a carbon atom, and they might affect the structure and properties of DNA and RNA exposed to low-energy electrons. The discovery of these valence anionic states of adenine was facilitated by the development of: (i) a new experimental method for preparing parent anions of nucleic acid bases for photoelectron experiments, and (ii) a new combinatorial/ quantum chemical approach for identification of the most stable tautomers of organic molecules. The computational portion of this work was supported by the: (i) Polish State Committee for Scientific Research (KBN) Grants: DS/8000-4-0140-7 (M.G.) and N204 127 31/2963 (M.H.), (ii) European Social Funds (EFS) ZPORR/2.22/II/2.6/ARP/U/2/05 (M.H.), and (iii) US DOE Office of Biological and Environmental Research, Low Dose Radiation Research Program (M.G.). M.H. holds the Foundation for Polish Science (FNP) award for young scientists. The calculations were performed at the Academic

  17. Formation of the imidazolides of dinucleotides under potentially prebiotic conditions

    NASA Technical Reports Server (NTRS)

    Sleeper, H. L.; Lohrmann, R.; Orgel, L. E.

    1978-01-01

    Imidazolides of dinucleotides such as ImpApA can be formed from the corresponding dinucleotides in a two-stage process, which gives up to 15% yields under potentially prebiotic conditions. First a solution of the dinucleotide and sodium trimetaphosphate is dried out at constant temperature and humidity. This produces polyphosphates such as p(n)ApA in excellent yield (greater than or equal to 80%). The products are dissolved in water, imidazole is added, and the solution is dried out again. This yields the 5'-phosphorimidazolides.

  18. Mononucleotide and dinucleotide frequencies, and codon usage in poliovirion RNA.

    PubMed Central

    Rothberg, P G; Wimmer, E

    1981-01-01

    The polio type 1 (Mahoney) RNA sequence (1) has been analyzed in terms of the distribution of its mononucleotides, dinucleotides and trinucleotides (codons). The distribution of adenosine in the sequence is nonuniform, being lower at the 5' end and higher at the 3' end. The dinucleotide CG is relatively rare and the dinucleotides UG and CA are relatively more common than expected. Codon usage is decidedly nonrandom. Codons containing CG are avoided and those ending in adenosine are favored. The asymmetric use of mononucleotides, dinucleotides and codons in polio RNA is unexplained at the present time although the lowered CG frequency may be the result of a DNA origin for polio RNA. PMID:6275352

  19. NADPH oxidase mediates radiation-induced oxidative stress in rat brain microvascular endothelial cells.

    PubMed

    Collins-Underwood, J Racquel; Zhao, Weiling; Sharpe, Jessica G; Robbins, Mike E

    2008-09-15

    The need to both understand and minimize the side effects of brain irradiation is heightened by the ever-increasing number of patients with brain metastases that require treatment with whole brain irradiation (WBI); some 200,000 cancer patients/year receive partial or WBI. At the present time, there are no successful treatments for radiation-induced brain injury, nor are there any known effective preventive strategies. Data support a role for chronic oxidative stress in radiation-induced late effects. However, the pathogenic mechanism(s) involved remains unknown. One candidate source of reactive oxygen species (ROS) is nicotinamide adenosine dinucleotide phosphate (NADPH) oxidase, which converts molecular oxygen (O(2)) to the superoxide anion (O(2)(-)) on activation. We hypothesize that brain irradiation leads to activation of NADPH oxidase. We report that irradiating rat brain microvascular endothelial cells in vitro leads to increased (i) intracellular ROS generation, (ii) activation of the transcription factor NFkappaB, (iii) expression of ICAM-1 and PAI-1, and (iv) expression of Nox4, p22(phox), and p47(phox). Pharmacologic and genetic inhibition of NADPH oxidase blocked the radiation-mediated upregulation of intracellular ROS, activation of NFkappaB, and upregulation of ICAM-1 and PAI-1. These results suggest that activation of NADPH oxidase may play a role in radiation-induced oxidative stress. PMID:18640264

  20. The synthesis of nicotinamide–adenine dinucleotide and poly(adenosine diphosphate ribose) in various classes of rat liver nuclei

    PubMed Central

    Haines, M. E.; Johnston, I. R.; Mathias, A. P.; Ridge, D.

    1969-01-01

    1. The activities of NMN adenylyltransferase and an enzyme that synthesizes poly (ADP-ribose) from NAD were investigated in the various classes of rat liver nuclei fractionated by zonal centrifugation. 2. The highest specific activities of these two nuclear enzymes occur in different classes of nuclei. In very young and in mature rats it was shown that a correlation exists between DNA synthesis and NMN adenylyltransferase activity, but in rats of intermediate age this correlation is less evident. The highest activities of the enzyme that catalyses formation of poly (ADP-ribose) are in the nuclei involved in the synthesis of RNA. 3. The significance of these results in relation to NAD metabolism is discussed. PMID:4311824

  1. Syntheses of nicotinamide riboside and derivatives: effective agents for increasing nicotinamide adenine dinucleotide concentrations in mammalian cells.

    PubMed

    Yang, Tianle; Chan, Noel Yan-Ki; Sauve, Anthony A

    2007-12-27

    A new two-step methodology achieves stereoselective synthesis of beta-nicotinamide riboside and a series of related amide, ester, and acid nucleosides. Compounds were prepared through a triacetylated-nicotinate ester nucleoside, via coupling of either ethylnicotinate or phenylnicotinate with 1,2,3,5-tetra-O-acetyl-beta-D-ribofuranose. Nicotinamide riboside, nicotinic acid riboside, O-ethylnicotinate riboside, O-methylnicotinate riboside, and several N-alkyl derivatives increased NAD+ concentrations from 1.2-2.7-fold in several mammalian cell lines. These findings establish bioavailability and potent effects of these nucleosides in stimulating the increase of NAD+ concentrations in mammalian cells. PMID:18052316

  2. Nicotinamide Adenine Dinucleotide-specific "Malic" Enzyme in Kalanchoë daigremontiana and Other Plants Exhibiting Crassulacean Acid Metabolism.

    PubMed

    Dittrich, P

    1976-02-01

    NAD-specific "malic" enzyme (EC 1.1.1.39) has been isolated and purified 1200-fold from leaves of Kalanchoë daigremontiana. Kinetic studies of this enzyme, which is activated 14-fold by CoA, acetyl-CoA, and SO(4) (2-), suggest allosteric properties. Cofactor requirements show an absolute specificity for NAD and for Mn(2+), which cannot be replaced by NADP or Mg(2+). For maintaining enzyme activity in crude leaf extracts a thiol reagent, Mn(2+), and PVP-40 were required. The latter could be omitted from purified preparations. By sucrose density gradient centrifugation NAD-malic enzyme could be localized in mitochondria. A survey of plants with crassulacean acid metabolism revealed the presence of NAD-malic enzyme in all 31 plants tested. Substantial levels of this enzyme (121-186 mumole/hr.mg of Chl) were detected in all members tested of the family Crassulaceae. It is proposed that NAD-malic enzyme in general supplements activity of NADP-malic enzyme present in these plants and may be specifically employed to increase internal concentrations of CO(2) for recycling during cessation of gas exchange in periods of severe drought. PMID:16659473

  3. Enzymatic production by tissue extracts of a metabolite of nicotinamide adenine dinucleotide with calcium-releasing ability

    SciTech Connect

    Tich, N.R.

    1989-01-01

    This research investigated the occurrence and characterization of the metabolite in mammalian tissues. In all mammalian tissues tested, including rabbit liver, heart, spleen, kidney, and brain, the factor to convert NAD into its active metabolite was present. The conversion exhibited many characteristics of an enzymatic process such as temperature sensitivity, concentration dependence and protease sensitivity. Production of the NAD metabolite occurred within a time frame of 15-45 minutes at 37{degree}C, depending upon the particular preparation. The metabolite was isolated using high performance liquid chromatography from all mammalian tissues. This purified metabolite was then tested for its effectiveness in releasing intracellular calcium in an intact cell by microinjecting it into unfertilized sea urchin eggs. These eggs undergo a massive morphological change upon fertilization which is dependent upon the release of calcium from inside the cell. Upon injection of the NAD metabolite into unfertilized eggs, this same morphological change was observed showing indirectly that the metabolite released intracellular calcium from an intact, viable cell. In addition, radioactive studies using {sup 45}Ca{sup 2+} loaded into permeabilized hepatocytes, indicated in preliminary studies that the NAD metabolite could also release calcium from intracellular stores of mammalian cells.

  4. Post-treatment with an ultra-low dose of NADPH oxidase inhibitor diphenyleneiodonium attenuates disease progression in multiple Parkinson’s disease models

    PubMed Central

    Qian, Li; Chen, Shih-Heng; Chu, Chun-Hsien; Wilson, Belinda; Oyarzabal, Esteban; Ali, Syed; Robinson, Bonnie; Rao, Deepa

    2015-01-01

    Nicotinamide adenine dinucleotide phosphate oxidase, a key superoxide-producing enzyme, plays a critical role in microglia-mediated chronic neuroinflammation and subsequent progressive dopaminergic neurodegeneration in Parkinson’s disease. Although nicotinamide adenine dinucleotide phosphate oxidase-targeting anti-inflammatory therapy for Parkinson’s disease has been proposed, its application in translational research remains limited. The aim of this study was to obtain preclinical evidence supporting this therapeutic strategy by testing the efficacy of an ultra-low dose of the nicotinamide adenine dinucleotide phosphate oxidase inhibitor diphenyleneiodonium in both endotoxin (lipopolysaccharide)- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice using post-treatment regimens. Our data revealed that post-treatment with diphenyleneiodonium significantly attenuated progressive dopaminergic degeneration and improved rotarod activity. Remarkably, post-treatment with diphenyleneiodonium 10 months after lipopolysaccharide injection when mice had 30% loss of nigral dopaminergic neurons, showed high efficacy in protecting the remaining neuronal population and restoring motor function. Diphenyleneiodonium-elicited neuroprotection was associated with the inhibition of microglial activation, a reduction in the expression of proinflammatory factors and an attenuation of α-synuclein aggregation. A pathophysiological evaluation of diphenyleneiodonium-treated mice, including assessment of body weight, organs health, and neuronal counts, revealed no overt signs of toxicity. In summary, infusion of ultra-low dose diphenyleneiodonium potently reduced microglia-mediated chronic neuroinflammation by selectively inhibiting nicotinamide adenine dinucleotide phosphate oxidase and halted the progression of neurodegeneration in mouse models of Parkinson’s disease. The robust neuroprotective effects and lack of apparent toxic side effects suggest that diphenyleneiodonium

  5. Involvement of phosphoinositide 3-kinase class IA (PI3K 110α) and NADPH oxidase 1 (NOX1) in regulation of vascular differentiation induced by vascular endothelial growth factor (VEGF) in mouse embryonic stem cells.

    PubMed

    Bekhite, Mohamed M; Müller, Veronika; Tröger, Sebastian H; Müller, Jörg P; Figulla, Hans-Reiner; Sauer, Heinrich; Wartenberg, Maria

    2016-04-01

    The impact of reactive oxygen species and phosphoinositide 3-kinase (PI3K) in differentiating embryonic stem (ES) cells is largely unknown. Here, we show that the silencing of the PI3K catalytic subunit p110α and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 1 (NOX1) by short hairpin RNA or pharmacological inhibition of NOX and ras-related C3 botulinum toxin substrate 1 (Rac1) abolishes superoxide production by vascular endothelial growth factor (VEGF) in mouse ES cells and in ES-cell-derived fetal liver kinase-1(+) (Flk-1(+)) vascular progenitor cells, whereas the mitochondrial complex I inhibitor rotenone does not have an effect. Silencing p110α or inhibiting Rac1 arrests vasculogenesis at initial stages in embryoid bodies, even under VEGF treatment, as indicated by platelet endothelial cell adhesion molecule-1 (PECAM-1)-positive areas and branching points. In the absence of p110α, tube-like structure formation on matrigel and cell migration of Flk-1(+) cells in scratch migration assays are totally impaired. Silencing NOX1 causes a reduction in PECAM-1-positive areas, branching points, cell migration and tube length upon VEGF treatment, despite the expression of vascular differentiation markers. Interestingly, silencing p110α but not NOX1 inhibits the activation of Rac1, Ras homologue gene family member A (RhoA) and Akt leading to the abrogation of VEGF-induced lamellipodia structure formation. Thus, our data demonstrate that the PI3K p110α-Akt/Rac1 and NOX1 signalling pathways play a pivotal role in VEGF-induced vascular differentiation and cell migration. Rac1, RhoA and Akt phosphorylation occur downstream of PI3K and upstream of NOX1 underscoring a role of PI3K p110α in the regulation of cell polarity and migration. PMID:26553657

  6. Photophysical deactivation pathways in adenine oligonucleotides.

    PubMed

    Spata, Vincent A; Matsika, Spiridoula

    2015-12-14

    In this work we study deactivation processes in adenine oligomers after absorption of UV radiation using Quantum Mechanics combined with Molecular Mechanics (QM/MM). Correlated electronic structure methods appropriate for describing the excited states are used to describe a π-stacked dimer of adenine bases incorporated into (dA)20(dT)20. The results of these calculations reveal three different types of excited state minima which play a role in deactivation processes. Within this set of minima there are minima where the excited state is localized on one adenine (monomer-like) as well as minima where the excited state is delocalized on two adenines, forming different types of excimers and bonded excimers of varying but inter-related character. The proximity of their energies reveals that the minima can decay into one another along a flat potential energy surface dependent on the interbase separation. Additionally, analysis of the emissive energies and other physical properties, including theoretical anisotropy calculations, and comparison with fluorescence experiments, provides evidence that excimers play an important role in long-lived signals in adenine oligonucleotides while the subpicosecond decay is attributed to monomer-like minima. The necessity for a close approach of the nucleobases reveals that the deactivation mechanism is tied to macro-molecular motion. PMID:26536353

  7. The catalase activity of diiron adenine deaminase.

    PubMed

    Kamat, Siddhesh S; Holmes-Hampton, Gregory P; Bagaria, Ashima; Kumaran, Desigan; Tichy, Shane E; Gheyi, Tarun; Zheng, Xiaojing; Bain, Kevin; Groshong, Chris; Emtage, Spencer; Sauder, J Michael; Burley, Stephen K; Swaminathan, Subramanyam; Lindahl, Paul A; Raushel, Frank M

    2011-12-01

    Adenine deaminase (ADE) from the amidohydrolase superfamily (AHS) of enzymes catalyzes the conversion of adenine to hypoxanthine and ammonia. Enzyme isolated from Escherichia coli was largely inactive toward the deamination of adenine. Molecular weight determinations by mass spectrometry provided evidence that multiple histidine and methionine residues were oxygenated. When iron was sequestered with a metal chelator and the growth medium supplemented with Mn(2+) before induction, the post-translational modifications disappeared. Enzyme expressed and purified under these conditions was substantially more active for adenine deamination. Apo-enzyme was prepared and reconstituted with two equivalents of FeSO(4). Inductively coupled plasma mass spectrometry and Mössbauer spectroscopy demonstrated that this protein contained two high-spin ferrous ions per monomer of ADE. In addition to the adenine deaminase activity, [Fe(II) /Fe(II) ]-ADE catalyzed the conversion of H(2)O(2) to O(2) and H(2)O. The values of k(cat) and k(cat)/K(m) for the catalase activity are 200 s(-1) and 2.4 × 10(4) M(-1) s(-1), respectively. [Fe(II)/Fe(II)]-ADE underwent more than 100 turnovers with H(2)O(2) before the enzyme was inactivated due to oxygenation of histidine residues critical for metal binding. The iron in the inactive enzyme was high-spin ferric with g(ave) = 4.3 EPR signal and no evidence of anti-ferromagnetic spin-coupling. A model is proposed for the disproportionation of H(2)O(2) by [Fe(II)/Fe(II)]-ADE that involves the cycling of the binuclear metal center between the di-ferric and di-ferrous oxidation states. Oxygenation of active site residues occurs via release of hydroxyl radicals. These findings represent the first report of redox reaction catalysis by any member of the AHS. PMID:21998098

  8. NADPH Oxidase 1 and NADPH Oxidase 4 Have Opposite Prognostic Effects for Patients with Hepatocellular Carcinoma after Hepatectomy

    PubMed Central

    Ha, Sang Yun; Paik, Yong-Han; Yang, Jung Wook; Lee, Min Ju; Bae, Hyunsik; Park, Cheol-Keun

    2016-01-01

    Background/Aims Nicotinamide adenine dinucleotide phosphate oxidase (NOX)-mediated reactive oxygen species contribute to various liver diseases, including hepatocellular carcinoma (HCC). Uncertainties remain regarding the prognostic relevance of NOX1 and NOX4 protein expression in HCC. Methods NOX1 and NOX4 protein expression was examined by using immunohistochemistry in tumor tissue from 227 HCC patients who underwent hepatectomy. Results High immunoreactivity for NOX1 was observed in 197 (86.8%) of the 227 HCC cases and low immunoreactivity for NOX4 in 112 (49.3%). NOX1 and NOX4 proteins had opposite prognostic effects. High NOX1 expression was an independent predictor of both shorter recurrence-free survival (RFS) (p<0.01) and shorter overall survival (OS) (p=0.01). Low NOX4 expression was an independent predictor of both shorter RFS (p<0.01) and shorter OS (p=0.01). Subgroup analysis showed that, among patients with normal α-fetoprotein levels, patients with tumor size ≤5.0 cm and patients in Barcelona Clinic Liver Cancer stage A, high NOX1 expression had unfavorable effects on RFS, whereas low NOX4 expression had unfavorable effects on both RFS and OS. Conclusions These findings demonstrated that NOX1 and NOX4 protein expression had opposite prognostic effects for HCC patients. Moreover, both proteins had prognostic value in HCC patients with normal α-fetoprotein levels or with early-stage HCC. PMID:27282266

  9. Dinucleotide controlled null models for comparative RNA gene prediction

    PubMed Central

    Gesell, Tanja; Washietl, Stefan

    2008-01-01

    Background Comparative prediction of RNA structures can be used to identify functional noncoding RNAs in genomic screens. It was shown recently by Babak et al. [BMC Bioinformatics. 8:33] that RNA gene prediction programs can be biased by the genomic dinucleotide content, in particular those programs using a thermodynamic folding model including stacking energies. As a consequence, there is need for dinucleotide-preserving control strategies to assess the significance of such predictions. While there have been randomization algorithms for single sequences for many years, the problem has remained challenging for multiple alignments and there is currently no algorithm available. Results We present a program called SISSIz that simulates multiple alignments of a given average dinucleotide content. Meeting additional requirements of an accurate null model, the randomized alignments are on average of the same sequence diversity and preserve local conservation and gap patterns. We make use of a phylogenetic substitution model that includes overlapping dependencies and site-specific rates. Using fast heuristics and a distance based approach, a tree is estimated under this model which is used to guide the simulations. The new algorithm is tested on vertebrate genomic alignments and the effect on RNA structure predictions is studied. In addition, we directly combined the new null model with the RNAalifold consensus folding algorithm giving a new variant of a thermodynamic structure based RNA gene finding program that is not biased by the dinucleotide content. Conclusion SISSIz implements an efficient algorithm to randomize multiple alignments preserving dinucleotide content. It can be used to get more accurate estimates of false positive rates of existing programs, to produce negative controls for the training of machine learning based programs, or as standalone RNA gene finding program. Other applications in comparative genomics that require randomization of multiple

  10. Graphene-Enhanced Raman Scattering from the Adenine Molecules.

    PubMed

    Dolgov, Leonid; Pidhirnyi, Denys; Dovbeshko, Galyna; Lebedieva, Tetiana; Kiisk, Valter; Heinsalu, Siim; Lange, Sven; Jaaniso, Raivo; Sildos, Ilmo

    2016-12-01

    An enhanced Raman scattering from a thin layer of adenine molecules deposited on graphene substrate was detected. The value of enhancement depends on the photon energy of the exciting light. The benzene ring in the structure of adenine molecule suggests π-stacking of adenine molecule on top of graphene. So, it is proposed that the enhancement in the adenine Raman signal is explained by the resonance electron transfer from the Fermi level of graphene to the lowest unoccupied molecular orbital (LUMO) level of adenine. PMID:27075339

  11. Graphene-Enhanced Raman Scattering from the Adenine Molecules

    NASA Astrophysics Data System (ADS)

    Dolgov, Leonid; Pidhirnyi, Denys; Dovbeshko, Galyna; Lebedieva, Tetiana; Kiisk, Valter; Heinsalu, Siim; Lange, Sven; Jaaniso, Raivo; Sildos, Ilmo

    2016-04-01

    An enhanced Raman scattering from a thin layer of adenine molecules deposited on graphene substrate was detected. The value of enhancement depends on the photon energy of the exciting light. The benzene ring in the structure of adenine molecule suggests π-stacking of adenine molecule on top of graphene. So, it is proposed that the enhancement in the adenine Raman signal is explained by the resonance electron transfer from the Fermi level of graphene to the lowest unoccupied molecular orbital (LUMO) level of adenine.

  12. Atomic substitution reveals the structural basis for substrate adenine recognition and removal by adenine DNA glycosylase

    SciTech Connect

    Lee, Seongmin; Verdine, Gregory L.

    2010-01-14

    Adenine DNA glycosylase catalyzes the glycolytic removal of adenine from the promutagenic A {center_dot} oxoG base pair in DNA. The general features of DNA recognition by an adenine DNA glycosylase, Bacillus stearothermophilus MutY, have previously been revealed via the X-ray structure of a catalytically inactive mutant protein bound to an A:oxoG-containing DNA duplex. Although the structure revealed the substrate adenine to be, as expected, extruded from the DNA helix and inserted into an extrahelical active site pocket on the enzyme, the substrate adenine engaged in no direct contacts with active site residues. This feature was paradoxical, because other glycosylases have been observed to engage their substrates primarily through direct contacts. The lack of direct contacts in the case of MutY suggested that either MutY uses a distinctive logic for substrate recognition or that the X-ray structure had captured a noncatalytically competent state in lesion recognition. To gain further insight into this issue, we crystallized wild-type MutY bound to DNA containing a catalytically inactive analog of 2'-deoxyadenosine in which a single 2'-H atom was replaced by fluorine. The structure of this fluorinated lesion-recognition complex (FLRC) reveals the substrate adenine buried more deeply into the active site pocket than in the prior structure and now engaged in multiple direct hydrogen bonding and hydrophobic interactions. This structure appears to capture the catalytically competent state of adenine DNA glycosylases, and it suggests a catalytic mechanism for this class of enzymes, one in which general acid-catalyzed protonation of the nucleobase promotes glycosidic bond cleavage.

  13. Excimer states in microhydrated adenine clusters.

    PubMed

    Smith, V R; Samoylova, E; Ritze, H-H; Radloff, W; Schultz, T

    2010-09-01

    We present femtosecond pump-probe mass and photoelectron spectra for adenine (A) and microhydrated A(m)(H(2)O)(n) clusters. Three distinct relaxation processes of photoexcited electronic states were distinguished: in unhydrated A, relaxation of the optically bright pipi* state occurred via the dark npi* state with respective lifetimes of <0.1 and 1.3 ps. In microhydrated clusters A(H(2)O)(n), relaxation via the npi* state is quenched by a faster relaxation process, probably involving pisigma* states. For the predominantly hydrogen-bonded adenine dimer (A(2)), excited state relaxation is dominated by monomer-like processes. When the adenine dimer is clustered with several water molecules, we observe a nanosecond lifetime from excimer states in pi-stacked clusters. From the electron spectra we estimate adiabatic ionization potentials of 8.32 eV (A), 8.27 eV (A(H(2)O)(1)), 8.19 eV (A(H(2)O)(2)), 8.10 eV (A(H(2)O)(3)), 8.18 eV (A(2)), and 8.0 eV (A(2)(H(2)O)(3-5)). PMID:20556283

  14. Crosstalk between mitochondria and NADPH oxidases

    PubMed Central

    Dikalov, Sergey

    2011-01-01

    Reactive oxygen species (ROS) play an important role in physiological and pathological processes. In recent years, a feed-forward regulation of the ROS sources has been reported. The interaction between main cellular sources of ROS, such as mitochondria and NADPH oxidases, however, remain obscure. This work summarizes the latest findings on the role of crosstalk between mitochondria and NADPH oxidases in pathophysiological processes. Mitochondria have the highest levels of antioxidants in the cell and play an important role in the maintenance of cellular redox status, thereby acting as an ROS and redox sink and limiting NADPH oxidase activity. Mitochondria, however, are not only a target for ROS produced by NADPH oxidase but also a significant source of ROS, which under certain condition may stimulate NADPH oxidases. This crosstalk between mitochondria and NADPH oxidases, therefore, may represent a feed-forward vicious cycle of ROS production which can be pharmacologically targeted under conditions of oxidative stress. It has been demonstrated that mitochondria-targeted antioxidants break this vicious cycle, inhibiting ROS production by mitochondria and reducing NADPH oxidase activity. This may provide a novel strategy for treatment of many pathological conditions including aging, atherosclerosis, diabetes, hypertension and degenerative neurological disorders in which mitochondrial oxidative stress seems to play a role. It is conceivable that the use of mitochondria-targeted treatments would be effective in these conditions. PMID:21777669

  15. NADPH Oxidases and Angiotensin II Receptor Signaling

    PubMed Central

    Garrido, Abel Martin; Griendling, Kathy K.

    2010-01-01

    Over the last decade many studies have demonstrated the importance of reactive oxygen species (ROS) production by NADPH oxidases in angiotensin II (Ang II) signaling, as well as a role for ROS in the development of different diseases in which Ang II is a central component. In this review, we summarize the mechanism of activation of NADPH oxidases by Ang II and describe the molecular targets of ROS in Ang II signaling in the vasculature, kidney and brain. We also discuss the effects of genetic manipulation of NADPH oxidase function on the physiology and pathophysiology of the renin angiotensin system. PMID:19059306

  16. The catalase activity of diiron adenine deaminase

    SciTech Connect

    Kamat S. S.; Swaminathan S.; Holmes-Hampton, G. P.; Bagaria, A.; Kumaran, D.; Tichy, S. E.; Gheyi, T.; Zheng, X.; Bain, K.; Groshong, C.; Emtage, S.; Sauder, J. M.; Burley, S. K.; Lindahl, P. A.; Raushel, F. M.

    2011-12-01

    Adenine deaminase (ADE) from the amidohydrolase superfamily (AHS) of enzymes catalyzes the conversion of adenine to hypoxanthine and ammonia. Enzyme isolated from Escherichia coli was largely inactive toward the deamination of adenine. Molecular weight determinations by mass spectrometry provided evidence that multiple histidine and methionine residues were oxygenated. When iron was sequestered with a metal chelator and the growth medium supplemented with Mn{sup 2+} before induction, the post-translational modifications disappeared. Enzyme expressed and purified under these conditions was substantially more active for adenine deamination. Apo-enzyme was prepared and reconstituted with two equivalents of FeSO{sub 4}. Inductively coupled plasma mass spectrometry and Moessbauer spectroscopy demonstrated that this protein contained two high-spin ferrous ions per monomer of ADE. In addition to the adenine deaminase activity, [Fe{sup II}/Fe{sup II}]-ADE catalyzed the conversion of H{sub 2}O{sub 2} to O{sub 2} and H{sub 2}O. The values of k{sub cat} and k{sub cat}/K{sub m} for the catalase activity are 200 s{sup -1} and 2.4 x 10{sup 4} M{sup -1} s{sup -1}, respectively. [Fe{sup II}/Fe{sup II}]-ADE underwent more than 100 turnovers with H{sub 2}O{sub 2} before the enzyme was inactivated due to oxygenation of histidine residues critical for metal binding. The iron in the inactive enzyme was high-spin ferric with g{sub ave} = 4.3 EPR signal and no evidence of anti-ferromagnetic spin-coupling. A model is proposed for the disproportionation of H{sub 2}O{sub 2} by [Fe{sup II}/Fe{sup II}]-ADE that involves the cycling of the binuclear metal center between the di-ferric and di-ferrous oxidation states. Oxygenation of active site residues occurs via release of hydroxyl radicals. These findings represent the first report of redox reaction catalysis by any member of the AHS.

  17. The Nature's Clever Trick for Making Cyclic Dinucleotide.

    PubMed

    Fang, Pengfei; Guo, Min

    2015-05-01

    Ever since their initial discovery few years ago, cyclic dinucleotides (cDNs), their biosynthesis, and their biological function have been in focus of intense research efforts. In this issue, Kato et al. (2015) present strong evidence that the key enzyme in cDN biosynthesis, DncV, is poised on a tipping point such that, given a nudge, the enzyme, can link the nucleotides into a distinct cyclic loop, leading to a specific innate immune response. PMID:25955098

  18. Cyclic Dinucleotide-Controlled Regulatory Pathways in Streptomyces Species

    PubMed Central

    2015-01-01

    The cyclic dinucleotides cyclic 3′,5′-diguanylate (c-di-GMP) and cyclic 3′,5′-diadenylate (c-di-AMP) have emerged as key components of bacterial signal transduction networks. These closely related second messengers follow the classical general principles of nucleotide signaling by integrating diverse signals into regulatory pathways that control cellular responses to changing environments. They impact distinct cellular processes, with c-di-GMP having an established role in promoting bacterial adhesion and inhibiting motility and c-di-AMP being involved in cell wall metabolism, potassium homeostasis, and DNA repair. The involvement of c-dinucleotides in the physiology of the filamentous, nonmotile streptomycetes remained obscure until recent discoveries showed that c-di-GMP controls the activity of the developmental master regulator BldD and that c-di-AMP determines the level of the resuscitation-promoting factor A(RpfA) cell wall-remodelling enzyme. Here, I summarize our current knowledge of c-dinucleotide signaling in Streptomyces species and highlight the important roles of c-di-GMP and c-di-AMP in the biology of these antibiotic-producing, multicellular bacteria. PMID:26216850

  19. Background correction using dinucleotide affinities improves the performance of GCRMA

    PubMed Central

    Gharaibeh, Raad Z; Fodor, Anthony A; Gibas, Cynthia J

    2008-01-01

    Background High-density short oligonucleotide microarrays are a primary research tool for assessing global gene expression. Background noise on microarrays comprises a significant portion of the measured raw data, which can have serious implications for the interpretation of the generated data if not estimated correctly. Results We introduce an approach to calculate probe affinity based on sequence composition, incorporating nearest-neighbor (NN) information. Our model uses position-specific dinucleotide information, instead of the original single nucleotide approach, and adds up to 10% to the total variance explained (R2) when compared to the previously published model. We demonstrate that correcting for background noise using this approach enhances the performance of the GCRMA preprocessing algorithm when applied to control datasets, especially for detecting low intensity targets. Conclusion Modifying the previously published position-dependent affinity model to incorporate dinucleotide information significantly improves the performance of the model. The dinucleotide affinity model enhances the detection of differentially expressed genes when implemented as a background correction procedure in GeneChip preprocessing algorithms. This is conceptually consistent with physical models of binding affinity, which depend on the nearest-neighbor stacking interactions in addition to base-pairing. PMID:18947404

  20. Regulation of NADPH oxidases in skeletal muscle.

    PubMed

    Ferreira, Leonardo F; Laitano, Orlando

    2016-09-01

    The only known function of NAD(P)H oxidases is to produce reactive oxygen species (ROS). Skeletal muscles express three isoforms of NAD(P)H oxidases (Nox1, Nox2, and Nox4) that have been identified as critical modulators of redox homeostasis. Nox2 acts as the main source of skeletal muscle ROS during contractions, participates in insulin signaling and glucose transport, and mediates the myocyte response to osmotic stress. Nox2 and Nox4 contribute to skeletal muscle abnormalities elicited by angiotensin II, muscular dystrophy, heart failure, and high fat diet. Our review addresses the expression and regulation of NAD(P)H oxidases with emphasis on aspects that are relevant to skeletal muscle. We also summarize: i) the most widely used NAD(P)H oxidases activity assays and inhibitors, and ii) studies that have defined Nox enzymes as protagonists of skeletal muscle redox homeostasis in a variety of health and disease conditions. PMID:27184955

  1. Effect of ouabain on metabolic oxidative state in living cardiomyocytes evaluated by time-resolved spectroscopy of endogenous NAD(P)H fluorescence

    NASA Astrophysics Data System (ADS)

    Chorvatova, Alzbeta; Elzwiei, Fathia; Mateasik, Anton; Chorvat, Dusan

    2012-10-01

    Time-resolved spectrometry of endogenous nicotinamide dinucleotide phosphate [NAD(P)H] fluorescence is a useful method to evaluate metabolic oxidative state in living cells. Ouabain is a well-known pharmaceutical drug used in the treatment of cardiovascular disease, the effects of which on myocardial metabolism were recently demonstrated. Mechanisms implicated in these actions are still poorly understood. We investigate the effect of ouabain on the metabolic oxidative state of living cardiac cells identified by time-resolved fluorescence spectroscopy of mitochondrial NAD(P)H. Spectral unmixing is used to resolve individual NAD(P)H fluorescence components. Ouabain decreased the integral intensity of NAD(P)H fluorescence, leading to a reduced component amplitudes ratio corresponding to a change in metabolic state. We also noted that lactate/pyruvate, affecting the cytosolic NADH gradient, increased the effect of ouabain on the component amplitudes ratio. Cell oxidation levels, evaluated as the percentage of oxidized NAD(P)H, decreased exponentially with rising concentrations of the cardiac glycoside. Ouabain also stimulated the mitochondrial NADH production. Our study sheds a new light on the role that ouabain plays in the regulation of metabolic state, and presents perspective on a noninvasive, pharmaceutical approach for testing the effect of drugs on the mitochondrial metabolism by means of time-resolved fluorescence spectroscopy in living cells.

  2. NADPH Oxidases in Heart Failure: Poachers or Gamekeepers?

    PubMed Central

    Zhang, Min; Perino, Alessia; Ghigo, Alessandra; Hirsch, Emilio

    2013-01-01

    Abstract Significance: Oxidative stress is involved in the pathogenesis of heart failure but clinical antioxidant trials have been unsuccessful. This may be because effects of reactive oxygen species (ROS) depend upon their source, location, and concentration. Nicotinamide adenine dinucleotide phosphate oxidase (Nox) proteins generate ROS in a highly regulated fashion and modulate several components of the heart failure phenotype. Recent Advances: Two Nox isoforms, Nox2 and Nox4, are expressed in the heart. Studies using gene-modified mice deficient in Nox2 activity indicate that Nox2 activation contributes to angiotensin II–induced cardiomyocyte hypertrophy, atrial fibrillation, and the development of interstitial fibrosis but may also positively modulate physiological excitation-contraction coupling. Nox2 contributes to myocyte death under stress situations and plays important roles in postmyocardial infarction remodeling, in part by modulating matrix metalloprotease activity. In contrast to Nox2, Nox4 is constitutively active at a low level and induces protective effects in the heart under chronic stress, for example, by maintaining myocardial capillary density. However, high levels of Nox4 could have detrimental effects. Critical Issues: The effects of Nox proteins during the development of heart failure likely depend upon the isoform, activation level, and cellular distribution, and may include beneficial as well as detrimental effects. More needs to be learnt about the precise regulation of abundance and biochemical activity of these proteins in the heart as well as the downstream signaling pathways that they regulate. Future Directions: The development of specific approaches to target individual Nox isoforms and/or specific cell types may be important for the achievement of therapeutic efficacy in heart failure. Antioxid. Redox Signal. 18, 1024–1041. PMID:22747566

  3. Methods for detection of methyl-CpG dinucleotides

    DOEpatents

    Dunn, John J.

    2012-09-11

    The invention provides methods for enriching methyl-CpG sequences from a DNA sample. The method makes use of conversion of cytosine residues to uracil under conditions in which methyl-cytosine residues are preserved. Additional methods of the invention enable to preservation of the context of me-CpG dinucleotides. The invention also provides a recombinant, full length and substantially pure McrA protein (rMcrA) for binding and isolation of DNA fragments containing the sequence 5'-C.sup.MeCpGG-3'. Methods for making and using the rMcrA protein, and derivatives thereof are provided.

  4. Methods for detection of methyl-CpG dinucleotides

    DOEpatents

    Dunn, John J.

    2013-01-29

    The invention provides methods for enriching methyl-CpG sequences from a DNA sample. The method makes use of conversion of cytosine residues to uracil under conditions in which methyl-cytosine residues are preserved. Additional methods of the invention enable to preservation of the context of me-CpG dinucleotides. The invention also provides a recombinant, full length and substantially pure McrA protein (rMcrA) for binding and isolation of DNA fragments containing the sequence 5'-C.sup.MeCpGG-3'. Methods for making and using the rMcrA protein, and derivatives thereof are provided.

  5. Methods for detection of methyl-CpG dinucleotides

    DOEpatents

    Dunn, John J

    2013-11-26

    The invention provides methods for enriching methyl-CpG sequences from a DNA sample. The method makes use of conversion of cytosine residues to uracil under conditions in which methyl-cytosine residues are preserved. Additional methods of the invention enable to preservation of the context of me-CpG dinucleotides. The invention also provides a recombinant, full length and substantially pure McrA protein (rMcrA) for binding and isolation of DNA fragments containing the sequence 5'-C.sup.MeCpGG-3'. Methods for making and using the rMcrA protein, and derivatives thereof are provided.

  6. In vitro selection of adenine-dependent hairpin ribozymes.

    PubMed

    Meli, Marc; Vergne, Jacques; Maurel, Marie-Christine

    2003-03-14

    Adenine-dependent hairpin ribozymes were isolated by in vitro selection from a degenerated hairpin ribozyme population. Two new adenine-dependent ribozymes catalyze their own reversible cleavage in the presence of free adenine. Both aptamers have Mg(2+) requirements for adenine-assisted cleavage similar to the wild-type hairpin ribozyme. Cleavage kinetics studies in the presence of various other small molecules were compared. The data suggest that adenine does not induce RNA self-cleavage in the same manner for both aptamers. In addition, investigations of pH effects on catalytic rates show that both adenine-dependent aptamers are more active in basic conditions, suggesting that they use new acid/base catalytic strategies in which adenine could be involved directly. The discovery of hairpin ribozymes dependent on adenine for their reversible self-cleavage presents considerable biochemical and evolutionary interests because we show that RNA is able to use exogenous reactive molecules to enhance its own catalytic activity. Such a mechanism may have been a means by which the ribozymes of the RNA world enlarged their chemical repertoire. PMID:12519767

  7. Involvement of the NADPH Oxidase NOX2-Derived Brain Oxidative Stress in an Unusual Fatal Case of Cocaine-Related Neurotoxicity Associated With Excited Delirium Syndrome.

    PubMed

    Schiavone, Stefania; Riezzo, Irene; Turillazzi, Emanuela; Trabace, Luigia

    2016-10-01

    Here, we investigated the possible role of the Nicotinamide Adenine Dinucleotide Phosphate oxidase NOX2-derived brain oxidative stress in a fatal case of cocaine-related neurotoxicity, associated to excited delirium syndrome. We detected a strong NOX2 immunoreactivity, mainly in cortical GABAergic neurons and astrocytes, with a minor presence in microglia, glutamatergic and dopaminergic neurons as well as a significant immunostaining for other markers of oxidative stress (8OhDG, HSP70, HSP90, and NF-κB) and apoptotic phenomena. These results support a crucial role of NOX2-derived brain oxidative stress in cocaine-induced brain dysfunctions and neurotoxicity. PMID:27533346

  8. Adenine adlayers on Cu(111): XPS and NEXAFS study.

    PubMed

    Tsud, Nataliya; Bercha, Sofiia; Ševčíková, Klára; Acres, Robert G; Prince, Kevin C; Matolín, Vladimír

    2015-11-01

    The adsorption of adenine on Cu(111) was studied by photoelectron and near edge x-ray absorption fine structure spectroscopy. Disordered molecular films were deposited by means of physical vapor deposition on the substrate at room temperature. Adenine chemisorbs on the Cu(111) surface with strong rehybridization of the molecular orbitals and the Cu 3d states. Annealing at 150 °C caused the desorption of weakly bonded molecules accompanied by formation of a short-range ordered molecular adlayer. The interface is characterized by the formation of new states in the valence band at 1.5, 7, and 9 eV. The present work complements and refines existing knowledge of adenine interaction with this surface. The coverage is not the main parameter that defines the adenine geometry and adsorption properties on Cu(111). Excess thermal energy can further rearrange the molecular adlayer and, independent of the initial coverage, the flat lying stable molecular adlayer is formed. PMID:26547179

  9. Adenine adlayers on Cu(111): XPS and NEXAFS study

    SciTech Connect

    Tsud, Nataliya; Bercha, Sofiia; Ševčíková, Klára; Matolín, Vladimír; Acres, Robert G.; Prince, Kevin C.

    2015-11-07

    The adsorption of adenine on Cu(111) was studied by photoelectron and near edge x-ray absorption fine structure spectroscopy. Disordered molecular films were deposited by means of physical vapor deposition on the substrate at room temperature. Adenine chemisorbs on the Cu(111) surface with strong rehybridization of the molecular orbitals and the Cu 3d states. Annealing at 150 °C caused the desorption of weakly bonded molecules accompanied by formation of a short-range ordered molecular adlayer. The interface is characterized by the formation of new states in the valence band at 1.5, 7, and 9 eV. The present work complements and refines existing knowledge of adenine interaction with this surface. The coverage is not the main parameter that defines the adenine geometry and adsorption properties on Cu(111). Excess thermal energy can further rearrange the molecular adlayer and, independent of the initial coverage, the flat lying stable molecular adlayer is formed.

  10. NADPH oxidases in the arbuscular mycorrhizal symbiosis.

    PubMed

    Belmondo, Simone; Calcagno, Cristina; Genre, Andrea; Puppo, Alain; Pauly, Nicolas; Lanfranco, Luisa

    2016-04-01

    Plant NADPH oxidases are the major source of reactive oxygen species (ROS) that plays key roles as both signal and stressor in several plant processes, including defense responses against pathogens. ROS accumulation in root cells during arbuscular mycorrhiza (AM) development has raised the interest in understanding how ROS-mediated defense programs are modulated during the establishment of this mutualistic interaction. We have recently analyzed the expression pattern of 5 NADPH oxidase (also called RBOH) encoding genes in Medicago truncatula, showing that only one of them (MtRbohE) is specifically upregulated in arbuscule-containing cells. In line with this result, RNAi silencing of MtRbohE generated a strong alteration in root colonization, with a significant reduction in the number of arbusculated cells. On this basis, we propose that MtRBOHE-mediated ROS production plays a crucial role in the intracellular accommodation of arbuscules. PMID:27018627

  11. Mutations in adenine-binding pockets enhance catalytic properties of NAD(P)H-dependent enzymes.

    PubMed

    Cahn, J K B; Baumschlager, A; Brinkmann-Chen, S; Arnold, F H

    2016-01-01

    NAD(P)H-dependent enzymes are ubiquitous in metabolism and cellular processes and are also of great interest for pharmaceutical and industrial applications. Here, we present a structure-guided enzyme engineering strategy for improving catalytic properties of NAD(P)H-dependent enzymes toward native or native-like reactions using mutations to the enzyme's adenine-binding pocket, distal to the site of catalysis. Screening single-site saturation mutagenesis libraries identified mutations that increased catalytic efficiency up to 10-fold in 7 out of 10 enzymes. The enzymes improved in this study represent three different cofactor-binding folds (Rossmann, DHQS-like, and FAD/NAD binding) and utilize both NADH and NADPH. Structural and biochemical analyses show that the improved activities are accompanied by minimal changes in other properties (cooperativity, thermostability, pH optimum, uncoupling), and initial tests on two enzymes (ScADH6 and EcFucO) show improved functionality in Escherichia coli. PMID:26512129

  12. Depletion of CpG Dinucleotides in Papillomaviruses and Polyomaviruses: A Role for Divergent Evolutionary Pressures

    PubMed Central

    Upadhyay, Mohita; Vivekanandan, Perumal

    2015-01-01

    Background Papillomaviruses and polyomaviruses are small ds-DNA viruses infecting a wide-range of vertebrate hosts. Evidence supporting co-evolution of the virus with the host does not fully explain the evolutionary path of papillomaviruses and polyomaviruses. Studies analyzing CpG dinucleotide frequencies in virus genomes have provided interesting insights on virus evolution. CpG dinucleotide depletion has not been extensively studied among papillomaviruses and polyomaviruses. We sought to analyze the relative abundance of dinucleotides and the relative roles of evolutionary pressures in papillomaviruses and polyomaviruses. Methods We studied 127 full-length sequences from papillomaviruses and 56 full-length sequences from polyomaviruses. We analyzed the relative abundance of dinucleotides, effective codon number (ENC), differences in synonymous codon usage. We examined the association, if any, between the extent of CpG dinucleotide depletion and the evolutionary lineage of the infected host. We also investigated the contribution of mutational pressure and translational selection to the evolution of papillomaviruses and polyomaviruses. Results All papillomaviruses and polyomaviruses are CpG depleted. Interestingly, the evolutionary lineage of the infected host determines the extent of CpG depletion among papillomaviruses and polyomaviruses. CpG dinucleotide depletion was more pronounced among papillomaviruses and polyomaviruses infecting human and other mammals as compared to those infecting birds. Our findings demonstrate that CpG depletion among papillomaviruses is linked to mutational pressure; while CpG depletion among polyomaviruses is linked to translational selection. We also present evidence that suggests methylation of CpG dinucleotides may explain, at least in part, the depletion of CpG dinucleotides among papillomaviruses but not polyomaviruses. Conclusions The extent of CpG depletion among papillomaviruses and polyomaviruses is linked to the

  13. Catalytic Mechanism and Three-Dimensional Structure of Adenine Deaminase†

    PubMed Central

    Kamat, Siddhesh S.; Bagaria, Ashima; Kumaran, Desigan; Holmes-Hampton, Gregory P.; Fan, Hao; Sali, Andrej; Sauder, J. Michael; Burley, Stephen K.; Lindahl, Paul A.; Swaminathan, Subramanyam; Raushel, Frank M.

    2011-01-01

    Adenine deaminase (ADE) catalyzes the conversion of adenine to hypoxanthine and ammonia. The enzyme isolated from Escherichia coli using standard expression conditions was low for the deamination of adenine (kcat = 2.0 s−1; kcat/Km = 2.5 × 103 M−1 s−1). However, when iron was sequestered with a metal chelator and the growth medium was supplemented with Mn2+ prior to induction, the purified enzyme was substantially more active for the deamination of adenine with values of kcat and kcat/Km of 200 s−1 and 5 × 105 M−1s−1, respectively. The apo-enzyme was prepared and reconstituted with Fe2+, Zn2+, or Mn2+. In each case, two enzyme-equivalents of metal were necessary for reconstitution of the deaminase activity. This work provides the first example of any member within the deaminase sub-family of the amidohydrolase superfamily (AHS) to utilize a binuclear metal center for the catalysis of a deamination reaction. [FeII/FeII]-ADE was oxidized to [FeIII/FeIII]-ADE with ferricyanide with inactivation of the deaminase activity. Reducing [FeIII/FeIII]-ADE with dithionite restored the deaminase activity and thus the di-ferrous form of the enzyme is essential for catalytic activity. No evidence for spin-coupling between metal ions was evident by EPR or Mössbauer spectroscopies. The three-dimensional structure of adenine deaminase from Agrobacterium tumefaciens (Atu4426) was determined by X-ray crystallography at 2.2 Å resolution and adenine was modeled into the active site based on homology to other members of the amidohydrolase superfamily. Based on the model of the adenine-ADE complex and subsequent mutagenesis experiments, the roles for each of the highly conserved residues were proposed. Solvent isotope effects, pH rate profiles and solvent viscosity were utilized to propose a chemical reaction mechanism and the identity of the rate limiting steps. PMID:21247091

  14. The role of phospholipids in the reduction of ubiquinone analogues by the mitochondrial reduced nicotinamide-adenine dinucleotide-ubiquinone oxidoreductase complex.

    PubMed Central

    Ragan, C I

    1978-01-01

    The isolated NADH-ubiquinone oxidoreductase complex of bovine heart mitochondria reduces ubiquinone analogues by two pathways. One pathway is inhibited by rotenone, and reduction of quinones takes place in the lipid phase of the system. The other pathway is insensitive to rotenone and reduction takes place in the aqueous phase. The variation of rates of electron transpport with the chemical nature of the quinone analogue and the concentrations of both quinone and phospholipid can be rationalized in terms of partition of the quinone between the aqueous and lipid phases of the system. Thus one function of phospholipid associated with the enzyme appears to be to act as solvent for ubiquinone reduced by the rotenone-sensitive pathway. This proposal is supported by the kinetic behaviour of enzyme whose endogenous lipids have been replaced by (1,2)-dimyristoylsn-glycero-3-phosphocholine. Thus, under certain circumstances, the rotenone-sensitive reduction of ubiquinone-1 exhibited a substantial increase in activation energy below the phase-transition temperature of the synthetic lipid, whereas the reduction of other acceptors was unaffected. PMID:210762

  15. The lactate dehydrogenase--reduced nicotinamide--adenine dinucleotide--pyruvate complex. Kinetics of pyruvate binding and quenching of coeznyme fluorescence.

    PubMed

    Südi, J

    1974-04-01

    The stopped-flow kinetic studies described in this and the following paper (Südi, 1974) demonstrate that a Haldane-type description of the reversible lactate dehydrogenase reaction presents an experimentally feasible task. Combined results of these two papers yield numerical values for the six rate constants defined by the following equilibrium scheme, where E represents lactate dehydrogenase: [Formula: see text] The experiments were carried out at pH8.4 at a relatively low temperature (6.3 degrees C) with the pig heart enzyme. Identification of the above two intermediates and determination of the corresponding rate constants actually involve four series of independent observations in these studies, since (a) the reaction can be followed in both directions, and (b) both the u.v. absorption and the fluorescence of the coenzymes are altered in the reaction, and it is shown that these two spectral changes do not occur simultaneously. Kinetic observations made in the reverse direction are reported in this paper. It is demonstrated that the fluorescence of NADH can no longer be observed in the ternary complex E(NADH) (Pyr). Even though the oxidation-reduction reaction rapidly follows the formation of this complex, the numerical values of k(-4) (8.33x10(5)m(-1).s(-1)) and k(+4) (222s(-1)) are easily obtained from a directly observed second-order reaction step in which fluorescent but not u.v.-absorbing material is disappearing. U.v.-absorption measurements do not clearly resolve the subsequent oxidation-reduction step from the dissociation of lactate. It is shown that this must be due partly to the instrumental dead time, and partly to a low transient concentration of E(NAD+) (Lac) in the two-step sequential reaction in which the detectable disappearance of u.v.-absorbing material takes place. It is estimated that about one-tenth of the total change in u.v. absorption is due to a ;burst reaction' in which E(NAD+) (Lac) is produced, and this estimation yields, from k(obs.)=120s(-1), k(-2)=1200s(-1). PMID:4377095

  16. Enhanced Reduced Nicotinamide Adenine Dinucleotide electrocatalysis onto multi-walled carbon nanotubes-decorated gold nanoparticles and their use in hybrid biofuel cell

    NASA Astrophysics Data System (ADS)

    Aquino Neto, S.; Almeida, T. S.; Belnap, D. M.; Minteer, S. D.; De Andrade, A. R.

    2015-01-01

    We report the preparation of Au nanoparticles synthetized by different protocols and supported on the surface of multi-walled carbon nanotubes containing different functional groups, focusing on their electrochemical performance towards NADH oxidation, ethanol bioelectrocatalysis, and ethanol/O2 biofuel cell. We describe four different synthesis protocols: microwave-assisted heating, water-in-oil, and dendrimer-encapsulated nanoparticles using acid or thiol species in the extraction step. The physical characterization of the metallic nanoparticles indicated that both the synthetic protocol as well as the type of functional groups on the carbon nanotubes affect the final particle size (varying from 13.4 to 2.4 nm) and their distribution onto the carbon surface. Moreover, the electrochemical data indicated that these two factors also influence their performance toward the electrooxidation of NADH. We observed that the samples containing Au nanoparticles with smaller size leads to higher catalytic currents and also shifts the oxidation potential of the targeted reaction, which varied from 0.13 to -0.06 V vs Ag/AgCl. Ethanol/O2 biofuel cell tests indicated that the hybrid bioelectrodes containing smaller and better distributed Au nanoparticles on the surface of carbon nanotubes generates higher power output, confirming that the electrochemical regeneration of NAD+ plays an important role in the overall biofuel cell performance.

