Science.gov

Sample records for adenine guanine hypoxanthine

  1. Amplification of Adenine Phosphoribosyltransferase Suppresses the Conditionally Lethal Growth and Virulence Phenotype of Leishmania donovani Mutants Lacking Both Hypoxanthine-guanine and Xanthine Phosphoribosyltransferases*

    PubMed Central

    Boitz, Jan M.; Ullman, Buddy

    2010-01-01

    Leishmania donovani cannot synthesize purines de novo and obligatorily scavenge purines from the host. Previously, we described a conditional lethal Δhgprt/Δxprt mutant of L. donovani (Boitz, J. M., and Ullman, B. (2006) J. Biol. Chem. 281, 16084–16089) that establishes that L. donovani salvages purines primarily through hypoxanthine-guanine phosphoribosyltransferase (HGPRT) and xanthine phosphoribosyltransferase (XPRT). Unlike wild type L. donovani, the Δhgprt/Δxprt knock-out cannot grow on 6-oxypurines and displays an absolute requirement for adenine or adenosine and 2′-deoxycoformycin, an inhibitor of parasite adenine aminohydrolase activity. Here, we demonstrate that the ability of Δhgprt/Δxprt parasites to infect mice was profoundly compromised. Surprisingly, mutant parasites that survived the initial passage through mice partially regained their virulence properties, exhibiting a >10-fold increase in parasite burden in a subsequent mouse infection. To dissect the mechanism by which Δhgprt/Δxprt parasites persisted in vivo, suppressor strains that had regained their capacity to grow under restrictive conditions were cloned from cultured Δhgprt/Δxprt parasites. The ability of these suppressor clones to grow in and metabolize 6-oxypurines could be ascribed to a marked amplification and overexpression of the adenine phosphoribosyltransferase (APRT) gene. Moreover, transfection of Δhgprt/Δxprt cells with an APRT episome recapitulated the suppressor phenotype in vitro and enabled growth on 6-oxypurines. Biochemical studies further showed that hypoxanthine, unexpectedly, was an inefficient substrate for APRT, evidence that could account for the ability of the suppressors to metabolize hypoxanthine. Subsequent analysis implied that APRT amplification was also a potential contributory mechanism by which Δhgprt/Δxprt parasites displayed persistence and increased virulence in mice. PMID:20363738

  2. Studies on the energy metabolism of opossum (Didelphis virginiana) erythrocytes: V. Utilization of hypoxanthine for the synthesis of adenine and guanine nucleotides in vitro

    SciTech Connect

    Bethlenfalvay, N.C.; White, J.C.; Chadwick, E.; Lima, J.E. )

    1990-06-01

    High pressure liquid radiochromatography was used to test the ability of opossum erythrocytes to incorporate tracer amounts of (G-{sup 3}H) hypoxanthine (Hy) into ({sup 3}H) labelled triphosphates of adenine and guanine. In the presence of supraphysiologic (30 mM) phosphate which is optimal for PRPP synthesis, both ATP and GTP are extensively labelled. When physiologic (1 mM) medium phosphate is used, red cells incubated under an atmosphere of nitrogen accumulate ({sup 3}H) ATP in a linear fashion suggesting ongoing PRPP synthesis in red cells whose hemoglobin is deoxygenated. In contrast, a lesser increase of labelled ATP is observed in cells incubated under oxygen, suggesting that conditions for purine nucleotide formation from ambient Hy are more favorable in the venous circulation.

  3. Functional identification of the hypoxanthine/guanine transporters YjcD and YgfQ and the adenine transporters PurP and YicO of Escherichia coli K-12.

    PubMed

    Papakostas, Konstantinos; Botou, Maria; Frillingos, Stathis

    2013-12-27

    The evolutionarily broad family nucleobase-cation symporter-2 (NCS2) encompasses transporters that are conserved in binding site architecture but diverse in substrate selectivity. Putative purine transporters of this family fall into one of two homology clusters: COG2233, represented by well studied xanthine and/or uric acid permeases, and COG2252, consisting of transporters for adenine, guanine, and/or hypoxanthine that remain unknown with respect to structure-function relationships. We analyzed the COG2252 genes of Escherichia coli K-12 with homology modeling, functional overexpression, and mutagenesis and showed that they encode high affinity permeases for the uptake of adenine (PurP and YicO) or guanine and hypoxanthine (YjcD and YgfQ). The two pairs of paralogs differ clearly in their substrate and ligand preferences. Of 25 putative inhibitors tested, PurP and YicO recognize with low micromolar affinity N(6)-benzoyladenine, 2,6-diaminopurine, and purine, whereas YjcD and YgfQ recognize 1-methylguanine, 8-azaguanine, 6-thioguanine, and 6-mercaptopurine and do not recognize any of the PurP ligands. Furthermore, the permeases PurP and YjcD were subjected to site-directed mutagenesis at highly conserved sites of transmembrane segments 1, 3, 8, 9, and 10, which have been studied also in COG2233 homologs. Residues irreplaceable for uptake activity or crucial for substrate selectivity were found at positions occupied by similar role amino acids in the Escherichia coli xanthine- and uric acid-transporting homologs (XanQ and UacT, respectively) and predicted to be at or around the binding site. Our results support the contention that the distantly related transporters of COG2233 and COG2252 use topologically similar side chain determinants to dictate their function and the distinct purine selectivity profiles.

  4. Cloning and expression of the hypoxanthine-guanine phosphoribosyltransferase from Leishmania donovani.

    PubMed

    Allen, T E; Hwang, H Y; Jardim, A; Olafson, R; Ullman, B

    1995-07-01

    The gene encoding the hypoxanthine-guanine phosphoribosyltransferase (HGPRT) enzyme from Leishmania donovani has been cloned and sequenced. The hgprt open reading frame encoded a polypeptide of 211 amino acids that exhibited 3 regions of significant homology with other eukaryotic HGPRTs and a C-terminal tripeptide compatible with a glycosomal targeting signal. Northern blot analysis of L. donovani RNA revealed two hgprt transcripts, a 1.9-kb mRNA and a 1.7-kb transcript. The expression of the 1.7-kb hgprt mRNA and the activity of HGPRT enzyme were both augmented approx. 5-fold in parasites incubated in the absence of purines. Southern blots of genomic DNA indicated only a single hgprt locus within the L. donovani genome. Overexpression of L. donovani hgprt in E. coli complemented genetic deficiencies in hypoxanthine and guanine phosphoribosylating activities and yielded abundant quantities of enzymatically active HGPRT. The recombinant HGPRT was purified to homogeneity and recognized hypoxanthine, guanine and allopurinol, but not adenine or xanthine, as substrates. The hgprt clone and pure HGPRT protein provide essential reagents for validating HGPRT as a therapeutic target for the treatment of leishmaniasis and other diseases of parasitic origin. PMID:8577321

  5. Hypoxanthine-guanine phosphoribosyl transferase deficiency.

    PubMed

    de Bruyn, C H

    1976-02-29

    In man congential lack of enzyme of the purine salvage system, hypoxanthineguanine phosphoribosyl transferase (HG-PRT E.C. 2.4.2.8), is mostly accompanied by a picture known as the Lesch-Nyhan snydrome. The degree of deficiency may vary from zero to a few percent of normal activity but a correlation between the severity of HG-PRT deficiency and the clinical picture has not been observed, no more than a correlation HG-PRT deficiency and neurological dysfunction. But individuals with undetectable HG-PRT activity but without the Lesch-Nyhan syndrome have been described. Patients with partial HG-PRT defiency have clinically distinctive findings. Sometimes mild neurological abnormalities are observed. Because of marked overproduction of ric acid severe gouty arthritis and renal dysfunction are often encountered in both complete and partial deficiency. There is considerable molecular heterogeneity in HG-PRT deficiency in man. Mutant ebnzymes may exhibit different kinetic and electrophoretic properties, indicating that hterwe might be a mutation on the structural gene coding for HG-PRT. Lack of HG-PRT disturbs purine interconversions profoundly. In addition to an important function of HG-PRT in the uptake of the purine hypoxantine and guanine into the cell, the effective uptake of inosine, guanosine and adenosine also seems to be dependent on HG-PRT...

  6. Absence of hypoxanthine:guanine phosphoribosyltransferase activity in murine Dunn osteosarcoma

    SciTech Connect

    Abelson, H.T.; Gorka, C.

    1983-09-01

    The transplantable murine Dunn osteosarcoma has no detectable hypoxanthine:guanine phosphoribosyltransferase (EC 2.4.2.8) activity. This was established from the tumors directly and from tissue culture cell lines derived from the tumor using a variety of assays: e.g., no (3H)hypoxanthine uptake into tumor or tissue culture cells, no conversion of (3H)hypoxanthine to (3H)IMP by cell extracts from tumors or tissue culture cells, no growth of tissue culture cells in hypoxanthine:aminopterin:thymidine medium, and normal growth of these cells in 10 microM 6-mercaptopurine. Ten human osteosarcomas have been assayed, and two have no apparent hypoxanthine:guanine phosphoribosyltransferase enzyme activity. After high-dose methotrexate treatment in vivo, murine tumors could be selectively killed and normal tissues could be spared by using a rescue regimen of hypoxanthine-thymidine-allopurinol.

  7. Hypoxanthine-guanine phosophoribosyltransferase (HPRT) deficiency: Lesch-Nyhan syndrome

    PubMed Central

    Torres, Rosa J; Puig, Juan G

    2007-01-01

    Deficiency of hypoxanthine-guanine phosphoribosyltransferase (HPRT) activity is an inborn error of purine metabolism associated with uric acid overproduction and a continuum spectrum of neurological manifestations depending on the degree of the enzymatic deficiency. The prevalence is estimated at 1/380,000 live births in Canada, and 1/235,000 live births in Spain. Uric acid overproduction is present inall HPRT-deficient patients and is associated with lithiasis and gout. Neurological manifestations include severe action dystonia, choreoathetosis, ballismus, cognitive and attention deficit, and self-injurious behaviour. The most severe forms are known as Lesch-Nyhan syndrome (patients are normal at birth and diagnosis can be accomplished when psychomotor delay becomes apparent). Partial HPRT-deficient patients present these symptoms with a different intensity, and in the least severe forms symptoms may be unapparent. Megaloblastic anaemia is also associated with the disease. Inheritance of HPRT deficiency is X-linked recessive, thus males are generally affected and heterozygous female are carriers (usually asymptomatic). Human HPRT is encoded by a single structural gene on the long arm of the X chromosome at Xq26. To date, more than 300 disease-associated mutations in the HPRT1 gene have been identified. The diagnosis is based on clinical and biochemical findings (hyperuricemia and hyperuricosuria associated with psychomotor delay), and enzymatic (HPRT activity determination in haemolysate, intact erythrocytes or fibroblasts) and molecular tests. Molecular diagnosis allows faster and more accurate carrier and prenatal diagnosis. Prenatal diagnosis can be performed with amniotic cells obtained by amniocentesis at about 15–18 weeks' gestation, or chorionic villus cells obtained at about 10–12 weeks' gestation. Uric acid overproduction can be managed by allopurinol treatment. Doses must be carefully adjusted to avoid xanthine lithiasis. The lack of precise

  8. Acyclic Immucillin Phosphonates. Second-Generation Inhibitors of Plasmodium falciparum Hypoxanthine- Guanine-Xanthine Phosphoribosyltransferase

    SciTech Connect

    Hazelton, Keith Z.; Ho, Meng-Chaio; Cassera, Maria B.; Clinch, Keith; Crump, Douglas R.; Rosario Jr., Irving; Merino, Emilio F.; Almo, Steve C.; Tyler, Peter C.; Schramm, Vern L.

    2012-06-22

    We found that Plasmodium falciparum is the primary cause of deaths from malaria. It is a purine auxotroph and relies on hypoxanthine salvage from the host purine pool. Purine starvation as an antimalarial target has been validated by inhibition of purine nucleoside phosphorylase. Hypoxanthine depletion kills Plasmodium falciparum in cell culture and in Aotus monkey infections. Hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT) from P. falciparum is required for hypoxanthine salvage by forming inosine 5'-monophosphate, a branchpoint for all purine nucleotide synthesis in the parasite. We present a class of HGXPRT inhibitors, the acyclic immucillin phosphonates (AIPs), and cell permeable AIP prodrugs. The AIPs are simple, potent, selective, and biologically stable inhibitors. The AIP prodrugs block proliferation of cultured parasites by inhibiting the incorporation of hypoxanthine into the parasite nucleotide pool and validates HGXPRT as a target in malaria.

  9. Plasma Hypoxanthine-Guanine Phosphoribosyl Transferase Activity in Bottlenose Dolphins Contributes to Avoiding Accumulation of Non-recyclable Purines

    PubMed Central

    López-Cruz, Roberto I.; Crocker, Daniel E.; Gaxiola-Robles, Ramón; Bernal, Jaime A.; Real-Valle, Roberto A.; Lugo-Lugo, Orlando; Zenteno-Savín, Tania

    2016-01-01

    Marine mammals are exposed to ischemia/reperfusion and hypoxia/reoxygenation during diving. During oxygen deprivation, adenosine triphosphate (ATP) breakdown implies purine metabolite accumulation, which in humans is associated with pathological conditions. Purine recycling in seals increases in response to prolonged fasting and ischemia. Concentrations of metabolites and activities of key enzymes in purine metabolism were examined in plasma and red blood cells from bottlenose dolphins (Tursiops truncatus) and humans. Hypoxanthine and inosine monophosphate concentrations were higher in plasma from dolphins than humans. Plasma hypoxanthine-guanine phosphoribosyl transferase (HGPRT) activity in dolphins suggests an elevated purine recycling rate, and a mechanism for avoiding accumulation of non-recyclable purines (xanthine and uric acid). Red blood cell concentrations of hypoxanthine, adenosine diphosphate, ATP and guanosine triphosphate were lower in dolphins than in humans; adenosine monophosphate and nicotinamide adenine dinucleotide concentrations were higher in dolphins. HGPRT activity in red blood cells was higher in humans than in dolphins. The lower concentrations of purine catabolism and recycling by-products in plasma from dolphins could be beneficial in providing substrates for recovery of ATP depleted during diving or vigorous swimming. These results suggest that purine salvage in dolphins could be a mechanism for delivering nucleotide precursors to tissues with high ATP and guanosine triphosphate requirements. PMID:27375492

  10. Plasma Hypoxanthine-Guanine Phosphoribosyl Transferase Activity in Bottlenose Dolphins Contributes to Avoiding Accumulation of Non-recyclable Purines.

    PubMed

    López-Cruz, Roberto I; Crocker, Daniel E; Gaxiola-Robles, Ramón; Bernal, Jaime A; Real-Valle, Roberto A; Lugo-Lugo, Orlando; Zenteno-Savín, Tania

    2016-01-01

    Marine mammals are exposed to ischemia/reperfusion and hypoxia/reoxygenation during diving. During oxygen deprivation, adenosine triphosphate (ATP) breakdown implies purine metabolite accumulation, which in humans is associated with pathological conditions. Purine recycling in seals increases in response to prolonged fasting and ischemia. Concentrations of metabolites and activities of key enzymes in purine metabolism were examined in plasma and red blood cells from bottlenose dolphins (Tursiops truncatus) and humans. Hypoxanthine and inosine monophosphate concentrations were higher in plasma from dolphins than humans. Plasma hypoxanthine-guanine phosphoribosyl transferase (HGPRT) activity in dolphins suggests an elevated purine recycling rate, and a mechanism for avoiding accumulation of non-recyclable purines (xanthine and uric acid). Red blood cell concentrations of hypoxanthine, adenosine diphosphate, ATP and guanosine triphosphate were lower in dolphins than in humans; adenosine monophosphate and nicotinamide adenine dinucleotide concentrations were higher in dolphins. HGPRT activity in red blood cells was higher in humans than in dolphins. The lower concentrations of purine catabolism and recycling by-products in plasma from dolphins could be beneficial in providing substrates for recovery of ATP depleted during diving or vigorous swimming. These results suggest that purine salvage in dolphins could be a mechanism for delivering nucleotide precursors to tissues with high ATP and guanosine triphosphate requirements.

  11. Plasma Hypoxanthine-Guanine Phosphoribosyl Transferase Activity in Bottlenose Dolphins Contributes to Avoiding Accumulation of Non-recyclable Purines.

    PubMed

    López-Cruz, Roberto I; Crocker, Daniel E; Gaxiola-Robles, Ramón; Bernal, Jaime A; Real-Valle, Roberto A; Lugo-Lugo, Orlando; Zenteno-Savín, Tania

    2016-01-01

    Marine mammals are exposed to ischemia/reperfusion and hypoxia/reoxygenation during diving. During oxygen deprivation, adenosine triphosphate (ATP) breakdown implies purine metabolite accumulation, which in humans is associated with pathological conditions. Purine recycling in seals increases in response to prolonged fasting and ischemia. Concentrations of metabolites and activities of key enzymes in purine metabolism were examined in plasma and red blood cells from bottlenose dolphins (Tursiops truncatus) and humans. Hypoxanthine and inosine monophosphate concentrations were higher in plasma from dolphins than humans. Plasma hypoxanthine-guanine phosphoribosyl transferase (HGPRT) activity in dolphins suggests an elevated purine recycling rate, and a mechanism for avoiding accumulation of non-recyclable purines (xanthine and uric acid). Red blood cell concentrations of hypoxanthine, adenosine diphosphate, ATP and guanosine triphosphate were lower in dolphins than in humans; adenosine monophosphate and nicotinamide adenine dinucleotide concentrations were higher in dolphins. HGPRT activity in red blood cells was higher in humans than in dolphins. The lower concentrations of purine catabolism and recycling by-products in plasma from dolphins could be beneficial in providing substrates for recovery of ATP depleted during diving or vigorous swimming. These results suggest that purine salvage in dolphins could be a mechanism for delivering nucleotide precursors to tissues with high ATP and guanosine triphosphate requirements. PMID:27375492

  12. Role of human hypoxanthine guanine phosphoribosyltransferase in activation of the antiviral agent T-705 (favipiravir).

    PubMed

    Naesens, Lieve; Guddat, Luke W; Keough, Dianne T; van Kuilenburg, André B P; Meijer, Judith; Vande Voorde, Johan; Balzarini, Jan

    2013-10-01

    6-Fluoro-3-hydroxy-2-pyrazinecarboxamide (T-705) is a novel antiviral compound with broad activity against influenza virus and diverse RNA viruses. Its active metabolite, T-705-ribose-5'-triphosphate (T-705-RTP), is recognized by influenza virus RNA polymerase as a substrate competing with GTP, giving inhibition of viral RNA synthesis and lethal virus mutagenesis. Which enzymes perform the activation of T-705 is unknown. We here demonstrate that human hypoxanthine guanine phosphoribosyltransferase (HGPRT) converts T-705 into its ribose-5'-monophosphate (RMP) prior to formation of T-705-RTP. The anti-influenza virus activity of T-705 and T-1105 (3-hydroxy-2-pyrazinecarboxamide; the analog lacking the 6-fluoro atom) was lost in HGPRT-deficient Madin-Darby canine kidney cells. This HGPRT dependency was confirmed in human embryonic kidney 293T cells undergoing HGPRT-specific gene knockdown followed by influenza virus ribonucleoprotein reconstitution. Knockdown for adenine phosphoribosyltransferase (APRT) or nicotinamide phosphoribosyltransferase did not change the antiviral activity of T-705 and T-1105. Enzymatic assays showed that T-705 and T-1105 are poor substrates for human HGPRT having Km(app) values of 6.4 and 4.1 mM, respectively. Formation of the RMP metabolites by APRT was negligible, and so was the formation of the ribosylated metabolites by human purine nucleoside phosphorylase. Phosphoribosylation and antiviral activity of the 2-pyrazinecarboxamide derivatives was shown to require the presence of the 3-hydroxyl but not the 6-fluoro substituent. The crystal structure of T-705-RMP in complex with human HGPRT showed how this compound binds in the active site. Since conversion of T-705 by HGPRT appears to be inefficient, T-705-RMP prodrugs may be designed to increase the antiviral potency of this new antiviral agent.

  13. Fragmentation mechanisms of cytosine, adenine and guanine ionized bases.

    PubMed

    Sadr-Arani, Leila; Mignon, Pierre; Chermette, Henry; Abdoul-Carime, Hassan; Farizon, Bernadette; Farizon, Michel

    2015-05-01

    The different fragmentation channels of cytosine, adenine and guanine have been studied through DFT calculations. The electronic structure of bases, their cations, and the fragments obtained by breaking bonds provides a good understanding of the fragmentation process that can complete the experimental approach. The calculations allow assigning various fragments to the given peaks. The comparison between the energy required for the formation of fragments and the peak intensity in the mass spectrum is used. For cytosine and guanine the elimination of the HNCO molecule is a major route of dissociation, while for adenine multiple loss of HCN or HNC can be followed up to small fragments. For cytosine, this corresponds to the initial bond cleavage of N3-C4/N1-C2, which represents the main dissociation route. For guanine the release of HNCO is obtained through the N1-C2/C5-C6 bond cleavage (reverse order also possible) leading to the largest peak of the spectrum. The corresponding energies of 3.5 and 3.9 eV are typically in the range available in the experiments. The loss of NH3 or HCN is also possible but requires more energy. For adenine, fragmentation consists of multiple loss of the HCN molecule and the main route corresponding to HC8N9 loss is followed by the release of HC2N1. PMID:25869111

  14. Effects of acyclovir and its metabolites on hypoxanthine-guanine phosphoribosyltransferase.

    PubMed

    Tuttle, J V; Krenitsky, T A; Elion, G B

    1983-10-15

    Acyclovir [9-(2-hydroxyethoxymethyl)guanine], a clinically useful anti-herpesvirus agent, was a weak inhibitor (Ki = 190 microM) of hypoxanthine-guanine phosphoribosyltransferase (HGPRTase) from human erythrocytes. Nevertheless, this acyclic nucleoside analog was a more effective inhibitor than were its natural counterparts, guanosine (Ki = 1400 microM) and deoxyguanosine (Ki = 570 microM). The two oxidized metabolites of acyclovir, 9-carboxymethoxymethylguanine (Ki = 720 microM) and 8-hydroxy-9-(2-hydroxyethoxymethyl)guanine (Ki greater than 2000 microM), were less inhibitory than was the parent drug. None of the phosphorylated metabolites of acyclovir was as potent an inhibitor of HGPRTase as was GMP (Ki = 4 microM). However, the Ki value for acyclovir monophosphate was similar to that of dGMP (12 microM). The Ki values for acyclovir diphosphate (8.3 microM) and triphosphate (30 microM) were less than those for dGDP (110 microM) and dGTP (140 microM). The levels of these phosphate esters of acyclovir in cultured monkey kidney (Vero) and human embryo fibroblast (WI38) cells exposed to therapeutic levels of the drug were well below the observed Ki values. However, in herpesvirus-infected WI38 cells the levels of the phosphate esters of acyclovir were high enough potentially to inhibit the enzyme. Although inhibition of this enzyme by the phosphorylated metabolites of acyclovir may occur in these infected cells, concentrations of the drug very much higher than the EC50 concentration were required to achieve inhibitory levels. It is, therefore, unlikely that this inhibition contributes significantly to the antiviral activity.

  15. Crystal structures of Apo and GMP bound hypoxanthine-guanine phosphoribosyltransferase from Legionella pneumophila and the implications in gouty arthritis.

    PubMed

    Zhang, Nannan; Gong, Xiaojian; Lu, Min; Chen, Xiaofang; Qin, Ximing; Ge, Honghua

    2016-06-01

    Hypoxanthine-guanine phosphoribosyltransferase (HGPRT) (EC 2.4.2.8) reversibly catalyzes the transfer of the 5-phophoribosyl group from 5-phosphoribosyl-alpha-1-pyrophosphate (PRPP) to hypoxanthine or guanine to form inosine monophosphate (IMP) or guanosine monophosphate (GMP) in the purine salvage pathway. To investigate the catalytic mechanism of this enzyme in the intracellular pathogen Legionella pneumophila, we determined the crystal structures of the L. pneumophila HGPRT (LpHGPRT) both in its apo-form and in complex with GMP. The structures reveal that LpHGPRT comprises a core domain and a hood domain which are packed together to create a cavity for GMP-binding and the enzymatic catalysis. The binding of GMP induces conformational changes of the stable loop II. This new binding site is closely related to the Gout arthritis-linked human HGPRT mutation site (Ser103Arg). Finally, these structures of LpHGPRT provide insights into the catalytic mechanism of HGPRT.

  16. N-Sulfomethylation of guanine, adenine and cytosine with formaldehyde-bisulfite. A selective modification of guanine in DNA.

    PubMed

    Hayatsu, H; Yamashita, Y; Yui, S; Yamagata, Y; Tomita, K; Negishi, K

    1982-10-25

    When guanine-, adenine- and cytosine-nucleosides and nucleotides were treated with formaldehyde and then with bisulfite, stable N-sulfomethyl compounds were formed. N2-Sulfomethylguanine, N6-sulfomethyladenine, N4-sulfomthylcytosine and N6-sulfomethyl-9-beta-D-arabinofuranosyladenine were isolated as crystals and characterized. A guanine-specific sulfomethylation was brought about by treatment and denatured single-stranded DNA with formaldehyde and then with bisulfite at pH 7 and 4 degrees C. Since native double-stranded DNA was not modified by this treatment, this new method of modification is expected to be useful as a conformational probe for polynucleotides. PMID:7177848

  17. N-Sulfomethylation of guanine, adenine and cytosine with formaldehyde-bisulfite. A selective modification of guanine in DNA.

    PubMed Central

    Hayatsu, H; Yamashita, Y; Yui, S; Yamagata, Y; Tomita, K; Negishi, K

    1982-01-01

    When guanine-, adenine- and cytosine-nucleosides and nucleotides were treated with formaldehyde and then with bisulfite, stable N-sulfomethyl compounds were formed. N2-Sulfomethylguanine, N6-sulfomethyladenine, N4-sulfomthylcytosine and N6-sulfomethyl-9-beta-D-arabinofuranosyladenine were isolated as crystals and characterized. A guanine-specific sulfomethylation was brought about by treatment and denatured single-stranded DNA with formaldehyde and then with bisulfite at pH 7 and 4 degrees C. Since native double-stranded DNA was not modified by this treatment, this new method of modification is expected to be useful as a conformational probe for polynucleotides. PMID:7177848

  18. N-Sulfomethylation of guanine, adenine and cytosine with formaldehyde-bisulfite. A selective modification of guanine in DNA.

    PubMed

    Hayatsu, H; Yamashita, Y; Yui, S; Yamagata, Y; Tomita, K; Negishi, K

    1982-10-25

    When guanine-, adenine- and cytosine-nucleosides and nucleotides were treated with formaldehyde and then with bisulfite, stable N-sulfomethyl compounds were formed. N2-Sulfomethylguanine, N6-sulfomethyladenine, N4-sulfomthylcytosine and N6-sulfomethyl-9-beta-D-arabinofuranosyladenine were isolated as crystals and characterized. A guanine-specific sulfomethylation was brought about by treatment and denatured single-stranded DNA with formaldehyde and then with bisulfite at pH 7 and 4 degrees C. Since native double-stranded DNA was not modified by this treatment, this new method of modification is expected to be useful as a conformational probe for polynucleotides.

  19. High level expression in Escherichia coli of soluble, enzymatically active schistosomal hypoxanthine/guanine phosphoribosyltransferase and trypanosomal ornithine decarboxylase.

    PubMed Central

    Craig, S P; Yuan, L; Kuntz, D A; McKerrow, J H; Wang, C C

    1991-01-01

    The bacterial alkaline phosphatase (phoA) promoter and signal peptide have been used previously to control recombinant expression and secretion of eukaryotic proteins in Escherichia coli. Other reports have shown that this expression system can generate relatively modest levels of active hypoxanthine/guanine phosphoribosyltransferase (HPRT; hypoxanthine phosphoribosyltransferase; IMP:pyrophosphate phosphoribosyltransferase, EC 2.4.2.8), which carries part of the signal peptide but remains in the cytosol of the bacteria. Herein, the phoA promoter without its associated signal peptide is used to regulate expression of the HPRT of Schistosoma mansoni and the ornithine decarboxylase (ODC; L-ornithine carboxy-lyase, EC 4.1.1.17) of Trypanosoma brucei, two enzymes that have been identified as potential targets for antiparasitic chemotherapy. The levels of recombinant expression range from 20% to 60% of the total bacterial protein, and the majority of both recombinant enzymes was soluble. The specific activity for the recombinant trypanosomal ODC was one-third to two-thirds that of the authentic native enzyme and yields were predicted to be 15-30 mg of active enzyme per liter of bacterial culture. The specific activity for the recombinant schistosomal HPRT was equivalent to that for the native enzyme purified from schistosomes and up to 10 mg of enzymatically active HPRT has been purified from a 0.5-liter culture of treated bacteria. These results represent a break-through in recombinant expression of HPRT and ODC. Images PMID:2006185

  20. Structure-wise discrimination of adenine and guanine by proteins on the basis of their nonbonded interactions.

    PubMed

    Usha, S; Selvaraj, S

    2015-01-01

    We have analyzed the nonbonded interactions of the structurally similar moieties, adenine and guanine forming complexes with proteins. The results comprise (a) the amino acid-ligand atom preferences, (b) solvent accessibility of ligand atoms before and after complex formation with proteins, and (c) preferred amino acid residue atoms involved in the interactions. We have observed that the amino acid preferences involved in the hydrogen bonding interactions vary for adenine and guanine. The structural variation between the purine atoms is clearly reflected by their burial tendency in the solvent environment. Correlation of the mean amino acid preference values show the variation that exists between adenine and guanine preferences of all the amino acid residues. All our observations provide evidence for the discriminating nature of the proteins in recognizing adenine and guanine. PMID:25245205

  1. Structure-wise discrimination of adenine and guanine by proteins on the basis of their nonbonded interactions.

    PubMed

    Usha, S; Selvaraj, S

    2015-01-01

    We have analyzed the nonbonded interactions of the structurally similar moieties, adenine and guanine forming complexes with proteins. The results comprise (a) the amino acid-ligand atom preferences, (b) solvent accessibility of ligand atoms before and after complex formation with proteins, and (c) preferred amino acid residue atoms involved in the interactions. We have observed that the amino acid preferences involved in the hydrogen bonding interactions vary for adenine and guanine. The structural variation between the purine atoms is clearly reflected by their burial tendency in the solvent environment. Correlation of the mean amino acid preference values show the variation that exists between adenine and guanine preferences of all the amino acid residues. All our observations provide evidence for the discriminating nature of the proteins in recognizing adenine and guanine.

  2. Major and minor groove conformations of DNA trimers modified on guanine or adenine by 4-aminobiphenyl: Adenine adducts favor the minor groove

    SciTech Connect

    Shapiro, R.; Ellis, S.; Hingerty, B.E.

    1995-01-01

    We have studied the conformational effects of 4-aminobiphenyl modification at C-8 of guanine or adenine on double-stranded DNA trimers. We used sequences with the modified purine at the central base pair and all 16 possible neighboring sequences at the outer pairs. Minimized potential energy calculations were carried out using the molecular mechanics program DUPLEX to survey the conformation space of these adducts, using a total of 1280 starting structures both in the modified guanine series and in the modified adenine series. Conformer families in which the bound 4-aminobiphenyl was located in the DNA major groove, and in the minor groove, were located for both adenine and guanine modification. In the modified guanine series, the major and minor groove families were roughly comparable in energy, and the sequence context determined which was more stable in a particular case. In the modified adenine series, however, the minor groove structure was more that 10 kcal/mol more stable than the major groove for all sequences. As a result, minor groove adducts provided most of the global minima in the adenine-modified series. This result may be relevant to a previous mutagenesis study [Lasko et al. (1988) J. Biol. Chem. 263, 15429-15435] in which the hot spot of most frequent occurrence was located at an adenine, in the sequence GAT. 25 refs., 9 figs., 4 tabs.

  3. Fragmentation of the adenine and guanine molecules induced by electron collisions

    NASA Astrophysics Data System (ADS)

    Minaev, B. F.; Shafranyosh, M. I.; Svida, Yu. Yu; Sukhoviya, M. I.; Shafranyosh, I. I.; Baryshnikov, G. V.; Minaeva, V. A.

    2014-05-01

    Secondary electron emission is the most important stage in the mechanism of radiation damage to DNA biopolymers induced by primary ionizing radiation. These secondary electrons ejected by the primary electron impacts can produce further ionizations, initiating an avalanche effect, leading to genome damage through the energy transfer from the primary objects to sensitive biomolecular targets, such as nitrogenous bases, saccharides, and other DNA and peptide components. In this work, the formation of positive and negative ions of purine bases of nucleic acids (adenine and guanine molecules) under the impact of slow electrons (from 0.1 till 200 eV) is studied by the crossed electron and molecular beams technique. The method used makes it possible to measure the molecular beam intensity and determine the total cross-sections for the formation of positive and negative ions of the studied molecules, their energy dependences, and absolute values. It is found that the maximum cross section for formation of the adenine and guanine positive ions is reached at about 90 eV energy of the electron beam and their absolute values are equal to 2.8 × 10-15 and 3.2 × 10-15 cm2, respectively. The total cross section for formation of the negative ions is 6.1 × 10-18 and 7.6 × 10-18 cm2 at the energy of 1.1 eV for adenine and guanine, respectively. The absolute cross-section values for the molecular ions are measured and the cross-sections of dissociative ionization are determined. Quantum chemical calculations are performed for the studied molecules, ions and fragments for interpretation of the crossed beams experiments.

  4. Fragmentation of the adenine and guanine molecules induced by electron collisions

    SciTech Connect

    Minaev, B. F. E-mail: boris@theochem.kth.se; Shafranyosh, M. I.; Svida, Yu. Yu; Sukhoviya, M. I.; Shafranyosh, I. I.; Baryshnikov, G. V.; Minaeva, V. A.

    2014-05-07

    Secondary electron emission is the most important stage in the mechanism of radiation damage to DNA biopolymers induced by primary ionizing radiation. These secondary electrons ejected by the primary electron impacts can produce further ionizations, initiating an avalanche effect, leading to genome damage through the energy transfer from the primary objects to sensitive biomolecular targets, such as nitrogenous bases, saccharides, and other DNA and peptide components. In this work, the formation of positive and negative ions of purine bases of nucleic acids (adenine and guanine molecules) under the impact of slow electrons (from 0.1 till 200 eV) is studied by the crossed electron and molecular beams technique. The method used makes it possible to measure the molecular beam intensity and determine the total cross-sections for the formation of positive and negative ions of the studied molecules, their energy dependences, and absolute values. It is found that the maximum cross section for formation of the adenine and guanine positive ions is reached at about 90 eV energy of the electron beam and their absolute values are equal to 2.8 × 10{sup −15} and 3.2 × 10{sup −15} cm{sup 2}, respectively. The total cross section for formation of the negative ions is 6.1 × 10{sup −18} and 7.6 × 10{sup −18} cm{sup 2} at the energy of 1.1 eV for adenine and guanine, respectively. The absolute cross-section values for the molecular ions are measured and the cross-sections of dissociative ionization are determined. Quantum chemical calculations are performed for the studied molecules, ions and fragments for interpretation of the crossed beams experiments.

  5. Deletion screening at the hypoxanthine-guanine phosphoribosyltransferase locus in Chinese hamster cells using the polymerase chain reaction

    SciTech Connect

    Xu, Z.D.; Yu, Y.J.; Hsie, A.W.; Caskey, C.T.; Rossiter, B.; Gibbs, R.A. )

    1989-01-01

    We have developed a rapid screening method using the polymerase chain reaction (PCR) for detecting deletion mutations at the hypoxanthine-guanine phosphoribosyltransferase (hprt) locus in Chinese hamster cells. DNA was extracted from spontaneous and ultraviolet (UV) light- and X-ray-induced hprt-deficient mutants. Two primer sets were used to amplify 276 bp and 344 bp fragments containing the entire exon 3 and exon 9 coding sequence, respectively. The PCR was performed using Taq DNA polymerase for 40 cycles, and the PCR product was directly analyzed for the presence of the respective amplified DNA using electrophoresis on agarose gels stained with ethidium bromide. With this assay, we have analyzed 39 independently derived hprt-deficient mutants. Four of ten spontaneous mutants were found to have deletions in exon 9. UV light produced mutants with predominantly wild-type amplification patterns (10/14). X-ray induced mostly deletion patterns (11/15); six of these occurred only in exon 9, and five occurred in both exons 3 and 9. These observations are consistent with the classical notion that UV light induces predominantly missense mutations and X-ray produces a high proportion of deletion mutations. Deletion mutations occurred most frequently at the 3' end of the hprt gene, suggesting the possible existence of hot spots for deletions in this region. The PCR assay for deletion detection has the advantage that it can be completed in less than 4 hr without using radioisotopes. This assay should be useful for routine deletion screening.

  6. Simultaneous Determination of Adenine and Guanine Using Cadmium Selenide Quantum Dots-Graphene Oxide Nanocomposite Modified Electrode.

    PubMed

    Kalaivani, Arumugam; Narayanan, Sangilimuthu Sriman

    2015-06-01

    A novel electrochemical sensor was fabricated by immobilizing Cadmium Selenide Quantum Dots (CdSe QDs)-Graphene Oxide (GO) nanocomposite on a paraffin wax impregnated graphite electrode (PIGE) and was used for the simultaneous determination of adenine and guanine. The CdSe QDs-GO nanocomposite was prepared by ultrasonication and was characterized with spectroscopic and microscopic techniques. The nanocomposite modified electrode was characterized by cyclic voltammetry (CV). The modified electrode showed excellent electrocatalytic activity towards the oxidative determination of adenine and guanine with a good peak separation of 0.31 V. This may be due to the high surface area and fast electron transfer kinetics of the nanocomposite. The modified electrode exhibited wide linear ranges from 0.167 μM to 245 μM for Guanine and 0.083 μM to 291 μM for Adenine with detection limits of 0.055 μM Guanine and 0.028 μM of Adenine (S/N = 3) respectively. Further, the modified electrode was used for the quantitative determination of adenine and guanine in herring sperm DNA with satisfactory results. The modified electrode showed acceptable selectivity, reproducibility and stability under optimal conditions. PMID:26369099

  7. Pre-thymic somatic mutation leads to high mutant frequency at hypoxanthine-guanine phosphoribosyltransferase gene

    SciTech Connect

    Jett, J.

    1994-12-01

    While characterizing the background mutation spectrum of the Hypoxathine-guanine phosphoribosyltransferase (HPRT) gene in a healthy population, an outlier with a high mutant frequency of thioguanine resistant lymphocytes was found. When studied at the age of 46, this individual had been smoking 60 cigarettes per day for 38 years. His mutant frequency was calculated at 3.6 and 4.2x10{sup {minus}4} for two sampling periods eight months apart. Sequencing analysis of the HPRT gene in his mutant thioguanine resistant T lymphocytes was done to find whether the cells had a high rate of mutation, or if the mutation was due to a single occurrence of mutation and, if so, when in the T lymphocyte development the mutation occurred. By T-cell receptor analysis it has been found that out of 35 thioguanine resistant clones there was no dominant gamma T cell receptor gene rearrangement. During my appointment in the Science & Engineering Research Semester, I found that 34 of those clones have the same base substitution of G{yields}T at cDNA position 197. Due to the consistent mutant frequency from both sampling periods and the varying T cell receptors, the high mutant frequency cannot be due to recent proliferation of a mature mutant T lymphocyte. From the TCR and DNA sequence analysis we conclude that the G{yields}T mutation must have occurred in a T lymphocyte precursor before thymic differentiation so that the thioguanine resistant clones share the same base substitution but not the same gamma T cell receptor gene.

  8. Effects of Hypoxanthine Substitution in Peptide Nucleic Acids Targeting KRAS2 Oncogenic mRNA Molecules: Theory and Experiment

    PubMed Central

    Sanders, Jeffrey M.; Wampole, Matthew E.; Chen, Chang-Po; Sethi, Dalip; Singh, Amrita; Dupradeau, François-Yves; Wang, Fan; Gray, Brian D.; Thakur, Mathew L.; Wickstrom, Eric

    2013-01-01

    Genetic disorders can arise from single base substitutions in a single gene. A single base substitution for wild type guanine in the twelfth codon of KRAS2 mRNA occurs frequently to initiate lung, pancreatic, and colon cancer. We have observed single base mismatch specificity in radioimaging of mutant KRAS2 mRNA in tumors in mice by in vivo hybridization with radiolabeled peptide nucleic acid (PNA) dodecamers. We hypothesized that multi-mutant specificity could be achieved with a PNA dodecamer incorporating hypoxanthine, which can form Watson-Crick basepairs with adenine, cytosine, thymine, and uracil. Using molecular dynamics simulations and free energy calculations, we show that hypoxanthine substitutions in PNAs are tolerated in KRAS2 RNA-PNA duplexes where wild type guanine is replaced by mutant uracil or adenine in RNA. To validate our predictions, we synthesized PNA dodecamers with hypoxanthine, and then measured the thermal stability of RNA-PNA duplexes. Circular dichroism thermal melting results showed that hypoxanthine-containing PNAs are more stable in duplexes where hypoxanthine-adenine and hypoxanthine-uracil base pairs are formed than single mismatch duplexes or duplexes containing hypoxanthine-guanine opposition. PMID:23972113

  9. Adaptive ligand binding by the purine riboswitch in the recognition of guanine and adenine analogs

    PubMed Central

    Gilbert, Sunny D.; Reyes, Francis E.; Edwards, Andrea L.; Batey, Robert T.

    2009-01-01

    SUMMARY Purine riboswitches discriminate between guanine and adenine by at least 10,000-fold based on the identity of a single pyrimidine (Y74) that forms a Watson-Crick base pair with the ligand. To understand how this high degree of specificity for closely related compounds is achieved through simple pairing, we investigated their interaction with purine analogs with varying functional groups at the 2- and 6-positions that have the potential to alter interactions with Y74. Using a combination of crystallographic and calorimetric approaches, we find that binding these purines is often facilitated by either small structural changes in the RNA or tautomeric changes in the ligand. This work also reveals that, along with base pairing, conformational restriction of Y74 significantly contributes to nucleobase selectivity. These results reveal that compounds that exploit the inherent local flexibility within riboswitch binding pockets can alter their ligand specificity. PMID:19523903

  10. Structural basis for discriminative regulation of gene expression by adenine- and guanine-sensing mRNAs.

    PubMed

    Serganov, Alexander; Yuan, Yu-Ren; Pikovskaya, Olga; Polonskaia, Anna; Malinina, Lucy; Phan, Anh Tuân; Hobartner, Claudia; Micura, Ronald; Breaker, Ronald R; Patel, Dinshaw J

    2004-12-01

    Metabolite-sensing mRNAs, or "riboswitches," specifically interact with small ligands and direct expression of the genes involved in their metabolism. Riboswitches contain sensing "aptamer" modules, capable of ligand-induced structural changes, and downstream regions, harboring expression-controlling elements. We report the crystal structures of the add A-riboswitch and xpt G-riboswitch aptamer modules that distinguish between bound adenine and guanine with exquisite specificity and modulate expression of two different sets of genes. The riboswitches form tuning fork-like architectures, in which the prongs are held in parallel through hairpin loop interactions, and the internal bubble zippers up to form the purine binding pocket. The bound purines are held by hydrogen bonding interactions involving conserved nucleotides along their entire periphery. Recognition specificity is associated with Watson-Crick pairing of the encapsulated adenine and guanine ligands with uridine and cytosine, respectively. PMID:15610857

  11. Structural Basis for Discriminative Regulation of Gene Expression by Adenine- and Guanine-Sensing mRNAs

    PubMed Central

    Serganov, Alexander; Yuan, Yu-Ren; Pikovskaya, Olga; Polonskaia, Anna; Malinina, Lucy; Phan, Anh Tuân; Hobartner, Claudia; Micura, Ronald; Breaker, Ronald R.; Patel, Dinshaw J.

    2015-01-01

    Summary Metabolite-sensing mRNAs, or “riboswitches,” specifically interact with small ligands and direct expression of the genes involved in their metabolism. Ribo-switches contain sensing “aptamer” modules, capable of ligand-induced structural changes, and downstream regions, harboring expression-controlling elements. We report the crystal structures of the add A-riboswitch and xpt G-riboswitch aptamer modules that distinguish between bound adenine and guanine with exquisite specificity and modulate expression of two different sets of genes. The riboswitches form tuning fork-like architectures, in which the prongs are held in parallel through hairpin loop interactions, and the internal bubble zippers up to form the purine binding pocket. The bound purines are held by hydrogen bonding interactions involving conserved nucleotides along their entire periphery. Recognition specificity is associated with Watson-Crick pairing of the encapsulated adenine and guanine ligands with uri-dine and cytosine, respectively. PMID:15610857

  12. Synthesis of adenine, guanine, cytosine, and other nitrogen organic compounds by a Fischer-Tropsch-like process.

    NASA Technical Reports Server (NTRS)

    Yang, C. C.; Oro, J.

    1971-01-01

    Study of the formation of purines, pyrimidines, and other bases from CO, H2, and NH3 under conditions similar to those used in the Fischer-Tropsch process. It is found that industrial nickel/iron alloy catalyzes the synthesis of adenine, guanine, cytosine, and other nitrogenous compounds from mixtures of CO, H2, and NH3 at temperatures of about 600 C. Sufficient sample was accumulated to isolate as solid products adenine, guanine, and cytosine, which were identified by infrared spectrophotometry. In the absence of nickel/iron catalyst, at 650 C, or in the presence of this catalyst, at 450 C, no purines or pyrimidines were synthesized. These results confirm and extend some of the work reported by Kayatsu et al. (1968).

  13. DFT Studies of the Extent of Hole Delocalization in One-electron Oxidized Adenine and Guanine base Stacks

    PubMed Central

    Kumar, Anil

    2011-01-01

    This study investigates the extent of hole delocalization in one-electron oxidized adenine (A)- and guanine (G)-stacks and shows that new IR vibrational bands are predicted that are characteristic of hole delocalization within A-stacks. The geometries of A-stack (Ai; i = 2 – 8) and G-stack (GG and GGG) in their neutral and one-electron oxidized states were optimized with the bases in a B-DNA conformation using the M06-2X/6-31G* method. The highest occupied molecular orbital (HOMO) is localized on a single adenine in A-stacks and on a single guanine in GG and GGG stacks; located at the 5′-site of the stack. On one-electron oxidation (removal of an electron from the HOMO of the neutral A- and G-stacks) a “hole” is created. Mulliken charge analysis shows that these “holes” are delocalized over 2 – 3 adenine bases in the A-stack. The calculated spin density distribution of (Ai)•+ (i = 2 – 8), also, showed delocalization of the hole predominantly on two adenine bases with some delocalization on a neighboring base. For GG and GGG radical cations, the hole was found to be localized on a single G in the stack. The calculated HFCCs of GG and GGG are in good agreement with the experiment. Further, from the vibrational frequency analysis, it was found that IR spectra of neutral and the corresponding one-electron oxidized adenine stacks are quite different. The IR spectra of (A2)•+ has intense IR peaks between 900 – 1500 cm−1 which are not present in the neutral A2 stack. The presence of (A2)•+ in the adenine stack has a characteristic intense peak at ~1100 cm−1. Thus IR and Raman spectroscopy has potential for monitoring the extent of hole delocalization in A stacks. PMID:21417208

  14. Hereditary xanthinuria. Evidence for enhanced hypoxanthine salvage.

    PubMed Central

    Mateos, F A; Puig, J G; Jiménez, M L; Fox, I H

    1987-01-01

    We tested the hypothesis that there is an enhanced rate of hypoxanthine salvage in two siblings with hereditary xanthinuria. We radiolabeled the adenine nucleotide pool with [8-14C]adenine and examined purine nucleotide degradation after intravenous fructose. The cumulative excretion of radioactivity during a 5-d period was 9.7% and 9.1% of infused radioactivity in the enzyme-deficient patients and 6.0 +/- 0.7% (mean +/- SE) in four normal subjects. Fructose infusion increased urinary radioactivity to 7.96 and 9.16 X 10(6) cpm/g creatinine in both patients and to 4.73 +/- 0.69 X 10(6) cpm/g creatinine in controls. The infusion of fructose increased total urinary purine excretion to a mean of 487% from low-normal baseline values in the patients and to 398 +/- 86% in control subjects. In the enzyme-deficient patients, the infusion of fructose elicited an increase of plasma guanosine from undetectable values to 0.7 and 0.9 microM. With adjustments made for intestinal purine loss, these data support the hypothesis that there is enhanced hypoxanthine salvage in hereditary xanthinuria. Degradation of guanine nucleotides to xanthine bypasses the hypoxanthine salvage pathway and may explain the predominance of this urinary purine compound in xanthinuria. PMID:3818951

  15. Hypoxanthine-guanine phosphoribosyltransferase and inosine 5'-monophosphate dehydrogenase activities in three mammalian species: aquatic (Mirounga angustirostris), semi-aquatic (Lontra longicaudis annectens) and terrestrial (Sus scrofa).

    PubMed

    Barjau Pérez-Milicua, Myrna; Zenteno-Savín, Tania; Crocker, Daniel E; Gallo-Reynoso, Juan P

    2015-01-01

    Aquatic and semiaquatic mammals have the capacity of breath hold (apnea) diving. Northern elephant seals (Mirounga angustirostris) have the ability to perform deep and long duration dives; during a routine dive, adults can hold their breath for 25 min. Neotropical river otters (Lontra longicaudis annectens) can hold their breath for about 30 s. Such periods of apnea may result in reduced oxygen concentration (hypoxia) and reduced blood supply (ischemia) to tissues. Production of adenosine 5'-triphosphate (ATP) requires oxygen, and most mammalian species, like the domestic pig (Sus scrofa), are not adapted to tolerate hypoxia and ischemia, conditions that result in ATP degradation. The objective of this study was to explore the differences in purine synthesis and recycling in erythrocytes and plasma of three mammalian species adapted to different environments: aquatic (northern elephant seal) (n = 11), semiaquatic (neotropical river otter) (n = 4), and terrestrial (domestic pig) (n = 11). Enzymatic activity of hypoxanthine-guanine phosphoribosyltransferase (HGPRT) was determined by spectrophotometry, and activity of inosine 5'-monophosphate dehydrogenase (IMPDH) and the concentration of hypoxanthine (HX), inosine 5'-monophosphate (IMP), adenosine 5'-monophosphate (AMP), adenosine 5'-diphosphate (ADP), ATP, guanosine 5'-diphosphate (GDP), guanosine 5'-triphosphate (GTP), and xanthosine 5'-monophosphate (XMP) were determined by high-performance liquid chromatography (HPLC). The activities of HGPRT and IMPDH and the concentration of HX, IMP, AMP, ADP, ATP, GTP, and XMP in erythrocytes of domestic pigs were higher than in erythrocytes of northern elephant seals and river otters. These results suggest that under basal conditions (no diving, sleep apnea or exercise), aquatic, and semiaquatic mammals have less purine mobilization than their terrestrial counterparts.

  16. Hypoxanthine-guanine phosphoribosyltransferase and inosine 5'-monophosphate dehydrogenase activities in three mammalian species: aquatic (Mirounga angustirostris), semi-aquatic (Lontra longicaudis annectens) and terrestrial (Sus scrofa).

    PubMed

    Barjau Pérez-Milicua, Myrna; Zenteno-Savín, Tania; Crocker, Daniel E; Gallo-Reynoso, Juan P

    2015-01-01

    Aquatic and semiaquatic mammals have the capacity of breath hold (apnea) diving. Northern elephant seals (Mirounga angustirostris) have the ability to perform deep and long duration dives; during a routine dive, adults can hold their breath for 25 min. Neotropical river otters (Lontra longicaudis annectens) can hold their breath for about 30 s. Such periods of apnea may result in reduced oxygen concentration (hypoxia) and reduced blood supply (ischemia) to tissues. Production of adenosine 5'-triphosphate (ATP) requires oxygen, and most mammalian species, like the domestic pig (Sus scrofa), are not adapted to tolerate hypoxia and ischemia, conditions that result in ATP degradation. The objective of this study was to explore the differences in purine synthesis and recycling in erythrocytes and plasma of three mammalian species adapted to different environments: aquatic (northern elephant seal) (n = 11), semiaquatic (neotropical river otter) (n = 4), and terrestrial (domestic pig) (n = 11). Enzymatic activity of hypoxanthine-guanine phosphoribosyltransferase (HGPRT) was determined by spectrophotometry, and activity of inosine 5'-monophosphate dehydrogenase (IMPDH) and the concentration of hypoxanthine (HX), inosine 5'-monophosphate (IMP), adenosine 5'-monophosphate (AMP), adenosine 5'-diphosphate (ADP), ATP, guanosine 5'-diphosphate (GDP), guanosine 5'-triphosphate (GTP), and xanthosine 5'-monophosphate (XMP) were determined by high-performance liquid chromatography (HPLC). The activities of HGPRT and IMPDH and the concentration of HX, IMP, AMP, ADP, ATP, GTP, and XMP in erythrocytes of domestic pigs were higher than in erythrocytes of northern elephant seals and river otters. These results suggest that under basal conditions (no diving, sleep apnea or exercise), aquatic, and semiaquatic mammals have less purine mobilization than their terrestrial counterparts. PMID:26283971

  17. Purine salvage in the apicomplexan Sarcocystis neurona, and generation of hypoxanthine-xanthine-guanine phosphoribosyltransferase-deficient clones for positive-negative selection of transgenic parasites.

    PubMed

    Dangoudoubiyam, Sriveny; Zhang, Zijing; Howe, Daniel K

    2014-09-01

    Sarcocystis neurona is an apicomplexan parasite that causes severe neurological disease in horses and marine mammals. The Apicomplexa are all obligate intracellular parasites that lack purine biosynthesis pathways and rely on the host cell for their purine requirements. Hypoxanthine-xanthine-guanine phosphoribosyltransferase (HXGPRT) and adenosine kinase (AK) are key enzymes that function in two complementary purine salvage pathways in apicomplexans. Bioinformatic searches of the S. neurona genome revealed genes encoding HXGPRT, AK and all of the major purine salvage enzymes except purine nucleoside phosphorylase. Wild-type S. neurona were able to grow in the presence of mycophenolic acid (MPA) but were inhibited by 6-thioxanthine (6-TX), suggesting that the pathways involving either HXGPRT or AK are functional in this parasite. Prior work with Toxoplasma gondii demonstrated the utility of HXGPRT as a positive-negative selection marker. To enable the use of HXGPRT in S. neurona, the SnHXGPRT gene sequence was determined and a gene-targeting plasmid was transfected into S. neurona. SnHXGPRT-deficient mutants were selected with 6-TX, and single-cell clones were obtained. These Sn∆HXG parasites were susceptible to MPA and could be complemented using the heterologous T. gondii HXGPRT gene. In summary, S. neurona possesses both purine salvage pathways described in apicomplexans, thus allowing the use of HXGPRT as a positive-negative drug selection marker in this parasite.

  18. DNA-directed aniline mustards with high selectivity for adenine or guanine bases: mutagenesis in a variety of Salmonella typhimurium strains differing in DNA-repair capability.

    PubMed

    Ferguson, L R; Denny, W A; Boritzki, T J

    1994-04-01

    Two closely-related aniline monomustards (1 and 2), linked to a DNA-targeting acridine chromophore by a linker chain of different length, show high selectivity for alkylation of polymer DNA. The shorter-chain derivative (2) alkylates mainly at guanine N7 sites, while the longer-chain analogue (1) reacts almost exclusively at adenine N1. The biological effects of these compounds have been studied in standard Ames Salmonella typhimurium strains in order to determine the mutagenic consequences of such well-defined DNA lesions, and the effect of DNA-repair systems on them. Both compounds caused detectable mutations in strains TA1537, TA98 or TA100 and some related strains. Mutation rates were greatly enhanced in strains carrying either a uvrB deletion or the plasmid pKM101. Frameshift mutagenesis by both compounds was completely eliminated by recA deletion, in both the presence or absence of the plasmid. The adenine-selective compound (1) appeared more sensitive to the DNA-repair defects than the guanine-selective derivative (2). Additionally, only the adenine-selective compound (1) caused statistically significant levels of detectable mutation in the repair-proficient strains TA102, TA4001 or TA4006. The bacterial mutagenesis evidence suggests that a bulky, major groove-residing adenine lesion may be more readily recognised by DNA-repair systems, and more likely to lead to a wider range of mutagenic events, than a similar guanine lesion.

  19. Adenine-DNA adducts derived from the highly tumorigenic dibenzo[a,l]pyrene are resistant to nucleotide excision repair while guanine adducts are not

    PubMed Central

    Kropachev, Konstantin; Kolbanovskiy, Marina; Liu, Zhi; Cai, Yuqin; Zhang, Lu; Schwaid, Adam G.; Kolbanovskiy, Alexander; Ding, Shuang; Amin, Shantu; Broyde, Suse; Geacintov, Nicholas E.

    2013-01-01

    The structural origins of differences in susceptibilities of various DNA lesions to nucleotide excision repair (NER) are poorly understood. Here we compared, in the same sequence context, the relative NER dual incision efficiencies elicited by two stereochemically distinct pairs of guanine (N2-dG) and adenine (N6-dA) DNA lesions, derived from enantiomeric genotoxic diol epoxides of the highly tumorigenic fjord region polycyclic aromatic hydrocarbon dibenzo[a,l]pyrene (DB[a,l]P). Remarkably, in cell-free HeLa cell extracts, the guanine adduct with R absolute chemistry at the N2-dG linkage site is ~ 35 times more susceptible to NER dual incisions than the stereochemically identical N6-dA adduct. For the guanine and adenine adducts with S stereochemistry, a similar, but somewhat smaller effect (factor of ~15) is observed. The striking resistance of the bulky N6-dA in contrast to the modest to good susceptibilities of the N2-dG adducts to NER are interpreted in terms of the balance between lesion-induced DNA-distorting and DNA-stabilizing van der Waals interactions in their structures, that are partly reflected in the overall thermal stabilities of the modified duplexes. Our results are consistent with the hypothesis that the high genotoxic activity of DB[a,l]P is related to the formation of NER-resistant and persistent DB[a,l]P-derived adenine adducts in cellular DNA. PMID:23570232

  20. Specific and nonspecific metal ion-nucleotide interactions at aqueous/solid interfaces functionalized with adenine, thymine, guanine, and cytosine oligomers.

    PubMed

    Holland, Joseph G; Malin, Jessica N; Jordan, David S; Morales, Esmeralda; Geiger, Franz M

    2011-03-01

    This article reports nonlinear optical measurements that quantify, for the first time directly and without labels, how many Mg(2+) cations are bound to DNA 21-mers covalently linked to fused silica/water interfaces maintained at pH 7 and 10 mM NaCl, and what the thermodynamics are of these interactions. The overall interaction of Mg(2+) with adenine, thymine, guanine, and cytosine is found to involve -10.0 ± 0.3, -11.2 ± 0.3, -14.0 ± 0.4, and -14.9 ± 0.4 kJ/mol, and nonspecific interactions with the phosphate and sugar backbone are found to contribute -21.0 ± 0.6 kJ/mol for each Mg(2+) ion bound. The specific and nonspecific contributions to the interaction energy of Mg(2+) with oligonucleotide single strands is found to be additive, which suggests that within the uncertainty of these surface-specific experiments, the Mg(2+) ions are evenly distributed over the oligomers and not isolated to the most strongly binding nucleobase. The nucleobases adenine and thymine are found to bind only three Mg(2+) ions per 21-mer oligonucleotide, while the bases cytosine and guanine are found to bind eleven Mg(2+) ions per 21-mer oligonucleotide.

  1. Hypoxanthine-guanine phosphoribosyltransferase and inosine 5′-monophosphate dehydrogenase activities in three mammalian species: aquatic (Mirounga angustirostris), semi-aquatic (Lontra longicaudis annectens) and terrestrial (Sus scrofa)

    PubMed Central

    Barjau Pérez-Milicua, Myrna; Zenteno-Savín, Tania; Crocker, Daniel E.; Gallo-Reynoso, Juan P.

    2015-01-01

    Aquatic and semiaquatic mammals have the capacity of breath hold (apnea) diving. Northern elephant seals (Mirounga angustirostris) have the ability to perform deep and long duration dives; during a routine dive, adults can hold their breath for 25 min. Neotropical river otters (Lontra longicaudis annectens) can hold their breath for about 30 s. Such periods of apnea may result in reduced oxygen concentration (hypoxia) and reduced blood supply (ischemia) to tissues. Production of adenosine 5′-triphosphate (ATP) requires oxygen, and most mammalian species, like the domestic pig (Sus scrofa), are not adapted to tolerate hypoxia and ischemia, conditions that result in ATP degradation. The objective of this study was to explore the differences in purine synthesis and recycling in erythrocytes and plasma of three mammalian species adapted to different environments: aquatic (northern elephant seal) (n = 11), semiaquatic (neotropical river otter) (n = 4), and terrestrial (domestic pig) (n = 11). Enzymatic activity of hypoxanthine-guanine phosphoribosyltransferase (HGPRT) was determined by spectrophotometry, and activity of inosine 5′-monophosphate dehydrogenase (IMPDH) and the concentration of hypoxanthine (HX), inosine 5′-monophosphate (IMP), adenosine 5′-monophosphate (AMP), adenosine 5′-diphosphate (ADP), ATP, guanosine 5′-diphosphate (GDP), guanosine 5′-triphosphate (GTP), and xanthosine 5′-monophosphate (XMP) were determined by high-performance liquid chromatography (HPLC). The activities of HGPRT and IMPDH and the concentration of HX, IMP, AMP, ADP, ATP, GTP, and XMP in erythrocytes of domestic pigs were higher than in erythrocytes of northern elephant seals and river otters. These results suggest that under basal conditions (no diving, sleep apnea or exercise), aquatic, and semiaquatic mammals have less purine mobilization than their terrestrial counterparts. PMID:26283971

  2. Electrocatalytic activity of molybdenum disulfide nanosheets enhanced by self-doped polyaniline for highly sensitive and synergistic determination of adenine and guanine.

    PubMed

    Yang, Tao; Yang, Ruirui; Chen, Huaiyin; Nan, Fuxin; Ge, Tong; Jiao, Kui

    2015-02-01

    Recently, easy, green, and low-cost liquild exfoliation of bulk materials to obtain thin-layered nanostructure significantly emerged. In this work, thin-layered molybdenum disulfide (MoS2) nanosheets were fabricated through intercalation of self-doped polyaniline (SPAN) to layer space of bulk MoS2 by ultrasonic exfoliating method to effectively prevent reaggregation of MoS2 nanosheets. The obtained hybrid showed specific surface area, a large number of electroactive species, and open accessible space, accompanied by rich negative charged and special conjugated structure, which was applied to adopt positively charged guanine and adenine, based on their strong π-π* interactions and electrostatic adsorption. Also, the SPAN-MoS2 interface exhibited the synergistic effect and good electrocatalytic activity compared with the sole SPAN or MoS2 modified electrode.

  3. A new microplatform based on titanium dioxide nanofibers/graphene oxide nanosheets nanocomposite modified screen printed carbon electrode for electrochemical determination of adenine in the presence of guanine.

    PubMed

    Arvand, Majid; Ghodsi, Navid; Zanjanchi, Mohammad Ali

    2016-03-15

    The current techniques for determining adenine have several shortcomings such as high cost, high time consumption, tedious pretreatment steps and the requirements for highly skilled personnel often restrict their use in routine analytical practice. This paper describes the development and utilization of a new nanocomposite consisting of titanium dioxide nanofibers (TNFs) and graphene oxide nanosheets (GONs) for screen printed carbon electrode (SPCE) modification. The synthesized GONs and TNFs were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). The modified electrode (TNFs/GONs/SPCE) was used for electrochemical characterization of adenine. The TNFs/GONs/SPCE exhibited an increase in peak current and the electron transfer kinetics and decrease in the overpotential for the oxidation reaction of adenine. Using differential pulse voltammetry (DPV), the prepared sensor showed good sensitivity for determining adenine in two ranges from 0.1-1 and 1-10 μM, with a detection limit (DL) of 1.71 nM. Electrochemical studies suggested that the TNFs/GONs/SPCE provided a synergistic augmentation on the voltammetric behavior of electrochemical oxidation of adenine, which was indicated by the improvement of anodic peak current and a decrease in anodic peak potential. The amount of adenine in pBudCE4.1 plasmid was determined via the proposed sensor and the result was in good compatibility with the sequence data of pBudCE4.1 plasmid.

  4. Is the DPT tautomerization of the long A·G Watson-Crick DNA base mispair a source of the adenine and guanine mutagenic tautomers? A QM and QTAIM response to the biologically important question.

    PubMed

    Brovarets', Ol'ha O; Zhurakivsky, Roman O; Hovorun, Dmytro M

    2014-03-01

    Herein, we first address the question posed in the title by establishing the tautomerization trajectory via the double proton transfer of the adenine·guanine (A·G) DNA base mispair formed by the canonical tautomers of the A and G bases into the A*·G* DNA base mispair, involving mutagenic tautomers, with the use of the quantum-mechanical calculations and quantum theory of atoms in molecules (QTAIM). It was detected that the A·G ↔ A*·G* tautomerization proceeds through the asynchronous concerted mechanism. It was revealed that the A·G base mispair is stabilized by the N6H···O6 (5.68) and N1H···N1 (6.51) hydrogen bonds (H-bonds) and the N2H···HC2 dihydrogen bond (DH-bond) (0.68 kcal·mol(-1) ), whereas the A*·G* base mispair-by the O6H···N6 (10.88), N1H···N1 (7.01) and C2H···N2 H-bonds (0.42 kcal·mol(-1) ). The N2H···HC2 DH-bond smoothly and without bifurcation transforms into the C2H···N2 H-bond at the IRC = -10.07 Bohr in the course of the A·G ↔ A*·G* tautomerization. Using the sweeps of the energies of the intermolecular H-bonds, it was observed that the N6H···O6 H-bond is anticooperative to the two others-N1H···N1 and N2H···HC2 in the A·G base mispair, while the latters are significantly cooperative, mutually strengthening each other. In opposite, all three O6H···N6, N1H···N1, and C2H···N2 H-bonds are cooperative in the A*·G* base mispair. All in all, we established the dynamical instability of the А*·G* base mispair with a short lifetime (4.83·10(-14) s), enabling it not to be deemed feasible source of the A* and G* mutagenic tautomers of the DNA bases. The small lifetime of the А*·G* base mispair is predetermined by the negative value of the Gibbs free energy for the A*·G* → A·G transition. Moreover, all of the six low-frequency intermolecular vibrations cannot develop during this lifetime that additionally confirms the aforementioned results. Thus, the A*·G* base mispair cannot be

  5. Ultrafast electronic deactivation dynamics of the rare natural nucleobase hypoxanthine

    NASA Astrophysics Data System (ADS)

    Röttger, Katharina; Siewertsen, Ron; Temps, Friedrich

    2012-05-01

    The electronic deactivation of the 6-oxopurine derivative hypoxanthine, its nucleoside inosine and the nucleotide inosine monophosphate have been studied by femtosecond time-resolved spectroscopy after ππ∗ photoexcitation at λ = 260 nm. The development of a highly sensitive parallel broadband (near-UV/VIS) and single-color (deep-UV) transient absorption setup enabled us to monitor the excited-state decay and the ground-state recovery dynamics in one and the same experiment. The measurements revealed similar relaxation behavior, with time constants of τ1 ≲ 0.1 ps, τ2 ≈ 0.21 ± 0.08 ps and τ3 ≈ 1.8 ± 0.4 ps, for all three investigated molecules. The observed dynamics are assumed to take place through a conical intersection involving an out-of-plane puckering mode of the six-membered ring similar to guanine.

  6. New hypoxanthine nucleosides with RNA antiviral activity.

    PubMed

    Nair, V; Ussery, M A

    1992-08-01

    A series of novel C-2 functionalized hypoxanthine and purine ribonucleosides have been synthesized and evaluated against exotic RNA viruses of the family or genus alpha, arena, flavi, and rhabdo. Both specific and broad-spectrum antiviral activities were discovered but only with hypoxanthine nucleosides. PMID:1444325

  7. The catalase activity of diiron adenine deaminase.

    PubMed

    Kamat, Siddhesh S; Holmes-Hampton, Gregory P; Bagaria, Ashima; Kumaran, Desigan; Tichy, Shane E; Gheyi, Tarun; Zheng, Xiaojing; Bain, Kevin; Groshong, Chris; Emtage, Spencer; Sauder, J Michael; Burley, Stephen K; Swaminathan, Subramanyam; Lindahl, Paul A; Raushel, Frank M

    2011-12-01

    Adenine deaminase (ADE) from the amidohydrolase superfamily (AHS) of enzymes catalyzes the conversion of adenine to hypoxanthine and ammonia. Enzyme isolated from Escherichia coli was largely inactive toward the deamination of adenine. Molecular weight determinations by mass spectrometry provided evidence that multiple histidine and methionine residues were oxygenated. When iron was sequestered with a metal chelator and the growth medium supplemented with Mn(2+) before induction, the post-translational modifications disappeared. Enzyme expressed and purified under these conditions was substantially more active for adenine deamination. Apo-enzyme was prepared and reconstituted with two equivalents of FeSO(4). Inductively coupled plasma mass spectrometry and Mössbauer spectroscopy demonstrated that this protein contained two high-spin ferrous ions per monomer of ADE. In addition to the adenine deaminase activity, [Fe(II) /Fe(II) ]-ADE catalyzed the conversion of H(2)O(2) to O(2) and H(2)O. The values of k(cat) and k(cat)/K(m) for the catalase activity are 200 s(-1) and 2.4 × 10(4) M(-1) s(-1), respectively. [Fe(II)/Fe(II)]-ADE underwent more than 100 turnovers with H(2)O(2) before the enzyme was inactivated due to oxygenation of histidine residues critical for metal binding. The iron in the inactive enzyme was high-spin ferric with g(ave) = 4.3 EPR signal and no evidence of anti-ferromagnetic spin-coupling. A model is proposed for the disproportionation of H(2)O(2) by [Fe(II)/Fe(II)]-ADE that involves the cycling of the binuclear metal center between the di-ferric and di-ferrous oxidation states. Oxygenation of active site residues occurs via release of hydroxyl radicals. These findings represent the first report of redox reaction catalysis by any member of the AHS. PMID:21998098

  8. Dissociative electron attachment to the gas-phase nucleobase hypoxanthine

    NASA Astrophysics Data System (ADS)

    Dawley, M. Michele; Tanzer, Katrin; Carmichael, Ian; Denifl, Stephan; Ptasińska, Sylwia

    2015-06-01

    We present high-resolution measurements of the dissociative electron attachment (DEA) to isolated gas-phase hypoxanthine (C5H4N4O, Hyp), a tRNA purine base. The anion mass spectra and individual ion efficiency curves from Hyp were measured as a function of electron energy below 9 eV. The mass spectra at 1 and 6 eV exhibit the highest anion yields, indicating possible common precursor ions that decay into the detectable anionic fragments. The (Hyp - H) anion (C5H3N4O-) exhibits a sharp resonant peak at 1 eV, which we tentatively assign to a dipole-bound state of the keto-N1H,N9H tautomer in which dehydrogenation occurs at either the N1 or N9 position based upon our quantum chemical computations (B3LYP/6-311+G(d,p) and U(MP2-aug-cc-pVDZ+)) and prior studies with adenine. This closed-shell dehydrogenated anion is the dominant fragment formed upon electron attachment, as with other nucleobases. Seven other anions were also observed including (Hyp - NH)-, C4H3N4-/C4HN3O-, C4H2N3-, C3NO-/HC(HCN)CN-, OCN-, CN-, and O-. Most of these anions exhibit broad but weak resonances between 4 and 8 eV similar to many analogous anions from adenine. The DEA to Hyp involves significant fragmentation, which is relevant to understanding radiation damage of biomolecules.

  9. Dissociative electron attachment to the gas-phase nucleobase hypoxanthine

    SciTech Connect

    Dawley, M. Michele; Tanzer, Katrin; Denifl, Stephan E-mail: Sylwia.Ptasinska.1@nd.edu; Carmichael, Ian; Ptasińska, Sylwia E-mail: Sylwia.Ptasinska.1@nd.edu

    2015-06-07

    We present high-resolution measurements of the dissociative electron attachment (DEA) to isolated gas-phase hypoxanthine (C{sub 5}H{sub 4}N{sub 4}O, Hyp), a tRNA purine base. The anion mass spectra and individual ion efficiency curves from Hyp were measured as a function of electron energy below 9 eV. The mass spectra at 1 and 6 eV exhibit the highest anion yields, indicating possible common precursor ions that decay into the detectable anionic fragments. The (Hyp − H) anion (C{sub 5}H{sub 3}N{sub 4}O{sup −}) exhibits a sharp resonant peak at 1 eV, which we tentatively assign to a dipole-bound state of the keto-N1H,N9H tautomer in which dehydrogenation occurs at either the N1 or N9 position based upon our quantum chemical computations (B3LYP/6-311+G(d,p) and U(MP2-aug-cc-pVDZ+)) and prior studies with adenine. This closed-shell dehydrogenated anion is the dominant fragment formed upon electron attachment, as with other nucleobases. Seven other anions were also observed including (Hyp − NH){sup −}, C{sub 4}H{sub 3}N{sub 4}{sup −}/C{sub 4}HN{sub 3}O{sup −}, C{sub 4}H{sub 2}N{sub 3}{sup −}, C{sub 3}NO{sup −}/HC(HCN)CN{sup −}, OCN{sup −}, CN{sup −}, and O{sup −}. Most of these anions exhibit broad but weak resonances between 4 and 8 eV similar to many analogous anions from adenine. The DEA to Hyp involves significant fragmentation, which is relevant to understanding radiation damage of biomolecules.

  10. Production of guanine from NH(4)CN polymerizations

    NASA Technical Reports Server (NTRS)

    Levy, M.; Miller, S. L.; Oro, J.

    1999-01-01

    The synthesis of adenine from the polymerization of concentrated ammonium cyanide solutions is well known. We show here that guanine is also produced by this reaction but at yields ranging from 10 to 40 times less than that of adenine. This synthesis is effective at both +80 and -20 degrees C. Since high concentrations of NH(4)CN are obtainable only by freezing, this prebiotic synthesis would be applicable to frozen regions of the primitive Earth, the Jovian satellite Europa and other icy satellites, and the parent body of the Murchison meteorite.

  11. Production of guanine from NH(4)CN polymerizations.

    PubMed

    Levy, M; Miller, S L; Oró, J

    1999-08-01

    The synthesis of adenine from the polymerization of concentrated ammonium cyanide solutions is well known. We show here that guanine is also produced by this reaction but at yields ranging from 10 to 40 times less than that of adenine. This synthesis is effective at both +80 and -20 degrees C. Since high concentrations of NH(4)CN are obtainable only by freezing, this prebiotic synthesis would be applicable to frozen regions of the primitive Earth, the Jovian satellite Europa and other icy satellites, and the parent body of the Murchison meteorite. PMID:10441668

  12. Search for interstellar adenine

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Sandip K.; Majumdar, Liton; Das, Ankan; Chakrabarti, Sonali

    2015-05-01

    It is long debated if pre-biotic molecules are indeed present in the interstellar medium. Despite substantial works pointing to their existence, pre-biotic molecules are yet to be discovered with a complete confidence. In this paper, our main aim is to study the chemical evolution of interstellar adenine under various circumstances. We prepare a large gas-grain chemical network by considering various pathways for the formation of adenine. Majumdar et al. (New Astron. 20:15, 2013) proposed that in the absence of adenine detection, one could try to trace two precursors of adenine, namely, HCCN and NH2CN. Recently Merz et al. (J. Phys. Chem. A 118:3637-3644, 2014), proposed another route for the formation of adenine in interstellar condition. They proposed two more precursor molecules. But it was not verified by any accurate gas-grain chemical model. Neither was it known if the production rate would be high or low. Our paper fills this important gap. We include this new pathways to find that the contribution through this pathways for the formation of Adenine is the most dominant one in the context of interstellar medium. We propose that observers may look for the two precursors (C3NH and HNCNH) in the interstellar media which are equally important for predicting abundances of adenine. We perform quantum chemical calculations to find out spectral properties of adenine and its two new precursor molecules in infrared, ultraviolet and sub-millimeter region. Our present study would be useful for predicting abundance of adenine.

  13. Comparative study of spontaneous deamination of adenine and cytosine in unbuffered aqueous solution at room temperature

    NASA Astrophysics Data System (ADS)

    Wang, Shiliang; Hu, Anguang

    2016-06-01

    Adenine in unbuffered nanopure water at a concentration of 2 mM is completely deaminated (>99%) to hypoxanthine at room temperature in ca. 10 weeks, with an estimated half-life (t1/2) less than 10 days, about six orders of magnitude faster than previously reported. Cytosine is not deaminated under the same condition, even after 3 years. This is in contrast to previous observations that cytosine deaminates 20-40 times faster than adenine free base, in nucleoside, in nucleotide and in single-stranded DNA in buffered neutral aqueous solutions.

  14. The catalase activity of diiron adenine deaminase

    SciTech Connect

    Kamat S. S.; Swaminathan S.; Holmes-Hampton, G. P.; Bagaria, A.; Kumaran, D.; Tichy, S. E.; Gheyi, T.; Zheng, X.; Bain, K.; Groshong, C.; Emtage, S.; Sauder, J. M.; Burley, S. K.; Lindahl, P. A.; Raushel, F. M.

    2011-12-01

    Adenine deaminase (ADE) from the amidohydrolase superfamily (AHS) of enzymes catalyzes the conversion of adenine to hypoxanthine and ammonia. Enzyme isolated from Escherichia coli was largely inactive toward the deamination of adenine. Molecular weight determinations by mass spectrometry provided evidence that multiple histidine and methionine residues were oxygenated. When iron was sequestered with a metal chelator and the growth medium supplemented with Mn{sup 2+} before induction, the post-translational modifications disappeared. Enzyme expressed and purified under these conditions was substantially more active for adenine deamination. Apo-enzyme was prepared and reconstituted with two equivalents of FeSO{sub 4}. Inductively coupled plasma mass spectrometry and Moessbauer spectroscopy demonstrated that this protein contained two high-spin ferrous ions per monomer of ADE. In addition to the adenine deaminase activity, [Fe{sup II}/Fe{sup II}]-ADE catalyzed the conversion of H{sub 2}O{sub 2} to O{sub 2} and H{sub 2}O. The values of k{sub cat} and k{sub cat}/K{sub m} for the catalase activity are 200 s{sup -1} and 2.4 x 10{sup 4} M{sup -1} s{sup -1}, respectively. [Fe{sup II}/Fe{sup II}]-ADE underwent more than 100 turnovers with H{sub 2}O{sub 2} before the enzyme was inactivated due to oxygenation of histidine residues critical for metal binding. The iron in the inactive enzyme was high-spin ferric with g{sub ave} = 4.3 EPR signal and no evidence of anti-ferromagnetic spin-coupling. A model is proposed for the disproportionation of H{sub 2}O{sub 2} by [Fe{sup II}/Fe{sup II}]-ADE that involves the cycling of the binuclear metal center between the di-ferric and di-ferrous oxidation states. Oxygenation of active site residues occurs via release of hydroxyl radicals. These findings represent the first report of redox reaction catalysis by any member of the AHS.

  15. A kinetic study of hypoxanthine oxidation by milk xanthine oxidase.

    PubMed Central

    Escribano, J; Garcia-Canovas, F; Garcia-Carmona, F

    1988-01-01

    The course of the reaction sequence hypoxanthine----xanthine----uric acid catalysed by xanthine:oxygen oxidoreductase from milk was investigated on the basis of u.v. spectra taken during the course of hypoxanthine and xanthine oxidations. It was found that xanthine accumulated in the reaction mixture when hypoxanthine was used as a substrate. The time course of the concentrations of hypoxanthine, xanthine intermediate and uric acid product was simulated numerically. The mathematical model takes into account the competition of substrate, intermediate and product and the accumulation of the intermediate at the enzyme. This type of analysis permits the kinetic parameters of the enzyme for hypoxanthine and xanthine to be obtained. PMID:3196295

  16. Archaeal DNA Polymerase-B as a DNA Template Guardian: Links between Polymerases and Base/Alternative Excision Repair Enzymes in Handling the Deaminated Bases Uracil and Hypoxanthine

    PubMed Central

    Ishino, Sonoko; Connolly, Bernard A.

    2016-01-01

    In Archaea repair of uracil and hypoxanthine, which arise by deamination of cytosine and adenine, respectively, is initiated by three enzymes: Uracil-DNA-glycosylase (UDG, which recognises uracil); Endonuclease V (EndoV, which recognises hypoxanthine); and Endonuclease Q (EndoQ), (which recognises both uracil and hypoxanthine). Two archaeal DNA polymerases, Pol-B and Pol-D, are inhibited by deaminated bases in template strands, a feature unique to this domain. Thus the three repair enzymes and the two polymerases show overlapping specificity for uracil and hypoxanthine. Here it is demonstrated that binding of Pol-D to primer-templates containing deaminated bases inhibits the activity of UDG, EndoV, and EndoQ. Similarly Pol-B almost completely turns off EndoQ, extending earlier work that demonstrated that Pol-B reduces catalysis by UDG and EndoV. Pol-B was observed to be a more potent inhibitor of the enzymes compared to Pol-D. Although Pol-D is directly inhibited by template strand uracil, the presence of Pol-B further suppresses any residual activity of Pol-D, to near-zero levels. The results are compatible with Pol-D acting as the replicative polymerase and Pol-B functioning primarily as a guardian preventing deaminated base-induced DNA mutations. PMID:27721668

  17. Structural basis for removal of adenine mispaired with 8-oxoguanine by MutY adenine DNA glycosylase.

    PubMed

    Fromme, J Christopher; Banerjee, Anirban; Huang, Susan J; Verdine, Gregory L

    2004-02-12

    The genomes of aerobic organisms suffer chronic oxidation of guanine to the genotoxic product 8-oxoguanine (oxoG). Replicative DNA polymerases misread oxoG residues and insert adenine instead of cytosine opposite the oxidized base. Both bases in the resulting A*oxoG mispair are mutagenic lesions, and both must undergo base-specific replacement to restore the original C*G pair. Doing so represents a formidable challenge to the DNA repair machinery, because adenine makes up roughly 25% of the bases in most genomes. The evolutionarily conserved enzyme adenine DNA glycosylase (called MutY in bacteria and hMYH in humans) initiates repair of A*oxoG to C*G by removing the inappropriately paired adenine base from the DNA backbone. A central issue concerning MutY function is the mechanism by which A*oxoG mispairs are targeted among the vast excess of A*T pairs. Here we report the use of disulphide crosslinking to obtain high-resolution crystal structures of MutY-DNA lesion-recognition complexes. These structures reveal the basis for recognizing both lesions in the A*oxoG pair and for catalysing removal of the adenine base. PMID:14961129

  18. Catalytic Mechanism and Three-Dimensional Structure of Adenine Deaminase

    SciTech Connect

    Kamat, S.S.; Swaminathan, S.; Bagaria, A.; Kumaran, D.; Holmes-Hampton, G. P.; Fan, H.; Sali, A.; Sauder, J. M.; Burley, S. K.; Lindahl, P. A.; Raushel, F. M.

    2011-03-22

    Adenine deaminase (ADE) catalyzes the conversion of adenine to hypoxanthine and ammonia. The enzyme isolated from Escherichia coli using standard expression conditions was low for the deamination of adenine (k{sub cat} = 2.0 s{sup -1}; k{sub cat}/K{sub m} = 2.5 x 10{sup 3} M{sup -1} s{sup -1}). However, when iron was sequestered with a metal chelator and the growth medium was supplemented with Mn{sup 2+} prior to induction, the purified enzyme was substantially more active for the deamination of adenine with kcat and kcat/Km values of 200 s{sup -1} and 5 x 10{sup 5} M{sup -1} s{sup -1}, respectively. The apoenzyme was prepared and reconstituted with Fe{sup 2+}, Zn{sup 2+}, or Mn{sup 2+}. In each case, two enzyme equivalents of metal were necessary for reconstitution of the deaminase activity. This work provides the first example of any member of the deaminase subfamily of the amidohydrolase superfamily to utilize a binuclear metal center for the catalysis of a deamination reaction. [Fe{sup II}/Fe{sup II}]-ADE was oxidized to [Fe{sup III}/Fe{sup III}]-ADE with ferricyanide with inactivation of the deaminase activity. Reducing [Fe{sup III}/Fe{sup III}]-ADE with dithionite restored the deaminase activity, and thus, the diferrous form of the enzyme is essential for catalytic activity. No evidence of spin coupling between metal ions was evident by electron paramagnetic resonance or Moessbauer spectroscopy. The three-dimensional structure of adenine deaminase from Agrobacterium tumefaciens (Atu4426) was determined by X-ray crystallography at 2.2 {angstrom} resolution, and adenine was modeled into the active site on the basis of homology to other members of the amidohydrolase superfamily. On the basis of the model of the adenine-ADE complex and subsequent mutagenesis experiments, the roles for each of the highly conserved residues were proposed. Solvent isotope effects, pH-rate profiles, and solvent viscosity were utilized to propose a chemical reaction mechanism and the

  19. Catalytic Mechanism and Three-Dimensional Structure of Adenine Deaminase

    SciTech Connect

    S Kamat; A Bagaria; D Kumaran; G Holmes-Hampton; H Fan; A Sali; J Sauder; S Burley; P Lindahl; et. al.

    2011-12-31

    Adenine deaminase (ADE) catalyzes the conversion of adenine to hypoxanthine and ammonia. The enzyme isolated from Escherichia coli using standard expression conditions was low for the deamination of adenine (k{sub cat} = 2.0 s{sup -1}; k{sub cat}/K{sub m} = 2.5 x 10{sup 3} M{sup -1} s{sup -1}). However, when iron was sequestered with a metal chelator and the growth medium was supplemented with Mn{sup 2+} prior to induction, the purified enzyme was substantially more active for the deamination of adenine with k{sub cat} and k{sub cat}/K{sub m} values of 200 s{sup -1} and 5 x 10{sup 5} M{sup -1} s{sup -1}, respectively. The apoenzyme was prepared and reconstituted with Fe{sup 2+}, Zn{sup 2+}, or Mn{sup 2+}. In each case, two enzyme equivalents of metal were necessary for reconstitution of the deaminase activity. This work provides the first example of any member of the deaminase subfamily of the amidohydrolase superfamily to utilize a binuclear metal center for the catalysis of a deamination reaction. [Fe{sup II}/Fe{sup II}]-ADE was oxidized to [Fe{sup III}/Fe{sup III}]-ADE with ferricyanide with inactivation of the deaminase activity. Reducing [Fe{sup III}/Fe{sup III}]-ADE with dithionite restored the deaminase activity, and thus, the diferrous form of the enzyme is essential for catalytic activity. No evidence of spin coupling between metal ions was evident by electron paramagnetic resonance or Moessbauer spectroscopy. The three-dimensional structure of adenine deaminase from Agrobacterium tumefaciens (Atu4426) was determined by X-ray crystallography at 2.2 {angstrom} resolution, and adenine was modeled into the active site on the basis of homology to other members of the amidohydrolase superfamily. On the basis of the model of the adenine-ADE complex and subsequent mutagenesis experiments, the roles for each of the highly conserved residues were proposed. Solvent isotope effects, pH-rate profiles, and solvent viscosity were utilized to propose a chemical reaction

  20. Camptothecins guanine interactions: mechanism of charge transfer reaction upon photoactivation

    NASA Astrophysics Data System (ADS)

    Steenkeste, K.; Guiot, E.; Tfibel, F.; Pernot, P.; Mérola, F.; Georges, P.; Fontaine-Aupart, M. P.

