Science.gov

Sample records for adenine nucleotide content

  1. [Corrective effect of trimethylglycine on the nicotinamide coenzyme and adenine nucleotide content of the tissues in experimental atherosclerosis].

    PubMed

    Zapadniuk, V I; Chekman, I S; Panteleĭmonova, T N; Tumanov, V A

    1986-01-01

    Experiments on adult rabbits with experimental atherosclerosis induced by cholesterol (0.25 g/kg for 90 days) showed that chronic administration of trimethylglycine (1.5 g/kg for 30 days) prevented a decrease of the liver and myocardium content of nicotinamide coenzymes and adenine nucleotides. PMID:3758334

  2. Content of Adenine Nucleotides and Orthophosphate in Exporting and Importing Mature Maize Leaves 1

    PubMed Central

    Eschrich, Walter; Fromm, Joerg

    1985-01-01

    Events of reactivation by re-illumination were studied in predarkened detached mature maize leaves, which were arranged as distal sources and proximal sinks; the latter were kept in CO2-free atmosphere and were either illuminated or darkened. Adenine nucleotide (AdN) content and orthophosphate (Pi) concentrations were measured 10 minutes, 30 minutes, and 2, 7, and 14 hours after the onset of re-illumination. For comparison, mature leaves attached to the plant were analyzed. The sum of AdN increased up to 7 hours of re-illumination, then dark sinks and their sources showed decreasing amounts of AdN, while the increase continued up to 14 hours in sources and illuminated sinks. In leaves attached to the plant, no further increase in AdN level followed the 7-hour mark. The amount of individual AdN (ATP, ADP, AMP) differed considerably in sources and sinks of the detached leaves. Although both the source supplying the illuminated sink and the source supplying the dark sink were treated the same, they showed striking differences in AdN contents. Such relations were also observed, when ATP/ADP ratios and Pi concentrations were compared. The influence a sink can exert on its source suggests a participation of the physiological events in the sink on the regulation of AdN and Pi metabolism in the source. PMID:16664246

  3. Effect of treated-sewage contamination upon bacterial energy charge, adenine nucleotides, and DNA content in a sandy aquifer on cape cod

    USGS Publications Warehouse

    Metge, D.W.; Brooks, M.H.; Smith, R.L.; Harvey, R.W.

    1993-01-01

    Changes in adenylate energy charge (EC(A)) and in total adenine nucleotides (A(T)) and DNA content (both normalized to the abundance of free- living, groundwater bacteria) in response to carbon loading were determined for a laboratory-grown culture and for a contaminated aquifer. The latter study involved a 3-km-long transect through a contaminant plume resulting from continued on-land discharge of secondary sewage to a shallow, sandy aquifer on Cape Cod, Mass. With the exception of the most contaminated groundwater immediately downgradient from the contaminant source, DNA and adenylate levels correlated strongly with bacterial abundance and decreased exponentially with increasing distance downgradient. EC(A)s (0.53 to 0.60) and the ratios of ATP to DNA (0.001 to 0.003) were consistently low, suggesting that the unattached bacteria in this groundwater study are metabolically stressed, despite any eutrophication that might have occurred. Elevated EC(A)s (up to 0.74) were observed in glucose-amended groundwater, confirming that the metabolic state of this microbial community could be altered. In general, per-bacterium DNA and ATP contents were approximately twofold higher in the plume than in surrounding groundwater, although EC(A) and per-bacterium levels of A(T) differed little in the plume and the surrounding uncontaminated groundwater. However, per-bacterium levels of DNA and A(T) varied six- and threefold, respectively, during a 6-h period of decreasing growth rate for an unidentified pseudomonad isolated from contaminated groundwater and grown in batch culture. These data suggest that the DNA content of groundwater bacteria may be more sensitive than their A(T) to the degree of carbon loading, which may have significant ramifications in the use of nucleic acids and adenine nucleotides for estimating the metabolic status of bacterial communities within more highly contaminated aquifers.

  4. Effect of treated-sewage contamination upon bacterial energy charge, adenine nucleotides, and DNA content in a sandy aquifer on Cape Cod.

    PubMed Central

    Metge, D W; Brooks, M H; Smith, R L; Harvey, R W

    1993-01-01

    Changes in adenylate energy charge (ECA) and in total adenine nucleotides (A(T) and DNA content (both normalized to the abundance of free-living, groundwater bacteria) in response to carbon loading were determined for a laboratory-grown culture and for a contaminated aquifer. The latter study involved a 3-km-long transect through a contaminant plume resulting from continued on-land discharge of secondary sewage to a shallow, sandy aquifer on Cape Cod, Mass. With the exception of the most contaminated groundwater immediately downgradient from the contaminant source, DNA and adenylate levels correlated strongly with bacterial abundance and decreased exponentially with increasing distance downgradient. ECAS (0.53 to 0.60) and the ratios of ATP to DNA (0.001 to 0.003) were consistently low, suggesting that the unattached bacteria in this groundwater study are metabolically stressed, despite any eutrophication that might have occurred. Elevated ECAS (up to 0.74) were observed in glucose-amended groundwater, confirming that the metabolic state of this microbial community could be altered. In general, per-bacterium DNA and ATP contents were approximately twofold higher in the plume than in surrounding groundwater, although ECA and per-bacterium levels of A(T) differed little in the plume and the surrounding uncontaminated groundwater. However, per-bacterium levels of DNA and A(T) varied six- and threefold, respectively, during a 6-h period of decreasing growth rate for an unidentified pseudomonad isolated from contaminated groundwater and grown in batch culture.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8357263

  5. Alterations in erythrocyte plasma membrane ATPase activity and adenine nucleotide content in a spontaneously diabetic subline of the Chinese hamster.

    PubMed

    Bettin, D; Klöting, I; Kohnert, K D

    1996-01-01

    The CHIG/Han subline of the Chinese hamster develops noninsulin-dependent diabetes mellitus characterized by hyperinsulinemia and different degrees of glucose intolerance. To study whether these abnormalities could affect transmembrane cation transport activity, we determined membrane ATPase activity and ATP concentrations in red blood cells of diabetes-resistant CHIA and diabetes-susceptible CHIG sublines of the Chinese hamster. Mg(2+)-ATPase activity was increased in red blood cell membranes of diabetic hamsters compared with that of nondiabetic CHIG and the diabetes-resistant CHIA animals and correlated with plasma triglyceride and cholesterol levels. Ca(2+)-ATPase and Na+/K+ATPase activity were not significantly different between diabetic and nondiabetic hamsters, but for the Na+/K(+)-ATPase, Km was decreased and the Vmax value increased in membrane preparations from severely diabetic hamsters. Both ATP and ADP content were lower in erythrocytes from diabetic than nondiabetic hamsters. Independently of the levels of glycemia, AMP concentrations were higher in CHIG than in CHIA hamsters. While ATP/AMP ratios were found to be decreased in erythrocytes from diabetes-susceptible CHIG hamsters compared to the diabetes-resistant CHIA animals, they were significantly correlated with the levels of glycemia. Furthermore, the relationship between blood glucose levels and kidney weight in hamsters of the diabetes-susceptible CHIG subline was such, that severely hyperglycemic animals displayed the greatest increase in kidney wet weight. These results indicate that the progressive metabolic deterioration in the development of noninsulin-dependent diabetes is associated with significant changes in the activity and kinetic parameters of cellular ATPases which could probably indicate early membrane alterations which may eventually result in the late microangiopathic complications of diabetes. PMID:8820985

  6. Applications of adenine nucleotide measurements in oceanography

    NASA Technical Reports Server (NTRS)

    Holm-Hansen, O.; Hodson, R.; Azam, F.

    1975-01-01

    The methodology involved in nucleotide measurements is outlined, along with data to support the premise that ATP concentrations in microbial cells can be extrapolated to biomass parameters. ATP concentrations in microorganisms and nucleotide analyses are studied.

  7. Labeling of mitochondrial adenine nucleotides of bovine sperm

    SciTech Connect

    Cheetham, J.; Lardy, H.A.

    1986-05-01

    Incorporation of /sup 32/P/sub i/ into the adenine nucleotide pool of intact bovine spermatozoa utilizing endogenous substrates results in a specific activity (S.A.) ratio ATP/ADP of 0.3 to 0.5, suggesting compartmentation of nucleotide pools or a pathway for phosphorylation of AMP in addition to the myokinase reaction. Incubation of filipin-permeabilized cells with pyruvate, acetylcarnitine, or ..cap alpha..-ketoglutarate (..cap alpha..KG) resulted in ATP-ADP S.A. ratios of 0.5, 0.8, and 1.6, respectively, for mitochondrial nucleotides. However, when malate was included with pyruvate or acetylcarnitine, the ATP/ADP S.A. ratio increased by 400% to 2.0 for pyruvate/malate and by 290% to 2.8 for acetylcarnitine/malate, while the ATP/ADP ratio increased by less than 100% in both cases. These results may indicate that under conditions of limited flux through the citric acid cycle a pathway for phosphorylation of AMP from a precursor other than ATP exists or that ATP is compartmented within the mitochondrion. In the presence of uncoupler and oligomycin with ..cap alpha..KG, pyruvate/malate, or acetylcarnitine/malate, /sup 32/P/sub i/ is incorporated primarily into ATP, resulting in an ATP/ADP S.A. ratio of 4.0 for ..cap alpha..KG, 2.7 for pyruvate/malate, and 2.8 for acetylcarnitine/malate. These data are consistent with phosphorylation of ADP during substrate level phosphorylation in the citric acid cycle.

  8. Adenine nucleotide translocator transports haem precursors into mitochondria.

    PubMed

    Azuma, Motoki; Kabe, Yasuaki; Kuramori, Chikanori; Kondo, Masao; Yamaguchi, Yuki; Handa, Hiroshi

    2008-01-01

    Haem is a prosthetic group for haem proteins, which play an essential role in oxygen transport, respiration, signal transduction, and detoxification. In haem biosynthesis, the haem precursor protoporphyrin IX (PP IX) must be accumulated into the mitochondrial matrix across the inner membrane, but its mechanism is largely unclear. Here we show that adenine nucleotide translocator (ANT), the inner membrane transporter, contributes to haem biosynthesis by facilitating mitochondrial accumulation of its precursors. We identified that haem and PP IX specifically bind to ANT. Mitochondrial uptake of PP IX was inhibited by ADP, a known substrate of ANT. Conversely, ADP uptake into mitochondria was competitively inhibited by haem and its precursors, suggesting that haem-related porphyrins are accumulated into mitochondria via ANT. Furthermore, disruption of the ANT genes in yeast resulted in a reduction of haem biosynthesis by blocking the translocation of haem precursors into the matrix. Our results represent a new model that ANT plays a crucial role in haem biosynthesis by facilitating accumulation of its precursors into the mitochondrial matrix. PMID:18728780

  9. Adenine nucleotides as allosteric effectors of PEA seed glutamine synthetase

    SciTech Connect

    Unkefer, P.J.; Knight, T.J.

    1986-05-01

    The energy charge in the plant cell has been proposed as a regulator of glutamine synthetase (GS) activity. The authors have shown that 2.1 moles of ..gamma..(/sup 32/P)-ATP were bound/mole subunits of purified pea seed GS during complete inactivation with methionine sulfoximine. Since GS has one active site per subunit, the second binding site provides the potential for allosteric regulation of GS by adenine nucleotides. The authors have investigated the inhibition of the ATP-dependent synthetic activity by ADP and AMP. ADP and AMP cannot completely inhibit GS; but ATP does overcome the inhibition by ADP and AMP as shown by plots of % inhibition vs inhibitor concentration. This indicates that inhibition of GS by ADP or AMP is not completely due to competitive inhibition. In the absence of ADP or AMP, double reciprocal plots for ATP are linear below 10 mM; however, in the presence of either ADP or AMP these pots are curvilinear downwards. The ratio of Vm/asymptote is less than 1. The Hill number for ATP in the absence of ADP or AMP is 0.93 but decreases with increasing ADP or AMP to a value of 0.28 with 10 mM ADP. These data are consistent with negative cooperativity by ADP and AMP. Thus, as the ADP/ATP or AMP/ATP ratios are increased GS activity decreases. This is consistent with regulation of GS activity by energy charge in planta.

  10. A role for adenine nucleotides in the sensing mechanism to purine starvation in Leishmania donovani.

    PubMed

    Martin, Jessica L; Yates, Phillip A; Boitz, Jan M; Koop, Dennis R; Fulwiler, Audrey L; Cassera, Maria Belen; Ullman, Buddy; Carter, Nicola S

    2016-07-01

    Purine salvage by Leishmania is an obligatory nutritional process that impacts both cell viability and growth. Previously, we have demonstrated that the removal of purines in culture provokes significant metabolic changes that enable Leishmania to survive prolonged periods of purine starvation. In order to understand how Leishmania sense and respond to changes in their purine environment, we have exploited several purine pathway mutants, some in which adenine and guanine nucleotide metabolism is uncoupled. While wild type parasites grow in any one of a variety of naturally occurring purines, the proliferation of these purine pathway mutants requires specific types or combinations of exogenous purines. By culturing purine pathway mutants in high levels of extracellular purines that are either permissive or non-permissive for growth and monitoring for previously defined markers of the adaptive response to purine starvation, we determined that adaptation arises from a surveillance of intracellular purine nucleotide pools rather than from a direct sensing of the extracellular purine content of the environment. Specifically, our data suggest that perturbation of intracellular adenine-containing nucleotide pools provides a crucial signal for inducing the metabolic changes necessary for the long-term survival of Leishmania in a purine-scarce environment. PMID:27062185

  11. Identification of a mitochondrial ATP synthase-adenine nucleotide translocator complex in Leishmania.

    PubMed

    Detke, Siegfried; Elsabrouty, Rania

    2008-01-01

    The ATP synthasome is a macromolecular complex consisting of ATP synthase, adenine nucleotide translocator and phosphate carrier. To determine if this complex is evolutionary old or young, we searched for its presence in Leishmania, a mitochondria containing protozoan which evolved from the main eukaryote line soon after eukaryotes split from prokaryotes. Sucrose gradient centrifugation showed that the distribution of ANT among the fractions coincided with the distribution of ATP synthase. In addition, ATP synthase co-precipitated with FLAG tagged and wild type adenine nucleotide translocator isolated with anti FLAG and anti adenine nucleotide translocator antibodies, respectively. These data indicate that the adenine nucleotide translocator interacted with the ATP synthase to form a stable structure referred to as the ATP synthasome. The presence of the ATP synthasome in Leishmania, an organism branching off the main line of eukaryotes early in the development of eukaryotes, as well as in higher eukaryotes suggests that the ATP synthasome is a phylogenetically ancient structure. PMID:17920025

  12. Adenine and guanine nucleotide metabolism during platelet storage at 22 degree C

    SciTech Connect

    Edenbrandt, C.M.; Murphy, S. )

    1990-11-01

    Adenine and guanine nucleotide metabolism of platelet concentrates (PCs) was studied during storage for transfusion at 22 +/- 2 degrees C over a 7-day period using high-pressure liquid chromatography. There was a steady decrease in platelet adenosine triphosphate (ATP) and adenosine diphosphate (ADP), which was balanced quantitatively by an increase in plasma hypoxanthine. As expected, ammonia accumulated along with hypoxanthine but at a far greater rate. A fall in platelet guanosine triphosphate (GTP) and guanosine diphosphate (GDP) paralleled the fall in ATP + ADP. When adenine was present in the primary anticoagulant, it was carried over into the PC and metabolized. ATP, GTP, total adenine nucleotides, and total guanine nucleotides declined more slowly in the presence of adenine than in its absence. With adenine, the increase in hypoxanthine concentration was more rapid and quantitatively balanced the decrease in adenine and platelet ATP + ADP. Plasma xanthine rose during storage but at a rate that exceeded the decline in GTP + GDP. When platelet ATP + ADP was labeled with 14C-adenine at the initiation of storage, half of the radioactivity was transferred to hypoxanthine (45%) and GTP + GDP + xanthine (5%) by the time storage was completed. The isotopic data were consistent with the presence of a radioactive (metabolic) and a nonradioactive (storage) pool of ATP + ADP at the initiation of storage with each pool contributing approximately equally to the decline in ATP + ADP during storage. The results suggested a continuing synthesis of GTP + GDP from ATP + ADP, explaining the slower rate of fall of GTP + GDP relative to the rate of rise of plasma xanthine. Throughout storage, platelets were able to incorporate 14C-hypoxanthine into both adenine and guanine nucleotides but at a rate that was only one fourth the rate of hypoxanthine accumulation.

  13. Phosphorus-31 NMR visibility and characterization of rat liver mitochondrial matrix adenine nucleotides

    SciTech Connect

    Hutson, S.M.; Berkich, D.; Williams, G.D.; LaNoue, K.F.; Briggs, R.W. )

    1989-05-16

    Compartmentation and NMR visibility of mitochondrial adenine nucleotides were quantitated in isolated rat liver mitochondria respiring on succinate and glutamate in vitro at 8 and 25{degree}C. Intra- and extramitochondrial nucleotides were discriminated by adding the chelator trans-1,2-diaminocyclohexane-N,N,N{prime},N{prime}-tetraacetic acid (CDTA). T{sub 1} values of about 0.2-0.3 s for magnesium-bound matrix nucleotides were determined. Adenine nucleotide T{sub 1} values were influenced by the ionic environment; only magnesium-free ATP T{sub 1}'s were affected by temperature. Intra- and extramitochondrial adenine nucleotide ratios were varied in ATP-loaded mitochondria with added ATP and phosphate using the mitochondrial inhibitors oligomycin and carboxyatractyloside, and adenine nucleotides were quantitated by using NMR and enzymatic analysis. There was good agreement between matrix ATP concentrations (magnesium-bound ATP) calculated by using NMR and standard biochemical techniques. Although matrix ADP could be detected by NMR, it was difficult to quantitate accurately by NMR. The data indicate that mitochondrial ATP is NMR-visible in isolated mitochondria in vitro.

  14. Functional Linkage of Adenine Nucleotide Binding Sites in Mammalian Muscle 6-Phosphofructokinase*

    PubMed Central

    Brüser, Antje; Kirchberger, Jürgen; Kloos, Marco; Sträter, Norbert; Schöneberg, Torsten

    2012-01-01

    6-Phosphofructokinases (Pfk) are homo- and heterooligomeric, allosteric enzymes that catalyze one of the rate-limiting steps of the glycolysis: the phosphorylation of fructose 6-phosphate at position 1. Pfk activity is modulated by a number of regulators including adenine nucleotides. Recent crystal structures from eukaryotic Pfk revealed several adenine nucleotide binding sites. Herein, we determined the functional relevance of two adenine nucleotide binding sites through site-directed mutagenesis and enzyme kinetic studies. Subsequent characterization of Pfk mutants allowed the identification of the activating (AMP, ADP) and inhibitory (ATP, ADP) allosteric binding sites. Mutation of one binding site reciprocally influenced the allosteric regulation through nucleotides interacting with the other binding site. Such reciprocal linkage between the activating and inhibitory binding sites is in agreement with current models of allosteric enzyme regulation. Because the allosteric nucleotide binding sites in eukaryotic Pfk did not evolve from prokaryotic ancestors, reciprocal linkage of functionally opposed allosteric binding sites must have developed independently in prokaryotic and eukaryotic Pfk (convergent evolution). PMID:22474333

  15. The adsorption and reaction of adenine nucleotides on montmorillonite

    NASA Technical Reports Server (NTRS)

    Ferris, James P.; Hagan, William J., Jr.

    1986-01-01

    The binding of AMP to Zn(2+)-montmorillonite is investigated in the presence of salts and Good's zwitterion buffers, PIPES and MES. The initial concentrations of nucleotide and the percent adsorbtion are used to calculate the adsorption isotherms, and the Langmuir adsorption equation is used for the analysis of data. The adsorption coefficient was found to be three times greater in the presence of 0.2 M PIPES than in its absence. In addition, basal spacings measured by X-ray diffraction were increased by the buffer. These results are interpreted in terms of a model in which the adsorption of AMP is mediated by a Zn(2+) complex of PIPES in different orientations in the interlamellar region of the montmorillonite. Mixed ligand complexes of this type are reminiscent of the complexes observed between metal ions and biological molecules in living systems.

  16. MICROCALORIMETRIC STUDIES ON THE FORMATION OF MAGNESIUM COMPLEXES OF ADENINE NUCLEOTIDES

    PubMed Central

    Belaich, J. P.; Sari, J. C.

    1969-01-01

    Values for the thermodynamic quantities (ΔF, ΔH, ΔS) in reactions in which complexes of adenine nucleotides with magnesium ion (ATPMg--, ADPMg-, AMPMg) are formed have been obtained by a microcalorimetric technique by using an isothermic Calvet's apparatus. Experimental values measured at ionic strength μ = 0.2 indicate that complex formation reactions are driven by the entropic factor and that stability of complexes increases with length of the phosphate chain. PMID:5261047

  17. Ethanol-induced activation of adenine nucleotide turnover. Evidence for a role of acetate

    SciTech Connect

    Puig, J.G.; Fox, I.H.

    1984-09-01

    Consumption of alcohol causes hyperuricemia by decreasing urate excretion and increasing its production. Our previous studies indicate that ethanol administration increases uric acid production by increasing ATP degradation to uric acid precursors. To test the hypothesis that ethanol-induced increased urate production results from acetate metabolism and enhanced adenosine triphosphate turnover, we gave intravenous sodium acetate, sodium chloride and ethanol (0.1 mmol/kg per min for 1 h) to five normal subjects. Acetate plasma levels increased from 0.04 +/- 0.01 mM (mean +/- SE) to peak values of 0.35 +/- 0.07 mM and to 0.08 +/- 0.01 mM during acetate and ethanol infusions, respectively. Urinary oxypurines increased to 223 +/- 13% and 316 +/- 44% of the base-line values during acetate and ethanol infusions, respectively. Urinary radioactivity from the adenine nucleotide pool labeled with (8-14C) adenine increased to 171 +/- 27% and to 128 +/- 8% of the base-line values after acetate and ethanol infusions. These data indicate that both ethanol and acetate increase purine nucleotide degradation by enhancing the turnover of the adenine nucleotide pool. They support the hypothesis that acetate metabolism contributes to the increased production of urate associated with ethanol intake.

  18. Identification and characterization of a novel plastidic adenine nucleotide uniporter from Solanum tuberosum.

    PubMed

    Leroch, Michaela; Kirchberger, Simon; Haferkamp, Ilka; Wahl, Markus; Neuhaus, H Ekkehard; Tjaden, Joachim

    2005-05-01

    Homologs of BT1 (the Brittle1 protein) are found to be phylogenetically related to the mitochondrial carrier family and appear to occur in both mono- and dicotyledonous plants. Whereas BT1 from cereals is probably involved in the transport of ADP-glucose, which is essential for starch metabolism in endosperm plastids, BT1 from a noncereal plant, Solanum tuberosum (StBT1), catalyzes an adenine nucleotide uniport when functionally integrated into the bacterial cytoplasmic membrane. Import studies into intact Escherichia coli cells harboring StBT1 revealed a narrow substrate spectrum with similar affinities for AMP, ADP, and ATP of about 300-400 mum. Transiently expressed StBT1-green fluorescent protein fusion protein in tobacco leaf protoplasts showed a plastidic localization of the StBT1. In vitro synthesized radioactively labeled StBT1 was targeted to the envelope membranes of isolated spinach chloroplasts. Furthermore, we showed by real time reverse transcription-PCR a ubiquitous expression pattern of the StBT1 in autotrophic and heterotrophic potato tissues. We therefore propose that StBT1 is a plastidic adenine nucleotide uniporter used to provide the cytosol and other compartments with adenine nucleotides exclusively synthesized inside plastids. PMID:15737999

  19. Effects of increased heart work on glycolysis and adenine nucleotides in the perfused heart of normal and diabetic rats

    PubMed Central

    Opie, L. H.; Mansford, K. R. L.; Owen, Patricia

    1971-01-01

    1. In the isolated perfused rat heart, the contractile activity and the oxygen uptake were varied by altering the aortic perfusion pressure, or by the atrial perfusion technique (`working heart'). 2. The maximum increase in the contractile activity brought about an eightfold increase in the oxygen uptake. The rate of glycolytic flux rose, while tissue contents of hexose monophosphates, citrate, ATP and creatine phosphate decreased, and contents of ADP and AMP rose. 3. The changes in tissue contents of adenine nucleotides during increased heart work were time-dependent. The ATP content fell temporarily (30s and 2min) after the start of left-atrial perfusion; at 5 and 10min values were normal; and at 30 and 60min values were decreased. ADP and AMP values were increased in the first 15min, but were at control values 30 or 60min after the onset of increased heart work. 4. During increased heart work changes in the tissue contents of adenine nucleotide and of citrate appeared to play a role in altered regulation of glycolysis at the level of phosphofructokinase activity. 5. In recirculation experiments increased heart work for 30min was associated with increased entry of [14C]glucose (11.1mm) and glycogen into glycolysis and a comparable increase in formation of products of glycolysis (lactate, pyruvate and 14CO2). There was no major accumulation of intermediates. Glycogen was not a major fuel for respiration. 6. Increased glycolytic flux in Langendorff perfused and working hearts was obtained by the addition of insulin to the perfusion medium. The concomitant increases in the tissue values of hexose phosphates and of citrate contrasted with the decreased values of hexose monophosphates and of citrate during increased glycolytic flux obtained by increased heart work. 7. Decreased glycolytic flux in Langendorff perfused hearts was obtained by using acute alloxan-diabetic and chronic streptozotocin-diabetic rats; in the latter condition there were decreased tissue

  20. Role of vacuum ultraviolet (VUV) radiation in abiogenic synthesis of adenine nucleotides

    NASA Astrophysics Data System (ADS)

    Kuzicheva, E. A.; Simakov, M. B.; Mal'Ko, I. L.; Dodonova, N. Ya.; Gontareva, N. B.

    With the use of high performance liquid chromatography the products of abiogenic synthesis of adenine nucleotides in solid films were indentified and estimated quantitatively. The main products of photosynthesis appeared to be adenosine and deoxyadenosine monophosphates. Maximal yield of these products in case of adenosine has been 0.36 for 5'AMP, 0.41% for 2'(3')AMP, 0.20 for 2'3'cAMP in case of deoxyadenosine 0.13% for 5'dAMP, 0.15% for 3'dAMP, 0.24% for 3'5'cdAMP. The destruction of initial adenosine and deoxyadenosine by the end of the experiment was 10 and 15%, respectively. By the increasing of irradiation dose, 5'AMP and 5'dAMP synthesized in the cource of VUV photolysis were destructed up to adenine, its yield being 15% in both cases.

  1. [Dependence of creatine kinase and glycogen synthetase activities of skeletal muscles on state of adenine nucleotide phosphorylation and cAMP metabolism].

    PubMed

    Iakovlev, N N; Chagovets, N R; Maksimova, L V

    1980-01-01

    Changes in the contents of adenine nucleotides, creatine phosphate, inorganic phosphate, creatine, glucose-6-phosphate and glycogen and the activity of adenylate cyclase, creatine kinase, glycogen phosphorylase 31:51-AMP-phosphodiesterase and glycogen synthetase in muscles and of blood catecholamines were studied in adult rats before loading, immediately after the cessation of the muscular activity, and at rest. Adenine nucleotides are established to play a regulatory role in catabolic and anabolic processes nucleotides are established to play a regulatory role in catabolic and anabolic processes related to the muscular activity. It is established that compensation and supercompensation of the working losses of muscular creatine phosphate and glycogen are due to activation of anabolic processes under conditions of higher phosphorylation of the adenylic system. PMID:6247797

  2. The effects of cyclic adenosine 3',5'-monophosphate and other adenine nucleotides on body temperature.

    PubMed Central

    Dascombe, M J; Milton, A S

    1975-01-01

    1. Adenosine 3',5'-monophosphate (cAMP), its dibutyryl derivative (Db-cAMP) and other adenine nucleotides have been micro-injected into the hypothalamic region of the unanaesthetized cat and the effects on body temperature, and on behavioural and autonomic thermoregulatory activities observed. 2. Db-cAMP and cAMP both produced hypothermia when applied to the pre-optic anterior hypothalamus. With Db-cAMP the hypothermia was shown to be dose dependent between 50 and 500 mug (0-096-0-96 mumole). 3. AMP, ADP and ATP also produced hypothermia when injected into the pre-optic anterior hypothalamus. 4. The order of relative potencies of the adenine nucleotides with respect both to the hypothermia produced and to the autonomic thermoregulatory effects observed were similar. Db-cAMP was most potent and cAMP least. 5. Micro-injection into the pre-optic anterior hypothalamus of many substances including saline produced in most cats a non-specific rise in body temperature apparently the result of tissue damage. Intraperitoneal injection of 4-acetamidophenol (paracetamol 50 mg/kg) reduced or abolished this febrile response. 6. The hypothermic effect of the adenine nucleotides has been compared with the effects produced in these same cats by micro-injections of noradrenaline, 5-hydroxytryptamine, a mixture of acetylcholine and physostigmine (1:1), EDTA and excess Ca2+ ions. 7. It is concluded that as Db-cAMP and cAMP both produce hypothermia, it is unlikely that endogenous cAMP in the pre-optic anterior hypothalamus mediates the hyperthermic responses to pyrogens and prostaglandins. PMID:170396

  3. The effects of cyclic adenosine 3',5'-monophosphate and other adenine nucleotides on body temperature.

    PubMed

    Dascombe, M J; Milton, A S

    1975-08-01

    1. Adenosine 3',5'-monophosphate (cAMP), its dibutyryl derivative (Db-cAMP) and other adenine nucleotides have been micro-injected into the hypothalamic region of the unanaesthetized cat and the effects on body temperature, and on behavioural and autonomic thermoregulatory activities observed. 2. Db-cAMP and cAMP both produced hypothermia when applied to the pre-optic anterior hypothalamus. With Db-cAMP the hypothermia was shown to be dose dependent between 50 and 500 mug (0-096-0-96 mumole). 3. AMP, ADP and ATP also produced hypothermia when injected into the pre-optic anterior hypothalamus. 4. The order of relative potencies of the adenine nucleotides with respect both to the hypothermia produced and to the autonomic thermoregulatory effects observed were similar. Db-cAMP was most potent and cAMP least. 5. Micro-injection into the pre-optic anterior hypothalamus of many substances including saline produced in most cats a non-specific rise in body temperature apparently the result of tissue damage. Intraperitoneal injection of 4-acetamidophenol (paracetamol 50 mg/kg) reduced or abolished this febrile response. 6. The hypothermic effect of the adenine nucleotides has been compared with the effects produced in these same cats by micro-injections of noradrenaline, 5-hydroxytryptamine, a mixture of acetylcholine and physostigmine (1:1), EDTA and excess Ca2+ ions. 7. It is concluded that as Db-cAMP and cAMP both produce hypothermia, it is unlikely that endogenous cAMP in the pre-optic anterior hypothalamus mediates the hyperthermic responses to pyrogens and prostaglandins. PMID:170396

  4. Severity of cardiomyopathy associated with adenine nucleotide translocator-1 deficiency correlates with mtDNA haplogroup.

    PubMed

    Strauss, Kevin A; DuBiner, Lauren; Simon, Mariella; Zaragoza, Michael; Sengupta, Partho P; Li, Peng; Narula, Navneet; Dreike, Sandra; Platt, Julia; Procaccio, Vincent; Ortiz-González, Xilma R; Puffenberger, Erik G; Kelley, Richard I; Morton, D Holmes; Narula, Jagat; Wallace, Douglas C

    2013-02-26

    Mutations of both nuclear and mitochondrial DNA (mtDNA)-encoded mitochondrial proteins can cause cardiomyopathy associated with mitochondrial dysfunction. Hence, the cardiac phenotype of nuclear DNA mitochondrial mutations might be modulated by mtDNA variation. We studied a 13-generation Mennonite pedigree with autosomal recessive myopathy and cardiomyopathy due to an SLC25A4 frameshift null mutation (c.523delC, p.Q175RfsX38), which codes for the heart-muscle isoform of the adenine nucleotide translocator-1. Ten homozygous null (adenine nucleotide translocator-1(-/-)) patients monitored over a median of 6 years had a phenotype of progressive myocardial thickening, hyperalaninemia, lactic acidosis, exercise intolerance, and persistent adrenergic activation. Electrocardiography and echocardiography with velocity vector imaging revealed abnormal contractile mechanics, myocardial repolarization abnormalities, and impaired left ventricular relaxation. End-stage heart disease was characterized by massive, symmetric, concentric cardiac hypertrophy; widespread cardiomyocyte degeneration; overabundant and structurally abnormal mitochondria; extensive subendocardial interstitial fibrosis; and marked hypertrophy of arteriolar smooth muscle. Substantial variability in the progression and severity of heart disease segregated with maternal lineage, and sequencing of mtDNA from five maternal lineages revealed two major European haplogroups, U and H. Patients with the haplogroup U mtDNAs had more rapid and severe cardiomyopathy than those with haplogroup H. PMID:23401503

  5. Adenine nucleotide-dependent and redox-independent control of mitochondrial malate dehydrogenase activity in Arabidopsis thaliana.

    PubMed

    Yoshida, Keisuke; Hisabori, Toru

    2016-06-01

    Mitochondrial metabolism is important for sustaining cellular growth and maintenance; however, the regulatory mechanisms underlying individual processes in plant mitochondria remain largely uncharacterized. Previous redox-proteomics studies have suggested that mitochondrial malate dehydrogenase (mMDH), a key enzyme in the tricarboxylic acid (TCA) cycle and redox shuttling, is under thiol-based redox regulation as a target candidate of thioredoxin (Trx). In addition, the adenine nucleotide status may be another factor controlling mitochondrial metabolism, as respiratory ATP production in mitochondria is believed to be influenced by several environmental stimuli. Using biochemical and reverse-genetic approaches, we addressed the redox- and adenine nucleotide-dependent regulation of mMDH in Arabidopsis thaliana. Recombinant mMDH protein formed intramolecular disulfide bonds under oxidative conditions, but these bonds did not have a considerable effect on mMDH activity. Mitochondria-localized o-type Trx (Trx-o) did not facilitate re-reduction of oxidized mMDH. Determination of the in vivo redox state revealed that mMDH was stably present in the reduced form even in Trx-o-deficient plants. Accordingly, we concluded that mMDH is not in the class of redox-regulated enzymes. By contrast, mMDH activity was lowered by adenine nucleotides (AMP, ADP, and ATP). Each adenine nucleotide suppressed mMDH activity with different potencies and ATP exerted the largest inhibitory effect with a significantly lower K(I). Correspondingly, mMDH activity was inhibited by the increase in ATP/ADP ratio within the physiological range. These results suggest that mMDH activity is finely controlled in response to variations in mitochondrial adenine nucleotide balance. PMID:26946085

  6. Release of adenine nucleotide metabolites by toxic concentrations of cardiac glycosides.

    PubMed

    Bernauer, W

    1994-01-01

    In isolated perfused guinea-pig hearts the effect of toxic concentrations of cardiac glycosides on the release of the adenine nucleotide metabolites adenosine, inosine, hypoxanthine, xanthine, and uric acid was investigated. Digoxin concentrations of 0.03-1 mumol.l-1 produced moderate to severe tachyarrhythmias. Large amounts of metabolites were released by concentrations of 0.1 mumol.l-1, and higher. Occurrence of glycoside-induced ventricular fibrillation was associated with a particularly high release. Metabolite release was also obtained when fibrillation was elicited electrically in normal control hearts, or in hearts receiving simultaneously a marginally toxic digoxin concentration (0.03 mumol.l-1). Digoxin-induced tachyarrhythmias and metabolite release were almost completely prevented by a high potassium concentration in the coronary perfusion fluid (8.1 mmol.l-1). The antiarrhythmic effect was also obtained with lidocaine (60 mumol.l-1), but the release was only partially antagonized. Similar results concerning arrhythmias and metabolite release as with digoxin were obtained with ouabain. The findings suggest that the decrease in myocardial ATP observed in glycoside-intoxicated heart preparations is partly due to the loss of nucleotide precursor substances. Moreover, it appears likely that liberated adenosine in the interstitium of severely intoxicated heart preparations reaches pharmacologically effective concentrations. PMID:7826306

  7. Modulation by adenine nucleotides of epileptiform activity in the CA3 region of rat hippocampal slices

    PubMed Central

    Ross, F M; Brodie, M J; Stone, T W

    1998-01-01

    Hippocampal slices (450 μm) generate epileptiform bursts of an interictal nature when perfused with a zero magnesium medium containing 4-aminopyridine (50 μM). The effect of adenine nucleotides on this activity was investigated.ATP and adenosine depressed this epileptiform activity in a concentration-dependent manner, with both purines being equipotent at concentrations above 10 μM.Adenosine deaminase 0.2 u ml−1, a concentration that annuls the effect of adenosine (50 μM), did not significantly alter the depression of activity caused by ATP (50 μM).8-Cyclopentyl-1, 3-dimethylxanthine (CPT), an A1 receptor antagonist, enhanced the discharge rate significantly and inhibited the depressant effect of both ATP and adenosine such that the net effect of ATP or adenosine plus CPT was excitatory.Several ATP analogues were also tested: α, β-methyleneATP (α, β-meATP), 2-methylthioATP (2-meSATP) and uridine triphosphate (UTP). Only α, β-meATP (10 μM) produced an increase in the frequency of spontaneous activity which suggests a lack of involvement of P2Y or P2U receptors.Suramin and pyridoxalphosphate-6-azophenyl-2′, 4′-disulphonic acid (PPADS), P2 receptor antagonists, failed to inhibit the depression produced by ATP (50 μM). The excitatory effect of α, β-meATP (10 μM) was inhibited by suramin (50 μM) and PPADS (5 μM).ATP therefore depresses epileptiform activity in this model in a manner which is not consistent with the activation of known P1 or P2 receptors, suggesting the involvement of a xanthine-sensitive nucleotide receptor. The results are also indicative of an excitatory P2X receptor existing in the hippocampal CA3 region. PMID:9484856

  8. PsANT, the adenine nucleotide translocase of Puccinia striiformis, promotes cell death and fungal growth.

    PubMed

    Tang, Chunlei; Wei, Jinping; Han, Qingmei; Liu, Rui; Duan, Xiaoyuan; Fu, Yanping; Huang, Xueling; Wang, Xiaojie; Kang, Zhensheng

    2015-01-01

    Adenine nucleotide translocase (ANT) is a constitutive mitochondrial component that is involved in ADP/ATP exchange and mitochondrion-mediated apoptosis in yeast and mammals. However, little is known about the function of ANT in pathogenic fungi. In this study, we identified an ANT gene of Puccinia striiformis f. sp. tritici (Pst), designated PsANT. The PsANT protein contains three typical conserved mitochondrion-carrier-protein (mito-carr) domains and shares more than 70% identity with its orthologs from other fungi, suggesting that ANT is conserved in fungi. Immuno-cytochemical localization confirmed the mitochondrial localization of PsANT in normal Pst hyphal cells or collapsed cells. Over-expression of PsANT indicated that PsANT promotes cell death in tobacco, wheat and fission yeast cells. Further study showed that the three mito-carr domains are all needed to induce cell death. qRT-PCR analyses revealed an in-planta induced expression of PsANT during infection. Knockdown of PsANT using a host-induced gene silencing system (HIGS) attenuated the growth and development of virulent Pst at the early infection stage but not enough to alter its pathogenicity. These results provide new insight into the function of PsANT in fungal cell death and growth and might be useful in the search for and design of novel disease control strategies. PMID:26058921

  9. PsANT, the adenine nucleotide translocase of Puccinia striiformis, promotes cell death and fungal growth

    PubMed Central

    Tang, Chunlei; Wei, Jinping; Han, Qingmei; Liu, Rui; Duan, Xiaoyuan; Fu, Yanping; Huang, Xueling; Wang, Xiaojie; Kang, Zhensheng

    2015-01-01

    Adenine nucleotide translocase (ANT) is a constitutive mitochondrial component that is involved in ADP/ATP exchange and mitochondrion-mediated apoptosis in yeast and mammals. However, little is known about the function of ANT in pathogenic fungi. In this study, we identified an ANT gene of Puccinia striiformis f. sp. tritici (Pst), designated PsANT. The PsANT protein contains three typical conserved mitochondrion-carrier-protein (mito-carr) domains and shares more than 70% identity with its orthologs from other fungi, suggesting that ANT is conserved in fungi. Immuno-cytochemical localization confirmed the mitochondrial localization of PsANT in normal Pst hyphal cells or collapsed cells. Over-expression of PsANT indicated that PsANT promotes cell death in tobacco, wheat and fission yeast cells. Further study showed that the three mito-carr domains are all needed to induce cell death. qRT-PCR analyses revealed an in-planta induced expression of PsANT during infection. Knockdown of PsANT using a host-induced gene silencing system (HIGS) attenuated the growth and development of virulent Pst at the early infection stage but not enough to alter its pathogenicity. These results provide new insight into the function of PsANT in fungal cell death and growth and might be useful in the search for and design of novel disease control strategies. PMID:26058921

  10. Analysis of functional coupling: mitochondrial creatine kinase and adenine nucleotide translocase.

    PubMed

    Vendelin, Marko; Lemba, Maris; Saks, Valdur A

    2004-07-01

    The mechanism of functional coupling between mitochondrial creatine kinase (MiCK) and adenine nucleotide translocase (ANT) in isolated heart mitochondria is analyzed. Two alternative mechanisms are studied: 1), dynamic compartmentation of ATP and ADP, which assumes the differences in concentrations of the substrates between intermembrane space and surrounding solution due to some diffusion restriction and 2), direct transfer of the substrates between MiCK and ANT. The mathematical models based on these possible mechanisms were composed and simulation results were compared with the available experimental data. The first model, based on a dynamic compartmentation mechanism, was not sufficient to reproduce the measured values of apparent dissociation constants of MiCK reaction coupled to oxidative phosphorylation. The second model, which assumes the direct transfer of substrates between MiCK and ANT, is shown to be in good agreement with experiments--i.e., the second model reproduced the measured constants and the estimated ADP flux, entering mitochondria after the MiCK reaction. This model is thermodynamically consistent, utilizing the free energy profiles of reactions. The analysis revealed the minimal changes in the free energy profile of the MiCK-ANT interaction required to reproduce the experimental data. A possible free energy profile of the coupled MiCK-ANT system is presented. PMID:15240503

  11. Divalent phosphate is a counterion for carboxyatractyloside-insensitive adenine nucleotide transport in rat liver mitochondria

    SciTech Connect

    Nosek, M.T.; Aprille, J.R.

    1986-05-01

    Unidirectional, carboxyatractyloside(CAT)-insensitive adenine nucleotide (AdN) fluxes have been studied in isolated rat liver mitochondria (mito). Previous work has shown that ATP x Mg transport in one direction is coupled to ATP x Mg or P/sub i/ transport in the opposite direction. The purpose of this study was to determine whether divalent HPO/sub 4//sup 2 -/ or monovalent H/sub 2/PO/sub 4//sup -/ is the transported phosphate species. The authors used the monofluorophosphate (PO/sub 3/F/sup 2 -/) and difluorophosphate (PO/sub 2/F/sub 2//sup -/) analogues as potential counterions forAdN efflux. After a preincubation on ice with /sup 14/C-ADP to label the matrix AdN, efflux was measured at 30/sup 0/C, pH 7.4, in 225mM sucrose, 10mM KCl, 5mM MgCl/sub 2/, 5mM glutamate, 5mM malate, 10mM Tris, 0.5mM P/sub i/, 1mM ATP, and 5..mu..M CAT. With no other additions efflux was -0.62 +/- 0.20 nmole/minute/mg protein. The data supports the hypothesis that divalent but not monovalent phosphate can act as a counterion for ATPx Mg transport over this CAT-insensitive carrier.

  12. Molecular dynamics simulations of creatine kinase and adenine nucleotide translocase in mitochondrial membrane patch.

    PubMed

    Karo, Jaanus; Peterson, Pearu; Vendelin, Marko

    2012-03-01

    Interaction between mitochondrial creatine kinase (MtCK) and adenine nucleotide translocase (ANT) can play an important role in determining energy transfer pathways in the cell. Although the functional coupling between MtCK and ANT has been demonstrated, the precise mechanism of the coupling is not clear. To study the details of the coupling, we turned to molecular dynamics simulations. We introduce a new coarse-grained molecular dynamics model of a patch of the mitochondrial inner membrane containing a transmembrane ANT and an MtCK above the membrane. The membrane model consists of three major types of lipids (phosphatidylcholine, phosphatidylethanolamine, and cardiolipin) in a roughly 2:1:1 molar ratio. A thermodynamics-based coarse-grained force field, termed MARTINI, has been used together with the GROMACS molecular dynamics package for all simulated systems in this work. Several physical properties of the system are reproduced by the model and are in agreement with known data. This includes membrane thickness, dimension of the proteins, and diffusion constants. We have studied the binding of MtCK to the membrane and demonstrated the effect of cardiolipin on the stabilization of the binding. In addition, our simulations predict which part of the MtCK protein sequence interacts with the membrane. Taken together, the model has been verified by dynamical and structural data and can be used as the basis for further studies. PMID:22241474

  13. ADENYLATE ENERGY CHARGE AND ADENINE NUCLEOTIDE MEASUREMENTS AS INDICATORS OF STRESS IN THE MUSSEL, MYTILUS EDULIS, TREATED WITH DREDGED MATERIAL UNDER LABORATORY CONDITIONS

    EPA Science Inventory

    Adenylate energy charge is an indication of the amount of energy available to an organism from the adenylate pool. t is calculated from measured concentrations of three adenine nucleotides, adenosine triphosphate (ATP), adenosine diphosphate (ADP) and adenosine monophosphate (AMP...

  14. Inhibition of the adenine nucleotide translocator by N-acetyl perfluorooctane sulfonamides in vitro

    SciTech Connect

    O'Brien, Timothy M. Oliveira, Paulo J.; Wallace, Kendall B.

    2008-03-01

    N-alkyl perfluorooctane sulfonamides have been widely used as surfactants on fabrics and papers, fire retardants, and anti-corrosion agents, among many other commercial applications. The global distribution and environmental persistence of these compounds has generated considerable interest regarding potential toxic effects. We have previously reported that perfluorooctanesulfonamidoacetate (FOSAA) and N-ethylperfluorooctanesulfonamidoacetate (N-EtFOSAA) induce the mitochondrial permeability transition (MPT) in vitro. In this study we tested the hypothesis that FOSAA and N-EtFOSAA interact with the adenine nucleotide translocator (ANT) resulting in a functional inhibition of the translocator and induction of the MPT. Respiration and membrane potential of freshly isolated liver mitochondria from Sprague-Dawley rats were measured using an oxygen electrode and a tetraphenylphosphonium-selective (TPP{sup +}) electrode, respectively. Mitochondrial swelling was measured spectrophotometrically. The ANT ligands bongkregkic acid (BKA) and carboxyatractyloside (cATR) inhibited uncoupling of mitochondrial respiration caused by 10 {mu}M N-EtFOSAA, 40 {mu}M FOSAA, and the positive control 8 {mu}M oleic acid. ADP-stimulated respiration and depolarization of mitochondrial membrane potential were inhibited by cATR, FOSAA, N-EtFOSAA, and oleic acid, but not by FCCP. BKA inhibited calcium-dependent mitochondrial swelling induced by FOSAA, N-EtFOSAA, and oleic acid. Seventy-five micromolar ADP also inhibited swelling induced by the test compounds, but cATR induced swelling was not inhibited by ADP. Results of this investigation indicate that N-acetyl perfluorooctane sulfonamides interact directly with the ANT to inhibit ADP translocation and induce the MPT, one or both of which may account for the metabolic dysfunction observed in vivo.

  15. Deficiency in the mouse mitochondrial adenine nucleotide translocator isoform 2 gene is associated with cardiac noncompaction.

    PubMed

    Kokoszka, Jason E; Waymire, Katrina G; Flierl, Adrian; Sweeney, Katelyn M; Angelin, Alessia; MacGregor, Grant R; Wallace, Douglas C

    2016-08-01

    The mouse fetal and adult hearts express two adenine nucleotide translocator (ANT) isoform genes. The predominant isoform is the heart-muscle-brain ANT-isoform gene 1 (Ant1) while the other is the systemic Ant2 gene. Genetic inactivation of the Ant1 gene does not impair fetal development but results in hypertrophic cardiomyopathy in postnatal mice. Using a knockin X-linked Ant2 allele in which exons 3 and 4 are flanked by loxP sites combined in males with a protamine 1 promoter driven Cre recombinase we created females heterozygous for a null Ant2 allele. Crossing the heterozygous females with the Ant2(fl), PrmCre(+) males resulted in male and female ANT2-null embryos. These fetuses proved to be embryonic lethal by day E14.5 in association with cardiac developmental failure, immature cardiomyocytes having swollen mitochondria, cardiomyocyte hyperproliferation, and cardiac failure due to hypertrabeculation/noncompaction. ANTs have two main functions, mitochondrial-cytosol ATP/ADP exchange and modulation of the mitochondrial permeability transition pore (mtPTP). Previous studies imply that ANT2 biases the mtPTP toward closed while ANT1 biases the mtPTP toward open. It has been reported that immature cardiomyocytes have a constitutively opened mtPTP, the closure of which signals the maturation of cardiomyocytes. Therefore, we hypothesize that the developmental toxicity of the Ant2 null mutation may be the result of biasing the cardiomyocyte mtPTP to remain open thus impairing cardiomyocyte maturation and resulting in cardiomyocyte hyperproliferation and failure of trabecular maturation. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi. PMID:27048932

  16. An alternative membrane transport pathway for phosphate and adenine nucleotides in mitochondria and its possible function.

    PubMed

    Reynafarje, B; Lehninger, A L

    1978-10-01

    This paper describes the properties and a possible biological role of a transport process across the inner membrane of rat liver mitochondria resulting in the exchange of ATP(4-) (out) for ADP(3-) (in) + 0.5 phosphate(2-) (in). This transmembrane exchange reaction, designated as the ATP-ADP-phosphate exchange, is specific for the ligands shown, electroneutral, insensitive to N-ethylmaleimide or mersalyl, inhibited by atractyloside, and appears to occur only in the direction as written. It is thus distinct from the well-known phosphate-hydroxide and phosphate-dicarboxylate exchange systems, which are inhibited by mersalyl, and from the ATP-ADP exchanger, which does not transport phosphate. During ATP hydrolysis by mitochondria, half of the phosphate formed from ATP passes from the matrix to the medium by the mersalyl-insensitive ATP-ADP-phosphate exchange and the other half by the well-known mersalyl-sensitive phosphate-hydroxide exchange. These and other considerations have led to a hypothesis for the pathway and stoichiometry of ATP-dependent reverse electron transport, characterized by a requirement of 1.33 molecules of ATP per pair of electrons reversed and by the utilization of a different membrane transport pathway for phosphate and adenine nucleotides than is taken in forward electron flow and oxidative phosphorylation. The possible occurrence of independent pathways for ATP-forming forward electron flow and ATP-consuming reverse electron flow is consonant with the fact that the opposing degradative and synthetic pathways in the central routes of cell metabolism generally have different pathways that are independently regulated. PMID:283393

  17. Two Adenine Nucleotide Translocase Paralogues Involved in Cell Proliferation and Spermatogenesis in the Silkworm Bombyx mori

    PubMed Central

    Sugahara, Ryohei; Jouraku, Akiya; Nakakura, Takayo; Kusakabe, Takahiro; Yamamoto, Takenori; Shinohara, Yasuo; Miyoshi, Hideto; Shiotsuki, Takahiro

    2015-01-01

    Mitochondrial adenine nucleotide translocase (ANT) specifically acts in ADP/ATP exchange through the mitochondrial inner membrane. This transporter protein thereby plays a significant role in energy metabolism in eukaryotic cells. Most mammals have four paralogous ANT genes (ANT1-4) and utilize these paralogues in different types of cells. The fourth paralogue of ANT (ANT4) is present only in mammals and reptiles and is exclusively expressed in testicular germ cells where it is required for meiotic progression in the spermatocytes. Here, we report that silkworms harbor two ANT paralogues, the homeostatic paralogue (BmANTI1) and the testis-specific paralogue (BmANTI2). The BmANTI2 protein has an N-terminal extension in which the positions of lysine residues in the amino acid sequence are distributed as in human ANT4. An expression analysis showed that BmANTI2 transcripts were restricted to the testis, suggesting the protein has a role in the progression of spermatogenesis. By contrast, BmANTI1 was expressed in all tissues tested, suggesting it has an important role in homeostasis. We also observed that cultured silkworm cells required BmANTI1 for proliferation. The ANTI1 protein of the lepidopteran Plutella xylostella (PxANTI1), but not those of other insect species (or PxANTI2), restored cell proliferation in BmANTI1-knockdown cells suggesting that ANTI1 has similar energy metabolism functions across the Lepidoptera. Our results suggest that BmANTI2 is evolutionarily divergent from BmANTI1 and has developed a specific role in spermatogenesis similar to that of mammalian ANT4. PMID:25742135

  18. Mitochondrial permeability transition as induced by cross-linking of the adenine nucleotide translocase.

    PubMed

    Zazueta, C; Reyes-Vivas, H; Zafra, G; Sánchez, C A; Vera, G; Chávez, E

    1998-04-01

    Mitochondrial permeability transition is caused by the opening of a transmembrane pore whose chemical nature has not been well established yet. The present work was aimed to further contribute to the knowledge of the membrane entity comprised in the formation of the non-specific channel. The increased permeability was established by analyzing the inability of rat kidney mitochondria to take up and accumulate Ca2+, as well as their failure to build up a transmembrane potential, after the cross-linking of membrane proteins by copper plus ortho-phenanthroline. To identify the cross-linked proteins, polyacrylamide gel electrophoresis was performed. The results are representative of at least three separate experiments. It is indicated that 30 microM Cu2+ induced the release of 4.3 nmol Ca2+ per mg protein. However, in the presence of 100 microM ortho-phenanthroline only 2 microM Cu2+ was required to attain the total release of the accumulated Ca2+; it should be noted that such a reaction is not inhibited by cyclosporin. The increased permeability corresponds to cross-linking of membrane proteins in which approximately 4 nmol thiol groups per mg protein appear to be involved. Such a linking process is inhibited by carboxyatractyloside. By using the fluorescent probe eosin-5-maleimide the label was found in a cross-linking 60 kDa dimer of two 30 kDa monomers. From the data presented it is concluded that copper-o-phenanthroline induces the intermolecular cross-linking of the adenine nucleotide translocase which in turn is converted to non-specific pore. PMID:9675885

  19. Adenine Nucleotide Translocase 4 Is Expressed Within Embryonic Ovaries and Dispensable During Oogenesis

    PubMed Central

    Lim, Chae Ho; Brower, Jeffrey V.; Resnick, James L.; Oh, S. Paul

    2015-01-01

    Adenine nucleotide translocase (Ant) facilitates the exchange of adenosine triphosphate across the mitochondrial inner membrane and plays a critical role for bioenergetics in eukaryotes. Mice have 3 Ant paralogs, Ant1 (Slc25a4), Ant2 (Slc25a5), and Ant4 (Slc25a31), which are expressed in a tissue-dependent manner. We previously identified that Ant4 was expressed exclusively in testicular germ cells in adult mice and essential for spermatogenesis and subsequently male fertility. Further investigation into the process of spermatogenesis revealed that Ant4 was particularly highly expressed during meiotic prophase I and indispensable for normal progression of leptotene spermatocytes to the stages thereafter. In contrast, the expression and roles of Ant4 in female germ cells have not previously been elucidated. Here, we demonstrate that the Ant4 gene is expressed during embryonic ovarian development during which meiotic prophase I occurs. We confirmed embryonic ovary-specific Ant4 expression using a bacterial artificial chromosome transgene. In contrast to male, however, Ant4 null female mice were fertile although the litter size was slightly decreased. They showed apparently normal ovarian development which was morphologically indistinguishable from the control animals. These data indicate that Ant4 is a meiosis-specific gene expressed during both male and female gametogenesis however indispensable only during spermatogenesis and not oogenesis. The differential effects of Ant4 depletion within the processes of male and female gametogenesis may be explained by meiosis-specific inactivation of the X-linked Ant2 gene in male, a somatic paralog of the Ant4 gene. PMID:25031318

  20. Dual role for adenine nucleotides in the regulation of the atrial natriuretic peptide receptor, guanylyl cyclase-A.

    PubMed

    Foster, D C; Garbers, D L

    1998-06-26

    The ability to both sensitize and desensitize a guanylyl cyclase receptor has not been previously accomplished in a broken cell or membrane preparation. The guanylyl cyclase-A (GC-A) receptor is known to require both atrial natriuretic peptide (ANP) and an adenine nucleotide for maximal cyclase activation. When membranes from NIH 3T3 cells stably overexpressing GC-A were incubated with ATP, AMPPNP, or ATPgammaS, only ATPgammaS dramatically potentiated ANP-dependent cyclase activity. When the membranes were incubated with ATPgammaS and then washed, GC-A now became sensitive to ANP/AMPPNP stimulation, suggestive that thiophosphorylation had sensitized GC-A to ligand and adenine nucleotide binding. Consistent with this hypo- thesis, the ATPgammaS effects were both time- and concentration-dependent. Protein phosphatase stability of thiophosphorylation (ATPgammaS) relative to phosphorylation (ATP) appeared to explain the differential effects of the two nucleotides since microcystin, beta-glycerol phosphate, or okadaic acid coincident with ATP or ATPgammaS effectively sensitized GC-A to ligand stimulation over prolonged periods of time in either case. GC-A was phosphorylated in the presence of [gamma32P]ATP, and the magnitude of the phosphorylation was increased by the addition of microcystin. Thus, the phosphorylation of GC-A correlates with the acquisition of ligand sensitivity. The establishment of an in vitro system to sensitize GC-A demonstrates that adenine nucleotides have a daul function in the regulation of GC-A through both phosphorylation of and binding to regulatory sites. PMID:9632692

  1. Dietary adenine controls adult lifespan via adenosine nucleotide biosynthesis and AMPK, and regulates the longevity benefit of caloric restriction

    PubMed Central

    Stenesen, Drew; Suh, Jae Myoung; Seo, Jin; Yu, Kweon; Lee, Kyu-Sun; Kim, Jong-Seok; Min, Kyung-Jin; Graff, Jonathan M.