  17. Nicotinamide Adenine Dinucleotide-specific “Malic” Enzyme in Kalanchoë daigremontiana and Other Plants Exhibiting Crassulacean Acid Metabolism 1

    PubMed Central

    Dittrich, Peter

    1976-01-01

    NAD-specific “malic” enzyme (EC 1.1.1.39) has been isolated and purified 1200-fold from leaves of Kalanchoë daigremontiana. Kinetic studies of this enzyme, which is activated 14-fold by CoA, acetyl-CoA, and SO42−, suggest allosteric properties. Cofactor requirements show an absolute specificity for NAD and for Mn2+, which cannot be replaced by NADP or Mg2+. For maintaining enzyme activity in crude leaf extracts a thiol reagent, Mn2+, and PVP-40 were required. The latter could be omitted from purified preparations. By sucrose density gradient centrifugation NAD-malic enzyme could be localized in mitochondria. A survey of plants with crassulacean acid metabolism revealed the presence of NAD-malic enzyme in all 31 plants tested. Substantial levels of this enzyme (121-186 μmole/hr·mg of Chl) were detected in all members tested of the family Crassulaceae. It is proposed that NAD-malic enzyme in general supplements activity of NADP-malic enzyme present in these plants and may be specifically employed to increase internal concentrations of CO2 for recycling during cessation of gas exchange in periods of severe drought. PMID:16659473

  18. Expression and characterization of ferredoxin and flavin adenine dinucleotide binding domains of the reductase component of soluble methane monooxygenase from Methylococcus capsulatus (Bath).

    PubMed

    Blazyk, Jessica L; Lippard, Stephen J

    2002-12-31

    Soluble methane monooxygenase (sMMO) from Methylococcus capsulatus (Bath) catalyzes the selective oxidation of methane to methanol, the first step in the primary catabolic pathway of methanotrophic bacteria. A reductase (MMOR) mediates electron transfer from NADH through its FAD and [2Fe-2S] cofactors to the dinuclear non-heme iron sites housed in a hydroxylase (MMOH). The structurally distinct [2Fe-2S], FAD, and NADH binding domains of MMOR facilitated division of the protein into its functional ferredoxin (MMOR-Fd) and FAD/NADH (MMOR-FAD) component domains. The 10.9 kDa MMOR-Fd (MMOR residues 1-98) and 27.6 kDa MMOR-FAD (MMOR residues 99-348) were expressed and purified from recombinant Escherichia coli systems. The Fd and FAD domains have absorbance spectral features identical to those of the [2Fe-2S] and flavin components, respectively, of MMOR. Redox potentials, determined by reductive titrations that included indicator dyes, for the [2Fe-2S] and FAD cofactors in the domains are as follows: -205.2 +/- 1.3 mV for [2Fe-2S](ox/red), -172.4 +/- 2.0 mV for FAD(ox/sq), and -266.4 +/- 3.5 mV for FAD(sq/hq). Kinetic and spectral properties of intermediates observed in the reaction of oxidized MMOR-FAD (FAD(ox)) with NADH at 4 degrees C were established with stopped-flow UV-visible spectroscopy. Analysis of the influence of pH on MMOR-FAD optical spectra, redox potentials, and NADH reaction kinetics afforded pK(a) values for the semiquinone (FAD(sq)) and hydroquinone (FAD(hq)) MMOR-FAD species and two protonatable groups near the flavin cofactor. Electron transfer from MMOR-FAD(hq) to oxidized MMOR-Fd is extremely slow (k = 1500 M(-1) s(-1) at 25 degrees C, compared to 90 s(-1) at 4 degrees C for internal electron transfer between cofactors in MMOR), indicating that cofactor proximity is essential for efficient interdomain electron transfer. PMID:12501207

  19. Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) and Cyclic ADP-Ribose (cADPR) Mediate Ca2+ Signaling in Cardiac Hypertrophy Induced by β-Adrenergic Stimulation

    PubMed Central

    Shawl, Asif Iqbal; Im, Soo-Yeul; Nam, Tae-Sik; Lee, Sun-Hwa; Ko, Jae-Ki; Jang, Kyu Yoon; Kim, Donghee; Kim, Uh-Hyun

    2016-01-01

    Ca2+ signaling plays a fundamental role in cardiac hypertrophic remodeling, but the underlying mechanisms remain poorly understood. We investigated the role of Ca2+-mobilizing second messengers, NAADP and cADPR, in the cardiac hypertrophy induced by β-adrenergic stimulation by isoproterenol. Isoproterenol induced an initial Ca2+ transients followed by sustained Ca2+ rises. Inhibition of the cADPR pathway with 8-Br-cADPR abolished only the sustained Ca2+ increase, whereas inhibition of the NAADP pathway with bafilomycin-A1 abolished both rapid and sustained phases of the isoproterenol-mediated signal, indicating that the Ca2+ signal is mediated by a sequential action of NAADP and cADPR. The sequential production of NAADP and cADPR was confirmed biochemically. The isoproterenol-mediated Ca2+ increase and cADPR production, but not NAADP production, were markedly reduced in cardiomyocytes obtained from CD38 knockout mice. CD38 knockout mice were rescued from chronic isoproterenol infusion-induced myocardial hypertrophy, interstitial fibrosis, and decrease in fractional shortening and ejection fraction. Thus, our findings indicate that β-adrenergic stimulation contributes to the development of maladaptive cardiac hypertrophy via Ca2+ signaling mediated by NAADP-synthesizing enzyme and CD38 that produce NAADP and cADPR, respectively. PMID:26959359

  20. Specific labelling of a constituent polypeptide of bovine heart mitochondrial reduced nicotinamide-adenine dinucleotide-ubiquinone reductase by the inhibitor diphenyleneiodonium.

    PubMed Central

    Ragan, C I; Bloxham, D P

    1977-01-01

    1. NADH-ubiquinone-1 and NADH-menadione reductase activities of Complex I were inhibited by diphenyleneiodonium (apparent Ki 23 and 30 nmol/mg of protein respectively). Reduction of K3Fe(CN)6 and juglone was relatively unaffected. 2. Iodoniumdiphenyl and derivatives were much less effective inhibitors. Compounds with similar ring structures to diphenyleneiodonium, in particular dibenzofuran, were inhibitors of NADH-ubiquinone-1 oxidoreductase. 3. Diphenylene[125I]iodonium specifically labelled a polypeptide of mol.wt. 23500. Maximum incorporation was 1 mol/mol of Complex-I flavin or 1 mol/mol of the 23500-mol.wt. polypeptide. 4. The label associated with this polypeptide was of limited stability, especially at lower pH. 5. Complete inhibition of ubiquinone reduction was achieved when 1 mol of inhibitor was incorporated/mol of Complex-I flavin, but the relationship between inhibition and labelling was not linear. 6. No evidence for covalent interaction between diphenyleneiodonium and the phospholipids of Complex I was obtained. 7. Rotenone increased the apparent affinity of diphenyleneiodonium for the 23500-mol.wt. polypeptide without affecting the maximum incorporation. 8. The 23500-mol.wt. polypeptide was not solubilized by chaotropic agents. Prior treatment of Complex I with chaotropic agents or sodium dodecyl sulphate prevented incorporation of diphenyleneiodonium into this polypeptide. PMID:18140

  1. Flavin adenine dinucleotide and flavin mononucleotide metabolism in rat liver--the occurrence of FAD pyrophosphatase and FMN phosphohydrolase in isolated mitochondria.

    PubMed

    Barile, M; Brizio, C; De Virgilio, C; Delfine, S; Quagliariello, E; Passarella, S

    1997-11-01

    In order to gain some insight into mitochondrial flavin biochemistry, rat liver mitochondria essentially free of lysosomal and microsomal contamination were prepared and their capability to metabolise externally added and endogenous FAD and FMN tested both spectroscopically and via HPLC. The existence of two novel mitochondrial enzymes, namely FAD pyrophosphatase (EC 3.6.1.18) and FMN phosphohydrolase (EC 3.1.3.2), which catalyse FAD-->FMN and FMN-->riboflavin conversion, respectively, is shown. They differ from each other and from extramitochondrial enzymes, as judged by their pH profile and inhibitor sensitivity, and can be separated in a partial FAD pyrophosphatase purification. Digitonin titration and subfractionation experiments show that FAD pyrophosphatase is located in the outer mitochondrial membrane and FMN phosphohydrolase in the intermembrane space. Since these enzymes can metabolise endogenous FAD and FMN, which are made available by using both Triton X-100 and the effector oxaloacetate, a proposal is made that FAD pyrophosphatase and FMN phosphohydrolase play a major role in mitochondrial flavoprotein turnover. PMID:9395326

  2. Oxidant injury of cells. DNA strand-breaks activate polyadenosine diphosphate-ribose polymerase and lead to depletion of nicotinamide adenine dinucleotide.

    PubMed Central

    Schraufstatter, I U; Hinshaw, D B; Hyslop, P A; Spragg, R G; Cochrane, C G

    1986-01-01

    To determine the biochemical basis of the oxidant-induced injury of cells, we have studied early changes after exposure of P388D1 murine macrophages to hydrogen peroxide. Total intracellular NAD+ levels in P388D1 cells decreased with H2O2 concentrations of 40 microM or higher. Doses of H2O2 between 0.1 and 2.5 mM led to an 80% depletion of NAD within 20 min. With doses of H2O2 of 250 microM or lower, the fall in NAD and, as shown previously, ATP, was reversible. Higher doses of H2O2 that cause ultimate lysis of the cells, induced an irreversible depletion of NAD and ATP. Poly-ADP-ribose polymerase, a nuclear enzyme associated with DNA damage and repair, which catalyzes conversion of NAD to nicotinamide and protein-bound poly-ADP-ribose, was activated by exposure of the cells to concentrations of 40 microM H2O2 or higher. Activation of poly-ADP-ribose polymerase was also observed in peripheral lymphocytes incubated in the presence of phorbol myristate acetate-stimulated polymorphonuclear neutrophils. Examination of the possibility that DNA alteration was involved was performed by measurement of thymidine incorporation and determination of DNA single-strand breaks (SSB) in cells exposed to H2O2. H2O2 at 40 microM or higher inhibited DNA synthesis, and induced SSB within less than 30 s. These results suggest that DNA damage induced within seconds after addition of oxidant may lead to stimulation of poly-ADP-ribose polymerase, and a consequent fall in NAD. Excessive stimulation of poly-ADP-ribose polymerase leads to a fall in NAD sufficient to interfere with ATP synthesis. PMID:2937805

  3. Characterization of DNA methylation as a function of biological complexity via dinucleotide inter-distances.

    PubMed

    Paci, Giulia; Cristadoro, Giampaolo; Monti, Barbara; Lenci, Marco; Degli Esposti, Mirko; Castellani, Gastone C; Remondini, Daniel

    2016-03-13

    We perform a statistical study of the distances between successive occurrences of a given dinucleotide in the DNA sequence for a number of organisms of different complexity. Our analysis highlights peculiar features of the CG dinucleotide distribution in mammalian DNA, pointing towards a connection with the role of such dinucleotide in DNA methylation. While the CG distributions of mammals exhibit exponential tails with comparable parameters, the picture for the other organisms studied (e.g. fish, insects, bacteria and viruses) is more heterogeneous, possibly because in these organisms DNA methylation has different functional roles. Our analysis suggests that the distribution of the distances between CG dinucleotides provides useful insights into characterizing and classifying organisms in terms of methylation functionalities. PMID:26857665

  4. Cerulenin-mediated apoptosis is involved in adenine metabolic pathway

    SciTech Connect

    Chung, Kyung-Sook; Sun, Nam-Kyu; Lee, Seung-Hee; Lee, Hyun-Jee; Choi, Shin-Jung; Kim, Sun-Kyung; Song, Ju-Hyun; Jang, Young-Joo; Song, Kyung-Bin; Yoo, Hyang-Sook; Simon, Julian . E-mail: jsimon@fhcrc.org; Won, Misun . E-mail: misun@kribb.re.kr

    2006-10-27

    Cerulenin, a fatty acid synthase (FAS) inhibitor, induces apoptosis of variety of tumor cells. To elucidate mode of action by cerulenin, we employed the proteomics approach using Schizosaccharomyces pombe. The differential protein expression profile of S. pombe revealed that cerulenin modulated the expressions of proteins involved in stresses and metabolism, including both ade10 and adk1 proteins. The nutrient supplementation assay demonstrated that cerulenin affected enzymatic steps transferring a phosphoribosyl group. This result suggests that cerulenin accumulates AMP and p-ribosyl-s-amino-imidazole carboxamide (AICAR) and reduces other necessary nucleotides, which induces feedback inhibition of enzymes and the transcriptional regulation of related genes in de novo and salvage adenine metabolic pathway. Furthermore, the deregulation of adenine nucleotide synthesis may interfere ribonucleotide reductase and cause defects in cell cycle progression and chromosome segregation. In conclusion, cerulenin induces apoptosis through deregulation of adenine nucleotide biosynthesis resulting in nuclear division defects in S. pombe.

  5. Structural basis for removal of adenine mispaired with 8-oxoguanine by MutY adenine DNA glycosylase.

    PubMed

    Fromme, J Christopher; Banerjee, Anirban; Huang, Susan J; Verdine, Gregory L

    2004-02-12

    The genomes of aerobic organisms suffer chronic oxidation of guanine to the genotoxic product 8-oxoguanine (oxoG). Replicative DNA polymerases misread oxoG residues and insert adenine instead of cytosine opposite the oxidized base. Both bases in the resulting A*oxoG mispair are mutagenic lesions, and both must undergo base-specific replacement to restore the original C*G pair. Doing so represents a formidable challenge to the DNA repair machinery, because adenine makes up roughly 25% of the bases in most genomes. The evolutionarily conserved enzyme adenine DNA glycosylase (called MutY in bacteria and hMYH in humans) initiates repair of A*oxoG to C*G by removing the inappropriately paired adenine base from the DNA backbone. A central issue concerning MutY function is the mechanism by which A*oxoG mispairs are targeted among the vast excess of A*T pairs. Here we report the use of disulphide crosslinking to obtain high-resolution crystal structures of MutY-DNA lesion-recognition complexes. These structures reveal the basis for recognizing both lesions in the A*oxoG pair and for catalysing removal of the adenine base. PMID:14961129

  6. Mature Microsatellites: Mechanisms Underlying Dinucleotide Microsatellite Mutational Biases in Human Cells

    PubMed Central

    Baptiste, Beverly A.; Ananda, Guruprasad; Strubczewski, Noelle; Lutzkanin, Andrew; Khoo, Su Jen; Srikanth, Abhinaya; Kim, Nari; Makova, Kateryna D.; Krasilnikova, Maria M.; Eckert, Kristin A.

    2013-01-01

    Dinucleotide microsatellites are dynamic DNA sequences that affect genome stability. Here, we focused on mature microsatellites, defined as pure repeats of lengths above the threshold and unlikely to mutate below it in a single mutational event. We investigated the prevalence and mutational behavior of these sequences by using human genome sequence data, human cells in culture, and purified DNA polymerases. Mature dinucleotides (≥10 units) are present within exonic sequences of >350 genes, resulting in vulnerability to cellular genetic integrity. Mature dinucleotide mutagenesis was examined experimentally using ex vivo and in vitro approaches. We observe an expansion bias for dinucleotide microsatellites up to 20 units in length in somatic human cells, in agreement with previous computational analyses of germ-line biases. Using purified DNA polymerases and human cell lines deficient for mismatch repair (MMR), we show that the expansion bias is caused by functional MMR and is not due to DNA polymerase error biases. Specifically, we observe that the MutSα and MutLα complexes protect against expansion mutations. Our data support a model wherein different MMR complexes shift the balance of mutations toward deletion or expansion. Finally, we show that replication fork progression is stalled within long dinucleotides, suggesting that mutational mechanisms within long repeats may be distinct from shorter lengths, depending on the biochemistry of fork resolution. Our work combines computational and experimental approaches to explain the complex mutational behavior of dinucleotide microsatellites in humans. PMID:23450065

  7. Premature skin aging features rescued by inhibition of NADPH oxidase activity in XPC-deficient mice.

    PubMed

    Hosseini, Mohsen; Mahfouf, Walid; Serrano-Sanchez, Martin; Raad, Houssam; Harfouche, Ghida; Bonneu, Marc; Claverol, Stephane; Mazurier, Frederic; Rossignol, Rodrigue; Taieb, Alain; Rezvani, Hamid Reza

    2015-04-01

    Xeroderma pigmentosum type C (XP-C) is characterized mostly by a predisposition to skin cancers and accelerated photoaging, but little is known about premature skin aging in this disease. By comparing young and old mice, we found that the level of progerin and p16(INK4a) expression, β-galactosidase activity, and reactive oxygen species, which increase with age, were higher in young Xpc(-/-) mice than in young Xpc(+/+) ones. The expression level of mitochondrial complexes and mitochondrial functions in the skin of young Xpc(-/-) was as low as in control aged Xpc(+/+)animals. Furthermore, the metabolic profile in young Xpc(-/-) mice resembled that found in aged Xpc(+/+) mice. Furthermore, premature skin aging features in young Xpc(-/-) mice were mostly rescued by inhibition of nicotinamide adenine dinucleotide phosphate oxidase 1 (NOX1) activity by using a NOX1 peptide inhibitor, suggesting that the continuous oxidative stress due to overactivation of NOX1 has a causative role in the underlying pathophysiology. PMID:25437426

  8. Contrasting Influence of NADPH and a NADPH-Regenerating System on the Metabolism of Carbonyl-Containing Compounds in Hepatic Microsomes

    EPA Science Inventory

    Carbonyl containing xenobiotics may be susceptible to NADPH-dependent cytochrome P450 (P450) and carbonyl-reduction reactions. In vitro hepatic microsome assays are routinely supplied NADPH either by direct addition of NADPH or via an NADPH-regenerating system (NRS). In contrast ...

  9. NADPH oxidase promotes neutrophil extracellular trap formation in pulmonary aspergillosis.

    PubMed

    Röhm, Marc; Grimm, Melissa J; D'Auria, Anthony C; Almyroudis, Nikolaos G; Segal, Brahm H; Urban, Constantin F

    2014-05-01

    NADPH oxidase is a crucial enzyme in antimicrobial host defense and in regulating inflammation. Chronic granulomatous disease (CGD) is an inherited disorder of NADPH oxidase in which phagocytes are defective in generation of reactive oxidant intermediates. Aspergillus species are ubiquitous, filamentous fungi, which can cause invasive aspergillosis, a major cause of morbidity and mortality in CGD, reflecting the critical role for NADPH oxidase in antifungal host defense. Activation of NADPH oxidase in neutrophils can be coupled to the release of proteins and chromatin that comingle in neutrophil extracellular traps (NETs), which can augment extracellular antimicrobial host defense. NETosis can be driven by NADPH oxidase-dependent and -independent pathways. We therefore undertook an analysis of whether NADPH oxidase was required for NETosis in Aspergillus fumigatus pneumonia. Oropharyngeal instillation of live Aspergillus hyphae induced neutrophilic pneumonitis in both wild-type and NADPH oxidase-deficient (p47(phox-/-)) mice which had resolved in wild-type mice by day 5 but progressed in p47(phox-/-) mice. NETs, identified by immunostaining, were observed in lungs of wild-type mice but were absent in p47(phox-/-) mice. Using bona fide NETs and nuclear chromatin decondensation as an early NETosis marker, we found that NETosis required a functional NADPH oxidase in vivo and ex vivo. In addition, NADPH oxidase increased the proportion of apoptotic neutrophils. Together, our results show that NADPH oxidase is required for pulmonary clearance of Aspergillus hyphae and generation of NETs in vivo. We speculate that dual modulation of NETosis and apoptosis by NADPH oxidase enhances antifungal host defense and promotes resolution of inflammation upon infection clearance. PMID:24549323

  10. Activation of antibacterial autophagy by NADPH oxidases

    PubMed Central

    Huang, Ju; Canadien, Veronica; Lam, Grace Y.; Steinberg, Benjamin E.; Dinauer, Mary C.; Magalhaes, Marco A. O.; Glogauer, Michael; Grinstein, Sergio; Brumell, John H.

    2009-01-01

    Autophagy plays an important role in immunity to microbial pathogens. The autophagy system can target bacteria in phagosomes, promoting phagosome maturation and preventing pathogen escape into the cytosol. Recently, Toll-like receptor (TLR) signaling from phagosomes was found to initiate their targeting by the autophagy system, but the mechanism by which TLR signaling activates autophagy is unclear. Here we show that autophagy targeting of phagosomes is not exclusive to those containing TLR ligands. Engagement of either TLRs or the Fcγ receptors (FcγRs) during phagocytosis induced recruitment of the autophagy protein LC3 to phagosomes with similar kinetics. Both receptors are known to activate the NOX2 NADPH oxidase, which plays a central role in microbial killing by phagocytes through the generation of reactive oxygen species (ROS). We found that NOX2-generated ROS are necessary for LC3 recruitment to phagosomes. Antibacterial autophagy in human epithelial cells, which do not express NOX2, was also dependent on ROS generation. These data reveal a coupling of oxidative and nonoxidative killing activities of the NOX2 NADPH oxidase in phagocytes through autophagy. Furthermore, our results suggest a general role for members of the NOX family in regulating autophagy. PMID:19339495

  11. NADPH oxidases: new actors in thyroid cancer?

    PubMed

    Ameziane-El-Hassani, Rabii; Schlumberger, Martin; Dupuy, Corinne

    2016-08-01

    Hydrogen peroxide (H2O2) is a crucial substrate for thyroid peroxidase, a key enzyme involved in thyroid hormone synthesis. However, as a potent oxidant, H2O2 might also be responsible for the high level of oxidative DNA damage observed in thyroid tissues, such as DNA base lesions and strand breakages, which promote chromosomal instability and contribute to the development of tumours. Although the role of H2O2 in thyroid hormone synthesis is well established, its precise mechanisms of action in pathological processes are still under investigation. The NADPH oxidase/dual oxidase family are the only oxidoreductases whose primary function is to produce reactive oxygen species. As such, the function and expression of these enzymes are tightly regulated. Thyrocytes express dual oxidase 2, which produces most of the H2O2 for thyroid hormone synthesis. Thyrocytes also express dual oxidase 1 and NADPH oxidase 4, but the roles of these enzymes are still unknown. Here, we review the structure, expression, localization and function of these enzymes. We focus on their potential role in thyroid cancer, which is characterized by increased expression of these enzymes. PMID:27174022

  12. Dinucleotide Weight Matrices for Predicting Transcription Factor Binding Sites: Generalizing the Position Weight Matrix

    PubMed Central

    Siddharthan, Rahul

    2010-01-01

    Background Identifying transcription factor binding sites (TFBS) in silico is key in understanding gene regulation. TFBS are string patterns that exhibit some variability, commonly modelled as “position weight matrices” (PWMs). Though convenient, the PWM has significant limitations, in particular the assumed independence of positions within the binding motif; and predictions based on PWMs are usually not very specific to known functional sites. Analysis here on binding sites in yeast suggests that correlation of dinucleotides is not limited to near-neighbours, but can extend over considerable gaps. Methodology/Principal Findings I describe a straightforward generalization of the PWM model, that considers frequencies of dinucleotides instead of individual nucleotides. Unlike previous efforts, this method considers all dinucleotides within an extended binding region, and does not make an attempt to determine a priori the significance of particular dinucleotide correlations. I describe how to use a “dinucleotide weight matrix” (DWM) to predict binding sites, dealing in particular with the complication that its entries are not independent probabilities. Benchmarks show, for many factors, a dramatic improvement over PWMs in precision of predicting known targets. In most cases, significant further improvement arises by extending the commonly defined “core motifs” by about 10bp on either side. Though this flanking sequence shows no strong motif at the nucleotide level, the predictive power of the dinucleotide model suggests that the “signature” in DNA sequence of protein-binding affinity extends beyond the core protein-DNA contact region. Conclusion/Significance While computationally more demanding and slower than PWM-based approaches, this dinucleotide method is straightforward, both conceptually and in implementation, and can serve as a basis for future improvements. PMID:20339533

  13. The complex roles of NADPH oxidases in fungal infection

    PubMed Central

    Hogan, Deborah; Wheeler, Robert T.

    2014-01-01

    Summary NADPH oxidases play key roles in immunity and inflammation that go beyond the production of microbicidal reactive oxygen species (ROS). The past decade has brought a new appreciation for the diversity of roles played by ROS in signaling associated with inflammation and immunity. NADPH oxidase activity affects disease outcome during infections by human pathogenic fungi, an important group of emerging and opportunistic pathogens that includes Candida, Aspergillus and Cryptococcus species. Here we review how alternative roles of NADPH oxidase activity impact fungal infection and how ROS signaling affects fungal physiology. Particular attention is paid to roles for NADPH oxidase in immune migration, immunoregulation in pulmonary infection, neutrophil extracellular trap formation, autophagy and inflammasome activity. These recent advances highlight the power and versatility of spatiotemporally controlled redox regulation in the context of infection, and point to a need to understand the molecular consequences of NADPH oxidase activity in the cell. PMID:24905433

  14. Detection of electronically equivalent tautomers of adenine base: DFT study

    SciTech Connect

    Siddiqui, Shamoon Ahmad; Bouarissa, Nadir; Rasheed, Tabish; Al-Assiri, M.S.; Al-Hajry, A.

    2014-03-01

    Graphical abstract: - Highlights: • DFT calculations have been performed on adenine and its rare tautomer Cu{sup 2+} complexes. • Interaction of A-Cu{sup 2+} and rA-Cu{sup 2+} complexes with AlN modified fullerene (C{sub 60}) have been studied briefly. • It is found that AlN modified C{sub 60} could be used as a nanoscale sensor to detect these two A-Cu{sup 2+} and rA-Cu{sup 2+} complexes. - Abstract: In the present study, quantum chemical calculations were carried out to investigate the electronic structures and stabilities of adenine and its rare tautomer along with their Cu{sup 2+} complexes. Density Functional Theory (B3LYP method) was used in all calculations. The two Cu{sup 2+} complexes of adenine have almost similar energies and electronic structures; hence, their chemical differentiation is very difficult. For this purpose, interactions of these complexes with AlN modified fullerene (C{sub 60}) have been studied. Theoretical investigations reveal that AlN-doped C{sub 60} may serve as a potentially viable nanoscale sensor for detection of the two Cu{sup 2+} complexes of adenine.

  15. PolyAdenine cryogels for fast and effective RNA purification.

    PubMed

    Köse, Kazım; Erol, Kadir; Özgür, Erdoğan; Uzun, Lokman; Denizli, Adil

    2016-10-01

    Cryogels are used effectively for many diverse applications in a variety of fields. The isolation or purification of RNA, one of the potential utilizations for cryogels, is crucial due to their vital roles such as encoding, decoding, transcription and translation, and gene expression. RNA principally exists within every living thing, but their tendency to denaturation easily is still the most challenging issue. Herein, we aimed to develop adenine incorporated polymeric cryogels as an alternative sorbent for cost-friendly and fast RNA purification with high capacity. For this goal, we synthesized the polymerizable derivative of adenine called as adenine methacrylate (AdeM) through the substitution reaction between adenine and methacryloyl chloride. Then, 2-hydroxyethyl methacrylate (HEMA)-based cryogels were prepared in a partially frozen aqueous medium by copolymerization of monomers, AdeM, and HEMA. The cryogels were characterized by using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), surface area measurements, thermogravimetric analysis (TGA), and swelling tests. RNA adsorption experiments were performed via batch system while varying different conditions including pH, initial RNA concentration, temperature, and interaction time. We achieved high RNA adsorption capacity of cryogels, with the swelling ratio around 510%, as 11.86mg/g. The cryogels might be reused at least five times without significant decrease in adsorption capacity. PMID:27434154

  16. Catalytic Mechanism and Three-Dimensional Structure of Adenine Deaminase

    SciTech Connect

    S Kamat; A Bagaria; D Kumaran; G Holmes-Hampton; H Fan; A Sali; J Sauder; S Burley; P Lindahl; et. al.

    2011-12-31

    Adenine deaminase (ADE) catalyzes the conversion of adenine to hypoxanthine and ammonia. The enzyme isolated from Escherichia coli using standard expression conditions was low for the deamination of adenine (k{sub cat} = 2.0 s{sup -1}; k{sub cat}/K{sub m} = 2.5 x 10{sup 3} M{sup -1} s{sup -1}). However, when iron was sequestered with a metal chelator and the growth medium was supplemented with Mn{sup 2+} prior to induction, the purified enzyme was substantially more active for the deamination of adenine with k{sub cat} and k{sub cat}/K{sub m} values of 200 s{sup -1} and 5 x 10{sup 5} M{sup -1} s{sup -1}, respectively. The apoenzyme was prepared and reconstituted with Fe{sup 2+}, Zn{sup 2+}, or Mn{sup 2+}. In each case, two enzyme equivalents of metal were necessary for reconstitution of the deaminase activity. This work provides the first example of any member of the deaminase subfamily of the amidohydrolase superfamily to utilize a binuclear metal center for the catalysis of a deamination reaction. [Fe{sup II}/Fe{sup II}]-ADE was oxidized to [Fe{sup III}/Fe{sup III}]-ADE with ferricyanide with inactivation of the deaminase activity. Reducing [Fe{sup III}/Fe{sup III}]-ADE with dithionite restored the deaminase activity, and thus, the diferrous form of the enzyme is essential for catalytic activity. No evidence of spin coupling between metal ions was evident by electron paramagnetic resonance or Moessbauer spectroscopy. The three-dimensional structure of adenine deaminase from Agrobacterium tumefaciens (Atu4426) was determined by X-ray crystallography at 2.2 {angstrom} resolution, and adenine was modeled into the active site on the basis of homology to other members of the amidohydrolase superfamily. On the basis of the model of the adenine-ADE complex and subsequent mutagenesis experiments, the roles for each of the highly conserved residues were proposed. Solvent isotope effects, pH-rate profiles, and solvent viscosity were utilized to propose a chemical reaction

  17. Quantitative flux analysis reveals folate-dependent NADPH production

    NASA Astrophysics Data System (ADS)

    Fan, Jing; Ye, Jiangbin; Kamphorst, Jurre J.; Shlomi, Tomer; Thompson, Craig B.; Rabinowitz, Joshua D.

    2014-06-01

    ATP is the dominant energy source in animals for mechanical and electrical work (for example, muscle contraction or neuronal firing). For chemical work, there is an equally important role for NADPH, which powers redox defence and reductive biosynthesis. The most direct route to produce NADPH from glucose is the oxidative pentose phosphate pathway, with malic enzyme sometimes also important. Although the relative contribution of glycolysis and oxidative phosphorylation to ATP production has been extensively analysed, similar analysis of NADPH metabolism has been lacking. Here we demonstrate the ability to directly track, by liquid chromatography-mass spectrometry, the passage of deuterium from labelled substrates into NADPH, and combine this approach with carbon labelling and mathematical modelling to measure NADPH fluxes. In proliferating cells, the largest contributor to cytosolic NADPH is the oxidative pentose phosphate pathway. Surprisingly, a nearly comparable contribution comes from serine-driven one-carbon metabolism, in which oxidation of methylene tetrahydrofolate to 10-formyl-tetrahydrofolate is coupled to reduction of NADP+ to NADPH. Moreover, tracing of mitochondrial one-carbon metabolism revealed complete oxidation of 10-formyl-tetrahydrofolate to make NADPH. As folate metabolism has not previously been considered an NADPH producer, confirmation of its functional significance was undertaken through knockdown of methylenetetrahydrofolate dehydrogenase (MTHFD) genes. Depletion of either the cytosolic or mitochondrial MTHFD isozyme resulted in decreased cellular NADPH/NADP+ and reduced/oxidized glutathione ratios (GSH/GSSG) and increased cell sensitivity to oxidative stress. Thus, although the importance of folate metabolism for proliferating cells has been long recognized and attributed to its function of producing one-carbon units for nucleic acid synthesis, another crucial function of this pathway is generating reducing power.

  18. Effect of Adenine on Clozapine-induced Neutropenia in Patients with Schizophrenia: A Preliminary Study

    PubMed Central

    Takeuchi, Ippei; Kishi, Taro; Hanya, Manako; Uno, Junji; Fujita, Kiyoshi; Kamei, Hiroyuki

    2015-01-01

    Objective This study examined the utility of adenine for preventing clozapine-induced neutropenia. Methods This retrospective study examined the effect of adenine on clozapine-induced neutropenia in patients with treatment-resistant schizophrenia and was conducted at Okehazama Hospital in Japan from July 2010 to June 2013. Adenine was available for use from June 2011 onwards. Twenty-one patients started receiving clozapine treatment from July 2010 to April 2011 (the pre-adenine adoption group), and 47 patients started receiving it from May 2011 to June 2013 (the post-adenine adoption group). The effects of adenine were assessed based on changes in the patients’ leukocyte counts and the frequency of treatment discontinuation due to clozapine-induced neutropenia. Results Sixty-eight patients were treated with clozapine from July 2010 to June 2013. Of the 21 patients in the pre-adenine adoption group, 4 discontinued treatment due to clozapine-induced neutropenia, whereas only 2 of the 47 patients in the post-adenine adoption group discontinued treatment. The frequency of treatment discontinuation due to clozapine-induced neutropenia was significantly lower in post-adenine adoption group than in the pre-adenine adoption group (p=0.047). Conclusion Adenine decreased the frequency of treatment discontinuation due to clozapine-induced neutropenia. Our data suggest that combined treatment with clozapine and adenine is a safe and effective strategy against treatment-resistant schizophrenia. PMID:26243842

  19. Multiple isotope effects with alternative dinucleotide substrates as a probe of the malic enzyme reaction

    SciTech Connect

    Weiss, P.M.; Urbauer, J.L.; Cleland, W.W. ); Gavva, S.R.; Harris, B.G.; Cook, P.F. )

    1991-06-11

    Deuterium isotope effects and {sup 13}C isotope effects with deuterium- and protium-labeled malate have been obtained for both NAD- and NADP-malic enzymes by using a variety of alternative dinucleotide substrates. With nicotinamide-containing dinucleotides as the oxidizing substrate, the {sup 13}C effect decreases when deuterated malate is the substrate compared to the value obtained with protium-labeled malate. These data are consistent with a stepwise chemical mechanism in which hydride transfer precedes decarboxylation of the oxalacetate intermediate as previously proposed. When dinucleotide substrates such as thio-NAD, 3-nicotinamide rings are used, the {sup 13}C effect increases when deuterated malate is the substrate compared to the value obtained with protium-labeled malate. These data, at face value, are consistent with a change in mechanism from stepwise to concerted for the oxidative decarboxylation portion of the mechanism. However, the increase in the deuterium isotope effect from 1.5 to 3 with a concomitant decrease in the {sup 13}C isotope effect from 1.034 to 1.003 as the dinucleotide substrate is changed suggests that the reaction may still be stepwise with the non-nicotinamide dinucleotides. A more likely explanation is that a {beta}-secondary {sup 13}C isotope effect accompanies hydride transfer as a result of hyperconjugation of the {beta}-carboxyl of malate as the transition state for the hydride transfer step is approached.

  20. NADPH Oxidases in Lung Health and Disease

    PubMed Central

    Bernard, Karen; Hecker, Louise; Luckhardt, Tracy R.; Cheng, Guangjie

    2014-01-01

    Abstract Significance: The evolution of the lungs and circulatory systems in vertebrates ensured the availability of molecular oxygen (O2; dioxygen) for aerobic cellular metabolism of internal organs in large animals. O2 serves as the physiologic terminal acceptor of mitochondrial electron transfer and of the NADPH oxidase (Nox) family of oxidoreductases to generate primarily water and reactive oxygen species (ROS), respectively. Recent advances: The purposeful generation of ROS by Nox family enzymes suggests important roles in normal physiology and adaptation, most notably in host defense against invading pathogens and in cellular signaling. Critical issues: However, there is emerging evidence that, in the context of chronic stress and/or aging, Nox enzymes contribute to the pathogenesis of a number of lung diseases. Future Directions: Here, we review evolving functions of Nox enzymes in normal lung physiology and emerging pathophysiologic roles in lung disease. Antioxid. Redox Signal. 20, 2838–2853. PMID:24093231

  1. Dieckol Attenuates Microglia-mediated Neuronal Cell Death via ERK, Akt and NADPH Oxidase-mediated Pathways.

    PubMed

    Cui, Yanji; Park, Jee-Yun; Wu, Jinji; Lee, Ji Hyung; Yang, Yoon-Sil; Kang, Moon-Seok; Jung, Sung-Cherl; Park, Joo Min; Yoo, Eun-Sook; Kim, Seong-Ho; Ahn Jo, Sangmee; Suk, Kyoungho; Eun, Su-Yong

    2015-05-01

    Excessive microglial activation and subsequent neuroinflammation lead to synaptic loss and dysfunction as well as neuronal cell death, which are involved in the pathogenesis and progression of several neurodegenerative diseases. Thus, the regulation of microglial activation has been evaluated as effective therapeutic strategies. Although dieckol (DEK), one of the phlorotannins isolated from marine brown alga Ecklonia cava, has been previously reported to inhibit microglial activation, the molecular mechanism is still unclear. Therefore, we investigated here molecular mechanism of DEK via extracellular signal-regulated kinase (ERK), Akt and nicotinamide adenine dinuclelotide phosphate (NADPH) oxidase-mediated pathways. In addition, the neuroprotective mechanism of DEK was investigated in microglia-mediated neurotoxicity models such as neuron-microglia co-culture and microglial conditioned media system. Our results demonstrated that treatment of anti-oxidant DEK potently suppressed phosphorylation of ERK in lipopolysaccharide (LPS, 1 µg/ml)-stimulated BV-2 microglia. In addition, DEK markedly attenuated Akt phosphorylation and increased expression of gp91 (phox) , which is the catalytic component of NADPH oxidase complex responsible for microglial reactive oxygen species (ROS) generation. Finally, DEK significantly attenuated neuronal cell death that is induced by treatment of microglial conditioned media containing neurotoxic secretary molecules. These neuroprotective effects of DEK were also confirmed in a neuron-microglia co-culture system using enhanced green fluorescent protein (EGFP)-transfected B35 neuroblastoma cell line. Taken together, these results suggest that DEK suppresses excessive microglial activation and microglia-mediated neuronal cell death via downregulation of ERK, Akt and NADPH oxidase-mediated pathways. PMID:25954126

  2. Dieckol Attenuates Microglia-mediated Neuronal Cell Death via ERK, Akt and NADPH Oxidase-mediated Pathways

    PubMed Central

    Cui, Yanji; Park, Jee-Yun; Wu, Jinji; Lee, Ji Hyung; Yang, Yoon-Sil; Kang, Moon-Seok; Jung, Sung-Cherl; Park, Joo Min; Yoo, Eun-Sook; Kim, Seong-Ho; Ahn Jo, Sangmee; Suk, Kyoungho

    2015-01-01

    Excessive microglial activation and subsequent neuroinflammation lead to synaptic loss and dysfunction as well as neuronal cell death, which are involved in the pathogenesis and progression of several neurodegenerative diseases. Thus, the regulation of microglial activation has been evaluated as effective therapeutic strategies. Although dieckol (DEK), one of the phlorotannins isolated from marine brown alga Ecklonia cava, has been previously reported to inhibit microglial activation, the molecular mechanism is still unclear. Therefore, we investigated here molecular mechanism of DEK via extracellular signal-regulated kinase (ERK), Akt and nicotinamide adenine dinuclelotide phosphate (NADPH) oxidase-mediated pathways. In addition, the neuroprotective mechanism of DEK was investigated in microglia-mediated neurotoxicity models such as neuron-microglia co-culture and microglial conditioned media system. Our results demonstrated that treatment of anti-oxidant DEK potently suppressed phosphorylation of ERK in lipopolysaccharide (LPS, 1 µg/ml)-stimulated BV-2 microglia. In addition, DEK markedly attenuated Akt phosphorylation and increased expression of gp91phox, which is the catalytic component of NADPH oxidase complex responsible for microglial reactive oxygen species (ROS) generation. Finally, DEK significantly attenuated neuronal cell death that is induced by treatment of microglial conditioned media containing neurotoxic secretary molecules. These neuroprotective effects of DEK were also confirmed in a neuron-microglia co-culture system using enhanced green fluorescent protein (EGFP)-transfected B35 neuroblastoma cell line. Taken together, these results suggest that DEK suppresses excessive microglial activation and microglia-mediated neuronal cell death via downregulation of ERK, Akt and NADPH oxidase-mediated pathways. PMID:25954126

  3. Phagocyte NADPH oxidase and specific immunity.

    PubMed

    Cachat, Julien; Deffert, Christine; Hugues, Stephanie; Krause, Karl-Heinz

    2015-05-01

    The phagocyte NADPH oxidase NOX2 produces reactive oxygen species (ROS) and is a well-known player in host defence. However, there is also increasing evidence for a regulatory role of NOX2 in adaptive immunity. Deficiency in phagocyte NADPH oxidase causes chronic granulomatous disease (CGD) in humans, a condition that can also be studied in CGD mice. Clinical observations in CGD patients suggest a higher susceptibility to autoimmune diseases, in particular lupus, idiopathic thrombocytopenic purpura and rheumatoid arthritis. In mice, a strong correlation exists between a polymorphism in a NOX2 subunit and the development of autoimmune arthritis. NOX2 deficiency in mice also favours lupus development. Both CGD patients and CGD mice exhibit increased levels of immunoglobulins, including autoantibodies. Despite these phenotypes suggesting a role for NOX2 in specific immunity, mechanistic explanations for the typical increase of CGD in autoimmune disease and antibody levels are still preliminary. NOX2-dependent ROS generation is well documented for dendritic cells and B-lymphocytes. It is unclear whether T-lymphocytes produce ROS themselves or whether they are exposed to ROS derived from dendritic cells during the process of antigen presentation. ROS are signalling molecules in virtually any cell type, including T- and B-lymphocytes. However, knowledge about the impact of ROS-dependent signalling on T- and B-lymphocyte phenotype and response is still limited. ROS might contribute to Th1/Th2/Th17 cell fate decisions during T-lymphocyte activation and might enhance immunoglobulin production by B-lymphocytes. In dendritic cells, NOX2-derived ROS might be important for antigen processing and cell activation. PMID:25760962

  4. Persistent c-fos expression and NADPH-d reactivity in the medulla and the lumbar spinal cord in rat with short-term peripheral anosmia.

    PubMed

    Kalueff, A V; Maisky, V A; Pilyavskii, A I; Makarchuk, N E

    2001-03-30

    Here we examine hypothesis that short-term peripheral ZnSO(4)-induced anosmia can produce effects on c-fos expression within spinal cord and caudal medulla in male Wistar rats (n=4). Fos-like-immunoreactive cells revealed by avidin-biotin-peroxidase method show a significant bilateral increase in the nucleus proprius (layers 3 and 4) and medial part of layers 5 and 6. In substantia gelatinosa (layer 2(i)) and area 10 Fos-positive neurons were intermixed together with nicotin-amide adenine dineucleotide phosphate-diaphorase (NADPH-d)-reactive cells. Short-term anosmia enhanced c-fos expression in ventral horn (layers 7 and 8), ventrolateral segment and dorsal part of the spinal trigeminal nuclei. In anosmic rats varicose fibres and numerous NADPH-d-stained neurons were present in the gelatinous layer of the spinal trigeminal nucleus caudalis, and a separate population of Fos-positive cells was detected within this layer. Nucleus tractus solitaris also contained a few NADPH-d-reactive, medium sized neurons intermixed with Fos-immunoreactive cells. PMID:11248440

  5. Excited-State Deactivation of Adenine by Electron-Driven Proton-Transfer Reactions in Adenine-Water Clusters: A Computational Study.

    PubMed

    Wu, Xiuxiu; Karsili, Tolga N V; Domcke, Wolfgang

    2016-05-01

    The reactivity of photoexcited 9H-adenine with hydrogen-bonded water molecules in the 9H-adenine-(H2 O)5 cluster is investigated by using ab initio electronic structure methods, focusing on the photoreactivity of the three basic sites of 9H-adenine. The energy profiles of excited-state reaction paths for electron/proton transfer from water to adenine are computed. For two of the three sites, a barrierless or nearly barrierless reaction path towards a low-lying S1 -S0 conical intersection is found. This reaction mechanism, which is specific for adenine in an aqueous environment, can explain the substantially shortened excited-state lifetime of 9H-adenine in water. Depending on the branching ratio of the nonadiabatic dynamics at the S1 -S0 conical intersection, the electron/proton transfer process can enhance the photostability of 9H-adenine in water or can lead to the generation of adenine-H(⋅) and OH(⋅) free radicals. Although the branching ratio is yet unknown, these findings indicate that adenine might have served as a catalyst for energy harvesting by water splitting in the early stages of the evolution of life. PMID:26833826

  6. Cyclic dinucleotides modulate human T-cell response through monocyte cell death.

    PubMed

    Tosolini, Marie; Pont, Frédéric; Verhoeyen, Els; Fournié, Jean-Jacques

    2015-12-01

    Cyclic dinucleotides, a class of microbial messengers, have been recently identified in bacteria, but their activity in humans remains largely unknown. Here, we have studied the function of cyclic dinucleotides in humans. We found that c-di-AMP and cGAMP, two adenosine-based cyclic dinucleotides, activated T lymphocytes in an unusual manner through monocyte cell death. c-di-AMP and cGAMP induced the selective apoptosis of human monocytes, and T lymphocytes were activated by the direct contact with these dying monocytes. The ensuing T-cell response comprised cell-cycle exit, phenotypic maturation into effector memory cells and proliferation arrest, but not cell death. This quiescence was transient since T cells remained fully responsive to further restimulation. Together, our results depict a novel activation pattern for human T lymphocytes: a transient quiescence induced by c-di-AMP- or cGAMP-primed apoptotic monocytes. PMID:26460927

  7. Copper-Adenine Complex Catalyst for O2 Production from

    NASA Astrophysics Data System (ADS)

    Vergne, Jacques; Bruston, F.; Calvayrac, R.; Grajcar, L.; Baron, M.-H.; Maurel, M.-C.

    The advent of oxygen-evolving photosynthesis is one of the central event in the development of life on earth. The early atmosphere has been midly reducing or neutral in overall redox balance and water photolysis by UV light can produce hydrogen peroxide. Before oxidation of water, intermediate stages are proposed in which H_2^O_2 was oxidized. The oxidation of H_2^O_2 to oxygen can be carried out by a modestly oxidizing species in which a metal-catalase like enzyme could extract electrons from H_2^O_2 producing the first oxygen-evolving complex. After what, modern photosynthesis with chlorophyll, to help transform H_2^O in O_2 was ready to come to light. In preliminary UV studies we were able to show that [Cu(adenine)2] system, containing copper coordinated to nitrogen activates H_2^O_2 disappearance. This was confirmed with the help of Raman and polarographic studies. Raman spectroscopy shows the formation of [Cu(adenine)2] complex in solution, quantifies H_2^O_2 consumption, polarography quantifies O_2 production. In both cases CuCl_2 addition entails H_2^O_2 disappearance. Without adenine, Cu_2^+ has only a weak catalytic effect. The molar activity of the [Cu(adenine)2] complex is much larger and concentration dependent. We emphasize that Cu(adenine)2 may have mimicked enzyme properties in the first stage of life evolution, in order to split H_2^O_2 into O_2 and H_2^O. Moreover, diluted copper and adenine, in small ephemeral prebiotic ponds , could have preserved biologically active entities from H_2^O_2 damage via dual properties: catalyzing H_2^O_2 disproportionation and also directly acting as a reductant complex. Finally, the present Mars surface is considered to be both reactive and embedded with oxydants. As it has been shown that the depth of diffusion for H_2^O_2 is less than 3 meters, it is important to study all the ways of H_2^O_2 consumption.

  8. Excited State Pathways Leading to Formation of Adenine Dimers.

    PubMed

    Banyasz, Akos; Martinez-Fernandez, Lara; Ketola, Tiia-Maaria; Muñoz-Losa, Aurora; Esposito, Luciana; Markovitsi, Dimitra; Improta, Roberto

    2016-06-01

    The reaction intermediate in the path leading to UV-induced formation of adenine dimers A═A and AA* is identified for the first time quantum mechanically, using PCM/TD-DFT calculations on (dA)2 (dA: 2'deoxyadenosine). In parallel, its fingerprint is detected in the absorption spectra recorded on the millisecond time-scale for the single strand (dA)20 (dA: 2'deoxyadenosine). PMID:27163876

  9. Dynamics and reactivity in Thermus aquaticus N6-adenine methyltransferase.

    PubMed

    Aranda, Juan; Zinovjev, Kirill; Roca, Maite; Tuñón, Iñaki

    2014-11-19

    M.TaqI is a DNA methyltransferase from Thermus aquaticus that catalyzes the transfer of a methyl group from S-adenosyl-L-methionine to the N6 position of an adenine, a process described only in prokaryotes. We have used full atomistic classical molecular dynamics simulations to explore the protein-SAM-DNA ternary complex where the target adenine is flipped out into the active site. Key protein-DNA interactions established by the target adenine in the active site are described in detail. The relaxed structure was used for a combined quantum mechanics/molecular mechanics exploration of the reaction mechanism using the string method. According to our free energy calculations the reaction takes place through a stepwise mechanism where the methyl transfer precedes the abstraction of the proton from the exocyclic amino group. The methyl transfer is the rate-determining step, and the obtained free energy barrier is in good agreement with the value derived from the experimental rate constant. Two possible candidates to extract the leftover proton have been explored: a water molecule found in the active site and Asn105, a residue activated by the hydrogen bonds formed through the amide hydrogens. The barrier for the proton abstraction is smaller when Asn105 acts as a base. The reaction mechanisms can be different in other N6-DNA-methyltransferases, as determined from the exploration of the reaction mechanism in the Asn105Asp M.TaqI mutant. PMID:25347783

  10. Isolation and characterizaton of dinucleotide microsatellites in greater amberjack, Seriola dumerili

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thirteen nuclear-encoded dinucleotide microsatellites were characterized from a genomic DNA library of greater amberjack, Seriola dumerili. The microsatellites include 12 perfect-repeat motifs and one imperfect-repeat motif. The number of alleles at the 13 microsatellites among a sample of 29 fish...

  11. Stacking interactions in RNA and DNA: Roll-slide energy hyperspace for ten unique dinucleotide steps.

    PubMed

    Mukherjee, Sanchita; Kailasam, Senthilkumar; Bansal, Manju; Bhattacharyya, Dhananjay

    2015-03-01

    Understanding dinucleotide sequence directed structures of nuleic acids and their variability from experimental observation remained ineffective due to unavailability of statistically meaningful data. We have attempted to understand this from energy scan along twist, roll, and slide degrees of freedom which are mostly dependent on dinucleotide sequence using ab initio density functional theory. We have carried out stacking energy analysis in these dinucleotide parameter phase space for all ten unique dinucleotide steps in DNA and RNA using DFT-D by ωB97X-D/6-31G(2d,2p), which appears to satisfactorily explain conformational preferences for AU/AU step in our recent study. We show that values of roll, slide, and twist of most of the dinucleotide sequences in crystal structures fall in the low energy region. The minimum energy regions with large twist values are associated with the roll and slide values of B-DNA, whereas, smaller twist values correspond to higher stability to RNA and A-DNA like conformations. Incorporation of solvent effect by CPCM method could explain the preference shown by some sequences to occur in B-DNA or A-DNA conformations. Conformational preference of BII sub-state in B-DNA is preferentially displayed mainly by pyrimidine-purine steps and partly by purine-purine steps. The purine-pyrimidine steps show largest effect of 5-methyl group of thymine in stacking energy and the introduction of solvent reduces this effect significantly. These predicted structures and variabilities can explain the effect of sequence on DNA and RNA functionality. PMID:25257334

  12. Mutations in Haemophilus influenzae mismatch repair genes increase mutation rates of dinucleotide repeat tracts but not dinucleotide repeat-driven pilin phase variation rates.

    PubMed

    Bayliss, Christopher D; Sweetman, Wendy A; Moxon, E Richard

    2004-05-01

    High-frequency, reversible switches in expression of surface antigens, referred to as phase variation (PV), are characteristic of Haemophilus influenzae. PV enables this bacterial species, an obligate commensal and pathogen of the human upper respiratory tract, to adapt to changes in the host environment. Phase-variable hemagglutinating pili are expressed by many H. influenzae isolates. PV involves alterations in the number of 5' TA repeats located between the -10 and -35 promoter elements of the overlapping, divergently orientated promoters of hifA and hifBCDE, whose products mediate biosynthesis and assembly of pili. Dinucleotide repeat tracts are destabilized by mismatch repair (MMR) mutations in Escherichia coli. The influence of mutations in MMR genes of H. influenzae strain Rd on dinucleotide repeat-mediated PV rates was investigated by using reporter constructs containing 20 5' AT repeats. Mutations in mutS, mutL, and mutH elevated rates approximately 30-fold, while rates in dam and uvrD mutants were increased 14- and 3-fold, respectively. PV rates of constructs containing 10 to 12 5' AT repeats were significantly elevated in mutS mutants of H. influenzae strains Rd and Eagan. An intact hif locus was found in 14 and 12% of representative nontypeable H. influenzae isolates associated with either otitis media or carriage, respectively. Nine or more tandem 5' TA repeats were present in the promoter region. Surprisingly, inactivation of mutS in two serotype b H. influenzae strains did not alter pilin PV rates. Thus, although functionally analogous to the E. coli MMR pathway and active on dinucleotide repeat tracts, defects in H. influenzae MMR do not affect 5' TA-mediated pilin PV. PMID:15126452

  13. Influence of hydrogen bonding on the geometry of the adenine fragment

    NASA Astrophysics Data System (ADS)

    Słowikowska, Joanna Maria; Woźniak, Krzysztof

    1996-01-01

    The crystal structures of two adenine derivatives, N(6),9-dimethyl-8-butyladenine (I) and its hydrate (1 : 1) (II), have been determined by single-crystal X-ray diffraction. The geometrical features of both structures are discussed. The influence of protonation, substitution and hydrogen bond formation on the geometry of the adenine fragment was studied, based on data retrieved from the Cambridge Structural Database. Total correlation analysis showed mutual correlation between the structural parameters in the adenine ring system; partial correlation calculations for the adenine nucleoside fragments suggest intercorrelation between the parameters of the hydrogen bonding involved in base pairing and the N(adenine)-C(sugar) bond through the adenine fragment; few such correlations were found for fragments without the sugar substituent.