    2002-01-01

    The potent activity exhibited by the antitumoral camptothecin (CPT) and its analog irinotecan (CPT-11) is known to be related to a close contact between the drug and the nucleic acid base guanine. This specificity of interaction between these two chromophores was examined by following changes in the photophysical properties of the drug using steady-state as well as time-resolved absorption and fluorescence methods. The observed effects on absorption, fluorescence emission and singlet excited state lifetimes give evidence for the occurrence of a stacking complex formation restricted to the quinoline part of CPT or CPT-11 and the guanine base but also with the adenine base. The triplet excited state properties of the drugs have been also characterized in absence and in presence of guanosine monophosphate and reveal the occurrence of an electron transfer from the guanine base to the drug. Support for this conclusion was obtained from the studies of a set of biological targets of various oxido-reduction potentials, adenosine monophosphate, cytidine, cytosine, tryptophan, tyrosine and phenylalanine. This finding gives an interpretation of the CPT-induced guanine photolesions previously reported in the literature. These data taken together are discussed in connection with the drug activity. The stacking complex CPT/guanine is necessary but not sufficient to explain the role of the chirality and of the lactone structure in the function of the drug. A stereospecific interaction with the enzyme topoisomerase I seems necessary to stabilize the stacking complex. The first experiments using time-resolved fluorescence by two-photon excitation confirms that CPT does not bind to the isolated enzyme.

  1. Vertical Ionization Energies of Adenine and 9-Methyl Adenine

    NASA Astrophysics Data System (ADS)

    Dolgounitcheva, O.; Zakrzewski, V. G.; Ortiz, J. V.

    2009-07-01

    Vertical ionization energies of 9-H adenine and 9-methyl adenine have been calculated with the following, ab initio, electron propagator methods: the outer valence Green's function (OVGF), partial third-order theory (P3), and the third-order algebraic diagrammatic construction, or ADC(3). Basis set effects have been systematically examined. All methods predict near degeneracy in the π2-n1 and π3-n2 pairs of cationic, adenine final states and larger splittings of the corresponding, cationic states of 9-methyl adenine. P3 results for adenine predict the following order of the first six final states: π1, n1, π2, n2, π3, n3. Coupled-cluster calculations on the first three cationic states of adenine confirm these predictions. OVGF and ADC(3) calculations reverse the order of the second and third states and of the fourth and fifth states. All results confirm previous interpretations of experiments in which the second and third spectral bands correspond to the aforementioned pairs of final states and disagree with a recent reassignment based on time-resolved photoelectron spectra. Lower ionization energies and larger splittings in the methylated molecule are interpreted in terms of phase relationships in the Dyson orbitals. ADC(3) results confirm the qualitative validity of the one-electron approximation for the first six final states of both molecules and disclose its inadequacies for higher ionization energies.

  2. First prebiotic generation of a ribonucleotide from adenine, D-ribose and trimetaphosphate.

    PubMed

    Baccolini, Graziano; Boga, Carla; Micheletti, Gabriele

    2011-03-28

    Adenosine monophosphate isomers are obtained by self-assembling of adenine, D-ribose and trimetaphosphate in aqueous solution in good yields. This generation of a ribonucleotide from its three molecular components occurs in a one-pot reaction at room temperature for about 30-40 days and with high chemio-, regio-, and stereo-selectivity. Similar results are obtained with guanine. A mechanism is also proposed. PMID:21305098

  3. Mechanisms involved in the antinociception induced by spinal administration of inosine or guanine in mice.

    PubMed

    de Oliveira, Enderson D; Schallenberger, Cristhine; Böhmer, Ana Elisa; Hansel, Gisele; Fagundes, Aécio C; Milman, Michael; Silva, Marcos D P; Oses, Jean P; Porciúncula, Lisiane O; Portela, Luís V; Elisabetsky, Elaine; Souza, Diogo O; Schmidt, André P

    2016-02-01

    It is well known that adenine-based purines exert multiple effects on pain transmission. Recently, we have demonstrated that guanine-based purines may produce some antinociceptive effects against chemical and thermal pain in mice. The present study was designed to investigate the antinociceptive effects of intrathecal (i.t.) administration of inosine or guanine in mice. Additionally, investigation into the mechanisms of action of these purines, their general toxicity and measurements of CSF purine levels were performed. Animals received an i.t. injection of vehicle (30mN NaOH), inosine or guanine (up to 600nmol) and submitted to several pain models and behavioural paradigms. Guanine and inosine produced dose-dependent antinociceptive effects in the tail-flick, hot-plate, intraplantar (i.pl.) glutamate, i.pl. capsaicin and acetic acid pain models. Additionally, i.t. inosine inhibited the biting behaviour induced by spinal injection of capsaicin and i.t. guanine reduced the biting behaviour induced by spinal injection of glutamate or AMPA. Intrathecal administration of inosine (200nmol) induced an approximately 115-fold increase on CSF inosine levels. This study provides new evidence on the mechanism of action of extracellular guanine and inosine presenting antinociceptive effects following spinal administration. These effects seem to be related, at least partially, to the modulation of A1 adenosine receptors. PMID:26712379

  4. Thymine and guanine base specificity of human myeloma proteins with anti-DNA activity.

    PubMed Central

    Zouali, M; Stollar, B D

    1986-01-01

    To further our understanding of the molecular basis of DNA-autoantibody interactions, we have characterized the specificities of three IgG human myeloma proteins that bind DNA. We measured their binding to synthetic single- and double-stranded homopolynucleotides, random and alternating copolymers, oligonucleotides, and nucleotides or nucleosides conjugated to non-nucleic acid carriers. All three antibodies bound single-stranded nucleic acids, including both polyribonucleotides and polydeoxyribonucleotides. They varied in relative affinities for polynucleotides of varying base composition. Polymers containing the purines guanine or hypoxanthine and/or the pyrimidine thymine were most reactive with all three proteins. A myeloma protein that reacted with poly(G), poly(I), or poly(dT) also bound to the corresponding nucleosides or nucleotides conjugated to bovine serum albumin. None of the antibodies reacted with base-paired double-helical polynucleotides (double-stranded RNA, RNA-DNA hybrid or double-stranded DNA). The results indicate that base specificity is prominent in their reactions and that the accessible epitopes in single-stranded polynucleotides become masked upon base pairing in double-stranded helices. These findings suggest a model in which positions N1 and O6 of guanine and hypoxanthine and N3 and O4 of thymine interact with amino acids of the antibody-combining site. PMID:3771789

  5. The X-ray structure of the PurR-guanine-purF operator complex reveals the contributions of complementary electrostatic surfaces and a water-mediated hydrogen bond to corepressor specificity and binding affinity.

    PubMed

    Schumacher, M A; Glasfeld, A; Zalkin, H; Brennan, R G

    1997-09-01

    The purine repressor, PurR, is the master regulatory protein of de novo purine nucleotide biosynthesis in Escherichia coli. This dimeric transcription factor is activated to bind to cognate DNA operator sites by initially binding either of its physiologically relevant, high affinity corepressors, hypoxanthine (Kd = 9.3 microM) or guanine (Kd = 1.5 microM). Here, we report the 2.5-A crystal structure of the PurR-guanine-purF operator ternary complex and complete the atomic description of 6-oxopurine-induced repression by PurR. As anticipated, the structure of the PurR-guanine-purF operator complex is isomorphous to the PurR-hypoxanthine-purF operator complex, and their protein-DNA and protein-corepressor interactions are nearly identical. The former finding confirms the use of an identical allosteric DNA-binding mechanism whereby corepressor binding 40 A from the DNA-binding domain juxtaposes the hinge regions of each monomer, thus favoring the formation and insertion of the critical minor groove-binding hinge helices. Strikingly, the higher binding affinity of guanine for PurR and the ability of PurR to discriminate against 2-oxopurines do not result from direct protein-ligand interactions, but rather from a water-mediated contact with the exocyclic N-2 of guanine, which dictates the presence of a donor group on the corepressor, and the better electrostatic complementarity of the guanine base and the corepressor-binding pocket.

  6. Purine metabolism in mesophyll protoplasts of tobacco (Nicotiana tabacum) leaves.

    PubMed Central

    Barankiewicz, J; Paszkowski, J

    1980-01-01

    The overall metabolism of purines was studied in tobacco (Nicotiana tabacum) mesophyll protoplasts. Metabolic pathways were studied by measuring the conversion of radioactive adenine, adenosine, hypoxanthine and guanine into purine ribonucleotides, ribonucleosides, bases and nucleic acid constituents. Adenine was extensively deaminated to hypoxanthine, whereupon it was also converted into AMP and incorporated into nucleic acids. Adenosine was mainly hydrolysed to adenine. Inosinate formed from hypoxanthine was converted into AMP and GMP, which were then catabolized to adenine and guanosine respectively. Guanine was mainly deaminated to xanthine and also incorporated into nucleic acids via GTP. Increased RNA synthesis in the protoplasts resulted in enhanced incorporation of adenine and guanine, but not of hypoxanthine and adenosine, into the nucleic acid fraction. The overall pattern of purine-nucleotide metabolic pathways in protoplasts of tobacco leaf mesophyll is proposed. PMID:6154458

  7. Protein Modification by Adenine Propenal

    PubMed Central

    2015-01-01

    Base propenals are products of the reaction of DNA with oxidants such as peroxynitrite and bleomycin. The most reactive base propenal, adenine propenal, is mutagenic in Escherichia coli and reacts with DNA to form covalent adducts; however, the reaction of adenine propenal with protein has not yet been investigated. A survey of the reaction of adenine propenal with amino acids revealed that lysine and cysteine form adducts, whereas histidine and arginine do not. Nε-Oxopropenyllysine, a lysine–lysine cross-link, and S-oxopropenyl cysteine are the major products. Comprehensive profiling of the reaction of adenine propenal with human serum albumin and the DNA repair protein, XPA, revealed that the only stable adduct is Nε-oxopropenyllysine. The most reactive sites for modification in human albumin are K190 and K351. Three sites of modification of XPA are in the DNA-binding domain, and two sites are subject to regulatory acetylation. Modification by adenine propenal dramatically reduces XPA’s ability to bind to a DNA substrate. PMID:25211669

  8. BII stability and base step flexibility of N6-adenine methylated GATC motifs.

    PubMed

    Karolak, Aleksandra; van der Vaart, Arjan

    2015-01-01

    The effect of N6-adenine methylation on the flexibility and shape of palindromic GATC sequences has been investigated by molecular dynamics simulations. Variations in DNA backbone geometry were observed, which were dependent on the degree of methylation and the identity of the bases. While the effect was small, more frequent BI to BII conversions were observed in the GA step of hemimethylated DNA. The increased BII population of the hemimethylated system positively correlated with increased stacking interactions between methylated adenine and guanine, while stacking interactions decreased at the TC step for the fully methylated strand. The flexibility of the AT and TC steps was marginally affected by methylation, in a fashion that was correlated with stacking interactions. The facilitated BI to BII conversion in hemimethylated strands might be of importance for SeqA selectivity and binding. PMID:26004863

  9. DNA with adenine tracts contains poly(dA).poly(dT) conformational features in solution.

    PubMed

    Brahms, S; Brahms, J G

    1990-03-25

    The conformation of DNA's with adenine-thymine tracts exhibiting retardation in electrophoretic migration and considered as curved were investigated in solution by CD and RAMAN spectroscopy. The following curved multimers with adenine tracts but of different flanking sequences d(CA5TGCC)n, d(TCTCTA6TATATA5)n, d(GA4T4C)n yield CD spectroscopic features indicating a non-B structure of the dA.dT tract with similarities to polyd(A).polyd(T). We suggest that adenine-thymine bases in these multimers contain some of the distinctive conformational features of poly(A).polyd(T) probably with large propeller twist found by NMR (Behling and Kearns, 1987) and by X-ray diffraction on oligonucleotides containing a tract of adenines (Nelson et al. 1987, Coll et al; 1987; DiGabriele et al. 1989). Some elements of distinctive CD features of the contiguous adenines run are also observed in the straight multi-9-mer d(CA5GCC)n which lacks in-phase relation to the helical repeat. Despite the presence of the TpA step in the straight multimer d(GT4A4)n, the altered dA.dT conformation is not completely destroyed. Interruption of adenine tract by a guanine in d(CAAGAATGCC)n leads to a B-like conformation and to a normal electrophoretic mobility. The Raman spectra reveal a rearrangement of the sugar-phosphate backbone of dA.dT tract in the multimer d(CA5TGCC)n with respect to that of polydA.polydT. This is reflected in the presence of an unique Raman band associated to C2'-endo sugar with a predominant contribution of C1'-exo puckering which is exhibited by the multimer whereas two distinct Raman bands characterize poly(dA).poly(dT) backbone conformation.

  10. 21 CFR 73.1329 - Guanine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... eye, in amounts consistent with good manufacturing practice. (d) Labeling. The color additive and any... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1329 Guanine. (a) Identity. (1) The color additive guanine...

  11. 21 CFR 73.1329 - Guanine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... eye, in amounts consistent with good manufacturing practice. (d) Labeling. The color additive and any... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1329 Guanine. (a) Identity. (1) The color additive guanine...

  12. 21 CFR 73.1329 - Guanine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... eye, in amounts consistent with good manufacturing practice. (d) Labeling. The color additive and any... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1329 Guanine. (a) Identity. (1) The color additive guanine...

  13. 21 CFR 73.1329 - Guanine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... eye, in amounts consistent with good manufacturing practice. (d) Labeling. The color additive and any... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1329 Guanine. (a) Identity. (1) The color additive guanine...

  14. Identification of the major lesion from the reaction of an acridine-targeted aniline mustard with DNA as an adenine N1 adduct.

    PubMed

    Boritzki, T J; Palmer, B D; Coddington, J M; Denny, W A

    1994-01-01

    DNA adducts of two acridine-linked aniline half-mustards have been isolated and identified. The compound where the half-mustard is attached to the DNA-targeting acridine moiety by a short linker chain alkylates both double- and single-stranded DNA exclusively at guanine N7, as do the majority of known aromatic and aliphatic nitrogen mustards. The longer-chain analogue, also containing a more reactive half-mustard, shows a strikingly different pattern, alkylating double-stranded DNA to yield primarily (> 90%) the adenine N1 adduct, together with < 10% of the adenine N3 adduct and only trace amounts of the guanine N7 adduct. In the presence of MgCl2 (which is known not to inhibit the interaction of drugs at minor groove sites), the adenine N3 adduct is the major product. The latter compound is the first known aniline mustard (and apparently the first known alkylating agent of any type) to preferentially alkylate adenine at the N1 position in duplex DNA. These results are consistent with previous work [Prakash et al. (1990) Biochemistry 29, 9799-9807], which showed that the preferred site of DNA alkylation by the corresponding long-chain acridine-linked aniline bis-mustards in general was at major groove sites of adenines and identifies the major site of alkylation as adenine N1 and not N7. This selectivity for adenine N1 alkylation is suggested to result from a preference for the acridine mustard side chain of these compounds to project into the major groove following intercalation of the acridine, coupled with structural distortion of the DNA helix to make the N1 positions of adenines adjacent to the intercalation sites more accessible.

  15. The role of N7 protonation of guanine in determining the structure, stability and function of RNA base pairs.

    PubMed

    Halder, Antarip; Bhattacharya, Sohini; Datta, Ayan; Bhattacharyya, Dhananjay; Mitra, Abhijit

    2015-10-21

    The roles of protonated nucleobases in stabilizing different structural motifs and in facilitating catalytic functions of RNA are well known. Among different polar sites of all the nucleobases, N7 of guanine has the highest protonation propensity at physiological pH. However, unlike other easily protonable sites such as N1 and N3 of adenine or N3 of cytosine, N7 protonation of guanine does not lead to the stabilization of base pairs involving its protonated Hoogsteen edge. It also does not facilitate its participation in any acid-base catalysis process. To explore the possible roles of N7 protonated guanine, we have studied its base pairing potentials involving WatsonCrick and sugar edges, which undergo major charge redistribution upon N7 protonation. We have carried out quantum chemical geometry optimization at the M05-2X/6-311G+(2d,2p) level, followed by interaction energy calculation at the MP2/aug-cc-pVDZ level, along with the analysis of the context of occurrence for selected base pairs involving the sugar edge or the WatsonCrick edge of guanine within a non-redundant set of 167 RNA crystal structures. Our results suggest that, four base pairs - G:C W:W trans, G:rC W:S cis, G:G W:H cis and G:G S:H trans may involve N7 protonated guanine. These base pairs deviate significantly from their respective experimental geometries upon QM optimization, but they retain their experimental geometries if guanine N7 protonation is considered during optimization. Our study also reveals the role of guanine N7 protonation (i) in stabilizing important RNA structural motifs, (ii) in providing a framework for designing pH driven molecular motors and (iii) in providing an alternative strategy to mimic the effect of post-transcriptional changes. PMID:26382322

  16. Bound anionic states of adenine

    SciTech Connect

    Haranczyk, Maciej; Gutowski, Maciej S; Li, Xiang; Bowen, Kit H

    2007-03-20

    Anionic states of nucleic acid bases are involved in DNA damage by low-energy electrons and in charge transfer through DNA. Previous gas phase studies of free, unsolvated nucleic acid base parent anions probed only dipole-bound states, which are not present in condensed phase environments, but did not observe valence anionic states, which for purine bases, are thought to be adiabatically unbound. Contrary to this expectation, we have demonstrated that some thus far ignored tautomers of adenine, which result from enamine-imine transformations, support valence anionic states with electron vertical detachment energies as large as 2.2 eV, and at least one of these anionic tautomers is adiabatically bound. Moreover, we predict that the new anionic tautomers should also dominate in solutions and should be characterized by larger values of electron vertical detachment energy than the canonical valence anion. All of the new-found anionic tautomers might be formed in the course of dissociative electron attachment followed by a hydrogen atom attachment to a carbon atom, and they might affect the structure and properties of DNA and RNA exposed to low-energy electrons. The discovery of these valence anionic states of adenine was facilitated by the development of: (i) a new experimental method for preparing parent anions of nucleic acid bases for photoelectron experiments, and (ii) a new combinatorial/ quantum chemical approach for identification of the most stable tautomers of organic molecules. The computational portion of this work was supported by the: (i) Polish State Committee for Scientific Research (KBN) Grants: DS/8000-4-0140-7 (M.G.) and N204 127 31/2963 (M.H.), (ii) European Social Funds (EFS) ZPORR/2.22/II/2.6/ARP/U/2/05 (M.H.), and (iii) US DOE Office of Biological and Environmental Research, Low Dose Radiation Research Program (M.G.). M.H. holds the Foundation for Polish Science (FNP) award for young scientists. The calculations were performed at the Academic

  17. Plasma hypoxanthine: a marker for hypoxic-ischaemic induced periventricular leucomalacia?

    PubMed Central

    Russell, G A; Jeffers, G; Cooke, R W

    1992-01-01

    Cerebral ischaemia of the immature brain may result in cavitating periventricular leucomalacia (PVL), an important association of cerebral palsy. Hypoxanthine measured by high performance liquid chromatography was used as a marker of peripartum hypoxia and ischaemia in 116 infants at risk of PVL. PVL was detected by ultrasound. The 81 infants who were unaffected had median (range) gestation of 30 weeks (24-32), weight of 1336 g (724-3790), and a plasma hypoxanthine concentration of 7.8 mumol/l (2.4-48.9). The seven infants who had cavitating PVL had a median gestation of 28 weeks (26-30), weight of 1165 g (682-1860), and a hypoxanthine concentration of 31.9 mumol/l (7.1-149). Cavitating PVL was significantly dependent only on hypoxanthine when controlling for the effects of weight and gestation. This suggests that peripartum hypoxia-ischaemia may be one of the aetiological factors in cavitating PVL. Oxidation of hypoxanthine during reperfusion generates free radicals which may contribute to the tissue destruction of PVL. The association of hypoxia-ischaemia with PVL suggests that PVL may be modified by reducing free radical activity. PMID:1586176

  18. Radical-radical interactions among oxidized guanine bases including guanine radical cation and dehydrogenated guanine radicals.

    PubMed

    Zhao, Jing; Wang, Mei; Yang, Hongfang; Zhang, Meng; Liu, Ping; Bu, Yuxiang

    2013-09-19

    We present here a theoretical investigation of the structural and electronic properties of di-ionized GG base pairs (G(•+)G(•+),G(-H1)(•)G(•+), and G(-H1)(•)G(-H1)(•)) consisting of the guanine cation radical (G(•+)) and/or dehydrogenated guanine radical (G(-H1)(•)) using density functional theory calculations. Different coupling modes (Watson-Crick/WC, Hoogsteen/Hoog, and minor groove/min hydrogen bonding, and π-π stacking modes) are considered. We infer that a series of G(•+)G(•+) complexes can be formed by the high-energy radiation. On the basis of density functional theory and complete active space self-consistent (CASSCF) calculations, we reveal that in the H-bonded and N-N cross-linked modes, (G(•+)G(•+))WC, (G(-H1)(•)G(-H1)(•))WC, (G(-H1)(•)G(-H1)(•))minI, and (G(-H1)(•)G(-H1)(•))minIII have the triplet ground states; (G(•+)G(•+))HoogI, (G(-H1)(•)G(•+))WC, (G(-H1)(•)G(•+))HoogI, (G(-H1)(•)G(•+))minI, (G(-H1)(•)G(•+))minII, and (G(-H1)(•)G(-H1)(•))minII possess open-shell broken-symmetry diradical-characterized singlet ground states; and (G(•+)G(•+))HoogII, (G(•+)G(•+))minI, (G(•+)G(•+))minII, (G(•+)G(•+))minIII, (G(•+)G(•+))HoHo, (G(-H1)(•)G(•+))minIII, (G(-H1)(•)G(•+))HoHo, and (G(-H1)(•)G(-H1)(•))HoHo are the closed-shell systems. For these H-bonded diradical complexes, the magnetic interactions are weak, especially in the diradical G(•+)G(•+) series and G(-H1)(•)G(-H1)(•) series. The magnetic coupling interactions of the diradical systems are controlled by intermolecular interactions (H-bond, electrostatic repulsion, and radical coupling). The radical-radical interaction in the π-π stacked di-ionized GG base pairs ((G(•+)G(•+))ππ, (G(-H1)(•)G(•+))ππ, and (G(-H1)(•)G(-H1)(•))ππ) are also considered, and the magnetic coupling interactions in these π-π stacked base pairs are large. This is the first theoretical prediction that some di

  19. DNA sequence-specific adenine alkylation by the novel antitumor drug tallimustine (FCE 24517), a benzoyl nitrogen mustard derivative of distamycin.

    PubMed Central

    Broggini, M; Coley, H M; Mongelli, N; Pesenti, E; Wyatt, M D; Hartley, J A; D'Incalci, M

    1995-01-01

    FCE 24517, a novel distamycin derivative possessing potent antitumor activity, is under initial clinical investigation in Europe. In spite of the presence of a benzoyl nitrogen mustard group this compound fails to alkylate the N7 position of guanine, the major site of alkylation by conventional nitrogen mustards. Characterisation of DNA-drug adducts revealed only a very low level of adenine adduct formation. Using a modified Maxam-Gilbert sequencing method the consensus sequence for FCE 24517-adenine adduct formation was found to be 5'-TTTTGA-3'. A single base modification in the hexamer completely abolishes the alkylation of adenine. Using a Taq polymerase stop assay alkylations were confirmed at the A present in the hexamer TTTTGA and, in addition, in one out of three TTTTAA sequences present in the plasmid utilized. The sequence specificity of alkylation by FCE 24517 is therefore the most striking yet observed for an alkylating agent of small molecular weight. Images PMID:7870593

  20. Hypoxanthine: A Universal Metabolic Indicator of Training Status in Competitive Sports.

    PubMed

    Zieliński, Jacek; Kusy, Krzysztof

    2015-10-01

    Cardiorespiratory and biochemical indicators typically used by contemporary elite athletes seem to have limited applicability. According to some recent studies, purine metabolism better reflects exercise response and muscle adaptation in this group. We propose using purine derivatives, especially plasma hypoxanthine concentration, as indicators of training status in consecutive training phases in highly trained athletes.

  1. Hypoxanthine phosphoribosyltransferase: radiochemical assay procedures for the forward and reverse reactions

    SciTech Connect

    Smithers, G.W.; O'Sullivan, W.J.

    1985-02-15

    Simple and rapid radiochemical assay procedures for the forward (IMP synthesis) and reverse (IMP pyrophosphorolysis) reactions catalyzed by hypoxanthine phosphoribosyltransferase have been developed. Enzyme activity in the forward direction was assessed by measuring the amount of (8-/sup 14/C)IMP formed from (8-/sup 14/C)hypoxanthine following their separation by polyethyleneimine-cellulose TLC in methanol:water (1:1, v/v). (8-/sup 14/C)IMP has been synthesized from (8-/sup 14/C)hypoxanthine, using hypoxanthine phosphoribosyltransferase derived from human brain, with subsequent purification by elution from phenyl boronate-agarose. Enzyme activity in the reverse direction was assessed by measuring the amount of (8-/sup 14/C)uric acid formed from the labeled IMP following their separation by polyethyleneimine-cellulose TLC in 0.2 M LiCl saturated with boric acid (pH 4.5):95% ethanol (1:1, v/v), the transferase reaction being coupled with excess xanthine oxidase and catalase to overcome the unfavorable equilibrium.

  2. Inosine and hypoxanthine as novel biomarkers for cardiac ischemia: From bench to point-of-care

    PubMed Central

    Farthing, Don E; Farthing, Christine A

    2015-01-01

    Cardiac ischemia associated with acute coronary syndrome and myocardial infarction is a leading cause of mortality and morbidity in the world. A rapid detection of the ischemic events is critically important for achieving timely diagnosis, treatment and improving the patient's survival and functional recovery. This minireview provides an overview on the current biomarker research for detection of acute cardiac ischemia. We primarily focus on inosine and hypoxanthine, two by-products of ATP catabolism. Based on our published findings of elevated plasma concentrations of inosine/hypoxanthine in animal laboratory and clinical settings, since 2006 we have originally proposed that these two purine molecules can be used as rapid and sensitive biomarkers for acute cardiac ischemia at its very early onset (within 15 min), hours prior to the release of heart tissue necrosis biomarkers such as cardiac troponins. We further developed a chemiluminescence technology, one of the most affordable and sensitive analytical techniques, and we were able to reproducibly quantify and differentiate total hypoxanthine concentrations in the plasma samples from healthy individuals versus patients suffering from ischemic heart disease. Additional rigorous clinical studies are needed to validate the plasma inosine/hypoxanthine concentrations, in conjunction with other current cardiac biomarkers, for a better revelation of their diagnostic potentials for early detection of acute cardiac ischemia. PMID:25956679

  3. Photophysical deactivation pathways in adenine oligonucleotides.

    PubMed

    Spata, Vincent A; Matsika, Spiridoula

    2015-12-14

    In this work we study deactivation processes in adenine oligomers after absorption of UV radiation using Quantum Mechanics combined with Molecular Mechanics (QM/MM). Correlated electronic structure methods appropriate for describing the excited states are used to describe a π-stacked dimer of adenine bases incorporated into (dA)20(dT)20. The results of these calculations reveal three different types of excited state minima which play a role in deactivation processes. Within this set of minima there are minima where the excited state is localized on one adenine (monomer-like) as well as minima where the excited state is delocalized on two adenines, forming different types of excimers and bonded excimers of varying but inter-related character. The proximity of their energies reveals that the minima can decay into one another along a flat potential energy surface dependent on the interbase separation. Additionally, analysis of the emissive energies and other physical properties, including theoretical anisotropy calculations, and comparison with fluorescence experiments, provides evidence that excimers play an important role in long-lived signals in adenine oligonucleotides while the subpicosecond decay is attributed to monomer-like minima. The necessity for a close approach of the nucleobases reveals that the deactivation mechanism is tied to macro-molecular motion. PMID:26536353

  4. 21 CFR 73.2329 - Guanine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2329 Guanine. (a) Identity and specifications. (1) The... coloring cosmetics generally, only those diluents listed under § 73.1001(a)(1); (ii) For coloring externally applied cosmetics, only those diluents listed in § 73.1001(b) and, in addition, nitrocellulose....

  5. 21 CFR 73.2329 - Guanine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2329 Guanine. (a) Identity and specifications. (1) The... coloring cosmetics generally, only those diluents listed under § 73.1001(a)(1); (ii) For coloring externally applied cosmetics, only those diluents listed in § 73.1001(b) and, in addition, nitrocellulose....

  6. 21 CFR 73.2329 - Guanine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2329 Guanine. (a) Identity and specifications. (1) The... coloring cosmetics generally, only those diluents listed under § 73.1001(a)(1); (ii) For coloring externally applied cosmetics, only those diluents listed in § 73.1001(b) and, in addition, nitrocellulose....

  7. 21 CFR 73.2329 - Guanine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2329 Guanine. (a) Identity and specifications. (1) The... coloring cosmetics generally, only those diluents listed under § 73.1001(a)(1); (ii) For coloring externally applied cosmetics, only those diluents listed in § 73.1001(b) and, in addition, nitrocellulose....

  8. 21 CFR 73.2329 - Guanine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2329 Guanine. (a) Identity and specifications. (1) The... coloring cosmetics generally, only those diluents listed under § 73.1001(a)(1); (ii) For coloring externally applied cosmetics, only those diluents listed in § 73.1001(b) and, in addition, nitrocellulose....

  9. Prebiotic synthesis of adenine and amino acids under Europa-like conditions

    NASA Technical Reports Server (NTRS)

    Levy, M.; Miller, S. L.; Brinton, K.; Bada, J. L.

    2000-01-01

    In order to simulate prebiotic synthetic processes on Europa and other ice-covered planets and satellites, we have investigated the prebiotic synthesis of organic compounds from dilute solutions of NH4CN frozen for 25 years at -20 and -78 degrees C. In addition, the aqueous products of spark discharge reactions from a reducing atmosphere were frozen for 5 years at -20 degrees C. We find that both adenine and guanine, as well as a simple set of amino acids dominated by glycine, are produced in substantial yields under these conditions. These results indicate that some of the key components necessary for the origin of life may have been available on Europa throughout its history and suggest that the circumstellar zone where life might arise may be wider than previously thought.

  10. Prebiotic Synthesis of Adenine and Amino Acids Under Europa-like Conditions

    NASA Technical Reports Server (NTRS)

    Levy, Matthew; Miller, Stanley L.; Brinton, Karen; Bada, Jeffrey L.

    2003-01-01

    In order to simulate prebiotic synthetic processes on Europa and other ice-covered planets and satellites. we have investigated the prebiotic synthesis of organic compounds from dilute solutions of NH4CN frozen for 25 year at -20 and -78 C. In addition the aqueous products of spark discharge reactions from a reducing atmosphere were frozen for 5 years at -20%. We find that both adenine and guanine, as well as a simple set of amino acids dominated by glycine, are produced in substantial yields under these conditions. These results indicate that some of the key components necessary for the origin of life may have been available on Europa throughout its history and suggest that the circumstellar zone where life might arise may be m der than previously thought.

  11. Crystal structures and inhibition of Trypanosoma brucei hypoxanthine–guanine phosphoribosyltransferase

    PubMed Central

    Terán, David; Hocková, Dana; Česnek, Michal; Zíková, Alena; Naesens, Lieve; Keough, Dianne T.; Guddat, Luke W.

    2016-01-01

    Human African Trypanosomiasis (HAT) is a life-threatening infectious disease caused by the protozoan parasite, Trypanosoma brucei (Tbr). Due to the debilitating side effects of the current therapeutics and the emergence of resistance to these drugs, new medications for this disease need to be developed. One potential new drug target is 6-oxopurine phosphoribosyltransferase (PRT), an enzyme central to the purine salvage pathway and whose activity is critical for the production of the nucleotides (GMP and IMP) required for DNA/RNA synthesis within this protozoan parasite. Here, the first crystal structures of this enzyme have been determined, these in complex with GMP and IMP and with three acyclic nucleoside phosphonate (ANP) inhibitors. The Ki values for GMP and IMP are 30.5 μM and 77 μM, respectively. Two of the ANPs have Ki values considerably lower than for the nucleotides, 2.3 μM (with guanine as base) and 15.8 μM (with hypoxanthine as base). The crystal structures show that when two of the ANPs bind, they induce an unusual conformation change to the loop where the reaction product, pyrophosphate, is expected to bind. This and other structural differences between the Tbr and human enzymes suggest selective inhibitors for the Tbr enzyme can be designed. PMID:27786284

  12. Urinary Hypoxanthine as a Measure of Increased ATP Utilization in Late Preterm Infants

    PubMed Central

    Holden, Megan S.; Hopper, Andrew; Slater, Laurel; Asmerom, Yayesh; Esiaba, Ijeoma; Boskovic, Danilo S.; Angeles, Danilyn M.

    2015-01-01

    Objective To examine the effect of neonatal morbidity on ATP breakdown in late preterm infants. Study Design Urinary hypoxanthine concentration, a marker of ATP breakdown, was measured from 82 late preterm infants on days of life (DOL) 3 to 6 using high-performance liquid chromatography. Infants were grouped according to the following diagnoses: poor nippling alone (n = 8), poor nippling plus hyperbilirubinemia (n = 21), poor nippling plus early respiratory disease (n = 26), and respiratory disease alone (n = 27). Results Neonates with respiratory disease alone had significantly higher urinary hypoxanthine over DOL 3 to 6 when compared with neonates with poor nippling (P = .020), poor nippling plus hyperbilirubinemia (P < .001), and poor nippling plus early respiratory disease (P = .017). Neonates with poor nippling who received respiratory support for 2 to 3 days had significantly higher hypoxanthine compared with infants who received respiratory support for 1 day (P = .017) or no days (P = .007). Conclusions These findings suggest that respiratory disorders significantly increase ATP degradation in late premature infants. PMID:26413195

  13. Guanine-vacancy-bearing G-quadruplexes responsive to guanine derivatives.

    PubMed

    Li, Xin-min; Zheng, Ke-wei; Zhang, Jia-yu; Liu, Hong-he; He, Yi-de; Yuan, Bi-feng; Hao, Yu-hua; Tan, Zheng

    2015-11-24

    G-quadruplex structures formed by guanine-rich nucleic acids are implicated in essential physiological and pathological processes and nanodevices. G-quadruplexes are normally composed of four Gn (n ≥ 3) tracts assembled into a core of multiple stacked G-quartet layers. By dimethyl sulfate footprinting, circular dichroism spectroscopy, thermal melting, and photo-cross-linking, here we describe a unique type of intramolecular G-quadruplex that forms with one G2 and three G3 tracts and bears a guanine vacancy (G-vacancy) in one of the G-quartet layers. The G-vacancy can be filled up by a guanine base from GTP or GMP to complete an intact G-quartet by Hoogsteen hydrogen bonding, resulting in significant G-quadruplex stabilization that can effectively alter DNA replication in vitro at physiological concentration of GTP and Mg(2+). A bioinformatic survey shows motifs of such G-quadruplexes are evolutionally selected in genes with unique distribution pattern in both eukaryotic and prokaryotic organisms, implying such G-vacancy-bearing G-quadruplexes are present and play a role in gene regulation. Because guanine derivatives are natural metabolites in cells, the formation of such G-quadruplexes and guanine fill-in (G-fill-in) may grant an environment-responsive regulation in cellular processes. Our findings thus not only expand the sequence definition of G-quadruplex formation, but more importantly, reveal a structural and functional property not seen in the standard canonical G-quadruplexes.

  14. Adenine auxotrophy--be aware: some effects of adenine auxotrophy in Saccharomyces cerevisiae strain W303-1A.

    PubMed

    Kokina, Agnese; Kibilds, Juris; Liepins, Janis

    2014-08-01

    Adenine auxotrophy is a commonly used genetic marker in haploid yeast strains. Strain W303-1A, which carries the ade2-1 mutation, is widely used in physiological and genetic research. Yeast extract-based rich medium contains a low level of adenine, so that adenine is often depleted before glucose. This could affect the cell physiology of adenine auxotrophs grown in rich medium. The aim of our study was to assess the effects of adenine auxotrophy on cell morphology and stress physiology. Our results show that adenine depletion halts cell division, but that culture optical density continues to increase due to cell swelling. Accumulation of trehalose and a coincident 10-fold increase in desiccation stress tolerance is observed in adenine auxotrophs after adenine depletion, when compared to prototrophs. Under adenine starvation, long-term survival of W303-1A is lower than during carbon starvation, but higher than during leucine starvation. We observed drastic adenine-dependent changes in cell stress physiology, suggesting that results may be biased when adenine auxotrophs are grown in rich media without adenine supplementation.

  15. Interaction of the recombinant human methylpurine-DNA glycosylase (MPG protein) with oligodeoxyribonucleotides containing either hypoxanthine or abasic sites.

    PubMed Central

    Miao, F; Bouziane, M; O'Connor, T R

    1998-01-01

    Methylpurine-DNA glycosylases (MPG proteins, 3-methyladenine-DNA glycosylases) excise numerous damaged bases from DNA during the first step of base excision repair. The damaged bases removed by these proteins include those induced by both alkylating agents and/or oxidizing agents. The intrinsic kinetic parameters (k(cat) and K(m)) for the excision of hypoxanthine by the recombinant human MPG protein from a 39 bp oligodeoxyribonucleotide harboring a unique hypoxanthine were determined. Comparison with other reactions catalyzed by the human MPG protein suggests that the differences in specificity are primarily in product release and not binding. Analysis of MPG protein binding to the 39 bp oligodeoxyribonucleotide revealed that the apparent dissociation constant is of the same order of magnitude as the K(m) and that a 1:1 complex is formed. The MPG protein also forms a strong complex with the product of excision, an abasic site, as well as with a reduced abasic site. DNase I footprinting experiments with the MPG protein on an oligodeoxyribonucleotide with a unique hypoxanthine at a defined position indicate that the protein protects 11 bases on the strand with the hypoxanthine and 12 bases on the complementary strand. Competition experiments with different length, double-stranded, hypoxanthine-containing oligodeoxyribonucleotides show that the footprinted region is relatively small. Despite the small footprint, however, oligodeoxyribonucleotides comprising <15 bp with a hypoxanthine have a 10-fold reduced binding capacity compared with hypoxanthine-containing oligodeoxyribonucleotides >20 bp in length. These results provide a basis for other structural studies of the MPG protein with its targets. PMID:9705516

  16. DNA-base guanine as hydrogen getter and charge-trapping layer embedded in oxide dielectrics for inorganic and organic field-effect transistors.

    PubMed

    Lee, Junyeong; Park, Ji Hoon; Lee, Young Tack; Jeon, Pyo Jin; Lee, Hee Sung; Nam, Seung Hee; Yi, Yeonjin; Lee, Younjoo; Im, Seongil

    2014-04-01

    DNA-base small molecules of guanine, cytosine, adenine, and thymine construct the DNA double helix structure with hydrogen bonding, and they possess such a variety of intrinsic benefits as natural plentitude, biodegradability, biofunctionality, low cost, and low toxicity. On the basis of these advantages, here, we report on unprecedented useful applications of guanine layer as hydrogen getter and charge trapping layer when it is embedded into a dielectric oxide of n-channel inorganic InGaZnO and p-channel organic heptazole field effect transistors (FETs). The embedded guanine layer much improved the gate stability of inorganic FETs gettering many hydrogen atoms in the gate dielectric layer of FET, and it also played as charge trapping layer to which the voltage pulse-driven charges might be injected from channel, resulting in a threshold voltage (Vth) shift of FETs. Such shift state is very ambient-stable and almost irrevocable even under a high electric-field at room temperature. So, Boolean logics are nicely demonstrated by using our FETs with the guanine-embedded dielectric. The original Vth is recovered only under high energy blue photons by opposite voltage pulse (charge-ejection), which indicates that our device is also applicable to nonvolatile photo memory.

  17. Quantum-chemical study of interactions of trans-resveratrol with guanine-thymine dinucleotide and DNA-nucleobases.

    PubMed

    Mikulski, Damian; Szeląg, Małgorzata; Molski, Marcin

    2011-12-01

    Trans-resveratrol, a natural phytoalexin present in red wine and grapes, has gained considerable attention because of its antiproliferative, chemopreventive and proapoptotic activity against human cancer cells. The accurate quantum-chemical computations based on the density functional theory (DFT) and ab initio second-order Møller-Plesset perturbation method (MP2) have been performed for the first time to study interactions of trans-resveratrol with guanine-thymine dinucleotide and DNA-derived nitrogenous bases: adenine, guanine, cytosine and thymine in vacuum and water medium. This compound is found to show high affinity to nitrogenous bases and guanine-thymine dinucleotide. The electrostatic interactions from intermolecular hydrogen bonding increase the stability of complexes studied. In particular, significantly strong hydrogen bonds between 4'-H atom of trans-resveratrol and imidazole nitrogen as well as carbonyl oxygen atoms of nucleobases studied stabilize these systems. The stabilization energies computed reveal that the negatively charged trans-resveratrol-dinucleotide complex is more energetically stable in water medium than in vacuum. MP2 method gives more reliable and significantly high values of stabilization energy of trans-resveratrol-dinucleotide, trans-resveratrol-guanine and trans-resveratrol-thymine complexes than B3LYP exchange-correlation functional because it takes into account London dispersion energy. According to the results, in the presence of trans-resveratrol the 3'-5' phosphodiester bond in dinucleotide can be cleaved and the proton from 4'-OH group of trans-resveratrol migrates to the 3'-O atom of dinucleotide. It is concluded that trans-resveratrol is able to break the DNA strand. Hence, the findings obtained help understand antiproliferative and anticancer properties of this polyphenol.

  18. 2-Thiouracil deprived of thiocarbonyl function preferentially base pairs with guanine rather than adenine in RNA and DNA duplexes

    PubMed Central

    Sochacka, Elzbieta; Szczepanowski, Roman H.; Cypryk, Marek; Sobczak, Milena; Janicka, Magdalena; Kraszewska, Karina; Bartos, Paulina; Chwialkowska, Anna; Nawrot, Barbara

    2015-01-01

    2-Thiouracil-containing nucleosides are essential modified units of natural and synthetic nucleic acids. In particular, the 5-substituted-2-thiouridines (S2Us) present in tRNA play an important role in tuning the translation process through codon–anticodon interactions. The enhanced thermodynamic stability of S2U-containing RNA duplexes and the preferred S2U-A versus S2U-G base pairing are appreciated characteristics of S2U-modified molecular probes. Recently, we have demonstrated that 2-thiouridine (alone or within an RNA chain) is predominantly transformed under oxidative stress conditions to 4-pyrimidinone riboside (H2U) and not to uridine. Due to the important biological functions and various biotechnological applications for sulfur-containing nucleic acids, we compared the thermodynamic stabilities of duplexes containing desulfured products with those of 2-thiouracil-modified RNA and DNA duplexes. Differential scanning calorimetry experiments and theoretical calculations demonstrate that upon 2-thiouracil desulfuration to 4-pyrimidinone, the preferred base pairing of S2U with adenosine is lost, with preferred base pairing with guanosine observed instead. Therefore, biological processes and in vitro assays in which oxidative desulfuration of 2-thiouracil-containing components occurs may be altered. Moreover, we propose that the H2U-G base pair is a suitable model for investigation of the preferred recognition of 3′-G-ending versus A-ending codons by tRNA wobble nucleosides, which may adopt a 4-pyrimidinone-type structural motif. PMID:25690900

  19. Are genes destiny? Have adenine, cytosine, guanine and thymine replaced Lachesis, Clotho and Atropos as the weavers of our fate?

    PubMed Central

    EISENBERG, LEON

    2005-01-01

    It is as futile to ask how much of the phenotype of an organism is due to nature and how much to its nurture as it is to determine how much of the area of a rectangle is due to its length and how much to its height. Phenotype and area are joint products. The spectacular success of genomics, unfortunately, threatens to re-awaken belief in genes as the principal determinants of human behavior. This paper develops the thesis that gene expression is modified by environmental inputs and that the impact of the environment on a given organism is modified by its genome. Genes set the boundaries of the possible; environments parse out the actual. PMID:16633494

  20. Trichomonas vaginalis NTPDase and ecto-5'-nucleotidase hydrolyze guanine nucleotides and increase extracellular guanosine levels under serum restriction.

    PubMed

    Menezes, Camila Braz; Durgante, Juliano; de Oliveira, Rafael Rodrigues; Dos Santos, Victor Hugo Jacks Mendes; Rodrigues, Luiz Frederico; Garcia, Solange Cristina; Dos Santos, Odelta; Tasca, Tiana

    2016-05-01

    Trichomonas vaginalis is the aethiologic agent of trichomoniasis, the most common non-viral sexually transmitted disease in the world. The purinergic signaling pathway is mediated by extracellular nucleotides and nucleosides that are involved in many biological effects as neurotransmission, immunomodulation and inflammation. Extracellular nucleotides can be hydrolyzed by a family of enzymes known as ectonucleotidases including the ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases) family which hydrolyses nucleosides triphosphate and diphosphate as preferential substrates and ecto-5'-nucleotidase which catalyzes the conversion of monophosphates into nucleosides. In T. vaginalis the E-NTPDase and ecto-5'-nucleotidase activities upon adenine nucleotides have already been characterized in intact trophozoites but little is known concerning guanine nucleotides and nucleoside. These enzymes may exert a crucial role on nucleoside generation, providing the purine sources for the synthesis de novo of these essential nutrients, sustaining parasite growth and survival. In this study, we investigated the hydrolysis profile of guanine-related nucleotides and nucleoside in intact trophozoites from long-term-grown and fresh clinical isolates of T. vaginalis. Knowing that guanine nucleotides are also substrates for T. vaginalis ectoenzymes, we evaluated the profile of nucleotides consumption and guanosine uptake in trophozoites submitted to a serum limitation condition. Results show that guanine nucleotides (GTP, GDP, GMP) were substrates for T. vaginalis ectonucleotidases, with expected kinetic parameters for this enzyme family. Different T. vaginalis isolates (two from the ATCC and nine fresh clinical isolates) presented a heterogeneous hydrolysis profile. The serum culture condition increased E-NTPDase and ecto-5'-nucleotidase activities with high consumption of extracellular GTP generating enhanced GDP, GMP and guanosine levels as demonstrated by HPLC, with final

  1. Trichomonas vaginalis NTPDase and ecto-5'-nucleotidase hydrolyze guanine nucleotides and increase extracellular guanosine levels under serum restriction.

    PubMed

    Menezes, Camila Braz; Durgante, Juliano; de Oliveira, Rafael Rodrigues; Dos Santos, Victor Hugo Jacks Mendes; Rodrigues, Luiz Frederico; Garcia, Solange Cristina; Dos Santos, Odelta; Tasca, Tiana

    2016-05-01

    Trichomonas vaginalis is the aethiologic agent of trichomoniasis, the most common non-viral sexually transmitted disease in the world. The purinergic signaling pathway is mediated by extracellular nucleotides and nucleosides that are involved in many biological effects as neurotransmission, immunomodulation and inflammation. Extracellular nucleotides can be hydrolyzed by a family of enzymes known as ectonucleotidases including the ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases) family which hydrolyses nucleosides triphosphate and diphosphate as preferential substrates and ecto-5'-nucleotidase which catalyzes the conversion of monophosphates into nucleosides. In T. vaginalis the E-NTPDase and ecto-5'-nucleotidase activities upon adenine nucleotides have already been characterized in intact trophozoites but little is known concerning guanine nucleotides and nucleoside. These enzymes may exert a crucial role on nucleoside generation, providing the purine sources for the synthesis de novo of these essential nutrients, sustaining parasite growth and survival. In this study, we investigated the hydrolysis profile of guanine-related nucleotides and nucleoside in intact trophozoites from long-term-grown and fresh clinical isolates of T. vaginalis. Knowing that guanine nucleotides are also substrates for T. vaginalis ectoenzymes, we evaluated the profile of nucleotides consumption and guanosine uptake in trophozoites submitted to a serum limitation condition. Results show that guanine nucleotides (GTP, GDP, GMP) were substrates for T. vaginalis ectonucleotidases, with expected kinetic parameters for this enzyme family. Different T. vaginalis isolates (two from the ATCC and nine fresh clinical isolates) presented a heterogeneous hydrolysis profile. The serum culture condition increased E-NTPDase and ecto-5'-nucleotidase activities with high consumption of extracellular GTP generating enhanced GDP, GMP and guanosine levels as demonstrated by HPLC, with final

  2. Photoion mass spectroscopy and valence photoionization of hypoxanthine, xanthine and caffeine

    NASA Astrophysics Data System (ADS)

    Feyer, Vitaliy; Plekan, Oksana; Richter, Robert; Coreno, Marcello; Prince, Kevin C.

    2009-03-01

    Photoionization mass spectra of hypoxanthine, xanthine and caffeine were measured using the photoelectron-photoion coincidence technique and noble gas resonance radiation at energies from 8.4 to 21.2 eV for ionization. The fragmentation patterns for these compounds show that hydrogen cyanide is the main neutral loss species at higher photon energies, while photoionization below 16.67 eV led predominantly to the parent ion. The valence photoelectron spectra of this family of molecules were measured over an extended energy range, including the inner C, N and O 2s valence orbitals. The observed ion fragments were related to ionization of the valence orbitals.

  3. Chlorophyll fluorescence control in microalgae by biogenic guanine crystals

    NASA Astrophysics Data System (ADS)

    Miyashita, Yuito; Iwasaka, Masakazu; Endo, Hirotoshi

    2015-05-01

    Magnetic fields were applied to water suspensions of guanine crystals to induce changes in light scattering as a possible way to control photosynthesis in microalgae. The effect of guanine microcrystals with and without an applied magnetic field on the photosynthesis of a unicellular microalgae (plant), Pleurochrysis. carterae (P. carterae), was investigated by examining chlorophyll fluorescence. The fluorescence intensity at 600-700 nm of the photosynthetic cells increased remarkably when the concentration ratio of guanine microcrystals was 10 times larger than that of the cells. This increase in fluorescence occurred reproducibly and was proportional to the amount of guanine microcrystals added. It is speculated that the guanine microcrystals enhance the intensity of the excitation light on the cells by concentrating the excitation light or prolonging the time of light exposure to the cells. Moreover, applying a 500-mT magnetic field allowed modulation of the fluorescence intensity, depending on the direction of the fluorescence light.

  4. Guanine quadruplex structures localize to heterochromatin

    PubMed Central

    Hoffmann, Roland F.; Moshkin, Yuri M.; Mouton, Stijn; Grzeschik, Nicola A.; Kalicharan, Ruby D.; Kuipers, Jeroen; Wolters, Anouk H.G.; Nishida, Kazuki; Romashchenko, Aleksander V.; Postberg, Jan; Lipps, Hans; Berezikov, Eugene; Sibon, Ody C.M.; Giepmans, Ben N.G.; Lansdorp, Peter M.

    2016-01-01

    Increasing amounts of data support a role for guanine quadruplex (G4) DNA and RNA structures in various cellular processes. We stained different organisms with monoclonal antibody 1H6 specific for G4 DNA. Strikingly, immuno-electron microscopy showed exquisite specificity for heterochromatin. Polytene chromosomes from Drosophila salivary glands showed bands that co-localized with heterochromatin proteins HP1 and the SNF2 domain-containing protein SUUR. Staining was retained in SUUR knock-out mutants but lost upon overexpression of SUUR. Somatic cells in Macrostomum lignano were strongly labeled, but pluripotent stem cells labeled weakly. Similarly, germline stem cells in Drosophila ovaries were weakly labeled compared to most other cells. The unexpected presence of G4 structures in heterochromatin and the difference in G4 staining between somatic cells and stem cells with germline DNA in ciliates, flatworms, flies and mammals point to a conserved role for G4 structures in nuclear organization and cellular differentiation. PMID:26384414

  5. Adenine nucleotide transporters in organelles: novel genes and functions.

    PubMed

    Traba, Javier; Satrústegui, Jorgina; del Arco, Araceli

    2011-04-01

    In eukaryotes, cellular energy in the form of ATP is produced in the cytosol via glycolysis or in the mitochondria via oxidative phosphorylation and, in photosynthetic organisms, in the chloroplast via photophosphorylation. Transport of adenine nucleotides among cell compartments is essential and is performed mainly by members of the mitochondrial carrier family, among which the ADP/ATP carriers are the best known. This work reviews the carriers that transport adenine nucleotides into the organelles of eukaryotic cells together with their possible functions. We focus on novel mechanisms of adenine nucleotide transport, including mitochondrial carriers found in organelles such as peroxisomes, plastids, or endoplasmic reticulum and also mitochondrial carriers found in the mitochondrial remnants of many eukaryotic parasites of interest. The extensive repertoire of adenine nucleotide carriers highlights an amazing variety of new possible functions of adenine nucleotide transport across eukaryotic organelles.

  6. Radiation and thermal stabilities of adenine nucleotides.

    PubMed

    Demidov, V V; Potaman, V N; Solyanina, I P; Trofimov, V I

    1995-03-01

    We have investigated in detail radiation and thermal stabilities and transformations of adenosine mono- and triphosphates in liquid and frozen solid aqueous solutions within a wide range of absorbed radiation dose (up to 75 kGy) and temperature (up to 160 degrees C). Dephosphorylation is the main pathway of high temperature hydrolysis of adenine nucleotides. Basic thermodynamic and kinetic parameters of this process have been determined. Radiolysis of investigated compounds at room temperature results in scission of N-glycosidic bond with a radiation yield about of 1 mol/100 eV. Solution freezing significantly enhances radiation stability of nucleotides as well as other biomolecules. This circumstance is essential in the discussion of panspermia concepts.

  7. Experimental observation of guanine tautomers with VUV photoionization

    SciTech Connect

    Zhou, Jia; Kostko, Oleg; Nicolas, Christophe; Tang, Xiaonan; Belau, Leonid; de Vries, Mattanjah S.; Ahmed, Musahid

    2008-12-01

    Two methods of preparing guanine in the gas phase, thermal vaporization and laser desorption, have been investigated. The guanine generated by each method is entrained in a molecular beam, single photon ionized with tunable VUV synchrotron radiation, and analyzed using reflectron mass spectrometry. The recorded photoionization efficiency (PIE) curves show a dramatic difference for experiments performed via thermal vaporization compared to laser desorption. The calculated vertical and adiabatic ionization energies for the eight lowest lying tautomers of guanine suggest the experimental observations arise from different tautomers being populated in the two different experimental methods.

  8. Preparing a new biosensor for hypoxanthine determination by immobilization of xanthine oxidase and uricase in polypyrrole-polyvinyl sulphonate film.

    PubMed

    Görgülü, Mustafa; Çete, Servet; Arslan, Halit; Yaşar, Ahmet

    2013-10-01

    In this study, a new amperometric biosensor for the determination of hypoxanthine was developed. To this aim, polypyrrole-polyvinyl sulphonate films were prepared on the platinum electrode by the electropolymerization of pyrrole in the presence of polyvinyl sulphonate. Xanthine oxidase and uricase enzymes were immobilized in polypyrrole-polyvinyl sulphonate via the entrapment method. Optimum conditions of enzyme electrode were determined. Hypoxanthine detection is based on the oxidation of hydrogen peroxide at +400 mV produced by the enzymatic reaction on the enzyme electrode surface. The linear working range of biosensor for hypoxanthine was determined. The effects of pH and temperature on the response of the hypoxanthine biosensor were investigated. Optimum pH and temperature were measured as 8 and 30°C, respectively. Operational and storage stability of the biosensor were determined. After 20 assays, the biosensor sustained 74.5% of its initial performance. After 33 days, the biosensor lost 36% of its initial performance. The performance of the biosensor was tested in real samples.

  9. Guanine- Formation During the Thermal Polymerization of Amino Acids

    NASA Technical Reports Server (NTRS)

    Mc Caw, B. K.; Munoz, E. F.; Ponnamperuma, C.; Young, R. S.

    1964-01-01

    The action of heat on a mixture of amino acids was studied as a possible abiological pathway for the synthesis of purines and pyrimidines. Guanine was detected. This result is significant in the context of chemical evolution.

  10. The Formation and Biological Significance of N7-Guanine Adducts

    PubMed Central

    Boysen, Gunnar; Pachkowski, Brian F.; Nakamura, Jun; Swenberg, James A

    2009-01-01

    DNA alkylation or adduct formation occurs at nucleophilic sites in DNA, mainly the N7-position of guanine. Ever since identification of the first N7-guanine adduct, several hundred studies on DNA adducts have been reported. Major issues addressed include the relationships between N7-guanine adducts and exposure, mutagenesis, and other biological endpoints. It became quickly apparent that N7-guanine adducts are frequently formed, but may have minimal biological relevance, since they are chemically unstable and do not participate in Watson Crick base pairing. However, N7-guanine adducts have been shown to be excellent biomarkers for internal exposure to direct acting and metabolically activated carcinogens. Questions arise, however, regarding the biological significance for N7-guanine adducts that are readily formed, do not persist, and are not likely to be mutagenic. Thus, we set out to review the current literature to evaluate their formation and the mechanistic evidence for the involvement of N7-guanine adducts in mutagenesis or other biological processes. It was concluded that there is insufficient evidence that N7-guanine adducts can be used beyond confirmation of exposure to the target tissue and demonstration of the molecular dose. There is little to no evidence that N7-guanine adducts or their depurination product, apurinic sites, are the cause of mutations in cells and tissues, since increases in AP sites have not been shown unless toxicity is extant. However, more research is needed to define the extent of chemical depurination versus removal by DNA repair proteins. Interestingly, N7-guanine adducts are clearly present as endogenous background adducts and the endogenous background amounts appear to increase with age. Furthermore, the N7-guanine adducts have been shown to convert to ring opened lesions (FAPy), which are much more persistent and have higher mutagenic potency. Studies in humans are limited in sample size and differences between controls and

  11. Crystal Structure of a Replicative DNA Polymerase Bound to the Oxidized Guanine Lesion Guanidinohydantoin

    SciTech Connect

    Aller, Pierre; Ye, Yu; Wallace, Susan S.; Burrows, Cynthia J.; Doubli, Sylvie

    2010-04-12

    The oxidation of guanine generates one of the most common DNA lesions, 8-oxo-7,8-dihydroguanine (8-oxoG). The further oxidation of 8-oxoG can produce either guanidinohydantoin (Gh) in duplex DNA or spiroiminodihydantoin (Sp) in nucleosides and ssDNA. Although Gh can be a strong block for replicative DNA polymerases such as RB69 DNA polymerase, this lesion is also mutagenic: DNA polymerases bypass Gh by preferentially incorporating a purine with a slight preference for adenine, which results in G {center_dot} C {yields} T {center_dot} A or G {center_dot} C {yields} C {center_dot} G transversions. The 2.15 {angstrom} crystal structure of the replicative RB69 DNA polymerase in complex with DNA containing Gh reveals that Gh is extrahelical and rotated toward the major groove. In this conformation Gh is no longer in position to serve as a templating base for the incorporation of an incoming nucleotide. This work also constitutes the first crystallographic structure of Gh, which is stabilized in the R configuration in the two polymerase/DNA complexes present in the crystal asymmetric unit. In contrast to 8-oxoG, Gh is found in a high syn conformation in the DNA duplex and therefore presents the same hydrogen bond donor and acceptor pattern as thymine, which explains the propensity of DNA polymerases to incorporate a purine opposite Gh when bypass occurs.

  12. What is adenine doing in photolyase?

    PubMed

    Acocella, Angela; Jones, Garth A; Zerbetto, Francesco

    2010-03-25

    The short answer to the title question is that it acts as an electrostatic bouncer that shoves the charge flow from flavin toward the DNA lesion that photolyase repairs. This explanation is provided by an explicit time-dependent quantum mechanical approach, which is used to investigate the electron transfer process that triggers the repair mechanism. The transfer occurs from the flavin photolyase cofactor to the cyclobutane ring of DNA, previously formed by light-induced cycloaddition of adjacent pyrimidine bases. The electron wave function dynamics accurately accounts for the previously proposed mechanism of transfer via the terminal methyl group of the flavin moiety present in the catalytic electron-donor cofactor, FADH(-), which also contains adenine. This latter moiety, which has often been assumed to be present mainly for structural reasons, instantaneously modifies the interaction between acceptor and donor by a variation of the electrostatic interactions so that the presence of its local atomic charges is necessary to trigger the transfer. In principle, knowledge of the details of the electron transfer dynamics and of the important role of polarization effects can be exploited to improve the efficiency of the repair mechanism in artificial systems.

  13. Ultraviolet Photostability of Adenine on Gold and Silicon Surfaces

    NASA Astrophysics Data System (ADS)

    Mateo-Martí, Eva; Pradier, Claire-Marie; Martín-Gago, Jose-Angel

    2009-08-01

    The adenine molecule is a DNA nucleobase, an essential component of genetic material. Because of the important role of DNA nucleobases in terrestrial biochemistry, we have studied the molecular adsorption, orientation, and chemical binding of adenine on metallic and semiconducting surfaces, such as gold and silicon, respectively, and their stability toward ultraviolet radiation by X-ray photoelectron spectroscopy (XPS) and reflection absorption infrared spectroscopy (RAIRS) techniques. We have exposed the adenine surface system to UV radiation (200-400 nm) under a high-vacuum environment (10-7 mbar) to study the photostability and photochemistry of adenine on different surfaces. After 10 or 24 hours of exposure under interplanetary space conditions, UV radiation induces desorption and partial dissociation of the molecule, which is dependant on the nature of the surface. The electronic excitations, induced in the material by UV absorption, play a major role in the photodestruction of the absorbed molecules on the solid surfaces.

  14. Adenine adlayers on Cu(111): XPS and NEXAFS study

    SciTech Connect

    Tsud, Nataliya; Bercha, Sofiia; Ševčíková, Klára; Matolín, Vladimír; Acres, Robert G.; Prince, Kevin C.

    2015-11-07

    The adsorption of adenine on Cu(111) was studied by photoelectron and near edge x-ray absorption fine structure spectroscopy. Disordered molecular films were deposited by means of physical vapor deposition on the substrate at room temperature. Adenine chemisorbs on the Cu(111) surface with strong rehybridization of the molecular orbitals and the Cu 3d states. Annealing at 150 °C caused the desorption of weakly bonded molecules accompanied by formation of a short-range ordered molecular adlayer. The interface is characterized by the formation of new states in the valence band at 1.5, 7, and 9 eV. The present work complements and refines existing knowledge of adenine interaction with this surface. The coverage is not the main parameter that defines the adenine geometry and adsorption properties on Cu(111). Excess thermal energy can further rearrange the molecular adlayer and, independent of the initial coverage, the flat lying stable molecular adlayer is formed.

  15. Development of a Novel High-Density [3H]Hypoxanthine Scintillation Proximity Assay To Assess Plasmodium falciparum Growth.

    PubMed

    de Cózar, Cristina; Caballero, Iván; Colmenarejo, Gonzalo; Sanz, Laura M; Álvarez-Ruiz, Emilio; Gamo, Francisco-Javier; Cid, Concepción

    2016-10-01

    The discovery and development of new antimalarial drugs are becoming imperative because of the spread of resistance to current clinical treatments. The lack of robustly validated antimalarial targets and the difficulties with the building in of whole-cell activity in screening hits are hampering target-based approaches. However, phenotypic screens of structurally diverse molecule libraries are offering new opportunities for the identification of novel antimalarials. Several methodologies can be used to determine the whole-cell in vitro potencies of antimalarial hits. The [(3)H]hypoxanthine incorporation assay is considered the "gold standard" assay for measurement of the activity of antimalarial compounds against intraerythrocytic forms of Plasmodium falciparum However, the method has important limitations, as the assay is not amenable for high-throughput screening since it remains associated with the 96-well plate format. We have overcome this drawback by adapting the [(3)H]hypoxanthine incorporation method to a 384-well high-density format by coupling a homogeneous scintillation proximity assay (SPA) and thus eliminating the limiting filtration step. This SPA has been validated using a diverse set of 1,000 molecules, including both a representative set from the Tres Cantos Antimalarial Set (TCAMS) of compounds and molecules inactive against whole cells. The results were compared with those from the P. falciparum lactate dehydrogenase whole-cell assay, another method that is well established as a surrogate for parasite growth and is amenable for high-throughput screening. The results obtained demonstrate that the SPA-based [(3)H]hypoxanthine incorporation assay is a suitable design that is adaptable to high-throughput antimalarial drug screening and that maintains the features, robustness, and reliability of the standard filtration hypoxanthine incorporation method.

  16. Substrate Orientation and Catalytic Specificity in the Action of Xanthine Oxidase: The Sequential Hydroxylation of Hypoxanthine to Uric Acid

    SciTech Connect

    Cao, Hongnan; Pauff, James M.; Hille, Russ

    2010-11-29

    Xanthine oxidase is a molybdenum-containing enzyme catalyzing the hydroxylation of a sp{sup 2}-hybridized carbon in a broad range of aromatic heterocycles and aldehydes. Crystal structures of the bovine enzyme in complex with the physiological substrate hypoxanthine at 1.8 {angstrom} resolution and the chemotherapeutic agent 6-mercaptopurine at 2.6 {angstrom} resolution have been determined, showing in each case two alternate orientations of substrate in the two active sites of the crystallographic asymmetric unit. One orientation is such that it is expected to yield hydroxylation at C-2 of substrate, yielding xanthine. The other suggests hydroxylation at C-8 to give 6,8-dihydroxypurine, a putative product not previously thought to be generated by the enzyme. Kinetic experiments demonstrate that >98% of hypoxanthine is hydroxylated at C-2 rather than C-8, indicating that the second crystallographically observed orientation is significantly less catalytically effective than the former. Theoretical calculations suggest that enzyme selectivity for the C-2 over C-8 of hypoxanthine is largely due to differences in the intrinsic reactivity of the two sites. For the orientation of hypoxanthine with C-2 proximal to the molybdenum center, the disposition of substrate in the active site is such that Arg880 and Glu802, previous shown to be catalytically important for the conversion of xanthine to uric acid, play similar roles in hydroxylation at C-2 as at C-8. Contrary to the literature, we find that 6,8-dihydroxypurine is effectively converted to uric acid by xanthine oxidase.

  17. Development of a Novel High-Density [3H]Hypoxanthine Scintillation Proximity Assay To Assess Plasmodium falciparum Growth.

    PubMed

    de Cózar, Cristina; Caballero, Iván; Colmenarejo, Gonzalo; Sanz, Laura M; Álvarez-Ruiz, Emilio; Gamo, Francisco-Javier; Cid, Concepción

    2016-10-01

    The discovery and development of new antimalarial drugs are becoming imperative because of the spread of resistance to current clinical treatments. The lack of robustly validated antimalarial targets and the difficulties with the building in of whole-cell activity in screening hits are hampering target-based approaches. However, phenotypic screens of structurally diverse molecule libraries are offering new opportunities for the identification of novel antimalarials. Several methodologies can be used to determine the whole-cell in vitro potencies of antimalarial hits. The [(3)H]hypoxanthine incorporation assay is considered the "gold standard" assay for measurement of the activity of antimalarial compounds against intraerythrocytic forms of Plasmodium falciparum However, the method has important limitations, as the assay is not amenable for high-throughput screening since it remains associated with the 96-well plate format. We have overcome this drawback by adapting the [(3)H]hypoxanthine incorporation method to a 384-well high-density format by coupling a homogeneous scintillation proximity assay (SPA) and thus eliminating the limiting filtration step. This SPA has been validated using a diverse set of 1,000 molecules, including both a representative set from the Tres Cantos Antimalarial Set (TCAMS) of compounds and molecules inactive against whole cells. The results were compared with those from the P. falciparum lactate dehydrogenase whole-cell assay, another method that is well established as a surrogate for parasite growth and is amenable for high-throughput screening. The results obtained demonstrate that the SPA-based [(3)H]hypoxanthine incorporation assay is a suitable design that is adaptable to high-throughput antimalarial drug screening and that maintains the features, robustness, and reliability of the standard filtration hypoxanthine incorporation method. PMID:27458216

  18. Determination of Xanthine in the Presence of Hypoxanthine by Adsorptive Stripping Voltammetry at the Mercury Film Electrode

    PubMed Central

    Farias, Percio Augusto Mardini; Castro, Arnaldo Aguiar

    2014-01-01

    A stripping method for the determination of xanthine in the presence of hypoxanthine at the submicromolar concentration levels is described. The method is based on controlled adsorptive accumulation at the thin-film mercury electrode followed by a fast linear scan voltammetric measurement of the surface species. Optimum experimental conditions were found to be the use of 1.0 × 10−3 mol L−1 NaOH solution as supporting electrolyte, an accumulation potential of 0.00 V for xanthine and −0.50 V for hypoxanthine–copper, and a linear scan rate of 200 mV second−1. The response of xanthine is linear over the concentration ranges of 20–140 ppb. For an accumulation time of 30 minutes, the detection limit was found to be 36 ppt (2.3 × 10−10 mol L−1). Adequate conditions for measuring the xanthine in the presence of hypoxanthine, copper and other metals, uric acid, and other nitrogenated bases were also investigated. The utility of the method is demonstrated by the presence of xanthine associated with hypoxanthine, uric acid, nitrogenated bases, ATP, and ssDNA. PMID:24940040

  19. Purine synthesis de novo and salvage in hypoxanthine phosphoribosyltransferase-deficient mice.

    PubMed

    Allsop, J; Watts, R W

    1990-01-01

    Extreme degrees of hypoxanthine phosphoribosyltransferase (HPRT) deficiency in man are associated with gross sex-linked neurological dysfunction, gout and urinary stones (the Lesch-Nyhan or 'complete HPRT-deficiency' syndrome). The less severe degrees of enzyme deficiency (sex-linked recessive gout and/or urolithiasis or the 'partial HPRT-deficiency' syndrome) may be associated with minor neurological manifestations. Whole body purine synthesis de novo is accelerated in both these groups of patients. A strain of mice with an experimentally produced mutation at the HPRT locus showed some residual 'apparent HPRT activity' in brain, liver, testicular, splenic, kidney and ovarian tissues but not in erythrocyte haemolysates. The mutation removes exons 1 and 2 of the coding region of the gene together with the promotor and about 10 kb of upstream sequence from the gene. It is therefore possible that the observed 'apparent HPRT activity' in these mice is due to the operation of an alternative metabolic pathway. Purine synthesis de novo was markedly accelerated in their brain, testicular, splenic and kidney tissues. It was not accelerated in the liver tissue of male mice hemizygous for the mutation and the degree of acceleration in the female homozygotes only just reached statistical significance at the p = 0.02 level. This observation casts doubt on the importance of modulations in the rate of hepatic purine synthesis de novo as a mechanism for maintaining a steady supply of purines for translocation to other organs.

  20. Impedimetric investigation of gold nanoparticles - guanine modified electrode

    NASA Astrophysics Data System (ADS)

    Vulcu, A.; Pruneanu, S.; Berghian-Grosan, C.; Olenic, L.; Muresan, L. M.; Barbu-Tudoran, L.

    2013-11-01

    In this paper we report the preparation of a modified electrode with gold nanoparticles and guanine. The colloidal suspension of gold nanoparticles was obtained by Turkevich method and was next analyzed by UV-Vis spectroscopy and Transmission Electron Microscopy (TEM). The gold electrode was modified by self-assembling the gold nanoparticles with guanine, the organic molecule playing also the role of linker. The electrochemical characteristics of the bare and modified electrode were investigated by Electrochemical Impedance Spectroscopy (EIS). A theoretical model was developed based on an electrical equivalent circuit which contain solution resistance (Rs), charge transfer resistance (Rct), Warburg impedance (ZW) and double layer capacitance (Cdl).

  1. Theoretical study on absorption and emission spectra of adenine analogues.

    PubMed

    Liu, Hongxia; Song, Qixia; Yang, Yan; Li, Yan; Wang, Haijun

    2014-04-01

    Fluorescent nucleoside analogues have attracted much attention in studying the structure and dynamics of nucleic acids in recent years. In the present work, we use theoretical calculations to investigate the structural and optical properties of four adenine analogues (termed as A1, A2, A3, and A4), and also consider the effects of aqueous solution and base pairing. The results show that the fluorescent adenine analogues can pair with thymine to form stable H-bonded WC base pairs. The excited geometries of both adenine analogues and WC base pairs are similar to the ground geometries. The absorption and emission maxima of adenine analogues are greatly red shifted compared with nature adenine, the oscillator strengths of A1 and A2 are stronger than A3 and A4 in both absorption and emission spectra. The calculated low-energy peaks in the absorption spectra are in good agreement with the experimental data. In general, the aqueous solution and base pairing can slightly red-shift both the absorption and emission maxima, and can increase the oscillator strengths of absorption spectra, but significantly decrease the oscillator strengths of A3 in emission spectra.

  2. DNA adenine hypomethylation leads to metabolic rewiring in Deinococcus radiodurans.

    PubMed

    Shaiwale, Nayana S; Basu, Bhakti; Deobagkar, Deepti D; Deobagkar, Dileep N; Apte, Shree K

    2015-08-01

    The protein encoded by DR_0643 gene from Deinococcus radiodurans was shown to be an active N-6 adenine-specific DNA methyltransferase (Dam). Deletion of corresponding protein reduced adenine methylation in the genome by 60% and resulted in slow-growth phenotype. Proteomic changes induced by DNA adenine hypomethylation were mapped by two-dimensional protein electrophoresis coupled with mass spectrometry. As compared to wild type D. radiodurans cells, at least 54 proteins were differentially expressed in Δdam mutant. Among these, 39 metabolic enzymes were differentially expressed in Δdam mutant. The most prominent change was DNA adenine hypomethylation induced de-repression of pyruvate dehydrogenase complex, E1 component (aceE) gene resulting in 10 fold increase in the abundance of corresponding protein. The observed differential expression profile of metabolic enzymes included increased abundance of enzymes involved in fatty acid and amino acid degradation to replenish acetyl Co-A and TCA cycle intermediates and diversion of phosphoenolpyruvate and pyruvate into amino acid biosynthesis, a metabolic rewiring attempt by Δdam mutant to restore energy generation via glycolysis-TCA cycle axis. This is the first report of DNA adenine hypomethylation mediated rewiring of metabolic pathways in prokaryotes.

  3. Cerulenin-mediated apoptosis is involved in adenine metabolic pathway

    SciTech Connect

    Chung, Kyung-Sook; Sun, Nam-Kyu; Lee, Seung-Hee; Lee, Hyun-Jee; Choi, Shin-Jung; Kim, Sun-Kyung; Song, Ju-Hyun; Jang, Young-Joo; Song, Kyung-Bin; Yoo, Hyang-Sook; Simon, Julian . E-mail: jsimon@fhcrc.org; Won, Misun . E-mail: misun@kribb.re.kr

    2006-10-27

    Cerulenin, a fatty acid synthase (FAS) inhibitor, induces apoptosis of variety of tumor cells. To elucidate mode of action by cerulenin, we employed the proteomics approach using Schizosaccharomyces pombe. The differential protein expression profile of S. pombe revealed that cerulenin modulated the expressions of proteins involved in stresses and metabolism, including both ade10 and adk1 proteins. The nutrient supplementation assay demonstrated that cerulenin affected enzymatic steps transferring a phosphoribosyl group. This result suggests that cerulenin accumulates AMP and p-ribosyl-s-amino-imidazole carboxamide (AICAR) and reduces other necessary nucleotides, which induces feedback inhibition of enzymes and the transcriptional regulation of related genes in de novo and salvage adenine metabolic pathway. Furthermore, the deregulation of adenine nucleotide synthesis may interfere ribonucleotide reductase and cause defects in cell cycle progression and chromosome segregation. In conclusion, cerulenin induces apoptosis through deregulation of adenine nucleotide biosynthesis resulting in nuclear division defects in S. pombe.

  4. Possible prebiotic catalysts formed from adenine and aldehyde

    NASA Astrophysics Data System (ADS)

    Vergne, J.; Dumas, L.; Décout, J.-L.; Maurel, M.-C.

    2000-09-01

    Careful examination of the present metabolism and in vitro selection of various catalytic RNAs strongly support the "RNA World" hypothesis of the origin of life. However, in this scenario, the difficult prebiotic synthesis of ribose and consequently of nucleotides remain a major problem. In order to overcome this problem and obtain nucleoside analogs, we are investigating reactions of the nucleic acid base, adenine 1, with different aldehydes under presumably prebiotic conditions. In the reaction of adenine and pyruvaldehyde 2 in water, we report here the formation in high yield of two isomeric products. These compounds possessing alcohols functions as nucleosides result from condensation of two molecules of pyruvaldehyde on the 6-amino group of one adenine molecule. Their catalytic activities in the model hydrolysis of p-nitrophenylesters appeared interesting in the search of prebiotic catalysts.

  5. Guanine base stacking in G-quadruplex nucleic acids.

    PubMed

    Lech, Christopher Jacques; Heddi, Brahim; Phan, Anh Tuân

    2013-02-01

    G-quadruplexes constitute a class of nucleic acid structures defined by stacked guanine tetrads (or G-tetrads) with guanine bases from neighboring tetrads stacking with one another within the G-tetrad core. Individual G-quadruplexes can also stack with one another at their G-tetrad interface leading to higher-order structures as observed in telomeric repeat-containing DNA and RNA. In this study, we investigate how guanine base stacking influences the stability of G-quadruplexes and their stacked higher-order structures. A structural survey of the Protein Data Bank is conducted to characterize experimentally observed guanine base stacking geometries within the core of G-quadruplexes and at the interface between stacked G-quadruplex structures. We couple this survey with a systematic computational examination of stacked G-tetrad energy landscapes using quantum mechanical computations. Energy calculations of stacked G-tetrads reveal large energy differences of up to 12 kcal/mol between experimentally observed geometries at the interface of stacked G-quadruplexes. Energy landscapes are also computed using an AMBER molecular mechanics description of stacking energy and are shown to agree quite well with quantum mechanical calculated landscapes. Molecular dynamics simulations provide a structural explanation for the experimentally observed preference of parallel G-quadruplexes to stack in a 5'-5' manner based on different accessible tetrad stacking modes at the stacking interfaces of 5'-5' and 3'-3' stacked G-quadruplexes. PMID:23268444

  6. (19)F-labeling of the adenine H2-site to study large RNAs by NMR spectroscopy.

    PubMed

    Sochor, F; Silvers, R; Müller, D; Richter, C; Fürtig, B; Schwalbe, H

    2016-01-01

    In comparison to proteins and protein complexes, the size of RNA amenable to NMR studies is limited despite the development of new isotopic labeling strategies including deuteration and ligation of differentially labeled RNAs. Due to the restricted chemical shift dispersion in only four different nucleotides spectral resolution remains limited in larger RNAs. Labeling RNAs with the NMR-active nucleus (19)F has previously been introduced for small RNAs up to 40 nucleotides (nt). In the presented work, we study the natural occurring RNA aptamer domain of the guanine-sensing riboswitch comprising 73 nucleotides from Bacillus subtilis. The work includes protocols for improved in vitro transcription of 2-fluoroadenosine-5'-triphosphat (2F-ATP) using the mutant P266L of the T7 RNA polymerase. Our NMR analysis shows that the secondary and tertiary structure of the riboswitch is fully maintained and that the specific binding of the cognate ligand hypoxanthine is not impaired by the introduction of the (19)F isotope. The thermal stability of the (19)F-labeled riboswitch is not altered compared to the unmodified sequence, but local base pair stabilities, as measured by hydrogen exchange experiments, are modulated. The characteristic change in the chemical shift of the imino resonances detected in a (1)H,(15)N-HSQC allow the identification of Watson-Crick base paired uridine signals and the (19)F resonances can be used as reporters for tertiary and secondary structure transitions, confirming the potential of (19)F-labeling even for sizeable RNAs in the range of 70 nucleotides.

  7. Enhanced Molecular Recognition between Nucleobases and Guanine-5'-monophosphate-disodium (GMP) by Surfactant Aggregates in Aqueous Solution.

    PubMed

    Liu, Zhang; Wang, Dong; Cao, Meiwen; Han, Yuchun; Xu, Hai; Wang, Yilin

    2015-07-15

    Only specific base pairs on DNA can bind with each other through hydrogen bonds, which is called the Watson-Crick (W/C) pairing rule. However, without the constraint of DNA chains, the nucleobases in bulk aqueous solution usually do not follow the W/C pairing rule anymore because of the strong competitive effect of water and the multi-interaction edges of nucleobases. The present work applied surfactant aggregates noncovalently functionalized by nucleotide to enhance the recognition between nucleobases without DNA chains in aqueous solution, and it revealed the effects of their self-assembling ability and morphologies on the recognition. The cationic ammonium monomeric, dimeric, and trimeric surfactants DTAB, 12-3-12, and 12-3-12-3-12 were chosen. The surfactants with guanine-5'-monophosphate-disodium (GMP) form micelles, vesicles, and fingerprint-like and plate-like aggregates bearing the hydrogen-bonding sites of GMP, respectively. The binding parameters of these aggregates with adenine (A), uracil (U), guanine (G), and cytosine(C) indicate that the surfactants can promote W/C recognitions in aqueous solution when they form vesicles (GMP/DTAB) or plate-like aggregates (GMP/12-3-12) with proper molecular packing compactness, which not only provide hydrophobic environments but also shield non-W/C recognition edges. However, the GMP/12-3-12 micelles with loose molecular packing, the GMP/12-3-12 fingerprint-like aggregates where the hydrogen bond sites of GMP are occupied by itself, and the GMP/12-3-12-3-12 vesicles with too strong self-assembling ability cannot promote W/C recognition. This work provides insight into how to design self-assemblies with the performance of enhanced molecule recognition.

  8. 3-(3,4-Dihydroxyphenyl)adenine, a urinary DNA adduct formed in mice exposed to high concentrations of benzene.

    PubMed

    Mikeš, Petr; Sístek, Václav; Krouželka, Jan; Králík, Antonín; Frantík, Emil; Mráz, Jaroslav; Linhart, Igor

    2013-06-01

    Metabolism of benzene, an important environmental and industrial carcinogen, produces three electrophilic intermediates, namely, benzene oxide and 1,2- and 1,4-benzoquinone, capable of reacting with the DNA. Numerous DNA adducts formed by these metabolites in vitro have been reported in the literature, but only one of them was hitherto identified in vivo. In a search for urinary DNA adducts, specific LC-ESI-MS methods have been developed for the determination in urine of six nucleobase adducts, namely, 7-phenylguanine, 3-phenyladenine, 3-hydroxy-3,N(4) -benzethenocytosine, N(2) -(4-hydroxyphenyl)guanine, 7-(3,4-dihydroxyphenyl)guanine and 3-(3,4-dihydroxyphenyl)-adenine (DHPA), with detection limits of 200, 10, 260, 50, 400 and 200 pg ml(-1) , respectively. Mice were exposed to benzene vapors at concentrations of 900 and 1800 mg m(-3) , 6 h per day for 15 consecutive days. The only adduct detected in their urine was DHPA. It was found in eight out of 30 urine samples from the high-exposure group at concentrations of 352 ± 146 pg ml(-1) (mean ± SD; n = 8), whereas urines from the low-exposure group were negative. Assuming the DHPA concentration in the negative samples to be half of the detection limit, conversion of benzene to DHPA was estimated to 2.2 × 10(-6) % of the absorbed dose. Thus, despite the known high mutagenic and carcinogenic potential of benzene, only traces of a single DNA adduct in urine were detected. In conclusion, DHPA is an easily depurinating adduct, thus allowing indication of only high recent exposure to benzene, but not long-term damage to DNA in tissues.

  9. Detection of electronically equivalent tautomers of adenine base: DFT study

    SciTech Connect

    Siddiqui, Shamoon Ahmad; Bouarissa, Nadir; Rasheed, Tabish; Al-Assiri, M.S.; Al-Hajry, A.

    2014-03-01

    Graphical abstract: - Highlights: • DFT calculations have been performed on adenine and its rare tautomer Cu{sup 2+} complexes. • Interaction of A-Cu{sup 2+} and rA-Cu{sup 2+} complexes with AlN modified fullerene (C{sub 60}) have been studied briefly. • It is found that AlN modified C{sub 60} could be used as a nanoscale sensor to detect these two A-Cu{sup 2+} and rA-Cu{sup 2+} complexes. - Abstract: In the present study, quantum chemical calculations were carried out to investigate the electronic structures and stabilities of adenine and its rare tautomer along with their Cu{sup 2+} complexes. Density Functional Theory (B3LYP method) was used in all calculations. The two Cu{sup 2+} complexes of adenine have almost similar energies and electronic structures; hence, their chemical differentiation is very difficult. For this purpose, interactions of these complexes with AlN modified fullerene (C{sub 60}) have been studied. Theoretical investigations reveal that AlN-doped C{sub 60} may serve as a potentially viable nanoscale sensor for detection of the two Cu{sup 2+} complexes of adenine.

  10. Thymine, adenine and lipoamino acid based gene delivery systems.

    PubMed

    Skwarczynski, Mariusz; Ziora, Zyta M; Coles, Daniel J; Lin, I-Chun; Toth, Istvan

    2010-05-14

    A novel class of thymine, adenine and lipoamino acid based non-viral carriers for gene delivery has been developed. Their ability to bind to DNA by hydrogen bonding was confirmed by NMR diffusion, isothermal titration calorimetry and transmission electron microscopy experiments.

  11. PolyAdenine cryogels for fast and effective RNA purification.

    PubMed

    Köse, Kazım; Erol, Kadir; Özgür, Erdoğan; Uzun, Lokman; Denizli, Adil

    2016-10-01

    Cryogels are used effectively for many diverse applications in a variety of fields. The isolation or purification of RNA, one of the potential utilizations for cryogels, is crucial due to their vital roles such as encoding, decoding, transcription and translation, and gene expression. RNA principally exists within every living thing, but their tendency to denaturation easily is still the most challenging issue. Herein, we aimed to develop adenine incorporated polymeric cryogels as an alternative sorbent for cost-friendly and fast RNA purification with high capacity. For this goal, we synthesized the polymerizable derivative of adenine called as adenine methacrylate (AdeM) through the substitution reaction between adenine and methacryloyl chloride. Then, 2-hydroxyethyl methacrylate (HEMA)-based cryogels were prepared in a partially frozen aqueous medium by copolymerization of monomers, AdeM, and HEMA. The cryogels were characterized by using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), surface area measurements, thermogravimetric analysis (TGA), and swelling tests. RNA adsorption experiments were performed via batch system while varying different conditions including pH, initial RNA concentration, temperature, and interaction time. We achieved high RNA adsorption capacity of cryogels, with the swelling ratio around 510%, as 11.86mg/g. The cryogels might be reused at least five times without significant decrease in adsorption capacity.