    2012-01-01

    SUMMARY A common thread among conserved lifespan regulators lies within intertwined roles in metabolism and energy homeostasis. We show that heterozygous mutations of adenosine monophosphate (AMP) biosynthetic enzymes extend Drosophila lifespan. The lifespan benefit of these mutations depends upon increased AMP to adenosine triphosphate (ATP) and adenosine diphosphate (ADP) to ATP ratios and adenosine monophosphate-activated protein kinase (AMPK). Transgenic expression of AMPK in adult fat body or adult muscle, key metabolic tissues, extended lifespan, while AMPK RNAi reduced lifespan. Supplementing adenine, a substrate for AMP biosynthesis, to the diet of long-lived AMP biosynthesis mutants reversed lifespan extension. Remarkably, this simple change in diet also blocked the pro-longevity effects of dietary restriction. These data establish AMP biosynthesis, adenosine nucleotide ratios, and AMPK as determinants of adult lifespan, provide a mechanistic link between cellular anabolism and energy sensing pathways, and indicate that dietary adenine manipulations might alter metabolism to influence animal lifespan. PMID:23312286

  2. Alkaline Phosphatase, Soluble Extracellular Adenine Nucleotides, and Adenosine Production after Infant Cardiopulmonary Bypass

    PubMed Central

    Davidson, Jesse A.; Urban, Tracy; Tong, Suhong; Twite, Mark; Woodruff, Alan

    2016-01-01

    Rationale Decreased alkaline phosphatase activity after infant cardiac surgery is associated with increased post-operative cardiovascular support requirements. In adults undergoing coronary artery bypass grafting, alkaline phosphatase infusion may reduce inflammation. Mechanisms underlying these effects have not been explored but may include decreased conversion of extracellular adenine nucleotides to adenosine. Objectives 1) Evaluate the association between alkaline phosphatase activity and serum conversion of adenosine monophosphate to adenosine after infant cardiac surgery; 2) assess if inhibition/supplementation of serum alkaline phosphatase modulates this conversion. Methods and Research Pre/post-bypass serum samples were obtained from 75 infants <4 months of age. Serum conversion of 13C5-adenosine monophosphate to 13C5-adenosine was assessed with/without selective inhibition of alkaline phosphatase and CD73. Low and high concentration 13C5-adenosine monophosphate (simulating normal/stress concentrations) were used. Effects of alkaline phosphatase supplementation on adenosine monophosphate clearance were also assessed. Changes in serum alkaline phosphatase activity were strongly correlated with changes in 13C5-adenosine production with or without CD73 inhibition (r = 0.83; p<0.0001). Serum with low alkaline phosphatase activity (≤80 U/L) generated significantly less 13C5-adenosine, particularly in the presence of high concentration 13C5-adenosine monophosphate (10.4μmol/L vs 12.9μmol/L; p = 0.0004). Inhibition of alkaline phosphatase led to a marked decrease in 13C5-adenosine production (11.9μmol/L vs 2.7μmol/L; p<0.0001). Supplementation with physiologic dose human tissue non-specific alkaline phosphatase or high dose bovine intestinal alkaline phosphatase doubled 13C5-adenosine monophosphate conversion to 13C5-adenosine (p<0.0001). Conclusions Alkaline phosphatase represents the primary serum ectonucleotidase after infant cardiac surgery and low post

  3. A weak pulsed magnetic field affects adenine nucleotide oscillations, and related parameters in aggregating Dictyostelium discoideum amoebae.

    PubMed

    Davies, E; Olliff, C; Wright, I; Woodward, A; Kell, D

    1999-02-01

    A model eukaryotic cell system was used to explore the effect of a weak pulsed magnetic field (PMF) on time-varying physiological parameters. Dictyostelium discoideum cells (V12 strain) were exposed to a pulsed magnetic field (PMF) of flux density 0.4 mT, generated via air-cored coils in trains of 2 ms pulses gated at 20 ms. This signal is similar to those used to treat non-uniting fractures. Samples were taken over periods of 20 min from harvested suspensions of amoebae during early aggregation phase, extracted and derivatised for HPLC fluorescent assay of adenine nucleotides. Analysis of variance showed a significant athermal damping effect (P < 0.002, n = 22) of the PMF on natural adenine nucleotide oscillations and some consistent changes in phase relationships. The technique of nonlinear dielectric spectroscopy (NLDS) revealed a distinctive effect of PMF, caffeine and EGTA in modulating the cellular harmonic response to an applied weak signal. Light scattering studies also showed altered frequency response of cells to PMF, EGTA and caffeine. PMF caused a significant reduction of caffeine induced cell contraction (P < 0.0006, n = 19 by paired t-test) as shown by Malvern particle size analyser, suggesting that intracellular calcium may be involved in mediating the effect of the PMF. PMID:10228582

  4. P2Y13 receptors mediate presynaptic inhibition of acetylcholine release induced by adenine nucleotides at the mouse neuromuscular junction.

    PubMed

    Guarracino, Juan F; Cinalli, Alejandro R; Fernández, Verónica; Roquel, Liliana I; Losavio, Adriana S

    2016-06-21

    It is known that adenosine 5'-triphosphate (ATP) is released along with the neurotransmitter acetylcholine (ACh) from motor nerve terminals. At mammalian neuromuscular junctions (NMJs), we have previously demonstrated that ATP is able to decrease ACh secretion by activation of P2Y receptors coupled to pertussis toxin-sensitive Gi/o protein. In this group, the receptor subtypes activated by adenine nucleotides are P2Y12 and P2Y13. Here, we investigated, by means of pharmacological and immunohistochemical assays, the P2Y receptor subtype that mediates the modulation of spontaneous and evoked ACh release in mouse phrenic nerve-diaphragm preparations. First, we confirmed that the preferential agonist for P2Y12-13 receptors, 2-methylthioadenosine 5'-diphosphate trisodium salt hydrate (2-MeSADP), reduced MEPP frequency without affecting MEPP amplitude as well as the amplitude and quantal content of end-plate potentials (EPPs). The effect on spontaneous secretion disappeared after the application of the selective P2Y12-13 antagonists AR-C69931MX or 2-methylthioadenosine 5'-monophosphate triethylammonium salt hydrate (2-MeSAMP). 2-MeSADP was more potent than ADP and ATP in reducing MEPP frequency. Then we demonstrated that the selective P2Y13 antagonist MRS-2211 completely prevented the inhibitory effect of 2-MeSADP on MEPP frequency and EPP amplitude, whereas the P2Y12 antagonist MRS-2395 failed to do this. The preferential agonist for P2Y13 receptors inosine 5'-diphosphate sodium salt (IDP) reduced spontaneous and evoked ACh secretion and MRS-2211 abolished IDP-mediated modulation. Immunohistochemical studies confirmed the presence of P2Y13 but not P2Y12 receptors at the end-plate region. Disappearance of P2Y13 receptors after denervation suggests the presynaptic localization of the receptors. We conclude that, at motor nerve terminals, the Gi/o protein-coupled P2Y receptors implicated in presynaptic inhibition of spontaneous and evoked ACh release are of the subtype P2Y

  5. Purification and characterization of the reconstitutively active adenine nucleotide carrier from mitochondria of Jerusalem artichoke (Helianthus tuberosus L.) tubers.

    PubMed

    Spagnoletta, Anna; De Santis, Aurelio; Palmieri, Ferdinando; Genchi, Giuseppe

    2002-12-01

    The adenine nucleotide carrier from Jerusalem artichoke (Helianthus tuberosus L.) tubers mitochondria was solubilized with Triton X-100 and purified by sequential chromatography on hydroxapatite and Matrex Gel Blue B in the presence of cardiolipin and asolectin. SDS gel electrophoresis of the purified fraction showed a single polypeptide band with an apparent molecular mass of 33 kDa. When reconstituted in liposomes, the adenine nucleotide carrier catalyzed a pyridoxal 5'-phosphate-sensitive ATP/ATP exchange. It was purified 75-fold with a recovery of 15% and a protein yield of 0.18% with respect to the mitochondrial extract. Among the various substrates and inhibitors tested, the reconstituted protein transported only ATP, ADP, and GTP and was inhibited by bongkrekate, phenylisothiocyanate, pyridoxal 5'-phosphate, mersalyl and p-hydroxymercuribenzoate (but not N-ethylmaleimide). Atractyloside and carboxyatractyloside (at concentrations normally inhibitory in animal and plant mitochondria) were without effect in Jerusalem artichoke tubers mitochondria. Vmax of the reconstituted ATP/ATP exchange was determined to be 0.53 micromol/min per mg protein at 25 degrees C. The half-saturation constant Km and the corresponding inhibition constant Ki were 20.4 microM for ATP and 45 microM for ADP. The activation energy of the ATP/ATP exchange was 28 KJ/mol between 5 and 30 degrees C. The N-terminal amino acid partial sequence of the purified protein showed a partial homology with the ANT protein purified from mitochondria of maize shoots. PMID:12678438

  6. Low-molecular-weight constituents of isolated insulin-secretory granules. Bivalent cations, adenine nucleotides and inorganic phosphate.

    PubMed Central

    Hutton, J C; Penn, E J; Peshavaria, M

    1983-01-01

    The concentrations of Zn2+, Ca2+, Mg2+, Pi and adenine nucleotides were determined in insulin-secretory granules prepared from a transplantable rat insulinoma. Differential and density-gradient centrifugation analyses revealed that Zn2+ in this tissue was principally localized in the secretory granule, a second major fraction being found in association with cytosolic proteins. Pi was principally recovered in the latter fraction, whereas Ca2+ and Mg2+ were more widely distributed. Intragranular ion-distribution experiments suggested that Zn2+ was complexed mainly to insulin and its precursor forms and remained in the granule in an insoluble state. The Zn2+/insulin ratio (0.54) was greater than that expected for insulin molecules having two centrally co-ordinated Zn2+ atoms/hexamer, but less than the maximal Zn2+-binding capacity of the molecule. Most of the granular Ca2+, Mg2+ and Pi was released in a soluble form when granules were disrupted by sonication. Simulation in vitro of the ionic composition of the granule suggested that up to 90% of its Ca2+ was complexed to Pi and adenine nucleotides. Granular macromolecules also bound Ca2+, as shown by equilibrium-dialysis studies of granule lysates. However, such binding was displaced by Mg2+. Examination of the efflux of Ca2+ from granules incubated in iso-osmotic suspensions at 37 degrees C suggested that the passive permeability of the granule membrane to Ca2+ was very low. Nevertheless, more than 50% of the granular Ca2+ was rapidly released in an ionized form on hypo-osmotic or detergent-induced disruption of the granule membrane. This may represent a potentially mobilizable pool of Ca2+ in vivo. PMID:6344863

  7. Genetic mapping of human heart-skeletal muscle adenine nucleotide translocator and its relationship to the facioscapulohumeral muscular dystrophy locus

    SciTech Connect

    Haraguchi, Y.; Chung, A.B.; Torroni, A.; Stepien, G.; Shoffner, J.M.; Costigan, D.A.; Polak, M.; Wasmuth, J.J.; Altherr, M.R.; Winokur, S.T.

    1993-05-01

    The mitochondrial heart-skeletal muscle adenine nucleotide translocator (ANT1) was regionally mapped to 4q35-qter using somatic cell hybrids containing deleted chromosome 4. The regional location was further refined through family studies using ANT1 intron and promoter nucleotide polymorphisms recognized by the restriction endonucleases MboII, NdeI, and HaeIII. Two alleles were found, each at a frequency of 0.5. The ANT1 locus was found to be closely linked to D4S139, D4S171, and the dominant skeletal muscle disease locus facioscapulohumeral muscular dystrophy (FSHD). A crossover that separated D4S171 and ANT1 from D4S139 was found. Since previous studies have established the chromosome 4 map order as centromere-D4S171-D4S139-FSHD, it was concluded that ANT1 is located on the side of D4S139, that is opposite from FSHD. This conclusion was confirmed by sequencing the exons and analyzing the transcripts of ANT1 from several FSHD patients and finding no evidence of aberration. 35 refs., 5 figs., 1 tab.

  8. Effects of photofrin II and light on cellular adenine nucleotides and their modulation.

    PubMed

    Khanum, F; Jain, V

    1997-04-01

    Effects of photofrin II (PII) and light on the intra cellular nucleotide levels have been investigated using BHK-21 cell line. Results indicate that lower concentrations of photofrin II in dark increases ATP levels in a non linear manner, however, there has been no change in energy charge and levels of other nucleotides. Photoirradiation of PII-treated cells leads to a significant reduction in ATP levels and energy charge along with an increase in ATP breakdown products like ADP and AMP. The phosphorylation potential [ATP]/[ADP][Pi] also reduces upon photoirradiation of PII treated cells. Incubation conditions like pH of the medium and temperature modulate the cellular responses to a great extent. PMID:9315234

  9. Relaxation of isolated taenia coli of guinea-pig by enantiomers of 2-azido analogues of adenosine and adenine nucleotides.

    PubMed Central

    Cusack, N. J.; Planker, M.

    1979-01-01

    1 2-Azido photoaffinity analogues of adenosine 5'triphosphate (ATP), adenosine 5'-diphosphate (ADP), adenosine 5'-monophosphate (AMP), and adenosine have been synthesized and tested on guinea-pig taenia coli. 2 2-Azido-ATP and 2-azido-ADP were approximately 20 times more potent than ATP as relaxants of taenia coli, and required prolonged washout times before recovery of the muscle. 3 2-Azido-AMP and 2-azidoadenosine were 2 to 12 times more potent than ATP, but took much longer (up to 100 s) to reach maximal relaxation. This behaviour is different from that of AMP and adenosine which were much less potent than ATP. 4 L-Enantiomers of adenosine and adenine nucleotides were also tested. L-ATP and L-ADP were 3 to 6 times less potent than ATP and ADP, and L-AMP and L-adenosine were inactive. 2-Azido-L-ATP and 2-azido-L-ADP were approximately 120 times less potent than 2-Azido-ATP and 6 times less potent than ATP as relaxants of taenia coli. 2-Azido-L-AMP and 2-azidio-L-adenosine were almost inactive. 5 2-Azido derivatives are photolysed by u.v. irradiation to reactive intermediates. 2-Azido-ATP and 2-azidoadenosine might be suitable photoaffinity ligands for labelling putative P2 and P1 purine receptors respectively. 2-Azido-L-ATP and 2-azido-L-adenosine could be useful controls for nonspecific labelling. PMID:497519

  10. The silencing of adenine nucleotide translocase isoform 1 induces oxidative stress and programmed cell death in ADF human glioblastoma cells.

    PubMed

    Lena, Annalisa; Rechichi, Mariarosa; Salvetti, Alessandra; Vecchio, Donatella; Evangelista, Monica; Rainaldi, Giuseppe; Gremigni, Vittorio; Rossi, Leonardo

    2010-07-01

    Adenine nucleotide translocases (ANTs) are multitask proteins involved in several aspects of cell metabolism, as well as in the regulation of cell death/survival processes. We investigated the role played by ANT isoforms 1 and 2 in the growth of a human glioblastoma cell line (ADF cells). The silencing of ANT2 isoform, by small interfering RNA, did not produce significant changes in ADF cell viability. By contrast, the silencing of ANT1 isoform strongly reduced ADF cell viability by inducing a non-apoptotic cell death process resembling paraptosis. We demonstrated that cell death induced by ANT1 depletion cannot be ascribed to the loss of the ATP/ADP exchange function of this protein. By contrast, our findings indicate that ANT1-silenced cells experience oxidative stress, thus allowing us to hypothesize that the effect of ANT1-silencing on ADF is mediated by the loss of the ANT1 uncoupling function. Several studies ascribe a pro-apoptotic role to ANT1 as a result of the observation that ANT1 overexpression sensitizes cells to mitochondrial depolarization or to apoptotic stimuli. In the present study, we demonstrate that, despite its pro-apoptotic function at a high expression level, the reduction of ANT1 density below a physiological baseline impairs fundamental functions of this protein in ADF cells, leading them to undertake a cell death process. PMID:20528917

  11. The effect of antidepressive drugs and some related compounds on the levels of adenine nucleotides, inorganic phosphate and phosphocreatine in the rat brain

    PubMed Central

    Lewis, J. J.; Van Petten, G. R.

    1963-01-01

    The effects upon levels of adenine nucleotides, phosphocreatine and inorganic phosphate of iproniazid, isoniazid, phenelzine, pheniprazine, tranylcypromine, harmine, imipramine, amitriptyline, orphenadrine, diphenhydramine and cocaine have been studied. With the exception of harmine and diphenhydramine, each of these compounds increased the brain level of adenosine triphosphate and, with the exception of imipramine and cocaine, the level of adenosine diphosphate decreased. Harmine had no effect on levels of adenine nucleotides and, in the case of diphenhydramine, the level of adenosine diphosphate increased and the level of adenosine triphosphate tended to decrease. There appears to be a relationship between the ability of the drugs to cause behavioural signs of central nervous stimulation and to produce an increase in the adenosine triphosphate/diphosphate ratio. This effect may be a factor in the action of antidepressive drugs. PMID:19108178

  12. Adenine Nucleotide Analogues Locked in a Northern Methanocarba Conformation: Enhanced Stability and Potency as P2Y1 Receptor Agonists

    PubMed Central

    Ravi, R. Gnana; Kim, Hak Sung; Servos, Jörg; Zimmermann, Herbert; Lee, Kyeong; Maddileti, Savitri; Boyer, José L.; Harden, T. Kendall; Jacobson, Kenneth A.

    2016-01-01

    Preference for the Northern (N) ring conformation of the ribose moiety of nucleotide 5′-triphosphate agonists at P2Y1, P2Y2, P2Y4, and P2Y11 receptors, but not P2Y6 receptors, was established using a ring-constrained methanocarba (a 3.1.0-bicyclohexane) ring as a ribose substitute (Kim et al. J. Med. Chem. 2002, 45, 208–218.). We have now combined the ring-constrained (N)-methanocarba modification of adenine nucleotides with other functionalities known to enhance potency at P2 receptors. The potency of the newly synthesized analogues was determined in the stimulation of phospholipase C through activation of turkey erythrocyte P2Y1 or human P2Y1 and P2Y2 receptors stably expressed in astrocytoma cells. An (N)-methanocarba-2-methylthio-ADP analogue displayed an EC50 at the hP2Y1 receptor of 0.40 nM and was 55-fold more potent than the corresponding triphosphate and 16-fold more potent than the riboside 5′-diphosphate. 2-Cl–(N)-methanocarba-ATP and its N6-Me analogue were also highly selective, full agonists at P2Y1 receptors. The (N)-methanocarba-2-methylthio and 2-chloromonophosphate analogues were full agonists exhibiting micromolar potency at P2Y1 receptors, while the corresponding ribosides were inactive. Although β,γ-methylene-ATP was inactive at P2Y receptors, β,γ-methylene-(N)-methanocarba-ATP was a potent hP2Y1 receptor agonist with an EC50 of 160 nM and was selective versus hP2Y2 and hP2Y4 receptors. The rates of hydrolysis of Northern (N) and Southern (S) methanocarba analogues of AMP by rat 5′-ectonucleotidase were negligible. The rates of hydrolysis of the corresponding triphosphates by recombinant rat NTPDase1 and 2 were studied. Both isomers were hydrolyzed by NTPDase 1 at about half the rate of ATP hydrolysis. The (N) isomer was hardly hydrolyzed by NTPDase 2, while the (S) isomer was hydrolyzed at one-third of the rate of ATP hydrolysis. This suggests that new, more stable and selective nucleotide agonists may be designed on the basis of

  13. In vitro studies of release of adenine nucleotides and adenosine from rat vascular endothelium in response to alpha 1-adrenoceptor stimulation.

    PubMed Central

    Shinozuka, K; Hashimoto, M; Masumura, S; Bjur, R A; Westfall, D P; Hattori, K

    1994-01-01

    1. Noradrenaline-induced release of endogenous adenine nucleotides (ATP, ADP, AMP) and adenosine from both rat caudal artery and thoracic aorta was characterized, using high-performance liquid chromatography with fluorescence detection. 2. Noradrenaline, in a concentration-dependent manner, increased the overflow of ATP and its metabolites from the caudal artery. The noradrenaline-induced release of adenine nucleotides and adenosine from the caudal artery was abolished by bunazosin, an alpha 1-adrenoceptor antagonist, but not by idazoxan, an alpha 2-adrenoceptor antagonist. Clonidine, an alpha 2-adrenoceptor agonist, contracted caudal artery smooth muscle but did not induce release of adenine nucleotides or adenosine. 3. Noradrenaline also significantly increased the overflow of ATP and its metabolites from the thoracic aorta in the rat; however, the amount of adenine nucleotides and adenosine released from the aorta was considerably less than that released from the caudal artery. 4. Noradrenaline significantly increased the overflow of ATP and its metabolites from cultured endothelial cells from the thoracic aorta and caudal artery. The amount released from the cultured endothelial cells from the thoracic aorta and caudal artery. The amount released from the cultured endothelial cells from the aorta was also much less than that from cultured endothelial cells from the caudal artery. In cultured smooth muscle cells from the caudal artery, a significant release of ATP or its metabolites was not observed. 5. These results suggest that there are vascular endothelial cells that are able to release ATP by an alpha 1-adrenoceptor-mediated mechanism, but that these cells are not homogeneously distributed in the vasculature. PMID:7889273

  14. Hypothesis on Skeletal Muscle Aging: Mitochondrial Adenine Nucleotide Translocator Decreases Reactive Oxygen Species Production While Preserving Coupling Efficiency

    PubMed Central

    Diolez, Philippe; Bourdel-Marchasson, Isabelle; Calmettes, Guillaume; Pasdois, Philippe; Detaille, Dominique; Rouland, Richard; Gouspillou, Gilles

    2015-01-01

    Mitochondrial membrane potential is the major regulator of mitochondrial functions, including coupling efficiency and production of reactive oxygen species (ROS). Both functions are crucial for cell bioenergetics. We previously presented evidences for a specific modulation of adenine nucleotide translocase (ANT) appearing during aging that results in a decrease in membrane potential - and therefore ROS production—but surprisingly increases coupling efficiency under conditions of low ATP turnover. Careful study of the bioenergetic parameters (oxidation and phosphorylation rates, membrane potential) of isolated mitochondria from skeletal muscles (gastrocnemius) of aged and young rats revealed a remodeling at the level of the phosphorylation system, in the absence of alteration of the inner mitochondrial membrane (uncoupling) or respiratory chain complexes regulation. We further observed a decrease in mitochondrial affinity for ADP in aged isolated mitochondria, and higher sensitivity of ANT to its specific inhibitor atractyloside. This age-induced modification of ANT results in an increase in the ADP concentration required to sustain the same ATP turnover as compared to young muscle, and therefore in a lower membrane potential under phosphorylating—in vivo—conditions. Thus, for equivalent ATP turnover (cellular ATP demand), coupling efficiency is even higher in aged muscle mitochondria, due to the down-regulation of inner membrane proton leak caused by the decrease in membrane potential. In the framework of the radical theory of aging, these modifications in ANT function may be the result of oxidative damage caused by intra mitochondrial ROS and may appear like a virtuous circle where ROS induce a mechanism that reduces their production, without causing uncoupling, and even leading in improved efficiency. Because of the importance of ROS as therapeutic targets, this new mechanism deserves further studies. PMID:26733871

  15. Changes in the expression of the human adenine nucleotide translocase isoforms condition cellular metabolic/proliferative status

    PubMed Central

    Mampel, Teresa; Viñas, Octavi

    2016-01-01

    Human cells express four mitochondrial adenine nucleotide translocase (hANT) isoforms that are tissue-specific and developmentally regulated. hANT1 is mainly expressed in terminally differentiated muscle cells; hANT2 is growth-regulated and is upregulated in highly glycolytic and proliferative cells; and hANT3 is considered to be ubiquitous and non-specifically regulated. Here, we studied how the expression of hANT isoforms is regulated by proliferation and in response to metabolic stimuli, and examined the metabolic consequences of their silencing and overexpression. In HeLa and HepG2 cells, expression of hANT3 was upregulated by shifting metabolism towards oxidation or by slowed growth associated with contact inhibition or growth-factor deprivation, indicating that hANT3 expression is highly regulated. Under these conditions, changes in hANT2 mRNA expression were not observed in either HeLa or HepG2 cells, whereas in SGBS preadipocytes (which, unlike HeLa and HepG2 cells, are growth-arrest-sensitive cells), hANT2 mRNA levels decreased. Additionally, overexpression of hANT2 promoted cell growth and glycolysis, whereas silencing of hANT3 decreased cellular ATP levels, limited cell growth and induced a stress-like response. Thus, cancer cells require both hANT2 and hANT3, depending on their proliferation status: hANT2 when proliferation rates are high, and hANT3 when proliferation slows. PMID:26842067

  16. Pleiotropic effects of the yeast Sal1 and Aac2 carriers on mitochondrial function via an activity distinct from adenine nucleotide transport

    PubMed Central

    Kucejova, Blanka; Li, Li; Wang, Xiaowen; Giannattasio, Sergio; Chen, Xin Jie

    2009-01-01

    In Saccharomyces cerevisiae, SAL1 encodes a Ca2+-binding mitochondrial carrier. Disruption of SAL1 is synthetically lethal with the loss of a specific function associated with the Aac2 isoform of the ATP/ADP translocase. This novel activity of Aac2 is defined as the V function (for Viability of aac2 sal1 double mutant), which is independent of the ATP/ADP exchange activity required for respiratory growth (the R function). We found that co-inactivation of SAL1 and AAC2 leads to defects in mitochondrial translation and mitochondrial DNA (mtDNA) maintenance. Additionally, sal1Δ exacerbates the respiratory deficiency and mtDNA instability of ggc1Δ, shy1Δ and mtg1Δ mutants, which are known to reduce mitochondrial protein synthesis or protein complex assembly. The V function is complemented by the human Short Ca2+-binding Mitochondrial Carrier (SCaMC) protein, SCaMC-2, a putative ATP-Mg/Pi exchangers on the inner membrane. However, mitochondria lacking both Sal1p and Aac2p are not depleted of adenine nucleotides. The Aac2R252I and Aac2R253I variants mutated at the R252-254 triplet critical for nucleotide transport retain the V function. Likewise, Sal1p remains functionally active when the R479I and R481I mutations were introduced into the structurally equivalent R479-T480-R481 motif. Finally, we found that the naturally occurring V-R+ Aac1 isoform of adenine nucleotide translocase partially gains the V function at the expense of the R function by introducing the mutations P89L and A96V. Thus, our data support the view that the V function is independent of adenine nucleotide transport associated with Sal1p and Aac2p and this evolutionarily conserved activity affects multiple processes in mitochondria. PMID:18431598

  17. Adenine-DNA adducts derived from the highly tumorigenic dibenzo[a,l]pyrene are resistant to nucleotide excision repair while guanine adducts are not

    PubMed Central

    Kropachev, Konstantin; Kolbanovskiy, Marina; Liu, Zhi; Cai, Yuqin; Zhang, Lu; Schwaid, Adam G.; Kolbanovskiy, Alexander; Ding, Shuang; Amin, Shantu; Broyde, Suse; Geacintov, Nicholas E.

    2013-01-01

    The structural origins of differences in susceptibilities of various DNA lesions to nucleotide excision repair (NER) are poorly understood. Here we compared, in the same sequence context, the relative NER dual incision efficiencies elicited by two stereochemically distinct pairs of guanine (N2-dG) and adenine (N6-dA) DNA lesions, derived from enantiomeric genotoxic diol epoxides of the highly tumorigenic fjord region polycyclic aromatic hydrocarbon dibenzo[a,l]pyrene (DB[a,l]P). Remarkably, in cell-free HeLa cell extracts, the guanine adduct with R absolute chemistry at the N2-dG linkage site is ~ 35 times more susceptible to NER dual incisions than the stereochemically identical N6-dA adduct. For the guanine and adenine adducts with S stereochemistry, a similar, but somewhat smaller effect (factor of ~15) is observed. The striking resistance of the bulky N6-dA in contrast to the modest to good susceptibilities of the N2-dG adducts to NER are interpreted in terms of the balance between lesion-induced DNA-distorting and DNA-stabilizing van der Waals interactions in their structures, that are partly reflected in the overall thermal stabilities of the modified duplexes. Our results are consistent with the hypothesis that the high genotoxic activity of DB[a,l]P is related to the formation of NER-resistant and persistent DB[a,l]P-derived adenine adducts in cellular DNA. PMID:23570232

  18. A new regulatory principle for in vivo biochemistry: pleiotropic low affinity regulation by the adenine nucleotides--illustrated for the glycolytic enzymes of Saccharomyces cerevisiae.

    PubMed

    Mensonides, Femke I C; Bakker, Barbara M; Cremazy, Frederic; Messiha, Hanan L; Mendes, Pedro; Boogerd, Fred C; Westerhoff, Hans V

    2013-09-01

    Enzymology tends to focus on highly specific effects of substrates, allosteric modifiers, and products occurring at low concentrations, because these are most informative about the enzyme's catalytic mechanism. We hypothesized that at relatively high in vivo concentrations, important molecular monitors of the state of living cells, such as ATP, affect multiple enzymes of the former and that these interactions have gone unnoticed in enzymology. We test this hypothesis in terms of the effect that ATP, ADP, and AMP might have on the major free-energy delivering pathway of the yeast Saccharomyces cerevisiae. Assaying cell-free extracts, we collected a comprehensive set of quantitative kinetic data concerning the enzymes of the glycolytic and the ethanol fermentation pathways. We determined systematically the extent to which the enzyme activities depend on the concentrations of the adenine nucleotides. We found that the effects of the adenine nucleotides on enzymes catalysing reactions in which they are not directly involved as substrate or product, are substantial. This includes effects on the Michaelis-Menten constants, adding new perspective on these, 100 years after their introduction. PMID:23856461

  19. Studies on the energy metabolism of opossum (Didelphis virginiana) erythrocytes: V. Utilization of hypoxanthine for the synthesis of adenine and guanine nucleotides in vitro

    SciTech Connect

    Bethlenfalvay, N.C.; White, J.C.; Chadwick, E.; Lima, J.E. )

    1990-06-01

    High pressure liquid radiochromatography was used to test the ability of opossum erythrocytes to incorporate tracer amounts of (G-{sup 3}H) hypoxanthine (Hy) into ({sup 3}H) labelled triphosphates of adenine and guanine. In the presence of supraphysiologic (30 mM) phosphate which is optimal for PRPP synthesis, both ATP and GTP are extensively labelled. When physiologic (1 mM) medium phosphate is used, red cells incubated under an atmosphere of nitrogen accumulate ({sup 3}H) ATP in a linear fashion suggesting ongoing PRPP synthesis in red cells whose hemoglobin is deoxygenated. In contrast, a lesser increase of labelled ATP is observed in cells incubated under oxygen, suggesting that conditions for purine nucleotide formation from ambient Hy are more favorable in the venous circulation.

  20. Data supporting the involvement of the adenine nucleotide translocase conformation in opening the Tl+-induced permeability transition pore in Ca2+-loaded rat liver mitochondria

    PubMed Central

    Korotkov, Sergey M.

    2016-01-01

    There we made available information about the effects of the adenine nucleotide translocase (ANT) ‘c’ conformation fixers (phenylarsine oxide (PAO), tert-butylhydroperoxide (tBHP), and carboxyatractyloside) as well as thiol reagent (4,4′-diisothiocyanostilbene-2,2′-disulfonate (DIDS)) on isolated rat liver mitochondria. We observed a decrease in A540 (mitochondrial swelling) and respiratory control rates (RCRADP [state 3/state 4] and RCRDNP [2,4-dinitrophenol-uncoupled state/basal state or state 4]), as well as an increase in Ca2+-induced safranin fluorescence (F485/590, arbitrary units), showed a dissipation in the inner membrane potential (ΔΨmito), in experiments with energized rat liver mitochondria, injected into the buffer containing 25–75 mM TlNO3, 125 mM KNO3, and 100 µM Ca2+. The fixers and DIDS, in comparison to Ca2+ alone, greatly increased A540 decline and the rate of Ca2+-induced ΔΨmito dissipation. These reagents also markedly decreased RCRADP and RCRDNP. The MPTP inhibitors (ADP, cyclosporin A, bongkrekic acid, and N-ethylmaleimide) fixing the ANT in ‘m’ conformation significantly hindered the above-mentioned effects of the fixers and DIDS. A more complete scientific analysis of these findings may be obtained from the manuscript “To involvement the conformation of the adenine nucleotide translocase in opening the Tl+-induced permeability transition pore in Ca2+-loaded rat liver mitochondria” (Korotkov et al., 2016 [1]). PMID:27054168

  1. Adenine Nucleotide Translocase Is Acetylated in Vivo in Human Muscle: Modeling Predicts a Decreased ADP Affinity and Altered Control of Oxidative Phosphorylation

    PubMed Central

    2015-01-01

    Proteomics techniques have revealed that lysine acetylation is abundant in mitochondrial proteins. This study was undertaken (1) to determine the relationship between mitochondrial protein acetylation and insulin sensitivity in human skeletal muscle, identifying key acetylated proteins, and (2) to use molecular modeling techniques to understand the functional consequences of acetylation of adenine nucleotide translocase 1 (ANT1), which we found to be abundantly acetylated. Eight lean and eight obese nondiabetic subjects had euglycemic clamps and muscle biopsies for isolation of mitochondrial proteins and proteomics analysis. A number of acetylated mitochondrial proteins were identified in muscle biopsies. Overall, acetylation of mitochondrial proteins was correlated with insulin action (r = 0.60; P < 0.05). Of the acetylated proteins, ANT1, which catalyzes ADP–ATP exchange across the inner mitochondrial membrane, was acetylated at lysines 10, 23, and 92. The extent of acetylation of lysine 23 decreased following exercise, depending on insulin sensitivity. Molecular dynamics modeling and ensemble docking simulations predicted the ADP binding site of ANT1 to be a pocket of positively charged residues, including lysine 23. Calculated ADP–ANT1 binding affinities were physiologically relevant and predicted substantial reductions in affinity upon acetylation of lysine 23. Insertion of these derived binding affinities as parameters into a complete mathematical description of ANT1 kinetics predicted marked reductions in adenine nucleotide flux resulting from acetylation of lysine 23. Therefore, acetylation of ANT1 could have dramatic physiological effects on ADP–ATP exchange. Dysregulation of acetylation of mitochondrial proteins such as ANT1 therefore could be related to changes in mitochondrial function that are associated with insulin resistance. PMID:24884163

  2. Differential Expression of Adenine Nucleotide Converting Enzymes in Mitochondrial Intermembrane Space: A Potential Role of Adenylate Kinase Isozyme 2 in Neutrophil Differentiation

    PubMed Central

    Tanimura, Ayako; Horiguchi, Taigo; Miyoshi, Keiko; Hagita, Hiroko; Noma, Takafumi

    2014-01-01

    Adenine nucleotide dynamics in the mitochondrial intermembrane space (IMS) play a key role in oxidative phosphorylation. In a previous study, Drosophila adenylate kinase isozyme 2 (Dak2) knockout was reported to cause developmental lethality at the larval stage in Drosophila melanogaster. In addition, two other studies reported that AK2 is a responsible gene for reticular dysgenesis (RD), a human disease that is characterized by severe combined immunodeficiency and deafness. Therefore, mitochondrial AK2 may play an important role in hematopoietic differentiation and ontogenesis. Three additional adenine nucleotide metabolizing enzymes, including mitochondrial creatine kinases (CKMT1 and CKMT2) and nucleoside diphosphate kinase isoform D (NDPK-D), have been found in IMS. Although these kinases generate ADP for ATP synthesis, their involvement in RD remains unclear and still an open question. In this study, mRNA and protein expressions of these mitochondrial kinases were firstly examined in mouse ES cells, day 8 embryos, and 7-week-old adult mice. It was found that their expressions are spatiotemporally regulated, and Ak2 is exclusively expressed in bone marrow, which is a major hematopoietic tissue in adults. In subsequent experiments, we identified increased expression of both AK2 and CKMT1 during macrophage differentiation and exclusive production of AK2 during neutrophil differentiation using HL-60 cells as an in vitro model of hematopoietic differentiation. Furthermore, AK2 knockdown specifically inhibited neutrophil differentiation without affecting macrophage differentiation. These data suggest that AK2 is indispensable for neutrophil differentiation and indicate a possible causative link between AK2 deficiency and neutropenia in RD. PMID:24587121

  3. Data supporting the involvement of the adenine nucleotide translocase conformation in opening the Tl(+)-induced permeability transition pore in Ca(2+)-loaded rat liver mitochondria.

    PubMed

    Korotkov, Sergey M

    2016-06-01

    There we made available information about the effects of the adenine nucleotide translocase (ANT) 'c' conformation fixers (phenylarsine oxide (PAO), tert-butylhydroperoxide (tBHP), and carboxyatractyloside) as well as thiol reagent (4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS)) on isolated rat liver mitochondria. We observed a decrease in A540 (mitochondrial swelling) and respiratory control rates (RCRADP [state 3/state 4] and RCRDNP [2,4-dinitrophenol-uncoupled state/basal state or state 4]), as well as an increase in Ca(2+)-induced safranin fluorescence (F485/590, arbitrary units), showed a dissipation in the inner membrane potential (ΔΨmito), in experiments with energized rat liver mitochondria, injected into the buffer containing 25-75 mM TlNO3, 125 mM KNO3, and 100 µM Ca(2+). The fixers and DIDS, in comparison to Ca(2+) alone, greatly increased A540 decline and the rate of Ca(2+)-induced ΔΨmito dissipation. These reagents also markedly decreased RCRADP and RCRDNP. The MPTP inhibitors (ADP, cyclosporin A, bongkrekic acid, and N-ethylmaleimide) fixing the ANT in 'm' conformation significantly hindered the above-mentioned effects of the fixers and DIDS. A more complete scientific analysis of these findings may be obtained from the manuscript "To involvement the conformation of the adenine nucleotide translocase in opening the Tl(+)-induced permeability transition pore in Ca(2+)-loaded rat liver mitochondria" (Korotkov et al., 2016 [1]). PMID:27054168

  4. Content discovery and retrieval services at the European Nucleotide Archive

    PubMed Central

    Silvester, Nicole; Alako, Blaise; Amid, Clara; Cerdeño-Tárraga, Ana; Cleland, Iain; Gibson, Richard; Goodgame, Neil; ten Hoopen, Petra; Kay, Simon; Leinonen, Rasko; Li, Weizhong; Liu, Xin; Lopez, Rodrigo; Pakseresht, Nima; Pallreddy, Swapna; Plaister, Sheila; Radhakrishnan, Rajesh; Rossello, Marc; Senf, Alexander; Smirnov, Dmitriy; Toribio, Ana Luisa; Vaughan, Daniel; Zalunin, Vadim; Cochrane, Guy

    2015-01-01

    The European Nucleotide Archive (ENA; http://www.ebi.ac.uk/ena) is Europe's primary resource for nucleotide sequence information. With the growing volume and diversity of public sequencing data comes the need for increased sophistication in data organisation, presentation and search services so as to maximise its discoverability and usability. In response to this, ENA has been introducing and improving checklists for use during submission and expanding its search facilities to provide targeted search results. Here, we give a brief update on ENA content and some major developments undertaken in data submission services during 2014. We then describe in more detail the services we offer for data discovery and retrieval. PMID:25404130

  5. The activation of non-phosphorylating electron transport by adenine nucleotides in Jerusalem-artichoke (Helianthus tuberosus) mitochondria.

    PubMed Central

    Sotthibandhu, R; Palmer, J M

    1975-01-01

    In isolated plant mitochondria the oxidation of both succinate and exogenous NADH responded in the expected manner to the addition of ADP or uncoupling agents, and the uncoupled rate of respiration was often in excess of the rate obtained in the presence of ADP. However, the oxidation of NAD+-linked substrates responded in a much more complex manner to the addition of ADP or uncoupling agents such as carbonyl cyanide p-trifluoromethoxyphenylhydrazone to mitochondria oxidizing pyruvate plus malate failed to result in a reliable stimulation; this uncoupled rate could be stimulated by adding AMP or ADP in the presence of oligomycin or bongkrekic acid. Spectrophometric measurements showed that the addition of AMP or ADP resulted in the simultaneous oxidation of endogenous nicotinamide nucleotide and the reduction of cytochrome b. ADP was only effective in bringing about these changes in redox state in the presence of Mg2+ whereas AMP did not require Mg2+. It was concluded that AMP activated the flow of electrons from endogenous nicotinamide nucleotide to cytochrome b, possible at the level of the internal NADH dehydrogenase. PMID:1227506

  6. An adenine nucleotide translocase (ANT) gene from Apostichopus japonicus; molecular cloning and expression analysis in response to lipopolysaccharide (LPS) challenge and thermal stress.

    PubMed

    Liu, Qiu-Ning; Chai, Xin-Yue; Tu, Jie; Xin, Zhao-Zhe; Li, Chao-Feng; Jiang, Sen-Hao; Zhou, Chun-Lin; Tang, Bo-Ping

    2016-02-01

    The adenine nucleotide translocases (ANTs) play a vital role in energy metabolism via ADP/ATP exchange in eukaryotic cells. Apostichopus japonicus (Echinodermata: Holothuroidea) is an important economic species in China. Here, a cDNA representing an ANT gene of A. japonicus was isolated and characterized from respiratory tree and named AjANT. The full-length AjANT cDNA is 1924 bp, including a 5'-untranslated region (UTR) of 38 bp, 3'-UTR of 980 bp and an open reading frame (ORF) of 906 bp encoding a polypeptide of 301 amino acids. The protein contains three homologous repeat Mito_carr domains (Pfam00153). The deduced AjANT protein sequence has 49-81% in comparison to ANT proteins from other individuals. The predicted tertiary structure of AjANT protein is highly similar to animal ANT proteins. Phylogenetic analysis showed that the AjANT is closely related to Holothuroidea ANT genes. Real-time quantitative reverse transcription-PCR (qPCR) analysis showed that AjANT expression is higher in the respiratory tree than in other examined tissues. After thermal stress or LPS challenge, expression of AjANT was significantly fluctuant compared to the control. These results suggested that changes in the expression of ANT gene might be involved in immune defense and in protecting A. japonicus against thermal stress. PMID:26706223

  7. To involvement the conformation of the adenine nucleotide translocase in opening the Tl(+)-induced permeability transition pore in Ca(2+)-loaded rat liver mitochondria.

    PubMed

    Korotkov, Sergey M; Konovalova, Svetlana A; Brailovskaya, Irina V; Saris, Nils-Erik L

    2016-04-01

    The conformation of adenine nucleotide translocase (ANT) has a profound impact in opening the mitochondrial permeability transition pore (MPTP) in the inner membrane. Fixing the ANT in 'c' conformation by phenylarsine oxide (PAO), tert-butylhydroperoxide (tBHP), and carboxyatractyloside as well as the interaction of 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS) with mitochondrial thiols markedly attenuated the ability of ADP to inhibit the MPTP opening. We earlier found (Korotkov and Saris, 2011) that calcium load of rat liver mitochondria in medium containing TlNO3 and KNO3 stimulated the Tl(+)-induced MPTP opening in the inner mitochondrial membrane. The MPTP opening as well as followed increase in swelling, a drop in membrane potential (ΔΨmito), and a decrease in state 3, state 4, and 2,4-dinitrophenol-uncoupled respiration were visibly enhanced in the presence of PAO, tBHP, DIDS, and carboxyatractyloside. However, these effects were markedly inhibited by ADP and membrane-penetrant hydrophobic thiol reagent, N-ethylmaleimide (NEM) which fix the ANT in 'm' conformation. Cyclosporine A additionally potentiated these effects of ADP and NEM. Our data suggest that conformational changes of the ANT may be directly involved in the opening of the Tl(+)-induced MPTP in the inner membrane of Ca(2+)-loaded rat liver mitochondria. Using the Tl(+)-induced MPTP model is discussed in terms finding new transition pore inhibitors and inducers among different chemical and natural compounds. PMID:26835787

  8. Adenine nucleotide translocator isoforms 1 and 2 are differently distributed in the mitochondrial inner membrane and have distinct affinities to cyclophilin D.

    PubMed Central

    Vyssokikh, M Y; Katz, A; Rueck, A; Wuensch, C; Dörner, A; Zorov, D B; Brdiczka, D

    2001-01-01

    Different isoforms of the adenine nucleotide translocase (ANT) are expressed in a tissue-specific manner. It was assumed that ANT-1 and ANT-2 co-exist in every single mitochondrion and might be differently distributed within the membrane structures that constitute the peripheral inner membrane or the crista membrane. To discriminate between ANT originating from peripheral or from cristal inner membranes we made use of the fact that complexes between porin, the outer-membrane pore protein, and the ANT can be generated. Such complexes between porin and the ANT in the peripheral inner membrane were induced in rat heart mitochondria and isolated from rat brain and kidney. Using ANT-isotype-specific antibodies and sequence analysis of the N-terminal end, it was discovered that the peripheral inner membrane contained ANT-1 and ANT-2, whereas the cristal membrane contained exclusively ANT-2. Cyclophilin was co-purified with the porin-ANT complexes, whereas it was absent in the crista-derived ANT. This suggested that ANT-1 might have a higher affinity for cyclophilin. This specific intra-mitochondrial distribution of the two ANT isotypes and cyclophilin D suggests specific functions of the peripheral and crista-forming parts of the inner membrane and the two ANT isotypes therein. PMID:11513733

  9. Formation of ternary complexes by coordination of (diethylenetriamine)-platinum(II) to N1 or N7 of the adenine moiety of the antiviral nucleotide analogue 9.

    PubMed

    Kampf, G; Lüth, M S; Kapinos, L E; Müller, J; Holý, A; Lippert, B; Sigel, H

    2001-05-01

    are somewhat less stable, but again Cu2+ and Zn2+ also form with this ligand comparable amounts of the mentioned five-membered chelates. In contrast, both M[(Dien)Pt(PMEA-N1/N7)]2+ complexes differ from the parent M(PMEA) complexes considerably; in the latter instance the formation of the five-membered chelates is of significance for all divalent metal ions studied. The observation that divalent metal-ion binding to the phosphonate group of (Dien)Pt(PMEA-N1) and (Dien)Pt(PMEA-N7) is only moderately inhibited (about 0.2-0.4 log units) by the twofold positively charged (Dien)Pt2+ unit at the adenine residue allows the general conclusion, considering that PMEA is a nucleotide analogue, that this is also true for nucleotides and that consequently participation of, for example, two metal ions in an enzymatic process involving nucleotides is not seriously hampered by charge repulsion. PMID:11405468

  10. sup 31 P NMR saturation-transfer study of the in situ kinetics of the mitochondrial adenine nucleotide translocase

    SciTech Connect

    Masiakos, P.T.; Williams, G.D.; Berkich, D.A.; Smith, M.B.; LaNoue, K.F. )

    1991-08-27

    The exchange of intramitochondrial ATP (ATP{sub in}) for extramitochondrial ATP (ATP{sub out}) was measured by using {sup 31}P NMR spectroscopy over a range of temperatures in isolated rat liver mitochondria oxidizing glutamate and succinate in the presence of external ATP but no added ADP (state 4). The rate of this exchange is more than an order of magnitude faster than rates reported previously that were determined by using isotopic techniques in the presence of oligomycin, the potent ATPase inhibitor. Differences are ascribed in part to the low levels of matrix ATP present in oligomycin-treated mitochondrial. Intramitochondrial ATP content regulates the rate of the ATP{sub in}/ATP{sub out} exchange. At 18C, the concentration of internal ATP that produces half-maximal transport rate is 6.6{plus minus}0.12 nmol/mg of mitochondrial protein. The relationship between substrate concentration and flux is sigmoidal and is 90% saturated at 11.3{plus minus}0.18 nmol/mg of mitochondrial protein. Since the measured rates of exchange of ATP{sub in} for ATP{sub out} are almost 10 times faster than the ATP synthase (ATP/P{sub i}) exchange rates, the translocase cannot limit net ATP/P{sub i} exchange in state 4. It may, nonetheless, limit net synthesis of ATP under other conditions when matrix ATP concentration is lower than in state 4 and when external ADP is present at higher concentrations than in these experiments.

  11. Effect of genetic and physiological manipulations onthe kinetic and binding parameters of the adenine nucleotide translocator in Saccharomyces cervisiae and Candida utilis.

    PubMed

    Lauquin, G; Lunardi, J; Vignais, P V

    1976-01-01

    1. Ghe kinetic and binding parameters of adenine-nucleotide transport have been studied in mitochondria isolated from yeast cells in which the mitochondrial protein-synthetizing system had been inhibited by growth in the presence of erythromycin. These parameters have also been studied in promitochondria isolated from yeast grown in anaerobiosis aesence of ethidium bromide results in a loss of cytochromes b, alpha and alpha 3, but it does not affect the rate constant of ADP transport in isolated mitochondria, nor the number of binding sites for atractyloside, bongkrekic acid and ADP. 3. Promitochondria from S. cerevisiae grown in anaerobiosis, mitochondria from a qo mutant (qo mitochondria) and mitochondria from S. cerevisiae grown in the presence of erythromycin (ERY-mitochondria) are able to transport ADP by the same exchange-diffusion mechanism, sensitive to carboxy-atractyloside, and with the same rate constant as the wild type mitochondria. Promitochondria, qo mitochondria and ERY-mitochondria bind atractyloside, bongkrekic acid and ADP with the same high affinity as the wild type mitochondria. They only differ from the wild type mitochondria by a lower number of binding sites for ADP and for specific inhibitors of ADP transport. 4. Mitochondria isolated from the nuclear mutant p9 of S. cerevisae, called also op1, are characterized by a much lower affinity for bongkrekic acid than mitochondria from the wild type (20 times less). 5. Manipulation of the fatty acid composition of the mitochondrial membranes in the desaturase auxotroph mutant KD115 does not modify the number of sites, no their affinity of bongkrekic acid. 6. The above results are interpreted to mean that the structure and function of the mitochondrial adN translocator are not affected by any change in the mitochondrial protein synthetizing system. PMID:795470

  12. Simultaneous determination of purine nucleotides, their metabolites and beta-nicotinamide adenine dinucleotide in cerebellar granule cells by ion-pair high performance liquid chromatography.

    PubMed

    Giannattasio, Sergio; Gagliardi, Sara; Samaja, Michele; Marra, Ersilia

    2003-02-01

    The method described here allows the quantitative simultaneous determination of adenosine 5'-triphosphate, adenosine 5'-diphosphate, adenosine 5'-monophosphate, adenosine, guanosine 5'-triphosphate, guanosine 5'-diphosphate, guanosine, inosine 5'-monophosphate, inosine, uric acid, xanthine, hypoxanthine and beta-nicotinamide adenine dinucleotide by ion-pair high performance liquid chromatography. The chromatographic analysis requires 26 min per sample and allows the separation of the mentioned metabolites in a time as short as 16 min. Primary cultures of rat cerebellar granule cells were incubated in serum-free medium containing 25 mM KCl for 1.5-48 h and their acid extracts were injected onto column. Uric acid, inosine 5'-monophosphate, inosine, beta-nicotinamide adenine dinucleotide, adenosine, adenosine 5'-monophosphate, guanosine 5'-diphosphate, adenosine 5'-diphosphate, guanosine 5'-triphosphate and adenosine 5'-triphosphate were identified and quantified, while hypoxanthine, xanthine and guanosine were below the detection limit. This method makes use of a single-step sample pre-treatment procedure which allows a greater than 91% recovery of the compounds of interest and provides the assay of the metabolites of interest in little amounts of cell extracts. Therefore, this method is suitable to evaluate the energetic state in a variety of cell types, both under normal and dismetabolic conditions, such as after the induction of apoptosis or necrosis. PMID:12565687

  13. Photo-excitation of adenine cation radical [A•+] in the near UV-vis region produces sugar radicals in Adenosine and in its nucleotides

    PubMed Central

    Adhikary, Amitava; Khanduri, Deepti; Kumar, Anil; Sevilla, Michael D.

    2011-01-01

    In this study, we report the formation of ribose sugar radicals in high yields (85 – 100%) via photo-excitation of adenine cation radical (A•+) in Ado and its ribonucleotides. Photo-excitation of A•+ at low temperatures in homogenous aqueous glassy samples of Ado, 2′-AMP, 3′-AMP and 5′-AMP forms sugar radicals predominantly at C5′- and also at C3′-sites. The C5′• and C3′• sugar radicals were identified employing Ado deuterated at specific carbon sites: C1′, C2′, and at C5′. Phosphate substitution is found to deactivate sugar radical formation at the site of substitution. Thus, in 5′-AMP, C3′• is observed to be the main radical formed via photo-excitation at ca. 143 K whereas in 3′-AMP, C5′• is the only species found. These results were supported by results obtained employing 5′-AMP with specific deuteration at C5′-site (i.e., 5′,5′-D,D-5′-AMP). Moreover, contrary to the C5′• observed in 3′-dAMP, we find that C5′• in 3′-AMP shows a clear pH dependent conformational change as evidenced by a large increase in the C4′ β–hyperfine coupling on increasing the pH from 6 to 9. Calculations performed employing DFT (B3LYP/6-31G*) for C5′• in 3′-AMP show that the two conformations of C5′• result from strong hydrogen bond formation between the O5′-H and the 3′-phosphate dianion at higher pHs. Employing time-dependent density functional theory [TD-DFT, B3LYP/6-31G(d)] we show that in the excited state, the hole transfers to the sugar moiety and has significant hole localization at the C5′-site in a number of allowed transitions. This hole localization is proposed to lead to the formation of the neutral C5′-radical (C5′•) via deprotonation. PMID:19367991

  14. The rate of ATP export in the extramitochondrial phase via the adenine nucleotide translocator changes in aging in mitochondria isolated from heart left ventricle of either normotensive or spontaneously hypertensive rats.