  14. Superoxide-forming NADPH oxidase preparation of pig polymorphonuclear leucocyte.

    PubMed Central

    Wakeyama, H; Takeshige, K; Takayanagi, R; Minakami, S

    1982-01-01

    A phagocytic vesicle fraction with high NADPH-dependent superoxide-forming activity was obtained in large quantity from pig blood polymorphonuclear leucocytes, phagocytosing oil droplets in the presence of cyanide. The activity of the homogenate of the phagocytosing cells was 40 times that of the resting cells, and 70% of the activity in the homogenate was recovered in the phagocytic vesicle fraction. Essentially all of the superoxide-forming activity was extracted by repeated extraction with a mixture containing deoxycholate and Tween 20. The extract had a superoxide-forming activity of 1 mumol/min per mg of protein with NADPH, and one-fifth of this with NADH, Km values being similar to those of the vesicle fraction (40 microM for NADPH and 400 microM for NADH). A stoichiometric relationship of 1:2 for NADPH oxidation and superoxide formation was obtained, in agreement with the reaction NADPH +2O2 leads to NADP+ + 2O2 -. + H+. The activity of the extract was enhanced 2-fold by the addition of FAD, suggesting that the flavin is a component of the enzyme system. The Km value for FAD was 0.077 microM. The activities in both vesicle fraction and extract were labile even on refrigeration, but could be kept for several months at -70 degrees C. PMID:6293459

  15. NAD kinase levels control the NADPH concentration in human cells.

    PubMed

    Pollak, Nadine; Niere, Marc; Ziegler, Mathias

    2007-11-16

    NAD kinases (NADKs) are vital, as they generate the cellular NADP pool. As opposed to three compartment-specific isoforms in plants and yeast, only a single NADK has been identified in mammals whose cytoplasmic localization we established by immunocytochemistry. To understand the physiological roles of the human enzyme, we generated and analyzed cell lines stably deficient in or overexpressing NADK. Short hairpin RNA-mediated down-regulation led to similar (about 70%) decrease of both NADK expression, activity, and the NADPH concentration and was accompanied by increased sensitivity toward H(2)O(2). Overexpression of NADK resulted in a 4-5-fold increase in the NADPH, but not NADP(+), concentration, although the recombinant enzyme phosphorylated preferentially NAD(+). Surprisingly, NADK overexpression and the ensuing increase of the NADPH level only moderately enhanced protection against oxidant treatment. Apparently, to maintain the NADPH level for the regeneration of oxidative defense systems human cells depend primarily on NADP-dependent dehydrogenases (which re-reduce NADP(+)), rather than on a net increase of NADP. The stable shifts of the NADPH level in the generated cell lines were also accompanied by alterations in the expression of peroxiredoxin 5 and Nrf2. Because the basal oxygen radical level in the cell lines was only slightly changed, the redox state of NADP may be a major transmitter of oxidative stress. PMID:17855339

  16. A9145, a New Adenine-Containing Antifungal Antibiotic: Fermentation

    PubMed Central

    Boeck, L. D.; Clem, G. M.; Wilson, M. M.; Westhead, J. E.

    1973-01-01

    A9145 is a basic, water-soluble, antifungal antibiotic which is produced in a complex organic medium by Streptomyces griseolus. The metabolite has a molecular weight of 510, and contains adenine as well as sugar hydroxyl and amino groups. Although glucose, fructose, glucose polymers, and some long-chain fatty acid methyl esters supported biosynthesis, oils were superior, with cottonseed oil being preferred. Several ions and salts, especially Co2+, PO43−, and CaCO3, were stimulatory. Adenine, nucleosides, and some amino acids increased the accumulation of A9145 in shaken-flask fermentors. Enrichment of the culture medium with tyrosine afforded maximal enhancement of antibiotic production in both flask and tank fermentors. Control of the dissolved O2 level was also critical, the optimal concentration being 3 × 10−2 to 4.5 × 10−2 μmole of O2/ml. Optimization of various fermentation parameters increased antibiotic titers approximately 135-fold in shaken flask fermentors and 225-fold in stirred vessels. PMID:4208279

  17. PA0148 from Pseudomonas aeruginosa Catalyzes the Deamination of Adenine

    SciTech Connect

    Goble, A.M.; Swaminathan, S.; Zhang, Z.; Sauder, J. M.; Burley, S. K.; Raushel, F. M.

    2011-08-02

    Four proteins from NCBI cog1816, previously annotated as adenosine deaminases, have been subjected to structural and functional characterization. Pa0148 (Pseudomonas aeruginosa PAO1), AAur1117 (Arthrobacter aurescens TC1), Sgx9403e, and Sgx9403g have been purified and their substrate profiles determined. Adenosine is not a substrate for any of these enzymes. All of these proteins will deaminate adenine to produce hypoxanthine with k{sub cat}/K{sub m} values that exceed 10{sup 5} M{sup -1} s{sup -1}. These enzymes will also accept 6-chloropurine, 6-methoxypurine, N-6-methyladenine, and 2,6-diaminopurine as alternate substrates. X-ray structures of Pa0148 and AAur1117 have been determined and reveal nearly identical distorted ({beta}/{alpha}){sub 8} barrels with a single zinc ion that is characteristic of members of the amidohydrolase superfamily. Structures of Pa0148 with adenine, 6-chloropurine, and hypoxanthine were also determined, thereby permitting identification of the residues responsible for coordinating the substrate and product.

  18. Pa0148 from Pseudomonas aeruginosa Catalyzes the Deamination of Adenine

    SciTech Connect

    A Goble; Z Zhang; J Sauder; S Burley; S Swaminathan; F Raushel

    2011-12-31

    Four proteins from NCBI cog1816, previously annotated as adenosine deaminases, have been subjected to structural and functional characterization. Pa0148 (Pseudomonas aeruginosa PAO1), AAur1117 (Arthrobacter aurescens TC1), Sgx9403e, and Sgx9403g have been purified and their substrate profiles determined. Adenosine is not a substrate for any of these enzymes. All of these proteins will deaminate adenine to produce hypoxanthine with k{sub cat}/K{sub m} values that exceed 10{sup 5} M{sup -1} s{sup -1}. These enzymes will also accept 6-chloropurine, 6-methoxypurine, N-6-methyladenine, and 2,6-diaminopurine as alternate substrates. X-ray structures of Pa0148 and AAur1117 have been determined and reveal nearly identical distorted ({beta}/{alpha}){sub 8} barrels with a single zinc ion that is characteristic of members of the amidohydrolase superfamily. Structures of Pa0148 with adenine, 6-chloropurine, and hypoxanthine were also determined, thereby permitting identification of the residues responsible for coordinating the substrate and product.

  19. Nonselective enrichment for yeast adenine mutants by flow cytometry

    NASA Technical Reports Server (NTRS)

    Bruschi, C. V.; Chuba, P. J.

    1988-01-01

    The expression of certain adenine biosynthetic mutations in the yeast Saccharomyces cerevisiae results in a red colony color. This phenomenon has historically provided an ideal genetic marker for the study of mutation, recombination, and aneuploidy in lower eukaryotes by classical genetic analysis. In this paper, it is reported that cells carrying ade1 and/or ade2 mutations exhibit primary fluorescence. Based on this observation, the nonselective enrichment of yeast cultures for viable adenine mutants by using the fluorescence-activated cell sorter has been achieved. The advantages of this approach over conventional genetic analysis of mutation, recombination, and mitotic chromosomal stability include speed and accuracy in acquiring data for large numbers of clones. By using appropriate strains, the cell sorter has been used for the isolation of both forward mutations and chromosomal loss events in S. cerevisiae. The resolving power of this system and its noninvasiveness can easily be extended to more complex organisms, including mammalian cells, in which analogous metabolic mutants are available.

  20. Identification of Prophages in Bacterial Genomes by Dinucleotide Relative Abundance Difference

    PubMed Central

    Srividhya, K. V.; Alaguraj, V.; Poornima, G.; Kumar, Dinesh; Singh, G. P.; Raghavenderan, L.; Katta, A. V. S. K. Mohan; Mehta, Preeti; Krishnaswamy, S.

    2007-01-01

    Background Prophages are integrated viral forms in bacterial genomes that have been found to contribute to interstrain genetic variability. Many virulence-associated genes are reported to be prophage encoded. Present computational methods to detect prophages are either by identifying possible essential proteins such as integrases or by an extension of this technique, which involves identifying a region containing proteins similar to those occurring in prophages. These methods suffer due to the problem of low sequence similarity at the protein level, which suggests that a nucleotide based approach could be useful. Methodology Earlier dinucleotide relative abundance (DRA) have been used to identify regions, which deviate from the neighborhood areas, in genomes. We have used the difference in the dinucleotide relative abundance (DRAD) between the bacterial and prophage DNA to aid location of DNA stretches that could be of prophage origin in bacterial genomes. Prophage sequences which deviate from bacterial regions in their dinucleotide frequencies are detected by scanning bacterial genome sequences. The method was validated using a subset of genomes with prophage data from literature reports. A web interface for prophage scan based on this method is available at http://bicmku.in:8082/prophagedb/dra.html. Two hundred bacterial genomes which do not have annotated prophages have been scanned for prophage regions using this method. Conclusions The relative dinucleotide distribution difference helps detect prophage regions in genome sequences. The usefulness of this method is seen in the identification of 461 highly probable loci pertaining to prophages which have not been annotated so earlier. This work emphasizes the need to extend the efforts to detect and annotate prophage elements in genome sequences. PMID:18030328

  1. 3-base periodicity in coding DNA is affected by intercodon dinucleotides

    PubMed Central

    Sánchez, Joaquín

    2011-01-01

    All coding DNAs exhibit 3-base periodicity (TBP), which may be defined as the tendency of nucleotides and higher order n-tuples, e.g. trinucleotides (triplets), to be preferentially spaced by 3, 6, 9 etc, bases, and we have proposed an association between TBP and clustering of same-phase triplets. We here investigated if TBP was affected by intercodon dinucleotide tendencies and whether clustering of same-phase triplets was involved. Under constant protein sequence intercodon dinucleotide frequencies depend on the distribution of synonymous codons. So, possible effects were revealed by randomly exchanging synonymous codons without altering protein sequences to subsequently document changes in TBP via frequency distribution of distances (FDD) of DNA triplets. A tripartite positive correlation was found between intercodon dinucleotide frequencies, clustering of same-phase triplets and TBP. So, intercodon C|A (where “|” indicates the boundary between codons) was more frequent in native human DNA than in the codon-shuffled sequences; higher C|A frequency occurred along with more frequent clustering of C|AN triplets (where N jointly represents A, C, G and T) and with intense CAN TBP. The opposite was found for C|G, which was less frequent in native than in shuffled sequences; lower C|G frequency occurred together with reduced clustering of C|GN triplets and with less intense CGN TBP. We hence propose that intercodon dinucleotides affect TBP via same-phase triplet clustering. A possible biological relevance of our findings is briefly discussed. PMID:21814388

  2. Adenine attenuates the Ca(2+) contraction-signaling pathway via adenine receptor-mediated signaling in rat vascular smooth muscle cells.

    PubMed

    Fukuda, Toshihiko; Kuroda, Takahiro; Kono, Miki; Hyoguchi, Mai; Tajiri, Satoshi; Tanaka, Mitsuru; Mine, Yoshinori; Matsui, Toshiro

    2016-09-01

    Our previous study demonstrated that adenine (6-amino-6H-purine) relaxed contracted rat aorta rings in an endothelial-independent manner. Although adenine receptors (AdeRs) are expressed in diverse tissues, aortic AdeR expression has not been ascertained. Thus, the aims of this study were to clarify the expression of AdeR in rat vascular smooth muscle cells (VSMCs) and to investigate the adenine-induced vasorelaxation mechanism(s). VSMCs were isolated from 8-week-old male Wistar-Kyoto rats and used in this study. Phosphorylation of myosin light chain (p-MLC) was measured by western blot. AdeR mRNA was detected by RT-PCR. Intracellular Ca(2+) concentration ([Ca(2+)]i) was measured by using Fura-2/AM. Vasorelaxant adenine (10-100 μM) significantly reduced p-MLC by angiotensin II (Ang II, 10 μM) in VSMCs (P < 0.05). We confirmed the expression of aortic AdeR mRNA and the activation of PKA in VSMCs through stimulation of AdeR by adenine by ELISA. Intracellular Ca(2+) concentration ([Ca(2+)]i) measurement demonstrated that adenine inhibits Ang II- and m-3M3FBS (PLC agonist)-induced [Ca(2+)]i elevation. In AdeR-knockdown VSMCs, PKA activation and p-MLC reduction by adenine were completely abolished. These results firstly demonstrated that vasorelaxant adenine can suppress Ca(2+) contraction signaling pathways via aortic AdeR/PKA activation in VSMCs. PMID:27318925

  3. Adenine, a hairpin ribozyme cofactor--high-pressure and competition studies.

    PubMed

    Ztouti, Myriam; Kaddour, Hussein; Miralles, Francisco; Simian, Christophe; Vergne, Jacques; Hervé, Guy; Maurel, Marie-Christine

    2009-05-01

    The RNA world hypothesis assumes that life arose from ancestral RNA molecules, which stored genetic information and catalyzed chemical reactions. Although RNA catalysis was believed to be restricted to phosphate chemistry, it is now established that the RNA has much wider catalytic capacities. In this respect, we devised, in a previous study, two hairpin ribozymes (adenine-dependent hairpin ribozyme 1 and adenine-dependent hairpin ribozyme 2) that require adenine as cofactor for their reversible self-cleavage. We have now used high hydrostatic pressure to investigate the role of adenine in the catalytic activity of adenine-dependent hairpin ribozyme 1. High-pressure studies are of interest because they make it possible to determine the volume changes associated with the reactions, which in turn reflect the conformational modifications and changes in hydration involved in the catalytic mechanism. They are also relevant in the context of piezophilic organisms, as well as in relation to the extreme conditions that prevailed at the origin of life. Our results indicate that the catalytic process involves a transition state whose formation is accompanied by a positive activation volume and release of water molecules. In addition, competition experiments with adenine analogs strongly suggest that exogenous adenine replaces the adenine present at the catalytic site of the wild-type hairpin ribozyme. PMID:19476496

  4. Characterization of photophysical and base-mimicking properties of a novel fluorescent adenine analogue in DNA

    PubMed Central

    Dierckx, Anke; Dinér, Peter; El-Sagheer, Afaf H.; Kumar, Joshi Dhruval; Brown, Tom; Grøtli, Morten; Wilhelmsson, L. Marcus

    2011-01-01

    To increase the diversity of fluorescent base analogues with improved properties, we here present the straightforward click-chemistry-based synthesis of a novel fluorescent adenine-analogue triazole adenine (AT) and its photophysical characterization inside DNA. AT shows promising properties compared to the widely used adenine analogue 2-aminopurine. Quantum yields reach >20% and >5% in single- and double-stranded DNA, respectively, and show dependence on neighbouring bases. Moreover, AT shows only a minor destabilization of DNA duplexes, comparable to 2-aminopurine, and circular dichroism investigations suggest that AT only causes minimal structural perturbations to normal B-DNA. Furthermore, we find that AT shows favourable base-pairing properties with thymine and more surprisingly also with normal adenine. In conclusion, AT shows strong potential as a new fluorescent adenine analogue for monitoring changes within its microenvironment in DNA. PMID:21278417

  5. Interaction of sulfanilamide and sulfamethoxazole with bovine serum albumin and adenine: spectroscopic and molecular docking investigations.

    PubMed

    Rajendiran, N; Thulasidhasan, J

    2015-06-01

    Interaction between sulfanilamide (SAM) and sulfamethoxazole (SMO) with BSA and DNA base (adenine) was investigated by UV-visible, fluorescence, cyclic voltammetry and molecular docking studies. Stern-Volmer fluorescence quenching constant (Ka) suggests SMO is more quenched with BSA/adenine than that of SAM. The distance r between donor (BSA/adenine) and acceptor (SAM and SMO) was obtained according to fluorescence resonance energy transfer (FRET). The results showed that hydrophobic forces, electrostatic interactions, and hydrogen bonds played vital roles in the SAM and SMO with BSA/adenine binding interaction. During the interaction, sulfa drugs could insert into the hydrophobic pocket, where the non-radioactive energy transfer from BSA/adenine to sulfa drugs occurred with high possibility. Cyclic voltammetry results suggested that when the drug concentration is increased, the anodic electrode potential deceased. The docking method indicates aniline group is interacted with the BSA molecules. PMID:25754395

  6. Interaction of sulfanilamide and sulfamethoxazole with bovine serum albumin and adenine: Spectroscopic and molecular docking investigations

    NASA Astrophysics Data System (ADS)

    Rajendiran, N.; Thulasidhasan, J.

    2015-06-01

    Interaction between sulfanilamide (SAM) and sulfamethoxazole (SMO) with BSA and DNA base (adenine) was investigated by UV-visible, fluorescence, cyclic voltammetry and molecular docking studies. Stern-Volmer fluorescence quenching constant (Ka) suggests SMO is more quenched with BSA/adenine than that of SAM. The distance r between donor (BSA/adenine) and acceptor (SAM and SMO) was obtained according to fluorescence resonance energy transfer (FRET). The results showed that hydrophobic forces, electrostatic interactions, and hydrogen bonds played vital roles in the SAM and SMO with BSA/adenine binding interaction. During the interaction, sulfa drugs could insert into the hydrophobic pocket, where the non-radioactive energy transfer from BSA/adenine to sulfa drugs occurred with high possibility. Cyclic voltammetry results suggested that when the drug concentration is increased, the anodic electrode potential deceased. The docking method indicates aniline group is interacted with the BSA molecules.

  7. Glucose-6-phosphate dehydrogenase-derived NADPH fuels superoxide production in the failing heart

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the failing heart, NADPH oxidase and uncoupled NO synthase utilize cytosolic NADPH to form superoxide. NADPH is supplied principally by the pentose phosphate pathway, whose rate-limiting enzyme is glucose 6-phosphate dehydrogenase (G6PD). Therefore, we hypothesized that cardiac G6PD activation dr...

  8. Ultraviolet absorption and luminescence of matrix-isolated adenine

    SciTech Connect

    Polewski, K.; Sutherland, J.; Zinger, D.; Trunk, J.

    2011-10-01

    We have investigated the absorption, the fluorescence and phosphorescence emission and the fluorescence lifetimes of adenine in low-temperature argon and nitrogen matrices at 15 K. Compared to other environments the absorption spectrum shows higher intensity at the shortest wavelengths, and a weak apparent absorption peak is observed at 280 nm. The resolved fluorescence excitation spectrum has five peaks at positions corresponding to those observed in the absorption spectrum. The position of the fluorescence maximum depends on the excitation wavelength. Excitation below 220 nm displays a fluorescence maximum at 305 nm, while for excitations at higher wavelengths the maximum occurs at 335 nm. The results suggest that multiple-emission excited electronic states are populated in low-temperature gas matrices. Excitation at 265 nm produces a phosphorescence spectrum with a well-resolved vibrational structure and a maximum at 415 nm. The fluorescence decays corresponding to excitation at increasing energy of each resolved band could be fit with a double exponential, with the shorter and longer lifetimes ranging from 1.7 to 3.3 ns and from 12 to 23 ns, respectively. Only for the excitation at 180 nm one exponential is required, with the calculated lifetimes of 3.3 ns. The presented results provide an experimental evidence of the existence of multiple site-selected excited electronic states, and may help elucidate the possible deexcitation pathways of adenine. The additional application of synchrotron radiation proved to result in a significant enhancement of the resolution and spectral range of the phenomena under investigation.

  9. X-ray structure of the ternary MTX·NADPH complex of the anthrax dihydrofolate reductase: A pharmacophore for dual-site inhibitor design

    SciTech Connect

    Bennett, Brad C.; Wan, Qun; Ahmad, Md Faiz; Langan, Paul; Dealwis, Chris G.

    2009-11-18

    For reasons of bioterrorism and drug resistance, it is imperative to identify and develop new molecular points of intervention against anthrax. Dihydrofolate reductase (DHFR) is a highly conserved enzyme and an established target in a number of species for a variety of chemotherapeutic programs. Recently, the crystal structure of B. anthracis DHFR (baDHFR) in complex with methotrexate (MTX) was determined and, based on the structure, proposals were made for drug design strategies directed against the substrate binding site. However, little is gleaned about the binding site for NADPH, the cofactor responsible for hydride transfer in the catalytic mechanism. In the present study, X-ray crystallography at 100 K was used to determine the structure of baDHFR in complex with MTX and NADPH. Although the NADPH binding mode is nearly identical to that seen in other DHFR ternary complex structures, the adenine moiety adopts an off-plane tilt of nearly 90 deg. and this orientation is stabilized by hydrogen bonds to functionally conserved Arg residues. A comparison of the binding site, focusing on this region, between baDHFR and the human enzyme is discussed, with an aim at designing species-selective therapeutics. Indeed, the ternary model, refined to 2.3{angstrom} resolution, provides an accurate template for testing the feasibility of identifying dual-site inhibitors, compounds that target both the substrate and cofactor binding site. With the ternary model in hand, using in silico methods, several compounds were identified which could potentially form key bonding contacts in the substrate and cofactor binding sites. Ultimately, two structurally distinct compounds were verified that inhibit baDHFR at low {mu}M concentrations. The apparent K{sub d} for one of these, (2-(3-(2-(hydroxyimino)-2-(pyridine-4-yl)-6,7-dimethylquinoxalin-2-yl)-1-(pyridine-4-yl)ethanone oxime), was measured by fluorescence spectroscopy to be 5.3 {mu}M.

  10. X-ray structure of the ternary MTX•NADPH complex of the anthrax dihydrofolate reductase: a pharmacophore for dual-site inhibitor design

    PubMed Central

    Bennett, Brad C.; Wan, Qun; Ahmad, Md Faiz; Dealwis, Chris G.

    2009-01-01

    For reasons of bioterrorism and drug resistance, it is imperative to identify and develop new molecular points of intervention against anthrax. Dihydrofolate reductase (DHFR) is a highly conserved enzyme and an established target in a number of species for a variety of chemotherapeutic programs. Recently, the crystal structure of B. anthracis DHFR (baDHFR) in complex with methotrexate (MTX) was determined and, based on the structure, proposals were made for drug design strategies directed against the substrate binding site. However, little is gleaned about the binding site for NADPH, the cofactor responsible for hydride transfer in the catalytic mechanism. In the present study, X-ray crystallography at 100 K was used to determine the structure of baDHFR in complex with MTX and NADPH. Although the NADPH binding mode is nearly identical to that seen in other DHFR ternary complex structures, the adenine moiety adopts an off-plane tilt of nearly 90° and this orientation is stabilized by hydrogen bonds to functionally conserved Arg residues. A comparison of the binding site, focusing on this region, between baDHFR and the human enzyme is discussed, with an aim at designing species-selective therapeutics. Indeed, the ternary model, refined to 2.3Å resolution, provides an accurate template for testing the feasibility of identifying dual-site inhibitors, compounds that target both the substrate and cofactor binding site. With the ternary model in hand, using in silico methods, several compounds were identified which could potentially form key bonding contacts in the substrate and cofactor binding sites. Ultimately, two structurally distinct compounds were verified that inhibit baDHFR at low μM concentrations. The apparent Kd for one of these, (2-(3-(2-(hydroxyimino)-2-(pyridine-4-yl)-6,7-dimethylquinoxalin-2-yl)-1-(pyridine-4-yl)ethanone oxime), was measured by fluorescence spectroscopy to be 5.3 μM. PMID:19374017

  11. Novel electrochemical sensor based on functionalized graphene for simultaneous determination of adenine and guanine in DNA.

    PubMed

    Huang, Ke-Jing; Niu, De-Jun; Sun, Jun-Yong; Han, Cong-Hui; Wu, Zhi-Wei; Li, Yan-Li; Xiong, Xiao-Qin

    2011-02-01

    A nano-material carboxylic acid functionalized graphene (graphene-COOH) was prepared and used to construct a novel biosensor for the simultaneous detection of adenine and guanine. The direct electrooxidation behaviors of adenine and guanine on the graphene-COOH modified glassy carbon electrode (graphene-COOH/GCE) were carefully investigated by cyclic voltammetry and differential pulse voltammetry. The results indicated that both adenine and guanine showed the increase of the oxidation peak currents with the negative shift of the oxidation peak potentials in contrast to that on the bare glassy carbon electrode. The electrochemical parameters of adenine and guanine on the graphene-COOH/GCE were calculated and a simple and reliable electroanalytical method was developed for the detection of adenine and guanine, respectively. The modified electrode exhibited good behaviors in the simultaneous detection of adenine and guanine with the peak separation as 0.334V. The detection limit for individual determination of guanine and adenine was 5.0×10(-8)M and 2.5×10(-8)M (S/N=3), respectively. Furthermore, the measurements of thermally denatured single-stranded DNA were carried out and the value of (G+C)/(A+T) of single-stranded DNA was calculated as 0.80. The biosensor exhibited some advantages, such as simplicity, rapidity, high sensitivity, good reproducibility and long-term stability. PMID:21050729

  12. Cosolute effect on crystallization of two dinucleotide complexes of bovine seminal ribonuclease from concentrated salt solutions

    NASA Astrophysics Data System (ADS)

    Sica, Filomena; Adinolfi, Salvatore; Vitagliano, Luigi; Zagari, Adriana; Capasso, Sante; Mazzarella, Lelio

    1996-10-01

    Two complexes of bovine seminal ribonuclease with dinucleotides, uridylyl(2'-5')adenosine (UpA) and 2'-deoxycytidylyl(3'-5')-2'-deoxyadenosine (d(CpA)), were crystallized under unusual conditions involving a liquid-liquid phase separation. This phenomenon was induced by adding small aliquots of organic cosolutes to highly concentrated ammonium sulfate solutions. The liquid-liquid interface acts as a source of nucleation centers for growth of large crystals. Among the cosolutes tested in these salt-mediated crystallizations, 2-methyl-2,4-pentanediol was found to be the most efficient.

  13. Design, synthesis and biological evaluation of dinucleotide mRNA cap analog containing propargyl moiety.

    PubMed

    Shanmugasundaram, Muthian; Charles, Irudaya; Kore, Anilkumar R

    2016-03-15

    The first example of the synthesis of new dinucleotide cap analog containing propargyl group such as m(7,3'-)(O)(-propargyl)G[5']ppp[5']G is reported. The effect of propargyl cap analog with standard cap was evaluated with respect to their capping efficiency, in vitro T7 RNA polymerase transcription efficiency, and translation activity using cultured HeLa cells. It is noteworthy that propargyl cap analog outperforms standard cap by 3.1 fold in terms of translational properties. The propargyl cap analog forms a more stable complex with translation initiation factor eIF4E based on the molecular modeling studies. PMID:26899596

  14. Single Nucleotide Polymorphisms of Human STING Can Affect Innate Immune Response to Cyclic Dinucleotides

    PubMed Central

    Yi, Guanghui; Brendel, Volker P.; Shu, Chang; Li, Pingwei; Palanathan, Satheesh; Cheng Kao, C.

    2013-01-01

    The STING (stimulator of interferon genes) protein can bind cyclic dinucleotides to activate the production of type I interferons and inflammatory cytokines. The cyclic dinucleotides can be bacterial second messengers c-di-GMP and c-di-AMP, 3’5’-3’5’ cyclic GMP-AMP (3’3’ cGAMP) produced by Vibrio cholerae and metazoan second messenger 2’5’-3’5’ Cyclic GMP-AMP (2’3’ cGAMP). Analysis of single nucleotide polymorphism (SNP) data from the 1000 Genome Project revealed that R71H-G230A-R293Q (HAQ) occurs in 20.4%, R232H in 13.7%, G230A-R293Q (AQ) in 5.2%, and R293Q in 1.5% of human population. In the absence of exogenous ligands, the R232H, R293Q and AQ SNPs had only modest effect on the stimulation of IFN-β and NF-κB promoter activities in HEK293T cells, while HAQ had significantly lower intrinsic activity. The decrease was primarily due to the R71H substitution. The SNPs also affected the response to the cyclic dinucleotides. In the presence of c-di-GMP, the R232H variant partially decreased the ability to activate IFN-βsignaling, while it was defective for the response to c-di-AMP and 3’3’ cGAMP. The R293Q dramatically decreased the stimulatory response to all bacterial ligands. Surprisingly, the AQ and HAQ variants maintained partial abilities to activate the IFN-β signaling in the presence of ligands due primarily to the G230A substitution. Biochemical analysis revealed that the recombinant G230A protein could affect the conformation of the C-terminal domain of STING and the binding to c-di-GMP. Comparison of G230A structure with that of WT revealed that the conformation of the lid region that clamps onto the c-di-GMP was significantly altered. These results suggest that hSTING variation can affect innate immune signaling and that the common HAQ haplotype expresses a STING protein with reduced intrinsic signaling activity but retained the ability to response to bacterial cyclic dinucleotides. PMID:24204993

  15. Renoprotective effect of the xanthine oxidoreductase inhibitor topiroxostat on adenine-induced renal injury.

    PubMed

    Kamijo-Ikemori, Atsuko; Sugaya, Takeshi; Hibi, Chihiro; Nakamura, Takashi; Murase, Takayo; Oikawa, Tsuyoshi; Hoshino, Seiko; Hisamichi, Mikako; Hirata, Kazuaki; Kimura, Kenjiro; Shibagaki, Yugo

    2016-06-01

    The aim of the present study was to reveal the effect of a xanthine oxidoreductase (XOR) inhibitor, topiroxostat (Top), compared with another inhibitor, febuxostat (Feb), in an adenine-induced renal injury model. We used human liver-type fatty acid-binding protein (L-FABP) chromosomal transgenic mice, and urinary L-FABP, a biomarker of tubulointerstitial damage, was used to evaluate tubulointerstitial damage. Male transgenic mice (n = 24) were fed a 0.2% (wt/wt) adenine-containing diet. Two weeks after the start of this diet, renal dysfunction was confirmed, and the mice were divided into the following four groups: the adenine group was given only the diet containing adenine, and the Feb, high-dose Top (Top-H), and low-dose Top (Top-L) groups were given diets containing Feb (3 mg/kg), Top-H (3 mg/kg), and Top-L (1 mg/kg) in addition to adenine for another 2 wk. After withdrawal of the adenine diet, each medication was continued for 2 wk. Serum creatinine levels, the degree of macrophage infiltration, tubulointerstitial damage, renal fibrosis, urinary 15-F2t-isoprostane levels, and renal XOR activity were significantly attenuated in the kidneys of the Feb, Top-L, and Top-H groups compared with the adenine group. Serum creatinine levels in the Top-L and Top-H groups as well as renal XOR in the Top-H group were significantly lower than those in the Feb group. Urinary excretion of L-FABP in both the Top-H and Top-L groups was significantly lower than in the adenine and Feb groups. In conclusion, Top attenuated renal damage in an adenine-induced renal injury model. PMID:27029427

  16. Cell-free NADPH oxidase activation assays: "in vitro veritas".

    PubMed

    Pick, Edgar

    2014-01-01

    The superoxide (O2 (∙-))-generating NADPH oxidase complex of phagocytes comprises a membrane-imbedded heterodimeric flavocytochrome, known as cytochrome b 558 (consisting of Nox2 and p22 (phox) ) and four cytosolic regulatory proteins, p47 (phox) , p67 (phox) , p40 (phox) , and the small GTPase Rac. Under physiological conditions, in the resting phagocyte, O2 (∙-) generation is initiated by engagement of membrane receptors by a variety of stimuli, followed by specific signal transduction sequences leading to the translocation of the cytosolic components to the membrane and their association with the cytochrome. A consequent conformational change in Nox2 initiates the electron "flow" along a redox gradient, from NADPH to oxygen, leading to the one-electron reduction of molecular oxygen to O2 (∙-). Methodological difficulties in the dissection of this complex mechanism led to the design "cell-free" systems (also known as "broken cells" or in vitro systems). In these, membrane receptor stimulation and all or part of the signal transduction sequence are missing, the accent being placed on the actual process of "NADPH oxidase assembly," thus on the formation of the complex between cytochrome b 558 and the cytosolic components and the resulting O2 (∙-) generation. Cell-free assays consist of a mixture of the individual components of the NADPH oxidase complex, derived from resting phagocytes or in the form of purified recombinant proteins, exposed in vitro to an activating agent (distinct from and unrelated to whole cell stimulants), in the presence of NADPH and oxygen. Activation is commonly quantified by measuring the primary product of the reaction, O2 (∙-), trapped immediately after its generation by an appropriate acceptor in a kinetic assay, permitting the calculation of the linear rate of O2 (∙-) production, but numerous variations exist, based on the assessment of reaction products or the consumption of substrates. Cell-free assays played a paramount

  17. Dinucleotide repeat loci contribute highly informative genetic markers to the human chromosome 2 linkage map

    SciTech Connect

    Todd, S. ); Sherman, S.L. ); Naylor, S.L. )

    1993-06-01

    Microsatellite repeat loci can provide informative markers for genetic linkage. Currently, the human chromosome 2 genetic linkage map has very few highly polymorphic markers. Being such a large chromosome, it will require a large number of informative markers for the dense coverage desired to allow disease genes to be mapped quickly and accurately. Dinucleotide repeat loci from two anonymous chromosome 2 genomic DNA clones were sequenced so that oligonucleotide primers could be designed for amplifying each locus using the polymerase chain reaction (PCR). Five sets of PCR primers were also generated from nucleotide sequences in the GenBank Database of chromosome 2 genes containing dinucleotide repeats. In addition, one PCR primer pair was made that amplifies a restriction fragment length polymorphism on the TNP1 gene. These markers were placed on the CEPH genetic linkage map by screening the CEPH reference DNA panel with each primer set, combining these data with those of other markers previously placed on the map, and analyzing the combined data set using CRI-MAP and LINKAGE. The microsatellite loci are highly informative markers and the TNP1 locus, as expected, is only moderately informative. A map was constructed with 38 ordered loci (odds [ge] 1000:1) spanning 296 cM (male) and 476 cM (female) of chromosome 2 compared with 306 cM (male) and 529 cM (female) for a previous map of 20 markers. 32 refs., 2 figs., 3 tabs.

  18. Resolvase-catalysed reactions between res sites differing in the central dinucleotide of subsite I.

    PubMed Central

    Stark, W M; Grindley, N D; Hatfull, G F; Boocock, M R

    1991-01-01

    The resolvase-catalysed reaction between two res sites in a circular DNA substrate normally gives two circular recombination products linked in a two-noded catenane. Homology between the two res sites at the central overlap dinucleotide of subsite I is important for recombination. Reactions between res sites differing at one position in the central dinucleotide (AC X AT) gave a low yield of recombinants containing mismatched base-pairs, but gave large amounts of a non-recombinant four-noded knot. This result was predicted by a 'simple rotation' model for strand exchange. The mismatch is evidently recognized only after commitment to an initial 180 degrees rotation of the resolvase-linked DNA ends, and it induces a second 180 degrees rotation which restores correct base-pairing at the overlap, giving the four-noded product. Correct base-pairing is not essential for religation, but may be important for release of the products. Characteristic patterns of 4, 6, 8 and 10 node knots, or 4, 8, 12 and 16 node knots were obtained, depending on the reaction conditions and the resolvase. Two pathways for multiple rounds of rotation in 360 degrees steps are inferred. The results support a model for strand exchange by supercoil-directed subunit rotation within a resolvase tetramer. Images PMID:1655422

  19. NADPH oxidase-derived reactive oxygen species in cardiac pathophysiology

    PubMed Central

    Cave, Alison; Grieve, David; Johar, Sofian; Zhang, Min; Shah, Ajay M

    2005-01-01

    Chronic heart failure, secondary to left ventricular hypertrophy or myocardial infarction, is a condition with increasing morbidity and mortality. Although the mechanisms underlying the development and progression of this condition remain a subject of intense interest, there is now growing evidence that redox-sensitive pathways play an important role. This article focuses on the involvement of reactive oxygen species derived from a family of superoxide-generating enzymes, termed NADPH oxidases (NOXs), in the pathophysiology of ventricular hypertrophy, the accompanying interstitial fibrosis and subsequent heart failure. In particular, the apparent ability of the different NADPH oxidase isoforms to define the response of a cell to a range of physiological and pathophysiological stimuli is reviewed. If confirmed, these data would suggest that independently targeting different members of the NOX family may hold the potential for therapeutic intervention in the treatment of cardiac disease. PMID:16321803

  20. Modeling of Anopheles minimus Mosquito NADPH-Cytochrome P450 Oxidoreductase (CYPOR) and Mutagenesis Analysis

    PubMed Central

    Sarapusit, Songklod; Lertkiatmongkol, Panida; Duangkaew, Panida; Rongnoparut, Pornpimol

    2013-01-01

    Malaria is one of the most dangerous mosquito-borne diseases in many tropical countries, including Thailand. Studies in a deltamethrin resistant strain of Anopheles minimus mosquito, suggest cytochrome P450 enzymes contribute to the detoxification of pyrethroid insecticides. Purified A. minimus CYPOR enzyme (AnCYPOR), which is the redox partner of cytochrome P450s, loses flavin-adenosine di-nucleotide (FAD) and FLAVIN mono-nucleotide (FMN) cofactors that affect its enzyme activity. Replacement of leucine residues at positions 86 and 219 with phenylalanines in FMN binding domain increases FMN binding, enzyme stability, and cytochrome c reduction activity. Membrane-Bound L86F/L219F-AnCYPOR increases A. minimus P450-mediated pyrethroid metabolism in vitro. In this study, we constructed a comparative model structure of AnCYPOR using a rat CYPOR structure as a template. Overall model structure is similar to rat CYPOR, with some prominent differences. Based on primary sequence and structural analysis of rat and A. minimus CYPOR, C427R, W678A, and W678H mutations were generated together with L86F/L219F resulting in three soluble Δ55 triple mutants. The C427R triple AnCYPOR mutant retained a higher amount of FAD binding and increased cytochrome c reduction activity compared to wild-type and L86F/L219F-Δ55AnCYPOR double mutant. However W678A and W678H mutations did not increase FAD and NAD(P)H bindings. The L86F/L219F double and C427R triple membrane-bound AnCYPOR mutants supported benzyloxyresorufin O-deakylation (BROD) mediated by mosquito CYP6AA3 with a two-to three-fold increase in efficiency over wild-type AnCYPOR. The use of rat CYPOR in place of AnCYPOR most efficiently supported CYP6AA3-mediated BROD compared to all AnCYPORs. PMID:23325047

  1. DNA methylation on N6-adenine in C. elegans

    PubMed Central

    Greer, Eric Lieberman; Blanco, Mario Andres; Gu, Lei; Sendinc, Erdem; Liu, Jianzhao; Aristizábal-Corrales, David; Hsu, Chih-Hung; Aravind, L.; He, Chuan; Shi, Yang

    2015-01-01

    Summary In mammalian cells, DNA methylation on the 5th position of cytosine (5mC) plays an important role as an epigenetic mark. However, DNA methylation was considered to be absent in C. elegans because of the lack of detectable 5mC as well as homologs of the cytosine DNA methyltransferases. Here, using multiple approaches, we demonstrate the presence of adenine N6-methylation (6mA) in C. elegans DNA. We further demonstrate that this modification increases trans-generationally in a paradigm of epigenetic inheritance. Importantly, we identify a DNA demethylase, NMAD-1, and a potential DNA methyltransferase, DAMT-1, which regulate 6mA levels and crosstalk between methylation of histone H3K4me2 and 6mA, and control the epigenetic inheritance of phenotypes associated with the loss of the H3K4me2 demethylase spr-5. Together, these data identify a DNA modification in C. elegans and raise the exciting possibility that 6mA may be a carrier of heritable epigenetic information in eukaryotes. PMID:25936839

  2. Adenine nucleotide translocator transports haem precursors into mitochondria.

    PubMed

    Azuma, Motoki; Kabe, Yasuaki; Kuramori, Chikanori; Kondo, Masao; Yamaguchi, Yuki; Handa, Hiroshi

    2008-01-01

    Haem is a prosthetic group for haem proteins, which play an essential role in oxygen transport, respiration, signal transduction, and detoxification. In haem biosynthesis, the haem precursor protoporphyrin IX (PP IX) must be accumulated into the mitochondrial matrix across the inner membrane, but its mechanism is largely unclear. Here we show that adenine nucleotide translocator (ANT), the inner membrane transporter, contributes to haem biosynthesis by facilitating mitochondrial accumulation of its precursors. We identified that haem and PP IX specifically bind to ANT. Mitochondrial uptake of PP IX was inhibited by ADP, a known substrate of ANT. Conversely, ADP uptake into mitochondria was competitively inhibited by haem and its precursors, suggesting that haem-related porphyrins are accumulated into mitochondria via ANT. Furthermore, disruption of the ANT genes in yeast resulted in a reduction of haem biosynthesis by blocking the translocation of haem precursors into the matrix. Our results represent a new model that ANT plays a crucial role in haem biosynthesis by facilitating accumulation of its precursors into the mitochondrial matrix. PMID:18728780

  3. Adenine nucleotides as allosteric effectors of PEA seed glutamine synthetase

    SciTech Connect

    Unkefer, P.J.; Knight, T.J.

    1986-05-01

    The energy charge in the plant cell has been proposed as a regulator of glutamine synthetase (GS) activity. The authors have shown that 2.1 moles of ..gamma..(/sup 32/P)-ATP were bound/mole subunits of purified pea seed GS during complete inactivation with methionine sulfoximine. Since GS has one active site per subunit, the second binding site provides the potential for allosteric regulation of GS by adenine nucleotides. The authors have investigated the inhibition of the ATP-dependent synthetic activity by ADP and AMP. ADP and AMP cannot completely inhibit GS; but ATP does overcome the inhibition by ADP and AMP as shown by plots of % inhibition vs inhibitor concentration. This indicates that inhibition of GS by ADP or AMP is not completely due to competitive inhibition. In the absence of ADP or AMP, double reciprocal plots for ATP are linear below 10 mM; however, in the presence of either ADP or AMP these pots are curvilinear downwards. The ratio of Vm/asymptote is less than 1. The Hill number for ATP in the absence of ADP or AMP is 0.93 but decreases with increasing ADP or AMP to a value of 0.28 with 10 mM ADP. These data are consistent with negative cooperativity by ADP and AMP. Thus, as the ADP/ATP or AMP/ATP ratios are increased GS activity decreases. This is consistent with regulation of GS activity by energy charge in planta.

  4. The Cellular Environment Stabilizes Adenine Riboswitch RNA Structure

    PubMed Central

    Tyrrell, Jillian; McGinnis, Jennifer L.; Weeks, Kevin M.; Pielak, Gary J.

    2016-01-01

    There are large differences between the intracellular environment and the conditions widely used to study RNA structure and function in vitro. To assess the effects of the crowded cellular environment on RNA, we examined the structure and ligand-binding function of the adenine riboswitch aptamer domain in healthy, growing Escherichia coli cells at single-nucleotide resolution on the minute timescale using SHAPE. The ligand-bound aptamer structure is essentially the same in cells and in buffer at 1 mM Mg2+, the approximate Mg2+ concentration we measured in cells. In contrast, the in-cell conformation of the ligand-free aptamer is much more similar to the fully folded ligand-bound state. Even adding high Mg2+ concentrations to the buffer used for in vitro analyses did not yield the conformation observed for the free aptamer in cells. The cellular environment thus stabilizes the aptamer significantly more than does Mg2+ alone. Our results show that the intracellular environment has a large effect on RNA structure that ultimately favors highly organized conformations. PMID:24215455

  5. Lipoic acid suppression of neutrophil respiratory burst: effect of NADPH.

    PubMed

    O'Neill, Heidi C; Rancourt, Raymond C; White, Carl W

    2008-02-01

    Lipoic acid (LA) and its reduced product dihydrolipoic acid (DHLA) are potent antioxidants with capacity to scavenge reactive oxygen species (ROS) and recycle endogenous antioxidants. LA may increase cellular glutathione (GSH), an antioxidant lacking in the lung's epithelial lining fluid in lung disorders such as idiopathic pulmonary fibrosis (IPF). Neutrophils (PMN) are key innate responders and are pivotal in clearing bacterial infection, therefore it is crucial to understand the impact LA may have on their function. Circulating neutrophils were isolated from healthy volunteers and pretreated with LA or diluent. Cells were subsequently activated with phorbol 12-myristate 13-acetate (PMA, 100 ng/ml) to induce ROS production. SOD-inhibitable reduction of acetylated cytochrome c demonstrated the PMA-dependent respiratory burst was suppressed by LA. Oxygen consumption also was diminished when PMA-stimulated cells were pretreated with LA. PMN respiratory burst was partially restored by addition of NADPH but not other pyridine nucleotides. LA did not inhibit glucose-6-phosphate dehydrogenase activity of PMN. These data together suggest that the reduction of LA to DHLA using cellular NADPH may limit the capacity of the PMN NADPH oxidase to produce superoxide. Further studies will be required to determine if LA can diminish excessive superoxide produced by PMN and/or alveolar macrophages in IPF or relevant disease models in vivo. PMID:18158760

  6. Azotobacter vinelandii NADPH:ferredoxin reductase cloning, sequencing, and overexpression.

    PubMed

    Isas, J M; Yannone, S M; Burgess, B K

    1995-09-01

    Azotobacter vinelandii ferredoxin I (AvFdI) controls the expression of another protein that was originally designated Protein X. Recently we reported that Protein X is a NADPH-specific flavoprotein that binds specifically to FdI (Isas, J.M., and Burgess, B.K. (1994) J. Biol. Chem. 269, 19404-19409). The gene encoding this protein has now been cloned and sequenced. Protein X is 33% identical and has an overall 53% similarity with the fpr gene product from Escherichia coli that encodes NADPH:ferredoxin reductase. On the basis of this similarity and the similarity of the physical properties of the two proteins, we now designate Protein X as A. vinelandii NADPH:ferredoxin reductase and its gene as the fpr gene. The protein has been overexpressed in its native background in A. vinelandii by using the broad host range multicopy plasmid, pKT230. In addition to being regulated by FdI, the fpr gene product is overexpressed when A. vinelandii is grown under N2-fixing conditions even though the fpr gene is not preceded by a nif specific promoter. By analogy to what is known about fpr expression in E. coli, we propose that FdI may exert its regulatory effect on fpr by interacting with the SoxRS regulon. PMID:7673160

  7. Phagocyte NADPH oxidase: a multicomponent enzyme essential for host defenses.

    PubMed

    El-Benna, Jamel; Dang, Pham My-Chan; Gougerot-Pocidalo, Marie-Anne; Elbim, Carole

    2005-01-01

    Phagocytes such as neutrophils and monocytes play an essential role in host defenses against microbial pathogens. Reactive oxygen species (ROS), such as superoxide anion, hydrogen peroxide, the hydroxyl radical, and hypochlorous acid, together with microbicidal peptides and proteases, constitute their antimicrobial arsenal. The enzyme responsible for superoxide anion production and, consequently, ROS generation, is called NADPH oxidase or respiratory burst oxidase. This multicomponent enzyme system is composed of cytosolic proteins (p47phox, p67phox, p40phox, and rac1/2) and membrane proteins (p22phox and gp91phox, which form cytochrome b558) which assemble at membrane sites upon cell activation. The importance of this enzyme in host defenses is illustrated by a life-threatening genetic disorder called chronic granulomatous disease in which the phagocyte enzyme is dysfunctional, leading to life-threatening bacterial and fungal infections. Also, because ROS can damage surrounding tissues, their production, and thus NADPH oxidase activation, must be tightly regulated. This review describes the structure and activation of the neutrophil NADPH enzyme complex. PMID:15995580

  8. Spin-dependent electron transport in zinc- and manganese-doped adenine molecules

    SciTech Connect

    Simchi, Hamidreza; Esmaeilzadeh, Mahdi Mazidabadi, Hossein

    2014-01-28

    The spin-dependent electron transport properties of zinc- and manganese-doped adenine molecules connected to zigzag graphene leads are studied in the zero bias regime using the non-equilibrium Green's function method. The conductance of the adenine molecule increased and became spin-dependent when a zinc or manganese atom was doped into the molecules. The effects of a transverse electric field on the spin-polarization of the transmitted electrons were investigated and the spin-polarization was controlled by changing the transverse electric field. Under the presence of a transverse electric field, both the zinc- and manganese-doped adenine molecules acted as spin-filters. The maximum spin-polarization of the manganese-doped adenine molecule was greater than the molecule doped with zinc.

  9. Identification of a mitochondrial ATP synthase-adenine nucleotide translocator complex in Leishmania.

    PubMed

    Detke, Siegfried; Elsabrouty, Rania

    2008-01-01

    The ATP synthasome is a macromolecular complex consisting of ATP synthase, adenine nucleotide translocator and phosphate carrier. To determine if this complex is evolutionary old or young, we searched for its presence in Leishmania, a mitochondria containing protozoan which evolved from the main eukaryote line soon after eukaryotes split from prokaryotes. Sucrose gradient centrifugation showed that the distribution of ANT among the fractions coincided with the distribution of ATP synthase. In addition, ATP synthase co-precipitated with FLAG tagged and wild type adenine nucleotide translocator isolated with anti FLAG and anti adenine nucleotide translocator antibodies, respectively. These data indicate that the adenine nucleotide translocator interacted with the ATP synthase to form a stable structure referred to as the ATP synthasome. The presence of the ATP synthasome in Leishmania, an organism branching off the main line of eukaryotes early in the development of eukaryotes, as well as in higher eukaryotes suggests that the ATP synthasome is a phylogenetically ancient structure. PMID:17920025

  10. Adenine and guanine nucleotide metabolism during platelet storage at 22 degree C

    SciTech Connect

    Edenbrandt, C.M.; Murphy, S. )

    1990-11-01

    Adenine and guanine nucleotide metabolism of platelet concentrates (PCs) was studied during storage for transfusion at 22 +/- 2 degrees C over a 7-day period using high-pressure liquid chromatography. There was a steady decrease in platelet adenosine triphosphate (ATP) and adenosine diphosphate (ADP), which was balanced quantitatively by an increase in plasma hypoxanthine. As expected, ammonia accumulated along with hypoxanthine but at a far greater rate. A fall in platelet guanosine triphosphate (GTP) and guanosine diphosphate (GDP) paralleled the fall in ATP + ADP. When adenine was present in the primary anticoagulant, it was carried over into the PC and metabolized. ATP, GTP, total adenine nucleotides, and total guanine nucleotides declined more slowly in the presence of adenine than in its absence. With adenine, the increase in hypoxanthine concentration was more rapid and quantitatively balanced the decrease in adenine and platelet ATP + ADP. Plasma xanthine rose during storage but at a rate that exceeded the decline in GTP + GDP. When platelet ATP + ADP was labeled with 14C-adenine at the initiation of storage, half of the radioactivity was transferred to hypoxanthine (45%) and GTP + GDP + xanthine (5%) by the time storage was completed. The isotopic data were consistent with the presence of a radioactive (metabolic) and a nonradioactive (storage) pool of ATP + ADP at the initiation of storage with each pool contributing approximately equally to the decline in ATP + ADP during storage. The results suggested a continuing synthesis of GTP + GDP from ATP + ADP, explaining the slower rate of fall of GTP + GDP relative to the rate of rise of plasma xanthine. Throughout storage, platelets were able to incorporate 14C-hypoxanthine into both adenine and guanine nucleotides but at a rate that was only one fourth the rate of hypoxanthine accumulation.

  11. Benchmark Thermochemistry for Biologically Relevant Adenine and Cytosine. A Combined Experimental and Theoretical Study.

    PubMed

    Emel'yanenko, Vladimir N; Zaitsau, Dzmitry H; Shoifet, Evgeni; Meurer, Florian; Verevkin, Sergey P; Schick, Christoph; Held, Christoph

    2015-09-17

    The thermochemical properties available in the literature for adenine and cytosine are in disarray. A new condensed phase standard (p° = 0.1 MPa) molar enthalpy of formation at T = 298.15 K was measured by using combustion calorimetry. New molar enthalpies of sublimation were derived from the temperature dependence of vapor pressure measured by transpiration and by the quarz-crystal microbalance technique. The heat capacities of crystalline adenine and cytosine were measured by temperature-modulated DSC. Thermodynamic data on adenine and cytosine available in the literature were collected, evaluated, and combined with our experimental results. Thus, the evaluated collection of data together with the new experimental results reported here has helped to resolve contradictions in the available enthalpies of formation. A set of reliable thermochemical data is recommended for adenine and cytosine for further thermochemical calculations. Quantum-chemical calculations of the gas phase molar enthalpies of formation of adenine and cytosine have been performed by using the G4 method and results were in excellent agreement with the recommended experimental data. The standard molar entropies of formation and the standard molar Gibbs functions of formation in crystal and gas state have been calculated. Experimental vapor-pressure data measured in this work were used to estimate pure-component PC-SAFT parameters. This allowed modeling solubility of adenine and cytosine in water over the temperature interval 278-310 K. PMID:26317826

  12. Sequence-dependent folding landscapes of adenine riboswitch aptamers

    NASA Astrophysics Data System (ADS)

    Lin, Jong-Chin; Hyeon, Changbong; Thirumalai, D.