  12. PolyAdenine cryogels for fast and effective RNA purification.

    PubMed

    Köse, Kazım; Erol, Kadir; Özgür, Erdoğan; Uzun, Lokman; Denizli, Adil

    2016-10-01

    Cryogels are used effectively for many diverse applications in a variety of fields. The isolation or purification of RNA, one of the potential utilizations for cryogels, is crucial due to their vital roles such as encoding, decoding, transcription and translation, and gene expression. RNA principally exists within every living thing, but their tendency to denaturation easily is still the most challenging issue. Herein, we aimed to develop adenine incorporated polymeric cryogels as an alternative sorbent for cost-friendly and fast RNA purification with high capacity. For this goal, we synthesized the polymerizable derivative of adenine called as adenine methacrylate (AdeM) through the substitution reaction between adenine and methacryloyl chloride. Then, 2-hydroxyethyl methacrylate (HEMA)-based cryogels were prepared in a partially frozen aqueous medium by copolymerization of monomers, AdeM, and HEMA. The cryogels were characterized by using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), surface area measurements, thermogravimetric analysis (TGA), and swelling tests. RNA adsorption experiments were performed via batch system while varying different conditions including pH, initial RNA concentration, temperature, and interaction time. We achieved high RNA adsorption capacity of cryogels, with the swelling ratio around 510%, as 11.86mg/g. The cryogels might be reused at least five times without significant decrease in adsorption capacity. PMID:27434154

  13. The use of primary rat hepatocytes to achieve metabolic activation of promutagens in the Chinese hamster ovary/hypoxantine-guanine phosphoribosyl transferase mutational assay

    SciTech Connect

    Bermudez, E.; Couch, D.B.; Tillery, D.

    1982-01-01

    A method is described in which primary rat hepatocytes have been cocultured with chinese hamster ovary (CHO) cells to provide metabolic activation of promutgens in the Chinese hamster ovary/hypoxanthine-guanine phosphoribosyl transferase (CHO/HGPRT) mutational assay. Single cell hepatocyte suspensions were prepared from male Fisher-344 rats using the in situ collagenase perfusion technique. Hepatocytes were allowed to attach for 1.5 hours in tissue culture dishes containing an approximately equal number of CHO cells in log growth. The cocultures were exposed to promutagens for up to 20 hours in serum-free medium. The survival and 6-thioguanine-resistant fraction of treated CHO cells were then determined as in the standard CHO/HGPRT assay. Aflatoxin B/sub 1/ (AFB/sub 1/) 7,12-dimethylbenz(a)anthracene (DMBA) and benzo(a)pyrene (B(a)P) were found to produce increases in the mutant fractions of treated CHO cells as a function of concentration. The time required for optimum expression of the mutant phenotype following exposure to DMBA and AFB/sub 1/ was approximately 8 days. Primary cell-mediated mutagenesis may be useful in elucidating methobolic pathways important in the production and detoxification of genotoxic products in vivo.

  14. Progress and recent advances in fabrication and utilization of hypoxanthine biosensors for meat and fish quality assessment: a review.

    PubMed

    Lawal, Abdulazeez T; Adeloju, Samuel B

    2012-10-15

    This review provides an update on the research conducted on the fabrication and utilization of hypoxanthine (Hx) biosensors published over the past four decades. In particular, the review focuses on progress made in the development and use of Hx biosensors for the assessment of fish and meat quality which has dominated research in this area. The various fish and meat freshness indexes that have been proposed over this period are highlighted. Furthermore, recent developments and future advances in the use of screen-printed electrodes and nanomaterials for achieving improved performances for the reliable determination of Hx in fish and meat are discussed.

  15. Effect of base pairing on the electrochemical oxidation of guanine.

    PubMed

    Costentin, Cyrille; Hajj, Viviane; Robert, Marc; Savéant, Jean-Michel; Tard, Cédric

    2010-07-28

    The effect of base pairing by cytosine on the electrochemical oxidation of guanine is examined by means of cyclic voltammetry on carefully purified reactants in a solvent, CHCl(3), which strongly favors the formation of an H-bonded pair. The thermodynamics and kinetics of the oxidation reaction are not strongly influenced by the formation of the pair. They are actually similar to those of the reaction in which 2,6-lutidine, an encumbered base that cannot form a pair with guanine, replaces cytosine. The reaction does not entail a concerted proton-electron mechanism, as attested by the absence of H/D isotope effect. It rather involves the rate-determining formation of the cation radical, followed by its deprotonation and dimerization of the resulting neutral radical in competition with its further oxidation.

  16. Impedimetric investigation of gold nanoparticles - guanine modified electrode

    SciTech Connect

    Vulcu, A.; Pruneanu, S.; Berghian-Grosan, C.; Olenic, L.; Muresan, L. M.; Barbu-Tudoran, L.

    2013-11-13

    In this paper we report the preparation of a modified electrode with gold nanoparticles and guanine. The colloidal suspension of gold nanoparticles was obtained by Turkevich method and was next analyzed by UV-Vis spectroscopy and Transmission Electron Microscopy (TEM). The gold electrode was modified by self-assembling the gold nanoparticles with guanine, the organic molecule playing also the role of linker. The electrochemical characteristics of the bare and modified electrode were investigated by Electrochemical Impedance Spectroscopy (EIS). A theoretical model was developed based on an electrical equivalent circuit which contain solution resistance (R{sub s}), charge transfer resistance (R{sub ct}), Warburg impedance (Z{sub W}) and double layer capacitance (C{sub dl})

  17. `Guanigma': the revised structure of biogenic anhydrous guanine

    NASA Astrophysics Data System (ADS)

    Hirsch, Anna; Gur, Dvir; Polishchuk, Iryna; Levy, Davide; Pokroy, Boaz; Cruz-Cabeza, Aurora J.; Addadi, Lia; Kronik, Leeor; Leiserowitz, Leslie

    Living organisms display a spectrum of colors, produced by pigmentation, structural coloration, or both. A relatively well-studied system, which produces colors via an array of alternating anhydrous guanine crystals and cytoplasm, is responsible for the metallic luster of many fish. The structure of biogenic anhydrous guanine was believed to be the same as that of the synthetic one - a monoclinic polymorph. Here we re-examine the structure of biogenic guanine, using experimental X-ray and electron diffraction (ED) data exposing troublesome inconsistencies - namely, a 'guanigma'. To address this, we sought alternative candidate polymorphs using symmetry and packing considerations, then used first principles calculations to determine whether the selected candidates could be energetically stable. We identified theoretically a different monoclinic polymorph, were able to synthesize it, and to confirm using X-ray diffraction that it is this polymorph that occurs in biogenic samples. However, the ED data were still not consistent with this polymorph, but rather with a theoretically generated orthorhombic polymorph. This apparent inconsistency was resolved by showing how the ED pattern could be affected by crystal structural faults composed of offset molecular layers.

  18. Copper-Adenine Complex Catalyst for O2 Production from

    NASA Astrophysics Data System (ADS)

    Vergne, Jacques; Bruston, F.; Calvayrac, R.; Grajcar, L.; Baron, M.-H.; Maurel, M.-C.

    The advent of oxygen-evolving photosynthesis is one of the central event in the development of life on earth. The early atmosphere has been midly reducing or neutral in overall redox balance and water photolysis by UV light can produce hydrogen peroxide. Before oxidation of water, intermediate stages are proposed in which H_2^O_2 was oxidized. The oxidation of H_2^O_2 to oxygen can be carried out by a modestly oxidizing species in which a metal-catalase like enzyme could extract electrons from H_2^O_2 producing the first oxygen-evolving complex. After what, modern photosynthesis with chlorophyll, to help transform H_2^O in O_2 was ready to come to light. In preliminary UV studies we were able to show that [Cu(adenine)2] system, containing copper coordinated to nitrogen activates H_2^O_2 disappearance. This was confirmed with the help of Raman and polarographic studies. Raman spectroscopy shows the formation of [Cu(adenine)2] complex in solution, quantifies H_2^O_2 consumption, polarography quantifies O_2 production. In both cases CuCl_2 addition entails H_2^O_2 disappearance. Without adenine, Cu_2^+ has only a weak catalytic effect. The molar activity of the [Cu(adenine)2] complex is much larger and concentration dependent. We emphasize that Cu(adenine)2 may have mimicked enzyme properties in the first stage of life evolution, in order to split H_2^O_2 into O_2 and H_2^O. Moreover, diluted copper and adenine, in small ephemeral prebiotic ponds , could have preserved biologically active entities from H_2^O_2 damage via dual properties: catalyzing H_2^O_2 disproportionation and also directly acting as a reductant complex. Finally, the present Mars surface is considered to be both reactive and embedded with oxydants. As it has been shown that the depth of diffusion for H_2^O_2 is less than 3 meters, it is important to study all the ways of H_2^O_2 consumption.

  19. Dynamics and reactivity in Thermus aquaticus N6-adenine methyltransferase.

    PubMed

    Aranda, Juan; Zinovjev, Kirill; Roca, Maite; Tuñón, Iñaki

    2014-11-19

    M.TaqI is a DNA methyltransferase from Thermus aquaticus that catalyzes the transfer of a methyl group from S-adenosyl-L-methionine to the N6 position of an adenine, a process described only in prokaryotes. We have used full atomistic classical molecular dynamics simulations to explore the protein-SAM-DNA ternary complex where the target adenine is flipped out into the active site. Key protein-DNA interactions established by the target adenine in the active site are described in detail. The relaxed structure was used for a combined quantum mechanics/molecular mechanics exploration of the reaction mechanism using the string method. According to our free energy calculations the reaction takes place through a stepwise mechanism where the methyl transfer precedes the abstraction of the proton from the exocyclic amino group. The methyl transfer is the rate-determining step, and the obtained free energy barrier is in good agreement with the value derived from the experimental rate constant. Two possible candidates to extract the leftover proton have been explored: a water molecule found in the active site and Asn105, a residue activated by the hydrogen bonds formed through the amide hydrogens. The barrier for the proton abstraction is smaller when Asn105 acts as a base. The reaction mechanisms can be different in other N6-DNA-methyltransferases, as determined from the exploration of the reaction mechanism in the Asn105Asp M.TaqI mutant. PMID:25347783

  20. High resolution dissociative electron attachment to gas phase adenine

    SciTech Connect

    Huber, D.; Beikircher, M.; Denifl, S.; Zappa, F.; Matejcik, S.; Bacher, A.; Grill, V.; Maerk, T. D.; Scheier, P.

    2006-08-28

    The dissociative electron attachment to the gas phase nucleobase adenine is studied using two different experiments. A double focusing sector field mass spectrometer is utilized for measurements requiring high mass resolution, high sensitivity, and relative ion yields for all the fragment anions and a hemispherical electron monochromator instrument for high electron energy resolution. The negative ion mass spectra are discussed at two different electron energies of 2 and 6 eV. In contrast to previous gas phase studies a number of new negative ions are discovered in the mass spectra. The ion efficiency curves for the negative ions of adenine are measured for the electron energy range from about 0 to 15 eV with an electron energy resolution of about 100 meV. The total anion yield derived via the summation of all measured fragment anions is compared with the total cross section for negative ion formation measured recently without mass spectrometry. For adenine the shape of the two cross section curves agrees well, taking into account the different electron energy resolutions; however, for thymine some peculiar differences are observed.

  1. Effect of NADH on hypoxanthine hydroxylation by native NAD+-dependent xanthine oxidoreductase of rat liver, and the possible biological role of this effect.

    PubMed Central

    Kamiński, Z W; Jezewska, M M

    1981-01-01

    The course of the reaction sequence hypoxanthine leads to xanthine leads to uric acid, catalysed by the NAD+-dependent activity of xanthine oxidoreductase, was investigated under conditions either of immediate oxidation of the NADH formed or of NADH accumulation. The enzymic preparation was obtained from rat liver, and purified 75-fold (as compared with the 25000 g supernatant) on a 5'-AMP-Sepharose 4B column; in this preparation the NAD+-dependent activity accounted for 100% of total xanthine oxidoreductase activity. A spectrophotometric method was developed for continuous measurements of changes in the concentrations of the three purines involved. The time course as well as the effects of the concentrations of enzyme and of hypoxanthine were examined. NADH produced by the enzyme lowered its activity by 50%, resulting in xanthine accumulation and in decreases of uric acid formation and of hypoxanthine utilization. The inhibition of the Xanthine oxidoreductase NAD+-dependent activity by NADH is discussed as a possible factor in the regulation of IMP biosynthesis by the 'de novo' pathway or (from unchanged hypoxanthine) by ther salvage pathway. PMID:6952874

  2. Generation of hypoxanthine phosphoribosyltransferase gene knockout rabbits by homologous recombination and gene trapping through somatic cell nuclear transfer.

    PubMed

    Yin, Mingru; Jiang, Weihua; Fang, Zhenfu; Kong, Pengcheng; Xing, Fengying; Li, Yao; Chen, Xuejin; Li, Shangang

    2015-11-02

    The rabbit is a common animal model that has been employed in studies on various human disorders, and the generation of genetically modified rabbit lines is highly desirable. Female rabbits have been successfully cloned from cumulus cells, and the somatic cell nuclear transfer (SCNT) technology is well established. The present study generated hypoxanthine phosphoribosyltransferase (HPRT) gene knockout rabbits using recombinant adeno-associated virus-mediated homologous recombination and SCNT. Gene trap strategies were employed to enhance the gene targeting rates. The male and female gene knockout fibroblast cell lines were derived by different strategies. When male HPRT knockout cells were used for SCNT, no live rabbits were obtained. However, when female HPRT(+/-) cells were used for SCNT, live, healthy rabbits were generated. The cloned HPRT(+/-) rabbits were fertile at maturity. We demonstrate a new technique to produce gene-targeted rabbits. This approach may also be used in the genetic manipulation of different genes or in other species.

  3. Gene mapping in marsupials and monotremes, V. Synteny between hypoxanthine phosphoribosyltransferase and phosphoglycerate kinase in the platypus.

    PubMed

    Watson, J M; Graves, J A

    1988-01-01

    In order to extend comparative mapping studies to the monotreme mammals (subclass Prototheria), somatic-cell hybrids were obtained between Chinese-hamster cells deficient in hypoxanthine phosphoribosyltransferase (HPRT) and platypus fibroblasts. The characteristics of these hybrids closely resemble those of metatherian x eutherian hybrids, in that they are recovered at low frequency and they rapidly segregate and fragment platypus chromosomes. Biochemical and cytological studies of the hybrids, their subclones and HPRT-deficient revertants indicate that phosphoglycerate kinase is syntenic with HPRT in the platypus (as it is in other mammals); however, the studies do not permit chromosomal assignment of the syntenic group. The implications of the chromosomal location of this ancient synteny group for the evolution of the mammalian X chromosome are discussed.

  4. Adenine versus guanine DNA adducts of aristolochic acids: role of the carcinogen–purine linkage in the differential global genomic repair propensity

    PubMed Central

    Kathuria, Preetleen; Sharma, Purshotam; Wetmore, Stacey D.

    2015-01-01

    Computational modeling is employed to provide a plausible structural explanation for the experimentally-observed differential global genome repair (GGR) propensity of the ALII-N2-dG and ALII-N6-dA DNA adducts of aristolochic acid II. Our modeling studies suggest that an intrinsic twist at the carcinogen–purine linkage of ALII-N2-dG induces lesion site structural perturbations and conformational heterogeneity of damaged DNA. These structural characteristics correlate with the relative repair propensities of AA-adducts, where GGR recognition occurs for ALII-N2-dG, but is evaded for intrinsically planar ALII-N6-dA that minimally distorts DNA and restricts the conformational flexibility of the damaged duplex. The present analysis on the ALII adduct model systems will inspire future experimental studies on these adducts, and thereby may extend the list of structural factors that directly correlate with the propensity for GGR recognition. PMID:26175048

  5. An Adenine-DNA Adduct Derived from Nitroreduction of 6-Nitrochrysene is more Resistant to Nucleotide Excision Repair than Guanine-DNA Adducts

    PubMed Central

    Krzeminski, Jacek; Kropachev, Konstantin; Reeves, Dara; Kolbanovskiy, Aleksandr; Kolbanovskiy, Marina; Chen, Kun-Ming; Sharma, Arun K.; Geacintov, Nicholas; Amin, Shantu; El-Bayoumy, Karam

    2013-01-01

    Previous studies in rats, mice and in vitro systems showed that 6-NC can be metabolically activated by two major pathways: 1) the formation of N-hydroxy-6-aminochrysene by nitroreduction to yield three major adducts: N-(dG-8-yl)-6-AC, 5-(dG-N2-yl)-6-AC and N-(dA-8-yl)-6-AC, and 2) the formation of trans-1,2-dihydroxy-1,2-dihydro-6-hydroxylaminochrysene (1,2-DHD-6-NHOH-C) by a combination of nitroreduction and ring oxidation pathways to yield: N-(dG-8-yl)-1,2-DHD-6-AC, 5-(dG-N2-yl)-1,2-DHD-6-AC and N-(dA-8-yl)-1,2-DHD-6-AC. These DNA lesions are likely to cause mutations if they are not removed by cellular defense mechanisms before DNA replication occurs. Here we compared for the first time, in HeLa cell extracts in vitro, the relative nucleotide excision repair (NER) efficiencies of DNA lesions derived from simple nitroreduction and from a combination of nitroreduction and ring oxidation pathways. We show that the N-(dG-8-yl)-1,2-DHD-6-AC adduct is more resistant to NER than the N-(dG-8-yl)-6-AC adduct by a factor of ~2. Furthermore, the N-(dA-8-yl)-6-AC is much more resistant to repair since its NER efficiency is ~ 8-fold lower than that of the N-(dG-8-yl)-6-AC adduct. On the basis of our previous study and the present investigation, lesions derived from 6-NC and benzo[a]pyrene can be ranked from the most to the least resistant lesion as follows: N-(dA-8-yl)-6-AC > N-(dG-8-yl)-1,2-DHD-6-AC > 5-(dG-N2-yl)-6-AC ~ N-(dG-8-yl)-6-AC ~ (+)-7R,8S,9S,10S-benzo[a]pyrene diol epoxide-derived trans-anti-benzo[a]pyrene-N2-dG adduct. The slow repair of the various lesions derived from 6-NC and thus their potential persistence in mammalian tissue, could in part account for the powerful carcinogenicity of 6-NC as compared to B[a]P in the rat mammary gland. PMID:24112095

  6. Influence of hydrogen bonding on the geometry of the adenine fragment

    NASA Astrophysics Data System (ADS)

    Słowikowska, Joanna Maria; Woźniak, Krzysztof

    1996-01-01

    The crystal structures of two adenine derivatives, N(6),9-dimethyl-8-butyladenine (I) and its hydrate (1 : 1) (II), have been determined by single-crystal X-ray diffraction. The geometrical features of both structures are discussed. The influence of protonation, substitution and hydrogen bond formation on the geometry of the adenine fragment was studied, based on data retrieved from the Cambridge Structural Database. Total correlation analysis showed mutual correlation between the structural parameters in the adenine ring system; partial correlation calculations for the adenine nucleoside fragments suggest intercorrelation between the parameters of the hydrogen bonding involved in base pairing and the N(adenine)-C(sugar) bond through the adenine fragment; few such correlations were found for fragments without the sugar substituent.

  7. Examination of tyrosine/adenine stacking interactions in protein complexes.

    PubMed

    Copeland, Kari L; Pellock, Samuel J; Cox, James R; Cafiero, Mauricio L; Tschumper, Gregory S

    2013-11-14

    The π-stacking interactions between tyrosine amino acid side chains and adenine-bearing ligands are examined. Crystalline protein structures from the protein data bank (PDB) exhibiting face-to-face tyrosine/adenine arrangements were used to construct 20 unique 4-methylphenol/N9-methyladenine (p-cresol/9MeA) model systems. Full geometry optimization of the 20 crystal structures with the M06-2X density functional theory method identified 11 unique low-energy conformations. CCSD(T) complete basis set (CBS) limit interaction energies were estimated for all of the structures to determine the magnitude of the interaction between the two ring systems. CCSD(T) computations with double-ζ basis sets (e.g., 6-31G*(0.25) and aug-cc-pVDZ) indicate that the MP2 method overbinds by as much as 3.07 kcal mol(-1) for the crystal structures and 3.90 kcal mol(-1) for the optimized structures. In the 20 crystal structures, the estimated CCSD(T) CBS limit interaction energy ranges from -4.00 to -6.83 kcal mol(-1), with an average interaction energy of -5.47 kcal mol(-1), values remarkably similar to the corresponding data for phenylalanine/adenine stacking interactions. Geometry optimization significantly increases the interaction energies of the p-cresol/9MeA model systems. The average estimated CCSD(T) CBS limit interaction energy of the 11 optimized structures is 3.23 kcal mol(-1) larger than that for the 20 crystal structures.

  8. A comparison of adenine and some derivatives on pig isolated tracheal muscle.

    PubMed Central

    Bach-Dieterle, Y.; Holden, W. E.; Junod, A. F.

    1983-01-01

    We studied the muscle relaxation induced by adenine and several adenine derivatives in strips of tracheal smooth muscle from pigs; in addition their metabolism by the tissue was examined. Adenine relaxed tissue which was contracted by carbachol, histamine, or KCl. Adenine's potency was similar to that of adenosine and ATP (threshold about 4 X 10(-5)M). In tissues with carbachol-induced tone, the adenine effect differed from adenosine and ATP by being slower in onset and in 'washout' time. Furthermore, neither dipyridamole nor theophylline modified the response to adenine. The relationship was examined between pharmacological effects and the metabolism of [3H]-adenosine and [3H]-adenine. Both substrates were taken up by the tissue and converted to nucleotides, but relaxation correlated with nucleotide accumulation only in the case of [3H]-adenine. We conclude that the site and mechanism of adenine-induced relaxation is different from that of adenosine and ATP in porcine tracheal muscle. PMID:6571222

  9. Mobility enhancement of organic field-effect transistor based on guanine trap-neutralizing layer

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Zheng, Yifan; Yu, Junsheng; Taylor, André D.; Katz, Howard E.

    2016-10-01

    We introduced a nucleic acid component guanine as a trap-neutralizing layer between silicon dioxide gate dielectric and a pentacene semiconducting layer to obtain increased field-effect mobility in organic field-effect transistors (OFETs). A tripling of the field-effect mobility, from 0.13 to 0.42 cm2/V s, was achieved by introducing a 2 nm guanine layer. By characterizing the surface morphology of pentacene films grown on guanine, we found that the effect of guanine layer on the topography of pentacene film was not responsible for the mobility enhancement of the OFETs. The increased field-effect mobility was mainly attributed to the hydrogen bonding capacity of otherwise unassociated guanine molecules, which enabled them to neutralize trapping sites on the silicon dioxide surface.

  10. Modelling proton tunnelling in the adenine-thymine base pair.

    PubMed

    Godbeer, A D; Al-Khalili, J S; Stevenson, P D

    2015-05-21

    The energies of the canonical (standard, amino-keto) and tautomeric (non-standard, imino-enol) charge-neutral forms of the adenine-thymine base pair (A-T and A*-T*, respectively) are calculated using density functional theory. The reaction pathway is then computed using a transition state search to provide the asymmetric double-well potential minima along with the barrier height and shape, which are combined to create the potential energy surface using a polynomial fit. The influence of quantum tunnelling on proton transfer within a base pair H-bond (modelled as the DFT deduced double-well potential) is then investigated by solving the time-dependent master equation for the density matrix. The effect on a quantum system by its surrounding water molecules is explored via the inclusion of a dissipative Lindblad term in the master equation, in which the environment is modelled as a heat bath of harmonic oscillators. It is found that quantum tunnelling, due to transitions to higher energy eigenstates with significant amplitudes in the shallow (tautomeric) side of the potential, is unlikely to be a significant mechanism for the creation of adenine-thymine tautomers within DNA, with thermally assisted coupling of the environment only able to boost the tunnelling probability to a maximum of 2 × 10(-9). This is barely increased for different choices of the starting wave function or when the geometry of the potential energy surface is varied.

  11. Mutants of Neurospora deficient in nicotinamide adenine dinucleotide (phosphate) glycohydrolase.

    PubMed Central

    Nelson, R E; Selitrennikoff, C P; Siegel, R W

    1975-01-01

    A new screening technique has been developed for the rapid identification of Neurospora crassa mutants that are deficient in nicotinamide adenine dinucleotide glycohydrolase (NADase) and nicotinamide adenine dinucleotide phosphate glycohydrolase (NADPase) activities. Using this procedure, five single-gene mutants were isolated whose singular difference from wild type appeared to be the absence of NAD(P)ase (EC 3.2.2.6). All five mutants were found to be genetically allelic and did not complement in heterocaryons. This gene, nada [NAD(P)ase], was localized in linkage group IV. One of the nada alleles was found to specify an enzyme that was critically temperature sensitive and had altered substrate affinity. Mutations at the nada locus did not affect the genetic program for the expression of NAD(P)ase during cell differentiation, nor did they have a general effect on NAD catabolism. Nada mutations did not have simultaneous effects on other glycohydrolase activities. Tests of dominance (in heterocaryons) and in vitro mixing experiments did not provide evidence that nada mutations alter activators or inhibitors of NAD(P)ase. Thus, the nada gene appears to specify only the structure of N. crassa NAD(P)ase. Images PMID:165174

  12. Nonselective enrichment for yeast adenine mutants by flow cytometry

    NASA Technical Reports Server (NTRS)

    Bruschi, C. V.; Chuba, P. J.

    1988-01-01

    The expression of certain adenine biosynthetic mutations in the yeast Saccharomyces cerevisiae results in a red colony color. This phenomenon has historically provided an ideal genetic marker for the study of mutation, recombination, and aneuploidy in lower eukaryotes by classical genetic analysis. In this paper, it is reported that cells carrying ade1 and/or ade2 mutations exhibit primary fluorescence. Based on this observation, the nonselective enrichment of yeast cultures for viable adenine mutants by using the fluorescence-activated cell sorter has been achieved. The advantages of this approach over conventional genetic analysis of mutation, recombination, and mitotic chromosomal stability include speed and accuracy in acquiring data for large numbers of clones. By using appropriate strains, the cell sorter has been used for the isolation of both forward mutations and chromosomal loss events in S. cerevisiae. The resolving power of this system and its noninvasiveness can easily be extended to more complex organisms, including mammalian cells, in which analogous metabolic mutants are available.

  13. Kinetic studies of guanine recognition and a phosphate group subsite on ribonuclease T1 using substitution mutants at Glu46 and Lys41.

    PubMed

    Jo Chitester, Betty; Walz, Frederick G

    2002-10-01

    pH-Dependent kinetic studies were performed with ribonuclease T1 (RNase T1) and its Glu46Ser, Lys41Met, and Lys41Thr mutants with GpC and polyinosinic acid (PolyI) as substrates. Plots of pH versus log(k(cat)/K(M)) for both substrates had ascending slopes that were significantly greater for RNase T1 compared with Glu46Ser-RNase T1, which indicated that the gamma-carboxyl group of conserved Glu46 must be deprotonated (anionic) for maximal interaction with N1H and N2H of the guanine moiety of GpC or the N1H of the hypoxanthine moiety of PolyI. The involvement of the epsilon -ammonium group of nonconserved Lys41 at the 2p subsite (i.e., for an RNA phosphate group two nucleotide positions 5'-upstream from the active site) was supported by comparisons of Lys41Met-RNase T1 and Lys41Thr-RNase T1 with wild-type. These mutants shared identical catalytic properties (i.e., k(cat) and K(M)) with wild-type using GpC as a substrate. However, k(cat)/K(M) for both were identical with each other but lower than those for wild-type when PolyI was the substrate (PolyI has a phosphate group that could interact at a putative 2p site). The pH dependence of this latter difference can be interpreted as reflecting the loss of the 2p subsite interaction with the wild-type enzyme upon deprotonation of the epsilon -ammonium group of Lys41. Subsite interactions for ribonucleases are shown to mainly increase k(cat) and result in an attenuated pH dependence of k(cat)/K(M). PMID:12234492

  14. Ab initio study of guanine damage by hydroxyl radical.

    PubMed

    Chaban, Galina M; Wang, Dunyou; Huo, Winifred M

    2015-01-15

    Multiconfigurational ab initio methods are used in this study to examine two initial reactions that take place during the OH radical attack of the DNA base guanine: a ring opening reaction and a hydrogen transfer reaction. The same reactions are also studied in the presence of a single water molecule. The ring opening reaction has a moderate barrier height of ∼20-25 kcal/mol that is relatively insensitive to the presence of water. The barrier of the H-transfer reaction, on the other hand, is lowered from ∼50 to ∼22 kcal/mol when one water molecule is added, thus becoming comparable to the barrier height of the ring opening reaction. PMID:25517252

  15. Guanine modification of inhibitory oligonucleotides potentiates their suppressive function.

    PubMed

    Römmler, Franziska; Jurk, Marion; Uhlmann, Eugen; Hammel, Monika; Waldhuber, Anna; Pfeiffer, Lavinia; Wagner, Hermann; Vollmer, Jörg; Miethke, Thomas

    2013-09-15

    Inhibitory TLR7 and/or TLR9 oligonucleotides (inhibitory oligonucleotide [INH-ODN]) are characterized by a phosphorothioate backbone and a CC(T)XXX₃₋₅GGG motif, respectively. INH-ODN 2088 is a prototypic member of this class of INH-ODN and acts as a TLR7 and TLR9 antagonist. It contains a G quadruple that leads to higher order structures by the formation of G tetrads. These structures are unfavorable for the prediction of their pharmacological and immunological behavior. We show in this study that modification of Gs within the G quadruple by 7-deaza-guanine or 7-deaza-2'-O-methyl-guanine avoids higher order structures and improves their inhibitory potential. Whereas TLR9-induced TNF-α secretion of bone marrow-derived macrophages and conventional dendritic cells was equally inhibited by INH-ODN 2088 and G-modified INH-ODNs such as INH-ODN 24888, TLR7-induced TNF-α release and TLR7- and TLR9-induced IL-12p40 release were significantly more impaired by G-modified INH-ODNs. Similarly, the IL-6 release of B cells from wild-type and autoimmune MRL/Mp-lpr/lpr mice was more efficiently impaired by G-modified INH-ODNs. Surprisingly, INH-ODN 2088 stimulated B cells to proliferate when used in higher doses. Finally, in vivo, in wild-type and autoimmune MRL/Mp-lpr/lpr mice, G-modified INH-ODN 24888 was significantly more efficient than unmodified INH-ODN 2088. In summary, G modification allows the development of INH-ODNs with superior inhibitory potency for inflammatory diseases with high medical need such as systemic lupus erythematosus. PMID:23966630

  16. Adenine nucleotides as allosteric effectors of pea seed glutamine synthetase.

    PubMed

    Knight, T J; Langston-Unkefer, P J

    1988-08-15

    The effects of adenine nucleotides on pea seed glutamine synthetase (EC 6.3.1.2) activity were examined as a part of our investigation of the regulation of this octameric plant enzyme. Saturation curves for glutamine synthetase activity versus ATP with ADP as the changing fixed inhibitor were not hyperbolic; greater apparent Vmax values were observed in the presence of added ADP than the Vmax observed in the absence of ADP. Hill plots of data with ADP present curved upward and crossed the plot with no added ADP. The stoichiometry of adenine nucleotide binding to glutamine synthetase was examined. Two molecules of [gamma-32P]ATP were bound per subunit in the presence of methionine sulfoximine. These ATP molecules were bound at an allosteric site and at the active site. One molecule of either [gamma-32P]ATP or [14C]ADP bound per subunit in the absence of methionine sulfoximine; this nucleotide was bound at an allosteric site. ADP and ATP compete for binding at the allosteric site, although ADP was preferred. ADP binding to the allosteric site proceeded in two kinetic phases. A Vmax value of 1.55 units/mg was measured for glutamine synthetase with one ADP tightly bound per enzyme subunit; a Vmax value of 0.8 unit/mg was measured for enzyme with no adenine nucleotide bound at the allosteric site. The enzyme activation caused by the binding of ADP to the allosteric sites was preceded by a lag phase, the length of which was dependent on the ADP concentration. Enzyme incubated in 10 mM ADP bound approximately 4 mol of ADP/mol of native enzyme before activation was observed; the activation was complete when 7-8 mol of ADP were bound per mol of the octameric, native enzyme. The Km for ATP (2 mM) was not changed by ADP binding to the allosteric sites. ADP was a simple competitive inhibitor (Ki = 0.05 mM) of ATP for glutamine synthetase with eight molecules of ADP tightly bound to the allosteric sites of the octamer. Binding of ATP to the allosteric sites led to marked

  17. Characterization of lysine-guanine cross-links upon one-electron oxidation of a guanine-containing oligonucleotide in the presence of a trilysine peptide.

    PubMed

    Perrier, Sandrine; Hau, Jörg; Gasparutto, Didier; Cadet, Jean; Favier, Alain; Ravanat, Jean-Luc

    2006-05-01

    Formation of DNA-protein cross-links involving the initial formation of a guanine radical cation was investigated. For this purpose, riboflavin-mediated photosensitization of a TGT oligonucleotide in aerated aqueous solution in the presence of the KKK tripeptide was performed. We have shown that the nucleophilic addition of the epsilon-amino group of the central lysine residue of KKK to the C8 atom of either the guanine radical cation or its deprotonated form gives rise to the efficient formation of a Nepsilon-(guanin-8-yl)-lysine cross-link. Interestingly, the time course of formation of the above-mentioned cross-link was found to be not linear with the time of irradiation, and its formation rapidly reached a plateau. This is explained by secondary decomposition of the initially generated cross-link which could be further oxidized more efficiently than starting TGT oligonucleotide. One-electron oxidation of the initially generated cross-link was found to produce mainly two diastereomeric cross-links exhibiting a spiroimino-trilysine-dihydantoin structure as inferred from enzymatic digestion, CD, UV, NMR and mass spectrometry measurements. In addition, other minor cross-links, for which formation was favored at acidic pH, were assigned as lysine-guanine adducts in which the modified guanine base exhibits a guanidino-trilysine-iminohydantoin structure. A proposed mechanism for the formation of the different detected oligonucleotide-peptide cross-links is given. The high yield of formation of the detected cross-links strongly suggests that a DNA-protein cross-link involving a lysine residue linked to the C8 position of guanine could be generated in cellular systems if a lysine is located in the close vicinity of a guanine radical cation.

  18. Human Adenovirus Type 2 but Not Adenovirus Type 12 Is Mutagenic at the Hypoxanthine Phosphoribosyltransferase Locus of Cloned Rat Liver Epithelial Cells

    PubMed Central

    Paraskeva, Christos; Roberts, Carl; Biggs, Paul; Gallimore, Phillip H.

    1983-01-01

    Using resistance to the base analog 8-azaguanine as a genetic marker, we showed that adenovirus type 2, but not adenovirus type 12, is mutagenic at the hypoxanthine phosphoribosyltransferase locus of cloned diploid rat liver epithelial cells. Adenovirus type 2 increased the frequency of 8-azaguanine-resistant colonies by up to ninefold over the spontaneous frequency, depending on expression time and virus dose. PMID:6572280

  19. Interaction of sulfanilamide and sulfamethoxazole with bovine serum albumin and adenine: spectroscopic and molecular docking investigations.

    PubMed

    Rajendiran, N; Thulasidhasan, J

    2015-06-01

    Interaction between sulfanilamide (SAM) and sulfamethoxazole (SMO) with BSA and DNA base (adenine) was investigated by UV-visible, fluorescence, cyclic voltammetry and molecular docking studies. Stern-Volmer fluorescence quenching constant (Ka) suggests SMO is more quenched with BSA/adenine than that of SAM. The distance r between donor (BSA/adenine) and acceptor (SAM and SMO) was obtained according to fluorescence resonance energy transfer (FRET). The results showed that hydrophobic forces, electrostatic interactions, and hydrogen bonds played vital roles in the SAM and SMO with BSA/adenine binding interaction. During the interaction, sulfa drugs could insert into the hydrophobic pocket, where the non-radioactive energy transfer from BSA/adenine to sulfa drugs occurred with high possibility. Cyclic voltammetry results suggested that when the drug concentration is increased, the anodic electrode potential deceased. The docking method indicates aniline group is interacted with the BSA molecules. PMID:25754395

  20. Interaction of sulfanilamide and sulfamethoxazole with bovine serum albumin and adenine: Spectroscopic and molecular docking investigations

    NASA Astrophysics Data System (ADS)

    Rajendiran, N.; Thulasidhasan, J.

    2015-06-01

    Interaction between sulfanilamide (SAM) and sulfamethoxazole (SMO) with BSA and DNA base (adenine) was investigated by UV-visible, fluorescence, cyclic voltammetry and molecular docking studies. Stern-Volmer fluorescence quenching constant (Ka) suggests SMO is more quenched with BSA/adenine than that of SAM. The distance r between donor (BSA/adenine) and acceptor (SAM and SMO) was obtained according to fluorescence resonance energy transfer (FRET). The results showed that hydrophobic forces, electrostatic interactions, and hydrogen bonds played vital roles in the SAM and SMO with BSA/adenine binding interaction. During the interaction, sulfa drugs could insert into the hydrophobic pocket, where the non-radioactive energy transfer from BSA/adenine to sulfa drugs occurred with high possibility. Cyclic voltammetry results suggested that when the drug concentration is increased, the anodic electrode potential deceased. The docking method indicates aniline group is interacted with the BSA molecules.

  1. Metabolic engineering of the purine biosynthetic pathway in Corynebacterium glutamicum results in increased intracellular pool sizes of IMP and hypoxanthine

    PubMed Central

    2012-01-01

    Background Purine nucleotides exhibit various functions in cellular metabolism. Besides serving as building blocks for nucleic acid synthesis, they participate in signaling pathways and energy metabolism. Further, IMP and GMP represent industrially relevant biotechnological products used as flavor enhancing additives in food industry. Therefore, this work aimed towards the accumulation of IMP applying targeted genetic engineering of Corynebacterium glutamicum. Results Blocking of the degrading reactions towards AMP and GMP lead to a 45-fold increased intracellular IMP pool of 22 μmol gCDW-1. Deletion of the pgi gene encoding glucose 6-phosphate isomerase in combination with the deactivated AMP and GMP generating reactions, however, resulted in significantly decreased IMP pools (13 μmol gCDW-1). Targeted metabolite profiling of the purine biosynthetic pathway further revealed a metabolite shift towards the formation of the corresponding nucleobase hypoxanthine (102 μmol gCDW-1) derived from IMP degradation. Conclusions The purine biosynthetic pathway is strongly interconnected with various parts of the central metabolism and therefore tightly controlled. However, deleting degrading reactions from IMP to AMP and GMP significantly increased intracellular IMP levels. Due to the complexity of this pathway further degradation from IMP to the corresponding nucleobase drastically increased suggesting additional targets for future strain optimization. PMID:23092390

  2. Association of poly(N-isopropylacrylamide) containing nucleobase multiple hydrogen bonding of adenine for DNA recognition

    NASA Astrophysics Data System (ADS)

    Yang, Hsiu-Wen; Chen, Jem-Kun; Cheng, Chih-Chia; Kuo, Shiao-Wei

    2013-04-01

    In this study we used the poly(N-isopropylacrylamide) (PNIPAAm) as a medium to generate PNIPAAm-adenine supramolecular complexes. A nucleobase-like hydrogen bonding (NLHB) between PNIPAAm and adenine was found that changed the morphology, crystalline structure, and temperature responsiveness of PNIPAAm microgels relatively to the adenine concentrations. With increasing the adenine concentration, the PNIPAAm-adenine supramolecular complexes gradually altered their morphologies from microgel particles to thin film structures and suppressed the thermodynamical coil-to-globule transition of PNIPAAm because of the NLHB existed between the PNIPAAm amide and ester groups and the adenine amide groups (Cdbnd O⋯Hsbnd N and Nsbnd H⋯Nsbnd R), verified by FTIR spectral analysis. NLHB was also diverse and extensive upon increasing the temperature; therefore, the thermoresponsive behavior of the complexes was altered with the NLBH intensity, evaluated by the inter-association equilibrium constant (Ka) above and below their LCST. Therefore, PNIPAAm can be as a medium to recognize adenine in various concentrations, which could potentially be applied in DNA recognition.

  3. Renoprotective effect of the xanthine oxidoreductase inhibitor topiroxostat on adenine-induced renal injury.

    PubMed

    Kamijo-Ikemori, Atsuko; Sugaya, Takeshi; Hibi, Chihiro; Nakamura, Takashi; Murase, Takayo; Oikawa, Tsuyoshi; Hoshino, Seiko; Hisamichi, Mikako; Hirata, Kazuaki; Kimura, Kenjiro; Shibagaki, Yugo

    2016-06-01

    The aim of the present study was to reveal the effect of a xanthine oxidoreductase (XOR) inhibitor, topiroxostat (Top), compared with another inhibitor, febuxostat (Feb), in an adenine-induced renal injury model. We used human liver-type fatty acid-binding protein (L-FABP) chromosomal transgenic mice, and urinary L-FABP, a biomarker of tubulointerstitial damage, was used to evaluate tubulointerstitial damage. Male transgenic mice (n = 24) were fed a 0.2% (wt/wt) adenine-containing diet. Two weeks after the start of this diet, renal dysfunction was confirmed, and the mice were divided into the following four groups: the adenine group was given only the diet containing adenine, and the Feb, high-dose Top (Top-H), and low-dose Top (Top-L) groups were given diets containing Feb (3 mg/kg), Top-H (3 mg/kg), and Top-L (1 mg/kg) in addition to adenine for another 2 wk. After withdrawal of the adenine diet, each medication was continued for 2 wk. Serum creatinine levels, the degree of macrophage infiltration, tubulointerstitial damage, renal fibrosis, urinary 15-F2t-isoprostane levels, and renal XOR activity were significantly attenuated in the kidneys of the Feb, Top-L, and Top-H groups compared with the adenine group. Serum creatinine levels in the Top-L and Top-H groups as well as renal XOR in the Top-H group were significantly lower than those in the Feb group. Urinary excretion of L-FABP in both the Top-H and Top-L groups was significantly lower than in the adenine and Feb groups. In conclusion, Top attenuated renal damage in an adenine-induced renal injury model. PMID:27029427

  4. Renoprotective effect of the xanthine oxidoreductase inhibitor topiroxostat on adenine-induced renal injury.

    PubMed

    Kamijo-Ikemori, Atsuko; Sugaya, Takeshi; Hibi, Chihiro; Nakamura, Takashi; Murase, Takayo; Oikawa, Tsuyoshi; Hoshino, Seiko; Hisamichi, Mikako; Hirata, Kazuaki; Kimura, Kenjiro; Shibagaki, Yugo

    2016-06-01

    The aim of the present study was to reveal the effect of a xanthine oxidoreductase (XOR) inhibitor, topiroxostat (Top), compared with another inhibitor, febuxostat (Feb), in an adenine-induced renal injury model. We used human liver-type fatty acid-binding protein (L-FABP) chromosomal transgenic mice, and urinary L-FABP, a biomarker of tubulointerstitial damage, was used to evaluate tubulointerstitial damage. Male transgenic mice (n = 24) were fed a 0.2% (wt/wt) adenine-containing diet. Two weeks after the start of this diet, renal dysfunction was confirmed, and the mice were divided into the following four groups: the adenine group was given only the diet containing adenine, and the Feb, high-dose Top (Top-H), and low-dose Top (Top-L) groups were given diets containing Feb (3 mg/kg), Top-H (3 mg/kg), and Top-L (1 mg/kg) in addition to adenine for another 2 wk. After withdrawal of the adenine diet, each medication was continued for 2 wk. Serum creatinine levels, the degree of macrophage infiltration, tubulointerstitial damage, renal fibrosis, urinary 15-F2t-isoprostane levels, and renal XOR activity were significantly attenuated in the kidneys of the Feb, Top-L, and Top-H groups compared with the adenine group. Serum creatinine levels in the Top-L and Top-H groups as well as renal XOR in the Top-H group were significantly lower than those in the Feb group. Urinary excretion of L-FABP in both the Top-H and Top-L groups was significantly lower than in the adenine and Feb groups. In conclusion, Top attenuated renal damage in an adenine-induced renal injury model.

  5. Guanine nucleotides stimulate hydrolysis of phosphatidyl inositol bis phosphate in human myelin membranes

    SciTech Connect

    Boulias, C.; Moscarello, M.A. )

    1989-07-14

    Phosphodiesterase activity was stimulated in myelin membranes in the presence of guanine nucleotide analogues. This activity was reduced in myelin membranes which had been adenosine diphosphate ribosylated in the presence of cholera toxin which ADP-ribosylated three proteins of Mr 46,000, 43,000 and 18,500. Aluminum fluoride treatment of myelin had the same stimulatory effects on phosphodiesterase activity as did the guanine nucleotides.

  6. Fluorescence resonance energy transfer in the studies of guanine quadruplexes.

    PubMed

    Juskowiak, Bernard; Takenaka, Shigeori

    2006-01-01

    A guanine (G)-quadruplex DNA motif has recently emerged as a biologically important structure that is believed to interfere with telomere maintenance by telomerase. G-quadruplexes exhibit four-stranded structures containing one or more nucleic acid strands with central channel able to accommodate metal cations. Coordination of certain metal cations stabilizes G-quadruplex as with some promising small organic molecules that promote the formation and/or stabilization of G-quadruplex. Among many techniques employed to explore properties of G-quadruplexes, the fluorescence resonance energy transfer (FRET) technique has been recognized as a powerful tool to study G-quadruplex formation. This review summarizes the current developments in the uses of FRET technique for the fundamental structural investigations and its practical applications. Applications include FRET-based selection of efficient quadruplex-binding ligands, design of a nanomolecular machine, and a molecular aptamer beacon for protein recognition. We also describe a technique for detection of potassium ions in aqueous solution with the use of quadruplex-based sensor (potassium-sensing oligonucleotide).

  7. Fluorescence enhancement of DNA-silver nanoclusters from guanine proximity

    SciTech Connect

    Yeh, Hsin-chih; Sharma, Jaswinder; Yoo, Hyojong; Martinez, Jennifer S

    2010-01-01

    Oligonucleotide-templated, silver nanoclusters (DNA/Ag NCs) are a versatile set of fluorophores and have already been used for live cell imaging, detection of specific metal ions, and single-nucleotide variation identification. Compared to commonly used organic dyes, these fluorescent nanoclusters have much better photostability and are often a few times brighter. Owing to their small size, simple preparation, and biocompatibility (i.e. made of nontoxic metals), DNA/Ag NCs should find more applications in biological imaging and chemical detection in the years to come. While clearly promising as new fluorophores, DNA/Ag NCs possess a unique and poorly understood dynamic process not shared by organic dyes or photoluminescent nanocrystals - the conversion among different NC species due to silver oxidation/reduction or NC regrouping. While this environmental sensitivity can be viewed as a drawback, in the appropriate context, it can be used as a sensor or reporter. Often reversible, conversions among different NC species have been found to depend upon a number of factors, including time, temperature, oxygen and salt content. In this communication, we report significant fluorescence enhancement of DNA/Ag NCs via interactions with guanine-rich DNA sequences. Moreover, we demonstrated this property can be used for sensitive detection of specific target DNA from a human oncogene (i.e. Braf gene).

  8. Gold(I)-triphenylphosphine complexes with hypoxanthine-derived ligands: in vitro evaluations of anticancer and anti-inflammatory activities.

    PubMed

    Křikavová, Radka; Hošek, Jan; Vančo, Ján; Hutyra, Jakub; Dvořák, Zdeněk; Trávníček, Zdeněk

    2014-01-01

    A series of gold(I) complexes involving triphenylphosphine (PPh3) and one N-donor ligand derived from deprotonated mono- or disubstituted hypoxanthine (HLn) of the general composition [Au(Ln)(PPh3)] (1-9) is reported. The complexes were thoroughly characterized, including multinuclear high resolution NMR spectroscopy as well as single crystal X-ray analysis (for complexes 1 and 3). The complexes were screened for their in vitro cytotoxicity against human cancer cell lines MCF7 (breast carcinoma), HOS (osteosarcoma) and THP-1 (monocytic leukaemia), which identified the complexes 4-6 as the most promising representatives, who antiproliferative activity was further tested against A549 (lung adenocarcinoma), G-361 (melanoma), HeLa (cervical cancer), A2780 (ovarian carcinoma), A2780R (ovarian carcinoma resistant to cisplatin), 22Rv1 (prostate cancer) cell lines. Complexes 4-6 showed a significantly higher in vitro anticancer effect against the employed cancer cells, except for G-361, as compared with the commercially used anticancer drug cisplatin, with IC50 ≈ 1-30 µM. Anti-inflammatory activity was evaluated in vitro by the assessment of the ability of the complexes to modulate secretion of the pro-inflammatory cytokines, i.e. tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), in the lipopolysaccharide-activated macrophage-like THP-1 cell model. The results of this study identified the complexes as auspicious anti-inflammatory agents with similar or better activity as compared with the clinically applied gold-based antiarthritic drug Auranofin. In an effort to explore the possible mechanisms responsible for the biological effect, the products of interactions of selected complexes with sulfur-containing biomolecules (L-cysteine and reduced glutathione) were studied by means of the mass-spectrometry study. PMID:25226034

  9. Gold(I)-Triphenylphosphine Complexes with Hypoxanthine-Derived Ligands: In Vitro Evaluations of Anticancer and Anti-Inflammatory Activities

    PubMed Central

    Křikavová, Radka; Hošek, Jan; Vančo, Ján; Hutyra, Jakub; Dvořák, Zdeněk; Trávníček, Zdeněk

    2014-01-01

    A series of gold(I) complexes involving triphenylphosphine (PPh3) and one N-donor ligand derived from deprotonated mono- or disubstituted hypoxanthine (HLn) of the general composition [Au(Ln)(PPh3)] (1–9) is reported. The complexes were thoroughly characterized, including multinuclear high resolution NMR spectroscopy as well as single crystal X-ray analysis (for complexes 1 and 3). The complexes were screened for their in vitro cytotoxicity against human cancer cell lines MCF7 (breast carcinoma), HOS (osteosarcoma) and THP-1 (monocytic leukaemia), which identified the complexes 4–6 as the most promising representatives, who antiproliferative activity was further tested against A549 (lung adenocarcinoma), G-361 (melanoma), HeLa (cervical cancer), A2780 (ovarian carcinoma), A2780R (ovarian carcinoma resistant to cisplatin), 22Rv1 (prostate cancer) cell lines. Complexes 4–6 showed a significantly higher in vitro anticancer effect against the employed cancer cells, except for G-361, as compared with the commercially used anticancer drug cisplatin, with IC50 ≈ 1–30 µM. Anti-inflammatory activity was evaluated in vitro by the assessment of the ability of the complexes to modulate secretion of the pro-inflammatory cytokines, i.e. tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), in the lipopolysaccharide-activated macrophage-like THP-1 cell model. The results of this study identified the complexes as auspicious anti-inflammatory agents with similar or better activity as compared with the clinically applied gold-based antiarthritic drug Auranofin. In an effort to explore the possible mechanisms responsible for the biological effect, the products of interactions of selected complexes with sulfur-containing biomolecules (L-cysteine and reduced glutathione) were studied by means of the mass-spectrometry study. PMID:25226034

  10. N6-methyl-adenine: an epigenetic signal for DNA-protein interactions.

    PubMed

    Wion, Didier; Casadesús, Josep

    2006-03-01

    N(6)-methyl-adenine is found in the genomes of bacteria, archaea, protists and fungi. Most bacterial DNA adenine methyltransferases are part of restriction-modification systems. Certain groups of Proteobacteria also harbour solitary DNA adenine methyltransferases that provide signals for DNA-protein interactions. In gamma-proteobacteria, Dam methylation regulates chromosome replication, nucleoid segregation, DNA repair, transposition of insertion elements and transcription of specific genes. In Salmonella, Haemophilus, Yersinia and Vibrio species and in pathogenic Escherichia coli, Dam methylation is required for virulence. In alpha-proteobacteria, CcrM methylation regulates the cell cycle in Caulobacter, Rhizobium and Agrobacterium, and has a role in Brucella abortus infection.

  11. Adenine Phosphoribosyltransferase in Plant Tissues: Some Effects of Kinetin on Enzymic Activity 1

    PubMed Central

    Nicholls, P. B.; Murray, A. W.

    1968-01-01

    Adenine phosphoribosyltransferase activity was measured in extracts of soybean (Glycine max var. Acme) callus and of senescing barley leaves (Hordeum distichon c.v. Prior). The enzyme from soybean callus had Michaelis constants for adenine and 5-phosphoribosyl pyrophosphate of 1.5 and 7.5 μm respectively and was inhibited by AMP and stimulated by ATP. The presence of kinetin was found to considerably increase the activity of adenine phosphoribosyltransferase in extracts of soybean callus and senescing barley leaves. PMID:16656820

  12. DNA methylation on N6-adenine in C. elegans

    PubMed Central

    Greer, Eric Lieberman; Blanco, Mario Andres; Gu, Lei; Sendinc, Erdem; Liu, Jianzhao; Aristizábal-Corrales, David; Hsu, Chih-Hung; Aravind, L.; He, Chuan; Shi, Yang

    2015-01-01

    Summary In mammalian cells, DNA methylation on the 5th position of cytosine (5mC) plays an important role as an epigenetic mark. However, DNA methylation was considered to be absent in C. elegans because of the lack of detectable 5mC as well as homologs of the cytosine DNA methyltransferases. Here, using multiple approaches, we demonstrate the presence of adenine N6-methylation (6mA) in C. elegans DNA. We further demonstrate that this modification increases trans-generationally in a paradigm of epigenetic inheritance. Importantly, we identify a DNA demethylase, NMAD-1, and a potential DNA methyltransferase, DAMT-1, which regulate 6mA levels and crosstalk between methylation of histone H3K4me2 and 6mA, and control the epigenetic inheritance of phenotypes associated with the loss of the H3K4me2 demethylase spr-5. Together, these data identify a DNA modification in C. elegans and raise the exciting possibility that 6mA may be a carrier of heritable epigenetic information in eukaryotes. PMID:25936839

  13. Spin-dependent electron transport in zinc- and manganese-doped adenine molecules

    SciTech Connect

    Simchi, Hamidreza; Esmaeilzadeh, Mahdi Mazidabadi, Hossein

    2014-01-28

    The spin-dependent electron transport properties of zinc- and manganese-doped adenine molecules connected to zigzag graphene leads are studied in the zero bias regime using the non-equilibrium Green's function method. The conductance of the adenine molecule increased and became spin-dependent when a zinc or manganese atom was doped into the molecules. The effects of a transverse electric field on the spin-polarization of the transmitted electrons were investigated and the spin-polarization was controlled by changing the transverse electric field. Under the presence of a transverse electric field, both the zinc- and manganese-doped adenine molecules acted as spin-filters. The maximum spin-polarization of the manganese-doped adenine molecule was greater than the molecule doped with zinc.

  14. Identification of a mitochondrial ATP synthase-adenine nucleotide translocator complex in Leishmania.

    PubMed

    Detke, Siegfried; Elsabrouty, Rania

    2008-01-01

    The ATP synthasome is a macromolecular complex consisting of ATP synthase, adenine nucleotide translocator and phosphate carrier. To determine if this complex is evolutionary old or young, we searched for its presence in Leishmania, a mitochondria containing protozoan which evolved from the main eukaryote line soon after eukaryotes split from prokaryotes. Sucrose gradient centrifugation showed that the distribution of ANT among the fractions coincided with the distribution of ATP synthase. In addition, ATP synthase co-precipitated with FLAG tagged and wild type adenine nucleotide translocator isolated with anti FLAG and anti adenine nucleotide translocator antibodies, respectively. These data indicate that the adenine nucleotide translocator interacted with the ATP synthase to form a stable structure referred to as the ATP synthasome. The presence of the ATP synthasome in Leishmania, an organism branching off the main line of eukaryotes early in the development of eukaryotes, as well as in higher eukaryotes suggests that the ATP synthasome is a phylogenetically ancient structure. PMID:17920025

  15. RasGRP Ras guanine nucleotide exchange factors in cancer

    PubMed Central

    Ksionda, Olga; Limnander, Andre

    2014-01-01

    Summary RasGRP proteins are activators of Ras and other related small GTPases by the virtue of functioning as guanine nucleotide exchange factors (GEFs). In vertebrates, four RasGRP family members have been described. RasGRP-1 through −4 share many structural domains but there are also subtle differences between each of the different family members. Whereas SOS RasGEFs are ubiquitously expressed, RasGRP proteins are expressed in distinct patterns, such as in different cells of the hematopoietic system and in the brain. Most studies have concentrated on the role of RasGRP proteins in the development and function of immune cell types because of the predominant RasGRP expression profiles in these cells and the immune phenotypes of mice deficient for Rasgrp genes. However, more recent studies demonstrate that RasGRPs also play an important role in tumorigenesis. Examples are skin- and hematological-cancers but also solid malignancies such as melanoma or prostate cancer. These novel studies bring up many new and unanswered questions related to the molecular mechanism of RasGRP-driven oncogenesis, such as new receptor systems that RasGRP appears to respond to as well as regulatory mechanism for RasGRP expression that appear to be perturbed in these cancers. Here we will review some of the known aspects of RasGRP biology in lymphocytes and will discuss the exciting new notion that RasGRP Ras exchange factors play a role in oncogenesis downstream of various growth factor receptors. PMID:24744772

  16. Nicotinamide adenine dinucleotide-dependent and nicotinamide adenine dinucleotide-independent lactate dehydrogenases in homofermentative and heterofermentative lactic acid bacteria.

    PubMed

    Doelle, H W

    1971-12-01

    Three homofermentative (Lactobacillus plantarum B38, L. plantarum B33, Pediococcus pentosaceus B30) and three heterofermentative (Leuconostoc mesenteroides 39, L. oenos B70, Lactobacillus brevis) lactic acid bacteria were examined for the presence or absence of nicotinamide adenine dinucleotide (NAD)-dependent and NAD-independent d- and l-lactate dehydrogenases. Two of the six strains investigated, P. pentosaceus and L. oenos, did not exhibit an NAD-independent enzyme activity capable of reducing dichlorophenol indophenol. The pH optima of the lactic dehydrogenases were determined. The NAD-dependent enzymes from homofermentative strains exhibited optima at pH 7.8 to 8.8, whereas values from 9.0 to 10.0 were noted for these enzymes from heterofermentative organisms. The optima for the NAD-independent enzymes were between 5.8 and 6.6. The apparent Michaelis-Menten constants determined for both NAD and the substrates demonstrated the existence of a greater affinity for d- than l-lactic acid. A comparison of the specific NAD-dependent and NAD-independent lactate dehydrogenase activities revealed a direct correlation of the d/l ratios of these activities with the type of lactic acid produced during the growth of the organism.

  17. The crystal structure of a parallel-stranded guanine tetraplex at 0.95 A resolution.

    PubMed

    Phillips, K; Dauter, Z; Murchie, A I; Lilley, D M; Luisi, B

    1997-10-17

    In both DNA and RNA, stretches of guanine bases can form stable four-stranded helices in the presence of sodium or potassium ions. Sequences with a propensity to form guanine tetraplexes have been found in chromosomal telomers, immunoglobulin switch regions, and recombination sites. We report the crystal structure at 0.95 A resolution of a parallel-stranded tetraplex formed by the hexanucleotide d(TG4T) in the presence of sodium ions. The four strands form a right-handed helix that is stabilized by hydrogen-bonding tetrads of co-planar guanine bases. Well-resolved sodium ions are found between and, at defined points, within tetrad planes and are coordinated with the guanine O6 groups. Nine calcium ions have been identified, each with a well-defined hepta-coordinate hydration shell. Hydrogen-bonding water patterns are observed within the tetraplex's helical grooves and clustered about the phosphate groups. Water molecules in the groove may form a hydrogen bond with the O4', and may affect the stacking behavior of guanine. Two distinct stacking arrangements are noted for the guanine tetrads. The thymine bases do not contribute to the four-stranded conformation, but instead stack to stabilize the crystal lattice. We present evidence that the sugar conformation is strained and propose that this originates from forces that optimize guanine base stacking. Discrete conformational disorder is observed at several places in the phosphodiester backbone, which results from a simple crankshaft rotation that requires no net change in the sugar conformation. PMID:9367755

  18. Novel riboswitch ligand analogs as selective inhibitors of guanine-related metabolic pathways.

    PubMed

    Mulhbacher, Jérôme; Brouillette, Eric; Allard, Marianne; Fortier, Louis-Charles; Malouin, François; Lafontaine, Daniel A

    2010-04-01

    Riboswitches are regulatory elements modulating gene expression in response to specific metabolite binding. It has been recently reported that riboswitch agonists may exhibit antimicrobial properties by binding to the riboswitch domain. Guanine riboswitches are involved in the regulation of transport and biosynthesis of purine metabolites, which are critical for the nucleotides cellular pool. Upon guanine binding, these riboswitches stabilize a 5'-untranslated mRNA structure that causes transcription attenuation of the downstream open reading frame. In principle, any agonistic compound targeting a guanine riboswitch could cause gene repression even when the cell is starved for guanine. Antibiotics binding to riboswitches provide novel antimicrobial compounds that can be rationally designed from riboswitch crystal structures. Using this, we have identified a pyrimidine compound (PC1) binding guanine riboswitches that shows bactericidal activity against a subgroup of bacterial species including well-known nosocomial pathogens. This selective bacterial killing is only achieved when guaA, a gene coding for a GMP synthetase, is under the control of the riboswitch. Among the bacterial strains tested, several clinical strains exhibiting multiple drug resistance were inhibited suggesting that PC1 targets a different metabolic pathway. As a proof of principle, we have used a mouse model to show a direct correlation between the administration of PC1 and the reduction of Staphylococcus aureus infection in mammary glands. This work establishes the possibility of using existing structural knowledge to design novel guanine riboswitch-targeting antibiotics as powerful and selective antimicrobial compounds. Particularly, the finding of this new guanine riboswitch target is crucial as community-acquired bacterial infections have recently started to emerge. PMID:20421948

  19. Experimental and first-principles study of guanine adsorption on ZnO clusters.

    PubMed

    Chandraboss, V L; Karthikeyan, B; Senthilvelan, S

    2014-11-14

    Theoretical investigation of guanine, DNA base adsorption on the ZnO model clusters, viz., Zn2O2, Zn3O3, Zn4O4 ring (R) and Zn4O4 wurtzite (W) in terms of geometry, binding site, binding energy (EB), energy gap (Eg), electronic and spectral properties were studied by a density functional theory (DFT) method. The guanine adsorption on the ZnO (G-ZnO) clusters is modeled by the B3LYP/LanL2DZ method. The calculated binding energy (EB) and energy gap (Eg) of the guanine molecule are highly dependent on the nature of the cluster size and vary with the size of the clusters. Physisorption proceeded via formation of the NZn bond between guanine and the active Zn(2+) site on ZnO. The HOMO-LUMO energies show that charge transfer occurs in the G-ZnO clusters, from ZnO to guanine to better understand the interaction. The Mulliken charges are computed. The electronic properties of ZnO and G-ZnO clusters were compared with different basis sets (B3LYP/6-31G, B3LYP/6-311G, MP2/6-31G and MP2/LanL2DZ). Experimental information like microscopic and spectroscopic evidence is also included for understanding the guanine-ZnO interactions. The G-ZnO composite was prepared by a precipitation method and characterized by SEM with EDX, FT-IR and FT-RAMAN analysis. The interaction of guanine with ZnO nanoparticles was observed by UV-vis spectroscopy. The experimental results are compared with the DFT results in the light of these new insights. PMID:25266048

  20. Benchmark Thermochemistry for Biologically Relevant Adenine and Cytosine. A Combined Experimental and Theoretical Study.

    PubMed

    Emel'yanenko, Vladimir N; Zaitsau, Dzmitry H; Shoifet, Evgeni; Meurer, Florian; Verevkin, Sergey P; Schick, Christoph; Held, Christoph

    2015-09-17

    The thermochemical properties available in the literature for adenine and cytosine are in disarray. A new condensed phase standard (p° = 0.1 MPa) molar enthalpy of formation at T = 298.15 K was measured by using combustion calorimetry. New molar enthalpies of sublimation were derived from the temperature dependence of vapor pressure measured by transpiration and by the quarz-crystal microbalance technique. The heat capacities of crystalline adenine and cytosine were measured by temperature-modulated DSC. Thermodynamic data on adenine and cytosine available in the literature were collected, evaluated, and combined with our experimental results. Thus, the evaluated collection of data together with the new experimental results reported here has helped to resolve contradictions in the available enthalpies of formation. A set of reliable thermochemical data is recommended for adenine and cytosine for further thermochemical calculations. Quantum-chemical calculations of the gas phase molar enthalpies of formation of adenine and cytosine have been performed by using the G4 method and results were in excellent agreement with the recommended experimental data. The standard molar entropies of formation and the standard molar Gibbs functions of formation in crystal and gas state have been calculated. Experimental vapor-pressure data measured in this work were used to estimate pure-component PC-SAFT parameters. This allowed modeling solubility of adenine and cytosine in water over the temperature interval 278-310 K. PMID:26317826

  1. Benchmark Thermochemistry for Biologically Relevant Adenine and Cytosine. A Combined Experimental and Theoretical Study.

    PubMed

    Emel'yanenko, Vladimir N; Zaitsau, Dzmitry H; Shoifet, Evgeni; Meurer, Florian; Verevkin, Sergey P; Schick, Christoph; Held, Christoph

    2015-09-17

    The thermochemical properties available in the literature for adenine and cytosine are in disarray. A new condensed phase standard (p° = 0.1 MPa) molar enthalpy of formation at T = 298.15 K was measured by using combustion calorimetry. New molar enthalpies of sublimation were derived from the temperature dependence of vapor pressure measured by transpiration and by the quarz-crystal microbalance technique. The heat capacities of crystalline adenine and cytosine were measured by temperature-modulated DSC. Thermodynamic data on adenine and cytosine available in the literature were collected, evaluated, and combined with our experimental results. Thus, the evaluated collection of data together with the new experimental results reported here has helped to resolve contradictions in the available enthalpies of formation. A set of reliable thermochemical data is recommended for adenine and cytosine for further thermochemical calculations. Quantum-chemical calculations of the gas phase molar enthalpies of formation of adenine and cytosine have been performed by using the G4 method and results were in excellent agreement with the recommended experimental data. The standard molar entropies of formation and the standard molar Gibbs functions of formation in crystal and gas state have been calculated. Experimental vapor-pressure data measured in this work were used to estimate pure-component PC-SAFT parameters. This allowed modeling solubility of adenine and cytosine in water over the temperature interval 278-310 K.

  2. Labeling of mitochondrial adenine nucleotides of bovine sperm

    SciTech Connect

    Cheetham, J.; Lardy, H.A.

    1986-05-01

    Incorporation of /sup 32/P/sub i/ into the adenine nucleotide pool of intact bovine spermatozoa utilizing endogenous substrates results in a specific activity (S.A.) ratio ATP/ADP of 0.3 to 0.5, suggesting compartmentation of nucleotide pools or a pathway for phosphorylation of AMP in addition to the myokinase reaction. Incubation of filipin-permeabilized cells with pyruvate, acetylcarnitine, or ..cap alpha..-ketoglutarate (..cap alpha..KG) resulted in ATP-ADP S.A. ratios of 0.5, 0.8, and 1.6, respectively, for mitochondrial nucleotides. However, when malate was included with pyruvate or acetylcarnitine, the ATP/ADP S.A. ratio increased by 400% to 2.0 for pyruvate/malate and by 290% to 2.8 for acetylcarnitine/malate, while the ATP/ADP ratio increased by less than 100% in both cases. These results may indicate that under conditions of limited flux through the citric acid cycle a pathway for phosphorylation of AMP from a precursor other than ATP exists or that ATP is compartmented within the mitochondrion. In the presence of uncoupler and oligomycin with ..cap alpha..KG, pyruvate/malate, or acetylcarnitine/malate, /sup 32/P/sub i/ is incorporated primarily into ATP, resulting in an ATP/ADP S.A. ratio of 4.0 for ..cap alpha..KG, 2.7 for pyruvate/malate, and 2.8 for acetylcarnitine/malate. These data are consistent with phosphorylation of ADP during substrate level phosphorylation in the citric acid cycle.

  3. Phenotype and Genotype Characterization of Adenine Phosphoribosyltransferase Deficiency

    PubMed Central

    Bollée, Guillaume; Dollinger, Cécile; Boutaud, Lucile; Guillemot, Delphine; Bensman, Albert; Harambat, Jérôme; Deteix, Patrice; Daudon, Michel; Knebelmann, Bertrand

    2010-01-01

    Adenine phosphoribosyltransferase (APRT) deficiency is a rare autosomal recessive disorder causing 2,8-dihydroxyadenine stones and renal failure secondary to intratubular crystalline precipitation. Little is known regarding the clinical presentation of APRT deficiency, especially in the white population. We retrospectively reviewed all 53 cases of APRT deficiency (from 43 families) identified at a single institution between 1978 and 2009. The median age at diagnosis was 36.3 years (range 0.5 to 78.0 years). In many patients, a several-year delay separated the onset of symptoms and diagnosis. Of the 40 patients from 33 families with full clinical data available, 14 (35%) had decreased renal function at diagnosis. Diagnosis occurred in six (15%) patients after reaching ESRD, with five diagnoses made at the time of disease recurrence in a renal allograft. Eight (20%) patients reached ESRD during a median follow-up of 74 months. Thirty-one families underwent APRT sequencing, which identified 54 (87%) mutant alleles on the 62 chromosomes analyzed. We identified 18 distinct mutations. A single T insertion in a splice donor site in intron 4 (IVS4 + 2insT), which produces a truncated protein, accounted for 40.3% of the mutations. We detected the IVS4 + 2insT mutation in two (0.98%) of 204 chromosomes of healthy newborns. This report, which is the largest published series of APRT deficiency to date, highlights the underdiagnosis and potential severity of this disease. Early diagnosis is crucial for initiation of effective treatment with allopurinol and for prevention of renal complications. PMID:20150536

  4. Highly sensitive and selective fluorescent assay for guanine based on the Cu2 +/eosin Y system

    NASA Astrophysics Data System (ADS)

    Shi, Huimin; Cui, Yi; Gong, Yijun; Feng, Suling

    2016-05-01

    A fluorescent probe has been developed for the determination of guanine based on the quenched fluorescence signal of Cu2 +/eosin Y. Cu2 + interacted with eosin Y, resulting in fluorescence quenching. Subsequently, with the addition of guanine to the Cu2 +/eosin Y system, guanine reacted with Cu2 + to form 1:1 chelate cation, which further combined with eosin Y to form a 1:1 ternary ion-association complex by electrostatic attraction and hydrophobic interaction, resulting in significant decrease of the fluorescence. Hence, a fluorescent system was constructed for rapid, sensitive and selective detection of guanine with a detection limit as low as 1.5 nmol L- 1 and a linear range of 3.3-116 nmol L- 1. The method has been applied satisfactorily to the determination of guanine in DNA and urine samples with the recoveries from 98.7% to 105%. This study significantly expands the realm of application of ternary ion-association complex in fluorescence probe.

  5. Theoretical Study of the Photophysics of 8-Vinylguanine, an Isomorphic Fluorescent Analogue of Guanine.

    PubMed

    Kochman, Michał A; Pola, Martina; Miller, R J Dwayne

    2016-08-11

    Paving the way for the application of the algebraic-diagrammatic construction scheme of second-order (ADC(2)) to systems based on the guanine chromophore, we demonstrate the this excited-state electronic structure method provides a realistic description of the photochemistry of 9H-guanine, in close agreement with the benchmark provided by the CASPT2 method. We then proceed to apply the ADC(2) method to the photochemistry of 8-vinylguanine (8vG), a minimally modified analogue of guanine which, unlike the naturally occurring nucleobase, displays intense fluorescence, indicative of a much longer-lived excited electronic state. The emissive electronic state of 8vG is identified as an ππ*-type intramolecular charge transfer (ICT) state, in which a charge of roughly -0.2 e is transferred from the guanine moiety onto the vinyl substituent. The main radiationless deactivation pathway competing with fluorescence is predicted to involve the molecule leaving the minimum on the ICT ππ* state, and reaching a region of the S1 adiabatic state where it resembles the La ππ* state of unmodified 9H-guanine. The topology of the La ππ* region of the S1 state favors subsequent internal conversion at a crossing seam with the ground electronic state. The sensitivity of this process to environment polarity may explain the experimentally observed fluorescence quenching of 8vG upon incorporation in single- and double-stranded DNA. PMID:27427772

  6. Regulation of IMP dehydrogenase gene expression by its end products, guanine nucleotides.

    PubMed Central

    Glesne, D A; Collart, F R; Huberman, E

    1991-01-01

    To study the regulation of IMP dehydrogenase (IMPDH), the rate-limiting enzyme of guanine nucleotide biosynthesis, we examined the effects of nucleosides, nucleotides, nucleotide analogs, or the IMPDH inhibitor mycophenolic acid (MPA) on the steady-state levels of IMPDH mRNA. The results indicated that IMPDH gene expression is regulated inversely by the intracellular level of guanine ribonucleotides. We have shown that treatment with guanosine increased the level of cellular guanine ribonucleotides and subsequently reduced IMPDH steady-state mRNA levels in a time- and dose-dependent manner. Conversely, MPA treatment diminished the level of guanine ribonucleotides and increased IMPDH mRNA levels. Both of these effects on the steady-state level of IMPDH mRNA could be negated by cotreatment with guanosine and MPA. The down regulation of IMPDH gene expression by guanosine or its up regulation by MPA was not due to major changes in transcriptional initiation and elongation or mRNA stability in the cytoplasm but rather was due to alterations in the levels of the IMPDH mRNA in the nucleus. These results suggest that IMPDH gene expression is regulated by a posttranscriptional, nuclear event in response to fluctuations in the intracellular level of guanine ribonucleotides. Images PMID:1717828

  7. Simultaneous assay of glucose, lactate, L-glutamate and hypoxanthine levels in a rat striatum using enzyme electrodes based on neutral red-doped silica nanoparticles.

    PubMed

    Zhang, Fen-Fen; Wan, Qiao; Li, Chen-Xin; Wang, Xiao-Li; Zhu, Zi-Qiang; Xian, Yue-Zhong; Jin, Li-Tong; Yamamoto, Katsunobu

    2004-10-01

    An electrochemical method suitable for the simultaneous measurement of cerebral glucose, lactate, L-glutamate and hypoxanthine concentrations from in vivo microdialysis sampling has been successfully performed for the first time using a neutral red-doped silica (NRDS) nanoparticle-derived enzyme sensor system. These uniform NRDS nanoparticles (about 50 +/- 3 nm) were prepared by a water-in-oil (W/O) microemulsion method, and characterized by a TEM technique. The neutral red-doped interior maintained its high electron-activity, while the exterior nano-silica surface prevented the mediator from leaching out into the aqueous solution, and showed high biocompability. These nanoparticles were then mixing with the glucose oxidase (GOD), lactate oxidase (LOD), L-glutamate oxidase (L-GLOD) or xanthine oxidase (XOD), and immobilized on four glassy carbon electrodes, respectively. A thin Nafion film was coated on the enzyme layer to prevent interference from molecules such as ascorbic acid and uric acid in the dialysate. The high sensitivity of the NRDS modified enzyme electrode system enables the simultaneous monitoring of trace levels of glucose, L-glutamate, lactate and hypoxanthine in diluted dialysate samples from a rat striatum. PMID:15517210

  8. Dissection of the PHO pathway in Schizosaccharomyces pombe using epistasis and the alternate repressor adenine.

    PubMed

    Estill, Molly; Kerwin-Iosue, Christine L; Wykoff, Dennis D

    2015-05-01

    In Saccharomyces cerevisiae, intracellular phosphate levels are maintained by the PHO pathway, activation of which is assayed by increased phosphatase activity. The PHO pathway of Schizosaccharomyces pombe upregulates phosphatase activity (encoded by pho1 (+)) during low extracellular phosphate levels, but the underlying mechanism is poorly understood. We utilized an alternate repressor of pho1 (+) expression (adenine supplementation) along with epistasis analysis to develop a model of how S. pombe PHO pathway components interact. Analyzing Pho1 activity in S. pombe PHO pathway deletion mutants during adenine starvation, we observed most mutants with a phosphatase defect in phosphate starvation also had a defect in adenine starvation. Pho7, a transcription factor in the PHO pathway, is necessary for an adenine starvation-mediated increase in Pho1 activity. Comparing adenine starvation to phosphate starvation, there are differences in the degree to which individual mutants regulate the two responses. Through epistasis studies, we identified two positive regulatory arms and one repressive arm of the PHO pathway. PKA activation is a positive regulator of Pho1 activity under both environmental conditions and is critical for transducing adenine concentrations in the cell. The synthesis of IP7 also appears critical for the induction of Pho1 activity during adenine starvation, but IP7 is not critical during phosphate starvation, which differs from S. cerevisiae. Finally, Csk1 is critical for repression of pho1 (+) expression during phosphate starvation. We believe all of these regulatory arms converge to increase transcription of pho1 (+) and some of the regulation acts through pho7 (+).

  9. Telomere structure and stability: covalency in hydrogen bonds, not resonance assistance, causes cooperativity in guanine quartets.

    PubMed

    Fonseca Guerra, Célia; Zijlstra, Hester; Paragi, Gábor; Bickelhaupt, F Matthias

    2011-11-01

    We show that the cooperative reinforcement between hydrogen bonds in guanine quartets is not caused by resonance-assisted hydrogen bonding (RAHB). This follows from extensive computational analyses of guanine quartets (G(4)) and xanthine quartets (X(4)) based on dispersion-corrected density functional theory (DFT-D). Our investigations cover the situation of quartets in the gas phase, in aqueous solution as well as in telomere-like stacks. A new mechanism for cooperativity between hydrogen bonds in guanine quartets emerges from our quantitative Kohn-Sham molecular orbital (MO) and corresponding energy decomposition analyses (EDA). Our analyses reveal that the intriguing cooperativity originates from the charge separation that goes with donor-acceptor orbital interactions in the σ-electron system, and not from the strengthening caused by resonance in the π-electron system. The cooperativity mechanism proposed here is argued to apply, beyond the present model systems, also to other hydrogen bonds that show cooperativity effects.

  10. Effect of intense magnetic fields on the convection of biogenic guanine crystals in aqueous solution

    NASA Astrophysics Data System (ADS)

    Iwasaka, M.; Mizukawa, Y.

    2015-05-01

    In this study, the basic magneto-optic properties of biogenic microcrystals in aqueous media were investigated. Microcrystals, mica plates, silica, and microcrystals from a diatom cell and biogenic guanine crystals from goldfish showed light scattering inhibition when the crystals were observed in water under a 5 T magnetic field and dark-field illumination. In particular, in 50% ethanol/water medium, convection of the biogenic guanine particle aggregates was reversibly inhibited when the microcrystal suspension was exposed to a 5 T magnetic field. Microscopic observation comparing the biogenic guanine crystals in water with 95% ethanol or 99% acetone revealed that light flickering on the surface of the crystals was affected by the surface interaction of the crystal with the surrounding medium. By considering both the magnetic orientation of the microcrystals and the possible interactions of crystals with the surrounding medium, a magnetically controllable fluidic tracer was suggested.

  11. Assignment of the Gene for Adenine Phosphoribosyltransferase to Human Chromosome 16 by Mouse-Human Somatic Cell Hybridization

    PubMed Central

    Tischfield, Jay A.; Ruddle, Frank H.

    1974-01-01

    A series of mouse-human hybrids was prepared from mouse cells deficient in adenine phosphoribosyltransferase (EC 2.4.2.7) and normal human cells. The hybrids were made in medium containing adenine and alanosine, an antimetabolite known to inhibit de novo adenylic acid biosynthesis. The mouse cells, unable to utilize exogenous adenine, were killed in this medium, but the hybrids proliferated as a consequence of their retaining the human aprt gene. The hybrids were then exposed to the adenine analogs 2,6-diaminopurine and 2-fluoroadenine to select for cells that had lost this gene. Before exposure to the adenine analogs, the expression of human adenine phosphoribosyltransferase by the hybrids was strongly associated only with the presence of human chromosome 16, and afterwards this was the only human chromosome consistently lost. This observation suggests that the human aprt gene can be assigned to chromosome 16. Images PMID:4129802

  12. Mechanisms of oxidation of guanine in DNA by carbonate radical anion, a decomposition product of nitrosoperoxycarbonate.

    PubMed

    Lee, Young Ae; Yun, Byeong Hwa; Kim, Seog K; Margolin, Yelena; Dedon, Peter C; Geacintov, Nicholas E; Shafirovich, Vladimir

    2007-01-01

    Peroxynitrite is produced during inflammation and combines rapidly with carbon dioxide to yield the unstable nitrosoperoxycarbonate, which decomposes (in part) to CO(3) (.-) and (.)NO(2) radicals. The CO(3) (.-) radicals oxidize guanine bases in DNA through a one-electron transfer reaction process that ultimately results in the formation of stable guanine oxidation products. Here we have explored these mechanisms, starting with a spectroscopic study of the kinetics of electron transfer from 20-22mer double-stranded oligonucleotides to CO(3) (.-) radicals, together with the effects of base sequence on the formation of the end-products in runs of one, two, or three contiguous guanines. The distributions of these alkali-labile lesions were determined by gel electrophoresis methods. The cascade of events was initiated through the use of 308 nm XeCl excimer laser pulses to generate CO(3) (.-) radicals by an established method based on the photodissociation of persulfate to sulfate radicals and the oxidation of bicarbonate. Although the Saito model (Saito et al., J. Am. Chem. Soc. 1995, 117, 6406-6407) predicts relative ease of one-electron oxidations in DNA, following the trend 5'-GGG > 5'-GG > 5'-G, we found that the rate constants for CO(3) (.-)-mediated oxidation of guanines in these sequence contexts (k(5)) showed only small variation within a narrow range [(1.5-3.0)x10(7) M(-1) s(-1)]. In contrast, the distributions of the end-products are dependent on the base sequence context and are higher at the 5'-G in 5'-GG sequences and at the first two 5'-guanines in the 5'-GGG sequences. These effects are attributed to a combination of initial hole distributions among the contiguous guanines and the subsequent differences in chemical reaction yields at each guanine. The lack of dependence of k(5) on sequence context indicates that the one-electron oxidation of guanine in DNA by CO(3) (.-) radicals occurs by an inner-sphere mechanism. PMID:17335089

  13. Determination of adenine based on the fluorescence recovery of the L-Tryptophan-Cu(2+) complex.

    PubMed

    Duan, Ruilin; Li, Chunyan; Liu, Shaopu; Liu, Zhongfang; Li, Yuanfang; Yuan, Yusheng; Hu, Xiaoli

    2016-01-01

    A simple and sensitive method for determination of adenine was developed based on fluorescence quenching and recovery of L-Tryptophan (L-Trp). The fluorescence of L-Trp could efficiently quenched by copper ion compared with other common metal ions. Upon addition of adenine (Ade) in L-Trp-Cu(II) system, the fluorescence was reoccurred. Under the optimum conditions, the recovery fluorescence intensity was linearly correlated with the concentration of adenine in the range from 0.34 to 25.0μmolL(-1), with a correlation coefficient (R(2)) of 0.9994. The detection limit (3σ/k) was 0.046μmolL(-1), indicating that this method could applied to detect trace adenine. In this study, amino acids including L-Trp, D-Trp, L-Tyr, D-Tyr, L-Phe, D-Phe were investigated and only L-Trp could well chelated copper ion. Additionally, the mechanism of quench and recovery also were discussed and the method was successfully applied to detect the adenine in DNA with satisfactory results.

  14. Determination of adenine based on the fluorescence recovery of the L-Tryptophan-Cu2+ complex

    NASA Astrophysics Data System (ADS)

    Duan, Ruilin; Li, Chunyan; Liu, Shaopu; Liu, Zhongfang; Li, Yuanfang; Yuan, Yusheng; Hu, Xiaoli

    2016-01-01

    A simple and sensitive method for determination of adenine was developed based on fluorescence quenching and recovery of L-Tryptophan (L-Trp). The fluorescence of L-Trp could efficiently quenched by copper ion compared with other common metal ions. Upon addition of adenine (Ade) in L-Trp-Cu(II) system, the fluorescence was reoccurred. Under the optimum conditions, the recovery fluorescence intensity was linearly correlated with the concentration of adenine in the range from 0.34 to 25.0 μmol L-1, with a correlation coefficient (R2) of 0.9994. The detection limit (3σ/k) was 0.046 μmol L-1, indicating that this method could applied to detect trace adenine. In this study, amino acids including L-Trp, D-Trp, L-Tyr, D-Tyr, L-Phe, D-Phe were investigated and only L-Trp could well chelated copper ion. Additionally, the mechanism of quench and recovery also were discussed and the method was successfully applied to detect the adenine in DNA with satisfactory results.

  15. Adenine: an important drug scaffold for the design of antiviral agents

    PubMed Central

    Wang, Changyuan; Song, Zhendong; Yu, Haiqing; Liu, Kexin; Ma, Xiaodong

    2015-01-01

    Adenine derivatives, in particular the scaffold bearing the acyclic nucleoside phosphonates (ANPS), possess significant antiviral and cytostatic activity. Till now, several effective adenine derivatives have been marketed for the treatment of HIV, HBV, CMV and other virus-infected diseases. These compounds are represented by tenofovir (PMPA), a medicine for both HIV and HBV, and adefovir as an anti-HBV agent. More than this, other analogs, such as GS9148, GS9131, and GS7340, are also well-known anti-viral agents that have been progressed to the clinical studies for their excellent activity. In general, the structures of these compounds include an adenine nucleobase linked to a phosphonate side chain. Considerable structural modifications on the scaffold itself and the peripheral sections were made. The structure-activity relationships (SARs) of this skeleton will provide valuable clues to identify more effective adenine derivatives as antiviral drugs. Here, we systematically summarized the SARs of the adenine derivatives, and gave important information for further optimizing this template. PMID:26579473

  16. Transcription profiling of guanine nucleotide binding proteins during developmental regulation, and pesticide response in Solenopsis invicta (Hymenoptera: Formicidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Guanine nucleotide binding proteins (GNBP or G-protein) are glycoproteins anchored on the cytoplasmic cell membrane, and are mediators for many cellular processes. Complete cDNA of guanine nucleotide-binding protein gene ß-subunit (SiGNBP) was cloned and sequenced from S. invicta workers. To detect ...

  17. Interaction of cyclic cytosine-, guanine-, thymine-, uracil- and mixed guanine-cytosine base tetrads with K+, Na+ and Li+ ions -- a density functional study.