    PubMed

    Atlante, Anna; Seccia, Teresa Maria; Marra, Ersilia; Passarella, Salvatore

    2011-10-01

    To find out whether and how deficit of cellular energy supply from mitochondria to cytosol occurs in aging and hypertension, we used mitochondria isolated from 5 to 72 week-old heart left ventricle of either normotensive (WKY) or spontaneous hypertensive (SH) rats as a model system. Measurements were made of the rate of ATP appearance outside mitochondria, due to externally added ADP, as an increase of NADPH absorbance which occurs when ATP is produced in the presence of glucose, hexokinase and glucose-6-phosphate dehydrogenase. Such a rate proved to mirror the function of the adenine nucleotide translocator (ANT) rather than other processes linked to the both oxidative and substrate level phosphorylation. The changes in both Ki for atractyloside and Km for ADP suggest the occurrence of modification of the ANT conformation during aging in which the ANT Vmax was found to decrease in normotensive but to increase under spontaneously hypertension in 24 week-old rats with a subsequent decrease in both cases. ANT function, as investigated in the ADP physiological range (20-60μM), is expected to decrease in normotensive, but to increase in hypertensive rats up to 48 weeks. Later a decrease in the ATP rate of export outside mitochondria should occur in both cases. PMID:21855562

  15. The Levels of Soluble Nucleotides in Wheat Aleurone Tissue 1

    PubMed Central

    Collins, G. G.; Jenner, C. F.; Paleg, L. G.

    1972-01-01

    The content of soluble nucleotides in aleurone layers isolated from mature wheat (Triticum aestivum var. Olympic) grain was investigated. The most abundant nucleotides were adenosine triphosphate, uridine triphosphate, and uridine diphosphoglucose. Smaller amounts of guanosine triphosphate, cytidine triphosphate, adenosine diphosphate, and nicotinamide adenine dinucleotide were also identified. The levels of some of these nucleotides were increased after incubation of the tissue under certain conditions. Nucleotide levels were measured at intervals during incubation of aleurone layers in water. The changes observed are discussed in relation to a response by the tissue to wounding. PMID:16657969

  16. An Adenine-DNA Adduct Derived from Nitroreduction of 6-Nitrochrysene is more Resistant to Nucleotide Excision Repair than Guanine-DNA Adducts

    PubMed Central

    Krzeminski, Jacek; Kropachev, Konstantin; Reeves, Dara; Kolbanovskiy, Aleksandr; Kolbanovskiy, Marina; Chen, Kun-Ming; Sharma, Arun K.; Geacintov, Nicholas; Amin, Shantu; El-Bayoumy, Karam

    2013-01-01

    Previous studies in rats, mice and in vitro systems showed that 6-NC can be metabolically activated by two major pathways: 1) the formation of N-hydroxy-6-aminochrysene by nitroreduction to yield three major adducts: N-(dG-8-yl)-6-AC, 5-(dG-N2-yl)-6-AC and N-(dA-8-yl)-6-AC, and 2) the formation of trans-1,2-dihydroxy-1,2-dihydro-6-hydroxylaminochrysene (1,2-DHD-6-NHOH-C) by a combination of nitroreduction and ring oxidation pathways to yield: N-(dG-8-yl)-1,2-DHD-6-AC, 5-(dG-N2-yl)-1,2-DHD-6-AC and N-(dA-8-yl)-1,2-DHD-6-AC. These DNA lesions are likely to cause mutations if they are not removed by cellular defense mechanisms before DNA replication occurs. Here we compared for the first time, in HeLa cell extracts in vitro, the relative nucleotide excision repair (NER) efficiencies of DNA lesions derived from simple nitroreduction and from a combination of nitroreduction and ring oxidation pathways. We show that the N-(dG-8-yl)-1,2-DHD-6-AC adduct is more resistant to NER than the N-(dG-8-yl)-6-AC adduct by a factor of ~2. Furthermore, the N-(dA-8-yl)-6-AC is much more resistant to repair since its NER efficiency is ~ 8-fold lower than that of the N-(dG-8-yl)-6-AC adduct. On the basis of our previous study and the present investigation, lesions derived from 6-NC and benzo[a]pyrene can be ranked from the most to the least resistant lesion as follows: N-(dA-8-yl)-6-AC > N-(dG-8-yl)-1,2-DHD-6-AC > 5-(dG-N2-yl)-6-AC ~ N-(dG-8-yl)-6-AC ~ (+)-7R,8S,9S,10S-benzo[a]pyrene diol epoxide-derived trans-anti-benzo[a]pyrene-N2-dG adduct. The slow repair of the various lesions derived from 6-NC and thus their potential persistence in mammalian tissue, could in part account for the powerful carcinogenicity of 6-NC as compared to B[a]P in the rat mammary gland. PMID:24112095

  17. Biochemical evidence of the interactions of membrane type-1 matrix metalloproteinase (MT1-MMP) with adenine nucleotide translocator (ANT): potential implications linking proteolysis with energy metabolism in cancer cells.

    PubMed

    Radichev, Ilian A; Remacle, Albert G; Sounni, Nor Eddine; Shiryaev, Sergey A; Rozanov, Dmitri V; Zhu, Wenhong; Golubkova, Natalya V; Postnova, Tatiana I; Golubkov, Vladislav S; Strongin, Alex Y

    2009-05-15

    Invasion-promoting MT1-MMP (membrane type-1 matrix metalloproteinase) is a key element in cell migration processes. To identify the proteins that interact and therefore co-precipitate with this proteinase from cancer cells, we used the proteolytically active WT (wild-type), the catalytically inert E240A and the C-end truncated (tailless; DeltaCT) MT1-MMP-FLAG constructs as baits. The identity of the pulled-down proteins was determined by LC-MS/MS (liquid chromatography tandem MS) and then confirmed by Western blotting using specific antibodies. We determined that, in breast carcinoma MCF cells (MCF-7 cells), ANT (adenine nucleotide translocator) efficiently interacted with the WT, E240A and DeltaCT constructs. The WT and E240A constructs also interacted with alpha-tubulin, an essential component of clathrin-mediated endocytosis. In turn, tubulin did not co-precipitate with the DeltaCT construct because of the inefficient endocytosis of the latter, thus suggesting a high level of selectivity of our test system. To corroborate these results, we then successfully used the ANT2-FLAG construct as a bait to pull-down MT1-MMP, which was naturally produced by fibrosarcoma HT1080 cells. We determined that the presence of the functionally inert catalytic domain alone was sufficient to cause the proteinase to interact with ANT2, thus indicating that there is a non-proteolytic mode of these interactions. Overall, it is tempting to hypothesize that by interacting with pro-invasive MT1-MMP, ANT plays a yet to be identified role in a coupling mechanism between energy metabolism and pericellular proteolysis in migrating cancer cells. PMID:19232058

  18. Human lower oesophageal sphincter relaxation is associated with raised cyclic nucleotide content.

    PubMed Central

    Barnette, M S; Barone, F C; Fowler, P J; Grous, M; Price, W J; Ormsbee, H S

    1991-01-01

    Increases in cyclic adenosine monophosphate and cyclic guanosine monophosphate content accompany relaxation of isolated strips of opossum and canine lower oesophageal sphincter muscle. The aim of this investigation was to characterise these responses in isolated muscle from the human lower oesophageal sphincter. Electrical stimulation of enteric neurons produced a frequency dependent relaxation of the human lower oesophageal sphincter that was sensitive to tetrodotoxin. Furthermore, as previously shown in the opossum and canine lower oesophageal sphincter, cyclic guanosine monophosphate content was significantly raised in muscle strips frozen during maximum electrical field stimulation whereas cyclic adenosine monophosphate content was unchanged. In addition, sodium nitroprusside (EC50 = 0.1 microM) produced a concentration dependent relaxation of human lower oesophageal sphincter, significantly increased cyclic guanosine monophosphate content, but did not alter cyclic adenosine monophosphate content. Zaprinast (M&B 22948) and SK&F 94120, selective inhibitors of cyclic guanosine monophosphate and cyclic adenosine monophosphate phosphodiesterases, respectively, both relaxed human lower oesophageal sphincter with a potency similar to that seen in the dog or opossum lower oesophageal sphincter. Finally, the 8-bromo analogues of both cyclic adenosine monophosphate (EC50 = 420 microM) and cyclic guanosine monophosphate (EC50 = 100 microM) relaxed the human lower oesophageal sphincter. These studies suggest that in the human, as well as the canine and opossum lower oesophageal sphincter, increases in cyclic nucleotide content are associated with relaxation and increases in cyclic guanosine monophosphate are associated with the relaxation induced by stimulation of enteric neurons. PMID:1846837

  19. Search for interstellar adenine

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Sandip K.; Majumdar, Liton; Das, Ankan; Chakrabarti, Sonali

    2015-05-01

    It is long debated if pre-biotic molecules are indeed present in the interstellar medium. Despite substantial works pointing to their existence, pre-biotic molecules are yet to be discovered with a complete confidence. In this paper, our main aim is to study the chemical evolution of interstellar adenine under various circumstances. We prepare a large gas-grain chemical network by considering various pathways for the formation of adenine. Majumdar et al. (New Astron. 20:15, 2013) proposed that in the absence of adenine detection, one could try to trace two precursors of adenine, namely, HCCN and NH2CN. Recently Merz et al. (J. Phys. Chem. A 118:3637-3644, 2014), proposed another route for the formation of adenine in interstellar condition. They proposed two more precursor molecules. But it was not verified by any accurate gas-grain chemical model. Neither was it known if the production rate would be high or low. Our paper fills this important gap. We include this new pathways to find that the contribution through this pathways for the formation of Adenine is the most dominant one in the context of interstellar medium. We propose that observers may look for the two precursors (C3NH and HNCNH) in the interstellar media which are equally important for predicting abundances of adenine. We perform quantum chemical calculations to find out spectral properties of adenine and its two new precursor molecules in infrared, ultraviolet and sub-millimeter region. Our present study would be useful for predicting abundance of adenine.

  20. Fate of prebiotic adenine.

    PubMed

    Cohn, C A; Hansson, T K; Larsson, H S; Sowerby, S J; Holm, N G

    2001-01-01

    Equilibrium adsorption isotherm data for the purine base adenine has been obtained on several prebiotically relevant minerals by frontal analysis using water as a mobile phase. Adenine is far displaced toward adsorption on pyrite (FeS2), quartz (SiO2), and pyrrhotite (FeS), but somewhat less for magnetite (Fe3O4) and forsterite (Mg2SiO4). The prebiotic prevalence of these minerals would have allowed them to act as a sink for adenine; removal from the aqueous phase would confer protection from hydrolysis as well, establishing a nonequilibrium thermodynamic framework for increased adenine synthesis. Our results provide evidence that adsorption phenomena may have been critical for the primordial genetic architecture. PMID:12448980

  1. Evidence for Natural Selection in Nucleotide Content Relationships Based on Complete Mitochondrial Genomes: Strong Effect of Guanine Content on Separation between Terrestrial and Aquatic Vertebrates

    PubMed Central

    Sorimachi, Kenji; Okayasu, Teiji

    2015-01-01

    The complete vertebrate mitochondrial genome consists of 13 coding genes. We used this genome to investigate the existence of natural selection in vertebrate evolution. From the complete mitochondrial genomes, we predicted nucleotide contents and then separated these values into coding and non-coding regions. When nucleotide contents of a coding or non-coding region were plotted against the nucleotide content of the complete mitochondrial genomes, we obtained linear regression lines only between homonucleotides and their analogs. On every plot using G or A content purine, G content in aquatic vertebrates was higher than that in terrestrial vertebrates, while A content in aquatic vertebrates was lower than that in terrestrial vertebrates. Based on these relationships, vertebrates were separated into two groups, terrestrial and aquatic. However, using C or T content pyrimidine, clear separation between these two groups was not obtained. The hagfish (Eptatretus burgeri) was further separated from both terrestrial and aquatic vertebrates. Based on these results, nucleotide content relationships predicted from the complete vertebrate mitochondrial genomes reveal the existence of natural selection based on evolutionary separation between terrestrial and aquatic vertebrate groups. In addition, we propose that separation of the two groups might be linked to ammonia detoxification based on high G and low A contents, which encode Glu rich and Lys poor proteins. PMID:25853054

  2. Cerulenin-mediated apoptosis is involved in adenine metabolic pathway

    SciTech Connect

    Chung, Kyung-Sook; Sun, Nam-Kyu; Lee, Seung-Hee; Lee, Hyun-Jee; Choi, Shin-Jung; Kim, Sun-Kyung; Song, Ju-Hyun; Jang, Young-Joo; Song, Kyung-Bin; Yoo, Hyang-Sook; Simon, Julian . E-mail: jsimon@fhcrc.org; Won, Misun . E-mail: misun@kribb.re.kr

    2006-10-27

    Cerulenin, a fatty acid synthase (FAS) inhibitor, induces apoptosis of variety of tumor cells. To elucidate mode of action by cerulenin, we employed the proteomics approach using Schizosaccharomyces pombe. The differential protein expression profile of S. pombe revealed that cerulenin modulated the expressions of proteins involved in stresses and metabolism, including both ade10 and adk1 proteins. The nutrient supplementation assay demonstrated that cerulenin affected enzymatic steps transferring a phosphoribosyl group. This result suggests that cerulenin accumulates AMP and p-ribosyl-s-amino-imidazole carboxamide (AICAR) and reduces other necessary nucleotides, which induces feedback inhibition of enzymes and the transcriptional regulation of related genes in de novo and salvage adenine metabolic pathway. Furthermore, the deregulation of adenine nucleotide synthesis may interfere ribonucleotide reductase and cause defects in cell cycle progression and chromosome segregation. In conclusion, cerulenin induces apoptosis through deregulation of adenine nucleotide biosynthesis resulting in nuclear division defects in S. pombe.

  3. Effect of restricted mobility on RNA content and nucleotide composition and on protein content in motoneurons of spinal cord anterior horns

    NASA Technical Reports Server (NTRS)

    Gorbunova, A. V.

    1980-01-01

    An investigation into the effect of hypokinesia on the ribonucleic acid (RNA) content, the nucleotide composition, and dynamics of protein content in the motoneuron of the rat spinal cord anterior horns is described. Methodology and findings are presented. The study results showed that the nucleotide composition of the total cellular RNA at all the studied periods of hypokinesia remained unchanged and is characteristic for the cytoplasmic, high polymer ribosomal RNA. This means that with a change in the functional state of the neuron the newly formed RNA of the nerve cell has the same composition of bases as the original RNA that belongs to the ribosomal type.

  4. Identification of Nucleotide-Level Changes Impacting Gene Content and Genome Evolution in Orthopoxviruses

    PubMed Central

    Hatcher, Eneida L.; Hendrickson, Robert Curtis

    2014-01-01

    ABSTRACT Poxviruses are composed of large double-stranded DNA (dsDNA) genomes coding for several hundred genes whose variation has supported virus adaptation to a wide variety of hosts over their long evolutionary history. Comparative genomics has suggested that the Orthopoxvirus genus in particular has undergone reductive evolution, with the most recent common ancestor likely possessing a gene complement consisting of all genes present in any existing modern-day orthopoxvirus species, similar to the current Cowpox virus species. As orthopoxviruses adapt to new environments, the selection pressure on individual genes may be altered, driving sequence divergence and possible loss of function. This is evidenced by accumulation of mutations and loss of protein-coding open reading frames (ORFs) that progress from individual missense mutations to gene truncation through the introduction of early stop mutations (ESMs), gene fragmentation, and in some cases, a total loss of the ORF. In this study, we have constructed a whole-genome alignment for representative isolates from each Orthopoxvirus species and used it to identify the nucleotide-level changes that have led to gene content variation. By identifying the changes that have led to ESMs, we were able to determine that short indels were the major cause of gene truncations and that the genome length is inversely proportional to the number of ESMs present. We also identified the number and types of protein functional motifs still present in truncated genes to assess their functional significance. IMPORTANCE This work contributes to our understanding of reductive evolution in poxviruses by identifying genomic remnants such as single nucleotide polymorphisms (SNPs) and indels left behind by evolutionary processes. Our comprehensive analysis of the genomic changes leading to gene truncation and fragmentation was able to detect some of the remnants of these evolutionary processes still present in orthopoxvirus genomes and

  5. Molecular dynamics simulations and coupled nucleotide substitution experiments indicate the nature of A·A base pairing and a putative structure of the coralyne-induced homo-adenine duplex

    PubMed Central

    Hud, Nicholas V.; Cheatham, Thomas E.

    2009-01-01

    Coralyne is an alkaloid drug that binds homo-adenine DNA (and RNA) oligonucleotides more tightly than it does Watson–Crick DNA. Hud’s laboratory has shown that poly(dA) in the presence of coralyne forms an anti-parallel duplex, however attempts to determine the structure by NMR spectroscopy and X-ray crystallography have been unsuccessful. Assuming adenine–adenine hydrogen bonding between the two poly(dA) strands, we constructed 40 hypothetical homo-(dA) anti-parallel duplexes and docked coralyne into the six most favorable duplex structures. The two most stable structures had trans glycosidic bonds, but distinct pairing geometries, i.e. either Watson–Crick Hoogsteen (transWH) or Watson–Crick Watson–Crick (transWW) with stability of transWH > transWW. To narrow down the possibilities, 7-deaza adenine base substitutions (dA→7) were engineered into homo-(dA) sequences. These substitutions significantly reduced the thermal stability of the coralyne-induced homo-(dA) structure. These experiments strongly suggest the involvement of N7 in the coralyne-induced A·A base pairs. Moreover, due to the differential effect on melting as a function of the location of the dA→7 mutations, these results are consistent with the N1–N7 base pairing of the transWH pairs. Together, the simulation and base substitution experiments predict that the coralyne-induced homo-(dA) duplex structure adopts the transWH geometry. PMID:19850721

  6. Updating Our View of Organelle Genome Nucleotide Landscape

    PubMed Central

    Smith, David Roy

    2012-01-01

    Organelle genomes show remarkable variation in architecture and coding content, yet their nucleotide composition is relatively unvarying across the eukaryotic domain, with most having a high adenine and thymine (AT) content. Recent studies, however, have uncovered guanine and cytosine (GC)-rich mitochondrial and plastid genomes. These sequences come from a small but eclectic list of species, including certain green plants and animals. Here, I review GC-rich organelle DNAs and the insights they have provided into the evolution of nucleotide landscape. I emphasize that GC-biased mitochondrial and plastid DNAs are more widespread than once thought, sometimes occurring together in the same species, and suggest that the forces biasing their nucleotide content can differ both among and within lineages, and may be associated with specific genome architectural features and life history traits. PMID:22973299

  7. Amino acid and nucleotide contents and sensory traits of dry-cured products from pigs with different genotypes.

    PubMed

    Reina, Raquel; Sánchez del Pulgar, José; López-Buesa, Pascual; García, Carmen

    2014-01-01

    The free amino acid and nucleotide contents of dry-cured ham, shoulder and loin from two genetic lines selected from pigs according to the paternal allele (homozygous AA and heterozygous AG) of the insulin-like growth factor-II gene were studied by HPLC. Their influence on the flavor and taste characteristics was also studied. The increase of lean content caused by the IGF-II mutation could affect proteolysis during the ripening process and therefore the sensory characteristics. The lower intramuscular fat content in the AA ham batch had a positive effect on the free amino acid content. However, similar flavor traits between ham batches were found, but the AG loin batch showed greater value. The enhancing effect of the IMP on the overall flavor intensity was limited by the amino acid and the IMF contents in dry-cured ham and loin, while in dry-cured shoulder, the IMP could be the reason for the significant differences in after taste and cured flavor scores. PMID:23916958

  8. Structural basis of AMPK regulation by adenine nucleotides and glycogen

    DOE PAGESBeta

    Li, Xiaodan; Wang, Lili; Zhou, X. Edward; Ke, Jiyuan; de Waal, Parker W.; Gu, Xin; Tan, M. H. Eileen; Wang, Dongye; Wu, Donghai; Xu, H. Eric; et al

    2014-11-21

    AMP-activated protein kinase (AMPK) is a central cellular energy sensor and regulator of energy homeostasis, and a promising drug target for the treatment of diabetes, obesity, and cancer. Here we present low-resolution crystal structures of the human α1β2γ1 holo-AMPK complex bound to its allosteric modulators AMP and the glycogen-mimic cyclodextrin, both in the phosphorylated (4.05 Å) and non-phosphorylated (4.60 Å) state. In addition, we have solved a 2.95 Å structure of the human kinase domain (KD) bound to the adjacent autoinhibitory domain (AID) and have performed extensive biochemical and mutational studies. Altogether, these studies illustrate an underlying mechanism of allostericmore » AMPK modulation by AMP and glycogen, whose binding changes the equilibria between alternate AID (AMP) and carbohydrate-binding module (glycogen) interactions.« less

  9. Structural basis of AMPK regulation by adenine nucleotides and glycogen

    PubMed Central

    Li, Xiaodan; Wang, Lili; Zhou, X Edward; Ke, Jiyuan; de Waal, Parker W; Gu, Xin; Tan, M H Eileen; Wang, Dongye; Wu, Donghai; Xu, H Eric; Melcher, Karsten

    2015-01-01

    AMP-activated protein kinase (AMPK) is a central cellular energy sensor and regulator of energy homeostasis, and a promising drug target for the treatment of diabetes, obesity, and cancer. Here we present low-resolution crystal structures of the human α1β2γ1 holo-AMPK complex bound to its allosteric modulators AMP and the glycogen-mimic cyclodextrin, both in the phosphorylated (4.05 Å) and non-phosphorylated (4.60 Å) state. In addition, we have solved a 2.95 Å structure of the human kinase domain (KD) bound to the adjacent autoinhibitory domain (AID) and have performed extensive biochemical and mutational studies. Together, these studies illustrate an underlying mechanism of allosteric AMPK modulation by AMP and glycogen, whose binding changes the equilibria between alternate AID (AMP) and carbohydrate-binding module (glycogen) interactions. PMID:25412657

  10. Structural basis of AMPK regulation by adenine nucleotides and glycogen

    SciTech Connect

    Li, Xiaodan; Wang, Lili; Zhou, X. Edward; Ke, Jiyuan; de Waal, Parker W.; Gu, Xin; Tan, M. H. Eileen; Wang, Dongye; Wu, Donghai; Xu, H. Eric; Melcher, Karsten

    2014-11-21

    AMP-activated protein kinase (AMPK) is a central cellular energy sensor and regulator of energy homeostasis, and a promising drug target for the treatment of diabetes, obesity, and cancer. Here we present low-resolution crystal structures of the human α1β2γ1 holo-AMPK complex bound to its allosteric modulators AMP and the glycogen-mimic cyclodextrin, both in the phosphorylated (4.05 Å) and non-phosphorylated (4.60 Å) state. In addition, we have solved a 2.95 Å structure of the human kinase domain (KD) bound to the adjacent autoinhibitory domain (AID) and have performed extensive biochemical and mutational studies. Altogether, these studies illustrate an underlying mechanism of allosteric AMPK modulation by AMP and glycogen, whose binding changes the equilibria between alternate AID (AMP) and carbohydrate-binding module (glycogen) interactions.

  11. Adenine nucleotide pool variations in intact Nitrobacter winogradskyi cells.

    PubMed

    Eigener, U

    1975-03-10

    1. The ATP pool in Nitrobacter winogradskyi cells was determined by means of the luciferin-luciferase enzyme system and the ADP and AMP pools were measured after enzymatic conversion into ATP. 2. In the first 10 min after addition of nitrite to endogenously respiring cells, which had stood for 5--16 days after completion of the nitrite oxidation, the ATP pool dropped about 60%. 3. During the log phase the ATP pool was approx. 20--40 pmoles/5 mug cell-N. During growth it increased exponentially by 3--4 times the amount until the nitrite had been used up. Subsquently the ATP pool decreased at first rapidly and then more slowly without sinking to 0 in the first 2 months after nitrification. 4. Nitrite oxidizing cells had an energy charge of 0.37 during the log-phase. After approx. 90% of the substrate had been used up the energy charge had reached 0.57. 5. If the CO2 assimilation was inhibited in growing cultures by increased oxygen partial pressure, nitrite oxidation continued but the ATP pool increased. 6. The ATP pool and the activity of the endogenous respiration decreased by more than 50% during the first hours after the substrate had been used up. PMID:808183

  12. The adsorption and reaction of adenine nucleotides on montmorillonite.

    PubMed

    Ferris, J P; Hagan, W J

    1986-01-01

    The binding of AMP to Zn(2+)-montmorillonite was investigated in the presence of buffers and salts. Good's buffers, piperazine-N,N'-bis(2-ethanesulfonate) [PIPES] and morpholine-N-2-ethanesulfonate [MES], perturbed the exchangeable cations to a lesser extent (only 9% of Zn2+ displaced by 0.2 M buffer) than was observed with imidazole and lutidine buffers or NaCl and KCl salts (up to 80% of Zn2+ displaced). AMP adsorption isotherms measured in the presence of 0.2 M PIPES, MES, or Na2SO4 exhibited normal Langmuir-type behavior. The adsorption coefficient, KL, is 3-fold greater in the presence of HEPES or PIPES than it is in the absence of buffers. Basal spacings measured by X-ray diffraction for Zn(2+)-montmorillonite are 13 and 15 angstroms in the presence of PIPES, while a value of 12.8 angstroms was determined in the absence of PIPES. These data are interpreted in a model in which the adsorption of AMP is mediated by a Zn2+ complex of PIPES in different orientations in the interlamellar region of the montmorillonite. The type of exchangeable cation does not affect the ability of the lattice-bound Fe3+ in the montmorillonite to oxidize diaminomaleonitrile (DAMN). Exchangeable Cu2+ oxidizes DAMN, but exchangeable Fe3+ is nearly ineffective as an oxidant. The addition of DISN to 3'-AMP bound to Zn(2+)-montmorillonite in the presence of 0.2 M PIPES resulted in a higher yield of 2',3'-cAMP than is observed with a comparable concentration of Zn2+, a result which inplicates surface catalysis by the montmorillonite. PMID:11540864

  13. Nucleotide chloramines and neutrophil-mediated cytotoxicity.

    PubMed

    Bernofsky, C

    1991-03-01

    Hypochlorite is a reactive oxidant formed as an end product of the respiratory burst in activated neutrophils. It is responsible for killing bacteria and has been implicated in neutrophil-mediated tissue injury associated with the inflammatory process. Although hypochlorite is a potent cytotoxic agent, the primary mechanism by which it exerts its effect is unclear. This review examines evidence that the primary event in hypochlorite cytotoxicity is the loss of adenine nucleotides from the target cell. This loss appears to be mediated by the formation of adenine nucleotide chloramines which are reactive intermediates with a free radical character and are capable of forming stable ligands with proteins and nucleic acids. PMID:1848195

  14. PDE4 and PDE5 regulate cyclic nucleotide contents and relaxing effects on carbachol-induced contraction in the bovine abomasum

    PubMed Central

    KANEDA, Takeharu; KIDO, Yuuki; TAJIMA, Tsuyoshi; URAKAWA, Norimoto; SHIMIZU, Kazumasa

    2014-01-01

    The effects of various selective phosphodiesterase (PDE) inhibitors on carbachol (CCh)-induced contraction in the bovine abomasum were investigated. Various selective PDE inhibitors, vinpocetine (type 1), erythro-9-(2-hydroxy-3-nonyl) adenine (EHNA, type 2), milrinone (type 3), Ro20-1724 (type 4), vardenafil (type 5), BRL-50481 (type 7) and BAY73-6691 (type 9), inhibited CCh-induced contractions in a concentration-dependent manner. Among the PDE inhibitors, Ro20-1724 and vardenafil induced more relaxation than the other inhibitors based on the data for the IC50 or maximum relaxation. In smooth muscle of the bovine abomasum, we showed the expression of PDE4B, 4C, 4D and 5 by RT-PCR analysis. In the presence of CCh, Ro20-1724 increased the cAMP content, but not the cGMP content. By contrast, vardenafil increased the cGMP content, but not the cAMP content. These results suggest that Ro20-1724-induced relaxation was correlated with cAMP and that vardenafil-induced relaxation was correlated with cGMP in the bovine abomasum. In conclusion, PDE4 and PDE5 are the enzymes involved in regulation of the relaxation associated with cAMP and cGMP, respectively, in the bovine abomasum. PMID:25319411

  15. Comparative study of spontaneous deamination of adenine and cytosine in unbuffered aqueous solution at room temperature

    NASA Astrophysics Data System (ADS)

    Wang, Shiliang; Hu, Anguang

    2016-06-01

    Adenine in unbuffered nanopure water at a concentration of 2 mM is completely deaminated (>99%) to hypoxanthine at room temperature in ca. 10 weeks, with an estimated half-life (t1/2) less than 10 days, about six orders of magnitude faster than previously reported. Cytosine is not deaminated under the same condition, even after 3 years. This is in contrast to previous observations that cytosine deaminates 20-40 times faster than adenine free base, in nucleoside, in nucleotide and in single-stranded DNA in buffered neutral aqueous solutions.

  16. Adenine Aminohydrolase from Leishmania donovani

    PubMed Central

    Boitz, Jan M.; Strasser, Rona; Hartman, Charles U.; Jardim, Armando; Ullman, Buddy

    2012-01-01

    Adenine aminohydrolase (AAH) is an enzyme that is not present in mammalian cells and is found exclusively in Leishmania among the protozoan parasites that infect humans. AAH plays a paramount role in purine metabolism in this genus by steering 6-aminopurines into 6-oxypurines. Leishmania donovani AAH is 38 and 23% identical to Saccharomyces cerevisiae AAH and human adenosine deaminase enzymes, respectively, catalyzes adenine deamination to hypoxanthine with an apparent Km of 15.4 μm, and does not recognize adenosine as a substrate. Western blot analysis established that AAH is expressed in both life cycle stages of L. donovani, whereas subcellular fractionation and immunofluorescence studies confirmed that AAH is localized to the parasite cytosol. Deletion of the AAH locus in intact parasites established that AAH is not an essential gene and that Δaah cells are capable of salvaging the same range of purine nucleobases and nucleosides as wild type L. donovani. The Δaah null mutant was able to infect murine macrophages in vitro and in mice, although the parasite loads in both model systems were modestly reduced compared with wild type infections. The Δaah lesion was also introduced into a conditionally lethal Δhgprt/Δxprt mutant in which viability was dependent on pharmacologic ablation of AAH by 2′-deoxycoformycin. The Δaah/Δhgprt/Δxprt triple knock-out no longer required 2′-deoxycoformycin for growth and was avirulent in mice with no persistence after a 4-week infection. These genetic studies underscore the paramount importance of AAH to purine salvage by L. donovani. PMID:22238346

  17. Cleavage of nicotinamide adenine dinucleotide by the ribosome-inactivating protein from Momordica charantia.

    PubMed

    Vinkovic, M; Dunn, G; Wood, G E; Husain, J; Wood, S P; Gill, R

    2015-09-01

    The interaction of momordin, a type 1 ribosome-inactivating protein from Momordica charantia, with NADP(+) and NADPH has been investigated by X-ray diffraction analysis of complexes generated by co-crystallization and crystal soaking. It is known that the proteins of this family readily cleave the adenine-ribose bond of adenosine and related nucleotides in the crystal, leaving the product, adenine, bound to the enzyme active site. Surprisingly, the nicotinamide-ribose bond of oxidized NADP(+) is cleaved, leaving nicotinamide bound in the active site in the same position but in a slightly different orientation to that of the five-membered ring of adenine. No binding or cleavage of NADPH was observed at pH 7.4 in these experiments. These observations are in accord with current views of the enzyme mechanism and may contribute to ongoing searches for effective inhibitors. PMID:26323301

  18. Bound anionic states of adenine

    SciTech Connect

    Haranczyk, Maciej; Gutowski, Maciej S; Li, Xiang; Bowen, Kit H

    2007-03-20

    Anionic states of nucleic acid bases are involved in DNA damage by low-energy electrons and in charge transfer through DNA. Previous gas phase studies of free, unsolvated nucleic acid base parent anions probed only dipole-bound states, which are not present in condensed phase environments, but did not observe valence anionic states, which for purine bases, are thought to be adiabatically unbound. Contrary to this expectation, we have demonstrated that some thus far ignored tautomers of adenine, which result from enamine-imine transformations, support valence anionic states with electron vertical detachment energies as large as 2.2 eV, and at least one of these anionic tautomers is adiabatically bound. Moreover, we predict that the new anionic tautomers should also dominate in solutions and should be characterized by larger values of electron vertical detachment energy than the canonical valence anion. All of the new-found anionic tautomers might be formed in the course of dissociative electron attachment followed by a hydrogen atom attachment to a carbon atom, and they might affect the structure and properties of DNA and RNA exposed to low-energy electrons. The discovery of these valence anionic states of adenine was facilitated by the development of: (i) a new experimental method for preparing parent anions of nucleic acid bases for photoelectron experiments, and (ii) a new combinatorial/ quantum chemical approach for identification of the most stable tautomers of organic molecules. The computational portion of this work was supported by the: (i) Polish State Committee for Scientific Research (KBN) Grants: DS/8000-4-0140-7 (M.G.) and N204 127 31/2963 (M.H.), (ii) European Social Funds (EFS) ZPORR/2.22/II/2.6/ARP/U/2/05 (M.H.), and (iii) US DOE Office of Biological and Environmental Research, Low Dose Radiation Research Program (M.G.). M.H. holds the Foundation for Polish Science (FNP) award for young scientists. The calculations were performed at the Academic

  19. Seasonal trends in adenylate nucleotide content in eggs of recruit and repeat spawning Atlantic cod (Gadus morhua L.) and implications for egg quality and buoyancy

    NASA Astrophysics Data System (ADS)

    Jung, Kyung-Mi; Svardal, Asbjørn M.; Eide, Torunn; Thorsen, Anders; Kjesbu, Olav Sigurd

    2012-10-01

    Seasonal and ontogenetic variation in egg buoyancy (egg specific gravity; ρ) (n = 63) and nucleotide content (n = 46) were examined for wild-caught Atlantic (Barents Sea) cod (Gadus morhua) held in captivity over two successive spawning seasons, i.e. each female (n = 5) was studied both as recruit and repeat spawner. All eggs were naturally spawned and fertilized, and incubated under optimal condition in flow-through aquaria. Egg diameter and egg dry weight declined steadily during the spawning period, while stage-specific ρ was approximately constant between egg batches (typically around 15 in total). Within each egg batch, i.e. during egg incubation, ρ significantly decreased from the time of gastrulation to before hatching, accompanied by increased contents of ATP and ADP. Altogether, we found that adenylate energy charge (EC) (EC = ([ATP] + 0.5 [ADP]) / ([ATP] + [ADP] + [AMP]) positively affected egg buoyancy (P = 0.013) in concert with egg developmental stage (P < 0.001) and egg diameter (P = 0.014) (LMM). The presently studied eggs were considered to be in good quality and showed generally very high fertilization rates. Although the number of analyzed females in this complex repeated measurement experiment was limited due to logistic restrains, it can be expected that cod eggs in the field would show comparably similar trends in ρ and levels of nucleotides.

  20. Pathways of Nucleotide Biosynthesis in Mycoplasma mycoides subsp. mycoides

    PubMed Central

    Mitchell, Alana; Finch, Lloyd R.

    1977-01-01

    By measuring the specific activity of nucleotides isolated from ribonucleic acid after the incorporation of 14C-labeled precursors under various conditions of growth, we have defined the major pathways of ribonucleotide synthesis in Mycoplasma mycoides subsp. mycoides. M. mycoides did not possess pathways for the de novo synthesis of nucleotides but was capable of interconversion of nucleotides. Thus, uracil provided the requirement for both pyrimidine ribonucleotides. Thymine is also required, suggesting that the methylation step is unavailable. No use was made of cytosine. Uridine was rapidly degraded to uracil. Cytidine competed effectively with uracil to provide most of the cytidine nucleotide and also provided an appreciable proportion of uridine nucleotide. In keeping with these results, there was a slow deamination of cytidine to uridine with further degradation to uracil in cultures of M. mycoides. Guanine was capable of meeting the full requirement of the organism for purine nucleotide, presumably by conversion of guanosine 5′-monophosphate to adenosine 5′-monophosphate via the intermediate inosine 5′-monophosphate. When available with guanine, adenine effectively gave a complete provision of adenine nucleotide, whereas hypoxanthine gave a partial provision. Neither adenine nor hypoxanthine was able to act as a precursor for the synthesis of guanine nucleotide. Exogenous guanosine, inosine, and adenosine underwent rapid cleavage to the corresponding bases and so show a pattern of utilization similar to that of the latter. PMID:324972

  1. The nucleotide sequence of the uvrD gene of E. coli.

    PubMed Central

    Finch, P W; Emmerson, P T

    1984-01-01

    The nucleotide sequence of a cloned section of the E. coli chromosome containing the uvrD gene has been determined. The coding region for the UvrD protein consists of 2,160 nucleotides which would direct the synthesis of a polypeptide 720 amino acids long with a calculated molecular weight of 82 kd. The predicted amino acid sequence of the UvrD protein has been compared with the amino acid sequences of other known adenine nucleotide binding proteins and a common sequence has been identified, thought to contribute towards adenine nucleotide binding. PMID:6379604

  2. Photophysical deactivation pathways in adenine oligonucleotides.

    PubMed

    Spata, Vincent A; Matsika, Spiridoula

    2015-12-14

    In this work we study deactivation processes in adenine oligomers after absorption of UV radiation using Quantum Mechanics combined with Molecular Mechanics (QM/MM). Correlated electronic structure methods appropriate for describing the excited states are used to describe a π-stacked dimer of adenine bases incorporated into (dA)20(dT)20. The results of these calculations reveal three different types of excited state minima which play a role in deactivation processes. Within this set of minima there are minima where the excited state is localized on one adenine (monomer-like) as well as minima where the excited state is delocalized on two adenines, forming different types of excimers and bonded excimers of varying but inter-related character. The proximity of their energies reveals that the minima can decay into one another along a flat potential energy surface dependent on the interbase separation. Additionally, analysis of the emissive energies and other physical properties, including theoretical anisotropy calculations, and comparison with fluorescence experiments, provides evidence that excimers play an important role in long-lived signals in adenine oligonucleotides while the subpicosecond decay is attributed to monomer-like minima. The necessity for a close approach of the nucleobases reveals that the deactivation mechanism is tied to macro-molecular motion. PMID:26536353

  3. Comparative structural analysis of eubacterial 5S rRNA by oxidation of adenines in the N-1 position.

    PubMed Central

    Pieler, T; Schreiber, A; Erdmann, V A

    1984-01-01

    Adenines in free 5S rRNA from Escherichia coli, Bacillus stearothermophilus and Thermus thermophilus have been oxidized at their N-1 position using monoperphthalic acid. The determination of the number of adenine 1-N-oxides was on the basis of UV spectroscopic data of the intact molecule. Identification of the most readily accessible nucleotides by sequencing gel analysis reveals that they are located in conserved positions within loops, exposed hairpin loops and single-base bulge loops. Implications for the structure and function of 5S rRNA will be discussed on the basis of this comparative analysis. Images PMID:6201825

  4. The catalase activity of diiron adenine deaminase.

    PubMed

    Kamat, Siddhesh S; Holmes-Hampton, Gregory P; Bagaria, Ashima; Kumaran, Desigan; Tichy, Shane E; Gheyi, Tarun; Zheng, Xiaojing; Bain, Kevin; Groshong, Chris; Emtage, Spencer; Sauder, J Michael; Burley, Stephen K; Swaminathan, Subramanyam; Lindahl, Paul A; Raushel, Frank M

    2011-12-01

    Adenine deaminase (ADE) from the amidohydrolase superfamily (AHS) of enzymes catalyzes the conversion of adenine to hypoxanthine and ammonia. Enzyme isolated from Escherichia coli was largely inactive toward the deamination of adenine. Molecular weight determinations by mass spectrometry provided evidence that multiple histidine and methionine residues were oxygenated. When iron was sequestered with a metal chelator and the growth medium supplemented with Mn(2+) before induction, the post-translational modifications disappeared. Enzyme expressed and purified under these conditions was substantially more active for adenine deamination. Apo-enzyme was prepared and reconstituted with two equivalents of FeSO(4). Inductively coupled plasma mass spectrometry and Mössbauer spectroscopy demonstrated that this protein contained two high-spin ferrous ions per monomer of ADE. In addition to the adenine deaminase activity, [Fe(II) /Fe(II) ]-ADE catalyzed the conversion of H(2)O(2) to O(2) and H(2)O. The values of k(cat) and k(cat)/K(m) for the catalase activity are 200 s(-1) and 2.4 × 10(4) M(-1) s(-1), respectively. [Fe(II)/Fe(II)]-ADE underwent more than 100 turnovers with H(2)O(2) before the enzyme was inactivated due to oxygenation of histidine residues critical for metal binding. The iron in the inactive enzyme was high-spin ferric with g(ave) = 4.3 EPR signal and no evidence of anti-ferromagnetic spin-coupling. A model is proposed for the disproportionation of H(2)O(2) by [Fe(II)/Fe(II)]-ADE that involves the cycling of the binuclear metal center between the di-ferric and di-ferrous oxidation states. Oxygenation of active site residues occurs via release of hydroxyl radicals. These findings represent the first report of redox reaction catalysis by any member of the AHS. PMID:21998098

  5. Graphene-Enhanced Raman Scattering from the Adenine Molecules.

    PubMed

    Dolgov, Leonid; Pidhirnyi, Denys; Dovbeshko, Galyna; Lebedieva, Tetiana; Kiisk, Valter; Heinsalu, Siim; Lange, Sven; Jaaniso, Raivo; Sildos, Ilmo

    2016-12-01

    An enhanced Raman scattering from a thin layer of adenine molecules deposited on graphene substrate was detected. The value of enhancement depends on the photon energy of the exciting light. The benzene ring in the structure of adenine molecule suggests π-stacking of adenine molecule on top of graphene. So, it is proposed that the enhancement in the adenine Raman signal is explained by the resonance electron transfer from the Fermi level of graphene to the lowest unoccupied molecular orbital (LUMO) level of adenine. PMID:27075339

  6. Graphene-Enhanced Raman Scattering from the Adenine Molecules

    NASA Astrophysics Data System (ADS)

    Dolgov, Leonid; Pidhirnyi, Denys; Dovbeshko, Galyna; Lebedieva, Tetiana; Kiisk, Valter; Heinsalu, Siim; Lange, Sven; Jaaniso, Raivo; Sildos, Ilmo

    2016-04-01

    An enhanced Raman scattering from a thin layer of adenine molecules deposited on graphene substrate was detected. The value of enhancement depends on the photon energy of the exciting light. The benzene ring in the structure of adenine molecule suggests π-stacking of adenine molecule on top of graphene. So, it is proposed that the enhancement in the adenine Raman signal is explained by the resonance electron transfer from the Fermi level of graphene to the lowest unoccupied molecular orbital (LUMO) level of adenine.

  7. Atomic substitution reveals the structural basis for substrate adenine recognition and removal by adenine DNA glycosylase

    SciTech Connect

    Lee, Seongmin; Verdine, Gregory L.

    2010-01-14

    Adenine DNA glycosylase catalyzes the glycolytic removal of adenine from the promutagenic A {center_dot} oxoG base pair in DNA. The general features of DNA recognition by an adenine DNA glycosylase, Bacillus stearothermophilus MutY, have previously been revealed via the X-ray structure of a catalytically inactive mutant protein bound to an A:oxoG-containing DNA duplex. Although the structure revealed the substrate adenine to be, as expected, extruded from the DNA helix and inserted into an extrahelical active site pocket on the enzyme, the substrate adenine engaged in no direct contacts with active site residues. This feature was paradoxical, because other glycosylases have been observed to engage their substrates primarily through direct contacts. The lack of direct contacts in the case of MutY suggested that either MutY uses a distinctive logic for substrate recognition or that the X-ray structure had captured a noncatalytically competent state in lesion recognition. To gain further insight into this issue, we crystallized wild-type MutY bound to DNA containing a catalytically inactive analog of 2'-deoxyadenosine in which a single 2'-H atom was replaced by fluorine. The structure of this fluorinated lesion-recognition complex (FLRC) reveals the substrate adenine buried more deeply into the active site pocket than in the prior structure and now engaged in multiple direct hydrogen bonding and hydrophobic interactions. This structure appears to capture the catalytically competent state of adenine DNA glycosylases, and it suggests a catalytic mechanism for this class of enzymes, one in which general acid-catalyzed protonation of the nucleobase promotes glycosidic bond cleavage.

  8. Metabolic fate of 14C-labelled nicotinamide and adenine in germinating propagules of the mangrove Bruguiera gymnorrhiza.

    PubMed

    Yin, Yuling; Watanabe, Shin; Ashihara, Hiroshi

    2012-01-01

    We studied the metabolic fate of [carbonyl-14C]nicotinamide and [8-(14)C]adenine in segments taken from young and developing leaves, stem, hypocotyls, and roots of a shoot-root type emerging propagule of the mangrove plant Bruguiera gymnorrhiza. Thin-layer chromatography was used together with a bioimaging analyser system. During 4 h of incubation, incorporation of radioactivity from [carbonyl-14C]nicotinamide into NAD and trigonelline was found in all parts of the propagules; the highest incorporation rates into NAD and trigonelline were found in newly emerged stem and young leaves, respectively. Radioactivity from [8-(14)C]adenine was distributed mainly in the salvage products (adenine nucleotides and RNA), and incorporation was less in catabolites (allantoin, allantoic acid, and CO2). Adenine salvage activity was higher in young leaves and stem than in hypocotyls and roots. Over a short time, the effect of 500 mM NaCl on nicotinamide and adenine metabolism indicated that NaCl inhibits both salvage and degradation activities in roots. PMID:22888538

  9. Differences in Electrostatic Potential Around DNA Fragments Containing Adenine and 8-oxo-Adenine. An Analysis Based on Regular Cylindrical Projection

    SciTech Connect

    Haranczyk, Maciej; Miller, John H; Gutowski, Maciej S

    2007-07-01

    Changes of electrostatic potential (EP) around the DNA molecule resulting from chemical modifications of nucleotides may play a role in enzymatic recognition of damaged sites. Effects of chemical modifications of nucleotides on the structure of DNA have been characterized through large scale density functional theory computations. Quantum mechanical structural optimizations of DNA fragments with three pairs of nucleotides and accompanying counteractions were performed with a B3LYP exchange-correlation functional and 6-31G** basis sets. The “intact” DNA fragment contained adenine in the middle layer, while the “damaged” fragment had the adenine replaced with 8-oxo-adenine. The electrostatic potential around these DNA fragments was projected on a cylindrical surface around the double helix. The two-dimensional maps of EP of the intact and damaged DNA fragments were analyzed to identify these modifications of EP that result from the occurrence of 8-oxo-adenine (8oA). It was found that distortions of a phosphate group neighboring 8oA and displacements of the accompanying countercation are clearly reflected in the EP maps. Helpful discussions Michel Dupuis are gratefully acknowledged. Authors wish to thank Marcel Swart for directing us to a compilation of van der Waals radii. This work was supported by the: (i) US DOE Office of Biological and Environmental Research, Low Dose Radiation Research Program (M.G. and M.H.), (ii) the Office of Science (BER), U. S. Department of Energy, Grant No. DE-FG03-02ER63470 (JHM), (iii) Polish State Committee for Scientific Research (KBN) Grant DS/8221-4-0140-6 (MG), (iv) European Social Funds (EFS) ZPORR/2.22/II/2.6/ARP/U/2/05 (M.H.). M.H. holds the Foundation for Polish Science (FNP) award for young scientists. The calculations were performed at the Academic Computer Center in Gdansk (TASK) and at the Molecular Science Computing Facility (MSCF) in the William R. Wiley Environmental Molecular Sciences Laboratory, a national

  10. Excimer states in microhydrated adenine clusters.

    PubMed

    Smith, V R; Samoylova, E; Ritze, H-H; Radloff, W; Schultz, T

    2010-09-01

    We present femtosecond pump-probe mass and photoelectron spectra for adenine (A) and microhydrated A(m)(H(2)O)(n) clusters. Three distinct relaxation processes of photoexcited electronic states were distinguished: in unhydrated A, relaxation of the optically bright pipi* state occurred via the dark npi* state with respective lifetimes of <0.1 and 1.3 ps. In microhydrated clusters A(H(2)O)(n), relaxation via the npi* state is quenched by a faster relaxation process, probably involving pisigma* states. For the predominantly hydrogen-bonded adenine dimer (A(2)), excited state relaxation is dominated by monomer-like processes. When the adenine dimer is clustered with several water molecules, we observe a nanosecond lifetime from excimer states in pi-stacked clusters. From the electron spectra we estimate adiabatic ionization potentials of 8.32 eV (A), 8.27 eV (A(H(2)O)(1)), 8.19 eV (A(H(2)O)(2)), 8.10 eV (A(H(2)O)(3)), 8.18 eV (A(2)), and 8.0 eV (A(2)(H(2)O)(3-5)). PMID:20556283

  11. Synthesis and in vivo evaluation of prodrugs of 9-[2-(phosphonomethoxy)ethoxy]adenine.

    PubMed

    Serafinowska, H T; Ashton, R J; Bailey, S; Harnden, M R; Jackson, S M; Sutton, D

    1995-04-14

    A number of esters and amides of the anti-HIV nucleotide analogue 9-[2-(phosphonomethoxy)-ethoxy]adenine (1) have been synthesized as potential prodrugs and evaluated for oral bioavailability in mice. Dialkyl esters 17-20 were prepared via a Mitsunobu coupling of alcohols 8-11 with 9-hydroxypurine 12 whereas (acyloxy)alkyl esters 25-33 and bis-[(alkoxycarbonyl)methyl] and bis(amidomethyl) esters 34-39 were obtained by reaction of 1 with a suitable alkylating agent. Phosphonodichloridate chemistry was employed for the preparation of dialkyl and diaryl esters 42-65, and bis(phosphonoamidates) 66 and 67. Following oral administration to mice, most of the dialkyl esters 17-20 were well-absorbed and then converted to the corresponding monoesters, but minimal further metabolism to 1 occurred. Bis[(pivaloyloxy)methyl] ester 25 displayed an oral bioavailability of 30% that was 15-fold higher than the bioavailability observed after dosing of 1. Methyl substitution at the alpha carbon of the bis[(pivaloyloxy)methyl] ester 25 (33) increased the oral bioavailability of 1 to 74%. Some of the diaryl esters also showed improved absorption properties in comparison with that of 1. In particular, the crystalline hydrochloride salt of diphenyl ester 55 was well-absorbed and efficiently converted to the parent compound with an oral bioavailability of 50%. On the basis of these results as well as the physicochemical properties of the prodrugs and their stability in mouse duodenal contents, the hydrochloride salt of diphenyl ester 55 was identified as the preferred prodrug of 1. PMID:7731022

  12. The catalase activity of diiron adenine deaminase

    SciTech Connect

    Kamat S. S.; Swaminathan S.; Holmes-Hampton, G. P.; Bagaria, A.; Kumaran, D.; Tichy, S. E.; Gheyi, T.; Zheng, X.; Bain, K.; Groshong, C.; Emtage, S.; Sauder, J. M.; Burley, S. K.; Lindahl, P. A.; Raushel, F. M.

    2011-12-01

    Adenine deaminase (ADE) from the amidohydrolase superfamily (AHS) of enzymes catalyzes the conversion of adenine to hypoxanthine and ammonia. Enzyme isolated from Escherichia coli was largely inactive toward the deamination of adenine. Molecular weight determinations by mass spectrometry provided evidence that multiple histidine and methionine residues were oxygenated. When iron was sequestered with a metal chelator and the growth medium supplemented with Mn{sup 2+} before induction, the post-translational modifications disappeared. Enzyme expressed and purified under these conditions was substantially more active for adenine deamination. Apo-enzyme was prepared and reconstituted with two equivalents of FeSO{sub 4}. Inductively coupled plasma mass spectrometry and Moessbauer spectroscopy demonstrated that this protein contained two high-spin ferrous ions per monomer of ADE. In addition to the adenine deaminase activity, [Fe{sup II}/Fe{sup II}]-ADE catalyzed the conversion of H{sub 2}O{sub 2} to O{sub 2} and H{sub 2}O. The values of k{sub cat} and k{sub cat}/K{sub m} for the catalase activity are 200 s{sup -1} and 2.4 x 10{sup 4} M{sup -1} s{sup -1}, respectively. [Fe{sup II}/Fe{sup II}]-ADE underwent more than 100 turnovers with H{sub 2}O{sub 2} before the enzyme was inactivated due to oxygenation of histidine residues critical for metal binding. The iron in the inactive enzyme was high-spin ferric with g{sub ave} = 4.3 EPR signal and no evidence of anti-ferromagnetic spin-coupling. A model is proposed for the disproportionation of H{sub 2}O{sub 2} by [Fe{sup II}/Fe{sup II}]-ADE that involves the cycling of the binuclear metal center between the di-ferric and di-ferrous oxidation states. Oxygenation of active site residues occurs via release of hydroxyl radicals. These findings represent the first report of redox reaction catalysis by any member of the AHS.

  13. The Cellular Environment Stabilizes Adenine Riboswitch RNA Structure

    PubMed Central

    Tyrrell, Jillian; McGinnis, Jennifer L.; Weeks, Kevin M.; Pielak, Gary J.

    2016-01-01

    There are large differences between the intracellular environment and the conditions widely used to study RNA structure and function in vitro. To assess the effects of the crowded cellular environment on RNA, we examined the structure and ligand-binding function of the adenine riboswitch aptamer domain in healthy, growing Escherichia coli cells at single-nucleotide resolution on the minute timescale using SHAPE. The ligand-bound aptamer structure is essentially the same in cells and in buffer at 1 mM Mg2+, the approximate Mg2+ concentration we measured in cells. In contrast, the in-cell conformation of the ligand-free aptamer is much more similar to the fully folded ligand-bound state. Even adding high Mg2+ concentrations to the buffer used for in vitro analyses did not yield the conformation observed for the free aptamer in cells. The cellular environment thus stabilizes the aptamer significantly more than does Mg2+ alone. Our results show that the intracellular environment has a large effect on RNA structure that ultimately favors highly organized conformations. PMID:24215455

  14. [Degradation of purine nucleotides in patients with chronic obstruction to airflow].

    PubMed

    Mateos Antón, F; García Puig, J; Gómez Fernández, P; Ramos Hernández, T; López Jiménez, M

    1989-03-11

    The increase in hypoxanthine (Hx), xanthine (X), uric acid (VA) and total purines (TP) that may be found in several clinical conditions associated with tissue hypoxia has been attributed to an increase in adenine nucleotides degradation by a reduced ATP synthesis caused by oxygen deprivation. To test this hypothesis we have investigated the urinary excretion of Hx, X, VA, TP and radioactivity elimination after labeling the adenine nucleotides with adenine (8-14C) in 5 patients with chronic airflow obstruction (CAFO), in the basal state and after oxygen therapy (FiO2, 24%). The results were compared with those from 4 normal individuals. Patients with COFA showed an increase of the renal elimination of Hx, X, VA, TP and radioactivity, which was significantly different from the control group (p less than 0.05). Oxygen administration was associated with a significant reduction in the excretion of purines and radioactivity (p less than 0.01), which decreased to values similar to those found in normal individuals. These findings suggest that in patients with COFA and severe hypoxemia there is a marked increase in the degradation of adenine nucleotides. The normalization of the purine and radioactivity excretion after oxygen therapy points to a basic role of oxygen in the catabolism of adenine nucleotides. PMID:2716427

  15. In vitro selection of adenine-dependent hairpin ribozymes.

    PubMed

    Meli, Marc; Vergne, Jacques; Maurel, Marie-Christine

    2003-03-14

    Adenine-dependent hairpin ribozymes were isolated by in vitro selection from a degenerated hairpin ribozyme population. Two new adenine-dependent ribozymes catalyze their own reversible cleavage in the presence of free adenine. Both aptamers have Mg(2+) requirements for adenine-assisted cleavage similar to the wild-type hairpin ribozyme. Cleavage kinetics studies in the presence of various other small molecules were compared. The data suggest that adenine does not induce RNA self-cleavage in the same manner for both aptamers. In addition, investigations of pH effects on catalytic rates show that both adenine-dependent aptamers are more active in basic conditions, suggesting that they use new acid/base catalytic strategies in which adenine could be involved directly. The discovery of hairpin ribozymes dependent on adenine for their reversible self-cleavage presents considerable biochemical and evolutionary interests because we show that RNA is able to use exogenous reactive molecules to enhance its own catalytic activity. Such a mechanism may have been a means by which the ribozymes of the RNA world enlarged their chemical repertoire. PMID:12519767

  16. NADH peroxidase: kinetic mechanism and nucleotide specificity

    SciTech Connect

    Stoll, V.S.; Blanchard, J.S.