    Prediction of the functions of riboswitches requires a quantitative description of the folding landscape so that the barriers and time scales for the conformational change in the switching region in the aptamer can be estimated. Using a combination of all atom molecular dynamics and coarse-grained model simulations we studied the response of adenine (A) binding add and pbuE A-riboswitches to mechanical force. The two riboswitches contain a structurally similar three-way junction formed by three paired helices, P1, P2, and P3, but carry out different functions. Using pulling simulations, with structures generated in MD simulations, we show that after P1 rips the dominant unfolding pathway in add A-riboswitch is the rupture of P2 followed by unraveling of P3. In the pbuE A-riboswitch, after P1 unfolds P3 ruptures ahead of P2. The order of unfolding of the helices, which is in accord with single molecule pulling experiments, is determined by the relative stabilities of the individual helices. Our results show that the stability of isolated helices determines the order of assembly and response to force in these non-coding regions. We use the simulated free energy profile for pbuE A-riboswitch to estimate the time scale for allosteric switching, which shows that this riboswitch is under kinetic control lending additional support to the conclusion based on single molecule pulling experiments. A consequence of the stability hypothesis is that a single point mutation (U28C) in the P2 helix of the add A-riboswitch, which increases the stability of P2, would make the folding landscapes of the two riboswitches similar. This prediction can be tested in single molecule pulling experiments.

  13. Phenotype and Genotype Characterization of Adenine Phosphoribosyltransferase Deficiency

    PubMed Central

    Bollée, Guillaume; Dollinger, Cécile; Boutaud, Lucile; Guillemot, Delphine; Bensman, Albert; Harambat, Jérôme; Deteix, Patrice; Daudon, Michel; Knebelmann, Bertrand

    2010-01-01

    Adenine phosphoribosyltransferase (APRT) deficiency is a rare autosomal recessive disorder causing 2,8-dihydroxyadenine stones and renal failure secondary to intratubular crystalline precipitation. Little is known regarding the clinical presentation of APRT deficiency, especially in the white population. We retrospectively reviewed all 53 cases of APRT deficiency (from 43 families) identified at a single institution between 1978 and 2009. The median age at diagnosis was 36.3 years (range 0.5 to 78.0 years). In many patients, a several-year delay separated the onset of symptoms and diagnosis. Of the 40 patients from 33 families with full clinical data available, 14 (35%) had decreased renal function at diagnosis. Diagnosis occurred in six (15%) patients after reaching ESRD, with five diagnoses made at the time of disease recurrence in a renal allograft. Eight (20%) patients reached ESRD during a median follow-up of 74 months. Thirty-one families underwent APRT sequencing, which identified 54 (87%) mutant alleles on the 62 chromosomes analyzed. We identified 18 distinct mutations. A single T insertion in a splice donor site in intron 4 (IVS4 + 2insT), which produces a truncated protein, accounted for 40.3% of the mutations. We detected the IVS4 + 2insT mutation in two (0.98%) of 204 chromosomes of healthy newborns. This report, which is the largest published series of APRT deficiency to date, highlights the underdiagnosis and potential severity of this disease. Early diagnosis is crucial for initiation of effective treatment with allopurinol and for prevention of renal complications. PMID:20150536

  14. Labeling of mitochondrial adenine nucleotides of bovine sperm

    SciTech Connect

    Cheetham, J.; Lardy, H.A.

    1986-05-01

    Incorporation of /sup 32/P/sub i/ into the adenine nucleotide pool of intact bovine spermatozoa utilizing endogenous substrates results in a specific activity (S.A.) ratio ATP/ADP of 0.3 to 0.5, suggesting compartmentation of nucleotide pools or a pathway for phosphorylation of AMP in addition to the myokinase reaction. Incubation of filipin-permeabilized cells with pyruvate, acetylcarnitine, or ..cap alpha..-ketoglutarate (..cap alpha..KG) resulted in ATP-ADP S.A. ratios of 0.5, 0.8, and 1.6, respectively, for mitochondrial nucleotides. However, when malate was included with pyruvate or acetylcarnitine, the ATP/ADP S.A. ratio increased by 400% to 2.0 for pyruvate/malate and by 290% to 2.8 for acetylcarnitine/malate, while the ATP/ADP ratio increased by less than 100% in both cases. These results may indicate that under conditions of limited flux through the citric acid cycle a pathway for phosphorylation of AMP from a precursor other than ATP exists or that ATP is compartmented within the mitochondrion. In the presence of uncoupler and oligomycin with ..cap alpha..KG, pyruvate/malate, or acetylcarnitine/malate, /sup 32/P/sub i/ is incorporated primarily into ATP, resulting in an ATP/ADP S.A. ratio of 4.0 for ..cap alpha..KG, 2.7 for pyruvate/malate, and 2.8 for acetylcarnitine/malate. These data are consistent with phosphorylation of ADP during substrate level phosphorylation in the citric acid cycle.

  15. Autosomal recessive chronic granulomatous disease caused by deletion at a dinucleotide repeat

    SciTech Connect

    Casimir, C.M.; Bu-Ghanim, H.N.; Rowe, P.; Segal, A.W. ); Rodaway, A.R.F.; Bentley, D.L. )

    1991-04-01

    Chronic granulomatous disease (CGD) is a rare inherited condition rendering neutrophils incapable of killing invading pathogens. This condition is due to the failure of a multicomponent microbicidal oxidase that normally yields a low-midpoint-potential b cytochrome (cytochrome b{sub 245}). Although defects in the X chromosome-linked cytochrome account for the majority of CGD patients, as many as 30% of CGD cases are due to an autosomal recessive disease. Of these, {gt}90% have been shown to be defective in the synthesis of a 47-kDa cytosolic component of the oxidase. The authors demonstrate here in three unrelated cases of autosomal recessive CGD that the identical underlying molecular lesion is a dinucleotide deletion at a GTGT tandem repeat, corresponding to the acceptor site of the first intron - exon junction. Slippage of the DNA duplex at this site may contribute to the high frequency of defects in this gene.

  16. Role of the intergenic dinucleotide in vesicular stomatitis virus RNA transcription.

    PubMed Central

    Barr, J N; Whelan, S P; Wertz, G W

    1997-01-01

    To investigate the role played by the intergenic dinucleotide sequence of the conserved vesicular stomatitis virus (VSV) gene junction in modulation of polymerase activity, we analyzed the RNA synthesis activities of bicistrionic genomic analogs that contained either the authentic N/P gene junction or gene junctions that had been altered to contain either the 16 possible dinucleotide combinations, single nucleotide intergenic sequences, or no intergenic sequence at all. Quantitative measurements of the amounts of upstream, downstream, and readthrough mRNAs that were transcribed by these mutant templates showed that the behavior of the viral polymerase was profoundly affected by the nucleotide sequence that it encountered as it traversed the gene junction, although the polymerase was able to accommodate a remarkable degree of sequence variation without altogether losing the ability to terminate and reinitiate transcription. Alteration or removal of the intergenic sequence such that the U tract responsible for synthesis of the upstream mRNA poly(A) tail was effectively positioned adjacent to the consensus downstream gene start signal resulted in almost complete abrogation of downstream mRNA synthesis, thus defining the intergenic sequence as an essential sequence element of the gene junction. Many genome analogs with altered intergenic sequences directed abundant synthesis of a readthrough transcript without correspondingly high levels of downstream mRNA, an observation inconsistent with the shunting model of VSV transcription, which suggests that polymerase molecules are prepositioned at gene junctions, awaiting a push from upstream. Instead, the findings of this study support a model of sequential transcription in which initiation of downstream mRNA can occur only following termination of the preceding transcript. PMID:9032308

  17. Sequence-dependent dynamics of duplex DNA: the applicability of a dinucleotide model.

    PubMed Central

    Okonogi, T M; Alley, S C; Reese, A W; Hopkins, P B; Robinson, B H

    2002-01-01

    The short-time (submicrosecond) bending dynamics of duplex DNA were measured to determine the effect of sequence on dynamics. All measurements were obtained from a single site on duplex DNA, using a single, site-specific modified base containing a rigidly tethered, electron paramagnetic resonance active spin probe. The observed dynamics are interpreted in terms of single-step sequence-dependent bending force constants, determined from the mean squared amplitude of bending relative to the end-to-end vector using the modified weakly bending rod model. The bending dynamics at a single site are a function of the sequence of the nucleotides constituting the duplex DNA. We developed and examined several dinucleotide-based models for flexibility. The models indicate that the dominant feature of the dynamics is best explained in terms of purine- and pyrimidine-type steps, although distinction is made among all 10 unique steps: It was found that purine-purine steps (which are the same as pyrimidine-pyrimidine steps) were near average in flexibility, but the pyrimidine-purine steps (5' to 3') were nearly twice as flexible, whereas purine-pyrimidine steps were more than half as flexible as average DNA. Therefore, the range of stepwise flexibility is approximately fourfold and is characterized by both the type of base pair step (pyrimidine/purine combination) and the identity of the bases within the pair (G, A, T, or C). All of the four models considered here underscore the complexity of the dependence of dynamics on DNA sequence with certain sequences not satisfactorily explainable in terms of any dinucleotide model. These findings provide a quantitative basis for interpreting the dynamics and kinetics of DNA-sequence-dependent biological processes, including protein recognition and chromatin packaging. PMID:12496111

  18. Enhancing biomass and ethanol production by increasing NADPH production in Synechocystis sp. PCC 6803.

    PubMed

    Choi, Yun-Nam; Park, Jong Moon

    2016-08-01

    This study demonstrates that increased NADPH production can improve biomass and ethanol production in cyanobacteria. We over-expressed the endogenous zwf gene, which encodes glucose-6-phosphate dehydrogenase of pentose phosphate pathway, in the model cyanobacterium Synechocystis sp. PCC 6803. zwf over-expression resulted in increased NADPH production, and promoted biomass production compared to the wild type in both autotrophic and mixotrophic conditions. Ethanol production pathway including NADPH-dependent alcohol dehydrogenase was also integrated with and without zwf over-expression. Excessive NADPH production by zwf over-expression could improve both biomass and ethanol production in the autotrophic conditions. PMID:26951740

  19. Structure-function relationship of Vibrio harveyi NADPH-flavin oxidoreductase FRP: essential residues Lys167 and Arg15 for NADPH binding.

    PubMed

    Chung, Hae-Won; Tu, Shiao-Chun

    2012-06-19

    Vibrio harveyi NADPH-FMN oxidoreductase (FRP) catalyzes flavin reduction by NADPH. In comparing amino acid sequence and crystal structure with Escherichia coli NfsA, residues N134, R225, R133, K167, and R15 were targeted for investigation of their possible roles in the binding and utilization of the NADPH substrate. By mutation of each of these five residues to an alanine, steady-state rate analyses showed that the variants K167A and R15A had apparently greatly increased K(m,NADPH) and reduced k(cat)/K(m,NADPH), whereas little or much more modest changes were found for the other variants. The deuterium isotope effects (D)(V/K) for (4R)-[4-(2)H]-NADPH were markedly increased to 6.3 and 7.4 for K167A and R15A, respectively, indicating that the rate constants for NADPH and NADP(+) dissociation were greatly enhanced relative to the hydride transfer steps. Also, anaerobic stopped-flow analyses revealed that the equilibrium dissociation constant for NADPH binding (K(d)) to be 2.5-3.9 and 1.1 mM for K167A and R15A, respectively, much higher than the 0.4 μM K(d) for the native FRP, whereas the k(cat) of these two variants were similar to that of the wild-type enzyme. Moreover, the K167 to alanine mutation led to even a slight increase in k(cat)/K(m) for NADH. These results, taken together, provide a strong support to the conclusion that K167 and R15 each was critical in the binding of NADPH by FRP. Such a functional role may also exist for other FRP homologous proteins. PMID:22650604

  20. Assignment of the Gene for Adenine Phosphoribosyltransferase to Human Chromosome 16 by Mouse-Human Somatic Cell Hybridization

    PubMed Central

    Tischfield, Jay A.; Ruddle, Frank H.

    1974-01-01

    A series of mouse-human hybrids was prepared from mouse cells deficient in adenine phosphoribosyltransferase (EC 2.4.2.7) and normal human cells. The hybrids were made in medium containing adenine and alanosine, an antimetabolite known to inhibit de novo adenylic acid biosynthesis. The mouse cells, unable to utilize exogenous adenine, were killed in this medium, but the hybrids proliferated as a consequence of their retaining the human aprt gene. The hybrids were then exposed to the adenine analogs 2,6-diaminopurine and 2-fluoroadenine to select for cells that had lost this gene. Before exposure to the adenine analogs, the expression of human adenine phosphoribosyltransferase by the hybrids was strongly associated only with the presence of human chromosome 16, and afterwards this was the only human chromosome consistently lost. This observation suggests that the human aprt gene can be assigned to chromosome 16. Images PMID:4129802

  1. Active mammalian replication origins are associated with a high-density cluster of mCpG dinucleotides.

    PubMed Central

    Rein, T; Zorbas, H; DePamphilis, M L

    1997-01-01

    ori-beta is a well-characterized origin of bidirectional replication (OBR) located approximately 17 kb downstream of the dihydrofolate reductase gene in hamster cell chromosomes. The approximately 2-kb region of ori-beta that exhibits greatest replication initiation activity also contains 12 potential methylation sites in the form of CpG dinucleotides. To ascertain whether DNA methylation might play a role at mammalian replication origins, the methylation status of these sites was examined with bisulfite to chemically distinguish cytosine (C) from 5-methylcytosine (mC). All of the CpGs were methylated, and nine of them were located within 356 bp flanking the minimal OBR, creating a high-density cluster of mCpGs that was approximately 10 times greater than average for human DNA. However, the previously reported densely methylated island in which all cytosines were methylated regardless of their dinucleotide composition was not detected and appeared to be an experimental artifact. A second OBR, located at the 5' end of the RPS14 gene, exhibited a strikingly similar methylation pattern, and the organization of CpG dinucleotides at other mammalian origins revealed the potential for high-density CpG methylation. Moreover, analysis of bromodeoxyuridine-labeled nascent DNA confirmed that active replication origins were methylated. These results suggest that a high-density cluster of mCpG dinucleotides may play a role in either the establishment or the regulation of mammalian replication origins. PMID:8972222

  2. DNA Adenine Methyltransferase Influences the Virulence of Aeromonas hydrophila

    PubMed Central

    Erova, Tatiana E.; Pillai, Lakshmi; Fadl, Amin A.; Sha, Jian; Wang, Shaofei; Galindo, Cristi L.; Chopra, Ashok K.

    2006-01-01

    Among the various virulence factors produced by Aeromonas hydrophila, a type II secretion system (T2SS)-secreted cytotoxic enterotoxin (Act) and the T3SS are crucial in the pathogenesis of Aeromonas-associated infections. Our laboratory molecularly characterized both Act and the T3SS from a diarrheal isolate, SSU of A. hydrophila, and defined the role of some regulatory genes in modulating the biological effects of Act. In this study, we cloned, sequenced, and expressed the DNA adenine methyltransferase gene of A. hydrophila SSU (damAhSSU) in a T7 promoter-based vector system using Escherichia coli ER2566 as a host strain, which could alter the virulence potential of A. hydrophila. Recombinant Dam, designated as M.AhySSUDam, was produced as a histidine-tagged fusion protein and purified from an E. coli cell lysate using nickel affinity chromatography. The purified Dam had methyltransferase activity, based on its ability to transfer a methyl group from S-adenosyl-l-methionine to N6-methyladenine-free lambda DNA and to protect methylated lambda DNA from digestion with DpnII but not against the DpnI restriction enzyme. The dam gene was essential for the viability of the bacterium, and overproduction of Dam in A. hydrophila SSU, using an arabinose-inducible, PBAD promoter-based system, reduced the virulence of this pathogen. Specifically, overproduction of M.AhySSUDam decreased the motility of the bacterium by 58%. Likewise, the T3SS-associated cytotoxicity, as measured by the release of lactate dehydrogenase enzyme in murine macrophages infected with the Dam-overproducing strain, was diminished by 55% compared to that of a control A. hydrophila SSU strain harboring the pBAD vector alone. On the contrary, cytotoxic and hemolytic activities associated with Act as well as the protease activity in the culture supernatant of a Dam-overproducing strain were increased by 10-, 3-, and 2.4-fold, respectively, compared to those of the control A. hydrophila SSU strain. The Dam

  3. A computational study of adenine, uracil, and cytosine adsorption upon AlN and BN nano-cages

    NASA Astrophysics Data System (ADS)

    Baei, Mohammad T.; Taghartapeh, Mohammad Ramezani; Lemeski, E. Tazikeh; Soltani, Alireza

    Density-functional theory calculations are used to investigate the interaction of Al12N12 and B12N12 clusters with the adenine (A), uracil (U), and cytosine (C) molecules. The current calculations demonstrate that these hybrid adsorbent materials are able to adsorb the adenine, uracil, and cytosine molecules through exothermic processes. Our theoretical results reveal improvement in the adsorption of adenine, uracil, and cytosine on Al12N12 and B12N12. It is observed that B12N12 is highly sensitive to adenine, uracil, and cytosine compared with Al12N12 to serve as a biochemical sensor.

  4. Absolute effective cross sections of ionization of adenine and guanine molecules by electron impact

    NASA Astrophysics Data System (ADS)

    Shafranyosh, I. I.; Svida, Yu. Yu.; Sukhoviya, M. I.; Shafranyosh, M. I.; Minaev, B. F.; Baryshnikov, G. V.; Minaeva, V. A.

    2015-10-01

    Effective cross sections of the formation of positive ions of nitrous nucleic acids of adenine and guanine are determined by the crossed electron and molecular beam method in the energy interval from the threshold to 200 eV. It is found that the maximal value of the total cross section of adenine ionization is attained at an energy of 90 eV and is equal to (2.8 ± 0.6) × 10-15 cm2. The maximal value of the total cross section of guanine ionization is equal to (3.2 ± 0.7) × 10-15 cm2 and is observed at an energy of 88 eV. The energy ionization thresholds are determined, which amount to (8.8 ± 0.2) eV for adenine and to (8.3 ± 0.2) eV for guanine. The adenine and guanine mass spectra are measured. The absolute values of partial ionization cross sections of adenine and guanine molecules are determined.

  5. Determination of adenine based on the fluorescence recovery of the L-Tryptophan-Cu2+ complex

    NASA Astrophysics Data System (ADS)

    Duan, Ruilin; Li, Chunyan; Liu, Shaopu; Liu, Zhongfang; Li, Yuanfang; Yuan, Yusheng; Hu, Xiaoli

    2016-01-01

    A simple and sensitive method for determination of adenine was developed based on fluorescence quenching and recovery of L-Tryptophan (L-Trp). The fluorescence of L-Trp could efficiently quenched by copper ion compared with other common metal ions. Upon addition of adenine (Ade) in L-Trp-Cu(II) system, the fluorescence was reoccurred. Under the optimum conditions, the recovery fluorescence intensity was linearly correlated with the concentration of adenine in the range from 0.34 to 25.0 μmol L-1, with a correlation coefficient (R2) of 0.9994. The detection limit (3σ/k) was 0.046 μmol L-1, indicating that this method could applied to detect trace adenine. In this study, amino acids including L-Trp, D-Trp, L-Tyr, D-Tyr, L-Phe, D-Phe were investigated and only L-Trp could well chelated copper ion. Additionally, the mechanism of quench and recovery also were discussed and the method was successfully applied to detect the adenine in DNA with satisfactory results.

  6. Regulation of photolyase in Escherichia coli K-12 during adenine deprivation.

    PubMed Central

    Alcorn, J L; Rupert, C S

    1990-01-01

    DNA photolyase, a DNA repair enzyme encoded by the phr gene of Escherichia coli, is normally regulated at 10 to 20 active molecules per cell. In purA mutants deprived of adenine, this amount increased sixfold within 2 h. Operon fusions placing lacZ under transcriptional control of phr promoters indicated no change in transcription rate during adenine deprivation, and gene fusions of phr with lacZ showed a nearly constant level of translation as well. Immunoblot analysis indicated that the total amount of photolyase protein remained constant during enzyme amplification. On the other hand, treatment of cells with chloramphenicol during the adenine deprivation prevented any increase. DNA regions lying 1.3 to 4.2 kb upstream of the phr coding sequences were necessary for this amplification to occur and for this purpose would function in trans. These results suggest that adenine deprivation leads to a posttranslational change, involving synthesis of protein encoded by sequences lying upstream of phr, which increases photolyase activity. The amplification in activity was found to be reversible, for when adenine was restored, the photolyase activity declined before cell growth resumed. Images PMID:2254263

  7. Spectroscopic investigation on cocrystal formation between adenine and fumaric acid based on infrared and Raman techniques

    NASA Astrophysics Data System (ADS)

    Du, Yong; Fang, Hong Xia; Zhang, Qi; Zhang, Hui Li; Hong, Zhi

    2016-01-01

    As an important component of double-stranded DNA, adenine has powerful hydrogen-bond capability, due to rich hydrogen bond donors and acceptors existing within its molecular structure. Therefore, it is easy to form cocrystal between adenine and other small molecules with intermolecular hydrogen-bond effect. In this work, cocrystal of adenine and fumaric acid has been characterized as model system by FT-IR and FT-Raman spectral techniques. The experimental results show that the cocrystal formed between adenine and fumaric acid possesses unique spectroscopical characteristic compared with that of starting materials. Density functional theory (DFT) calculation has been performed to optimize the molecular structures and simulate vibrational modes of adenine, fumaric acid and the corresponding cocrystal. Combining the theoretical and experimental vibrational results, the characteristic bands corresponding to bending and stretching vibrations of amino and carbonyl groups within cocrystal are shifted into lower frequencies upon cocrystal formation, and the corresponding bond lengths show some increase due to the effect of intermolecular hydrogen bonding. Different vibrational modes shown in the experimental spectra have been assigned based on the simulation DFT results. The study could provide experimental and theoretical benchmarks to characterize cocrystal formed between active ingredients and cocrystal formers and also the intermolecular hydrogen-bond effect within cocrystal formation process by vibrational spectroscopic techniques.

  8. Adenine: an important drug scaffold for the design of antiviral agents

    PubMed Central

    Wang, Changyuan; Song, Zhendong; Yu, Haiqing; Liu, Kexin; Ma, Xiaodong

    2015-01-01

    Adenine derivatives, in particular the scaffold bearing the acyclic nucleoside phosphonates (ANPS), possess significant antiviral and cytostatic activity. Till now, several effective adenine derivatives have been marketed for the treatment of HIV, HBV, CMV and other virus-infected diseases. These compounds are represented by tenofovir (PMPA), a medicine for both HIV and HBV, and adefovir as an anti-HBV agent. More than this, other analogs, such as GS9148, GS9131, and GS7340, are also well-known anti-viral agents that have been progressed to the clinical studies for their excellent activity. In general, the structures of these compounds include an adenine nucleobase linked to a phosphonate side chain. Considerable structural modifications on the scaffold itself and the peripheral sections were made. The structure-activity relationships (SARs) of this skeleton will provide valuable clues to identify more effective adenine derivatives as antiviral drugs. Here, we systematically summarized the SARs of the adenine derivatives, and gave important information for further optimizing this template. PMID:26579473

  9. Paraquat and NADPH-dependent lipid peroxidation in lung microsomes

    SciTech Connect

    Misra, H.P.; Gorsky, L.D.

    1981-10-10

    Since there exists some controversy in the literature as to whether paraquat augments microsomal lipid peroxidation via superoxide anion (O/sub 2//sup -/), the role of paraquat and active oxygen species in NADPH-dependent lung microsomal lipid peroxidation was investigated. Incubation of buffered aerobic mixture of bovine lung microsome and NADPH, in the presence or absence of exogenously added iron, resulted in a progressive formation of lipid peroxides whose accumulation could be followed at 535 nm as malondialdehyde. Paraquat strongly inhibited this lipid peroxidation, Thus, malondialydehyde formation was 50% inhibited by 4 X 10/sup -5/ M paraquat in the reaction mixture. The malondialdehyde color development by lipid peroxides was not affected by this concentration of paraquat. Lipid peroxidation was also strongly inhibited by singlet oxygen scavengers, e.g. dimethylfuran and diphenylfuran, and by catalase. Hydroxyl radical scavengers, e.g. mannitol, benzoate, and ethanol, had little effect in malondialydehyde production. Superoxide dismutase, which removes O/sub 2//sup -/ efficiently, did not inhibit malondialdehyde production by lung microsomes and rather enhanced its formation. A scheme in which paraquat and active O/sub 2/ species may be involved with microsomal lipid peroxidation is presented.

  10. Identification and Characterization of Sclerotinia sclerotiorum NADPH Oxidases▿†

    PubMed Central

    Kim, Hyo-jin; Chen, Changbin; Kabbage, Mehdi; Dickman, Martin B.

    2011-01-01

    Numerous studies have shown both the detrimental and beneficial effects of reactive oxygen species (ROS) in animals, plants, and fungi. These organisms utilize controlled generation of ROS for signaling, pathogenicity, and development. Here, we show that ROS are essential for the pathogenic development of Sclerotinia sclerotiorum, an economically important fungal pathogen with a broad host range. Based on the organism's completed genome sequence, we identified two S. sclerotiorum NADPH oxidases (SsNox1 and SsNox2), which presumably are involved in ROS generation. RNA interference (RNAi) was used to examine the function of SsNox1 and SsNox2. Silencing of SsNox1 expression indicated a central role for this enzyme in both virulence and pathogenic (sclerotial) development, while inactivation of the SsNox2 gene resulted in limited sclerotial development, but the organism remained fully pathogenic. ΔSsnox1 strains had reduced ROS levels, were unable to develop sclerotia, and unexpectedly correlated with significantly reduced oxalate production. These results are in accordance with previous observations indicating that fungal NADPH oxidases are required for pathogenic development and are consistent with the importance of ROS regulation in the successful pathogenesis of S. sclerotiorum. PMID:21890677

  11. Purification and partial characterization of NADPH-cytochrome c reductase from Petunia hybrida flowers.

    PubMed Central

    Menting, J G; Cornish, E; Scopes, R K

    1994-01-01

    NADPH-cytochrome c reductase was solubilized from the microsomal fraction of Petunia hybrida flowers by 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate detergent and purified by adenosine 2',5'-bisphosphate-Sepharose chromatography, followed by high-performance anion-exchange chromatography. Two proteins with molecular sizes of 75 and 81 kD were detected in the purified preparation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Western blot analysis showed that both purified proteins cross-reacted with two different monoclonal antibodies raised against P. hybrida NADPH-cytochrome c reductase and rabbit anti-Jerusalem artichoke NADPH-cytochrome P450 reductase antibodies. Only one 84-kD protein was detected by western blot analysis of fresh microsomal extracts. Amino acid sequence analysis of tryptic peptides revealed significant similarity to the NADPH binding region of plant and animal NADPH-cytochrome P450 reductases and Bacillus megaterium cytochrome P450:NADPH-cytochrome P450 reductase. The pH optimum for reduction of ferricytochrome c was 7.4 and the Km values for the binding of NADPH and ferricytochrome c were 9.2 and 2.8 microM, respectively. We believe that the purified enzyme is a P. hybrida NADPH-cytochrome P450 reductase (EC 1.6.2.4). PMID:7991686

  12. Malic enzyme tracers reveal hypoxia-induced switch in adipocyte NADPH pathway usage.

    PubMed

    Liu, Ling; Shah, Supriya; Fan, Jing; Park, Junyoung O; Wellen, Kathryn E; Rabinowitz, Joshua D

    2016-05-01

    The critical cellular hydride donor NADPH is produced through various means, including the oxidative pentose phosphate pathway (oxPPP), folate metabolism and malic enzyme. In growing cells, it is efficient to produce NADPH via the oxPPP and folate metabolism, which also make nucleotide precursors. In nonproliferating adipocytes, a metabolic cycle involving malic enzyme holds the potential to make both NADPH and two-carbon units for fat synthesis. Recently developed deuterium ((2)H) tracer methods have enabled direct measurement of NADPH production by the oxPPP and folate metabolism. Here we enable tracking of NADPH production by malic enzyme with [2,2,3,3-(2)H]dimethyl-succinate and [4-(2)H]glucose. Using these tracers, we show that most NADPH in differentiating 3T3-L1 mouse adipocytes is made by malic enzyme. The associated metabolic cycle is disrupted by hypoxia, which switches the main adipocyte NADPH source to the oxPPP. Thus, (2)H-labeled tracers enable dissection of NADPH production routes across cell types and environmental conditions. PMID:26999781

  13. Adenine phosphoribosyltransferase deficiency as a rare cause of renal allograft dysfunction.

    PubMed

    Kaartinen, Kati; Hemmilä, Ulla; Salmela, Kaija; Räisänen-Sokolowski, Anne; Kouri, Timo; Mäkelä, Satu

    2014-04-01

    Adenine phosphoribosyltransferase deficiency is a rare autosomal recessive disorder manifesting as urolithiasis or crystalline nephropathy. It leads to the generation of large amounts of poorly soluble 2,8-dihydroxyadenine excreted in urine, yielding kidney injury and in some patients, kidney failure. Early recognition of the disease, institution of xanthine analog therapy to block the formation of 2,8-dihydroxyadenine, high fluid intake, and low purine diet prevent CKD. Because of symptom variability and lack of awareness, however, the diagnosis is sometimes extremely deferred. We describe a patient with adenine phosphoribosyltransferase deficiency who was diagnosed during evaluation of a poorly functioning second kidney allograft. This report highlights the risk of renal allograft loss in patients with undiagnosed adenine phosphoribosyltransferase deficiency and the need for improved early detection of this disease. PMID:24459232

  14. Unique modification of adenine in genomic DNA of the marine cyanobacterium Trichodesmium sp. strain NIBB 1067.

    PubMed Central

    Zehr, J P; Ohki, K; Fujita, Y; Landry, D

    1991-01-01

    The genomic DNA of the marine nonheterocystous nitrogen-fixing cyanobacterium Trichodesmium sp. strain NIBB 1067 was found to be highly resistant to DNA restriction endonucleases. The DNA was digested extensively by the restriction enzyme DpnI, which requires adenine methylation for activity. The DNA composition, determined by high-performance liquid chromatography (HPLC), was found to be 69% AT. Surprisingly, it was found that a modified adenine which was not methylated at the usual N6 position was present and made up 4.7 mol% of the nucleosides in Trichodesmium DNA (15 mol% of deoxyadenosine). In order for adenine residues to be modified at this many positions, there must be many modifying enzymes or at least one of the modifying enzymes must have a degenerate recognition site. The reason(s) for this extensive methylation has not yet been determined but may have implications for the ecological success of this microorganism in nature. Images FIG. 1 FIG. 2 PMID:1657876

  15. A novel NADPH:(bound) NADP+ reductase and NADH:(bound) NADP+ transhydrogenase function in bovine liver catalase.

    PubMed

    Gaetani, Gian F; Ferraris, Anna M; Sanna, Paola; Kirkman, Henry N

    2005-02-01

    Many catalases have the shared property of containing bound NADPH and being susceptible to inactivation by their own substrate, H2O2. The presence of additional (unbound) NADPH effectively prevents bovine liver and human erythrocytic catalase from becoming compound II, the reversibly inactivated state of catalase, and NADP+ is known to be generated in the process. The function of the bound NADPH, which is tightly bound in bovine liver catalase, has been unknown. The present study with bovine liver catalase and [14C]NADPH and [14C]NADH revealed that unbound NADPH or NADH are substrates for an internal reductase and transhydrogenase reaction respectively; the unbound NADPH or NADH cause tightly bound NADP+ to become NADPH without becoming tightly bound themselves. This and other results provide insight into the function of tightly bound NADPH. PMID:15456401

  16. Ultra-performance liquid chromatography tandem mass-spectrometry (uplc-ms/ms) for the rapid, simultaneous analysis of thiamin, riboflavin, flavin adenine dinucleotide, nicotinamide and pyridoxal in human milk

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel, rapid and sensitive Ultra Performance Liquid-Chromatography tandem Mass-Spectrometry (UPLC-MS/MS) method for the simultaneous determination of several B-vitamins in human milk was developed. Resolution by retention time or multiple reaction monitoring (MRM) for thiamin, riboflavin, flavin a...

  17. One-step versus stepwise mechanism in protonated amino acid-promoted electron-transfer reduction of a quinone by electron donors and two-electron reduction by a dihydronicotinamide adenine dinucleotide analogue. Interplay between electron transfer and hydrogen bonding.

    PubMed

    Yuasa, Junpei; Yamada, Shunsuke; Fukuzumi, Shunichi

    2008-04-30

    Semiquinone radical anion of 1-(p-tolylsulfinyl)-2,5-benzoquinone (TolSQ(*-)) forms a strong hydrogen bond with protonated histidine (TolSQ(*-)/His x 2 H(+)), which was successfully detected by electron spin resonance. Strong hydrogen bonding between TolSQ(*-) and His x 2 H(+) results in acceleration of electron transfer (ET) from ferrocenes [R2Fc, R = C5H5, C5H4(n-Bu), C5H4Me] to TolSQ, when the one-electron reduction potential of TolSQ is largely shifted to the positive direction in the presence of His x 2 H(+). The rates of His x 2 H(+)-promoted ET from R2Fc to TolSQ exhibit deuterium kinetic isotope effects due to partial dissociation of the N-H bond in His x 2 H(+) at the transition state, when His x 2 H(+) is replaced by the deuterated compound (His x 2 D(+)-d6). The observed deuterium kinetic isotope effect (kH/kD) decreases continuously with increasing the driving force of ET to approach kH/kD = 1.0. On the other hand, His x 2 H(+) also promotes a hydride reduction of TolSQ by an NADH analogue, 9,10-dihydro-10-methylacridine (AcrH2). The hydride reduction proceeds via the one-step hydride-transfer pathway. In such a case, a large deuterium kinetic isotope effect is observed in the rate of the hydride transfer, when AcrH2 is replaced by the dideuterated compound (AcrD2). In sharp contrast to this, no deuterium kinetic isotope effect is observed, when His x 2 H(+) is replaced by His x 2 D(+)-d6. On the other hand, direct protonation of TolSQ and 9,10-phenanthrenequinone (PQ) also results in efficient reductions of TolSQH(+) and PQH(+) by AcrH2, respectively. In this case, however, the hydride-transfer reactions occur via the ET pathway, that is, ET from AcrH2 to TolSQH(+) and PQH(+) occurs in preference to direct hydride transfer from AcrH2 to TolSQH(+) and PQH(+), respectively. The AcrH2(*+) produced by the ET oxidation of AcrH2 by TolSQH(+) and PQH(+) was directly detected by using a stopped-flow technique. PMID:18386924

  18. Incorporation of L-[1-14C]leucine into protein by liver postmitochondrial supernatant: opposing effects of preincubated nicotinamide-adenine dinucleotide phosphate and 4-dimethylamino-3'-methylazobenzene.

    PubMed Central

    Madsen, N P; Labuc, J E

    1975-01-01

    Combination of preincubated drug-metabolizing medium containing NADP+ with a cell-free protein-synthesizing system resulted in marked stimulation of incorporation of L-[1-14C]leucine into protein. Addition of 4-dimethylamino-3'-methylazobenzene, present and previously preincubated in the drug-metabolizing medium, decreased this effect. PMID:239694

  19. Effects of increased mechanical work by isolated perfused rat heart during production or uptake of ketone bodies. Assessment of mitochondrial oxidized to reduced free nicotinamide-adenine dinucleotide ratios and oxaloacetate concentrations.

    PubMed Central

    Opie, L H; Owen, P

    1975-01-01

    Metabolic effects of increased mechanical work were studied by comparing isolated pumping rat hearts perfused by the atrial-filling technique with aortic-perfused non-pumping hearts perfused by the technique of Langendorff. The initial medium usually contained glucose (11 mm) and palmitate (0.6 mm bound to 0.1 mm albumin). During increased heart work (comparing pumping with non-pumping hearts) the uptake of oxygen and glucose increased threefold, but that of free fatty acids was unchanged. Tissue contents of alpha-oxoglutarate, NH4+, malate, lactate, pyruvate and Pi rose with increased heart work, but contents of ATP, phosphocreatine and citrate fell. Ketone bodies were produced with a ratio of beta-hydroxybutyrate/acetoacetate of about 3:1 in both pumping and non-pumping hearts but with higher net production rates in non-pumping hearts. When ketone bodies were added in relatively high concentrations (total 4 mm) to a glucose (11 mm) medium the medium, ratios of beta-hydroxybutyrate/acetoacetate were not steady even after 60 min of perfusion. The validity of calculating mitochondrial free NAD+/NADH ratios from the tissue contents of the reactants of the glutamate dehydrogenase system or the beta-hydroxybutyrate dehydrogenase system is assessed. The activities of these enzymes are considerably less in the rat heart than in the rat liver, introducing reservations into the application to the heart of the principles used by Williamson et al. (1967) for calculation of mitochondrial free NAD+/NADH ratios of liver mitochondria... PMID:173281

  20. Separating NADH and NADPH fluorescence in live cells and tissues using FLIM

    NASA Astrophysics Data System (ADS)

    Blacker, Thomas S.; Mann, Zoe F.; Gale, Jonathan E.; Ziegler, Mathias; Bain, Angus J.; Szabadkai, Gyorgy; Duchen, Michael R.

    2014-05-01

    NAD is a key determinant of cellular energy metabolism. In contrast, its phosphorylated form, NADP, plays a central role in biosynthetic pathways and antioxidant defence. The reduced forms of both pyridine nucleotides are fluorescent in living cells but they cannot be distinguished, as they are spectrally identical. Here, using genetic and pharmacological approaches to perturb NAD(P)H metabolism, we find that fluorescence lifetime imaging (FLIM) differentiates quantitatively between the two cofactors. Systematic manipulations to change the balance between oxidative and glycolytic metabolism suggest that these states do not directly impact NAD(P)H fluorescence decay rates. The lifetime changes observed in cancers thus likely reflect shifts in the NADPH/NADH balance. Using a mathematical model, we use these experimental data to quantify the relative levels of NADH and NADPH in different cell types of a complex tissue, the mammalian cochlea. This reveals NADPH-enriched populations of cells, raising questions about their distinct metabolic roles.

  1. NADPH Oxidase 1 and Its Derived Reactive Oxygen Species Mediated Tissue Injury and Repair

    PubMed Central

    Fu, Xiu-Jun; Peng, Ying-Bo; Hu, Yi-Ping; Shi, You-Zhen; Yao, Min; Zhang, Xiong

    2014-01-01

    Reactive oxygen species are mostly viewed to cause oxidative damage to various cells and induce organ dysfunction after ischemia-reperfusion injury. However, they are also considered as crucial molecules for cellular signal transduction in biology. NADPH oxidase, whose only function is reactive oxygen species production, has been extensively investigated in many cell types especially phagocytes. The deficiency of NADPH oxidase extends the process of inflammation and delays tissue repair, which causes chronic granulomatous disease in patients. NADPH oxidase 1, one member of the NADPH oxidase family, is not only constitutively expressed in a variety of tissues, but also induced to increase expression in both mRNA and protein levels under many circumstances. NADPH oxidase 1 and its derived reactive oxygen species are suggested to be able to regulate inflammation reaction, cell proliferation and migration, and extracellular matrix synthesis, which contribute to the processes of tissue injury and repair. PMID:24669283

  2. Comparative study of spontaneous deamination of adenine and cytosine in unbuffered aqueous solution at room temperature

    NASA Astrophysics Data System (ADS)

    Wang, Shiliang; Hu, Anguang

    2016-06-01

    Adenine in unbuffered nanopure water at a concentration of 2 mM is completely deaminated (>99%) to hypoxanthine at room temperature in ca. 10 weeks, with an estimated half-life (t1/2) less than 10 days, about six orders of magnitude faster than previously reported. Cytosine is not deaminated under the same condition, even after 3 years. This is in contrast to previous observations that cytosine deaminates 20-40 times faster than adenine free base, in nucleoside, in nucleotide and in single-stranded DNA in buffered neutral aqueous solutions.

  3. Copper-catalyzed intramolecular cyclization of N-propargyl-adenine: synthesis of purine-fused tricyclics.

    PubMed

    Li, Ren-Long; Liang, Lei; Xie, Ming-Sheng; Qu, Gui-Rong; Niu, Hong-Ying; Guo, Hai-Ming

    2014-04-18

    A novel protocol to construct fluorescent purine-fused tricyclic products via intramolecular cyclization of N-propargyl-adenine has been developed. With CuBr as the catalyst, a series of purine-fused tricyclic products were obtained in good to excellent yields (19 examples, 75-89% yields). When R2 was a hydrogen atom in N-propargyl-adenines, the reactions only afforded the endocyclic double bond products. When R2 was an aryl group, the electron-donating groups favored the endocyclic double bond products, while the electron-withdrawing groups favored the exocyclic double bond products. PMID:24678722

  4. Antioxidant Protection of NADPH-Depleted Oligodendrocyte Precursor Cells Is Dependent on Supply of Reduced Glutathione

    PubMed Central

    Kilanczyk, Ewa; Saraswat Ohri, Sujata; Whittemore, Scott R.

    2016-01-01

    The pentose phosphate pathway is the main source of NADPH, which by reducing oxidized glutathione, contributes to antioxidant defenses. Although oxidative stress plays a major role in white matter injury, significance of NADPH for oligodendrocyte survival has not been yet investigated. It is reported here that the NADPH antimetabolite 6-amino-NADP (6AN) was cytotoxic to cultured adult rat spinal cord oligodendrocyte precursor cells (OPCs) as well as OPC-derived oligodendrocytes. The 6AN-induced necrosis was preceded by increased production of superoxide, NADPH depletion, and lower supply of reduced glutathione. Moreover, survival of NADPH-depleted OPCs was improved by the antioxidant drug trolox. Such cells were also protected by physiological concentrations of the neurosteroid dehydroepiandrosterone (10−8 M). The protection by dehydroepiandrosterone was associated with restoration of reduced glutathione, but not NADPH, and was sensitive to inhibition of glutathione synthesis. A similar protective mechanism was engaged by the cAMP activator forskolin or the G protein-coupled estrogen receptor (GPER/GPR30) ligand G1. Finally, treatment with the glutathione precursor N-acetyl cysteine reduced cytotoxicity of 6AN. Taken together, NADPH is critical for survival of OPCs by supporting their antioxidant defenses. Consequently, injury-associated inhibition of the pentose phosphate pathway may be detrimental for the myelination or remyelination potential of the white matter. Conversely, steroid hormones and cAMP activators may promote survival of NADPH-deprived OPCs by increasing a NADPH-independent supply of reduced glutathione. Therefore, maintenance of glutathione homeostasis appears as a critical effector mechanism for OPC protection against NADPH depletion and preservation of the regenerative potential of the injured white matter. PMID:27449129

  5. Antioxidant Protection of NADPH-Depleted Oligodendrocyte Precursor Cells Is Dependent on Supply of Reduced Glutathione.

    PubMed

    Kilanczyk, Ewa; Saraswat Ohri, Sujata; Whittemore, Scott R; Hetman, Michal

    2016-08-01

    The pentose phosphate pathway is the main source of NADPH, which by reducing oxidized glutathione, contributes to antioxidant defenses. Although oxidative stress plays a major role in white matter injury, significance of NADPH for oligodendrocyte survival has not been yet investigated. It is reported here that the NADPH antimetabolite 6-amino-NADP (6AN) was cytotoxic to cultured adult rat spinal cord oligodendrocyte precursor cells (OPCs) as well as OPC-derived oligodendrocytes. The 6AN-induced necrosis was preceded by increased production of superoxide, NADPH depletion, and lower supply of reduced glutathione. Moreover, survival of NADPH-depleted OPCs was improved by the antioxidant drug trolox. Such cells were also protected by physiological concentrations of the neurosteroid dehydroepiandrosterone (10(-8) M). The protection by dehydroepiandrosterone was associated with restoration of reduced glutathione, but not NADPH, and was sensitive to inhibition of glutathione synthesis. A similar protective mechanism was engaged by the cAMP activator forskolin or the G protein-coupled estrogen receptor (GPER/GPR30) ligand G1. Finally, treatment with the glutathione precursor N-acetyl cysteine reduced cytotoxicity of 6AN. Taken together, NADPH is critical for survival of OPCs by supporting their antioxidant defenses. Consequently, injury-associated inhibition of the pentose phosphate pathway may be detrimental for the myelination or remyelination potential of the white matter. Conversely, steroid hormones and cAMP activators may promote survival of NADPH-deprived OPCs by increasing a NADPH-independent supply of reduced glutathione. Therefore, maintenance of glutathione homeostasis appears as a critical effector mechanism for OPC protection against NADPH depletion and preservation of the regenerative potential of the injured white matter. PMID:27449129

  6. Efficient UV-induced charge separation and recombination in an 8-oxoguanine-containing dinucleotide.

    PubMed

    Zhang, Yuyuan; Dood, Jordan; Beckstead, Ashley A; Li, Xi-Bo; Nguyen, Khiem V; Burrows, Cynthia J; Improta, Roberto; Kohler, Bern

    2014-08-12

    During the early evolution of life, 8-oxo-7,8-dihydro-2'-deoxyguanosine (O) may have functioned as a proto-flavin capable of repairing cyclobutane pyrimidine dimers in DNA or RNA by photoinduced electron transfer using longer wavelength UVB radiation. To investigate the ability of O to act as an excited-state electron donor, a dinucleotide mimic of the FADH2 cofactor containing O at the 5'-end and 2'-deoxyadenosine at the 3'-end was studied by femtosecond transient absorption spectroscopy in aqueous solution. Following excitation with a UV pulse, a broadband mid-IR pulse probed vibrational modes of ground-state and electronically excited molecules in the double-bond stretching region. Global analysis of time- and frequency-resolved transient absorption data coupled with ab initio quantum mechanical calculations reveal vibrational marker bands of nucleobase radical ions formed by electron transfer from O to 2'-deoxyadenosine. The quantum yield of charge separation is 0.4 at 265 nm, but decreases to 0.1 at 295 nm. Charge recombination occurs in 60 ps before the O radical cation can lose a deuteron to water. Kinetic and thermodynamic considerations strongly suggest that all nucleobases can undergo ultrafast charge separation when π-stacked in DNA or RNA. Interbase charge transfer is proposed to be a major decay pathway for UV excited states of nucleic acids of great importance for photostability as well as photoredox activity. PMID:25071180

  7. Predicting DNA Methylation State of CpG Dinucleotide Using Genome Topological Features and Deep Networks

    NASA Astrophysics Data System (ADS)

    Wang, Yiheng; Liu, Tong; Xu, Dong; Shi, Huidong; Zhang, Chaoyang; Mo, Yin-Yuan; Wang, Zheng

    2016-01-01

    The hypo- or hyper-methylation of the human genome is one of the epigenetic features of leukemia. However, experimental approaches have only determined the methylation state of a small portion of the human genome. We developed deep learning based (stacked denoising autoencoders, or SdAs) software named “DeepMethyl” to predict the methylation state of DNA CpG dinucleotides using features inferred from three-dimensional genome topology (based on Hi-C) and DNA sequence patterns. We used the experimental data from immortalised myelogenous leukemia (K562) and healthy lymphoblastoid (GM12878) cell lines to train the learning models and assess prediction performance. We have tested various SdA architectures with different configurations of hidden layer(s) and amount of pre-training data and compared the performance of deep networks relative to support vector machines (SVMs). Using the methylation states of sequentially neighboring regions as one of the learning features, an SdA achieved a blind test accuracy of 89.7% for GM12878 and 88.6% for K562. When the methylation states of sequentially neighboring regions are unknown, the accuracies are 84.82% for GM12878 and 72.01% for K562. We also analyzed the contribution of genome topological features inferred from Hi-C. DeepMethyl can be accessed at http://dna.cs.usm.edu/deepmethyl/.

  8. High Resolution Detection and Analysis of CpG Dinucleotides Methylation Using MBD-Seq Technology

    PubMed Central

    Lan, Xun; Adams, Christopher; Landers, Mark; Dudas, Miroslav; Krissinger, Daniel; Marnellos, George; Bonneville, Russell; Xu, Maoxiong; Wang, Junbai; Huang, Tim H.-M.; Meredith, Gavin; Jin, Victor X.

    2011-01-01

    Methyl-CpG binding domain protein sequencing (MBD-seq) is widely used to survey DNA methylation patterns. However, the optimal experimental parameters for MBD-seq remain unclear and the data analysis remains challenging. In this study, we generated high depth MBD-seq data in MCF-7 cell and developed a bi-asymmetric-Laplace model (BALM) to perform data analysis. We found that optimal efficiency of MBD-seq experiments was achieved by sequencing ∼100 million unique mapped tags from a combination of 500 mM and 1000 mM salt concentration elution in MCF-7 cells. Clonal bisulfite sequencing results showed that the methylation status of each CpG dinucleotides in the tested regions was accurately detected with high resolution using the proposed model. These results demonstrated the combination of MBD-seq and BALM could serve as a useful tool to investigate DNA methylome due to its low cost, high specificity, efficiency and resolution. PMID:21779396

  9. Predicting DNA Methylation State of CpG Dinucleotide Using Genome Topological Features and Deep Networks.

    PubMed

    Wang, Yiheng; Liu, Tong; Xu, Dong; Shi, Huidong; Zhang, Chaoyang; Mo, Yin-Yuan; Wang, Zheng

    2016-01-01

    The hypo- or hyper-methylation of the human genome is one of the epigenetic features of leukemia. However, experimental approaches have only determined the methylation state of a small portion of the human genome. We developed deep learning based (stacked denoising autoencoders, or SdAs) software named "DeepMethyl" to predict the methylation state of DNA CpG dinucleotides using features inferred from three-dimensional genome topology (based on Hi-C) and DNA sequence patterns. We used the experimental data from immortalised myelogenous leukemia (K562) and healthy lymphoblastoid (GM12878) cell lines to train the learning models and assess prediction performance. We have tested various SdA architectures with different configurations of hidden layer(s) and amount of pre-training data and compared the performance of deep networks relative to support vector machines (SVMs). Using the methylation states of sequentially neighboring regions as one of the learning features, an SdA achieved a blind test accuracy of 89.7% for GM12878 and 88.6% for K562. When the methylation states of sequentially neighboring regions are unknown, the accuracies are 84.82% for GM12878 and 72.01% for K562. We also analyzed the contribution of genome topological features inferred from Hi-C. DeepMethyl can be accessed at http://dna.cs.usm.edu/deepmethyl/. PMID:26797014

  10. bis-Molybdopterin Guanine Dinucleotide Is Required for Persistence of Mycobacterium tuberculosis in Guinea Pigs

    PubMed Central

    Williams, Monique J.; Shanley, Crystal A.; Zilavy, Andrew; Peixoto, Blas; Manca, Claudia; Kaplan, Gilla; Orme, Ian M.; Mizrahi, Valerie

    2014-01-01

    Mycobacterium tuberculosis is able to synthesize molybdopterin cofactor (MoCo), which is utilized by numerous enzymes that catalyze redox reactions in carbon, nitrogen, and sulfur metabolism. In bacteria, MoCo is further modified through the activity of a guanylyltransferase, MobA, which converts MoCo to bis-molybdopterin guanine dinucleotide (bis-MGD), a form of the cofactor that is required by the dimethylsulfoxide (DMSO) reductase family of enzymes, which includes the nitrate reductase NarGHI. In this study, the functionality of the mobA homolog in M. tuberculosis was confirmed by demonstrating the loss of assimilatory and respiratory nitrate reductase activity in a mobA deletion mutant. This mutant displayed no survival defects in human monocytes or mouse lungs but failed to persist in the lungs of guinea pigs. These results implicate one or more bis-MGD-dependent enzymes in the persistence of M. tuberculosis in guinea pig lungs and underscore the applicability of this animal model for assessing the role of molybdoenzymes in this pathogen. PMID:25404027

  11. High resolution detection and analysis of CpG dinucleotides methylation using MBD-Seq technology.

    PubMed

    Lan, Xun; Adams, Christopher; Landers, Mark; Dudas, Miroslav; Krissinger, Daniel; Marnellos, George; Bonneville, Russell; Xu, Maoxiong; Wang, Junbai; Huang, Tim H-M; Meredith, Gavin; Jin, Victor X

    2011-01-01

    Methyl-CpG binding domain protein sequencing (MBD-seq) is widely used to survey DNA methylation patterns. However, the optimal experimental parameters for MBD-seq remain unclear and the data analysis remains challenging. In this study, we generated high depth MBD-seq data in MCF-7 cell and developed a bi-asymmetric-Laplace model (BALM) to perform data analysis. We found that optimal efficiency of MBD-seq experiments was achieved by sequencing ∼100 million unique mapped tags from a combination of 500 mM and 1000 mM salt concentration elution in MCF-7 cells. Clonal bisulfite sequencing results showed that the methylation status of each CpG dinucleotides in the tested regions was accurately detected with high resolution using the proposed model. These results demonstrated the combination of MBD-seq and BALM could serve as a useful tool to investigate DNA methylome due to its low cost, high specificity, efficiency and resolution. PMID:21779396

  12. Predicting DNA Methylation State of CpG Dinucleotide Using Genome Topological Features and Deep Networks

    PubMed Central

    Wang, Yiheng; Liu, Tong; Xu, Dong; Shi, Huidong; Zhang, Chaoyang; Mo, Yin-Yuan; Wang, Zheng

    2016-01-01

    The hypo- or hyper-methylation of the human genome is one of the epigenetic features of leukemia. However, experimental approaches have only determined the methylation state of a small portion of the human genome. We developed deep learning based (stacked denoising autoencoders, or SdAs) software named “DeepMethyl” to predict the methylation state of DNA CpG dinucleotides using features inferred from three-dimensional genome topology (based on Hi-C) and DNA sequence patterns. We used the experimental data from immortalised myelogenous leukemia (K562) and healthy lymphoblastoid (GM12878) cell lines to train the learning models and assess prediction performance. We have tested various SdA architectures with different configurations of hidden layer(s) and amount of pre-training data and compared the performance of deep networks relative to support vector machines (SVMs). Using the methylation states of sequentially neighboring regions as one of the learning features, an SdA achieved a blind test accuracy of 89.7% for GM12878 and 88.6% for K562. When the methylation states of sequentially neighboring regions are unknown, the accuracies are 84.82% for GM12878 and 72.01% for K562. We also analyzed the contribution of genome topological features inferred from Hi-C. DeepMethyl can be accessed at http://dna.cs.usm.edu/deepmethyl/. PMID:26797014

  13. A multicopy dinucleotide marker that maps close to the spinal muscular atrophy gene

    SciTech Connect

    Burghes, A.H.M.; Ingraham, S.E.; Kote-Jarai, Z.; Carpten, J.D.; DiDonato, C.J. ); McLean, M.; Surh, L. ); Thompson, T.G.; McPherson, J.D. ); Ikeda, J.E. ); Wirth, B. )

    1994-05-15

    Spinal muscular atrophy (SMA) is a common autosomal recessive disorder resulting in loss of motor neurons. The interval containing the SMA gene has been defined by linkage analysis as 5qcen-D5S435-SMA-D5S557-5qter. The authors have isolated a new dinucleotide repeat marker, CATT1, that lies between these two closest markers. The marker CATT1 has 16 alleles and is highly polymorphic. The marker can have 1 to 4 (or more) copies per chromosome, giving rise to individuals with up to 8 (or more) alleles. All of the subloci map between the markers D5S557 and D5S435 and lie in close proximity to one another. The marker CATT1 is linked to the SMA gene with a lod score of Z[sub max] = 34.42 at [theta] = 0 and crosses all available recombinants. Certain alleles occurred more frequently in either the SMA or normal populations, indicating significant allelic association between CATT1 and the SMA locus. Haplotype analysis combining US and Canadian SMA families reveals that one haplotype group (VII) occurs significantly more frequently in the SMA population than in the normal. This confirms the allelic association of CATT1 with the SMA locus. 37 refs., 4 figs., 3 tabs.