    PubMed

    Meyer, Michael; Sühnel, Jürgen

    2003-02-01

    We have carried out B3LYP hybrid density functional studies of complexes formed by cyclic cytosine-, guanine-, thymine-, uracil- and mixed guanine cytosine-tetrads with Li+, Na+ and K+ ions to determine their structures and interaction energies. The conformations studied have been restricted to a hydrogen bond pattern closely related to the tetrads observed in experimental nucleic acid structures. A comparison of the alkali metal ion/tetrad complexes with the tetrads without cations indicates that alkali metal ions modulate the tetrad structures significantly and that even the hydrogen bond pattern may change. Guanine-tetrad cation complexes show the strongest interaction energy compared to other tetrads that occur less frequently in experimental structures. The most stable G-tetrad/metal ion structure adopts a nearly planar geometry that is especially suitable for tetraplex formation, which requires approximately parallel tetrad planes. In the cytosine-tetrad there is a very large central cavity suitable for cation recognition, but the complexes adopt a non-planar structure unsuitable for stacking, except possibly for ions with very large radii. Uracil and thymine tetrads show a significant different characteristics which may contribute to the differences between DNA and RNA PMID:12529150

  18. Temperature-dependent self-assembly of adenine derivative on HOPG.

    PubMed

    Mu, Zhongcheng; Rubner, Oliver; Bamler, Markus; Blömker, Tobias; Kehr, Gerald; Erker, Gerhard; Heuer, Andreas; Fuchs, Harald; Chi, Lifeng

    2013-08-27

    Temperature-dependent self-assembly formed by the adsorption of the nucleobase adenine derivative on a graphite surface were investigated by in situ scanning tunneling microscopy (STM). The high-resolution STM images reveal two types of structures, α phase and β phase, which are mainly driven by either hydrogen bonding or aromatic π-π interactions between adenine bases, respectively, as well as the interactions of alkyl chains. α-Phase structures can be transformed into β-phase structures by increasing temperature. The reverse is true for decreasing temperature. This reflects structural stabilities resulting from the different interactions. Density functional theory (DFT) calculations were performed to characterize possible arrangements of adjacent adenine moieties systematically in terms of binding energies and structural properties. Via a systematic search algorithm, all possible network structures were determined on a microscopic level. In this way, it is possible to rationalize the structural parameters as found in the STM images.

  19. Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays.

    PubMed

    Jha, Shankar K; Ahmed, Zeeshan; Agio, Mario; Ekinci, Yasin; Löffler, Jörg F

    2012-02-01

    We report the ultrasensitive detection of adenine using deep-UV surface-enhanced resonance Raman scattering on aluminum nanostructures. Well-defined Al nanoparticle arrays fabricated over large areas using extreme-UV interference lithography exhibited sharp and tunable plasmon resonances in the UV and deep-UV wavelength ranges. Theoretical modeling based on the finite-difference time-domain method was used to understand the near-field and far-field optical properties of the nanoparticle arrays. Raman measurements were performed on adenine molecules coated uniformly on the Al nanoparticle arrays at a laser excitation wavelength of 257.2 nm. With this technique, less than 10 amol of label-free adenine molecules could be detected reproducibly in real time. Zeptomole (~30,000 molecules) detection sensitivity was readily achieved proving that deep-UV surface-enhanced resonance Raman scattering is an extremely sensitive tool for the detection of biomolecules.

  20. Solution structure of a five-adenine bulge loop within a DNA duplex.

    PubMed

    Dornberger, U; Hillisch, A; Gollmick, F A; Fritzsche, H; Diekmann, S

    1999-09-28

    The three-dimensional solution structure of a DNA molecule of the sequence 5'-d(GCATCGAAAAAGCTACG)-3' paired with 5'-d(CGTAGCCGATGC)-3' containing a five-adenine bulge loop (dA(5)-bulge) between two double helical stems was determined by 2D (1)H and (31)P NMR, infrared, and Raman spectroscopy. The DNA in both stems adopt a classical B-form double helical structure with Watson-Crick base pairing and C2'-endo sugar conformation. In addition, the two dG/dC base pairs framing the dA(5)-bulge loop are formed and are stable at least up to 30 degrees C. The five adenine bases of the bulge loop are localized at intrahelical positions within the double helical stems. Stacking on the double helical stem is continued for the first four 5'-adenines in the bulge loop. The total rise (the height) of these four stacked adenines roughly equals the diameter of the double helical stem. The stacking interactions are broken between the last of these four 5'-adenines and the fifth loop adenine at the 3'-end. This 3'-adenine partially stacks on the other stem. The angle between the base planes of the two nonstacking adenines (A10 and A11) in the bulge loop reflects the kinking angle of the global DNA structure. The neighboring cytosines opposite the dA(5)-bulge (being parts of the bulge flanking base pairs) do not stack on one another. This disruption of stacking is characterized by a partial shearing of these bases, such that certain sequential NOEs for this base step are preserved. In the base step opposite the loop, an extraordinary hydrogen bond is observed between the phosphate backbone of the 5'-dC and the amino proton of the 3'-dC in about two-thirds of the conformers. This hydrogen bond probably contributes to stabilizing the global DNA structure. The dA(5)-bulge induces a local kink into the DNA molecule of about 73 degrees (+/-11 degrees ). This kinking angle and the mutual orientation of the two double helical stems agree well with results from fluorescence resonance energy

  1. Copper-catalyzed intramolecular cyclization of N-propargyl-adenine: synthesis of purine-fused tricyclics.

    PubMed

    Li, Ren-Long; Liang, Lei; Xie, Ming-Sheng; Qu, Gui-Rong; Niu, Hong-Ying; Guo, Hai-Ming

    2014-04-18

    A novel protocol to construct fluorescent purine-fused tricyclic products via intramolecular cyclization of N-propargyl-adenine has been developed. With CuBr as the catalyst, a series of purine-fused tricyclic products were obtained in good to excellent yields (19 examples, 75-89% yields). When R2 was a hydrogen atom in N-propargyl-adenines, the reactions only afforded the endocyclic double bond products. When R2 was an aryl group, the electron-donating groups favored the endocyclic double bond products, while the electron-withdrawing groups favored the exocyclic double bond products. PMID:24678722

  2. Theoretical and Experimental Study of Valence-Shell Ionization Spectra of Guanine

    NASA Astrophysics Data System (ADS)

    Zaytseva, Irina L.; Trofimov, Alexander B.; Schirmer, Jochen; Plekan, Oksana; Feyer, Vitaliy; Richter, Robert; Coreno, Marcello; Prince, Kevin C.

    2009-10-01

    The full valence-shell ionization spectra of the four most stable guanine tautomers were studied theoretically. The third-order algebraic-diagrammatic construction (ADC(3)) method for the one-particle Green's function was used to calculate the energies and relative intensities of the vertical ionization transitions. For low-lying transitions, the influence of planar and nonplanar guanine configurations on the ionization energies, as well as the convergence of the results with respect to basis set was studied at the level of the outer-valence Green's function (OVGF) approximation scheme. The results of the calculations were used to interpret recent synchrotron radiation valence-shell photoionization spectra of guanine in the gas phase under thermal equilibrium conditions. The photoelectron spectrum was modeled by summing individual tautomer spectra weighted by Boltzmann population ratios (BPR) of tautomers from our previous high-level ab initio thermochemical calculations. The theoretical spectra are in good agreement with the experimental results, providing assignments of most observed structures and offering insight into tautomerism of guanine in the gas phase. The first six molecular orbitals give rise to single-hole states with a binding energy of about 7-12 eV. At higher binding energy the spectral features are mainly due to satellite states.

  3. Exploring the Use of a Guanine-Rich Catalytic DNA for Sulfoxide Preparation.

    PubMed

    Dellafiore, María A; Montserrat, Javier M; Iribarren, Adolfo M

    2015-01-01

    A guanine-rich DNA oligonucleotide complexed with hemin was used to catalyze controlled oxygen transfer reactions to different sulfides for sulfoxide preparation in the presence of H2O2. Comparable activities were obtained when using fully modified L-DNA. In addition, oligonucleotide immobilization led to an active catalyst which could be successfully recovered and reused without loss of activity.

  4. Exploring the Use of a Guanine-Rich Catalytic DNA for Sulfoxide Preparation

    PubMed Central

    Dellafiore, María A.; Montserrat, Javier M.; Iribarren, Adolfo M.

    2015-01-01

    A guanine-rich DNA oligonucleotide complexed with hemin was used to catalyze controlled oxygen transfer reactions to different sulfides for sulfoxide preparation in the presence of H2O2. Comparable activities were obtained when using fully modified L-DNA. In addition, oligonucleotide immobilization led to an active catalyst which could be successfully recovered and reused without loss of activity. PMID:26066510

  5. 1-ethynylpyrene-modified guanine and cytosine as optical labels for DNA hybridization.

    PubMed

    Wagner, Clemens; Rist, Manuela; Mayer-Enthart, Elke; Wagenknecht, Hans-Achim

    2005-06-01

    1-ethynylpyrene shows remarkable absorption changes upon DNA hybridization when it is covalently attached to the 8-position of guanine. An absorption band at approximately 420 nm is only present in the duplex, exhibits thermal melting behaviour and provides the basis for a molecular beacon together with 1-ethynylpyrene-modified cytosine.

  6. Human Sos1: A guanine nucleotide exchange factor for ras that binds to GRB2

    SciTech Connect

    Chardin, P. ); Camonis, J.; Gale, N.W.; Aelst, L. Van; Wigler, M.H.; Bar-Sagi, D. ); Schlessinger, J. )

    1993-05-28

    A human complementary DNA was isolated that encodes a widely expressed protein, hSos1, that is closely related to Sos, the product of the Drosophila son of sevenless gene. The hSos1 protein contains a region of significant sequence similarity to CDC25, a guanine nucleotide exchange factor for Ras from yeast. A fragment of hSos1 encoding the CDC25-related domain complemented loss of CDC25 function in yeast. This hSos1 domain specifically stimulated guanine nucleotide exchange on mammalian Ras proteins in vitro. Mammalian cells overexpressing full-length hSos1 had increased guanine nucleotide exchange activity. Thus hSos1 is a guanine nucleotide exchange factor for Ras. The hSos1 interacted with growth factor receptor-bound protein 2 (GRB2) in vivo and in vitro. This interaction was mediated by the carboxyl-terminal domain of hSos1 and the Src homology 3 (SH3) domains of GRB2. These results suggest that the coupling of receptor tyrosine kinases to Ras signaling is mediated by a molecular complex consisting of GRB2 and hSos1. 42 refs., 5 figs.

  7. Guanine-nucleotide-dependent inhibition of adenylate cyclase of rabbit heart by glucagon.

    PubMed

    Kiss, Z; Tkachuk, V A

    1984-07-16

    The present study demonstrates an inhibitory effect of glucagon on the adenylate cyclase system of rabbit heart. Inhibition was maximal (22-40%) at 0.1-0.01 microM glucagon and required the presence of 0.01-0.1 mM GTP or guanosine 5'-[beta, gamma-imido]triphosphate (GuoPP[NH]P). Reduced or no inhibitor effect of glucagon was observed: (a) after limited proteolysis of plasma membrane proteins by trypsin, (b) in the presence of 1 mM Mn2+, (c) in the absence of Na+, and (d) during the first 10 min of incubation if GuoPP[NH]P was the activating ligand. With GTP as the activating ligand, inhibition of cyclase by glucagon occurred without delay. These data are consistent with a mediation of glucagon inhibition by a guanine-nucleotide-binding protein. In the presence of ethanol (0.2 M) or benzyl alcohol (0.05 M), agents which are known to increase the fluidity of biological membranes, glucagon increased the enzyme activity in a guanine-nucleotide-dependent manner. Activation of cyclase in the presence of alcohols was maximal (30-60%) at 0.1-1.0 microM glucagon and 0.01 mM guanine nucleotides. Data suggest that glucagon receptors can interact with both the activatory and inhibitory guanine-nucleotide-binding proteins and the physical state of membranes may play a role in determining which interaction will be preferential.

  8. Guanine-containing copper(II) complexes: synthesis, X-ray structures and magnetic properties.

    PubMed

    Mastropietro, Teresa F; Armentano, Donatella; Grisolia, Ettore; Zanchini, Claudia; Lloret, Francesc; Julve, Miguel; De Munno, Giovanni

    2008-01-28

    Three new compounds of formula {[Cu(gua)(H(2)O)(3)](BF(4))(SiF(6))(1/2)}(n) (1), {[Cu(gua)(H(2)O)(3)](CF(3)SO(3))(2).H(2)O}(n) (2) and [Cu(gua)(2)(H(2)O)(HCOO)]ClO(4).H(2)O.1/2HCOOH] (3) [gua = 2-amino-1H-purin-6(9H)-one] showing the unprecedented coordination of neutral guanine, have been synthesised and structurally characterized. The structures of the compounds 1 and 2 contain uniform copper(II) chains of formula [Cu(gua)(H(2)O)(3)](n)(2n+), where the copper atoms are bridged by guanine ligands coordinated via N(3) and N(7). The electroneutrality is achieved by uncoordinated tetrafluoroborate and hexafluorosilicate (1) and triflate (2). Each copper atom in 1 and 2 is five-coordinated in a distorted square pyramidal environment: two water molecules in trans positions and the N(3) and N(7a) nitrogen atoms of two guanine ligands build the basal plane whereas a water molecule fills the axial position. The values of the copper-copper separation across the bridging guanine ligand are 7.183(1) (1) and 7.123(1) A (2). is an ionic salt whose structure is made up of mononuclear [Cu(gua)(2)(H(2)O)(HCOO)](+) cations and perchlorate anions plus water and formic acid as crystallization molecules. The two guanine ligands in the cation are coordinated to the copper centre through the N(9) atom. The copper atom in 3 is four-coordinated with two monodentate guanine molecules in the trans position, a water molecule and a monodenate formate ligand building a quasi square planar surrounding. Magnetic susceptibility measurements for 1 and 2 in the temperature range 1.9-300 K show the occurrence of significant intrachain antiferromagnetic interactions between the copper(ii) ions across the guanine bridge [J = -9.6(1) (1) and -10.3(1) cm(-1) (2) with H = -J summation operator(i)S(i).S(i+1)].

  9. Hydrogen-bonded proton transfer in the protonated guanine-cytosine (GC+H)+ base pair.

    PubMed

    Lin, Yuexia; Wang, Hongyan; Gao, Simin; Schaefer, Henry F

    2011-10-13

    The single proton transfer at the different sites of the Watson-Crick (WC) guanine-cytosine (GC) DNA base pair are studied here using density functional methods. The conventional protonated structures, transition state (TS) and proton-transferred product (PT) structures of every relevant species are optimized. Each transition state and proton-transferred product structure has been compared with the corresponding conventional protonated structure to demonstrate the process of proton transfer and the change of geometrical structures. The relative energies of the protonated tautomers and the proton-transfer energy profiles in gas and solvent are analyzed. The proton-transferred product structure G(+H(+))-H(+)C(N3)(-H(+))(PT) has the lowest relative energy for which only two hydrogen bonds exist. Almost all 14 isomers of the protonated GC base pair involve hydrogen-bonded proton transfer following the three pathways, with the exception of structure G-H(+)C(O2). When the positive charge is primarily "located" on the guanine moiety (H(+)G-C, G-H(+)C(C4), and G-H(+)C(C6)), the H(1) proton transfers from the N(1) site of guanine to the N(3) site of cytosine. The structures G-H(+)C(C5) and G-H(+)C(C4) involve H(4a) proton transfer from the N(4) of cytosine to the O(6) site of guanine. H(2a) proton transfer from the N(2) site of guanine to the O(2) site of cytosine is found only for the structure G-H(+)C(C4). The structures to which a proton is added on the six-centered sites adjoining the hydrogen bonds are more prone to proton transfer in the gas phase, whereas a proton added on the minor groove and the sites adjoining the hydrogen bonds is favorable to the proton transfer in energy in the aqueous phase.

  10. Effects of guanine bases at the central loop on stabilization of the quadruplex DNAs and their interactions with Meso-tetrakis(N-methylpyridium-4-yl)porphyrin.

    PubMed

    Jeon, Sun Hee; Moon, Jihye; Lee, Myung Won; Kim, Seog K

    2015-10-01

    The thermal stability of the G-quadruplex formed from the thrombin-binding aptamer, 5'G2T2G2TGTG2T2G2, in which the guanine (G) base at the central loop was replaced with an adenine (A) or inosine (I) base, was examined to determine the role of the central G base in stabilizing the quadruplex. Replacement of the central G base by the I base resulted in a slight decrease in thermal stability. On the other hand, the stability of the G-quadruplex decreased to a significant extent when it was replaced with the A base. The optimized structure of the G-quadruplex, which was obtained by a molecular dynamic simulation, showed that the carbonyl group of the C5 position of the central G base could form hydrogen bonds with the G1 amine group at the C7 position on the upper G-quartet. This formation of a hydrogen bond contributes to the stability of the G-quadruplex. The spectral property of meso-tetrakis(N-methylpyridium-4yl)porphyrin (TMPyP) associated with the G-quadruplex was characterized by a moderate red shift and hypochromism in the absorption spectrum, a positive CD signal, and two emission maxima in the fluorescence emission spectrum, suggesting that TMPyP binds at the exterior of the G-quadruplex. Spectral properties were slightly altered when the G base at the central loop was replaced with A or I, while the fluorescence decay times of TMPyP associated with the G-quadruplex were identical. Observed spectral properties removes the possibility of intercalation binding mode for TMPyP. TMPyP binds at the exterior of the quadruplex. Whether it stacks on the central loop or binds at the side of the quadruplex is unclear at this stage. PMID:26057195

  11. Measurement of liver adenine nucleotides and S-adenosyl amino acids by one-step high-performance liquid chromatography.

    PubMed

    Gourdeau, H; Lavoie, R; Grose, J H; Bélanger, L

    1986-10-01

    A reverse-phase isocratic HPLC method is described for direct simultaneous assay of ATP, ADP, AMP, S-adenosylmethionine, S-adenosylhomocysteine, S-adenosylethionine, and other adenine derivatives in liver microbiopsies. The procedure was tested in conditions which alter the hepatic content of adenine nucleotides and sulfur-adenosyl amino acids in humans, rats, and guinea pigs.

  12. Phosphorus-31 NMR visibility and characterization of rat liver mitochondrial matrix adenine nucleotides

    SciTech Connect

    Hutson, S.M.; Berkich, D.; Williams, G.D.; LaNoue, K.F.; Briggs, R.W. )

    1989-05-16

    Compartmentation and NMR visibility of mitochondrial adenine nucleotides were quantitated in isolated rat liver mitochondria respiring on succinate and glutamate in vitro at 8 and 25{degree}C. Intra- and extramitochondrial nucleotides were discriminated by adding the chelator trans-1,2-diaminocyclohexane-N,N,N{prime},N{prime}-tetraacetic acid (CDTA). T{sub 1} values of about 0.2-0.3 s for magnesium-bound matrix nucleotides were determined. Adenine nucleotide T{sub 1} values were influenced by the ionic environment; only magnesium-free ATP T{sub 1}'s were affected by temperature. Intra- and extramitochondrial adenine nucleotide ratios were varied in ATP-loaded mitochondria with added ATP and phosphate using the mitochondrial inhibitors oligomycin and carboxyatractyloside, and adenine nucleotides were quantitated by using NMR and enzymatic analysis. There was good agreement between matrix ATP concentrations (magnesium-bound ATP) calculated by using NMR and standard biochemical techniques. Although matrix ADP could be detected by NMR, it was difficult to quantitate accurately by NMR. The data indicate that mitochondrial ATP is NMR-visible in isolated mitochondria in vitro.

  13. Controlling two-phase self-assembly of an adenine derivative on HOPG via kinetic effects.

    PubMed

    Wang, Can; Jana, Pritam Kumar; Zhang, Haiming; Mu, Zhongcheng; Kehr, Gerald; Blömker, Tobias; Erker, Gerhard; Fuchs, Harald; Heuer, Andreas; Chi, Lifeng

    2014-08-21

    Large-area self-assembled structures of a nucleobase adenine derivative were successfully realized through vacuum deposition. STM images reveal two types of structures, which could be regulated by substrate temperature and the evaporation rate, indicating the relevance of kinetic effects. The results are supported by computer simulations.

  14. The effect of activated charcoal on adenine-induced chronic renal failure in rats.

    PubMed

    Ali, Badreldin H; Alza'abi, Mohamed; Ramkumar, Aishwarya; Al-Lawati, Intisar; Waly, Mostafa I; Beegam, Sumaya; Nemmar, Abderrahim; Brand, Susanne; Schupp, Nicole

    2014-03-01

    Activated charcoal (AC) is a sorbent that has been shown to remove urinary toxins like urea and indoxyl sulfate. Here, the influence of AC on kidney function of rats with experimental chronic renal failure (CRF) is investigated. CRF was induced in rats by feeding adenine (0.75%) for four weeks. As an intervention, AC was added to the feed at concentrations of 10%, 15% or 20%. Adenine treatment impaired kidney function: it lowered creatinine clearance and increased plasma concentrations of creatinine, urea, neutrophil gelatinase-associated lipocalin and vanin-1. Furthermore, it raised plasma concentrations of the uremic toxins indoxyl sulfate, phosphate and uric acid. Renal morphology was severely damaged and histopathological markers of inflammation and fibrosis were especially increased. In renal homogenates, antioxidant indices, including superoxide dismutase and catalase activity, total antioxidant capacity and reduced glutathione were adversely affected. Most of these changes were significantly ameliorated by dietary administration of AC at a concentration of 20%, while effects induced by lower doses of dietary AC on adenine nephrotoxicity were not statistically significant. The results suggest that charcoal is a useful sorbent agent in dietary adenine-induced CRF in rats and that its usability as a nephroprotective agent in human kidney disease should be studied.

  15. Effects of adenine arabinoside on lymphocytes infected with Epstein-Barr virus.

    PubMed Central

    Benz, W C; Siegel, P J; Baer, J

    1978-01-01

    Low concentrations of adenine arabinoside inhibited growth of two Epstein-Barr virus producer cell lines in culture, while not significantly affecting a nonproducer cell line and a B-cell-negative line. These observations were extended to include freshly infected cells. Mitogen-stimulated human umbilical cord blood lymphocytes were unaffected by the drug at concentration levels that inhibited [3H]thymidine incorporation into the DNA of Epstein-Barr virus-stimulated cells. DNA synthesis in Epstein-Barr virus-superinfected Raji cells was also adversely affected by adenine arabinoside. However, these same low concentrations of adenine arabinoside in the triphosphate form produced less effect on DNA synthesis in nuclear systems and DNA polymerase assays than on growth or DNA synthesis in whole cells. Therefore the effects reported here of low concentrations of the drug on whole cells may be only in part related to DNA polymerase inhibition. The work reported here suggests that adenine arabinoside has multiple sites of action in infected cells. PMID:212577

  16. Ameliorative Effect of Chrysin on Adenine-Induced Chronic Kidney Disease in Rats

    PubMed Central

    Ali, Badreldin H.; Adham, Sirin A.; Al Za’abi, Mohammed; Waly, Mostafa I.; Yasin, Javed; Nemmar, Abderrahim; Schupp, Nicole

    2015-01-01

    Chrysin (5, 7- dihydroxyflavone) is a flavonoid with several pharmacological properties that include antioxidant, anti-inflammatory and antiapoptotic activities. in this work, we investigated some effects of three graded oral doses of chrysin (10, 50 and 250 mg/kg) on kidney structure and function in rats with experimental chronic renal disease (CKD) induced by adenine (0.25% w/w in feed for 35 days), which is known to involve inflammation and oxidative stress. Using several indices in plasma, urine and kidney homogenates, adenine was found to impair kidney function as it lowered creatinine clearance and increased plasma concentrations of creatinine, urea, neutrophil gelatinase-associated lipocalin and N-Acetyl-beta-D-glucosaminidase activity. Furthermore, it raised plasma concentrations of the uremic toxin indoxyl sulfate, some inflammatory cytokines and urinary albumin concentration. Renal morphology was severely damaged and histopathological markers of inflammation and fibrosis were especially increased. In renal homogenates, antioxidant indices, including superoxide dismutase and catalase activities, total antioxidant capacity and reduced glutathione were all adversely affected. Most of these adenine – induced actions were moderately and dose -dependently mitigated by chrysin, especially at the highest dose. Chrysin did not cause any overt adverse effect on the treated rats. The results suggest that different doses of chrysin produce variable salutary effects against adenine-induced CKD in rats, and that, pending further pharmacological and toxicological studies, its usability as a possible ameliorative agent in human CKD should be considered. PMID:25909514

  17. Macrophage Trafficking as Key Mediator of Adenine-Induced Kidney Injury

    PubMed Central

    Braga, Tárcio Teodoro; Felizardo, Raphael José Ferreira; Andrade-Oliveira, Vinícius; Hiyane, Meire Ioshie; da Silva, João Santana; Câmara, Niels Olsen Saraiva

    2014-01-01

    Macrophages play a special role in the onset of several diseases, including acute and chronic kidney injuries. In this sense, tubule interstitial nephritis (TIN) represents an underestimated insult, which can be triggered by different stimuli and, in the absence of a proper regulation, can lead to fibrosis deposition. Based on this perception, we evaluated the participation of macrophage recruitment in the development of TIN. Initially, we provided adenine-enriched food to WT and searched for macrophage presence and action in the kidney. Also, a group of animals were depleted of macrophages with the clodronate liposome while receiving adenine-enriched diet. We collected blood and renal tissue from these animals and renal function, inflammation, and fibrosis were evaluated. We observed higher expression of chemokines in the kidneys of adenine-fed mice and a substantial protection when macrophages were depleted. Then, we specifically investigated the role of some key chemokines, CCR5 and CCL3, in this TIN experimental model. Interestingly, CCR5 KO and CCL3 KO animals showed less renal dysfunction and a decreased proinflammatory profile. Furthermore, in those animals, there was less profibrotic signaling. In conclusion, we can suggest that macrophage infiltration is important for the onset of renal injury in the adenine-induced TIN. PMID:25132730

  18. Structural and quantum chemical studies of 8-aryl-sulfanyl adenine class Hsp90 inhibitors.

    PubMed

    Immormino, Robert M; Kang, Yanlong; Chiosis, Gabriela; Gewirth, Daniel T

    2006-08-10

    Hsp90 chaperones play a critical role in modulating the activity of many cell signaling proteins and are an attractive target for anti-cancer therapeutics. We report here the structures of the water soluble 8-aryl-sulfanyl adenine class Hsp90 inhibitors, 1 (PU-H71) and 2 (PU-H64), in complex with the N-terminal domain of human Hsp90alpha. The conformation of 1 when bound to Hsp90 differs from previously reported 8-aryl adenine Hsp90 inhibitors including 3 (PU24FCl). While the binding mode for 3 places the 2'-halide of the 8-aryl group on top of the adenine ring, for 1 and 2, we show that the 2'-halide is rotated approximately 180 degrees away. This difference explains the opposing trends in Hsp90 inhibitory activity for the 2'-halo derivatives of the 3',4',5'-trimethoxy series where Cl > Br > I compared to the 4',5'-methylenedioxy series where I > Br > Cl. We also present quantum chemical calculations of 2 and its analogues that illuminate their basis for Hsp90 inhibition. The calculated conformation of 2 agreed well with the crystallographically observed conformations of 1 and 2. The predictive nature of the calculations has allowed the exploration of additional derivatives based on the 8-aryl adenine scaffold.

  19. SERS, XPS, and DFT Study of Adenine Adsorption on Silver and Gold Surfaces.

    PubMed

    Pagliai, Marco; Caporali, Stefano; Muniz-Miranda, Maurizio; Pratesi, Giovanni; Schettino, Vincenzo

    2012-01-19

    The adsorption of adenine on silver and gold surfaces has been investigated combining density functional theory calculations with surface-enhanced Raman scattering and angle-resolved X-ray photoelectron spectroscopy measurements, obtaining useful insight into the orientation and interaction of the nucleobase with the metal surfaces.

  20. Rapid magnetic wiper featuring biogenic guanine particles: Magnetic non-contact switching of opto-fluidic mirrors featuring biogenic guanine crystals

    NASA Astrophysics Data System (ADS)

    Iwasaka, M.; Mizukawa, Y.; Miyashita, Y.

    2014-01-01

    In the present study, we prepared a diamagnetic fluid with magnetically controlled visual transparency. Light scattering control by the magnetic orientation of organic and diamagnetic microcrystals was applied for developing a functional diamagnetic fluid, by controlling its turbidity and transparency. The light scattering fluid was prepared by guanine crystal particles suspension (GPS), which were collected from the scales of goldfish, in an aqueous solution. It is revealed that GPS can control light scattering with magnetic fields. The method we developed can be utilized for controlling the visibility of light-reflective objects by using magnetic fields on a millitesla scale.

  1. Administration of α-Galactosylceramide Improves Adenine-Induced Renal Injury

    PubMed Central

    Aguiar, Cristhiane Favero; Naffah-de-Souza, Cristiane; Castoldi, Angela; Corrêa-Costa, Matheus; Braga, Tárcio T; Naka, Érika L; Amano, Mariane T; Abate, Débora T R S; Hiyane, Meire I; Cenedeze, Marcos A; Filho, Alvaro Pacheco e Silva; Câmara, Niels O S

    2015-01-01

    Natural killer T (NKT) cells are a subset of lymphocytes that reacts to glycolipids presented by CD1d. Invariant NKT cells (iNKT) correspond to >90% of the total population of NKTs and reacts to α-galactosylceramide (αGalCer). αGalCer promotes a complex mixture of Th1 and Th2 cytokines, as interferon (IFN)-γ and interleukin (IL)-4. NKT cells and IFN-γ are known to participate in some models of renal diseases, but further studies are still necessary to elucidate their mechanisms. The aim of our study was to analyze the participation of iNKT cells in an experimental model of tubule-interstitial nephritis. We used 8-wk-old C57BL/6j, Jα18KO and IFN-γKO mice. They were fed a 0.25% adenine diet for 10 d. Both adenine-fed wild-type (WT) and Jα18KO mice exhibited renal dysfunction, but adenine-fed Jα18KO mice presented higher expression of kidney injury molecule-1 (KIM-1), tumor necrosis factor (TNF)-α and type I collagen. To analyze the role of activated iNKT cells in our model, we administered αGalCer in WT mice during adenine ingestion. After αGalCer injection, we observed a significant reduction in serum creatinine, proinflammatory cytokines and renal fibrosis. However, this improvement in renal function was not observed in IFN-γKO mice after αGalCer treatment and adenine feeding, illustrating that this cytokine plays a role in our model. Our findings may suggest that IFN-γ production is one of the factors contributing to improved renal function after αGalCer administration. PMID:26101952

  2. ON THE INTERACTION OF ADENINE WITH IONIZING RADIATION: MECHANISTICAL STUDIES AND ASTROBIOLOGICAL IMPLICATIONS

    SciTech Connect

    Evans, Nicholas L.; Ullrich, Susanne; Bennett, Chris J.; Kaiser, Ralf I.

    2011-04-01

    The molecular inventory available on the prebiotic Earth was likely derived from both terrestrial and extraterrestrial sources. A complete description of which extraterrestrial molecules may have seeded early Earth is therefore necessary to fully understand the prebiotic evolution which led to life. Galactic cosmic rays (GCRs) are expected to cause both the formation and destruction of important biomolecules-including nucleic acid bases such as adenine-in the interstellar medium within the ices condensed on interstellar grains. The interstellar ultraviolet (UV) component is expected to photochemically degrade gas-phase adenine on a short timescale of only several years. However, the destruction rate is expected to be significantly reduced when adenine is shielded in dense molecular clouds or even within the ices of interstellar grains. Here, biomolecule destruction by the energetic charged particle component of the GCR becomes important as it is not fully attenuated. Presented here are results on the destruction rate of the nucleobase adenine in the solid state at 10 K by energetic electrons, as generated in the track of cosmic ray particles as they penetrate ices. When both UV and energetic charged particle destructive processes are taken into account, the half-life of adenine within dense interstellar clouds is found to be {approx}6 Myr, which is on the order of a star-forming molecular cloud. We also discuss chemical reaction pathways within the ices to explain the production of observed species, including the formation of nitriles (R-C{identical_to}N), epoxides (C-O-C), and carbonyl functions (R-C=O).

  3. NMR solution structure of an N2-guanine DNA adduct derived from the potent tumorigen dibenzo[a,l]pyrene: Intercalation from the minor groove with ruptured Watson-Crick base pairing

    PubMed Central

    Tang, Yijin; Liu, Zhi; Ding, Shuang; Lin, Chin H.; Cai, Yuqin; Rodriguez, Fabian A.; Sayer, Jane M.; Jerina, Donald M.; Amin, Shantu; Broyde, Suse; Geacintov, Nicholas E.

    2012-01-01

    The most potent tumorigen identified among the polycyclic aromatic hydrocarbons (PAH) is the non-planar fjord region dibenzo[a,l]pyrene (DB[a,l]P). It is metabolically activated in vivo through the widely-studied diol epoxide (DE) pathway to form covalent adducts with DNA bases, predominantly guanine and adenine. The (+)-11S,12R,13R,14S DE enantiomer forms adducts via its C14-position with the exocyclic amino group of guanine. Here, we present the first NMR solution structure of a DB[a,l]P-derived adduct, the 14R (+)-trans-anti-DB[a,l]P–N2-dG (DB[a,l]P-dG) lesion in double-stranded DNA. In contrast to the stereochemically identical benzo[a]pyrene-derived N2-dG adduct (B[a]P-dG) in which the B[a]P rings reside in the B-DNA minor groove on the 3’-side of the modifed deoxyguanosine, in the DB[a,l]P-derived adduct the DB[a,l]P rings intercalate into the duplex on the 3’-side of the modified base from the sterically crowded minor groove. Watson-Crick base pairing of the modified guanine with the partner cytosine is broken, but these bases retain some stacking with the bulky DB[a,l]P ring system. This new theme in PAH DE - DNA adduct conformation differs from: (1) the classical intercalation motif where Watson-Crick base-pairing is intact at the lesion site, and (2) the base-displaced intercalation motif in which the damaged base and its partner are extruded from the helix . The structural considerations that lead to the intercalated conformation of the DB[a,l]P-dG lesion in contrast to the minor groove alignment of the B[a]P-dG adduct, and the implications of the DB[a,l]P-dG conformational motif for the recognition of such DNA lesions by the human nucleotide excision repair apparatus, are discussed. PMID:23121427

  4. Guanine nucleotide binding to the Bateman domain mediates the allosteric inhibition of eukaryotic IMP dehydrogenases

    PubMed Central

    Buey, Rubén M.; Ledesma-Amaro, Rodrigo; Velázquez-Campoy, Adrián; Balsera, Mónica; Chagoyen, Mónica; de Pereda, José M.; Revuelta, José L.

    2015-01-01

    Inosine-5′-monophosphate dehydrogenase (IMPDH) plays key roles in purine nucleotide metabolism and cell proliferation. Although IMPDH is a widely studied therapeutic target, there is limited information about its physiological regulation. Using Ashbya gossypii as a model, we describe the molecular mechanism and the structural basis for the allosteric regulation of IMPDH by guanine nucleotides. We report that GTP and GDP bind to the regulatory Bateman domain, inducing octamers with compromised catalytic activity. Our data suggest that eukaryotic and prokaryotic IMPDHs might have developed different regulatory mechanisms, with GTP/GDP inhibiting only eukaryotic IMPDHs. Interestingly, mutations associated with human retinopathies map into the guanine nucleotide-binding sites including a previously undescribed non-canonical site and disrupt allosteric inhibition. Together, our results shed light on the mechanisms of the allosteric regulation of enzymes mediated by Bateman domains and provide a molecular basis for certain retinopathies, opening the door to new therapeutic approaches. PMID:26558346

  5. Guanine nanowire based amplification strategy: Enzyme-free biosensing of nucleic acids and proteins.

    PubMed

    Gao, Zhong Feng; Huang, Yan Li; Ren, Wang; Luo, Hong Qun; Li, Nian Bing

    2016-04-15

    Sensitive and specific detection of nucleic acids and proteins plays a vital role in food, forensic screening, clinical and environmental monitoring. There remains a great challenge in the development of signal amplification method for biomolecules detection. Herein, we describe a novel signal amplification strategy based on the formation of guanine nanowire for quantitative detection of nucleic acids and proteins (thrombin) at room temperature. In the presence of analytes and magnesium ions, the guanine nanowire could be formed within 10 min. Compared to the widely used single G-quadruplex biocatalytic label unit, the detection limits are improved by two orders of magnitude in our assay. The proposed enzyme-free method avoids fussy chemical label-ling process, complex programming task, and sophisticated equipment, which might provide an ideal candidate for the fabrication of selective and sensitive biosensing platform.

  6. Guanine nucleotide binding to the Bateman domain mediates the allosteric inhibition of eukaryotic IMP dehydrogenases

    NASA Astrophysics Data System (ADS)

    Buey, Rubén M.; Ledesma-Amaro, Rodrigo; Velázquez-Campoy, Adrián; Balsera, Mónica; Chagoyen, Mónica; de Pereda, José M.; Revuelta, José L.

    2015-11-01

    Inosine-5'-monophosphate dehydrogenase (IMPDH) plays key roles in purine nucleotide metabolism and cell proliferation. Although IMPDH is a widely studied therapeutic target, there is limited information about its physiological regulation. Using Ashbya gossypii as a model, we describe the molecular mechanism and the structural basis for the allosteric regulation of IMPDH by guanine nucleotides. We report that GTP and GDP bind to the regulatory Bateman domain, inducing octamers with compromised catalytic activity. Our data suggest that eukaryotic and prokaryotic IMPDHs might have developed different regulatory mechanisms, with GTP/GDP inhibiting only eukaryotic IMPDHs. Interestingly, mutations associated with human retinopathies map into the guanine nucleotide-binding sites including a previously undescribed non-canonical site and disrupt allosteric inhibition. Together, our results shed light on the mechanisms of the allosteric regulation of enzymes mediated by Bateman domains and provide a molecular basis for certain retinopathies, opening the door to new therapeutic approaches.

  7. Mechanistic study of the deamination reaction of guanine: a computational study.

    PubMed

    Uddin, Kabir M; Almatarneh, Mansour H; Shaw, Dawn M; Poirier, Raymond A

    2011-03-17

    The mechanism for the deamination of guanine with H(2)O, OH(-), H(2)O/OH(-) and for GuaH(+) with H(2)O has been investigated using ab initio calculations. Optimized geometries of the reactants, transition states, intermediates, and products were determined at RHF/6-31G(d), MP2/6-31G(d), B3LYP/6-31G(d), and B3LYP/6-31+G(d) levels of theory. Energies were also determined at G3MP2, G3MP2B3, G4MP2, and CBS-QB3 levels of theory. Intrinsic reaction coordinate (IRC) calculations were performed to characterize the transition states on the potential energy surface. Thermodynamic properties (ΔE, ΔH, and ΔG), activation energies, enthalpies, and Gibbs free energies of activation were also calculated for each reaction investigated. All pathways yield an initial tetrahedral intermediate and an intermediate in the last step that dissociates to products via a 1,3-proton shift. At the G3MP2 level of theory, deamination with OH(-) was found to have an activation energy barrier of 155 kJ mol(-1) compared to 187 kJ mol(-1) for the reaction with H(2)O and 243 kJ mol(-1) for GuaH(+) with H(2)O. The lowest overall activation energy, 144 kJ mol(-1) at the G3MP2 level, was obtained for the deamination of guanine with H(2)O/OH(-). Due to a lack of experimental results for guanine deamination, a comparison is made with those of cytosine, whose deamination reaction parallels that of guanine.

  8. ESI-MS Characterization of a Novel Pyrrole-Inosine Nucleoside that Interacts with Guanine Bases

    PubMed Central

    Pierce, Sarah E.; Sherman, Courtney L.; Jayawickramarajah, Janarthanan; Lawrence, Candace M.; Sessler, Jonathan L.; Brodbelt, Jennifer S.

    2008-01-01

    Based on binding studies undertaken by electrospray ionization-mass spectrometry, a synthetic pyrrole-inosine nucleoside, 1, capable of forming an extended three-point Hoogsteen-type hydrogen-bonding interaction with guanine, is shown to form specific complexes with two different quadruplex DNA structures [dTG4T]4 and d(T2G4)4 as well as guanine rich duplex DNA. The binding interactions of two other analogs were evaluated in order to unravel the structural features that contribute to specific DNA recognition. The importance of the Hoogsteen interactions was confirmed through the absence of specific binding when the pyrrole NH hydrogen-bonding site was blocked or removed. While 2, with a large blocking group, was not found to interact with virtually any form of DNA, 3, with the pyrrole functionality missing, was found to interact non-specifically with several types of DNA. The specific binding of 1 to guanine rich DNA emphasizes the necessity of careful ligand design for specific sequence recognition. PMID:18790136

  9. Binding of calcium ions to Ras promotes Ras guanine nucleotide exchange under emulated physiological conditions.

    PubMed

    Liao, Jun-Ming; Mo, Zhong-Ying; Wu, Ling-Jia; Chen, Jie; Liang, Yi

    2008-11-01

    Both Ras protein and calcium play significant roles in various cellular processes via complex signaling transduction networks. However, it is not well understood whether and how Ca(2+) can directly regulate Ras function. Here we demonstrate by isothermal titration calorimetry that Ca(2+) directly binds to the H-Ras.GDP.Mg(2+) complex with moderate affinity at the first binding site followed by two weak binding events. The results from limited proteinase degradation show that Ca(2+) protects the fragments of H-Ras from being further degraded by trypsin and by proteinase K. HPLC studies together with fluorescence spectroscopic measurements indicate that binding of Ca(2+) to the H-Ras.GDP.Mg(2+) complex remarkably promotes guanine nucleotide exchange on H-Ras under emulated physiological Ca(2+) concentration conditions. Addition of high concentrations of either of two macromolecular crowding agents, Ficoll 70 and dextran 70, dramatically enhances H-Ras guanine nucleotide exchange extent in the presence of Ca(2+) at emulated physiological concentrations, and the nucleotide exchange extent increases significantly with the concentrations of crowding agents. Together, these results indicate that binding of calcium ions to H-Ras remarkably promotes H-Ras guanine nucleotide exchange under emulated physiological conditions. We thus propose that Ca(2+) may activate Ras signaling pathway by interaction with Ras, providing clues to understand the role of calcium in regulating Ras function in physiological environments.

  10. Non-covalent functionalization of hexagonal boron nitride nanosheets with guanine.

    PubMed

    Anota, E Chigo; Tlapale, Y; Villanueva, M Salazar; Márquez, J A Rivera

    2015-08-01

    Density functional theory (DFT) calculations were performed to analyze changes in the structural and electronic properties generated by the interaction of a single nucleobase group (guanine) with the surface of boron nitride nanosheets with hexagonal symmetry (hBNNs). Nanosheets in two contexts were tested: pristine sheets and with point defects (doped with carbon atoms). The criterion of energy minimum was used to find the ground state of the nine possible isomers generated by the hBNNs-guanine interaction. The phenomenon of physisorption is known to occur at values less than 1.0 eV; the adsorption energy results revealed that the preferential geometry was a parallel arrangement between the two partners, with van der Waals-type bonds generated for the hBNNs doped with two carbon atoms. This was the only energetically stable configuration, thus revealing a vibrational mode rather than imaginaries. Furthermore, the hBNNs/C-guanine system has a low value for work function, and therefore could be used in health applications such drug transport and delivery. The increased polarity values suggest that these nanosheets could be solubilized in common solvents used in experimental processes. PMID:26227065

  11. Rates of Chemical Cleavage of DNA and RNA Oligomers Containing Guanine Oxidation Products

    PubMed Central

    2016-01-01

    The nucleobase guanine in DNA (dG) and RNA (rG) has the lowest standard reduction potential of the bases, rendering it a major site of oxidative damage in these polymers. Mapping the sites at which oxidation occurs in an oligomer via chemical reagents utilizes hot piperidine for cleaving oxidized DNA and aniline (pH 4.5) for cleaving oxidized RNA. In the present studies, a series of time-dependent cleavages of DNA and RNA strands containing various guanine lesions were examined to determine the strand scission rate constants. The guanine base lesions 8-oxo-7,8-dihydroguanine (OG), spiroiminodihydantoin (Sp), 5-guanidinohydantoin (Gh), 2,2,4-triamino-2H-oxazol-5-one (Z), and 5-carboxamido-5-formamido-2-iminohydantoin (2Ih) were evaluated in piperidine-treated DNA and aniline-treated RNA. These data identified wide variability in the chemical lability of the lesions studied in both DNA and RNA. Further, the rate constants for cleaving lesions in RNA were generally found to be significantly smaller than for lesions in DNA. The OG nucleotides were poorly cleaved in DNA and RNA; Sp nucleotides were slowly cleaved in DNA and did not cleave significantly in RNA; Gh and Z nucleotides cleaved in both DNA and RNA at intermediate rates; and 2Ih oligonucleotides cleaved relatively quickly in both DNA and RNA. The data are compared and contrasted with respect to future experimental design. PMID:25853314

  12. N7-(carboxymethyl)guanine-Lithium Crystalline Complex: A Bioinspired Solid Electrolyte

    PubMed Central

    Dutta, Dipak; Nagapradeep, N.; Zhu, Haijin; Forsyth, Maria; Verma, Sandeep; Bhattacharyya, Aninda J.

    2016-01-01

    Electrochemical device with components having direct significance to biological life processes is a potent futuristic strategy for the realization of all-round green and sustainable development. We present here synthesis design, structural analysis and ion transport of a novel solid organic electrolyte (G7Li), a compound reminiscent of ion channels, derived from regioisomeric N7-guanine-carboxylate conjugate and Li-ions. G7Li, with it’s in-built supply of Li+-ions, exhibited remarkably high lithium-ion transference number (= 0.75) and tunable room temperature ionic conductivity spanning three decades (≈10−7 to 10−3 Ω−1 cm−1) as a function of moisture content. The ionic conductivity show a distinct reversible transition around 80–100 °C, from a dual Li+ and H+ (<100 °C) to a pure Li+ conductor (>100 °C). Systematic studies reveal a transition from water-assisted Li-ion transport to Li hopping-like mechanism involving guanine-Li coordination. While as-synthesized G7Li has potential in humidity sensors, the anhydrous G7Li is attractive for rechargeable batteries. PMID:27091631

  13. Covalent Bonding of Pyrrolobenzodiazepines (PBDs) to Terminal Guanine Residues within Duplex and Hairpin DNA Fragments

    PubMed Central

    Mantaj, Julia; Jackson, Paul J. M.; Karu, Kersti; Rahman, Khondaker M.; Thurston, David E.

    2016-01-01

    Pyrrolobenzodiazepines (PBDs) are covalent-binding DNA-interactive agents with growing importance as payloads in Antibody Drug Conjugates (ADCs). Until now, PBDs were thought to covalently bond to C2-NH2 groups of guanines in the DNA-minor groove across a three-base-pair recognition sequence. Using HPLC/MS methodology with designed hairpin and duplex oligonucleotides, we have now demonstrated that the PBD Dimer SJG-136 and the C8-conjugated PBD Monomer GWL-78 can covalently bond to a terminal guanine of DNA, with the PBD skeleton spanning only two base pairs. Control experiments with the non-C8-conjugated anthramycin along with molecular dynamics simulations suggest that the C8-substituent of a PBD Monomer, or one-half of a PBD Dimer, may provide stability for the adduct. This observation highlights the importance of PBD C8-substituents, and also suggests that PBDs may bind to terminal guanines within stretches of DNA in cells, thus representing a potentially novel mechanism of action at the end of DNA strand breaks. PMID:27055050

  14. Singlet Oxygen Attack on Guanine: Reactivity and Structural Signature within the B-DNA Helix.

    PubMed

    Dumont, Elise; Grüber, Raymond; Bignon, Emmanuelle; Morell, Christophe; Aranda, Juan; Ravanat, Jean-Luc; Tuñón, Iñaki

    2016-08-22

    Oxidatively generated DNA lesions are numerous and versatile, and have been the subject of intensive research since the discovery of 8-oxoguanine in 1984. Even for this prototypical lesion, the precise mechanism of formation remains elusive due to the inherent difficulties in characterizing high-energy intermediates. We have probed the stability of the guanine endoperoxide in B-DNA as a key intermediate and determined a unique activation free energy of around 6 kcal mol(-1) for the formation of the first C-O covalent bond upon the attack of singlet molecular oxygen ((1) O2 ) on the central guanine of a solvated 13 base-pair poly(dG-dC), described by means of quantum mechanics/molecular mechanics (QM/MM) simulations. The B-helix remains stable upon oxidation in spite of the bulky character of the guanine endoperoxide. Our modeling study has revealed the nature of the versatile (1) O2 attack in terms of free energy and shows a sensitivity to electrostatics and solvation as it involves a charge-separated intermediate. PMID:27440482

  15. N7-(carboxymethyl)guanine-Lithium Crystalline Complex: A Bioinspired Solid Electrolyte

    NASA Astrophysics Data System (ADS)

    Dutta, Dipak; Nagapradeep, N.; Zhu, Haijin; Forsyth, Maria; Verma, Sandeep; Bhattacharyya, Aninda J.

    2016-04-01

    Electrochemical device with components having direct significance to biological life processes is a potent futuristic strategy for the realization of all-round green and sustainable development. We present here synthesis design, structural analysis and ion transport of a novel solid organic electrolyte (G7Li), a compound reminiscent of ion channels, derived from regioisomeric N7-guanine-carboxylate conjugate and Li-ions. G7Li, with it’s in-built supply of Li+-ions, exhibited remarkably high lithium-ion transference number (= 0.75) and tunable room temperature ionic conductivity spanning three decades (≈10‑7 to 10‑3 Ω‑1 cm‑1) as a function of moisture content. The ionic conductivity show a distinct reversible transition around 80–100 °C, from a dual Li+ and H+ (<100 °C) to a pure Li+ conductor (>100 °C). Systematic studies reveal a transition from water-assisted Li-ion transport to Li hopping-like mechanism involving guanine-Li coordination. While as-synthesized G7Li has potential in humidity sensors, the anhydrous G7Li is attractive for rechargeable batteries.

  16. Electron microscopic visualization of complementary labeled DNA with platinum-containing guanine derivative.

    PubMed

    Loukanov, Alexandre; Filipov, Chavdar; Mladenova, Polina; Toshev, Svetlin; Emin, Saim

    2016-04-01

    The object of the present report is to provide a method for a visualization of DNA in TEM by complementary labeling of cytosine with guanine derivative, which contains platinum as contrast-enhanced heavy element. The stretched single-chain DNA was obtained by modifying double-stranded DNA. The labeling method comprises the following steps: (i) stretching and adsorption of DNA on the support film of an electron microscope grid (the hydrophobic carbon film holding negative charged DNA); (ii) complementary labeling of the cytosine bases from the stretched single-stranded DNA pieces on the support film with platinum containing guanine derivative to form base-specific hydrogen bond; and (iii) producing a magnified image of the base-specific labeled DNA. Stretched single-stranded DNA on a support film is obtained by a rapid elongation of DNA pieces on the surface between air and aqueous buffer solution. The attached platinum-containing guanine derivative serves as a high-dense marker and it can be discriminated from the surrounding background of support carbon film and visualized by use of conventional TEM observation at 100 kV accelerated voltage. This method allows examination of specific nucleic macromolecules through atom-by-atom analysis and it is promising way toward future DNA-sequencing or molecular diagnostics of nucleic acids by electron microscopic observation. PMID:26805035

  17. Activation of G Proteins by Guanine Nucleotide Exchange Factors Relies on GTPase Activity.

    PubMed

    Stanley, Rob J; Thomas, Geraint M H

    2016-01-01

    G proteins are an important family of signalling molecules controlled by guanine nucleotide exchange and GTPase activity in what is commonly called an 'activation/inactivation cycle'. The molecular mechanism by which guanine nucleotide exchange factors (GEFs) catalyse the activation of monomeric G proteins is well-established, however the complete reversibility of this mechanism is often overlooked. Here, we use a theoretical approach to prove that GEFs are unable to positively control G protein systems at steady-state in the absence of GTPase activity. Instead, positive regulation of G proteins must be seen as a product of the competition between guanine nucleotide exchange and GTPase activity--emphasising a central role for GTPase activity beyond merely signal termination. We conclude that a more accurate description of the regulation of G proteins via these processes is as a 'balance/imbalance' mechanism. This result has implications for the understanding of intracellular signalling processes, and for experimental strategies that rely on modulating G protein systems. PMID:26986850

  18. N7-(carboxymethyl)guanine-Lithium Crystalline Complex: A Bioinspired Solid Electrolyte.

    PubMed

    Dutta, Dipak; Nagapradeep, N; Zhu, Haijin; Forsyth, Maria; Verma, Sandeep; Bhattacharyya, Aninda J

    2016-01-01

    Electrochemical device with components having direct significance to biological life processes is a potent futuristic strategy for the realization of all-round green and sustainable development. We present here synthesis design, structural analysis and ion transport of a novel solid organic electrolyte (G7Li), a compound reminiscent of ion channels, derived from regioisomeric N7-guanine-carboxylate conjugate and Li-ions. G7Li, with it's in-built supply of Li(+)-ions, exhibited remarkably high lithium-ion transference number (= 0.75) and tunable room temperature ionic conductivity spanning three decades (≈10(-7) to 10(-3) Ω(-1) cm(-1)) as a function of moisture content. The ionic conductivity show a distinct reversible transition around 80-100 °C, from a dual Li(+) and H(+) (<100 °C) to a pure Li(+) conductor (>100 °C). Systematic studies reveal a transition from water-assisted Li-ion transport to Li hopping-like mechanism involving guanine-Li coordination. While as-synthesized G7Li has potential in humidity sensors, the anhydrous G7Li is attractive for rechargeable batteries. PMID:27091631

  19. Aquifex aeolicus tRNA (N2,N2-Guanine)-dimethyltransferase (Trm1) Catalyzes Transfer of Methyl Groups Not Only to Guanine 26 but Also to Guanine 27 in tRNA*

    PubMed Central

    Awai, Takako; Kimura, Satoshi; Tomikawa, Chie; Ochi, Anna; Ihsanawati; Bessho, Yoshitaka; Yokoyama, Shigeyuki; Ohno, Satoshi; Nishikawa, Kazuya; Yokogawa, Takashi; Suzuki, Tsutomu; Hori, Hiroyuki

    2009-01-01

    Transfer RNA (N2,N2-guanine)-dimethyltransferase (Trm1) catalyzes N2,N2-dimethylguanine formation at position 26 (m22G26) in tRNA. In the reaction, N2-guanine at position 26 (m2G26) is generated as an intermediate. The trm1 genes are found only in archaea and eukaryotes, although it has been reported that Aquifex aeolicus, a hyper-thermophilic eubacterium, has a putative trm1 gene. To confirm whether A. aeolicus Trm1 has tRNA methyltransferase activity, we purified recombinant Trm1 protein. In vitro methyl transfer assay revealed that the protein has a strong tRNA methyltransferase activity. We confirmed that this gene product is expressed in living A. aeolicus cells and that the enzymatic activity exists in cell extract. By preparing 22 tRNA transcripts and testing their methyl group acceptance activities, it was demonstrated that this Trm1 protein has a novel tRNA specificity. Mass spectrometry analysis revealed that it catalyzes methyl transfers not only to G26 but also to G27 in substrate tRNA. Furthermore, it was confirmed that native tRNACys has an m22G26m2G27 or m22G26m22G27 sequence, demonstrating that these modifications occur in living cells. Kinetic studies reveal that the m2G26 formation is faster than the m2G27 formation and that disruption of the G27-C43 base pair accelerates velocity of the G27 modification. Moreover, we prepared an additional 22 mutant tRNA transcripts and clarified that the recognition sites exist in the T-arm structure. This long distance recognition results in multisite recognition by the enzyme. PMID:19491098

  20. Aquifex aeolicus tRNA (N2,N2-guanine)-dimethyltransferase (Trm1) catalyzes transfer of methyl groups not only to guanine 26 but also to guanine 27 in tRNA.

    PubMed

    Awai, Takako; Kimura, Satoshi; Tomikawa, Chie; Ochi, Anna; Ihsanawati; Bessho, Yoshitaka; Yokoyama, Shigeyuki; Ohno, Satoshi; Nishikawa, Kazuya; Yokogawa, Takashi; Suzuki, Tsutomu; Hori, Hiroyuki

    2009-07-31

    Transfer RNA (N2,N2-guanine)-dimethyltransferase (Trm1) catalyzes N2,N2-dimethylguanine formation at position 26 (m(2)(2)G26) in tRNA. In the reaction, N2-guanine at position 26 (m(2)G26) is generated as an intermediate. The trm1 genes are found only in archaea and eukaryotes, although it has been reported that Aquifex aeolicus, a hyper-thermophilic eubacterium, has a putative trm1 gene. To confirm whether A. aeolicus Trm1 has tRNA methyltransferase activity, we purified recombinant Trm1 protein. In vitro methyl transfer assay revealed that the protein has a strong tRNA methyltransferase activity. We confirmed that this gene product is expressed in living A. aeolicus cells and that the enzymatic activity exists in cell extract. By preparing 22 tRNA transcripts and testing their methyl group acceptance activities, it was demonstrated that this Trm1 protein has a novel tRNA specificity. Mass spectrometry analysis revealed that it catalyzes methyl transfers not only to G26 but also to G27 in substrate tRNA. Furthermore, it was confirmed that native tRNA(Cys) has an m(2)(2)G26m(2)G27 or m(2)(2)G26m(2)(2)G27 sequence, demonstrating that these modifications occur in living cells. Kinetic studies reveal that the m2G26 formation is faster than the m(2)G27 formation and that disruption of the G27-C43 base pair accelerates velocity of the G27 modification. Moreover, we prepared an additional 22 mutant tRNA transcripts and clarified that the recognition sites exist in the T-arm structure. This long distance recognition results in multisite recognition by the enzyme.

  1. Rapid and sensitive detection of potassium ion based on K(+)-induced G-quadruplex and guanine chemiluminescence.

    PubMed

    Dong, Jingjing; Zhao, Hengzhi; Zhou, Fulin; Li, Baoxin

    2016-03-01

    A simple and rapid method for detection of potassium ion (K(+)) based on a guanine chemiluminescence (CL) system is presented. In this system, one guanine-rich DNA molecule is used as the recognition element. K(+) can cause the guanine-rich DNA to form a G-quadruplex conformation, resulting in remarkable quenching of the guanine CL intensity of guanine-rich DNA. The CL intensity of this CL system decreased with increasing K(+) concentration, revealing a linear relationship in K(+) concentration range from 3 × 10(-5) to 1 × 10(-3) M. A complete detection process can be accomplished in about 5 min. Other common cations (such as Na(+), NH4 (+), Mg(2+), Ca(2+), Zn(2+), and Pb(2+)) did not notably interfere with K(+) detection. The mechanism of this strategy is also discussed. The sensing strategy is low cost and simple without the requirement of complex labeling of probe DNA. The scheme is applicable to the detection of other guanine-rich aptamer-binding chemicals or biomolecules. PMID:26781100

  2. Strikingly different effects of hydrogen bonding on the photodynamics of individual nucleobases in DNA: comparison of guanine and cytosine.

    PubMed

    Zelený, Tomáš; Ruckenbauer, Matthias; Aquino, Adelia J A; Müller, Thomas; Lankaš, Filip; Dršata, Tomáš; Hase, William L; Nachtigallova, Dana; Lischka, Hans

    2012-08-22

    Ab initio surface hopping dynamics calculations were performed to study the photophysical behavior of cytosine and guanine embedded in DNA using a quantum mechanical/molecular mechanics (QM/MM) approach. It was found that the decay rates of photo excited cytosine and guanine were affected in a completely different way by the hydrogen bonding to the DNA environment. In case of cytosine, the geometrical restrictions exerted by the hydrogen bonds did not influence the relaxation time of cytosine significantly due to the generally small cytosine ring puckering required to access the crossing region between excited and ground state. On the contrary, the presence of hydrogen bonds significantly altered the photodynamics of guanine. The analysis of the dynamics indicates that the major contribution to the lifetime changes comes from the interstrand hydrogen bonds. These bonds considerably restricted the out-of-plane motions of the NH(2) group of guanine which are necessary for the ultrafast decay to the ground state. As a result, only a negligible amount of trajectories decayed into the ground state for guanine embedded in DNA within the simulation time of 0.5 ps, while for comparison, the isolated guanine relaxed to the ground state with a lifetime of about 0.22 ps. These examples show that, in addition to phenomena related to electronic interactions between nucleobases, there also exist relatively simple mechanisms in DNA by which the lifetime of a nucleobase is significantly enhanced as compared to the gas phase. PMID:22845192

  3. Role of vacuum ultraviolet (VUV) radiation in abiogenic synthesis of adenine nucleotides

    NASA Astrophysics Data System (ADS)

    Kuzicheva, E. A.; Simakov, M. B.; Mal'Ko, I. L.; Dodonova, N. Ya.; Gontareva, N. B.

    With the use of high performance liquid chromatography the products of abiogenic synthesis of adenine nucleotides in solid films were indentified and estimated quantitatively. The main products of photosynthesis appeared to be adenosine and deoxyadenosine monophosphates. Maximal yield of these products in case of adenosine has been 0.36 for 5'AMP, 0.41% for 2'(3')AMP, 0.20 for 2'3'cAMP in case of deoxyadenosine 0.13% for 5'dAMP, 0.15% for 3'dAMP, 0.24% for 3'5'cdAMP. The destruction of initial adenosine and deoxyadenosine by the end of the experiment was 10 and 15%, respectively. By the increasing of irradiation dose, 5'AMP and 5'dAMP synthesized in the cource of VUV photolysis were destructed up to adenine, its yield being 15% in both cases.

  4. Theoretical Study of Tautomerization Reactions for the Ground and First Excited Electronic States of Adenine

    NASA Technical Reports Server (NTRS)

    Salter, Latasha M.; Chaban, Galina M.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Geometrical structures and energetic properties for different tautomers of adenine are calculated in this study, using multi-configurational wave functions. Both the ground and the lowest singlet excited state potential energy surfaces are studied. Four tautomeric forms are considered, and their energetic order is found to be different on the ground and the excited state potential energy surfaces. Minimum energy reaction paths are obtained for hydrogen atom transfer (tautomerization) reactions in the ground and the lowest excited electronic states. It is found that the barrier heights and the shapes of the reaction paths are different for the ground and the excited electronic states, suggesting that the probability of such tautomerization reaction is higher on the excited state potential energy surface. This tautomerization process should become possible in the presence of water or other polar solvent molecules and should play an important role in the photochemistry of adenine.

  5. Oxidation of Reduced Nicotinamide Adenine Dinucleotide Phosphate by Isolated Corn Mitochondria 1

    PubMed Central

    Koeppe, D. E.; Miller, Raymond J.

    1972-01-01

    Isolated corn (Zea mays L.) mitochondria were found to oxidize reduced nicotinamide adenine dinucleotide phosphate in a KCl reaction medium. This oxidation was dependent on the presence of calcium or phosphate or both. Strontium and manganese substituted for calcium, but magnesium or barium did not. The oxidation of NADPH produced contraction of mitochondria swollen in KCl. Further evidence that the oxidation of NADPH was coupled was observed in respiratory control and adenosine diphosphate-oxygen ratios that were comparable to those reported for reduced nicotinamide adenine dinucleotide. The pathways of electron flow from NADH and NADPH were compared through the addition of electron transport inhibitors. The only difference between the two dinucleotides was that amytal was found to inhibit almost totally the state 3 oxidation of NADPH, but had little effect on the state 3 oxidation of NADH. The hypothetical pathways for electron flow from NADPH are discussed, as are the possible sites of calcium and phosphate stimulation. PMID:16657960

  6. Protection of Chinese herbs against adenine-induced chronic renal failure in rats.

    PubMed

    Tong, Yanqing; Han, Bing; Guo, Hongyang; Liu, Yanru

    2010-01-01

    The aim of the study is to evaluate the efficacy of Chinese herbs (Angelica sinensis, Ligusticum wallichii, Salvia miltiorrhiza, Rhizoma dioscoreae, Rhodiola crenilata, Astragalus membranaceus and Angelica sinensis) on adenine-induced chronic renal failure in rats. 30 age-matched male Wistar rats were divided into three groups. Rats in group A (n = 10), B (n = 10) and C (n = 10) were fed a standard laboratory chow and allowed tap water ad libitum. In group B and C, renal failure was induced by the administration of a diet containing 0.75% adenine for 28 days which began at day 0. Rats in group C were given Chinese herbs (40 ml/kg with drug concentration 1.75 g/ml) beginning at day 0. Urine albumin, blood urea nitrogen (BUN) and creatinine were determined at days 0, 14 and 28. At day 28, the animals were killed and their kidneys removed for light microscope evaluation. Body weight in Group B decreased more significantly than that in Group C (p = 0.032) at day 28. The rats in group B demonstrated more severe proteinuria and higher Serum creatinine and BUN levels than group C at day 14 and day 28 (P < 0.05, 0.01). All rats given adenine developed marked structural renal damage involving the tubule and interstitium. The values were much less severe in group C than those in group B. In adenine-induced chronic renal failure rats, the protective effects of these Chinese herbs were of a significant nature. Our results do support the notion that these Chinese herbs are useful in deferring the advance of chronic renal failure. We recommend Chinese herbs as a beneficial treatment for pre-end stage chronic renal failure.

  7. Selective self-assembly of adenine-silver nanoparticles forms rings resembling the size of cells

    PubMed Central

    Choi, Sungmoon; Park, Soonyoung; Yang, Seon-Ah; Jeong, Yujin; Yu, Junhua

    2015-01-01

    Self-assembly has played critical roles in the construction of functional nanomaterials. However, the structure of the macroscale multicomponent materials built by the self-assembly of nanoscale building blocks is hard to predict due to multiple intermolecular interactions of great complexity. Evaporation of solvents is usually an important approach to induce kinetically stable assemblies of building blocks with a large-scale specific arrangement. During such a deweting process, we tried to monitor the possible interactions between silver nanoparticles and nucleobases at a larger scale by epifluorescence microscopy, thanks to the doping of silver nanoparticles with luminescent silver nanodots. ssDNA oligomer-stabilized silver nanoparticles and adenine self-assemble to form ring-like compartments similar to the size of modern cells. However, the silver ions only dismantle the self-assembly of adenine. The rings are thermodynamically stable as the drying process only enrich the nanoparticles-nucleobase mixture to a concentration that activates the self-assembly. The permeable membrane-like edge of the ring is composed of adenine filaments glued together by silver nanoparticles. Interestingly, chemicals are partially confined and accumulated inside the ring, suggesting that this might be used as a microreactor to speed up chemical reactions during a dewetting process. PMID:26643504

  8. Ethanol-induced activation of adenine nucleotide turnover. Evidence for a role of acetate

    SciTech Connect

    Puig, J.G.; Fox, I.H.

    1984-09-01

    Consumption of alcohol causes hyperuricemia by decreasing urate excretion and increasing its production. Our previous studies indicate that ethanol administration increases uric acid production by increasing ATP degradation to uric acid precursors. To test the hypothesis that ethanol-induced increased urate production results from acetate metabolism and enhanced adenosine triphosphate turnover, we gave intravenous sodium acetate, sodium chloride and ethanol (0.1 mmol/kg per min for 1 h) to five normal subjects. Acetate plasma levels increased from 0.04 +/- 0.01 mM (mean +/- SE) to peak values of 0.35 +/- 0.07 mM and to 0.08 +/- 0.01 mM during acetate and ethanol infusions, respectively. Urinary oxypurines increased to 223 +/- 13% and 316 +/- 44% of the base-line values during acetate and ethanol infusions, respectively. Urinary radioactivity from the adenine nucleotide pool labeled with (8-14C) adenine increased to 171 +/- 27% and to 128 +/- 8% of the base-line values after acetate and ethanol infusions. These data indicate that both ethanol and acetate increase purine nucleotide degradation by enhancing the turnover of the adenine nucleotide pool. They support the hypothesis that acetate metabolism contributes to the increased production of urate associated with ethanol intake.

  9. Stability Constants of Mixed Ligand Complexes of Nickel(II) with Adenine and Some Amino Acids

    PubMed Central

    Türkel, Naciye

    2015-01-01

    Nickel is one of the essential trace elements found in biological systems. It is mostly found in nickel-based enzymes as an essential cofactor. It forms coordination complexes with amino acids within enzymes. Nickel is also present in nucleic acids, though its function in DNA or RNA is still not clearly understood. In this study, complex formation tendencies of Ni(II) with adenine and certain L-amino acids such as aspartic acid, glutamic acid, asparagine, leucine, phenylalanine, and tryptophan were investigated in an aqueous medium. Potentiometric equilibrium measurements showed that both binary and ternary complexes of Ni(II) form with adenine and the above-mentioned L-amino acids. Ternary complexes of Ni(II)-adenine-L-amino acids are formed by stepwise mechanisms. Relative stabilities of the ternary complexes are compared with those of the corresponding binary complexes in terms of Δlog10⁡K, log10⁡X, and % RS values. It was shown that the most stable ternary complex is Ni(II):Ade:L-Asn while the weakest one is Ni(II):Ade:L-Phe in aqueous solution used in this research. In addition, results of this research clearly show that various binary and ternary type Ni(II) complexes are formed in different concentrations as a function of pH in aqueous solution. PMID:26843852

  10. Chemical evolution: The mechanism of the formation of adenine under prebiotic conditions

    PubMed Central

    Roy, Debjani; Najafian, Katayoun; von Ragué Schleyer, Paul

    2007-01-01

    Fundamental building blocks of life have been detected extraterrestrially, even in interstellar space, and are known to form nonenzymatically. Thus, the HCN pentamer, adenine (a base present in DNA and RNA), was first isolated in abiogenic experiments from an aqueous solution of ammonia and HCN in 1960. Although many variations of the reaction conditions giving adenine have been reported since then, the mechanistic details remain unexplored. Our predictions are based on extensive computations of sequences of reaction steps along several possible mechanistic routes. H2O- or NH3-catalyzed pathways are more favorable than uncatalyzed neutral or anionic alternatives, and they may well have been the major source of adenine on primitive earth. Our report provides a more detailed understanding of some of the chemical processes involved in chemical evolution, and a partial answer to the fundamental question of molecular biogenesis. Our investigation should trigger similar explorations of the detailed mechanisms of the abiotic formation of the remaining nucleic acid bases and other biologically relevant molecules. PMID:17951429

  11. Identification and characterization of a novel plastidic adenine nucleotide uniporter from Solanum tuberosum.

    PubMed

    Leroch, Michaela; Kirchberger, Simon; Haferkamp, Ilka; Wahl, Markus; Neuhaus, H Ekkehard; Tjaden, Joachim

    2005-05-01

    Homologs of BT1 (the Brittle1 protein) are found to be phylogenetically related to the mitochondrial carrier family and appear to occur in both mono- and dicotyledonous plants. Whereas BT1 from cereals is probably involved in the transport of ADP-glucose, which is essential for starch metabolism in endosperm plastids, BT1 from a noncereal plant, Solanum tuberosum (StBT1), catalyzes an adenine nucleotide uniport when functionally integrated into the bacterial cytoplasmic membrane. Import studies into intact Escherichia coli cells harboring StBT1 revealed a narrow substrate spectrum with similar affinities for AMP, ADP, and ATP of about 300-400 mum. Transiently expressed StBT1-green fluorescent protein fusion protein in tobacco leaf protoplasts showed a plastidic localization of the StBT1. In vitro synthesized radioactively labeled StBT1 was targeted to the envelope membranes of isolated spinach chloroplasts. Furthermore, we showed by real time reverse transcription-PCR a ubiquitous expression pattern of the StBT1 in autotrophic and heterotrophic potato tissues. We therefore propose that StBT1 is a plastidic adenine nucleotide uniporter used to provide the cytosol and other compartments with adenine nucleotides exclusively synthesized inside plastids.

  12. Selective self-assembly of adenine-silver nanoparticles forms rings resembling the size of cells.

    PubMed

    Choi, Sungmoon; Park, Soonyoung; Yang, Seon-Ah; Jeong, Yujin; Yu, Junhua

    2015-12-08

    Self-assembly has played critical roles in the construction of functional nanomaterials. However, the structure of the macroscale multicomponent materials built by the self-assembly of nanoscale building blocks is hard to predict due to multiple intermolecular interactions of great complexity. Evaporation of solvents is usually an important approach to induce kinetically stable assemblies of building blocks with a large-scale specific arrangement. During such a deweting process, we tried to monitor the possible interactions between silver nanoparticles and nucleobases at a larger scale by epifluorescence microscopy, thanks to the doping of silver nanoparticles with luminescent silver nanodots. ssDNA oligomer-stabilized silver nanoparticles and adenine self-assemble to form ring-like compartments similar to the size of modern cells. However, the silver ions only dismantle the self-assembly of adenine. The rings are thermodynamically stable as the drying process only enrich the nanoparticles-nucleobase mixture to a concentration that activates the self-assembly. The permeable membrane-like edge of the ring is composed of adenine filaments glued together by silver nanoparticles. Interestingly, chemicals are partially confined and accumulated inside the ring, suggesting that this might be used as a microreactor to speed up chemical reactions during a dewetting process.

  13. Adenine Synthesis in a Model Prebiotic Reaction: Connecting Origin of Life Chemistry with Biology

    PubMed Central

    2011-01-01

    Many high school laboratory experiments demonstrate concepts related to biological evolution, but few exist that allow students to investigate life’s chemical origins. This series of laboratory experiments has been developed to allow students to explore and appreciate the deep connection that exists between prebiotic chemistry, chemical evolution, and contemporary biological systems. In the first experiment of the series, students synthesize adenine, one of the purine nucleobases of DNA and RNA, from plausibly prebiotic precursor molecules. Students compare their product to authentic standards using thin-layer chromatography. The second and third experiments of the series allow students to extract DNA from a familiar organism, the strawberry, and hydrolyze it, releasing adenine, which they can then compare to the previously chemically-synthesized adenine. A fourth, optional experiment is included where the technique of thin-layer chromatography is introduced and chromatographic skills are developed for use in the other three experiments that comprise this series. Concepts relating to organic and analytical chemistry, as well as biochemistry and DNA structure, are incorporated throughout, allowing this series of laboratory experiments to be easily inserted into existing laboratory courses and to reinforce concepts already included in any high school chemistry or biology curriculum. PMID:22075932

  14. Monitoring potential molecular interactions of adenine with other amino acids using Raman spectroscopy and DFT modeling.

    PubMed

    Singh, Shweta; Donfack, P; Srivastava, Sunil K; Singh, Dheeraj K; Materny, A; Asthana, B P; Mishra, P C

    2015-01-01

    We report on the modes of inter-molecular interaction between adenine (Ade) and the amino acids: glycine (Gly), lysine (Lys) and arginine (Arg) using Raman spectroscopy of binary mixtures of adenine and each of the three amino acids at varying molar ratios in the spectral region 1550-550 cm(-1). We focused our attention on certain specific changes in the Raman bands of adenine arising due to its interaction with the amino acids. While the changes are less apparent in the Ade/Gly system, in the Ade/Lys or Ade/Arg systems, significant changes are observed, particularly in the Ade Raman bands that involve the amino group moiety and the N7 and N1 atoms of the purine ring. The ν(N1-C6), ν(N1-C2), δ(C8-H) and δ(N7-C8-N9) vibrations at 1486, 1332, 1253 and 948 cm(-1) show spectral changes on varying the Ade to amino acid molar ratio, the extent of variation being different for the three amino acids. This observation suggests a specific interaction mode between Ade and Lys or Arg, which is due to the hydrogen bonding. The measured spectral changes provide a clear indication that the interaction of Ade depends strongly on the structures of the amino acids, especially their side chains. Density functional theory (DFT) calculations were carried out to elucidate the most probable interaction modes of Ade with the different amino acids.

  15. Ab initio insight into ultrafast nonadiabatic decay of hypoxanthine: keto-N7H and keto-N9H tautomers.

    PubMed

    Guo, Xugeng; Lan, Zhenggang; Cao, Zexing

    2013-07-14

    Nonadiabatic dynamics simulations at the SA-CASSCF level were performed for the two most stable keto-N7H and keto-N9H tautomers of hypoxanthine in order to obtain deep insight into the lifetime of the optically bright S1((1)ππ*) excited state and the relevant decay mechanisms. Supporting calculations on the ground-state (S0) equilibrium structures and minima on the crossing seams of both tautomers were carried out at the MR-CIS and CASSCF levels. These studies indicate that there are four slightly different kinds of conical intersections in each tautomer, exhibiting a chiral character, each of which dominates a barrierless reaction pathway. Moreover, both tautomers reveal the ultrafast S1→ S0 decay, in which the S1 state of keto-N9H in the gas phase has a lifetime of 85.5 fs, whereas that of keto-N7H has a longer lifetime of 137.7 fs. An excellent agreement is found between the present results and the experimental value of 130 ± 20 fs in aqueous solution (Chen and Kohler, Phys. Chem. Chem. Phys., 2012, 14, 10677-10689).

  16. An ultrasensitive electrochemical sensor for simultaneous determination of xanthine, hypoxanthine and uric acid based on Co doped CeO2 nanoparticles.

    PubMed

    Lavanya, N; Sekar, C; Murugan, R; Ravi, G

    2016-08-01

    A novel electrochemical sensor has been fabricated using Co doped CeO2 nanoparticles for selective and simultaneous determination of xanthine (XA), hypoxanthine (HXA) and uric acid (UA) in a phosphate buffer solution (PBS, pH5.0) for the first time. The Co-CeO2 NPs have been prepared by microwave irradiation method and characterized by Powder XRD, Raman spectroscopy, HRTEM and VSM measurements. The electrochemical behaviours of XA, HXA and UA at the Co-CeO2 NPs modified glassy carbon electrode (GCE) were studied by cyclic voltammetry and square wave voltammetry methods. The modified electrode exhibited remarkably well-separated anodic peaks corresponding to the oxidation of XA, HXA and UA over the concentration range of 0.1-1000, 1-600 and 1-2200μM with detection limits of 0.096, 0.36, and 0.12μM (S/N=3), respectively. For simultaneous detection by synchronous change of the concentrations of XA, HXA and UA, the linear responses were in the range of 1-400μM each with the detection limits of 0.47, 0.26, and 0.43μM (S/N=3), respectively. The fabricated sensor was further applied to the detection of XA, HXA and UA in human urine samples with good selectivity and high reproducibility.

  17. The role of the C-terminal region on the oligomeric state and enzymatic activity of Trypanosoma cruzi hypoxanthine phosphoribosyl transferase.

    PubMed

    Valsecchi, Wanda M; Cousido-Siah, Alexandra; Defelipe, Lucas A; Mitschler, André; Podjarny, Alberto; Santos, Javier; Delfino, José M

    2016-06-01

    Hypoxanthine phosphoribosyl transferase from Trypanosoma cruzi (TcHPRT) is a critical enzyme for the survival of the parasite. This work demonstrates that the full-length form in solution adopts a stable and enzymatically active tetrameric form, exhibiting large inter-subunit surfaces. Although this protein irreversibly aggregates during unfolding, oligomerization is reversible and can be modulated by low concentrations of urea. When the C-terminal region, which is predicted as a disordered stretch, is excised by proteolysis, TcHPRT adopts a dimeric state, suggesting that the C-terminal region acts as a main guide for the quaternary arrangement. These results are in agreement with X-ray crystallographic data presented in this work. On the other hand, the C-terminal region exhibits a modulatory role on the enzyme, as attested by the enhanced activity observed for the dimeric form. Bisphosphonates act as substrate-mimetics, uncovering long-range communications among the active sites. All in all, this work contributes to establish new ways applicable to the design of novel inhibitors that could eventually result in new drugs against parasitic diseases. PMID:26969784

  18. Adenine photodimerization in deoxyadenylate sequences: elucidation of the mechanism through structural studies of a major d(ApA) photoproduct.

    PubMed Central

    Kumar, S; Joshi, P C; Sharma, N D; Bose, S N; Jeremy, R; Davies, H; Takeda, N; McCloskey, J A

    1991-01-01

    The mechanism of the photodimerization of adjacent adenine bases on the same strand of DNA has been elucidated by determining the structure of one of the two major photoproducts that are formed by UV irradiation of the deoxydinucleoside monophosphate d(ApA). The photoproduct, denoted d(ApA)*, corresponds to a species of adenine photodimer first described by Pörschke (Pörschke, D. (1973) J.Am.Chem.Soc. 95, 8440-8446). From a detailed examination of its chemical and spectroscopic properties, including comparisons with the model compound N-cyano-N1-(1-methylimidazol-5-yl)formamidine, it is deduced that d(ApA)* contains a deoxyadenosine unit covalently linked through its C(8) position to C(4) of an imidazole N(1) deoxyribonucleoside moiety bearing an N-cyanoformamidino substituent at C(5). On treatment with acid, d(ApA)* is degraded with high specificity to 8-(5-amino-imidazol-4-yl)adenine whose identity has been confirmed by independent chemical synthesis. It is concluded that the primary event in adenine photodimerization entails photoaddition of the N(7)-C(8) double bond of the 5'-adenine across the C(6) and C(5) positions of the 3'-adenine. The azetidine species thus generated acts as a common precursor to both types of d(ApA) photoproduct which are formed from it by competing modes of azetidine ring fission. PMID:2057348

  19. Movement and Metabolism of Kinetin-14C and of Adenine-14C in Coleus Petiole Segments of Increasing Age 1

    PubMed Central

    Veen, Henk; Jacobs, William P.

    1969-01-01

    To see if polar movement was typical of growth-regulators other than auxins, the movement of adenine-8-14C and of kinetin-8-14C was studied in segments cut from petioles of increasing age. No polarity was found. In time-course experiments lasting 24 hr, kinetin showed a progressive increase of radioactivity in receiver blocks, while adenine showed a maximum at 8 hr with a decline thereafter. More kinetin moved through older segments than through younger ones. There was no difference in net loss as far as the position of the donor block is concerned. However, the loss of radioactivity from adenine donor blocks was much higher than the loss of radioactivity from kinetin donor blocks. The radioactivity in receiver blocks after 24 hr treatment with kinetin-14C was still with kinetin, judging by location on chromatograms. By the same criterion, adenine and a smaller amount of some other compound were in receiver blocks after a 6 hr transport with adenine-14C in the donors. By contrast, more zones of radioactivity were extracted from petiole segments to which kinetin or adenine had been added. For both purine derivatives the original compound represented no more than 20% of the total radioactivity extracted from the tissue after a transport period of 24 hr. PMID:16657203

  20. Undetectable levels of N6-methyl adenine in mouse DNA: Cloning and analysis of PRED28, a gene coding for a putative mammalian DNA adenine methyltransferase.

    PubMed

    Ratel, David; Ravanat, Jean-Luc; Charles, Marie-Pierre; Platet, Nadine; Breuillaud, Lionel; Lunardi, Joël; Berger, François; Wion, Didier

    2006-05-29

    Three methylated bases, 5-methylcytosine, N4-methylcytosine and N6-methyladenine (m6A), can be found in DNA. However, to date, only 5-methylcytosine has been detected in mammalian genomes. To reinvestigate the presence of m6A in mammalian DNA, we used a highly sensitive method capable of detecting one N6-methyldeoxyadenosine per million nucleosides. Our results suggest that the total mouse genome contains, if any, less than 10(3) m6A. Experiments were next performed on PRED28, a putative mammalian N6-DNA methyltransferase. The murine PRED28 encodes two alternatively spliced RNA. However, although recombinant PRED28 proteins are found in the nucleus, no evidence for an adenine-methyltransferase activity was detected. PMID:16684535

  1. In vitro antiviral activity of mycophenolic acid and its reversal by guanine-type compounds.

    PubMed

    Cline, J C; Nelson, J D; Gerzon, K; Williams, R H; Delong, D C

    1969-07-01

    With the agar diffusion test and BS-C-1 cells, mycophenolic acid was found to give a straight-line dose-response activity in inhibiting the cytopathic effects of vaccinia, herpes simplex, and measles viruses. Plaque tests have shown 100% reduction of virus plaques by mycophenolic acid over drug ranges of 10 to 50 mug/ml and virus input as high as 6,000 plaque-forming units (PFU) per flask. Back titration studies with measles virus inhibited by mycophenolic acid have indicated that extracellular virus titers were reduced by approximately 3 logs(10) and total virus was reduced by 1 log(10). The agar diffusion test system lends itself readily to drug reversal studies. Mycophenolic acid incorporated into agar at 10 mug/ml gave 100% protection to virus-infected cells. Filter paper discs impregnated with selected chemical agents at concentrations of 1,000 mug/ml (20 mug per filter paper disc) were placed on the agar surface. Reversal of the antiviral activity of mycophenolic acid was indicated by virus breakthrough in those cells in close proximity to the filter paper disc. Chemicals showing the best reversal of the antiviral activity of mycophenolic acid were guanine, guanosine, guanylic acid, deoxyguanylic acid, and 2,6-diaminopurine. The reversal of antiviral activity was confirmed by titrations of virus produced with various amounts of both mycophenolic acid and guanine present and by isotope tracer methods with uptakes of labeled uridine, guanine, leucine, and thymidine in treated and nontreated, infected and noninfected cells as parameters. All antiviral effects of mycophenolic acid at 10 mug/ml could be reversed to the range shown by untreated controls by the addition of 10 mug/ml of those chemicals exhibiting reversal activity.

  2. Topoisomerase IB of Deinococcus radiodurans resolves guanine quadruplex DNA structures in vitro.

    PubMed

    Kota, Swathi; Misra, Hari S

    2015-12-01

    Deinococcus radiodurans genome contains a large number of guanine repeats interrupted by a few non-guanine bases, termed G motifs. Some of these G motifs were shown forming guanine quadruplex (G4) DNA structure in vitro. How is the formation and relaxation of G4 DNA regulated in the genome of D. radiodurans is not known and is worth investigating. Here, we showed that the topoisomerase Ib of D. radiodurans (DraTopoIB) could change the electrophoretic mobility of fast migrating intramolecular recF-G4 DNA into the slow migrating species. DraTopoIB also reduced the positive ellipticity in circular diachroism (CD) spectra of intramolecular recF-G4 DNA structures stabilized by K+. On the contrary, when DraTopoIB is incubated with G-motifs annealed without K+, it showed neither any change in electrophoretic mobility nor was ellipticity of the CD spectra affected. DNA synthesis by Taq DNA polymerase through G4 DNA structure was attenuated in the presence of G4 DNA binding drugs, which was abrogated by DraTopoIB. This implies that DraTopoIB could destabilize the G4 DNA structure, which is required for G4 drugs binding and stabilization. Camptothecin treatment inhibited DraTopoIB activity on intramolecular G4 DNA structures. These results suggested that DraTopoIB can relax intramolecular G4 DNA structure in vitro and it may be one such protein that could resolve G4 DNA under normal growth conditions in D. radiodurans.

  3. Effect of 10-T magnetic fields on structural colors in guanine crystals of fish scales

    NASA Astrophysics Data System (ADS)

    Iwasaka, M.; Miyashita, Y.; Kudo, M.; Kurita, S.; Owada, N.

    2012-04-01

    This work reports the magnetically modulated structural colors in the chromatophore of goldfish scales under static magnetic fields up to 10 T. A fiber optic system for spectroscopy measurements and a CCD microscope were set in the horizontal bore of a 10-T superconducting magnet. One leaf of a fish scale was set in a glass chamber, exposed to visible light from its side direction, and then static magnetic fields were applied perpendicular to the surface of the scale. In addition, an optical fiber for spectroscopy was directed perpendicular to the surface. During the magnetic field sweep-up, the aggregate of guanine thin plates partially showed a rapid light quenching under 0.26 to 2 T; however, most of the thin plates continued to scatter the side-light and showed changing iridescence, which was displayed individually by each guanine plate. For example, an aggregate in the chromatophore exhibited a dynamic change in structural color from white-green to dark blue when the magnetic fields changed from 2 to 10 T. The spectrum profile, which was obtained by the fiber optic system, confirmed the image color changes under magnetic field exposure. Also, a linearly polarized light transmission was measured on fish scales by utilizing an optical polarizer and analyzer. The transmitted polarized light intensities increased in the range of 500-550 nm compared to the intensity at 700 nm during the magnetic field sweep-up. These results indicate that the multi-lamella structure of nano-mirror plates in guanine hexagonal micro-plates exhibit diamagnetically modulated structure changes, and its light interference is affected by strong magnetic fields.