    1987-05-01

    NADH peroxidase is a flavoprotein reductase isolated from Streptococcus faecalis which catalyzes the pyridine nucleotide dependent reduction of hydrogen peroxide to water. Initial velocity, product and dead-end inhibition studies have been performed and all support a ping-pong kinetic mechanism. Further support for the ping-pong nature of the kinetic mechanism are the hydrogen peroxide independent transhydrogenase activity of the enzyme, measured either with thio-NAD or with radiolabeled NAD (isotope exchange studies). Kinetic parameters will be presented for a number of reduced pyridine nucleotide analogs. Analogs which have been modified in the adenine ring exhibit much higher K/sub m/'s relative to their adenine analogs. NADH peroxidase catalyzes the stereo-specific removal of the 4S hydrogen of NADH and primary deuterium kinetic isotope effects have been determined for a number of these substrates with 4S-deuterated molecules. There is a strong correlation between their steady-state K/sub m/ and /sup D/V/K. Small values for /sup D/V are interpreted as supporting rate-limitation in the oxidative half-reaction. These data will be discussed in terms of a kinetic and chemical mechanism proposed for NADH peroxidase.

  17. Adenine adlayers on Cu(111): XPS and NEXAFS study.

    PubMed

    Tsud, Nataliya; Bercha, Sofiia; Ševčíková, Klára; Acres, Robert G; Prince, Kevin C; Matolín, Vladimír

    2015-11-01

    The adsorption of adenine on Cu(111) was studied by photoelectron and near edge x-ray absorption fine structure spectroscopy. Disordered molecular films were deposited by means of physical vapor deposition on the substrate at room temperature. Adenine chemisorbs on the Cu(111) surface with strong rehybridization of the molecular orbitals and the Cu 3d states. Annealing at 150 °C caused the desorption of weakly bonded molecules accompanied by formation of a short-range ordered molecular adlayer. The interface is characterized by the formation of new states in the valence band at 1.5, 7, and 9 eV. The present work complements and refines existing knowledge of adenine interaction with this surface. The coverage is not the main parameter that defines the adenine geometry and adsorption properties on Cu(111). Excess thermal energy can further rearrange the molecular adlayer and, independent of the initial coverage, the flat lying stable molecular adlayer is formed. PMID:26547179

  18. Adenine adlayers on Cu(111): XPS and NEXAFS study

    SciTech Connect

    Tsud, Nataliya; Bercha, Sofiia; Ševčíková, Klára; Matolín, Vladimír; Acres, Robert G.; Prince, Kevin C.

    2015-11-07

    The adsorption of adenine on Cu(111) was studied by photoelectron and near edge x-ray absorption fine structure spectroscopy. Disordered molecular films were deposited by means of physical vapor deposition on the substrate at room temperature. Adenine chemisorbs on the Cu(111) surface with strong rehybridization of the molecular orbitals and the Cu 3d states. Annealing at 150 °C caused the desorption of weakly bonded molecules accompanied by formation of a short-range ordered molecular adlayer. The interface is characterized by the formation of new states in the valence band at 1.5, 7, and 9 eV. The present work complements and refines existing knowledge of adenine interaction with this surface. The coverage is not the main parameter that defines the adenine geometry and adsorption properties on Cu(111). Excess thermal energy can further rearrange the molecular adlayer and, independent of the initial coverage, the flat lying stable molecular adlayer is formed.

  19. Deep sequencing revealed genome-wide single-nucleotide polymorphism and plasmid content of Erwinia amylovora strains isolated in Middle Atlas, Morocco.

    PubMed

    Hannou, Najat; Mondy, Samuel; Planamente, Sara; Moumni, Mohieddine; Llop, Pablo; López, María; Manceau, Charles; Barny, Marie-Anne; Faure, Denis

    2013-10-01

    Erwinia amylovora causes economic losses that affect pear and apple production in Morocco. Here, we report comparative genomics of four Moroccan E. amylovora strains with the European strain CFBP1430 and North-American strain ATCC49946. Analysis of single nucleotide polymorphisms (SNPs) revealed genetic homogeneity of Moroccan's strains and their proximity to the European strain CFBP1430. Moreover, the collected sequences allowed the assembly of a 65 kpb plasmid, which is highly similar to the plasmid pEI70 harbored by several European E. amylovora isolates. This plasmid was found in 33% of the 40 E. amylovora strains collected from several host plants in 2009 and 2010 in Morocco. PMID:23770248

  20. Vertical Singlet Excitations on Adenine Dimer: A Time Dependent Density Functional Study

    NASA Astrophysics Data System (ADS)

    Crespo-Hernández, Carlos E.; Marai, Christopher N. J.

    2007-12-01

    The condense phase, excited state dynamics of the adenylyl(3'→5')adenine (ApA) dinucleotide has been previously studied using transient absorption spectroscopy with femtosecond time resolution (Crespo-Hernández et al. Chem. Rev. 104, 1977-2019 (2004)). An ultrafast and a long-lived component were observed with time constants of <1 ps and 60±16 ps, respectively. Comparison of the time constants measured for the dinucleotide with that for the adenine nucleotide suggested that the fast component observed in ApA could be assigned to monomer dynamics. The long-lived component observed in ApA was assigned to an excimer state that originates from a fraction of base stacked conformations present at the time of excitation. In this contribution, supermolecule calculations using the time dependent implementation of density functional theory is used to provide more insights on the origin of the initial Franck-Condon excitations. Monomer-like, localized excitations are observed for conformations having negligible base stacking interactions, whereas delocalized excitations are predicted for conformations with significant vertical base-base overlap.

  1. APPLICATION OF ADENINE NUCLEOTIDE MEASUREMENTS FOR THE EVALUATION OF STRESS IN 'MYTILUS EDULIS' AND 'CRASSOSTREA VIRGINICA'

    EPA Science Inventory

    After 10 weeks treatment with 10 micrograms Ni/kg seawater, the concentration of ATP in Mytilus edulis adductor muscles was significently less than that in muscles from control and 5 micrograms Ni/kg treated mussels. Mussels sampled in August after exposure for 12 weeks to pollut...

  2. Raw coffee based dietary supplements contain carboxyatractyligenin derivatives inhibiting mitochondrial adenine-nucleotide-translocase.

    PubMed

    Lang, Roman; Fromme, Tobias; Beusch, Anja; Lang, Tatjana; Klingenspor, Martin; Hofmann, Thomas

    2014-08-01

    Capsules, powders and tablets containing raw coffee extract are advertised to the consumer as antioxidant rich dietary supplements as part of a healthy diet. We isolated carboxyatractyligenin (4), 2-O-β-d-glucopyranosyl carboxyatractyligenin (6) and 3'-O-β-d-glucopyranosyl-2'-O-isovaleryl-2β-(2-desoxy-carboxyatractyligenin)-β-d-glucopyranoside (8) from green coffee and found strong inhibitory effects on phosphorylating respiration in isolated mitochondria similar to the effects of the known phytotoxin carboxyatractyloside. LC-MS/MS analysis of commercial green coffee based dietary supplements revealed the occurrence of carboxyatractyligenin, 3'-O-β-d-glucopyranosyl-2'-O-isovaleryl-2β-(2-desoxy-carboxyatractyligenin)-β-d-glucopyranoside, and 2-O-β-d-glucopyranosyl carboxyatractyligenin in concentrations up to 4.0, 5.7, and 41.6μmol/g, respectively. These data might help to gain first insight into potential physiological side-effects of green coffee containing dietary supplement. PMID:24863614

  3. Copper induces permeability transition through its interaction with the adenine nucleotide translocase.

    PubMed

    García, Noemí; Martínez-Abundis, Eduardo; Pavón, Natalia; Correa, Francisco; Chávez, Edmundo

    2007-09-01

    In this work we examined the effect of low concentrations of Cu(2+) on the opening of the mitochondrial non-specific pore. The purpose was addressed to further contribute to the knowledge of the mechanisms that regulate the open/closed cycles of the permeability transition pore. Membrane leakage was established by measuring matrix Ca(2+) efflux and mitochondrial swelling. The experimental results indicate that Cu(2+) at very low concentrations promoted the release of accumulated Ca(2+), as well as mitochondrial swelling, provided 1,10-phenanthroline has been added. Carboxyatractyloside and Cu(2+) exhibited additive effects on these parameters. After Cu(2+) titration of membrane thiols, it might be assumed that the blockage of 5.9nmol of SH/mg protein suffices to open the non-specific pore. Taking into account the reinforcing effect of carboxyatractyloside, the increasing ADP concentrations, and that N-ethylmaleimide inhibited the Cu(2+)-induced Ca(2+) efflux, it is proposed that the target site for Cu(2+) is located in the ADP/ATP carrier. PMID:17485229

  4. Adenine Nucleotide Metabolism and a Role for AMP in Modulating Flagellar Waveforms in Mouse Sperm1

    PubMed Central

    Vadnais, Melissa L.; Cao, Wenlei; Aghajanian, Haig K.; Haig-Ladewig, Lisa; Lin, Angel M.; Al-Alao, Osama; Gerton, George L.

    2014-01-01

    ABSTRACT While most ATP, the main energy source driving sperm motility, is derived from glycolysis and oxidative phosphorylation, the metabolic demands of the cell require the efficient use of power stored in high-energy phosphate bonds. In times of high energy consumption, adenylate kinase (AK) scavenges one ATP molecule by transphosphorylation of two molecules of ADP, simultaneously yielding one molecule of AMP as a by-product. Either ATP or ADP supported motility of detergent-modeled cauda epididymal mouse sperm, indicating that flagellar AKs are functional. However, the ensuing flagellar waveforms fueled by ATP or ADP were qualitatively different. Motility driven by ATP was rapid but restricted to the distal region of the sperm tail, whereas ADP produced slower and more fluid waves that propagated down the full flagellum. Characterization of wave patterns by tracing and superimposing the images of the flagella, quantifying the differences using digital image analysis, and computer-assisted sperm analysis revealed differences in the amplitude, periodicity, and propagation of the waves between detergent-modeled sperm treated with either ATP or ADP. Surprisingly, addition of AMP to the incubation medium containing ATP recapitulated the pattern of sperm motility seen with ADP alone. In addition to AK1 and AK2, which we previously demonstrated are present in outer dense fibers and mitochondrial sheath of the mouse sperm tail, we show that another AK, AK8, is present in a third flagellar compartment, the axoneme. These results extend the known regulators of sperm motility to include AMP, which may be operating through an AMP-activated protein kinase. PMID:24740601

  5. N-Sulfomethylation of guanine, adenine and cytosine with formaldehyde-bisulfite. A selective modification of guanine in DNA.

    PubMed

    Hayatsu, H; Yamashita, Y; Yui, S; Yamagata, Y; Tomita, K; Negishi, K

    1982-10-25

    When guanine-, adenine- and cytosine-nucleosides and nucleotides were treated with formaldehyde and then with bisulfite, stable N-sulfomethyl compounds were formed. N2-Sulfomethylguanine, N6-sulfomethyladenine, N4-sulfomthylcytosine and N6-sulfomethyl-9-beta-D-arabinofuranosyladenine were isolated as crystals and characterized. A guanine-specific sulfomethylation was brought about by treatment and denatured single-stranded DNA with formaldehyde and then with bisulfite at pH 7 and 4 degrees C. Since native double-stranded DNA was not modified by this treatment, this new method of modification is expected to be useful as a conformational probe for polynucleotides. PMID:7177848

  6. N-Sulfomethylation of guanine, adenine and cytosine with formaldehyde-bisulfite. A selective modification of guanine in DNA.

    PubMed Central

    Hayatsu, H; Yamashita, Y; Yui, S; Yamagata, Y; Tomita, K; Negishi, K

    1982-01-01

    When guanine-, adenine- and cytosine-nucleosides and nucleotides were treated with formaldehyde and then with bisulfite, stable N-sulfomethyl compounds were formed. N2-Sulfomethylguanine, N6-sulfomethyladenine, N4-sulfomthylcytosine and N6-sulfomethyl-9-beta-D-arabinofuranosyladenine were isolated as crystals and characterized. A guanine-specific sulfomethylation was brought about by treatment and denatured single-stranded DNA with formaldehyde and then with bisulfite at pH 7 and 4 degrees C. Since native double-stranded DNA was not modified by this treatment, this new method of modification is expected to be useful as a conformational probe for polynucleotides. PMID:7177848

  7. Production and characterization of reduced NAADP (nicotinic acid-adenine dinucleotide phosphate).

    PubMed Central

    Billington, Richard A; Thuring, Jan W; Conway, Stuart J; Packman, Len; Holmes, Andrew B; Genazzani, Armando A

    2004-01-01

    The pyridine nucleotide NAADP (nicotinic acid-adenine dinucleotide phosphate) has been shown to act as a Ca2+-releasing intracellular messenger in a wide variety of systems from invertebrates to mammals and has been implicated in a number of cellular processes. NAADP is structurally very similar to its precursor, the endogenous coenzyme NADP and while much is known about the reduced form of NADP, NADPH, it is not known whether NAADP can also exist in a reduced state. Here we report that NAADP can be reduced to NAADPH by endogenous cellular enzymes and that NAADPH is functionally inert at the NAADP receptor. These data suggest that NAADPH could represent a mechanism for rapidly inactivating NAADP in cells. PMID:14606955

  8. Dynamics of Excess-Electron Transfer through Alternating Adenine:Thymine Sequences in DNA.

    PubMed

    Lin, Shih-Hsun; Fujitsuka, Mamoru; Majima, Tetsuro

    2015-11-01

    This paper presents the results of an investigation into the sequence-dependent excess-electron transfer (EET) dynamics in DNA, which plays an important role in DNA damage/repair. There are many published studies on EET in consecutive adenine:thymine (A:T) sequences (Tn), but those in alternating A:T sequences (ATn) remain limited. Here, two series of functionalized DNA oligomers, Tn and ATn, were synthesized with a strongly electron-donating photosensitizer, a trimer of ethylenedioxythiophene (3 E), and an electron acceptor, diphenylacetylene (DPA). Laser flash photolysis experiments showed that the EET rate constant of AT3 is two times lower than that of T3 due to the lack of π-stacking of Ts in AT3. Thus, it was indicated that excess-electron hopping is affected by the interaction between LUMOs of nucleotides. PMID:26398266

  9. Differences between cystic fibrosis transmembrane conductance regulator and HisP in the interaction with the adenine ring of ATP.

    PubMed

    Berger, A L; Welsh, M J

    2000-09-22

    The cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel is a member of the ATP-binding cassette transporter family. The most conserved features of this family are the nucleotide-binding domains. As in other members of this family, these domains bind and hydrolyze ATP; in CFTR this opens and closes the channel pore. The recent crystal structures of related bacterial transporters show that an aromatic residue interacts with the adenine ring of ATP to stabilize nucleotide binding. CFTR contains six aromatic residues that are candidates to coordinate the nucleotide base. We mutated each to cysteine and examined the functional consequences. None of the mutations disrupted channel function or the ability to discriminate between ATP, GTP, and CTP. We also applied [2-(triethylammonium)ethyl] methanethiosulfonate to covalently modify the introduced cysteines. The mutant channels CFTR-F429C, F430C, F433C, and F1232C showed no difference from wild-type CFTR, indicating that either the residues were not accessible to modification, or cysteine modification did not affect function. Although modification inactivated CFTR-Y1219C more rapidly than wild-type CFTR, and inactivation of CFTR-F446C was nucleotide-dependent; failure of these mutations to alter gating suggested that Tyr(1219) and Phe(446) were not important for nucleotide binding. The results suggest that ATP binding may not involve the coordination of the adenine ring by an aromatic residue analogous to that in some bacterial transporters. Taken together with earlier work, this study points to a model in which most of the binding energy for ATP is contributed by the phosphate groups. PMID:10893239

  10. Uncovering the polymerase-induced cytotoxicity of an oxidized nucleotide

    NASA Astrophysics Data System (ADS)

    Freudenthal, Bret D.; Beard, William A.; Perera, Lalith; Shock, David D.; Kim, Taejin; Schlick, Tamar; Wilson, Samuel H.

    2015-01-01

    Oxidative stress promotes genomic instability and human diseases. A common oxidized nucleoside is 8-oxo-7,8-dihydro-2'-deoxyguanosine, which is found both in DNA (8-oxo-G) and as a free nucleotide (8-oxo-dGTP). Nucleotide pools are especially vulnerable to oxidative damage. Therefore cells encode an enzyme (MutT/MTH1) that removes free oxidized nucleotides. This cleansing function is required for cancer cell survival and to modulate Escherichia coli antibiotic sensitivity in a DNA polymerase (pol)-dependent manner. How polymerases discriminate between damaged and non-damaged nucleotides is not well understood. This analysis is essential given the role of oxidized nucleotides in mutagenesis, cancer therapeutics, and bacterial antibiotics. Even with cellular sanitizing activities, nucleotide pools contain enough 8-oxo-dGTP to promote mutagenesis. This arises from the dual coding potential where 8-oxo-dGTP(anti) base pairs with cytosine and 8-oxo-dGTP(syn) uses its Hoogsteen edge to base pair with adenine. Here we use time-lapse crystallography to follow 8-oxo-dGTP insertion opposite adenine or cytosine with human pol β, to reveal that insertion is accommodated in either the syn- or anti-conformation, respectively. For 8-oxo-dGTP(anti) insertion, a novel divalent metal relieves repulsive interactions between the adducted guanine base and the triphosphate of the oxidized nucleotide. With either templating base, hydrogen-bonding interactions between the bases are lost as the enzyme reopens after catalysis, leading to a cytotoxic nicked DNA repair intermediate. Combining structural snapshots with kinetic and computational analysis reveals how 8-oxo-dGTP uses charge modulation during insertion that can lead to a blocked DNA repair intermediate.

  11. Catalytic Mechanism and Three-Dimensional Structure of Adenine Deaminase†

    PubMed Central

    Kamat, Siddhesh S.; Bagaria, Ashima; Kumaran, Desigan; Holmes-Hampton, Gregory P.; Fan, Hao; Sali, Andrej; Sauder, J. Michael; Burley, Stephen K.; Lindahl, Paul A.; Swaminathan, Subramanyam; Raushel, Frank M.

    2011-01-01

    Adenine deaminase (ADE) catalyzes the conversion of adenine to hypoxanthine and ammonia. The enzyme isolated from Escherichia coli using standard expression conditions was low for the deamination of adenine (kcat = 2.0 s−1; kcat/Km = 2.5 × 103 M−1 s−1). However, when iron was sequestered with a metal chelator and the growth medium was supplemented with Mn2+ prior to induction, the purified enzyme was substantially more active for the deamination of adenine with values of kcat and kcat/Km of 200 s−1 and 5 × 105 M−1s−1, respectively. The apo-enzyme was prepared and reconstituted with Fe2+, Zn2+, or Mn2+. In each case, two enzyme-equivalents of metal were necessary for reconstitution of the deaminase activity. This work provides the first example of any member within the deaminase sub-family of the amidohydrolase superfamily (AHS) to utilize a binuclear metal center for the catalysis of a deamination reaction. [FeII/FeII]-ADE was oxidized to [FeIII/FeIII]-ADE with ferricyanide with inactivation of the deaminase activity. Reducing [FeIII/FeIII]-ADE with dithionite restored the deaminase activity and thus the di-ferrous form of the enzyme is essential for catalytic activity. No evidence for spin-coupling between metal ions was evident by EPR or Mössbauer spectroscopies. The three-dimensional structure of adenine deaminase from Agrobacterium tumefaciens (Atu4426) was determined by X-ray crystallography at 2.2 Å resolution and adenine was modeled into the active site based on homology to other members of the amidohydrolase superfamily. Based on the model of the adenine-ADE complex and subsequent mutagenesis experiments, the roles for each of the highly conserved residues were proposed. Solvent isotope effects, pH rate profiles and solvent viscosity were utilized to propose a chemical reaction mechanism and the identity of the rate limiting steps. PMID:21247091

  12. Absence of Ca2+-Induced Mitochondrial Permeability Transition but Presence of Bongkrekate-Sensitive Nucleotide Exchange in C. crangon and P. serratus

    PubMed Central

    Konrad, Csaba; Kiss, Gergely; Torocsik, Beata; Adam-Vizi, Vera; Chinopoulos, Christos

    2012-01-01

    Mitochondria from the embryos of brine shrimp (Artemia franciscana) do not undergo Ca2+-induced permeability transition in the presence of a profound Ca2+ uptake capacity. Furthermore, this crustacean is the only organism known to exhibit bongkrekate-insensitive mitochondrial adenine nucleotide exchange, prompting the conjecture that refractoriness to bongkrekate and absence of Ca2+-induced permeability transition are somehow related phenomena. Here we report that mitochondria isolated from two other crustaceans, brown shrimp (Crangon crangon) and common prawn (Palaemon serratus) exhibited bongkrekate-sensitive mitochondrial adenine nucleotide transport, but lacked a Ca2+-induced permeability transition. Ca2+ uptake capacity was robust in the absence of adenine nucleotides in both crustaceans, unaffected by either bongkrekate or cyclosporin A. Transmission electron microscopy images of Ca2+-loaded mitochondria showed needle-like formations of electron-dense material strikingly similar to those observed in mitochondria from the hepatopancreas of blue crab (Callinectes sapidus) and the embryos of Artemia franciscana. Alignment analysis of the partial coding sequences of the adenine nucleotide translocase (ANT) expressed in Crangon crangon and Palaemon serratus versus the complete sequence expressed in Artemia franciscana reappraised the possibility of the 208-214 amino acid region for conferring sensitivity to bongkrekate. However, our findings suggest that the ability to undergo Ca2+-induced mitochondrial permeability transition and the sensitivity of adenine nucleotide translocase to bongkrekate are not necessarily related phenomena. PMID:22768139

  13. The Prediction of the Expected Current Selection Coefficient of Single Nucleotide Polymorphism Associated with Holstein Milk Yield, Fat and Protein Contents.

    PubMed

    Lee, Young-Sup; Shin, Donghyun; Lee, Wonseok; Taye, Mengistie; Cho, Kwanghyun; Park, Kyoung-Do; Kim, Heebal

    2016-01-01

    Milk-related traits (milk yield, fat and protein) have been crucial to selection of Holstein. It is essential to find the current selection trends of Holstein. Despite this, uncovering the current trends of selection have been ignored in previous studies. We suggest a new formula to detect the current selection trends based on single nucleotide polymorphisms (SNP). This suggestion is based on the best linear unbiased prediction (BLUP) and the Fisher's fundamental theorem of natural selection both of which are trait-dependent. Fisher's theorem links the additive genetic variance to the selection coefficient. For Holstein milk production traits, we estimated the additive genetic variance using SNP effect from BLUP and selection coefficients based on genetic variance to search highly selective SNPs. Through these processes, we identified significantly selective SNPs. The number of genes containing highly selective SNPs with p-value <0.01 (nearly top 1% SNPs) in all traits and p-value <0.001 (nearly top 0.1%) in any traits was 14. They are phosphodiesterase 4B (PDE4B), serine/threonine kinase 40 (STK40), collagen, type XI, alpha 1 (COL11A1), ephrin-A1 (EFNA1), netrin 4 (NTN4), neuron specific gene family member 1 (NSG1), estrogen receptor 1 (ESR1), neurexin 3 (NRXN3), spectrin, beta, non-erythrocytic 1 (SPTBN1), ADP-ribosylation factor interacting protein 1 (ARFIP1), mutL homolog 1 (MLH1), transmembrane channel-like 7 (TMC7), carboxypeptidase X, member 2 (CPXM2) and ADAM metallopeptidase domain 12 (ADAM12). These genes may be important for future artificial selection trends. Also, we found that the SNP effect predicted from BLUP was the key factor to determine the expected current selection coefficient of SNP. Under Hardy-Weinberg equilibrium of SNP markers in current generation, the selection coefficient is equivalent to 2*SNP effect. PMID:26732326

  14. Cloning and nucleotide sequence of the gene encoding the Ecal DNA methyltransferase.

    PubMed Central

    Brenner, V; Venetianer, P; Kiss, A

    1990-01-01

    The gene coding for the GGTNACC specific Ecal DNA methyltransferase (M.Ecal) has been cloned in E. coli from Enterobacter cloacae and its nucleotide sequence has been determined. The ecalM gene codes for a protein of 452 amino acids (Mr: 51,111). It was determined that M.Ecal is an adenine methyltransferase. M.Ecal shows limited amino acid sequence similarity to other adenine methyltransferases. A clone that expresses Ecal methyltransferase at high level was constructed. Images PMID:2183182

  15. Structural basis for removal of adenine mispaired with 8-oxoguanine by MutY adenine DNA glycosylase.

    PubMed

    Fromme, J Christopher; Banerjee, Anirban; Huang, Susan J; Verdine, Gregory L

    2004-02-12

    The genomes of aerobic organisms suffer chronic oxidation of guanine to the genotoxic product 8-oxoguanine (oxoG). Replicative DNA polymerases misread oxoG residues and insert adenine instead of cytosine opposite the oxidized base. Both bases in the resulting A*oxoG mispair are mutagenic lesions, and both must undergo base-specific replacement to restore the original C*G pair. Doing so represents a formidable challenge to the DNA repair machinery, because adenine makes up roughly 25% of the bases in most genomes. The evolutionarily conserved enzyme adenine DNA glycosylase (called MutY in bacteria and hMYH in humans) initiates repair of A*oxoG to C*G by removing the inappropriately paired adenine base from the DNA backbone. A central issue concerning MutY function is the mechanism by which A*oxoG mispairs are targeted among the vast excess of A*T pairs. Here we report the use of disulphide crosslinking to obtain high-resolution crystal structures of MutY-DNA lesion-recognition complexes. These structures reveal the basis for recognizing both lesions in the A*oxoG pair and for catalysing removal of the adenine base. PMID:14961129

  16. Nucleotide Metabolism in Salt-Stressed Zea mays L. Root Tips

    PubMed Central

    Peterson, Todd A.; Nieman, Richard H.; Clark, Robert A.

    1987-01-01

    Corn plants (Zea mays L. cv Pioneer 3906) were grown in a glass house on control and saline nutrient solutions, in winter and summer. There were two saline treatments, both with osmotic potential = −0.4 megapascal but with different Ca2+/Na+ ratios: 0.03 and 0.73. Root tips and shoot meristems (culm tissue) of 26 day-old plants were analyzed for nucleotides to ascertain if there were correlations between nucleotide pool size and the reduced growth on saline cultures. Several other cell components also were determined. Plants grown in winter were only half as large as those grown in summer mainly because of the lower light intensity and lower temperature. But the relative yield reduction on salt treatment compared to the control was similar in winter and summer. The two different salt treatments caused similar yield reductions. Neither salt treatment affected nucleotide pools in culm tissue, with the possible exception of UDPG in winter. In the case of root tips, salt treatment had little or no effect on nucleotide pool sizes in winter when many already seemed near a critical minimum, but in summer it reduced several pools including ATP, total adenine nucleotide, UTP, total uridine nucleotide, and UDP-glucose. The reductions were greatest on the salt treatment with low Ca2+/Na+. There was no simple correlation between the effects of salt stress on growth and on nucleotide pool size. The nucleotide pools of culm tissue indicated that in some respects this tissue was effectively insulated from the salt stress. Roots that were in direct contact with the saline solution indicated significant reductions in nucleotide pools only in the summer whereas growth was reduced both summer and winter. It is possible that the nucleotide concentrations of root cells in winter were already near a critical minimum so that nucleotide synthesis and growth were tightly linked. Significant reductions in nucleotide pools that would be expected to affect growth were more evident in summer

  17. Detection of electronically equivalent tautomers of adenine base: DFT study

    SciTech Connect

    Siddiqui, Shamoon Ahmad; Bouarissa, Nadir; Rasheed, Tabish; Al-Assiri, M.S.; Al-Hajry, A.

    2014-03-01

    Graphical abstract: - Highlights: • DFT calculations have been performed on adenine and its rare tautomer Cu{sup 2+} complexes. • Interaction of A-Cu{sup 2+} and rA-Cu{sup 2+} complexes with AlN modified fullerene (C{sub 60}) have been studied briefly. • It is found that AlN modified C{sub 60} could be used as a nanoscale sensor to detect these two A-Cu{sup 2+} and rA-Cu{sup 2+} complexes. - Abstract: In the present study, quantum chemical calculations were carried out to investigate the electronic structures and stabilities of adenine and its rare tautomer along with their Cu{sup 2+} complexes. Density Functional Theory (B3LYP method) was used in all calculations. The two Cu{sup 2+} complexes of adenine have almost similar energies and electronic structures; hence, their chemical differentiation is very difficult. For this purpose, interactions of these complexes with AlN modified fullerene (C{sub 60}) have been studied. Theoretical investigations reveal that AlN-doped C{sub 60} may serve as a potentially viable nanoscale sensor for detection of the two Cu{sup 2+} complexes of adenine.

  18. PolyAdenine cryogels for fast and effective RNA purification.

    PubMed

    Köse, Kazım; Erol, Kadir; Özgür, Erdoğan; Uzun, Lokman; Denizli, Adil

    2016-10-01

    Cryogels are used effectively for many diverse applications in a variety of fields. The isolation or purification of RNA, one of the potential utilizations for cryogels, is crucial due to their vital roles such as encoding, decoding, transcription and translation, and gene expression. RNA principally exists within every living thing, but their tendency to denaturation easily is still the most challenging issue. Herein, we aimed to develop adenine incorporated polymeric cryogels as an alternative sorbent for cost-friendly and fast RNA purification with high capacity. For this goal, we synthesized the polymerizable derivative of adenine called as adenine methacrylate (AdeM) through the substitution reaction between adenine and methacryloyl chloride. Then, 2-hydroxyethyl methacrylate (HEMA)-based cryogels were prepared in a partially frozen aqueous medium by copolymerization of monomers, AdeM, and HEMA. The cryogels were characterized by using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), surface area measurements, thermogravimetric analysis (TGA), and swelling tests. RNA adsorption experiments were performed via batch system while varying different conditions including pH, initial RNA concentration, temperature, and interaction time. We achieved high RNA adsorption capacity of cryogels, with the swelling ratio around 510%, as 11.86mg/g. The cryogels might be reused at least five times without significant decrease in adsorption capacity. PMID:27434154

  19. Selective inhibition of nicotinamide adenine dinucleotide kinases by dinucleoside disulfide mimics of nicotinamide adenine dinucleotide analogues.

    PubMed

    Petrelli, Riccardo; Sham, Yuk Yin; Chen, Liqiang; Felczak, Krzysztof; Bennett, Eric; Wilson, Daniel; Aldrich, Courtney; Yu, Jose S; Cappellacci, Loredana; Franchetti, Palmarisa; Grifantini, Mario; Mazzola, Francesca; Di Stefano, Michele; Magni, Giulio; Pankiewicz, Krzysztof W

    2009-08-01

    Diadenosine disulfide (5) was reported to inhibit NAD kinase from Listeria monocytogenes and the crystal structure of the enzyme-inhibitor complex has been solved. We have synthesized tiazofurin adenosine disulfide (4) and the disulfide 5, and found that these compounds were moderate inhibitors of human NAD kinase (IC(50)=110 microM and IC(50)=87 microM, respectively) and Mycobacterium tuberculosis NAD kinase (IC(50)=80 microM and IC(50)=45 microM, respectively). We also found that NAD mimics with a short disulfide (-S-S-) moiety were able to bind in the folded (compact) conformation but not in the common extended conformation, which requires the presence of a longer pyrophosphate (-O-P-O-P-O-) linkage. Since majority of NAD-dependent enzymes bind NAD in the extended conformation, selective inhibition of NAD kinases by disulfide analogues has been observed. Introduction of bromine at the C8 of the adenine ring restricted the adenosine moiety of diadenosine disulfides to the syn conformation making it even more compact. The 8-bromoadenosine adenosine disulfide (14) and its di(8-bromoadenosine) analogue (15) were found to be the most potent inhibitors of human (IC(50)=6 microM) and mycobacterium NAD kinase (IC(50)=14-19 microM reported so far. None of the disulfide analogues showed inhibition of lactate-, and inosine monophosphate-dehydrogenase (IMPDH), enzymes that bind NAD in the extended conformation. PMID:19596199

  20. The Role of Gene Duplication in the Evolution of Purine Nucleotide Salvage Pathways

    NASA Astrophysics Data System (ADS)

    Becerra, Arturo; Lazcano, Antonio

    1998-10-01

    Purine nucleotides are formed de novo by a widespread biochemical route that may be of monophyletic origin, or are synthesized from preformed purine bases and nucleosides through different salvage pathways. Three monophyletic sets of purine salvage enzymes, each of which catalyzes mechanistically similar reactions, can be identified: (a) adenine-, xanthine-, hypoxanthine- and guanine-phosphoribosyltransferases, which are all homologous among themselves, as well as to nucleoside phosphorylases; (b) adenine deaminase, adenosine deaminase, and adenosine monophophate deaminase; and (c) guanine reductase and inosine monophosphate dehydrogenase. These homologies support the idea that substrate specificity is the outcome of gene duplication, and that the purine nucleotide salvage pathways were assembled by a patchwork process that probably took place before the divergence of the three cell domains (Bacteria, Archaea, and Eucarya). Based on the ability of adenine PRTase to catalyze the condensation of PRPP with 4-aminoimidazole-5-carboxamide (AICA), a simpler scheme of purine nucleotide biosynthesis is presented. This hypothetical route requires the prior evolution of PRPP biosynthesis. Since it has been argued that PRPP, nucleosides, and nucleotides are susceptible to hydrolysis, they are very unlikely prebiotic compounds. If this is the case, it implies that many purine salvage pathways appeared only after the evolution of phosphorylated sugar biosynthetic pathways made ribosides available.

  1. Catalytic Mechanism and Three-Dimensional Structure of Adenine Deaminase

    SciTech Connect

    S Kamat; A Bagaria; D Kumaran; G Holmes-Hampton; H Fan; A Sali; J Sauder; S Burley; P Lindahl; et. al.

    2011-12-31

    Adenine deaminase (ADE) catalyzes the conversion of adenine to hypoxanthine and ammonia. The enzyme isolated from Escherichia coli using standard expression conditions was low for the deamination of adenine (k{sub cat} = 2.0 s{sup -1}; k{sub cat}/K{sub m} = 2.5 x 10{sup 3} M{sup -1} s{sup -1}). However, when iron was sequestered with a metal chelator and the growth medium was supplemented with Mn{sup 2+} prior to induction, the purified enzyme was substantially more active for the deamination of adenine with k{sub cat} and k{sub cat}/K{sub m} values of 200 s{sup -1} and 5 x 10{sup 5} M{sup -1} s{sup -1}, respectively. The apoenzyme was prepared and reconstituted with Fe{sup 2+}, Zn{sup 2+}, or Mn{sup 2+}. In each case, two enzyme equivalents of metal were necessary for reconstitution of the deaminase activity. This work provides the first example of any member of the deaminase subfamily of the amidohydrolase superfamily to utilize a binuclear metal center for the catalysis of a deamination reaction. [Fe{sup II}/Fe{sup II}]-ADE was oxidized to [Fe{sup III}/Fe{sup III}]-ADE with ferricyanide with inactivation of the deaminase activity. Reducing [Fe{sup III}/Fe{sup III}]-ADE with dithionite restored the deaminase activity, and thus, the diferrous form of the enzyme is essential for catalytic activity. No evidence of spin coupling between metal ions was evident by electron paramagnetic resonance or Moessbauer spectroscopy. The three-dimensional structure of adenine deaminase from Agrobacterium tumefaciens (Atu4426) was determined by X-ray crystallography at 2.2 {angstrom} resolution, and adenine was modeled into the active site on the basis of homology to other members of the amidohydrolase superfamily. On the basis of the model of the adenine-ADE complex and subsequent mutagenesis experiments, the roles for each of the highly conserved residues were proposed. Solvent isotope effects, pH-rate profiles, and solvent viscosity were utilized to propose a chemical reaction

  2. Effect of Adenine on Clozapine-induced Neutropenia in Patients with Schizophrenia: A Preliminary Study

    PubMed Central

    Takeuchi, Ippei; Kishi, Taro; Hanya, Manako; Uno, Junji; Fujita, Kiyoshi; Kamei, Hiroyuki

    2015-01-01

    Objective This study examined the utility of adenine for preventing clozapine-induced neutropenia. Methods This retrospective study examined the effect of adenine on clozapine-induced neutropenia in patients with treatment-resistant schizophrenia and was conducted at Okehazama Hospital in Japan from July 2010 to June 2013. Adenine was available for use from June 2011 onwards. Twenty-one patients started receiving clozapine treatment from July 2010 to April 2011 (the pre-adenine adoption group), and 47 patients started receiving it from May 2011 to June 2013 (the post-adenine adoption group). The effects of adenine were assessed based on changes in the patients’ leukocyte counts and the frequency of treatment discontinuation due to clozapine-induced neutropenia. Results Sixty-eight patients were treated with clozapine from July 2010 to June 2013. Of the 21 patients in the pre-adenine adoption group, 4 discontinued treatment due to clozapine-induced neutropenia, whereas only 2 of the 47 patients in the post-adenine adoption group discontinued treatment. The frequency of treatment discontinuation due to clozapine-induced neutropenia was significantly lower in post-adenine adoption group than in the pre-adenine adoption group (p=0.047). Conclusion Adenine decreased the frequency of treatment discontinuation due to clozapine-induced neutropenia. Our data suggest that combined treatment with clozapine and adenine is a safe and effective strategy against treatment-resistant schizophrenia. PMID:26243842

  3. Excited-State Deactivation of Adenine by Electron-Driven Proton-Transfer Reactions in Adenine-Water Clusters: A Computational Study.

    PubMed

    Wu, Xiuxiu; Karsili, Tolga N V; Domcke, Wolfgang

    2016-05-01

    The reactivity of photoexcited 9H-adenine with hydrogen-bonded water molecules in the 9H-adenine-(H2 O)5 cluster is investigated by using ab initio electronic structure methods, focusing on the photoreactivity of the three basic sites of 9H-adenine. The energy profiles of excited-state reaction paths for electron/proton transfer from water to adenine are computed. For two of the three sites, a barrierless or nearly barrierless reaction path towards a low-lying S1 -S0 conical intersection is found. This reaction mechanism, which is specific for adenine in an aqueous environment, can explain the substantially shortened excited-state lifetime of 9H-adenine in water. Depending on the branching ratio of the nonadiabatic dynamics at the S1 -S0 conical intersection, the electron/proton transfer process can enhance the photostability of 9H-adenine in water or can lead to the generation of adenine-H(⋅) and OH(⋅) free radicals. Although the branching ratio is yet unknown, these findings indicate that adenine might have served as a catalyst for energy harvesting by water splitting in the early stages of the evolution of life. PMID:26833826

  4. Copper-Adenine Complex Catalyst for O2 Production from

    NASA Astrophysics Data System (ADS)

    Vergne, Jacques; Bruston, F.; Calvayrac, R.; Grajcar, L.; Baron, M.-H.; Maurel, M.-C.

    The advent of oxygen-evolving photosynthesis is one of the central event in the development of life on earth. The early atmosphere has been midly reducing or neutral in overall redox balance and water photolysis by UV light can produce hydrogen peroxide. Before oxidation of water, intermediate stages are proposed in which H_2^O_2 was oxidized. The oxidation of H_2^O_2 to oxygen can be carried out by a modestly oxidizing species in which a metal-catalase like enzyme could extract electrons from H_2^O_2 producing the first oxygen-evolving complex. After what, modern photosynthesis with chlorophyll, to help transform H_2^O in O_2 was ready to come to light. In preliminary UV studies we were able to show that [Cu(adenine)2] system, containing copper coordinated to nitrogen activates H_2^O_2 disappearance. This was confirmed with the help of Raman and polarographic studies. Raman spectroscopy shows the formation of [Cu(adenine)2] complex in solution, quantifies H_2^O_2 consumption, polarography quantifies O_2 production. In both cases CuCl_2 addition entails H_2^O_2 disappearance. Without adenine, Cu_2^+ has only a weak catalytic effect. The molar activity of the [Cu(adenine)2] complex is much larger and concentration dependent. We emphasize that Cu(adenine)2 may have mimicked enzyme properties in the first stage of life evolution, in order to split H_2^O_2 into O_2 and H_2^O. Moreover, diluted copper and adenine, in small ephemeral prebiotic ponds , could have preserved biologically active entities from H_2^O_2 damage via dual properties: catalyzing H_2^O_2 disproportionation and also directly acting as a reductant complex. Finally, the present Mars surface is considered to be both reactive and embedded with oxydants. As it has been shown that the depth of diffusion for H_2^O_2 is less than 3 meters, it is important to study all the ways of H_2^O_2 consumption.

  5. Methemoglobinemia and eccentrocytosis in equine erythrocyte flavin adenine dinucleotide deficiency.

    PubMed

    Harvey, J W; Stockham, S L; Scott, M A; Johnson, P J; Donald, J J; Chandler, C J

    2003-11-01

    This report describes erythrocyte biochemical findings in an adult Spanish mustang mare that exhibited persistent methemoglobinemia, eccentrocytosis, and pyknocytosis that were not related to the consumption or administration of an exogenous oxidant. The methemoglobinemia was attributed to a deficiency in cytochrome-b5 reductase (Cb5R) activity, and the eccentrocytes and pyknocytes were attributed to a marked deficiency in reduced nicotinamide adenine dinucleotide phosphate-dependent glutathione reductase (GR) activity that resulted in decreased reduced glutathione concentration within erythrocytes. The GR activity increased to a near-normal value after addition of flavin adenine dinucleotide (FAD) to the enzyme assay, indicating a deficiency of FAD in erythrocytes. The methemoglobinemia, eccentrocytosis, and pyknocytosis were attributed to deficiency of FAD in erythrocytes because the GR and Cb5R enzymes use FAD as a cofactor. This deficiency in FAD results from a defect in erythrocyte riboflavin metabolism, which has not been documented previously in animals. PMID:14608016

  6. Excited State Pathways Leading to Formation of Adenine Dimers.

    PubMed

    Banyasz, Akos; Martinez-Fernandez, Lara; Ketola, Tiia-Maaria; Muñoz-Losa, Aurora; Esposito, Luciana; Markovitsi, Dimitra; Improta, Roberto

    2016-06-01

    The reaction intermediate in the path leading to UV-induced formation of adenine dimers A═A and AA* is identified for the first time quantum mechanically, using PCM/TD-DFT calculations on (dA)2 (dA: 2'deoxyadenosine). In parallel, its fingerprint is detected in the absorption spectra recorded on the millisecond time-scale for the single strand (dA)20 (dA: 2'deoxyadenosine). PMID:27163876

  7. Dynamics and reactivity in Thermus aquaticus N6-adenine methyltransferase.

    PubMed

    Aranda, Juan; Zinovjev, Kirill; Roca, Maite; Tuñón, Iñaki

    2014-11-19

    M.TaqI is a DNA methyltransferase from Thermus aquaticus that catalyzes the transfer of a methyl group from S-adenosyl-L-methionine to the N6 position of an adenine, a process described only in prokaryotes. We have used full atomistic classical molecular dynamics simulations to explore the protein-SAM-DNA ternary complex where the target adenine is flipped out into the active site. Key protein-DNA interactions established by the target adenine in the active site are described in detail. The relaxed structure was used for a combined quantum mechanics/molecular mechanics exploration of the reaction mechanism using the string method. According to our free energy calculations the reaction takes place through a stepwise mechanism where the methyl transfer precedes the abstraction of the proton from the exocyclic amino group. The methyl transfer is the rate-determining step, and the obtained free energy barrier is in good agreement with the value derived from the experimental rate constant. Two possible candidates to extract the leftover proton have been explored: a water molecule found in the active site and Asn105, a residue activated by the hydrogen bonds formed through the amide hydrogens. The barrier for the proton abstraction is smaller when Asn105 acts as a base. The reaction mechanisms can be different in other N6-DNA-methyltransferases, as determined from the exploration of the reaction mechanism in the Asn105Asp M.TaqI mutant. PMID:25347783

  8. OmpF, a nucleotide-sensing nanoprobe, computational evaluation of single channel activities

    NASA Astrophysics Data System (ADS)

    Abdolvahab, R. H.; Mobasheri, H.; Nikouee, A.; Ejtehadi, M. R.

    2016-09-01

    The results of highthroughput practical single channel experiments should be formulated and validated by signal analysis approaches to increase the recognition precision of translocating molecules. For this purpose, the activities of the single nano-pore forming protein, OmpF, in the presence of nucleotides were recorded in real time by the voltage clamp technique and used as a means for nucleotide recognition. The results were analyzed based on the permutation entropy of current Time Series (TS), fractality, autocorrelation, structure function, spectral density, and peak fraction to recognize each nucleotide, based on its signature effect on the conductance, gating frequency and voltage sensitivity of channel at different concentrations and membrane potentials. The amplitude and frequency of ion current fluctuation increased in the presence of Adenine more than Cytosine and Thymine in milli-molar (0.5 mM) concentrations. The variance of the current TS at various applied voltages showed a non-monotonic trend whose initial increasing slope in the presence of Thymine changed to a decreasing one in the second phase and was different from that of Adenine and Cytosine; e.g., by increasing the voltage from 40 to 140 mV in the 0.5 mM concentration of Adenine or Cytosine, the variance decreased by one third while for the case of Thymine it was doubled. Moreover, according to the structure function of TS, the fractality of current TS differed as a function of varying membrane potentials (pd) and nucleotide concentrations. Accordingly, the calculated permutation entropy of the TS, validated the biophysical approach defined for the recognition of different nucleotides at various concentrations, pd's and polarities. Thus, the promising outcomes of the combined experimental and theoretical methodologies presented here can be implemented as a complementary means in pore-based nucleotide recognition approaches.

  9. Molecular and Subcellular-Scale Modeling of Nucleotide Diffusion in the Cardiac Myofilament Lattice

    PubMed Central

    Kekenes-Huskey, Peter M.; Liao, Tao; Gillette, Andrew K.; Hake, Johan E.; Zhang, Yongjie; Michailova, Anushka P.; McCulloch, Andrew D.; McCammon, J. Andrew

    2013-01-01

    Contractile function of cardiac cells is driven by the sliding displacement of myofilaments powered by the cycling myosin crossbridges. Critical to this process is the availability of ATP, which myosin hydrolyzes during the cross-bridge cycle. The diffusion of adenine nucleotides through the myofilament lattice has been shown to be anisotropic, with slower radial diffusion perpendicular to the filament axis relative to parallel, and is attributed to the periodic hexagonal arrangement of the thin (actin) and thick (myosin) filaments. We investigated whether atomistic-resolution details of myofilament proteins can refine coarse-grain estimates of diffusional anisotropy for adenine nucleotides in the cardiac myofibril, using homogenization theory and atomistic thin filament models from the Protein Data Bank. Our results demonstrate considerable anisotropy in ATP and ADP diffusion constants that is consistent with experimental measurements and dependent on lattice spacing and myofilament overlap. A reaction-diffusion model of the half-sarcomere further suggests that diffusional anisotropy may lead to modest adenine nucleotide gradients in the myoplasm under physiological conditions. PMID:24209858

  10. Plant Cyclic Nucleotide Signalling

    PubMed Central

    Martinez-Atienza, Juliana; Van Ingelgem, Carl; Roef, Luc

    2007-01-01

    The presence of the cyclic nucleotides 3′,5′-cyclic adenyl monophosphate (cAMP) and 3′,5′-cyclic guanyl monophosphate (cGMP) in plants is now generally accepted. In addition, cAMP and cGMP have been implicated in the regulation of important plant processes such as stomatal functioning, monovalent and divalent cation fluxes, chloroplast development, gibberellic acid signalling, pathogen response and gene transcription. However, very little is known regarding the components of cyclic nucleotide signalling in plants. In this addendum, the evidence for specific mechanisms of plant cyclic nucleotide signalling is evaluated and discussed. PMID:19704553

  11. Nucleotide-protectable labeling of sulfhydryl groups in subunit I of the ATPase from Halobacterium saccharovorum

    NASA Technical Reports Server (NTRS)

    Sulzner, Michael; Stan-Lotter, Helga; Hochstein, Lawrence I.

    1992-01-01

    The membrane ATPase from Halobacterium saccharovorum was purified as described by Hochstein et al. (1987) and was incubated with C-14 labeled N-ethylmaleimide (NEM), with and without adenine nucleotides, to determine the effect of nucleotides on the enzyme labeling. It was found that NEM incorporates into the 87,000-Da subunit (subunit I) of the enzyme and that the conditions for enzyme modification are similar to those which result in the inhibition of the enzyme activity. The presence of ATP, ADP, and AMP was found to reduce both the inhibitor incorporation and enzyme inhibition. It was shown that the reaction involves a modification of thiol groups.

  12. Comparison of nicotinamide adenine dinucleotide phosphate-induced immune responses against biotrophic and necrotrophic pathogens in Arabidopsis thaliana.

    PubMed

    Wang, Chenggang; Zhang, Xudong; Mou, Zhonglin

    2016-06-01

    The pyridine nucleotide nicotinamide adenine dinucleotide phosphate (NADP) is a universal coenzyme in anabolic reactions and also functions in intracellular signaling by serving as a substrate for production of the Ca(2+)-mobilizing agent nicotinic acid adenine dinucleotide phosphate (NAADP). It has recently been shown that, in mammalian cells, cellular NADP can be released into the extracellular compartment (ECC) upon environmental stresses by active exocytosis or diffusion through transmembrane transporters in living cells or passive leakage across the membrane in dying cells. In the ECC, NADP can either serve as a substrate for production of NAADP or act directly on purinoceptors to activate transmembrane signaling. In the last several years, extracellular NADP has also been suggested to function in plant immune responses. Here, we compared exogenous NADP-induced immune responses against biotrophic and necrotrophic pathogens in the Arabidopsis thaliana ecotype Columbia and found that NADP addition induces salicylic acid-mediated defense signaling but not jasmonic acid/ethylene-mediated defense responses. These results suggest the specificity of exogenous NADP-activated signaling in plants. PMID:27031653

  13. Influence of dietary nucleotide restriction on bacterial sepsis and phagocytic cell function in mice.

    PubMed

    Kulkarni, A D; Fanslow, W C; Drath, D B; Rudolph, F B; Van Buren, C T

    1986-02-01

    Although enzyme defects in purine metabolism have revealed the importance of these substrates to maintenance of a normal immune response, the role of exogenous nucleotides on the cells that mediate the host defense system has remained largely unexplored. Recent investigations have revealed that dietary nucleotides are vital to the maintenance of cell-mediated responses to antigen stimulation. To test the influence of dietary nucleotide deprivation on resistance to infection, Balb/c mice were maintained on chow, a nucleotide-free (NF) diet, or an NF diet repleted with adenine, uracil, or RNA. Mice on the NF diet suffered 100% mortality following intravenous challenge with Staphylococcus aureus, while chow-fed and RNA- or uracil-repleted mice demonstrated significantly greater resistance to this bacterial challenge. Macrophages from mice on the NF diet had decreased phagocytic activity as measured by uptake of radiolabeled bacteria compared with mice maintained on the NF diet supplemented with adenine, uracil, or RNA. No change in S aureus antibody response was noted on the various diets. Although the mechanism of this suppression of nonspecific immunity remains unclear, provision of nucleotides to defined diets appears vital to maintain host resistance to bacterial challenge. PMID:3947217

  14. Evolving nucleotide binding surfaces

    NASA Technical Reports Server (NTRS)

    Kieber-Emmons, T.; Rein, R.

    1981-01-01

    An analysis is presented of the stability and nature of binding of a nucleotide to several known dehydrogenases. The employed approach includes calculation of hydrophobic stabilization of the binding motif and its intermolecular interaction with the ligand. The evolutionary changes of the binding motif are studied by calculating the Euclidean deviation of the respective dehydrogenases. Attention is given to the possible structural elements involved in the origin of nucleotide recognition by non-coded primordial polypeptides.

  15. Ligation-triggered fluorescent silver nanoclusters system for the detection of nicotinamide adenine dinucleotide.

    PubMed

    Cao, Zhijuan; Wang, Pei; Qiu, Xue; Lau, Choiwan; Lu, Jianzhong

    2014-03-01

    Herein, we demonstrate a novel silver nanocluster-based fluorescent system for the detection of nicotinamide adenine dinucleotide (NAD(+)), an important biological small molecule involved in a wide range of biological processes. A single-stranded dumbbell DNA probe was designed and used for the assay, which contained a nick in the stem, a poly-cytosine nucleotide loop close to 5' end as the template for the formation of highly fluorescent silver nanoclusters (Ag NCs) and another loop close to 3' end. Only in the presence of NAD(+), the probe was linked at 5' and 3' ends by Escherichia coli DNA ligase, which blocked the DNA polymerase-based extension reaction, ensuring the formation of fluorescent Ag NCs. This technique provided a logarithmic linear relationship in the range of 1 pM-500 nM with a detection limit of as low as 1 pM NAD(+), and exhibited high selectivity against its analogues, and was then successfully used for the detection of NAD(+) level in four kinds of cell homogenates. In addition, this new approach was conducted in an isothermal and homogeneous condition without the need of any thermal cycling, washing, and separation steps, making it very simple. Overall, this label-free protocol offers a promising alternative for the detection of NAD(+), taking advantage of specificity, sensitivity, cost-efficiency, and simplicity. PMID:24442015

  16. Influence of hydrogen bonding on the geometry of the adenine fragment

    NASA Astrophysics Data System (ADS)

    Słowikowska, Joanna Maria; Woźniak, Krzysztof

    1996-01-01

    The crystal structures of two adenine derivatives, N(6),9-dimethyl-8-butyladenine (I) and its hydrate (1 : 1) (II), have been determined by single-crystal X-ray diffraction. The geometrical features of both structures are discussed. The influence of protonation, substitution and hydrogen bond formation on the geometry of the adenine fragment was studied, based on data retrieved from the Cambridge Structural Database. Total correlation analysis showed mutual correlation between the structural parameters in the adenine ring system; partial correlation calculations for the adenine nucleoside fragments suggest intercorrelation between the parameters of the hydrogen bonding involved in base pairing and the N(adenine)-C(sugar) bond through the adenine fragment; few such correlations were found for fragments without the sugar substituent.

  17. Approach to the unfolding and folding dynamics of add A-riboswitch upon adenine dissociation using a coarse-grained elastic network model.

    PubMed

    Li, Chunhua; Lv, Dashuai; Zhang, Lei; Yang, Feng; Wang, Cunxin; Su, Jiguo; Zhang, Yang

    2016-07-01

    Riboswitches are noncoding mRNA segments that can regulate the gene expression via altering their structures in response to specific metabolite binding. We proposed a coarse-grained Gaussian network model (GNM) to examine the unfolding and folding dynamics of adenosine deaminase (add) A-riboswitch upon the adenine dissociation, in which the RNA is modeled by a nucleotide chain with interaction networks formed by connecting adjoining atomic contacts. It was shown that the adenine binding is critical to the folding of the add A-riboswitch while the removal of the ligand can result in drastic increase of the thermodynamic fluctuations especially in the junction regions between helix domains. Under the assumption that the native contacts with the highest thermodynamic fluctuations break first, the iterative GNM simulations showed that the unfolding process of the adenine-free add A-riboswitch starts with the denature of the terminal helix stem, followed by the loops and junctions involving ligand binding pocket, and then the central helix domains. Despite the simplified coarse-grained modeling, the unfolding dynamics and pathways are shown in close agreement with the results from atomic-level MD simulations and the NMR and single-molecule force spectroscopy experiments. Overall, the study demonstrates a new avenue to investigate the binding and folding dynamics of add A-riboswitch molecule which can be readily extended for other RNA molecules. PMID:27394096

  18. Approach to the unfolding and folding dynamics of add A-riboswitch upon adenine dissociation using a coarse-grained elastic network model

    NASA Astrophysics Data System (ADS)

    Li, Chunhua; Lv, Dashuai; Zhang, Lei; Yang, Feng; Wang, Cunxin; Su, Jiguo; Zhang, Yang

    2016-07-01

    Riboswitches are noncoding mRNA segments that can regulate the gene expression via altering their structures in response to specific metabolite binding. We proposed a coarse-grained Gaussian network model (GNM) to examine the unfolding and folding dynamics of adenosine deaminase (add) A-riboswitch upon the adenine dissociation, in which the RNA is modeled by a nucleotide chain with interaction networks formed by connecting adjoining atomic contacts. It was shown that the adenine binding is critical to the folding of the add A-riboswitch while the removal of the ligand can result in drastic increase of the thermodynamic fluctuations especially in the junction regions between helix domains. Under the assumption that the native contacts with the highest thermodynamic fluctuations break first, the iterative GNM simulations showed that the unfolding process of the adenine-free add A-riboswitch starts with the denature of the terminal helix stem, followed by the loops and junctions involving ligand binding pocket, and then the central helix domains. Despite the simplified coarse-grained modeling, the unfolding dynamics and pathways are shown in close agreement with the results from atomic-level MD simulations and the NMR and single-molecule force spectroscopy experiments. Overall, the study demonstrates a new avenue to investigate the binding and folding dynamics of add A-riboswitch molecule which can be readily extended for other RNA molecules.