  14. Traumatic Brain Injury and NADPH Oxidase: A Deep Relationship

    PubMed Central

    Prata, Cecilia; Vieceli Dalla Sega, Francesco; Piperno, Roberto; Hrelia, Silvana

    2015-01-01

    Traumatic brain injury (TBI) represents one of the major causes of mortality and disability in the world. TBI is characterized by primary damage resulting from the mechanical forces applied to the head as a direct result of the trauma and by the subsequent secondary injury due to a complex cascade of biochemical events that eventually lead to neuronal cell death. Oxidative stress plays a pivotal role in the genesis of the delayed harmful effects contributing to permanent damage. NADPH oxidases (Nox), ubiquitary membrane multisubunit enzymes whose unique function is the production of reactive oxygen species (ROS), have been shown to be a major source of ROS in the brain and to be involved in several neurological diseases. Emerging evidence demonstrates that Nox is upregulated after TBI, suggesting Nox critical role in the onset and development of this pathology. In this review, we summarize the current evidence about the role of Nox enzymes in the pathophysiology of TBI. PMID:25918580

  15. NADPH Oxidase: A Potential Target for Treatment of Stroke

    PubMed Central

    Zhang, Li; Wu, Jie; Duan, Xiaochun; Tian, Xiaodi; Shen, Haitao; Sun, Qing; Chen, Gang

    2016-01-01

    Stroke is the third leading cause of death in industrialized nations. Oxidative stress is involved in the pathogenesis of stroke, and excessive generation of reactive oxygen species (ROS) by mitochondria is thought to be the main cause of oxidative stress. NADPH oxidase (NOX) enzymes have recently been identified and studied as important producers of ROS in brain tissues after stroke. Several reports have shown that knockout or deletion of NOX exerts a neuroprotective effect in three major experimental stroke models. Recent studies also confirmed that NOX inhibitors ameliorate brain injury and improve neurological outcome after stroke. However, the physiological and pathophysiological roles of NOX enzymes in the central nervous system (CNS) are not known well. In this review, we provide a comprehensive summary of our current understanding about expression and physiological function of NOX enzymes in the CNS and its pathophysiological roles in the three major types of stroke: ischemic stroke, intracerebral hemorrhage, and subarachnoid hemorrhage. PMID:26941888

  16. A subset of N-substituted phenothiazines inhibits NADPH oxidases.

    PubMed

    Seredenina, Tamara; Chiriano, Gianpaolo; Filippova, Aleksandra; Nayernia, Zeynab; Mahiout, Zahia; Fioraso-Cartier, Laetitia; Plastre, Olivier; Scapozza, Leonardo; Krause, Karl-Heinz; Jaquet, Vincent

    2015-09-01

    NADPH oxidases (NOXs) constitute a family of enzymes generating reactive oxygen species (ROS) and are increasingly recognized as interesting drug targets. Here we investigated the effects of 10 phenothiazine compounds on NOX activity using an extensive panel of assays to measure production of ROS (Amplex red, WST-1, MCLA) and oxygen consumption. Striking differences between highly similar phenothiazines were observed. Two phenothiazines without N-substitution, including ML171, did not inhibit NOX enzymes, but showed assay interference. Introduction of an aliphatic amine chain on the N atom of the phenothiazine B ring (promazine) conferred inhibitory activity toward NOX2, NOX4, and NOX5 but not NOX1 and NOX3. Addition of an electron-attracting substituent in position 2 of the C ring extended the inhibitory activity to NOX1 and NOX3, with thioridazine being the most potent inhibitor. In contrast, the presence of a methylsulfoxide group at the same position (mesoridazine) entirely abolished NOX-inhibitory activity. A cell-free NOX2 assay suggested that inhibition by N-substituted phenothiazines was not due to competition with NADPH. A functional implication of NOX-inhibitory activity of thioridazine was demonstrated by its ability to block redox-dependent myofibroblast differentiation. Our results demonstrate that NOX-inhibitory activity is not a common feature of all antipsychotic phenothiazines and that substitution on the B-ring nitrogen is crucial for the activity, whereas that on the second position of the C ring modulates it. Our findings contribute to a better understanding of NOX pharmacology and might pave the path to discovery of more potent and selective NOX inhibitors. PMID:26013584

  17. NADPH oxidase 2 plays a role in experimental corneal neovascularization.

    PubMed

    Chan, Elsa C; van Wijngaarden, Peter; Chan, Elsie; Ngo, Darleen; Wang, Jiang-Hui; Peshavariya, Hitesh M; Dusting, Gregory J; Liu, Guei-Sheung

    2016-05-01

    Corneal neovascularization, the growth of new blood vessels in the cornea, is a leading cause of vision impairment after corneal injury. Neovascularization typically occurs in response to corneal injury such as that caused by infection, physical trauma, chemical burns or in the setting of corneal transplant rejection. The NADPH oxidase enzyme complex is involved in cell signalling for wound-healing angiogenesis, but its role in corneal neovascularization has not been studied. We have now analysed the role of the Nox2 isoform of NADPH oxidase in corneal neovascularization in mice following chemical injury. C57BL/6 mice aged 8-14 weeks were cauterized with an applicator coated with 75% silver nitrate and 25% potassium nitrate for 8 s. Neovascularization extending radially from limbal vessels was observed in corneal whole-mounts from cauterized wild type mice and CD31+ vessels were identified in cauterized corneal sections at day 7. In contrast, in Nox2 knockout (Nox2 KO) mice vascular endothelial growth factor-A (Vegf-A), Flt1 mRNA expression, and the extent of corneal neovascularization were all markedly reduced compared with their wild type controls. The accumulation of Iba-1+ microglia and macrophages in the cornea was significantly less in Nox2 KO than in wild type mice. In conclusion, we have demonstrated that Nox2 is implicated in the inflammatory and neovascular response to corneal chemical injury in mice and clearly VEGF is a mediator of this effect. This work raises the possibility that therapies targeting Nox2 may have potential for suppressing corneal neovascularization and inflammation in humans. PMID:26814205

  18. Apocynin: chemical and biophysical properties of a NADPH oxidase inhibitor.

    PubMed

    Petrônio, Maicon S; Zeraik, Maria Luiza; Fonseca, Luiz Marcos da; Ximenes, Valdecir F

    2013-01-01

    Apocynin is the most employed inhibitor of NADPH oxidase (NOX), a multienzymatic complex capable of catalyzing the one-electron reduction of molecular oxygen to the superoxide anion. Despite controversies about its selectivity, apocynin has been used as one of the most promising drugs in experimental models of inflammatory and neurodegenerative diseases. Here, we aimed to study the chemical and biophysical properties of apocynin. The oxidation potential was determined by cyclic voltammetry (Epa = 0.76V), the hydrophobicity index was calculated (logP = 0.83) and the molar absorption coefficient was determined (e275nm = 1.1 × 104 M-1 cm-1). Apocynin was a weak free radical scavenger (as measured using the DPPH, peroxyl radical and nitric oxide assays) when compared to protocatechuic acid, used here as a reference antioxidant. On the other hand, apocynin was more effective than protocatechuic acid as scavenger of the non-radical species hypochlorous acid. Apocynin reacted promptly with the non-radical reactive species H2O2 only in the presence of peroxidase. This finding is relevant, since it represents a new pathway for depleting H2O2 in cellular experimental models, besides the direct inhibition of NADPH oxidase. This could be relevant for its application as an inhibitor of NOX4, since this isoform produces H2O2 and not superoxide anion. The binding parameters calculated by fluorescence quenching showed that apocynin binds to human serum albumin (HSA) with a binding affinity of 2.19 × 104 M-1. The association did not alter the secondary and tertiary structure of HSA, as verified by synchronous fluorescence and circular dichroism. The displacement of fluorescent probes suggested that apocynin binds to site I and site II of HSA. Considering the current biomedical applications of this phytochemical, the dissemination of these chemical and biophysical properties can be very helpful for scientists and physicians interested in the use of apocynin. PMID:23455672

  19. Electron transfer reactions in the NADPH oxidase system of neutrophils--involvement of an NADPH-cytochrome c reductase in the oxidase system.

    PubMed

    Fujii, H; Kakinuma, K

    1991-11-12

    Membrane-bound NADPH oxidase of pig blood neutrophils was solubilized with heptylthioglucoside in a high yield. The solubilized preparation from myristate-stimulated cells (sample S) showed high O2- generating activity, and the preparation from resting cells (sample R) had no activity, but the two samples had equal amounts of flavins and cytochrome b-558 (cyt b-558). The electron transfer reactions to exogenous cytochrome c (cyt c) or cyt b-558 in samples S and R were examined. Under anaerobic conditions, NADPH-dependent cyt c reductase activity appeared higher in sample S than in sample R, and the addition of FMN and FAD greatly enhanced the reductase activity of sample S, but not that of sample R. No marked difference between the reductase activities of samples S and R was seen with NADH. Photoreduction of the NADPH oxidase system was examined in the absence of NADPH under anaerobic conditions by monitoring the reduction rates of exogenous cyt c using a flashlight with cut-off filters between 400 and 500 nm. Cyt c reduction was much higher in sample S than in sample R on photoexcitation at about 450 nm. Photoreduction was carried out with a band-pass filter for selective irradiation at 450 nm. Marked reduction of exogenous cyt c was observed only in sample S: the small reduction of cyt c by sample R was independent of the light wavelength and was equal to the blank level. In contrast, no difference in the reduction of cyt b-558 by the two samples was found by either NADPH or photoreduction. Under aerobic conditions, no direct reduction of either cyt c or cyt b-558 was observed. These results suggest that an NADPH-cyt c reductase (a membrane-bound flavoprotein) is involved in the NADPH oxidase system of stimulated neutrophils. PMID:1659905

  20. Alternate Polypurine Tracts (PPTs) Affect the Rous Sarcoma Virus RNase H Cleavage Specificity and Reveal a Preferential Cleavage following a GA Dinucleotide Sequence at the PPT-U3 Junction

    PubMed Central

    Chang, Kevin W.; Julias, John G.; Alvord, W. Gregory; Oh, Jangsuk; Hughes, Stephen H.

    2005-01-01

    Retroviral polypurine tracts (PPTs) serve as primers for plus-strand DNA synthesis during reverse transcription. The generation and removal of the PPT primer requires specific cleavages by the RNase H activity of reverse transcriptases; removal of the PPT primer defines the left end of the linear viral DNA. We replaced the endogenous PPT from RSVP(A)Z, a replication-competent shuttle vector based on Rous sarcoma virus (RSV), with alternate retroviral PPTs and the duck hepatitis B virus “PPT.” Viruses in which the endogenous RSV PPT was replaced with alternate PPTs had lower relative titers than the wild-type virus. 2-LTR circle junction analysis showed that the alternate PPTs caused significant decreases in the fraction of viral DNAs with complete (consensus) ends and significant increases in the insertion of part or all of the PPT at the 2-LTR circle junctions. The last two nucleotides in the 3′ end of the RSV PPT are GA. Examination of the (mis)cleavages of the alternate PPTs revealed preferential cleavages after GA dinucleotide sequences. Replacement of the terminal 3′ A of the RSV PPT with G caused a preferential miscleavage at a GA sequence spanning the PPT-U3 boundary, resulting in the deletion of the terminal adenine normally present at the 5′ end of the U3. A reciprocal G-to-A substitution at the 3′ end of the murine leukemia virus PPT increased the relative titer of the chimeric RSV-based virus and the fraction of consensus 2-LTR circle junctions. PMID:16227289

  1. Effects of adenine arabinoside on lymphocytes infected with Epstein-Barr virus.

    PubMed Central

    Benz, W C; Siegel, P J; Baer, J

    1978-01-01

    Low concentrations of adenine arabinoside inhibited growth of two Epstein-Barr virus producer cell lines in culture, while not significantly affecting a nonproducer cell line and a B-cell-negative line. These observations were extended to include freshly infected cells. Mitogen-stimulated human umbilical cord blood lymphocytes were unaffected by the drug at concentration levels that inhibited [3H]thymidine incorporation into the DNA of Epstein-Barr virus-stimulated cells. DNA synthesis in Epstein-Barr virus-superinfected Raji cells was also adversely affected by adenine arabinoside. However, these same low concentrations of adenine arabinoside in the triphosphate form produced less effect on DNA synthesis in nuclear systems and DNA polymerase assays than on growth or DNA synthesis in whole cells. Therefore the effects reported here of low concentrations of the drug on whole cells may be only in part related to DNA polymerase inhibition. The work reported here suggests that adenine arabinoside has multiple sites of action in infected cells. PMID:212577

  2. Phosphorus-31 NMR visibility and characterization of rat liver mitochondrial matrix adenine nucleotides

    SciTech Connect

    Hutson, S.M.; Berkich, D.; Williams, G.D.; LaNoue, K.F.; Briggs, R.W. )

    1989-05-16

    Compartmentation and NMR visibility of mitochondrial adenine nucleotides were quantitated in isolated rat liver mitochondria respiring on succinate and glutamate in vitro at 8 and 25{degree}C. Intra- and extramitochondrial nucleotides were discriminated by adding the chelator trans-1,2-diaminocyclohexane-N,N,N{prime},N{prime}-tetraacetic acid (CDTA). T{sub 1} values of about 0.2-0.3 s for magnesium-bound matrix nucleotides were determined. Adenine nucleotide T{sub 1} values were influenced by the ionic environment; only magnesium-free ATP T{sub 1}'s were affected by temperature. Intra- and extramitochondrial adenine nucleotide ratios were varied in ATP-loaded mitochondria with added ATP and phosphate using the mitochondrial inhibitors oligomycin and carboxyatractyloside, and adenine nucleotides were quantitated by using NMR and enzymatic analysis. There was good agreement between matrix ATP concentrations (magnesium-bound ATP) calculated by using NMR and standard biochemical techniques. Although matrix ADP could be detected by NMR, it was difficult to quantitate accurately by NMR. The data indicate that mitochondrial ATP is NMR-visible in isolated mitochondria in vitro.

  3. Assembly of an antiparallel homo-adenine DNA duplex by small-molecule binding.

    PubMed

    Persil, Ozgül; Santai, Catherine T; Jain, Swapan S; Hud, Nicholas V

    2004-07-21

    Molecules that reversibly bind DNA and trigger the formation of non-Watson-Crick secondary structures would be useful in the design of dynamic DNA nanostructures and as potential leads for new therapeutic agents. We demonstrate that coralyne, a small crescent-shaped molecule, promotes the formation of a duplex secondary structure from homo-adenine oligonucleotides. AFM studies reveal that the staggered alignment of homo-adenine oligonucleotides upon coralyne binding produces polymers of micrometers in length, but only 2 nm in height. A DNA duplex was also studied that contained eight A.A mismatches between two flanking 7-bp Watson-Crick helices. CD spectra confirm that the multiple A.A mismatches of this duplex bind coralyne in manner similar to that of homo-adenine oligonucleotides. Furthermore, the melting temperature of this hybrid duplex increases by 13 degrees C upon coralyne binding. These observations illustrate that the helical structure of the homo-adenine-coralyne duplex is compatible with the B-form DNA helix. PMID:15250704

  4. Nitric Oxide Synthase and Neuronal NADPH Diaphorase are Identical in Brain and Peripheral Tissues

    NASA Astrophysics Data System (ADS)

    Dawson, Ted M.; Bredt, David S.; Fotuhi, Majid; Hwang, Paul M.; Snyder, Solomon H.

    1991-09-01

    NADPH diaphorase staining neurons, uniquely resistant to toxic insults and neurodegenerative disorders, have been colocalized with neurons in the brain and peripheral tissue containing nitric oxide synthase (EC 1.14.23.-), which generates nitric oxide (NO), a recently identified neuronal messenger molecule. In the corpus striatum and cerebral cortex, NO synthase immunoreactivity and NADPH diaphorase staining are colocalized in medium to large aspiny neurons. These same neurons colocalize with somatostatin and neuropeptide Y immunoreactivity. NO synthase immunoreactivity and NADPH diaphorase staining are colocalized in the pedunculopontine nucleus with choline acetyltransferase-containing cells and are also colocalized in amacrine cells of the inner nuclear layer and ganglion cells of the retina, myenteric plexus neurons of the intestine, and ganglion cells of the adrenal medulla. Transfection of human kidney cells with NO synthase cDNA elicits NADPH diaphorase staining. The ratio of NO synthase to NADPH diaphorase staining in the transfected cells is the same as in neurons, indicating that NO synthase fully accounts for observed NADPH staining. The identity of neuronal NO synthase and NADPH diaphorase suggests a role for NO in modulating neurotoxicity.

  5. Administration of α-Galactosylceramide Improves Adenine-Induced Renal Injury

    PubMed Central

    Aguiar, Cristhiane Favero; Naffah-de-Souza, Cristiane; Castoldi, Angela; Corrêa-Costa, Matheus; Braga, Tárcio T; Naka, Érika L; Amano, Mariane T; Abate, Débora T R S; Hiyane, Meire I; Cenedeze, Marcos A; Filho, Alvaro Pacheco e Silva; Câmara, Niels O S

    2015-01-01

    Natural killer T (NKT) cells are a subset of lymphocytes that reacts to glycolipids presented by CD1d. Invariant NKT cells (iNKT) correspond to >90% of the total population of NKTs and reacts to α-galactosylceramide (αGalCer). αGalCer promotes a complex mixture of Th1 and Th2 cytokines, as interferon (IFN)-γ and interleukin (IL)-4. NKT cells and IFN-γ are known to participate in some models of renal diseases, but further studies are still necessary to elucidate their mechanisms. The aim of our study was to analyze the participation of iNKT cells in an experimental model of tubule-interstitial nephritis. We used 8-wk-old C57BL/6j, Jα18KO and IFN-γKO mice. They were fed a 0.25% adenine diet for 10 d. Both adenine-fed wild-type (WT) and Jα18KO mice exhibited renal dysfunction, but adenine-fed Jα18KO mice presented higher expression of kidney injury molecule-1 (KIM-1), tumor necrosis factor (TNF)-α and type I collagen. To analyze the role of activated iNKT cells in our model, we administered αGalCer in WT mice during adenine ingestion. After αGalCer injection, we observed a significant reduction in serum creatinine, proinflammatory cytokines and renal fibrosis. However, this improvement in renal function was not observed in IFN-γKO mice after αGalCer treatment and adenine feeding, illustrating that this cytokine plays a role in our model. Our findings may suggest that IFN-γ production is one of the factors contributing to improved renal function after αGalCer administration. PMID:26101952

  6. ON THE INTERACTION OF ADENINE WITH IONIZING RADIATION: MECHANISTICAL STUDIES AND ASTROBIOLOGICAL IMPLICATIONS

    SciTech Connect

    Evans, Nicholas L.; Ullrich, Susanne; Bennett, Chris J.; Kaiser, Ralf I.

    2011-04-01

    The molecular inventory available on the prebiotic Earth was likely derived from both terrestrial and extraterrestrial sources. A complete description of which extraterrestrial molecules may have seeded early Earth is therefore necessary to fully understand the prebiotic evolution which led to life. Galactic cosmic rays (GCRs) are expected to cause both the formation and destruction of important biomolecules-including nucleic acid bases such as adenine-in the interstellar medium within the ices condensed on interstellar grains. The interstellar ultraviolet (UV) component is expected to photochemically degrade gas-phase adenine on a short timescale of only several years. However, the destruction rate is expected to be significantly reduced when adenine is shielded in dense molecular clouds or even within the ices of interstellar grains. Here, biomolecule destruction by the energetic charged particle component of the GCR becomes important as it is not fully attenuated. Presented here are results on the destruction rate of the nucleobase adenine in the solid state at 10 K by energetic electrons, as generated in the track of cosmic ray particles as they penetrate ices. When both UV and energetic charged particle destructive processes are taken into account, the half-life of adenine within dense interstellar clouds is found to be {approx}6 Myr, which is on the order of a star-forming molecular cloud. We also discuss chemical reaction pathways within the ices to explain the production of observed species, including the formation of nitriles (R-C{identical_to}N), epoxides (C-O-C), and carbonyl functions (R-C=O).

  7. Quantum chemical benchmark study on 46 RNA backbone families using a dinucleotide unit.

    PubMed

    Kruse, Holger; Mladek, Arnost; Gkionis, Konstantinos; Hansen, Andreas; Grimme, Stefan; Sponer, Jiri

    2015-10-13

    We have created a benchmark set of quantum chemical structure-energy data denoted as UpU46, which consists of 46 uracil dinucleotides (UpU), representing all known 46 RNA backbone conformational families. Penalty-function-based restrained optimizations with COSMO TPSS-D3/def2-TZVP ensure a balance between keeping the target conformation and geometry relaxation. The backbone geometries are close to the clustering-means of their respective RNA bioinformatics family classification. High-level wave function methods (DLPNO-CCSD(T) as reference) and a wide-range of dispersion-corrected or inclusive DFT methods (DFT-D3, VV10, LC-BOP-LRD, M06-2X, M11, and more) are used to evaluate the conformational energies. The results are compared to the Amber RNA bsc0χOL3 force field. Most dispersion-corrected DFT methods surpass the Amber force field significantly in accuracy and yield mean absolute deviations (MADs) for relative conformational energies of ∼0.4-0.6 kcal/mol. Double-hybrid density functionals represent the most accurate class of density functionals. Low-cost quantum chemical methods such as PM6-D3H+, HF-3c, DFTB3-D3, as well as small basis set calculations corrected for basis set superposition errors (BSSEs) by the gCP procedure are also tested. Unfortunately, the presently available low-cost methods are struggling to describe the UpU conformational energies with satisfactory accuracy. The UpU46 benchmark is an ideal test for benchmarking and development of fast methods to describe nucleic acids, including force fields. PMID:26574283

  8. Elementary Flux Mode Analysis Revealed Cyclization Pathway as a Powerful Way for NADPH Regeneration of Central Carbon Metabolism

    PubMed Central

    Shen, Tie; Zheng, Meijuan; Zhou, Wenwei; Du, Honglin; Fan, Yadong; Wang, Yongkang; Zhang, Zhengdong; Xu, Shengsheng; Liu, Zhijie; Wen, Han; Xie, Xiaoyao

    2015-01-01

    NADPH regeneration capacity is attracting growing research attention due to its important role in resisting oxidative stress. Besides, NADPH availability has been regarded as a limiting factor in production of industrially valuable compounds. The central carbon metabolism carries the carbon skeleton flux supporting the operation of NADPH-regenerating enzyme and offers flexibility in coping with NADPH demand for varied intracellular environment. To acquire an insightful understanding of its NADPH regeneration capacity, the elementary mode method was employed to compute all elementary flux modes (EFMs) of a network representative of central carbon metabolism. Based on the metabolic flux distributions of these modes, a cluster analysis of EFMs with high NADPH regeneration rate was conducted using the self-organizing map clustering algorithm. The clustering results were used to study the relationship between the flux of total NADPH regeneration and the flux in each NADPH producing enzyme. The results identified several reaction combinations supporting high NADPH regeneration, which are proven to be feasible in cells via thermodynamic analysis and coincident with a great deal of previous experimental report. Meanwhile, the reaction combinations showed some common characteristics: there were one or two decarboxylation oxidation reactions in the combinations that produced NADPH and the combination constitution included certain gluconeogenesis pathways. These findings suggested cyclization pathways as a powerful way for NADPH regeneration capacity of bacterial central carbon metabolism. PMID:26086807

  9. Differences in Electrostatic Potential Around DNA Fragments Containing Adenine and 8-oxo-Adenine. An Analysis Based on Regular Cylindrical Projection

    SciTech Connect

    Haranczyk, Maciej; Miller, John H; Gutowski, Maciej S

    2007-07-01

    Changes of electrostatic potential (EP) around the DNA molecule resulting from chemical modifications of nucleotides may play a role in enzymatic recognition of damaged sites. Effects of chemical modifications of nucleotides on the structure of DNA have been characterized through large scale density functional theory computations. Quantum mechanical structural optimizations of DNA fragments with three pairs of nucleotides and accompanying counteractions were performed with a B3LYP exchange-correlation functional and 6-31G** basis sets. The “intact” DNA fragment contained adenine in the middle layer, while the “damaged” fragment had the adenine replaced with 8-oxo-adenine. The electrostatic potential around these DNA fragments was projected on a cylindrical surface around the double helix. The two-dimensional maps of EP of the intact and damaged DNA fragments were analyzed to identify these modifications of EP that result from the occurrence of 8-oxo-adenine (8oA). It was found that distortions of a phosphate group neighboring 8oA and displacements of the accompanying countercation are clearly reflected in the EP maps. Helpful discussions Michel Dupuis are gratefully acknowledged. Authors wish to thank Marcel Swart for directing us to a compilation of van der Waals radii. This work was supported by the: (i) US DOE Office of Biological and Environmental Research, Low Dose Radiation Research Program (M.G. and M.H.), (ii) the Office of Science (BER), U. S. Department of Energy, Grant No. DE-FG03-02ER63470 (JHM), (iii) Polish State Committee for Scientific Research (KBN) Grant DS/8221-4-0140-6 (MG), (iv) European Social Funds (EFS) ZPORR/2.22/II/2.6/ARP/U/2/05 (M.H.). M.H. holds the Foundation for Polish Science (FNP) award for young scientists. The calculations were performed at the Academic Computer Center in Gdansk (TASK) and at the Molecular Science Computing Facility (MSCF) in the William R. Wiley Environmental Molecular Sciences Laboratory, a national

  10. Effect of l-Methionine and S-Adenosylmethionine on Growth of an Adenine Mutant of Saccharomyces cerevisiae

    PubMed Central

    Yall, Irving; Norrell, Stephen A.; Joseph, Ronald; Knudsen, Richard C.

    1967-01-01

    A pink, adenine-requiring yeast utilized adenine, hypoxanthine, or S-adenosylmethionine (SAM), in quantities up to 3 μmoles per 100 ml of medium, as equivalent sources of purine for cell growth, but not methylthioadenosine or S-adenosylhomocysteine. Utilization of SAM for growth was inhibited by the presence of l-methionine in quantities greater than 0.6 μmole per 100 ml of medium. However, 6 μmoles of l-methionine had no effect on growth when adenine or hypoxanthine was the source of purine. These sources also reversed the inhibitory effects of 6 μmoles of the amino acid on the utilization of SAM. The presence of 400 μmoles of the amino acid resulted in some inhibition of growth when the organisms were grown with adenine, hypoxanthine, or adenine plus SAM but had no effect on the total uptake of adenine-8-14C. Studies on the uptake of radioactivity from a mixture of SAM-adenine-8-14C and 3H-labeled SAM-methyl indicated that these components were taken into the cells at different rates which were altered by the presence of l-methionine. The fixation of 35S from 35S-labeled adenosylmethionine into the cells was inhibited by the presence of the amino acid. The cells synthesized and accumulated SAM in the presence of 400 μmoles of l-methionine plus adenine even when exogenous SAM was supplied. Approximately 47% of radioactivity fixed from exogenous SAM-adenine-8-14C and 12% from 3H-labeled SAM-methyl were found in reisolated SAM. PMID:6025443

  11. Identification of a superoxide-generating NADPH oxidase system in human fibroblasts.

    PubMed Central

    Meier, B; Cross, A R; Hancock, J T; Kaup, F J; Jones, O T

    1991-01-01

    Human fibroblasts have the capacity to release superoxide radicals upon stimulation of an electron transport system similar to the NADPH oxidase of leukocytes. Two components of the NADPH oxidase system, (1) a flavoprotein of 45 kDa which binds diphenylene iodonium (a compound described as a specific inhibitor of the leukocyte NADPH oxidase), and (2) a low-potential cytochrome b, are present in fibroblast membranes. Fibroblasts exhibit these compounds at lower concentrations than do polymorphonuclear leukocytes or B-lymphocytes. The superoxide-generating system is rather uniformly associated with the outer cell membrane, as shown by light and electron microscopy. Superoxide release upon stimulation with various agents was prevented by the addition of micromolar concentrations of diphenylene iodonium, making an NADPH oxidase a likely source. Images Fig. 4. PMID:1850240

  12. The rat adenine receptor: pharmacological characterization and mutagenesis studies to investigate its putative ligand binding site.

    PubMed

    Knospe, Melanie; Müller, Christa E; Rosa, Patrizia; Abdelrahman, Aliaa; von Kügelgen, Ivar; Thimm, Dominik; Schiedel, Anke C

    2013-09-01

    The rat adenine receptor (rAdeR) was the first member of a family of G protein-coupled receptors (GPCRs) activated by adenine and designated as P0-purine receptors. The present study aimed at gaining insights into structural aspects of ligand binding and function of the rAdeR. We exchanged amino acid residues predicted to be involved in ligand binding (Phe110(3.24), Asn115(3.29), Asn173(4.60), Phe179(45.39), Asn194(5.40), Phe195(5.41), Leu201(5.47), His252(6.54), and Tyr268(7.32)) for alanine and expressed them in Spodoptera frugiperda (Sf9) insect cells. Membrane preparations subjected to [(3)H]adenine binding studies revealed only minor effects indicating that none of the exchanged amino acids is part of the ligand binding pocket, at least in the inactive state of the receptor. Furthermore, we coexpressed the rAdeR and its mutants with mammalian Gi proteins in Sf9 insect cells to probe receptor activation. Two amino acid residues, Asn194(5.40) and Leu201(5.47), were found to be crucial for activation since their alanine mutants did not respond to adenine. Moreover we showed that-in contrast to most other rhodopsin-like GPCRs-the rAdeR does not contain essential disulfide bonds since preincubation with dithiothreitol neither altered adenine binding in Sf9 cell membranes, nor adenine-induced inhibition of adenylate cyclase in 1321N1 astrocytoma cells transfected with the rAdeR. To detect rAdeRs by Western blot analysis, we developed a specific antibody. Finally, we were able to show that the extended N-terminal sequence of the rAdeR constitutes a putative signal peptide of unknown function that is cleaved off in the mature receptor. Our results provide important insights into this new, poorly investigated family of purinergic receptors. PMID:23413038

  13. Thioredoxin-1/peroxiredoxin-1 as sensors of oxidative stress mediated by NADPH oxidase activity in atherosclerosis.

    PubMed

    Madrigal-Matute, Julio; Fernandez-Garcia, Carlos-Ernesto; Blanco-Colio, Luis Miguel; Burillo, Elena; Fortuño, Ana; Martinez-Pinna, Roxana; Llamas-Granda, Patricia; Beloqui, Oscar; Egido, Jesus; Zalba, Guillermo; Martin-Ventura, José Luis

    2015-09-01

    To assess the potential association between TRX-1/PRX-1 and NADPH oxidase (Nox) activity in vivo and in vitro, TRX-1/PRX-1 levels were assessed by ELISA in 84 asymptomatic subjects with known phagocytic NADPH oxidase activity and carotid intima-media thickness (IMT). We found a positive correlation between TRX-1/PRX-1 and NADPH oxidase-dependent superoxide production (r=0.48 and 0.47; p<0.001 for both) and IMT (r=0.31 and 0.36; p<0.01 for both) adjusted by age and sex. Moreover, asymptomatic subjects with plaques have higher PRX-1 and TRX plasma levels (p<0.01 for both). These data were confirmed in a second study in which patients with carotid atherosclerosis showed higher PRX-1 and TRX plasma levels than healthy subjects (p<0.001 for both). In human atherosclerotic plaques, the NADPH oxidase subunit p22phox colocalized with TRX-1/PRX-1 in macrophages (immunohistochemistry). In monocytes and macrophages, phorbol 12-myristate 13-acetate (PMA) induced NADPH activation and TRX-1/PRX-1 release to the extracellular medium, with a concomitant decrease in their intracellular levels, which was reversed by the NADPH inhibitor apocynin (Western blot). In loss-of-function experiments, genetic silencing of the NADPH oxidase subunit Nox2 blocked PMA-induced intracellular TRX-1/PRX-1 downregulation in macrophages. Furthermore, the PMA-induced release of TRX-1/PRX-1 involves the modulation of their redox status and exosome-like vesicles. TRX-1/PRX-1 levels are associated with NADPH oxidase-activity in vivo and in vitro. These data could suggest a coordinated antioxidant response to oxidative stress in atherothrombosis. PMID:26117319

  14. Role of NADPH Oxidase versus Neutrophil Proteases in Antimicrobial Host Defense

    PubMed Central

    Grimm, Melissa J.; Lewandowski, David C.; Pham, Christine T. N.; Blackwell, Timothy S.; Petraitiene, Ruta; Petraitis, Vidmantas; Walsh, Thomas J.; Urban, Constantin F.; Segal, Brahm H.

    2011-01-01

    NADPH oxidase is a crucial enzyme in mediating antimicrobial host defense and in regulating inflammation. Patients with chronic granulomatous disease, an inherited disorder of NADPH oxidase in which phagocytes are defective in generation of reactive oxidant intermediates (ROIs), suffer from life-threatening bacterial and fungal infections. The mechanisms by which NADPH oxidase mediate host defense are unclear. In addition to ROI generation, neutrophil NADPH oxidase activation is linked to the release of sequestered proteases that are posited to be critical effectors of host defense. To definitively determine the contribution of NADPH oxidase versus neutrophil serine proteases, we evaluated susceptibility to fungal and bacterial infection in mice with engineered disruptions of these pathways. NADPH oxidase-deficient mice (p47phox−/−) were highly susceptible to pulmonary infection with Aspergillus fumigatus. In contrast, double knockout neutrophil elastase (NE)−/−×cathepsin G (CG)−/− mice and lysosomal cysteine protease cathepsin C/dipeptidyl peptidase I (DPPI)-deficient mice that are defective in neutrophil serine protease activation demonstrated no impairment in antifungal host defense. In separate studies of systemic Burkholderia cepacia infection, uniform fatality occurred in p47phox−/− mice, whereas NE−/−×CG−/− mice cleared infection. Together, these results show a critical role for NADPH oxidase in antimicrobial host defense against A. fumigatus and B. cepacia, whereas the proteases we evaluated were dispensable. Our results indicate that NADPH oxidase dependent pathways separate from neutrophil serine protease activation are required for host defense against specific pathogens. PMID:22163282

  15. iRSpot-PseDNC: identify recombination spots with pseudo dinucleotide composition.

    PubMed

    Chen, Wei; Feng, Peng-Mian; Lin, Hao; Chou, Kuo-Chen

    2013-04-01

    Meiotic recombination is an important biological process. As a main driving force of evolution, recombination provides natural new combinations of genetic variations. Rather than randomly occurring across a genome, meiotic recombination takes place in some genomic regions (the so-called 'hotspots') with higher frequencies, and in the other regions (the so-called 'coldspots') with lower frequencies. Therefore, the information of the hotspots and coldspots would provide useful insights for in-depth studying of the mechanism of recombination and the genome evolution process as well. So far, the recombination regions have been mainly determined by experiments, which are both expensive and time-consuming. With the avalanche of genome sequences generated in the postgenomic age, it is highly desired to develop automated methods for rapidly and effectively identifying the recombination regions. In this study, a predictor, called 'iRSpot-PseDNC', was developed for identifying the recombination hotspots and coldspots. In the new predictor, the samples of DNA sequences are formulated by a novel feature vector, the so-called 'pseudo dinucleotide composition' (PseDNC), into which six local DNA structural properties, i.e. three angular parameters (twist, tilt and roll) and three translational parameters (shift, slide and rise), are incorporated. It was observed by the rigorous jackknife test that the overall success rate achieved by iRSpot-PseDNC was >82% in identifying recombination spots in Saccharomyces cerevisiae, indicating the new predictor is promising or at least may become a complementary tool to the existing methods in this area. Although the benchmark data set used to train and test the current method was from S. cerevisiae, the basic approaches can also be extended to deal with all the other genomes. Particularly, it has not escaped our notice that the PseDNC approach can be also used to study many other DNA-related problems. As a user-friendly web-server, i

  16. Regulation of NADPH Oxidase in Vascular Endothelium: The Role of Phospholipases, Protein Kinases, and Cytoskeletal Proteins

    PubMed Central

    Pendyala, Srikanth; Usatyuk, Peter V.; Gorshkova, Irina A.; Garcia, Joe G.N.

    2009-01-01

    The generation of reactive oxygen species (ROS) in the vasculature plays a major role in the genesis of endothelial cell (EC) activation and barrier function. Of the several potential sources of ROS in the vasculature, the endothelial NADPH oxidase family of proteins is a major contributor of ROS associated with lung inflammation, ischemia/reperfusion injury, sepsis, hyperoxia, and ventilator-associated lung injury. The NADPH oxidase in lung ECs has most of the components found in phagocytic oxidase, and recent studies show the expression of several homologues of Nox proteins in vascular cells. Activation of NADPH oxidase of nonphagocytic vascular cells is complex and involves assembly of the cytosolic (p47phox, p67phox, and Rac1) and membrane-associated components (Noxes and p22phox). Signaling pathways leading to NADPH oxidase activation are not completely defined; however, they do appear to involve the cytoskeleton and posttranslation modification of the components regulated by protein kinases, protein phosphatases, and phospholipases. Furthermore, several key components regulating NADPH oxidase recruitment, assembly, and activation are enriched in lipid microdomains to form a functional signaling platform. Future studies on temporal and spatial localization of Nox isoforms will provide new insights into the role of NADPH oxidase–derived ROS in the pathobiology of lung diseases. Antioxid. Redox Signal. 11, 841–860. PMID:18828698

  17. The NADPH oxidase inhibitor apocynin (acetovanillone) induces oxidative stress

    SciTech Connect

    Riganti, Chiara . E-mail: dario.ghigo@unito.it

    2006-05-01

    Apocynin (acetovanillone) is often used as a specific inhibitor of NADPH oxidase. In N11 glial cells, apocynin induced, in a dose-dependent way, a significant increase of both malonyldialdehyde level (index of lipid peroxidation) and lactate dehydrogenase release (index of a cytotoxic effect). Apocynin evoked also, in a significant way, an increase of H{sub 2}O{sub 2} concentration and a decrease of the intracellular glutathione/glutathione disulfide ratio, accompanied by augmented efflux of glutathione and glutathione disulfide. Apocynin induced the activation of both pentose phosphate pathway and tricarboxylic acid cycle, which was blocked when the cells were incubated with glutathione together with apocynin. The cell incubation with glutathione prevented also the apocynin-induced increase of malonyldialdehyde generation and lactate dehydrogenase leakage. Apocynin exerted an oxidant effect also in a cell-free system: indeed, in aqueous solution, it evoked a faster oxidation of the thiols glutathione and dithiothreitol, and elicited the generation of reactive oxygen species, mainly superoxide anions. Our results suggest that apocynin per se can induce an oxidative stress and exert a cytotoxic effect in N11 cells and other cell types, and that some effects of apocynin in in vitro and in vivo experimental models should be interpreted with caution.

  18. Phagocyte NADPH oxidase, chronic granulomatous disease and mycobacterial infections.

    PubMed

    Deffert, Christine; Cachat, Julien; Krause, Karl-Heinz

    2014-08-01

    Infection of humans with Mycobacterium tuberculosis remains frequent and may still lead to death. After primary infection, the immune system is often able to control M. tuberculosis infection over a prolonged latency period, but a decrease in immune function (from HIV to immunosenescence) leads to active disease. Available vaccines against tuberculosis are restricted to BCG, a live vaccine with an attenuated strain of M. bovis. Immunodeficiency may not only be associated with an increased risk of tuberculosis, but also with local or disseminated BCG infection. Genetic deficiency in the reactive oxygen species (ROS)-producing phagocyte NADPH oxidase NOX2 is called chronic granulomatous disease (CGD). CGD is among the most common primary immune deficiencies. Here we review our knowledge on the importance of NOX2-derived ROS in mycobacterial infection. A literature review suggests that human CGD patient frequently have an increased susceptibility to BCG and to M. tuberculosis. In vitro studies and experiments with CGD mice are incomplete and yielded - at least in part - contradictory results. Thus, although observations in human CGD patients leave little doubt about the role of NOX2 in the control of mycobacteria, further studies will be necessary to unequivocally define and understand the role of ROS. PMID:24916152

  19. Defensive Mutualism Rescues NADPH Oxidase Inactivation in Gut Infection.

    PubMed

    Pircalabioru, Gratiela; Aviello, Gabriella; Kubica, Malgorzata; Zhdanov, Alexander; Paclet, Marie-Helene; Brennan, Lorraine; Hertzberger, Rosanne; Papkovsky, Dmitri; Bourke, Billy; Knaus, Ulla G

    2016-05-11

    NOX/DUOX family of NADPH oxidases are expressed in diverse tissues and are the primary enzymes for the generation of reactive oxygen species (ROS). The intestinal epithelium expresses NOX1, NOX4, and DUOX2, whose functions are not well understood. To address this, we generated mice with complete or epithelium-restricted deficiency in the obligatory NOX dimerization partner Cyba (p22(phox)). We discovered that NOX1 regulates DUOX2 expression in the intestinal epithelium, which magnified the epithelial ROS-deficiency. Unexpectedly, epithelial deficiency of Cyba resulted in protection from C. rodentium and L. monocytogenes infection. Microbiota analysis linked epithelial Cyba deficiency to an enrichment of H2O2-producing bacterial strains in the gut. In particular, elevated levels of lactobacilli physically displaced and attenuated C. rodentium virulence by H2O2-mediated suppression of the virulence-associated LEE pathogenicity island. This transmissible compensatory adaptation relied on environmental factors, an important consideration for prevention and therapy of enteric disease. PMID:27173933

  20. Inhibition of NADPH oxidase by glucosylceramide confers chemoresistance

    PubMed Central

    Barth, Brian M; Gustafson, Sally J; Young, Megan M; Fox, Todd E; Shanmugavelandy, Sriram S; Kaiser, James M; Cabot, Myles C; Kuhn, Thomas B

    2010-01-01

    The bioactive sphingolipid ceramide induces oxidative stress by disrupting mitochondrial function and stimulating NADPH oxidase (NOX) activity, both implicated in cell death mechanisms. Many anticancer chemotherapeutics (anthracyclines, Vinca alkaloids, paclitaxel and fenretinide), as well as physiological stimuli such as tumor necrosis factor α (TNFα), stimulate ceramide accumulation and increase oxidative stress in malignant cells. Consequently, ceramide metabolism in malignant cells and, in particular the upregulation of glucosylceramide synthase (GCS), has gained considerable interest in contributing to chemoresistance. We hypothesized that increases in GCS activity and thus glucosylceramide, the product of GCS activity, represents an important resistance mechanism in glioblastoma. In our study, we determined that increased GCS activity effectively blocked reactive oxygen species formation by NOX. We further showed, in both glioblastoma and neuroblastoma cells that glucosylceramide directly interfered with NOX assembly, hence delineating a direct resistance mechanism. Collectively, our findings indicated that pharmacological or molecular targeting of GCS, using non-toxic nanoliposome delivery systems, successfully augmented NOX activity, and improved the efficacy of known chemotherapeutic agents. PMID:20935456

  1. Expression dynamics of NADPH oxidases during early zebrafish development.

    PubMed

    Weaver, Cory J; Leung, Yuk Fai; Suter, Daniel M

    2016-07-01

    Nicotinamide dinucleotide phosphate oxidases (NOX) control various cellular signaling cascades. In the nervous system, there is recent evidence that NOX-derived reactive oxygen species (ROS) regulate neurite outgrowth, regeneration, and stem cell proliferation; however, a comprehensive NOX gene expression analysis is missing for all major model systems. Zebrafish embryos provide an excellent model system to study neurodevelopment and regeneration because they develop quickly and are well suited for in vivo imaging and molecular approaches. Although the sequences of five NOX genes (nox1, nox2/cybb, nox4, nox5, and duox) have been identified in the zebrafish genome, nothing is known about their expression pattern. Here, we used quantitative polymerase chain reaction combined with in situ hybridization to develop a catalog of nox1, nox2/cybb, nox5, and duox expression in zebrafish during early nervous system development from 12 to 48 hours post fertilization. We found that expression levels of nox1, nox5, and duox are dynamic during the first 2 days of development, whereas nox2/cybb levels remain remarkably stable. By sectioning in situ hybridized embryos, we found a pattern of broad and overlapping NOX isoform expression at 1 and 1.5 days post fertilization. After 2 days of development, a few brain regions displayed increased NOX expression levels. Collectively, these results represent the first comprehensive analysis of NOX gene expression in the zebrafish and will provide a basis for future studies aimed at determining the functions of NOX enzymes in neurodevelopment and regeneration. J. Comp. Neurol. 524:2130-2141, 2016. © 2015 Wiley Periodicals, Inc. PMID:26662995

  2. NADPH oxidase of human dendritic cells: role in Candida albicans killing and regulation by interferons, dectin-1 and CD206.

    PubMed

    Donini, Marta; Zenaro, Elena; Tamassia, Nicola; Dusi, Stefano

    2007-05-01

    Human monocyte-derived DC express the enzyme NADPH oxidase, responsible for ROS production. We show that Candida albicans did not activate NADPH oxidase in DC, and was poorly killed by these cells. However, Candida-killing activity increased upon DC stimulation with the NADPH oxidase activator PMA and was further enhanced by DC treatment with IFN-alpha or IFN-gamma. This fungicidal activity took place at high DC-to-Candida ratio, but decreased at low DC-to-yeast ratio, when Candida inhibited the NADPH oxidase by contrasting the assembly of the enzyme on DC plasma membrane. The NADPH oxidase inhibitor diphenyliodonium chloride abrogated the PMA-dependent DC candidacidal capacity. Engagement of beta-glucan receptor dectin-1 induced NADPH oxidase activation in DC that was depressed by mannose-binding receptor CD206 co-stimulation. Candida was internalized by DC through mannose-binding receptors, but not through dectin-1, thus explaining why Candida did not elicit NADPH oxidase activity. Our results indicate that NADPH oxidase is involved in DC Candida-killing activity, which is increased by IFN. However, Candida escapes the oxidative damage by inhibiting NADPH oxidase and by entering DC through receptors not involved in NADPH oxidase activation. PMID:17407098

  3. A model system for a fluorometric biosensor using permeabilized Zymomonas mobilis or enzymes with protein confined dinucleotides

    SciTech Connect

    Thordsen, O.; Lee, S.J.; Degelau, A. ); Scheper, T. ); Loos, H.; Rehr, B.; Sahm, H. )

    1993-07-01

    Using permeabilized Zymomonas mobilis or glucose-fructose oxidoreductase isolated from this microorganism a model system for biosensors with a protein confined NADP(H) cofactor for the determination of glucose, fructose, gluconolactone, and sorbitol was developed. Either permeabilized microorganisms containing the oxidoreductase or the pure enzyme were confined via membrane separation in a small measuring chamber, that was integrated into a flow injection analysis system (FIA). The measuring principle was the monitoring of the NAD(P)H fluorescence, excited at 360 nm and measured at 450 nm. NADP(H), which is confined in the protein complex, was oxidized or reduced during the enzymatic reactions and the changes in the fluorescence intensity were related to the substrate concentration. The sensitivity of the system covered a range from 0.001 to 100 g/L of the analyte depending on substrate and operating conditions. The applicability of this model system for bioprocess monitoring was proved using samples from a Pseudomonas pseudoflava cultivation.

  4. Theoretical Study of Tautomerization Reactions for the Ground and First Excited Electronic States of Adenine

    NASA Technical Reports Server (NTRS)

    Salter, Latasha M.; Chaban, Galina M.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Geometrical structures and energetic properties for different tautomers of adenine are calculated in this study, using multi-configurational wave functions. Both the ground and the lowest singlet excited state potential energy surfaces are studied. Four tautomeric forms are considered, and their energetic order is found to be different on the ground and the excited state potential energy surfaces. Minimum energy reaction paths are obtained for hydrogen atom transfer (tautomerization) reactions in the ground and the lowest excited electronic states. It is found that the barrier heights and the shapes of the reaction paths are different for the ground and the excited electronic states, suggesting that the probability of such tautomerization reaction is higher on the excited state potential energy surface. This tautomerization process should become possible in the presence of water or other polar solvent molecules and should play an important role in the photochemistry of adenine.

  5. BII stability and base step flexibility of N6-adenine methylated GATC motifs.

    PubMed

    Karolak, Aleksandra; van der Vaart, Arjan

    2015-01-01

    The effect of N6-adenine methylation on the flexibility and shape of palindromic GATC sequences has been investigated by molecular dynamics simulations. Variations in DNA backbone geometry were observed, which were dependent on the degree of methylation and the identity of the bases. While the effect was small, more frequent BI to BII conversions were observed in the GA step of hemimethylated DNA. The increased BII population of the hemimethylated system positively correlated with increased stacking interactions between methylated adenine and guanine, while stacking interactions decreased at the TC step for the fully methylated strand. The flexibility of the AT and TC steps was marginally affected by methylation, in a fashion that was correlated with stacking interactions. The facilitated BI to BII conversion in hemimethylated strands might be of importance for SeqA selectivity and binding. PMID:26004863

  6. Role of vacuum ultraviolet (VUV) radiation in abiogenic synthesis of adenine nucleotides

    NASA Astrophysics Data System (ADS)

    Kuzicheva, E. A.; Simakov, M. B.; Mal'Ko, I. L.; Dodonova, N. Ya.; Gontareva, N. B.

    With the use of high performance liquid chromatography the products of abiogenic synthesis of adenine nucleotides in solid films were indentified and estimated quantitatively. The main products of photosynthesis appeared to be adenosine and deoxyadenosine monophosphates. Maximal yield of these products in case of adenosine has been 0.36 for 5'AMP, 0.41% for 2'(3')AMP, 0.20 for 2'3'cAMP in case of deoxyadenosine 0.13% for 5'dAMP, 0.15% for 3'dAMP, 0.24% for 3'5'cdAMP. The destruction of initial adenosine and deoxyadenosine by the end of the experiment was 10 and 15%, respectively. By the increasing of irradiation dose, 5'AMP and 5'dAMP synthesized in the cource of VUV photolysis were destructed up to adenine, its yield being 15% in both cases.