  4. Fluorescent Sensing of Guanine and Guanosine Monophosphate with Conjugated Receptors Incorporating Aniline and Naphthyridine Moieties.

    PubMed

    Lu, Shao-Hung; Phang, Riping; Fang, Jim-Min

    2016-04-15

    Ethyne-linked naphthyridine-aniline conjugated molecules are selective sensors of decylguanine in dichloromethane and guanosine monophosphate in water (Kass = 16,000 M(-1)). The 2-acetamido-1,8-naphthyridine moiety binds with guanine in a DAA-ADD triply hydrogen-bonded motif. The aniline moiety enhances an electron-donating effect, and the substituent is tuned to attain extra hydrogen bonds, π-π stacking, and electrostatic interactions. The proposed binding modes are supported by a Job plot, ESI-MS, (1)H NMR, UV-vis, and fluorescence spectral analyses.

  5. Insights into the biological functions of Dock family guanine nucleotide exchange factors

    PubMed Central

    Laurin, Mélanie; Côté, Jean-François

    2014-01-01

    Rho GTPases play key regulatory roles in many aspects of embryonic development, regulating processes such as differentiation, proliferation, morphogenesis, and migration. Two families of guanine nucleotide exchange factors (GEFs) found in metazoans, Dbl and Dock, are responsible for the spatiotemporal activation of Rac and Cdc42 proteins and their downstream signaling pathways. This review focuses on the emerging roles of the mammalian DOCK family in development and disease. We also discuss, when possible, how recent discoveries concerning the biological functions of these GEFs might be exploited for the development of novel therapeutic strategies. PMID:24637113

  6. Silver (I) as DNA glue: Ag+-mediated guanine pairing revealed by removing Watson-Crick constraints

    NASA Astrophysics Data System (ADS)

    Swasey, Steven M.; Leal, Leonardo Espinosa; Lopez-Acevedo, Olga; Pavlovich, James; Gwinn, Elisabeth G.

    2015-05-01

    Metal ion interactions with DNA have far-reaching implications in biochemistry and DNA nanotechnology. Ag+ is uniquely interesting because it binds exclusively to the bases rather than the backbone of DNA, without the toxicity of Hg2+. In contrast to prior studies of Ag+ incorporation into double-stranded DNA, we remove the constraints of Watson-Crick pairing by focusing on homo-base DNA oligomers of the canonical bases. High resolution electro-spray ionization mass spectrometry reveals an unanticipated Ag+-mediated pairing of guanine homo-base strands, with higher stability than canonical guanine-cytosine pairing. By exploring unrestricted binding geometries, quantum chemical calculations find that Ag+ bridges between non-canonical sites on guanine bases. Circular dichroism spectroscopy shows that the Ag+-mediated structuring of guanine homobase strands persists to at least 90 °C under conditions for which canonical guanine-cytosine duplexes melt below 20 °C. These findings are promising for DNA nanotechnology and metal-ion based biomedical science.

  7. Silver (I) as DNA glue: Ag+-mediated guanine pairing revealed by removing Watson-Crick constraints

    PubMed Central

    Swasey, Steven M.; Leal, Leonardo Espinosa; Lopez-Acevedo, Olga; Pavlovich, James; Gwinn, Elisabeth G.

    2015-01-01

    Metal ion interactions with DNA have far-reaching implications in biochemistry and DNA nanotechnology. Ag+ is uniquely interesting because it binds exclusively to the bases rather than the backbone of DNA, without the toxicity of Hg2+. In contrast to prior studies of Ag+ incorporation into double-stranded DNA, we remove the constraints of Watson-Crick pairing by focusing on homo-base DNA oligomers of the canonical bases. High resolution electro-spray ionization mass spectrometry reveals an unanticipated Ag+-mediated pairing of guanine homo-base strands, with higher stability than canonical guanine-cytosine pairing. By exploring unrestricted binding geometries, quantum chemical calculations find that Ag+ bridges between non-canonical sites on guanine bases. Circular dichroism spectroscopy shows that the Ag+-mediated structuring of guanine homobase strands persists to at least 90 °C under conditions for which canonical guanine-cytosine duplexes melt below 20 °C. These findings are promising for DNA nanotechnology and metal-ion based biomedical science. PMID:25973536

  8. Silver (I) as DNA glue: Ag(+)-mediated guanine pairing revealed by removing Watson-Crick constraints.

    PubMed

    Swasey, Steven M; Leal, Leonardo Espinosa; Lopez-Acevedo, Olga; Pavlovich, James; Gwinn, Elisabeth G

    2015-01-01

    Metal ion interactions with DNA have far-reaching implications in biochemistry and DNA nanotechnology. Ag(+) is uniquely interesting because it binds exclusively to the bases rather than the backbone of DNA, without the toxicity of Hg(2+). In contrast to prior studies of Ag(+) incorporation into double-stranded DNA, we remove the constraints of Watson-Crick pairing by focusing on homo-base DNA oligomers of the canonical bases. High resolution electro-spray ionization mass spectrometry reveals an unanticipated Ag(+)-mediated pairing of guanine homo-base strands, with higher stability than canonical guanine-cytosine pairing. By exploring unrestricted binding geometries, quantum chemical calculations find that Ag(+) bridges between non-canonical sites on guanine bases. Circular dichroism spectroscopy shows that the Ag(+)-mediated structuring of guanine homobase strands persists to at least 90 °C under conditions for which canonical guanine-cytosine duplexes melt below 20 °C. These findings are promising for DNA nanotechnology and metal-ion based biomedical science. PMID:25973536

  9. Differences in nitric oxide steady states between arginine, hypoxanthine, uracil auxotrophs (AHU) and non-AHU strains of Neisseria gonorrhoeae during anaerobic respiration in the presence of nitrite.

    PubMed

    Barth, Kenneth; Clark, Virginia L

    2008-08-01

    Neisseria gonorrhoeae can grow by anaerobic respiration using nitrite as an alternative electron acceptor. Under these growth conditions, N. gonorrhoeae produces and degrades nitric oxide (NO), an important host defense molecule. Laboratory strain F62 has been shown to establish and maintain a NO steady-state level that is a function of the nitrite reductase/NO reductase ratio and is independent of cell number. The nitrite reductase activities (122-197 nmol NO2 reduced x min(-1) x OD600(-1)) and NO reductase activities (88-155 nmol NO reduced x min(-1) x OD600(-1)) in a variety of gonococcal clinical isolates were similar to the specific activities seen in F62 (241 nmol NO2 reduced x min(-1) x OD600(-1) and 88 nmol NO reduced x min(-1) x OD600(-1), respectively). In seven gonococcal strains, the NO steady-state levels established in the presence of nitrite were similar to that of F62 (801-2121 nmol x L-1 NO), while six of the strains, identified as arginine, hypoxanthine, and uracil auxotrophs (AHU), that cause asymptomatic infection in men had either two- to threefold (373-579 nmol x L-1 NO) or about 100-fold (13-24 nmol x L-1 NO) lower NO steady-state concentrations. All tested strains in the presence of a NO donor, 2,2'-(hydroxynitrosohydrazono)bis-ethanimine/NO, quickly lowered and maintained NO levels in the noninflammatory range of NO (<300 nmol x L-1). The generation of a NO steady-state concentration was directly affected by alterations in respiratory control in both F62 and an AHU strain, although differences in membrane function are suspected to be responsible for NO steady-state level differences in AHU strains.

  10. The role for an invariant aspartic acid in hypoxanthine phosphoribosyltransferases is examined using saturation mutagenesis, functional analysis, and X-ray crystallography.

    PubMed

    Canyuk, B; Focia, P J; Eakin, A E

    2001-03-01

    The role of an invariant aspartic acid (Asp137) in hypoxanthine phosphoribosyltransferases (HPRTs) was examined by site-directed and saturation mutagenesis, functional analysis, and X-ray crystallography using the HPRT from Trypanosoma cruzi. Alanine substitution (D137A) resulted in a 30-fold decrease of k(cat), suggesting that Asp137 participates in catalysis. Saturation mutagenesis was used to generate a library of mutant HPRTs with random substitutions at position 137, and active enzymes were identified by complementation of a bacterial purine auxotroph. Functional analyses of the mutants, including determination of steady-state kinetic parameters and pH-rate dependence, indicate that glutamic acid or glutamine can replace the wild-type aspartate. However, the catalytic efficiency and pH-rate profile for the structural isosteric mutant, D137N, were similar to the D137A mutant. Crystal structures of four of the mutant enzymes were determined in ternary complex with substrate ligands. Structures of the D137E and D137Q mutants reveal potential hydrogen bonds, utilizing several bound water molecules in addition to protein atoms, that position these side chains within hydrogen bond distance of the bound purine analogue, similar in position to the aspartate in the wild-type structure. The crystal structure of the D137N mutant demonstrates that the Asn137 side chain does not form interactions with the purine substrate but instead forms novel interactions that cause the side chain to adopt a nonfunctional rotamer. The results from these structural and functional analyses demonstrate that HPRTs do not require a general base at position 137 for catalysis. Instead, hydrogen bonding sufficiently stabilizes the developing partial positive charge at the N7-atom of the purine substrate in the transition-state to promote catalysis.

  11. NF-κB activation mediates crystal translocation and interstitial inflammation in adenine overload nephropathy.

    PubMed

    Okabe, Cristiene; Borges, Raquel Lerner; de Almeida, Danilo Candido; Fanelli, Camilla; Barlette, Grasiela Pedreira; Machado, Flavia Gomes; Arias, Simone Costa Alarcon; Malheiros, Denise Maria Avancini Costa; Camara, Niels Olsen Saraiva; Zatz, Roberto; Fujihara, Clarice Kazue

    2013-07-15

    Adenine overload promotes intratubular crystal precipitation and interstitial nephritis. We showed recently that these abnormalities are strongly attenuated in mice knockout for Toll-like receptors-2, -4, MyD88, ASC, or caspase-1. We now investigated whether NF-κB activation also plays a pathogenic role in this model. Adult male Munich-Wistar rats were distributed among three groups: C (n = 17), receiving standard chow; ADE (n = 17), given adenine in the chow at 0.7% for 1 wk and 0.5% for 2 wk; and ADE + pyrrolidine dithiocarbamate (PDTC; n = 14), receiving adenine as above and the NF-κB inhibitor PDTC (120 mg·kg⁻¹·day⁻¹ in the drinking water). After 3 wk, widespread crystal deposition was seen in tubular lumina and in the renal interstitium, along with granuloma formation, collagen accumulation, intense tubulointerstitial proliferation, and increased interstitial expression of inflammatory mediators. Part of the crystals were segregated from tubular lumina by a newly formed cell layer and, at more advanced stages, appeared to be extruded to the interstitium. p65 nuclear translocation and IKK-α increased abundance indicated activation of the NF-κB system. PDTC treatment prevented p65 migration and normalized IKK-α, limited crystal shift to the interstitium, and strongly attenuated interstitial fibrosis/inflammation. These findings indicate that the complex inflammatory phenomena associated with this model depend, at least in part, on NF-κB activation, and suggest that the NF-κB system may become a therapeutic target in the treatment of chronic kidney disease.

  12. The effect of pi-stacking, h-bonding, and electrostatic interactions on the ionization energies of nucleic acid bases: adenine-adenine, thymine-thymine and adenine-thymine dimers

    SciTech Connect

    Bravaya, Ksenia B.; Kostko, Oleg; Ahmed, Musahid; Krylov, Anna I.

    2009-09-02

    A combined theoretical and experimental study of the ionized dimers of thymine and adenine, TT, AA, and AT, is presented. Adiabatic and vertical ionization energies(IEs) for monomers and dimers as well as thresholds for the appearance of the protonated species are reported and analyzed. Non-covalent interactions stronglyaffect the observed IEs. The magnitude and the nature of the effect is different for different isomers of the dimers. The computations reveal that for TT, the largestchanges in vertical IEs (0.4 eV) occur in asymmetric h-bonded and symmetric pi- stacked isomers, whereas in the lowest-energy symmetric h-bonded dimer the shiftin IEs is much smaller (0.1 eV). The origin of the shift and the character of the ionized states is different in asymmetric h-bonded and symmetric stacked isomers. Inthe former, the initial hole is localized on one of the fragments, and the shift is due to the electrostatic stabilization of the positive charge of the ionized fragment by thedipole moment of the neutral fragment. In the latter, the hole is delocalized, and the change in IE is proportional to the overlap of the fragments' MOs. The shifts in AAare much smaller due to a less effcient overlap and a smaller dipole moment. The ionization of the h-bonded dimers results in barrierless (or nearly barrierless) protontransfer, whereas the pi-stacked dimers relax to structures with the hole stabilized by the delocalization or electrostatic interactions.

  13. Biological activity of analogs of guanine and guanosine against American Trypanosoma and Leishmania spp.

    PubMed Central

    Avila, J L; Rojas, T; Avila, A; Polegre, M A; Robins, R K

    1987-01-01

    The growth inhibitory effects of six guanine and guanosine analogs, 3-deazaguanine (compound 1); 3-deazaguanosine (compound 2); 6-aminoallopurinol (compound 3); 9-beta-xylofuranosyl guanine (compound 4); a ribosylated derivative of compound 3, 6-aminopyrazolo(3,4-d)pyrimidin-4-one (compound 5); and 5-aminoformycin B (compound 6), were tested against some pathogenic members of the family of American Trypanosomatidae. Compounds 1 and 2 were highly active against Trypanosoma cruzi, Trypanosoma rangeli, and American Leishmania spp. in in vitro culture forms. Both compounds also showed antiprotozoal activity in T. cruzi-infected mice, with the optimal dose being about 30 mg/kg of body weight per day given as 10 consecutive doses. Compound 3 was the most active compound in vitro, inhibiting all of the American Trypanosomatidae culture forms tested. It was also highly inhibitory in mice that were acutely infected with T. cruzi, with the optimal dose being about 10 mg/kg of body weight per day. Ribosylation of compound 3 resulted in a derivative that showed decreased inhibitory activity on Trypanosomatidae multiplication. Compound 6 was highly inhibitory of in vitro multiplication of American Leishmania and T. rangeli but had no effect on T. cruzi epimastigotes and on mice that were acutely infected with T. cruzi. Compound 4 showed only a slight effect on T. cruzi epimastigotes. PMID:3107463

  14. Rho Family Guanine Nucleotide Exchange Factor Brx Couples Extracellular Signals to the Glucocorticoid Signaling System*

    PubMed Central

    Kino, Tomoshige; Souvatzoglou, Emanuel; Charmandari, Evangelia; Ichijo, Takamasa; Driggers, Paul; Mayers, Chantal; Alatsatianos, Anton; Manoli, Irini; Westphal, Heiner; Chrousos, George P.; Segars, James H.

    2014-01-01

    Glucocorticoids regulate many crucial biologic functions through their cytoplasmic/nuclear glucocorticoid receptors (GR). Excess, deficiency, or alteration in tissue sensitivity to glucocorticoids has been associated with major causes of human morbidity and mortality. Brx, a cytoplasmic Rho family guanine nucleotide exchange factor, binds to and influences the activity of several nuclear hormone receptors. We examined the functional and molecular interactions between GR and Brx. The glucocorticoid sensitivity of lymphocytes obtained from mice haplo-insufficient for Brx was significantly decreased. Conversely, GR-mediated transcriptional activity of a glucocorticoid response element (GRE)-mediated glucocorticoid-responsive promoter was enhanced by Brx in a guanine nucleotide exchange factor domain-dependent fashion. Brx interacted with GR, forming a ternary complex with RhoA. In a chromatin immunoprecipitation assay, Brx and RhoA were co-precipitated with GREs only in the presence of ligand-activated GR. Extracellularly administered lyso-phosphatidic acid, which activates its signaling cascade through a specific membrane GTP-binding protein (G-protein)-coupled receptor in a G-protein α13-, Brx-, and RhoA-dependent fashion, enhanced GR transcriptional activity, whereas depletion of endogenous Brx attenuated this effect. These findings suggest that glucocorticoid signaling and, hence, the tissue sensitivity to glucocorticoids, may be coupled to extracellular signals via Brx and small G-proteins. Nuclear Brx might act as a local GRE-GR-transcripto-some activator by mediating the effect of small G-proteins on glucocorticoid-regulated genes. PMID:16469733

  15. The emerging role of guanine nucleotide exchange factors in ALS and other neurodegenerative diseases

    PubMed Central

    Droppelmann, Cristian A.; Campos-Melo, Danae; Volkening, Kathryn; Strong, Michael J.

    2014-01-01

    Small GTPases participate in a broad range of cellular processes such as proliferation, differentiation, and migration. The exchange of GDP for GTP resulting in the activation of these GTPases is catalyzed by a group of enzymes called guanine nucleotide exchange factors (GEFs), of which two classes: Dbl-related exchange factors and the more recently described dedicator of cytokinesis proteins family exchange factors. Increasingly, deregulation of normal GEF activity or function has been associated with a broad range of disease states, including neurodegeneration and neurodevelopmental disorders. In this review, we examine this evidence with special emphasis on the novel role of Rho guanine nucleotide exchange factor (RGNEF/p190RhoGEF) in the pathogenesis of amyotrophic lateral sclerosis. RGNEF is the first neurodegeneration-linked GEF that regulates not only RhoA GTPase activation but also functions as an RNA binding protein that directly acts with low molecular weight neurofilament mRNA 3′ untranslated region to regulate its stability. This dual role for RGNEF, coupled with the increasing understanding of the key role for GEFs in modulating the GTPase function in cell survival suggests a prominent role for GEFs in mediating a critical balance between cytotoxicity and neuroprotection which, when disturbed, contributes to neuronal loss. PMID:25309324

  16. Reactions of the OOH radical with guanine: Mechanisms of formation of 8-oxoguanine and other products

    NASA Astrophysics Data System (ADS)

    Kumar, Nagendra; Shukla, P. K.; Mishra, P. C.

    2010-09-01

    The mutagenic product 8-oxoguanine (8-oxoGua) is formed due to intermediacy of peroxyl (OOR) radicals in lipid peroxidation and protein oxidation-induced DNA damage. The mechanisms of these reactions are not yet understood properly. Therefore, in the present study, the mechanisms of formation of 8-oxoGua and other related products due to the reaction of the guanine base of DNA with the hydroperoxyl radical (OOH) were investigated theoretically employing the B3LYP and BHandHLYP hybrid functionals of density functional theory and the polarizable continuum model for solvation. It is found that the reaction of the OOH radical with guanine can occur following seven different mechanisms leading to the formation of various products including 8-oxoGua, its radicals, 5-hydroxy-8-oxoguanine and CO 2. The mechanism that yields 8-oxoGua as an intermediate and 5-hydroxy-8-oxoGua as the final product was found to be energetically most favorable.

  17. Formation of guanine ribonucleotidyl-(3'-5')-adenosine in a flavinogenic strain of Eremothecium ashbyii.

    PubMed

    Mitsuda, H; Nishikawa, Y; Nakajima, K

    1976-01-01

    The addition of caffeine caused the accumulation of a new nucleotide compound simultaneously with the rigid inhibition of ribofalvin production in non-growing cells of Eremothecium ashbyii. In the present study we tried to identify the structure of the nucleotide compound using non-growing cells of the mold. 1) It became possible to obtain a large amount of mycelia by masscultivation in a reagent tank. 2) A new nucleotide compound, referred to as compound A in the paper, was extracted with perchloric acid solution and purified by the following subsequent procedures: 1) Dowex 1 x 2 (HCOO-) column, 2) charcoal treatment, 3) DEAE-Sephadex A25 (CI-) column, 4) Dowex 1 x 2 (C1-) column, and 5) DEAE-Sephadex A25 (HCO3-) column. 3) The structure of the new nucleotide compound was proved to be guanine ribonucleotidyl-(3'-5')-adenosine (GpA) from the results of the following analyses: 1) alkaline degradation, 2) UV-spectra, IR-spectra and NMR-spectra, and 3) enzymatic treatments with RNase T2 and phosphodiesterase. 4) The roles of caffeine and guanine ribonucleotidyl-(3'-5')-adenosine in connection with flavinogenesis of this mold were discussed. PMID:182940

  18. Chromosomal localization of genes encoding guanine nucleotide-binding protein subunits in mouse and human.

    PubMed

    Blatt, C; Eversole-Cire, P; Cohn, V H; Zollman, S; Fournier, R E; Mohandas, L T; Nesbitt, M; Lugo, T; Jones, D T; Reed, R R

    1988-10-01

    A variety of genes have been identified that specify the synthesis of the components of guanine nucleotide-binding proteins (G proteins). Eight different guanine nucleotide-binding alpha-subunit proteins, two different beta subunits, and one gamma subunit have been described. Hybridization of cDNA clones with DNA from human-mouse somatic cell hybrids was used to assign many of these genes to human chromosomes. The retinal-specific transducin subunit genes GNAT1 and GNAT2 were on chromosomes 3 and 1; GNAI1, GNAI2, and GNAI3 were assigned to chromosomes 7, 3, and 1, respectively; GNAZ and GNAS were found on chromosomes 22 and 20. The beta subunits were also assigned--GNB1 to chromosome 1 and GNB2 to chromosome 7. Restriction fragment length polymorphisms were used to map the homologues of some of these genes in the mouse. GNAT1 and GNAI2 were found to map adjacent to each other on mouse chromosome 9 and GNAT2 was mapped on chromosome 17. The mouse GNB1 gene was assigned to chromosome 19. These mapping assignments will be useful in defining the extent of the G alpha gene family and may help in attempts to correlate specific genetic diseases with genes corresponding to G proteins. PMID:2902634

  19. The structure, stability, H-bonding pattern, and electrostatic potential of adenine tetrads

    NASA Astrophysics Data System (ADS)

    Gu, Jiande; Leszczynski, Jerzy

    2001-03-01

    Two conformations of the adenine tetrad were investigated at the HF and B3LYP/6-311G(d,p) levels of theory. Both conformations are predicted to be stable only in the nonplanar form. They adopt the bowl type structure. Since the planar form offers better geometry for stacking with the adjacent G-tetrad, both planar forms are expected to be important in the formation of the tetraplexes. Based on electrostatic potential map the positive electrostatic potential in the central area of both conformations is expected to reinforce the stacking between the A-tetrads and the G-tetrads in the tetraplexes.

  20. Strong coupling between adenine nucleobases in DNA single strands revealed by circular dichroism using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Kadhane, Umesh; Holm, Anne I. S.; Hoffmann, Søren Vrønning; Nielsen, Steen Brøndsted

    2008-02-01

    Circular dichroism (CD) experiments on DNA single strands (dAn) at the ASTRID synchrotron radiation facility reveal that eight adenine (A) bases electronically couple upon 190nm excitation. After n=8 , the CD signal increases linearly with n with a slope equal to the sum of the coupling terms. Nearest neighbor interactions account for only 24% of the CD signal whereas electronic communication is limited to nearest neighbors for two other exciton bands observed at 218 and 251nm (i.e., dimer excited states). Electronic coupling between bases in DNA is important for nonradiative deexcitation of electronically excited states since the hazardous energy is spread over a larger spatial region.

  1. Synthesis, spectroscopic, structural and thermal characterizations of vanadyl(IV) adenine complex prospective as antidiabetic drug agent

    NASA Astrophysics Data System (ADS)

    El-Megharbel, Samy M.; Hamza, Reham Z.; Refat, Moamen S.

    2015-01-01

    The vanadyl(IV) adenine complex; [VO(Adn)2]ṡSO4; was synthesized and characterized. The molar conductivity of this complex was measured in DMSO solution that showed an electrolyte nature. Spectroscopic investigation of the green solid complex studied here indicate that the adenine acts as a bidentate ligand, coordinated to vanadyl(IV) ions through the nitrogen atoms N7 and nitrogen atom of amino group. Thus, from the results presented the vanadyl(IV) complex has square pyramid geometry. Further characterizations using thermal analyses and scanning electron techniques was useful. The aim of this paper was to introduce a new drug model for the diabetic complications by synthesized a novel mononuclear vanadyl(IV) adenine complex to mimic insulin action and reducing blood sugar level. The antidiabetic ability of this complex was investigated in STZ-induced diabetic mice. The results suggested that VO(IV)/adenine complex has antidiabetic activity, it improved the lipid profile, it improved liver and kidney functions, also it ameliorated insulin hormone and blood glucose levels. The vanadyl(IV) complex possesses an antioxidant activity and this was clear through studying SOD, CAT, MDA, GSH and methionine synthase. The current results support the therapeutic potentiality of vanadyl(IV)/adenine complex for the management and treatment of diabetes.

  2. The isolation and characterisation of a new type of dimeric adenine photoproduct in UV-irradiated deoxyadenylates.

    PubMed Central

    Kumar, S; Sharma, N D; Davies, R J; Phillipson, D W; McCloskey, J A

    1987-01-01

    A new type of dimeric adenine photoproduct has been isolated from d(ApA) irradiated at 254 nm in neutral aqueous solution. It is formed in comparable amounts to another, quite distinct, adenine photoproduct first described by Pörschke (J. Am. Chem. Soc. (1973), 95, 8440-8446). Results from high resolution mass spectrometry and 1H NMR indicate that the new photoproduct comprises a mixture of two stereoisomers whose formation involves covalent coupling of the adenine bases in d(ApA) and concomitant incorporation of the elements of one molecule of water. The photoproduct is degraded specifically by acid to 4,6-diamino-5-guanidinopyrimidine (DGPY) whose identity has been confirmed by independent chemical synthesis. Formation of the new photoproduct in UV-irradiated d(pA)2 and poly(dA), but not poly(rA), has been demonstrated by assaying their acid hydrolysates for the presence of DGPY. The properties of the photoproduct are consistent with it being generated by the hydrolytic fission of an azetidine photoadduct in which the N(7) and C(8) atoms of the 5'-adenine in d(ApA) are linked respectively to the C(6) and C(5) positions of the 3'-adenine. PMID:3822822

  3. Metabolic fate of 14C-labelled nicotinamide and adenine in germinating propagules of the mangrove Bruguiera gymnorrhiza.

    PubMed

    Yin, Yuling; Watanabe, Shin; Ashihara, Hiroshi

    2012-01-01

    We studied the metabolic fate of [carbonyl-14C]nicotinamide and [8-(14)C]adenine in segments taken from young and developing leaves, stem, hypocotyls, and roots of a shoot-root type emerging propagule of the mangrove plant Bruguiera gymnorrhiza. Thin-layer chromatography was used together with a bioimaging analyser system. During 4 h of incubation, incorporation of radioactivity from [carbonyl-14C]nicotinamide into NAD and trigonelline was found in all parts of the propagules; the highest incorporation rates into NAD and trigonelline were found in newly emerged stem and young leaves, respectively. Radioactivity from [8-(14)C]adenine was distributed mainly in the salvage products (adenine nucleotides and RNA), and incorporation was less in catabolites (allantoin, allantoic acid, and CO2). Adenine salvage activity was higher in young leaves and stem than in hypocotyls and roots. Over a short time, the effect of 500 mM NaCl on nicotinamide and adenine metabolism indicated that NaCl inhibits both salvage and degradation activities in roots. PMID:22888538

  4. Intermediates in the Guanine Nucleotide Exchange Reaction of Rab8 Protein Catalyzed by Guanine Nucleotide Exchange Factors Rabin8 and GRAB*

    PubMed Central

    Guo, Zhong; Hou, Xiaomin; Goody, Roger S.; Itzen, Aymelt

    2013-01-01

    Small G-proteins of the Ras superfamily control the temporal and spatial coordination of intracellular signaling networks by acting as molecular on/off switches. Guanine nucleotide exchange factors (GEFs) regulate the activation of these G-proteins through catalytic replacement of GDP by GTP. During nucleotide exchange, three distinct substrate·enzyme complexes occur: a ternary complex with GDP at the start of the reaction (G-protein·GEF·GDP), an intermediary nucleotide-free binary complex (G-protein·GEF), and a ternary GTP complex after productive G-protein activation (G-protein·GEF·GTP). Here, we show structural snapshots of the full nucleotide exchange reaction sequence together with the G-protein substrates and products using Rabin8/GRAB (GEF) and Rab8 (G-protein) as a model system. Together with a thorough enzymatic characterization, our data provide a detailed view into the mechanism of Rabin8/GRAB-mediated nucleotide exchange. PMID:24072714

  5. Bacteriophage adenine methyltransferase: a life cycle regulator? Modelled using Vibrio harveyi myovirus like.

    PubMed

    Bochow, S; Elliman, J; Owens, L

    2012-11-01

    The adenine methyltransferase (DAM) gene methylates GATC sequences that have been demonstrated in various bacteria to be a powerful gene regulator functioning as an epigenetic switch, particularly with virulence gene regulation. However, overproduction of DAM can lead to mutations, giving rise to variability that may be important for adaptation to environmental change. While most bacterial hosts carry a DAM gene, not all bacteriophage carry this gene. Currently, there is no literature regarding the role DAM plays in life cycle regulation of bacteriophage. Vibrio campbellii strain 642 carries the bacteriophage Vibrio harveyi myovirus like (VHML) that has been proven to increase virulence. The complete genome sequence of VHML bacteriophage revealed a putative adenine methyltransferase gene. Using VHML, a new model of phage life cycle regulation, where DAM plays a central role between the lysogenic and lytic states, will be hypothesized. In short, DAM methylates the rha antirepressor gene and once methylation is removed, homologous CI repressor protein becomes repressed and non-functional leading to the switching to the lytic cycle. Greater understanding of life cycle regulation at the genetic level can, in the future, lead to the genesis of chimeric bacteriophage with greater control over their life cycle for their safe use as probiotics within the aquaculture industry. PMID:22681538

  6. 3D Magnetically Ordered Open Supramolecular Architectures Based on Ferrimagnetic Cu/Adenine/Hydroxide Heptameric Wheels.

    PubMed

    Pérez-Aguirre, Rubén; Beobide, Garikoitz; Castillo, Oscar; de Pedro, Imanol; Luque, Antonio; Pérez-Yáñez, Sonia; Rodríguez Fernández, Jesús; Román, Pascual

    2016-08-01

    The present work provides two new examples of supramolecular metal-organic frameworks consisting of three-dimensional extended noncovalent assemblies of wheel-shaped heptanuclear [Cu7(μ-H2O)6(μ3-OH)6(μ-adeninato-κN3:κN9)6](2+) entities. The heptanuclear entity consists of a central [Cu(OH)6](4-) core connected to six additional copper(II) metal centers in a radial and planar arrangement through the hydroxides. It generates a wheel-shaped entity in which water molecules and μ-κN3:κN9 adeninato ligands bridge the peripheral copper atoms. The magnetic characterization indicates the central copper(II) center is anti-ferromagnetically coupled to external copper(II) centers, which are ferromagnetically coupled among them leading to an S = 5/2 ground state. The packing of these entities is sustained by π-π stacking interactions between the adenine nucleobases and by hydrogen bonds established among the hydroxide ligands, sulfate anions, and adenine nucleobases. The sum of both types of supramolecular interactions creates a rigid synthon that in combination with the rigidity of the heptameric entity generates an open supramolecular structure (40-50% of available space) in which additional sulfate and triethylammonium ions are located altogether with solvent molecules. These compounds represent an interesting example of materials combining both porosity and magnetic relevant features.

  7. Differentiation alters the unstable expression of adenine phosphoribosyltransferase in mouse teratocarcinoma cells.

    PubMed

    Turker, M S; Tischfield, J A; Rabinovitch, P; Stambrook, P J; Trill, J J; Smith, A C; Ogburn, C E; Martin, G M

    1986-01-01

    Three multipotent mouse teratocarcinoma stem lines, all exhibiting unstable expression for the purine salvage enzyme adenine phosphoribosyltransferase (APRT) were used for the isolation of differentiated cell lines from neoplasms developed in syngeneic mice. Two of the stem cell lines (DAP1B and DAP1C) exhibited homozygous deficiencies for APRT expression while the third stem cell line (E140) exhibited a heterozygous deficiency (Turker, M.S., Smith, A.C., and Martin, G.M.; Somat. Cell Mol. Genet.; 10:55-69; 1984). A total of 16 morphologically differentiated cell lines were established from these neoplasms; most were no longer tumorigenic. Differentiated cell lines derived from the E140-induced tumors segregated homozygous deficient mutants in a single step, consistent with their retention of the heterozygous deficient state. Differentiated homozygous deficient cell lines gave rise to phenotypic revertants at very high frequencies (10(-1) to 10(-2)). The majority of these putative revertants, however, yielded cell-free extracts with little or no detectable APRT activity. These putative revertants were capable of adenine salvage and were therefore termed APRT pseudorevertants. Since the APRT pseudorevertant phenotype was only observed in the differentiated progeny of the APRT deficient stem cell lines, we conclude that this change in the nature of the revertant phenotype was a consequence of cellular differentiation.

  8. Effect of Electronic Excitation on Hydrogen Atom Transfer (Tautomerization) Reactions for the DNA Base Adenine

    NASA Technical Reports Server (NTRS)

    Chaban, Galina M.; Salter, Latasha M.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Geometrical structures and energetic properties for four different tautomers of adenine are calculated in this study, using multi-configurational wave functions. Both the ground and the lowest single excited state potential energy surface are studied. The energetic order of the tautomers on the ground state potential surface is 9H less than 7H less than 3H less than 1H, while on the excited state surface this order is found to be different: 3H less than 1H less than 9H less than 7H. Minimum energy reaction paths are obtained for hydrogen atom transfer (9 yields 3 tautomerization) reactions in the ground and the lowest excited electronic state. It is found that the barrier heights and the shapes of the reaction paths are different for the ground and the excited electronic state, suggesting that the probability of such tautomerization reaction is higher on the excited state potential energy surface. The barrier for this reaction in the excited state may become very low in the presence of water or other polar solvent molecules, and therefore such tautomerization reaction may play an important role in the solution phase photochemistry of adenine.

  9. Vertical Singlet Excitations on Adenine Dimer: A Time Dependent Density Functional Study

    NASA Astrophysics Data System (ADS)

    Crespo-Hernández, Carlos E.; Marai, Christopher N. J.

    2007-12-01

    The condense phase, excited state dynamics of the adenylyl(3'→5')adenine (ApA) dinucleotide has been previously studied using transient absorption spectroscopy with femtosecond time resolution (Crespo-Hernández et al. Chem. Rev. 104, 1977-2019 (2004)). An ultrafast and a long-lived component were observed with time constants of <1 ps and 60±16 ps, respectively. Comparison of the time constants measured for the dinucleotide with that for the adenine nucleotide suggested that the fast component observed in ApA could be assigned to monomer dynamics. The long-lived component observed in ApA was assigned to an excimer state that originates from a fraction of base stacked conformations present at the time of excitation. In this contribution, supermolecule calculations using the time dependent implementation of density functional theory is used to provide more insights on the origin of the initial Franck-Condon excitations. Monomer-like, localized excitations are observed for conformations having negligible base stacking interactions, whereas delocalized excitations are predicted for conformations with significant vertical base-base overlap.

  10. Development of bright fluorescent quadracyclic adenine analogues: TDDFT-calculation supported rational design

    PubMed Central

    Foller Larsen, Anders; Dumat, Blaise; Wranne, Moa S.; Lawson, Christopher P.; Preus, Søren; Bood, Mattias; Gradén, Henrik; Marcus Wilhelmsson, L.; Grøtli, Morten

    2015-01-01

    Fluorescent base analogues (FBAs) comprise a family of increasingly important molecules for the investigation of nucleic acid structure and dynamics. We recently reported the quantum chemical calculation supported development of four microenvironment sensitive analogues of the quadracyclic adenine (qA) scaffold, the qANs, with highly promising absorptive and fluorescence properties that were very well predicted by TDDFT calculations. Herein, we report on the efficient synthesis, experimental and theoretical characterization of nine novel quadracyclic adenine derivatives. The brightest derivative, 2-CNqA, displays a 13-fold increased brightness (εΦF = 4500) compared with the parent compound qA and has the additional benefit of being a virtually microenvironment-insensitive fluorophore, making it a suitable candidate for nucleic acid incorporation and use in quantitative FRET and anisotropy experiments. TDDFT calculations, conducted on the nine novel qAs a posteriori, successfully describe the relative fluorescence quantum yield and brightness of all qA derivatives. This observation suggests that the TDDFT-based rational design strategy may be employed for the development of bright fluorophores built up from a common scaffold to reduce the otherwise costly and time-consuming screening process usually required to obtain useful and bright FBAs. PMID:26227585

  11. Development of bright fluorescent quadracyclic adenine analogues: TDDFT-calculation supported rational design

    NASA Astrophysics Data System (ADS)

    Foller Larsen, Anders; Dumat, Blaise; Wranne, Moa S.; Lawson, Christopher P.; Preus, Søren; Bood, Mattias; Gradén, Henrik; Marcus Wilhelmsson, L.; Grøtli, Morten

    2015-07-01

    Fluorescent base analogues (FBAs) comprise a family of increasingly important molecules for the investigation of nucleic acid structure and dynamics. We recently reported the quantum chemical calculation supported development of four microenvironment sensitive analogues of the quadracyclic adenine (qA) scaffold, the qANs, with highly promising absorptive and fluorescence properties that were very well predicted by TDDFT calculations. Herein, we report on the efficient synthesis, experimental and theoretical characterization of nine novel quadracyclic adenine derivatives. The brightest derivative, 2-CNqA, displays a 13-fold increased brightness (ɛΦF = 4500) compared with the parent compound qA and has the additional benefit of being a virtually microenvironment-insensitive fluorophore, making it a suitable candidate for nucleic acid incorporation and use in quantitative FRET and anisotropy experiments. TDDFT calculations, conducted on the nine novel qAs a posteriori, successfully describe the relative fluorescence quantum yield and brightness of all qA derivatives. This observation suggests that the TDDFT-based rational design strategy may be employed for the development of bright fluorophores built up from a common scaffold to reduce the otherwise costly and time-consuming screening process usually required to obtain useful and bright FBAs.

  12. Probing ultrafast dynamics in adenine with mid-UV four-wave mixing spectroscopies.

    PubMed

    West, Brantley A; Womick, Jordan M; Moran, Andrew M

    2011-08-11

    Heterodyne-detected transient grating (TG) and two-dimensional photon echo (2DPE) spectroscopies are extended to the mid-UV spectral range in this investigation of photoinduced relaxation processes of adenine in aqueous solution. These experiments are the first to combine a new method for generating 25 fs laser pulses (at 263 nm) with the passive phase stability afforded by diffractive optics-based interferometry. We establish a set of conditions (e.g., laser power density, solute concentration) appropriate for the study of dynamics involving the neutral solute. Undesired solute photoionization is shown to take hold at higher peak powers of the laser pulses. Signatures of internal conversion and vibrational cooling dynamics are examined using TG measurements with signal-to-noise ratios as high as 350 at short delay times. In addition, 2DPE line shapes reveal correlations between excitation and emission frequencies in adenine, which reflect electronic and nuclear relaxation processes associated with particular tautomers. Overall, this study demonstrates the feasibility of techniques that will hold many advantages for the study of biomolecules whose lowest-energy electronic resonances are found in the mid-UV (e.g., DNA bases, amino acids).

  13. Microwave-assisted stereospecific synthesis of novel tetrahydropyran adenine isonucleosides and crystal structures determination

    NASA Astrophysics Data System (ADS)

    Silva, Fábio P. L.; Cirqueira, Marilia L.; Martins, Felipe T.; Vasconcellos, Mário L. A. A.

    2013-11-01

    We describe in this article stereospecific syntheses for new isonucleosides analogs of adenine 5-7 from tosyl derivatives 2-4 accessing by microwave irradiations (50-80%). The adenine reacts entirely at the N(9) position. Compounds 2-4 were prepared in two steps from the corresponding alcohols 1, 8 and 9 (81-92%). These tetrahydropyrans alcohols 1, 8 and 9 are achiral (Meso compounds) and were prepared in two steps with complete control of 2,4,6-cis relative configuration by Prins cyclization reaction (60-63%) preceded by the Barbier reaction between allyl bromide with benzaldehyde, 4-fluorobenzaldehyde and 2-naphthaldehyde respectively under Lewis acid conditions (96-98%). The configurations and preferential conformations of 5-7 were determined by crystal structure of 6. These novel isonucleosides 5-7 present in silico potentiality to act as GPCR ligand, kinase inhibitor and enzyme inhibitor, evaluated by Molinspiration program, consistent with the expected antiviral and anticancer bioactivities.

  14. Ultraviolet photolysis of adenine: Dissociation via the {sup 1}{pi}{sigma}{sup *} state

    SciTech Connect

    Nix, Michael G. D.; Devine, Adam L.; Cronin, Brid; Ashfold, Michael N. R.

    2007-03-28

    High resolution total kinetic energy release (TKER) spectra of the H atom fragments resulting from photodissociation of jet-cooled adenine molecules at 17 wavelengths in the range 280>{lambda}{sub phot}>214 nm are reported. TKER spectra obtained at {lambda}{sub phot}>233 nm display broad, isotropic profiles that peak at low TKER ({approx}1800 cm{sup -1}) and are largely insensitive to the choice of excitation wavelength. The bulk of these products is attributed to unintended multiphoton dissociation processes. TKER spectra recorded at {lambda}{sub phot}{<=}233 nm display additional fast structure, which is attributed to N{sub 9}-H bond fission on the {sup 1}{pi}{sigma}{sup *} potential energy surface (PES). Analysis of the kinetic energies and recoil anisotropies of the H atoms responsible for the fast structure suggests excitation to two {sup 1}{pi}{pi}{sup *} excited states (the {sup 1}L{sub a} and {sup 1}B{sub b} states) at {lambda}{sub phot}{approx}230 nm, both of which dissociate to yield H atoms together with ground state adeninyl fragments by radiationless transfer through conical intersections with the {sup 1}{pi}{sigma}{sup *} PES. Parallels with the photochemistry exhibited by other, smaller heteroaromatics (pyrrole, imidazole, phenol, etc.) are highlighted, as are inconsistencies between the present conclusions and those reached in two other recent studies of excited state adenine molecules.

  15. Flavin adenine dinucleotide content of quinone reductase 2: analysis and optimization for structure-function studies.

    PubMed

    Leung, Kevin Ka Ki; Litchfield, David W; Shilton, Brian H

    2012-01-01

    Quinone reductase 2 (NQO2) is a broadly expressed enzyme implicated in responses to a number of compounds, including protein kinase inhibitors, resveratrol, and antimalarial drugs. NQO2 includes a flavin adenine dinucleotide (FAD) cofactor, but X-ray crystallographic analysis of human NQO2 expressed in Escherichia coli showed that electron density for the isoalloxazine ring of FAD was weak and there was no electron density for the adenine mononucleotide moiety. Reversed-phase high-performance liquid chromatography (HPLC) of the NQO2 preparation indicated that FAD was not present and only 38% of the protomers contained flavin mononucleotide (FMN), explaining the weak electron density for FAD in the crystallographic analysis. A method for purifying NQO2 and reconstituting with FAD such that the final content approaches 100% occupancy with FAD is presented here. The enzyme prepared in this manner has a high specific activity, and there is strong electron density for the FAD cofactor in the crystal structure. Analysis of NQO2 crystal structures present in the Protein Data Bank indicates that many may have sub-stoichiometric cofactor content and/or contain FMN rather than FAD. This method of purification and reconstitution will help to optimize structural and functional studies of NQO2 and possibly other flavoproteins.

  16. 3D Magnetically Ordered Open Supramolecular Architectures Based on Ferrimagnetic Cu/Adenine/Hydroxide Heptameric Wheels.

    PubMed

    Pérez-Aguirre, Rubén; Beobide, Garikoitz; Castillo, Oscar; de Pedro, Imanol; Luque, Antonio; Pérez-Yáñez, Sonia; Rodríguez Fernández, Jesús; Román, Pascual

    2016-08-01

    The present work provides two new examples of supramolecular metal-organic frameworks consisting of three-dimensional extended noncovalent assemblies of wheel-shaped heptanuclear [Cu7(μ-H2O)6(μ3-OH)6(μ-adeninato-κN3:κN9)6](2+) entities. The heptanuclear entity consists of a central [Cu(OH)6](4-) core connected to six additional copper(II) metal centers in a radial and planar arrangement through the hydroxides. It generates a wheel-shaped entity in which water molecules and μ-κN3:κN9 adeninato ligands bridge the peripheral copper atoms. The magnetic characterization indicates the central copper(II) center is anti-ferromagnetically coupled to external copper(II) centers, which are ferromagnetically coupled among them leading to an S = 5/2 ground state. The packing of these entities is sustained by π-π stacking interactions between the adenine nucleobases and by hydrogen bonds established among the hydroxide ligands, sulfate anions, and adenine nucleobases. The sum of both types of supramolecular interactions creates a rigid synthon that in combination with the rigidity of the heptameric entity generates an open supramolecular structure (40-50% of available space) in which additional sulfate and triethylammonium ions are located altogether with solvent molecules. These compounds represent an interesting example of materials combining both porosity and magnetic relevant features. PMID:27409976

  17. A van der Waals density functional study of adenine on graphene: Single molecular adsorption and overlayer binding

    SciTech Connect

    Berland, Kristian; Cooper, Valentino R; Langreth, David C.; Schroder, Prof. Elsebeth; Chakarova-Kack, Svetla

    2011-01-01

    The adsorption of an adenine molecule on graphene is studied using a first-principles van der Waals functional (vdW-DF) [Dion et al., Phys. Rev. Lett. 92, 246401 (2004)]. The cohesive energy of an ordered adenine overlayer is also estimated. For the adsorption of a single molecule, we determine the optimal binding configuration and adsorption energy by translating and rotating the molecule. The adsorption energy for a single molecule of adenine is found to be 711 meV, which is close to the calculated adsorption energy of the similar-sized naphthalene. Based on the single molecular binding configuration, we estimate the cohesive energy of a two-dimensional ordered overlayer. We find a significantly stronger binding energy for the ordered overlayer than for single-molecule adsorption.

  18. Hydroxyl Radical (OH•) Reaction with Guanine in an Aqueous Environment: A DFT Study

    PubMed Central

    Kumar, Anil; Pottiboyina, Venkata; Sevilla, Michael D.

    2011-01-01

    The reaction of hydroxyl radical (OH•) with DNA accounts for about half of radiation-induced DNA damage in living systems. Previous literature reports point out that the reaction of OH• with DNA proceeds mainly through the addition of OH• to the C=C bond of the DNA bases. However, recently it has been reported that the principal reaction of OH• with dGuo (deoxyguanosine) is the direct hydrogen atom abstraction from its exocyclic amine group rather than addition of OH• to the C=C bond. In the present work, these two reaction pathways of OH• attack on guanine (G) in the presence of water molecules (aqueous environment) are investigated using the density functional theory (DFT) B3LYP method with 6-31G* and 6-31++G** basis sets. The calculations show that the initial addition of the OH• at C4=C5 double bond of guanine is barrier free and the adduct radical (G-OH•) has only a small activation barrier of ca. 1 – 6 kcal/mol leading to the formation of a metastable ion-pair intermediate (G•+---OH−). The formation of ion-pair is a result of the highly oxidizing nature of the OH• in aqueous media. The resulting ion-pair (G•+---OH−) deprotonates to form H2O and neutral G radicals favoring G(N1-H)• with an activation barrier of ca. 5 kcal/mol. The overall process from the G(C4)-OH• (adduct) to G(N1-H)• and water is found to be exothermic in nature by more than 13 kcal/mol. (G-OH•), (G•+---OH−), and G(N1-H)• were further characterized by the CAM-B3LYP calculations of their UV-visible spectra and good agreement between theory and experiment is achieved. Our calculations for the direct hydrogen abstraction pathway from N1 and N2 sites of guanine by the OH• show that this is also a competitive route to produce G(N2-H)•, G(N1-H)• and H2O. PMID:22050033

  19. Hydroxyl radical (OH•) reaction with guanine in an aqueous environment: a DFT study.

    PubMed

    Kumar, Anil; Pottiboyina, Venkata; Sevilla, Michael D

    2011-12-22

    The reaction of hydroxyl radical (OH(•)) with DNA accounts for about half of radiation-induced DNA damage in living systems. Previous literature reports point out that the reaction of OH(•) with DNA proceeds mainly through the addition of OH(•) to the C═C bonds of the DNA bases. However, recently it has been reported that the principal reaction of OH(•) with dGuo (deoxyguanosine) is the direct hydrogen atom abstraction from its exocyclic amine group rather than addition of OH(•) to the C═C bonds. In the present work, these two reaction pathways of OH(•) attack on guanine (G) in the presence of water molecules (aqueous environment) are investigated using the density functional theory (DFT) B3LYP method with 6-31G* and 6-31++G** basis sets. The calculations show that the initial addition of the OH(•) at C(4)═C(5) double bond of guanine is barrier free and the adduct radical (G-OH(•)) has only a small activation barrier of ca. 1-6 kcal/mol leading to the formation of a metastable ion-pair intermediate (G(•+)---OH(-)). The formation of ion-pair is a result of the highly oxidizing nature of the OH(•) in aqueous media. The resulting ion-pair (G(•+)---OH(-)) deprotonates to form H(2)O and neutral G radicals favoring G(N(1)-H)(•) with an activation barrier of ca. 5 kcal/mol. The overall process from the G(C(4))-OH(•) (adduct) to G(N(1)-H)(•) and water is found to be exothermic in nature by more than 13 kcal/mol. (G-OH(•)), (G(•+)---OH(-)), and G(N(1)-H)(•) were further characterized by the CAM-B3LYP calculations of their UV-vis spectra and good agreement between theory and experiment is achieved. Our calculations for the direct hydrogen abstraction pathway from N(1) and N(2) sites of guanine by the OH(•) show that this is also a competitive route to produce G(N(2)-H)(•), G(N(1)-H)(•) and H(2)O.

  20. The guanine cation radical: investigation of deprotonation states by ESR and DFT.

    PubMed

    Adhikary, Amitava; Kumar, Anil; Becker, David; Sevilla, Michael D

    2006-11-30

    This work reports ESR studies that identify the favored site of deprotonation of the guanine cation radical (G*+) in an aqueous medium at 77 K. Using ESR and UV-visible spectroscopy, one-electron oxidized guanine is investigated in frozen aqueous D2O solutions of 2'-deoxyguanosine (dGuo) at low temperatures at various pHs at which the guanine cation radical, G*+ (pH 3-5), singly deprotonated species, G(-H)* (pH 7-9), and doubly deprotonated species, G(-2H)*- (pH > 11), are found. C-8-deuteration of dGuo to give 8-D-dGuo removes the major proton hyperfine coupling at C-8. This isolates the anisotropic nitrogen couplings for each of the three species and aids our analyses. These anisotropic nitrogen couplings were assigned to specific nitrogen sites by use of 15N-substituted derivatives at N1, N2, and N3 atoms in dGuo. Both ESR and UV-visible spectra are reported for each of the species: G*+, G(-H)*, and G(-2H)*-. The experimental anisotropic ESR hyperfine couplings are compared to those obtained from DFT calculations for the various tautomers of G(-H)*. Using the B3LYP/6-31G(d) method, the geometries and energies of G*+ and its singly deprotonated state in its two tautomeric forms, G(N1-H)* and G(N2-H)*, were investigated. In a nonhydrated state, G(N2-H)* is found to be more stable than G(N1-H)*, but on hydration with seven water molecules G(N1-H)* is found to be more stable than G(N2-H)*. The theoretically calculated hyperfine coupling constants (HFCCs) of G*+, G(N1-H)*, and G(-2H)*- match the experimentally observed HFCCs best on hydration with seven or more waters. For G(-2H)*-, the hyperfine coupling constant (HFCC) at the exocyclic nitrogen atom (N2) is especially sensitive to the number of hydrating water molecules; good agreement with experiment is not obtained until nine or 10 waters of hydration are included.

  1. The Guanine Cation Radical: Investigation of Deprotonation States by ESR and DFT

    PubMed Central

    Adhikary, Amitava; Kumar, Anil; Becker, David; Sevilla, Michael D.

    2008-01-01

    This work reports ESR studies that identify the favored site of deprotonation of the guanine cation radical (G•+) in an aqueous medium at 77 K. Using ESR and UV-visible spectroscopy, one-electron oxidized guanine is investigated in frozen aqueous D2O solutions of 2′-deoxyguanosine (dGuo) at low temperatures at various pHs at which the guanine cation, G•+ (pH 3–5), singly deprotonated species, G(-H)• (pH 7–9) and doubly deprotonated species, G(-2H)•− (pH>11) are found. C-8-deuteration of dGuo to give 8-D-dGuo removes the major proton hyperfine coupling at C-8. This isolates the anisotropic nitrogen couplings for each of the three species and aids our analyses. These anisotropic nitrogen couplings were assigned to specific nitrogen sites by use of 15N substituted derivatives at N1, N2 N3 atoms in dGuo. Both ESR and UV-visible spectra are reported for each of the species: G•+, G(-H)•, and G(-2H)•−. The experimental anisotropic ESR hyperfine couplings are compared to those obtained from DFT calculations for the various tautomers of G(-H)•. Using the B3LYP/6–31G(d) method, the geometries and energies of G•+ and its singly deprotonated state in its two tautomeric forms, G(N1-H)• and G(N2-H)•, were investigated. In a non-hydrated state G(N2-H)• is found to be more stable than G(N1-H)• but on hydration with 7 water molecules G(N1-H)• is found to be more stable than G(N2-H)•. The theoretically calculated hyperfine coupling constants (HFCC) of G•+, G(N1-H)• and G(-2H)•− match the experimentally observed HFCCs best on hydration with 7 or more waters. For G(-2H)•−, the hyperfine coupling constant (HFCC) at the exocyclic nitrogen atom (N2) is especially sensitive to the number of hydrating water molecules; good agreement with experiment is not obtained until 9 or 10 waters of hydration are included. PMID:17125389

  2. Nicotinic Acid Adenine Dinucleotide Phosphate Analogs Substituted on the Nicotinic Acid and Adenine Ribosides. Effects on Receptor-Mediated Ca2+ release

    PubMed Central

    Trabbic, Christopher J.; Zhang, Fan; Walseth, Timothy F.; Slama, James T.

    2015-01-01

    Nicotinic acid adenine dinucleotide phosphate (NAADP) is a Ca2+ releasing intracellular second messenger in both mammals and echinoderms. We report that large functionalized substituents introduced at the nicotinic acid 5-position are recognized by the sea urchin receptor, albeit with a 20–500 fold loss in agonist potency. 5-(3-Azidopropyl)-NAADP was shown to release Ca2+ with an EC50 of 31 µM and to compete with NAADP for receptor binding with an IC50 of 56 nM. Attachment of charged groups to the nicotinic acid of NAADP is associated with loss of activity, suggesting that the nicotinate riboside moiety is recognized as a neutral zwitterion. Substituents (Br- and N3-) can be introduced at the 8-adenosyl position of NAADP while preserving high potency and agonist efficacy and an NAADP derivative substituted at both the 5-position of the nicotinic acid and at the 8-adenosyl position was also recognized although the agonist potency was significantly reduced. PMID:25826221

  3. Development of a new model for the induction of chronic kidney disease via intraperitoneal adenine administration, and the effect of treatment with gum acacia thereon

    PubMed Central

    Al Za’abi, Mohammed; Al Busaidi, Mahfouda; Yasin, Javid; Schupp, Nicole; Nemmar, Abderrahim; Ali, Badreldin H

    2015-01-01

    Oral adenine (0.75% w/w in feed), is an established model for human chronic kidney disease (CKD). Gum acacia (GA) has been shown to be a nephroprotective agent in this model. Here we aimed at developing a new adenine-induced CKD model in rats via a systemic route (intraperitoneal, i.p.) and to test it with GA to obviate the possibility of a physical interaction between GA and adenine in the gut. Adenine was injected i.p. (50 or 100 mg/Kg for four weeks), and GA was given concomitantly in drinking water at a concentration of 15%, w/v. Several plasma and urinary biomarkers of oxidative stress were measured and the renal damage was assessed histopathologically. Adenine, at the two given i.p. doses, significantly reduced body weight, and increased relative kidney weight, water intake and urine output. It dose-dependently increased plasma and urinary inflammatory and oxidative stress biomarkers, and caused morphological and histological damage resembling that which has been reported with oral adenine. Concomitant treatment with GA significantly mitigated almost all the above measured indices. Administration of adenine i.p. induced CKD signs very similar to those induced by oral adenine. Therefore, this new model is quicker, more practical and accurate than the original (oral) model. GA ameliorates the CKD effects caused by adenine given i.p. suggesting that the antioxidant and anti-inflammatory properties possessed by oral GA are the main mechanism for its salutary action in adenine-induced CKD, an action that is independent of its possible interaction with adenine in the gut. PMID:25755826

  4. Development of a new model for the induction of chronic kidney disease via intraperitoneal adenine administration, and the effect of treatment with gum acacia thereon.

    PubMed

    Al Za'abi, Mohammed; Al Busaidi, Mahfouda; Yasin, Javid; Schupp, Nicole; Nemmar, Abderrahim; Ali, Badreldin H

    2015-01-01

    Oral adenine (0.75% w/w in feed), is an established model for human chronic kidney disease (CKD). Gum acacia (GA) has been shown to be a nephroprotective agent in this model. Here we aimed at developing a new adenine-induced CKD model in rats via a systemic route (intraperitoneal, i.p.) and to test it with GA to obviate the possibility of a physical interaction between GA and adenine in the gut. Adenine was injected i.p. (50 or 100 mg/Kg for four weeks), and GA was given concomitantly in drinking water at a concentration of 15%, w/v. Several plasma and urinary biomarkers of oxidative stress were measured and the renal damage was assessed histopathologically. Adenine, at the two given i.p. doses, significantly reduced body weight, and increased relative kidney weight, water intake and urine output. It dose-dependently increased plasma and urinary inflammatory and oxidative stress biomarkers, and caused morphological and histological damage resembling that which has been reported with oral adenine. Concomitant treatment with GA significantly mitigated almost all the above measured indices. Administration of adenine i.p. induced CKD signs very similar to those induced by oral adenine. Therefore, this new model is quicker, more practical and accurate than the original (oral) model. GA ameliorates the CKD effects caused by adenine given i.p. suggesting that the antioxidant and anti-inflammatory properties possessed by oral GA are the main mechanism for its salutary action in adenine-induced CKD, an action that is independent of its possible interaction with adenine in the gut.

  5. REVERSAL BY ADENINE OF THE ETHIONINE-INDUCED LIPID ACCUMULATION IN THE ENDOPLASMIC RETICULUM OF THE RAT LIVER

    PubMed Central

    Baglio, Corrado M.; Farber, Emmanuel

    1965-01-01

    Within 3.5 to 4 hours after thionine administration, numerous small osmiophilic bodies, liposomes, appear in the endoplasmic reticulum of the liver cells. By fusion, the liposomes lead to the formation of larger collections of fat, giant liposomes. Adenine administration to ethionine-treated rats removes the liposomes from the hepatocytes and causes the transitory appearance of osmiophilic droplets in the sinusoidal space of Disse. The characteristic disaggregation of hepatic polysomes seen in the liver after ethionine administration is corrected by the injection of adenine. PMID:5885431

  6. Nicotinic acid adenine dinucleotide phosphate-mediated calcium signalling in effector T cells regulates autoimmunity of the central nervous system

    PubMed Central

    Cordiglieri, Chiara; Odoardi, Francesca; Zhang, Bo; Nebel, Merle; Kawakami, Naoto; Klinkert, Wolfgang E. F.; Lodygin, Dimtri; Lühder, Fred; Breunig, Esther; Schild, Detlev; Ulaganathan, Vijay Kumar; Dornmair, Klaus; Dammermann, Werner; Potter, Barry V. L.; Guse, Andreas H.

    2010-01-01

    Nicotinic acid adenine dinucleotide phosphate represents a newly identified second messenger in T cells involved in antigen receptor-mediated calcium signalling. Its function in vivo is, however, unknown due to the lack of biocompatible inhibitors. Using a recently developed inhibitor, we explored the role of nicotinic acid adenine dinucleotide phosphate in autoreactive effector T cells during experimental autoimmune encephalomyelitis, the animal model for multiple sclerosis. We provide in vitro and in vivo evidence that calcium signalling controlled by nicotinic acid adenine dinucleotide phosphate is relevant for the pathogenic potential of autoimmune effector T cells. Live two photon imaging and molecular analyses revealed that nicotinic acid adenine dinucleotide phosphate signalling regulates T cell motility and re-activation upon arrival in the nervous tissues. Treatment with the nicotinic acid adenine dinucleotide phosphate inhibitor significantly reduced both the number of stable arrests of effector T cells and their invasive capacity. The levels of pro-inflammatory cytokines interferon-gamma and interleukin-17 were strongly diminished. Consecutively, the clinical symptoms of experimental autoimmune encephalomyelitis were ameliorated. In vitro, antigen-triggered T cell proliferation and cytokine production were evenly suppressed. These inhibitory effects were reversible: after wash-out of the nicotinic acid adenine dinucleotide phosphate antagonist, the effector T cells fully regained their functions. The nicotinic acid derivative BZ194 induced this transient state of non-responsiveness specifically in post-activated effector T cells. Naïve and long-lived memory T cells, which express lower levels of the putative nicotinic acid adenine dinucleotide phosphate receptor, type 1 ryanodine receptor, were not targeted. T cell priming and recall responses in vivo were not reduced. These data indicate that the nicotinic acid adenine dinucleotide phosphate

  7. Progesterone-adenine hybrids as bivalent inhibitors of P-glycoprotein-mediated multidrug efflux: design, synthesis, characterization and biological evaluation.

    PubMed

    Zeinyeh, Waël; Mahiout, Zahia; Radix, Sylvie; Lomberget, Thierry; Dumoulin, Axel; Barret, Roland; Grenot, Catherine; Rocheblave, Luc; Matera, Eva-Laure; Dumontet, Charles; Walchshofer, Nadia

    2012-10-01

    Bivalent ligands were designed on the basis of the described close proximity of the ATP-site and the putative steroid-binding site of P-glycoprotein (ABCB1). The syntheses of 19 progesterone-adenine hybrids are described. Their abilities to inhibit P-glycoprotein-mediated daunorubicin efflux in K562/R7 human leukemic cells overexpressing P-glycoprotein were evaluated versus progesterone. The hybrid with a hexamethylene linker chain showed the best inhibitory potency. The efficiency of these progesterone-adenine hybrids depends on two main factors: (i) the nature of the linker and (ii) its attachment point on the steroid skeleton.

  8. Solution structures of oligonucleotides containing either a guanine or a cytosine in front of a gap of one nucleotide

    NASA Astrophysics Data System (ADS)

    Boulard, Y.; Faibis, V.; Fazakerley, G. V.

    1999-10-01

    We report NMR and molecular modelling studies on two DNA duplexes containing a gap of one nucleotides. The difference between the two oligonucleotides lies in the central base face to the gap, a guanine or a cytosine. For the gapG, we observed in solution a B-form conformation where the guanine stacks in the helix. For the gapC, we reveal the existence of two species, one majority where the cytosine is inside the helix and a second for which the cytosine is extrahelical. Nous présentons une étude par RMN et modélisation moléculaire sur deux duplexes d'ADN contenant une lacune de un nucléotide. La différence entre les deux oligonucléotides réside dans la base centrale en face de la lacune, une guanine ou une cytosine. Pour le duplex appelé gapG, nous observons en solution une hélice de type B dans laquelle la guanine est empilée à l'intérieur de l'hélice. Dans le cas du duplex gapC, nous montrons l'existence de deux formes, l'une où la cytosine est à l'intérieur de l'hélice; la seconde où la cytosine est extra hélicale.

  9. Collision-induced dissociation (CID) of guanine radical cation in the gas phase: an experimental and computational study.

    PubMed

    Cheng, Ping; Li, Yanni; Li, Shuqi; Zhang, Mingtao; Zhou, Zhen

    2010-05-14

    Gas-phase guanine (G) radical cations were generated by electrospraying a solution of guanosine (L) and Cu(NO(3))(2). Collision-induced dissociation (CID) for guanine radical cations yielded five competing dissociation channels, corresponding to the elimination neutral molecules of NH(3), HCN, H(2)NC[triple bond]N (HN=C=NH), HNCO and the neutral radical N=C=NH, respectively. The primary product ions were further characterized by their relevant fragmentions. Ab initio and density functional theory (DFT) calculations were employed to explain the experimental observations. Ten stable radical cation isomers were optimized and the potential energy surfaces (PESs) for the isomerization processes were explored in detail. Starting with the most stable isomer, the primary dissociation channels of guanine radical cations were theoretically investigated. DFT calculations show that the energy barriers for the eliminations of NH(3), HCN, H(2)NC[triple bond]N (HN=C=NH), HNCO and N=C=NH are 397 kJ mol(-1), 479 kJ mol(-1), 294 kJ mol(-1) (298 kJ mol(-1)), 306 kJ mol(-1), and 275 kJ mol(-1), respectively. The results are consistent with the energy-resolved CID of guanine radical cation, in which the eliminations of NH(3) and HCN are less abundant than the other channels. PMID:20428546

  10. Antiviral activity and its mechanism of guanine 7-N-oxide on DNA and RNA viruses derived from salmonid.

    PubMed

    Hasobe, M; Saneyoshi, M; Isono, K

    1985-11-01

    Guanine 7-N-oxide produced by Streptomyces sp. was found to inhibit in vitro the replication of herpes virus (Oncorhynchus masou virus, OMV), rhabdo virus (infectious hematopoietic necrosis virus, IHNV) and a bi-segmented double-strand virus (infectious pancreatic necrosis virus, IPNV) derived from salmonids with IC50 values of about 10 micrograms/ml, 20 micrograms/ml and 32 micrograms/ml, respectively. The agent was not toxic for the host cells (chinook salmon embryo, CHSE-214) at the IC50 concentrations. Labeling of IHNV viral RNA and host cellular DNA and RNA with [3H]uridine and [3H]thymidine during drug treatment showed that guanine 7-N-oxide did not reduce the incorporation of these precusors into RNA and DNA. The anti-IHNV activity of guanine 7-N-oxide was enhanced synergistically by neplanocin A, an inhibitor of RNA methylation. The mechanism of action of guanine 7-N-oxide is discussed, in regard to maturation of viral messenger RNA including capping. PMID:3841124

  11. Zizimin and Dock guanine nucleotide exchange factors in cell function and disease.

    PubMed

    Pakes, Nicholl K; Veltman, Douwe M; Williams, Robin S B

    2013-01-01

    Zizimin proteins belong to the Dock (Dedicator of Cytokinesis) superfamily of Guanine nucleotide Exchange Factor (GEF) proteins. This family of proteins plays a role in the regulation of Rho family small GTPases. Together the Rho family of small GTPases and the Dock/Zizimin proteins play a vital role in a number of cell processes including cell migration, apoptosis, cell division and cell adhesion. Our recent studies of Zizimin proteins, using a simple biomedical model, the eukaryotic social amoeba Dictyostelium discoideum, have helped to elucidate the cellular role of these proteins. In this article, we discuss the domain structure of Zizimin proteins from an evolutionary viewpoint. We also compare what is currently known about the mammalian Zizimin proteins to that of related Dock proteins. Understanding the cellular functions of these proteins will provide a better insight into their role in cell signaling, and may help in treating disease pathology associated with mutations in Dock/Zizimin proteins. PMID:23247359

  12. Solubilization and characterization of guanine nucleotide-sensitive muscarinic agonist binding sites from rat myocardium.

    PubMed Central

    Berrie, C. P.; Birdsall, N. J.; Hulme, E. C.; Keen, M.; Stockton, J. M.

    1984-01-01

    Muscarinic receptors from rat myocardial membranes may be solubilized by digitonin in good yield at low temperatures in the presence of Mg2+. Under these conditions, up to 60% of the soluble receptors show high affinity binding for the potent agonist [3H]-oxotremorine-M (KA = 10(9)M-1), which is inhibited by 5'-guanylylimidodiphosphate. The muscarinic binding site labelled with [3H]-oxotremorine-M has a higher sedimentation coefficient (13.4 s) than sites labelled with a 3H antagonist in the presence of guanylylimidodiphosphate (11.6 s) and probably represents a complex between the ligand binding subunit of the receptor and a guanine nucleotide binding protein. PMID:6478115

  13. Theoretical study of valence orbital response to guanine tautomerization in coordinate and momentum spaces

    NASA Astrophysics Data System (ADS)

    Yang, Zejin; Duffy, Patrick; Zhu, Quan; Takahashi, Masahiko; Wang, Feng

    2015-10-01

    The binding energy spectra and electron momentum spectra of eight stable guanine tautomers are calculated in the complete valence space. The present results show that the canonical keto (C=O) guanine N(9)H tautomer (GU1) possesses the largest dipole moment, molecular electronic spatial extent, molecular hardness value, and the minimum first vertical ionization potential (VIP). Valence orbital profile investigations find that several orbitals remain almost unchanged during tautomerization, such as frontier highest occupied molecular orbital 39a and 18a. Several orbitals with interchanged order and inverse direction in charge spatial orientations are also detected. Outer valence orbitals (with smaller VIPs) show more complex orbital shapes in the momentum space than those of inner ones (larger VIPs) due mainly to the relatively strong inter-orbital interaction and delocalized electronic distributions. Proton rotation along C-O(H) and C-N(H) axes within hexagonal ring causes smaller influence to orbital profiles than those of proton migration within pentagonal and/or hexagonal rings. Orbital variation trends between enol (GU3-GU5) and keto (GU1, GU2, GU6-GU8) tautomers are observed, including the signature orbitals of enol form, the variation tendency of total orbital intensity, and the variation order of the maximum orbital intensity. In the outer valence momentum space (outside 26a), orbital composed by pz electrons show single peak with a gradual increasing peak site from 0.5 a.u. of inner valence orbital to 1.0 a.u. of outer valence orbital, whereas orbitals composed by px,y electrons form double peaks with respective sites at about 0.5 and 1.5 a.u., only three px,y-orbitals present single peaks (33a,34a,36a). The general variation trends in the complete valence space for all the valence orbitals on their intensities, peak sites, and orbital components are concluded.

  14. Activation of immobilized, biotinylated choleragen AI protein by a 19-kilodalton guanine nucleotide-binding protein.

    PubMed

    Noda, M; Tsai, S C; Adamik, R; Bobak, D A; Moss, J; Vaughan, M

    1989-09-19

    Cholera toxin catalyzes the ADP-ribosylation that results in activation of the stimulatory guanine nucleotide-binding protein of the adenylyl cyclase system, known as Gs. The toxin also ADP-ribosylates other proteins and simple guanidino compounds and auto-ADP-ribosylates its AI protein (CTA1). All of the ADP-ribosyltransferase activities of CTAI are enhanced by 19-21-kDa guanine nucleotide-binding proteins known as ADP-ribosylation factors, or ARFs. CTAI contains a single cysteine located near the carboxy terminus. CTAI was immobilized through this cysteine by reaction with iodoacetyl-N-biotinyl-hexylenediamine and binding of the resulting biotinylated protein to avidin-agarose. Immobilized CTAI catalyzed the ARF-stimulated ADP-ribosylation of agmatine. The reaction was enhanced by detergents and phospholipid, but the fold stimulation by purified sARF-II from bovine brain was considerably less than that observed with free CTA. ADP-ribosylation of Gsa by immobilized CTAI, which was somewhat enhanced by sARF-II, was much less than predicted on the basis of the NAD:agmatine ADP-ribosyltransferase activity. Immobilized CTAI catalyzed its own auto-ADP-ribosylation as well as the ADP-ribosylation of the immobilized avidin and CTA2, with relatively little stimulation by sARF-II. ADP-ribosylation of CTA2 by free CTAI is minimal. These observations are consistent with the conclusion that the cysteine near the carboxy terminus of the toxin is not critical for ADP-ribosyltransferase activity or for its regulation by sARF-II. Biotinylation and immobilization of the toxin through this cysteine may, however, limit accessibility to Gsa or SARF-II, or perhaps otherwise reduce interaction with these proteins whether as substrates or activator.

  15. Circular dichroism anisotrophy of DNA with different modifications at N7 of guanine.

    PubMed

    Zavriev, S K; Minchenkova, L E; Vorlícková, M; Kolchinsky, A M; Volkenstein, M V; Ivanov, V I

    1979-09-27

    The complexex DNA-Ag1+, DNA-Cu1+, protonated DNA and DNA methylated at N7 of guanine were oriented by pumping the solutions through a multicapillary cell in the direction of a light beam. The CD components along the DNA axis, delta epsilon parallel, and normal to it, 2 delta epsilon perpendicular, were calculated from the CD spectra of the oriented samples by the method of Chung and Holzwarth, (1975) J. Mol. Biol. 92, 449--466. It was shown that in most cases, except that of the protonated DNA, the degree of orientation was only slightly less than that for pure DNA. This demonstrated the absence of aggregation and of appreciable denaturation. In all cases the modifications of DNA give rise to a negative component 2 delta epsilon perpendicular, whose magnitude increased as the extent of modification increased. From both the CD spectra of non-oriented samples and the absorption spectra, an inference is drawn that Ag1+ and Cu1+ are attached to the same site as CH3 groups i.e., to the N7 atom of guanine. Proton transfer along the H-bond from the N1 atom of G to the N3 atom of the complementary cytosine is suggested to be a result of the modifications, although the case of H+-DNA may differ from the others. Based on the CD spectra for the anisotropic components, delta epsilon parallel and 2 delta epsilon perpendicular, it is proposed that ligand binding is accompanied by winding of the DNA helix.

  16. Guanine Holes Are Prominent Targets for Mutation in Cancer and Inherited Disease

    PubMed Central

    Bacolla, Albino; Temiz, Nuri A.; Yi, Ming; Ivanic, Joseph; Cer, Regina Z.; Donohue, Duncan E.; Ball, Edward V.; Mudunuri, Uma S.; Wang, Guliang; Jain, Aklank; Volfovsky, Natalia; Luke, Brian T.; Stephens, Robert M.; Cooper, David N.; Collins, Jack R.; Vasquez, Karen M.

    2013-01-01

    Single base substitutions constitute the most frequent type of human gene mutation and are a leading cause of cancer and inherited disease. These alterations occur non-randomly in DNA, being strongly influenced by the local nucleotide sequence context. However, the molecular mechanisms underlying such sequence context-dependent mutagenesis are not fully understood. Using bioinformatics, computational and molecular modeling analyses, we have determined the frequencies of mutation at G•C bp in the context of all 64 5′-NGNN-3′ motifs that contain the mutation at the second position. Twenty-four datasets were employed, comprising >530,000 somatic single base substitutions from 21 cancer genomes, >77,000 germline single-base substitutions causing or associated with human inherited disease and 16.7 million benign germline single-nucleotide variants. In several cancer types, the number of mutated motifs correlated both with the free energies of base stacking and the energies required for abstracting an electron from the target guanines (ionization potentials). Similar correlations were also evident for the pathological missense and nonsense germline mutations, but only when the target guanines were located on the non-transcribed DNA strand. Likewise, pathogenic splicing mutations predominantly affected positions in which a purine was located on the non-transcribed DNA strand. Novel candidate driver mutations and tissue-specific mutational patterns were also identified in the cancer datasets. We conclude that electron transfer reactions within the DNA molecule contribute to sequence context-dependent mutagenesis, involving both somatic driver and passenger mutations in cancer, as well as germline alterations causing or associated with inherited disease. PMID:24086153

  17. A pyrimidine-guanine sequence-specific ribonuclease from Rana catesbeiana (bullfrog) oocytes.

    PubMed Central

    Liao, Y D

    1992-01-01

    A pyrimidine-guanine sequence-specific ribonuclease (RC-RNase) was purified from Rana catesbeiana (bullfrog) oocytes by sequential phosphocellulose, Sephadex G75, heparin Sepharose CL 6B and CM-Sepharose CL 6B column chromatography. The purified enzyme with molecular weight of 13,000 daltons gave a single band on SDS-polyacrylamide gel. One CNBr-cleaved fragment has a sequence of NVLSTTRFQLNT/TRTSITPR, which is identical to residues 59-79 of a sialic acid binding lectin from R. catesbeiana eggs, and is 71% homologous to residues 60-80 of an RNase from R. catesbeaina liver. The RC-RNase preferentially cleaved RNA at pyrimidine residues with a 3' flanking guanine under various conditions. The sequence specificity of RC-RNase was further confirmed with dinucleotide as substrates, which were analyzed by thin layer chromatography after enzyme digestion. The values of kcat/km for pCpG, pUpG and pUpU were 2.66 x 10(7) M-1s-1, 2.50 x 10(7) M-1s-1 and 2.44 x 10(6) M-1s-1 respectively, however, those for other phosphorylated dinucleotides were less than 2% of pCpG and pUpG. As compared to single strand RNA, double strand RNA was relatively resistant to RC-RNase. Besides poly (A) and poly (G), most of synthetic homo- and heteropolynucleotides were also susceptible to RC-RNase. The RC-RNase was stable in the acidic (pH 2) and alkaline (pH 12) condition, but could be inactivated by heating to 80 degrees C for 15 min. No divalent cation was required for its activity. Furthermore, the enzyme activity could be enhanced by 2 M urea, and inhibited to 50% by 0.12 M NaCl or 0.02% SDS. Images PMID:1373237

  18. Guanine nucleotide regulatory protein co-purifies with the D/sub 2/-dopamine receptor

    SciTech Connect

    Senogles, S.E.; Caron, M.G.

    1986-05-01

    The D/sub 2/-dopamine receptor from bovine anterior pituitary was purified approx.1000 fold by affinity chromatography on CMOS-Sepharose. Reconstitution of the affinity-purified receptor into phospholipid vesicles revealed the presence of high and low affinity agonist sites as detected by N-n-propylnorapomorphine (NPA) competition experiments with /sup 3/H-spiperone. High affinity agonist binding could be converted to the low affinity form by guanine nucleotides, indicating the presence of an endogenous guanine nucleotide binding protein (N protein) in the affinity-purified D/sub 2/ receptor preparations. Furthermore, this preparation contained an agonist-sensitive GTPase activity which was stimulated 2-3 fold over basal by 10 ..mu..M NPA. /sup 35/S-GTP..gamma..S binding to these preparations revealed a stoichiometry of 0.4-0.7 mole N protein/mole receptor, suggesting the N protein may be specifically coupled with the purified D/sub 2/-dopamine receptor and not present as a contaminant. Pertussis toxin treatment of the affinity purified receptor preparations prevented high affinity agonist binding, as well as agonist stimulation of the GTPase activity, presumably by inactivating the associated N protein. Pertussis toxin lead to the ADP-ribosylation of a protein of 39-40K on SDS-PAGE. These findings indicate that an endogenous N protein, N/sub i/ or N/sub o/, co-purifies with the D/sub 2/-dopamine receptor which may reflect a precoupling of this receptor with an N protein within the membranes.

  19. Multiplexed DNA detection with a composite molecular beacon based on guanine-quenching.

    PubMed

    Xiang, Dong-Shan; Zhai, Kun; Wang, Lian-Zhi

    2013-09-21

    We developed a multiplexed DNA detection method with a composite molecular beacon (MB) probe based on guanine-quenching by synchronous fluorescence analysis. It is demonstrated by two types of tumor-suppressor genes namely exon segments of p16 (T1) and p53 (T2) genes. The composite MB probe includes two loops and two stems, and two fluorophores of 6-carboxyfluorescein group (FAM) and tetramethyl-6-carboxyrhodamine (TAMRA) are connected to the two ends of molecular beacon. Every stem portion of MB include four continuous nucleotides with guanine (G) base as quencher, every loop portion is a probe sequence that is complementary to a corresponding target sequence. In the absence of target DNA, the composite MBs are in the stem-closed form, the fluorescence of FAM and TAMRA are quenched by G bases. At this time, the fluorescence signals of FAM and TAMRA are all very low. In the presence of target DNA, the MBs hybridize with the target DNA and form double-strands, FAM and TAMRA are separated from G bases, and the fluorescence of FAM and TAMRA recovers simultaneously. Thus, the simultaneous detection of two targets of DNA can be realized by measuring fluorescence signals of FAM and TAMRA, respectively. Under the optimum conditions, the fluorescence intensities of FAM and TAMRA all exhibit good linear dependence on their target DNA concentration in the range from 5 × 10(-11) to 5.5 × 10(-9) M. The detection limit of T1 is 4 × 10(-11) M (3σ), and that of T2 is 3 × 10(-11) M. This composite MB can be applied to detect the real sample, and can be applied to detect two aleatoric sequences of DNA. Compared with previously reported methods of detecting multiplexed target DNA with MBs, the proposed method has some advantages including easy synthesis of composite MB probes, low detection cost and shorter analytical time.

  20. UVolution: Compared photochemistry of prebiotic organic compounds in low Earth orbit and in the laboratory

    NASA Astrophysics Data System (ADS)

    Guan, Yuan Yong; Fray, Nicolas; Coll, Patrice; Macari, Frédérique; Chaput, Didier; Raulin, François; Cottin, Hervé

    2010-08-01

    Solar UV radiation is a major source of energy for chemical evolution of organic materials in the Solar System. Therefore studies on the photostability of organic compounds in extraterrestrial environments are of prime importance for the understanding of the extraterrestrial origin of organic materials on Earth. A series of organic samples have been photolysed in Earth orbit during the ESA BIOPAN 6 mission (14-26/09/2007). Their photochemical lifetime has been measured and compared to results recorded in the laboratory using a lamp that simulates the solar radiation in the VUV domain. The half-lives at a distance of 1 AU from the Sun have been measured for glycine, xanthine, hypoxanthine, adenine, guanine, urea, carbon suboxide polymer ((C 3O 2) n) and HCN polymer. They range from a few days to a lower limit of a few tens of days for the most photoresistant (e.g. adenine, guanine, hypoxanthine). Lifetimes measured in terrestrial orbit are very different from those derived with laboratory experiments. These measurements confirm that it is difficult to simulate the solar spectrum below 200 nm in the laboratory. Results are discussed and highlight the necessity to conduct experiments in orbit, and for longer duration. It also appears that the laboratory measurements made in VUV must be extrapolated very cautiously to the different environments they are supposed to simulate.

  1. Modeling the high-energy electronic state manifold of adenine: Calibration for nonlinear electronic spectroscopy

    SciTech Connect

    Nenov, Artur Giussani, Angelo; Segarra-Martí, Javier; Jaiswal, Vishal K.; Rivalta, Ivan; Cerullo, Giulio; Mukamel, Shaul; Garavelli, Marco E-mail: marco.garavelli@ens-lyon.fr

    2015-06-07

    Pump-probe electronic spectroscopy using femtosecond laser pulses has evolved into a standard tool for tracking ultrafast excited state dynamics. Its two-dimensional (2D) counterpart is becoming an increasingly available and promising technique for resolving many of the limitations of pump-probe caused by spectral congestion. The ability to simulate pump-probe and 2D spectra from ab initio computations would allow one to link mechanistic observables like molecular motions and the making/breaking of chemical bonds to experimental observables like excited state lifetimes and quantum yields. From a theoretical standpoint, the characterization of the electronic transitions in the visible (Vis)/ultraviolet (UV), which are excited via the interaction of a molecular system with the incoming pump/probe pulses, translates into the determination of a computationally challenging number of excited states (going over 100) even for small/medium sized systems. A protocol is therefore required to evaluate the fluctuations of spectral properties like transition energies and dipole moments as a function of the computational parameters and to estimate the effect of these fluctuations on the transient spectral appearance. In the present contribution such a protocol is presented within the framework of complete and restricted active space self-consistent field theory and its second-order perturbation theory extensions. The electronic excited states of adenine have been carefully characterized through a previously presented computational recipe [Nenov et al., Comput. Theor. Chem. 1040–1041, 295-303 (2014)]. A wise reduction of the level of theory has then been performed in order to obtain a computationally less demanding approach that is still able to reproduce the characteristic features of the reference data. Foreseeing the potentiality of 2D electronic spectroscopy to track polynucleotide ground and excited state dynamics, and in particular its expected ability to provide

  2. Modeling the high-energy electronic state manifold of adenine: Calibration for nonlinear electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Nenov, Artur; Giussani, Angelo; Segarra-Martí, Javier; Jaiswal, Vishal K.; Rivalta, Ivan; Cerullo, Giulio; Mukamel, Shaul; Garavelli, Marco

    2015-06-01

    Pump-probe electronic spectroscopy using femtosecond laser pulses has evolved into a standard tool for tracking ultrafast excited state dynamics. Its two-dimensional (2D) counterpart is becoming an increasingly available and promising technique for resolving many of the limitations of pump-probe caused by spectral congestion. The ability to simulate pump-probe and 2D spectra from ab initio computations would allow one to link mechanistic observables like molecular motions and the making/breaking of chemical bonds to experimental observables like excited state lifetimes and quantum yields. From a theoretical standpoint, the characterization of the electronic transitions in the visible (Vis)/ultraviolet (UV), which are excited via the interaction of a molecular system with the incoming pump/probe pulses, translates into the determination of a computationally challenging number of excited states (going over 100) even for small/medium sized systems. A protocol is therefore required to evaluate the fluctuations of spectral properties like transition energies and dipole moments as a function of the computational parameters and to estimate the effect of these fluctuations on the transient spectral appearance. In the present contribution such a protocol is presented within the framework of complete and restricted active space self-consistent field theory and its second-order perturbation theory extensions. The electronic excited states of adenine have been carefully characterized through a previously presented computational recipe [Nenov et al., Comput. Theor. Chem. 1040-1041, 295-303 (2014)]. A wise reduction of the level of theory has then been performed in order to obtain a computationally less demanding approach that is still able to reproduce the characteristic features of the reference data. Foreseeing the potentiality of 2D electronic spectroscopy to track polynucleotide ground and excited state dynamics, and in particular its expected ability to provide

  3. Hydroxyl radical reactions with adenine: reactant complexes, transition states, and product complexes.

    PubMed

    Cheng, Qianyi; Gu, Jiande; Compaan, Katherine R; Schaefer, Henry F

    2010-10-18

    In order to address problems such as aging, cell death, and cancer, it is important to understand the mechanisms behind reactions causing DNA damage. One specific reaction implicated in DNA oxidative damage is hydroxyl free-radical attack on adenine (A) and other nucleic acid bases. The adenine reaction has been studied experimentally, but there are few theoretical results. In the present study, adenine dehydrogenation at various sites, and the potential-energy surfaces for these reactions, are investigated theoretically. Four reactant complexes [A···OH]* have been found, with binding energies relative to A+OH* of 32.8, 11.4, 10.7, and 10.1 kcal mol(-1). These four reactant complexes lead to six transition states, which in turn lie +4.3, -5.4, (-3.7 and +0.8), and (-2.3 and +0.8) kcal mol(-1) below A+OH*, respectively. Thus the lowest lying [A···OH]* complex faces the highest local barrier to formation of the product (A-H)*+H(2)O. Between the transition states and the products lie six product complexes. Adopting the same order as the reactant complexes, the product complexes [(A-H)···H(2)O]* lie at -10.9, -22.4, (-24.2 and -18.7), and (-20.5 and -17.5) kcal mol(-1), respectively, again relative to separated A+OH*. All six A+OH* → (A-H)*+H(2)O pathways are exothermic, by -0.3, -14.7, (-17.4 and -7.8), and (-13.7 and -7.8) kcal mol(-1), respectively. The transition state for dehydrogenation at N(6) lies at the lowest energy (-5.4 kcal mol(-1) relative to A+OH*), and thus reaction is likely to occur at this site. This theoretical prediction dovetails with the observed high reactivity of OH radicals with the NH(2) group of aromatic amines. However, the high barrier (37.1 kcal mol(-1)) for reaction at the C(8) site makes C(8) dehydrogenation unlikely. This last result is consistent with experimental observation of the imidazole ring opening upon OH radical addition to C(8). In addition, TD-DFT computed electronic transitions of the N(6) product around 420 nm

  4. Chronic kidney disease induced by adenine: a suitable model of growth retardation in uremia.

    PubMed

    Claramunt, Débora; Gil-Peña, Helena; Fuente, Rocío; García-López, Enrique; Loredo, Vanessa; Hernández-Frías, Olaya; Ordoñez, Flor A; Rodríguez-Suárez, Julián; Santos, Fernando

    2015-07-01

    Growth retardation is a major manifestation of chronic kidney disease (CKD) in pediatric patients. The involvement of the various pathogenic factors is difficult to evaluate in clinical studies. Here, we present an experimental model of adenine-induced CKD for the study of growth failure. Three groups (n = 10) of weaning female rats were studied: normal diet (control), 0.5% adenine diet (AD), and normal diet pair fed with AD (PF). After 21 days, serum urea nitrogen, creatinine, parathyroid hormone (PTH), weight and length gains, femur osseous front advance as an index of longitudinal growth rate, growth plate histomorphometry, chondrocyte proliferative activity, bone structure, aorta calcifications, and kidney histology were analyzed. Results are means ± SE. AD rats developed renal failure (serum urea nitrogen: 70 ± 6 mg/dl and creatinine: 0.6 ± 0.1 mg/dl) and secondary hyperparathyroidism (PTH: 480 ± 31 pg/ml). Growth retardation of AD rats was demonstrated by lower weight (AD rats: 63.3 ± 4.8 g, control rats: 112.6 ± 4.7 g, and PF rats: 60.0 ± 3.8 g) and length (AD rats: 7.2 ± 0.2 cm, control rats: 11.1 ± 0.3 cm, and PF rats: 8.1 ± 0.3 cm) gains as well as lower osseous front advances (AD rats: 141 ± 13 μm/day, control rats: 293 ± 16 μm/day, and PF rats: 251 ± 10 μm/day). The processes of chondrocyte maturation and proliferation were impaired in AD rats, as shown by lower growth plate terminal chondrocyte height (21.7 ± 2.3 vs. 26.2 ± 1.9 and 23.9 ± 1.3 μm in control and PF rats) and proliferative activity index (AD rats: 30 ± 2%, control rats: 38 ± 2%, and PF rats: 42 ± 3%). The bone primary spongiosa structure of AD rats was markedly disorganized. In conclusion, adenine-induced CKD in young rats is associated with growth retardation and disturbed endochondral ossification. This animal protocol may be a useful new experimental model to study growth in CKD.