  19. Orthophosphite-Nicotinamide Adenine Dinucleotide Oxidoreductase from Pseudomonas fluorescens

    PubMed Central

    Malacinski, George M.; Konetzka, W. A.

    1967-01-01

    Information was obtained on the general properties and specificity of orthophosphite-nicotinamide adenine dinucleotide oxidoreductase. The enzyme was extracted from Pseudomonas fluorescens 195 grown in medium containing orthophosphite as the sole source of phosphorus. An enzyme preparation suitable for characterization was obtained from crude extracts by use of high-speed centrifugation, protamine sulfate precipitation, ammonium sulfate fractionation, and Sephadex gel filtration. The enzyme exhibited maximal activity at pH 7.0, and was inactivated within 6 min at 37 C. Arsenite, hypophosphite, nitrite, selenite, and tellurite were not oxidized by the enzyme. Sulfite inhibited the enzymatic oxidation of orthophosphite in an apparent competitive manner. PMID:4381632

  20. Prokaryotic nucleotide excision repair.

    PubMed

    Kisker, Caroline; Kuper, Jochen; Van Houten, Bennett

    2013-03-01

    Nucleotide excision repair (NER) has allowed bacteria to flourish in many different niches around the globe that inflict harsh environmental damage to their genetic material. NER is remarkable because of its diverse substrate repertoire, which differs greatly in chemical composition and structure. Recent advances in structural biology and single-molecule studies have given great insight into the structure and function of NER components. This ensemble of proteins orchestrates faithful removal of toxic DNA lesions through a multistep process. The damaged nucleotide is recognized by dynamic probing of the DNA structure that is then verified and marked for dual incisions followed by excision of the damage and surrounding nucleotides. The opposite DNA strand serves as a template for repair, which is completed after resynthesis and ligation. PMID:23457260

  1. Characterization of Nucleotide Misincorporation Patterns in the Iceman's Mitochondrial DNA

    PubMed Central

    Olivieri, Cristina; Ermini, Luca; Rizzi, Ermanno; Corti, Giorgio; Bonnal, Raoul; Luciani, Stefania; Marota, Isolina; De Bellis, Gianluca; Rollo, Franco

    2010-01-01

    Background The degradation of DNA represents one of the main issues in the genetic analysis of archeological specimens. In the recent years, a particular kind of post-mortem DNA modification giving rise to nucleotide misincorporation (“miscoding lesions”) has been the object of extensive investigations. Methodology/Principal Findings To improve our knowledge regarding the nature and incidence of ancient DNA nucleotide misincorporations, we have utilized 6,859 (629,975 bp) mitochondrial (mt) DNA sequences obtained from the 5,350–5,100-years-old, freeze-desiccated human mummy popularly known as the Tyrolean Iceman or Ötzi. To generate the sequences, we have applied a mixed PCR/pyrosequencing procedure allowing one to obtain a particularly high sequence coverage. As a control, we have produced further 8,982 (805,155 bp) mtDNA sequences from a contemporary specimen using the same system and starting from the same template copy number of the ancient sample. From the analysis of the nucleotide misincorporation rate in ancient, modern, and putative contaminant sequences, we observed that the rate of misincorporation is significantly lower in modern and putative contaminant sequence datasets than in ancient sequences. In contrast, type 2 transitions represent the vast majority (85%) of the observed nucleotide misincorporations in ancient sequences. Conclusions/Significance This study provides a further contribution to the knowledge of nucleotide misincorporation patterns in DNA sequences obtained from freeze-preserved archeological specimens. In the Iceman system, ancient sequences can be clearly distinguished from contaminants on the basis of nucleotide misincorporation rates. This observation confirms a previous identification of the ancient mummy sequences made on a purely phylogenetical basis. The present investigation provides further indication that the majority of ancient DNA damage is reflected by type 2 (cytosine→thymine/guanine→adenine) transitions and

  2. A9145, a New Adenine-Containing Antifungal Antibiotic: Fermentation

    PubMed Central

    Boeck, L. D.; Clem, G. M.; Wilson, M. M.; Westhead, J. E.

    1973-01-01

    A9145 is a basic, water-soluble, antifungal antibiotic which is produced in a complex organic medium by Streptomyces griseolus. The metabolite has a molecular weight of 510, and contains adenine as well as sugar hydroxyl and amino groups. Although glucose, fructose, glucose polymers, and some long-chain fatty acid methyl esters supported biosynthesis, oils were superior, with cottonseed oil being preferred. Several ions and salts, especially Co2+, PO43−, and CaCO3, were stimulatory. Adenine, nucleosides, and some amino acids increased the accumulation of A9145 in shaken-flask fermentors. Enrichment of the culture medium with tyrosine afforded maximal enhancement of antibiotic production in both flask and tank fermentors. Control of the dissolved O2 level was also critical, the optimal concentration being 3 × 10−2 to 4.5 × 10−2 μmole of O2/ml. Optimization of various fermentation parameters increased antibiotic titers approximately 135-fold in shaken flask fermentors and 225-fold in stirred vessels. PMID:4208279

  3. PA0148 from Pseudomonas aeruginosa Catalyzes the Deamination of Adenine

    SciTech Connect

    Goble, A.M.; Swaminathan, S.; Zhang, Z.; Sauder, J. M.; Burley, S. K.; Raushel, F. M.

    2011-08-02

    Four proteins from NCBI cog1816, previously annotated as adenosine deaminases, have been subjected to structural and functional characterization. Pa0148 (Pseudomonas aeruginosa PAO1), AAur1117 (Arthrobacter aurescens TC1), Sgx9403e, and Sgx9403g have been purified and their substrate profiles determined. Adenosine is not a substrate for any of these enzymes. All of these proteins will deaminate adenine to produce hypoxanthine with k{sub cat}/K{sub m} values that exceed 10{sup 5} M{sup -1} s{sup -1}. These enzymes will also accept 6-chloropurine, 6-methoxypurine, N-6-methyladenine, and 2,6-diaminopurine as alternate substrates. X-ray structures of Pa0148 and AAur1117 have been determined and reveal nearly identical distorted ({beta}/{alpha}){sub 8} barrels with a single zinc ion that is characteristic of members of the amidohydrolase superfamily. Structures of Pa0148 with adenine, 6-chloropurine, and hypoxanthine were also determined, thereby permitting identification of the residues responsible for coordinating the substrate and product.

  4. Pa0148 from Pseudomonas aeruginosa Catalyzes the Deamination of Adenine

    SciTech Connect

    A Goble; Z Zhang; J Sauder; S Burley; S Swaminathan; F Raushel

    2011-12-31

    Four proteins from NCBI cog1816, previously annotated as adenosine deaminases, have been subjected to structural and functional characterization. Pa0148 (Pseudomonas aeruginosa PAO1), AAur1117 (Arthrobacter aurescens TC1), Sgx9403e, and Sgx9403g have been purified and their substrate profiles determined. Adenosine is not a substrate for any of these enzymes. All of these proteins will deaminate adenine to produce hypoxanthine with k{sub cat}/K{sub m} values that exceed 10{sup 5} M{sup -1} s{sup -1}. These enzymes will also accept 6-chloropurine, 6-methoxypurine, N-6-methyladenine, and 2,6-diaminopurine as alternate substrates. X-ray structures of Pa0148 and AAur1117 have been determined and reveal nearly identical distorted ({beta}/{alpha}){sub 8} barrels with a single zinc ion that is characteristic of members of the amidohydrolase superfamily. Structures of Pa0148 with adenine, 6-chloropurine, and hypoxanthine were also determined, thereby permitting identification of the residues responsible for coordinating the substrate and product.

  5. Nonselective enrichment for yeast adenine mutants by flow cytometry

    NASA Technical Reports Server (NTRS)

    Bruschi, C. V.; Chuba, P. J.

    1988-01-01

    The expression of certain adenine biosynthetic mutations in the yeast Saccharomyces cerevisiae results in a red colony color. This phenomenon has historically provided an ideal genetic marker for the study of mutation, recombination, and aneuploidy in lower eukaryotes by classical genetic analysis. In this paper, it is reported that cells carrying ade1 and/or ade2 mutations exhibit primary fluorescence. Based on this observation, the nonselective enrichment of yeast cultures for viable adenine mutants by using the fluorescence-activated cell sorter has been achieved. The advantages of this approach over conventional genetic analysis of mutation, recombination, and mitotic chromosomal stability include speed and accuracy in acquiring data for large numbers of clones. By using appropriate strains, the cell sorter has been used for the isolation of both forward mutations and chromosomal loss events in S. cerevisiae. The resolving power of this system and its noninvasiveness can easily be extended to more complex organisms, including mammalian cells, in which analogous metabolic mutants are available.

  6. Fluorometric Determination of Adenosine Nucleotide Derivatives as Measures of the Microfouling, Detrital, and Sedimentary Microbial Biomass and Physiological Status

    PubMed Central

    Davis, William M.; White, David C.

    1980-01-01

    Adenosine, adenine, cyclic adenosine monophosphate (AMP), AMP, nicotinamide adenine dinucleotide, adenosine diphosphate, and adenosine triphosphate (ATP) were recovered quantitatively from aqueous portions of lipid extracts of microfouling, detrital, and sedimentary microbial communities. These could be detected quantitatively in the picomolar range by forming their 1-N6-etheno derivatives and analyzing by high-pressure liquid chromatography with fluorescence detection. Lipid extraction and subsequent analysis allowed the simultaneous measurement of the microbial community structure, total microbial biomass with the quantitative recovery of the adenine-containing cellular components, which were protected from enzymatic destruction. This extraction and fluorescent derivatization method showed equivalency with the luciferin-luciferase method for bacterial ATP measurements. Quick-freezing samples in the field with dry ice-acetone preserved the ATP and energy charge (a ratio of adenosine nucleotides) for analysis at remote laboratories. The metabolic lability of ATP in estuarine detrital and microfouling communities, as well as bacterial monocultures of constant biomass, showed ATP to be a precarious measure of biomass under some conditions. Combinations of adenosine and adenine nucleotides gave better correlations with microbial biomass measured as extractable lipid phosphate in the detrital and microfouling microbial communities than did ATP alone. Stresses such as anoxia or filtration are reflected in the rapid accumulation of intracellular adenosine and the excretion of adenosine and AMP into the surrounding milieu. Increases in AMP and adenosine may prove to be more sensitive indicators of metabolic status than the energy charge. PMID:16345633

  7. Fluorometric determination of adenosine nucleotide derivatives as measures of the microfouling, detrital, and sedimentary microbial biomass and physiological status.

    PubMed

    Davis, W M; White, D C

    1980-09-01

    Adenosine, adenine, cyclic adenosine monophosphate (AMP), AMP, nicotinamide adenine dinucleotide, adenosine diphosphate, and adenosine triphosphate (ATP) were recovered quantitatively from aqueous portions of lipid extracts of microfouling, detrital, and sedimentary microbial communities. These could be detected quantitatively in the picomolar range by forming their 1-N-etheno derivatives and analyzing by high-pressure liquid chromatography with fluorescence detection. Lipid extraction and subsequent analysis allowed the simultaneous measurement of the microbial community structure, total microbial biomass with the quantitative recovery of the adenine-containing cellular components, which were protected from enzymatic destruction. This extraction and fluorescent derivatization method showed equivalency with the luciferin-luciferase method for bacterial ATP measurements. Quick-freezing samples in the field with dry ice-acetone preserved the ATP and energy charge (a ratio of adenosine nucleotides) for analysis at remote laboratories. The metabolic lability of ATP in estuarine detrital and microfouling communities, as well as bacterial monocultures of constant biomass, showed ATP to be a precarious measure of biomass under some conditions. Combinations of adenosine and adenine nucleotides gave better correlations with microbial biomass measured as extractable lipid phosphate in the detrital and microfouling microbial communities than did ATP alone. Stresses such as anoxia or filtration are reflected in the rapid accumulation of intracellular adenosine and the excretion of adenosine and AMP into the surrounding milieu. Increases in AMP and adenosine may prove to be more sensitive indicators of metabolic status than the energy charge. PMID:16345633

  8. High-spin ferric ions in Saccharomyces cerevisiae vacuoles are reduced to the ferrous state during adenine-precursor detoxification.

    PubMed

    Park, Jinkyu; McCormick, Sean P; Cockrell, Allison L; Chakrabarti, Mrinmoy; Lindahl, Paul A

    2014-06-24

    The majority of Fe in Fe-replete yeast cells is located in vacuoles. These acidic organelles store Fe for use under Fe-deficient conditions and they sequester it from other parts of the cell to avoid Fe-associated toxicity. Vacuolar Fe is predominantly in the form of one or more magnetically isolated nonheme high-spin (NHHS) Fe(III) complexes with polyphosphate-related ligands. Some Fe(III) oxyhydroxide nanoparticles may also be present in these organelles, perhaps in equilibrium with the NHHS Fe(III). Little is known regarding the chemical properties of vacuolar Fe. When grown on adenine-deficient medium (A↓), ADE2Δ strains of yeast such as W303 produce a toxic intermediate in the adenine biosynthetic pathway. This intermediate is conjugated with glutathione and shuttled into the vacuole for detoxification. The iron content of A↓ W303 cells was determined by Mössbauer and EPR spectroscopies. As they transitioned from exponential growth to stationary state, A↓ cells (supplemented with 40 μM Fe(III) citrate) accumulated two major NHHS Fe(II) species as the vacuolar NHHS Fe(III) species declined. This is evidence that vacuoles in A↓ cells are more reducing than those in adenine-sufficient cells. A↓ cells suffered less oxidative stress despite the abundance of NHHS Fe(II) complexes; such species typically promote Fenton chemistry. Most Fe in cells grown for 5 days with extra yeast-nitrogen-base, amino acids and bases in minimal medium was HS Fe(III) with insignificant amounts of nanoparticles. The vacuoles of these cells might be more acidic than normal and can accommodate high concentrations of HS Fe(III) species. Glucose levels and rapamycin (affecting the TOR system) affected cellular Fe content. This study illustrates the sensitivity of cellular Fe to changes in metabolism, redox state and pH. Such effects broaden our understanding of how Fe and overall cellular metabolism are integrated. PMID:24919141

  9. Classification of pseudo pairs between nucleotide bases and amino acids by analysis of nucleotide–protein complexes

    PubMed Central

    Kondo, Jiro; Westhof, Eric

    2011-01-01

    Nucleotide bases are recognized by amino acid residues in a variety of DNA/RNA binding and nucleotide binding proteins. In this study, a total of 446 crystal structures of nucleotide–protein complexes are analyzed manually and pseudo pairs together with single and bifurcated hydrogen bonds observed between bases and amino acids are classified and annotated. Only 5 of the 20 usual amino acid residues, Asn, Gln, Asp, Glu and Arg, are able to orient in a coplanar fashion in order to form pseudo pairs with nucleotide bases through two hydrogen bonds. The peptide backbone can also form pseudo pairs with nucleotide bases and presents a strong bias for binding to the adenine base. The Watson–Crick side of the nucleotide bases is the major interaction edge participating in such pseudo pairs. Pseudo pairs between the Watson–Crick edge of guanine and Asp are frequently observed. The Hoogsteen edge of the purine bases is a good discriminatory element in recognition of nucleotide bases by protein side chains through the pseudo pairing: the Hoogsteen edge of adenine is recognized by various amino acids while the Hoogsteen edge of guanine is only recognized by Arg. The sugar edge is rarely recognized by either the side-chain or peptide backbone of amino acid residues. PMID:21737431

  10. The purine nucleotide cycle. A pathway for ammonia production in the rat kidney.

    PubMed Central

    Bogusky, R T; Lowenstein, L M; Lowenstein, J M

    1976-01-01

    Particle-free extracts prepared from kidney cortex of rat catalyze the formation of ammonia via the purine nucleotide cycle. The cycle generates ammonia and fumarate from aspartate, using catalytic amounts of inosine monophosphate, adenylosuccinate, and adenosine monophosphate. The specific activities of the enzymes of the cycle are 1.27+/-0.27 nmol/mg protein per min (SE) for adenoylosuccinate synthetase, 1.38+/-0.16 for adenylosuccinase, and 44.0+/-3.3 for AMP deaminase. Compared with controls, extracts prepared from kidneys of rats fed ammonium chloride for 2 days show a 60% increase in adenylosuccinate synthetase and a threefold increase in adenylosuccinase activity, and a greater and more rapid synthesis of ammonia and adenine nucleotide from aspartate and inosine monophosphate. Extracts prepared from kidneys of rats fed a potassium-deficient diet show a twofold increase in adenylosuccinate synthetase and a threefold increase in adenylosuccinase activity. In such extracts the rate of synthesis of ammonia and adenine nucleotide from aspartate and inosine monophosphate is also increased. These results show that the reactions of the purine nucleotide cycle are present and can operate in extracts of kidney cortex. The operational capacity of the cycle is accelerated by ammonium chloride feeding and potassium depletion, conditions known to increase renal ammonia excretion. Extracts of kidney cortex convert inosine monophosphate to uric acid. This is prevented by addition of allopurinol of 1-pyrophosphoryl ribose 5-phosphate to the reaction mixture. PMID:821968

  11. Adenine attenuates the Ca(2+) contraction-signaling pathway via adenine receptor-mediated signaling in rat vascular smooth muscle cells.

    PubMed

    Fukuda, Toshihiko; Kuroda, Takahiro; Kono, Miki; Hyoguchi, Mai; Tajiri, Satoshi; Tanaka, Mitsuru; Mine, Yoshinori; Matsui, Toshiro

    2016-09-01

    Our previous study demonstrated that adenine (6-amino-6H-purine) relaxed contracted rat aorta rings in an endothelial-independent manner. Although adenine receptors (AdeRs) are expressed in diverse tissues, aortic AdeR expression has not been ascertained. Thus, the aims of this study were to clarify the expression of AdeR in rat vascular smooth muscle cells (VSMCs) and to investigate the adenine-induced vasorelaxation mechanism(s). VSMCs were isolated from 8-week-old male Wistar-Kyoto rats and used in this study. Phosphorylation of myosin light chain (p-MLC) was measured by western blot. AdeR mRNA was detected by RT-PCR. Intracellular Ca(2+) concentration ([Ca(2+)]i) was measured by using Fura-2/AM. Vasorelaxant adenine (10-100 μM) significantly reduced p-MLC by angiotensin II (Ang II, 10 μM) in VSMCs (P < 0.05). We confirmed the expression of aortic AdeR mRNA and the activation of PKA in VSMCs through stimulation of AdeR by adenine by ELISA. Intracellular Ca(2+) concentration ([Ca(2+)]i) measurement demonstrated that adenine inhibits Ang II- and m-3M3FBS (PLC agonist)-induced [Ca(2+)]i elevation. In AdeR-knockdown VSMCs, PKA activation and p-MLC reduction by adenine were completely abolished. These results firstly demonstrated that vasorelaxant adenine can suppress Ca(2+) contraction signaling pathways via aortic AdeR/PKA activation in VSMCs. PMID:27318925

  12. Nucleotide diversity in gorillas.

    PubMed Central

    Yu, Ning; Jensen-Seaman, Michael I; Chemnick, Leona; Ryder, Oliver; Li, Wen-Hsiung

    2004-01-01

    Comparison of the levels of nucleotide diversity in humans and apes may provide valuable information for inferring the demographic history of these species, the effect of social structure on genetic diversity, patterns of past migration, and signatures of past selection events. Previous DNA sequence data from both the mitochondrial and the nuclear genomes suggested a much higher level of nucleotide diversity in the African apes than in humans. Noting that the nuclear DNA data from the apes were very limited, we previously conducted a DNA polymorphism study in humans and another in chimpanzees and bonobos, using 50 DNA segments randomly chosen from the noncoding, nonrepetitive parts of the human genome. The data revealed that the nucleotide diversity (pi) in bonobos (0.077%) is actually lower than that in humans (0.087%) and that pi in chimpanzees (0.134%) is only 50% higher than that in humans. In the present study we sequenced the same 50 segments in 15 western lowland gorillas and estimated pi to be 0.158%. This is the highest value among the African apes but is only about two times higher than that in humans. Interestingly, available mtDNA sequence data also suggest a twofold higher nucleotide diversity in gorillas than in humans, but suggest a threefold higher nucleotide diversity in chimpanzees than in humans. The higher mtDNA diversity in chimpanzees might be due to the unique pattern in the evolution of chimpanzee mtDNA. From the nuclear DNA pi values, we estimated that the long-term effective population sizes of humans, bonobos, chimpanzees, and gorillas are, respectively, 10,400, 12,300, 21,300, and 25,200. PMID:15082556

  13. Unraveling the complexity of the interactions of DNA nucleotides with gold by single molecule force spectroscopy

    NASA Astrophysics Data System (ADS)

    Bano, Fouzia; Sluysmans, Damien; Wislez, Arnaud; Duwez, Anne-Sophie

    2015-11-01

    Addressing the effect of different environmental factors on the adsorption of DNA to solid supports is critical for the development of robust miniaturized devices for applications ranging from biosensors to next generation molecular technology. Most of the time, thiol-based chemistry is used to anchor DNA on gold - a substrate commonly used in nanotechnology - and little is known about the direct interaction between DNA and gold. So far there have been no systematic studies on the direct adsorption behavior of the deoxyribonucleotides (i.e., a nitrogenous base, a deoxyribose sugar, and a phosphate group) and on the factors that govern the DNA-gold bond strength. Here, using single molecule force spectroscopy, we investigated the interaction of the four individual nucleotides, adenine, guanine, cytosine, and thymine, with gold. Experiments were performed in three salinity conditions and two surface dwell times to reveal the factors that influence nucleotide-Au bond strength. Force data show that, at physiological ionic strength, adenine-Au interactions are stronger, asymmetrical and independent of surface dwell time as compared to cytosine-Au and guanine-Au interactions. We suggest that in these conditions only adenine is able to chemisorb on gold. A decrease of the ionic strength significantly increases the bond strength for all nucleotides. We show that moderate ionic strength along with longer surface dwell period suggest weak chemisorption also for cytosine and guanine.Addressing the effect of different environmental factors on the adsorption of DNA to solid supports is critical for the development of robust miniaturized devices for applications ranging from biosensors to next generation molecular technology. Most of the time, thiol-based chemistry is used to anchor DNA on gold - a substrate commonly used in nanotechnology - and little is known about the direct interaction between DNA and gold. So far there have been no systematic studies on the direct

  14. Adenine, a hairpin ribozyme cofactor--high-pressure and competition studies.

    PubMed

    Ztouti, Myriam; Kaddour, Hussein; Miralles, Francisco; Simian, Christophe; Vergne, Jacques; Hervé, Guy; Maurel, Marie-Christine

    2009-05-01

    The RNA world hypothesis assumes that life arose from ancestral RNA molecules, which stored genetic information and catalyzed chemical reactions. Although RNA catalysis was believed to be restricted to phosphate chemistry, it is now established that the RNA has much wider catalytic capacities. In this respect, we devised, in a previous study, two hairpin ribozymes (adenine-dependent hairpin ribozyme 1 and adenine-dependent hairpin ribozyme 2) that require adenine as cofactor for their reversible self-cleavage. We have now used high hydrostatic pressure to investigate the role of adenine in the catalytic activity of adenine-dependent hairpin ribozyme 1. High-pressure studies are of interest because they make it possible to determine the volume changes associated with the reactions, which in turn reflect the conformational modifications and changes in hydration involved in the catalytic mechanism. They are also relevant in the context of piezophilic organisms, as well as in relation to the extreme conditions that prevailed at the origin of life. Our results indicate that the catalytic process involves a transition state whose formation is accompanied by a positive activation volume and release of water molecules. In addition, competition experiments with adenine analogs strongly suggest that exogenous adenine replaces the adenine present at the catalytic site of the wild-type hairpin ribozyme. PMID:19476496

  15. Characterization of photophysical and base-mimicking properties of a novel fluorescent adenine analogue in DNA

    PubMed Central

    Dierckx, Anke; Dinér, Peter; El-Sagheer, Afaf H.; Kumar, Joshi Dhruval; Brown, Tom; Grøtli, Morten; Wilhelmsson, L. Marcus

    2011-01-01

    To increase the diversity of fluorescent base analogues with improved properties, we here present the straightforward click-chemistry-based synthesis of a novel fluorescent adenine-analogue triazole adenine (AT) and its photophysical characterization inside DNA. AT shows promising properties compared to the widely used adenine analogue 2-aminopurine. Quantum yields reach >20% and >5% in single- and double-stranded DNA, respectively, and show dependence on neighbouring bases. Moreover, AT shows only a minor destabilization of DNA duplexes, comparable to 2-aminopurine, and circular dichroism investigations suggest that AT only causes minimal structural perturbations to normal B-DNA. Furthermore, we find that AT shows favourable base-pairing properties with thymine and more surprisingly also with normal adenine. In conclusion, AT shows strong potential as a new fluorescent adenine analogue for monitoring changes within its microenvironment in DNA. PMID:21278417

  16. Interaction of sulfanilamide and sulfamethoxazole with bovine serum albumin and adenine: spectroscopic and molecular docking investigations.

    PubMed

    Rajendiran, N; Thulasidhasan, J

    2015-06-01

    Interaction between sulfanilamide (SAM) and sulfamethoxazole (SMO) with BSA and DNA base (adenine) was investigated by UV-visible, fluorescence, cyclic voltammetry and molecular docking studies. Stern-Volmer fluorescence quenching constant (Ka) suggests SMO is more quenched with BSA/adenine than that of SAM. The distance r between donor (BSA/adenine) and acceptor (SAM and SMO) was obtained according to fluorescence resonance energy transfer (FRET). The results showed that hydrophobic forces, electrostatic interactions, and hydrogen bonds played vital roles in the SAM and SMO with BSA/adenine binding interaction. During the interaction, sulfa drugs could insert into the hydrophobic pocket, where the non-radioactive energy transfer from BSA/adenine to sulfa drugs occurred with high possibility. Cyclic voltammetry results suggested that when the drug concentration is increased, the anodic electrode potential deceased. The docking method indicates aniline group is interacted with the BSA molecules. PMID:25754395

  17. Interaction of sulfanilamide and sulfamethoxazole with bovine serum albumin and adenine: Spectroscopic and molecular docking investigations

    NASA Astrophysics Data System (ADS)

    Rajendiran, N.; Thulasidhasan, J.

    2015-06-01

    Interaction between sulfanilamide (SAM) and sulfamethoxazole (SMO) with BSA and DNA base (adenine) was investigated by UV-visible, fluorescence, cyclic voltammetry and molecular docking studies. Stern-Volmer fluorescence quenching constant (Ka) suggests SMO is more quenched with BSA/adenine than that of SAM. The distance r between donor (BSA/adenine) and acceptor (SAM and SMO) was obtained according to fluorescence resonance energy transfer (FRET). The results showed that hydrophobic forces, electrostatic interactions, and hydrogen bonds played vital roles in the SAM and SMO with BSA/adenine binding interaction. During the interaction, sulfa drugs could insert into the hydrophobic pocket, where the non-radioactive energy transfer from BSA/adenine to sulfa drugs occurred with high possibility. Cyclic voltammetry results suggested that when the drug concentration is increased, the anodic electrode potential deceased. The docking method indicates aniline group is interacted with the BSA molecules.

  18. Ultraviolet absorption and luminescence of matrix-isolated adenine

    SciTech Connect

    Polewski, K.; Sutherland, J.; Zinger, D.; Trunk, J.

    2011-10-01

    We have investigated the absorption, the fluorescence and phosphorescence emission and the fluorescence lifetimes of adenine in low-temperature argon and nitrogen matrices at 15 K. Compared to other environments the absorption spectrum shows higher intensity at the shortest wavelengths, and a weak apparent absorption peak is observed at 280 nm. The resolved fluorescence excitation spectrum has five peaks at positions corresponding to those observed in the absorption spectrum. The position of the fluorescence maximum depends on the excitation wavelength. Excitation below 220 nm displays a fluorescence maximum at 305 nm, while for excitations at higher wavelengths the maximum occurs at 335 nm. The results suggest that multiple-emission excited electronic states are populated in low-temperature gas matrices. Excitation at 265 nm produces a phosphorescence spectrum with a well-resolved vibrational structure and a maximum at 415 nm. The fluorescence decays corresponding to excitation at increasing energy of each resolved band could be fit with a double exponential, with the shorter and longer lifetimes ranging from 1.7 to 3.3 ns and from 12 to 23 ns, respectively. Only for the excitation at 180 nm one exponential is required, with the calculated lifetimes of 3.3 ns. The presented results provide an experimental evidence of the existence of multiple site-selected excited electronic states, and may help elucidate the possible deexcitation pathways of adenine. The additional application of synchrotron radiation proved to result in a significant enhancement of the resolution and spectral range of the phenomena under investigation.

  19. Sirtuins and Pyridine Nucleotides

    PubMed Central

    Abdellatif, Maha

    2012-01-01

    The silencer information regulator (Sir) family of proteins has attracted much attention during the past decade due to their prominent role in metabolic homeostasis in mammals. The Sir1-4 proteins were first discovered in yeast as nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases, which through a gene silencing effect promoted longevity. The subsequent discovery of a homologous sirtuin (Sirt) family of proteins in the mammalian systems soon led to the realization that these molecules have beneficial effects in metabolism- and aging-related diseases. Through their concerted functions in the central nervous system, liver, pancreas, skeletal muscle, and adipose tissue, they regulate the body’s metabolism. Sirt1, -6, and -7 exert their functions, predominantly, through a direct effect on nuclear transcription of genes involved in metabolism, whereas Sirt3-5 reside in the mitochondrial matrix and regulate various enzymes involved in the tricarboxylic acid and urea cycles, oxidative phosphorylation, as well as reactive oxygen species production. An interesting aspect of sirtuin’s functionality involves their regulation by the circadian rhythm, which impacts their function via cyclically regulating systemic NAD+ availability, further establishing the link of these proteins to metabolism. In this review we will discuss the relation of sirtuins to NAD+ metabolism, their mechanism of function, and their role in metabolism and mitochondrial functions. In addition, we will describe their effects in the cardiovascular and central nervous systems. PMID:22904043

  20. KATP channels process nucleotide signals in muscle thermogenic response

    PubMed Central

    Reyes, Santiago; Park, Sungjo; Terzic, Andre; Alekseev, Alexey E.

    2014-01-01

    Uniquely gated by intracellular adenine nucleotides, sarcolemmal ATP-sensitive K+ (KATP) channels have been typically assigned to protective cellular responses under severe energy insults. More recently, KATP channels have been instituted in the continuous control of muscle energy expenditure under non-stressed, physiological states. These advances raised the question of how KATP channels can process trends in cellular energetics within a milieu where each metabolic system is set to buffer nucleotide pools. Unveiling the mechanistic basis of the KATP channel-driven thermogenic response in muscles thus invites the concepts of intracellular compartmentalization of energy and proteins, along with nucleotide signaling over diffusion barriers. Furthermore, it requires gaining insight into the properties of reversibility of intrinsic ATPase activity associated with KATP channel complexes. Notwithstanding the operational paradigm, the homeostatic role of sarcolemmal KATP channels can be now broadened to a wider range of environmental cues affecting metabolic well-being. In this way, under conditions of energy deficit such as ischemic insult or adrenergic stress, the operation of KATP channel complexes would result in protective energy saving, safeguarding muscle performance and integrity. Under energy surplus, downregulation of KATP channel function may find potential implications in conditions of energy imbalance linked to obesity, cold intolerance and associated metabolic disorders. PMID:20925594

  1. Adenine nucleoside diphosphates block adaptation of mechanoelectrical transduction in hair cells.

    PubMed

    Gillespie, P G; Hudspeth, A J

    1993-04-01

    By adapting to sustained stimuli, hair cells in the internal ear retain their sensitivity to minute transient displacements. Because one model for adaptation asserts that this process is mediated by a myosin isozyme, we reasoned that we should be able to arrest adaptation by interfering with myosin's ATPase cycle though introduction of ADP into hair cells. During tight-seal, whole-cell recordings of transduction currents in cells isolated from bullfrog (Rana catesbeiana) sacculus, dialysis with 5-25 mM ADP gave variable results. In half of the cells examined, the rate of adaptation remained unchanged or even increased; adaptation was blocked in the remaining cells. Because we suspected that the variable effect of ADP resulted from the conversion of ADP to ATP by adenylate kinase, we employed the ADP analog adenosine 5'-[beta-thio]diphosphate (ADP[beta S]), which is not a substrate for adenylate kinase. Adaptation consistently disappeared in the presence of 1-10 mM ADP[beta S]; in addition, the transduction channels' open probability at rest grew from approximately 0.1 to 0.8 or more. Both effects could be reversed by 2 mM ATP. When used in conjunction with the adenylate kinase inhibitor P1,P5-bis(5'-adenosyl) pentaphosphate (Ap5A), ADP had effects similar to those of ADP[beta S]. These results suggest that adaptation by hair cells involves adenine nucleotides, and they lend support to the hypothesis that the adaptation process is powered by a myosin motor. PMID:8464880

  2. The adenosine deaminase inhibitor erythro-9-[2-hydroxyl-3-nonyl]-adenine decreases intestinal permeability and protects against experimental sepsis: a prospective, randomised laboratory investigation

    PubMed Central

    Kayhan, Nalan; Funke, Benjamin; Conzelmann, Lars Oliver; Winkler, Harald; Hofer, Stefan; Steppan, Jochen; Schmidt, Heinfried; Bardenheuer, Hubert; Vahl, Christian-Friedrich; Weigand, Markus A

    2008-01-01

    Introduction The treatment of septic conditions in critically ill patients is still one of medicine's major challenges. Cyclic nucleotides, adenosine and its receptors play a pivotal role in the regulation of inflammatory responses and in limiting inflammatory tissue destruction. The aim of this study was to verify the hypothesis that adenosine deaminase-1 and cyclic guanosine monophosphate-stimulated phosphodiesterase inhibition by erythro-9-[2-hydroxyl-3-nonyl]-adenine could be beneficial in experimental endotoxicosis/sepsis. Method We used two established animal models for endotoxicosis and sepsis. Twenty-four male Wistar rats that had been given intravenous endotoxin (Escherichia coli lipopolysaccharide) were treated with either erythro-9-[2-hydroxyl-3-nonyl]-adenine infusion or 0.9% saline during a study length of 120 minutes. Sepsis in 84 female C57BL/6 mice was induced by caecal ligation and puncture. Animals were treated with repeated erythro-9-[2-hydroxyl-3-nonyl]-adenine injections after 0, 12 and 24 hours or 4, 12 and 24 hours for delayed treatment. Results In endotoxaemic rats, intestinal production of hypoxanthine increased from 9.8 +/- 90.2 μmol/l at baseline to 411.4 +/- 124.6 μmol/l and uric acid formation increased from 1.5 +/- 2.3 mmol/l to 13.1 +/- 2.7 mmol/l after 120 minutes. In endotoxaemic animals treated with erythro-9-[2-hydroxyl-3-nonyl]-adenine, we found no elevation of adenosine metabolites. The lactulose/L-rhamnose ratio (14.3 versus 4.2 in control animals; p = 2.5 × 10-7) reflects a highly permeable small intestine and through the application of erythro-9-[2-hydroxyl-3-nonyl]-adenine, intestinal permeability could be re-established. The lipopolysaccharide animals had decreased L-rhamnose/3-O-methyl-D-glucose urine excretion ratios. Erythro-9-[2-hydroxyl-3-nonyl]-adenine reduced this effect. The mucosa damage score of the septic animals was higher compared with control and therapy animals (p < 0.05). Septic shock induction by caecal

  3. Cytochrome b nucleotide sequence variation among the Atlantic Alcidae.

    PubMed

    Friesen, V L; Montevecchi, W A; Davidson, W S

    1993-01-01

    Analysis of cytochrome b nucleotide sequences of the six extant species of Atlantic alcids and a gull revealed an excess of adenines and cytosines and a deficit of guanines at silent sites on the coding strand. Phylogenetic analyses grouped the sequences of the common (Uria aalge) and Brünnich's (U. lomvia) guillemots, followed by the razorbill (Alca torda) and little auk (Alle alle). The black guillemot (Cepphus grylle) sequence formed a sister taxon, and the puffin (Fratercula arctica) fell outside the other alcids. Phylogenetic comparisons of substitutions indicated that mutabilities of bases did not differ, but that C was much more likely to be incorporated than was G. Imbalances in base composition appear to result from a strand bias in replication errors, which may result from selection on secondary RNA structure and/or the energetics of codon-anticodon interactions. PMID:7916741

  4. Complementary effects of extracellular nucleotides and platelet-derived extracts on angiogenesis of vasa vasorum endothelial cells in vitro and subcutaneous Matrigel plugs in vivo

    PubMed Central

    2011-01-01

    Background Platelets contribute to vascular homeostasis and angiogenesis through the release of multiple growth factors, cytokines and nucleotides, such as ATP and ADP. Recent reports have demonstrated a marked growth-promoting effect of total platelet extracts and selected platelet growth factors on therapeutic angiogenesis. However, since endogenous adenine nucleotides are rapidly degraded during the platelet isolation and storage, we examined whether supplementing a platelet-derived extract with exogenous adenine nucleotides would augment their pro-angiogenic effects. Methods Pulmonary artery vasa vasorum endothelial cells (VVEC) were used to examine the effects of dialyzed platelet-derived soluble extracts and extracellular adenine nucleotides on proliferation, migration and tube formation. In addition, an in vivo Matrigel plug assay was used to examine the effects of platelet extracts and adenine nucleotides on neovascularization of plugs subcutaneously placed in 50 ICR mice. The number of vascular structures in Matrigel plugs were evaluated by histological and statistical methods. Results Platelet extracts (6.4-64 μg/ml) significantly induced DNA synthesis and at a concentration of 64 μg/ml had a biphasic effect on VVEC proliferation (an increase at 48 hrs followed by a decrease at 60 hrs). Stimulation of VVEC with platelet extracts also significantly (up to several-fold) increased cell migration and tube formation on Matrigel. Stimulation of VVEC with extracellular ATP (100 μM) dramatically (up to ten-fold) increased migration and tube formation on Matrigel; however, no significant effects on cell proliferation were observed. We also found that ATP moderately diminished platelet extract-induced VVEC proliferation (48 hrs) and migration, but potentiated tube formation. Neither ATP, or a mixture of non-hydrolyzable nucleotides (ATPγS, ADPβS, MeSATP, MeSADP) induced vascularization of Matrigel plugs subcutaneously injected in mice, however, the combination

  5. Nucleotide cleaving agents and method

    DOEpatents

    Que, Jr., Lawrence; Hanson, Richard S.; Schnaith, Leah M. T.

    2000-01-01

    The present invention provides a unique series of nucleotide cleaving agents and a method for cleaving a nucleotide sequence, whether single-stranded or double-stranded DNA or RNA, using and a cationic metal complex having at least one polydentate ligand to cleave the nucleotide sequence phosphate backbone to yield a hydroxyl end and a phosphate end.

  6. Effect of antiretroviral therapy in thromboregulation through the hydrolysis of adenine nucleotides in platelets of HIV patients.

    PubMed

    Rezer, João Felipe P; Souza, Viviane C G; Thorstenberg, Maria Luiza P; Ruchel, Jader B; Bertoldo, Tatiana M D; Zanini, Daniela; Silveira, Karine L; Leal, Claudio A M; Passos, Daniela F; Gonçalves, Jamile F; Abdalla, Fátima H; Schetinger, Maria Rosa C; Leal, Daniela B R

    2016-04-01

    The human immunodeficiency virus (HIV) infection results in biochemical and vascular dysfunctions. The highly active antiretroviral therapy (HAART) markedly reduces mortality and opportunistic diseases associated with acquired immunodeficiency syndrome (AIDS). This increased survival time predisposes the development of cardiovascular diseases. Platelets present purinergic system ectoenzymes such as E-NTPDase, E-5'-nucleotidase and E-ADA on its surface. In view of this, the aim of this study was to evaluate the activity of these ectoenzymes in platelets as well as the platelet aggregation and lipid profile of patients with HIV infection and also patients receiving HAART. The results showed an increase in the E-NTPDase activity for ATP hydrolysis in the HIV group compared with the control group and the HIV/HAART group. When assessing the activity E-NTPDase hydrolysis to ADP, the results revealed an increase in activity in the HIV group when compared to the control group, and a decrease in activity when in the HIV/HAART group when compared to the control and HIV groups. The activity of E-5'-nucleotidase revealed an increase in AMP hydrolysis in the HIV group, as the results from control and HIV/HAART groups showed no statistical difference. Regarding the E-ADA activity, the HIV and HIV/HAART groups revealed a decreased deamination of adenosine when compared with the control group. Furthermore, we observed an increased platelet aggregation of HIV/HAART group compared with the control group. Thus, our results suggest that antiretroviral treatment against HIV has a significant effect on the activity of purinergic system ectoenzymes demonstrating that thromboregulation is involved in the process. PMID:27044844

  7. Standard role for a conserved aspartate or more direct involvement in deglycosylation? An ONIOM and MD investigation of adenine-DNA glycosylase.

    PubMed

    Kellie, Jennifer L; Wilson, Katie A; Wetmore, Stacey D

    2013-12-01

    8-Oxoguanine (OG) is one of the most frequently occurring forms of DNA damage and is particularly deleterious since it forms a stable Hoogsteen base pair with adenine (A). The repair of an OG:A mispair is initiated by adenine-DNA glycosylase (MutY), which hydrolyzes the sugar-nucleobase bond of the adenine residue before the lesion is processed by other proteins. MutY has been proposed to use a two-part chemical step involving protonation of the adenine nucleobase, followed by SN1 hydrolysis of the glycosidic bond. However, differences between a recent (fluorine recognition complex, denoted as the FLRC) crystal structure and the structure on which most mechanistic conclusions have been based to date (namely, the lesion recognition complex or LRC) raise questions regarding the mechanism used by MutY and the discrete role of various active-site residues. The present work uses both molecular dynamics (MD) and quantum mechanical (ONIOM) models to compare the active-site conformational dynamics in the two crystal structures, which suggests that only the understudied FLRC leads to a catalytically competent reactant. Indeed, all previous computational studies on MutY have been initiated from the LRC structure. Subsequently, for the first time, various mechanisms are examined with detailed ONIOM(M06-2X:PM6) reaction potential energy surfaces (PES) based on the FLRC structure, which significantly extends the mechanistic picture. Specifically, our work reveals that the reaction proceeds through a different route than the commonly accepted mechanism and the catalytic function of various active-site residues (Geobacillus stearothermophilus numbering). Specifically, contrary to proposals based on the LRC, E43 is determined to solely be involved in the initial adenine protonation step and not the deglycosylation reaction as the general base. Additionally, a novel catalytic role is proposed for Y126, whereby this residue plays a significant role in stabilizing the highly charged

  8. Generation of reducing power in chemosynthesis. 3. Energy-linked reduction of pyridine nucleotides in Thiobacillus novellus.

    PubMed

    Aleem, M I

    1966-02-01

    Aleem, M. I. H. (Research Institute for Advanced Studies, Baltimore, Md.). Generation of reducing power in chemosynthesis. III. Energy-linked reduction of pyridine nucleotides in Thiobacillus novellus. J. Bacteriol. 91:729-736. 1966.-Cell-free extracts from Thiobacillus novellus. catalyzed an adenosine triphosphate (ATP)-dependent reduction of pyridine nucleotides anaerobically, or aerobically when the respiratory chain was inhibited by azide. The exogenous electron donor employed for the reduction of nicotinamide adenine dinucleotide or nicotinamide adenine dinucleotide phosphate (NADP) was thiosulfate, formate, or mammalian ferrocytochrome c. In the latter case, the oxidation of ferrocytochrome c was observed with the concomitant reduction of the pyridine nucleotide. Values calculated for the molar ratios of ATP utilized-NADP reduced and of cytochrome c oxidized-NADP reduced were 1:1 and 2:1, respectively. The energy-dependent reduction of the pyridine nucleotides was inhibited by Atabrine or amytal and by low concentrations of the uncouplers of oxidative phosphorylation such as 2,4-dinitrophenol and carbonyl cyanide m-chlorophenyl hydrazone. Evidence is presented showing that the reduced pyridine nucleotides are essential for providing the reducing power for the energy-dependent reduction of carbon dioxide in T. novellus. PMID:4379907

  9. Novel electrochemical sensor based on functionalized graphene for simultaneous determination of adenine and guanine in DNA.

    PubMed

    Huang, Ke-Jing; Niu, De-Jun; Sun, Jun-Yong; Han, Cong-Hui; Wu, Zhi-Wei; Li, Yan-Li; Xiong, Xiao-Qin

    2011-02-01

    A nano-material carboxylic acid functionalized graphene (graphene-COOH) was prepared and used to construct a novel biosensor for the simultaneous detection of adenine and guanine. The direct electrooxidation behaviors of adenine and guanine on the graphene-COOH modified glassy carbon electrode (graphene-COOH/GCE) were carefully investigated by cyclic voltammetry and differential pulse voltammetry. The results indicated that both adenine and guanine showed the increase of the oxidation peak currents with the negative shift of the oxidation peak potentials in contrast to that on the bare glassy carbon electrode. The electrochemical parameters of adenine and guanine on the graphene-COOH/GCE were calculated and a simple and reliable electroanalytical method was developed for the detection of adenine and guanine, respectively. The modified electrode exhibited good behaviors in the simultaneous detection of adenine and guanine with the peak separation as 0.334V. The detection limit for individual determination of guanine and adenine was 5.0×10(-8)M and 2.5×10(-8)M (S/N=3), respectively. Furthermore, the measurements of thermally denatured single-stranded DNA were carried out and the value of (G+C)/(A+T) of single-stranded DNA was calculated as 0.80. The biosensor exhibited some advantages, such as simplicity, rapidity, high sensitivity, good reproducibility and long-term stability. PMID:21050729

  10. Correlated Evolution of Nucleotide Positions within Splice Sites in Mammals

    PubMed Central

    Denisov, Stepan; Bazykin, Georgii; Favorov, Alexander; Mironov, Andrey; Gelfand, Mikhail

    2015-01-01

    Splice sites (SSs)—short nucleotide sequences flanking introns—are under selection for spliceosome binding, and adhere to consensus sequences. However, non-consensus nucleotides, many of which probably reduce SS performance, are frequent. Little is known about the mechanisms maintaining such apparently suboptimal SSs. Here, we study the correlations between strengths of nucleotides occupying different positions of the same SS. Such correlations may arise due to epistatic interactions between positions (i.e., a situation when the fitness effect of a nucleotide in one position depends on the nucleotide in another position), their evolutionary history, or to other reasons. Within both the intronic and the exonic parts of donor SSs, nucleotides that increase (decrease) SS strength tend to co-occur with other nucleotides increasing (respectively, decreasing) it, consistent with positive epistasis. Between the intronic and exonic parts of donor SSs, the correlations of nucleotide strengths tend to be negative, consistent with negative epistasis. In the course of evolution, substitutions at a donor SS tend to decrease the strength of its exonic part, and either increase or do not change the strength of its intronic part. In acceptor SSs, the situation is more complicated; the correlations between adjacent positions appear to be driven mainly by avoidance of the AG dinucleotide which may cause aberrant splicing. In summary, both the content and the evolution of SSs is shaped by a complex network of interdependences between adjacent nucleotides that respond to a range of sometimes conflicting selective constraints. PMID:26642327

  11. Correlated Evolution of Nucleotide Positions within Splice Sites in Mammals.

    PubMed

    Denisov, Stepan; Bazykin, Georgii; Favorov, Alexander; Mironov, Andrey; Gelfand, Mikhail

    2015-01-01

    Splice sites (SSs)--short nucleotide sequences flanking introns--are under selection for spliceosome binding, and adhere to consensus sequences. However, non-consensus nucleotides, many of which probably reduce SS performance, are frequent. Little is known about the mechanisms maintaining such apparently suboptimal SSs. Here, we study the correlations between strengths of nucleotides occupying different positions of the same SS. Such correlations may arise due to epistatic interactions between positions (i.e., a situation when the fitness effect of a nucleotide in one position depends on the nucleotide in another position), their evolutionary history, or to other reasons. Within both the intronic and the exonic parts of donor SSs, nucleotides that increase (decrease) SS strength tend to co-occur with other nucleotides increasing (respectively, decreasing) it, consistent with positive epistasis. Between the intronic and exonic parts of donor SSs, the correlations of nucleotide strengths tend to be negative, consistent with negative epistasis. In the course of evolution, substitutions at a donor SS tend to decrease the strength of its exonic part, and either increase or do not change the strength of its intronic part. In acceptor SSs, the situation is more complicated; the correlations between adjacent positions appear to be driven mainly by avoidance of the AG dinucleotide which may cause aberrant splicing. In summary, both the content and the evolution of SSs is shaped by a complex network of interdependences between adjacent nucleotides that respond to a range of sometimes conflicting selective constraints. PMID:26642327

  12. Renoprotective effect of the xanthine oxidoreductase inhibitor topiroxostat on adenine-induced renal injury.

    PubMed

    Kamijo-Ikemori, Atsuko; Sugaya, Takeshi; Hibi, Chihiro; Nakamura, Takashi; Murase, Takayo; Oikawa, Tsuyoshi; Hoshino, Seiko; Hisamichi, Mikako; Hirata, Kazuaki; Kimura, Kenjiro; Shibagaki, Yugo

    2016-06-01

    The aim of the present study was to reveal the effect of a xanthine oxidoreductase (XOR) inhibitor, topiroxostat (Top), compared with another inhibitor, febuxostat (Feb), in an adenine-induced renal injury model. We used human liver-type fatty acid-binding protein (L-FABP) chromosomal transgenic mice, and urinary L-FABP, a biomarker of tubulointerstitial damage, was used to evaluate tubulointerstitial damage. Male transgenic mice (n = 24) were fed a 0.2% (wt/wt) adenine-containing diet. Two weeks after the start of this diet, renal dysfunction was confirmed, and the mice were divided into the following four groups: the adenine group was given only the diet containing adenine, and the Feb, high-dose Top (Top-H), and low-dose Top (Top-L) groups were given diets containing Feb (3 mg/kg), Top-H (3 mg/kg), and Top-L (1 mg/kg) in addition to adenine for another 2 wk. After withdrawal of the adenine diet, each medication was continued for 2 wk. Serum creatinine levels, the degree of macrophage infiltration, tubulointerstitial damage, renal fibrosis, urinary 15-F2t-isoprostane levels, and renal XOR activity were significantly attenuated in the kidneys of the Feb, Top-L, and Top-H groups compared with the adenine group. Serum creatinine levels in the Top-L and Top-H groups as well as renal XOR in the Top-H group were significantly lower than those in the Feb group. Urinary excretion of L-FABP in both the Top-H and Top-L groups was significantly lower than in the adenine and Feb groups. In conclusion, Top attenuated renal damage in an adenine-induced renal injury model. PMID:27029427

  13. Cyclic nucleotides in tissues during long-term hypokinesia

    NASA Technical Reports Server (NTRS)

    Makeyeva, V. F.; Komolova, G. S.; Yegorov, I. A.; Serova, L. V.; Chelnaya, N. A.

    1981-01-01

    Male Wistar rates were kept hypokinetic by placing them in small containers for 22 days. Blood plasma cAMP content was subsequently found increased, and cGMP content decreased, in the experimental animals. Liver and thymus cAMP content was similar in the control and experimental animals. There was a 20 and 38% decrease of cAMP content in the kidneys and spleen, respectively. Hypokinesia's reduction of cyclic nucleotides seems to inhibit RNA and protein synthesis.

  14. Facing growth in the European Nucleotide Archive

    PubMed Central

    Cochrane, Guy; Alako, Blaise; Amid, Clara; Bower, Lawrence; Cerdeño-Tárraga, Ana; Cleland, Iain; Gibson, Richard; Goodgame, Neil; Jang, Mikyung; Kay, Simon; Leinonen, Rasko; Lin, Xiu; Lopez, Rodrigo; McWilliam, Hamish; Oisel, Arnaud; Pakseresht, Nima; Pallreddy, Swapna; Park, Youngmi; Plaister, Sheila; Radhakrishnan, Rajesh; Rivière, Stephane; Rossello, Marc; Senf, Alexander; Silvester, Nicole; Smirnov, Dmitriy; ten Hoopen, Petra; Toribio, Ana; Vaughan, Daniel; Zalunin, Vadim

    2013-01-01

    The European Nucleotide Archive (ENA; http://www.ebi.ac.uk/ena/) collects, maintains and presents comprehensive nucleic acid sequence and related information as part of the permanent public scientific record. Here, we provide brief updates on ENA content developments and major service enhancements in 2012 and describe in more detail two important areas of development and policy that are driven by ongoing growth in sequencing technologies. First, we describe the ENA data warehouse, a resource for which we provide a programmatic entry point to integrated content across the breadth of ENA. Second, we detail our plans for the deployment of CRAM data compression technology in ENA. PMID:23203883

  15. DNA methylation on N6-adenine in C. elegans

    PubMed Central

    Greer, Eric Lieberman; Blanco, Mario Andres; Gu, Lei; Sendinc, Erdem; Liu, Jianzhao; Aristizábal-Corrales, David; Hsu, Chih-Hung; Aravind, L.; He, Chuan; Shi, Yang

    2015-01-01

    Summary In mammalian cells, DNA methylation on the 5th position of cytosine (5mC) plays an important role as an epigenetic mark. However, DNA methylation was considered to be absent in C. elegans because of the lack of detectable 5mC as well as homologs of the cytosine DNA methyltransferases. Here, using multiple approaches, we demonstrate the presence of adenine N6-methylation (6mA) in C. elegans DNA. We further demonstrate that this modification increases trans-generationally in a paradigm of epigenetic inheritance. Importantly, we identify a DNA demethylase, NMAD-1, and a potential DNA methyltransferase, DAMT-1, which regulate 6mA levels and crosstalk between methylation of histone H3K4me2 and 6mA, and control the epigenetic inheritance of phenotypes associated with the loss of the H3K4me2 demethylase spr-5. Together, these data identify a DNA modification in C. elegans and raise the exciting possibility that 6mA may be a carrier of heritable epigenetic information in eukaryotes. PMID:25936839

  16. Intermolecular interactions of reduced nicotinamide adenine dinucleotide (NADH) in solution

    NASA Astrophysics Data System (ADS)

    Jasensky, Joshua; Junaid Farooqi, M.; Urayama, Paul

    2008-10-01

    Nicotinamide adenine dinucleotide (NAD^+/NADH) is a coenzyme involved in cellular respiration as an electron transporter. In aqueous solution, the molecule exhibits a folding transition characterized by the stacking of its aromatic moieties. A transition to an unfolded conformation is possible using chemical denaturants like methanol. Because the reduced NADH form is fluorescent, the folding transition can be monitored using fluorescence spectroscopy, e.g., via a blue-shift in the UV-excited emission peak upon methanol unfolding. Here we present evidence of interactions between NADH molecules in solution. We measure the excited-state emission from NADH at various concentrations (1-100 μM in MOPS buffer, pH 7.5; 337-nm wavelength excitation). Unlike for the folded form, the emission peak wavelength of the unfolded form is concentration dependent, exhibiting a red-shift with higher NADH concentration, suggesting the presence of intermolecular interactions. An understanding of NADH spectra in solution would assist in interpreting intercellular NADH measurements used for the in vivo monitoring cellular energy metabolism.