  7. Kinetic and mechanistic analysis of dinucleotide and oligonucleotide formation from the 5'-phosphorimidazolide of adenosine on Na(+)-montmorillonite

    NASA Technical Reports Server (NTRS)

    Kawamura, K.; Ferris, J. P.

    1994-01-01

    The rate constants for the condensation reaction of the 5'-phosphorimidazolide of adenosine (ImpA) to form dinucleotides and oligonucleotides have been measured in the presence of Na(+)-volclay (a Na(+)-montmorillonite) in pH 8 aqueous solution at 25 degrees C. The rates of the reaction of ImpA with an excess of adenosine 5'-monophosphoramidate (NH2pA), P1,P2-diadenosine 5',5'-pyrophosphate (A5'ppA), or adenosine 5'-monophosphate (5'-AMP or pA) in the presence of the montmorillonite to form NH2pA3'pA, A5'ppA3'pA, and pA3'pA, respectively, were measured. Only 3',5'-linked products were observed. The magnitude of the rate constants decrease in the order NH2pA3'pA > A5'-ppA3'pA > pA3'pA. The binding of ImpA to montmorillonite was measured, and the adsorption isotherm was determined. The binding of ImpA to montmorillonite and the formation of higher oligonucleotides is not observed in the absence of salts. Mg2+ enhances binding and oligonucleotide formation more than Ca2+ and Na+. The rate constants for the oligonucleotide formation were determined from the reaction products formed from 10 to 40 mM ImpA in the presence of Na(+)-montmorillonite using the computer program SIMFIT. The magnitudes of the rate constants for the formation of oligonucleotides increased in the order 2-mer < 3-mer < 4-mer ... 7-mer. The rate constants for dinucleotide and trinucleotide formation are more than 1000 times larger than those measured in the absence of montmorillonite. The rate constants for the formation of dinucleotide, trinucleotide, and tetranucleotide are 41,2.6, and 3.7 times larger than those for the formation of oligo(G)s with a poly(C) template. The hydrolysis of ImpA was accelerated 35 times in the presence of the montmorillonite. The catalytic ability of montmorillonite to form dinucleotides and oligonucleotides is quantitatively evaluated and possible pathways for oligo(A) formation are proposed.

  8. Structure of STING bound to c-di-GMP Reveals the Mechanism of Cyclic Dinucleotide Recognition by the Immune System

    PubMed Central

    Shu, Chang; Yi, Guanghui; Watts, Tylan; Kao, C. Cheng; Li, Pingwei

    2012-01-01

    STING, stimulator of interferon genes, is an innate immune sensor of cyclic dinucleotides that regulates the induction of type I interferons. STING C-terminal domain forms a V-shaped dimer and binds a c-di-GMP molecule at the dimer interface through direct and solvent-mediated hydrogen bonds. The guanine bases of c-di-GMP stack against the phenolic rings of a conserved tyrosine residue. Mutations at the c-di-GMP binding surface reduce nucleotide binding and affect signaling. PMID:22728658

  9. Long-Range Charge Transport in Adenine-Stacked RNA:DNA Hybrids.

    PubMed

    Li, Yuanhui; Artés, Juan M; Hihath, Joshua

    2016-01-27

    An extremely important biological component, RNA:DNA can also be used to design nanoscale structures such as molecular wires. The conductance of single adenine-stacked RNA:DNA hybrids is rapidly and reproducibly measured using the break junction approach. The conductance decreases slightly over a large range of molecular lengths, suggesting that RNA:DNA can be used as an oligonucleotide wire. PMID:26596516

  10. MICROCALORIMETRIC STUDIES ON THE FORMATION OF MAGNESIUM COMPLEXES OF ADENINE NUCLEOTIDES

    PubMed Central

    Belaich, J. P.; Sari, J. C.

    1969-01-01

    Values for the thermodynamic quantities (ΔF, ΔH, ΔS) in reactions in which complexes of adenine nucleotides with magnesium ion (ATPMg--, ADPMg-, AMPMg) are formed have been obtained by a microcalorimetric technique by using an isothermic Calvet's apparatus. Experimental values measured at ionic strength μ = 0.2 indicate that complex formation reactions are driven by the entropic factor and that stability of complexes increases with length of the phosphate chain. PMID:5261047

  11. Synthesis of metal-adeninate frameworks with high separation capacity on C2/C1 hydrocarbons

    NASA Astrophysics Data System (ADS)

    He, Yan-Ping; Zhou, Nan; Tan, Yan-Xi; Wang, Fei; Zhang, Jian

    2016-06-01

    By introducing isophthalic acid or 2,5-thiophenedicarboxylic acid to assemble with adenine and cadmium salt, two isostructural and anionic porous metal-organic frameworks (1 and 2) possessing the novel (4,8)-connected sqc topology are presented here. 1 shows permanent porosity with Langmuir surface area of 770.1 m2/g and exhibits high separation capacity on C2/C1 hydrocarbons.

  12. Femtosecond decay dynamics of intact adenine and thymine base pairs in a supersonic jet.

    PubMed

    Kim, Nam Joon; Chang, Jinyoung; Kim, Hyung Min; Kang, Hyuk; Ahn, Tae Kyu; Heo, Jiyoung; Kim, Seong Keun

    2011-07-11

    We investigated the decay dynamics of the DNA base pairs adenine-adenine (A(2)), adenine-thymine (AT), and thymine-thymine (T(2)) produced in a supersonic jet by femtosecond (fs) time-resolved photoionization spectroscopy. The base pair was excited by a fs pump pulse at 267 nm and the population change of its excited state was monitored by non-resonant three-photon ionization using a fs probe pulse at 800 nm after a certain time delay. All of the transients recorded in the mass channel of the parent ion exhibited a tri-exponential decay, with time constants ranging from 100 fs to longer than 100 ps. Most of these time constants coincide well with the previous values deduced indirectly from the transients of protonated adenine (AH(+)) and thymine (TH(+)), which were assumed to be produced by fragmentation of the base-pair ions. Notably, for the transient of T(2), we observed a new decay component with a time constant of 2.3 ps, which was absent in the transient of TH(+). We suggest that the new decay component arises from the decay of stacked T(2) dimers that are mostly ionized to T(2)(+), whereas the decay signal recorded in the mass channel of TH(+) is merely from the relaxation of hydrogen-bonded T(2) dimers. From the amplitude of the new decay component, the population of the stacked T(2) dimers relative to the hydrogen-bonded dimers was estimated to be ∼2 % in the supersonic jet, which is about fifteen times higher than the theoretical value. PMID:21710523

  13. Structure-wise discrimination of adenine and guanine by proteins on the basis of their nonbonded interactions.

    PubMed

    Usha, S; Selvaraj, S

    2015-01-01

    We have analyzed the nonbonded interactions of the structurally similar moieties, adenine and guanine forming complexes with proteins. The results comprise (a) the amino acid-ligand atom preferences, (b) solvent accessibility of ligand atoms before and after complex formation with proteins, and (c) preferred amino acid residue atoms involved in the interactions. We have observed that the amino acid preferences involved in the hydrogen bonding interactions vary for adenine and guanine. The structural variation between the purine atoms is clearly reflected by their burial tendency in the solvent environment. Correlation of the mean amino acid preference values show the variation that exists between adenine and guanine preferences of all the amino acid residues. All our observations provide evidence for the discriminating nature of the proteins in recognizing adenine and guanine. PMID:25245205

  14. Sex-specific associations of variants in regulatory regions of NADPH oxidase-2 (CYBB) and glutathione peroxidase 4 (GPX4) genes with kidney disease in type 1 diabetes.

    PubMed

    Monteiro, M B; Patente, T A; Mohammedi, K; Queiroz, M S; Azevedo, M J; Canani, L H; Parisi, M C; Marre, M; Velho, G; Corrêa-Giannella, M L

    2013-10-01

    Oxidative stress is involved in the pathophysiology of diabetic nephropathy. The superoxide-generating nicotinamide adenine dinucleotide phosphate-oxidase 2 (NOX2, encoded by the CYBB gene) and the antioxidant enzyme glutathione peroxidase 4 (GPX4) play opposing roles in the balance of cellular redox status. In the present study, we investigated associations of single nucleotide polymorphisms (SNPs) in the regulatory regions of CYBB and GPX4 with kidney disease in patients with type 1 diabetes. Two functional SNPs, rs6610650 (CYBB promoter region, chromosome X) and rs713041 (GPX4 3'untranslated region, chromosome 19), were genotyped in 451 patients with type 1 diabetes from a Brazilian cohort (diabetic nephropathy: 44.6%) and in 945 French/Belgian patients with type 1 diabetes from Genesis and GENEDIAB cohorts (diabetic nephropathy: 62.3%). The minor A-allele of CYBB rs6610650 was associated with lower estimated glomerular filtration rate (eGFR) in Brazilian women, and with the prevalence of established/advanced nephropathy in French/Belgian women (odds ratio 1.75, 95% CI 1.11-2.78, p = 0.016). The minor T-allele of GPX4 rs713041 was inversely associated with the prevalence of established/advanced nephropathy in Brazilian men (odds ratio 0.30, 95% CI 0.13-0.68, p = 0.004), and associated with higher eGFR in French/Belgian men. In conclusion, these heterogeneous results suggest that neither CYBB nor GPX4 are major genetic determinants of diabetic nephropathy, but nevertheless, they could modulate in a gender-specific manner the risk for renal disease in patients with type 1 diabetes. PMID:23919599

  15. Ethanol-induced activation of adenine nucleotide turnover. Evidence for a role of acetate

    SciTech Connect

    Puig, J.G.; Fox, I.H.

    1984-09-01

    Consumption of alcohol causes hyperuricemia by decreasing urate excretion and increasing its production. Our previous studies indicate that ethanol administration increases uric acid production by increasing ATP degradation to uric acid precursors. To test the hypothesis that ethanol-induced increased urate production results from acetate metabolism and enhanced adenosine triphosphate turnover, we gave intravenous sodium acetate, sodium chloride and ethanol (0.1 mmol/kg per min for 1 h) to five normal subjects. Acetate plasma levels increased from 0.04 +/- 0.01 mM (mean +/- SE) to peak values of 0.35 +/- 0.07 mM and to 0.08 +/- 0.01 mM during acetate and ethanol infusions, respectively. Urinary oxypurines increased to 223 +/- 13% and 316 +/- 44% of the base-line values during acetate and ethanol infusions, respectively. Urinary radioactivity from the adenine nucleotide pool labeled with (8-14C) adenine increased to 171 +/- 27% and to 128 +/- 8% of the base-line values after acetate and ethanol infusions. These data indicate that both ethanol and acetate increase purine nucleotide degradation by enhancing the turnover of the adenine nucleotide pool. They support the hypothesis that acetate metabolism contributes to the increased production of urate associated with ethanol intake.

  16. Functional Linkage of Adenine Nucleotide Binding Sites in Mammalian Muscle 6-Phosphofructokinase*

    PubMed Central

    Brüser, Antje; Kirchberger, Jürgen; Kloos, Marco; Sträter, Norbert; Schöneberg, Torsten

    2012-01-01

    6-Phosphofructokinases (Pfk) are homo- and heterooligomeric, allosteric enzymes that catalyze one of the rate-limiting steps of the glycolysis: the phosphorylation of fructose 6-phosphate at position 1. Pfk activity is modulated by a number of regulators including adenine nucleotides. Recent crystal structures from eukaryotic Pfk revealed several adenine nucleotide binding sites. Herein, we determined the functional relevance of two adenine nucleotide binding sites through site-directed mutagenesis and enzyme kinetic studies. Subsequent characterization of Pfk mutants allowed the identification of the activating (AMP, ADP) and inhibitory (ATP, ADP) allosteric binding sites. Mutation of one binding site reciprocally influenced the allosteric regulation through nucleotides interacting with the other binding site. Such reciprocal linkage between the activating and inhibitory binding sites is in agreement with current models of allosteric enzyme regulation. Because the allosteric nucleotide binding sites in eukaryotic Pfk did not evolve from prokaryotic ancestors, reciprocal linkage of functionally opposed allosteric binding sites must have developed independently in prokaryotic and eukaryotic Pfk (convergent evolution). PMID:22474333

  17. Monitoring potential molecular interactions of adenine with other amino acids using Raman spectroscopy and DFT modeling.

    PubMed

    Singh, Shweta; Donfack, P; Srivastava, Sunil K; Singh, Dheeraj K; Materny, A; Asthana, B P; Mishra, P C

    2015-10-01

    We report on the modes of inter-molecular interaction between adenine (Ade) and the amino acids: glycine (Gly), lysine (Lys) and arginine (Arg) using Raman spectroscopy of binary mixtures of adenine and each of the three amino acids at varying molar ratios in the spectral region 1550-550 cm(-1). We focused our attention on certain specific changes in the Raman bands of adenine arising due to its interaction with the amino acids. While the changes are less apparent in the Ade/Gly system, in the Ade/Lys or Ade/Arg systems, significant changes are observed, particularly in the Ade Raman bands that involve the amino group moiety and the N7 and N1 atoms of the purine ring. The ν(N1-C6), ν(N1-C2), δ(C8-H) and δ(N7-C8-N9) vibrations at 1486, 1332, 1253 and 948 cm(-1) show spectral changes on varying the Ade to amino acid molar ratio, the extent of variation being different for the three amino acids. This observation suggests a specific interaction mode between Ade and Lys or Arg, which is due to the hydrogen bonding. The measured spectral changes provide a clear indication that the interaction of Ade depends strongly on the structures of the amino acids, especially their side chains. Density functional theory (DFT) calculations were carried out to elucidate the most probable interaction modes of Ade with the different amino acids. PMID:25985129

  18. Selective self-assembly of adenine-silver nanoparticles forms rings resembling the size of cells.

    PubMed

    Choi, Sungmoon; Park, Soonyoung; Yang, Seon-Ah; Jeong, Yujin; Yu, Junhua

    2015-01-01

    Self-assembly has played critical roles in the construction of functional nanomaterials. However, the structure of the macroscale multicomponent materials built by the self-assembly of nanoscale building blocks is hard to predict due to multiple intermolecular interactions of great complexity. Evaporation of solvents is usually an important approach to induce kinetically stable assemblies of building blocks with a large-scale specific arrangement. During such a deweting process, we tried to monitor the possible interactions between silver nanoparticles and nucleobases at a larger scale by epifluorescence microscopy, thanks to the doping of silver nanoparticles with luminescent silver nanodots. ssDNA oligomer-stabilized silver nanoparticles and adenine self-assemble to form ring-like compartments similar to the size of modern cells. However, the silver ions only dismantle the self-assembly of adenine. The rings are thermodynamically stable as the drying process only enrich the nanoparticles-nucleobase mixture to a concentration that activates the self-assembly. The permeable membrane-like edge of the ring is composed of adenine filaments glued together by silver nanoparticles. Interestingly, chemicals are partially confined and accumulated inside the ring, suggesting that this might be used as a microreactor to speed up chemical reactions during a dewetting process. PMID:26643504

  19. Selective self-assembly of adenine-silver nanoparticles forms rings resembling the size of cells

    NASA Astrophysics Data System (ADS)

    Choi, Sungmoon; Park, Soonyoung; Yang, Seon-Ah; Jeong, Yujin; Yu, Junhua

    2015-12-01

    Self-assembly has played critical roles in the construction of functional nanomaterials. However, the structure of the macroscale multicomponent materials built by the self-assembly of nanoscale building blocks is hard to predict due to multiple intermolecular interactions of great complexity. Evaporation of solvents is usually an important approach to induce kinetically stable assemblies of building blocks with a large-scale specific arrangement. During such a deweting process, we tried to monitor the possible interactions between silver nanoparticles and nucleobases at a larger scale by epifluorescence microscopy, thanks to the doping of silver nanoparticles with luminescent silver nanodots. ssDNA oligomer-stabilized silver nanoparticles and adenine self-assemble to form ring-like compartments similar to the size of modern cells. However, the silver ions only dismantle the self-assembly of adenine. The rings are thermodynamically stable as the drying process only enrich the nanoparticles-nucleobase mixture to a concentration that activates the self-assembly. The permeable membrane-like edge of the ring is composed of adenine filaments glued together by silver nanoparticles. Interestingly, chemicals are partially confined and accumulated inside the ring, suggesting that this might be used as a microreactor to speed up chemical reactions during a dewetting process.

  20. Selective self-assembly of adenine-silver nanoparticles forms rings resembling the size of cells

    PubMed Central

    Choi, Sungmoon; Park, Soonyoung; Yang, Seon-Ah; Jeong, Yujin; Yu, Junhua

    2015-01-01

    Self-assembly has played critical roles in the construction of functional nanomaterials. However, the structure of the macroscale multicomponent materials built by the self-assembly of nanoscale building blocks is hard to predict due to multiple intermolecular interactions of great complexity. Evaporation of solvents is usually an important approach to induce kinetically stable assemblies of building blocks with a large-scale specific arrangement. During such a deweting process, we tried to monitor the possible interactions between silver nanoparticles and nucleobases at a larger scale by epifluorescence microscopy, thanks to the doping of silver nanoparticles with luminescent silver nanodots. ssDNA oligomer-stabilized silver nanoparticles and adenine self-assemble to form ring-like compartments similar to the size of modern cells. However, the silver ions only dismantle the self-assembly of adenine. The rings are thermodynamically stable as the drying process only enrich the nanoparticles-nucleobase mixture to a concentration that activates the self-assembly. The permeable membrane-like edge of the ring is composed of adenine filaments glued together by silver nanoparticles. Interestingly, chemicals are partially confined and accumulated inside the ring, suggesting that this might be used as a microreactor to speed up chemical reactions during a dewetting process. PMID:26643504

  1. Stability Constants of Mixed Ligand Complexes of Nickel(II) with Adenine and Some Amino Acids

    PubMed Central

    Türkel, Naciye

    2015-01-01

    Nickel is one of the essential trace elements found in biological systems. It is mostly found in nickel-based enzymes as an essential cofactor. It forms coordination complexes with amino acids within enzymes. Nickel is also present in nucleic acids, though its function in DNA or RNA is still not clearly understood. In this study, complex formation tendencies of Ni(II) with adenine and certain L-amino acids such as aspartic acid, glutamic acid, asparagine, leucine, phenylalanine, and tryptophan were investigated in an aqueous medium. Potentiometric equilibrium measurements showed that both binary and ternary complexes of Ni(II) form with adenine and the above-mentioned L-amino acids. Ternary complexes of Ni(II)-adenine-L-amino acids are formed by stepwise mechanisms. Relative stabilities of the ternary complexes are compared with those of the corresponding binary complexes in terms of Δlog10⁡K, log10⁡X, and % RS values. It was shown that the most stable ternary complex is Ni(II):Ade:L-Asn while the weakest one is Ni(II):Ade:L-Phe in aqueous solution used in this research. In addition, results of this research clearly show that various binary and ternary type Ni(II) complexes are formed in different concentrations as a function of pH in aqueous solution. PMID:26843852

  2. Identification and characterization of a novel plastidic adenine nucleotide uniporter from Solanum tuberosum.

    PubMed

    Leroch, Michaela; Kirchberger, Simon; Haferkamp, Ilka; Wahl, Markus; Neuhaus, H Ekkehard; Tjaden, Joachim

    2005-05-01

    Homologs of BT1 (the Brittle1 protein) are found to be phylogenetically related to the mitochondrial carrier family and appear to occur in both mono- and dicotyledonous plants. Whereas BT1 from cereals is probably involved in the transport of ADP-glucose, which is essential for starch metabolism in endosperm plastids, BT1 from a noncereal plant, Solanum tuberosum (StBT1), catalyzes an adenine nucleotide uniport when functionally integrated into the bacterial cytoplasmic membrane. Import studies into intact Escherichia coli cells harboring StBT1 revealed a narrow substrate spectrum with similar affinities for AMP, ADP, and ATP of about 300-400 mum. Transiently expressed StBT1-green fluorescent protein fusion protein in tobacco leaf protoplasts showed a plastidic localization of the StBT1. In vitro synthesized radioactively labeled StBT1 was targeted to the envelope membranes of isolated spinach chloroplasts. Furthermore, we showed by real time reverse transcription-PCR a ubiquitous expression pattern of the StBT1 in autotrophic and heterotrophic potato tissues. We therefore propose that StBT1 is a plastidic adenine nucleotide uniporter used to provide the cytosol and other compartments with adenine nucleotides exclusively synthesized inside plastids. PMID:15737999

  3. Chemical evolution: The mechanism of the formation of adenine under prebiotic conditions

    PubMed Central

    Roy, Debjani; Najafian, Katayoun; von Ragué Schleyer, Paul

    2007-01-01

    Fundamental building blocks of life have been detected extraterrestrially, even in interstellar space, and are known to form nonenzymatically. Thus, the HCN pentamer, adenine (a base present in DNA and RNA), was first isolated in abiogenic experiments from an aqueous solution of ammonia and HCN in 1960. Although many variations of the reaction conditions giving adenine have been reported since then, the mechanistic details remain unexplored. Our predictions are based on extensive computations of sequences of reaction steps along several possible mechanistic routes. H2O- or NH3-catalyzed pathways are more favorable than uncatalyzed neutral or anionic alternatives, and they may well have been the major source of adenine on primitive earth. Our report provides a more detailed understanding of some of the chemical processes involved in chemical evolution, and a partial answer to the fundamental question of molecular biogenesis. Our investigation should trigger similar explorations of the detailed mechanisms of the abiotic formation of the remaining nucleic acid bases and other biologically relevant molecules. PMID:17951429

  4. An experimental and theoretical vibrational study of interaction of adenine and thymine with artificial seawaters: A prebiotic chemistry experiment

    NASA Astrophysics Data System (ADS)

    Anizelli, Pedro R.; Baú, João P. T.; Nabeshima, Henrique S.; da Costa, Marcello F.; de Santana, Henrique; Zaia, Dimas A. M.

    Nucleic acid bases play important roles in living beings. Thus, their interaction with salts the prebiotic Earth could be an important issue for the understanding of origin of life. In this study, the effect of pH and artificial seawaters on the structure of adenine and thymine was studied via parallel determinations using FT-IR, Raman spectroscopy and theoretical calculations. Thymine and adenine lyophilized in solutions at basic and acidic conditions showed characteristic bands of the enol-imino tautomer due to the deprotonation and the hydrochloride form due to protonation, respectively. The interaction of thymine and adenine with different seawaters representative of different geological periods on Earth was also studied. In the case of thymine a strong interaction with Sr2+ promoted changes in the Raman and infrared spectra. For adenine changes in infrared and Raman spectra were observed in the presence of salts from all seawaters tested. The experimental results were compared to theoretical calculations, which showed structural changes due to the presence of ions Na+, Mg2+, Ca2+ and Sr2+ of artificial seawaters. For thymine the bands arising from C4dbnd C5 and C6dbnd O stretching were shifted to lower values, and for adenine, a new band at 1310 cm-1 was observed. The reactivity of adenine and thymine was studied by comparing changes in nucleophilicity and energy of the HOMO orbital.

  5. NADPH Oxidase and the Cardiovascular Toxicity Associated with Smoking

    PubMed Central

    Kim, Mikyung; Han, Chang-ho

    2014-01-01

    Smoking is one of the most serious but preventable causes of cardiovascular disease (CVD). Key aspects of pathological process associated with smoking include endothelial dysfunction, a prothrombotic state, inflammation, altered lipid metabolism, and hypoxia. Multiple molecular events are involved in smokinginduced CVD. However, the dysregulations of reactive oxygen species (ROS) generation and metabolism mainly contribute to the development of diverse CVDs, and NADPH oxidase (NOX) has been established as a source of ROS responsible for the pathogenesis of CVD. NOX activation and resultant ROS production by cigarette smoke (CS) treatment have been widely observed in isolated blood vessels and cultured vascular cells, including endothelial and smooth muscle cells. NOX-mediated oxidative stress has also been demonstrated in animal studies. Of the various NOX isoforms, NOX2 has been reported to mediate ROS generation by CS, but other isoforms were not tested thoroughly. Of the many CS constituents, nicotine, methyl vinyl ketone, and α,β-unsaturated aldehydes, such as, acrolein and crotonaldehyde, appear to be primarily responsible for NOX-mediated cytotoxicity, but additional validation will be needed. Human epidemiological studies have reported relationships between polymorphisms in the CYBA gene encoding p22phox, a catalytic subunit of NOX and susceptibility to smoking-related CVDs. In particular, G allele carriers of A640G and -930A/G polymorphisms were found to be vulnerable to smoking-induced cardiovascular toxicity, but results for C242T studies are conflicting. On the whole, evidence implicates the etiological role of NOX in smoking-induced CVD, but the clinical relevance of NOX activation by smoking and its contribution to CVD require further validation in human studies. A detailed understanding of the role of NOX would be helpful to assess the risk of smoking to human health, to define high-risk subgroups, and to develop strategies to prevent or treat

  6. Perturbation of Human Coronary Artery Endothelial Cell Redox State and NADPH Generation by Methylglyoxal

    PubMed Central

    Davies, Michael J.

    2014-01-01

    Diabetes is associated with elevated plasma glucose, increased reactive aldehyde formation, oxidative damage, and glycation/glycoxidation of biomolecules. Cellular detoxification of, or protection against, such modifications commonly requires NADPH-dependent reducing equivalents (e.g. GSH). We hypothesised that reactive aldehydes may modulate cellular redox status via the inhibition of NADPH-generating enzymes, resulting in decreased thiol and NADPH levels. Primary human coronary artery endothelial cells (HCAEC) were incubated with high glucose (25 mM, 24 h, 37°C), or methylglyoxal (MGO), glyoxal, or glycolaldehyde (100–500 µM, 1 h, 37°C), before quantification of intracellular thiols and NADPH-generating enzyme activities. Exposure to MGO, but not the other species examined, significantly (P<0.05) decreased total thiols (∼35%), further experiments with MGO showed significant losses of GSH (∼40%) and NADPH (∼10%); these changes did not result in an immediate loss of cell viability. Significantly decreased (∼10%) NADPH-producing enzyme activity was observed for HCAEC when glucose-6-phosphate or 2-deoxyglucose-6-phosphate were used as substrates. Cell lysate experiments showed significant MGO-dose dependent inhibition of glucose-6-phosphate-dependent enzymes and isocitrate dehydrogenase, but not malic enzyme. Analysis of intact cell or lysate proteins showed that arginine-derived hydroimidazolones were the predominant advanced glycation end-product (AGE) formed; lower levels of Nε-(carboxyethyl)lysine (CEL) and Nε-(carboxymethyl)lysine (CML) were also detected. These data support a novel mechanism by which MGO exposure results in changes in redox status in human coronary artery endothelial cells, via inhibition of NADPH-generating enzymes, with resultant changes in reduced protein thiol and GSH levels. These changes may contribute to the endothelial cell dysfunction observed in diabetes-associated atherosclerosis. PMID:24466151

  7. Ozone therapy ameliorates tubulointerstitial inflammation by regulating TLR4 in adenine-induced CKD rats.

    PubMed

    Chen, Zhiyuan; Liu, Xiuheng; Yu, Gang; Chen, Hui; Wang, Lei; Wang, Zhishun; Qiu, Tao; Weng, Xiaodong

    2016-06-01

    Tubulointerstitium inflammation is a common pathway aggravating chronic kidney disease (CKD) progression and the mechanism is partly associated with excessive activation of toll-like receptor 4 (TLR4) in tubulointerstitium. Ozone therapy is demonstrated to alleviate inflammation in some experiments. The aim of this study is to examine whether ozone therapy could ameliorate chronic tubulointerstitium inflammation by suppressing TLR4 in adenine-induced CKD rats. Sprague-Dawley rats were fed with 0.75% adenine-containing diet to induce CKD and tubulointerstitium inflammation injury. Ozone therapy (1.1 mg/kg) was simultaneously administrated by rectal insufflations (i.r.). After 4 weeks, serum and kidney samples were collected for detection. Renal function and systemic electrolyte were detected. Renal pathological changes were assessed by hematoxylin-eosin (H&E) staining and Masson trichrome (MT) staining. Immunohistochemistry, Western blot and Real-time PCR were applied to evaluate tubulointerstitium inflammation as well as the expression of TLR4 and phosphorylated nuclear factor kappa B P65 (p-NF-κB P65) in rats. The results showed ozone therapy improved serious renal insufficiency, systemic electrolyte disorder and tubulointerstitium morphology damages in adenine-induced CKD rats. In addition, ozone therapy suppressed excessive activation of TLR4 and p-NF-κB P65 in the tubulointerstitium of adenine-induced CKD rats, accompanied by the reduction of inflammation-related cytokines including monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6). The protein expression of TLR4 was positively correlated with the protein expression levels of MCP-1 (r = 0.7863, p < 0.01) and TNF-α (r = 0.7547, p < 0.01) in CKD rats. These findings indicated ozone therapy could attenuate tubulointerstitium inflammation injury in adenine-induced CKD rats and the mechanism might associate with the

  8. A Role for Reactive Oxygen Species Produced by NADPH Oxidases in the Embryo and Aleurone Cells in Barley Seed Germination

    PubMed Central

    Ishibashi, Yushi; Kasa, Shinsuke; Sakamoto, Masatsugu; Aoki, Nozomi; Kai, Kyohei; Yuasa, Takashi; Hanada, Atsushi; Yamaguchi, Shinjiro; Iwaya-Inoue, Mari

    2015-01-01

    Reactive oxygen species (ROS) promote the germination of several seeds, and antioxidants suppress it. However, questions remain regarding the role and production mechanism of ROS in seed germination. Here, we focused on NADPH oxidases, which produce ROS. After imbibition, NADPH oxidase mRNAs were expressed in the embryo and in aleurone cells of barley seed; these expression sites were consistent with the sites of ROS production in the seed after imbibition. To clarify the role of NADPH oxidases in barley seed germination, we examined gibberellic acid (GA) / abscisic acid (ABA) metabolism and signaling in barley seeds treated with diphenylene iodonium chloride (DPI), an NADPH oxidase inhibitor. DPI significantly suppressed germination, and suppressed GA biosynthesis and ABA catabolism in embryos. GA, but not ABA, induced NADPH oxidase activity in aleurone cells. Additionally, DPI suppressed the early induction of α-amylase by GA in aleurone cells. These results suggest that ROS produced by NADPH oxidases promote GA biosynthesis in embryos, that GA induces and activates NADPH oxidases in aleurone cells, and that ROS produced by NADPH oxidases induce α-amylase in aleurone cells. We conclude that the ROS generated by NADPH oxidases regulate barley seed germination through GA / ABA metabolism and signaling in embryo and aleurone cells. PMID:26579718

  9. A Role for Reactive Oxygen Species Produced by NADPH Oxidases in the Embryo and Aleurone Cells in Barley Seed Germination.

    PubMed

    Ishibashi, Yushi; Kasa, Shinsuke; Sakamoto, Masatsugu; Aoki, Nozomi; Kai, Kyohei; Yuasa, Takashi; Hanada, Atsushi; Yamaguchi, Shinjiro; Iwaya-Inoue, Mari

    2015-01-01

    Reactive oxygen species (ROS) promote the germination of several seeds, and antioxidants suppress it. However, questions remain regarding the role and production mechanism of ROS in seed germination. Here, we focused on NADPH oxidases, which produce ROS. After imbibition, NADPH oxidase mRNAs were expressed in the embryo and in aleurone cells of barley seed; these expression sites were consistent with the sites of ROS production in the seed after imbibition. To clarify the role of NADPH oxidases in barley seed germination, we examined gibberellic acid (GA) / abscisic acid (ABA) metabolism and signaling in barley seeds treated with diphenylene iodonium chloride (DPI), an NADPH oxidase inhibitor. DPI significantly suppressed germination, and suppressed GA biosynthesis and ABA catabolism in embryos. GA, but not ABA, induced NADPH oxidase activity in aleurone cells. Additionally, DPI suppressed the early induction of α-amylase by GA in aleurone cells. These results suggest that ROS produced by NADPH oxidases promote GA biosynthesis in embryos, that GA induces and activates NADPH oxidases in aleurone cells, and that ROS produced by NADPH oxidases induce α-amylase in aleurone cells. We conclude that the ROS generated by NADPH oxidases regulate barley seed germination through GA / ABA metabolism and signaling in embryo and aleurone cells. PMID:26579718

  10. The rate of ATP export in the extramitochondrial phase via the adenine nucleotide translocator changes in aging in mitochondria isolated from heart left ventricle of either normotensive or spontaneously hypertensive rats.

    PubMed

    Atlante, Anna; Seccia, Teresa Maria; Marra, Ersilia; Passarella, Salvatore

    2011-10-01

    To find out whether and how deficit of cellular energy supply from mitochondria to cytosol occurs in aging and hypertension, we used mitochondria isolated from 5 to 72 week-old heart left ventricle of either normotensive (WKY) or spontaneous hypertensive (SH) rats as a model system. Measurements were made of the rate of ATP appearance outside mitochondria, due to externally added ADP, as an increase of NADPH absorbance which occurs when ATP is produced in the presence of glucose, hexokinase and glucose-6-phosphate dehydrogenase. Such a rate proved to mirror the function of the adenine nucleotide translocator (ANT) rather than other processes linked to the both oxidative and substrate level phosphorylation. The changes in both Ki for atractyloside and Km for ADP suggest the occurrence of modification of the ANT conformation during aging in which the ANT Vmax was found to decrease in normotensive but to increase under spontaneously hypertension in 24 week-old rats with a subsequent decrease in both cases. ANT function, as investigated in the ADP physiological range (20-60μM), is expected to decrease in normotensive, but to increase in hypertensive rats up to 48 weeks. Later a decrease in the ATP rate of export outside mitochondria should occur in both cases. PMID:21855562

  11. Undetectable levels of N6-methyl adenine in mouse DNA: Cloning and analysis of PRED28, a gene coding for a putative mammalian DNA adenine methyltransferase.

    PubMed

    Ratel, David; Ravanat, Jean-Luc; Charles, Marie-Pierre; Platet, Nadine; Breuillaud, Lionel; Lunardi, Joël; Berger, François; Wion, Didier

    2006-05-29

    Three methylated bases, 5-methylcytosine, N4-methylcytosine and N6-methyladenine (m6A), can be found in DNA. However, to date, only 5-methylcytosine has been detected in mammalian genomes. To reinvestigate the presence of m6A in mammalian DNA, we used a highly sensitive method capable of detecting one N6-methyldeoxyadenosine per million nucleosides. Our results suggest that the total mouse genome contains, if any, less than 10(3) m6A. Experiments were next performed on PRED28, a putative mammalian N6-DNA methyltransferase. The murine PRED28 encodes two alternatively spliced RNA. However, although recombinant PRED28 proteins are found in the nucleus, no evidence for an adenine-methyltransferase activity was detected. PMID:16684535

  12. Cholesterol: A modulator of the phagocyte NADPH oxidase activity - A cell-free study

    PubMed Central

    Masoud, Rawand; Bizouarn, Tania; Houée-Levin, Chantal

    2014-01-01

    The NADPH oxidase Nox2, a multi-subunit enzyme complex comprising membrane and cytosolic proteins, catalyzes a very intense production of superoxide ions O2•−, which are transformed into other reactive oxygen species (ROS). In vitro, it has to be activated by addition of amphiphiles like arachidonic acid (AA). It has been shown that the membrane part of phagocyte NADPH oxidase is present in lipid rafts rich in cholesterol. Cholesterol plays a significant role in the development of cardio-vascular diseases that are always accompanied by oxidative stress. Our aim was to investigate the influence of cholesterol on the activation process of NADPH oxidase. Our results clearly show that, in a cell-free system, cholesterol is not an efficient activator of NADPH oxidase like arachidonic acid (AA), however it triggers a basal low superoxide production at concentrations similar to what found in neutrophile. A higher concentration, if present during the assembly process of the enzyme, has an inhibitory role on the production of O2•−. Added cholesterol acts on both cytosolic and membrane components, leading to imperfect assembly and decreasing the affinity of cytosolic subunits to the membrane ones. Added to the cytosolic proteins, it retains their conformations but still allows some conformational change induced by AA addition, indispensable to activation of NADPH oxidase. PMID:25462061

  13. Oxidation of External NAD(P)H by Jerusalem Artichoke (Helianthus tuberosus) Mitochondria 1

    PubMed Central

    Rugolo, Michela; Zannoni, Davide

    1992-01-01

    The functional interaction between the externally located NAD(P)H dehydrogenase and the Q-pool acceptor site(s) in Percoll-purified mitochondria from Jerusalem artichoke (Helianthus tuberosus L. cv OB1) mitochondria has been investigated. Oxidation of exogenous NADH is stimulated by ubiquinone (UQ1) with a parallel decrease of the apparent Km for NADH. In the presence of saturating amounts of UQ1 as electron acceptor, the Km (NADH) is not affected by variations of the ionic strength. Conversely, the Km for UQ1 is decreased by the screening effect of negative charges on the outer membrane surface. Under low-ionic strength, the hydroxyflavone platanetin progressively inhibits NADH oxidation with a mean inhibition dose of approximately 3 nanomoles of inhibitor per milligram of protein. Interestingly, under high-ionic strength, oxidation of NADH proceeds through two platanetin binding sites, one of which has a lower affinity for the inhibitor (mean inhibition dose = 20 nanomoles per milligram protein), because it is located near the outer surface of the membrane. This latter site is the one involved in the oxidation of external NADPH and, possibly, also affected by spermine and spermidine. Similarly to NADH, oxidation of NADPH is fully sensitive to micromolar concentrations of free Ca2+ ions; in addition, similar concentrations of the sulfhydryl reagent mersalyl are required to inhibit both NADH and NADPH oxidative activities. The results are interpreted as evidence for the presence of a single nonspecific NAD(P)H dehydrogenase. PMID:16668968

  14. Structural analysis of NADPH depleted bovine liver catalase and its inhibitor complexes.

    PubMed

    Sugadev, Ragumani; Ponnuswamy, M N; Sekar, K

    2011-01-01

    To study the functional role of NADPH during mammalian catalase inhibition, the X-ray crystal structures of NADPH-depleted bovine liver catalase and its inhibitor complexes, cyanide and azide, determined at 2.8Å resolution. From the complex structures it is observed that subunits with and without an inhibitor/catalytic water molecule are linked by N-terminal domain swapping. Comparing mammalian- and fungal- catalases, we speculate that NADPH-depleted mammalian catalases may function as a domain-swapped dimer of dimers, especially during inactivation by inhibitors like cyanide and azide. We further speculate that in mammalian catalases the N-terminal hinge-loop region and α-helix is the structural element that senses NADPH binding. Although the above arguments are speculative and need further verification, as a whole our studies have opened up a new possibility, viz. that mammalian catalase acts as a domain-swapped dimer of dimers, especially during inhibitor binding. To generalize this concept to the formation of the inactive state in mammalian catalases in the absence of tightly bound NADPH molecules needs further exploration. The present study adds one more intriguing fact to the existing mysteries of mammalian catalases. PMID:21968615

  15. NADPH oxidase activity is necessary for acute intermittent hypoxia-induced phrenic long-term facilitation

    PubMed Central

    MacFarlane, P M; Satriotomo, I; Windelborn, J A; Mitchell, G S

    2009-01-01

    Phrenic long-term facilitation (pLTF) following acute intermittent hypoxia (AIH) is a form of spinal, serotonin-dependent synaptic plasticity that requires reactive oxygen species (ROS) formation. We tested the hypothesis that spinal NADPH oxidase activity is a necessary source of ROS for pLTF. Sixty minutes post-AIH (three 5-min episodes of 11% O2, 5 min intervals), integrated phrenic and hypoglossal (XII) nerve burst amplitudes were increased from baseline, indicative of phrenic and XII LTF. Intrathecal injections (∼C4) of apocynin or diphenyleneiodonium chloride (DPI), two structurally and functionally distinct inhibitors of the NADPH oxidase complex, attenuated phrenic, but not XII, LTF. Immunoblots from soluble (cytosolic) and particulate (membrane) fractions of ventral C4 spinal segments revealed predominantly membrane localization of the NADPH oxidase catalytic subunit, gp91phox, whereas membrane and cytosolic expression were both observed for the regulatory subunits, p47phox and RAC1. Immunohistochemical analysis of fixed tissues revealed these same subunits in presumptive phrenic motoneurons of the C4 ventral horn, but not in neighbouring astrocytes or microglia. Collectively, these data demonstrate that NADPH oxidase subunits localized within presumptive phrenic motoneurons are a major source of ROS necessary for AIH-induced pLTF. Thus, NADPH oxidase activity is a key regulator of spinal synaptic plasticity, and may be a useful pharmaceutical target in developing therapeutic strategies for respiratory insufficiency in patients with, for example, cervical spinal injury. PMID:19237427

  16. NADPH oxidase of guinea-pig macrophages catalyses the reduction of ubiquinone-1 under anaerobic conditions.

    PubMed Central

    Murakami, M; Nakamura, M; Minakami, S

    1986-01-01

    The stimulation-specific NADPH-dependent reduction of ubiquinone-1 (Q-1) in guinea-pig macrophages was studied. The activity was due neither to any modified product of the phagocytosis-specific NADPH oxidase nor to non-specific diaphorases of the cells, since the activity was measured in sonicated or detergent-disrupted cells by subtracting the activity in the resting cells from that in cells activated by phorbol 12-myristate 13-acetate. The activity was not mediated by superoxide anions, since strict anaerobic conditions were employed. The anaerobic reduction of Q-1 was NADPH-specific, like superoxide formation under aerobic conditions, and its maximal velocity was also essentially the same as that of superoxide formation. The oxidase does not directly reduce Q-1 under aerobic conditions [Nakamura, Murakami, Umei & Minakami (1985) FEBS Lett. 186, 215-218], and the electron transfer from NADPH to cytochrome c by the oxidase under aerobic conditions was not enhanced by the addition of Q-1. The observations indicate that the phagocytosis-specific NADPH oxidase reduces Q-1 and that oxygen competes with the reduction of Q-1. Q-1 seems to accept electrons not from the intermediary electron carriers of the oxidase but from the terminal oxygen-reducing site of the enzyme. PMID:3026322

  17. Dual utilization of NADPH and NADH cofactors enhances xylitol production in engineered Saccharomyces cerevisiae.

    PubMed

    Jo, Jung-Hyun; Oh, Sun-Young; Lee, Hyeun-Soo; Park, Yong-Cheol; Seo, Jin-Ho

    2015-12-01

    Xylitol, a natural sweetener, can be produced by hydrogenation of xylose in hemicelluloses. In microbial processes, utilization of only NADPH cofactor limited commercialization of xylitol biosynthesis. To overcome this drawback, Saccharomyces cerevisiae D452-2 was engineered to express two types of xylose reductase (XR) with either NADPH-dependence or NADH-preference. Engineered S. cerevisiae DWM expressing both the XRs exhibited higher xylitol productivity than the yeast strain expressing NADPH-dependent XR only (DWW) in both batch and glucose-limited fed-batch cultures. Furthermore, the coexpression of S. cerevisiae ZWF1 and ACS1 genes in the DWM strain increased intracellular concentrations of NADPH and NADH and improved maximum xylitol productivity by 17%, relative to that for the DWM strain. Finally, the optimized fed-batch fermentation of S. cerevisiae DWM-ZWF1-ACS1 resulted in 196.2 g/L xylitol concentration, 4.27 g/L h productivity and almost the theoretical yield. Expression of the two types of XR utilizing both NADPH and NADH is a promising strategy to meet the industrial demands for microbial xylitol production. PMID:26470683

  18. Recombinant expression and biochemical characterization of an NADPH:flavin oxidoreductase from Entamoeba histolytica.

    PubMed Central

    Bruchhaus, I; Richter, S; Tannich, E

    1998-01-01

    The gene encoding a putative NADPH:flavin oxidoreductase of the protozoan parasite Entamoeba histolytica (Eh34) was recombinantly expressed in Escherichia coli. The purified recombinant protein (recEh34) has a molecular mass of about 35 kDa upon SDS/PAGE analysis, exhibits a flavoprotein-like absorption spectrum and contains 1 mol of non-covalently bound FMN per mol of protein. RecEh34 reveals two different enzymic activities. It catalyses the NADPH-dependent reduction of oxygen to hydrogen peroxide (H2O2), as well as of disulphides such as 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) and cystine. The disulphide reductase but not the H2O2-forming NADPH oxidase activity is inhibitable by sulphydryl-active compounds, indicating that a thiol component is part of the active site for the disulphide reductase activity, whereas for the H2O2-forming NADPH oxidase activity only the flavin is required. Compared with the recombinant protein, similar activities are present in amoebic extracts. Native Eh34 is active in a monomeric as well as in a dimeric state. In contrast to recEh34, no flavin was associated with the native protein. However, both NADPH oxidase as well as DTNB reductase activity were found to be dependent on the addition of FAD or FMN. PMID:9494088

  19. NADPH Oxidase Biology and the Regulation of Tyrosine Kinase Receptor Signaling and Cancer Drug Cytotoxicity

    PubMed Central

    Paletta-Silva, Rafael; Rocco-Machado, Nathália; Meyer-Fernandes, José Roberto

    2013-01-01

    The outdated idea that reactive oxygen species (ROS) are only dangerous products of cellular metabolism, causing toxic and mutagenic effects on cellular components, is being replaced by the view that ROS have several important functions in cell signaling. In aerobic organisms, ROS can be generated from different sources, including the mitochondrial electron transport chain, xanthine oxidase, myeloperoxidase, and lipoxygenase, but the only enzyme family that produces ROS as its main product is the NADPH oxidase family (NOX enzymes). These transfer electrons from NADPH (converting it to NADP−) to oxygen to make O2•−. Due to their stability, the products of NADPH oxidase, hydrogen peroxide, and superoxide are considered the most favorable ROS to act as signaling molecules. Transcription factors that regulate gene expression involved in carcinogenesis are modulated by NADPH oxidase, and it has emerged as a promising target for cancer therapies. The present review discusses the mechanisms by which NADPH oxidase regulates signal transduction pathways in view of tyrosine kinase receptors, which are pivotal to regulating the hallmarks of cancer, and how ROS mediate the cytotoxicity of several cancer drugs employed in clinical practice. PMID:23434665

  20. Multiphoton fluorescence lifetime imaging of metabolic status in mesenchymal stem cell during adipogenic differentiation

    NASA Astrophysics Data System (ADS)

    Meleshina, A. V.; Dudenkova, V. V.; Shirmanova, M. V.; Bystrova, A. S.; Zagaynova, E. V.

    2016-03-01

    Non-invasive imaging of cell metabolism is a valuable approach to assess the efficacy of stem cell therapy and understand the tissue development. In this study we analyzed metabolic trajectory of the mesenchymal stem cells (MCSs) during differentiation into adipocytes by measuring fluorescence lifetimes of free and bound forms of the reduced nicotinamide adenine dinucleotide (NAD(P)H) and flavine adenine dinucleotide (FAD). Undifferentiated MSCs and MSCs on the 5, 12, 19, 26 days of differentiation were imaged on a Zeiss 710 microscope with fluorescence lifetime imaging (FLIM) system B&H (Germany). Fluorescence of NAD(P)H and FAD was excited at 750 nm and 900 nm, respectively, by a femtosecond Ti:sapphire laser and detected in a range 455-500 nm and 500-550 nm, correspondingly. We observed the changes in the NAD(P)H and FAD fluorescence lifetimes and their relative contributions in the differentiated adipocytes compare to undifferentiated MSCs. Increase of fluorescence lifetimes of the free and bound forms of NAD(P)H and the contribution of protein-bound NAD(P)H was registered, that can be associated with a metabolic switch from glycolysis to oxidative phosphorylation and/or synthesis of lipids in adipogenically differentiated MSCs. We also found that the contribution of protein-bound FAD decreased during differentiation. After carrying out appropriate biochemical measurements, the observed changes in cellular metabolism can potentially serve to monitor stem cell differentiation by FLIM.

  1. Activated barrier crossing dynamics in the non-radiative decay of NADH and NADPH

    NASA Astrophysics Data System (ADS)

    Blacker, Thomas S.; Marsh, Richard J.; Duchen, Michael R.; Bain, Angus J.

    2013-08-01

    In live tissue, alterations in metabolism induce changes in the fluorescence decay of the biological coenzyme NAD(P)H, the mechanism of which is not well understood. In this work, the fluorescence and anisotropy decay dynamics of NADH and NADPH were investigated as a function of viscosity in a range of water-glycerol solutions. The viscosity dependence of the non-radiative decay is well described by Kramers and Kramers-Hubbard models of activated barrier crossing over a wide viscosity range. Our combined lifetime and anisotropy analysis indicates common mechanisms of non-radiative relaxation in the two emitting states (conformations) of both molecules. The low frequencies associated with barrier crossing suggest that non-radiative decay is mediated by small scale motion (e.g. puckering) of the nicotinamide ring. Variations in the fluorescence lifetimes of NADH and NADPH when bound to different enzymes may therefore be attributed to differing levels of conformational restriction upon binding.

  2. Role of reactive oxygen species produced by NADPH oxidase in gibberellin biosynthesis during barley seed germination.

    PubMed

    Kai, Kyohei; Kasa, Shinsuke; Sakamoto, Masatsugu; Aoki, Nozomi; Watabe, Gaku; Yuasa, Takashi; Iwaya-Inoue, Mari; Ishibashi, Yushi

    2016-05-01

    NADPH oxidase catalyzes the production of the superoxide anion (O2(-)), a reactive oxygen species (ROS), and regulates the germination of barley (Hordeum vulgare L.). Diphenyleneiodonium (DPI) chloride, an NADPH oxidase inhibitor, delayed barley germination, and exogenous H2O2 (an ROS) partially rescued it. Six enzymes, ent-copalyl diphosphate synthase (CPS), ent-kaurene synthase (KS), ent-kaurene oxidase (KO), ent-kaurenoic acid oxidase (KAO), GA20-oxidase (GA20ox) and GA3-oxidase (GA3ox), catalyze the transformation of trans-geranylgeranyl diphosphate to active gibberellin, which promotes germination. Exogenous H2O2 promoted the expressions of HvKAO1 and HvGA3ox1 in barley embryos. These results suggest that ROS produced by NADPH oxidase are involved in gibberellin biosynthesis through the regulation of HvKAO1 and HvGA3ox1. PMID:27110861

  3. 6MAP, a fluorescent adenine analogue, is a probe of base flipping by DNA photolyase.