  5. Final Technical Report: Genetic Control of Nitrogen Assimilation in Klebsiella oxytoca.

    SciTech Connect

    Valley Stewart

    2007-03-07

    Klebsiella oxytoca, an enterobacterium closely related to Escherichia coli and amenable to molecular genetic analysis, is a long-established model organism for studies of bacterial nitrogen assimilation. Our work concerned utilization of purines, nitrogen-rich compounds that are widespread in the biosphere. This project began with our observation that molybdenum cofactor (chlorate-resistant) mutants can use (hypo)xanthine as sole nitrogen source (Garzón et al., J. Bacteriol. 174:6298, 1992). Since xanthine dehydrogenase is a molybdoenzyme, Klebsiella must use an alternate route for (hypo)xanthine catabolsim. We identified and characterized a cluster of 22 genes that encode the enzymes, permeases and regulators for utilizing hypoxanthine and xanthine as sole nitrogen source. (Hypoxanthine and xanthine arise from deamination of adenine and guanine, respectively.) Growth and complementation tests with insertion mutants, combined with protein sequence comparisons, allow us to assign probable functions for the products of these genes and to deduce the overall pathway. We present genetic evidence that the first two enzymes for the Klebsiella purine utilization pathway have been recruited from pathways involved in catabolism of aromatic compounds. The first, HxaAB enzyme catalyzing (hypo)xanthine oxidation, is related to well-studied aromatic ring hydroxylating oxygenases such as phthalate dioxygenase. The second, HxbA enzyme catalyzing urate hydroxylation, is related to single-component monooxygenases. Thus, the Klebsiella purine utilization pathway has likely experienced non-orthologous gene displacement, substituting these oxygenases for the conventional enzymes, xanthine dehydrogenase and uricase. We also present evidence that transcription of the hxaAB operon is subject to dual regulation: global general nitrogen regulation (Ntr) through an unknown mechanism, and (hypo)xanthine induction mediated by a LysR-type activator.

  6. Different effects of guanine nucleotides (GDP and GTP) on protein-mediated mitochondrial proton leak.

    PubMed

    Woyda-Ploszczyca, Andrzej M; Jarmuszkiewicz, Wieslawa

    2014-01-01

    In this study, we compared the influence of GDP and GTP on isolated mitochondria respiring under conditions favoring oxidative phosphorylation (OXPHOS) and under conditions excluding this process, i.e., in the presence of carboxyatractyloside, an adenine nucleotide translocase inhibitor, and/or oligomycin, an FOF1-ATP synthase inhibitor. Using mitochondria isolated from rat kidney and human endothelial cells, we found that the action of GDP and GTP can differ diametrically depending on the conditions. Namely, under conditions favoring OXPHOS, both in the absence and presence of linoleic acid, an activator of uncoupling proteins (UCPs), the addition of 1 mM GDP resulted in the state 4 (non-phosphorylating respiration)-state 3 (phosphorylating respiration) transition, which is characteristic of ADP oxidative phosphorylation. In contrast, the addition of 1 mM GTP resulted in a decrease in the respiratory rate and an increase in the membrane potential, which is characteristic of UCP inhibition. The stimulatory effect of GDP, but not GTP, was also observed in inside-out submitochondrial particles prepared from rat kidney mitochondria. However, the effects of GDP and GTP were more similar in the presence of OXPHOS inhibitors. The importance of these observations in connection with the action of UCPs, adenine nucleotide translocase (or other carboxyatractyloside-sensitive carriers), carboxyatractyloside- and purine nucleotide-insensitive carriers, as well as nucleoside-diphosphate kinase (NDPK) are considered. Because the measurements favoring oxidative phosphorylation better reflect in vivo conditions, our study strongly supports the idea that GDP cannot be considered a significant physiological inhibitor of UCP. Moreover, it appears that, under native conditions, GTP functions as a more efficient UCP inhibitor than GDP and ATP.

  7. External electric field promotes proton transfer in the radical cation of adenine-thymine

    NASA Astrophysics Data System (ADS)

    Zhang, Guiqing; Xie, Shijie

    2016-07-01

    According to pKa measurements, it has been predicted that proton transfer would not occur in the radical cation of adenine-thymine (A:T). However, recent theoretical calculations indicate that proton transfer takes place in the base pair in water below the room temperature. We have performed simulations of proton transfer in the cation of B-DNA stack composed of 10 A:T base pairs in water from 20 K to 300 K. Proton transfer occurs below the room temperature, meanwhile it could also be observed at the room temperature under the external electric field. Another case that interests us is that proton transfer bounces back after ˜300 fs from the appearance of proton transfer at low temperatures.

  8. Two-dimensional infrared spectroscopy of azido-nicotinamide adenine dinucleotide in water

    NASA Astrophysics Data System (ADS)

    Dutta, Samrat; Rock, William; Cook, Richard J.; Kohen, Amnon; Cheatum, Christopher M.

    2011-08-01

    Mid-IR active analogs of enzyme cofactors have the potential to be important spectroscopic reporters of enzyme active site dynamics. Azido-nicotinamide adenine dinucleotide (NAD+), which has been recently synthesized in our laboratory, is a mid-IR active analog of NAD+, a ubiquitous redox cofactor in biology. In this study, we measure the frequency-frequency time correlation function for the antisymmetric stretching vibration of the azido group of azido-NAD+ in water. Our results are consistent with previous studies of pseudohalides in water. We conclude that azido-NAD+ is sensitive to local environmental fluctuations, which, in water, are dominated by hydrogen-bond dynamics of the water molecules around the probe. Our results demonstrate the potential of azido-NAD+ as a vibrational probe and illustrate the potential of substituted NAD+-analogs as reporters of local structural dynamics that could be used for studies of protein dynamics in NAD-dependent enzymes.

  9. Surface enhanced Raman scattering investigation of protein-bound flavin adenine dinucleotide structure

    NASA Astrophysics Data System (ADS)

    Maskevich, S. A.; Strekal, N. D.; Artsukevich, I. M.; Kivach, L. N.; Chernikevich, I. P.

    1995-04-01

    The SERS spectra of alcohol oxidase from Pichia pastoris adsorbed on a silver electrode were obtained. The similarities and differences of these spectra with the SERS spectrum of free flavin adenine dinucleiotide were considered. The dependence of relative intensity of 1258 cm -1 band from the electrode potential in the protein SERS spectra differed from that of free flavin. From the data on this band being sensitive to the protein-flavin interaction a suggestion was made about incomplete dissociation of flavin from the protein. This conclusion is confirmed both by the fluorescence data and the SERS data on alcohol oxidase purified from Candida boidinii. The results of the SERS investigation of the interaction between the substrate, ethanol and the cofactor, FAD, as well as between protein-bound cofactor with the substrate are presented. The problem of retaining the protein enzyme activity is discussed.

  10. Vacuum-ultraviolet circular dichroism reveals DNA duplex formation between short strands of adenine and thymine.

    PubMed

    Nielsen, Lisbeth Munksgaard; Hoffmann, Søren Vrønning; Brøndsted Nielsen, Steen

    2012-11-21

    Absorbance spectroscopy is used extensively to tell when two DNA single strands come together and form a double strand. Here we show that circular dichroism in the vacuum ultraviolet region provides an even stronger indication for duplex formation in the case of short strands of adenine and thymine (4 to 16 bases in each strand). Indeed, our results show that a strong positive CD band appears at 179 nm when double strands are formed. Melting experiments were done in aqueous solution with and without added Na(+) counter ions. With additional salt present a huge increase in the 179 nm CD band was observed when lowering the temperature. A 179 nm CD marker band for duplex formation can be used to measure the kinetics for the association of two single strands. Such experiments rely on large changes at one particular wavelength since it is too time-consuming to record a full-wavelength spectrum.

  11. Metal-adeninate vertices for the construction of an exceptionally porous metal-organic framework.

    PubMed

    An, Jihyun; Farha, Omar K; Hupp, Joseph T; Pohl, Ehmke; Yeh, Joanne I; Rosi, Nathaniel L

    2012-01-03

    Metal-organic frameworks comprising metal-carboxylate cluster vertices and long, branched organic linkers are the most porous materials known, and therefore have attracted tremendous attention for many applications, including gas storage, separations, catalysis and drug delivery. To increase metal-organic framework porosity, the size and complexity of linkers has increased. Here we present a promising alternative strategy for constructing mesoporous metal-organic frameworks that addresses the size of the vertex rather than the length of the organic linker. This approach uses large metal-biomolecule clusters, in particular zinc-adeninate building units, as vertices to construct bio-MOF-100, an exclusively mesoporous metal-organic framework. Bio-MOF-100 exhibits a high surface area (4,300 m(2) g(-1)), one of the lowest crystal densities (0.302 g cm(-3)) and the largest metal-organic framework pore volume reported to date (4.3 cm(3) g(-1)).

  12. The isolation and characterization of the Escherichia coli DNA adenine methylase (dam) gene.

    PubMed Central

    Brooks, J E; Blumenthal, R M; Gingeras, T R

    1983-01-01

    The E. coli dam (DNA adenine methylase) enzyme is known to methylate the sequence GATC. A general method for cloning sequence-specific DNA methylase genes was used to isolate the dam gene on a 1.14 kb fragment, inserted in the plasmid vector pBR322. Subsequent restriction mapping and subcloning experiments established a set of approximate boundaries of the gene. The nucleotide sequence of the dam gene was determined, and analysis of that sequence revealed a unique open reading frame which corresponded in length to that necessary to code for a protein the size of dam. Amino acid composition derived from this sequence corresponds closely to the amino acid composition of the purified dam protein. Enzymatic and DNA:DNA hybridization methods were used to investigate the possible presence of dam genes in a variety of prokaryotic organisms. PMID:6300769

  13. Synthesis and enzymatic incorporation of α-L-threofuranosyl adenine triphosphate (tATP).

    PubMed

    Zhang, Su; Chaput, John C

    2013-03-01

    Threose nucleic acid (TNA) is an artificial genetic polymer in which the natural ribose sugar found in RNA has been replaced with an unnatural threose sugar. TNA can be synthesized enzymatically using Therminator DNA polymerase to copy DNA templates into TNA. Here, we expand the substrate repertoire of Therminator DNA polymerase to include threofuranosyl adenine 3'-triphsophate (tATP). We chemically synthesized tATP by two different methods from the 2'-O-acetyl derivative. Enzyme-mediated polymerization reveals that tATP functions as an efficient substrate for Therminator DNA polymerase, indicating that tATP can replace the diaminopurine analogue (tDTP) in TNA transcription reactions. PMID:23352269

  14. [Absolute bioavailability of the adenine derivative VMA-99-82 possessing antiviral activity].

    PubMed

    Smirnova, L A; Suchkov, E A; Riabukha, A F; Kuznetsov, K A; Ozerov, A A

    2013-01-01

    Investigation of the main pharmacokinetic parameters of adenine derivative VMA-99-82 in rats showed large values of the half-life (T1/2 = 11.03 h) and the mean retention time of drug molecules in the organism (MRT = 9.53 h). A high rate of the drug concentration decrease in the plasma determines a small value of the area under the pharmacokinetic curve (AUC = 74.96 mg h/ml). The total distribution volume (V(d) = 10.61 l/kg) is 15.8 times greater than the volume of extracellular fluid in the body of rat, which is indicative of a high ability of VMA-99-82 to be distributed and accumulated in the organs and tissues. The absolute bioavailability of VMA-99-82 is 66%. PMID:24605425

  15. Animal models of pediatric chronic kidney disease. Is adenine intake an appropriate model?

    PubMed

    Claramunt, Débora; Gil-Peña, Helena; Fuente, Rocío; Hernández-Frías, Olaya; Santos, Fernando

    2015-01-01

    Pediatric chronic kidney disease (CKD) has peculiar features. In particular, growth impairment is a major clinical manifestation of CKD that debuts in pediatric age because it presents in a large proportion of infants and children with CKD and has a profound impact on the self-esteem and social integration of the stunted patients. Several factors associated with CKD may lead to growth retardation by interfering with the normal physiology of growth plate, the organ where longitudinal growth rate takes place. The study of growth plate is hardly possible in humans and justifies the use of animal models. Young rats made uremic by 5/6 nephrectomy have been widely used as a model to investigate growth retardation in CKD. This article examines the characteristics of this model and analyzes the utilization of CKD induced by high adenine diet as an alternative research protocol.

  16. Conducting polymer and its composite materials based electrochemical sensor for Nicotinamide Adenine Dinucleotide (NADH).

    PubMed

    Omar, Fatin Saiha; Duraisamy, Navaneethan; Ramesh, K; Ramesh, S

    2016-05-15

    Nicotinamide Adenine Dinucleotide (NADH) is an important coenzyme in the human body that participates in many metabolic reactions. The impact of abnormal concentrations of NADH significantly causes different diseases in human body. Electrochemical detection of NADH using bare electrode is a challenging task especially in the presence of main electroactive interferences such as ascorbic acid (AA), uric acid (UA) and dopamine (DA). Modified electrodes have been widely explored to overcome the problems of poor sensitivity and selectivity occurred from bare electrodes. This review gives an overview on the progress of using conducting polymers, polyelectrolyte and its composites (co-polymer, carbonaceous, metal, metal oxide and clay) based modified electrodes for the sensing of NADH. In addition, developments on the fabrication of numerous conducting polymer composites based modified electrodes are clearly described.

  17. Intriguing radical-radical interactions among double-electron oxidized adenine-thymine base pairs

    NASA Astrophysics Data System (ADS)

    Wang, Mei; Zhao, Jing; Zhang, Laibin; Su, Xiyu; Su, Hanlei; Bu, Yuxiang

    2015-01-01

    We present a theoretical investigation of the structural and electronic properties of double-electron oxidized adenine-thymine base pair as well as its deprotonated Watson-Crick derivatives. Double-electron oxidation can destabilize the AT unit, leading to a barrier-hindered metastable A+T+ state with a dissociation channel featuring negative dissociation energy. This unusual energetic phenomenon originates from the competition of electrostatic repulsion and attractively hydrogen-bonding interaction co-existing between Arad + and Trad +. The associated double-proton-transfer process is also explored, suggesting a possible two-step mechanism. Magnetic coupling interactions of various diradical structures are controlled by both intra- and inter-molecular interactions.

  18. Production and characterization of reduced NAADP (nicotinic acid-adenine dinucleotide phosphate).

    PubMed Central

    Billington, Richard A; Thuring, Jan W; Conway, Stuart J; Packman, Len; Holmes, Andrew B; Genazzani, Armando A

    2004-01-01

    The pyridine nucleotide NAADP (nicotinic acid-adenine dinucleotide phosphate) has been shown to act as a Ca2+-releasing intracellular messenger in a wide variety of systems from invertebrates to mammals and has been implicated in a number of cellular processes. NAADP is structurally very similar to its precursor, the endogenous coenzyme NADP and while much is known about the reduced form of NADP, NADPH, it is not known whether NAADP can also exist in a reduced state. Here we report that NAADP can be reduced to NAADPH by endogenous cellular enzymes and that NAADPH is functionally inert at the NAADP receptor. These data suggest that NAADPH could represent a mechanism for rapidly inactivating NAADP in cells. PMID:14606955

  19. Sites of Adsorption of Adenine, Uracil, and Their Corresponding Derivatives on Sodium Montmorillonite

    NASA Astrophysics Data System (ADS)

    Perezgasga, L.; Serrato-Díaz, A.; Negrón-Mendoza, A.; Gal'N, L. De Pablo; Mosqueira, F. G.

    2005-04-01

    Clay minerals are considered important to chemical evolution processes due to their properties, ancient origin, and wide distribution. To extend the knowledge of their role in the prebiotic epoch, the adsorption sites of adenine, adenosine, AMP, ADP, ATP, Poly A, uracil, uridine, UMP, UDP, UTP and Poly U on sodium montmorillonite are investigated. X-ray diffraction, ultraviolet and infrared spectroscopy studies indicate that these molecules distribute into the interlamellar channel and the edge of the clay crystals. Monomers are adsorbed predominantly in the interlamellar channel, whereas polymers adsorb along the crystal edges. Such behavior is discussed mainly in terms of bulk pH, pKa of the adsorbate, and Van der Waals interactions.

  20. Isotope effect studies of the chemical mechanism of nicotinamide adenine dinucleotide malic enzyme from Crassula

    SciTech Connect

    Grissom, C.B.; Willeford, O.; Wedding, R.T.

    1987-05-05

    The /sup 13/C primary kinetic isotope effect on the decarboxylation of malate by nicotinamide adenine dinucleotide malic enzyme from Crassula argentea is 1.0199 +/- 0.0006 with proteo L-malate-2-H and 1.0162 +/- 0.0003 with malate-2-d. The primary deuterium isotope effect is 1.45 +/- 0.10 on V/K and 1.93 +/- 0.13 on V/sub max/. This indicates a stepwise conversion of malate to pyruvate and CO/sub 2/ with hydride transfer preceding decarboxylation, thereby suggesting a discrete oxaloacetate intermediate. This is in agreement with the stepwise nature of the chemical mechanism of other malic enzymes despite the Crassula enzyme's inability to reduce or decarboxylate oxaloacetate. Differences in morphology and allosteric regulation between enzymes suggest specialization of the Crassula malic enzyme for the physiology of crassulacean and acid metabolism while maintaining the catalytic events founds in malic enzymes from animal sources.

  1. Affinity chromatography of nicotinamide-adenine dinucleotide-linked dehydrogenases on immobilized derivatives of the dinucleotide.

    PubMed

    Barry, S; O'Carra, P

    1973-12-01

    1. Three established methods for immobilization of ligands through primary amino groups promoted little or no attachment of NAD(+) through the 6-amino group of the adenine residue. Two of these methods (coupling to CNBr-activated agarose and to carbodi-imide-activated carboxylated agarose derivatives) resulted instead in attachment predominantly through the ribosyl residues. Other immobilized derivatives were prepared by azolinkage of NAD(+) (probably through the 8 position of the adenine residue) to a number of different spacer-arm-agarose derivatives. 2. The effectiveness of these derivatives in the affinity chromatography of a variety of NAD-linked dehydrogenases was investigated, applying rigorous criteria to distinguish general or non-specific adsorption effects from truly NAD-specific affinity (bio-affinity). The ribosyl-attached NAD(+) derivatives displayed negligible bio-affinity for any of the NAD-linked dehydrogenases tested. The most effective azo-linked derivative displayed strong bio-affinity for glycer-aldehyde 3-phosphate dehydrogenase, weaker bio-affinity for lactate dehydrogenase and none at all for malate dehydrogenase, although these three enzymes have very similar affinities for soluble NAD(+). Alcohol dehydrogenase and xanthine dehydrogenase were subject to such strong non-specific interactions with the hydrocarbon spacer-arm assembly that any specific affinity was completely eclipsed. 3. It is concluded that, in practice, the general effectiveness of a general ligand may be considerably distorted and attenuated by the nature of the immobilization linkage. However, this attenuation can result in an increase in specific effectiveness, allowing dehydrogenases to be separated from one another in a manner unlikely to be feasible if the general effectiveness of the ligand remained intact. 4. The bio-affinity of the various derivatives for lactate dehydrogenase is correlated with the known structure of the NAD(+)-binding site of this enzyme. Problems

  2. Similarities between UDP-Glucose and Adenine Nucleotide Release in Yeast

    PubMed Central

    Esther, Charles R.; Sesma, Juliana I.; Dohlman, Henrik G.; Ault, Addison D.; Clas, Marién L.; Lazarowski, Eduardo R.; Boucher, Richard C.

    2008-01-01

    Extracellular UDP-glucose is a natural purinergic receptor agonist, but its mechanisms of cellular release remain unclear. We studied these mechanisms in Saccharomyces cerevisiae, a simple model organism that releases ATP, another purinergic agonist. Similar to ATP, UDP-glucose was released by S. cerevisiae at a rate that was linear over time. However, unlike ATP release, UDP-glucose release was not dependent on glucose stimulation. This discrepancy was resolved by demonstrating the apparent glucose stimulation of ATP release reflected glucose-dependent changes in the intracellular pattern of adenine nucleotides, with AMP release dominating in the absence of glucose. Indeed, total adenine nucleotide release, like UDP-glucose release, did not vary with glucose concentration over the short term. The genetic basis of UDP-glucose release was explored through analysis of deletion mutants, aided by development of a novel bioassay for UDP-glucose based on signaling through heterologously expressed human P2Y14 receptors. Using this assay, an elevated rate of UDP-glucose release was demonstrated in mutants lacking the putative Golgi nucleotide sugar transporter YMD8. An increased rate of UDP-glucose release in ymd8Δ was reduced by deletion of the YEA4 UDP-N-acetylglucosamine or the HUT1 UDP-galactose transporters, and overexpression of YEA4 or HUT1 increased the rate of UDP-glucose release. These findings suggest an exocytotic release mechanism similar to that of ATP, a conclusion supported by decreased rates of ATP, AMP, and UDP-glucose release in response to the secretory inhibitor Brefeldin A. These studies demonstrate the involvement of the secretory pathway in nucleotide and nucleotide sugar efflux in yeast and offer a powerful model system for further investigation. PMID:18693752

  3. Acceleration of adventitious shoots by interaction between exogenous hormone and adenine sulphate in Althaea officinalis L.

    PubMed

    Naz, Ruphi; Anis, M

    2012-11-01

    In the current study attempts were made to investigate the effects of three different phases of callus induction followed by adventitious regeneration from leaf segments (central and lateral vein). Callus induction was observed in Murashige and Skoog's (MS) medium supplemented with 15.0 μM 2,4-dichloro phenoxy acetic acid (2,4-D). Adventitious shoot buds formation was achieved on MS medium supplemented with 7.5 μM 2,4-D and 20.0 μM AdS in liquid medium as it induced 19.2 ± 0.58 buds in central vein explants. Addition of different growth regulators (cytokinins-6-benzyladenine, kinetin and 2-isopentenyl adenine alone or in combination with auxins-indole-3-acetic acid, indole-3-butyric acid and α-naphthalene acetic acid, improved the shoot regeneration efficiency, in which 5.0 μM 6-benzyl adenine along with 0.25 μM α-naphthalene acetic acid was shown to be the most effective medium for maximum shoot regeneration (81.3 %) with 24.6 number of shoots and 4.4 ± 0.08 cm shoot length per explant. Leaf culture of central veins led to better shoot formation capacity in comparison to lateral vein. Rooting was readily achieved on the differentiated shoots on 1/2 MS medium augmented with 20.0 μM indole-3-butyric acid. The plants were successfully hardened off in sterile soilrite followed by their establishment in garden soil with 80 % survival rate.

  4. Regulation of Salmonella enterica pathogenicity island 1 by DNA adenine methylation.

    PubMed

    López-Garrido, Javier; Casadesús, Josep

    2010-03-01

    DNA adenine methylase (Dam(-)) mutants of Salmonella enterica are attenuated in the mouse model and present multiple virulence-related defects. Impaired interaction of Salmonella Dam(-) mutants with the intestinal epithelium has been tentatively correlated with reduced secretion of pathogenicity island 1 (SPI-1) effectors. In this study, we show that S. enterica Dam(-) mutants contain lowered levels of the SPI-1 transcriptional regulators HilA, HilC, HilD, and InvF. Epistasis analysis indicates that Dam-dependent regulation of SPI-1 requires HilD, while HilA, HilC, and InvF are dispensable. A transcriptional hilDlac fusion is expressed at similar levels in Dam(+) and Dam(-) hosts. However, lower levels of hilD mRNA are found in a Dam(-) background, thus providing unsuspected evidence that Dam methylation might exert post-transcriptional regulation of hilD expression. This hypothesis is supported by the following lines of evidence: (i) lowered levels of hilD mRNA are found in Salmonella Dam(-) mutants when hilD is transcribed from a heterologous promoter; (ii) increased hilD mRNA turnover is observed in Dam(-) mutants; (iii) lack of the Hfq RNA chaperone enhances hilD mRNA instability in Dam(-) mutants; and (iv) lack of the RNA degradosome components polynucleotide phosphorylase and ribonuclease E suppresses hilD mRNA instability in a Dam(-) background. Our report of Dam-dependent control of hilD mRNA stability suggests that DNA adenine methylation plays hitherto unknown roles in post-transcriptional control of gene expression.

  5. Herpes simplex type 1 defective interfering particles do not affect the antiviral activity of acyclovir, foscarnet and adenine arabinoside.

    PubMed

    Harmenberg, J G; Svensson, L T

    1988-03-01

    The concentration of defective interfering particles (DI-particles) of herpes simplex type 1 virus was analysed by electron microscopy and plaque titration. Fifteen consecutive passages of undiluted virus in green monkey kidney cells were followed. No relationship was found between the concentration of DI-particles and the activity of antiviral substances such as acyclovir, foscarnet and adenine arabinoside.

  6. Adenine nucleotide-dependent and redox-independent control of mitochondrial malate dehydrogenase activity in Arabidopsis thaliana.

    PubMed

    Yoshida, Keisuke; Hisabori, Toru

    2016-06-01

    Mitochondrial metabolism is important for sustaining cellular growth and maintenance; however, the regulatory mechanisms underlying individual processes in plant mitochondria remain largely uncharacterized. Previous redox-proteomics studies have suggested that mitochondrial malate dehydrogenase (mMDH), a key enzyme in the tricarboxylic acid (TCA) cycle and redox shuttling, is under thiol-based redox regulation as a target candidate of thioredoxin (Trx). In addition, the adenine nucleotide status may be another factor controlling mitochondrial metabolism, as respiratory ATP production in mitochondria is believed to be influenced by several environmental stimuli. Using biochemical and reverse-genetic approaches, we addressed the redox- and adenine nucleotide-dependent regulation of mMDH in Arabidopsis thaliana. Recombinant mMDH protein formed intramolecular disulfide bonds under oxidative conditions, but these bonds did not have a considerable effect on mMDH activity. Mitochondria-localized o-type Trx (Trx-o) did not facilitate re-reduction of oxidized mMDH. Determination of the in vivo redox state revealed that mMDH was stably present in the reduced form even in Trx-o-deficient plants. Accordingly, we concluded that mMDH is not in the class of redox-regulated enzymes. By contrast, mMDH activity was lowered by adenine nucleotides (AMP, ADP, and ATP). Each adenine nucleotide suppressed mMDH activity with different potencies and ATP exerted the largest inhibitory effect with a significantly lower K(I). Correspondingly, mMDH activity was inhibited by the increase in ATP/ADP ratio within the physiological range. These results suggest that mMDH activity is finely controlled in response to variations in mitochondrial adenine nucleotide balance. PMID:26946085

  7. Adenine nucleotide-dependent and redox-independent control of mitochondrial malate dehydrogenase activity in Arabidopsis thaliana.

    PubMed

    Yoshida, Keisuke; Hisabori, Toru

    2016-06-01

    Mitochondrial metabolism is important for sustaining cellular growth and maintenance; however, the regulatory mechanisms underlying individual processes in plant mitochondria remain largely uncharacterized. Previous redox-proteomics studies have suggested that mitochondrial malate dehydrogenase (mMDH), a key enzyme in the tricarboxylic acid (TCA) cycle and redox shuttling, is under thiol-based redox regulation as a target candidate of thioredoxin (Trx). In addition, the adenine nucleotide status may be another factor controlling mitochondrial metabolism, as respiratory ATP production in mitochondria is believed to be influenced by several environmental stimuli. Using biochemical and reverse-genetic approaches, we addressed the redox- and adenine nucleotide-dependent regulation of mMDH in Arabidopsis thaliana. Recombinant mMDH protein formed intramolecular disulfide bonds under oxidative conditions, but these bonds did not have a considerable effect on mMDH activity. Mitochondria-localized o-type Trx (Trx-o) did not facilitate re-reduction of oxidized mMDH. Determination of the in vivo redox state revealed that mMDH was stably present in the reduced form even in Trx-o-deficient plants. Accordingly, we concluded that mMDH is not in the class of redox-regulated enzymes. By contrast, mMDH activity was lowered by adenine nucleotides (AMP, ADP, and ATP). Each adenine nucleotide suppressed mMDH activity with different potencies and ATP exerted the largest inhibitory effect with a significantly lower K(I). Correspondingly, mMDH activity was inhibited by the increase in ATP/ADP ratio within the physiological range. These results suggest that mMDH activity is finely controlled in response to variations in mitochondrial adenine nucleotide balance.

  8. Highly Sensitive Bacteria Quantification Using Immunomagnetic Separation and Electrochemical Detection of Guanine-Labeled Secondary Beads

    PubMed Central

    Jayamohan, Harikrishnan; Gale, Bruce K.; Minson, Bj; Lambert, Christopher J.; Gordon, Neil; Sant, Himanshu J.

    2015-01-01

    In this paper, we report the ultra-sensitive indirect electrochemical detection of E. coli O157:H7 using antibody functionalized primary (magnetic) beads for capture and polyguanine (polyG) oligonucleotide functionalized secondary (polystyrene) beads as an electrochemical tag. Vacuum filtration in combination with E. coli O157:H7 specific antibody modified magnetic beads were used for extraction of E. coli O157:H7 from 100 mL samples. The magnetic bead conjugated E. coli O157:H7 cells were then attached to polyG functionalized secondary beads to form a sandwich complex (magnetic bead/E. coli/ secondary bead). While the use of magnetic beads for immuno-based capture is well characterized, the use of oligonucleotide functionalized secondary beads helps combine amplification and potential multiplexing into the system. The antibody functionalized secondary beads can be easily modified with a different antibody to detect other pathogens from the same sample and enable potential multiplexing. The polyGs on the secondary beads enable signal amplification up to 108 guanine tags per secondary bead (7.5 × 106 biotin-FITC per secondary bead, 20 guanines per oligonucleotide) bound to the target (E. coli). A single-stranded DNA probe functionalized reduced graphene oxide modified glassy carbon electrode was used to bind the polyGs on the secondary beads. Fluorescent imaging was performed to confirm the hybridization of the complex to the electrode surface. Differential pulse voltammetry (DPV) was used to quantify the amount of polyG involved in the hybridization event with tris(2,2′-bipyridine)ruthenium(II) ( Ru(bpy)32+) as the mediator. The amount of polyG signal can be correlated to the amount of E. coli O157:H7 in the sample. The method was able to detect concentrations of E. coli O157:H7 down to 3 CFU/100 mL, which is 67 times lower than the most sensitive technique reported in literature. The signal to noise ratio for this work was 3. We also demonstrate the use of the

  9. Clay catalysis of oligonucleotide formation: kinetics of the reaction of the 5'-phosphorimidazolides of nucleotides with the non-basic heterocycles uracil and hypoxanthine

    NASA Technical Reports Server (NTRS)

    Kawamura, K.; Ferris, J. P.

    1999-01-01

    The montmorillonite clay catalyzed condensation of activated monocleotides to oligomers of RNA is a possible first step in the formation of the proposed RNA world. The rate constants for the condensation of the phosphorimidazolide of adenosine were measured previously and these studies have been extended to the phosphorimidazolides of inosine and uridine in the present work to determine of substitution of neutral heterocycles for the basic adenine ring changes the reaction rate or regioselectivity. The oligomerization reactions of the 5'-phosphoromidazolides of uridine (ImpU) and inosine (ImpI) on montmorillonite yield oligo(U)s and oligo(I)s as long as heptamers. The rate constants for oligonucleotide formation were determined by measuring the rates of formation of the oligomers by HPLC. Both the apparent rate constants in the reaction mixture and the rate constants on the clay surface were calculated using the partition coefficients of the oligomers between the aqueous and clay phases. The rate constants for trimer formation are much greater than those dimer synthesis but there was little difference in the rate constants for the formation of trimers and higher oligomers. The overall rates of oligomerization of the phosphorimidazolides of purine and pyrimidine nucleosides in the presence of montmorillonite clay are the same suggesting that RNA formed on the primitive Earth could have contained a variety of heterocyclic bases. The rate constants for oligomerization of pyrimidine nucleotides on the clay surface are significantly higher than those of purine nucleotides since the pyrimidine nucleotides bind less strongly to the clay than do the purine nucleotides. The differences in the binding is probably due to Van der Waals interactions between the purine bases and the clay surface. Differences in the basicity of the heterocyclic ring in the nucleotide have little effect on the oligomerization process.

  10. Insight into G-quadruplex-hemin DNAzyme/RNAzyme: adjacent adenine as the intramolecular species for remarkable enhancement of enzymatic activity.

    PubMed

    Li, Wang; Li, Yong; Liu, Zhuoliang; Lin, Bin; Yi, Haibo; Xu, Feng; Nie, Zhou; Yao, Shouzhuo

    2016-09-01

    G-quadruplex (G4) with stacked G-tetrads structure is able to bind hemin (iron (III)-protoporphyrin IX) to form a unique type of DNAzyme/RNAzyme with peroxidase-mimicking activity, which has been widely employed in multidisciplinary fields. However, its further applications are hampered by its relatively weak activity compared with protein enzymes. Herein, we report a unique intramolecular enhancement effect of the adjacent adenine (EnEAA) at 3' end of G4 core sequences that significantly improves the activity of G4 DNAzymes. Through detailed investigations of the EnEAA, the added 3' adenine was proved to accelerate the compound I formation in catalytic cycle and thus improve the G4 DNAzyme activity. EnEAA was found to be highly dependent on the unprotonated state of the N1 of adenine, substantiating that adenine might function as a general acid-base catalyst. Further adenine analogs analysis supported that both N1 and exocyclic 6-amino groups in adenine played key role in the catalysis. Moreover, we proved that EnEAA was generally applicable for various parallel G-quadruplex structures and even G4 RNAzyme. Our studies implied that adenine might act analogously as the distal histidine in protein peroxidases, which shed light on the fundamental understanding and rational design of G4 DNAzyme/RNAzyme catalysts with enhanced functions. PMID:27422869

  11. Insight into G-quadruplex-hemin DNAzyme/RNAzyme: adjacent adenine as the intramolecular species for remarkable enhancement of enzymatic activity

    PubMed Central

    Li, Wang; Li, Yong; Liu, Zhuoliang; Lin, Bin; Yi, Haibo; Xu, Feng; Nie, Zhou; Yao, Shouzhuo

    2016-01-01

    G-quadruplex (G4) with stacked G-tetrads structure is able to bind hemin (iron (III)-protoporphyrin IX) to form a unique type of DNAzyme/RNAzyme with peroxidase-mimicking activity, which has been widely employed in multidisciplinary fields. However, its further applications are hampered by its relatively weak activity compared with protein enzymes. Herein, we report a unique intramolecular enhancement effect of the adjacent adenine (EnEAA) at 3′ end of G4 core sequences that significantly improves the activity of G4 DNAzymes. Through detailed investigations of the EnEAA, the added 3′ adenine was proved to accelerate the compound I formation in catalytic cycle and thus improve the G4 DNAzyme activity. EnEAA was found to be highly dependent on the unprotonated state of the N1 of adenine, substantiating that adenine might function as a general acid–base catalyst. Further adenine analogs analysis supported that both N1 and exocyclic 6-amino groups in adenine played key role in the catalysis. Moreover, we proved that EnEAA was generally applicable for various parallel G-quadruplex structures and even G4 RNAzyme. Our studies implied that adenine might act analogously as the distal histidine in protein peroxidases, which shed light on the fundamental understanding and rational design of G4 DNAzyme/RNAzyme catalysts with enhanced functions. PMID:27422869

  12. β-Cyclodextrin-grafted on multiwalled carbon nanotubes as versatile nanoplatform for entrapment of guanine-based drugs.

    PubMed

    Iannazzo, Daniela; Mazzaglia, Antonino; Scala, Angela; Pistone, Alessandro; Galvagno, Signorino; Lanza, Maurizio; Riccucci, Cristina; Ingo, Gabriel Maria; Colao, Ivana; Sciortino, Maria Teresa; Valle, Francesco; Piperno, Anna; Grassi, Giovanni

    2014-11-01

    The design of β-cyclodextrin/multiwalled carbon nanotubes hybrid (β-CD-MWCNT) as nanoplatform for the entrapment and delivery of guanine based drugs is described here. The functionalized carbon nanomaterials have been characterized by XPS spectroscopy, electron microscopy (FEG-SEM and TEM), AFM, TGA, and FT-IR to achieve insights on structure, morphology and chemical composition. The drug binding abilities of nanocarrier towards the guanine (G) and Acyclovir (Acy) were proved by UV-vis and DSC experiments. Host-guest equilibrium association constants and drug loading have been evaluated for G/β-CD-MWCNT and Acy/β-CD-MWCNT complexes. The release studies showed a sustained delivery of Acy without initial burst effect confirming a strong interaction of drug with the nanoplatform sites. The preliminary antiviral data indicated that the Acyclovir loaded into the β-CD-MWCNT platform interferes with HSV-1 replication and the antireplicative effect was higher than the free drug.

  13. Anti-oxidant effects of the extracts from the leaves of Chromolaena odorata on human dermal fibroblasts and epidermal keratinocytes against hydrogen peroxide and hypoxanthine-xanthine oxidase induced damage.

    PubMed

    Thang, P T; Patrick, S; Teik, L S; Yung, C S

    2001-06-01

    In cutaneous tissue repair, oxidants and antioxidants play very important roles. In local acute and chronic wounds, oxidants are known to have the ability to cause as cell damage and may function as inhibitory factors to wound healing. The administration of anti-oxidants or free radical scavengers is reportedly helpful, notably in order to limit the delayed sequelae of thermal trauma and to enhance the healing process. Extracts from the leaves of Chromolaena odorata have been shown to be beneficial for treatment of wounds. Studies in vitro of these extracts demonstrated enhanced proliferation of fibroblasts, endothelial cells and keratinocytes, stimulation of keratinocyte migration in an in vitro wound assay, up-regulation of production by keratinocytes of extracellular matrix proteins and basement membrane components, and inhibition of collagen lattice contraction by fibroblasts. In this study, the anti-oxidant effects of both total ethanol and polyphenolic extracts from the plant leaves on hydrogen peroxide and hypoxanthine-xanthine oxidase induced damage to human fibroblasts and keratinocytes were investigated. Cell viability was monitored by a colorimetric assay. The results showed that for fibroblasts, toxicity of hydrogen peroxide or hypoxanthine xanthine oxidase on cells was dose-dependent. Total ethanol extract (TEE) at 400 and 800 microg/ml showed maximum and consistent protective cellular effect on oxidant toxicity at low or high doses of oxidants. The 50 microg/ml concentration of TEE also had significant and slightly protective effects on fibroblasts against hydrogen peroxide and hypoxanthine-xanthine oxidase induced damage, respectively. For keratinocytes, a dose-dependent relationship of oxidant toxicity was only seen with hydrogen peroxide but the protective action of the extract correlated with oxidant dosage. TEE at 400 and 800 microg/ml showed dose-dependent effects with both low and high concentration of oxidants. TEE at 50 microg/ml had no

  14. Guanine deaminase functions as dihydropterin deaminase in the biosynthesis of aurodrosopterin, a minor red eye pigment of Drosophila.

    PubMed

    Kim, Jaekwang; Park, Sang Ick; Ahn, Chiyoung; Kim, Heuijong; Yim, Jeongbin

    2009-08-28

    Dihydropterin deaminase, which catalyzes the conversion of 7,8-dihydropterin to 7,8-dihydrolumazine, was purified 5850-fold to apparent homogeneity from Drosophila melanogaster. Its molecular mass was estimated to be 48 kDa by gel filtration and SDS-PAGE, indicating that it is a monomer under native conditions. The pI value, temperature, and optimal pH of the enzyme were 5.5, 40 degrees C, and 7.5, respectively. Interestingly the enzyme had much higher activity for guanine than for 7,8-dihydropterin. The specificity constant (k(cat)/K(m)) for guanine (8.6 x 10(6) m(-1).s(-1)) was 860-fold higher than that for 7,8-dihydropterin (1.0 x 10(4) m(-1).s(-1)). The structural gene of the enzyme was identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis as CG18143, located at region 82A1 on chromosome 3R. The cloned and expressed CG18143 exhibited both 7,8-dihydropterin and guanine deaminase activities. Flies with mutations in CG18143, SUPor-P/Df(3R)A321R1 transheterozygotes, had severely decreased activities in both deaminases compared with the wild type. Among several red eye pigments, the level of aurodrosopterin was specifically decreased in the mutant, and the amount of xanthine and uric acid also decreased considerably to 76 and 59% of the amounts in the wild type, respectively. In conclusion, dihydropterin deaminase encoded by CG18143 plays a role in the biosynthesis of aurodrosopterin by providing one of its precursors, 7,8-dihydrolumazine, from 7,8-dihydropterin. Dihydropterin deaminase also functions as guanine deaminase, an important enzyme for purine metabolism. PMID:19567870

  15. The Guanine Nucleotide Exchange Factor ARNO mediates the activation of ARF and phospholipase D by insulin

    PubMed Central

    Li, Hai-Sheng; Shome, Kuntala; Rojas, Raúl; Rizzo, Mark A; Vasudevan, Chandrasekaran; Fluharty, Eric; Santy, Lorraine C; Casanova, James E; Romero, Guillermo

    2003-01-01

    Background Phospholipase D (PLD) is involved in many signaling pathways. In most systems, the activity of PLD is primarily regulated by the members of the ADP-Ribosylation Factor (ARF) family of GTPases, but the mechanism of activation of PLD and ARF by extracellular signals has not been fully established. Here we tested the hypothesis that ARF-guanine nucleotide exchange factors (ARF-GEFs) of the cytohesin/ARNO family mediate the activation of ARF and PLD by insulin. Results Wild type ARNO transiently transfected in HIRcB cells was translocated to the plasma membrane in an insulin-dependent manner and promoted the translocation of ARF to the membranes. ARNO mutants: ΔCC-ARNO and CC-ARNO were partially translocated to the membranes while ΔPH-ARNO and PH-ARNO could not be translocated to the membranes. Sec7 domain mutants of ARNO did not facilitate the ARF translocation. Overexpression of wild type ARNO significantly increased insulin-stimulated PLD activity, and mutations in the Sec7 and PH domains, or deletion of the PH or CC domains inhibited the effects of insulin. Conclusions Small ARF-GEFs of the cytohesin/ARNO family mediate the activation of ARF and PLD by the insulin receptor. PMID:12969509

  16. In vitro guanine nucleotide exchange activity of DHR-2/DOCKER/CZH2 domains.

    PubMed

    Côté, Jean-François; Vuori, Kristiina

    2006-01-01

    Rho family GTPases regulate a large variety of biological processes, including the reorganization of the actin cytoskeleton. Like other members of the Ras superfamily of small GTP-binding proteins, Rho GTPases cycle between a GDP-bound (inactive) and a GTP-bound (active) state, and, when active, the GTPases relay extracellular signals to a large number of downstream effectors. Guanine nucleotide exchange factors (GEFs) promote the exchange of GDP for GTP on Rho GTPases, thereby activating them. Most Rho-GEFs mediate their effects through their signature domain known as the Dbl Homology-Pleckstrin Homology (DH-PH) module. Recently, we and others identified a family of evolutionarily conserved, DOCK180-related proteins that also display GEF activity toward Rho GTPases. The DOCK180-family of proteins lacks the canonical DH-PH module. Instead, they rely on a novel domain, termed DHR-2, DOCKER, or CZH2, to exchange GDP for GTP on Rho targets. In this chapter, the experimental approach that we used to uncover the exchange activity of the DHR-2 domain of DOCK180-related proteins will be described.

  17. Mechanism of cholera toxin activation by a guanine nucleotide-dependent 19 kDa protein.

    PubMed

    Noda, M; Tsai, S C; Adamik, R; Moss, J; Vaughan, M

    1990-05-16

    Cholera toxin causes the devastating diarrheal syndrome characteristic of cholera by catalyzing the ADP-ribosylation of Gs alpha, a GTP-binding regulatory protein, resulting in activation of adenylyl cyclase. ADP-ribosylation of Gs alpha is enhanced by 19 kDa guanine nucleotide-binding proteins known as ADP-ribosylation factors or ARFs. We investigated the effects of agents known to alter toxin-catalyzed activation of adenylyl cyclase on the stimulation of toxin- and toxin subunit-catalyzed ADP-ribosylation of Gs alpha and other substrates by an ADP-ribosylation factor purified from a soluble fraction of bovine brain (sARF II). In the presence of GTP, sARF II enhanced activity of both the toxin catalytic unit and a reduced and alkylated fragment ('A1'), as a result of an increase in substrate affinity with no significant effects on Vmax. Activation of toxin was independent of Gs alpha and was stimulated 4-fold by sodium dodecyl sulfate, but abolished by Triton X-100. sARF II therefore serves as a direct allosteric activator of the A1 protein and may thus amplify the pathological effects of cholera toxin.

  18. Self-catalyzed site-specific depurination of guanine residues within gene sequences.

    PubMed

    Amosova, Olga; Coulter, Richard; Fresco, Jacques R

    2006-03-21

    A self-catalyzed, site-specific guanine-depurination activity has been found to occur in short gene sequences with a potential to form a stem-loop structure. The critical features of that catalytic intermediate are a 5'-G-T-G-G-3' loop and an adjacent 5'-T.A-3' base pair of a short duplex stem stable enough to fix the loop structure required for depurination of its 5'-G residue. That residue is uniquely depurinated with a rate some 5 orders of magnitude faster than that of random "spontaneous" depurination. In contrast, all other purine residues in the sequence depurinate at the spontaneous background rate. The reaction requires no divalent cations or other cofactors and occurs under essentially physiological conditions. Such stem-loops can form in duplex DNA under superhelical stress, and their critical sequence features have been found at numerous sites in the human genome. Self-catalyzed stem-loop-mediated depurination leading to flexible apurinic sites may therefore serve some important biological role, e.g., in nucleosome positioning, genetic recombination, or chromosome superfolding.

  19. Synthesis and biological properties of caffeic acid-PNA dimers containing guanine.

    PubMed

    Gaglione, Maria; Malgieri, Gaetano; Pacifico, Severina; Severino, Valeria; D'Abrosca, Brigida; Russo, Luigi; Fiorentino, Antonio; Messere, Anna

    2013-01-01

    Caffeic acid (CA; 3,4-dihydroxycinnamic acid) is endowed with high antioxidant activity. CA derivatives (such as amides) have gained a lot of attention due to their antioxidative, antitumor and antimicrobial properties as well as stable characteristics. Caffeoyl-peptide derivatives showed different antioxidant activity depending on the type and the sequence of amino acid used. For these reasons, we decided to combine CA with Peptide Nucleic Acid (PNA) to test whether the new PNA-CA amide derivatives would result in an improvement or gain of CA's biological (i.e., antioxidant, cytotoxic, cytoprotective) properties. We performed the synthesis and characterization of seven dimer conjugates with various combinations of nucleic acid bases and focused NMR studies on the model compound ga-CA dimer. We demonstrate that PNA dimers containing guanine conjugated to CA exhibited different biological activities depending on composition and sequence of the nucleobases. The dimer ag-CA protected HepG2, SK-B-NE(2), and C6 cells from a cytotoxic dose of hydrogen peroxide (H₂O₂). PMID:23912270

  20. Mutation at a distance caused by homopolymeric guanine repeats in Saccharomyces cerevisiae.

    PubMed

    McDonald, Michael J; Yu, Yen-Hsin; Guo, Jheng-Fen; Chong, Shin Yen; Kao, Cheng-Fu; Leu, Jun-Yi

    2016-05-01

    Mutation provides the raw material from which natural selection shapes adaptations. The rate at which new mutations arise is therefore a key factor that determines the tempo and mode of evolution. However, an accurate assessment of the mutation rate of a given organism is difficult because mutation rate varies on a fine scale within a genome. A central challenge of evolutionary genetics is to determine the underlying causes of this variation. In earlier work, we had shown that repeat sequences not only are prone to a high rate of expansion and contraction but also can cause an increase in mutation rate (on the order of kilobases) of the sequence surrounding the repeat. We perform experiments that show that simple guanine repeats 13 bp (base pairs) in length or longer (G 13+ ) increase the substitution rate 4- to 18-fold in the downstream DNA sequence, and this correlates with DNA replication timing (R = 0.89). We show that G 13+ mutagenicity results from the interplay of both error-prone translesion synthesis and homologous recombination repair pathways. The mutagenic repeats that we study have the potential to be exploited for the artificial elevation of mutation rate in systems biology and synthetic biology applications.

  1. Structure of the Rho-specific guanine nucleotide-exchange factor Xpln

    PubMed Central

    Murayama, Kazutaka; Kato-Murayama, Miyuki; Akasaka, Ryogo; Terada, Takaho; Yokoyama, Shigeyuki; Shirouzu, Mikako

    2012-01-01

    Xpln is a guanine nucleotide-exchange factor (GEF) for Rho GTPases. A Dbl homology (DH) domain followed by a pleckstrin homology (PH) domain is a widely adopted GEF-domain architecture. The Xpln structure solely comprises these two domains. Xpln activates RhoA and RhoB, but not RhoC, although their GTPase sequences are highly conserved. The molecular mechanism of the selectivity of Xpln for Rho GTPases is still unclear. In this study, the crystal structure of the tandemly arranged DH-PH domains of mouse Xpln, with a single molecule in the asymmetric unit, was determined at 1.79 Å resolution by the multiwavelength anomalous dispersion method. The DH-PH domains of Xpln share high structural similarity with those from neuroepithelial cell-transforming gene 1 protein, PDZ-RhoGEF, leukaemia-associated RhoGEF and intersectins 1 and 2. The crystal structure indicated that the α4–α5 loop in the DH domain is flexible and that the DH and PH domains interact with each other intramolecularly, thus suggesting that PH-domain rearrangement occurs upon RhoA binding. PMID:23192023

  2. Rho guanine exchange factors in blood vessels: fine-tuners of angiogenesis and vascular function.

    PubMed

    Kather, Jakob Nikolas; Kroll, Jens

    2013-05-15

    The angiogenic cascade is a multi-step process essential for embryogenesis and other physiological and pathological processes. Rho family GTPases are binary molecular switches and serve as master regulators of various basic cellular processes. Rho GTPases are known to exert important functions in angiogenesis and vascular physiology. These functions demand a tight and context-specific control of cellular processes requiring superordinate control by a multitude of guanine nucleotide exchange factors (GEFs). GEFs display various features enabling them to fine-tune the actions of Rho GTPases in the vasculature: (1) GEFs regulate specific steps of the angiogenic cascade; (2) GEFs show a spatio-temporally specific expression pattern; (3) GEFs differentially regulate endothelial function depending on their subcellular location; (4) GEFs mediate crosstalk between complex signaling cascades and (5) GEFs themselves are regulated by another layer of interacting proteins. The aim of this review is to provide an overview about the role of GEFs in regulating angiogenesis and vascular function and to point out current limitations as well as clinical perspectives.

  3. Mutation at a distance caused by homopolymeric guanine repeats in Saccharomyces cerevisiae.

    PubMed

    McDonald, Michael J; Yu, Yen-Hsin; Guo, Jheng-Fen; Chong, Shin Yen; Kao, Cheng-Fu; Leu, Jun-Yi

    2016-05-01

    Mutation provides the raw material from which natural selection shapes adaptations. The rate at which new mutations arise is therefore a key factor that determines the tempo and mode of evolution. However, an accurate assessment of the mutation rate of a given organism is difficult because mutation rate varies on a fine scale within a genome. A central challenge of evolutionary genetics is to determine the underlying causes of this variation. In earlier work, we had shown that repeat sequences not only are prone to a high rate of expansion and contraction but also can cause an increase in mutation rate (on the order of kilobases) of the sequence surrounding the repeat. We perform experiments that show that simple guanine repeats 13 bp (base pairs) in length or longer (G 13+ ) increase the substitution rate 4- to 18-fold in the downstream DNA sequence, and this correlates with DNA replication timing (R = 0.89). We show that G 13+ mutagenicity results from the interplay of both error-prone translesion synthesis and homologous recombination repair pathways. The mutagenic repeats that we study have the potential to be exploited for the artificial elevation of mutation rate in systems biology and synthetic biology applications. PMID:27386516

  4. Rho guanine nucleotide exchange factors: regulators of Rho GTPase activity in development and disease

    PubMed Central

    Cook, Danielle R.; Rossman, Kent L.; Der, Channing J.

    2016-01-01

    The aberrant activity of Ras homologous (Rho) family small GTPases (20 human members) has been implicated in cancer and other human diseases. However, in contrast to the direct mutational activation of Ras found in cancer and developmental disorders, Rho GTPases are activated most commonly by indirect mechanisms in disease. One prevalent mechanism involves aberrant Rho activation via the deregulated expression and/or activity of Rho family guanine nucleotide exchange factors (RhoGEFs). RhoGEFs promote formation of the active GTP-bound state of Rho GTPases. The largest family of RhoGEFs is comprised of the Dbl family RhoGEFs with 70 human members. The multitude of RhoGEFs that activate a single Rho GTPase reflect the very specific role of each RhoGEF in controlling distinct signaling mechanisms involved in Rho activation. In this review, we summarize the role of Dbl RhoGEFs in development and disease, with a focus on Ect2, Tiam1, Vav and P-Rex1/2. PMID:24037532

  5. Electron correlation effects and density analysis of the first-order hyperpolarizability of neutral guanine tautomers.

    PubMed

    Alparone, Andrea

    2013-08-01

    Dipole moments (μ), charge distributions, and static electronic first-order hyperpolarizabilities (β(μ)) of the two lowest-energy keto tautomers of guanine (7H and 9H) were determined in the gas phase using Hartree-Fock, Møller-Plesset perturbation theory (MP2 and MP4), and DFT (PBE1PBE, B97-1, B3LYP, CAM-B3LYP) methods with Dunning's correlation-consistent aug-cc-pVDZ and d-aug-cc-pVDZ basis sets. The most stable isomer 7H exhibits a μ value smaller than that of the 9H form by a factor of ca. 3.5. The β μ value of the 9H tautomer is strongly dependent on the computational method employed, as it dramatically influences the β(μ) (9H)/β(μ) (7H) ratio, which at the highest correlated MP4/aug-cc-pVDZ level is predicted to be ca. 5. The Coulomb-attenuating hybrid exchange-correlation CAM-B3LYP method is superior to the conventional PBE1PBE, B3LYP, and B97-1 functionals in predicting the β(μ) values. Differences between the largest diagonal hyperpolarizability components were clarified through hyperpolarizability density analyses. Dipole moment and first-order hyperpolarizability are molecular properties that are potentially useful for distinguishing the 7H from the 9H tautomer.

  6. The Guanine-Nucleotide Exchange Factor SGEF Plays a Crucial Role in the Formation of Atherosclerosis

    PubMed Central

    Kroon, Jeffrey; Welch, Christopher; Bakker, Erik N.; Matlung, Hanke L.; van den Berg, Timo K.; Sharek, Lisa; Doerschuk, Claire; Hahn, Klaus; Burridge, Keith

    2013-01-01

    The passage of leukocytes across the endothelium and into arterial walls is a critical step in the development of atherosclerosis. Previously, we showed in vitro that the RhoG guanine nucleotide exchange factor SGEF (Arhgef26) contributes to the formation of ICAM-1-induced endothelial docking structures that facilitate leukocyte transendothelial migration. To further explore the in vivo role of this protein during inflammation, we generated SGEF-deficient mice. When crossed with ApoE null mice and fed a Western diet, mice lacking SGEF showed a significant decrease in the formation of atherosclerosis in multiple aortic areas. A fluorescent biosensor revealed local activation of RhoG around bead-clustered ICAM-1 in mouse aortic endothelial cells. Notably, this activation was decreased in cells from SGEF-deficient aortas compared to wild type. In addition, scanning electron microscopy of intimal surfaces of SGEF−/− mouse aortas revealed reduced docking structures around beads that were coated with ICAM-1 antibody. Similarly, under conditions of flow, these beads adhered less stably to the luminal surface of carotid arteries from SGEF−/− mice. Taken together, these results show for the first time that a Rho-GEF, namely SGEF, contributes to the formation of atherosclerosis by promoting endothelial docking structures and thereby retention of leukocytes at athero-prone sites of inflammation experiencing high shear flow. SGEF may therefore provide a novel therapeutic target for inhibiting the development of atherosclerosis. PMID:23372835

  7. Proximal tubular epithelial cells possess a novel 42-kilodalton guanine nucleotide-binding regulatory protein.

    PubMed Central

    Zhou, J; Sims, C; Chang, C H; Berti-Mattera, L; Hopfer, U; Douglas, J

    1990-01-01

    The proximal tubule of the kidney represents an important location where adenylate cyclase regulates salt and water transport; yet a detailed characterization of the distribution and classification of guanine nucleotide-binding protein (G protein) and adenylate cyclase is lacking. We used purified brush border (20-fold) and basolateral membranes (14-fold) to characterize parathyroid hormone- and G protein-regulated adenylate cyclase and G-protein distribution. Adenylate cyclase was predominantly localized to basolateral membranes, while the 46-kDa alpha subunit of the stimulatory G protein (Gs) was 2-fold higher in brush border membranes than in basolateral membranes. The alpha subunit of the inhibitory G protein (Gi; 41 kDa) was equally distributed on immunoblotting but was 2-fold higher in brush border membranes than in basolateral membranes on radiolabeling with pertussis toxin. A 42-kDa cholera toxin substrate that cross-reacted with antisera to the common alpha subunit of G proteins and to Gs on immunoblotting and that was not immunoprecipitated with two Gi antisera was the most abundant alpha subunit and comprised approximately 1% of the total membrane proteins. These observations suggest that G proteins are important regulators of proximal tubular transport independent of adenylate cyclase. Images PMID:2120702

  8. Mutation at a distance caused by homopolymeric guanine repeats in Saccharomyces cerevisiae

    PubMed Central

    McDonald, Michael J.; Yu, Yen-Hsin; Guo, Jheng-Fen; Chong, Shin Yen; Kao, Cheng-Fu; Leu, Jun-Yi

    2016-01-01

    Mutation provides the raw material from which natural selection shapes adaptations. The rate at which new mutations arise is therefore a key factor that determines the tempo and mode of evolution. However, an accurate assessment of the mutation rate of a given organism is difficult because mutation rate varies on a fine scale within a genome. A central challenge of evolutionary genetics is to determine the underlying causes of this variation. In earlier work, we had shown that repeat sequences not only are prone to a high rate of expansion and contraction but also can cause an increase in mutation rate (on the order of kilobases) of the sequence surrounding the repeat. We perform experiments that show that simple guanine repeats 13 bp (base pairs) in length or longer (G13+) increase the substitution rate 4- to 18-fold in the downstream DNA sequence, and this correlates with DNA replication timing (R = 0.89). We show that G13+ mutagenicity results from the interplay of both error-prone translesion synthesis and homologous recombination repair pathways. The mutagenic repeats that we study have the potential to be exploited for the artificial elevation of mutation rate in systems biology and synthetic biology applications. PMID:27386516

  9. QuadBase2: web server for multiplexed guanine quadruplex mining and visualization

    PubMed Central

    Dhapola, Parashar; Chowdhury, Shantanu

    2016-01-01

    DNA guanine quadruplexes or G4s are non-canonical DNA secondary structures which affect genomic processes like replication, transcription and recombination. G4s are computationally identified by specific nucleotide motifs which are also called putative G4 (PG4) motifs. Despite the general relevance of these structures, there is currently no tool available that can allow batch queries and genome-wide analysis of these motifs in a user-friendly interface. QuadBase2 (quadbase.igib.res.in) presents a completely reinvented web server version of previously published QuadBase database. QuadBase2 enables users to mine PG4 motifs in up to 178 eukaryotes through the EuQuad module. This module interfaces with Ensembl Compara database, to allow users mine PG4 motifs in the orthologues of genes of interest across eukaryotes. PG4 motifs can be mined across genes and their promoter sequences in 1719 prokaryotes through ProQuad module. This module includes a feature that allows genome-wide mining of PG4 motifs and their visualization as circular histograms. TetraplexFinder, the module for mining PG4 motifs in user-provided sequences is now capable of handling up to 20 MB of data. QuadBase2 is a comprehensive PG4 motif mining tool that further expands the configurations and algorithms for mining PG4 motifs in a user-friendly way. PMID:27185890

  10. Guanine nucleotide exchange factor H1 can be a new biomarker of melanoma

    PubMed Central

    Shi, Jie; Guo, Bingyu; Zhang, Yu; Hui, Qiang; Chang, Peng; Tao, Kai

    2016-01-01

    Guanine nucleotide exchange factor H1 (GEF-H1), which couples microtubule dynamics to RhoA activation, is a microtubule-regulated exchange factor. Studies have shown that GEF-H1 can be involved in various cancer pathways; however, the clinical significance of GEF-H1 expression and functions in melanoma has not been established. In this study, we investigated the relationship between clinical outcomes and GEF-H1 functions in melanoma. A total of 60 cases of different grades of melanoma samples were used to detect the expression of GEF-H1. Results showed that both messenger RNA and protein levels of GEF-H1 were significantly higher in high-grade melanomas. Furthermore, patients with high GEF-H1 expression had a shorter overall survival (22 months) than patients with low level of GEF-H1 expression (33.38 months). We also found that GEF-H1 can promote the proliferation and metastasis of melanoma cells. In summary, these results suggested that GEF-H1 may be a valuable biomarker for assessing the degree and prognosis of melanoma following surgery. PMID:27462139

  11. Arf6 guanine-nucleotide exchange factor cytohesin-2 regulates myelination in nerves.

    PubMed

    Torii, Tomohiro; Ohno, Nobuhiko; Miyamoto, Yuki; Kawahara, Kazuko; Saitoh, Yurika; Nakamura, Kazuaki; Takashima, Shou; Sakagami, Hiroyuki; Tanoue, Akito; Yamauchi, Junji

    2015-05-01

    In postnatal development of the peripheral nervous system (PNS), Schwann cells differentiate to insulate neuronal axons with myelin sheaths, increasing the nerve conduction velocity. To produce the mature myelin sheath with its multiple layers, Schwann cells undergo dynamic morphological changes. While extracellular molecules such as growth factors and cell adhesion ligands are known to regulate the myelination process, the intracellular molecular mechanism underlying myelination remains unclear. In this study, we have produced Schwann cell-specific conditional knockout mice for cytohesin-2, a guanine-nucleotide exchange factor (GEF) specifically activating Arf6. Arf6, a member of the Ras-like protein family, participates in various cellular functions including cell morphological changes. Cytohesin-2 knockout mice exhibit decreased Arf6 activity and reduced myelin thickness in the sciatic nerves, with decreased expression levels of myelin protein zero (MPZ), the major myelin marker protein. These results are consistent with those of experiments in which Schwann cell-neuronal cultures were treated with pan-cytohesin inhibitor SecinH3. On the other hand, the numbers of Ki67-positive cells in knockout mice and controls are comparable, indicating that cytohesin-2 does not have a positive effect on cell numbers. Thus, signaling through cytohesin-2 is required for myelination by Schwann cells, and cytohesin-2 is added to the list of molecules known to underlie PNS myelination.

  12. The Guanine-Based Purinergic System: The Tale of An Orphan Neuromodulation

    PubMed Central

    Garozzo, Roberta; Frinchi, Monica; Fernandez-Dueñas, Víctor; Di Iorio, Patrizia; Ciccarelli, Renata; Caciagli, Francesco; Condorelli, Daniele F.; Ciruela, Francisco; Belluardo, Natale

    2016-01-01

    Guanine-based purines (GBPs) have been recently proposed to be not only metabolic agents but also extracellular signaling molecules that regulate important functions in the central nervous system. In such way, GBPs-mediated neuroprotection, behavioral responses and neuronal plasticity have been broadly described in the literature. However, while a number of these functions (i.e., GBPs neurothophic effects) have been well-established, the molecular mechanisms behind these GBPs-dependent effects are still unknown. Furthermore, no plasma membrane receptors for GBPs have been described so far, thus GBPs are still considered orphan neuromodulators. Interestingly, an intricate and controversial functional interplay between GBPs effects and adenosine receptors activity has been recently described, thus triggering the hypothesis that GBPs mechanism of action might somehow involve adenosine receptors. Here, we review recent data describing the GBPs role in the brain. We focus on the involvement of GBPs regulating neuronal plasticity, and on the new hypothesis based on putative GBPs receptors. Overall, we expect to shed some light on the GBPs world since although these molecules might represent excellent candidates for certain neurological diseases management, the lack of putative GBPs receptors precludes any high throughput screening intent for the search of effective GBPs-based drugs. PMID:27378923

  13. bis-Molybdopterin Guanine Dinucleotide Is Required for Persistence of Mycobacterium tuberculosis in Guinea Pigs

    PubMed Central

    Williams, Monique J.; Shanley, Crystal A.; Zilavy, Andrew; Peixoto, Blas; Manca, Claudia; Kaplan, Gilla; Orme, Ian M.; Mizrahi, Valerie

    2014-01-01

    Mycobacterium tuberculosis is able to synthesize molybdopterin cofactor (MoCo), which is utilized by numerous enzymes that catalyze redox reactions in carbon, nitrogen, and sulfur metabolism. In bacteria, MoCo is further modified through the activity of a guanylyltransferase, MobA, which converts MoCo to bis-molybdopterin guanine dinucleotide (bis-MGD), a form of the cofactor that is required by the dimethylsulfoxide (DMSO) reductase family of enzymes, which includes the nitrate reductase NarGHI. In this study, the functionality of the mobA homolog in M. tuberculosis was confirmed by demonstrating the loss of assimilatory and respiratory nitrate reductase activity in a mobA deletion mutant. This mutant displayed no survival defects in human monocytes or mouse lungs but failed to persist in the lungs of guinea pigs. These results implicate one or more bis-MGD-dependent enzymes in the persistence of M. tuberculosis in guinea pig lungs and underscore the applicability of this animal model for assessing the role of molybdoenzymes in this pathogen. PMID:25404027

  14. bis-Molybdopterin guanine dinucleotide is required for persistence of Mycobacterium tuberculosis in guinea pigs.

    PubMed

    Williams, Monique J; Shanley, Crystal A; Zilavy, Andrew; Peixoto, Blas; Manca, Claudia; Kaplan, Gilla; Orme, Ian M; Mizrahi, Valerie; Kana, Bavesh D

    2015-02-01

    Mycobacterium tuberculosis is able to synthesize molybdopterin cofactor (MoCo), which is utilized by numerous enzymes that catalyze redox reactions in carbon, nitrogen, and sulfur metabolism. In bacteria, MoCo is further modified through the activity of a guanylyltransferase, MobA, which converts MoCo to bis-molybdopterin guanine dinucleotide (bis-MGD), a form of the cofactor that is required by the dimethylsulfoxide (DMSO) reductase family of enzymes, which includes the nitrate reductase NarGHI. In this study, the functionality of the mobA homolog in M. tuberculosis was confirmed by demonstrating the loss of assimilatory and respiratory nitrate reductase activity in a mobA deletion mutant. This mutant displayed no survival defects in human monocytes or mouse lungs but failed to persist in the lungs of guinea pigs. These results implicate one or more bis-MGD-dependent enzymes in the persistence of M. tuberculosis in guinea pig lungs and underscore the applicability of this animal model for assessing the role of molybdoenzymes in this pathogen.

  15. How not to do kinetics: examples involving GTPases and guanine nucleotide exchange factors.

    PubMed

    Goody, Roger S

    2014-01-01

    Guanine nucleotide exchange factors (GEFs) are crucial regulators of the action of GTPases in signal transduction and cellular regulation. Although their basic mechanism of action has been apparent for almost 20 years, there are still misconceptions concerning their properties, and these are confounded by superficial or incorrect interpretation of experimental results in individual cases. Here, an example is described in which an incorrect mechanism was derived because of an inadequate analysis of kinetic results. In a second example, a case is discussed where certain GTP analogs were erroneously described as being able to function as low molecular mass GEFs. In both cases, a lack of distinction between rates, rate constants, and apparent rate constants, together with a disregard of relative signal amplitudes, led to the misinterpretations. In a final example, it is shown how the lack of an appropriate kinetic investigation led to the false conclusion that a secreted protein from Legionella pneumophila can act not only as a GEF towards eukaryotic Rab1 but also as a factor that is able to actively dissociate the stable complex between Rab1 and GDP dissociation inhibitor. PMID:24112651

  16. Rigid Adenine Nucleoside Derivatives as Novel Modulators of the Human Sodium Symporters for Dopamine and Norepinephrine.

    PubMed

    Janowsky, Aaron; Tosh, Dilip K; Eshleman, Amy J; Jacobson, Kenneth A

    2016-04-01

    Thirty-two congeneric rigid adenine nucleoside derivatives containing a North (N)-methanocarba ribose substitution and a 2-arylethynyl group either enhanced (up to 760% of control) or inhibited [(125)I] methyl (1R,2S,3S)-3-(4-iodophenyl)-8-methyl-8-azabicyclo[3.2.1]octane-2-carboxylate (RTI-55) binding at the human dopamine (DA) transporter (DAT) and inhibited DA uptake. Several nucleosides also enhanced [(3)H]mazindol [(±)-5-(4-chlorophenyl)-3,5-dihydro-2H-imidazo[2,1-a]isoindol-5-ol] binding to the DAT. The combination of binding enhancement and functional inhibition suggests possible allosteric interaction with the tropanes. The structure-activity relationship of this novel class of DAT ligands was explored: small N(6)-substition (methyl or ethyl) was favored, while the N1 of the adenine ring was essential. Effective terminal aryl groups include thien-2-yl (compounds 9 and 16), with EC50 values of 35.1 and 9.1 nM, respectively, in [(125)I]RTI-55 binding enhancement, and 3,4-difluorophenyl as in the most potent DA uptake inhibitor (compound 6) with an IC50 value of 92 nM (3-fold more potent than cocaine), but not nitrogen heterocycles. Several compounds inhibited or enhanced binding at the norepinephrine transporter (NET) and serotonin transporter (SERT) and inhibited function in the micromolar range; truncation at the 4'-position in compound 23 allowed for weak inhibition of the SERT. We have not yet eliminated adenosine receptor affinity from this class of DAT modulators, but we identified modifications that remove DAT inhibition as an off-target effect of potent adenosine receptor agonists. Thus, we have identified a new class of allosteric DAT ligands, rigidified adenosine derivatives, and explored their initial structural requirements. They display a very atypical pharmacological profile, i.e., either enhancement by increasing affinity or inhibition of radioligand binding at the DAT, and in some cases the NET and SERT, and inhibition of neurotransmitter

  17. Poly-adenine-based programmable engineering of gold nanoparticles for highly regulated spherical DNAzymes

    NASA Astrophysics Data System (ADS)

    Zhu, Dan; Pei, Hao; Chao, Jie; Su, Shao; Aldalbahi, Ali; Rahaman, Mostafizur; Wang, Lihua; Wang, Lianhui; Huang, Wei; Fan, Chunhai; Zuo, Xiaolei

    2015-11-01

    Enzyme complexes are assembled at the two-dimensional lipid membrane or prearranged on three-dimensional scaffolding proteins to regulate their catalytic activity in cells. Inspired by nature, we have developed gold nanoparticle-based spherical DNAzymes (SNAzymes) with programmably engineered activities by exploiting poly-adenine (polyA)-Au interactions. In a SNAzyme, AuNPs serve as the metal core, which is decorated with a functional shell of DNAzymes. Conventional thiolated DNAzyme-based assembly leads to disordered structures with suppressed activity. In contrast, by using an anchoring block of polyA tails, we find that the activity of SNAzymes can be programmably regulated. By using a polyA30 tail, SNAzymes demonstrated remarkably enhanced binding affinity compared to the thiolated DNAzyme-based assembly (~75-fold) or individual DNAzymes in the solution phase (~10-fold). More significantly, this increased affinity is directly translated to the sensitivity improvement in the SNAzyme-based lead sensor. Hence, this design of SNAzymes may provide new opportunities for developing biosensors and bioimaging probes for theranostic applications.Enzyme complexes are assembled at the two-dimensional lipid membrane or prearranged on three-dimensional scaffolding proteins to regulate their catalytic activity in cells. Inspired by nature, we have developed gold nanoparticle-based spherical DNAzymes (SNAzymes) with programmably engineered activities by exploiting poly-adenine (polyA)-Au interactions. In a SNAzyme, AuNPs serve as the metal core, which is decorated with a functional shell of DNAzymes. Conventional thiolated DNAzyme-based assembly leads to disordered structures with suppressed activity. In contrast, by using an anchoring block of polyA tails, we find that the activity of SNAzymes can be programmably regulated. By using a polyA30 tail, SNAzymes demonstrated remarkably enhanced binding affinity compared to the thiolated DNAzyme-based assembly (~75-fold) or

  18. Rigid Adenine Nucleoside Derivatives as Novel Modulators of the Human Sodium Symporters for Dopamine and Norepinephrine

    PubMed Central

    Tosh, Dilip K.; Eshleman, Amy J.; Jacobson, Kenneth A.

    2016-01-01

    Thirty-two congeneric rigid adenine nucleoside derivatives containing a North (N)-methanocarba ribose substitution and a 2-arylethynyl group either enhanced (up to 760% of control) or inhibited [125I] methyl (1R,2S,3S)-3-(4-iodophenyl)-8-methyl-8-azabicyclo[3.2.1]octane-2-carboxylate (RTI-55) binding at the human dopamine (DA) transporter (DAT) and inhibited DA uptake. Several nucleosides also enhanced [3H]mazindol [(±)-5-(4-chlorophenyl)-3,5-dihydro-2H-imidazo[2,1-a]isoindol-5-ol] binding to the DAT. The combination of binding enhancement and functional inhibition suggests possible allosteric interaction with the tropanes. The structure-activity relationship of this novel class of DAT ligands was explored: small N6-substition (methyl or ethyl) was favored, while the N1 of the adenine ring was essential. Effective terminal aryl groups include thien-2-yl (compounds 9 and 16), with EC50 values of 35.1 and 9.1 nM, respectively, in [125I]RTI-55 binding enhancement, and 3,4-difluorophenyl as in the most potent DA uptake inhibitor (compound 6) with an IC50 value of 92 nM (3-fold more potent than cocaine), but not nitrogen heterocycles. Several compounds inhibited or enhanced binding at the norepinephrine transporter (NET) and serotonin transporter (SERT) and inhibited function in the micromolar range; truncation at the 4′-position in compound 23 allowed for weak inhibition of the SERT. We have not yet eliminated adenosine receptor affinity from this class of DAT modulators, but we identified modifications that remove DAT inhibition as an off-target effect of potent adenosine receptor agonists. Thus, we have identified a new class of allosteric DAT ligands, rigidified adenosine derivatives, and explored their initial structural requirements. They display a very atypical pharmacological profile, i.e., either enhancement by increasing affinity or inhibition of radioligand binding at the DAT, and in some cases the NET and SERT, and inhibition of neurotransmitter uptake

  19. Efficacy of Adenine in the Treatment of Leukopenia and Neutropenia Associated with an Overdose of Antipsychotics or Discontinuation of Lithium Carbonate Administration: Three Case Studies

    PubMed Central

    Tomita, Takashi; Goto, Hidekazu; Sumiya, Kenji; Yoshida, Tadashi; Tanaka, Katsuya; Kohda, Yukinao

    2016-01-01

    Because adenine is effective for managing cases of radiation-induced and drug-induced leukopenia, it may be effective in cases of antipsychotic-induced leukopenia and neutropenia. Here, we report our experience with patients with leukopenia and neutropenia caused by an antipsychotic overdose or discontinuation of lithium carbonate, in whom adenine administration ameliorated the white blood cell and neutrophil counts. The progress of patients suggests that adenine is effective in cases of leukopenia and neutropenia associated with lithium carbonate discontinuation and an antipsychotic overdose. PMID:27776394

  20. A DNA adenine methylase mutant of Shigella flexneri shows no significant attenuation of virulence.

    PubMed

    Honma, Yasuko; Fernández, Reinaldo E; Maurelli, Anthony T

    2004-04-01

    Mutants of Salmonella defective in DNA adenine methylase (dam) have been reported to be attenuated for virulence and to provide protective immunity when used as vaccine strains. To determine whether these observations could be extended to Shigella, a dam mutant of Shigella flexneri 2a was characterized and examined for the role of dam in pathogenesis. The Shigella dam mutant showed some unique characteristics; however, it retained virulence in vivo as well as in vitro. The mutant invaded cultured L2 monolayer cells as efficiently as the wild-type parent, but its intracellular growth was suppressed up to 7 h post-invasion. Furthermore, the invading dam mutant formed smaller plaques in cell monolayers compared to the parent strain. However, the mutant produced keratoconjunctivitis in the Sereny test in guinea pigs only slightly more slowly than the wild-type. While the effect of the dam mutation on virulence was modest, the rate of spontaneous mutation in the dam mutant was 1000-fold greater compared with the wild-type. The virulence and high mutability displayed by the dam mutant of Sh. flexneri suggest that a general anti-bacterial pathogen vaccine strategy based on mutations in dam needs to be re-evaluated.

  1. Electron impact fragmentation of adenine: partial ionization cross sections for positive fragments

    NASA Astrophysics Data System (ADS)

    van der Burgt, Peter J. M.; Finnegan, Sinead; Eden, Samuel

    2015-07-01

    Using computer-controlled data acquisition we have measured mass spectra of positive ions for electron impact on adenine, with electron energies up to 100 eV. Ion yield curves for 50 ions have been obtained and normalized by comparing their sum to the average of calculated total ionization cross sections. Appearance energies have been determined for 37 ions; for 20 ions for the first time. All appearance energies are consistent with the fragmentation pathways identified in the literature. Second onset energies have been determined for 12 fragment ions (for 11 ions for the first time), indicating the occurrence of more than one fragmentation process e.g. for 39 u (C2HN+) and 70 u (C2H4N3+). Matching ion yield shapes (118-120 u, 107-108 u, 91-92 u, and 54-56 u) provide new evidence supporting closely related fragmentation pathways and are attributed to hydrogen rearrangement immediately preceding the fragmentation. We present the first measurement of the ion yield curve of the doubly charged parent ion (67.5 u), with an appearance energy of 23.5 ± 1.0 eV. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey Solov'yov, Nigel Mason, Gustavo García, Eugene Surdutovich.

  2. PsANT, the adenine nucleotide translocase of Puccinia striiformis, promotes cell death and fungal growth

    PubMed Central

    Tang, Chunlei; Wei, Jinping; Han, Qingmei; Liu, Rui; Duan, Xiaoyuan; Fu, Yanping; Huang, Xueling; Wang, Xiaojie; Kang, Zhensheng

    2015-01-01

    Adenine nucleotide translocase (ANT) is a constitutive mitochondrial component that is involved in ADP/ATP exchange and mitochondrion-mediated apoptosis in yeast and mammals. However, little is known about the function of ANT in pathogenic fungi. In this study, we identified an ANT gene of Puccinia striiformis f. sp. tritici (Pst), designated PsANT. The PsANT protein contains three typical conserved mitochondrion-carrier-protein (mito-carr) domains and shares more than 70% identity with its orthologs from other fungi, suggesting that ANT is conserved in fungi. Immuno-cytochemical localization confirmed the mitochondrial localization of PsANT in normal Pst hyphal cells or collapsed cells. Over-expression of PsANT indicated that PsANT promotes cell death in tobacco, wheat and fission yeast cells. Further study showed that the three mito-carr domains are all needed to induce cell death. qRT-PCR analyses revealed an in-planta induced expression of PsANT during infection. Knockdown of PsANT using a host-induced gene silencing system (HIGS) attenuated the growth and development of virulent Pst at the early infection stage but not enough to alter its pathogenicity. These results provide new insight into the function of PsANT in fungal cell death and growth and might be useful in the search for and design of novel disease control strategies. PMID:26058921

  3. Decrease in nicotinamide adenine dinucleotide dehydrogenase is related to skin pigmentation.

    PubMed

    Nakama, Mitsuo; Murakami, Yuhko; Tanaka, Hiroshi; Nakata, Satoru

    2012-03-01

    Skin pigmentation is caused by various physical and chemical factors. It might also be influenced by changes in the physiological function of skin with aging. Nicotinamide adenine dinucleotide (NADH) dehydrogenase is an enzyme related to the mitochondrial electron transport system and plays a key role in cellular energy production. It has been reported that the functional decrease in this system causes Parkinson's disease. Another study reports that the amount of NADH dehydrogenase in heart and skeletal muscle decreases with aging. A similar decrease in the skin would probably affect its physiological function. However, no reports have examined the age-related change in levels of NADH dehydrogenase in human skin. In this study, we investigated this change and its effect on skin pigmentation using cultured human epidermal keratinocytes. The mRNA expression of NDUFA1, NDUFB7, and NDUFS2, subunits of NADH dehydrogenase, and its activity were significantly decreased in late passage keratinocytes compared to early passage cells. Conversely, the mRNA expression of melanocyte-stimulating cytokines, interleukin-1 alpha and endothelin 1, was increased in late passage cells. On the other hand, the inhibition of NADH dehydrogenase upregulated the mRNA expression of melanocyte-stimulating cytokines. Moreover, the level of NDUFB7 mRNA was lower in pigmented than in nonpigmented regions of skin in vivo. These results suggest the decrease in NADH dehydrogenase with aging to be involved in skin pigmentation.

  4. Magnitude of malate-aspartate reduced nicotinamide adenine dinucleotide shuttle activity in intact respiring tumor cells.

    PubMed

    Greenhouse, W V; Lehninger, A L

    1977-11-01

    Measurements of respiration, CO2 and lactate production, and changes in the levels of various key metabolites of the glycolytic sequence and tricarboxylic acid cycle were made on five lines of rodent ascites tumor cells (two strains of Ehrlich ascites tumor cells, Krebs II carcinoma, AS-30D carcinoma, and L1210 cells) incubated aerobically in the presence of uniformly labeled D-[14C]glucose. From these data, as well as earlier evidence demonstrating that the reduced nicotinamide adenine dinucleotide (NADH) shuttle in these cells requires a transaminase step and is thus identified as the malate-aspartate shuttle (W.V.V. Greenhouse and A.L. Lehninger, Cancer Res., 36: 1392-1396, 1976), metabolic flux diagrams were constructed for the five cell lines. These diagrams show the relative rates of glycolysis, the tricarboxylic acid cycle, electron transport, and the malate-aspartate shuttle in these tumors. Large amounts of cytosolic NADH were oxidized by the mitochondrial respiratory chain via the NADH shuttle, comprising anywhere from about 20 to 80% of the total flow of reducing equivalents to oxygen in these tumors. Calculations of the sources of energy for adenosine triphosphate synthesis indicated that on the average about one-third of the respiratory adenosine triphosphate is generated by electron flow originating from cytosolic NADH via the malate-aspartate shuttle.

  5. Content of Adenine Nucleotides and Orthophosphate in Exporting and Importing Mature Maize Leaves 1

    PubMed Central

    Eschrich, Walter; Fromm, Joerg

    1985-01-01

    Events of reactivation by re-illumination were studied in predarkened detached mature maize leaves, which were arranged as distal sources and proximal sinks; the latter were kept in CO2-free atmosphere and were either illuminated or darkened. Adenine nucleotide (AdN) content and orthophosphate (Pi) concentrations were measured 10 minutes, 30 minutes, and 2, 7, and 14 hours after the onset of re-illumination. For comparison, mature leaves attached to the plant were analyzed. The sum of AdN increased up to 7 hours of re-illumination, then dark sinks and their sources showed decreasing amounts of AdN, while the increase continued up to 14 hours in sources and illuminated sinks. In leaves attached to the plant, no further increase in AdN level followed the 7-hour mark. The amount of individual AdN (ATP, ADP, AMP) differed considerably in sources and sinks of the detached leaves. Although both the source supplying the illuminated sink and the source supplying the dark sink were treated the same, they showed striking differences in AdN contents. Such relations were also observed, when ATP/ADP ratios and Pi concentrations were compared. The influence a sink can exert on its source suggests a participation of the physiological events in the sink on the regulation of AdN and Pi metabolism in the source. PMID:16664246

  6. Adenine methylation in eukaryotes: Apprehending the complex evolutionary history and functional potential of an epigenetic modification

    PubMed Central

    Iyer, Lakshminarayan M.; Zhang, Dapeng

    2015-01-01

    While N6‐methyladenosine (m6A) is a well‐known epigenetic modification in bacterial DNA, it remained largely unstudied in eukaryotes. Recent studies have brought to fore its potential epigenetic role across diverse eukaryotes with biological consequences, which are distinct and possibly even opposite to the well‐studied 5‐methylcytosine mark. Adenine methyltransferases appear to have been independently acquired by eukaryotes on at least 13 occasions from prokaryotic restriction‐modification and counter‐restriction systems. On at least four to five instances, these methyltransferases were recruited as RNA methylases. Thus, m6A marks in eukaryotic DNA and RNA might be more widespread and diversified than previously believed. Several m6A‐binding protein domains from prokaryotes were also acquired by eukaryotes, facilitating prediction of potential readers for these marks. Further, multiple lineages of the AlkB family of dioxygenases have been recruited as m6A demethylases. Although members of the TET/JBP family of dioxygenases have also been suggested to be m6A demethylases, this proposal needs more careful evaluation. Also watch the Video Abstract. PMID:26660621

  7. Structural Basis for Avoidance of Promutagenic DNA Repair by MutY Adenine DNA Glycosylase*

    PubMed Central

    Wang, Lan; Lee, Seung-Joo; Verdine, Gregory L.