  17. Nicotinic acid adenine dinucleotide phosphate (NAADP) and Ca2+ mobilization.

    PubMed

    Mándi, Miklós; Bak, Judit

    2008-01-01

    Many physiological processes are controlled by a great diversity of Ca2+ signals that depend on Ca2+ entry into the cell and/or Ca2+ release from internal Ca2+ stores. Ca2+ mobilization from intracellular stores is gated by a family of messengers including inositol-1,4,5-trisphosphate (InsP3), cyclic ADP-ribose (cADPR), and nicotinic acid adenine dinucleotide phosphate (NAADP). There is increasing evidence for a novel intracellular Ca2+ release channel that may be targeted by NAADP and that displays properties distinctly different from the well-characterized InsP3 and ryanodine receptors. These channels appear to localize on a wider range of intracellular organelles, including the acidic Ca2+ stores. Activation of the NAADP-sensitive Ca2+ channels evokes complex changes in cytoplasmic Ca2+ levels by means of channel chatter with other intracellular Ca2+ channels. The recent demonstration of changes in intracellular NAADP levels in response to physiologically relevant extracellular stimuli highlights the significance of NAADP as an important regulator of intracellular Ca2+ signaling. PMID:18569524

  18. Cardiac Na+ Current Regulation by Pyridine Nucleotides

    PubMed Central

    Liu, Man; Sanyal, Shamarendra; Gao, Ge; Gurung, Iman S.; Zhu, Xiaodong; Gaconnet, Georgia; Kerchner, Laurie J.; Shang, Lijuan L.; Huang, Christopher L-H.; Grace, Andrew; London, Barry; Dudley, Samuel C.

    2009-01-01

    Rationale Mutations in glycerol-3-phosphate dehydrogenase 1-like (GPD1-L) protein reduce cardiac Na+ current (INa) and cause Brugada Syndrome (BrS). GPD1-L has >80% amino acid homology with glycerol-3-phosphate dehydrogenase, which is involved in nicotinamide adenine dinucleotide (NAD)-dependent energy metabolism. Objective Therefore, we tested whether NAD(H) could regulate human cardiac sodium channels (Nav1.5). Methods and Results HEK293 cells stably expressing Nav1.5 and rat neonatal cardiomyocytes were used. The influence of NADH/NAD+ on arrhythmic risk was evaluated in wild-type or SCN5A+/− mouse heart. A280V GPD1-L caused a 2.48 ± 0.17-fold increase in intracellular NADH level (P<0.001). NADH application or co-transfection with A280V GPD1-L resulted in decreased INa (0.48 ± 0.09 or 0.19 ±0.04 of control group, respectively; P<0.01), which was reversed by NAD+, chelerythrine, or superoxide dismutase (SOD). NAD+ antagonism of the Na+ channel downregulation by A280V GPD1-L or NADH was prevented by a protein kinase A (PKA) inhibitor, PKAI6–22. The effects of NADH and NAD+ were mimicked by a phorbol ester and forskolin, respectively. Increasing intracellular NADH was associated with an increased risk of ventricular tachycardia (VT) in wild-type mouse hearts. Extracellular application of NAD+ to SCN5A+/− mouse hearts ameliorated the risk of VT. Conclusions Our results show that Nav1.5 is regulated by pyridine nucleotides, suggesting a link between metabolism and INa. This effect required protein kinase C (PKC) activation and was mediated by oxidative stress. NAD+ could prevent this effect by activating PKA. Mutations of GPD1-L may downregulate Nav1.5 by altering the oxidized to reduced NAD(H) balance. PMID:19745168

  19. Spin-dependent electron transport in zinc- and manganese-doped adenine molecules

    SciTech Connect

    Simchi, Hamidreza; Esmaeilzadeh, Mahdi Mazidabadi, Hossein

    2014-01-28

    The spin-dependent electron transport properties of zinc- and manganese-doped adenine molecules connected to zigzag graphene leads are studied in the zero bias regime using the non-equilibrium Green's function method. The conductance of the adenine molecule increased and became spin-dependent when a zinc or manganese atom was doped into the molecules. The effects of a transverse electric field on the spin-polarization of the transmitted electrons were investigated and the spin-polarization was controlled by changing the transverse electric field. Under the presence of a transverse electric field, both the zinc- and manganese-doped adenine molecules acted as spin-filters. The maximum spin-polarization of the manganese-doped adenine molecule was greater than the molecule doped with zinc.

  20. Binding of nicotinamide–adenine dinucleotides to diphtheria toxin

    PubMed Central

    Montanaro, L.; Sperti, Simonetta

    1967-01-01

    1. Changes in protein fluorescence have been utilized in determining the stoicheiometry and dissociation constants of the complexes of diphtheria toxin with NADH2, NAD, NADPH2 and NADP. 2. The binding stoicheiometry is 2moles of NADH2 and 1mole of NADPH2/mole of diphtheria toxin. The binding sites for NADH2 appear to be equivalent and independent. 3. The toxin shows a higher affinity for the reduced than for the oxidized forms of the nucleotides. 4. Dissociation constants at 0·01I, pH7 and 25° are 0·7×10−6m for NADH2 and 0·45×10−6m for NADPH2. Dissociation constants increase with increasing ionic strength, indicating that the binding is mainly electrostatic. 5. Bound NADH2 and NADPH2 may be activated to fluoresce by the transfer of energy from the excited aromatic amino acids of the toxin. Activation and emission spectra of bound and free nucleotides are compared. 6. Since NAD and NADH2 are cofactors specifically required for the inhibition of protein synthesis by diphtheria toxin, the possible role of toxin–nucleotide complexes is discussed in this regard. PMID:4384596

  1. Protonation mechanism and location of rate-determining steps for the Ascaris suum nicotinamide adenine dinucleotide-malic enzyme reaction from isotope effects and pH studies

    SciTech Connect

    Kiick, D.M.; Harris, B.G.; Cook, P.F.

    1986-01-14

    The pH dependence of the kinetic parameters and the primary deuterium isotope effects with nicotinamide adenine dinucleotide (NAD) and also thionicotinamide adenine dinucleotide (thio-NAD) as the nucleotide substrates were determined in order to obtain information about the chemical mechanism and location of rate-determining steps for the Ascaris suum NAD-malic enzyme reaction. The maximum velocity with thio-NAD as the nucleotide is pH-independent from pH 4.2 to 9.6, while with NAD, V decreases below a pK of 4.8. V/K for both nucleotides decreases below a pK of 5.6 and above a pK of 8.9. Both the tartronate pKi and V/Kmalate decrease below a pK of 4.8 and above a pK of 8.9. Oxalate is competitive vs. malate above pH 7 and noncompetitive below pH 7 with NAD as the nucleotide. The oxalate Kis increases from a constant value above a pK of 4.9 to another constant value above a pK of 6.7. The oxalate Kii also increases above a pK of 4.9, and this inhibition is enhanced by NADH. In the presence of thio-NAD the inhibition by oxalate is competitive vs. malate below pH 7. For thio-NAD, both DV and D(V/K) are pH-independent and equal to 1.7. With NAD as the nucleotide, DV decreases to 1.0 below a pK of 4.9, while D(V/KNAD) and D(V/Kmalate) are pH-independent. Above pH 7 the isotope effects on V and the V/K values for NAD and malate are equal to 1.45, the pH-independent value of DV above pH 7. Results indicate that substrates bind to only the correctly protonated form of the enzyme. Two enzyme groups are necessary for binding of substrates and catalysis. Both NAD and malate are released from the Michaelis complex at equal rates which are equal to the rate of NADH release from E-NADH above pH 7. Below pH 7 NADH release becomes more rate-determining as the pH decreases until at pH 4.0 it completely limits the overall rate of the reaction.

  2. Benchmark Thermochemistry for Biologically Relevant Adenine and Cytosine. A Combined Experimental and Theoretical Study.

    PubMed

    Emel'yanenko, Vladimir N; Zaitsau, Dzmitry H; Shoifet, Evgeni; Meurer, Florian; Verevkin, Sergey P; Schick, Christoph; Held, Christoph

    2015-09-17

    The thermochemical properties available in the literature for adenine and cytosine are in disarray. A new condensed phase standard (p° = 0.1 MPa) molar enthalpy of formation at T = 298.15 K was measured by using combustion calorimetry. New molar enthalpies of sublimation were derived from the temperature dependence of vapor pressure measured by transpiration and by the quarz-crystal microbalance technique. The heat capacities of crystalline adenine and cytosine were measured by temperature-modulated DSC. Thermodynamic data on adenine and cytosine available in the literature were collected, evaluated, and combined with our experimental results. Thus, the evaluated collection of data together with the new experimental results reported here has helped to resolve contradictions in the available enthalpies of formation. A set of reliable thermochemical data is recommended for adenine and cytosine for further thermochemical calculations. Quantum-chemical calculations of the gas phase molar enthalpies of formation of adenine and cytosine have been performed by using the G4 method and results were in excellent agreement with the recommended experimental data. The standard molar entropies of formation and the standard molar Gibbs functions of formation in crystal and gas state have been calculated. Experimental vapor-pressure data measured in this work were used to estimate pure-component PC-SAFT parameters. This allowed modeling solubility of adenine and cytosine in water over the temperature interval 278-310 K. PMID:26317826

  3. Sequence-dependent folding landscapes of adenine riboswitch aptamers

    NASA Astrophysics Data System (ADS)

    Lin, Jong-Chin; Hyeon, Changbong; Thirumalai, D.

    Prediction of the functions of riboswitches requires a quantitative description of the folding landscape so that the barriers and time scales for the conformational change in the switching region in the aptamer can be estimated. Using a combination of all atom molecular dynamics and coarse-grained model simulations we studied the response of adenine (A) binding add and pbuE A-riboswitches to mechanical force. The two riboswitches contain a structurally similar three-way junction formed by three paired helices, P1, P2, and P3, but carry out different functions. Using pulling simulations, with structures generated in MD simulations, we show that after P1 rips the dominant unfolding pathway in add A-riboswitch is the rupture of P2 followed by unraveling of P3. In the pbuE A-riboswitch, after P1 unfolds P3 ruptures ahead of P2. The order of unfolding of the helices, which is in accord with single molecule pulling experiments, is determined by the relative stabilities of the individual helices. Our results show that the stability of isolated helices determines the order of assembly and response to force in these non-coding regions. We use the simulated free energy profile for pbuE A-riboswitch to estimate the time scale for allosteric switching, which shows that this riboswitch is under kinetic control lending additional support to the conclusion based on single molecule pulling experiments. A consequence of the stability hypothesis is that a single point mutation (U28C) in the P2 helix of the add A-riboswitch, which increases the stability of P2, would make the folding landscapes of the two riboswitches similar. This prediction can be tested in single molecule pulling experiments.

  4. Ototoxic Model of Oxaliplatin and Protection from Nicotinamide Adenine Dinucleotide

    PubMed Central

    Dalian, Ding; Haiyan, Jiang; Yong, Fu; Yongqi, Li; Salvi, Richard

    2014-01-01

    Oxaliplatin, an anticancer drug commonly used to treat colorectal cancer and other tumors, has a number of serious side effects, most notably neuropathy and ototoxicity. To gain insights into its ototoxic profile, oxaliplatin was applied to rat cochlear organ cultures. Consistent with it neurotoxic propensity, oxaliplatin selectively damaged nerve fibers at a very low dose 1 μM. In contrast, the dose required to damage hair cells and spiral ganglion neurons was 50 fold higher (50 μM). Oxailiplatin-induced cochlear lesions initially increased with dose, but unexpectedly decreased at very high doses. This non-linear dose response could be related to depressed oxaliplatin uptake via active transport mechanisms. Previous studies have demonstrated that axonal degeneration involves biologically active processes which can be greatly attenuated by nicotinamide adenine dinucleotide (NAD+). To determine if NAD+ would protect spiral ganglion axons and the hair cells from oxaliplatin damage, cochlear cultures were treated with oxaliplatin alone at doses of 10 μM or 50 μM respectively as controls or combined with 20 mM NAD+. Treatment with 10 μM oxaliplatin for 48 hours resulted in minor damage to auditory nerve fibers, but spared cochlear hair cells. However, when cochlear cultures were treated with 10 μM oxaliplatin plus 20 mM NAD+, most auditory nerve fibers were intact. 50 μM oxaliplatin destroyed most of spiral ganglion neurons and cochlear hair cells with apoptotic characteristics of cell fragmentations. However, 50 μM oxaliplatin plus 20 mM NAD+ treatment greatly reduced neuronal degenerations and hair cell missing. The results suggested that NAD+ provides significant protection against oxaliplatin-induced neurotoxicity and ototoxicity, which may be due to its actions of antioxidant, antiapoptosis, and energy supply. PMID:25419212

  5. Phenotype and Genotype Characterization of Adenine Phosphoribosyltransferase Deficiency

    PubMed Central

    Bollée, Guillaume; Dollinger, Cécile; Boutaud, Lucile; Guillemot, Delphine; Bensman, Albert; Harambat, Jérôme; Deteix, Patrice; Daudon, Michel; Knebelmann, Bertrand

    2010-01-01

    Adenine phosphoribosyltransferase (APRT) deficiency is a rare autosomal recessive disorder causing 2,8-dihydroxyadenine stones and renal failure secondary to intratubular crystalline precipitation. Little is known regarding the clinical presentation of APRT deficiency, especially in the white population. We retrospectively reviewed all 53 cases of APRT deficiency (from 43 families) identified at a single institution between 1978 and 2009. The median age at diagnosis was 36.3 years (range 0.5 to 78.0 years). In many patients, a several-year delay separated the onset of symptoms and diagnosis. Of the 40 patients from 33 families with full clinical data available, 14 (35%) had decreased renal function at diagnosis. Diagnosis occurred in six (15%) patients after reaching ESRD, with five diagnoses made at the time of disease recurrence in a renal allograft. Eight (20%) patients reached ESRD during a median follow-up of 74 months. Thirty-one families underwent APRT sequencing, which identified 54 (87%) mutant alleles on the 62 chromosomes analyzed. We identified 18 distinct mutations. A single T insertion in a splice donor site in intron 4 (IVS4 + 2insT), which produces a truncated protein, accounted for 40.3% of the mutations. We detected the IVS4 + 2insT mutation in two (0.98%) of 204 chromosomes of healthy newborns. This report, which is the largest published series of APRT deficiency to date, highlights the underdiagnosis and potential severity of this disease. Early diagnosis is crucial for initiation of effective treatment with allopurinol and for prevention of renal complications. PMID:20150536

  6. Hydrogen peroxide formation photoinduced by near-UV radiation in aqueous solutions of adenine derivatives at 77 K

    NASA Astrophysics Data System (ADS)

    Lozinova, T. A.; Lobanov, A. V.; Lander, A. V.

    2015-08-01

    An estimate of the content of free radicals in aqueous solutions of adenosine (Ado), adenosine-5'-diphosphate (ADP) and guanosine-5'-monophosphate (GMP) irradiated with near-UV radiation at 77 K is obtained by interpreting EPR spectra. It is established that in the presence of NaCl (0.1 M), the total number of peroxyl radicals O{2/-·} and HO{2/·} in samples of the studied compounds was 15-45% of the total quantity of produced free radicals and was affected by the conditions of exposure. The estimates are compared with the results from hydrogen peroxide (H2O2) determination in the same samples after thawing. Although the number of peroxyl radicals in the samples of adenine derivatives (A) and GMP are comparable, the formation of H2O2 is observed only in the case of A derivatives, but not in GMP. Possible reasons for these differences are discussed.

  7. Structure of dimeric, recombinant Sulfolobus solfataricus phosphoribosyl diphosphate synthase: a bent dimer defining the adenine specificity of the substrate ATP.

    PubMed

    Andersen, Rune W; Leggio, Leila Lo; Hove-Jensen, Bjarne; Kadziola, Anders

    2015-03-01

    The enzyme 5-phosphoribosyl-1-α-diphosphate (PRPP) synthase (EC 2.7.6.1) catalyses the Mg(2+)-dependent transfer of a diphosphoryl group from ATP to the C1 hydroxyl group of ribose 5-phosphate resulting in the production of PRPP and AMP. A nucleotide sequence specifying Sulfolobus solfataricus PRPP synthase was synthesised in vitro with optimised codon usage for expression in Escherichia coli. Following expression of the gene in E. coli PRPP synthase was purified by heat treatment and ammonium sulphate precipitation and the structure of S. solfataricus PRPP synthase was determined at 2.8 Å resolution. A bent dimer oligomerisation was revealed, which seems to be an abundant feature among PRPP synthases for defining the adenine specificity of the substrate ATP. Molecular replacement was used to determine the S. solfataricus PRPP synthase structure with a monomer subunit of Methanocaldococcus jannaschii PRPP synthase as a search model. The two amino acid sequences share 35 % identity. The resulting asymmetric unit consists of three separated dimers. The protein was co-crystallised in the presence of AMP and ribose 5-phosphate, but in the electron density map of the active site only AMP and a sulphate ion were observed. Sulphate ion, reminiscent of the ammonium sulphate precipitation step of the purification, seems to bind tightly and, therefore, presumably occupies and blocks the ribose 5-phosphate binding site. The activity of S. solfataricus PRPP synthase is independent of phosphate ion. PMID:25605536

  8. Nucleotide discrimination with DNA immobilized in the MspA nanopore.

    PubMed

    Manrao, Elizabeth A; Derrington, Ian M; Pavlenok, Mikhail; Niederweis, Michael; Gundlach, Jens H

    2011-01-01

    Nanopore sequencing has the potential to become a fast and low-cost DNA sequencing platform. An ionic current passing through a small pore would directly map the sequence of single stranded DNA (ssDNA) driven through the constriction. The pore protein, MspA, derived from Mycobacterium smegmatis, has a short and narrow channel constriction ideally suited for nanopore sequencing. To study MspA's ability to resolve nucleotides, we held ssDNA within the pore using a biotin-NeutrAvidin complex. We show that homopolymers of adenine, cytosine, thymine, and guanine in MspA exhibit much larger current differences than in α-hemolysin. Additionally, methylated cytosine is distinguishable from unmethylated cytosine. We establish that single nucleotide substitutions within homopolymer ssDNA can be detected when held in MspA's constriction. Using genomic single nucleotide polymorphisms, we demonstrate that single nucleotides within random DNA can be identified. Our results indicate that MspA has high signal-to-noise ratio and the single nucleotide sensitivity desired for nanopore sequencing devices. PMID:21991340

  9. Assignment of the Gene for Adenine Phosphoribosyltransferase to Human Chromosome 16 by Mouse-Human Somatic Cell Hybridization

    PubMed Central

    Tischfield, Jay A.; Ruddle, Frank H.

    1974-01-01

    A series of mouse-human hybrids was prepared from mouse cells deficient in adenine phosphoribosyltransferase (EC 2.4.2.7) and normal human cells. The hybrids were made in medium containing adenine and alanosine, an antimetabolite known to inhibit de novo adenylic acid biosynthesis. The mouse cells, unable to utilize exogenous adenine, were killed in this medium, but the hybrids proliferated as a consequence of their retaining the human aprt gene. The hybrids were then exposed to the adenine analogs 2,6-diaminopurine and 2-fluoroadenine to select for cells that had lost this gene. Before exposure to the adenine analogs, the expression of human adenine phosphoribosyltransferase by the hybrids was strongly associated only with the presence of human chromosome 16, and afterwards this was the only human chromosome consistently lost. This observation suggests that the human aprt gene can be assigned to chromosome 16. Images PMID:4129802

  10. DNA Adenine Methyltransferase Influences the Virulence of Aeromonas hydrophila

    PubMed Central

    Erova, Tatiana E.; Pillai, Lakshmi; Fadl, Amin A.; Sha, Jian; Wang, Shaofei; Galindo, Cristi L.; Chopra, Ashok K.

    2006-01-01

    Among the various virulence factors produced by Aeromonas hydrophila, a type II secretion system (T2SS)-secreted cytotoxic enterotoxin (Act) and the T3SS are crucial in the pathogenesis of Aeromonas-associated infections. Our laboratory molecularly characterized both Act and the T3SS from a diarrheal isolate, SSU of A. hydrophila, and defined the role of some regulatory genes in modulating the biological effects of Act. In this study, we cloned, sequenced, and expressed the DNA adenine methyltransferase gene of A. hydrophila SSU (damAhSSU) in a T7 promoter-based vector system using Escherichia coli ER2566 as a host strain, which could alter the virulence potential of A. hydrophila. Recombinant Dam, designated as M.AhySSUDam, was produced as a histidine-tagged fusion protein and purified from an E. coli cell lysate using nickel affinity chromatography. The purified Dam had methyltransferase activity, based on its ability to transfer a methyl group from S-adenosyl-l-methionine to N6-methyladenine-free lambda DNA and to protect methylated lambda DNA from digestion with DpnII but not against the DpnI restriction enzyme. The dam gene was essential for the viability of the bacterium, and overproduction of Dam in A. hydrophila SSU, using an arabinose-inducible, PBAD promoter-based system, reduced the virulence of this pathogen. Specifically, overproduction of M.AhySSUDam decreased the motility of the bacterium by 58%. Likewise, the T3SS-associated cytotoxicity, as measured by the release of lactate dehydrogenase enzyme in murine macrophages infected with the Dam-overproducing strain, was diminished by 55% compared to that of a control A. hydrophila SSU strain harboring the pBAD vector alone. On the contrary, cytotoxic and hemolytic activities associated with Act as well as the protease activity in the culture supernatant of a Dam-overproducing strain were increased by 10-, 3-, and 2.4-fold, respectively, compared to those of the control A. hydrophila SSU strain. The Dam

  11. A computational study of adenine, uracil, and cytosine adsorption upon AlN and BN nano-cages

    NASA Astrophysics Data System (ADS)

    Baei, Mohammad T.; Taghartapeh, Mohammad Ramezani; Lemeski, E. Tazikeh; Soltani, Alireza

    Density-functional theory calculations are used to investigate the interaction of Al12N12 and B12N12 clusters with the adenine (A), uracil (U), and cytosine (C) molecules. The current calculations demonstrate that these hybrid adsorbent materials are able to adsorb the adenine, uracil, and cytosine molecules through exothermic processes. Our theoretical results reveal improvement in the adsorption of adenine, uracil, and cytosine on Al12N12 and B12N12. It is observed that B12N12 is highly sensitive to adenine, uracil, and cytosine compared with Al12N12 to serve as a biochemical sensor.

  12. Absolute effective cross sections of ionization of adenine and guanine molecules by electron impact

    NASA Astrophysics Data System (ADS)

    Shafranyosh, I. I.; Svida, Yu. Yu.; Sukhoviya, M. I.; Shafranyosh, M. I.; Minaev, B. F.; Baryshnikov, G. V.; Minaeva, V. A.

    2015-10-01

    Effective cross sections of the formation of positive ions of nitrous nucleic acids of adenine and guanine are determined by the crossed electron and molecular beam method in the energy interval from the threshold to 200 eV. It is found that the maximal value of the total cross section of adenine ionization is attained at an energy of 90 eV and is equal to (2.8 ± 0.6) × 10-15 cm2. The maximal value of the total cross section of guanine ionization is equal to (3.2 ± 0.7) × 10-15 cm2 and is observed at an energy of 88 eV. The energy ionization thresholds are determined, which amount to (8.8 ± 0.2) eV for adenine and to (8.3 ± 0.2) eV for guanine. The adenine and guanine mass spectra are measured. The absolute values of partial ionization cross sections of adenine and guanine molecules are determined.

  13. Photoinduced Electron Transfer in DNA: Charge Shift Dynamics Between 8-Oxo-Guanine Anion and Adenine.

    PubMed

    Zhang, Yuyuan; Dood, Jordan; Beckstead, Ashley A; Li, Xi-Bo; Nguyen, Khiem V; Burrows, Cynthia J; Improta, Roberto; Kohler, Bern

    2015-06-18

    Femtosecond time-resolved IR spectroscopy is used to investigate the excited-state dynamics of a dinucleotide containing an 8-oxoguanine anion at the 5'-end and neutral adenine at the 3'-end. UV excitation of the dinucleotide transfers an electron from deprotonated 8-oxoguanine to its π-stacked neighbor adenine in less than 1 ps, generating a neutral 8-oxoguanine radical and an adenine radical anion. These species are identified by the excellent agreement between the experimental and calculated IR difference spectra. The quantum efficiency of this ultrafast charge shift reaction approaches unity. Back electron transfer from the adenine radical anion to the 8-oxguanine neutral radical occurs in 9 ps, or approximately 6 times faster than between the adenine radical anion and the 8-oxoguanine radical cation (Zhang, Y. et al. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 11612-11617). The large asymmetry in forward and back electron transfer rates is fully rationalized by semiclassical nonadiabatic electron transfer theory. Forward electron transfer is ultrafast because the driving force is nearly equal to the reorganization energy, which is estimated to lie between 1 and 2 eV. Back electron transfer is highly exergonic and takes place much more slowly in the Marcus inverted region. PMID:25660103

  14. Determination of adenine based on the fluorescence recovery of the L-Tryptophan-Cu2+ complex

    NASA Astrophysics Data System (ADS)

    Duan, Ruilin; Li, Chunyan; Liu, Shaopu; Liu, Zhongfang; Li, Yuanfang; Yuan, Yusheng; Hu, Xiaoli

    2016-01-01

    A simple and sensitive method for determination of adenine was developed based on fluorescence quenching and recovery of L-Tryptophan (L-Trp). The fluorescence of L-Trp could efficiently quenched by copper ion compared with other common metal ions. Upon addition of adenine (Ade) in L-Trp-Cu(II) system, the fluorescence was reoccurred. Under the optimum conditions, the recovery fluorescence intensity was linearly correlated with the concentration of adenine in the range from 0.34 to 25.0 μmol L-1, with a correlation coefficient (R2) of 0.9994. The detection limit (3σ/k) was 0.046 μmol L-1, indicating that this method could applied to detect trace adenine. In this study, amino acids including L-Trp, D-Trp, L-Tyr, D-Tyr, L-Phe, D-Phe were investigated and only L-Trp could well chelated copper ion. Additionally, the mechanism of quench and recovery also were discussed and the method was successfully applied to detect the adenine in DNA with satisfactory results.

  15. Regulation of photolyase in Escherichia coli K-12 during adenine deprivation.

    PubMed Central

    Alcorn, J L; Rupert, C S

    1990-01-01

    DNA photolyase, a DNA repair enzyme encoded by the phr gene of Escherichia coli, is normally regulated at 10 to 20 active molecules per cell. In purA mutants deprived of adenine, this amount increased sixfold within 2 h. Operon fusions placing lacZ under transcriptional control of phr promoters indicated no change in transcription rate during adenine deprivation, and gene fusions of phr with lacZ showed a nearly constant level of translation as well. Immunoblot analysis indicated that the total amount of photolyase protein remained constant during enzyme amplification. On the other hand, treatment of cells with chloramphenicol during the adenine deprivation prevented any increase. DNA regions lying 1.3 to 4.2 kb upstream of the phr coding sequences were necessary for this amplification to occur and for this purpose would function in trans. These results suggest that adenine deprivation leads to a posttranslational change, involving synthesis of protein encoded by sequences lying upstream of phr, which increases photolyase activity. The amplification in activity was found to be reversible, for when adenine was restored, the photolyase activity declined before cell growth resumed. Images PMID:2254263

  16. Spectroscopic investigation on cocrystal formation between adenine and fumaric acid based on infrared and Raman techniques

    NASA Astrophysics Data System (ADS)

    Du, Yong; Fang, Hong Xia; Zhang, Qi; Zhang, Hui Li; Hong, Zhi

    2016-01-01

    As an important component of double-stranded DNA, adenine has powerful hydrogen-bond capability, due to rich hydrogen bond donors and acceptors existing within its molecular structure. Therefore, it is easy to form cocrystal between adenine and other small molecules with intermolecular hydrogen-bond effect. In this work, cocrystal of adenine and fumaric acid has been characterized as model system by FT-IR and FT-Raman spectral techniques. The experimental results show that the cocrystal formed between adenine and fumaric acid possesses unique spectroscopical characteristic compared with that of starting materials. Density functional theory (DFT) calculation has been performed to optimize the molecular structures and simulate vibrational modes of adenine, fumaric acid and the corresponding cocrystal. Combining the theoretical and experimental vibrational results, the characteristic bands corresponding to bending and stretching vibrations of amino and carbonyl groups within cocrystal are shifted into lower frequencies upon cocrystal formation, and the corresponding bond lengths show some increase due to the effect of intermolecular hydrogen bonding. Different vibrational modes shown in the experimental spectra have been assigned based on the simulation DFT results. The study could provide experimental and theoretical benchmarks to characterize cocrystal formed between active ingredients and cocrystal formers and also the intermolecular hydrogen-bond effect within cocrystal formation process by vibrational spectroscopic techniques.

  17. Adenine: an important drug scaffold for the design of antiviral agents

    PubMed Central

    Wang, Changyuan; Song, Zhendong; Yu, Haiqing; Liu, Kexin; Ma, Xiaodong

    2015-01-01

    Adenine derivatives, in particular the scaffold bearing the acyclic nucleoside phosphonates (ANPS), possess significant antiviral and cytostatic activity. Till now, several effective adenine derivatives have been marketed for the treatment of HIV, HBV, CMV and other virus-infected diseases. These compounds are represented by tenofovir (PMPA), a medicine for both HIV and HBV, and adefovir as an anti-HBV agent. More than this, other analogs, such as GS9148, GS9131, and GS7340, are also well-known anti-viral agents that have been progressed to the clinical studies for their excellent activity. In general, the structures of these compounds include an adenine nucleobase linked to a phosphonate side chain. Considerable structural modifications on the scaffold itself and the peripheral sections were made. The structure-activity relationships (SARs) of this skeleton will provide valuable clues to identify more effective adenine derivatives as antiviral drugs. Here, we systematically summarized the SARs of the adenine derivatives, and gave important information for further optimizing this template. PMID:26579473

  18. Labeled nucleotide phosphate (NP) probes

    DOEpatents

    Korlach, Jonas; Webb, Watt W.; Levene, Michael; Turner, Stephen; Craighead, Harold G.; Foquet, Mathieu

    2009-02-03

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid, i.e. the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence is deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site. A plurality of labelled types of nucleotide analogs are provided proximate to the active site, with each distinguishable type of nucleotide analog being complementary to a different nucleotide in the target nucleic acid sequence. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target nucleic acid at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labelled nucleotide analogs, polymerizing the growing nucleic acid strand, and identifying the added nucleotide analog are repeated so that the nucleic acid strand is further extended and the sequence of the target nucleic acid is determined.

  19. Adenine phosphoribosyltransferase deficiency as a rare cause of renal allograft dysfunction.

    PubMed

    Kaartinen, Kati; Hemmilä, Ulla; Salmela, Kaija; Räisänen-Sokolowski, Anne; Kouri, Timo; Mäkelä, Satu

    2014-04-01

    Adenine phosphoribosyltransferase deficiency is a rare autosomal recessive disorder manifesting as urolithiasis or crystalline nephropathy. It leads to the generation of large amounts of poorly soluble 2,8-dihydroxyadenine excreted in urine, yielding kidney injury and in some patients, kidney failure. Early recognition of the disease, institution of xanthine analog therapy to block the formation of 2,8-dihydroxyadenine, high fluid intake, and low purine diet prevent CKD. Because of symptom variability and lack of awareness, however, the diagnosis is sometimes extremely deferred. We describe a patient with adenine phosphoribosyltransferase deficiency who was diagnosed during evaluation of a poorly functioning second kidney allograft. This report highlights the risk of renal allograft loss in patients with undiagnosed adenine phosphoribosyltransferase deficiency and the need for improved early detection of this disease. PMID:24459232

  20. Unique modification of adenine in genomic DNA of the marine cyanobacterium Trichodesmium sp. strain NIBB 1067.

    PubMed Central

    Zehr, J P; Ohki, K; Fujita, Y; Landry, D

    1991-01-01

    The genomic DNA of the marine nonheterocystous nitrogen-fixing cyanobacterium Trichodesmium sp. strain NIBB 1067 was found to be highly resistant to DNA restriction endonucleases. The DNA was digested extensively by the restriction enzyme DpnI, which requires adenine methylation for activity. The DNA composition, determined by high-performance liquid chromatography (HPLC), was found to be 69% AT. Surprisingly, it was found that a modified adenine which was not methylated at the usual N6 position was present and made up 4.7 mol% of the nucleosides in Trichodesmium DNA (15 mol% of deoxyadenosine). In order for adenine residues to be modified at this many positions, there must be many modifying enzymes or at least one of the modifying enzymes must have a degenerate recognition site. The reason(s) for this extensive methylation has not yet been determined but may have implications for the ecological success of this microorganism in nature. Images FIG. 1 FIG. 2 PMID:1657876

  1. Nicotinamide nucleotide synthesis in regenerating rat liver

    PubMed Central

    Ferris, G. M.; Clark, J. B.

    1971-01-01

    1. The concentrations and total content of the nicotinamide nucleotides were measured in the livers of rats at various times after partial hepatectomy and laparotomy (sham hepatectomy) and correlated with other events in the regeneration process. 2. The NAD content and concentration in rat liver were relatively unaffected by laparotomy, but fell to a minimum, 25 and 33% below control values respectively, 24h after partial hepatectomy. NADP content and concentration were affected similarly by both laparotomy and partial hepatectomy, falling rapidly and remaining depressed for up to 48h. 3. The effect of injecting various doses of nicotinamide on the liver DNA and NAD 18h after partial hepatectomy was studied and revealed an inverse correlation between NAD content and DNA content. 4. Injections of nicotinamide at various times after partial hepatectomy revealed that the ability to synthesize NAD from nicotinamide was impaired during the first 12h, rose to a peak at 26h and fell again by 48h after partial hepatectomy. 5. The total liver activity of NAD pyrophosphorylase (EC 2.7.7.1) remained at or slightly above the initial value for 12h after partial hepatectomy and then rose continuously until 48h after operation. The activity of NMN pyrophosphorylase (EC 2.4.2.12) showed a similar pattern of change after partial hepatectomy, but was at no time greater than 5% of the activity of NAD pyrophosphorylase. 6. The results are discussed with reference to the control of NAD synthesis in rapidly dividing tissue. It is suggested that the availability of cofactors and substrates for NAD synthesis is more important as a controlling factor than the maximum enzyme activities. It is concluded that the low concentrations of nicotinamide nucleotides in rapidly dividing tissues are the result of competition between NAD synthesis and nucleic acid synthesis for common precursor and cofactors. PMID:4398891

  2. ATP production from adenine by a self-coupling enzymatic process: high-level accumulation under ammonium-limited conditions.

    PubMed

    Maruyama, A; Fujio, T

    2001-03-01

    To improve ATP production from adenine, we optimized cultivation and reaction conditions for the ATP producing strain, Corynebacterium ammoniagenes KY13510. In the conventional method, 28% NH4OH has been used both to adjust pH during cultivation and reaction, and to provide nitrogen for cell growth. In the ATP-producing reaction, high concentrations of inorganic phosphate and magnesium ion are needed, which form magnesium ammonium phosphate (MgNH4PO4) precipitate. To keep inorganic phosphate and magnesium ions soluble in the reaction mixture, it was indispensable to add phytic acid as a chelating agent of divalent metal ions. Under such conditions, 37 mg/ml (61.2 mM) ATP was accumulated in 13 h (Appl. Microbiol. Biotechnol. 21, 143 1985). If ammonium ion was depleted from the reaction mixture to avoid MgNH4 PO4 formation, we expected that there was no need to add phytic acid and ATP accumulation might be improved. Therefore, we obtained the cultured broth of C. ammoniagenes KY13510 strain with low ammonium ion content (less than 1 mg/ml as NH3) by the method that a part of alkali solution (28% NH4OH) for pH control was replaced with 10 N KOH. Using this culture broth, ATP producing reaction was done in 2-liter jar fermentor, controlling the pH of the reaction mixture with 10 N KOH. Under these conditions, the rate of ATP accumulation improved greatly, and 70.6 mg/ml (117 mM) ATP was accumulated in 28 h. The molar conversion ratio from adenine to ATP was about 82%. Phytic acid was slightly inhibitory to ATP formation under these ammonium-limited conditions. PMID:11330681

  3. Recent Trends in Nucleotide Synthesis.

    PubMed

    Roy, Béatrice; Depaix, Anaïs; Périgaud, Christian; Peyrottes, Suzanne

    2016-07-27

    Focusing on the recent literature (since 2000), this review outlines the main synthetic approaches for the preparation of 5'-mono-, 5'-di-, and 5'-triphosphorylated nucleosides, also known as nucleotides, as well as several derivatives, namely, cyclic nucleotides and dinucleotides, dinucleoside 5',5'-polyphosphates, sugar nucleotides, and nucleolipids. Endogenous nucleotides and their analogues can be obtained enzymatically, which is often restricted to natural substrates, or chemically. In chemical synthesis, protected or unprotected nucleosides can be used as the starting material, depending on the nature of the reagents selected from P(III) or P(V) species. Both solution-phase and solid-support syntheses have been developed and are reported here. Although a considerable amount of research has been conducted in this field, further work is required because chemists are still faced with the challenge of developing a universal methodology that is compatible with a large variety of nucleoside analogues. PMID:27319940

  4. Intramolecular interactions in aminoacyl nucleotides: Implications regarding the origin of genetic coding and protein synthesis

    NASA Technical Reports Server (NTRS)

    Lacey, J. C., Jr.; Mullins, D. W., Jr.; Watkins, C. L.; Hall, L. M.

    1986-01-01

    Cellular organisms store information as sequences of nucleotides in double stranded DNA. This information is useless unless it can be converted into the active molecular species, protein. This is done in contemporary creatures first by transcription of one strand to give a complementary strand of mRNA. The sequence of nucleotides is then translated into a specific sequence of amino acids in a protein. Translation is made possible by a genetic coding system in which a sequence of three nucleotides codes for a specific amino acid. The origin and evolution of any chemical system can be understood through elucidation of the properties of the chemical entities which make up the system. There is an underlying logic to the coding system revealed by a correlation of the hydrophobicities of amino acids and their anticodonic nucleotides (i.e., the complement of the codon). Its importance lies in the fact that every amino acid going into protein synthesis must first be activated. This is universally accomplished with ATP. Past studies have concentrated on the chemistry of the adenylates, but more recently we have found, through the use of NMR, that we can observe intramolecular interactions even at low concentrations, between amino acid side chains and nucleotide base rings in these adenylates. The use of this type of compound thus affords a novel way of elucidating the manner in which amino acids and nucleotides interact with each other. In aqueous solution, when a hydrophobic amino acid is attached to the most hydrophobic nucleotide, AMP, a hydrophobic interaction takes place between the amino acid side chain and the adenine ring. The studies to be reported concern these hydrophobic interactions.

  5. Copper-catalyzed intramolecular cyclization of N-propargyl-adenine: synthesis of purine-fused tricyclics.

    PubMed

    Li, Ren-Long; Liang, Lei; Xie, Ming-Sheng; Qu, Gui-Rong; Niu, Hong-Ying; Guo, Hai-Ming

    2014-04-18

    A novel protocol to construct fluorescent purine-fused tricyclic products via intramolecular cyclization of N-propargyl-adenine has been developed. With CuBr as the catalyst, a series of purine-fused tricyclic products were obtained in good to excellent yields (19 examples, 75-89% yields). When R2 was a hydrogen atom in N-propargyl-adenines, the reactions only afforded the endocyclic double bond products. When R2 was an aryl group, the electron-donating groups favored the endocyclic double bond products, while the electron-withdrawing groups favored the exocyclic double bond products. PMID:24678722

  6. Bioenergetics and Gene Silencing Approaches for Unraveling Nucleotide Recognition by the Human EIF2C2/Ago2 PAZ Domain

    PubMed Central

    Kandeel, Mahmoud; Al-Taher, Abdullah; Nakashima, Remi; Sakaguchi, Tomoya; Kandeel, Ali; Nagaya, Yuki; Kitamura, Yoshiaki; Kitade, Yukio

    2014-01-01

    Gene silencing and RNA interference are major cellular processes that control gene expression via the cleavage of target mRNA. Eukaryotic translation initiation factor 2C2 (EIF2C2, Argonaute protein 2, Ago2) is considered to be the major player of RNAi as it is the core component of RISC complexes. While a considerable amount of research has focused on RNA interference and its associated mechanisms, the nature and mechanisms of nucleotide recognition by the PAZ domain of EIF2C2/Ago2 have not yet been characterized. Here, we demonstrate that the EIF2C2/Ago2 PAZ domain has an inherent lack of binding to adenine nucleotides, a feature that highlights the poor binding of 3′-adenylated RNAs with the PAZ domain as well as the selective high trimming of the 3′-ends of miRNA containing adenine nucleotides. We further show that the PAZ domain selectively binds all ribonucleotides (except adenosine), whereas it poorly recognizes deoxyribonucleotides. In this context, the modification of dTMP to its ribonucleotide analogue gave a drastic improvement of binding enthalpy and, hence, binding affinity. Additionally, higher in vivo gene silencing efficacy was correlated with the stronger PAZ domain binders. These findings provide new insights into the nature of the interactions of the EIF2C2/Ago2 PAZ domain. PMID:24788663

  7. Nucleotide sequence analysis of the hypervariable region III of mitochondrial DNA in Thais.

    PubMed

    Thongngam, Punlop; Leewattanapasuk, Worraanong; Bhoopat, Tanin; Sangthong, Padchanee

    2016-07-01

    This study analyzed the nucleotide sequences of the hypervariable region III (HVRIII) of mitochondrial DNA in Thai individuals. Buccal swab samples were randomly obtained from 100 healthy, unrelated, adult (18-60 years old), volunteer donors living in Thailand. Eighteen different haplotypes were found, of which 11 haplotypes were unique. The most frequent haplotypes observed were 522D-523D. Nucleotide transition from Thymine (T) to Cytosine (C) at position 489 (43%) was the most frequent substitution. Nucleotide transversions were also observed at position 433 (Adenine (A) to C, 1%) and position 499 (Guanine (G) to C, 1%). Fifty-three samples presented nucleotide insertion and deletion of C and A (CA) at position 514-523. Insertion of 1AC (3%) and 2AC (2%) were observed. Deletion of 1CA (53%) and 2CA (2%) at position 514-523 were revealed. The deletion of T at position 459 was observed. The haplotype diversity, random match probability, and discrimination power were calculated to be 0.7770, 0.2308, and 0.7692, respectively. PMID:27107562

  8. Dietary nucleotides prevent decrease in cellular immunity in ground-based microgravity analog

    NASA Technical Reports Server (NTRS)

    Yamauchi, Keiko; Hales, Nathan W.; Robinson, Sandra M.; Niehoff, Michael L.; Ramesh, Vani; Pellis, Neal R.; Kulkarni, Anil D.

    2002-01-01

    Microgravity and stress of spaceflights result in immune dysfunction. The role of nutrition, especially nucleotide supplementation, has become an area of intensive research and significant interest in immunomodulation for maintenance of cellular immune responses. The studies presented here evaluate the plausibility of administering nucleotides to obviate immune dysfunction in an Earth-based in vivo analog of microgravity as studied in anti-orthostatic tail suspension (AOS) of mice. Mice were divided into three housing groups: group, isolation, and AOS. Mice were fed either control chow diet (CD), or RNA-, adenine-, or uracil-supplemented CD for the 1-wk duration of the experiments. In AOS mice, supplemental nucleotides significantly increased in vivo lymph node proliferation and ex vivo lymphoproliferation response to alloantigen and mitogens, respectively, and interleukin-2 and interferon-gamma production. A lower corticosterone level was observed in uracil-supplemented CD compared with CD. These results suggest that exogenous nucleotide supplementation, especially uracil, of normal diet is beneficial in the maintenance and restoration of the immune response during the microgravity analog conditions.

  9. Effects of adenine arabinoside on lymphocytes infected with Epstein-Barr virus.

    PubMed Central

    Benz, W C; Siegel, P J; Baer, J

    1978-01-01

    Low concentrations of adenine arabinoside inhibited growth of two Epstein-Barr virus producer cell lines in culture, while not significantly affecting a nonproducer cell line and a B-cell-negative line. These observations were extended to include freshly infected cells. Mitogen-stimulated human umbilical cord blood lymphocytes were unaffected by the drug at concentration levels that inhibited [3H]thymidine incorporation into the DNA of Epstein-Barr virus-stimulated cells. DNA synthesis in Epstein-Barr virus-superinfected Raji cells was also adversely affected by adenine arabinoside. However, these same low concentrations of adenine arabinoside in the triphosphate form produced less effect on DNA synthesis in nuclear systems and DNA polymerase assays than on growth or DNA synthesis in whole cells. Therefore the effects reported here of low concentrations of the drug on whole cells may be only in part related to DNA polymerase inhibition. The work reported here suggests that adenine arabinoside has multiple sites of action in infected cells. PMID:212577

  10. Assembly of an antiparallel homo-adenine DNA duplex by small-molecule binding.

    PubMed

    Persil, Ozgül; Santai, Catherine T; Jain, Swapan S; Hud, Nicholas V

    2004-07-21

    Molecules that reversibly bind DNA and trigger the formation of non-Watson-Crick secondary structures would be useful in the design of dynamic DNA nanostructures and as potential leads for new therapeutic agents. We demonstrate that coralyne, a small crescent-shaped molecule, promotes the formation of a duplex secondary structure from homo-adenine oligonucleotides. AFM studies reveal that the staggered alignment of homo-adenine oligonucleotides upon coralyne binding produces polymers of micrometers in length, but only 2 nm in height. A DNA duplex was also studied that contained eight A.A mismatches between two flanking 7-bp Watson-Crick helices. CD spectra confirm that the multiple A.A mismatches of this duplex bind coralyne in manner similar to that of homo-adenine oligonucleotides. Furthermore, the melting temperature of this hybrid duplex increases by 13 degrees C upon coralyne binding. These observations illustrate that the helical structure of the homo-adenine-coralyne duplex is compatible with the B-form DNA helix. PMID:15250704

  11. The First Nucleotide Binding Domain of Cystic Fibrosis Transmembrane Conductance Regulator Is a Site of Stable Nucleotide Interaction, whereas the Second Is a Site of Rapid Turnover.

    PubMed

    Aleksandrov, Luba; Aleksandrov, Andrei A; Chang, Xiu-Bao; Riordan, John R

    2002-05-01

    As in other adenine nucleotide binding cassette (ABC) proteins the nucleotide binding domains of the cystic fibrosis transmembrane conductance regulator (CFTR) bind and hydrolyze ATP and in some manner regulate CFTR ion channel gating. Unlike some other ABC proteins, however, there are preliminary indications that the two domains of CFTR are nonequivalent in their nucleotide interactions (Szabo, K., Szakacs, G., Hegeds, T., and Sarkadi, B. (1999) J. Biol. Chem. 274, 12209-12212; Aleksandrov, L., Mengos, A., Chang, X., Aleksandrov, A., and Riordan, J. R. (2001) J. Biol. Chem. 276, 12918-12923). We have now characterized the interactions of the 8-azido-photoactive analogues of ATP, ADP, and 5'-adenyl-beta,gamma-imidodiphosphate (AMP-PNP) with the two domains of functional membrane-bound CFTR. The results show that the two domains appear to act independently in the binding and hydrolysis of 8-azido-ATP. At NBD1 binding does not require a divalent cation. This binding is followed by minimal Mg(2+)-dependent hydrolysis and retention of the hydrolysis product, 8-azido-ADP, but not as a vanadate stabilized post-hydrolysis transition state complex. In contrast, at NBD2, MgN(3)ATP is hydrolyzed as rapidly as it is bound and the nucleoside diphosphate hydrolysis product dissociates immediately. Confirming this characterization of NBD1 as a site of more stable nucleotide interaction and NBD2 as a site of fast turnover, the non-hydrolyzable N(3)AMP-PNP bound preferentially to NBD1. This demonstration of NBD2 as the rapid nucleotide turnover site is consistent with the strong effect on channel gating kinetics of inactivation of this domain by mutagenesis. PMID:11861646

  12. Different Effects of Guanine Nucleotides (GDP and GTP) on Protein-Mediated Mitochondrial Proton Leak

    PubMed Central

    Woyda-Ploszczyca, Andrzej M.; Jarmuszkiewicz, Wieslawa

    2014-01-01

    In this study, we compared the influence of GDP and GTP on isolated mitochondria respiring under conditions favoring oxidative phosphorylation (OXPHOS) and under conditions excluding this process, i.e., in the presence of carboxyatractyloside, an adenine nucleotide translocase inhibitor, and/or oligomycin, an FOF1-ATP synthase inhibitor. Using mitochondria isolated from rat kidney and human endothelial cells, we found that the action of GDP and GTP can differ diametrically depending on the conditions. Namely, under conditions favoring OXPHOS, both in the absence and presence of linoleic acid, an activator of uncoupling proteins (UCPs), the addition of 1 mM GDP resulted in the state 4 (non-phosphorylating respiration)-state 3 (phosphorylating respiration) transition, which is characteristic of ADP oxidative phosphorylation. In contrast, the addition of 1 mM GTP resulted in a decrease in the respiratory rate and an increase in the membrane potential, which is characteristic of UCP inhibition. The stimulatory effect of GDP, but not GTP, was also observed in inside-out submitochondrial particles prepared from rat kidney mitochondria. However, the effects of GDP and GTP were more similar in the presence of OXPHOS inhibitors. The importance of these observations in connection with the action of UCPs, adenine nucleotide translocase (or other carboxyatractyloside-sensitive carriers), carboxyatractyloside- and purine nucleotide-insensitive carriers, as well as nucleoside-diphosphate kinase (NDPK) are considered. Because the measurements favoring oxidative phosphorylation better reflect in vivo conditions, our study strongly supports the idea that GDP cannot be considered a significant physiological inhibitor of UCP. Moreover, it appears that, under native conditions, GTP functions as a more efficient UCP inhibitor than GDP and ATP. PMID:24904988

  13. Insights from the GC content analysis of 76genome survey sequences (GSS) from Elaeisoleiferaψ

    PubMed Central

    Bhore, Subhash J; Kassim, Amelia; Shah, Farida H

    2010-01-01

    South American oil-palm (Elaeis oleifera) is not cultivated in tropical countries like Malaysia on large scale due to low yield of palm oil derived from its fruit mesocarp. However, its fruit mesocarp oil contains about 68.6 % oleic acid (C18:1) which is more than double in comparison to commercially cultivated oilpalm, E. guineensis Jacq Tenera (hybrid of Dura (♀) x Pisifera (♂)). It is also known that E. oleifera is a good source of tocotrienols and carotenoids. Therefore, it is of interest to know the genome sequence of E. oleifera. The objective of this study is to generate genome survey sequences (GSS) to get GC content insight in the E. oleifera genome. The nuclear genomic DNA isolated from young leaf‐tissues was digested with EcoRI and NdeI/DraI restriction enzymes; and three genomic DNA libraries were constructed using Lambda ZAP‐II, pGEM®‐T Easy, and pDONR 222™ as cloning vectors. Generated 76 GSSs were analyzed by using Bioinformatics tools. The analysis result indicates that the adenine, cytosine, guanine and thymine content in generated GSSs are 30%, 20%, 20%, and 30% respectively. In conclusion, based on the precise GC content analysis of the randomly isolated 76 GSSs by using Bioinformatics tools we hypothesize that GC content in E. oleifera genome is 40%. The hypothesized 40% GC content in E. oleifera genome is expected to remain close to the GC content based on the whole genome analysis. ψThe nucleotide sequence data reported in this paper have been submitted to dbGSS division of the international DNA database (GenBank/DDBJ/EMBL) under accession numbers: DX575945- DX575972 and EI798032-EI798079. Abbreviations gDNA - Nuclear genomic DNA, GSSs - Genome survey sequences K12, SAOP - South American oil‐palm Db1 PMID:21364775

  14. Administration of α-Galactosylceramide Improves Adenine-Induced Renal Injury

    PubMed Central

    Aguiar, Cristhiane Favero; Naffah-de-Souza, Cristiane; Castoldi, Angela; Corrêa-Costa, Matheus; Braga, Tárcio T; Naka, Érika L; Amano, Mariane T; Abate, Débora T R S; Hiyane, Meire I; Cenedeze, Marcos A; Filho, Alvaro Pacheco e Silva; Câmara, Niels O S

    2015-01-01

    Natural killer T (NKT) cells are a subset of lymphocytes that reacts to glycolipids presented by CD1d. Invariant NKT cells (iNKT) correspond to >90% of the total population of NKTs and reacts to α-galactosylceramide (αGalCer). αGalCer promotes a complex mixture of Th1 and Th2 cytokines, as interferon (IFN)-γ and interleukin (IL)-4. NKT cells and IFN-γ are known to participate in some models of renal diseases, but further studies are still necessary to elucidate their mechanisms. The aim of our study was to analyze the participation of iNKT cells in an experimental model of tubule-interstitial nephritis. We used 8-wk-old C57BL/6j, Jα18KO and IFN-γKO mice. They were fed a 0.25% adenine diet for 10 d. Both adenine-fed wild-type (WT) and Jα18KO mice exhibited renal dysfunction, but adenine-fed Jα18KO mice presented higher expression of kidney injury molecule-1 (KIM-1), tumor necrosis factor (TNF)-α and type I collagen. To analyze the role of activated iNKT cells in our model, we administered αGalCer in WT mice during adenine ingestion. After αGalCer injection, we observed a significant reduction in serum creatinine, proinflammatory cytokines and renal fibrosis. However, this improvement in renal function was not observed in IFN-γKO mice after αGalCer treatment and adenine feeding, illustrating that this cytokine plays a role in our model. Our findings may suggest that IFN-γ production is one of the factors contributing to improved renal function after αGalCer administration. PMID:26101952

  15. ON THE INTERACTION OF ADENINE WITH IONIZING RADIATION: MECHANISTICAL STUDIES AND ASTROBIOLOGICAL IMPLICATIONS

    SciTech Connect

    Evans, Nicholas L.; Ullrich, Susanne; Bennett, Chris J.; Kaiser, Ralf I.

    2011-04-01

    The molecular inventory available on the prebiotic Earth was likely derived from both terrestrial and extraterrestrial sources. A complete description of which extraterrestrial molecules may have seeded early Earth is therefore necessary to fully understand the prebiotic evolution which led to life. Galactic cosmic rays (GCRs) are expected to cause both the formation and destruction of important biomolecules-including nucleic acid bases such as adenine-in the interstellar medium within the ices condensed on interstellar grains. The interstellar ultraviolet (UV) component is expected to photochemically degrade gas-phase adenine on a short timescale of only several years. However, the destruction rate is expected to be significantly reduced when adenine is shielded in dense molecular clouds or even within the ices of interstellar grains. Here, biomolecule destruction by the energetic charged particle component of the GCR becomes important as it is not fully attenuated. Presented here are results on the destruction rate of the nucleobase adenine in the solid state at 10 K by energetic electrons, as generated in the track of cosmic ray particles as they penetrate ices. When both UV and energetic charged particle destructive processes are taken into account, the half-life of adenine within dense interstellar clouds is found to be {approx}6 Myr, which is on the order of a star-forming molecular cloud. We also discuss chemical reaction pathways within the ices to explain the production of observed species, including the formation of nitriles (R-C{identical_to}N), epoxides (C-O-C), and carbonyl functions (R-C=O).