    PubMed

    Yang, Kongsheng; Matsika, Spiridoula; Stanley, Robert J

    2007-09-01

    Cyclobutylpyrimidine dimers (CPDs) are formed between adjacent pyrimidines in DNA when it absorbs ultraviolet light. CPDs can be directly repaired by DNA photolyase (PL) in the presence of visible light. How PL recognizes and binds its substrate is still not well understood. Fluorescent nucleic acid base analogues are powerful probes of DNA structure. We have used the fluorescent adenine analogue 6MAP, a pteridone, to probe the local double helical structure of the CPD substrate when bound by photolyase. Duplex melting temperatures were obtained by both UV-vis absorption and fluorescence spectroscopies to ascertain the effect of the probe and the CPD on DNA stability. Steady-state fluorescence measurements of 6MAP-containing single-stranded and doubled-stranded oligos with and without protein show that the local region around the CPD is significantly disrupted. 6MAP shows a different quenching pattern compared to 2-aminopurine, another important adenine analogue, although both probes show that the structure of the complementary strand opposing the 5'-side of the CPD lesion is more destacked than that opposing the 3'-side in substrate/protein complexes. We also show that 6MAP/CPD duplexes are substrates for PL. Vertical excitation energies and transition dipole moment directions for 6MAP were calculated using time-dependent density functional theory. Using these results, the Förster resonance energy transfer efficiency between the individual adenine analogues and the oxidized flavin cofactor was calculated to account for the observed intensity pattern. These calculations suggest that energy transfer is highly efficient for the 6MAP probe and less so for the 2Ap probe. However, no experimental evidence for this process was observed in the steady-state emission spectra. PMID:17696385

  4. The effects of cyclic adenosine 3',5'-monophosphate and other adenine nucleotides on body temperature.

    PubMed Central

    Dascombe, M J; Milton, A S

    1975-01-01

    1. Adenosine 3',5'-monophosphate (cAMP), its dibutyryl derivative (Db-cAMP) and other adenine nucleotides have been micro-injected into the hypothalamic region of the unanaesthetized cat and the effects on body temperature, and on behavioural and autonomic thermoregulatory activities observed. 2. Db-cAMP and cAMP both produced hypothermia when applied to the pre-optic anterior hypothalamus. With Db-cAMP the hypothermia was shown to be dose dependent between 50 and 500 mug (0-096-0-96 mumole). 3. AMP, ADP and ATP also produced hypothermia when injected into the pre-optic anterior hypothalamus. 4. The order of relative potencies of the adenine nucleotides with respect both to the hypothermia produced and to the autonomic thermoregulatory effects observed were similar. Db-cAMP was most potent and cAMP least. 5. Micro-injection into the pre-optic anterior hypothalamus of many substances including saline produced in most cats a non-specific rise in body temperature apparently the result of tissue damage. Intraperitoneal injection of 4-acetamidophenol (paracetamol 50 mg/kg) reduced or abolished this febrile response. 6. The hypothermic effect of the adenine nucleotides has been compared with the effects produced in these same cats by micro-injections of noradrenaline, 5-hydroxytryptamine, a mixture of acetylcholine and physostigmine (1:1), EDTA and excess Ca2+ ions. 7. It is concluded that as Db-cAMP and cAMP both produce hypothermia, it is unlikely that endogenous cAMP in the pre-optic anterior hypothalamus mediates the hyperthermic responses to pyrogens and prostaglandins. PMID:170396

  5. The effects of cyclic adenosine 3',5'-monophosphate and other adenine nucleotides on body temperature.

    PubMed

    Dascombe, M J; Milton, A S

    1975-08-01

    1. Adenosine 3',5'-monophosphate (cAMP), its dibutyryl derivative (Db-cAMP) and other adenine nucleotides have been micro-injected into the hypothalamic region of the unanaesthetized cat and the effects on body temperature, and on behavioural and autonomic thermoregulatory activities observed. 2. Db-cAMP and cAMP both produced hypothermia when applied to the pre-optic anterior hypothalamus. With Db-cAMP the hypothermia was shown to be dose dependent between 50 and 500 mug (0-096-0-96 mumole). 3. AMP, ADP and ATP also produced hypothermia when injected into the pre-optic anterior hypothalamus. 4. The order of relative potencies of the adenine nucleotides with respect both to the hypothermia produced and to the autonomic thermoregulatory effects observed were similar. Db-cAMP was most potent and cAMP least. 5. Micro-injection into the pre-optic anterior hypothalamus of many substances including saline produced in most cats a non-specific rise in body temperature apparently the result of tissue damage. Intraperitoneal injection of 4-acetamidophenol (paracetamol 50 mg/kg) reduced or abolished this febrile response. 6. The hypothermic effect of the adenine nucleotides has been compared with the effects produced in these same cats by micro-injections of noradrenaline, 5-hydroxytryptamine, a mixture of acetylcholine and physostigmine (1:1), EDTA and excess Ca2+ ions. 7. It is concluded that as Db-cAMP and cAMP both produce hypothermia, it is unlikely that endogenous cAMP in the pre-optic anterior hypothalamus mediates the hyperthermic responses to pyrogens and prostaglandins. PMID:170396

  6. Fragmentation of the adenine and guanine molecules induced by electron collisions

    SciTech Connect

    Minaev, B. F. E-mail: boris@theochem.kth.se; Shafranyosh, M. I.; Svida, Yu. Yu; Sukhoviya, M. I.; Shafranyosh, I. I.; Baryshnikov, G. V.; Minaeva, V. A.

    2014-05-07

    Secondary electron emission is the most important stage in the mechanism of radiation damage to DNA biopolymers induced by primary ionizing radiation. These secondary electrons ejected by the primary electron impacts can produce further ionizations, initiating an avalanche effect, leading to genome damage through the energy transfer from the primary objects to sensitive biomolecular targets, such as nitrogenous bases, saccharides, and other DNA and peptide components. In this work, the formation of positive and negative ions of purine bases of nucleic acids (adenine and guanine molecules) under the impact of slow electrons (from 0.1 till 200 eV) is studied by the crossed electron and molecular beams technique. The method used makes it possible to measure the molecular beam intensity and determine the total cross-sections for the formation of positive and negative ions of the studied molecules, their energy dependences, and absolute values. It is found that the maximum cross section for formation of the adenine and guanine positive ions is reached at about 90 eV energy of the electron beam and their absolute values are equal to 2.8 × 10{sup −15} and 3.2 × 10{sup −15} cm{sup 2}, respectively. The total cross section for formation of the negative ions is 6.1 × 10{sup −18} and 7.6 × 10{sup −18} cm{sup 2} at the energy of 1.1 eV for adenine and guanine, respectively. The absolute cross-section values for the molecular ions are measured and the cross-sections of dissociative ionization are determined. Quantum chemical calculations are performed for the studied molecules, ions and fragments for interpretation of the crossed beams experiments.

  7. Purine salvage in Methanocaldococcus jannaschii: Elucidating the role of a conserved cysteine in adenine deaminase.

    PubMed

    Miller, Danielle V; Brown, Anne M; Xu, Huimin; Bevan, David R; White, Robert H

    2016-06-01

    Adenine deaminases (Ade) and hypoxanthine/guanine phosphoribosyltransferases (Hpt) are widely distributed enzymes involved in purine salvage. Characterization of the previously uncharacterized Ade (MJ1459 gene product) and Hpt (MJ1655 gene product) are discussed here and provide insight into purine salvage in Methanocaldococcus jannaschii. Ade was demonstrated to use either Fe(II) and/or Mn(II) as the catalytic metal. Hpt demonstrated no detectable activity with adenine, but was equally specific for hypoxanthine and guanine with a kcat /KM of 3.2 × 10(7) and 3.0 × 10(7) s(- 1) M(- 1) , respectively. These results demonstrate that hypoxanthine and IMP are the central metabolites in purine salvage in M. jannaschii for AMP and GMP production. A conserved cysteine (C127, M. jannaschii numbering) was examined due to its high conservation in bacterial and archaeal homologues. To assess the role of this highly conserved cysteine in M. jannaschii Ade, site-directed mutagenesis was performed. It was determined that mutation to serine (C127S) completely abolished Ade activity and mutation to alanine (C127A) exhibited 10-fold decrease in kcat over the wild type Ade. To further investigate the role of C127, detailed molecular docking and dynamics studies were performed and revealed adenine was unable to properly orient in the active site in the C127A and C127S Ade model structures due to distinct differences in active site conformation and rotation of D261. Together this work illuminates purine salvage in M. jannaschii and the critical role of a cysteine residue in maintaining active site conformation of Ade. Proteins 2016; 84:828-840. © 2016 Wiley Periodicals, Inc. PMID:26990095

  8. Structure of Hordeum vulgare NADPH-dependent thioredoxin reductase 2. Unwinding the reaction mechanism

    SciTech Connect

    Kirkensgaard, Kristine G.; Hägglund, Per; Finnie, Christine; Svensson, Birte; Henriksen, Anette

    2009-09-01

    The first crystal structure of a cereal NTR, a protein involved in seed development and germination, has been determined. The structure is in a conformation that excludes NADPH binding and indicates that a domain reorientation facilitated by Trx binding precedes NADPH binding in the reaction mechanism. Thioredoxins (Trxs) are protein disulfide reductases that regulate the intracellular redox environment and are important for seed germination in plants. Trxs are in turn regulated by NADPH-dependent thioredoxin reductases (NTRs), which provide reducing equivalents to Trx using NADPH to recycle Trxs to the active form. Here, the first crystal structure of a cereal NTR, HvNTR2 from Hordeum vulgare (barley), is presented, which is also the first structure of a monocot plant NTR. The structure was determined at 2.6 Å resolution and refined to an R{sub cryst} of 19.0% and an R{sub free} of 23.8%. The dimeric protein is structurally similar to the structures of AtNTR-B from Arabidopsis thaliana and other known low-molecular-weight NTRs. However, the relative position of the two NTR cofactor-binding domains, the FAD and the NADPH domains, is not the same. The NADPH domain is rotated by 25° and bent by a 38% closure relative to the FAD domain in comparison with AtNTR-B. The structure may represent an intermediate between the two conformations described previously: the flavin-oxidizing (FO) and the flavin-reducing (FR) conformations. Here, analysis of interdomain contacts as well as phylogenetic studies lead to the proposal of a new reaction scheme in which NTR–Trx interactions mediate the FO to FR transformation.

  9. A leading role for NADPH oxidase in an in-vitro study of experimental autoimmune encephalomyelitis.

    PubMed

    Seo, Ji-Eun; Hasan, Mahbub; Rahaman, Khandoker Asiqur; Kang, Min-Jung; Jung, Byung-Hwa; Kwon, Oh-Seung

    2016-04-01

    Myelin oligodendrocyte glycoprotein peptide fragment 35-55 (MOG35-55) is a major autoantigen inducing experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis that is characterized by blood-brain barrier (BBB) disruption. Various experimental approaches have employed MOG35-55 in vivo; however, in vitro BBB models using MOG35-55 are rarely reported. We investigated MOG35-55 exposure effects with complete Freund's adjuvant (CFA) and pertussis toxin (PTX) on brain endothelial cells and elucidated the relationships among NADPH oxidase, MMP-9, ICAM-1, and VCAM-1. These 4 factors significantly increased in MOG35-55+CFA+PTX-exposed endothelial cells compared with the control cells. NADPH oxidase inhibition using apocynin reduced MMP-9 activity, ICAM-1, and VCAM-1. MMP-9 inhibitor I decreased expression of ICAM-1 and VCAM-1, and both anti-ICAM-1 and anti-VCAM-1 inhibited MMP-9 activity. Inhibitions of MMP-9, ICAM-1, and VCAM-1 did not change NADPH oxidase activity. Although inhibition of these 4 factors decreased BBB permeability in cells, inhibition of NADPH oxidase exhibited the highest decrease among these. NADPH oxidase directly influenced MMP-9, ICAM-1, and VCAM-1, but not vice versa. MMP-9 and the cell adhesion molecules reversibly affected each other. In conclusion, NADPH oxidase-derived superoxide elevated expression of MMP-9, ICAM-1, and VCAM-1, and these interactions can finally result in increases of BBB permeability in MOG35-55+CFA+PTX-exposed endothelial cells. PMID:26928315

  10. The effect of pi-stacking, h-bonding, and electrostatic interactions on the ionization energies of nucleic acid bases: adenine-adenine, thymine-thymine and adenine-thymine dimers

    SciTech Connect

    Bravaya, Ksenia B.; Kostko, Oleg; Ahmed, Musahid; Krylov, Anna I.

    2009-09-02

    A combined theoretical and experimental study of the ionized dimers of thymine and adenine, TT, AA, and AT, is presented. Adiabatic and vertical ionization energies(IEs) for monomers and dimers as well as thresholds for the appearance of the protonated species are reported and analyzed. Non-covalent interactions stronglyaffect the observed IEs. The magnitude and the nature of the effect is different for different isomers of the dimers. The computations reveal that for TT, the largestchanges in vertical IEs (0.4 eV) occur in asymmetric h-bonded and symmetric pi- stacked isomers, whereas in the lowest-energy symmetric h-bonded dimer the shiftin IEs is much smaller (0.1 eV). The origin of the shift and the character of the ionized states is different in asymmetric h-bonded and symmetric stacked isomers. Inthe former, the initial hole is localized on one of the fragments, and the shift is due to the electrostatic stabilization of the positive charge of the ionized fragment by thedipole moment of the neutral fragment. In the latter, the hole is delocalized, and the change in IE is proportional to the overlap of the fragments' MOs. The shifts in AAare much smaller due to a less effcient overlap and a smaller dipole moment. The ionization of the h-bonded dimers results in barrierless (or nearly barrierless) protontransfer, whereas the pi-stacked dimers relax to structures with the hole stabilized by the delocalization or electrostatic interactions.

  11. Role of NADPH Oxidase in Metabolic Disease-Related Renal Injury: An Update.

    PubMed

    Wan, Cheng; Su, Hua; Zhang, Chun

    2016-01-01

    Metabolic syndrome has been linked to an increased risk of chronic kidney disease. The underlying pathogenesis of metabolic disease-related renal injury remains obscure. Accumulating evidence has shown that NADPH oxidase is a major source of intrarenal oxidative stress and is upregulated by metabolic factors leading to overproduction of ROS in podocytes, endothelial cells, and mesangial cells in glomeruli, which is closely associated with the initiation and progression of glomerular diseases. This review focuses on the role of NADPH oxidase-induced oxidative stress in the pathogenesis of metabolic disease-related renal injury. Understanding of the mechanism may help find potential therapeutic strategies. PMID:27597884

  12. Role of NADPH Oxidase in Metabolic Disease-Related Renal Injury: An Update

    PubMed Central

    Su, Hua

    2016-01-01

    Metabolic syndrome has been linked to an increased risk of chronic kidney disease. The underlying pathogenesis of metabolic disease-related renal injury remains obscure. Accumulating evidence has shown that NADPH oxidase is a major source of intrarenal oxidative stress and is upregulated by metabolic factors leading to overproduction of ROS in podocytes, endothelial cells, and mesangial cells in glomeruli, which is closely associated with the initiation and progression of glomerular diseases. This review focuses on the role of NADPH oxidase-induced oxidative stress in the pathogenesis of metabolic disease-related renal injury. Understanding of the mechanism may help find potential therapeutic strategies. PMID:27597884

  13. Activation of AMP-Activated Protein Kinase by Adenine Alleviates TNF-Alpha-Induced Inflammation in Human Umbilical Vein Endothelial Cells.

    PubMed

    Cheng, Yi-Fang; Young, Guang-Huar; Lin, Jiun-Tsai; Jang, Hyun-Hwa; Chen, Chin-Chen; Nong, Jing-Yi; Chen, Po-Ku; Kuo, Cheng-Yi; Kao, Shao-Hsuan; Liang, Yao-Jen; Chen, Han-Min

    2015-01-01

    The AMP-activated protein kinase (AMPK) signaling system plays a key role in cellular stress by repressing the inflammatory responses induced by the nuclear factor-kappa B (NF-κB) system. Previous studies suggest that the anti-inflammatory role of AMPK involves activation by adenine, but the mechanism that allows adenine to produce these effects has not yet been elucidated. In human umbilical vein endothelial cells (HUVECs), adenine was observed to induce the phosphorylation of AMPK in both a time- and dose-dependent manner as well as its downstream target acetyl Co-A carboxylase (ACC). Adenine also attenuated NF-κB targeting of gene expression in a dose-dependent manner and decreased monocyte adhesion to HUVECs following tumor necrosis factor (TNF-α) treatment. The short hairpin RNA (shRNA) against AMPK α1 in HUVECs attenuated the adenine-induced inhibition of NF-κB activation in response to TNF-α, thereby suggesting that the anti-inflammatory role of adenine is mediated by AMPK. Following the knockdown of adenosyl phosphoribosyl transferase (APRT) in HUVECs, adenine supplementation failed to induce the phosphorylation of AMPK and ACC. Similarly, the expression of a shRNA against APRT nullified the anti-inflammatory effects of adenine in HUVECs. These results suggested that the role of adenine as an AMPK activator is related to catabolism by APRT, which increases the cellular AMP levels to activate AMPK. PMID:26544976

  14. Application of intron 9 and intron 25 dinucleotide repeats of the factor VIII gene for carrier diagnosis in haemophilia A.

    PubMed

    Venceslá, A; Baena, M; Fares Taie, L; Cornet, M; Baiget, M; Tizzano, E F

    2008-05-01

    We describe the usefulness of two dinucleotide repeats located in intron 9 and in intron 25 of the factor VIII gene for carrier diagnosis of haemophilia A. We analyzed 100 unrelated Spanish women and 34 women from haemophilia A (HA) families in whom known intragenic markers were unhelpful in determining their carrier status. The heterozygosity rate of intron 9 and intron 25 markers in the 100 control women was lower (0.28 and 0.38, respectively) than the values obtained with common markers routinely used in our laboratory. However, the application of intron 9 and intron 25 markers was effective in identifying the at-risk X chromosome in 11 of 34 (32%) of the uninformative women from HA families. The combined use of these repeats with current markers may facilitate the identification of the X chromosome in HA families for application in carrier, prenatal and pre-implantation diagnoses. PMID:18384354

  15. The Ca2+-Regulation of the Mitochondrial External NADPH Dehydrogenase in Plants Is Controlled by Cytosolic pH

    PubMed Central

    Hao, Meng-Shu; Jensen, Anna M.; Boquist, Ann-Sofie; Liu, Yun-Jun; Rasmusson, Allan G.

    2015-01-01

    NADPH is a key reductant carrier that maintains internal redox and antioxidant status, and that links biosynthetic, catabolic and signalling pathways. Plants have a mitochondrial external NADPH oxidation pathway, which depends on Ca2+ and pH in vitro, but concentrations of Ca2+ needed are not known. We have determined the K0.5(Ca2+) of the external NADPH dehydrogenase from Solanum tuberosum mitochondria and membranes of E. coli expressing Arabidopsis thaliana NDB1 over the physiological pH range using O2 and decylubiquinone as electron acceptors. The K0.5(Ca2+) of NADPH oxidation was generally higher than for NADH oxidation, and unlike the latter, it depended on pH. At pH 7.5, K0.5(Ca2+) for NADPH oxidation was high (≈100 μM), yet 20-fold lower K0.5(Ca2+) values were determined at pH 6.8. Lower K0.5(Ca2+) values were observed with decylubiquinone than with O2 as terminal electron acceptor. NADPH oxidation responded to changes in Ca2+ concentrations more rapidly than NADH oxidation did. Thus, cytosolic acidification is an important activator of external NADPH oxidation, by decreasing the Ca2+-requirements for NDB1. The results are discussed in relation to the present knowledge on how whole cell NADPH redox homeostasis is affected in plants modified for the NDB1 gene. PMID:26413894

  16. Determination of the Cytosolic NADPH/NADP Ratio in Saccharomyces cerevisiae using Shikimate Dehydrogenase as Sensor Reaction

    PubMed Central

    Zhang, Jinrui; Pierick, Angela ten; van Rossum, Harmen M.; Maleki Seifar, Reza; Ras, Cor; Daran, Jean-Marc; Heijnen, Joseph J.; Aljoscha Wahl, S.

    2015-01-01

    Eukaryotic metabolism is organised in complex networks of enzyme catalysed reactions which are distributed over different organelles. To quantify the compartmentalised reactions, quantitative measurements of relevant physiological variables in different compartments are needed, especially of cofactors. NADP(H) are critical components in cellular redox metabolism. Currently, available metabolite measurement methods allow whole cell measurements. Here a metabolite sensor based on a fast equilibrium reaction is introduced to monitor the cytosolic NADPH/NADP ratio in Saccharomyces cerevisiae: . The cytosolic NADPH/NADP ratio was determined by measuring the shikimate and dehydroshikimate concentrations (by GC-MS/MS). The cytosolic NADPH/NADP ratio was determined under batch and chemostat (aerobic, glucose-limited, D = 0.1 h−1) conditions, to be 22.0 ± 2.6 and 15.6 ± 0.6, respectively. These ratios were much higher than the whole cell NADPH/NADP ratio (1.05 ± 0.08). In response to a glucose pulse, the cytosolic NADPH/NADP ratio first increased very rapidly and restored the steady state ratio after 3 minutes. In contrast to this dynamic observation, the whole cell NADPH/NADP ratio remained nearly constant. The novel cytosol NADPH/NADP measurements provide new insights into the thermodynamic driving forces for NADP(H)-dependent reactions, like amino acid synthesis, product pathways like fatty acid production or the mevalonate pathway. PMID:26243542

  17. The Ca2+-Regulation of the Mitochondrial External NADPH Dehydrogenase in Plants Is Controlled by Cytosolic pH.

    PubMed

    Hao, Meng-Shu; Jensen, Anna M; Boquist, Ann-Sofie; Liu, Yun-Jun; Rasmusson, Allan G

    2015-01-01

    NADPH is a key reductant carrier that maintains internal redox and antioxidant status, and that links biosynthetic, catabolic and signalling pathways. Plants have a mitochondrial external NADPH oxidation pathway, which depends on Ca2+ and pH in vitro, but concentrations of Ca2+ needed are not known. We have determined the K0.5(Ca2+) of the external NADPH dehydrogenase from Solanum tuberosum mitochondria and membranes of E. coli expressing Arabidopsis thaliana NDB1 over the physiological pH range using O2 and decylubiquinone as electron acceptors. The K0.5(Ca2+) of NADPH oxidation was generally higher than for NADH oxidation, and unlike the latter, it depended on pH. At pH 7.5, K0.5(Ca2+) for NADPH oxidation was high (≈100 μM), yet 20-fold lower K0.5(Ca2+) values were determined at pH 6.8. Lower K0.5(Ca2+) values were observed with decylubiquinone than with O2 as terminal electron acceptor. NADPH oxidation responded to changes in Ca2+ concentrations more rapidly than NADH oxidation did. Thus, cytosolic acidification is an important activator of external NADPH oxidation, by decreasing the Ca2+-requirements for NDB1. The results are discussed in relation to the present knowledge on how whole cell NADPH redox homeostasis is affected in plants modified for the NDB1 gene. PMID:26413894

  18. ISOLATION AND CHARACTERIZATION OF THE ALKANE-INDUCIBLE NADPH-CYTOCHROME P-450 OXIDOREDUCTASE GENE FROM CANDIDA TROPICALIS

    EPA Science Inventory

    The gene coding for the Candida tropicalis NADPH-cytochrome P-450 oxidoreductase (CPR, NADPH: ferricytochrome oxidoreductase, EC 1.6.2.4) was isolated by immunoscreening of a C. tropicalis gtll expression library and colony hybridization of a C. tropicalis genomic library. he C. ...

  19. Synthesis, spectroscopic, structural and thermal characterizations of vanadyl(IV) adenine complex prospective as antidiabetic drug agent

    NASA Astrophysics Data System (ADS)

    El-Megharbel, Samy M.; Hamza, Reham Z.; Refat, Moamen S.

    2015-01-01

    The vanadyl(IV) adenine complex; [VO(Adn)2]ṡSO4; was synthesized and characterized. The molar conductivity of this complex was measured in DMSO solution that showed an electrolyte nature. Spectroscopic investigation of the green solid complex studied here indicate that the adenine acts as a bidentate ligand, coordinated to vanadyl(IV) ions through the nitrogen atoms N7 and nitrogen atom of amino group. Thus, from the results presented the vanadyl(IV) complex has square pyramid geometry. Further characterizations using thermal analyses and scanning electron techniques was useful. The aim of this paper was to introduce a new drug model for the diabetic complications by synthesized a novel mononuclear vanadyl(IV) adenine complex to mimic insulin action and reducing blood sugar level. The antidiabetic ability of this complex was investigated in STZ-induced diabetic mice. The results suggested that VO(IV)/adenine complex has antidiabetic activity, it improved the lipid profile, it improved liver and kidney functions, also it ameliorated insulin hormone and blood glucose levels. The vanadyl(IV) complex possesses an antioxidant activity and this was clear through studying SOD, CAT, MDA, GSH and methionine synthase. The current results support the therapeutic potentiality of vanadyl(IV)/adenine complex for the management and treatment of diabetes.

  20. Simultaneous Determination of Adenine and Guanine Using Cadmium Selenide Quantum Dots-Graphene Oxide Nanocomposite Modified Electrode.

    PubMed

    Kalaivani, Arumugam; Narayanan, Sangilimuthu Sriman

    2015-06-01

    A novel electrochemical sensor was fabricated by immobilizing Cadmium Selenide Quantum Dots (CdSe QDs)-Graphene Oxide (GO) nanocomposite on a paraffin wax impregnated graphite electrode (PIGE) and was used for the simultaneous determination of adenine and guanine. The CdSe QDs-GO nanocomposite was prepared by ultrasonication and was characterized with spectroscopic and microscopic techniques. The nanocomposite modified electrode was characterized by cyclic voltammetry (CV). The modified electrode showed excellent electrocatalytic activity towards the oxidative determination of adenine and guanine with a good peak separation of 0.31 V. This may be due to the high surface area and fast electron transfer kinetics of the nanocomposite. The modified electrode exhibited wide linear ranges from 0.167 μM to 245 μM for Guanine and 0.083 μM to 291 μM for Adenine with detection limits of 0.055 μM Guanine and 0.028 μM of Adenine (S/N = 3) respectively. Further, the modified electrode was used for the quantitative determination of adenine and guanine in herring sperm DNA with satisfactory results. The modified electrode showed acceptable selectivity, reproducibility and stability under optimal conditions. PMID:26369099

  1. Synthesis, spectroscopic, structural and thermal characterizations of vanadyl(IV) adenine complex prospective as antidiabetic drug agent.

    PubMed

    El-Megharbel, Samy M; Hamza, Reham Z; Refat, Moamen S

    2015-01-25

    The vanadyl(IV) adenine complex; [VO(Adn)2]⋅SO4; was synthesized and characterized. The molar conductivity of this complex was measured in DMSO solution that showed an electrolyte nature. Spectroscopic investigation of the green solid complex studied here indicate that the adenine acts as a bidentate ligand, coordinated to vanadyl(IV) ions through the nitrogen atoms N7 and nitrogen atom of amino group. Thus, from the results presented the vanadyl(IV) complex has square pyramid geometry. Further characterizations using thermal analyses and scanning electron techniques was useful. The aim of this paper was to introduce a new drug model for the diabetic complications by synthesized a novel mononuclear vanadyl(IV) adenine complex to mimic insulin action and reducing blood sugar level. The antidiabetic ability of this complex was investigated in STZ-induced diabetic mice. The results suggested that VO(IV)/adenine complex has antidiabetic activity, it improved the lipid profile, it improved liver and kidney functions, also it ameliorated insulin hormone and blood glucose levels. The vanadyl(IV) complex possesses an antioxidant activity and this was clear through studying SOD, CAT, MDA, GSH and methionine synthase. The current results support the therapeutic potentiality of vanadyl(IV)/adenine complex for the management and treatment of diabetes. PMID:25150436

  2. Metabolic fate of 14C-labelled nicotinamide and adenine in germinating propagules of the mangrove Bruguiera gymnorrhiza.

    PubMed

    Yin, Yuling; Watanabe, Shin; Ashihara, Hiroshi

    2012-01-01

    We studied the metabolic fate of [carbonyl-14C]nicotinamide and [8-(14)C]adenine in segments taken from young and developing leaves, stem, hypocotyls, and roots of a shoot-root type emerging propagule of the mangrove plant Bruguiera gymnorrhiza. Thin-layer chromatography was used together with a bioimaging analyser system. During 4 h of incubation, incorporation of radioactivity from [carbonyl-14C]nicotinamide into NAD and trigonelline was found in all parts of the propagules; the highest incorporation rates into NAD and trigonelline were found in newly emerged stem and young leaves, respectively. Radioactivity from [8-(14)C]adenine was distributed mainly in the salvage products (adenine nucleotides and RNA), and incorporation was less in catabolites (allantoin, allantoic acid, and CO2). Adenine salvage activity was higher in young leaves and stem than in hypocotyls and roots. Over a short time, the effect of 500 mM NaCl on nicotinamide and adenine metabolism indicated that NaCl inhibits both salvage and degradation activities in roots. PMID:22888538

  3. Comparative Study between Transcriptionally- and Translationally-Acting Adenine Riboswitches Reveals Key Differences in Riboswitch Regulatory Mechanisms

    PubMed Central

    Blouin, Simon; Heppell, Benoit; Bastet, Laurène; St-Pierre, Patrick; Massé, Eric; Lafontaine, Daniel A.

    2011-01-01

    Many bacterial mRNAs are regulated at the transcriptional or translational level by ligand-binding elements called riboswitches. Although they both bind adenine, the adenine riboswitches of Bacillus subtilis and Vibrio vulnificus differ by controlling transcription and translation, respectively. Here, we demonstrate that, beyond the obvious difference in transcriptional and translational modulation, both adenine riboswitches exhibit different ligand binding properties and appear to operate under different regulation regimes (kinetic versus thermodynamic). While the B. subtilis pbuE riboswitch fully depends on co-transcriptional binding of adenine to function, the V. vulnificus add riboswitch can bind to adenine after transcription is completed and still perform translation regulation. Further investigation demonstrates that the rate of transcription is critical for the B. subtilis pbuE riboswitch to perform efficiently, which is in agreement with a co-transcriptional regulation. Our results suggest that the nature of gene regulation control, that is transcription or translation, may have a high importance in riboswitch regulatory mechanisms. PMID:21283784

  4. Listeriolysin O suppresses Phospholipase C-mediated activation of the microbicidal NADPH oxidase to promote Listeria monocytogenes infection

    PubMed Central

    Lam, Grace Y.; Fattouh, Ramzi; Muise, Aleixo M.; Grinstein, Sergio; Higgins, Darren E.; Brumell, John H.

    2012-01-01

    Summary The intracellular bacterial pathogen Listeria monocytogenes produces phospholipases C (PI-PLC and PC-PLC) and the pore-forming cytolysin listeriolysin O (LLO) to escape the phagosome and replicate within the host cytosol. We found that PLCs can also activate the phagocyte NADPH oxidase during L. monocytogenes infection, a response that would adversely affect pathogen survival. However, secretion of LLO inhibits the NADPH oxidase by preventing its localization to phagosomes. LLO-deficient bacteria can be complemented by perfringolysin O, a related cytolysin, suggesting that other pathogens may also use pore-forming cytolysins to inhibit the NADPH oxidase. Our studies demonstrate that while the PLCs induce antimicrobial NADPH oxidase activity, this effect is alleviated by the pore-forming activity of LLO. Therefore, the combined activities of PLCs and LLO on membrane lysis and the inhibitory effects of LLO on NADPH oxidase activity allows L. monocytogenes to efficiently escape the phagosome while avoiding the microbicidal respiratory burst. PMID:22177565

  5. Time evolution of the Infrared Laser Induced Breakdown Spectroscopy of DNA bases Guanine and Adenine

    NASA Astrophysics Data System (ADS)

    Diaz, L.; Rubio, L.; Camacho, J. J.

    2013-03-01

    Laser-Induced Breakdown Spectroscopy (LIBS) of DNA bases Guanine and Adenine was studied using a high-power CO2 pulsed laser ( λ=10.591 μm, τ FWHM=64 ns and fluences ranging from 25 to 70 J/cm2). The strong emission of the adenine and guanine plasma, collected using a high-resolution spectrometer, at medium-vacuum conditions (4 Pa) and at 1 mm from the target, exhibits excited molecular bands of CN (B2 Σ +-X2 Σ +) and excited neutral H and ionized N+ and C+. The medium-weak emission is due to excited species C2+, C3+, N, O, O+, O2+ and molecular band systems of C2(d3\\varPig{-}a3\\varPiu; D1\\varSigmau+{-}X1\\varSigmag+), OH(A2 Σ +-X2 Π), NH(A3 Π-X3 Σ -), CH(A2 Π-X2 Π), N2+(B2\\varSigmau+{-} X2\\varSigmag+) and N2(C3 Π u-B3 Π g). We focus our attention on the temporal evolution of different atomic/ionic and molecular species. The velocity distributions for various (different) species were obtained from time-of-flight (TOF) measurements. Intensities of some lines from C+ were used for determining electron temperature and their Stark-broadened profiles were employed to estimate the temporal evolution of electron density.

  6. Quantitative investigation of the poly-adenine DNA dissociation from the surface of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Lu, Weiwen; Wang, Lihua; Li, Jiang; Zhao, Yun; Zhou, Ziang; Shi, Jiye; Zuo, Xiaolei; Pan, Dun

    2015-05-01

    In recent years, poly adenine (polyA) DNA functionalized gold nanoparticles (AuNPs) free of modifications was fabricated with high density of DNA attachment and high hybridization ability similar to those of its thiolated counterpart. This nanoconjugate utilized poly adenine as an anchoring block for binding with the AuNPs surface thereby facilitated the appended recognition block a better upright conformation for hybridization, demonstrating its great potential to be a tunable plasmonic biosensor. It’s one of the key points for any of the practical applications to maintaining stable conjugation between DNA oligonucleotides and gold nanoparticles under various experimental treatments. Thus, in this research, we designed a simple but sensitive fluorescence turn-on strategy to systematically investigate and quantified the dissociation of polyA DNA on gold nanoparticles in diverse experimental conditions. DNA desorbed spontaneously as a function of elevated temperature, ion strength, buffer pH, organic solvents and keeping time. What’s more, evaluating this conjugate stability as affected by the length of its polyA anchor was another crucial aspect in our study. With the improved understanding from these results, we were able to control some of our experimental conditions to maintain a good stability of this kind of polyA DNA-AuNPs nanoconjugates.

  7. Molecular basis for the recognition of methylated adenines in RNA by the eukaryotic YTH domain

    PubMed Central

    Luo, Shukun; Tong, Liang

    2014-01-01

    Methylation of the N6 position of selected internal adenines (m6A) in mRNAs and noncoding RNAs is widespread in eukaryotes, and the YTH domain in a collection of proteins recognizes this modification. We report the crystal structure of the splicing factor YT521-B homology (YTH) domain of Zygosaccharomyces rouxii MRB1 in complex with a heptaribonucleotide with an m6A residue in the center. The m6A modification is recognized by an aromatic cage, being sandwiched between a Trp and Tyr residue and with the methyl group pointed toward another Trp residue. Mutations of YTH domain residues in the RNA binding site can abolish the formation of the complex, confirming the structural observations. These residues are conserved in the human YTH proteins that also bind m6A RNA, suggesting a conserved mode of recognition. Overall, our structural and biochemical studies have defined the molecular basis for how the YTH domain functions as a reader of methylated adenines. PMID:25201973

  8. Molecular basis for the recognition of methylated adenines in RNA by the eukaryotic YTH domain.

    PubMed

    Luo, Shukun; Tong, Liang

    2014-09-23

    Methylation of the N6 position of selected internal adenines (m(6)A) in mRNAs and noncoding RNAs is widespread in eukaryotes, and the YTH domain in a collection of proteins recognizes this modification. We report the crystal structure of the splicing factor YT521-B homology (YTH) domain of Zygosaccharomyces rouxii MRB1 in complex with a heptaribonucleotide with an m(6)A residue in the center. The m(6)A modification is recognized by an aromatic cage, being sandwiched between a Trp and Tyr residue and with the methyl group pointed toward another Trp residue. Mutations of YTH domain residues in the RNA binding site can abolish the formation of the complex, confirming the structural observations. These residues are conserved in the human YTH proteins that also bind m(6)A RNA, suggesting a conserved mode of recognition. Overall, our structural and biochemical studies have defined the molecular basis for how the YTH domain functions as a reader of methylated adenines. PMID:25201973

  9. Development of bright fluorescent quadracyclic adenine analogues: TDDFT-calculation supported rational design

    PubMed Central

    Foller Larsen, Anders; Dumat, Blaise; Wranne, Moa S.; Lawson, Christopher P.; Preus, Søren; Bood, Mattias; Gradén, Henrik; Marcus Wilhelmsson, L.; Grøtli, Morten

    2015-01-01

    Fluorescent base analogues (FBAs) comprise a family of increasingly important molecules for the investigation of nucleic acid structure and dynamics. We recently reported the quantum chemical calculation supported development of four microenvironment sensitive analogues of the quadracyclic adenine (qA) scaffold, the qANs, with highly promising absorptive and fluorescence properties that were very well predicted by TDDFT calculations. Herein, we report on the efficient synthesis, experimental and theoretical characterization of nine novel quadracyclic adenine derivatives. The brightest derivative, 2-CNqA, displays a 13-fold increased brightness (εΦF = 4500) compared with the parent compound qA and has the additional benefit of being a virtually microenvironment-insensitive fluorophore, making it a suitable candidate for nucleic acid incorporation and use in quantitative FRET and anisotropy experiments. TDDFT calculations, conducted on the nine novel qAs a posteriori, successfully describe the relative fluorescence quantum yield and brightness of all qA derivatives. This observation suggests that the TDDFT-based rational design strategy may be employed for the development of bright fluorophores built up from a common scaffold to reduce the otherwise costly and time-consuming screening process usually required to obtain useful and bright FBAs. PMID:26227585

  10. Effect of Electronic Excitation on Hydrogen Atom Transfer (Tautomerization) Reactions for the DNA Base Adenine

    NASA Technical Reports Server (NTRS)

    Chaban, Galina M.; Salter, Latasha M.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Geometrical structures and energetic properties for four different tautomers of adenine are calculated in this study, using multi-configurational wave functions. Both the ground and the lowest single excited state potential energy surface are studied. The energetic order of the tautomers on the ground state potential surface is 9H less than 7H less than 3H less than 1H, while on the excited state surface this order is found to be different: 3H less than 1H less than 9H less than 7H. Minimum energy reaction paths are obtained for hydrogen atom transfer (9 yields 3 tautomerization) reactions in the ground and the lowest excited electronic state. It is found that the barrier heights and the shapes of the reaction paths are different for the ground and the excited electronic state, suggesting that the probability of such tautomerization reaction is higher on the excited state potential energy surface. The barrier for this reaction in the excited state may become very low in the presence of water or other polar solvent molecules, and therefore such tautomerization reaction may play an important role in the solution phase photochemistry of adenine.

  11. Development of bright fluorescent quadracyclic adenine analogues: TDDFT-calculation supported rational design

    NASA Astrophysics Data System (ADS)

    Foller Larsen, Anders; Dumat, Blaise; Wranne, Moa S.; Lawson, Christopher P.; Preus, Søren; Bood, Mattias; Gradén, Henrik; Marcus Wilhelmsson, L.; Grøtli, Morten

    2015-07-01

    Fluorescent base analogues (FBAs) comprise a family of increasingly important molecules for the investigation of nucleic acid structure and dynamics. We recently reported the quantum chemical calculation supported development of four microenvironment sensitive analogues of the quadracyclic adenine (qA) scaffold, the qANs, with highly promising absorptive and fluorescence properties that were very well predicted by TDDFT calculations. Herein, we report on the efficient synthesis, experimental and theoretical characterization of nine novel quadracyclic adenine derivatives. The brightest derivative, 2-CNqA, displays a 13-fold increased brightness (ɛΦF = 4500) compared with the parent compound qA and has the additional benefit of being a virtually microenvironment-insensitive fluorophore, making it a suitable candidate for nucleic acid incorporation and use in quantitative FRET and anisotropy experiments. TDDFT calculations, conducted on the nine novel qAs a posteriori, successfully describe the relative fluorescence quantum yield and brightness of all qA derivatives. This observation suggests that the TDDFT-based rational design strategy may be employed for the development of bright fluorophores built up from a common scaffold to reduce the otherwise costly and time-consuming screening process usually required to obtain useful and bright FBAs.

  12. 3D Magnetically Ordered Open Supramolecular Architectures Based on Ferrimagnetic Cu/Adenine/Hydroxide Heptameric Wheels.

    PubMed

    Pérez-Aguirre, Rubén; Beobide, Garikoitz; Castillo, Oscar; de Pedro, Imanol; Luque, Antonio; Pérez-Yáñez, Sonia; Rodríguez Fernández, Jesús; Román, Pascual

    2016-08-01

    The present work provides two new examples of supramolecular metal-organic frameworks consisting of three-dimensional extended noncovalent assemblies of wheel-shaped heptanuclear [Cu7(μ-H2O)6(μ3-OH)6(μ-adeninato-κN3:κN9)6](2+) entities. The heptanuclear entity consists of a central [Cu(OH)6](4-) core connected to six additional copper(II) metal centers in a radial and planar arrangement through the hydroxides. It generates a wheel-shaped entity in which water molecules and μ-κN3:κN9 adeninato ligands bridge the peripheral copper atoms. The magnetic characterization indicates the central copper(II) center is anti-ferromagnetically coupled to external copper(II) centers, which are ferromagnetically coupled among them leading to an S = 5/2 ground state. The packing of these entities is sustained by π-π stacking interactions between the adenine nucleobases and by hydrogen bonds established among the hydroxide ligands, sulfate anions, and adenine nucleobases. The sum of both types of supramolecular interactions creates a rigid synthon that in combination with the rigidity of the heptameric entity generates an open supramolecular structure (40-50% of available space) in which additional sulfate and triethylammonium ions are located altogether with solvent molecules. These compounds represent an interesting example of materials combining both porosity and magnetic relevant features. PMID:27409976

  13. Theoretical study on the static and dynamic first-order hyperpolarisabilities of adenine tautomers

    NASA Astrophysics Data System (ADS)

    Alparone, Andrea

    2014-07-01

    Static and dynamic electronic and vibrational first-order hyperpolarisabilities (β) of the lowest energy neutral adenine tautomers (amine forms A7 and A9) were obtained in gaseous and aqueous phases by using Hartree-Fock, Møller-Plesset second-order and fourth-order perturbation theory (MP2 and MP4-SDQ) and conventional and long-range corrected density functional theory methods with the Dunning's correlation-consistent cc-pVDZ, aug-cc-pVDZ, aug-cc-pVTZ and d-aug-cc-pVDZ basis sets. Frequency-dependent properties were calculated at the characteristic wavelength of the Nd:YAG laser (1064 nm) for the second harmonic generation and electro-optical Pockels effect nonlinear optical processes. Solvent effects were introduced under the polarised continuum model approximation. The electronic βe values of the investigated isomers are noticeably affected by the theoretical level, basis set and solvation. In vacuum, the static and dynamic βe values of A9 are greater than the corresponding data of A7, whereas the contribution of the solvent significantly enhances the hyperpolarisabilities of the A7 tautomer, resulting in βe(A9)/βe(A7) ratios between 0.5 and 0.6. The vibrational hyperpolarisabilities of the adenine tautomers are quite close to each other.

  14. Probing ultrafast dynamics in adenine with mid-UV four-wave mixing spectroscopies.

    PubMed

    West, Brantley A; Womick, Jordan M; Moran, Andrew M

    2011-08-11

    Heterodyne-detected transient grating (TG) and two-dimensional photon echo (2DPE) spectroscopies are extended to the mid-UV spectral range in this investigation of photoinduced relaxation processes of adenine in aqueous solution. These experiments are the first to combine a new method for generating 25 fs laser pulses (at 263 nm) with the passive phase stability afforded by diffractive optics-based interferometry. We establish a set of conditions (e.g., laser power density, solute concentration) appropriate for the study of dynamics involving the neutral solute. Undesired solute photoionization is shown to take hold at higher peak powers of the laser pulses. Signatures of internal conversion and vibrational cooling dynamics are examined using TG measurements with signal-to-noise ratios as high as 350 at short delay times. In addition, 2DPE line shapes reveal correlations between excitation and emission frequencies in adenine, which reflect electronic and nuclear relaxation processes associated with particular tautomers. Overall, this study demonstrates the feasibility of techniques that will hold many advantages for the study of biomolecules whose lowest-energy electronic resonances are found in the mid-UV (e.g., DNA bases, amino acids). PMID:21756005

  15. Severity of cardiomyopathy associated with adenine nucleotide translocator-1 deficiency correlates with mtDNA haplogroup.

    PubMed

    Strauss, Kevin A; DuBiner, Lauren; Simon, Mariella; Zaragoza, Michael; Sengupta, Partho P; Li, Peng; Narula, Navneet; Dreike, Sandra; Platt, Julia; Procaccio, Vincent; Ortiz-González, Xilma R; Puffenberger, Erik G; Kelley, Richard I; Morton, D Holmes; Narula, Jagat; Wallace, Douglas C

    2013-02-26

    Mutations of both nuclear and mitochondrial DNA (mtDNA)-encoded mitochondrial proteins can cause cardiomyopathy associated with mitochondrial dysfunction. Hence, the cardiac phenotype of nuclear DNA mitochondrial mutations might be modulated by mtDNA variation. We studied a 13-generation Mennonite pedigree with autosomal recessive myopathy and cardiomyopathy due to an SLC25A4 frameshift null mutation (c.523delC, p.Q175RfsX38), which codes for the heart-muscle isoform of the adenine nucleotide translocator-1. Ten homozygous null (adenine nucleotide translocator-1(-/-)) patients monitored over a median of 6 years had a phenotype of progressive myocardial thickening, hyperalaninemia, lactic acidosis, exercise intolerance, and persistent adrenergic activation. Electrocardiography and echocardiography with velocity vector imaging revealed abnormal contractile mechanics, myocardial repolarization abnormalities, and impaired left ventricular relaxation. End-stage heart disease was characterized by massive, symmetric, concentric cardiac hypertrophy; widespread cardiomyocyte degeneration; overabundant and structurally abnormal mitochondria; extensive subendocardial interstitial fibrosis; and marked hypertrophy of arteriolar smooth muscle. Substantial variability in the progression and severity of heart disease segregated with maternal lineage, and sequencing of mtDNA from five maternal lineages revealed two major European haplogroups, U and H. Patients with the haplogroup U mtDNAs had more rapid and severe cardiomyopathy than those with haplogroup H. PMID:23401503

  16. Ultraviolet photolysis of adenine: Dissociation via the {sup 1}{pi}{sigma}{sup *} state

    SciTech Connect

    Nix, Michael G. D.; Devine, Adam L.; Cronin, Brid; Ashfold, Michael N. R.

    2007-03-28

    High resolution total kinetic energy release (TKER) spectra of the H atom fragments resulting from photodissociation of jet-cooled adenine molecules at 17 wavelengths in the range 280>{lambda}{sub phot}>214 nm are reported. TKER spectra obtained at {lambda}{sub phot}>233 nm display broad, isotropic profiles that peak at low TKER ({approx}1800 cm{sup -1}) and are largely insensitive to the choice of excitation wavelength. The bulk of these products is attributed to unintended multiphoton dissociation processes. TKER spectra recorded at {lambda}{sub phot}{<=}233 nm display additional fast structure, which is attributed to N{sub 9}-H bond fission on the {sup 1}{pi}{sigma}{sup *} potential energy surface (PES). Analysis of the kinetic energies and recoil anisotropies of the H atoms responsible for the fast structure suggests excitation to two {sup 1}{pi}{pi}{sup *} excited states (the {sup 1}L{sub a} and {sup 1}B{sub b} states) at {lambda}{sub phot}{approx}230 nm, both of which dissociate to yield H atoms together with ground state adeninyl fragments by radiationless transfer through conical intersections with the {sup 1}{pi}{sigma}{sup *} PES. Parallels with the photochemistry exhibited by other, smaller heteroaromatics (pyrrole, imidazole, phenol, etc.) are highlighted, as are inconsistencies between the present conclusions and those reached in two other recent studies of excited state adenine molecules.

  17. A role for adenine nucleotides in the sensing mechanism to purine starvation in Leishmania donovani.

    PubMed

    Martin, Jessica L; Yates, Phillip A; Boitz, Jan M; Koop, Dennis R; Fulwiler, Audrey L; Cassera, Maria Belen; Ullman, Buddy; Carter, Nicola S

    2016-07-01

    Purine salvage by Leishmania is an obligatory nutritional process that impacts both cell viability and growth. Previously, we have demonstrated that the removal of purines in culture provokes significant metabolic changes that enable Leishmania to survive prolonged periods of purine starvation. In order to understand how Leishmania sense and respond to changes in their purine environment, we have exploited several purine pathway mutants, some in which adenine and guanine nucleotide metabolism is uncoupled. While wild type parasites grow in any one of a variety of naturally occurring purines, the proliferation of these purine pathway mutants requires specific types or combinations of exogenous purines. By culturing purine pathway mutants in high levels of extracellular purines that are either permissive or non-permissive for growth and monitoring for previously defined markers of the adaptive response to purine starvation, we determined that adaptation arises from a surveillance of intracellular purine nucleotide pools rather than from a direct sensing of the extracellular purine content of the environment. Specifically, our data suggest that perturbation of intracellular adenine-containing nucleotide pools provides a crucial signal for inducing the metabolic changes necessary for the long-term survival of Leishmania in a purine-scarce environment. PMID:27062185

  18. Bacteriophage adenine methyltransferase: a life cycle regulator? Modelled using Vibrio harveyi myovirus like.

    PubMed

    Bochow, S; Elliman, J; Owens, L

    2012-11-01

    The adenine methyltransferase (DAM) gene methylates GATC sequences that have been demonstrated in various bacteria to be a powerful gene regulator functioning as an epigenetic switch, particularly with virulence gene regulation. However, overproduction of DAM can lead to mutations, giving rise to variability that may be important for adaptation to environmental change. While most bacterial hosts carry a DAM gene, not all bacteriophage carry this gene. Currently, there is no literature regarding the role DAM plays in life cycle regulation of bacteriophage. Vibrio campbellii strain 642 carries the bacteriophage Vibrio harveyi myovirus like (VHML) that has been proven to increase virulence. The complete genome sequence of VHML bacteriophage revealed a putative adenine methyltransferase gene. Using VHML, a new model of phage life cycle regulation, where DAM plays a central role between the lysogenic and lytic states, will be hypothesized. In short, DAM methylates the rha antirepressor gene and once methylation is removed, homologous CI repressor protein becomes repressed and non-functional leading to the switching to the lytic cycle. Greater understanding of life cycle regulation at the genetic level can, in the future, lead to the genesis of chimeric bacteriophage with greater control over their life cycle for their safe use as probiotics within the aquaculture industry. PMID:22681538

  19. Microwave-assisted stereospecific synthesis of novel tetrahydropyran adenine isonucleosides and crystal structures determination

    NASA Astrophysics Data System (ADS)

    Silva, Fábio P. L.; Cirqueira, Marilia L.; Martins, Felipe T.; Vasconcellos, Mário L. A. A.

    2013-11-01

    We describe in this article stereospecific syntheses for new isonucleosides analogs of adenine 5-7 from tosyl derivatives 2-4 accessing by microwave irradiations (50-80%). The adenine reacts entirely at the N(9) position. Compounds 2-4 were prepared in two steps from the corresponding alcohols 1, 8 and 9 (81-92%). These tetrahydropyrans alcohols 1, 8 and 9 are achiral (Meso compounds) and were prepared in two steps with complete control of 2,4,6-cis relative configuration by Prins cyclization reaction (60-63%) preceded by the Barbier reaction between allyl bromide with benzaldehyde, 4-fluorobenzaldehyde and 2-naphthaldehyde respectively under Lewis acid conditions (96-98%). The configurations and preferential conformations of 5-7 were determined by crystal structure of 6. These novel isonucleosides 5-7 present in silico potentiality to act as GPCR ligand, kinase inhibitor and enzyme inhibitor, evaluated by Molinspiration program, consistent with the expected antiviral and anticancer bioactivities.

  20. Valence anions in complexes of adenine and 9-methyladenine with formic acid: stabilization by intermolecular proton transfer.

    PubMed

    Mazurkiewicz, Kamil; Harańczyk, Maciej; Gutowski, Maciej; Rak, Janusz; Radisic, Dunja; Eustis, Soren N; Wang, Di; Bowen, Kit H

    2007-02-01

    Photoelectron spectra of adenine-formic acid (AFA(-)) and 9-methyladenine-formic acid (MAFA(-)) anionic complexes have been recorded with 2.540 eV photons. These spectra reveal broad features with maxima at 1.5-1.4 eV that indicate formation of stable valence anions in the gas phase. The neutral and anionic complexes of adenine/9-methyladenine and formic acid were also studied computationally at the B3LYP, second-order Møller-Plesset, and coupled-cluster levels of theory with the 6-31++G** and aug-cc-pVDZ basis sets. The neutral complexes form cyclic hydrogen bonds, and the most stable dimers are bound by 17.7 and 16.0 kcal/mol for AFA and MAFA, respectively. The theoretical results indicate that the excess electron in both AFA(-) and MAFA(-) occupies a pi* orbital localized on adenine/9-methyladenine, and the adiabatic stability of the most stable anions amounts to 0.67 and 0.54 eV for AFA(-) and MAFA(-), respectively. The attachment of the excess electron to the complexes induces a barrier-free proton transfer (BFPT) from the carboxylic group of formic acid to a N atom of adenine or 9-methyladenine. As a result, the most stable structures of the anionic complexes can be characterized as neutral radicals of hydrogenated adenine (9-methyladenine) solvated by a deprotonated formic acid. The BFPT to the N atoms of adenine may be biologically relevant because some of these sites are not involved in the Watson-Crick pairing scheme and are easily accessible in the cellular environment. We suggest that valence anions of purines might be as important as those of pyrimidines in the process of DNA damage by low-energy electrons. PMID:17263404

  1. Development of a new model for the induction of chronic kidney disease via intraperitoneal adenine administration, and the effect of treatment with gum acacia thereon.