    2015-01-01

    The highly mutagenic A:oxoG (8-oxoguanine) base pair in DNA most frequently arises by aberrant replication of the primary oxidative lesion C:oxoG. This lesion is particularly insidious because neither of its constituent nucleobases faithfully transmit genetic information from the original C:G base pair. Repair of A:oxoG is initiated by adenine DNA glycosylase, which catalyzes hydrolytic cleavage of the aberrant A nucleobase from the DNA backbone. These enzymes, MutY in bacteria and MUTYH in humans, scrupulously avoid processing of C:oxoG because cleavage of the C residue in C:oxoG would actually promote mutagenic conversion to A:oxoG. Here we analyze the structural basis for rejection of C:oxoG by MutY, using a synthetic crystallography approach to capture the enzyme in the process of inspecting the C:oxoG anti-substrate, with which it ordinarily binds only fleetingly. We find that MutY uses two distinct strategies to avoid presentation of C to the enzyme active site. Firstly, MutY possesses an exo-site that serves as a decoy for C, and secondly, repulsive forces with a key active site residue prevent stable insertion of C into the nucleobase recognition pocket within the enzyme active site. PMID:25995449

  8. Mutations in adenine-binding pockets enhance catalytic properties of NAD(P)H-dependent enzymes.

    PubMed

    Cahn, J K B; Baumschlager, A; Brinkmann-Chen, S; Arnold, F H

    2016-01-01

    NAD(P)H-dependent enzymes are ubiquitous in metabolism and cellular processes and are also of great interest for pharmaceutical and industrial applications. Here, we present a structure-guided enzyme engineering strategy for improving catalytic properties of NAD(P)H-dependent enzymes toward native or native-like reactions using mutations to the enzyme's adenine-binding pocket, distal to the site of catalysis. Screening single-site saturation mutagenesis libraries identified mutations that increased catalytic efficiency up to 10-fold in 7 out of 10 enzymes. The enzymes improved in this study represent three different cofactor-binding folds (Rossmann, DHQS-like, and FAD/NAD binding) and utilize both NADH and NADPH. Structural and biochemical analyses show that the improved activities are accompanied by minimal changes in other properties (cooperativity, thermostability, pH optimum, uncoupling), and initial tests on two enzymes (ScADH6 and EcFucO) show improved functionality in Escherichia coli. PMID:26512129

  9. Preclinical evidence of mitochondrial nicotinamide adenine dinucleotide as an effective alarm parameter under hypoxia

    NASA Astrophysics Data System (ADS)

    Shi, Hua; Sun, Nannan; Mayevsky, Avraham; Zhang, Zhihong; Luo, Qingming

    2014-01-01

    Early detection of tissue hypoxia in the intensive care unit is essential for effective treatment. Reduced nicotinamide adenine dinucleotide (NADH) has been suggested to be the most sensitive indicator of tissue oxygenation at the mitochondrial level. However, no experimental evidence comparing the kinetics of changes in NADH and other physiological parameters has been provided. The aim of this study is to obtain the missing data in a systematic and reliable manner. We constructed four acute hypoxia models, including hypoxic hypoxia, hypemic hypoxia, circulatory hypoxia, and histogenous hypoxia, and measured NADH fluorescence, tissue reflectance, cerebral blood flow, respiration, and electrocardiography simultaneously from the induction of hypoxia until death. We found that NADH was not always the first onset parameter responding to hypoxia. The order of responses was mainly affected by the cause of hypoxia. However, NADH reached its alarm level earlier than the other monitored parameters, ranging from several seconds to >10 min. As such, we suggest that the NADH can be used as a hypoxia indicator, although the exact level that should be used must be further investigated. When the NADH alarm is detected, the body still has a chance to recover if appropriate and timely treatment is provided.

  10. DNA Bases Thymine and Adenine in Bio-Organic Light Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Gomez, Eliot F.; Venkatraman, Vishak; Grote, James G.; Steckl, Andrew J.

    2014-11-01

    We report on the use of nucleic acid bases (NBs) in organic light emitting diodes (OLEDs). NBs are small molecules that are the basic building blocks of the larger DNA polymer. NBs readily thermally evaporate and integrate well into the vacuum deposited OLED fabrication. Adenine (A) and thymine (T) were deposited as electron-blocking/hole-transport layers (EBL/HTL) that resulted in increases in performance over the reference OLED containing the standard EBL material NPB. A-based OLEDs reached a peak current efficiency and luminance performance of 48 cd/A and 93,000 cd/m2, respectively, while T-based OLEDs had a maximum of 76 cd/A and 132,000 cd/m2. By comparison, the reference OLED yielded 37 cd/A and 113,000 cd/m2. The enhanced performance of T-based devices is attributed to a combination of energy levels and structured surface morphology that causes more efficient and controlled hole current transport to the emitting layer.

  11. Studies of yeast cell oxygenation and energetics by laser fluorometry of reduced nicotinamide adenine dinucleotide

    NASA Astrophysics Data System (ADS)

    Pan, Fu-shih; Chen, Stephen; Mintzer, Robert A.; Chen, Chin-Tu; Schumacker, Paul

    1991-03-01

    It is of fundamental importance for biological scientists to assess cellular energetics. Under aerobic conditions, the tricarboxylic acid cycle (TCA cycle) is coupled with the mitochondrial electron cascade pathway to provide the cell with energy. The nicotinamide adenine dinucleotide-conjugated pair (NAD and NADH) is the coenzyme in numerous important biomedical reactions which include several important dehydrogenase reactions in the TCA cycle. Based on Le Chatelier's principle, NADH will accumulate when this energy production mechanism is impaired. The relative amounts of NAD and NADH in a cell are defined as the redox state of the cell (Williamson et.al. 1967) which provides a valuable index of cellular energetics. The sum of the amounts of NAD and NADH in a cell may be assumed to be constant during a finite time; therefore, a reliable means of measuring the NADH concentration would provide us with a useful indicator of tissue viability. Traditionally, the quantities of NADH and NAD may be measured by chemical assay methods. We can avoid these tediois analyses by exploiting the significant difference between the ultraviolet absorption spectra of this redox pair. However, because of the opacity of biological samples and the interference of other biochemicals that also absorb ultraviolet radiation, measurement of NADH and NAD+ concentrations in vivo by absorption spectroscopy is not feasible.

  12. Poly-adenine-based programmable engineering of gold nanoparticles for highly regulated spherical DNAzymes.

    PubMed

    Zhu, Dan; Pei, Hao; Chao, Jie; Su, Shao; Aldalbahi, Ali; Rahaman, Mostafizur; Wang, Lihua; Wang, Lianhui; Huang, Wei; Fan, Chunhai; Zuo, Xiaolei

    2015-11-28

    Enzyme complexes are assembled at the two-dimensional lipid membrane or prearranged on three-dimensional scaffolding proteins to regulate their catalytic activity in cells. Inspired by nature, we have developed gold nanoparticle-based spherical DNAzymes (SNAzymes) with programmably engineered activities by exploiting poly-adenine (polyA)-Au interactions. In a SNAzyme, AuNPs serve as the metal core, which is decorated with a functional shell of DNAzymes. Conventional thiolated DNAzyme-based assembly leads to disordered structures with suppressed activity. In contrast, by using an anchoring block of polyA tails, we find that the activity of SNAzymes can be programmably regulated. By using a polyA30 tail, SNAzymes demonstrated remarkably enhanced binding affinity compared to the thiolated DNAzyme-based assembly (∼75-fold) or individual DNAzymes in the solution phase (∼10-fold). More significantly, this increased affinity is directly translated to the sensitivity improvement in the SNAzyme-based lead sensor. Hence, this design of SNAzymes may provide new opportunities for developing biosensors and bioimaging probes for theranostic applications.

  13. Nicotinamide adenine dinucleotide fluorescence spectroscopy and imaging of isolated cardiac myocytes.

    PubMed Central

    Eng, J; Lynch, R M; Balaban, R S

    1989-01-01

    Nicotinamide adenine dinucleotide (NADH) plays a critical role in oxidative phosphorylation as the primary source of reducing equivalents to the respiratory chain. Using a modified fluorescence microscope, we have obtained spectra and images of the blue autofluorescence from single rat cardiac myocytes. The optical setup permitted rapid acquisition of fluorescence emission spectra (390-595 nm) or intensified digital video images of individual myocytes. The spectra showed a broad fluorescence centered at 447 +/- 0.2 nm, consistent with mitochondrial NADH. Addition of cyanide resulted in a 100 +/- 10% increase in fluorescence, while the uncoupler FCCP resulted in a 82 +/- 4% decrease. These two transitions were consistent with mitochondrial NADH and implied that the myocytes were 44 +/- 6% reduced under the resting control conditions. Intracellular fluorescent structures were observed that correlated with the distribution of a mitochondrial selective fluorescent probe (DASPMI), the mitochondrial distribution seen in published electron micrographs, and a metabolic digital subtraction image of the cyanide fluorescence transition. These data are consistent with the notion that the blue autofluorescence of rat cardiac myocytes originates from mitochondrial NADH. Images FIGURE 9 FIGURE 10 FIGURE 2 FIGURE 3 FIGURE 8 FIGURE 11 PMID:2720061

  14. Comparison of glycogen and adenine nucleotides as indicators of metabolis stress in mummichogs

    SciTech Connect

    Vetter, R.D.; Hwang, H.M.; Hodson, R.E.

    1986-01-01

    Adenine nucleotide and glycogen concentrations were measured concurrently in white muscle of mummichogs Fundulus heteroclitus after the fish were exposed to stressors that either caused an increase in energy use (metabolic loading) or damaged metabolic function (toxic inhibition). When fish were exposed 4 h to 1% unbleached kraft mill effluent in the presence of 6 mg/L dissolved oxygen, glycogen and AMP concentrations significantly decreased below control values, whereas ATP, ADP, and total adenylate (TA) concentrations as well as the adenylate energy charge (AEC = (ATP + 1/2ADP)/TA) were unchanged. When dissolved oxygen was below 1 mg/L, the effluent caused significant decreases in glycogen, ATP, and TA, but not in ADP, AMP, or the AEC. The combined effect of effluent and hypoxia caused more significant drops in ATP or TA pool. When fish were exposed to 60..mu..g/L DDT for 4 h, none of the measured energy variables changed even though this concentration was lethal after several days. At a concentration of 100 ..mu..g/L DDT, all variables except ADP decreased significantly from control values, which may have reflected energy depletion of the muscle in response to nerve spasms rather than a direct toxic effect on the muscle itself.

  15. Enzyme activities and adenine nucleotide content in aorta, heart muscle and skeletal muscle from uraemic rats.

    PubMed Central

    Krog, M.; Ejerblad, S.; Agren, A.

    1986-01-01

    A prominent feature of arterial and myocardial lesions in uraemia is necrosis of the smooth muscle cells. In this study the possibility of detecting metabolic disturbances before necroses appear was investigated. The investigation was made on rats with moderate uraemia (mean serum creatinine 165 mumol/l) of 12 weeks duration. Enzyme activities and concentrations of adenine nucleotides were measured in aorta, heart and skeletal muscles. Histological examination disclosed no changes in these organs. Hexokinase, an important glycolytic enzyme, showed decreased activity in the skeletal muscle and aorta, whereas the hexosemonophosphate shunt enzyme glucose-6-phosphate dehydrogenase remained unchanged. The aspartate aminotransferase was increased in the skeletal muscle. Fat metabolism was not disturbed as reflected by unchanged activity of hydroxyacyl-CoA-dehydrogenase. Adenylatekinase which is important for the energy supply showed markedly increased activities in all tissues examined from the uraemic rats. Decreased ATP levels were found in the heart muscle and the aorta of the uraemic animals, whereas the total pool of adenosine phosphates remained unchanged in all tissues. The animal model described offers a useful means of detecting early changes in uraemia and should be useful for studying the effects of different treatments of uraemic complications. PMID:3718844

  16. DNA Adenine Methylase Mutants of Salmonella Typhimurium and a Novel Dam-Regulated Locus

    PubMed Central

    Torreblanca, J.; Casadesus, J.

    1996-01-01

    Mutants of Salmonella typhimurium lacking DNA adenine methylase were isolated; they include insertion and deletion alleles. The dam locus maps at 75 min between cysG and aroB, similar to the Escherichia coli dam gene. Dam(-) mutants of S. typhimurium resemble those of E. coli in the following phenotypes: (1) increased spontaneous mutations, (2) moderate SOS induction, (3) enhancement of duplication segregation, (4) inviability of dam recA and dam recB mutants, and (5) suppression of the inviability of the dam recA and dam recB combinations by mutations that eliminate mismatch repair. However, differences between S. typhimurium and E. coli dam mutants are also found: (1) S. typhimurium dam mutants do not show increased UV sensitivity, suggesting that methyl-directed mismatch repair does not participate in the repair of UV-induced DNA damage in Salmonella. (2) S. typhimurium dam recJ mutants are viable, suggesting that the Salmonella RecJ function does not participate in the repair of DNA strand breaks formed in the absence of Dam methylation. We also describe a genetic screen for detecting novel genes regulated by Dam methylation and a locus repressed by Dam methylation in the S. typhimurium virulence (or ``cryptic'') plasmid. PMID:8878670

  17. High-mobility Group Box-1 Protein Promotes Granulomatous Nephritis in Adenine-induced nephropathy

    PubMed Central

    Oyama, Yoko; Hashiguchi, Teruto; Taniguchi, Noboru; Tancharoen, Salunya; Uchimura, Tomonori; Biswas, Kamal K.; Kawahara, Ko-ichi; Nitanda, Takao; Umekita, Yoshihisa; Lotz, Martin; Maruyama, Ikuro

    2011-01-01

    Granulomatous nephritis can be triggered by diverse factors and results in kidney failure. However, despite accumulating data about granulomatous inflammation, pathogenetic mechanisms in nephritis remain unclear. The DNA-binding high-mobility group box-1 protein (HMGB1) initiates and propagates inflammation when released by activated macrophages, functions as an “alarm cytokine” signaling tissue damage. In this study, we demonstrated elevated HMGB1 expression in renal granulomas in rats with crystal-induced granulomatous nephritis caused by feeding an adenine-rich diet. HMGB1 levels were also raised in urine and serum, as well as monocyte chemoattractant protein-1 (MCP-1), a mediator of granulomatous inflammation. Injection of HMGB1 worsened renal function and upregulated MCP-1 in rats with crystal-induced granulomatous nephritis. HMGB1 also induced MCP-1 secretion through mitogen-activated protein kinase (MAPK) and phosphoinositide-3-kinase (PI3K) pathways in rat renal tubular epithelial cells in vitro. Hmgb1+/− mice with crystal-induced nephritis displayed reduced MCP-1 expression in the kidneys and in urine and the number of macrophages in the kidneys was significantly decreased. We conclude that HMGB1 is a new mediator involved in crystal-induced nephritis that amplifies granulomatous inflammation in a cycle where MCP-1 attracts activated macrophages, resulting in excessive and sustained HMGB1 release. HMGB1 could be a novel target for inhibiting chronic granulomatous diseases. PMID:20231821

  18. Nicotinamide adenine dinucleotide: An essential factor in preserving hearing in cisplatin-induced ototoxicity.

    PubMed

    Kim, Hyung-Jin; Oh, Gi-Su; Shen, AiHua; Lee, Su-Bin; Khadka, Dipendra; Pandit, Arpana; Shim, Hyeok; Yang, Sei-Hoon; Cho, Eun-Young; Song, Jeho; Kwak, Tae Hwan; Choe, Seong-Kyu; Park, Raekil; So, Hong-Seob

    2015-08-01

    Ototoxicity is an important issue in patients receiving cisplatin chemotherapy. Numerous studies have demonstrated that several mechanisms, including oxidative stress, DNA damage, and inflammatory responses, are closely associated with cisplatin-induced ototoxicity. Although much attention has been directed at identifying ways to protect the inner ear from cisplatin-induced damage, the precise underlying mechanisms have not yet been elucidated. The cofactor nicotinamide adenine dinucleotide (NAD(+)) has emerged as an important regulator of cellular energy metabolism and homeostasis. NAD(+) acts as a cofactor for various enzymes including sirtuins (SIRTs) and poly(ADP-ribose) polymerases (PARPs), and therefore, maintaining adequate NAD(+) levels has therapeutic benefits because of its effect on NAD(+)-dependent enzymes. Recent studies demonstrated that disturbance in intracellular NAD(+) levels is critically involved in cisplatin-induced cochlear damage associated with oxidative stress, DNA damage, and inflammatory responses. In this review, we describe the importance of NAD(+) in cisplatin-induced ototoxicity and discuss potential strategies for the prevention or treatment of cisplatin-induced ototoxicity with a particular focus on NAD(+)-dependent cellular pathways. PMID:25891352

  19. Partial purification of a 6-methyladenine mRNA methyltransferase which modifies internal adenine residues.

    PubMed Central

    Tuck, M T

    1992-01-01

    Two forms of a 6-methyladenine mRNA methyltransferase have been partially purified using a T7 transcript coding for mouse dihydrofolate reductase as an RNA substrate. Both enzyme forms modify internal adenine residues within the RNA substrate. The enzymes were purified 357- and 37-fold respectively from nuclear salt extracts prepared from HeLa cells using DEAE-cellulose and phosphocellulose chromatography. The activity of the first form of the enzyme eluted from DEAE-cellulose (major form) was at least 3-fold greater than that of the second (minor form). H.p.l.c. analysis of the hydrolysed, methylated mRNA substrates demonstrated that both forms of the enzyme produced only 6-methyladenine. The two forms of the enzyme differed in their RNA substrate specificity as well as in the dependence for a 5' cap structure. The 6-methyladenine mRNA methyltransferase activity was found to be elevated in HeLa nuclei as compared with nuclear extracts from rat kidney and brain. Enzymic activity could not be detected in nuclei from either normal rat liver or regenerating rat liver. In the case of the HeLa cell, activity could only be detected in nuclear extracts, with a small amount in the ribosomal fraction. Other HeLa subcellular fractions were void of activity. PMID:1445268

  20. Kinetic properties of nicotinic acid adenine dinucleotide phosphate-induced Ca2+ release.

    PubMed

    Genazzani, A A; Mezna, M; Summerhill, R J; Galione, A; Michelangeli, F

    1997-03-21

    Three endogenous molecules have now been shown to release Ca2+ in the sea urchin egg: inositol trisphosphate (InsP3), cyclic adenosine 5'-diphosphate ribose (cADPR), and nicotinic acid adenine dinucleotide phosphate (NAADP), a derivative of NADP. While the mechanism through which the first two molecules are able to release Ca2+ is established and well characterized with InsP3 and cADPR-activating InsP3 and ryanodine receptors, respectively, the newly described NAADP has been shown to release Ca2+ via an entirely different mechanism. The most striking feature of this novel Ca2+ release mechanism is its inactivation, since subthreshold concentrations of NAADP are able to fully and irreversibly desensitize the channel. In the present study we have investigated the fast kinetics of activation and inactivation of NAADP-induced Ca2+ release. NAADP was found to release Ca2+ in a biphasic manner, and such release was preceded by a pronounced latent period, which was inversely dependent on concentration. Moreover, the kinetic features of NAADP-induced Ca2+ release were not altered by pretreatment with low concentrations of NAADP, although the extent of Ca2+ release was greatly affected. Our data suggest that the inactivation of NAADP-induced Ca2+ release is an all-or-none phenomenon, and while some receptors have been fully inactivated, those that remain sensitive to NAADP do so without any change in kinetic features. PMID:9065423

  1. DNA Bases Thymine and Adenine in Bio-Organic Light Emitting Diodes

    PubMed Central

    Gomez, Eliot F.; Venkatraman, Vishak; Grote, James G.; Steckl, Andrew J.

    2014-01-01

    We report on the use of nucleic acid bases (NBs) in organic light emitting diodes (OLEDs). NBs are small molecules that are the basic building blocks of the larger DNA polymer. NBs readily thermally evaporate and integrate well into the vacuum deposited OLED fabrication. Adenine (A) and thymine (T) were deposited as electron-blocking/hole-transport layers (EBL/HTL) that resulted in increases in performance over the reference OLED containing the standard EBL material NPB. A-based OLEDs reached a peak current efficiency and luminance performance of 48 cd/A and 93,000 cd/m2, respectively, while T-based OLEDs had a maximum of 76 cd/A and 132,000 cd/m2. By comparison, the reference OLED yielded 37 cd/A and 113,000 cd/m2. The enhanced performance of T-based devices is attributed to a combination of energy levels and structured surface morphology that causes more efficient and controlled hole current transport to the emitting layer. PMID:25417819

  2. Structural Basis for Avoidance of Promutagenic DNA Repair by MutY Adenine DNA Glycosylase.

    PubMed

    Wang, Lan; Lee, Seung-Joo; Verdine, Gregory L

    2015-07-10

    The highly mutagenic A:oxoG (8-oxoguanine) base pair in DNA most frequently arises by aberrant replication of the primary oxidative lesion C:oxoG. This lesion is particularly insidious because neither of its constituent nucleobases faithfully transmit genetic information from the original C:G base pair. Repair of A:oxoG is initiated by adenine DNA glycosylase, which catalyzes hydrolytic cleavage of the aberrant A nucleobase from the DNA backbone. These enzymes, MutY in bacteria and MUTYH in humans, scrupulously avoid processing of C:oxoG because cleavage of the C residue in C:oxoG would actually promote mutagenic conversion to A:oxoG. Here we analyze the structural basis for rejection of C:oxoG by MutY, using a synthetic crystallography approach to capture the enzyme in the process of inspecting the C:oxoG anti-substrate, with which it ordinarily binds only fleetingly. We find that MutY uses two distinct strategies to avoid presentation of C to the enzyme active site. Firstly, MutY possesses an exo-site that serves as a decoy for C, and secondly, repulsive forces with a key active site residue prevent stable insertion of C into the nucleobase recognition pocket within the enzyme active site. PMID:25995449

  3. Wolbachia Prophage DNA Adenine Methyltransferase Genes in Different Drosophila-Wolbachia Associations

    PubMed Central

    Saridaki, Aggeliki; Sapountzis, Panagiotis; Harris, Harriet L.; Batista, Philip D.; Biliske, Jennifer A.; Pavlikaki, Harris; Oehler, Stefan; Savakis, Charalambos; Braig, Henk R.; Bourtzis, Kostas

    2011-01-01

    Wolbachia is an obligatory intracellular bacterium which often manipulates the reproduction of its insect and isopod hosts. In contrast, Wolbachia is an essential symbiont in filarial nematodes. Lately, Wolbachia has been implicated in genomic imprinting of host DNA through cytosine methylation. The importance of DNA methylation in cell fate and biology calls for in depth studing of putative methylation-related genes. We present a molecular and phylogenetic analysis of a putative DNA adenine methyltransferase encoded by a prophage in the Wolbachia genome. Two slightly different copies of the gene, met1 and met2, exhibit a different distribution over various Wolbachia strains. The met2 gene is present in the majority of strains, in wAu, however, it contains a frameshift caused by a 2 bp deletion. Phylogenetic analysis of the met2 DNA sequences suggests a long association of the gene with the Wolbachia host strains. In addition, our analysis provides evidence for previously unnoticed multiple infections, the detection of which is critical for the molecular elucidation of modification and/or rescue mechanism of cytoplasmic incompatibility. PMID:21573076

  4. Dietary adenine controls adult lifespan via adenosine nucleotide biosynthesis and AMPK, and regulates the longevity benefit of caloric restriction

    PubMed Central

    Stenesen, Drew; Suh, Jae Myoung; Seo, Jin; Yu, Kweon; Lee, Kyu-Sun; Kim, Jong-Seok; Min, Kyung-Jin; Graff, Jonathan M.

    2012-01-01

    SUMMARY A common thread among conserved lifespan regulators lies within intertwined roles in metabolism and energy homeostasis. We show that heterozygous mutations of adenosine monophosphate (AMP) biosynthetic enzymes extend Drosophila lifespan. The lifespan benefit of these mutations depends upon increased AMP to adenosine triphosphate (ATP) and adenosine diphosphate (ADP) to ATP ratios and adenosine monophosphate-activated protein kinase (AMPK). Transgenic expression of AMPK in adult fat body or adult muscle, key metabolic tissues, extended lifespan, while AMPK RNAi reduced lifespan. Supplementing adenine, a substrate for AMP biosynthesis, to the diet of long-lived AMP biosynthesis mutants reversed lifespan extension. Remarkably, this simple change in diet also blocked the pro-longevity effects of dietary restriction. These data establish AMP biosynthesis, adenosine nucleotide ratios, and AMPK as determinants of adult lifespan, provide a mechanistic link between cellular anabolism and energy sensing pathways, and indicate that dietary adenine manipulations might alter metabolism to influence animal lifespan. PMID:23312286

  5. Endonuclease V protects Escherichia coli against specific mutations caused by nitrous acid.

    PubMed

    Schouten, K A; Weiss, B

    1999-12-01

    Endonuclease V (deoxyinosine 3'-endonuclease) of Escherichia coli K-12 is a putative DNA repair enzyme that cleaves DNA's containing hypoxanthine, uracil, or mismatched bases. An endonuclease V (nfi) mutation was tested for specific mutator effects on a battery of trp and lac mutant alleles. No marked differences were seen in frequencies of spontaneous reversion. However, when nfi mutants were treated with nitrous acid at a level that was not noticeably mutagenic for nfi(+) strains, they displayed a high frequency of A:T-->G:C, and G:C-->A:T transition mutations. Nitrous acid can deaminate guanine in DNA to xanthine, cytosine to uracil, and adenine to hypoxanthine. The nitrous acid-induced A:T-->G:C transitions were consistent with a role for endonuclease V in the repair of deaminated adenine residues. A confirmatory finding was that the mutagenesis was depressed at a locus containing N(6)-methyladenine, which is known to be relatively resistant to nitrosative deamination. An alkA mutation did not significantly enhance the frequency of A:T-->G:C mutations in an nfi mutant, even though AlkA (3-methyladenine-DNA glycosylase II) has hypoxanthine-DNA glycosylase activity. The nfi mutants also displayed high frequencies of nitrous acid-induced G:C-->A:T transitions. These mutations could not be explained by cytosine deamination because an ung (uracil-DNA N-glycosylase) mutant was not similarly affected. However, these findings are consistent with a role for endonuclease V in the removal of deaminated guanine, i.e., xanthine, from DNA. The results suggest that endonuclease V helps to protect the cell against the mutagenic effects of nitrosative deamination.

  6. Reduced nicotinamide adenine dinucleotide-activated phosphoenolpyruvate carboxylase in Pseudomonas MA: potential regulation between carbon assimilation and energy production.

    PubMed Central

    Newaz, S S; Hersh, L B

    1975-01-01

    Comparison of enzyme activities in crude extracts of methylamine-grown Pseudomonas MA (ATCC 23319) to those in succinate-grown cells indicates the involvement of an acetyl coenzyme A-independent phosphoenolpyruvate carboxylase in one-carbon metabolism. The purified phosphoenolpyruvate carboxylase is activated specifically by reduced nicotinamide adenine dinucleotide (KA = 0.2 mM). The regulatory properties of this enzyme suggests that phosphoenolpyruvate serves as a focal point for both carbon assimilation and energy metabolism. PMID:171253

  7. RESPIRATORY PATHWAYS IN THE MYCOPLASMA. II. PATHWAY OF ELECTRON TRANSPORT DURING OXIDATION OF REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE BY MYCOPLASMA HOMINIS.

    PubMed

    VANDEMARK, P J; SMITH, P F

    1964-07-01

    VanDemark, P. J. (University of South Dakota, Vermillion), and P. F. Smith. Respiratory pathways in the Mycoplasma. II. Pathway of electron transport during oxidation of reduced nicotinamide adenine dinucleotide by Mycoplasma hominis. J. Bacteriol. 88:122-129. 1964.-Unlike the flavin-terminated respiratory pathway of the fermentative Mycoplasma, the respiratory chain of the nonfermentative M. hominis strain 07 appears to be more complex, involving quinones and cytochromes in addition to flavins. In addition to reduction by reduced nicotine adenine dinucleotide (NADH) and reduced nicotine adenine dinucleotide phosphate, nonpyridine nucleotide-linked reduction of the respiratory chain of this organism occurred with succinate, lactate, and short-chained acyl coenzyme A derivatives as electron donors. Enzymes catalyzing the oxidation of NADH included an NADH oxidase, a diaphorase, a quinone reductase, and a cytochrome c reductase. The oxidation of NADH was sensitive to a variety of inhibitors, including 10(-4)m Atabrine, 10(-3)m sodium amytal, 10(-5)mp-chloromercuribenzoate, 10(-4)m antimycin A, and 10(-4)m potassium cyanide. The oxidase was resolved by the addition of 5% trichloroacetic acid and reactivated by the addition of flavin adenine dinucleotide but not flavin mononucleotide. The M. hominis sonic extract contained an NADH-coenzyme Q reductase. The oxidation of NADH was stimulated by the addition of either menadione or vitamin K(2) (C(35)). The oxidase was inactivated by extraction with ether or irradiation at 360 mmu. The ether-inactivated enzyme was partially reactivated by the addition of "lipid" extract of the enzyme and coenzyme Q(6). Difference spectra of the cell extracts revealed the presence of "b" and "a" type cytochromes. These cell extracts were found to contain a cyanide-and azide-sensitive cytochrome oxidase and catalase. PMID:14197876

  8. Purine Salvage Pathways among Borrelia Species▿

    PubMed Central

    Pettersson, Jonas; Schrumpf, Merry E.; Raffel, Sandra J.; Porcella, Stephen F.; Guyard, Cyril; Lawrence, Kevin; Gherardini, Frank C.; Schwan, Tom G.

    2007-01-01

    Genome sequencing projects on two relapsing fever spirochetes, Borrelia hermsii and Borrelia turicatae, revealed differences in genes involved in purine metabolism and salvage compared to those in the Lyme disease spirochete Borrelia burgdorferi. The relapsing fever spirochetes contained six open reading frames that are absent from the B. burgdorferi genome. These genes included those for hypoxanthine-guanine phosphoribosyltransferase (hpt), adenylosuccinate synthase (purA), adenylosuccinate lyase (purB), auxiliary protein (nrdI), the ribonucleotide-diphosphate reductase alpha subunit (nrdE), and the ribonucleotide-diphosphate reductase beta subunit (nrdF). Southern blot assays with multiple Borrelia species and isolates confirmed the presence of these genes in the relapsing fever group of spirochetes but not in B. burgdorferi and related species. TaqMan real-time reverse transcription-PCR demonstrated that the chromosomal genes (hpt, purA, and purB) were transcribed in vitro and in mice. Phosphoribosyltransferase assays revealed that, in general, B. hermsii exhibited significantly higher activity than did the B. burgdorferi cell lysate, and enzymatic activity was observed with adenine, hypoxanthine, and guanine as substrates. B. burgdorferi showed low but detectable phosphoribosyltransferase activity with hypoxanthine even though the genome lacks a discernible ortholog to the hpt gene in the relapsing fever spirochetes. B. hermsii incorporated radiolabeled hypoxanthine into RNA and DNA to a much greater extent than did B. burgdorferi. This complete pathway for purine salvage in the relapsing fever spirochetes may contribute, in part, to these spirochetes achieving high cell densities in blood. PMID:17502392

  9. Guanine-Centric Self-Assembly of Nucleotides in Water: An Important Consideration in Prebiotic Chemistry

    PubMed Central

    Cassidy, Lauren M.; Burcar, Bradley T.; Stevens, Wyatt; Moriarty, Elizabeth M.

    2014-01-01

    Abstract Investigations of plausible prebiotic chemistry on early Earth must consider not only chemical reactions to form more complex products such as proto-biopolymers but also reversible, molecular self-assembly that would influence the availability, organization, and sequestration of reactant molecules. The self-assembly of guanosine compounds into higher-order structures and lyotropic liquid crystalline “gel” phases through formation of hydrogen-bonded guanine tetrads (G-tetrads) is one such consideration that is particularly relevant to an RNA-world scenario. G-tetrad-based gelation has been well studied for individual guanosine compounds and was recently observed in mixtures of guanosine with 5′-guanosine monophosphate (GMP) as well. The present work investigates the self-assembly of GMP in the presence of the other RNA nucleotides. Effects of the total concentration and relative proportion of the nucleotides in the mixtures, the form (disodium salt vs. free acid) of the nucleotides, temperature, pH, and salt concentration were determined by visual observations and circular dichroism (CD) spectroscopy. The results show that formation of cholesteric G-tetrad phases is influenced by interactions with other nucleotides, likely through association (e.g., intercalation) of the nucleotides with the G-tetrad structures. These interactions affect the structure and stability of the G-tetrad gel phase, as well as the formation of alternate self-assembled GMP structures such as a continuous, hydrogen-bonded GMP helix or dimers and aggregates of GMP. These interactions and multiple equilibria are influenced by the presence of cations, especially in the presence of K+. This work could have important implications for the emergence of an RNA or proto-RNA world, which would require mixtures of nucleotides at sufficiently high, local concentrations for abiotic polymerization to occur. Key Words: RNA world—Prebiotic chemistry—RNA polymerization

  10. Catching Functional Modes and Structural Communication in Dbl Family Rho Guanine Nucleotide Exchange Factors.

    PubMed

    Raimondi, Francesco; Felline, Angelo; Fanelli, Francesca

    2015-09-28

    Computational approaches such as Principal Component Analysis (PCA) and Elastic Network Model-Normal Mode Analysis (ENM-NMA) are proving to be of great value in investigating relevant biological problems linked to slow motions with no demand in computer power. In this study, these approaches have been coupled to the graph theory-based Protein Structure Network (PSN) analysis to dissect functional dynamics and structural communication in the Dbl family of Rho Guanine Nucleotide Exchange Factors (RhoGEFs). They are multidomain proteins whose common structural feature is a DH-PH tandem domain deputed to the GEF activity that makes them play a central role in cell and cancer biology. While their common GEF action is accomplished by the DH domain, their regulatory mechanisms are highly variegate and depend on the PH and the additional domains as well as on interacting proteins. Major evolutionary-driven deformations as inferred from PCA concern the α6 helix of DH that dictates the orientation of the PH domain. Such deformations seem to depend on the mechanisms adopted by the GEF to prevent Rho binding, i.e. functional specialization linked to autoinhibition. In line with PCA, ENM-NMA indicates α6 and the linked PH domain as the portions of the tandem domain holding almost the totality of intrinsic and functional dynamics, with the α6/β1 junction acting as a hinge point for the collective motions of PH. In contrast, the DH domain holds a static scaffolding and hub behavior, with structural communication playing a central role in the regulatory actions by other domains/proteins. Possible allosteric communication pathways involving essentially DH were indeed found in those RhoGEFs acting as effectors of small or heterotrimeric RasGTPases. The employed methodology is suitable for deciphering structure/dynamics relationships in large sets of homologous or analogous proteins.

  11. Guanine nucleotide-binding protein regulation of melatonin receptors in lizard brain

    SciTech Connect

    Rivkees, S.A.; Carlson, L.L.; Reppert, S.M. )

    1989-05-01

    Melatonin receptors were identified and characterized in crude membrane preparations from lizard brain by using {sup 125}I-labeled melatonin ({sup 125}I-Mel), a potent melatonin agonist. {sup 125}I-Mel binding sites were saturable; Scatchard analysis revealed high-affinity and lower affinity binding sites, with apparent K{sub d} of 2.3 {plus minus} 1.0 {times} 10{sup {minus}11} M and 2.06 {plus minus} 0.43 {times} 10{sup {minus}10} M, respectively. Binding was reversible and inhibited by melatonin and closely related analogs but not by serotonin or norepinephrine. Treatment of crude membranes with the nonhydrolyzable GTP analog guanosine 5{prime}-({gamma}-thio)triphosphate (GTP({gamma}S)), significantly reduced the number of high-affinity receptors and increased the dissociation rate of {sup 125}I-Mel from its receptor. Furthermore, GTP({gamma}S) treatment of ligand-receptor complexes solubilized by Triton X-100 also led to a rapid dissociation of {sup 125}I-Mel from solubilized ligand-receptor complexes. Gel filtration chromatography of solubilized ligand-receptor complexes revealed two major peaks of radioactivity corresponding to M{sub r} > 400,000 and M{sub r} ca. 110,000. This elution profile was markedly altered by pretreatment with GTP({gamma}S) before solubilization; only the M{sub r} 110,000 peak was present in GTP({gamma}S)-pretreated membranes. The results strongly suggest that {sup 125}I-mel binding sites in lizard brain are melatonin receptors, with agonist-promoted guanine nucleotide-binding protein (G protein) coupling and that the apparent molecular size of receptors uncoupled from G proteins is about 110,000.

  12. Transduction proteins of olfactory receptor cells: identification of guanine nucleotide binding proteins and protein kinase C

    SciTech Connect

    Anholt, R.R.H.; Mumby, S.M.; Stoffers, D.A.; Girard, P.R.; Kuo, J.F.; Snyder, S.H.

    1987-02-10

    The authors have analyzed guanine nucleotide binding proteins (G-proteins) in the olfactory epithelium of Rana catesbeiana using subunit-specific antisera. The olfactory epithelium contained the ..cap alpha.. subunits of three G-proteins, migrating on polyacrylamide gels in SDS with apparent molecular weights of 45,000, 42,000, and 40,000, corresponding to G/sub s/, G/sub i/, and G/sub o/, respectively. A single ..beta.. subunit with an apparent molecular weight of 36,000 was detected. An antiserum against the ..cap alpha.. subunit of retinal transducin failed to detect immunoreactive proteins in olfactory cilia detached from the epithelium. The olfactory cilia appeared to be enriched in immunoreactive G/sub s..cap alpha../ relative to G/sub ichemically bond/ and G/sub ochemically bond/ when compared to membranes prepared from the olfactory epithelium after detachment of the cilia. Bound antibody was detected by autoradiography after incubation with (/sup 125/I)protein. Immunohistochemical studies using an antiserum against the ..beta.. subunit of G-proteins revealed intense staining of the ciliary surface of the olfactory epithelium and of the axon bundles in the lamina propria. In contrast, an antiserum against a common sequence of the ..cap alpha.. subunits preferentially stained the cell membranes of the olfactory receptor cells and the acinar cells of Bowman's glands and the deep submucosal glands. In addition to G-proteins, they have identified protein kinase C in olfactory cilia via a protein kinase C specific antiserum and via phorbol ester binding. However, in contrast to the G-proteins, protein kinase C occurred also in cilia isolated from respiratory epithelium.

  13. Cloning and characterization of Ras-GRF2, a novel guanine nucleotide exchange factor for Ras.

    PubMed

    Fam, N P; Fan, W T; Wang, Z; Zhang, L J; Chen, H; Moran, M F

    1997-03-01

    Conversion of Ras proteins into an activated GTP-bound state able to bind effector proteins is catalyzed by specific guanine nucleotide exchange factors in response to a large number of extracellular stimuli. Here we report the isolation of mouse cDNAs encoding Ras-GRF2, a multidomain 135-kDa protein containing a COOH-terminal Cdc25-related domain that stimulates release of GDP from Ras but not other GTPases in vitro. Ras-GRF2 bound specifically to immobilized Ras lacking bound nucleotides, suggesting stabilization of the nucleotide-free form of Ras as a mechanism of catalyzing nucleotide exchange. The NH2-terminal region of Ras-GRF2 is predicted to contain features common to various signaling proteins including two pleckstrin homology domains and a Dbl homology region. Ras-GRF2 also contains an IQ motif which was required for its apparent constitutive association with calmodulin in epithelial cells ectopically expressing Ras-GRF2. Transient expression of Ras-GRF2 in kidney epithelial cells stimulated GTP binding by Ras and potentiated calcium ionophore-induced activation of mitogen-activated protein kinase (ERK1) dependent upon the IQ motif. Calcium influx caused Ras-GRF2 subcellular localization to change from cytosolic to peripheral, suggesting a possible mechanism for controlling Ras-GRF2 interactions with Ras at the plasma membrane. Epithelial cells overexpressing Ras-GRF2 are morphologically transformed and grow in a disorganized manner with minimal intercellular contacts. Northern analysis indicated a 9-kb GRF2 transcript in brain and lung, where p135 Ras-GRF2 is known to be expressed, and RNAs of 12 kb and 2.2 kb were detected in several tissues. Thus, Ras-GRF2 proteins with different domain structures may be widely expressed and couple diverse extracellular signals to Ras activation.

  14. Deciphering the photochemical mechanisms describing the UV-induced processes occurring in solvated guanine monophosphate

    NASA Astrophysics Data System (ADS)

    Altavilla, Salvatore; Segarra-Martí, Javier; Nenov, Artur; Conti, Irene; Rivalta, Ivan; Garavelli, Marco

    2015-04-01

    The photophysics and photochemistry of water-solvated guanine monophosphate (GMP) are here characterized by means of a multireference quantum-chemical/molecular mechanics theoretical approach (CASPT2//CASSCF/AMBER) in order to elucidate the main photo-processes occurring upon UV-light irradiation. The effect of the solvent and of the phosphate group on the energetics and structural features of this system are evaluated for the first time employing high-level ab initio methods and thoroughly compared to those in vacuo previously reported in the literature and to the experimental evidence to assess to which extent they influence the photoinduced mechanisms. Solvated electronic excitation energies of solvated GMP at the Franck-Condon (FC) region show a red shift for the ππ* La and Lb states, whereas the energy of the oxygen lone-pair nπ* state is blue-shifted. The main photoinduced decay route is promoted through a ring-puckering motion along the bright lowest-lying La state towards a conical intersection (CI) with the ground state, involving a very shallow stationary point along the minimum energy pathway in contrast to the barrierless profile found in gas-phase, the point being placed at the end of the minimum energy path (MEP) thus endorsing its ultrafast deactivation in accordance with time-resolved transient and photoelectron spectroscopy experiments. The role of the nπ* state in the solvated system is severely diminished as the crossings with the initially populated La state and also with the Lb state are placed too high energetically to partake prominently in the deactivation photo-process. The proposed mechanism present in solvated and in vacuo DNA/RNA chromophores validates the intrinsic photostability mechanism through CI-mediated non-radiative processes accompanying the bright excited-state population towards the ground state and subsequent relaxation back to the FC region.

  15. The selective phosphorylation of a guanine nucleotide-binding regulatory protein

    SciTech Connect

    Carlson, K.E.

    1989-01-01

    Receptor-activated signal transduction pathways regulate the responsiveness of cells to external stimuli. These transduction pathways themselves are subject to regulation, most commonly by phosphorylation. Guanine nucleotide-binding regulatory proteins (G Proteins), as requisite signal transducing elements for many plasma membrane receptors, are considered likely targets for regulation by phosphorylation. Protein kinase C (PKC) has been shown to phosphorylate the {alpha} subunit of G{sub i} and other G proteins in solution. However, the occurrence of the phosphorylation of G{sub 1} within intact cells in response to activation of PKC has not been rigorously demonstrated. In this thesis, the extent to which the {alpha} subunits of G{sub i} undergo phosphorylation within human platelets in response to activation of PKC was examined by means of radiolabeling and immunoprecipitation. Incubation of platelets with phorbol-12-myristate-13-acetate (PMA), a potent activator of PKC, promoted the phosphorylation of several proteins within saponin-permeabilized and intact platelets incubated with ({gamma}{sup 32}P)ATP and ({sup 32}P)H{sub 3}PO{sub 4}, respectively. None of the phosphoproteins, however, were precipitated by either of two antisera containing antibodies differing in specificities for epitopes within G{sub i{alpha}}-despite precipitation of a substantial fraction of the subunit itself. In contrast, other antisera, containing antibodies specific for the recently describe G{sub z{alpha}}, or antibodies for both G{sub z{alpha}} and G{sub i{alpha}}, precipitated a 40-kDa phosphoprotein.

  16. Activation of JNK by Epac is independent of its activity as a Rap guanine nucleotide exchanger.

    PubMed

    Hochbaum, Daniel; Tanos, Tamara; Ribeiro-Neto, Fernando; Altschuler, Daniel; Coso, Omar A

    2003-09-01

    Guanine nucleotide exchange factors (GEFs) and their associated GTP-binding proteins (G-proteins) are key regulatory elements in the signal transduction machinery that relays information from the extracellular environment into specific intracellular responses. Among them, the MAPK cascades represent ubiquitous downstream effector pathways. We have previously described that, analogous to the Ras-dependent activation of the Erk-1/2 pathway, members of the Rho family of small G-proteins activate the JNK cascade when GTP is loaded by their corresponding GEFs. Searching for novel regulators of JNK activity we have identified Epac (exchange protein activated by cAMP) as a strong activator of JNK-1. Epac is a member of a growing family of GEFs that specifically display exchange activity on the Rap subfamily of Ras small G-proteins. We report here that while Epac activates the JNK severalfold, a constitutively active (G12V) mutant of Rap1b does not, suggesting that Rap-GTP is not sufficient to transduce Epac-dependent JNK activation. Moreover, Epac signaling to the JNKs was not blocked by inactivation of endogenous Rap, suggesting that Rap activation is not necessary for this response. Consistent with these observations, domain deletion mutant analysis shows that the catalytic GEF domain is dispensable for Epac-mediated activation of JNK. These studies identified a region overlapping the Ras exchange motif domain as critical for JNK activation. Consistent with this, an isolated Ras exchange motif domain from Epac is sufficient to activate JNK. We conclude that Epac signals to the JNK cascade through a new mechanism that does not involve its canonical catalytic action, i.e. Rap-specific GDP/GTP exchange. This represents not only a novel way to activate the JNKs but also a yet undescribed mechanism of downstream signaling by Epac.

  17. Electrochemical oxidation of dihydronicotinamide adenine dinucleotide at nitrogen-doped carbon nanotube electrodes.

    PubMed

    Goran, Jacob M; Favela, Carlos A; Stevenson, Keith J

    2013-10-01

    Nitrogen-doped carbon nanotubes (N-CNTs) substantially lower the overpotential necessary for dihydronicotinamide adenine dinucleotide (NADH) oxidation compared to nondoped CNTs or traditional carbon electrodes such as glassy carbon (GC). We observe a 370 mV shift in the peak potential (Ep) from GC to CNTs and another 170 mV shift from CNTs to 7.4 atom % N-CNTs in a sodium phosphate buffer solution (pH 7.0) with 2.0 mM NADH (scan rate 10 mV/s). The sensitivity of 7.4 atom % N-CNTs to NADH was measured at 0.30 ± 0.04 A M(-1) cm(-2), with a limit of detection at 1.1 ± 0.3 μM and a linear range of 70 ± 10 μM poised at a low potential of -0.32 V (vs Hg/Hg2SO4). NADH fouling, known to occur to the electrode surface during NADH oxidation, was investigated by measuring both the change in Ep and the resulting loss of electrode sensitivity. NADH degradation, known to occur in phosphate buffer, was characterized by absorbance at 340 nm and correlated with the loss of NADH electroactivity. N-CNTs are further demonstrated to be an effective platform for dehydrogenase-based biosensing by allowing glucose dehydrogenase to spontaneously adsorb onto the N-CNT surface and measuring the resulting electrode's sensitivity to glucose. The glucose biosensor had a sensitivity of 0.032 ± 0.003 A M(-1) cm(-2), a limit of detection at 6 ± 1 μM, and a linear range of 440 ± 50 μM.

  18. The two-photon excitation cross section of 6MAP, a fluorescent adenine analogue.

    PubMed

    Stanley, Robert J; Hou, Zhanjia; Yang, Aiping; Hawkins, Mary E

    2005-03-01

    6MAP is a fluorescent analogue of adenine that undergoes Watson-Crick base pairing and base stacking in double-stranded DNA. The one-photon absorption spectrum of 6MAP is characterized by a maximum around 330 nm with moderate quantum yield fluorescence centered at about 420 nm. To take advantage of this probe for confocal and single-molecule microscopy, it would be advantageous to be able to excite the analogue via two photons. We report the first determination of the two-photon excitation cross section and spectrum for 6MAP from 614 to 700 nm. The power dependence of the fluorescence indicates that emission results from the absorption of two photons. The one-photon and two-photon emission line shapes are identical within experimental error. A study of the concentration dependence of the fluorescence yield for one-photon excitation shows no measurable quenching up to about 5 microM. The maximum in the two-photon excitation spectrum gives a two-photon cross section, delta(TPE), of 3.4 +/- 0.1 Goeppert-Mayer (G.M.) at 659 nm, which correlates well with the one-photon absorption maximum. This compares quite favorably with cross sections of various naturally fluorescent biological molecules such as flavins and nicotiamide. In addition, we have also obtained the two-photon-induced fluorescence emission spectrum of quinine sulfate. It is approximately the same as that for one-photon excitation, suggesting that two-photon excitation of quinine sulfate may be used for calibration purposes.

  19. The two-photon excitation cross section of 6MAP, a fluorescent adenine analogue.

    PubMed

    Stanley, Robert J; Hou, Zhanjia; Yang, Aiping; Hawkins, Mary E

    2005-03-01

    6MAP is a fluorescent analogue of adenine that undergoes Watson-Crick base pairing and base stacking in double-stranded DNA. The one-photon absorption spectrum of 6MAP is characterized by a maximum around 330 nm with moderate quantum yield fluorescence centered at about 420 nm. To take advantage of this probe for confocal and single-molecule microscopy, it would be advantageous to be able to excite the analogue via two photons. We report the first determination of the two-photon excitation cross section and spectrum for 6MAP from 614 to 700 nm. The power dependence of the fluorescence indicates that emission results from the absorption of two photons. The one-photon and two-photon emission line shapes are identical within experimental error. A study of the concentration dependence of the fluorescence yield for one-photon excitation shows no measurable quenching up to about 5 microM. The maximum in the two-photon excitation spectrum gives a two-photon cross section, delta(TPE), of 3.4 +/- 0.1 Goeppert-Mayer (G.M.) at 659 nm, which correlates well with the one-photon absorption maximum. This compares quite favorably with cross sections of various naturally fluorescent biological molecules such as flavins and nicotiamide. In addition, we have also obtained the two-photon-induced fluorescence emission spectrum of quinine sulfate. It is approximately the same as that for one-photon excitation, suggesting that two-photon excitation of quinine sulfate may be used for calibration purposes. PMID:16851408

  20. Inhibition of the adenine nucleotide translocator by N-acetyl perfluorooctane sulfonamides in vitro

    SciTech Connect

    O'Brien, Timothy M. Oliveira, Paulo J.; Wallace, Kendall B.

    2008-03-01

    N-alkyl perfluorooctane sulfonamides have been widely used as surfactants on fabrics and papers, fire retardants, and anti-corrosion agents, among many other commercial applications. The global distribution and environmental persistence of these compounds has generated considerable interest regarding potential toxic effects. We have previously reported that perfluorooctanesulfonamidoacetate (FOSAA) and N-ethylperfluorooctanesulfonamidoacetate (N-EtFOSAA) induce the mitochondrial permeability transition (MPT) in vitro. In this study we tested the hypothesis that FOSAA and N-EtFOSAA interact with the adenine nucleotide translocator (ANT) resulting in a functional inhibition of the translocator and induction of the MPT. Respiration and membrane potential of freshly isolated liver mitochondria from Sprague-Dawley rats were measured using an oxygen electrode and a tetraphenylphosphonium-selective (TPP{sup +}) electrode, respectively. Mitochondrial swelling was measured spectrophotometrically. The ANT ligands bongkregkic acid (BKA) and carboxyatractyloside (cATR) inhibited uncoupling of mitochondrial respiration caused by 10 {mu}M N-EtFOSAA, 40 {mu}M FOSAA, and the positive control 8 {mu}M oleic acid. ADP-stimulated respiration and depolarization of mitochondrial membrane potential were inhibited by cATR, FOSAA, N-EtFOSAA, and oleic acid, but not by FCCP. BKA inhibited calcium-dependent mitochondrial swelling induced by FOSAA, N-EtFOSAA, and oleic acid. Seventy-five micromolar ADP also inhibited swelling induced by the test compounds, but cATR induced swelling was not inhibited by ADP. Results of this investigation indicate that N-acetyl perfluorooctane sulfonamides interact directly with the ANT to inhibit ADP translocation and induce the MPT, one or both of which may account for the metabolic dysfunction observed in vivo.

  1. Sodium thiosulfate protects brain in rat model of adenine induced vascular calcification.

    PubMed

    Subhash, N; Sriram, R; Kurian, Gino A

    2015-11-01

    Vascular bed calcification is a common feature of ends stage renal disease that may lead to a complication in cardiovascular and cerebrovascular beds, which is a promoting cause of myocardial infarction, stroke, dementia and aneurysms. Sodium thiosulfate (STS) due to its multiple properties such as antioxidant and calcium chelation has been reported to prevent vascular calcification in uremic rats, without mentioning its impact on cerebral function. Moreover, the previous studies have not explored the effect of STS on the mitochondrial dysfunction, one of the main pathophysiological features associated with the disease and the main site for STS metabolism. The present study addresses this limitation by using a rat model where 0.75% adenine was administered to induce vascular calcification and 400 mg/kg b wt. of STS was given as preventive and curative agent. The blood and urine chemistries along with histopathology of aorta confirms the renal protective effect of STS in two modes of administration. The brain oxidative stress assessment was made through TBARS level, catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities, found to be in the near normal level. STS administration not only reduced the mitochondrial oxidative stress (measured by TBARS, SOD, GPx and CAT) but also preserved the mitochondrial respiratory enzyme activities (NADH dehydrogenase, Succinate dehydrogenase and Malate dehydrogenase) and its physiology (measured by P/O ratio and RCR). In fact, the protective effect of STS was prominent, when it was administered as a curative agent, where low H2S and high thiosulfate level was observed along with low cystathionine β synthase activity, confirms thiosulfate mediated renal protection. In conclusion, STS when given after induction of calcification is protective to the brain by preserving its mitochondria, compared to the treatment given concomitantly. PMID:26363090

  2. Mitochondrial permeability transition as induced by cross-linking of the adenine nucleotide translocase.

    PubMed

    Zazueta, C; Reyes-Vivas, H; Zafra, G; Sánchez, C A; Vera, G; Chávez, E

    1998-04-01

    Mitochondrial permeability transition is caused by the opening of a transmembrane pore whose chemical nature has not been well established yet. The present work was aimed to further contribute to the knowledge of the membrane entity comprised in the formation of the non-specific channel. The increased permeability was established by analyzing the inability of rat kidney mitochondria to take up and accumulate Ca2+, as well as their failure to build up a transmembrane potential, after the cross-linking of membrane proteins by copper plus ortho-phenanthroline. To identify the cross-linked proteins, polyacrylamide gel electrophoresis was performed. The results are representative of at least three separate experiments. It is indicated that 30 microM Cu2+ induced the release of 4.3 nmol Ca2+ per mg protein. However, in the presence of 100 microM ortho-phenanthroline only 2 microM Cu2+ was required to attain the total release of the accumulated Ca2+; it should be noted that such a reaction is not inhibited by cyclosporin. The increased permeability corresponds to cross-linking of membrane proteins in which approximately 4 nmol thiol groups per mg protein appear to be involved. Such a linking process is inhibited by carboxyatractyloside. By using the fluorescent probe eosin-5-maleimide the label was found in a cross-linking 60 kDa dimer of two 30 kDa monomers. From the data presented it is concluded that copper-o-phenanthroline induces the intermolecular cross-linking of the adenine nucleotide translocase which in turn is converted to non-specific pore. PMID:9675885

  3. Sodium thiosulfate protects brain in rat model of adenine induced vascular calcification.

    PubMed

    Subhash, N; Sriram, R; Kurian, Gino A

    2015-11-01

    Vascular bed calcification is a common feature of ends stage renal disease that may lead to a complication in cardiovascular and cerebrovascular beds, which is a promoting cause of myocardial infarction, stroke, dementia and aneurysms. Sodium thiosulfate (STS) due to its multiple properties such as antioxidant and calcium chelation has been reported to prevent vascular calcification in uremic rats, without mentioning its impact on cerebral function. Moreover, the previous studies have not explored the effect of STS on the mitochondrial dysfunction, one of the main pathophysiological features associated with the disease and the main site for STS metabolism. The present study addresses this limitation by using a rat model where 0.75% adenine was administered to induce vascular calcification and 400 mg/kg b wt. of STS was given as preventive and curative agent. The blood and urine chemistries along with histopathology of aorta confirms the renal protective effect of STS in two modes of administration. The brain oxidative stress assessment was made through TBARS level, catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities, found to be in the near normal level. STS administration not only reduced the mitochondrial oxidative stress (measured by TBARS, SOD, GPx and CAT) but also preserved the mitochondrial respiratory enzyme activities (NADH dehydrogenase, Succinate dehydrogenase and Malate dehydrogenase) and its physiology (measured by P/O ratio and RCR). In fact, the protective effect of STS was prominent, when it was administered as a curative agent, where low H2S and high thiosulfate level was observed along with low cystathionine β synthase activity, confirms thiosulfate mediated renal protection. In conclusion, STS when given after induction of calcification is protective to the brain by preserving its mitochondria, compared to the treatment given concomitantly.

  4. Adenine Nucleotide Translocase 4 Is Expressed Within Embryonic Ovaries and Dispensable During Oogenesis

    PubMed Central

    Lim, Chae Ho; Brower, Jeffrey V.; Resnick, James L.; Oh, S. Paul

    2015-01-01

    Adenine nucleotide translocase (Ant) facilitates the exchange of adenosine triphosphate across the mitochondrial inner membrane and plays a critical role for bioenergetics in eukaryotes. Mice have 3 Ant paralogs, Ant1 (Slc25a4), Ant2 (Slc25a5), and Ant4 (Slc25a31), which are expressed in a tissue-dependent manner. We previously identified that Ant4 was expressed exclusively in testicular germ cells in adult mice and essential for spermatogenesis and subsequently male fertility. Further investigation into the process of spermatogenesis revealed that Ant4 was particularly highly expressed during meiotic prophase I and indispensable for normal progression of leptotene spermatocytes to the stages thereafter. In contrast, the expression and roles of Ant4 in female germ cells have not previously been elucidated. Here, we demonstrate that the Ant4 gene is expressed during embryonic ovarian development during which meiotic prophase I occurs. We confirmed embryonic ovary-specific Ant4 expression using a bacterial artificial chromosome transgene. In contrast to male, however, Ant4 null female mice were fertile although the litter size was slightly decreased. They showed apparently normal ovarian development which was morphologically indistinguishable from the control animals. These data indicate that Ant4 is a meiosis-specific gene expressed during both male and female gametogenesis however indispensable only during spermatogenesis and not oogenesis. The differential effects of Ant4 depletion within the processes of male and female gametogenesis may be explained by meiosis-specific inactivation of the X-linked Ant2 gene in male, a somatic paralog of the Ant4 gene. PMID:25031318

  5. Development and Evaluation of Solid Lipid Nanoparticles of N-6-Furfuryl Adenine for Prevention of Photoaging.

    PubMed

    Goindi, Shishu; Guleria, Ankita; Aggarwal, Nidhi

    2015-10-01

    N-6-furfuryl adenine (N6FA) also known as "kinetin" is a biologically active natural phytochemical. It belongs to the category of cytokinins, the natural plant growth hormones that promote cell division and play role in cell differentiation. Overall, N6FA aids in increasing the plant's life span. Human cells also contain.small quantities of N6FA. Scientists are trying to understand its function in humans. N6FA is being investigated for its properties such as antiplatelet, antioxidant, antiproliferative and anti-aging effects on human cells. The aim of the present investigation was to prepare solid lipid nanoparticle (SLN) based topical formulations of N6FA and to evaluate its efficacy against ultraviolet (UV) radiation induced skin photodamage. SLNs were prepared by hot microemulsion technique and optimized for the type and concentration of lipid and surfactant(s). The optimized SLN formulation was characterized in terms of particle size, drug entrapment efficiency, zeta potential and pH; evaluated for stability, spreadability, ex-vivo skin permeation and photoprotective effects against UV induced skin damage. The cumulative amount of drug permeated through mice skin using SLNs was 3 folds higher than from conventional cream base. The results of biochemical and histopathological investigations of skin treated with N6FA loaded SLNs clearly demonstrated the efficacy of optimized formulation in preventing photodamage (lesions, ulcers and changes in skin integrity) due to chronic UV exposure. The effects were comparable with widely used marketed formulation, Garnier wrinkle lift anti-aging cream. Results suggested that N6FA incorporated into SLNs may provide therapeutic as well as cosmeceutical benefits. PMID:26502637

  6. Synthesis and in vivo evaluation of prodrugs of 9-[2-(phosphonomethoxy)ethoxy]adenine.

    PubMed

    Serafinowska, H T; Ashton, R J; Bailey, S; Harnden, M R; Jackson, S M; Sutton, D

    1995-04-14

    A number of esters and amides of the anti-HIV nucleotide analogue 9-[2-(phosphonomethoxy)-ethoxy]adenine (1) have been synthesized as potential prodrugs and evaluated for oral bioavailability in mice. Dialkyl esters 17-20 were prepared via a Mitsunobu coupling of alcohols 8-11 with 9-hydroxypurine 12 whereas (acyloxy)alkyl esters 25-33 and bis-[(alkoxycarbonyl)methyl] and bis(amidomethyl) esters 34-39 were obtained by reaction of 1 with a suitable alkylating agent. Phosphonodichloridate chemistry was employed for the preparation of dialkyl and diaryl esters 42-65, and bis(phosphonoamidates) 66 and 67. Following oral administration to mice, most of the dialkyl esters 17-20 were well-absorbed and then converted to the corresponding monoesters, but minimal further metabolism to 1 occurred. Bis[(pivaloyloxy)methyl] ester 25 displayed an oral bioavailability of 30% that was 15-fold higher than the bioavailability observed after dosing of 1. Methyl substitution at the alpha carbon of the bis[(pivaloyloxy)methyl] ester 25 (33) increased the oral bioavailability of 1 to 74%. Some of the diaryl esters also showed improved absorption properties in comparison with that of 1. In particular, the crystalline hydrochloride salt of diphenyl ester 55 was well-absorbed and efficiently converted to the parent compound with an oral bioavailability of 50%. On the basis of these results as well as the physicochemical properties of the prodrugs and their stability in mouse duodenal contents, the hydrochloride salt of diphenyl ester 55 was identified as the preferred prodrug of 1. PMID:7731022

  7. Modulation by adenine nucleotides of epileptiform activity in the CA3 region of rat hippocampal slices

    PubMed Central

    Ross, F M; Brodie, M J; Stone, T W

    1998-01-01

    Hippocampal slices (450 μm) generate epileptiform bursts of an interictal nature when perfused with a zero magnesium medium containing 4-aminopyridine (50 μM). The effect of adenine nucleotides on this activity was investigated.ATP and adenosine depressed this epileptiform activity in a concentration-dependent manner, with both purines being equipotent at concentrations above 10 μM.Adenosine deaminase 0.2 u ml−1, a concentration that annuls the effect of adenosine (50 μM), did not significantly alter the depression of activity caused by ATP (50 μM).8-Cyclopentyl-1, 3-dimethylxanthine (CPT), an A1 receptor antagonist, enhanced the discharge rate significantly and inhibited the depressant effect of both ATP and adenosine such that the net effect of ATP or adenosine plus CPT was excitatory.Several ATP analogues were also tested: α, β-methyleneATP (α, β-meATP), 2-methylthioATP (2-meSATP) and uridine triphosphate (UTP). Only α, β-meATP (10 μM) produced an increase in the frequency of spontaneous activity which suggests a lack of involvement of P2Y or P2U receptors.Suramin and pyridoxalphosphate-6-azophenyl-2′, 4′-disulphonic acid (PPADS), P2 receptor antagonists, failed to inhibit the depression produced by ATP (50 μM). The excitatory effect of α, β-meATP (10 μM) was inhibited by suramin (50 μM) and PPADS (5 μM).ATP therefore depresses epileptiform activity in this model in a manner which is not consistent with the activation of known P1 or P2 receptors, suggesting the involvement of a xanthine-sensitive nucleotide receptor. The results are also indicative of an excitatory P2X receptor existing in the hippocampal CA3 region. PMID:9484856

  8. The adenine nucleotide translocase type 1 (ANT1): a new factor in mitochondrial disease.

    PubMed

    Sharer, J Daniel

    2005-09-01

    Mitochondrial disorders of oxidative phosphorylation (OXPHOS) comprise a growing list of potentially lethal diseases caused by mutations in either mitochondrial (mtDNA) or nuclear DNA (nDNA). Two such conditions, autosomal dominant progressive external ophthalmoplegia (adPEO) and Senger's Syndrome, are associated with dysfunction of the heart and muscle-specific isoform of the adenine nucleotide translocase (ANT1), a nDNA gene product that facilitates transport of ATP and ADP across the inner mitochondrial membrane. AdPEO is a mtDNA deletion disorder broadly characterized by pathology involving the eyes, skeletal muscle, and central nervous system. In addition to ANT1, mutations in at least two other nuclear genes, twinkle and POLG, have been shown to cause mtDNA destabilization associated with adPEO. Senger's syndrome is an autosomal recessive condition characterized by congenital heart defects, abnormalities of skeletal muscle mitochondria, cataracts, and elevated circulatory levels of lactic acid. This syndrome is associated with severe depletion of ANT1, which may be the result of an as yet unidentified ANT1-specific transcriptional or translational processing error. ANT1 has also been associated with a third condition, autosomal dominant facioscapulohumeral muscular dystrophy (FSHD), an adult onset disorder characterized by variable muscle weakness in the face, feet, shoulders, and hips. FSHD patients possess specific DNA deletions on chromosome 4, which appear to cause derepression of several nearby genes, including ANT1. Early development of FSHD may involve mitochondrial dysfunction and increased oxidative stress, possibly associated with overexpression of ANT1. PMID:16203679

  9. An alternative membrane transport pathway for phosphate and adenine nucleotides in mitochondria and its possible function.

    PubMed

    Reynafarje, B; Lehninger, A L

    1978-10-01

    This paper describes the properties and a possible biological role of a transport process across the inner membrane of rat liver mitochondria resulting in the exchange of ATP(4-) (out) for ADP(3-) (in) + 0.5 phosphate(2-) (in). This transmembrane exchange reaction, designated as the ATP-ADP-phosphate exchange, is specific for the ligands shown, electroneutral, insensitive to N-ethylmaleimide or mersalyl, inhibited by atractyloside, and appears to occur only in the direction as written. It is thus distinct from the well-known phosphate-hydroxide and phosphate-dicarboxylate exchange systems, which are inhibited by mersalyl, and from the ATP-ADP exchanger, which does not transport phosphate. During ATP hydrolysis by mitochondria, half of the phosphate formed from ATP passes from the matrix to the medium by the mersalyl-insensitive ATP-ADP-phosphate exchange and the other half by the well-known mersalyl-sensitive phosphate-hydroxide exchange. These and other considerations have led to a hypothesis for the pathway and stoichiometry of ATP-dependent reverse electron transport, characterized by a requirement of 1.33 molecules of ATP per pair of electrons reversed and by the utilization of a different membrane transport pathway for phosphate and adenine nucleotides than is taken in forward electron flow and oxidative phosphorylation. The possible occurrence of independent pathways for ATP-forming forward electron flow and ATP-consuming reverse electron flow is consonant with the fact that the opposing degradative and synthetic pathways in the central routes of cell metabolism generally have different pathways that are independently regulated.

  10. Multisite-specific archaeosine tRNA-guanine transglycosylase (ArcTGT) from Thermoplasma acidophilum, a thermo-acidophilic archaeon.

    PubMed

    Kawamura, Takuya; Hirata, Akira; Ohno, Satoshi; Nomura, Yuichiro; Nagano, Tomoko; Nameki, Nobukazu; Yokogawa, Takashi; Hori, Hiroyuki

    2016-02-29

    Archaeosine (G(+)), which is found only at position 15 in many archaeal tRNA, is formed by two steps, the replacement of the guanine base with preQ0 by archaeosine tRNA-guanine transglycosylase (ArcTGT) and the subsequent modification of preQ0 to G(+) by archaeosine synthase. However, tRNA(Leu) from Thermoplasma acidophilum, a thermo-acidophilic archaeon, exceptionally has two G(+)13 and G(+)15 modifications. In this study, we focused on the biosynthesis mechanism of G(+)13 and G(+)15 modifications in this tRNA(Leu). Purified ArcTGT from Pyrococcus horikoshii, for which the tRNA recognition mechanism and structure were previously characterized, exchanged only the G15 base in a tRNA(Leu) transcript with (14)C-guanine. In contrast, T. acidophilum cell extract exchanged both G13 and G15 bases. Because T. acidophilum ArcTGT could not be expressed as a soluble protein in Escherichia coli, we employed an expression system using another thermophilic archaeon, Thermococcus kodakarensis. The arcTGT gene in T. kodakarensis was disrupted, complemented with the T. acidophilum arcTGT gene, and tRNA(Leu) variants were expressed. Mass spectrometry analysis of purified tRNA(Leu) variants revealed the modifications of G(+)13 and G(+)15 in the wild-type tRNA(Leu). Thus, T. acidophilum ArcTGT has a multisite specificity and is responsible for the formation of both G(+)13 and G(+)15 modifications.

  11. In vivo formation of N7-guanine DNA adduct by safrole 2',3'-oxide in mice.

    PubMed

    Shen, Li-Ching; Chiang, Su-Yin; Lin, Ming-Huan; Chung, Wen-Sheng; Wu, Kuen-Yuh

    2012-09-18

    Safrole, a naturally occurring product derived from spices and herbs, has been shown to be associated with the development of hepatocellular carcinoma in rodents. Safrole 2',3'-oxide (SFO), an electrophilic metabolite of safrole, was shown to react with DNA bases to form detectable DNA adducts in vitro, but not detected in vivo. Therefore, the objective of this study was to investigate the formation of N7-(3-benzo[1,3]dioxol-5-yl-2-hydroxypropyl)guanine (N7γ-SFO-Gua) resulting from the reaction of SFO with the most nucleophilic site of guanine in vitro and in vivo with a newly developed isotope-dilution high performance liquid chromatography electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) method. N7γ-SFO-Gua and [(15)N(5)]-N7-(3-benzo[1,3]dioxol-5-yl-2-hydroxypropyl)guanine ([(15)N(5)]-N7γ-SFO-Gua) were first synthesized, purified, and characterized. The HPLC-ESI-MS/MS method was developed to measure N7γ-SFO-Gua in calf thymus DNA treated with 60 μmol of SFO for 72 h and in urine samples of mice treated with a single dose of SFO (30 mg/kg body weight, intraperitoneally). In calf thymus DNA, the level of N7γ-SFO-Gua was 2670 adducts per 10(6)nucleotides. In urine of SFO-treated mice, the levels of N7γ-SFO-Gua were 1.02±0.14 ng/mg creatinine (n=4) on day 1, 0.73±0.68 ng/mg creatinine (n=4) on day 2, and below the limit of quantitation on day 3. These results suggest that SFO can cause in vivo formation of N7γ-SFO-Gua, which may then be rapidly depurinated from the DNA backbone and excreted through urine.

  12. Combined Monte Carlo and quantum mechanics study of the hydration of the guanine-cytosine base pair.

    PubMed

    Coutinho, Kaline; Ludwig, Valdemir; Canuto, Sylvio

    2004-06-01

    We present a computer simulation study of the hydration of the guanine-cytosine (GC) hydrogen-bonded complex. Using first principles density-functional theory, with gradient-corrected exchange-correlation and Monte Carlo simulation, we include thermal contribution, structural effects, solvent polarization, and the water-water and water-GC hydrogen bond interaction to show that the GC interaction in an aqueous environment is weakened to about 70% of the value obtained for an isolated complex. We also analyze in detail the preferred hydration sites of the GC pair and show that on the average it makes around five hydrogen bonds with water.

  13. Guanine nucleotide is essential and Ca2+ is a modulator in the exocytotic reaction of permeabilized rat mast cells.

    PubMed Central

    Lillie, T H; Gomperts, B D

    1992-01-01

    Exocytosis from metabolically depleted permeabilized rat mast cells was measured in response to provision of Ca2+ and guanine nucleotide [GTP or guanosine 5'-[gamma-thio]triphosphate (GTP[S])]. For cells permeabilized in simple salt solutions (NaCl), both of these effectors were required to induce secretion. Exclusion of Mg2+ caused an increase in both the sensitivity of the system to GTP and the extent of secretion elicited, while having no such effects on secretion induced by GTP[S]. The effect of Mg2+ depletion on the ability of GTP to stimulate secretion is probably due to the dependence on Mg2+ of the GTPase activity of GE (a postulated GTP-binding protein which mediates exocytosis). This argues that a persistent stimulus to the G-protein is required to support secretion. Affinity for both GTP[S] and GTP is enhanced when the cells are permeabilized in zwitterionic electrolytes (glutamate, gamma-aminobutyric acid, glycine) instead of NaCl. Under these conditions, secretion occurs in response to provision of either GTP[S] [in the effective absence of Ca2+ (pCa 9)] or Ca2+ (in the absence of guanine nucleotide). Secretion induced by GTP[S] is strongly promoted by the presence of Mg2+ at concentrations in the millimolar range; this promotion by Mg2+ declines as the concentration of Ca2+ is elevated towards pCa 7. At pCa 6, Mg2+ is without effect. Ca(2+)-induced secretion requires the provision of MgATP. Since this is further enhanced by low concentrations (< 100 microM) and then inhibited by high concentrations of GDP, the essential role of ATP is likely to be in the maintenance of GTP via transphosphorylation by a nucleoside diphosphate kinase reaction. Thus, under conditions of high affinity (glutamate environment), GTP[S] alone is capable of inducing exocytosis. Ca2+ acts in concert with guanine nucleotides: it enhances the rate and extent of secretion and increases the affinity for Mg2+ and guanine nucleotides in the activation of the GTP-binding protein (GE

  14. Gene-Specific Assessment of Guanine Oxidation as an Epigenetic Modulator for Cardiac Specification of Mouse Embryonic Stem Cells.

    PubMed

    Park, Joonghoon; Park, Jong Woo; Oh, Hawmok; Maria, Fernanda S; Kang, Jaeku; Tian, Xiuchun

    2016-01-01

    Epigenetics have essential roles in development and human diseases. Compared to the complex histone modifications, epigenetic changes on mammalian DNA are as simple as methylation on cytosine. Guanine, however, can be oxidized as an epigenetic change which can undergo base-pair transversion, causing a genetic difference. Accumulating evidence indicates that reactive oxygen species (ROS) are important signaling molecules for embryonic stem cell (ESC) differentiation, possibly through transient changes on genomic DNA such as 7,8-dihydro-8-oxoguanine (8-oxoG). Technical limitations on detecting such DNA modifications, however, restrict the investigation of the role of 8-oxoG in ESC differentiation. Here, we developed a Hoogsteen base pairing-mediated PCR-sequencing assay to detect 8-oxoG lesions that can subsequently cause G to T transversions during PCR. We then used this assay to assess the epigenetic and transient 8-oxoG formation in the Tbx5 gene of R1 mouse ESCs subjected to oxidative stress by removing 2-mercaptoethanol (2ME) from the culture media. To our surprise, significantly higher numbers of 8-oxoG-mediated G∙C to C∙G transversion, not G∙C to T∙A, were detected at 7th and 9th base position from the transcription start site of exon 1 of Tbx5 in ESCs in the (-)2ME than (+)2ME group (p < 0.05). This was consistent with the decrease in the amount of amplifiable of DNA harboring the 8-oxoG lesions at the Tbx5 promoter region in the oxidative stressed ESCs. The ESCs responded to oxidative stress, possibly through the epigenetic effects of guanine oxidation with decreased proliferation (p < 0.05) and increased formation of beating embryoid bodies (EBs; p < 0.001). Additionally, the epigenetic changes of guanine induced up-regulation of Ogg1 and PolB, two base excision repairing genes for 8-oxoG, in ESCs treated with (-)2ME (p < 0.01). Together, we developed a gene-specific and direct quantification assay for guanine oxidation. Using oxidative stressed

  15. Gene-Specific Assessment of Guanine Oxidation as an Epigenetic Modulator for Cardiac Specification of Mouse Embryonic Stem Cells

    PubMed Central

    Park, Joonghoon; Park, Jong Woo; Oh, Hawmok; Maria, Fernanda S.; Kang, Jaeku; Tian, Xiuchun

    2016-01-01

    Epigenetics have essential roles in development and human diseases. Compared to the complex histone modifications, epigenetic changes on mammalian DNA are as simple as methylation on cytosine. Guanine, however, can be oxidized as an epigenetic change which can undergo base-pair transversion, causing a genetic difference. Accumulating evidence indicates that reactive oxygen species (ROS) are important signaling molecules for embryonic stem cell (ESC) differentiation, possibly through transient changes on genomic DNA such as 7,8-dihydro-8-oxoguanine (8-oxoG). Technical limitations on detecting such DNA modifications, however, restrict the investigation of the role of 8-oxoG in ESC differentiation. Here, we developed a Hoogsteen base pairing-mediated PCR-sequencing assay to detect 8-oxoG lesions that can subsequently cause G to T transversions during PCR. We then used this assay to assess the epigenetic and transient 8-oxoG formation in the Tbx5 gene of R1 mouse ESCs subjected to oxidative stress by removing 2-mercaptoethanol (2ME) from the culture media. To our surprise, significantly higher numbers of 8-oxoG-mediated G∙C to C∙G transversion, not G∙C to T∙A, were detected at 7th and 9th base position from the transcription start site of exon 1 of Tbx5 in ESCs in the (-)2ME than (+)2ME group (p < 0.05). This was consistent with the decrease in the amount of amplifiable of DNA harboring the 8-oxoG lesions at the Tbx5 promoter region in the oxidative stressed ESCs. The ESCs responded to oxidative stress, possibly through the epigenetic effects of guanine oxidation with decreased proliferation (p < 0.05) and increased formation of beating embryoid bodies (EBs; p < 0.001). Additionally, the epigenetic changes of guanine induced up-regulation of Ogg1 and PolB, two base excision repairing genes for 8-oxoG, in ESCs treated with (-)2ME (p < 0.01). Together, we developed a gene-specific and direct quantification assay for guanine oxidation. Using oxidative stressed

  16. The role of topoisomerase I in suppressing genome instability associated with a highly transcribed guanine-rich sequence is not restricted to preventing RNA:DNA hybrid accumulation

    PubMed Central

    Yadav, Puja; Owiti, Norah; Kim, Nayun

    2016-01-01

    Highly transcribed guanine-run containing sequences, in Saccharomyces cerevisiae, become unstable when topoisomerase I (Top1) is disrupted. Topological changes, such as the formation of extended RNA:DNA hybrids or R-loops or non-canonical DNA structures including G-quadruplexes has been proposed as the major underlying cause of the transcription-linked genome instability. Here, we report that R-loop accumulation at a guanine-rich sequence, which is capable of assembling into the four-stranded G4 DNA structure, is dependent on the level and the orientation of transcription. In the absence of Top1 or RNase Hs, R-loops accumulated to substantially higher extent when guanine-runs were located on the non-transcribed strand. This coincides with the orientation where higher genome instability was observed. However, we further report that there are significant differences between the disruption of RNase Hs and Top1 in regards to the orientation-specific elevation in genome instability at the guanine-rich sequence. Additionally, genome instability in Top1-deficient yeasts is not completely suppressed by removal of negative supercoils and further aggravated by expression of mutant Top1. Together, our data provide a strong support for a function of Top1 in suppressing genome instability at the guanine-run containing sequence that goes beyond preventing the transcription-associated RNA:DNA hybrid formation. PMID:26527723

  17. The Rho guanine nucleotide exchange factor ARHGEF5 promotes tumor malignancy via epithelial–mesenchymal transition

    PubMed Central

    Komiya, Y; Onodera, Y; Kuroiwa, M; Nomimura, S; Kubo, Y; Nam, J-M; Kajiwara, K; Nada, S; Oneyama, C; Sabe, H; Okada, M

    2016-01-01

    Epithelial tumor cells often acquire malignant properties, such as invasion/metastasis and uncontrolled cell growth, by undergoing epithelial–mesenchymal transition (EMT). However, the mechanisms by which EMT contributes to malignant progression remain elusive. Here we show that the Rho guanine nucleotide exchange factor (GEF) ARHGEF5 promotes tumor malignancy in a manner dependent on EMT status. We previously identified ARHGEF5, a member of the Dbl family of GEFs, as a multifunctional mediator of Src-induced cell invasion and tumor growth. In the present study, ARHGEF5 was upregulated during tumor growth factor-β-induced EMT in human epithelial MCF10A cells, and promoted cell migration by activating the Rho-ROCK pathway. ARHGEF5 was necessary for the invasive and in vivo metastatic activity of human colorectal cancer HCT116 cells. These findings underscore the crucial role of ARHGEF5 in cell migration and invasion/metastasis. An in vivo tumorigenesis assay revealed that ARHGEF5 had the potential to promote tumor growth via the phosphatidylinositol 3-kinase (PI3K) pathway. However, ARHGEF5 was not required for tumor growth in epithelial-like human colorectal cancer HCT116 and HT29 cells, whereas the growth of mesenchymal-like SW480 and SW620 cells depended on ARHGEF5. Induction of EMT by tumor necrosis factor-α or Slug in HCT116 cells resulted in the dependence of tumor growth on ARHGEF5. In these mesenchymal-like cells, Akt was activated via ARHGEF5 and its activity was required for tumor growth. Analysis of a transcriptome data set revealed that the combination of ARHGEF5 upregulation and E-cadherin downregulation or Snail upregulation was significantly correlated with poor prognosis in patients with colorectal cancers. Taken together, our findings suggest that EMT-induced ARHGEF5 activation contributes to the progression of tumor malignancy. ARHGEF5 may serve as a potential therapeutic target in a subset of malignant tumors that have undergone EMT. PMID

  18. Genetic interactions in yeast between Ypt GTPases and Arf guanine nucleotide exchangers.

    PubMed Central

    Jones, S; Jedd, G; Kahn, R A; Franzusoff, A; Bartolini, F; Segev, N

    1999-01-01

    Two families of GTPases, Arfs and Ypt/rabs, are key regulators of vesicular transport. While Arf proteins are implicated in vesicle budding from the donor compartment, Ypt/rab proteins are involved in the targeting of vesicles to the acceptor compartment. Recently, we have shown a role for Ypt31/32p in exit from the yeast trans-Golgi, suggesting a possible function for Ypt/rab proteins in vesicle budding as well. Here we report the identification of a new member of the Sec7-domain family, SYT1, as a high-copy suppressor of a ypt31/32 mutation. Several proteins that belong to the Sec7-domain family, including the yeast Gea1p, have recently been shown to stimulate nucleotide exchange by Arf GTPases. Nucleotide exchange by Arf GTPases, the switch from the GDP- to the GTP-bound form, is thought to be crucial for their function. Sec7p itself has an important role in the yeast secretory pathway. However, its mechanism of action is not yet understood. We show that all members of the Sec7-domain family exhibit distinct genetic interactions with the YPT genes. Biochemical assays demonstrate that, although the homology between the members of the Sec7-domain family is relatively low (20-35%) and limited to a small domain, they all can act as guanine nucleotide exchange factors (GEFs) for Arf proteins, but not for Ypt GTPases. The Sec7-domain of Sec7p is sufficient for this activity. Interestingly, the Sec7 domain activity is inhibited by brefeldin A (BFA), a fungal metabolite that inhibits some of the Arf-GEFs, indicating that this domain is a target for BFA. These results demonstrate that the ability to act as Arf-GEFs is a general property of all Sec7-domain proteins in yeast. The genetic interactions observed between Arf GEFs and Ypt GTPases suggest the existence of a Ypt-Arf GTPase cascade in the secretory pathway. PMID:10430582

  19. The Rho guanine nucleotide exchange factor ARHGEF5 promotes tumor malignancy via epithelial-mesenchymal transition.

    PubMed

    Komiya, Y; Onodera, Y; Kuroiwa, M; Nomimura, S; Kubo, Y; Nam, J-M; Kajiwara, K; Nada, S; Oneyama, C; Sabe, H; Okada, M

    2016-01-01

    Epithelial tumor cells often acquire malignant properties, such as invasion/metastasis and uncontrolled cell growth, by undergoing epithelial-mesenchymal transition (EMT). However, the mechanisms by which EMT contributes to malignant progression remain elusive. Here we show that the Rho guanine nucleotide exchange factor (GEF) ARHGEF5 promotes tumor malignancy in a manner dependent on EMT status. We previously identified ARHGEF5, a member of the Dbl family of GEFs, as a multifunctional mediator of Src-induced cell invasion and tumor growth. In the present study, ARHGEF5 was upregulated during tumor growth factor-β-induced EMT in human epithelial MCF10A cells, and promoted cell migration by activating the Rho-ROCK pathway. ARHGEF5 was necessary for the invasive and in vivo metastatic activity of human colorectal cancer HCT116 cells. These findings underscore the crucial role of ARHGEF5 in cell migration and invasion/metastasis. An in vivo tumorigenesis assay revealed that ARHGEF5 had the potential to promote tumor growth via the phosphatidylinositol 3-kinase (PI3K) pathway. However, ARHGEF5 was not required for tumor growth in epithelial-like human colorectal cancer HCT116 and HT29 cells, whereas the growth of mesenchymal-like SW480 and SW620 cells depended on ARHGEF5. Induction of EMT by tumor necrosis factor-α or Slug in HCT116 cells resulted in the dependence of tumor growth on ARHGEF5. In these mesenchymal-like cells, Akt was activated via ARHGEF5 and its activity was required for tumor growth. Analysis of a transcriptome data set revealed that the combination of ARHGEF5 upregulation and E-cadherin downregulation or Snail upregulation was significantly correlated with poor prognosis in patients with colorectal cancers. Taken together, our findings suggest that EMT-induced ARHGEF5 activation contributes to the progression of tumor malignancy. ARHGEF5 may serve as a potential therapeutic target in a subset of malignant tumors that have undergone EMT. PMID

  20. A Rab1 mutant affecting guanine nucleotide exchange promotes disassembly of the Golgi apparatus

    PubMed Central

    1994-01-01

    The Golgi apparatus is a dynamic organelle whose structure is sensitive to vesicular traffic and to cell cycle control. We have examined the potential role for rab1a, a GTPase previously associated with ER to Golgi and intra-Golgi transport, in the formation and maintenance of Golgi structure. Bacterially expressed, recombinant rab1a protein was microinjected into rat embryonic fibroblasts, followed by analysis of Golgi morphology by fluorescence and electron microscopy. Three recombinant proteins were tested: wild-type rab, mutant rab1a(S25N), a constitutively GDP-bound form (Nuoffer, C., H. W. Davidson, J. Matteson, J. Meinkoth, and W. E. Balch, 1994. J. Cell Biol. 125: 225- 237), and mutant rab1a(N124I) defective in guanine nucleotide binding. Microinjection of wild-type rab1a protein or a variety of negative controls (injection buffer alone or activated ras protein) did not affect the appearance of the Golgi, as visualized by immunofluorescence of alpha-mannosidase II (Man II), used as a Golgi marker. In contrast, microinjection of the mutant forms promoted the disassembly of the Golgi stacks into dispersed vesicular structures visualized by immunofluorescence. When S25N-injected cells were analyzed by EM after immunoperoxidase labeling, Man II was found in isolated ministacks and large vesicular elements that were often surrounded by numerous smaller unlabeled vesicles resembling carrier vesicles. Golgi disassembly caused by rab1a mutants differs from BFA-induced disruption, since beta- COP remains membrane associated, and Man II does not redistribute to the ER. BFA can still cause these residual Golgi elements to fuse and disperse, albeit at a slower rate. Moreover, BFA recovery is incomplete in the presence of rab1 mutants or GTP gamma S. We conclude that GTP exchange and hydrolysis by GTPases, specifically rab1a, are required to form and maintain normal Golgi stacks. The similarity of Golgi disassembly seen with rab1a mutants to that occurring during

  1. Regulation of mitotic spindle formation by the RhoA guanine nucleotide exchange factor ARHGEF10

    PubMed Central

    Aoki, Takuji; Ueda, Shuji; Kataoka, Tohru; Satoh, Takaya

    2009-01-01

    Background The Dbl family guanine nucleotide exchange factor ARHGEF10 was originally identified as the product of the gene associated with slowed nerve-conduction velocities of peripheral nerves. However, the function of ARHGEF10 in mammalian cells is totally unknown at a molecular level. ARHGEF10 contains no distinctive functional domains except for tandem Dbl homology-pleckstrin homology and putative transmembrane domains. Results Here we show that RhoA is a substrate for ARHGEF10. In both G1/S and M phases, ARHGEF10 was localized in the centrosome in adenocarcinoma HeLa cells. Furthermore, RNA interference-based knockdown of ARHGEF10 resulted in multipolar spindle formation in M phase. Each spindle pole seems to contain a centrosome consisting of two centrioles and the pericentriolar material. Downregulation of RhoA elicited similar phenotypes, and aberrant mitotic spindle formation following ARHGEF10 knockdown was rescued by ectopic expression of constitutively activated RhoA. Multinucleated cells were not increased upon ARHGEF10 knockdown in contrast to treatment with Y-27632, a specific pharmacological inhibitor for the RhoA effector kinase ROCK, which induced not only multipolar spindle formation, but also multinucleation. Therefore, unregulated centrosome duplication rather than aberration in cytokinesis may be responsible for ARHGEF10 knockdown-dependent multipolar spindle formation. We further isolated the kinesin-like motor protein KIF3B as a binding partner of ARHGEF10. Knockdown of KIF3B again caused multipolar spindle phenotypes. The supernumerary centrosome phenotype was also observed in S phase-arrested osteosarcoma U2OS cells when the expression of ARHGEF10, RhoA or KIF3B was abrogated by RNA interference. Conclusion Collectively, our results suggest that a novel RhoA-dependent signaling pathway under the control of ARHGEF10 has a pivotal role in the regulation of the cell division cycle. This pathway is not involved in the regulation of

  2. Alkaline Phosphatase, Soluble Extracellular Adenine Nucleotides, and Adenosine Production after Infant Cardiopulmonary Bypass

    PubMed Central

    Davidson, Jesse A.; Urban, Tracy; Tong, Suhong; Twite, Mark; Woodruff, Alan

    2016-01-01

    Rationale Decreased alkaline phosphatase activity after infant cardiac surgery is associated with increased post-operative cardiovascular support requirements. In adults undergoing coronary artery bypass grafting, alkaline phosphatase infusion may reduce inflammation. Mechanisms underlying these effects have not been explored but may include decreased conversion of extracellular adenine nucleotides to adenosine. Objectives 1) Evaluate the association between alkaline phosphatase activity and serum conversion of adenosine monophosphate to adenosine after infant cardiac surgery; 2) assess if inhibition/supplementation of serum alkaline phosphatase modulates this conversion. Methods and Research Pre/post-bypass serum samples were obtained from 75 infants <4 months of age. Serum conversion of 13C5-adenosine monophosphate to 13C5-adenosine was assessed with/without selective inhibition of alkaline phosphatase and CD73. Low and high concentration 13C5-adenosine monophosphate (simulating normal/stress concentrations) were used. Effects of alkaline phosphatase supplementation on adenosine monophosphate clearance were also assessed. Changes in serum alkaline phosphatase activity were strongly correlated with changes in 13C5-adenosine production with or without CD73 inhibition (r = 0.83; p<0.0001). Serum with low alkaline phosphatase activity (≤80 U/L) generated significantly less 13C5-adenosine, particularly in the presence of high concentration 13C5-adenosine monophosphate (10.4μmol/L vs 12.9μmol/L; p = 0.0004). Inhibition of alkaline phosphatase led to a marked decrease in 13C5-adenosine production (11.9μmol/L vs 2.7μmol/L; p<0.0001). Supplementation with physiologic dose human tissue non-specific alkaline phosphatase or high dose bovine intestinal alkaline phosphatase doubled 13C5-adenosine monophosphate conversion to 13C5-adenosine (p<0.0001). Conclusions Alkaline phosphatase represents the primary serum ectonucleotidase after infant cardiac surgery and low post

  3. Multiple Decay Mechanisms and 2D-UV Spectroscopic Fingerprints of Singlet Excited Solvated Adenine-Uracil Monophosphate.