  16. Mathematical model of nucleotide regulation on airway epithelia. Implications for airway homeostasis.

    PubMed

    Zuo, Peiying; Picher, Maryse; Okada, Seiko F; Lazarowski, Eduardo R; Button, Brian; Boucher, Richard C; Elston, Timothy C

    2008-09-26

    In the airways, adenine nucleotides support a complex signaling network mediating host defenses. Released by the epithelium into the airway surface liquid (ASL) layer, they regulate mucus clearance through P2 (ATP) receptors, and following surface metabolism through P1 (adenosine; Ado) receptors. The complexity of ASL nucleotide regulation provides an ideal subject for biochemical network modeling. A mathematical model was developed to integrate nucleotide release, the ectoenzymes supporting the dephosphorylation of ATP into Ado, Ado deamination into inosine (Ino), and nucleoside uptake. The model also includes ecto-adenylate kinase activity and feed-forward inhibition of Ado production by ATP and ADP. The parameters were optimized by fitting the model to experimental data for the steady-state and transient concentration profiles generated by adding ATP to polarized primary cultures of human bronchial epithelial (HBE) cells. The model captures major aspects of ATP and Ado regulation, including their >4-fold increase in concentration induced by mechanical stress mimicking normal breathing. The model also confirmed the independence of steady-state nucleotide concentrations on the ASL volume, an important regulator of airway clearance. An interactive approach between simulations and assays revealed that feed-forward inhibition is mediated by selective inhibition of ecto-5'-nucleotidase. Importantly, the model identifies ecto-adenylate kinase as a key regulator of ASL ATP and proposes novel strategies for the treatment of airway diseases characterized by impaired nucleotide-mediated clearance. These new insights into the biochemical processes supporting ASL nucleotide regulation illustrate the potential of this mathematical model for fundamental and clinical research. PMID:18662982

  17. [Interaction of divalent cadmium ions with nucleotides and native DNA].

    PubMed

    Sorokin, V A; Valeev, V A; Gladchenko, G O; Sysa, I V

    1997-01-01

    Complex formation of Cd2+ ions with 2'-deoxy-5'-phosphates of canonical bases and their riboanalogues in water solution is studied by the method of differential UV-spectroscopy. It is stated that the atoms coordinating Cd2+ in complexes are N7 of dGMP and GMP, dAMP and AMP, N1 of adenine derivatives, N3 of dCMP. No interaction with base heteroatoms of UMP and dTMP is found. O2' present in the structure of the sugar ring has a weak influence on the Cd2+ ion binding to purine nucleotides. It manifests itself strongly in the complexes with cytosine derivatives: cadmium does not interact with N3 of CMP and poly-C practically. In the last case O2 is a centre coordinating Cd2+ ions. The interaction with this atom induces the melting of polynucleotide helical parts. At the high cadmium concentration poly-C forms compact particles. The main centre binding Cd2+ ions in DNA is N7 of guanines. Noncooperative interaction with these centres results in the internal protonation of N3C of GC-pairs. This is not followed with the disordering of the DNA helical structure. PMID:9181783

  18. Comparative involvement of cyclic nucleotide phosphodiesterases and adenylyl cyclase on adrenocorticotropin-induced increase of cyclic adenosine monophosphate in rat and human glomerulosa cells.

    PubMed

    Côté, M; Payet, M D; Rousseau, E; Guillon, G; Gallo-Payet, N

    1999-08-01

    The present study investigated the role and identity of cyclic nucleotide phosphodiesterases (PDEs) in the regulation of basal and ACTH-stimulated levels of intracellular cAMP in human and rat adrenal glomerulosa cells. Comparative dose-response curves indicated that maximal hormone-stimulated cAMP accumulation was 11- and 24-fold higher in human and rat cells, compared with cAMP production obtained in corresponding membranes, respectively. Similarly to 3-isobutyl-1-methyl-xanthine, 25 microM erythro-9-[2-hydroxy-3-nonyl]adenine (EHNA, a specific PDE2 inhibitor), caused a large increase in ACTH-stimulated cAMP accumulation; by contrast, it did not change cAMP production in membranes. Moreover, in membrane fractions, addition of 10 microM cGMP inhibited ACTH-induced cAMP production, an effect completely reversed by addition of 25 microM EHNA. These results indicate that PDE2 activity is involved in the regulation of cAMP accumulation induced by ACTH, and suggest that ACTH inhibits this activity. Indeed, time-course studies indicated that ACTH induced a rapid decrease in cGMP production, resulting in PDE2 inhibition, which in turn, contributed [with adenylyl cyclase (AC) activation] to an accumulation in cAMP for 15 min. Thereafter, cAMP content decreased, because of cAMP-stimulated PDE2, as confirmed by measurement of PDE activity that was activated by ACTH, but only after a 10-min incubation. Hence, we demonstrate that the ACTH-induced increase in intracellular cAMP is the result of a balance between activation of AC and direct modulation of PDE2 activity, an effect mediated by cGMP content. Although similar results were observed in both models, PDE2 involvement is more important in rat than in human adrenal glomerulosa cells, whereas AC is more stimulated in human than in rat glomerulosa cells. PMID:10433216

  19. The EMBL Nucleotide Sequence Database.

    PubMed

    Stoesser, G; Tuli, M A; Lopez, R; Sterk, P

    1999-01-01

    The EMBL Nucleotide Sequence Database (http://www.ebi.ac.uk/embl.html) constitutes Europe's primary nucleotide sequence resource. Main sources for DNA and RNA sequences are direct submissions from individual researchers, genome sequencing projects and patent applications. While automatic procedures allow incorporation of sequence data from large-scale genome sequencing centres and from the European Patent Office (EPO), the preferred submission tool for individual submitters is Webin (WWW). Through all stages, dataflow is monitored by EBI biologists communicating with the sequencing groups. In collaboration with DDBJ and GenBank the database is produced, maintained and distributed at the European Bioinformatics Institute (EBI). Database releases are produced quarterly and are distributed on CD-ROM. Network services allow access to the most up-to-date data collection via Internet and World Wide Web interface. EBI's Sequence Retrieval System (SRS) is a Network Browser for Databanks in Molecular Biology, integrating and linking the main nucleotide and protein databases, plus many specialised databases. For sequence similarity searching a variety of tools (e.g. Blitz, Fasta, Blast etc) are available for external users to compare their own sequences against the most currently available data in the EMBL Nucleotide Sequence Database and SWISS-PROT. PMID:9847133

  20. Effect of l-Methionine and S-Adenosylmethionine on Growth of an Adenine Mutant of Saccharomyces cerevisiae

    PubMed Central

    Yall, Irving; Norrell, Stephen A.; Joseph, Ronald; Knudsen, Richard C.

    1967-01-01

    A pink, adenine-requiring yeast utilized adenine, hypoxanthine, or S-adenosylmethionine (SAM), in quantities up to 3 μmoles per 100 ml of medium, as equivalent sources of purine for cell growth, but not methylthioadenosine or S-adenosylhomocysteine. Utilization of SAM for growth was inhibited by the presence of l-methionine in quantities greater than 0.6 μmole per 100 ml of medium. However, 6 μmoles of l-methionine had no effect on growth when adenine or hypoxanthine was the source of purine. These sources also reversed the inhibitory effects of 6 μmoles of the amino acid on the utilization of SAM. The presence of 400 μmoles of the amino acid resulted in some inhibition of growth when the organisms were grown with adenine, hypoxanthine, or adenine plus SAM but had no effect on the total uptake of adenine-8-14C. Studies on the uptake of radioactivity from a mixture of SAM-adenine-8-14C and 3H-labeled SAM-methyl indicated that these components were taken into the cells at different rates which were altered by the presence of l-methionine. The fixation of 35S from 35S-labeled adenosylmethionine into the cells was inhibited by the presence of the amino acid. The cells synthesized and accumulated SAM in the presence of 400 μmoles of l-methionine plus adenine even when exogenous SAM was supplied. Approximately 47% of radioactivity fixed from exogenous SAM-adenine-8-14C and 12% from 3H-labeled SAM-methyl were found in reisolated SAM. PMID:6025443

  1. The rat adenine receptor: pharmacological characterization and mutagenesis studies to investigate its putative ligand binding site.

    PubMed

    Knospe, Melanie; Müller, Christa E; Rosa, Patrizia; Abdelrahman, Aliaa; von Kügelgen, Ivar; Thimm, Dominik; Schiedel, Anke C

    2013-09-01

    The rat adenine receptor (rAdeR) was the first member of a family of G protein-coupled receptors (GPCRs) activated by adenine and designated as P0-purine receptors. The present study aimed at gaining insights into structural aspects of ligand binding and function of the rAdeR. We exchanged amino acid residues predicted to be involved in ligand binding (Phe110(3.24), Asn115(3.29), Asn173(4.60), Phe179(45.39), Asn194(5.40), Phe195(5.41), Leu201(5.47), His252(6.54), and Tyr268(7.32)) for alanine and expressed them in Spodoptera frugiperda (Sf9) insect cells. Membrane preparations subjected to [(3)H]adenine binding studies revealed only minor effects indicating that none of the exchanged amino acids is part of the ligand binding pocket, at least in the inactive state of the receptor. Furthermore, we coexpressed the rAdeR and its mutants with mammalian Gi proteins in Sf9 insect cells to probe receptor activation. Two amino acid residues, Asn194(5.40) and Leu201(5.47), were found to be crucial for activation since their alanine mutants did not respond to adenine. Moreover we showed that-in contrast to most other rhodopsin-like GPCRs-the rAdeR does not contain essential disulfide bonds since preincubation with dithiothreitol neither altered adenine binding in Sf9 cell membranes, nor adenine-induced inhibition of adenylate cyclase in 1321N1 astrocytoma cells transfected with the rAdeR. To detect rAdeRs by Western blot analysis, we developed a specific antibody. Finally, we were able to show that the extended N-terminal sequence of the rAdeR constitutes a putative signal peptide of unknown function that is cleaved off in the mature receptor. Our results provide important insights into this new, poorly investigated family of purinergic receptors. PMID:23413038

  2. Modulation of nicotinamide adenine dinucleotide and poly(adenosine diphosphoribose) metabolism by the synthetic "C" nucleoside analogs, tiazofurin and selenazofurin. A new strategy for cancer chemotherapy.

    PubMed Central

    Berger, N A; Berger, S J; Catino, D M; Petzold, S J; Robins, R K

    1985-01-01

    Tiazofurin (2-beta-D-ribofuranosylthiazole-4-carboxamide) and selenazofurin (2-beta-D-ribofuranosylselenazole-4-carboxamide) are synthetic "C" nucleosides whose antineoplastic activity depends on their conversion to tiazofurin-adenine dinucleotide and selenazofurin-adenine dinucleotide which are analogs of NAD. The present study was conducted to determine whether these nucleoside analogs and their dinucleotide derivatives interfere with NAD metabolism and in particular with the NAD-dependent enzyme, poly(ADP-ribose) polymerase. Incubation of L1210 cells with 10 microM tiazofurin or selenazofurin resulted in inhibition of cell growth, reduction of cellular NAD content, and interference with NAD synthesis. Using [14C]nicotinamide to study the uptake of nicotinamide and its conversion to NAD, we showed that the analogs interfere with NAD synthesis, apparently by blocking formation of nicotinamide mononucleotide. The analogs also serve as weak inhibitors of poly(ADP-ribose) polymerase, which is an NAD-utilizing, chromatin-bound enzyme, whose function is required for normal DNA repair processes. Continuous incubation of L1210 cells in tiazofurin or selenazofurin resulted in progressive and synergistic potentiation of the cytotoxic effects of DNA-damaging agents, such as 1,3-bis(2-chloroethyl)-1-nitrosourea or N-methyl-N'-nitro-N-nitrosoguanidine. These studies provide a basis for designing chemotherapy combinations in which tiazofurin or selenazofurin are used to modulate NAD and poly(ADP-ribose) metabolism to synergistically potentiate the effects of DNA strand-disrupting agents. PMID:3919063

  3. Theoretical Study of Tautomerization Reactions for the Ground and First Excited Electronic States of Adenine

    NASA Technical Reports Server (NTRS)

    Salter, Latasha M.; Chaban, Galina M.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Geometrical structures and energetic properties for different tautomers of adenine are calculated in this study, using multi-configurational wave functions. Both the ground and the lowest singlet excited state potential energy surfaces are studied. Four tautomeric forms are considered, and their energetic order is found to be different on the ground and the excited state potential energy surfaces. Minimum energy reaction paths are obtained for hydrogen atom transfer (tautomerization) reactions in the ground and the lowest excited electronic states. It is found that the barrier heights and the shapes of the reaction paths are different for the ground and the excited electronic states, suggesting that the probability of such tautomerization reaction is higher on the excited state potential energy surface. This tautomerization process should become possible in the presence of water or other polar solvent molecules and should play an important role in the photochemistry of adenine.

  4. BII stability and base step flexibility of N6-adenine methylated GATC motifs.

    PubMed

    Karolak, Aleksandra; van der Vaart, Arjan

    2015-01-01

    The effect of N6-adenine methylation on the flexibility and shape of palindromic GATC sequences has been investigated by molecular dynamics simulations. Variations in DNA backbone geometry were observed, which were dependent on the degree of methylation and the identity of the bases. While the effect was small, more frequent BI to BII conversions were observed in the GA step of hemimethylated DNA. The increased BII population of the hemimethylated system positively correlated with increased stacking interactions between methylated adenine and guanine, while stacking interactions decreased at the TC step for the fully methylated strand. The flexibility of the AT and TC steps was marginally affected by methylation, in a fashion that was correlated with stacking interactions. The facilitated BI to BII conversion in hemimethylated strands might be of importance for SeqA selectivity and binding. PMID:26004863

  5. Glutamate Synthase: Properties of the Reduced Nicotinamide Adenine Dinucleotide-Dependent Enzyme from Saccharomyces cerevisiae

    PubMed Central

    Roon, Robert J.; Even, Harvey L.; Larimore, Fred

    1974-01-01

    A reduced nicotinamide adenine dinucleotide (NADH)-dependent glutamate synthase has been detected and partially purified from crude extracts of Saccharomyces cerevisiae. The enzyme is specific for NADH, glutamine, and α-ketoglutarate (Km values of 2.6 μM, 1.0 mM, and 140 μM, respectively) and has a pH optimum between 7.1 and 7.7. The stoichiometry of the reaction has been determined as 2 mol of glutamate synthesized per mol of glutamine consumed. Glutamate synthase can be distinguished from either of the glutamate dehydrogenases of yeast on the basis of its substrate requirements and behavior during agarose gel and ion exchange chromatography. Variations in the specific activity of glutamate synthase, which occur in response to changes in the growth medium, are similar in character to those observed with the nicotinamide adenine dinucleotide phosphate-dependent (anabolic) glutamate dehydrogenase. PMID:4362465

  6. Expression of microRNAs in Horse Plasma and Their Characteristic Nucleotide Composition

    PubMed Central

    Lee, Seungwoo; Hwang, Seungwoo; Yu, Hee Jeong; Oh, Dayoung; Choi, Yu Jung; Kim, Myung-Chul; Kim, Yongbaek; Ryu, Doug-Young

    2016-01-01

    MicroRNAs (miRNAs) in blood plasma are stable under high levels of ribonuclease activity and could function in tissue-to-tissue communication, suggesting that they may have distinctive structural characteristics compared with non-circulating miRNAs. In this study, the expression of miRNAs in horse plasma and their characteristic nucleotide composition were examined and compared with non-plasma miRNAs. Highly expressed plasma miRNA species were not part of the abundant group of miRNAs in non-plasma tissues, except for the eca-let-7 family. eca-miR-486-5p, -92a, and -21 were among the most abundant plasma miRNAs, and their human orthologs also belong to the most abundant group of miRNAs in human plasma. Uracil and guanine were the most common nucleotides of both plasma and non-plasma miRNAs. Cytosine was the least common in plasma and non-plasma miRNAs, although levels were higher in plasma miRNAs. Plasma miRNAs also showed higher expression levels of miRNAs containing adenine and cytosine repeats, compared with non-plasma miRNAs. These observations indicate that miRNAs in the plasma have a unique nucleotide composition. PMID:26731407

  7. Expression of microRNAs in Horse Plasma and Their Characteristic Nucleotide Composition.

    PubMed

    Lee, Seungwoo; Hwang, Seungwoo; Yu, Hee Jeong; Oh, Dayoung; Choi, Yu Jung; Kim, Myung-Chul; Kim, Yongbaek; Ryu, Doug-Young

    2016-01-01

    MicroRNAs (miRNAs) in blood plasma are stable under high levels of ribonuclease activity and could function in tissue-to-tissue communication, suggesting that they may have distinctive structural characteristics compared with non-circulating miRNAs. In this study, the expression of miRNAs in horse plasma and their characteristic nucleotide composition were examined and compared with non-plasma miRNAs. Highly expressed plasma miRNA species were not part of the abundant group of miRNAs in non-plasma tissues, except for the eca-let-7 family. eca-miR-486-5p, -92a, and -21 were among the most abundant plasma miRNAs, and their human orthologs also belong to the most abundant group of miRNAs in human plasma. Uracil and guanine were the most common nucleotides of both plasma and non-plasma miRNAs. Cytosine was the least common in plasma and non-plasma miRNAs, although levels were higher in plasma miRNAs. Plasma miRNAs also showed higher expression levels of miRNAs containing adenine and cytosine repeats, compared with non-plasma miRNAs. These observations indicate that miRNAs in the plasma have a unique nucleotide composition. PMID:26731407

  8. Long-Range Charge Transport in Adenine-Stacked RNA:DNA Hybrids.

    PubMed

    Li, Yuanhui; Artés, Juan M; Hihath, Joshua

    2016-01-27

    An extremely important biological component, RNA:DNA can also be used to design nanoscale structures such as molecular wires. The conductance of single adenine-stacked RNA:DNA hybrids is rapidly and reproducibly measured using the break junction approach. The conductance decreases slightly over a large range of molecular lengths, suggesting that RNA:DNA can be used as an oligonucleotide wire. PMID:26596516

  9. Synthesis of metal-adeninate frameworks with high separation capacity on C2/C1 hydrocarbons

    NASA Astrophysics Data System (ADS)

    He, Yan-Ping; Zhou, Nan; Tan, Yan-Xi; Wang, Fei; Zhang, Jian

    2016-06-01

    By introducing isophthalic acid or 2,5-thiophenedicarboxylic acid to assemble with adenine and cadmium salt, two isostructural and anionic porous metal-organic frameworks (1 and 2) possessing the novel (4,8)-connected sqc topology are presented here. 1 shows permanent porosity with Langmuir surface area of 770.1 m2/g and exhibits high separation capacity on C2/C1 hydrocarbons.

  10. Femtosecond decay dynamics of intact adenine and thymine base pairs in a supersonic jet.

    PubMed

    Kim, Nam Joon; Chang, Jinyoung; Kim, Hyung Min; Kang, Hyuk; Ahn, Tae Kyu; Heo, Jiyoung; Kim, Seong Keun

    2011-07-11

    We investigated the decay dynamics of the DNA base pairs adenine-adenine (A(2)), adenine-thymine (AT), and thymine-thymine (T(2)) produced in a supersonic jet by femtosecond (fs) time-resolved photoionization spectroscopy. The base pair was excited by a fs pump pulse at 267 nm and the population change of its excited state was monitored by non-resonant three-photon ionization using a fs probe pulse at 800 nm after a certain time delay. All of the transients recorded in the mass channel of the parent ion exhibited a tri-exponential decay, with time constants ranging from 100 fs to longer than 100 ps. Most of these time constants coincide well with the previous values deduced indirectly from the transients of protonated adenine (AH(+)) and thymine (TH(+)), which were assumed to be produced by fragmentation of the base-pair ions. Notably, for the transient of T(2), we observed a new decay component with a time constant of 2.3 ps, which was absent in the transient of TH(+). We suggest that the new decay component arises from the decay of stacked T(2) dimers that are mostly ionized to T(2)(+), whereas the decay signal recorded in the mass channel of TH(+) is merely from the relaxation of hydrogen-bonded T(2) dimers. From the amplitude of the new decay component, the population of the stacked T(2) dimers relative to the hydrogen-bonded dimers was estimated to be ∼2 % in the supersonic jet, which is about fifteen times higher than the theoretical value. PMID:21710523

  11. Profiles of the biosynthesis and metabolism of pyridine nucleotides in potatoes (Solanum tuberosum L.).

    PubMed

    Katahira, Riko; Ashihara, Hiroshi

    2009-12-01

    As part of a research program on nucleotide metabolism in potato tubers (Solanum tuberosum L.), profiles of pyridine (nicotinamide) metabolism were examined based on the in situ metabolic fate of radio-labelled precursors and the in vitro activities of enzymes. In potato tubers, [(3)H]quinolinic acid, which is an intermediate of de novo pyridine nucleotide synthesis, and [(14)C]nicotinamide, a catabolite of NAD, were utilised for pyridine nucleotide synthesis. The in situ tracer experiments and in vitro enzyme assays suggest the operation of multiple pyridine nucleotide cycles. In addition to the previously proposed cycle consisting of seven metabolites, we found a new cycle that includes newly discovered nicotinamide riboside deaminase which is also functional in potato tubers. This cycle bypasses nicotinamide and nicotinic acid; it is NAD --> nicotinamide mononucleotide --> nicotinamide riboside --> nicotinic acid riboside --> nicotinic acid mononucleotide --> nicotinic acid adenine dinucleotide --> NAD. Degradation of the pyridine ring was extremely low in potato tubers. Nicotinic acid glucoside is formed from nicotinic acid in potato tubers. Comparative studies of [carboxyl-(14)C]nicotinic acid metabolism indicate that nicotinic acid is converted to nicotinic acid glucoside in all organs of potato plants. Trigonelline synthesis from [carboxyl-(14)C]nicotinic acid was also found. Conversion was greater in green parts of plants, such as leaves and stem, than in underground parts of potato plants. Nicotinic acid utilised for the biosynthesis of these conjugates seems to be derived not only from the pyridine nucleotide cycle, but also from the de novo synthesis of nicotinic acid mononucleotide. PMID:19820966

  12. Nucleotide sequences 1986/1987

    SciTech Connect

    Not Available

    1987-01-01

    These eight volumes are the third annual published compendium of nucleic acid sequences included in the European Molecular Biology Laboratory Nucleotide Sequence Data Library and the GenBank Genetic Sequences Data Bank. Each volume surveys one or more subdivisions of the database. The volume subtitles are: Primates; Rodents; Other Vertebrates and Invertebrates, Plants and Organelles, Bacteria and Bacteriophage, Viruses, Structural RNA, Synthetic and Unannotated Sequences, and Database Directory and Master Indices.

  13. The Single Nucleotide Polymorphism Consortium

    NASA Technical Reports Server (NTRS)

    Morgan, Michael

    2003-01-01

    I want to discuss both the Single Nucleotide Polymorphism (SNP) Consortium and the Human Genome Project. I am afraid most of my presentation will be thin on law and possibly too high on rhetoric. Having been engaged in a personal and direct way with these issues as a trained scientist, I find it quite difficult to be always as objective as I ought to be.

  14. Structure-wise discrimination of adenine and guanine by proteins on the basis of their nonbonded interactions.

    PubMed

    Usha, S; Selvaraj, S

    2015-01-01

    We have analyzed the nonbonded interactions of the structurally similar moieties, adenine and guanine forming complexes with proteins. The results comprise (a) the amino acid-ligand atom preferences, (b) solvent accessibility of ligand atoms before and after complex formation with proteins, and (c) preferred amino acid residue atoms involved in the interactions. We have observed that the amino acid preferences involved in the hydrogen bonding interactions vary for adenine and guanine. The structural variation between the purine atoms is clearly reflected by their burial tendency in the solvent environment. Correlation of the mean amino acid preference values show the variation that exists between adenine and guanine preferences of all the amino acid residues. All our observations provide evidence for the discriminating nature of the proteins in recognizing adenine and guanine. PMID:25245205

  15. Nucleotides in neuroregeneration and neuroprotection.

    PubMed

    Miras-Portugal, M Teresa; Gomez-Villafuertes, Rosa; Gualix, Javier; Diaz-Hernandez, Juan Ignacio; Artalejo, Antonio R; Ortega, Felipe; Delicado, Esmerilda G; Perez-Sen, Raquel

    2016-05-01

    Brain injury generates the release of a multitude of factors including extracellular nucleotides, which exhibit bi-functional properties and contribute to both detrimental actions in the acute phase and also protective and reparative actions in the later recovery phase to allow neuroregeneration. A promising strategy toward restoration of neuronal function is based on activation of endogenous adult neural stem/progenitor cells. The implication of purinergic signaling in stem cell biology, including regulation of proliferation, differentiation, and cell death has become evident in the last decade. In this regard, current strategies of acute transplantation of ependymal stem/progenitor cells after spinal cord injury restore altered expression of P2X4 and P2X7 receptors and improve functional locomotor recovery. The expression of both receptors is transcriptionally regulated by Sp1 factor, which plays a key role in the startup of the transcription machinery to induce regeneration-associated genes expression. Finally, general signaling pathways triggered by nucleotide receptors in neuronal populations converge on several intracellular kinases, such as PI3K/Akt, GSK3 and ERK1,2, as well as the Nrf-2/heme oxigenase-1 axis, which specifically link them to neuroprotection. In this regard, regulation of dual specificity protein phosphatases can become novel mechanism of actions for nucleotide receptors that associate them to cell homeostasis regulation. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'. PMID:26359530

  16. Necessary relations for nucleotide frequencies.

    PubMed

    Sinclair, Robert

    2015-06-01

    Genome composition analysis of di-, tri- and tetra-nucleotide frequencies is known to be evolutionarily informative, and useful in metagenomic studies, where binning of raw sequence data is often an important first step. Patterns appearing in genome composition analysis may be due to evolutionary processes or purely mathematical relations. For example, the total number of dinucleotides in a sequence is equal to the sum of the individual totals of the sixteen types of dinucleotide, and this is entirely independent of any assumptions made regarding mutation or selection, or indeed any physical or chemical process. Before any statistical analysis can be attempted, a knowledge of all necessary mathematical relations is required. I show that 25% of di-, tri- and tetra-nucleotide frequencies can be written as simple sums and differences of the remainder. The vast majority of organisms have circular genomes, for which these relations are exact and necessary. In the case of linear molecules, the absolute error is very nearly zero, and does not grow with contiguous sequence length. As a result of the new, necessary relations presented here, the foundations of the statistical analysis of di-, tri- and tetra-nucleotide frequencies, and k-mer analysis in general, need to be revisited. PMID:25843217

  17. Monitoring potential molecular interactions of adenine with other amino acids using Raman spectroscopy and DFT modeling.

    PubMed

    Singh, Shweta; Donfack, P; Srivastava, Sunil K; Singh, Dheeraj K; Materny, A; Asthana, B P; Mishra, P C

    2015-10-01

    We report on the modes of inter-molecular interaction between adenine (Ade) and the amino acids: glycine (Gly), lysine (Lys) and arginine (Arg) using Raman spectroscopy of binary mixtures of adenine and each of the three amino acids at varying molar ratios in the spectral region 1550-550 cm(-1). We focused our attention on certain specific changes in the Raman bands of adenine arising due to its interaction with the amino acids. While the changes are less apparent in the Ade/Gly system, in the Ade/Lys or Ade/Arg systems, significant changes are observed, particularly in the Ade Raman bands that involve the amino group moiety and the N7 and N1 atoms of the purine ring. The ν(N1-C6), ν(N1-C2), δ(C8-H) and δ(N7-C8-N9) vibrations at 1486, 1332, 1253 and 948 cm(-1) show spectral changes on varying the Ade to amino acid molar ratio, the extent of variation being different for the three amino acids. This observation suggests a specific interaction mode between Ade and Lys or Arg, which is due to the hydrogen bonding. The measured spectral changes provide a clear indication that the interaction of Ade depends strongly on the structures of the amino acids, especially their side chains. Density functional theory (DFT) calculations were carried out to elucidate the most probable interaction modes of Ade with the different amino acids. PMID:25985129

  18. Selective self-assembly of adenine-silver nanoparticles forms rings resembling the size of cells.

    PubMed

    Choi, Sungmoon; Park, Soonyoung; Yang, Seon-Ah; Jeong, Yujin; Yu, Junhua

    2015-01-01

    Self-assembly has played critical roles in the construction of functional nanomaterials. However, the structure of the macroscale multicomponent materials built by the self-assembly of nanoscale building blocks is hard to predict due to multiple intermolecular interactions of great complexity. Evaporation of solvents is usually an important approach to induce kinetically stable assemblies of building blocks with a large-scale specific arrangement. During such a deweting process, we tried to monitor the possible interactions between silver nanoparticles and nucleobases at a larger scale by epifluorescence microscopy, thanks to the doping of silver nanoparticles with luminescent silver nanodots. ssDNA oligomer-stabilized silver nanoparticles and adenine self-assemble to form ring-like compartments similar to the size of modern cells. However, the silver ions only dismantle the self-assembly of adenine. The rings are thermodynamically stable as the drying process only enrich the nanoparticles-nucleobase mixture to a concentration that activates the self-assembly. The permeable membrane-like edge of the ring is composed of adenine filaments glued together by silver nanoparticles. Interestingly, chemicals are partially confined and accumulated inside the ring, suggesting that this might be used as a microreactor to speed up chemical reactions during a dewetting process. PMID:26643504

  19. Selective self-assembly of adenine-silver nanoparticles forms rings resembling the size of cells

    NASA Astrophysics Data System (ADS)

    Choi, Sungmoon; Park, Soonyoung; Yang, Seon-Ah; Jeong, Yujin; Yu, Junhua

    2015-12-01

    Self-assembly has played critical roles in the construction of functional nanomaterials. However, the structure of the macroscale multicomponent materials built by the self-assembly of nanoscale building blocks is hard to predict due to multiple intermolecular interactions of great complexity. Evaporation of solvents is usually an important approach to induce kinetically stable assemblies of building blocks with a large-scale specific arrangement. During such a deweting process, we tried to monitor the possible interactions between silver nanoparticles and nucleobases at a larger scale by epifluorescence microscopy, thanks to the doping of silver nanoparticles with luminescent silver nanodots. ssDNA oligomer-stabilized silver nanoparticles and adenine self-assemble to form ring-like compartments similar to the size of modern cells. However, the silver ions only dismantle the self-assembly of adenine. The rings are thermodynamically stable as the drying process only enrich the nanoparticles-nucleobase mixture to a concentration that activates the self-assembly. The permeable membrane-like edge of the ring is composed of adenine filaments glued together by silver nanoparticles. Interestingly, chemicals are partially confined and accumulated inside the ring, suggesting that this might be used as a microreactor to speed up chemical reactions during a dewetting process.

  20. Selective self-assembly of adenine-silver nanoparticles forms rings resembling the size of cells

    PubMed Central

    Choi, Sungmoon; Park, Soonyoung; Yang, Seon-Ah; Jeong, Yujin; Yu, Junhua

    2015-01-01

    Self-assembly has played critical roles in the construction of functional nanomaterials. However, the structure of the macroscale multicomponent materials built by the self-assembly of nanoscale building blocks is hard to predict due to multiple intermolecular interactions of great complexity. Evaporation of solvents is usually an important approach to induce kinetically stable assemblies of building blocks with a large-scale specific arrangement. During such a deweting process, we tried to monitor the possible interactions between silver nanoparticles and nucleobases at a larger scale by epifluorescence microscopy, thanks to the doping of silver nanoparticles with luminescent silver nanodots. ssDNA oligomer-stabilized silver nanoparticles and adenine self-assemble to form ring-like compartments similar to the size of modern cells. However, the silver ions only dismantle the self-assembly of adenine. The rings are thermodynamically stable as the drying process only enrich the nanoparticles-nucleobase mixture to a concentration that activates the self-assembly. The permeable membrane-like edge of the ring is composed of adenine filaments glued together by silver nanoparticles. Interestingly, chemicals are partially confined and accumulated inside the ring, suggesting that this might be used as a microreactor to speed up chemical reactions during a dewetting process. PMID:26643504

  1. Stability Constants of Mixed Ligand Complexes of Nickel(II) with Adenine and Some Amino Acids

    PubMed Central

    Türkel, Naciye

    2015-01-01

    Nickel is one of the essential trace elements found in biological systems. It is mostly found in nickel-based enzymes as an essential cofactor. It forms coordination complexes with amino acids within enzymes. Nickel is also present in nucleic acids, though its function in DNA or RNA is still not clearly understood. In this study, complex formation tendencies of Ni(II) with adenine and certain L-amino acids such as aspartic acid, glutamic acid, asparagine, leucine, phenylalanine, and tryptophan were investigated in an aqueous medium. Potentiometric equilibrium measurements showed that both binary and ternary complexes of Ni(II) form with adenine and the above-mentioned L-amino acids. Ternary complexes of Ni(II)-adenine-L-amino acids are formed by stepwise mechanisms. Relative stabilities of the ternary complexes are compared with those of the corresponding binary complexes in terms of Δlog10⁡K, log10⁡X, and % RS values. It was shown that the most stable ternary complex is Ni(II):Ade:L-Asn while the weakest one is Ni(II):Ade:L-Phe in aqueous solution used in this research. In addition, results of this research clearly show that various binary and ternary type Ni(II) complexes are formed in different concentrations as a function of pH in aqueous solution. PMID:26843852

  2. Unusual folded conformation of nicotinamide adenine dinucleotide bound to flavin reductase P.

    PubMed Central

    Tanner, J. J.; Tu, S. C.; Barbour, L. J.; Barnes, C. L.; Krause, K. L.

    1999-01-01

    The 2.1 A resolution crystal structure of flavin reductase P with the inhibitor nicotinamide adenine dinucleotide (NAD) bound in the active site has been determined. NAD adopts a novel, folded conformation in which the nicotinamide and adenine rings stack in parallel with an inter-ring distance of 3.6 A. The pyrophosphate binds next to the flavin cofactor isoalloxazine, while the stacked nicotinamide/adenine moiety faces away from the flavin. The observed NAD conformation is quite different from the extended conformations observed in other enzyme/NAD(P) structures; however, it resembles the conformation proposed for NAD in solution. The flavin reductase P/NAD structure provides new information about the conformational diversity of NAD, which is important for understanding catalysis. This structure offers the first crystallographic evidence of a folded NAD with ring stacking, and it is the first enzyme structure containing an FMN cofactor interacting with NAD(P). Analysis of the structure suggests a possible dynamic mechanism underlying NADPH substrate specificity and product release that involves unfolding and folding of NADP(H). PMID:10493573

  3. Chemical evolution: The mechanism of the formation of adenine under prebiotic conditions

    PubMed Central

    Roy, Debjani; Najafian, Katayoun; von Ragué Schleyer, Paul

    2007-01-01

    Fundamental building blocks of life have been detected extraterrestrially, even in interstellar space, and are known to form nonenzymatically. Thus, the HCN pentamer, adenine (a base present in DNA and RNA), was first isolated in abiogenic experiments from an aqueous solution of ammonia and HCN in 1960. Although many variations of the reaction conditions giving adenine have been reported since then, the mechanistic details remain unexplored. Our predictions are based on extensive computations of sequences of reaction steps along several possible mechanistic routes. H2O- or NH3-catalyzed pathways are more favorable than uncatalyzed neutral or anionic alternatives, and they may well have been the major source of adenine on primitive earth. Our report provides a more detailed understanding of some of the chemical processes involved in chemical evolution, and a partial answer to the fundamental question of molecular biogenesis. Our investigation should trigger similar explorations of the detailed mechanisms of the abiotic formation of the remaining nucleic acid bases and other biologically relevant molecules. PMID:17951429

  4. An experimental and theoretical vibrational study of interaction of adenine and thymine with artificial seawaters: A prebiotic chemistry experiment

    NASA Astrophysics Data System (ADS)

    Anizelli, Pedro R.; Baú, João P. T.; Nabeshima, Henrique S.; da Costa, Marcello F.; de Santana, Henrique; Zaia, Dimas A. M.

    Nucleic acid bases play important roles in living beings. Thus, their interaction with salts the prebiotic Earth could be an important issue for the understanding of origin of life. In this study, the effect of pH and artificial seawaters on the structure of adenine and thymine was studied via parallel determinations using FT-IR, Raman spectroscopy and theoretical calculations. Thymine and adenine lyophilized in solutions at basic and acidic conditions showed characteristic bands of the enol-imino tautomer due to the deprotonation and the hydrochloride form due to protonation, respectively. The interaction of thymine and adenine with different seawaters representative of different geological periods on Earth was also studied. In the case of thymine a strong interaction with Sr2+ promoted changes in the Raman and infrared spectra. For adenine changes in infrared and Raman spectra were observed in the presence of salts from all seawaters tested. The experimental results were compared to theoretical calculations, which showed structural changes due to the presence of ions Na+, Mg2+, Ca2+ and Sr2+ of artificial seawaters. For thymine the bands arising from C4dbnd C5 and C6dbnd O stretching were shifted to lower values, and for adenine, a new band at 1310 cm-1 was observed. The reactivity of adenine and thymine was studied by comparing changes in nucleophilicity and energy of the HOMO orbital.

  5. Ozone therapy ameliorates tubulointerstitial inflammation by regulating TLR4 in adenine-induced CKD rats.

    PubMed

    Chen, Zhiyuan; Liu, Xiuheng; Yu, Gang; Chen, Hui; Wang, Lei; Wang, Zhishun; Qiu, Tao; Weng, Xiaodong

    2016-06-01

    Tubulointerstitium inflammation is a common pathway aggravating chronic kidney disease (CKD) progression and the mechanism is partly associated with excessive activation of toll-like receptor 4 (TLR4) in tubulointerstitium. Ozone therapy is demonstrated to alleviate inflammation in some experiments. The aim of this study is to examine whether ozone therapy could ameliorate chronic tubulointerstitium inflammation by suppressing TLR4 in adenine-induced CKD rats. Sprague-Dawley rats were fed with 0.75% adenine-containing diet to induce CKD and tubulointerstitium inflammation injury. Ozone therapy (1.1 mg/kg) was simultaneously administrated by rectal insufflations (i.r.). After 4 weeks, serum and kidney samples were collected for detection. Renal function and systemic electrolyte were detected. Renal pathological changes were assessed by hematoxylin-eosin (H&E) staining and Masson trichrome (MT) staining. Immunohistochemistry, Western blot and Real-time PCR were applied to evaluate tubulointerstitium inflammation as well as the expression of TLR4 and phosphorylated nuclear factor kappa B P65 (p-NF-κB P65) in rats. The results showed ozone therapy improved serious renal insufficiency, systemic electrolyte disorder and tubulointerstitium morphology damages in adenine-induced CKD rats. In addition, ozone therapy suppressed excessive activation of TLR4 and p-NF-κB P65 in the tubulointerstitium of adenine-induced CKD rats, accompanied by the reduction of inflammation-related cytokines including monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6). The protein expression of TLR4 was positively correlated with the protein expression levels of MCP-1 (r = 0.7863, p < 0.01) and TNF-α (r = 0.7547, p < 0.01) in CKD rats. These findings indicated ozone therapy could attenuate tubulointerstitium inflammation injury in adenine-induced CKD rats and the mechanism might associate with the

  6. Undetectable levels of N6-methyl adenine in mouse DNA: Cloning and analysis of PRED28, a gene coding for a putative mammalian DNA adenine methyltransferase.

    PubMed

    Ratel, David; Ravanat, Jean-Luc; Charles, Marie-Pierre; Platet, Nadine; Breuillaud, Lionel; Lunardi, Joël; Berger, François; Wion, Didier

    2006-05-29

    Three methylated bases, 5-methylcytosine, N4-methylcytosine and N6-methyladenine (m6A), can be found in DNA. However, to date, only 5-methylcytosine has been detected in mammalian genomes. To reinvestigate the presence of m6A in mammalian DNA, we used a highly sensitive method capable of detecting one N6-methyldeoxyadenosine per million nucleosides. Our results suggest that the total mouse genome contains, if any, less than 10(3) m6A. Experiments were next performed on PRED28, a putative mammalian N6-DNA methyltransferase. The murine PRED28 encodes two alternatively spliced RNA. However, although recombinant PRED28 proteins are found in the nucleus, no evidence for an adenine-methyltransferase activity was detected. PMID:16684535

  7. Effects of Nicotinamide Adenine Dinucleotide (NAD(+)) and Diadenosine Tetraphosphate (Ap4A) on Electrical Activity of Working and Pacemaker Atrial Myocardium in Guinea Pigs.

    PubMed

    Pustovit, K B; Abramochkin, D V

    2016-04-01

    Effects of nucleotide polyphosphate compounds (nicotinamide adenine dinucleotide, NAD(+); diadenosine tetraphosphate, Ap4A) on the confi guration of action potentials were studied in isolated preparations of guinea pig sinoatrial node and right atrial appendage (auricle). In the working myocardium, NAD(+) and Ap4A in concentrations of 10(-5) and 10(-4) M had no effect on resting potential, but significantly reduced the duration of action potentials; the most pronounced decrease was found at 25% repolarization. In the primary pacemaker of the sinoatrial node, both concentrations of NAD(+) and Ap4A induced hyperpolarization and reduction in the rate of slow diastolic depolarization, but significant slowing of the sinus rhythm was produced by these substances only in the concentration of 10(-4) M. Moreover, AP shortening and marked acceleration of AP upstroke were observed in the pacemaker myocardium after application of polyphosphates. Comparative analysis of the effects of NAD(+) and Ap4A in the working and pacemaker myocardium drove us to a hypothesis on inhibitory effects of these substances on L-type calcium current accompanied by stimulation of one or several potassium currents, which induce enhancement of repolarization and hyperpolarization of membranes probably mediated by the activation of purine receptors. PMID:27165058

  8. The importance of helix P1 stability for structural pre-organization and ligand binding affinity of the adenine riboswitch aptamer domain

    PubMed Central

    Nozinovic, Senada; Reining, Anke; Kim, Yong-Boum; Noeske, Jonas; Schlepckow, Kai; Wöhnert, Jens; Schwalbe, Harald

    2014-01-01

    We report here an in-depth characterization of the aptamer domain of the transcriptional adenine-sensing riboswitch (pbuE) by NMR and fluorescence spectroscopy. By NMR studies, the structure of two aptamer sequences with different lengths of the helix P1, the central element involved in riboswitch conformational switching, was characterized. Hydrogen-bond interactions could be mapped at nucleotide resolution providing information about secondary and tertiary structure, structure homogeneity and dynamics. Our study reveals that the elongation of helix P1 has pronounced effects not only on the local but on the global structure of the apo aptamer domain. The structural differences induced by stabilizing helix P1 were found to be linked to changes of the ligand binding affinity as revealed from analysis of kinetic and thermodynamic data obtained from stopped-flow fluorescence studies. The results provide new insight into the sequence-dependent fine tuning of the structure and function of purine-sensing riboswitches. PMID:24921630

  9. Insights into the Influence of Nucleotides on Actin Family Proteins from Seven Structures of Arp2/3 Complex

    SciTech Connect

    Nolen,B.; Pollard, T.

    2007-01-01

    ATP is required for nucleation of actin filament branches by Arp2/3 complex, but the influence of ATP binding and hydrolysis are poorly understood. We determined crystal structures of bovine Arp2/3 complex cocrystalized with various bound adenine nucleotides and cations. Nucleotide binding favors closure of the nucleotide binding cleft of Arp3, but no large scale conformational changes in the complex. Thus, ATP binding does not directly activate Arp2/3 complex, but is part of a network of interactions that contribute to nucleation. We compared nucleotide-induced conformational changes of residues lining the cleft in Arp3 and actin structures to construct a movie depicting the proposed ATPase cycle for the actin family. Chemical crosslinking stabilized subdomain 1 of Arp2, revealing new electron density for 69 residues in this subdomain. Steric clashes with Arp3 appear to be responsible for intrinsic disorder of subdomains 1 and 2 of Arp2 in inactive Arp2/3 complex.

  10. Nucleotide sequence of the fadR gene, a multifunctional regulator of fatty acid metabolism in Escherichia coli.

    PubMed Central

    DiRusso, C C

    1988-01-01

    The Escherichia coli fadR gene is a multifunctional regulator of fatty acid and acetate metabolism. In the present work the nucleotide sequence of the 1.3 kb DNA fragment which encodes FadR has been determined. The coding sequence of the fadR gene is 714 nucleotides long and is preceded by a typical E. coli ribosome binding site and is followed by a sequence predicted to be sufficient for factor-independent chain termination. Primer extension experiments demonstrated that the transcription of the fadR gene initiates with an adenine nucleotide 33 nucleotides upstream from the predicted start of translation. The derived fadR peptide has a calculated molecular weight of 26,972. This is in reasonable agreement with the apparent molecular weight of 29,000 previously estimated on the basis of maxi-cell analysis of plasmid encoded proteins. There is a segment of twenty amino acids within the predicted peptide which resembles the DNA recognition and binding site of many transcriptional regulatory proteins. Images PMID:2843809

  11. Running out of time: the decline of channel activity and nucleotide activation in adenosine triphosphate-sensitive K-channels

    PubMed Central

    Proks, Peter; Puljung, Michael C.; Vedovato, Natascia; Sachse, Gregor; Mulvaney, Rachel; Ashcroft, Frances M.

    2016-01-01

    KATP channels act as key regulators of electrical excitability by coupling metabolic cues—mainly intracellular adenine nucleotide concentrations—to cellular potassium ion efflux. However, their study has been hindered by their rapid loss of activity in excised membrane patches (rundown), and by a second phenomenon, the decline of activation by Mg-nucleotides (DAMN). Degradation of PI(4,5)P2 and other phosphoinositides is the strongest candidate for the molecular cause of rundown. Broad evidence indicates that most other determinants of rundown (e.g. phosphorylation, intracellular calcium, channel mutations that affect rundown) also act by influencing KATP channel regulation by phosphoinositides. Unfortunately, experimental conditions that reproducibly prevent rundown have remained elusive, necessitating post hoc data compensation. Rundown is clearly distinct from DAMN. While the former is associated with pore-forming Kir6.2 subunits, DAMN is generally a slower process involving the regulatory sulfonylurea receptor (SUR) subunits. We speculate that it arises when SUR subunits enter non-physiological conformational states associated with the loss of SUR nucleotide-binding domain dimerization following prolonged exposure to nucleotide-free conditions. This review presents new information on both rundown and DAMN, summarizes our current understanding of these processes and considers their physiological roles. This article is part of the themed issue ‘Evolution brings Ca2+ and ATP together to control life and death’. PMID:27377720

  12. Running out of time: the decline of channel activity and nucleotide activation in adenosine triphosphate-sensitive K-channels.

    PubMed

    Proks, Peter; Puljung, Michael C; Vedovato, Natascia; Sachse, Gregor; Mulvaney, Rachel; Ashcroft, Frances M

    2016-08-01

    KATP channels act as key regulators of electrical excitability by coupling metabolic cues-mainly intracellular adenine nucleotide concentrations-to cellular potassium ion efflux. However, their study has been hindered by their rapid loss of activity in excised membrane patches (rundown), and by a second phenomenon, the decline of activation by Mg-nucleotides (DAMN). Degradation of PI(4,5)P2 and other phosphoinositides is the strongest candidate for the molecular cause of rundown. Broad evidence indicates that most other determinants of rundown (e.g. phosphorylation, intracellular calcium, channel mutations that affect rundown) also act by influencing KATP channel regulation by phosphoinositides. Unfortunately, experimental conditions that reproducibly prevent rundown have remained elusive, necessitating post hoc data compensation. Rundown is clearly distinct from DAMN. While the former is associated with pore-forming Kir6.2 subunits, DAMN is generally a slower process involving the regulatory sulfonylurea receptor (SUR) subunits. We speculate that it arises when SUR subunits enter non-physiological conformational states associated with the loss of SUR nucleotide-binding domain dimerization following prolonged exposure to nucleotide-free conditions. This review presents new information on both rundown and DAMN, summarizes our current understanding of these processes and considers their physiological roles.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'. PMID:27377720

  13. An asparagine residue mediates intramolecular communication in nucleotide-regulated pyrophosphatase.

    PubMed

    Anashkin, Viktor A; Salminen, Anu; Vorobjeva, Natalia N; Lahti, Reijo; Baykov, Alexander A

    2016-07-15

    Many prokaryotic soluble PPases (pyrophosphatases) contain a pair of regulatory adenine nucleotide-binding CBS (cystathionine β-synthase) domains that act as 'internal inhibitors' whose effect is modulated by nucleotide binding. Although such regulatory domains are found in important enzymes and transporters, the underlying regulatory mechanism has only begun to come into focus. We reported previously that CBS domains bind nucleotides co-operatively and induce positive kinetic co-operativity (non-Michaelian behaviour) in CBS-PPases (CBS domain-containing PPases). In the present study, we demonstrate that a homodimeric ehPPase (Ethanoligenens harbinense PPase) containing an inherent mutation in an otherwise conserved asparagine residue in a loop near the active site exhibits non-co-operative hydrolysis kinetics. A similar N312S substitution in 'co-operative' dhPPase (Desulfitobacterium hafniense PPase) abolished kinetic co-operativity while causing only minor effects on nucleotide-binding affinity and co-operativity. However, the substitution reversed the effect of diadenosine tetraphosphate, abolishing kinetic co-operativity in wild-type dhPPase, but restoring it in the variant dhPPase. A reverse serine-to-asparagine replacement restored kinetic co-operativity in ehPPase. Molecular dynamics simulations revealed that the asparagine substitution resulted in a change in the hydrogen-bonding pattern around the asparagine residue and the subunit interface, allowing greater flexibility at the subunit interface without a marked effect on the overall structure. These findings identify this asparagine residue as lying at the 'crossroads' of information paths connecting catalytic and regulatory domains within a subunit and catalytic sites between subunits. PMID:27208172

  14. 6MAP, a fluorescent adenine analogue, is a probe of base flipping by DNA photolyase.

    PubMed

    Yang, Kongsheng; Matsika, Spiridoula; Stanley, Robert J

    2007-09-01

    Cyclobutylpyrimidine dimers (CPDs) are formed between adjacent pyrimidines in DNA when it absorbs ultraviolet light. CPDs can be directly repaired by DNA photolyase (PL) in the presence of visible light. How PL recognizes and binds its substrate is still not well understood. Fluorescent nucleic acid base analogues are powerful probes of DNA structure. We have used the fluorescent adenine analogue 6MAP, a pteridone, to probe the local double helical structure of the CPD substrate when bound by photolyase. Duplex melting temperatures were obtained by both UV-vis absorption and fluorescence spectroscopies to ascertain the effect of the probe and the CPD on DNA stability. Steady-state fluorescence measurements of 6MAP-containing single-stranded and doubled-stranded oligos with and without protein show that the local region around the CPD is significantly disrupted. 6MAP shows a different quenching pattern compared to 2-aminopurine, another important adenine analogue, although both probes show that the structure of the complementary strand opposing the 5'-side of the CPD lesion is more destacked than that opposing the 3'-side in substrate/protein complexes. We also show that 6MAP/CPD duplexes are substrates for PL. Vertical excitation energies and transition dipole moment directions for 6MAP were calculated using time-dependent density functional theory. Using these results, the Förster resonance energy transfer efficiency between the individual adenine analogues and the oxidized flavin cofactor was calculated to account for the observed intensity pattern. These calculations suggest that energy transfer is highly efficient for the 6MAP probe and less so for the 2Ap probe. However, no experimental evidence for this process was observed in the steady-state emission spectra. PMID:17696385

  15. Fragmentation of the adenine and guanine molecules induced by electron collisions

    SciTech Connect

    Minaev, B. F. E-mail: boris@theochem.kth.se; Shafranyosh, M. I.; Svida, Yu. Yu; Sukhoviya, M. I.; Shafranyosh, I. I.; Baryshnikov, G. V.; Minaeva, V. A.

    2014-05-07

    Secondary electron emission is the most important stage in the mechanism of radiation damage to DNA biopolymers induced by primary ionizing radiation. These secondary electrons ejected by the primary electron impacts can produce further ionizations, initiating an avalanche effect, leading to genome damage through the energy transfer from the primary objects to sensitive biomolecular targets, such as nitrogenous bases, saccharides, and other DNA and peptide components. In this work, the formation of positive and negative ions of purine bases of nucleic acids (adenine and guanine molecules) under the impact of slow electrons (from 0.1 till 200 eV) is studied by the crossed electron and molecular beams technique. The method used makes it possible to measure the molecular beam intensity and determine the total cross-sections for the formation of positive and negative ions of the studied molecules, their energy dependences, and absolute values. It is found that the maximum cross section for formation of the adenine and guanine positive ions is reached at about 90 eV energy of the electron beam and their absolute values are equal to 2.8 × 10{sup −15} and 3.2 × 10{sup −15} cm{sup 2}, respectively. The total cross section for formation of the negative ions is 6.1 × 10{sup −18} and 7.6 × 10{sup −18} cm{sup 2} at the energy of 1.1 eV for adenine and guanine, respectively. The absolute cross-section values for the molecular ions are measured and the cross-sections of dissociative ionization are determined. Quantum chemical calculations are performed for the studied molecules, ions and fragments for interpretation of the crossed beams experiments.

  16. Purine salvage in Methanocaldococcus jannaschii: Elucidating the role of a conserved cysteine in adenine deaminase.

    PubMed

    Miller, Danielle V; Brown, Anne M; Xu, Huimin; Bevan, David R; White, Robert H

    2016-06-01

    Adenine deaminases (Ade) and hypoxanthine/guanine phosphoribosyltransferases (Hpt) are widely distributed enzymes involved in purine salvage. Characterization of the previously uncharacterized Ade (MJ1459 gene product) and Hpt (MJ1655 gene product) are discussed here and provide insight into purine salvage in Methanocaldococcus jannaschii. Ade was demonstrated to use either Fe(II) and/or Mn(II) as the catalytic metal. Hpt demonstrated no detectable activity with adenine, but was equally specific for hypoxanthine and guanine with a kcat /KM of 3.2 × 10(7) and 3.0 × 10(7) s(- 1) M(- 1) , respectively. These results demonstrate that hypoxanthine and IMP are the central metabolites in purine salvage in M. jannaschii for AMP and GMP production. A conserved cysteine (C127, M. jannaschii numbering) was examined due to its high conservation in bacterial and archaeal homologues. To assess the role of this highly conserved cysteine in M. jannaschii Ade, site-directed mutagenesis was performed. It was determined that mutation to serine (C127S) completely abolished Ade activity and mutation to alanine (C127A) exhibited 10-fold decrease in kcat over the wild type Ade. To further investigate the role of C127, detailed molecular docking and dynamics studies were performed and revealed adenine was unable to properly orient in the active site in the C127A and C127S Ade model structures due to distinct differences in active site conformation and rotation of D261. Together this work illuminates purine salvage in M. jannaschii and the critical role of a cysteine residue in maintaining active site conformation of Ade. Proteins 2016; 84:828-840. © 2016 Wiley Periodicals, Inc. PMID:26990095

  17. The effect of pi-stacking, h-bonding, and electrostatic interactions on the ionization energies of nucleic acid bases: adenine-adenine, thymine-thymine and adenine-thymine dimers

    SciTech Connect

    Bravaya, Ksenia B.; Kostko, Oleg; Ahmed, Musahid; Krylov, Anna I.

    2009-09-02

    A combined theoretical and experimental study of the ionized dimers of thymine and adenine, TT, AA, and AT, is presented. Adiabatic and vertical ionization energies(IEs) for monomers and dimers as well as thresholds for the appearance of the protonated species are reported and analyzed. Non-covalent interactions stronglyaffect the observed IEs. The magnitude and the nature of the effect is different for different isomers of the dimers. The computations reveal that for TT, the largestchanges in vertical IEs (0.4 eV) occur in asymmetric h-bonded and symmetric pi- stacked isomers, whereas in the lowest-energy symmetric h-bonded dimer the shiftin IEs is much smaller (0.1 eV). The origin of the shift and the character of the ionized states is different in asymmetric h-bonded and symmetric stacked isomers. Inthe former, the initial hole is localized on one of the fragments, and the shift is due to the electrostatic stabilization of the positive charge of the ionized fragment by thedipole moment of the neutral fragment. In the latter, the hole is delocalized, and the change in IE is proportional to the overlap of the fragments' MOs. The shifts in AAare much smaller due to a less effcient overlap and a smaller dipole moment. The ionization of the h-bonded dimers results in barrierless (or nearly barrierless) protontransfer, whereas the pi-stacked dimers relax to structures with the hole stabilized by the delocalization or electrostatic interactions.

  18. Nucleotide sequence and genome organization of Dweet mottle virus and its relationship to members of the family Betaflexiviridae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The nucleotide sequence of Dweet mottle virus (DMV) was determined and compared to sequences of members of the family Alpha- and Beta-flexiviridae. The DMV genome has 8747 nucleotides (nt) excluding the poly-(A) tail at the 3’ end of the genome. The overall G+C content of DMV genomic RNA is 40%. D...