    PubMed

    Al Za'abi, Mohammed; Al Busaidi, Mahfouda; Yasin, Javid; Schupp, Nicole; Nemmar, Abderrahim; Ali, Badreldin H

    2015-01-01

    Oral adenine (0.75% w/w in feed), is an established model for human chronic kidney disease (CKD). Gum acacia (GA) has been shown to be a nephroprotective agent in this model. Here we aimed at developing a new adenine-induced CKD model in rats via a systemic route (intraperitoneal, i.p.) and to test it with GA to obviate the possibility of a physical interaction between GA and adenine in the gut. Adenine was injected i.p. (50 or 100 mg/Kg for four weeks), and GA was given concomitantly in drinking water at a concentration of 15%, w/v. Several plasma and urinary biomarkers of oxidative stress were measured and the renal damage was assessed histopathologically. Adenine, at the two given i.p. doses, significantly reduced body weight, and increased relative kidney weight, water intake and urine output. It dose-dependently increased plasma and urinary inflammatory and oxidative stress biomarkers, and caused morphological and histological damage resembling that which has been reported with oral adenine. Concomitant treatment with GA significantly mitigated almost all the above measured indices. Administration of adenine i.p. induced CKD signs very similar to those induced by oral adenine. Therefore, this new model is quicker, more practical and accurate than the original (oral) model. GA ameliorates the CKD effects caused by adenine given i.p. suggesting that the antioxidant and anti-inflammatory properties possessed by oral GA are the main mechanism for its salutary action in adenine-induced CKD, an action that is independent of its possible interaction with adenine in the gut. PMID:25755826

  2. Development of a new model for the induction of chronic kidney disease via intraperitoneal adenine administration, and the effect of treatment with gum acacia thereon

    PubMed Central

    Al Za’abi, Mohammed; Al Busaidi, Mahfouda; Yasin, Javid; Schupp, Nicole; Nemmar, Abderrahim; Ali, Badreldin H

    2015-01-01

    Oral adenine (0.75% w/w in feed), is an established model for human chronic kidney disease (CKD). Gum acacia (GA) has been shown to be a nephroprotective agent in this model. Here we aimed at developing a new adenine-induced CKD model in rats via a systemic route (intraperitoneal, i.p.) and to test it with GA to obviate the possibility of a physical interaction between GA and adenine in the gut. Adenine was injected i.p. (50 or 100 mg/Kg for four weeks), and GA was given concomitantly in drinking water at a concentration of 15%, w/v. Several plasma and urinary biomarkers of oxidative stress were measured and the renal damage was assessed histopathologically. Adenine, at the two given i.p. doses, significantly reduced body weight, and increased relative kidney weight, water intake and urine output. It dose-dependently increased plasma and urinary inflammatory and oxidative stress biomarkers, and caused morphological and histological damage resembling that which has been reported with oral adenine. Concomitant treatment with GA significantly mitigated almost all the above measured indices. Administration of adenine i.p. induced CKD signs very similar to those induced by oral adenine. Therefore, this new model is quicker, more practical and accurate than the original (oral) model. GA ameliorates the CKD effects caused by adenine given i.p. suggesting that the antioxidant and anti-inflammatory properties possessed by oral GA are the main mechanism for its salutary action in adenine-induced CKD, an action that is independent of its possible interaction with adenine in the gut. PMID:25755826

  3. Titanium Dioxide Nanoparticles Increase Superoxide Anion Production by Acting on NADPH Oxidase.

    PubMed

    Masoud, Rawand; Bizouarn, Tania; Trepout, Sylvain; Wien, Frank; Baciou, Laura; Marco, Sergio; Houée Levin, Chantal

    2015-01-01

    Titanium dioxide (TiO2) anatase nanoparticles (NPs) are metal oxide NPs commercialized for several uses of everyday life. However their toxicity has been poorly investigated. Cellular internalization of NPs has been shown to activate macrophages and neutrophils that contribute to superoxide anion production by the NADPH oxidase complex. Transmission electron micrososcopy images showed that the membrane fractions were close to the NPs while fluorescence indicated an interaction between NPs and cytosolic proteins. Using a cell-free system, we have investigated the influence of TiO2 NPs on the behavior of the NADPH oxidase. In the absence of the classical activator molecules of the enzyme (arachidonic acid) but in the presence of TiO2 NPs, no production of superoxide ions could be detected indicating that TiO2 NPs were unable to activate by themselves the complex. However once the NADPH oxidase was activated (i.e., by arachidonic acid), the rate of superoxide anion production went up to 140% of its value without NPs, this effect being dependent on their concentration. In the presence of TiO2 nanoparticles, the NADPH oxidase produces more superoxide ions, hence induces higher oxidative stress. This hyper-activation and the subsequent increase in ROS production by TiO2 NPs could participate to the oxidative stress development. PMID:26714308

  4. Immunochemical characterization of NADPH-cytochrome P-450 reductase from Jerusalem artichoke and other higher plants.

    PubMed Central

    Benveniste, I; Lesot, A; Hasenfratz, M P; Durst, F

    1989-01-01

    Polyclonal antibodies were prepared against NADPH-cytochrome P-450 reductase purified from Jerusalem artichoke. These antibodies inhibited efficiently the NADPH-cytochrome c reductase activity of the purified enzyme, as well as of Jerusalem artichoke microsomes. Likewise, microsomal NADPH-dependent cytochrome P-450 mono-oxygenases (cinnamate and laurate hydroxylases) were efficiently inhibited. The antibodies were only slightly inhibitory toward microsomal NADH-cytochrome c reductase activity, but lowered NADH-dependent cytochrome P-450 mono-oxygenase activities. The Jerusalem artichoke NADPH-cytochrome P-450 reductase is characterized by its high Mr (82,000) as compared with the enzyme from animals (76,000-78,000). Western blot analysis revealed cross-reactivity of the Jerusalem artichoke reductase antibodies with microsomes from plants belonging to different families (monocotyledons and dicotyledons). All of the proteins recognized by the antibodies had an Mr of approx. 82,000. No cross-reaction was observed with microsomes from rat liver or Locusta migratoria midgut. The cross-reactivity generally paralleled well the inhibition of reductase activity: the enzyme from most higher plants tested was inhibited by the antibodies; whereas Gingko biloba, Euglena gracilis, yeast, rat liver and insect midgut activities were insensitive to the antibodies. These results point to structural differences, particularly at the active site, between the reductases from higher plants and the enzymes from phylogenetically distant plants and from animals. Images Fig. 5. PMID:2499315

  5. Vitamin E--a selective inhibitor of the NADPH oxidoreductase enzyme system in human granulocytes.

    PubMed Central

    Butterick, C. J.; Baehner, R. L.; Boxer, L. A.; Jersild, R. A.

    1983-01-01

    The cellular sites of H2O2 formation in phagocytizing granulocytes have been identified with cerium chloride. A precipitate was visible in phagosomes and on plasma membranes from intact normal cells in the presence of either 0.71 mM NADH or NADPH. X-ray microanalysis permitted identification of cerium deposition within the phagosomes even in the absence of reduced pyridine nucleotides. Catalase ablated the formation of the reaction product. Intact granulocytes obtained from subjects receiving 1600 units of vitamin E daily for 2 weeks exhibited reaction product in the presence of NADH but not NADPH. Intact cells from subjects treated with vitamin E demonstrated diminished numbers of phagocytic vesicles containing reaction product. During phagocytosis the granulocytes treated with vitamin E consumed oxygen but exhibited significantly reduced rates of hydrogen-peroxide-dependent glucose-1-14C oxidation to 14CO2. Isolated phagocytic vesicles obtained from granulocytes after ingestion of opsonized lipopolysaccharide-paraffin oil droplets contained reaction product when exposed to 0.71 mM NADPH. No reaction product was evident at 0.71 mM NADH but was evident at 2.0 mM NADH. Isolated phagocytic vesicles from the granulocytes of subjects receiving vitamin E exhibited reaction product only in the presence of NADH. These observations suggest that vitamin E interferes with the electron transport chain apparently required for the oxidation of NADPH to form H2O2 in the phagocytizing granulocyte. Images Figure 1 Figure 2 PMID:6614142

  6. Crystal structures of Pseudomonas syringae pv. tomato DC3000 quinone oxidoreductase and its complex with NADPH

    SciTech Connect

    Pan, Xiaowei; Zhang, Hongmei; Gao, Yu; Li, Mei; Chang, Wenrui

    2009-12-18

    Zeta-crystallin-like quinone oxidoreductase is NAD(P)H-dependent and catalyzes one-electron reduction of certain quinones to generate semiquinone. Here we present the crystal structures of zeta-crystallin-like quinone oxidoreductase from Pseudomonas syringae pv. tomato DC3000 (PtoQOR) and its complexes with NADPH determined at 2.4 and 2.01 A resolutions, respectively. PtoQOR forms as a homologous dimer, each monomer containing two domains. In the structure of the PtoQOR-NADPH complex, NADPH locates in the groove between the two domains. NADPH binding causes obvious conformational changes in the structure of PtoQOR. The putative substrate-binding site of PtoQOR is wider than that of Escherichia coli and Thermus thermophilus HB8. Activity assays show that PtoQOR has weak 1,4-benzoquinone catalytic activity, and very strong reduction activity towards large substrates such as 9,10-phenanthrenequinone. We propose a model to explain the conformational changes which take place during reduction reactions catalyzed by PtoQOR.

  7. Titanium Dioxide Nanoparticles Increase Superoxide Anion Production by Acting on NADPH Oxidase

    PubMed Central

    Trepout, Sylvain; Wien, Frank; Marco, Sergio

    2015-01-01

    Titanium dioxide (TiO2) anatase nanoparticles (NPs) are metal oxide NPs commercialized for several uses of everyday life. However their toxicity has been poorly investigated. Cellular internalization of NPs has been shown to activate macrophages and neutrophils that contribute to superoxide anion production by the NADPH oxidase complex. Transmission electron micrososcopy images showed that the membrane fractions were close to the NPs while fluorescence indicated an interaction between NPs and cytosolic proteins. Using a cell-free system, we have investigated the influence of TiO2 NPs on the behavior of the NADPH oxidase. In the absence of the classical activator molecules of the enzyme (arachidonic acid) but in the presence of TiO2 NPs, no production of superoxide ions could be detected indicating that TiO2 NPs were unable to activate by themselves the complex. However once the NADPH oxidase was activated (i.e., by arachidonic acid), the rate of superoxide anion production went up to 140% of its value without NPs, this effect being dependent on their concentration. In the presence of TiO2 nanoparticles, the NADPH oxidase produces more superoxide ions, hence induces higher oxidative stress. This hyper-activation and the subsequent increase in ROS production by TiO2 NPs could participate to the oxidative stress development. PMID:26714308

  8. Alcohol-induced bone loss is blocked in p47phox -/- mice lacking functional nadph oxidases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chronic ethanol (EtOH) consumption produces bone loss. Previous data suggest a role for NADPH oxidase enzymes (Nox) since the pan-Nox inhibitor diphenylene iodonium (DPI) blocks EtOH-induced bone loss in rats. The current study utilized mice in which Nox enzymes 1,2,3 and 5 are inactivated as a resu...

  9. Modulation of NADPH oxidase activation in cerebral ischemia/reperfusion injury in rats.

    PubMed

    Genovese, Tiziana; Mazzon, Emanuela; Paterniti, Irene; Esposito, Emanuela; Bramanti, Placido; Cuzzocrea, Salvatore

    2011-02-01

    NADPH oxidase is a major complex that produces reactive oxygen species (ROSs) during the ischemic period and aggravates brain damage and cell death after ischemic injury. Although many approaches have been tested for preventing production of ROSs by NADPH oxidase in ischemic brain injury, the regulatory mechanisms of NADPH oxidase activity after cerebral ischemia are still unclear. The aim of this study is identifying apocynin as a critical modulator of NADPH oxidase and elucidating its role as a neuroprotectant in an experimental model of brain ischemia in rat. Treatment of apocynin 5min before of reperfusion attenuated cerebral ischemia in rats. Administration of apocynin showed marked reduction in infarct size compared with that of control rats. Medial carotid artery occlusion (MCAo)-induced cerebral ischemia was also associated with an increase in, nitrotyrosine formation, as well as IL-1β expression, IκB degradation and ICAM expression in ischemic regions. These expressions were markedly inhibited by the treatment of apocynin. We also demonstrated that apocynin reduces levels of apoptosis (TUNEL, Bax and Bcl-2 expression) resulting in a reduction in the infarct volume in ischemia-reperfusion brain injury. This new understanding of apocynin induced adaptation to ischemic stress and inflammation could suggest novel avenues for clinical intervention during ischemic and inflammatory diseases. PMID:21138737

  10. Regulation of NAD(P)H oxidases by AMPK in cardiovascular systems

    PubMed Central

    Song, Ping; Zou, Ming-Hui

    2012-01-01

    Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are ubiquitously produced in cardiovascular systems. Under physiological conditions, ROS/RNS function as signaling molecules that are essential in maintaining cardiovascular function. Aberrant concentrations of ROS/RNS have been demonstrated in cardiovascular diseases due to increased production or decreased scavenging, which have been considered as common pathways for the initiation and progression of cardiovascular diseases such as atherosclerosis, hypertension, (re)stenosis, and congestive heart failure. NAD(P)H oxidases are primary sources of ROS and can be induced or activated by all known cardiovascular risk factors. Stresses, hormones, vasoactive agents, and cytokines via different signaling cascades control the expression and activity of these enzymes and of their regulatory subunits. But the molecular mechanisms by which NAD(P)H oxidase is regulated in cardiovascular systems remain poorly characterized. Investigations by us and others suggest that adenosine monophosphate-activated protein kinase (AMPK), as an energy sensor and modulator, is highly sensitive to ROS/RNS. We have also obtained convincing evidence that AMPK is a physiological suppressor of NAD(P)H oxidase in multiple cardiovascular cell systems. In this review, we summarize our current understanding of how AMPK functions as a physiological repressor of NAD(P)H oxidase. PMID:22357101

  11. NADPH Oxidase-Driven Phagocyte Recruitment Controls Candida albicans Filamentous Growth and Prevents Mortality

    PubMed Central

    Brothers, Kimberly M.; Gratacap, Remi L.; Barker, Sarah E.; Newman, Zachary R.; Norum, Ashley; Wheeler, Robert T.

    2013-01-01

    Candida albicans is a human commensal and clinically important fungal pathogen that grows as both yeast and hyphal forms during human, mouse and zebrafish infection. Reactive oxygen species (ROS) produced by NADPH oxidases play diverse roles in immunity, including their long-appreciated function as microbicidal oxidants. Here we demonstrate a non-traditional mechanistic role of NADPH oxidase in promoting phagocyte chemotaxis and intracellular containment of fungi to limit filamentous growth. We exploit the transparent zebrafish model to show that failed NADPH oxidase-dependent phagocyte recruitment to C. albicans in the first four hours post-infection permits fungi to germinate extracellularly and kill the host. We combine chemical and genetic tools with high-resolution time-lapse microscopy to implicate both phagocyte oxidase and dual-specific oxidase in recruitment, suggesting that both myeloid and non-myeloid cells promote chemotaxis. We show that early non-invasive imaging provides a robust tool for prognosis, strongly connecting effective early immune response with survival. Finally, we demonstrate a new role of a key regulator of the yeast-to-hyphal switching program in phagocyte-mediated containment, suggesting that there are species-specific methods for modulation of NADPH oxidase-independent immune responses. These novel links between ROS-driven chemotaxis and fungal dimorphism expand our view of a key host defense mechanism and have important implications for pathogenesis. PMID:24098114

  12. NADPH- Diaphorase positive cardiac neurons in the atria of mice. A morphoquantitative study

    PubMed Central

    Maifrino, Laura Beatriz Mesiano; Liberti, Edson Aparecido; Castelucci, Patrícia; De Souza, Romeu Rodrigues

    2006-01-01

    Background The present study was conducted to determine the location, the morphology and distribution of NADPH-diaphorase positive neurons in the cardiac nerve plexus of the atria of mice (ASn). This plexus lies over the muscular layer of the atria, dorsal to the muscle itself, in the connective tissue of the subepicardium. NADPH- diaphorase staining was performed on whole-mount preparations of the atria mice. For descriptive purposes, all data are presented as means ± SEM. Results The majority of the NADPH-diaphorase positive neurons were observed in the ganglia of the plexus. A few single neurons were also observed. The number of NADPH-d positive neurons was 57 ± 4 (ranging from 39 to 79 neurons). The ganglion neurons were located in 3 distinct groups: (1) in the region situated cranial to the pulmonary veins, (2) caudally to the pulmonary veins, and (3) in the atrial groove. The largest group of neurons was located cranially to the pulmonary veins (66.7%). Three morphological types of NADPH-diaphorase neurons could be distinguished on the basis of their shape: unipolar cells, bipolar cells and cells with three processes (multipolar cells). The unipolar neurons predominated (78.9%), whereas the multipolar were encountered less frequently (5,3%). The sizes (area of maximal cell profile) of the neurons ranged from about 90 μm2to about 220 μm2. Morphometrically, the three types of neurons were similar and there were no significant differences in their sizes. The total number of cardiac neurons (obtained by staining the neurons with NADH-diaphorase method) was 530 ± 23. Therefore, the NADPH-diaphorase positive neurons of the heart represent 10% of the number of cardiac neurons stained by NADH. Conclusion The obtained data have shown that the NADPH-d positive neurons in the cardiac plexus of the atria of mice are morphologically different, and therefore, it is possible that the function of the neurons may also be different. PMID:16451738

  13. Comparative structural analysis of eubacterial 5S rRNA by oxidation of adenines in the N-1 position.

    PubMed Central

    Pieler, T; Schreiber, A; Erdmann, V A

    1984-01-01

    Adenines in free 5S rRNA from Escherichia coli, Bacillus stearothermophilus and Thermus thermophilus have been oxidized at their N-1 position using monoperphthalic acid. The determination of the number of adenine 1-N-oxides was on the basis of UV spectroscopic data of the intact molecule. Identification of the most readily accessible nucleotides by sequencing gel analysis reveals that they are located in conserved positions within loops, exposed hairpin loops and single-base bulge loops. Implications for the structure and function of 5S rRNA will be discussed on the basis of this comparative analysis. Images PMID:6201825

  14. NADPH-diaphorase activity and neurovascular coupling in the rat cerebral cortex.

    PubMed

    Vlasenko, O V; Maisky, V A; Maznychenko, A V; Pilyavskii, A I

    2008-01-01

    The distribution of NADPH-diaphorase-reactive (NADPH-dr) neurons and neuronal processes in the cerebral cortex and basal forebrain and their association with parenchymal vessels were studied in normal adult rats using NADPH-d histochemical protocol. The intensely stained cortical interneurons and reactive subcortically originating afferents, and stained microvessels were examined through a light microscope at law (x250) and high (x630) magnifications. NADPH-dr interneurons were concentrated in layers 2-6 of the M1 and M2 areas. However, clear predominance in their concentration (14 +/- 0.8 P < 0.05 per section) was found in layer 6. A mean number of labeled neurons in auditory (AuV), granular and agranular (GI, AIP) areas of the insular cortex was calculated to reach 12.3 +/- 0.7, 18.5 +/- 1.0 and 23.3 +/- 1.7 units per section, respectively (P < 0.05). The distinct apposition of labelled neurons to intracortical vessels was found in the M1, M2. The order of frequency of neurovascular coupling in different zones of the cerebral cortex was as following sequence: AuV (31.2%, n = 1040) > GI (18.0%, n = 640) > S1 (13.3%, n = 720) > M1 (6.3%, n = 1360). A large number of structural associations between labeled cells and vessels in the temporal and insular cortex indicate that NADPH-d-reactive interneurons can contribute to regulation of the cerebral regional blood flow in these areas. PMID:18416183

  15. Activation of endothelial NAD(P)H oxidase accelerates early glomerular injury in diabetic mice

    PubMed Central

    Nagasu, Hajime; Satoh, Minoru; Kiyokage, Emi; Kidokoro, Kengo; Toida, Kazunori; Channon, Keith M; Kanwar, Yashpal S; Sasaki, Tamaki; Kashihara, Naoki

    2016-01-01

    Increased generation of reactive oxygen species (ROS) is a common denominative pathogenic mechanism underlying vascular and renal complications in diabetes mellitus. Endothelial NAD(P)H oxidase is a major source of vascular ROS, and it has an important role in endothelial dysfunction. We hypothesized that activation of endothelial NAD(P)H oxidase initiates and worsens the progression of diabetic nephropathy, particularly in the development of albuminuria. We used transgenic mice with endothelial-targeted overexpression of the catalytic subunit of NAD(P)H oxidase, Nox2 (NOX2TG). NOX2TG mice were crossed with Akita insulin-dependent diabetic (Akita) mice that develop progressive hyperglycemia. We compared the progression of diabetic nephropathy in Akita versus NOX2TG-Akita mice. NOX2TG-Akita mice and Akita mice developed significant albuminuria above the baseline at 6 and 10 weeks of age, respectively. Compared with Akita mice, NOX2TG-Akita mice exhibited higher levels of NAD(P)H oxidase activity in glomeruli, developed glomerular endothelial perturbations, and attenuated expression of glomerular glycocalyx. Moreover, in contrast to Akita mice, the NOX2TG-Akita mice had numerous endothelial microparticles (blebs), as detected by scanning electron microscopy, and increased glomerular permeability. Furthermore, NOX2TG-Akita mice exhibited distinct phenotypic changes in glomerular mesangial cells expressing α-smooth muscle actin, and in podocytes expressing increased levels of desmin, whereas the glomeruli generated increased levels of ROS. In conclusion, activation of endothelial NAD(P)H oxidase in the presence of hyperglycemia initiated and exacerbated diabetic nephropathy characterized by the development of albuminuria. Moreover, ROS generated in the endothelium compounded glomerular dysfunctions by altering the phenotypes of mesangial cells and compromising the integrity of the podocytes. PMID:26552047

  16. Increasing Anaerobic Acetate Consumption and Ethanol Yields in Saccharomyces cerevisiae with NADPH-Specific Alcohol Dehydrogenase

    PubMed Central

    Henningsen, Brooks M.; Hon, Shuen; Covalla, Sean F.; Sonu, Carolina; Argyros, D. Aaron; Barrett, Trisha F.; Wiswall, Erin; Froehlich, Allan C.

    2015-01-01

    Saccharomyces cerevisiae has recently been engineered to use acetate, a primary inhibitor in lignocellulosic hydrolysates, as a cosubstrate during anaerobic ethanolic fermentation. However, the original metabolic pathway devised to convert acetate to ethanol uses NADH-specific acetylating acetaldehyde dehydrogenase and alcohol dehydrogenase and quickly becomes constrained by limited NADH availability, even when glycerol formation is abolished. We present alcohol dehydrogenase as a novel target for anaerobic redox engineering of S. cerevisiae. Introduction of an NADPH-specific alcohol dehydrogenase (NADPH-ADH) not only reduces the NADH demand of the acetate-to-ethanol pathway but also allows the cell to effectively exchange NADPH for NADH during sugar fermentation. Unlike NADH, NADPH can be freely generated under anoxic conditions, via the oxidative pentose phosphate pathway. We show that an industrial bioethanol strain engineered with the original pathway (expressing acetylating acetaldehyde dehydrogenase from Bifidobacterium adolescentis and with deletions of glycerol-3-phosphate dehydrogenase genes GPD1 and GPD2) consumed 1.9 g liter−1 acetate during fermentation of 114 g liter−1 glucose. Combined with a decrease in glycerol production from 4.0 to 0.1 g liter−1, this increased the ethanol yield by 4% over that for the wild type. We provide evidence that acetate consumption in this strain is indeed limited by NADH availability. By introducing an NADPH-ADH from Entamoeba histolytica and with overexpression of ACS2 and ZWF1, we increased acetate consumption to 5.3 g liter−1 and raised the ethanol yield to 7% above the wild-type level. PMID:26386051

  17. Improved NADPH supply for xylitol production by engineered Escherichia coli with glycolytic mutations.

    PubMed

    Chin, Jonathan W; Cirino, Patrick C

    2011-01-01

    Escherichia coli engineered to uptake xylose while metabolizing glucose was previously shown to produce high levels of xylitol from a mixture of glucose and xylose when expressing NADPH-dependent xylose reductase from Candida boidinii (CbXR) (Cirino et al., Biotechnol Bioeng. 2006;95:1167-1176). We then described the effects of deletions of key metabolic pathways (e.g., Embden-Meyerhof-Parnas and pentose phosphate pathway) and reactions (e.g., transhydrogenase and NADH dehydrogenase) on resting-cell xylitol yield (Y RPG: moles of xylitol produced per mole of glucose consumed) (Chin et al., Biotechnol Bioeng. 2009;102:209-220). These prior results demonstrated the importance of direct NADPH supply by NADP+-utilizing enzymes in central metabolism for driving heterologous NADPH-dependent reactions. This study describes strain modifications that improve coupling between glucose catabolism (oxidation) and xylose reduction using two fundamentally different strategies. We first examined the effects of deleting the phosphofructokinase (pfk) gene(s) on growth-uncoupled xylitol production and found that deleting both pfkA and sthA (encoding the E. coli-soluble transhydrogenase) improved the xylitol Y RPG from 3.4 ± 0.6 to 5.4 ± 0.4. The second strategy focused on coupling aerobic growth on glucose to xylitol production by deleting pgi (encoding phosphoglucose isomerase) and sthA. Impaired growth due to imbalanced NADPH metabolism (Sauer et al., J Biol Chem. 2004;279:6613-6619) was alleviated upon expressing CbXR, resulting in xylitol production similar to that of the growth-uncoupled precursor strains but with much less acetate secretion and more efficient utilization of glucose. Intracellular nicotinamide cofactor levels were also quantified, and the magnitude of the change in the NADPH/NADP+ ratio measured from cells consuming glucose in the absence vs. presence of xylose showed a strong correlation to the resulting Y RPG. PMID:21344680

  18. NADPH oxidase 4 regulates homocysteine metabolism and protects against acetaminophen-induced liver damage in mice

    PubMed Central

    Murray, Thomas V.A.; Dong, Xuebin; Sawyer, Greta J.; Caldwell, Anna; Halket, John; Sherwood, Roy; Quaglia, Alberto; Dew, Tracy; Anilkumar, Narayana; Burr, Simon; Mistry, Rajesh K.; Martin, Daniel; Schröder, Katrin; Brandes, Ralf P.; Hughes, Robin D.; Shah, Ajay M.; Brewer, Alison C.

    2015-01-01

    Glutathione is the major intracellular redox buffer in the liver and is critical for hepatic detoxification of xenobiotics and other environmental toxins. Hepatic glutathione is also a major systemic store for other organs and thus impacts on pathologies such as Alzheimer's disease, Sickle Cell Anaemia and chronic diseases associated with aging. Glutathione levels are determined in part by the availability of cysteine, generated from homocysteine through the transsulfuration pathway. The partitioning of homocysteine between remethylation and transsulfuration pathways is known to be subject to redox-dependent regulation, but the underlying mechanisms are not known. An association between plasma Hcy and a single nucleotide polymorphism within the NADPH oxidase 4 locus led us to investigate the involvement of this reactive oxygen species- generating enzyme in homocysteine metabolism. Here we demonstrate that NADPH oxidase 4 ablation in mice results in increased flux of homocysteine through the betaine-dependent remethylation pathway to methionine, catalysed by betaine-homocysteine-methyltransferase within the liver. As a consequence NADPH oxidase 4-null mice display significantly lowered plasma homocysteine and the flux of homocysteine through the transsulfuration pathway is reduced, resulting in lower hepatic cysteine and glutathione levels. Mice deficient in NADPH oxidase 4 had markedly increased susceptibility to acetaminophen-induced hepatic injury which could be corrected by administration of N-acetyl cysteine. We thus conclude that under physiological conditions, NADPH oxidase 4-derived reactive oxygen species is a regulator of the partitioning of the metabolic flux of homocysteine, which impacts upon hepatic cysteine and glutathione levels and thereby upon defence against environmental toxins. PMID:26472193

  19. Decline in NAD(P)H autofluorescence precedes apoptotic cell death from chemotherapy

    NASA Astrophysics Data System (ADS)

    Toms, Steven A.; Muhammad, Osman; Jackson, Heather; Lin, Wei-Chiang

    2005-11-01

    OBJECTIVE: Optical spectroscopic tools exist that allow open surgical and minimally invasive assays of intrinsic tissue optics. Optical detection of cellular and tissue viability may offer a minimally invasive way to assess tumor responsiveness to chemotherapies. We report on an optical spectroscopic change that precedes apoptotic cell death and appears related to NAD(P)H autofluorescence. METHODS: The cell lines SW 480 and U87-MG were grown in culture and treated with cisplatin 100 μg/ml and tamoxifen 10 μM, respectively. Fluorescence spectroscopy at 355 nm excitation and 460 nm emission were collected. MTS assays were used to determine cell viability. Cell lysates were analyzed for NAD(P)H concentrations by mass spectroscopy. RESULTS: Autoflourescence at 355 nm excitation and 460 nm emission declines markedly despite normalization for cell number and total protein concentration after treatment with tamoxifen or cisplatin. The autofluorescence drop precedes the loss of cell viability as measured by MTS assay. For example, the relative viability of the U87-MG cell treated with tamoxifen at hours 0, 8, 12 and 24 of treatment was 100 +/- 6, 85 +/- 6, 53 +/- 9 and 0 +/- 3. The relative fluorescence at the same time points were 100 +/- 2, 57 +/- 6, 47 +/- 3, and 0 +/- 1. TUNNEL assays confirm that cell death is via apoptosis. The key cellular fluorophore at these wavelengths is NAD(P)H. Mass spectroscopic analysis of cell lysates at these time points reveals a drop in NAD(P)H concentrations that is parallel to the loss of fluorescence signal. CONCLUSIONS: NAD(P)H autofluoresence decline precedes apoptotic cell death. This may allow the design of minimally invasive spectroscopic tools to monitor chemotherapeutic response.

  20. Increasing anaerobic acetate consumption and ethanol yields in Saccharomyces cerevisiae with NADPH-specific alcohol dehydrogenase.

    PubMed

    Henningsen, Brooks M; Hon, Shuen; Covalla, Sean F; Sonu, Carolina; Argyros, D Aaron; Barrett, Trisha F; Wiswall, Erin; Froehlich, Allan C; Zelle, Rintze M

    2015-12-01

    Saccharomyces cerevisiae has recently been engineered to use acetate, a primary inhibitor in lignocellulosic hydrolysates, as a cosubstrate during anaerobic ethanolic fermentation. However, the original metabolic pathway devised to convert acetate to ethanol uses NADH-specific acetylating acetaldehyde dehydrogenase and alcohol dehydrogenase and quickly becomes constrained by limited NADH availability, even when glycerol formation is abolished. We present alcohol dehydrogenase as a novel target for anaerobic redox engineering of S. cerevisiae. Introduction of an NADPH-specific alcohol dehydrogenase (NADPH-ADH) not only reduces the NADH demand of the acetate-to-ethanol pathway but also allows the cell to effectively exchange NADPH for NADH during sugar fermentation. Unlike NADH, NADPH can be freely generated under anoxic conditions, via the oxidative pentose phosphate pathway. We show that an industrial bioethanol strain engineered with the original pathway (expressing acetylating acetaldehyde dehydrogenase from Bifidobacterium adolescentis and with deletions of glycerol-3-phosphate dehydrogenase genes GPD1 and GPD2) consumed 1.9 g liter(-1) acetate during fermentation of 114 g liter(-1) glucose. Combined with a decrease in glycerol production from 4.0 to 0.1 g liter(-1), this increased the ethanol yield by 4% over that for the wild type. We provide evidence that acetate consumption in this strain is indeed limited by NADH availability. By introducing an NADPH-ADH from Entamoeba histolytica and with overexpression of ACS2 and ZWF1, we increased acetate consumption to 5.3 g liter(-1) and raised the ethanol yield to 7% above the wild-type level. PMID:26386051

  1. NADPH binding and control of catalase compound II formation: comparison of bovine, yeast, and Escherichia coli enzymes.

    PubMed Central

    Hillar, A; Nicholls, P; Switala, J; Loewen, P C

    1994-01-01

    1. NADPH binds to bovine catalase and to yeast catalases A and T, but not to Escherichia coli catalase HPII. The association was demonstrated using chromatography and fluorimetry. Bound NADPH fluoresces in a similar way to NADPH in solution. 2. Bound NADPH protects bovine and yeast catalases against forming inactive peroxide compound II either via endogenous reductant action or by ferrocyanide reduction during catalytic activity in the presence of slowly generated peroxide. 3. Bound NADPH reduces neither compound I nor compound II of catalase. It apparently reacts with an intermediate formed during the decay of compound I to compound II; this postulated intermediate is an immediate precursor of stable compound II either when the latter is formed by endogenous reductants or when ferrocyanide is used. It represents therefore a new type of hydrogen donor that is not included in the original classification of Keilin and Nicholls [Keilin, D. and Nicholls, P. (1958) Biochim. Biophys. Acta 29, 302-307] 4. A model for NADPH action is presented in which concerted reduction of the ferryl iron and of a neighbouring protein free radical is responsible for the observed NADPH effects. The roles of migrant radical species in mammalian and yeast catalases are compared with similar events in metmyoglobin and cytochrome c peroxidase reactions with peroxides. Images Figure 1 PMID:8002960

  2. Engineering a d-lactate dehydrogenase that can super-efficiently utilize NADPH and NADH as cofactors

    PubMed Central

    Meng, Hengkai; Liu, Pi; Sun, Hongbing; Cai, Zhen; Zhou, Jie; Lin, Jianping; Li, Yin

    2016-01-01

    Engineering the cofactor specificity of a natural enzyme often results in a significant decrease in its activity on original cofactor. Here we report that a NADH-dependent dehydrogenase (d-LDH) from Lactobacillus delbrueckii 11842 can be rationally engineered to efficiently use both NADH and NADPH as cofactors. Point mutations on three amino acids (D176S, I177R, F178T) predicted by computational analysis resulted in a modified enzyme designated as d-LDH*. The Kcat/Km of the purified d-LDH* on NADPH increased approximately 184-fold while the Kcat/Km on NADH also significantly increased, showing for the first time that a rationally engineered d-LDH could exhibit comparable activity on both NADPH and NADH. Further kinetic analysis revealed that the enhanced affinity with NADH or NADPH and the significant increased Kcat of d-LDH* resulted in the significant increase of d-LDH* activity on both NADPH and NADH. This study thus demonstrated that the cofactor specificity of dehydrogenase can be broadened by using targeted engineering approach, and the engineered enzyme can efficiently function in NADH-rich, or NADPH-rich, or NADH and NADPH-rich environment. PMID:27109778

  3. Modeling the high-energy electronic state manifold of adenine: Calibration for nonlinear electronic spectroscopy

    SciTech Connect

    Nenov, Artur Giussani, Angelo; Segarra-Martí, Javier; Jaiswal, Vishal K.; Rivalta, Ivan; Cerullo, Giulio; Mukamel, Shaul; Garavelli, Marco E-mail: marco.garavelli@ens-lyon.fr

    2015-06-07

    Pump-probe electronic spectroscopy using femtosecond laser pulses has evolved into a standard tool for tracking ultrafast excited state dynamics. Its two-dimensional (2D) counterpart is becoming an increasingly available and promising technique for resolving many of the limitations of pump-probe caused by spectral congestion. The ability to simulate pump-probe and 2D spectra from ab initio computations would allow one to link mechanistic observables like molecular motions and the making/breaking of chemical bonds to experimental observables like excited state lifetimes and quantum yields. From a theoretical standpoint, the characterization of the electronic transitions in the visible (Vis)/ultraviolet (UV), which are excited via the interaction of a molecular system with the incoming pump/probe pulses, translates into the determination of a computationally challenging number of excited states (going over 100) even for small/medium sized systems. A protocol is therefore required to evaluate the fluctuations of spectral properties like transition energies and dipole moments as a function of the computational parameters and to estimate the effect of these fluctuations on the transient spectral appearance. In the present contribution such a protocol is presented within the framework of complete and restricted active space self-consistent field theory and its second-order perturbation theory extensions. The electronic excited states of adenine have been carefully characterized through a previously presented computational recipe [Nenov et al., Comput. Theor. Chem. 1040–1041, 295-303 (2014)]. A wise reduction of the level of theory has then been performed in order to obtain a computationally less demanding approach that is still able to reproduce the characteristic features of the reference data. Foreseeing the potentiality of 2D electronic spectroscopy to track polynucleotide ground and excited state dynamics, and in particular its expected ability to provide

  4. Modeling the high-energy electronic state manifold of adenine: Calibration for nonlinear electronic spectroscopy.

    PubMed

    Nenov, Artur; Giussani, Angelo; Segarra-Martí, Javier; Jaiswal, Vishal K; Rivalta, Ivan; Cerullo, Giulio; Mukamel, Shaul; Garavelli, Marco

    2015-06-01

    Pump-probe electronic spectroscopy using femtosecond laser pulses has evolved into a standard tool for tracking ultrafast excited state dynamics. Its two-dimensional (2D) counterpart is becoming an increasingly available and promising technique for resolving many of the limitations of pump-probe caused by spectral congestion. The ability to simulate pump-probe and 2D spectra from ab initio computations would allow one to link mechanistic observables like molecular motions and the making/breaking of chemical bonds to experimental observables like excited state lifetimes and quantum yields. From a theoretical standpoint, the characterization of the electronic transitions in the visible (Vis)/ultraviolet (UV), which are excited via the interaction of a molecular system with the incoming pump/probe pulses, translates into the determination of a computationally challenging number of excited states (going over 100) even for small/medium sized systems. A protocol is therefore required to evaluate the fluctuations of spectral properties like transition energies and dipole moments as a function of the computational parameters and to estimate the effect of these fluctuations on the transient spectral appearance. In the present contribution such a protocol is presented within the framework of complete and restricted active space self-consistent field theory and its second-order perturbation theory extensions. The electronic excited states of adenine have been carefully characterized through a previously presented computational recipe [Nenov et al., Comput. Theor. Chem. 1040-1041, 295-303 (2014)]. A wise reduction of the level of theory has then been performed in order to obtain a computationally less demanding approach that is still able to reproduce the characteristic features of the reference data. Foreseeing the potentiality of 2D electronic spectroscopy to track polynucleotide ground and excited state dynamics, and in particular its expected ability to provide

  5. Modeling the high-energy electronic state manifold of adenine: Calibration for nonlinear electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Nenov, Artur; Giussani, Angelo; Segarra-Martí, Javier; Jaiswal, Vishal K.; Rivalta, Ivan; Cerullo, Giulio; Mukamel, Shaul; Garavelli, Marco

    2015-06-01

    Pump-probe electronic spectroscopy using femtosecond laser pulses has evolved into a standard tool for tracking ultrafast excited state dynamics. Its two-dimensional (2D) counterpart is becoming an increasingly available and promising technique for resolving many of the limitations of pump-probe caused by spectral congestion. The ability to simulate pump-probe and 2D spectra from ab initio computations would allow one to link mechanistic observables like molecular motions and the making/breaking of chemical bonds to experimental observables like excited state lifetimes and quantum yields. From a theoretical standpoint, the characterization of the electronic transitions in the visible (Vis)/ultraviolet (UV), which are excited via the interaction of a molecular system with the incoming pump/probe pulses, translates into the determination of a computationally challenging number of excited states (going over 100) even for small/medium sized systems. A protocol is therefore required to evaluate the fluctuations of spectral properties like transition energies and dipole moments as a function of the computational parameters and to estimate the effect of these fluctuations on the transient spectral appearance. In the present contribution such a protocol is presented within the framework of complete and restricted active space self-consistent field theory and its second-order perturbation theory extensions. The electronic excited states of adenine have been carefully characterized through a previously presented computational recipe [Nenov et al., Comput. Theor. Chem. 1040-1041, 295-303 (2014)]. A wise reduction of the level of theory has then been performed in order to obtain a computationally less demanding approach that is still able to reproduce the characteristic features of the reference data. Foreseeing the potentiality of 2D electronic spectroscopy to track polynucleotide ground and excited state dynamics, and in particular its expected ability to provide

  6. A DNA-templated silver nanocluster probe for label-free, turn-on fluorescence-based screening of homo-adenine binding molecules.

    PubMed

    Park, Ki Soo; Park, Hyun Gyu

    2015-02-15

    A novel, label-free, turn-on fluorescence strategy to detect molecules that bind to adenine-rich DNA sequences has been developed. The probe employs DNA-templated silver nanoclusters (DNA-AgNCs) as the key detection component. The new strategy relies on the formation of non-Watson-Crick homo-adenine DNA duplex, triggered by strong interactions with homo-adenine binding molecules, which brings a guanine-rich sequence in one strand close to DNA-AgNCs located on the opposite strand. This phenomenon transforms weakly fluorescent AgNCs into highly emissive species that display bright red fluorescence. Finally, we have shown that the new fluorescence turn-on strategy can be employed to detect coralyne, the most representative homo-adenine binding molecule that triggers formation of a non-Watson-Crick homo-adenine DNA duplex. PMID:25441410

  7. Animal models of pediatric chronic kidney disease. Is adenine intake an appropriate model?

    PubMed

    Claramunt, Débora; Gil-Peña, Helena; Fuente, Rocío; Hernández-Frías, Olaya; Santos, Fernando

    2015-01-01

    Pediatric chronic kidney disease (CKD) has peculiar features. In particular, growth impairment is a major clinical manifestation of CKD that debuts in pediatric age because it presents in a large proportion of infants and children with CKD and has a profound impact on the self-esteem and social integration of the stunted patients. Several factors associated with CKD may lead to growth retardation by interfering with the normal physiology of growth plate, the organ where longitudinal growth rate takes place. The study of growth plate is hardly possible in humans and justifies the use of animal models. Young rats made uremic by 5/6 nephrectomy have been widely used as a model to investigate growth retardation in CKD. This article examines the characteristics of this model and analyzes the utilization of CKD induced by high adenine diet as an alternative research protocol. PMID:26522663

  8. [Absolute bioavailability of the adenine derivative VMA-99-82 possessing antiviral activity].

    PubMed

    Smirnova, L A; Suchkov, E A; Riabukha, A F; Kuznetsov, K A; Ozerov, A A

    2013-01-01

    Investigation of the main pharmacokinetic parameters of adenine derivative VMA-99-82 in rats showed large values of the half-life (T1/2 = 11.03 h) and the mean retention time of drug molecules in the organism (MRT = 9.53 h). A high rate of the drug concentration decrease in the plasma determines a small value of the area under the pharmacokinetic curve (AUC = 74.96 mg h/ml). The total distribution volume (V(d) = 10.61 l/kg) is 15.8 times greater than the volume of extracellular fluid in the body of rat, which is indicative of a high ability of VMA-99-82 to be distributed and accumulated in the organs and tissues. The absolute bioavailability of VMA-99-82 is 66%. PMID:24605425

  9. Prebiotic Synthesis of Adenine and Amino Acids Under Europa-like Conditions

    NASA Technical Reports Server (NTRS)

    Levy, Matthew; Miller, Stanley L.; Brinton, Karen; Bada, Jeffrey L.

    2003-01-01

    In order to simulate prebiotic synthetic processes on Europa and other ice-covered planets and satellites. we have investigated the prebiotic synthesis of organic compounds from dilute solutions of NH4CN frozen for 25 year at -20 and -78 C. In addition the aqueous products of spark discharge reactions from a reducing atmosphere were frozen for 5 years at -20%. We find that both adenine and guanine, as well as a simple set of amino acids dominated by glycine, are produced in substantial yields under these conditions. These results indicate that some of the key components necessary for the origin of life may have been available on Europa throughout its history and suggest that the circumstellar zone where life might arise may be m der than previously thought.

  10. Prebiotic synthesis of adenine and amino acids under Europa-like conditions

    NASA Technical Reports Server (NTRS)

    Levy, M.; Miller, S. L.; Brinton, K.; Bada, J. L.

    2000-01-01

    In order to simulate prebiotic synthetic processes on Europa and other ice-covered planets and satellites, we have investigated the prebiotic synthesis of organic compounds from dilute solutions of NH4CN frozen for 25 years at -20 and -78 degrees C. In addition, the aqueous products of spark discharge reactions from a reducing atmosphere were frozen for 5 years at -20 degrees C. We find that both adenine and guanine, as well as a simple set of amino acids dominated by glycine, are produced in substantial yields under these conditions. These results indicate that some of the key components necessary for the origin of life may have been available on Europa throughout its history and suggest that the circumstellar zone where life might arise may be wider than previously thought.

  11. Sites of adsorption of adenine, uracil, and their corresponding derivatives on sodium montmorillonite.

    PubMed

    Perezgasga, L; Serrato-Díaz, A; Negrón-Mendoza, A; De Pablo Galán, L; Mosqueira, F G

    2005-04-01

    Clay minerals are considered important to chemical evolution processes due to their properties, ancient origin, and wide distribution. To extend the knowledge of their role in the prebiotic epoch, the adsorption sites of adenine, adenosine, AMP, ADP, ATP, Poly A, uracil, uridine, UMP, UDP, UTP and Poly U on sodium montmorillonite are investigated. X-ray diffraction, ultraviolet and infrared spectroscopy studies indicate that these molecules distribute into the interlamellar channel and the edge of the clay crystals. Monomers are adsorbed predominantly in the interlamellar channel, whereas polymers adsorb along the crystal edges. Such behavior is discussed mainly in terms of bulk pH, pK(a) of the adsorbate, and Van der Waals interactions. PMID:16010992

  12. Dynamics of Excess-Electron Transfer through Alternating Adenine:Thymine Sequences in DNA.

    PubMed

    Lin, Shih-Hsun; Fujitsuka, Mamoru; Majima, Tetsuro

    2015-11-01

    This paper presents the results of an investigation into the sequence-dependent excess-electron transfer (EET) dynamics in DNA, which plays an important role in DNA damage/repair. There are many published studies on EET in consecutive adenine:thymine (A:T) sequences (Tn), but those in alternating A:T sequences (ATn) remain limited. Here, two series of functionalized DNA oligomers, Tn and ATn, were synthesized with a strongly electron-donating photosensitizer, a trimer of ethylenedioxythiophene (3 E), and an electron acceptor, diphenylacetylene (DPA). Laser flash photolysis experiments showed that the EET rate constant of AT3 is two times lower than that of T3 due to the lack of π-stacking of Ts in AT3. Thus, it was indicated that excess-electron hopping is affected by the interaction between LUMOs of nucleotides. PMID:26398266

  13. Adaptive ligand binding by the purine riboswitch in the recognition of guanine and adenine analogs

    PubMed Central

    Gilbert, Sunny D.; Reyes, Francis E.; Edwards, Andrea L.; Batey, Robert T.

    2009-01-01

    SUMMARY Purine riboswitches discriminate between guanine and adenine by at least 10,000-fold based on the identity of a single pyrimidine (Y74) that forms a Watson-Crick base pair with the ligand. To understand how this high degree of specificity for closely related compounds is achieved through simple pairing, we investigated their interaction with purine analogs with varying functional groups at the 2- and 6-positions that have the potential to alter interactions with Y74. Using a combination of crystallographic and calorimetric approaches, we find that binding these purines is often facilitated by either small structural changes in the RNA or tautomeric changes in the ligand. This work also reveals that, along with base pairing, conformational restriction of Y74 significantly contributes to nucleobase selectivity. These results reveal that compounds that exploit the inherent local flexibility within riboswitch binding pockets can alter their ligand specificity. PMID:19523903

  14. External electric field promotes proton transfer in the radical cation of adenine-thymine

    NASA Astrophysics Data System (ADS)

    Zhang, Guiqing; Xie, Shijie

    2016-07-01

    According to pKa measurements, it has been predicted that proton transfer would not occur in the radical cation of adenine-thymine (A:T). However, recent theoretical calculations indicate that proton transfer takes place in the base pair in water below the room temperature. We have performed simulations of proton transfer in the cation of B-DNA stack composed of 10 A:T base pairs in water from 20 K to 300 K. Proton transfer occurs below the room temperature, meanwhile it could also be observed at the room temperature under the external electric field. Another case that interests us is that proton transfer bounces back after ˜300 fs from the appearance of proton transfer at low temperatures.

  15. The effects of tautomerization and protonation on the adenine-cytosine mismatches: a density functional theory study.

    PubMed

    Masoodi, Hamid Reza; Bagheri, Sotoodeh; Abareghi, Mahsa

    2016-06-01

    In the present work, we demonstrate the results of a theoretical study concerned with the question how tautomerization and protonation of adenine affect the various properties of adenine-cytosine mismatches. The calculations, in gas phase and in water, are performed at B3LYP/6-311++G(d,p) level. In gas phase, it is observed that any tautomeric form of investigated mismatches is more stabilized when adenine is protonated. As for the neutral mismatches, the mismatches containing amino form of cytosine and imino form of protonated adenine are more stable. The role of aromaticity on the stability of tautomeric forms of mismatches is investigated by NICS(1)ZZ index. The stability of mispairs decreases by going from gas phase to water. It can be explained using dipole moment parameter. The influence of hydrogen bonds on the stability of mismatches is examined by atoms in molecules and natural bond orbital analyses. In addition to geometrical parameters and binding energies, the study of the topological properties of electron charge density aids in better understanding of these mispairs. PMID:26198186

  16. Formation of Adenine from the Soft X-Ray Photo-Irradiation of N2-CH4 Ice

    NASA Astrophysics Data System (ADS)

    Pilling, S.; Andrade, D. P. P.; Neto, A. C.; Rittner, R.; de Brito, A. N.

    2010-04-01

    In this work, we present an experimental study of the chemical alteration produced by the interaction of soft X-rays (and secondary electrons) on Titan aerosol analogs producing prebiotic compounds such as adenine, one the constituents of the DNA molecule.

  17. [Corrective effect of trimethylglycine on the nicotinamide coenzyme and adenine nucleotide content of the tissues in experimental atherosclerosis].

    PubMed

    Zapadniuk, V I; Chekman, I S; Panteleĭmonova, T N; Tumanov, V A

    1986-01-01

    Experiments on adult rabbits with experimental atherosclerosis induced by cholesterol (0.25 g/kg for 90 days) showed that chronic administration of trimethylglycine (1.5 g/kg for 30 days) prevented a decrease of the liver and myocardium content of nicotinamide coenzymes and adenine nucleotides. PMID:3758334

  18. Mechanism of bracken fern carcinogenesis: evidence for H-ras activation via initial adenine alkylation by ptaquiloside.

    PubMed

    Prakash, A S; Pereira, T N; Smith, B L; Shaw, G; Seawright, A A

    1996-01-01

    Bracken fern (Pteridium spp.) causes cancer of the oesophagus and the urinary bladder in cattle and sheep. Ptaquiloside (PT) is believed to be the carcinogenic principle which alkylates DNA when activated to its unstable dienone form (APT) under alkaline conditions. In this report we present evidence for the presence of PT-DNA adducts in the ileum of bracken fem-fed calves using the 32P-postlabelling assay. H-ras mutations were also observed in the ileum using single strand conformation polymorphism (SSCP) technique. Mutations corresponding to adenine to pyrimidine transversions in the codon 61 of H-ras were identified by the cycle sequencing method. In vitro DNA alkylation studies showed that APT alkylated H-ras primarily at the adenines. In addition, the rate of depurination of alkylated adenine was sequence dependent. Investigation of DNA template activity using a plasmid DNA showed that DNA synthesis by T7 DNA polymerase was terminated by the presence of all alkylated bases but certain apurinic sites allowed the DNA synthesis to continue. These results suggest that initial alkylation of adenine by PT in codon 61 followed by depurination and error in DNA synthesis lead to activation of H-ras proto-oncogene. PMID:8946397

  19. Few-layer graphene sheets with embedded gold nanoparticles for electrochemical analysis of adenine

    PubMed Central

    Biris, Alexandru R; Pruneanu, Stela; Pogacean, Florina; Lazar, Mihaela D; Borodi, Gheorghe; Ardelean, Stefania; Dervishi, Enkeleda; Watanabe, Fumiya; Biris, Alexandru S

    2013-01-01

    This work describes the synthesis of few-layer graphene sheets embedded with various amounts of gold nanoparticles (Gr-Au-x) over an Aux/MgO catalytic system (where × = 1, 2, or 3 wt%). The sheet-like morphology of the Gr-Au-x nanostructures was confirmed by transmission electron microscopy and high resolution transmission electron microscopy, which also demonstrated that the number of layers within the sheets varied from two to seven. The sample with the highest percentage of gold nanoparticles embedded within the graphitic layers (Gr-Au-3) showed the highest degree of crystallinity. This distinct feature, along with the large number of edge-planes seen in high resolution transmission electron microscopic images, has a crucial effect on the electrocatalytic properties of this material. The reaction yields (40%–50%) and the final purity (96%–98%) of the Gr-Au-x composites were obtained by thermogravimetric analysis. The Gr-Au-x composites were used to modify platinum substrates and subsequently to detect adenine, one of the DNA bases. For the bare electrode, no oxidation signal was recorded. In contrast, all of the modified electrodes showed a strong electrocatalytic effect, and a clear peak for adenine oxidation was recorded at approximately +1.05 V. The highest increase in the electrochemical signal was obtained using a platinum/Gr-Au-3-modified electrode. In addition, this modified electrode had an exchange current density (I0, obtained from the Tafel plot) one order of magnitude higher than that of the bare platinum electrode, which also confirmed that the transfer of electrons took place more readily at the Gr-Au-3-modified electrode. PMID:23610521

  20. Ultrastructural localization of NADPH diaphorase and nitric oxide synthase in the neuropils of the snail CNS.

    PubMed

    Nacsa, Kálmán; Elekes, Károly; Serfőző, Zoltán

    2015-08-01

    Comparative studies on the nervous system revealed that nitric oxide (NO) retains its function through the evolution. In vertebrates NO can act in different ways: it is released solely or as a co-transmitter, released from presynaptic or postsynaptic site, spreads as a volumetric signal or targets synaptic proteins. In invertebrates, however, the possible sites of NO release have not yet been identified. Therefore, in the present study, the subcellular distribution of the NO synthase (NOS) was examined in the central nervous system (CNS) of two gastropod species, the terrestrial snail, Helix pomatia and the pond snail, Lymnaea stagnalis, which are model species in comparative neurobiology. For the visualization of NOS