    PubMed

    Li, Quansong; Giussani, Angelo; Segarra-Martí, Javier; Nenov, Artur; Rivalta, Ivan; Voityuk, Alexander A; Mukamel, Shaul; Roca-Sanjuán, Daniel; Garavelli, Marco; Blancafort, Lluís

    2016-05-23

    The decay channels of singlet excited adenine uracil monophosphate (ApU) in water are studied with CASPT2//CASSCF:MM potential energy calculations and simulation of the 2D-UV spectroscopic fingerprints with the aim of elucidating the role of the different electronic states of the stacked conformer in the excited state dynamics. The adenine (1) La state can decay without a barrier to a conical intersection with the ground state. In contrast, the adenine (1) Lb and uracil S(U) states have minima that are separated from the intersections by sizeable barriers. Depending on the backbone conformation, the CT state can undergo inter-base hydrogen transfer and decay to the ground state through a conical intersection, or it can yield a long-lived minimum stabilized by a hydrogen bond between the two ribose rings. This suggests that the (1) Lb , S(U) and CT states of the stacked conformer may all contribute to the experimental lifetimes of 18 and 240 ps. We have also simulated the time evolution of the 2D-UV spectra and provide the specific fingerprint of each species in a recommended probe window between 25 000 and 38 000 cm(-1) in which decongested, clearly distinguishable spectra can be obtained. This is expected to allow the mechanistic scenarios to be discerned in the near future with the help of the corresponding experiments. Our results reveal the complexity of the photophysics of the relatively small ApU system, and the potential of 2D-UV spectroscopy to disentangle the photophysics of multichromophoric systems. PMID:27113273

  4. High-spin ferric ions in Saccharomyces cerevisiae vacuoles are reduced to the ferrous state during adenine-precursor detoxification.

    PubMed

    Park, Jinkyu; McCormick, Sean P; Cockrell, Allison L; Chakrabarti, Mrinmoy; Lindahl, Paul A

    2014-06-24

    The majority of Fe in Fe-replete yeast cells is located in vacuoles. These acidic organelles store Fe for use under Fe-deficient conditions and they sequester it from other parts of the cell to avoid Fe-associated toxicity. Vacuolar Fe is predominantly in the form of one or more magnetically isolated nonheme high-spin (NHHS) Fe(III) complexes with polyphosphate-related ligands. Some Fe(III) oxyhydroxide nanoparticles may also be present in these organelles, perhaps in equilibrium with the NHHS Fe(III). Little is known regarding the chemical properties of vacuolar Fe. When grown on adenine-deficient medium (A↓), ADE2Δ strains of yeast such as W303 produce a toxic intermediate in the adenine biosynthetic pathway. This intermediate is conjugated with glutathione and shuttled into the vacuole for detoxification. The iron content of A↓ W303 cells was determined by Mössbauer and EPR spectroscopies. As they transitioned from exponential growth to stationary state, A↓ cells (supplemented with 40 μM Fe(III) citrate) accumulated two major NHHS Fe(II) species as the vacuolar NHHS Fe(III) species declined. This is evidence that vacuoles in A↓ cells are more reducing than those in adenine-sufficient cells. A↓ cells suffered less oxidative stress despite the abundance of NHHS Fe(II) complexes; such species typically promote Fenton chemistry. Most Fe in cells grown for 5 days with extra yeast-nitrogen-base, amino acids and bases in minimal medium was HS Fe(III) with insignificant amounts of nanoparticles. The vacuoles of these cells might be more acidic than normal and can accommodate high concentrations of HS Fe(III) species. Glucose levels and rapamycin (affecting the TOR system) affected cellular Fe content. This study illustrates the sensitivity of cellular Fe to changes in metabolism, redox state and pH. Such effects broaden our understanding of how Fe and overall cellular metabolism are integrated. PMID:24919141

  5. Multiple Decay Mechanisms and 2D-UV Spectroscopic Fingerprints of Singlet Excited Solvated Adenine-Uracil Monophosphate.

    PubMed

    Li, Quansong; Giussani, Angelo; Segarra-Martí, Javier; Nenov, Artur; Rivalta, Ivan; Voityuk, Alexander A; Mukamel, Shaul; Roca-Sanjuán, Daniel; Garavelli, Marco; Blancafort, Lluís

    2016-05-23

    The decay channels of singlet excited adenine uracil monophosphate (ApU) in water are studied with CASPT2//CASSCF:MM potential energy calculations and simulation of the 2D-UV spectroscopic fingerprints with the aim of elucidating the role of the different electronic states of the stacked conformer in the excited state dynamics. The adenine (1) La state can decay without a barrier to a conical intersection with the ground state. In contrast, the adenine (1) Lb and uracil S(U) states have minima that are separated from the intersections by sizeable barriers. Depending on the backbone conformation, the CT state can undergo inter-base hydrogen transfer and decay to the ground state through a conical intersection, or it can yield a long-lived minimum stabilized by a hydrogen bond between the two ribose rings. This suggests that the (1) Lb , S(U) and CT states of the stacked conformer may all contribute to the experimental lifetimes of 18 and 240 ps. We have also simulated the time evolution of the 2D-UV spectra and provide the specific fingerprint of each species in a recommended probe window between 25 000 and 38 000 cm(-1) in which decongested, clearly distinguishable spectra can be obtained. This is expected to allow the mechanistic scenarios to be discerned in the near future with the help of the corresponding experiments. Our results reveal the complexity of the photophysics of the relatively small ApU system, and the potential of 2D-UV spectroscopy to disentangle the photophysics of multichromophoric systems.

  6. Quantitative Subtractively Normalized Interfacial Fourier Transform Infrared Reflection Spectroscopy Study of the Adsorption of Adenine on Au(111) Electrodes.

    PubMed

    Prieto, Francisco; Su, Zhangfei; Leitch, J Jay; Rueda, Manuela; Lipkowski, Jacek

    2016-04-26

    Quantitative subtractively normalized interfacial Fourier transform infrared reflection spectroscopy (SNIFTIRS) was used to determine the molecular orientation and identify the metal-molecular interactions responsible for the adsorption of adenine from the bulk electrolyte solution onto the surface of the Au(111) electrode. The recorded p-polarized IR spectra of the adsorbed species were subtracted from the collected s-polarized IR spectra to remove the IR contributions of the vibrational bands of the desorbed molecules that are located within the thin layer cavity of the spectroelectrochemical cell. The intense IR band around 1640 cm(-1), which is assigned to the pyrimidine ring stretching vibrations of the C5-C6 and C6-N10 bonds, and the IR band at 1380 cm(-1), which results from a combination of the ring stretching vibration of the C5-C7 bond and the in-plane CH bending vibration, were selected for the quantitative analysis measurements. The transition dipoles of these bands were evaluated by DFT calculations. Their orientations differed by 85 ± 5°. The tilt angles of adsorbed adenine molecules were calculated from the intensity of these two vibrations at different potentials. The results indicate that the molecular plane is tilted at an angle of 40° with respect to the surface normal of the electrode and rotates by 16° around its normal axis with increasing electrode potential. This orientation results from the chemical interaction between the N10 and gold atoms coupled with the π-π parallel stacking interactions between the adjacent adsorbed molecules. Furthermore, the changes in the molecular plane rotation with the electric field suggests that the N1 atom of adenine must also participate in the interaction between the molecule and metal.

  7. High-NaCl diet impairs dynamic renal blood flow autoregulation in rats with adenine-induced chronic renal failure.

    PubMed

    Saeed, Aso; DiBona, Gerald F; Grimberg, Elisabeth; Nguy, Lisa; Mikkelsen, Minne Line Nedergaard; Marcussen, Niels; Guron, Gregor

    2014-03-15

    This study examined the effects of 2 wk of high-NaCl diet on kidney function and dynamic renal blood flow autoregulation (RBFA) in rats with adenine-induced chronic renal failure (ACRF). Male Sprague-Dawley rats received either chow containing adenine or were pair-fed an identical diet without adenine (controls). After 10 wk, rats were randomized to either remain on the same diet (0.6% NaCl) or to be switched to high 4% NaCl chow. Two weeks after randomization, renal clearance experiments were performed under isoflurane anesthesia and dynamic RBFA, baroreflex sensitivity (BRS), systolic arterial pressure variability (SAPV), and heart rate variability were assessed by spectral analytical techniques. Rats with ACRF showed marked reductions in glomerular filtration rate and renal blood flow (RBF), whereas mean arterial pressure and SAPV were significantly elevated. In addition, spontaneous BRS was reduced by ∼50% in ACRF animals. High-NaCl diet significantly increased transfer function fractional gain values between arterial pressure and RBF in the frequency range of the myogenic response (0.06-0.09 Hz) only in ACRF animals (0.3 ± 4.0 vs. -4.4 ± 3.8 dB; P < 0.05). Similarly, a high-NaCl diet significantly increased SAPV in the low-frequency range only in ACRF animals. To conclude, a 2-wk period of a high-NaCl diet in ACRF rats significantly impaired dynamic RBFA in the frequency range of the myogenic response and increased SAPV in the low-frequency range. These abnormalities may increase the susceptibility to hypertensive end-organ injury and progressive renal failure by facilitating pressure transmission to the microvasculature.

  8. Photoaffinity Labeling of High Affinity Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP)-Binding Proteins in Sea Urchin Egg*♦

    PubMed Central

    Walseth, Timothy F.; Lin-Moshier, Yaping; Jain, Pooja; Ruas, Margarida; Parrington, John; Galione, Antony; Marchant, Jonathan S.; Slama, James T.

    2012-01-01

    Nicotinic acid adenine dinucleotide phosphate (NAADP) is a messenger that regulates calcium release from intracellular acidic stores. Recent studies have identified two-pore channels (TPCs) as endolysosomal channels that are regulated by NAADP; however, the nature of the NAADP receptor binding site is unknown. To further study NAADP binding sites, we have synthesized and characterized [32P-5-azido]nicotinic acid adenine dinucleotide phosphate ([32P-5N3]NAADP) as a photoaffinity probe. Photolysis of sea urchin egg homogenates preincubated with [32P-5N3]NAADP resulted in specific labeling of 45-, 40-, and 30-kDa proteins, which was prevented by inclusion of nanomolar concentrations of unlabeled NAADP or 5N3-NAADP, but not by micromolar concentrations of structurally related nucleotides such as NAD, nicotinic acid adenine dinucleotide, nicotinamide mononucleotide, nicotinic acid, or nicotinamide. [32P-5N3]NAADP binding was saturable and displayed high affinity (Kd ∼10 nm) in both binding and photolabeling experiments. [32P-5N3]NAADP photolabeling was irreversible in a high K+ buffer, a hallmark feature of NAADP binding in the egg system. The proteins photolabeled by [32P-5N3]NAADP have molecular masses smaller than the sea urchin TPCs, and antibodies to TPCs do not detect any immunoreactivity that comigrates with either the 45-kDa or the 40-kDa photolabeled proteins. Interestingly, antibodies to TPC1 and TPC3 were able to immunoprecipitate a small fraction of the 45- and 40-kDa photolabeled proteins, suggesting that these proteins associate with TPCs. These data suggest that high affinity NAADP binding sites are distinct from TPCs. PMID:22117077

  9. Gef1p, a New Guanine Nucleotide Exchange Factor for Cdc42p, Regulates Polarity in Schizosaccharomyces pombe

    PubMed Central

    Coll, Pedro M.; Trillo, Yadira; Ametzazurra, Amagoia; Perez, Pilar

    2003-01-01

    Schizosaccharomyces pombe cdc42+ regulates cell morphology and polarization of the actin cytoskeleton. Scd1p/Ral1p is the only described guanine nucleotide exchange factor (GEF) for Cdc42p in S. pombe. We have identified a new GEF, named Gef1p, specifically regulating Cdc42p. Gef1p binds to inactive Cdc42p but not to other Rho GTPases in two-hybrid assays. Overexpression of gef1+ increases specifically the GTP-bound Cdc42p, and Gef1p is capable of stimulating guanine nucleotide exchange of Cdc42p in vitro. Overexpression of gef1+ causes changes in cell morphology similar to those caused by overexpression of the constitutively active cdc42G12V allele. Gef1p localizes to the septum. gef1+ deletion is viable but causes a mild cell elongation and defects in bipolar growth and septum formation, suggesting a role for Gef1p in the control of cell polarity and cytokinesis. The double mutant gef1Δ scd1Δ is not viable, indicating that they share an essential function as Cdc42p activators. However, both deletion and overexpression of either gef1+ or scd1+ causes different morphological phenotypes, which suggest different functions. Genetic evidence revealed a link between Gef1p and the signaling pathway of Shk1/Orb2p and Orb6p. In contrast, no genetic interaction between Gef1p and Shk2p-Mkh1p pathway was observed. PMID:12529446

  10. Molecular cloning, characterization, and expression of human ADP-ribosylation factors: Two guanine nucleotide-dependent activators of cholera toxin

    SciTech Connect

    Bobak, D.A.; Nightingale, M.S.; Murtagh, J.J.; Price, S.R.; Moss, J.; Vaughan, M. )

    1989-08-01

    ADP-ribosylation factors (ARFs) are small guanine nucleotide-binding proteins that enhance the enzymatic activities of cholera toxin. Two ARF cDNAs, ARF1 and ARF3, were cloned from a human cerebellum library. Based on deduced amino acid sequences and patterns of hybridization of cDNA and oligonucleotide probes with mammalian brain poly(A){sup +} RNA, human ARF1 is the homologue of bovine ARF1. Human ARF3, which differs from bovine ARF1 and bovine ARF2, appears to represent a newly identified third type of ARF. Hybridization patterns of human ARF cDNA and clone-specific oligonucleotides with poly(A){sup +} RNA are consistent with the presence of at least two, and perhaps four, separate ARF messages in human brain. In vitro translation of ARF1, ARF2, and ARF3 produced proteins that behaved, by SDS/PAGE, similar to a purified soluble brain ARF. Deduced amino acid sequences of human ARF1 and ARF3 contain regions, similar to those in other G proteins, that are believed to be involved in GTP binding and hydrolysis. ARFS also exhibit a modest degree of homology with a bovine phospholipase C. The observations reported here support the conclusion that the ARFs are members of a multigene family of small guanine nucleotide-binding proteins. Definition of the regulation of ARF mRNAs and of function(s) of recombinant ARF proteins will aid in the elucidation of the physiologic role(s) of ARFs.

  11. Role of aspartate 143 in Escherichia coli tRNA-guanine transglycosylase: alteration of heterocyclic substrate specificity.

    PubMed

    Todorov, Katherine Abold; Garcia, George A

    2006-01-17

    tRNA-guanine transglycosylase (TGT) is a key enzyme involved in the post-transcriptional modification of certain tRNAs in their anticodon wobble positions with queuine. To maintain the correct Watson-Crick base pairing properties of the wobble base (and hence proper translation of the genetic code), TGT must recognize its heterocyclic substrate with high specificity. The X-ray crystal structure of a eubacterial TGT bound to preQ1 [Romier, C., et al. (1996) EMBO J. 15, 2850-2857] suggested that aspartate 143 (Escherichia coli TGT numbering) was involved in heterocyclic substrate recognition. Subsequent mutagenic and computational modeling studies from our lab [Todorov, K. A., et al. (2005) Biophys. J. 89 (3), 1965-1977] provided experimental evidence supporting this hypothesis. Herein, we report further studies probing the differential heterocyclic substrate recognition properties of the aspartate 143 mutant TGTs. Our results are consistent with one of the mutants exhibiting an inversion of substrate recognition preference (xanthine vs guanine) relative to that of the wild type, as evidenced by Km values. This confirms the key role of aspartate 143 in maintaining the anticodon identities of the queuine-containing tRNAs and suggests that TGT mutants could be developed that would alter the tRNA wobble base base pairing properties.

  12. Identification of a brefeldin A-insensitive guanine nucleotide-exchange protein for ADP-ribosylation factor in bovine brain.

    PubMed Central

    Tsai, S C; Adamik, R; Moss, J; Vaughan, M

    1994-01-01

    ADP-ribosylation factors (ARFs) are approximately 20-kDa guanine nucleotide-binding proteins that participate in vesicular transport in the Golgi and other intracellular compartments and stimulate cholera toxin ADP-ribosyltransferase activity. ARFs are active in the GTP-bound form; hydrolysis of bound GTP to GDP, possibly with the assistance of a GTP hydrolysis (GTPase)-activating protein results in inactivation. Exchange of GDP for GTP and reactivation were shown by other workers to be enhanced by Golgi membranes in a brefeldin A-sensitive reaction, leading to the proposal that the guanine nucleotide-exchange protein (GEP) was a target of brefeldin A. In the studies reported here, a soluble GEP was partially purified from bovine brain. Exchange of nucleotide on ARFs 1 and 3, based on increased ARF activity in a toxin assay and stimulation of binding of guanosine 5'-[gamma-[35S]thio]triphosphate, was dependent on phospholipids, with phosphatidylserine being more effective than cardiolipin. GEP appeared to increase the rate of nucleotide exchange but did not affect the affinity of ARF for GTP. Whereas the crude GEP had a size of approximately 700 kDa, the partially purified GEP behaved on Ultrogel AcA 54 as a protein of 60 kDa. With purification, the GEP activity became insensitive to brefeldin A, consistent with the conclusion that, in contrast to earlier inferences, the exchange protein is not itself the target of brefeldin A. PMID:8159707

  13. Formation Pathways of a Guanine-Quadruplex DNA Revealed by Molecular Dynamics and Thermodynamic Analysis of the Substates

    PubMed Central

    Štefl, Richard; Cheatham, Thomas E.; Špačková, Nad'a; Fadrná, Eva; Berger, Imre; Koča, Jaroslav; Šponer, Jiří

    2003-01-01

    The formation of a cation-stabilized guanine quadruplex (G-DNA) stem is an exceptionally slow process involving complex kinetics that has not yet been characterized at atomic resolution. Here, we investigate the formation of a parallel stranded G-DNA stem consisting of four strands of d(GGGG) using molecular dynamics simulations with explicit inclusion of counterions and solvent. Due to the limitations imposed by the nanosecond timescale of the simulations, rather than watching for the spontaneous formation of G-DNA, our approach probes the stability of possible supramolecular intermediates (including two-, three-, and four-stranded assemblies with out-of-register basepairing between guanines) on the formation pathway. The simulations suggest that “cross-like” two-stranded assemblies may serve as nucleation centers in the initial formation of parallel stranded G-DNA quadruplexes, proceeding through a series of rearrangements involving trapping of cations, association of additional strands, and progressive slippage of strands toward the full stem. To supplement the analysis, approximate free energies of the models are obtained with explicit consideration of the integral cations. The approach applied here serves as a prototype for qualitatively investigating other G-DNA molecules using molecular dynamics simulation and free-energy analysis. PMID:12944293

  14. Quadruplexes of human telomere dG{sub 3}(TTAG{sub 3}){sub 3} sequences containing guanine abasic sites

    SciTech Connect

    Skolakova, Petra; Bednarova, Klara; Vorlickova, Michaela; Sagi, Janos

    2010-08-20

    Research highlights: {yields} Loss of a guanine base does not hinder the formation of G-quadruplex of human telomere sequence. {yields} Each depurination strongly destabilizes the quadruplex of dG{sub 3}(TTAG{sub 3}){sub 3} in NaCl and KCl. {yields} Conformational change of the abasic analogs of dG{sub 3}(TTAG{sub 3}){sub 3} is inhibited in KCl. {yields} The effects abasic sites may affect telomere-end structures in vivo. -- Abstract: This study was performed to evaluate how the loss of a guanine base affects the structure and stability of the three-tetrad G-quadruplex of 5'-dG{sub 3}(TTAG{sub 3}){sub 3}, the basic quadruplex-forming unit of the human telomere DNA. None of the 12 possible abasic sites hindered the formation of quadruplexes, but all reduced the thermodynamic stability of the parent quadruplex in both NaCl and KCl. The base loss did not change the Na{sup +}-stabilized intramolecular antiparallel architecture, based on CD spectra, but held up the conformational change induced in dG{sub 3}(TTAG{sub 3}){sub 3} in physiological concentration of KCl. The reduced stability and the inhibited conformational transitions observed here in vitro for the first time may predict that unrepaired abasic sites in G-quadruplexes could lead to changes in the chromosome's terminal protection in vivo.

  15. Sestrins Function as Guanine Nucleotide Dissociation Inhibitors for Rag GTPases to Control mTORC1 Signaling

    PubMed Central

    Peng, Min; Yin, Na; Li, Ming O.

    2014-01-01

    SUMMARY Mechanistic target of rapamycin complex 1 (mTORC1) integrates diverse environmental signals to control cellular growth and organismal homeostasis. In response to nutrients, Rag GTPases recruit mTORC1 to the lysosome to be activated, but how Rags are regulated remains incompletely understood. Here we show that Sestrins bind to the heterodimeric RagA/B-RagC/D GTPases, and function as guanine nucleotide dissociation inhibitors (GDIs) for RagA/B. Sestrin overexpression inhibits amino acid-induced Rag guanine nucleotide exchange and mTORC1 translocation to the lysosome. Mutation of the conserved GDI motif creates a dominant-negative form of Sestrin that renders mTORC1 activation insensitive to amino acid deprivation, whereas a cell-permeable peptide containing the GDI motif inhibits mTORC1 signaling. Mice deficient in all Sestrins exhibit reduced postnatal survival associated with defective mTORC1 inactivation in multiple organs during neonatal fasting. These findings reveal a non-redundant mechanism by which the Sestrin family of GDIs regulates the nutrient-sensing Rag GTPases to control mTORC1 signaling. PMID:25259925

  16. Role of guanine nucleotide binding protein(s) in vasopressin-induced responses of a vascular smooth muscle cell line

    SciTech Connect

    Nambi, P.; Aiyar, N.; Whitman, M.; Stassen, F.L.; Crooke, S.T.

    1986-05-01

    Rat aortic smooth muscle cells (A-10) carry vascular V1 vasopressin receptors. In these cells, vasopressin inhibits isoproterenol-induced cAMP accumulation and stimulates phosphatidylinositol turnover and Ca/sup 2 +/ mobilization. Pretreatment of the cells with phorbol esters resulted in inhibition of the vasopressin-induced responses. The inactive phorbol ester aPDD was ineffective. These data suggested that phorbol ester might cause phosphorylation of the vasopressin receptor and/or coupling protein(s). Here, they studied the role of guanine nucleotide binding proteins by employing the novel radiolabeled vasopressin antagonist (/sup 3/H)-SKF 101926. In competition experiments with cell membranes, Gpp(NH)p shifted the vasopressin curve to the right indicating decreased agonist affinity. Phorbol ester pretreatment abolished the Gpp(NH)p effect. Pretreatment of the cells with N-ethylmaleimide (NEM) resulted in inhibition of vasopressin-induced phosphatidyinositol turnover. NEM also abolished the decrease in agonist affinity caused by Gpp(NH)p. These data showed that NEM and phorbol ester pretreatment of smooth muscle cells functionally uncoupled the vasopressin receptors and suggested that vasopressin V1 receptor responses are mediated through guanine nucleotide binding protein(s).

  17. Mutagenic effects induced by the attack of NO2 radical to the guanine-cytosine base pair

    PubMed Central

    Cerón-Carrasco, José P.; Requena, Alberto; Zúñiga, José; Jacquemin, Denis

    2015-01-01

    We investigate the attack of the nitrogen dioxide radical (NO•2) to the guanine—cytosine (GC) base pair and the subsequent tautomeric reactions able to induce mutations, by means of density functional theory (DFT) calculations. The conducted simulations allow us to identify the most reactive sites of the GC base pair. Indeed, the computed relative energies demonstrate that the addition of the NO•2 radical to the C8 position of the guanine base forms to the most stable adduct. Although the initial adducts might evolve to non-canonical structures via inter-base hydrogen bonds rearrangements, the probability for the proton exchange to occur lies in the same range as that observed for undamaged DNA. As a result, tautomeric errors in NO2-attacked DNA arises at the same rate as in canonical DNA, with no macroscopic impact on the overall stability of DNA. The potential mutagenic effects of the GC–NO•2 radical adducts likely involve side reactions, e.g., the GC deprotonation to the solvent, rather than proton exchange between guanine and cytosine basis. PMID:25798437

  18. An ab initio Study of Decay Mechanism of Adenine: the Facile Path of the Amino NH Bond Cleavage

    NASA Astrophysics Data System (ADS)

    Conti, Irene; Garavelli, Marco; Orlandi, Giorgio

    2007-12-01

    A comprehensive study of the radiationless decay processes of the lowest excited singlet states in the isolated 9H-Adenine has been performed at the CASPT2//CASSCF level. The minimum energy paths of the La, Lb and nπ* singlet states along different skeletal distortions have been computed and the Conical Intersections (CIs) involving these states have been determined. The fast deactivation path of La along a skeletal deformation, which leads to a S0/La CI, as previously discussed, is confirmed. Moreover, low-lying CIs between S0 and πσ* singlet states have been characterized, where σ* is the antibonding orbital localized on a N-H bond of the amino (πσNH2*) or of the azine group (πσN9H*). We have found that the repulsive πσNH2* state associated with an amino N-H bond can be populated through a barrierless way. Therefore, the decay path shows a bifurcation leading to two possible ways of radiationless deactivation: on one hand a non-photochemical decay through the S0/La or S0/nπ* CIs and on the other hand a photochemical process via the possible access to the S0/πσNH2* CI that produces N-H cleavage. In this way, we can explain the H atom loss found upon UV excitation. We have considered also the decay of higher energy bright states. We have found that these states can decay also by converting to the repulsive πσN9H* state associated with the azine NH bond. This new channel suggests an increase of H-atom photoproduction yield by excitating Adenine with lower wavelength radiations. The study of the decay processes of an Adenine molecule in the double strand d(A)10ṡd(T)10 in water solvent is currently underway: Adenine is treated by the Quantum Mechanical (QM) approach and the remaining molecules are described at the Molecular Mechanics (MM) level. We use the COBRAMM program that is a tunable QM/MM approach to complex molecular architectures developed by our research group.

  19. Kinetics and Thermodynamics of the Reaction between the (•)OH Radical and Adenine: A Theoretical Investigation.

    PubMed

    Milhøj, Birgitte O; Sauer, Stephan P A

    2015-06-18

    The accessibility of all possible reaction paths for the reaction between the nucleobase adenine and the (•)OH radical is investigated through quantum chemical calculations of barrier heights and rate constants at the ωB97X-D/6-311++G(2df,2pd) level with Eckart tunneling corrections. First the computational method is validated by considering the hydrogen abstraction from the heterocyclic N9 nitrogen in adenine as a test system. Geometries for all molecules in the reaction are optimized with four different DFT exchange-correlation functionals (B3LYP, BHandHLYP, M06-2X, and ωB97X-D), in combination with Pople and Dunning basis sets, all of which have been employed in similar investigations in the literature. Improved energies are obtained through single point calculations with CCSD(T) and the same basis sets, and reaction rate constants are calculated for all methods both without tunneling corrections and with the Wigner, Bell, and Eckart corrections. In comparison to CCSD(T)//BHandHLYP/aug-cc-pVTZ reference results, the ωB97X-D/6-311++G(2df,2pd) method combined with Eckart tunneling corrections provides a sensible compromise between accuracy and time. Using this method, all subreactions of the reaction between adenine and the (•)OH radical are investigated. The total rate constants for hydrogen abstraction and addition for adenine are predicted with this method to be 1.06 × 10(-12) and 1.10 × 10(-12) cm(3) molecules(-1) s(-1), respectively. Abstractions of H61 and H62 contribute the most, while only addition to the C8 carbon is found to be of any significance, in contrast to previous claims that addition is the dominant reaction pathway. The overall rate constant for the complete reaction is found to be 2.17 × 10(-12) cm(3) molecules(-1) s(-1), which agrees exceptionally well with experimental results.

  20. Regioselective Palmitoylation of 9-(2,3-Dihydroxy- propyl)adenine Catalyzed by a Glycopolymer-enzyme Conjugate.

    PubMed

    Brabcová, Jana; Blažek, Jiří; Krečmerová, Marcela; Vondrášek, Jiří; Palomo, Jose M; Zarevúcka, Marie

    2016-05-16

    The enzymatic regioselective monopalmitoylation of racemic 9-(2,3-dihydroxypropyl)- adenine (DHPA), an approved antiviral agent, has been performed by an immobilized form of Candida antarctica B lipase (CAL-B) using a 4:1 DMF/hexane mixture as the reaction medium. To improve the chemical yield of the desired monopalmitoylation reaction, solid-phase chemical modifications of the lipase were evaluated. The reaction yield was successfully increased obtaining 100% product after a second treatment of the product solution with fresh immobilised chemically glycosylated-CAL-B.

  1. Dependence of DNA-protein cross-linking via guanine oxidation upon local DNA sequence as studied by restriction endonuclease inhibition.

    PubMed

    Madison, Amanda L; Perez, Zitadel A; To, Phuong; Maisonet, Tiffany; Rios, Eunice V; Trejo, Yuri; Ochoa-Paniagua, Carmen; Reno, Anita; Stemp, Eric D A

    2012-01-10

    Oxidative damage plays a causative role in many diseases, and DNA-protein cross-linking is one important consequence of such damage. It is known that GG and GGG sites are particularly prone to one-electron oxidation, and here we examined how the local DNA sequence influences the formation of DNA-protein cross-links induced by guanine oxidation. Oxidative DNA-protein cross-linking was induced between DNA and histone protein via the flash quench technique, a photochemical method that selectively oxidizes the guanine base in double-stranded DNA. An assay based on restriction enzyme cleavage was developed to detect the cross-linking in plasmid DNA. Following oxidation of pBR322 DNA by flash quench, several restriction enzymes (PpuMI, BamHI, EcoRI) were then used to probe the plasmid surface for the expected damage at guanine sites. These three endonucleases were strongly inhibited by DNA-protein cross-linking, whereas the AT-recognizing enzyme AseI was unaffected in its cleavage. These experiments also reveal the susceptibility of different guanine sites toward oxidative cross-linking. The percent inhibition observed for the endonucleases, and their pBR322 cleavage sites, decreased in the order: PpuMI (5'-GGGTCCT-3' and 5'-AGGACCC-3') > BamHI (5'-GGATCC-3') > EcoRI (5'-GAATTC-3'), a trend consistent with the observed and predicted tendencies for guanine to undergo one-electron oxidation: 5'-GGG-3' > 5'-GG-3' > 5'-GA-3'. Thus, it appears that in mixed DNA sequences the guanine sites most vulnerable to oxidative cross-linking are those that are easiest to oxidize. These results further indicate that equilibration of the electron hole in the plasmid DNA occurs on a time scale faster than that of cross-linking.

  2. Comparison of static and dynamic methods of treatment of anharmonicity for the vibrational study of isolated and aqueous forms of guanine

    NASA Astrophysics Data System (ADS)

    Thicoipe, Sandrine; Carbonniere, Philippe; Pouchan, Claude

    2014-01-01

    This theoretical study provides the anharmonic vibrational wavenumbers of isolated and aqueous guanine. They were performed at the DFT B3LYP/6-31+G(d,p) level of theory using two different ways for the treatment of anharmonicity: time-independent (VPT2) and time-dependent (molecular dynamics) approaches. The wavenumbers obtained are compared to experimental data for isolated and aqueous forms: the VPT2 approach is slightly better than MD, especially for the determination of stretching and wagging (NH) motions. Finally, the structural model of solvatation used for aqueous guanine which combines an explicit solvent model with a polarizable continuum model (PCM) was validated.

  3. Reactivity of nitrogen atoms in adenine and (Ade)2Cu complexes towards ribose and 2-furanmethanol: Formation of adenosine and kinetin.

    PubMed

    Nashalian, Ossanna; Yaylayan, Varoujan A

    2017-01-15

    To explore the interaction of nucleosides and nucleobases in the context of the Maillard reaction and to identify the selectivity of purine nitrogen atoms towards various electrophiles, model systems composed of adenine or adenosine, glycine, ribose and/or 2-furanmethanol (with and without copper) were studied in aqueous solutions heated at 110°C for 2h and subsequently analyzed by ESI/qTOF/MS/MS in addition to isotope labelling techniques. The results indicated that ribose selectively formed mono-ribosylated N(6) adenine, but in the presence of (Ade)2Cu complex the reaction mixture generated mono-, di- and tri-substituted sugar complexes and their hydrolysis products of mono-ribosylated N(6) and N(9) adenine adducts and di-ribosylated N(6,9) adenine. Furthermore, the reaction of 2-furanmethanol with adenine in the presence of ribose generated kinetin and its isomer, while its reaction with adenosine generated kinetin riboside, as confirmed by comparing the MS/MS profiles of these adducts to those of commercial standards. PMID:27542499

  4. dGTP Starvation in Escherichia coli Provides New Insights into the Thymineless-Death Phenomenon

    PubMed Central

    Itsko, Mark; Schaaper, Roel M.

    2014-01-01

    Starvation of cells for the DNA building block dTTP is strikingly lethal (thymineless death, TLD), and this effect is observed in all organisms. The phenomenon, discovered some 60 years ago, is widely used to kill cells in anticancer therapies, but many questions regarding the precise underlying mechanisms have remained. Here, we show for the first time that starvation for the DNA precursor dGTP can kill E. coli cells in a manner sharing many features with TLD. dGTP starvation is accomplished by combining up-regulation of a cellular dGTPase with a deficiency of the guanine salvage enzyme guanine-(hypoxanthine)-phosphoribosyltransferase. These cells, when grown in medium without an exogenous purine source like hypoxanthine or adenine, display a specific collapse of the dGTP pool, slow-down of chromosomal replication, the generation of multi-branched nucleoids, induction of the SOS system, and cell death. We conclude that starvation for a single DNA building block is sufficient to bring about cell death. PMID:24810600

  5. A highly specific and sensitive electroanalytical strategy for microRNAs based on amplified silver deposition by the synergic TiO2 photocatalysis and guanine photoreduction using charge-neutral probes.

    PubMed

    Li, Rui; Li, Shuying; Dong, Minmin; Zhang, Liyan; Qiao, Yuchun; Jiang, Yao; Qi, Wei; Wang, Hua

    2015-11-18

    TiO2 photocatalysis and guanine photoreduction were synergically combined for amplifying silver deposition for the electroanalysis of short-chain microRNAs with guanine bases using charge-neutral probes. It could allow for the highly specific and sensitive detection of microRNAs in the blood as well as the identification of their mutant levels.

  6. A QM/MM MD insight into photodynamics of hypoxanthine: distinct nonadiabatic decay behaviors between keto-N7H and keto-N9H tautomers in aqueous solution.

    PubMed

    Guo, Xugeng; Zhao, Yuan; Cao, Zexing

    2014-08-01

    Extensive ab initio surface-hopping dynamics simulations have been used to explore the excited-state nonadiabatic decay of two biologically relevant hypoxanthine keto-N7H and keto-N9H tautomers in aqueous solution. QM/MM calculations and QM/MM-based MD simulations predict different hydrogen bonding networks around these nucleobase analogues, which influence their photodynamical properties remarkably. Furthermore, different solvent effects on the conical intersection formation of keto-N7H and keto-N9H were found in excited-state MD simulations, which also change the lifetimes of the excited states. In comparison with the gas-phase situation, the S1 → S0 nonradiative decay of keto-N7H is slightly faster, while this decay process of keto-N9H becomes much slower in water. The presence of π-electron hydrogen bonds in the solvated keto-N7H is considered to facilitate the S1 → S0 nonradiative decay process.

  7. Selective removal of ATP degradation products from food matrices II: Rapid screening of hypoxanthine and inosine by molecularly imprinted matrix solid-phase dispersion for evaluation of fish freshness.

    PubMed

    Cela-Pérez, M C; Barbosa-Pereira, L; Vecino, X; Pérez-Ameneiro, M; Lasagabaster Latorre, Aurora; López-Vilariño, J M; González Rodríguez, M V; Moldes, A B; Cruz, J M

    2015-04-01

    A water compatible molecularly imprinted polymer (MIP), synthesized using theophylline (TPH) as dummy-template and acrylamide (AM) as functional monomer, has been employed as supporting material in matrix solid-phase dispersion combined with ultra performance liquid chromatography-photodiode array detection (MSPD-UPLC-PDA) for selective determination of adenosine triphosphate (ATP) derivatives in fish samples. ATP degradation products are used as freshness index for assessment of fish quality. The solid sample was directly blended with MIP in MSPD procedure resulting in sample disruption and subsequent adsorption of the compounds on the MIP. By using n-hexane and ammonium hydroxide aqueous solution at pH 9 as the washing and elution solvent, respectively, satisfactory recoveries and clean chromatograms have been obtained. Good linearity for hypoxanthine (HYP) and inosine (INO) has been observed with correlation coefficients (R(2)) of 0.9987 and 0.9986, respectively. The recoveries of the two ATP derivatives at three different spiked levels ranged from 106.5% to 113.4% for HYP and from 103.1% to 111.2% for INO, with average relative standard deviations lower than 4.2% in both cases. This new method, which is rapid, simple and sensitive, can be used as an alternative tool to conventional tedious methods. PMID:25640126

  8. Characterization of a DNA Adenine Methyltransferase Gene of Borrelia hermsii and Its Dispensability for Murine Infection and Persistence.

    PubMed

    James, Allison E; Rogovskyy, Artem S; Crowley, Michael A; Bankhead, Troy

    2016-01-01

    DNA methyltransferases have been implicated in the regulation of virulence genes in a number of pathogens. Relapsing fever Borrelia species harbor a conserved, putative DNA methyltransferase gene on their chromosome, while no such ortholog can be found in the annotated genome of the Lyme disease agent, Borrelia burgdorferi. In the relapsing fever species Borrelia hermsii, the locus bh0463A encodes this putative DNA adenine methyltransferase (dam). To verify the function of the BH0463A protein product as a Dam, the gene was cloned into a Dam-deficient strain of Escherichia coli. Restriction fragment analysis subsequently demonstrated that complementation of this E. coli mutant with bh0463A restored adenine methylation, verifying bh0463A as a Dam. The requirement of bh0463A for B. hermsii viability, infectivity, and persistence was then investigated by genetically disrupting the gene. The dam- mutant was capable of infecting immunocompetent mice, and the mean level of spirochetemia in immunocompetent mice was not significantly different from wild type B. hermsii. Collectively, the data indicate that dam is dispensable for B. hermsii viability, infectivity, and persistence. PMID:27195796

  9. Characterization of a DNA Adenine Methyltransferase Gene of Borrelia hermsii and Its Dispensability for Murine Infection and Persistence

    PubMed Central

    James, Allison E.; Rogovskyy, Artem S.; Crowley, Michael A.; Bankhead, Troy

    2016-01-01

    DNA methyltransferases have been implicated in the regulation of virulence genes in a number of pathogens. Relapsing fever Borrelia species harbor a conserved, putative DNA methyltransferase gene on their chromosome, while no such ortholog can be found in the annotated genome of the Lyme disease agent, Borrelia burgdorferi. In the relapsing fever species Borrelia hermsii, the locus bh0463A encodes this putative DNA adenine methyltransferase (dam). To verify the function of the BH0463A protein product as a Dam, the gene was cloned into a Dam-deficient strain of Escherichia coli. Restriction fragment analysis subsequently demonstrated that complementation of this E. coli mutant with bh0463A restored adenine methylation, verifying bh0463A as a Dam. The requirement of bh0463A for B. hermsii viability, infectivity, and persistence was then investigated by genetically disrupting the gene. The dam- mutant was capable of infecting immunocompetent mice, and the mean level of spirochetemia in immunocompetent mice was not significantly different from wild type B. hermsii. Collectively, the data indicate that dam is dispensable for B. hermsii viability, infectivity, and persistence. PMID:27195796

  10. BF0801, a novel adenine derivative, inhibits platelet activation via phosphodiesterase inhibition and P2Y12 antagonism.

    PubMed

    Zhang, Si; Hu, Liang; Du, Hongguang; Guo, Yan; Zhang, Yan; Niu, Haixia; Jin, Jianguo; Zhang, Jian; Liu, Junling; Zhang, Xiaohui; Kunapuli, Satya P; Ding, Zhongren

    2010-10-01

    Though antiplatelet drugs are proven beneficial to patients with coronary heart disease and stroke, more effective and safer antiplatelet drugs are still needed. In this study we report the antiplatelet effects and mechanism of BF0801, a novel adenine derivative. BF0801 dramatically inhibited platelet aggregation and ATP release induced by ADP, 2MeSADP, AYPGKF, SFLLRN or convulxin without affecting shape change in vitro . It also potentiated the inhibitory effects of adenosine-based P2Y12 antagonist AR-C69931MX or phosphodiesterase (PDE) inhibitor IBMX on platelet aggregation. The cAMP levels in both resting and forskolin-stimulated platelets were increased by BF0801 suggesting its PDE inhibitor activity, which is further confirmed by the concentration-dependent suppression of BF0801 on the native and recombinant PDE. Similar to AR-C69931MX, BF0801 drastically inhibited 2MeSADP- induced adenylyl cyclase inhibition in platelets indicating its P2Y12 antagonism activity, which is substantiated by the inhibition of BF0801 on the interaction between ADP and P2Y12 receptor expressed in CHO-K1 cells measured by atomic force microscopy. Moreover, we confirmed the antiplatelet effects of BF0801 using platelets from rats intravenously given BF0801. In summary, for the first time we developed a novel adenine derivative bearing dual activities of PDE inhibition and P2Y12 antagonism, which may have therapeutic advantage as a potential antithrombotic drug. PMID:20806121

  11. Modified Iterative Extended Hueckel. 2: Application to the interaction of Na(+), Na(+)(aq.), Mg(+)-2(aq.) with adenine and thymine

    NASA Technical Reports Server (NTRS)

    Aronowitz, S.; Macelroy, R.; Chang, S.

    1980-01-01

    Modified Iterative Extended Hueckel, which includes explicit effective internuclear and electronic interactions, is applied to the study of the energetics of Na(+),Mg(+), Na(+) (aqueous), and Mg(+2) (aqueous) ions approaching various possible binding sites on adenine and thymine. Results for the adenine + ion and thymine + ion are in good qualitative agreement with ab initio work on analogous systems. Energy differences between competing sites are in excellent agreement. Hydration appears to be a critical factor in determining favorable binding sites. That the adenine Nl and N3 sites cannot displace a water molecule from the hydrated cation indicates that they are not favorable binding sites in aqueous media. Of those sites investigated, 04 was the most favorable binding site on the thymine for the bare Na(+). However, the 02 site was the most favorable binding site for either hydrated cation.

  12. Erythro-9-(2-hydroxy-3-nonyl) Adenine alone and in combination with 9-beta-D-arabinofuranosyladenine in treatment of systemic herpesvirus infections in mice.

    PubMed Central

    Shannon, W M; Arnett, G; Schabel, F M; North, T W; Cohen, S S

    1980-01-01

    Although the antiviral activity of erythro-9-(2-hydroxy-3-nonyl)adenine, a potent adenosine deaminase inhibitor, against herpes simplex virus type 1 in cell culture was readily confirmed, the compound was found to be totally ineffective in the treatment of experimentally induced systemic herpes simplex virus type 1 infections in Swiss mice. Data were obtained, however, which clearly indicated that the antiviral potency of 9-beta-D-arabinofuranosyladenine in vivo could be enhanced by the co-administration of low, nontoxic doses of erythro-9-(2-hydroxy-3-nonyl)adenine. PMID:6255863

  13. Molecular dynamics simulations reveal the balance of forces governing the formation of a guanine tetrad-a common structural unit of G-quadruplex DNA.

    PubMed

    Kogut, Mateusz; Kleist, Cyprian; Czub, Jacek

    2016-04-20

    G-quadruplexes (G4) are nucleic acid conformations of guanine-rich sequences, in which guanines are arranged in the square-planar G-tetrads, stacked on one another. G4 motifs formin vivoand are implicated in regulation of such processes as gene expression and chromosome maintenance. The structure and stability of various G4 topologies were determined experimentally; however, the driving forces for their formation are not fully understood at the molecular level. Here, we used all-atom molecular dynamics to probe the microscopic origin of the G4 motif stability. By computing the free energy profiles governing the dissociation of the 3'-terminal G-tetrad in the telomeric parallel-stranded G4, we examined the thermodynamic and kinetic stability of a single G-tetrad, as a common structural unit of G4 DNA. Our results indicate that the energetics of guanine association alone does not explain the overall stability of the G-tetrad and that interactions involving sugar-phosphate backbone, in particular, the constrained minimization of the phosphate-phosphate repulsion energy, are crucial in providing the observed enthalpic stabilization. This enthalpic gain is largely compensated by the unfavorable entropy change due to guanine association and optimization of the backbone topology. PMID:26980278

  14. Nitrosamine-induced carcinogenesis. The alkylation of N-7 of guanine of nucleic acids of the rat by diethylnitrosamine, N-ethyl-N-nitrosourea and ethyl methanesulphonate

    PubMed Central

    Swann, P. F.; Magee, P. N.

    1971-01-01

    1. The extent of ethylation of N-7 of guanine in the nucleic acids of rat tissue in vivo by diethylnitrosamine, N-ethyl-N-nitrosourea and ethyl methanesulphonate was measured. 2. All compounds produced measurable amounts of 7-ethyl-guanine. 3. A single dose of diethylnitrosamine or N-ethyl-N-nitrosourea produced tumours of the kidney in the rat. Three doses of ethyl methanesulphonate produced kidney tumours, but a single dose did not. 4. A single dose of diethylnitrosamine produced twice as much ethylation of N-7 of guanine in DNA of kidney as did N-ethyl-N-nitrosourea. A single dose of both compounds induced kidney tumours, although of a different histological type. 5. A single dose of ethyl methanesulphonate produced ten times as much ethylation of N-7 of guanine in kidney DNA as did N-ethyl-N-nitrosourea without producing tumours. 6. The relevance of these findings to the hypothesis that alkylation of a cellular component is the mechanism of induction of tumours by nitroso compounds is discussed. PMID:5145908

  15. Highly sensitive sensor for picomolar detection of insulin at physiological pH, using GC electrode modified with guanine and electrodeposited nickel oxide nanoparticles.

    PubMed

    Salimi, Abdollah; Noorbakhash, Abdollah; Sharifi, Ensieh; Semnani, Abolfazl

    2008-12-01

    The electrochemical behavior of insulin at glassy carbon (GC) electrode modified with nickel oxide nanoparticles and guanine was investigated. Cyclic voltammetry technique has been used for electrodeposition of nickel oxide nanoparticles (NiOx) and immobilization of guanine on the surface GC electrode. In comparison to glassy carbon electrode modified with nickel oxide nanoparticles and bare GC electrode modified with adsorbed guanine, the guanine/nickel oxide nanoparticles/modified GC electrode exhibited excellent catalytic activity for the oxidation of insulin in physiological pH solutions at reduced overpotential. The modified electrode was applied for insulin detection using cyclic voltammetry or hydrodynamic amperometry techniques. It was found that the calibration curve was linear up to 4muM with a detection limit of 22pM and sensitivity of 100.9pA/pM under the optimized condition for hydrodynamic amperometry using a rotating disk modified electrode. In comparison to other electrochemical insulin sensors, this sensor shows many advantages such as simple preparation method without using any special electron transfer mediator or specific reagent, high sensitivity, excellent catalytic activity at physiological pH values, short response time, long-term stability and remarkable antifouling property toward insulin and its oxidation product. Additionally, it is promising for the monitoring of insulin in chromatographic effluents.

  16. Molecular dynamics simulations reveal the balance of forces governing the formation of a guanine tetrad—a common structural unit of G-quadruplex DNA

    PubMed Central

    Kogut, Mateusz; Kleist, Cyprian; Czub, Jacek

    2016-01-01

    G-quadruplexes (G4) are nucleic acid conformations of guanine-rich sequences, in which guanines are arranged in the square-planar G-tetrads, stacked on one another. G4 motifs form in vivo and are implicated in regulation of such processes as gene expression and chromosome maintenance. The structure and stability of various G4 topologies were determined experimentally; however, the driving forces for their formation are not fully understood at the molecular level. Here, we used all-atom molecular dynamics to probe the microscopic origin of the G4 motif stability. By computing the free energy profiles governing the dissociation of the 3′-terminal G-tetrad in the telomeric parallel-stranded G4, we examined the thermodynamic and kinetic stability of a single G-tetrad, as a common structural unit of G4 DNA. Our results indicate that the energetics of guanine association alone does not explain the overall stability of the G-tetrad and that interactions involving sugar–phosphate backbone, in particular, the constrained minimization of the phosphate–phosphate repulsion energy, are crucial in providing the observed enthalpic stabilization. This enthalpic gain is largely compensated by the unfavorable entropy change due to guanine association and optimization of the backbone topology. PMID:26980278

  17. Spectroscopic (UV/VIS, Raman) and Electrophoresis Study of Cytosine-Guanine Oligonucleotide DNA Influenced by Magnetic Field

    PubMed Central

    Banihashemian, Seyedeh Maryam; Periasamy, Vengadesh; Boon Tong, Goh; Abdul Rahman, Saadah

    2016-01-01

    Studying the effect of a magnetic field on oligonucleotide DNA can provide a novel DNA manipulation technique for potential application in bioengineering and medicine. In this work, the optical and electrochemical response of a 100 bases oligonucleotides DNA, cytosine-guanine (CG100), is investigated via exposure to different magnetic fields (250, 500, 750, and 1000 mT). As a result of the optical response of CG100 to the magnetic field, the ultra-violet-visible spectrum indicated a slight variation in the band gap of CG100 of about 0.3 eV. Raman spectroscopy showed a significant deviation in hydrogen and phosphate bonds’ vibration after exposure to the magnetic field. Oligonucleotide DNA mobility was investigated in the external electric field using the gel electrophoresis technique, which revealed a small decrease in the migration of CG100 after exposure to the magnetic field. PMID:26999445

  18. Differential Rac1 signalling by guanine nucleotide exchange factors implicates FLII in regulating Rac1-driven cell migration

    PubMed Central

    Marei, Hadir; Carpy, Alejandro; Woroniuk, Anna; Vennin, Claire; White, Gavin; Timpson, Paul; Macek, Boris; Malliri, Angeliki

    2016-01-01

    The small GTPase Rac1 has been implicated in the formation and dissemination of tumours. Upon activation by guanine nucleotide exchange factors (GEFs), Rac1 associates with a variety of proteins in the cell thereby regulating various functions, including cell migration. However, activation of Rac1 can lead to opposing migratory phenotypes raising the possibility of exacerbating tumour progression when targeting Rac1 in a clinical setting. This calls for the identification of factors that influence Rac1-driven cell motility. Here we show that Tiam1 and P-Rex1, two Rac GEFs, promote Rac1 anti- and pro-migratory signalling cascades, respectively, through regulating the Rac1 interactome. In particular, we demonstrate that P-Rex1 stimulates migration through enhancing the interaction between Rac1 and the actin-remodelling protein flightless-1 homologue, to modulate cell contraction in a RhoA-ROCK-independent manner. PMID:26887924

  19. New insights into the dimerization of small GTPase Rac/ROP guanine nucleotide exchange factors in rice

    PubMed Central

    Akamatsu, Akira; Uno, Kazumi; Kato, Midori; Wong, Hann Ling; Shimamoto, Ko; Kawano, Yoji

    2015-01-01

    Molecular links between receptor-kinases and Rac/ROP family small GTPases mediated by activator guanine nucleotide exchange factors (GEFs) govern diverse biological processes. However, it is unclear how the Rac/ROP GTPases orchestrate such a wide variety of activities. Here, we show that rice OsRacGEF1 forms homodimers, and heterodimers with OsRacGEF2, at the plasma membrane (PM) and the endoplasmic reticulum (ER). OsRacGEF2 does not bind directly to the receptor-like kinase (RLK) OsCERK1, but forms a complex with OsCERK1 through OsRacGEF1 at the ER. This complex is transported from ER to the PM and there associates with OsRac1, resulting in the formation of a stable immune complex. Such RLK-GEF heterodimer complexes may explain the diversity of Rac/ROP family GTPase signalings. PMID:26251883

  20. Stereoselective synthesis of 9-beta-d-arabianofuranosyl guanine and 2-amino-9-(beta-d-arabianofuranosyl)purine.

    PubMed

    Yu, Xue-Jun; Li, Gai-Xia; Qi, Xiou-Xiang; Deng, You-Quan

    2005-02-01

    9-beta-d-Arabianofuranosyl guanine (6) and 2-amino-9-(beta-d-arabianofuranosyl)purine (8) were prepared from 2-amino-6-chloro-9-(2,3,5-triphenylmethoxyl-beta-d-arabianofuranosyl)purine (4), a key intermediate which was stereoselectively prepared from 2,3,5-triphenylmethoxyl-d-arabianofuranose and 2-amino-6-chloro-purine. The yield of the intermediate was obviously improved and only beta-isomer was formed by using the activated molecular sieve as environmental friendly catalyst, overcoming the defect that a 1:1 mixture of alpha- and beta-isomers was formed, which was difficult to separate, when toxic mercury cyanide was previously used as catalyst.

  1. Spectroscopic (UV/VIS, Raman) and Electrophoresis Study of Cytosine-Guanine Oligonucleotide DNA Influenced by Magnetic Field.

    PubMed

    Banihashemian, Seyedeh Maryam; Periasamy, Vengadesh; Boon Tong, Goh; Abdul Rahman, Saadah

    2016-01-01

    Studying the effect of a magnetic field on oligonucleotide DNA can provide a novel DNA manipulation technique for potential application in bioengineering and medicine. In this work, the optical and electrochemical response of a 100 bases oligonucleotides DNA, cytosine-guanine (CG100), is investigated via exposure to different magnetic fields (250, 500, 750, and 1000 mT). As a result of the optical response of CG100 to the magnetic field, the ultra-violet-visible spectrum indicated a slight variation in the band gap of CG100 of about 0.3 eV. Raman spectroscopy showed a significant deviation in hydrogen and phosphate bonds' vibration after exposure to the magnetic field. Oligonucleotide DNA mobility was investigated in the external electric field using the gel electrophoresis technique, which revealed a small decrease in the migration of CG100 after exposure to the magnetic field.

  2. Guanine-Specific Oxidation of Double-Stranded DNA by Cr(VI) and Ascorbic Acid Forms Spiroiminodihydantoin and 8-Oxo-2′-deoxyguanosine

    PubMed Central

    Slade, Peter G.; Hailer, M. Katie; Martin, Brooke D.; Sugden, Kent D.

    2005-01-01

    7,8-dihydro-8-oxoguanine (8-oxoG) is thought to be a major lesion formed in DNA by oxidative attack at the nucleobase guanine. Recent studies have shown that 8-oxoG has a lower reduction potential than the parent guanine and is a hot spot for further oxidation. Spiroiminodihydantoin (Sp) has been identified as one of these further oxidation products. Chromium(VI) is a human carcinogen that, when reduced by a cellular reductant such as ascorbate, can oxidize DNA. In this study, duplex DNA was reacted with Cr(VI) and ascorbate to identify and quantify the base lesions formed. Guanine bases were observed to be preferentially oxidized with 5′ guanines within purine repeats showing enhanced oxidation. Trapping of the guanine lesions by the base excision repair enzymes hOGG1 and mNEIL2 showed nearly exclusive trapping by mNEIL2, suggesting that 8-oxoG was not the major lesion but rather a lesion recognized by mNEIL2 such as Sp. Formation of the Sp lesion in the Cr(VI)/Asc oxidation reaction with DNA was confirmed by LC–ESI-MS detection. HPLC-ECD was used to identify and quantify any 8-oxoG arising from Cr(VI)/Asc oxidation of DNA. Concentrations of Cr(VI) (3.1–50 μM) with a corresponding 1:10 ratio of Asc oxidized between 0.3% and 1.5% of all guanines within the duplex DNA strand to Sp. 8-oxoG was also identified but with the highest Cr(VI) concentration converting ~0.1% of all guanines to 8-oxoG. These results show that Sp was present in concentrations ~20 times greater than that of 8-oxoG in this system. The results indicate that 8-oxoG, while present, was not the major product of Cr(VI)/Asc oxidation of DNA and that Sp predominates under these conditions. These results further imply that Sp may be the lesion that accounts for the carcinogenicity of this metal in cellular systems. PMID:16022506

  3. Molecular cloning, characterization, and expression of human ADP-ribosylation factors: two guanine nucleotide-dependent activators of cholera toxin.

    PubMed Central

    Bobak, D A; Nightingale, M S; Murtagh, J J; Price, S R; Moss, J; Vaughan, M

    1989-01-01

    ADP-ribosylation factors (ARFs) are small guanine nucleotide-binding proteins that enhance the enzymatic activities of cholera toxin. Two ARF cDNAs, ARF1 and ARF3, were cloned from a human cerebellum library. Based on deduced amino acid sequences and patterns of hybridization of cDNA and oligonucleotide probes with mammalian brain poly(A)+ RNA, human ARF1 is the homologue of bovine ARF1. Human ARF3, which differs from bovine ARF1 and bovine ARF2, appears to represent a newly identified third type of ARF. Hybridization patterns of human ARF cDNA and clone-specific oligonucleotides with poly(A)+ RNA are consistent with the presence of at least two, and perhaps four, separate ARF messages in human brain. In vitro translation of ARF1, ARF2, and ARF3 produced proteins that behaved, by SDS/PAGE, similar to a purified soluble brain ARF. Deduced amino acid sequences of human ARF1 and ARF3 contain regions, similar to those in other G proteins, that are believed to be involved in GTP binding and hydrolysis. ARFs also exhibit a modest degree of homology with a bovine phospholipase C. The observations reported here support the conclusion that the ARFs are members of a multigene family of small guanine nucleotide-binding proteins. Definition of the regulation of ARF mRNAs and of function(s) of recombinant ARF proteins will aid in the elucidation of the physiologic role(s) of ARFs. Images PMID:2474826

  4. Performance characteristics of guanine incorporated PVDF-HFP/PEO polymer blend electrolytes with binary iodide salts for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Senthil, R. A.; Theerthagiri, J.; Madhavan, J.; Arof, A. K.

    2016-08-01

    In this work, we have investigated the influence of guanine as an organic dopant in dye-sensitized solar cell (DSSC) based on poly(vinylidinefluoride-co-hexafluoropropylene) (PVDF-HFP)/polyethylene oxide (PEO) polymer blend electrolyte along with binary iodide salts (potassium iodide (KI) and tetrabutylammonium iodide (TBAI)) and iodine (I2). The PVDF-HFP/KI + TBAI/I2, PVDF-HFP/PEO/KI + TBAI/I2 and guanine incorporated PVDF-HFP/PEO/KI + TBAI/I2 electrolytes were prepared by solution casting technique using DMF as solvent. The PVDF-HFP/KI + TBAI/I2 electrolyte showed an ionic conductivity value of 9.99 × 10-5 Scm-1, whereas, it was found to be increased to 4.53 × 10-5 Scm-1 when PEO was blended with PVDF-HFP/KI + TBAI/I2 electrolyte. However, a maximum ionic conductivity value of 3.67 × 10-4 Scm-1 was obtained for guanine incorporated PVDF-HFP/PEO/KI + TBAI/I2 blend electrolyte. The photovoltaic properties of all these polymer electrolytes in DSSCs were characterized. As a consequence, the power conversion efficiency of the guanine incorporated PVDF-HFP/PEO/KI + TBAI/I2 electrolyte based DSSC was significantly improved to 4.98% compared with PVDF-HFP/PEO/KI + TBAI/I2 electrolyte based DSSC (2.46%). These results revealed that the guanine can be an effective organic dopant to enhance the performance of DSSCs.

  5. Microhydration of guanine...cytosine base pairs, a theoretical Study on the role of water in stability, structure and tautomeric equilibrium.

    PubMed

    Zelený, Tomás; Hobza, Pavel; Kabelác, Martin

    2009-05-14

    The potential energy surfaces of guanine...cytosine complexes and microhydrated guanine...cytosine (one and two water molecules) were investigated by the molecular dynamics/quenching method (MD/Q), using the empirical potential Parm94 force field, implemented in the Amber program package. The calculations were conducted for all the possible combinations of the four most stable tautomers of guanine and three of cytosine (covering the canonical forms in both cases). The obtained structures were sorted by their structural motifs into three main groups: planar hydrogen-bonded; stacked; and T-shaped structures. The most stable structures found at the empirical potential energy surfaces were fully reoptimised at the second-order Møller-Plesset perturbation theory as well as using the density functional method with an empirical dispersion term (DFT-D). A combination of the canonical form of guanine and cytosine and canonical cytosine with a guanine tautomer where the hydrogen is switched from position N9 to N7 are energetically preferred in microsolvated systems as well as those without the presence of a solvent. The rising number of water molecules leads to smaller differences between the stability of the various combinations of the tautomers of bases in the base pairs. For some of the tautomer combinations (mainly the enol-enol combination), two water molecules are sufficient for the preference of stacked structures over the H-bonded ones. The interaction energies and geometries obtained by the second-order Møller-Plesset perturbation theory method and the much less computationally demanding DFT-D method are comparable, except for stacked complexes, where the interaction energies are overestimated on average by 3 kcal mol(-1) at the MP2 level. PMID:19421545

  6. Effects of increased heart work on glycolysis and adenine nucleotides in the perfused heart of normal and diabetic rats

    PubMed Central

    Opie, L. H.; Mansford, K. R. L.; Owen, Patricia

    1971-01-01

    1. In the isolated perfused rat heart, the contractile activity and the oxygen uptake were varied by altering the aortic perfusion pressure, or by the atrial perfusion technique (`working heart'). 2. The maximum increase in the contractile activity brought about an eightfold increase in the oxygen uptake. The rate of glycolytic flux rose, while tissue contents of hexose monophosphates, citrate, ATP and creatine phosphate decreased, and contents of ADP and AMP rose. 3. The changes in tissue contents of adenine nucleotides during increased heart work were time-dependent. The ATP content fell temporarily (30s and 2min) after the start of left-atrial perfusion; at 5 and 10min values were normal; and at 30 and 60min values were decreased. ADP and AMP values were increased in the first 15min, but were at control values 30 or 60min after the onset of increased heart work. 4. During increased heart work changes in the tissue contents of adenine nucleotide and of citrate appeared to play a role in altered regulation of glycolysis at the level of phosphofructokinase activity. 5. In recirculation experiments increased heart work for 30min was associated with increased entry of [14C]glucose (11.1mm) and glycogen into glycolysis and a comparable increase in formation of products of glycolysis (lactate, pyruvate and 14CO2). There was no major accumulation of intermediates. Glycogen was not a major fuel for respiration. 6. Increased glycolytic flux in Langendorff perfused and working hearts was obtained by the addition of insulin to the perfusion medium. The concomitant increases in the tissue values of hexose phosphates and of citrate contrasted with the decreased values of hexose monophosphates and of citrate during increased glycolytic flux obtained by increased heart work. 7. Decreased glycolytic flux in Langendorff perfused hearts was obtained by using acute alloxan-diabetic and chronic streptozotocin-diabetic rats; in the latter condition there were decreased tissue

  7. Reduction of nicotinamide adenine dinucleotide by pyruvate:lipoate oxidoreductase in anaerobic, dark-grown Rhodospirillum rubrum mutant C.

    PubMed Central

    Gorrell, T E; Uffen, R L

    1978-01-01

    Cell extracts from fermentatively grown Rhodospirillum rubrum reduced about 80 nmol of nicotinamide adenine dinucleotide (NAD) per mg of protein per min under anaerobic conditions with sodium pyruvate. The reaction was specific for pyruvate and NAD; NAD phosphate was not reduced. Results indicated that pyruvate-linked NAD reduction occurred via pyruvate:lipoate oxidoreductase. The reaction required catalytic amounts of both coenzyme A and thiamine pyrophosphate. Addition of sodium arsenite inhibited enzyme activity by 90%. Pyruvate:lipoate oxidoreductase was the only system detected in anaerobic, dark-grown R. rubrum cell extracts which operated to produce reduced NAD. The low activity of the enzyme system suggested that it was not quantitatively important in ATP formation. PMID:207677

  8. Adenine phosphoribosyltransferase (APRT) deficiency: a new genetic mutation with early recurrent renal stone disease in kidney transplantation

    PubMed Central

    Micheli, Vanna; Massarino, Fabio; Jacomelli, Gabriella; Bertelli, Matteo; Corradi, Maria Rita; Guerrini, Andrea; Cucchiara, Antonino; Ravetti, Jean Louis; Negretti, Laura; Cannella, Giuseppe

    2010-01-01

    Adenine phosphoribosyltransferase (APRT) deficiency, a rare inborn error inherited as an autosomic recessive trait, presents with 2,8-dihydroxyadenine (2,8-DHA) crystal nephropathy. We describe clinical, biochemical and molecular findings in a renal transplant recipient with renal failure, 2,8-DHA stones and no measurable erythrocyte APRT activity. Homozygous C > G substitution at −3 in the splicing site of exon 2 (IVS2 −3 c > g) was found in the APRT gene. The patient’s asymptomatic brother was heterozygous for such mutation, and his APRT activity was 23% of controls. A splicing alteration leading to incorrect gene transcription and virtually absent APRT activity is seemingly associated with the newly identified mutation. PMID:25984046

  9. Adenine phosphoribosyltransferase (APRT) deficiency: a new genetic mutation with early recurrent renal stone disease in kidney transplantation.

    PubMed

    Micheli, Vanna; Massarino, Fabio; Jacomelli, Gabriella; Bertelli, Matteo; Corradi, Maria Rita; Guerrini, Andrea; Cucchiara, Antonino; Ravetti, Jean Louis; Negretti, Laura; Cannella, Giuseppe

    2010-10-01

    Adenine phosphoribosyltransferase (APRT) deficiency, a rare inborn error inherited as an autosomic recessive trait, presents with 2,8-dihydroxyadenine (2,8-DHA) crystal nephropathy. We describe clinical, biochemical and molecular findings in a renal transplant recipient with renal failure, 2,8-DHA stones and no measurable erythrocyte APRT activity. Homozygous C > G substitution at -3 in the splicing site of exon 2 (IVS2 -3 c > g) was found in the APRT gene. The patient's asymptomatic brother was heterozygous for such mutation, and his APRT activity was 23% of controls. A splicing alteration leading to incorrect gene transcription and virtually absent APRT activity is seemingly associated with the newly identified mutation.

  10. Determination of Plaque Inhibitory Activity of Adenine Arabinoside (9-β-d-Arabinofuranosyladenine) for Herpesviruses Using an Adenosine Deaminase Inhibitor

    PubMed Central

    Bryson, Yvonne; Connor, James D.; Sweetman, Lawrence; Carey, Sharen; Stuckey, Margaret A.; Buchanan, Robert

    1974-01-01

    The in vitro susceptibility of type 1 and type 2 strains of Herpesvirus hominis to 9-β-d-arabinofuranosyladenine (adenine arabinoside, ara-A) was measured in a system where deamination was inhibited. Under these conditions, it was possible to measure the activity of low concentrations of ara-A. It was determined that plaque inhibitory concentration for type 1 viruses was less than 3 μg/ml for all strains tested. The plaque inhibitory concentration for 7 of 10 type 2 strains was also less than 3 μg/ml. The method used identified and controlled the interaction between antiviral agent (ara-A) and the indicator system, human skin fibroblastic cells. Otherwise, metabolism of ara-A resulted in rapid enzymatic degradation and loss of antiviral activity. PMID:15828177

  11. ISOLATION, SYNTHESIS AND BIOLOGICAL ACTIVITY OF APHROCALLISTIN, AN ADENINE SUBSTITUTED BROMOTYRAMINE METABOLITE FROM THE HEXACTINELLIDA SPONGE APHROCALLISTES BEATRIX

    PubMed Central

    Wright, Amy E.; Roth, Gregory P.; Hoffman, Jennifer K.; Divlianska, Daniela B.; Pechter, Diana; Sennett, Susan H.; Guzmán, Esther A.; Linley, Patricia; McCarthy, Peter J.; Pitts, Tara P.; Pomponi, Shirley A.; Reed, John K.

    2010-01-01

    A new adenine substituted bromotyrosine derived metabolite designated as aphrocallistin (1) has been isolated from the deep-water Hexactinellida sponge Aphrocallistes beatrix beatrix Gray, 1858 (Order Hexactinosida, Family Aphrocallistidae). Its structure was elucidated on the basis of spectral data and confirmed through a convergent, modular total synthetic route that is amenable towards future analog preparation. Aphrocallistin inhibits the growth of a panel of human tumor cell lines with IC50 values ranging from 7.5 to >100 μM and has been shown to induce G1 cell cycle arrest in the PANC-1 pancreatic carcinoma cell line. Aphrocallistin has been fully characterized in the NCI cancer cell line panel and has undergone in vitro ADME pharmacological profiling. PMID:19459694

  12. Hydrogen peroxide formation photoinduced by near-UV radiation in aqueous solutions of adenine derivatives at 77 K

    NASA Astrophysics Data System (ADS)

    Lozinova, T. A.; Lobanov, A. V.; Lander, A. V.

    2015-08-01

    An estimate of the content of free radicals in aqueous solutions of adenosine (Ado), adenosine-5'-diphosphate (ADP) and guanosine-5'-monophosphate (GMP) irradiated with near-UV radiation at 77 K is obtained by interpreting EPR spectra. It is established that in the presence of NaCl (0.1 M), the total number of peroxyl radicals O{2/-·} and HO{2/·} in samples of the studied compounds was 15-45% of the total quantity of produced free radicals and was affected by the conditions of exposure. The estimates are compared with the results from hydrogen peroxide (H2O2) determination in the same samples after thawing. Although the number of peroxyl radicals in the samples of adenine derivatives (A) and GMP are comparable, the formation of H2O2 is observed only in the case of A derivatives, but not in GMP. Possible reasons for these differences are discussed.

  13. Changes in the adenine nucleotide content of beef-heart mitochondrial F1 ATPase during ATP synthesis in dimethyl sulfoxide.

    PubMed

    Beharry, S; Bragg, P D

    1992-01-31

    Beef-heart mitochondrial F1 ATPase can be induced to synthesize ATP from ADP and inorganic phosphate in 30% Me2SO. We have analyzed the adenine nucleotide content of the F1 ATPase during the time-course of ATP synthesis, in the absence of added medium nucleotide, and in the absence and presence of 10 mM inorganic phosphate. The enzyme used in these investigations was either pretreated or not pretreated with ATP to produce F1 with a defined nucleotide content and catalytic or noncatalytic nucleotide-binding site occupancy. We show that the mechanism of ATP synthesis in Me2SO involves (i) an initial rapid loss of bound nucleotide(s), this process being strongly influenced by inorganic phosphate; (ii) a rebinding of lost nucleotide; and (iii) synthesis of ATP from bound ADP and inorganic phosphate.

  14. Biochemical characterization of a flavin adenine dinucleotide-dependent monooxygenase, ornithine hydroxylase from Pseudomonas aeruginosa, suggests a novel reaction mechanism.

    PubMed

    Meneely, Kathleen M; Lamb, Audrey L

    2007-10-23

    Pyoverdin is the hydroxamate siderophore produced by the opportunistic pathogen Pseudomonas aeruginosa under the iron-limiting conditions of the human host. This siderophore includes derivatives of ornithine in the peptide backbone that serve as iron chelators. PvdA is the ornithine hydroxylase, which performs the first enzymatic step in preparation of these derivatives. PvdA requires both flavin adenine dinucleotide (FAD) and nicotinamide adenine dinucleotide phosphate (NADPH) for activity; it was found to be a soluble monomer most active at pH 8.0. The enzyme demonstrated Michaelis-Menten kinetics in an NADPH oxidation assay, but a hydroxylation assay indicated substrate inhibition at high ornithine concentration. PvdA is highly specific for both substrate and coenzyme, and lysine was shown to be a nonsubstrate effector and mixed inhibitor of the enzyme with respect to ornithine. Chloride is a mixed inhibitor of PvdA with respect to ornithine but a competitive inhibitor with respect to NADPH, and a bulky mercurial compound (p-chloromercuribenzoate) is a mixed inhibitor with respect to ornithine. Steady-state experiments indicate that PvdA/FAD forms a ternary complex with NADPH and ornithine for catalysis. PvdA in the absence of ornithine shows slow substrate-independent flavin reduction by NADPH. Biochemical comparison of PvdA to p-hydroxybenzoate hydroxylase (PHBH, from Pseudomonas fluorescens) and flavin-containing monooxygenases (FMOs, from Schizosaccharomyces pombe and hog liver microsomes) leads to the hypothesis that PvdA catalysis proceeds by a novel reaction mechanism. PMID:17900176

  15. The effect of dimethylsulfoxide on adenine nucleotide binding and ATP synthesis by beef-heart mitochondrial F1 ATPase.

    PubMed

    Beharry, S; Bragg, P D

    1991-04-01

    Dimethylsulfoxide (Me2SO; 30%, v/v) promotes the formation of ATP from ADP and phosphate catalyzed by soluble mitochondrial F1 ATPase. The effects of this solvent on the adenine nucleotide binding properties of beef-heart mitochondrial F1 ATPase were examined. The ATP analog adenylyl-5'-imidodiphosphate bound to F1 at 1.9 and 1.0 sites in aqueous and Me2SO systems, respectively, with a KD value of 2.2 microM. Lower affinity sites were present also. Binding of ATP or adenylyl-5'-imidodiphosphate at levels near equimolar with the enzyme occurred to a greater extent in the absence of Me2SO. Addition of ATP to the nucleotide-loaded enzyme resulted in exchange of about one-half of the bound ATP. This occurred only in an entirely aqueous medium. ATP bound in Me2SO medium was not released by exogenous ATP. Comparison of the effect of different concentrations of Me2SO on ADP binding to F1 and ATP synthesis by the enzyme showed that binding of ADP was diminished by concentrations of Me2SO lower than those required to support ATP synthesis. However, one site could still be filled by ADP at concentrations of Me2SO optimal for ATP synthesis. This site is probably a noncatalytic site, since the nucleotide bound there was not converted to ATP in 30% Me2SO. The ATP synthesized by F1 in Me2SO originated from endogenous bound ADP. We conclude that 30% Me2SO affects the adenine nucleotide binding properties of the enzyme. The role of this in the promotion of the formation of ATP from ADP and phosphate is discussed.

  16. Morin, a dietary bioflavonol suppresses monosodium urate crystal-induced inflammation in an animal model of acute gouty arthritis with reference to NLRP3 inflammasome, hypo-xanthine phospho-ribosyl transferase, and inflammatory mediators.

    PubMed

    Dhanasekar, Chitra; Rasool, Mahaboobkhan

    2016-09-01

    The anti-inflammatory effect of morin, a dietary bioflavanol was explored on monosodium urate (MSU) crystal-induced inflammation in rats, an experimental model for acute gouty arthritis. Morin treatment (30mg/kg b.wt) significantly attenuated the ankle swelling and the levels of lipid peroxidation, nitric oxide, serum pro-inflammatory cytokines (tumor necrosis factor (TNF) -α, interleukin (IL)-1β, and IL-6), monocyte chemoattractant protein (MCP)-1, vascular endothelial growth factor (VEGF), prostaglandin E2 (PGE2), and articular elastase along with an increased anti-oxidant status (catalase (CAT) and superoxide dismutase (SOD)) in the joint homogenate of MSU crystal-induced rats. Histological assessment revealed that morin limited the diffusion of joint space, synovial hyperplasia, and inflammatory cell infiltrations. The mRNA expression of NLRP3 (nucleotide oligomerization domain (NOD)-like receptor family, pyrin domain containing 3) inflammasome, caspase-1, pro-inflammatory cytokines, MCP-1, inflammatory enzymes (inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2)), and nuclear factor-kappa B (NF-κB) p65 was found downregulated and HPRT (hypo-xanthine phospho-ribosyl transferase) mRNA expression was upregulated in morin treated MSU crystal-induced rats. In addition, morin treatment reduced the protein expression of NF-κB p65, p-NF-κB p65, iNOS, COX-2, and TNF-α. The results clearly demonstrated that morin exert a potent anti-inflammatory effect on MSU crystal-induced inflammation in rats.

  17. Dynamics of dipole- and valence bound anions in iodide-adenine binary complexes: A time-resolved photoelectron imaging and quantum mechanical investigation.

    PubMed

    Stephansen, Anne B; King, Sarah B; Yokoi, Yuki; Minoshima, Yusuke; Li, Wei-Li; Kunin, Alice; Takayanagi, Toshiyuki; Neumark, Daniel M

    2015-09-14

    Dipole bound (DB) and valence bound (VB) anions of binary iodide-adenine complexes have been studied using one-color and time-resolved photoelectron imaging at excitation energies near the vertical detachment energy. The experiments are complemented by quantum chemical calculations. One-color spectra show evidence for two adenine tautomers, the canonical, biologically relevant A9 tautomer and the A3 tautomer. In the UV-pump/IR-probe time-resolved experiments, transient adenine anions can be formed by electron transfer from the iodide. These experiments show signals from both DB and VB states of adenine anions formed on femto- and picosecond time scales, respectively. Analysis of the spectra and comparison with calculations suggest that while both the A9 and A3 tautomers contribute to the DB signal, only the DB state of the A3 tautomer undergoes a transition to the VB anion. The VB anion of A9 is higher in energy than both the DB anion and the neutral, and the VB anion is therefore not accessible through the DB state. Experimental evidence of the metastable A9 VB anion is instead observed as a shape resonance in the one-color photoelectron spectra, as a result of UV absorption by A9 and subsequent electron transfer from iodide into the empty π-orbital. In contrast, the iodide-A3 complex constitutes an excellent example of how DB states can act as doorway state for VB anion formation when the VB state is energetically available.

  18. Endogenously elevated bilirubin modulates kidney function and protects from circulating oxidative stress in a rat model of adenine-induced kidney failure

    PubMed Central

    Boon, Ai-Ching; Lam, Alfred K.; Gopalan, Vinod; Benzie, Iris F.; Briskey, David; Coombes, Jeff S.; Fassett, Robert G.; Bulmer, Andrew C.

    2015-01-01

    Mildly elevated bilirubin is associated with a reduction in the presence and progression of chronic kidney disease and related mortality, which may be attributed to bilirubin’s antioxidant properties. This study investigated whether endogenously elevated bilirubin would protect against adenine-induced kidney damage in male hyperbilirubinaemic Gunn rats and littermate controls. Animals were orally administered adenine or methylcellulose solvent (vehicle) daily for 10 days and were then monitored for 28 days. Serum and urine were assessed throughout the protocol for parameters of kidney function and antioxidant/oxidative stress status and kidneys were harvested for histological examination upon completion of the study. Adenine-treated animals experienced weight-loss, polyuria and polydipsia; however, these effects were significantly attenuated in adenine-treated Gunn rats. No difference in the presence of dihydroadenine crystals, lymphocytic infiltration and fibrosis were noted in Gunn rat kidneys versus controls. However, plasma protein carbonyl and F2-isoprostane concentrations were significantly decreased in Gunn rats versus controls, with no change in urinary 8-oxo-7,8-dihydro-2′-deoxyguanosine or kidney tissue F2-isoprostane concentrations. These data indicated that endogenously elevated bilirubin specifically protects from systemic oxidative stress in the vascular compartment. These data may help to clarify the protective relationship between bilirubin, kidney function and cardiovascular mortality in clinical investigations. PMID:26498893

  19. Influence of the incorporation of (S)-9-(3,4-dihydroxybutyl)adenine on the enzymatic stability and base-pairing properties of oligodeoxynucleotides.

    PubMed Central

    Augustyns, K; Van Aerschot, A; Van Schepdael, A; Urbanke, C; Herdewijn, P

    1991-01-01

    (S)-9-(3,4-dihydroxybutyl)adenine was used at several positions as nucleoside substitute in the synthesis of dimers and 13-mers. Therefore we used the phosporamidite and the H-phosphonate chemistry. The nuclease susceptibilities and the base-pairing properties of these oligomers have been evaluated. PMID:2041735

  20. Dynamics of dipole- and valence bound anions in iodide-adenine binary complexes: A time-resolved photoelectron imaging and quantum mechanical investigation

    SciTech Connect

    Stephansen, Anne B.; King, Sarah B.; Li, Wei-Li; Kunin, Alice; Yokoi, Yuki; Minoshima, Yusuke; Takayanagi, Toshiyuki; Neumark, Daniel M.

    2015-09-14

    Dipole bound (DB) and valence bound (VB) anions of binary iodide-adenine complexes have been studied using one-color and time-resolved photoelectron imaging at excitation energies near the vertical detachment energy. The experiments are complemented by quantum chemical calculations. One-color spectra show evidence for two adenine tautomers, the canonical, biologically relevant A9 tautomer and the A3 tautomer. In the UV-pump/IR-probe time-resolved experiments, transient adenine anions can be formed by electron transfer from the iodide. These experiments show signals from both DB and VB states of adenine anions formed on femto- and picosecond time scales, respectively. Analysis of the spectra and comparison with calculations suggest that while both the A9 and A3 tautomers contribute to the DB signal, only the DB state of the A3 tautomer undergoes a transition to the VB anion. The VB anion of A9 is higher in energy than both the DB anion and the neutral, and the VB anion is therefore not accessible through the DB state. Experimental evidence of the metastable A9 VB anion is instead observed as a shape resonance in the one-color photoelectron spectra, as a result of UV absorption by A9 and subsequent electron transfer from iodide into the empty π-orbital. In contrast, the iodide-A3 complex constitutes an excellent example of how DB states can act as doorway state for VB anion formation when the VB state is energetically available.