  19. Activation of AMP-Activated Protein Kinase by Adenine Alleviates TNF-Alpha-Induced Inflammation in Human Umbilical Vein Endothelial Cells.

    PubMed

    Cheng, Yi-Fang; Young, Guang-Huar; Lin, Jiun-Tsai; Jang, Hyun-Hwa; Chen, Chin-Chen; Nong, Jing-Yi; Chen, Po-Ku; Kuo, Cheng-Yi; Kao, Shao-Hsuan; Liang, Yao-Jen; Chen, Han-Min

    2015-01-01

    The AMP-activated protein kinase (AMPK) signaling system plays a key role in cellular stress by repressing the inflammatory responses induced by the nuclear factor-kappa B (NF-κB) system. Previous studies suggest that the anti-inflammatory role of AMPK involves activation by adenine, but the mechanism that allows adenine to produce these effects has not yet been elucidated. In human umbilical vein endothelial cells (HUVECs), adenine was observed to induce the phosphorylation of AMPK in both a time- and dose-dependent manner as well as its downstream target acetyl Co-A carboxylase (ACC). Adenine also attenuated NF-κB targeting of gene expression in a dose-dependent manner and decreased monocyte adhesion to HUVECs following tumor necrosis factor (TNF-α) treatment. The short hairpin RNA (shRNA) against AMPK α1 in HUVECs attenuated the adenine-induced inhibition of NF-κB activation in response to TNF-α, thereby suggesting that the anti-inflammatory role of adenine is mediated by AMPK. Following the knockdown of adenosyl phosphoribosyl transferase (APRT) in HUVECs, adenine supplementation failed to induce the phosphorylation of AMPK and ACC. Similarly, the expression of a shRNA against APRT nullified the anti-inflammatory effects of adenine in HUVECs. These results suggested that the role of adenine as an AMPK activator is related to catabolism by APRT, which increases the cellular AMP levels to activate AMPK. PMID:26544976

  20. Sample preparation workflow for the liquid chromatography tandem mass spectrometry based analysis of nicotinamide adenine dinucleotide phosphate cofactors in yeast.

    PubMed

    Ortmayr, Karin; Nocon, Justyna; Gasser, Brigitte; Mattanovich, Diethard; Hann, Stephan; Koellensperger, Gunda

    2014-08-01

    The accurate quantification of the highly unstable intracellular cofactor nicotinamide adenine dinucleotide phosphate in its oxidized and reduced forms demands a thorough evaluation of the analytical workflow and dedicated methods reflecting their solution chemistry as well as the biological importance of their ratio. In this work, we present a workflow for the analysis of intracellular levels of oxidized and reduced nicotinamide adenine dinucleotide phosphate in the yeast Pichia pastoris, including hot aqueous extraction, chromatographic separation in reversed-phase conditions employing a 100% wettable stationary phase, and subsequent tandem mass spectrometric analysis. A thorough evaluation and optimization of the sample preparation procedure resulted in excellent biological repeatabilities (on average <10%, N = 3) without employing an internal standardization approach. As a consequence, the methodology proved to be appropriate for the relative assessment of intracellular levels of oxidized and reduced nicotinamide adenine dinucleotide phosphate in different P. pastoris strains. The ratio of reduced versus oxidized nicotinamide adenine dinucleotide phosphate was significantly higher in an engineered strain overexpressing glucose-6-phosphate dehydrogenase than in the corresponding wildtype strain. Interestingly, a difference was also observed in the nicotinamide adenine dinucleotide phosphate pool size, which was significantly higher in the wildtype than in the modified strain. PMID:24841212

  1. Synthesis, spectroscopic, structural and thermal characterizations of vanadyl(IV) adenine complex prospective as antidiabetic drug agent

    NASA Astrophysics Data System (ADS)

    El-Megharbel, Samy M.; Hamza, Reham Z.; Refat, Moamen S.

    2015-01-01

    The vanadyl(IV) adenine complex; [VO(Adn)2]ṡSO4; was synthesized and characterized. The molar conductivity of this complex was measured in DMSO solution that showed an electrolyte nature. Spectroscopic investigation of the green solid complex studied here indicate that the adenine acts as a bidentate ligand, coordinated to vanadyl(IV) ions through the nitrogen atoms N7 and nitrogen atom of amino group. Thus, from the results presented the vanadyl(IV) complex has square pyramid geometry. Further characterizations using thermal analyses and scanning electron techniques was useful. The aim of this paper was to introduce a new drug model for the diabetic complications by synthesized a novel mononuclear vanadyl(IV) adenine complex to mimic insulin action and reducing blood sugar level. The antidiabetic ability of this complex was investigated in STZ-induced diabetic mice. The results suggested that VO(IV)/adenine complex has antidiabetic activity, it improved the lipid profile, it improved liver and kidney functions, also it ameliorated insulin hormone and blood glucose levels. The vanadyl(IV) complex possesses an antioxidant activity and this was clear through studying SOD, CAT, MDA, GSH and methionine synthase. The current results support the therapeutic potentiality of vanadyl(IV)/adenine complex for the management and treatment of diabetes.

  2. Simultaneous Determination of Adenine and Guanine Using Cadmium Selenide Quantum Dots-Graphene Oxide Nanocomposite Modified Electrode.

    PubMed

    Kalaivani, Arumugam; Narayanan, Sangilimuthu Sriman

    2015-06-01

    A novel electrochemical sensor was fabricated by immobilizing Cadmium Selenide Quantum Dots (CdSe QDs)-Graphene Oxide (GO) nanocomposite on a paraffin wax impregnated graphite electrode (PIGE) and was used for the simultaneous determination of adenine and guanine. The CdSe QDs-GO nanocomposite was prepared by ultrasonication and was characterized with spectroscopic and microscopic techniques. The nanocomposite modified electrode was characterized by cyclic voltammetry (CV). The modified electrode showed excellent electrocatalytic activity towards the oxidative determination of adenine and guanine with a good peak separation of 0.31 V. This may be due to the high surface area and fast electron transfer kinetics of the nanocomposite. The modified electrode exhibited wide linear ranges from 0.167 μM to 245 μM for Guanine and 0.083 μM to 291 μM for Adenine with detection limits of 0.055 μM Guanine and 0.028 μM of Adenine (S/N = 3) respectively. Further, the modified electrode was used for the quantitative determination of adenine and guanine in herring sperm DNA with satisfactory results. The modified electrode showed acceptable selectivity, reproducibility and stability under optimal conditions. PMID:26369099

  3. Synthesis, spectroscopic, structural and thermal characterizations of vanadyl(IV) adenine complex prospective as antidiabetic drug agent.

    PubMed

    El-Megharbel, Samy M; Hamza, Reham Z; Refat, Moamen S

    2015-01-25

    The vanadyl(IV) adenine complex; [VO(Adn)2]⋅SO4; was synthesized and characterized. The molar conductivity of this complex was measured in DMSO solution that showed an electrolyte nature. Spectroscopic investigation of the green solid complex studied here indicate that the adenine acts as a bidentate ligand, coordinated to vanadyl(IV) ions through the nitrogen atoms N7 and nitrogen atom of amino group. Thus, from the results presented the vanadyl(IV) complex has square pyramid geometry. Further characterizations using thermal analyses and scanning electron techniques was useful. The aim of this paper was to introduce a new drug model for the diabetic complications by synthesized a novel mononuclear vanadyl(IV) adenine complex to mimic insulin action and reducing blood sugar level. The antidiabetic ability of this complex was investigated in STZ-induced diabetic mice. The results suggested that VO(IV)/adenine complex has antidiabetic activity, it improved the lipid profile, it improved liver and kidney functions, also it ameliorated insulin hormone and blood glucose levels. The vanadyl(IV) complex possesses an antioxidant activity and this was clear through studying SOD, CAT, MDA, GSH and methionine synthase. The current results support the therapeutic potentiality of vanadyl(IV)/adenine complex for the management and treatment of diabetes. PMID:25150436

  4. Comparative Study between Transcriptionally- and Translationally-Acting Adenine Riboswitches Reveals Key Differences in Riboswitch Regulatory Mechanisms

    PubMed Central

    Blouin, Simon; Heppell, Benoit; Bastet, Laurène; St-Pierre, Patrick; Massé, Eric; Lafontaine, Daniel A.

    2011-01-01

    Many bacterial mRNAs are regulated at the transcriptional or translational level by ligand-binding elements called riboswitches. Although they both bind adenine, the adenine riboswitches of Bacillus subtilis and Vibrio vulnificus differ by controlling transcription and translation, respectively. Here, we demonstrate that, beyond the obvious difference in transcriptional and translational modulation, both adenine riboswitches exhibit different ligand binding properties and appear to operate under different regulation regimes (kinetic versus thermodynamic). While the B. subtilis pbuE riboswitch fully depends on co-transcriptional binding of adenine to function, the V. vulnificus add riboswitch can bind to adenine after transcription is completed and still perform translation regulation. Further investigation demonstrates that the rate of transcription is critical for the B. subtilis pbuE riboswitch to perform efficiently, which is in agreement with a co-transcriptional regulation. Our results suggest that the nature of gene regulation control, that is transcription or translation, may have a high importance in riboswitch regulatory mechanisms. PMID:21283784

  5. Energy efficiency trade-offs drive nucleotide usage in transcribed regions.

    PubMed

    Chen, Wei-Hua; Lu, Guanting; Bork, Peer; Hu, Songnian; Lercher, Martin J

    2016-01-01

    Efficient nutrient usage is a trait under universal selection. A substantial part of cellular resources is spent on making nucleotides. We thus expect preferential use of cheaper nucleotides especially in transcribed sequences, which are often amplified thousand-fold compared with genomic sequences. To test this hypothesis, we derive a mutation-selection-drift equilibrium model for nucleotide skews (strand-specific usage of 'A' versus 'T' and 'G' versus 'C'), which explains nucleotide skews across 1,550 prokaryotic genomes as a consequence of selection on efficient resource usage. Transcription-related selection generally favours the cheaper nucleotides 'U' and 'C' at synonymous sites. However, the information encoded in mRNA is further amplified through translation. Due to unexpected trade-offs in the codon table, cheaper nucleotides encode on average energetically more expensive amino acids. These trade-offs apply to both strand-specific nucleotide usage and GC content, causing a universal bias towards the more expensive nucleotides 'A' and 'G' at non-synonymous coding sites. PMID:27098217

  6. Energy efficiency trade-offs drive nucleotide usage in transcribed regions

    PubMed Central

    Chen, Wei-Hua; Lu, Guanting; Bork, Peer; Hu, Songnian; Lercher, Martin J.

    2016-01-01

    Efficient nutrient usage is a trait under universal selection. A substantial part of cellular resources is spent on making nucleotides. We thus expect preferential use of cheaper nucleotides especially in transcribed sequences, which are often amplified thousand-fold compared with genomic sequences. To test this hypothesis, we derive a mutation-selection-drift equilibrium model for nucleotide skews (strand-specific usage of ‘A' versus ‘T' and ‘G' versus ‘C'), which explains nucleotide skews across 1,550 prokaryotic genomes as a consequence of selection on efficient resource usage. Transcription-related selection generally favours the cheaper nucleotides ‘U' and ‘C' at synonymous sites. However, the information encoded in mRNA is further amplified through translation. Due to unexpected trade-offs in the codon table, cheaper nucleotides encode on average energetically more expensive amino acids. These trade-offs apply to both strand-specific nucleotide usage and GC content, causing a universal bias towards the more expensive nucleotides ‘A' and ‘G' at non-synonymous coding sites. PMID:27098217

  7. Dietary nucleotides protect against alcoholic liver injury by attenuating inflammation and regulating gut microbiota in rats.

    PubMed

    Cai, Xiaxia; Bao, Lei; Wang, Nan; Ren, Jinwei; Chen, Qihe; Xu, Meihong; Li, Di; Mao, Ruixue; Li, Yong

    2016-06-15

    Nucleotides have been reported to be effective in attenuating liver damage and regulating gut microbiota. However, the protective effect of nucleotides against alcoholic liver injury remains unknown. The present study aims to investigate whether nucleotides ameliorate alcoholic liver injury and explores the possible mechanism. Male Wistar rats were given alcohol, equivalent distilled water or an isocaloric amount of dextrose intragastrically twice daily for up to 6 weeks respectively. Two subgroups of alcohol-treated rats were fed with a nucleotide-supplemented AIN-93G rodent diet. Serum enzymes, inflammatory cytokines and microbiota composition of the caecum content were evaluated. We found that nucleotides could significantly decrease serum alanine aminotransferase and aspartate aminotransferase, plasma lipopolysaccharide and inflammatory cytokine levels. Sequencing of 16S rRNA genes revealed that nucleotide-treated rats showed a higher abundance of Firmicutes and a lower abundance of Bacteroidetes than alcohol-treated rats. Moreover, nucleotide treatment inhibited the protein expression of toll-like receptor 4, CD14 and repressed the phosphorylation of inhibitor kappa Bα and nuclear factor-κB p65 in the liver. These results suggested that nucleotides suppressed the inflammatory response and regulated gut microbiota in alcoholic liver injury. The partial inhibition of lipopolysaccharide - toll-like receptor 4-nuclear factor-κB p65 signaling in the liver may be attributed to this mechanism. PMID:27247978

  8. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, David B.; Lao, Guifang

    1998-01-01

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium.

  9. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, D.B.; Lao, G.

    1998-01-06

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium. 3 figs.

  10. Trichomonas vaginalis NTPDase and ecto-5'-nucleotidase hydrolyze guanine nucleotides and increase extracellular guanosine levels under serum restriction.

    PubMed

    Menezes, Camila Braz; Durgante, Juliano; de Oliveira, Rafael Rodrigues; Dos Santos, Victor Hugo Jacks Mendes; Rodrigues, Luiz Frederico; Garcia, Solange Cristina; Dos Santos, Odelta; Tasca, Tiana

    2016-05-01

    Trichomonas vaginalis is the aethiologic agent of trichomoniasis, the most common non-viral sexually transmitted disease in the world. The purinergic signaling pathway is mediated by extracellular nucleotides and nucleosides that are involved in many biological effects as neurotransmission, immunomodulation and inflammation. Extracellular nucleotides can be hydrolyzed by a family of enzymes known as ectonucleotidases including the ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases) family which hydrolyses nucleosides triphosphate and diphosphate as preferential substrates and ecto-5'-nucleotidase which catalyzes the conversion of monophosphates into nucleosides. In T. vaginalis the E-NTPDase and ecto-5'-nucleotidase activities upon adenine nucleotides have already been characterized in intact trophozoites but little is known concerning guanine nucleotides and nucleoside. These enzymes may exert a crucial role on nucleoside generation, providing the purine sources for the synthesis de novo of these essential nutrients, sustaining parasite growth and survival. In this study, we investigated the hydrolysis profile of guanine-related nucleotides and nucleoside in intact trophozoites from long-term-grown and fresh clinical isolates of T. vaginalis. Knowing that guanine nucleotides are also substrates for T. vaginalis ectoenzymes, we evaluated the profile of nucleotides consumption and guanosine uptake in trophozoites submitted to a serum limitation condition. Results show that guanine nucleotides (GTP, GDP, GMP) were substrates for T. vaginalis ectonucleotidases, with expected kinetic parameters for this enzyme family. Different T. vaginalis isolates (two from the ATCC and nine fresh clinical isolates) presented a heterogeneous hydrolysis profile. The serum culture condition increased E-NTPDase and ecto-5'-nucleotidase activities with high consumption of extracellular GTP generating enhanced GDP, GMP and guanosine levels as demonstrated by HPLC, with final

  11. Mosaic organization of DNA nucleotides

    NASA Technical Reports Server (NTRS)

    Peng, C. K.; Buldyrev, S. V.; Havlin, S.; Simons, M.; Stanley, H. E.; Goldberger, A. L.

    1994-01-01

    Long-range power-law correlations have been reported recently for DNA sequences containing noncoding regions. We address the question of whether such correlations may be a trivial consequence of the known mosaic structure ("patchiness") of DNA. We analyze two classes of controls consisting of patchy nucleotide sequences generated by different algorithms--one without and one with long-range power-law correlations. Although both types of sequences are highly heterogenous, they are quantitatively distinguishable by an alternative fluctuation analysis method that differentiates local patchiness from long-range correlations. Application of this analysis to selected DNA sequences demonstrates that patchiness is not sufficient to account for long-range correlation properties.

  12. Nucleotide excision repair in humans.

    PubMed

    Spivak, Graciela

    2015-12-01

    The demonstration of DNA damage excision and repair replication by Setlow, Howard-Flanders, Hanawalt and their colleagues in the early 1960s, constituted the discovery of the ubiquitous pathway of nucleotide excision repair (NER). The serial steps in NER are similar in organisms from unicellular bacteria to complex mammals and plants, and involve recognition of lesions, adducts or structures that disrupt the DNA double helix, removal of a short oligonucleotide containing the offending lesion, synthesis of a repair patch copying the opposite undamaged strand, and ligation, to restore the DNA to its original form. The transcription-coupled repair (TCR) subpathway of NER, discovered nearly two decades later, is dedicated to the removal of lesions from the template DNA strands of actively transcribed genes. In this review I will outline the essential factors and complexes involved in NER in humans, and will comment on additional factors and metabolic processes that affect the efficiency of this important process. PMID:26388429

  13. Nucleotides critical for the interaction of the Streptococcus pyogenes Mga virulence regulator with Mga-regulated promoter sequences.

    PubMed

    Hause, Lara L; McIver, Kevin S

    2012-09-01

    The Mga regulator of Streptococcus pyogenes directly activates the transcription of a core regulon that encodes virulence factors such as M protein (emm), C5a peptidase (scpA), and streptococcal inhibitor of complement (sic) by directly binding to a 45-bp binding site as determined by an electrophoretic mobility shift assay (EMSA) and DNase I protection. However, by comparing the nucleotide sequences of all established Mga binding sites, we found that they exhibit only 13.4% identity with no discernible symmetry. To determine the core nucleotides involved in functional Mga-DNA interactions, the M1T1 Pemm1 binding site was altered and screened for nucleotides important for DNA binding in vitro and for transcriptional activation using a plasmid-based luciferase reporter in vivo. Following this analysis, 34 nucleotides within the Pemm1 binding site that had an effect on Mga binding, Mga-dependent transcriptional activation, or both were identified. Of these critical nucleotides, guanines and cytosines within the major groove were disproportionately identified clustered at the 5' and 3' ends of the binding site and with runs of nonessential adenines between the critical nucleotides. On the basis of these results, a Pemm1 minimal binding site of 35 bp bound Mga at a level comparable to the level of binding of the larger 45-bp site. Comparison of Pemm with directed mutagenesis performed in the M1T1 Mga-regulated PscpA and Psic promoters, as well as methylation interference analysis of PscpA, establish that Mga binds to DNA in a promoter-specific manner. PMID:22773785

  14. Paramagnetic Effects on Nuclear Relaxation in Enzyme-Bound Co(II)-Adenine Nucleotide Complexes: Relative Contributions of Dipolar and Scalar Interactions

    NASA Astrophysics Data System (ADS)

    Ray, Bruce D.; Jarori, Gotam K.; Nageswara Rao, B. D.

    1999-01-01

    31P NMR measurements on CoADP bound to creatine kinase designed to estimate the relative contribution of scalar and dipolar interactions to31P spin relaxation rates show that these rates are primarily due to distance-dependent dipolar interactions and that the contribution of the scalar interaction is negligible.

  15. Activation of human neutrophil nicotinamide adenine dinucleotide phosphate, reduced (triphosphopyridine nucleotide, reduced) oxidase by arachidonic acid in a cell-free system.

    PubMed Central

    Curnutte, J T

    1985-01-01

    Sonicates from unstimulated human neutrophils produce no measurable superoxide since the superoxide-generating enzyme, NADPH oxidase, is inactive in these preparations. Previous attempts to activate the oxidase in disrupted cells with conventional neutrophil stimuli have been unsuccessful. This report describes a cell-free system in which arachidonic acid (82 microM) was able to activate superoxide generation that was dependent upon the presence of NADPH and the sonicate. For activation to occur, both the particulate and supernatant fractions of the sonicate must be present. Calcium ions, which are required for activation of intact neutrophils by arachidonate, were not necessary in the cell-free system. In quantitative terms, the superoxide-generating activity in the cell-free system could account for at least 20-50% of the superoxide rate observed in intact neutrophils stimulated with arachidonate. Sonicates from patients with chronic granulomatous disease (CGD) could not be activated by arachidonic acid in the cell-free system. In three patients representing both genetic forms of CGD, the defect appeared to reside in the particulate fraction. The soluble cofactor was normal in all three patients and could be used to activate normal neutrophil pellets in the presence of arachidonic acid. Thus, at least a portion of the activation mechanism in the neutrophil, that residing in the soluble phase, appeared to be normal in patients with CGD. PMID:2987311

  16. In vitro studies of immunoglobulin heavy-chain binding protein (BiP, GRP78). Interactions of BiP with newly synthesized proteins and adenine nucleotides

    SciTech Connect

    Kassenbrock, C.K.

    1988-01-01

    Here we examine the interaction of BiP with newly synthesized polypeptides in an in vitro protein translations-translocation system. We find that BiP forms tight complexes with nonglycosylated yeast invertase and incorrectly disulfide-bonded prolactin but not with glycosylated invertase or correctly disulfide-bonded prolactin. Moreover, BiP associates detectably only with completed chains of prolactin, not with chains undergoing synthesis. We conclude that BiP recognizes and binds with high affinity to aberrantly folded or aberrantly glycosylated polypeptides in vitro, but not to all nascent chains as they are folding. BiP also binds APT and can be purified by APT affinity chromatography. We show that submicromolar levels of ATP or ADP decrease the rate of absorption of {sup 125}I-BiP to nitrocellulose filters coated with protein or nonionic detergents. ATP and ADP also protect portions of BiP from proteolytic degradation. In contrast, micromolar levels of AMP increase the rate of adsorption and the rate of proteolytic degradation of BiP. We also show that an ATPase activity co-purifies with BiP, but its slow turnover number suggests a regulatory, rather than a functional role. The BiP-associated ATPase shares several properties with the related cytoplasmic protein, HSC70/clathrin uncoating ATPase.

  17. Ternary Copper(II) Complexes in Solution[1,2] Formed With 8-Aza Derivatives of the Antiviral Nucleotide Analogue 9-[2-(Phosphonomethoxy)Ethyl]Adenine (PMEA)

    PubMed Central

    Gómez-Coca, Raquel B.; Kapinos, Larisa E.; Holý, Antonín; Vilaplana, Rosario A.; González-Vílchez, Francisco

    2000-01-01

    The stability constants of the mixed-ligand complexes formed between Cu(Arm)2+, where Arm= 2,2'-bipyridine (Bpy) or 1,10-phenanthroline (Phen), and the dianions of 9-[2-(phosphonomethoxy)ethyl]-8-azaadenine (9,8aPMEA) and 8-[2-(phosphonomethoxy)ethyl]-8-azaadenine (8,8aPMEA) (both also abbreviated as PA2-) were determined by potentiometric pH titrations in aqueous solution (25 °C; I = 0.1 M, NaNO3). All four ternary Cu(Arm)(PA) complexes are considerably more stable than corresponding Cu(Arm)(R-PO3) species, where R-PO32- represents a phosph(on)ate ligand with a group R that is unable to participate in any kind of interaction within the complexes. The increased stability is attributed to intramolecular stack formation in the Cu(Arm)(PA) complexes and also to the formation of 5-membered chelates involving the ether oxygen present in the -CH2-O-CH2-PO32- residue of the azaPMEAs. A quantitative analysis of the intramolecular equilibria involving three structurally different Cu(Arm)(PA) species is carried out. For example, about 5% of the Cu(Bpy)(8,8aPMEA) system exist with the metal ion solely coordinated to the phosphonate group, 14% as a 5-membered chelate involving the -CH2-O-CH2-PO32-residue, and 81% with an intramolecular stack between the 8-azapurine moiety and the aromatic rings of Bpy. The results for the other systems are similar though with Phen a formation degree of about 90% for the intramolecular stack is reached. The existence of the stacked species is also proven by spectrophotometric measurements. In addition, the Cu(Arm)(PA) complexes may be protonated, leading to Cu(Arm)(H;PA)+ species for which it is concluded that the proton is located at the phosphonate group and that the complexes are mainly formed by a stacking adduct between Cu(Arm)2+ and H(PA)-. Conclusions regarding the biological properties of these azaPMEAs are shortly indicated. PMID:18475963

  18. The hydrolysis of extracellular adenine nucleotides by cultured endothelial cells from pig aorta. Feed-forward inhibition of adenosine production at the cell surface.

    PubMed

    Gordon, E L; Pearson, J D; Slakey, L L

    1986-11-25

    The time course of the extracellular reaction sequence ATP----ADP----AMP----adenosine has been examined during recirculation of substrate solutions over cultured pig aortic endothelial cells attached to polystyrene beads. This permits the study of reactions at volume to cell surface ratios approaching those of small blood vessels. When endothelial cells were presented with an initial bolus of ATP, high concentrations of the intermediates ADP and AMP developed before significant conversion of AMP to adenosine occurred. Further, the higher the initial ATP concentration, the slower the conversion of AMP to adenosine. Kinetic constants for each reaction were estimated by fitting simulated reaction curves to observed time courses. Apparent Km values estimated in this way agreed well with those reported for initial velocity measurements (ATPase = 300 microM; ADPase = 240 microM; and 5'-nucleotidase = 26 microM). The ratio of maximum velocities was ATPase:ADPase:AMPase = 6:1.5:1, with absolute values varying among cell batches. The data could only be fitted if the model incorporated inhibition of 5'-nucleotidase by ATP or ADP, and satisfactory fitting was achieved with a Ki value for ADP of 5 microM. These kinetic properties maximize the time separation of the intermediate pools. In vivo, at sites of platelet degranulation, they would create a time gap proportional to the size of the initial release between release of ADP (a proaggregatory milieu) and the appearance of adenosine (an anti-aggregatory milieu). PMID:3023320

  19. Time evolution of the Infrared Laser Induced Breakdown Spectroscopy of DNA bases Guanine and Adenine

    NASA Astrophysics Data System (ADS)

    Diaz, L.; Rubio, L.; Camacho, J. J.

    2013-03-01

    Laser-Induced Breakdown Spectroscopy (LIBS) of DNA bases Guanine and Adenine was studied using a high-power CO2 pulsed laser ( λ=10.591 μm, τ FWHM=64 ns and fluences ranging from 25 to 70 J/cm2). The strong emission of the adenine and guanine plasma, collected using a high-resolution spectrometer, at medium-vacuum conditions (4 Pa) and at 1 mm from the target, exhibits excited molecular bands of CN (B2 Σ +-X2 Σ +) and excited neutral H and ionized N+ and C+. The medium-weak emission is due to excited species C2+, C3+, N, O, O+, O2+ and molecular band systems of C2(d3\\varPig{-}a3\\varPiu; D1\\varSigmau+{-}X1\\varSigmag+), OH(A2 Σ +-X2 Π), NH(A3 Π-X3 Σ -), CH(A2 Π-X2 Π), N2+(B2\\varSigmau+{-} X2\\varSigmag+) and N2(C3 Π u-B3 Π g). We focus our attention on the temporal evolution of different atomic/ionic and molecular species. The velocity distributions for various (different) species were obtained from time-of-flight (TOF) measurements. Intensities of some lines from C+ were used for determining electron temperature and their Stark-broadened profiles were employed to estimate the temporal evolution of electron density.

  20. Quantitative investigation of the poly-adenine DNA dissociation from the surface of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Lu, Weiwen; Wang, Lihua; Li, Jiang; Zhao, Yun; Zhou, Ziang; Shi, Jiye; Zuo, Xiaolei; Pan, Dun

    2015-05-01

    In recent years, poly adenine (polyA) DNA functionalized gold nanoparticles (AuNPs) free of modifications was fabricated with high density of DNA attachment and high hybridization ability similar to those of its thiolated counterpart. This nanoconjugate utilized poly adenine as an anchoring block for binding with the AuNPs surface thereby facilitated the appended recognition block a better upright conformation for hybridization, demonstrating its great potential to be a tunable plasmonic biosensor. It’s one of the key points for any of the practical applications to maintaining stable conjugation between DNA oligonucleotides and gold nanoparticles under various experimental treatments. Thus, in this research, we designed a simple but sensitive fluorescence turn-on strategy to systematically investigate and quantified the dissociation of polyA DNA on gold nanoparticles in diverse experimental conditions. DNA desorbed spontaneously as a function of elevated temperature, ion strength, buffer pH, organic solvents and keeping time. What’s more, evaluating this conjugate stability as affected by the length of its polyA anchor was another crucial aspect in our study. With the improved understanding from these results, we were able to control some of our experimental conditions to maintain a good stability of this kind of polyA DNA-AuNPs nanoconjugates.

  1. Molecular basis for the recognition of methylated adenines in RNA by the eukaryotic YTH domain

    PubMed Central

    Luo, Shukun; Tong, Liang

    2014-01-01

    Methylation of the N6 position of selected internal adenines (m6A) in mRNAs and noncoding RNAs is widespread in eukaryotes, and the YTH domain in a collection of proteins recognizes this modification. We report the crystal structure of the splicing factor YT521-B homology (YTH) domain of Zygosaccharomyces rouxii MRB1 in complex with a heptaribonucleotide with an m6A residue in the center. The m6A modification is recognized by an aromatic cage, being sandwiched between a Trp and Tyr residue and with the methyl group pointed toward another Trp residue. Mutations of YTH domain residues in the RNA binding site can abolish the formation of the complex, confirming the structural observations. These residues are conserved in the human YTH proteins that also bind m6A RNA, suggesting a conserved mode of recognition. Overall, our structural and biochemical studies have defined the molecular basis for how the YTH domain functions as a reader of methylated adenines. PMID:25201973

  2. Molecular basis for the recognition of methylated adenines in RNA by the eukaryotic YTH domain.

    PubMed

    Luo, Shukun; Tong, Liang

    2014-09-23

    Methylation of the N6 position of selected internal adenines (m(6)A) in mRNAs and noncoding RNAs is widespread in eukaryotes, and the YTH domain in a collection of proteins recognizes this modification. We report the crystal structure of the splicing factor YT521-B homology (YTH) domain of Zygosaccharomyces rouxii MRB1 in complex with a heptaribonucleotide with an m(6)A residue in the center. The m(6)A modification is recognized by an aromatic cage, being sandwiched between a Trp and Tyr residue and with the methyl group pointed toward another Trp residue. Mutations of YTH domain residues in the RNA binding site can abolish the formation of the complex, confirming the structural observations. These residues are conserved in the human YTH proteins that also bind m(6)A RNA, suggesting a conserved mode of recognition. Overall, our structural and biochemical studies have defined the molecular basis for how the YTH domain functions as a reader of methylated adenines. PMID:25201973

  3. Development of bright fluorescent quadracyclic adenine analogues: TDDFT-calculation supported rational design

    PubMed Central

    Foller Larsen, Anders; Dumat, Blaise; Wranne, Moa S.; Lawson, Christopher P.; Preus, Søren; Bood, Mattias; Gradén, Henrik; Marcus Wilhelmsson, L.; Grøtli, Morten

    2015-01-01

    Fluorescent base analogues (FBAs) comprise a family of increasingly important molecules for the investigation of nucleic acid structure and dynamics. We recently reported the quantum chemical calculation supported development of four microenvironment sensitive analogues of the quadracyclic adenine (qA) scaffold, the qANs, with highly promising absorptive and fluorescence properties that were very well predicted by TDDFT calculations. Herein, we report on the efficient synthesis, experimental and theoretical characterization of nine novel quadracyclic adenine derivatives. The brightest derivative, 2-CNqA, displays a 13-fold increased brightness (εΦF = 4500) compared with the parent compound qA and has the additional benefit of being a virtually microenvironment-insensitive fluorophore, making it a suitable candidate for nucleic acid incorporation and use in quantitative FRET and anisotropy experiments. TDDFT calculations, conducted on the nine novel qAs a posteriori, successfully describe the relative fluorescence quantum yield and brightness of all qA derivatives. This observation suggests that the TDDFT-based rational design strategy may be employed for the development of bright fluorophores built up from a common scaffold to reduce the otherwise costly and time-consuming screening process usually required to obtain useful and bright FBAs. PMID:26227585

  4. Effect of Electronic Excitation on Hydrogen Atom Transfer (Tautomerization) Reactions for the DNA Base Adenine

    NASA Technical Reports Server (NTRS)

    Chaban, Galina M.; Salter, Latasha M.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Geometrical structures and energetic properties for four different tautomers of adenine are calculated in this study, using multi-configurational wave functions. Both the ground and the lowest single excited state potential energy surface are studied. The energetic order of the tautomers on the ground state potential surface is 9H less than 7H less than 3H less than 1H, while on the excited state surface this order is found to be different: 3H less than 1H less than 9H less than 7H. Minimum energy reaction paths are obtained for hydrogen atom transfer (9 yields 3 tautomerization) reactions in the ground and the lowest excited electronic state. It is found that the barrier heights and the shapes of the reaction paths are different for the ground and the excited electronic state, suggesting that the probability of such tautomerization reaction is higher on the excited state potential energy surface. The barrier for this reaction in the excited state may become very low in the presence of water or other polar solvent molecules, and therefore such tautomerization reaction may play an important role in the solution phase photochemistry of adenine.

  5. Development of bright fluorescent quadracyclic adenine analogues: TDDFT-calculation supported rational design

    NASA Astrophysics Data System (ADS)

    Foller Larsen, Anders; Dumat, Blaise; Wranne, Moa S.; Lawson, Christopher P.; Preus, Søren; Bood, Mattias; Gradén, Henrik; Marcus Wilhelmsson, L.; Grøtli, Morten

    2015-07-01

    Fluorescent base analogues (FBAs) comprise a family of increasingly important molecules for the investigation of nucleic acid structure and dynamics. We recently reported the quantum chemical calculation supported development of four microenvironment sensitive analogues of the quadracyclic adenine (qA) scaffold, the qANs, with highly promising absorptive and fluorescence properties that were very well predicted by TDDFT calculations. Herein, we report on the efficient synthesis, experimental and theoretical characterization of nine novel quadracyclic adenine derivatives. The brightest derivative, 2-CNqA, displays a 13-fold increased brightness (ɛΦF = 4500) compared with the parent compound qA and has the additional benefit of being a virtually microenvironment-insensitive fluorophore, making it a suitable candidate for nucleic acid incorporation and use in quantitative FRET and anisotropy experiments. TDDFT calculations, conducted on the nine novel qAs a posteriori, successfully describe the relative fluorescence quantum yield and brightness of all qA derivatives. This observation suggests that the TDDFT-based rational design strategy may be employed for the development of bright fluorophores built up from a common scaffold to reduce the otherwise costly and time-consuming screening process usually required to obtain useful and bright FBAs.

  6. 3D Magnetically Ordered Open Supramolecular Architectures Based on Ferrimagnetic Cu/Adenine/Hydroxide Heptameric Wheels.

    PubMed

    Pérez-Aguirre, Rubén; Beobide, Garikoitz; Castillo, Oscar; de Pedro, Imanol; Luque, Antonio; Pérez-Yáñez, Sonia; Rodríguez Fernández, Jesús; Román, Pascual

    2016-08-01

    The present work provides two new examples of supramolecular metal-organic frameworks consisting of three-dimensional extended noncovalent assemblies of wheel-shaped heptanuclear [Cu7(μ-H2O)6(μ3-OH)6(μ-adeninato-κN3:κN9)6](2+) entities. The heptanuclear entity consists of a central [Cu(OH)6](4-) core connected to six additional copper(II) metal centers in a radial and planar arrangement through the hydroxides. It generates a wheel-shaped entity in which water molecules and μ-κN3:κN9 adeninato ligands bridge the peripheral copper atoms. The magnetic characterization indicates the central copper(II) center is anti-ferromagnetically coupled to external copper(II) centers, which are ferromagnetically coupled among them leading to an S = 5/2 ground state. The packing of these entities is sustained by π-π stacking interactions between the adenine nucleobases and by hydrogen bonds established among the hydroxide ligands, sulfate anions, and adenine nucleobases. The sum of both types of supramolecular interactions creates a rigid synthon that in combination with the rigidity of the heptameric entity generates an open supramolecular structure (40-50% of available space) in which additional sulfate and triethylammonium ions are located altogether with solvent molecules. These compounds represent an interesting example of materials combining both porosity and magnetic relevant features. PMID:27409976

  7. Theoretical study on the static and dynamic first-order hyperpolarisabilities of adenine tautomers

    NASA Astrophysics Data System (ADS)

    Alparone, Andrea

    2014-07-01

    Static and dynamic electronic and vibrational first-order hyperpolarisabilities (β) of the lowest energy neutral adenine tautomers (amine forms A7 and A9) were obtained in gaseous and aqueous phases by using Hartree-Fock, Møller-Plesset second-order and fourth-order perturbation theory (MP2 and MP4-SDQ) and conventional and long-range corrected density functional theory methods with the Dunning's correlation-consistent cc-pVDZ, aug-cc-pVDZ, aug-cc-pVTZ and d-aug-cc-pVDZ basis sets. Frequency-dependent properties were calculated at the characteristic wavelength of the Nd:YAG laser (1064 nm) for the second harmonic generation and electro-optical Pockels effect nonlinear optical processes. Solvent effects were introduced under the polarised continuum model approximation. The electronic βe values of the investigated isomers are noticeably affected by the theoretical level, basis set and solvation. In vacuum, the static and dynamic βe values of A9 are greater than the corresponding data of A7, whereas the contribution of the solvent significantly enhances the hyperpolarisabilities of the A7 tautomer, resulting in βe(A9)/βe(A7) ratios between 0.5 and 0.6. The vibrational hyperpolarisabilities of the adenine tautomers are quite close to each other.

  8. Probing ultrafast dynamics in adenine with mid-UV four-wave mixing spectroscopies.

    PubMed

    West, Brantley A; Womick, Jordan M; Moran, Andrew M

    2011-08-11

    Heterodyne-detected transient grating (TG) and two-dimensional photon echo (2DPE) spectroscopies are extended to the mid-UV spectral range in this investigation of photoinduced relaxation processes of adenine in aqueous solution. These experiments are the first to combine a new method for generating 25 fs laser pulses (at 263 nm) with the passive phase stability afforded by diffractive optics-based interferometry. We establish a set of conditions (e.g., laser power density, solute concentration) appropriate for the study of dynamics involving the neutral solute. Undesired solute photoionization is shown to take hold at higher peak powers of the laser pulses. Signatures of internal conversion and vibrational cooling dynamics are examined using TG measurements with signal-to-noise ratios as high as 350 at short delay times. In addition, 2DPE line shapes reveal correlations between excitation and emission frequencies in adenine, which reflect electronic and nuclear relaxation processes associated with particular tautomers. Overall, this study demonstrates the feasibility of techniques that will hold many advantages for the study of biomolecules whose lowest-energy electronic resonances are found in the mid-UV (e.g., DNA bases, amino acids). PMID:21756005

  9. Ultraviolet photolysis of adenine: Dissociation via the {sup 1}{pi}{sigma}{sup *} state

    SciTech Connect

    Nix, Michael G. D.; Devine, Adam L.; Cronin, Brid; Ashfold, Michael N. R.

    2007-03-28

    High resolution total kinetic energy release (TKER) spectra of the H atom fragments resulting from photodissociation of jet-cooled adenine molecules at 17 wavelengths in the range 280>{lambda}{sub phot}>214 nm are reported. TKER spectra obtained at {lambda}{sub phot}>233 nm display broad, isotropic profiles that peak at low TKER ({approx}1800 cm{sup -1}) and are largely insensitive to the choice of excitation wavelength. The bulk of these products is attributed to unintended multiphoton dissociation processes. TKER spectra recorded at {lambda}{sub phot}{<=}233 nm display additional fast structure, which is attributed to N{sub 9}-H bond fission on the {sup 1}{pi}{sigma}{sup *} potential energy surface (PES). Analysis of the kinetic energies and recoil anisotropies of the H atoms responsible for the fast structure suggests excitation to two {sup 1}{pi}{pi}{sup *} excited states (the {sup 1}L{sub a} and {sup 1}B{sub b} states) at {lambda}{sub phot}{approx}230 nm, both of which dissociate to yield H atoms together with ground state adeninyl fragments by radiationless transfer through conical intersections with the {sup 1}{pi}{sigma}{sup *} PES. Parallels with the photochemistry exhibited by other, smaller heteroaromatics (pyrrole, imidazole, phenol, etc.) are highlighted, as are inconsistencies between the present conclusions and those reached in two other recent studies of excited state adenine molecules.

  10. Bacteriophage adenine methyltransferase: a life cycle regulator? Modelled using Vibrio harveyi myovirus like.

    PubMed

    Bochow, S; Elliman, J; Owens, L

    2012-11-01

    The adenine methyltransferase (DAM) gene methylates GATC sequences that have been demonstrated in various bacteria to be a powerful gene regulator functioning as an epigenetic switch, particularly with virulence gene regulation. However, overproduction of DAM can lead to mutations, giving rise to variability that may be important for adaptation to environmental change. While most bacterial hosts carry a DAM gene, not all bacteriophage carry this gene. Currently, there is no literature regarding the role DAM plays in life cycle regulation of bacteriophage. Vibrio campbellii strain 642 carries the bacteriophage Vibrio harveyi myovirus like (VHML) that has been proven to increase virulence. The complete genome sequence of VHML bacteriophage revealed a putative adenine methyltransferase gene. Using VHML, a new model of phage life cycle regulation, where DAM plays a central role between the lysogenic and lytic states, will be hypothesized. In short, DAM methylates the rha antirepressor gene and once methylation is removed, homologous CI repressor protein becomes repressed and non-functional leading to the switching to the lytic cycle. Greater understanding of life cycle regulation at the genetic level can, in the future, lead to the genesis of chimeric bacteriophage with greater control over their life cycle for their safe use as probiotics within the aquaculture industry. PMID:22681538

  11. Microwave-assisted stereospecific synthesis of novel tetrahydropyran adenine isonucleosides and crystal structures determination

    NASA Astrophysics Data System (ADS)

    Silva, Fábio P. L.; Cirqueira, Marilia L.; Martins, Felipe T.; Vasconcellos, Mário L. A. A.

    2013-11-01

    We describe in this article stereospecific syntheses for new isonucleosides analogs of adenine 5-7 from tosyl derivatives 2-4 accessing by microwave irradiations (50-80%). The adenine reacts entirely at the N(9) position. Compounds 2-4 were prepared in two steps from the corresponding alcohols 1, 8 and 9 (81-92%). These tetrahydropyrans alcohols 1, 8 and 9 are achiral (Meso compounds) and were prepared in two steps with complete control of 2,4,6-cis relative configuration by Prins cyclization reaction (60-63%) preceded by the Barbier reaction between allyl bromide with benzaldehyde, 4-fluorobenzaldehyde and 2-naphthaldehyde respectively under Lewis acid conditions (96-98%). The configurations and preferential conformations of 5-7 were determined by crystal structure of 6. These novel isonucleosides 5-7 present in silico potentiality to act as GPCR ligand, kinase inhibitor and enzyme inhibitor, evaluated by Molinspiration program, consistent with the expected antiviral and anticancer bioactivities.

  12. Nucleotide recognition by CopA, a Cu+-transporting P-type ATPase

    PubMed Central

    Tsuda, Takeo; Toyoshima, Chikashi

    2009-01-01

    Heavy metal pumps constitute a large subgroup in P-type ion-transporting ATPases. One of the outstanding features is that the nucleotide binding N-domain lacks residues critical for ATP binding in other well-studied P-type ATPases. Instead, they possess an HP-motif and a Gly-rich sequence in the N-domain, and their mutations impair ATP binding. Here, we describe 1.85 Å resolution crystal structures of the P- and N-domains of CopA, an archaeal Cu+-transporting ATPase, with bound nucleotides. These crystal structures show that CopA recognises the adenine ring completely differently from other P-type ATPases. The crystal structure of the His462Gln mutant, in the HP-motif, a disease-causing mutation in human Cu+-ATPases, shows that the Gln side chain mimics the imidazole ring, but only partially, explaining the reduction in ATPase activity. These crystal structures lead us to propose a role of the His and a mechanism for removing Mg2+ from ATP before phosphoryl transfer. PMID:19478797

  13. Age-related alterations in cyclic nucleotide phosphodiesterase activity in dystrophic mouse leg muscle.

    PubMed

    Bloom, Timothy J

    2005-11-01

    Previous reports have described both increased and decreased cyclic nucleotide phosphodiesterase (PDE) activity in dystrophic muscle. Total PDE activity was measured in hind leg muscle from a mouse model of Duchenne muscular dystrophy (mdx) and a genetic control strain at 5, 8, 10, and 15 weeks of age. Total PDE activity declined in fractions isolated from mdx muscle over this time period, but was stable in fractions from control mice. Compared with age-matched controls, younger mdx muscle had higher cAMP and cGMP PDE activity. However, at 15 weeks, fractions from both strains had similar cGMP PDE activity and mdx fractions had lower cAMP PDE activity than controls. Particulate fractions from mdx muscle showed an age-related decline in sensitivity to the PDE4 inhibitor RO 20-1724. A similar loss of sensitivity to the PDE2 inhibitor erythro-9-(2-hydroxyl-3-nonyl)-adenine (EHNA) was seen in a particulate fraction from mdx muscle and to a lesser degree in control muscle. These results suggest that the earlier disagreement regarding altered cyclic nucleotide metabolism in dystrophic muscle may be due to changes with age in PDE activity of dystrophic tissue. The age-related decline in particulate PDE activity seen in dystrophic muscle appears to be isozyme-specific and not due to a generalized decrease in total PDE activity. PMID:16391714

  14. Guanosine nucleotide precursor for flavinogenesis of Eremothecium Ashbyii.

    PubMed

    Mitsuda, H; Nakajima, K

    1975-01-01

    The purine precursor in the riboflavin biosynthetic pathway in Eremothecium ashbyii was examined using a guanine analogue, 8-azaguanine, with non-growing cell systems. 1. Riboflavin formation in the culture filtrate was determined at 0, 5, 10 and 20 hr after start of the incubation of the non-growing cells in the presence of xanthine or 8-azaguanine (1 mM, respectively). At 20 hr of incubation, the addition of xanthine stimulated riboflavin formation by 36% and the addition of 8-azaguanine inhibited the formation by 57%. 2. Acid soluble nucleotide pools in the cells were followed at 0, 5, 10 and 20 hr of the incubation period in the presence of xanthine or 8-azaguanine by means of anion exchange column chromatography. The result showed that the GTP pool changed markedly despite the fact that the adenosine nucleotide pool was almost constant irrespective of the presence or absence of these purines till 10 hr of incubation. But, the decrease of the former was overcome in part by the addition of flavinogenic xanthine. Furthermore, the total amounts of GTP and guanosine accumulated in cells in the presence of 8-azaguanine reached the maximum already at 5 hr, attaining a level twice as much as the GTP contents of the control. 3. The role of guanosine nucleotide pool in riboflavin formation was further examined using 8-azaguanine. In this experiment the drug was added to the suspension of non-growing cells at 3 hr or 6 hr after the incubation was started and the reaction was continued till the 12th hr. A more clear-cut correlationship between riboflavin formation and guanosine nucleotide pool was oberved by this experiment. The guanosine nucleotide pool (consisting of GMP, GDP and GTP) increased simultaneously with the inhibition of riboflavin formation. Of the guanosine nucleotides pools, the GMP pool increased 2.7 times above normal upon the addition of 8-azaguanine during the incubation for 6 hr and 5.3 fold for 9 hr. While, the GTP pool increased 1.9 fold above

  15. Valence anions in complexes of adenine and 9-methyladenine with formic acid: stabilization by intermolecular proton transfer.

    PubMed

    Mazurkiewicz, Kamil; Harańczyk, Maciej; Gutowski, Maciej; Rak, Janusz; Radisic, Dunja; Eustis, Soren N; Wang, Di; Bowen, Kit H

    2007-02-01

    Photoelectron spectra of adenine-formic acid (AFA(-)) and 9-methyladenine-formic acid (MAFA(-)) anionic complexes have been recorded with 2.540 eV photons. These spectra reveal broad features with maxima at 1.5-1.4 eV that indicate formation of stable valence anions in the gas phase. The neutral and anionic complexes of adenine/9-methyladenine and formic acid were also studied computationally at the B3LYP, second-order Møller-Plesset, and coupled-cluster levels of theory with the 6-31++G** and aug-cc-pVDZ basis sets. The neutral complexes form cyclic hydrogen bonds, and the most stable dimers are bound by 17.7 and 16.0 kcal/mol for AFA and MAFA, respectively. The theoretical results indicate that the excess electron in both AFA(-) and MAFA(-) occupies a pi* orbital localized on adenine/9-methyladenine, and the adiabatic stability of the most stable anions amounts to 0.67 and 0.54 eV for AFA(-) and MAFA(-), respectively. The attachment of the excess electron to the complexes induces a barrier-free proton transfer (BFPT) from the carboxylic group of formic acid to a N atom of adenine or 9-methyladenine. As a result, the most stable structures of the anionic complexes can be characterized as neutral radicals of hydrogenated adenine (9-methyladenine) solvated by a deprotonated formic acid. The BFPT to the N atoms of adenine may be biologically relevant because some of these sites are not involved in the Watson-Crick pairing scheme and are easily accessible in the cellular environment. We suggest that valence anions of purines might be as important as those of pyrimidines in the process of DNA damage by low-energy electrons. PMID:17263404

  16. Development of a new model for the induction of chronic kidney disease via intraperitoneal adenine administration, and the effect of treatment with gum acacia thereon.

    PubMed

    Al Za'abi, Mohammed; Al Busaidi, Mahfouda; Yasin, Javid; Schupp, Nicole; Nemmar, Abderrahim; Ali, Badreldin H

    2015-01-01

    Oral adenine (0.75% w/w in feed), is an established model for human chronic kidney disease (CKD). Gum acacia (GA) has been shown to be a nephroprotective agent in this model. Here we aimed at developing a new adenine-induced CKD model in rats via a systemic route (intraperitoneal, i.p.) and to test it with GA to obviate the possibility of a physical interaction between GA and adenine in the gut. Adenine was injected i.p. (50 or 100 mg/Kg for four weeks), and GA was given concomitantly in drinking water at a concentration of 15%, w/v. Several plasma and urinary biomarkers of oxidative stress were measured and the renal damage was assessed histopathologically. Adenine, at the two given i.p. doses, significantly reduced body weight, and increased relative kidney weight, water intake and urine output. It dose-dependently increased plasma and urinary inflammatory and oxidative stress biomarkers, and caused morphological and histological damage resembling that which has been reported with oral adenine. Concomitant treatment with GA significantly mitigated almost all the above measured indices. Administration of adenine i.p. induced CKD signs very similar to those induced by oral adenine. Therefore, this new model is quicker, more practical and accurate than the original (oral) model. GA ameliorates the CKD effects caused by adenine given i.p. suggesting that the antioxidant and anti-inflammatory properties possessed by oral GA are the main mechanism for its salutary action in adenine-induced CKD, an action that is independent of its possible interaction with adenine in the gut. PMID:25755826

  17. Development of a new model for the induction of chronic kidney disease via intraperitoneal adenine administration, and the effect of treatment with gum acacia thereon

    PubMed Central

    Al Za’abi, Mohammed; Al Busaidi, Mahfouda; Yasin, Javid; Schupp, Nicole; Nemmar, Abderrahim; Ali, Badreldin H

    2015-01-01

    Oral adenine (0.75% w/w in feed), is an established model for human chronic kidney disease (CKD). Gum acacia (GA) has been shown to be a nephroprotective agent in this model. Here we aimed at developing a new adenine-induced CKD model in rats via a systemic route (intraperitoneal, i.p.) and to test it with GA to obviate the possibility of a physical interaction between GA and adenine in the gut. Adenine was injected i.p. (50 or 100 mg/Kg for four weeks), and GA was given concomitantly in drinking water at a concentration of 15%, w/v. Several plasma and urinary biomarkers of oxidative stress were measured and the renal damage was assessed histopathologically. Adenine, at the two given i.p. doses, significantly reduced body weight, and increased relative kidney weight, water intake and urine output. It dose-dependently increased plasma and urinary inflammatory and oxidative stress biomarkers, and caused morphological and histological damage resembling that which has been reported with oral adenine. Concomitant treatment with GA significantly mitigated almost all the above measured indices. Administration of adenine i.p. induced CKD signs very similar to those induced by oral adenine. Therefore, this new model is quicker, more practical and accurate than the original (oral) model. GA ameliorates the CKD effects caused by adenine given i.p. suggesting that the antioxidant and anti-inflammatory properties possessed by oral GA are the main mechanism for its salutary action in adenine-induced CKD, an action that is independent of its possible interaction with adenine in the gut. PMID:25755826

  18. Nicotinic Acid Adenine Dinucleotide Phosphate Analogs Substituted on the Nicotinic Acid and Adenine Ribosides. Effects on Receptor-Mediated Ca2+ release

    PubMed Central

    Trabbic, Christopher J.; Zhang, Fan; Walseth, Timothy F.; Slama, James T.

    2015-01-01

    Nicotinic acid adenine dinucleotide phosphate (NAADP) is a Ca2+ releasing intracellular second messenger in both mammals and echinoderms. We report that large functionalized substituents introduced at the nicotinic acid 5-position are recognized by the sea urchin receptor, albeit with a 20–500 fold loss in agonist potency. 5-(3-Azidopropyl)-NAADP was shown to release Ca2+ with an EC50 of 31 µM and to compete with NAADP for receptor binding with an IC50 of 56 nM. Attachment of charged groups to the nicotinic acid of NAADP is associated with loss of activity, suggesting that the nicotinate riboside moiety is recognized as a neutral zwitterion. Substituents (Br- and N3-) can be introduced at the 8-adenosyl position of NAADP while preserving high potency and agonist efficacy and an NAADP derivative substituted at both the 5-position of the nicotinic acid and at the 8-adenosyl position was also recognized although the agonist potency was significantly reduced. PMID:25826221

  19. Long-range correlations in nucleotide sequences

    NASA Astrophysics Data System (ADS)

    Peng, C.-K.; Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Sciortino, F.; Simons, M.; Stanley, H. E.

    1992-03-01

    DNA SEQUENCES have been analysed using models, such as an it-step Markov chain, that incorporate the possibility of short-range nucleotide correlations1. We propose here a method for studying the stochastic properties of nucleotide sequences by constructing a 1:1 map of the nucleotide sequence onto a walk, which we term a 'DNA walk'. We then use the mapping to provide a quantitative measure of the correlation between nucleotides over long distances along the DNA chain. Thus we uncover in the nucleotide sequence a remarkably long-range power law correlation that implies a new scale-invariant property of DNA. We find such long-range correlations in intron-containing genes and in nontranscribed regulatory DNA sequences, but not in complementary DNA sequences or intron-less genes.

  20. Effects of nutrition (herbivore vs carnivore) on energy charge and nucleotide composition in Hyas araneus larvae

    NASA Astrophysics Data System (ADS)

    Harms, J.

    1992-03-01

    Growth rate expressed as dry weight, elemetnal composition (C, N, H), protein content and nucleotide composition (ATP, ADP, AMP, CTP, GTP and UTP) as well as adenosine were measured in laboratory cultured Hyas araneus larvae fed two different diets. One group was fed freshly hatched Artemia sp. nauplii, the other the diatom Odontella (Biddulphia) sinensis. Growth rate was reduced in the O. sinensis-fed group, reaching 20 to 50% of the growth rate of Artemia-fed larvae. In all cases, some further development to the next instar occurred when larvae were fed O. sinensis, although at reduced levels compared to Artemia-fed larvae. The adenylic energy charge was quite similar for the two nutritional conditions tested and therefore does not reflect the reduced growth rate in O. sinensis-fed larvae. The individual nucleotide content was clearly reduced in O. sinensis-fed larvae, reflecting the nutritional conditions already during early developmental periods. These reduced amount of nucleotides in O. sinensis-fed larvae were most obvious when adenylic nucleotide contents were pooled. Pooled adenylic nucleotides were found to be correlated with the individual content of carbon and protein, showing significant differences at both nutritional conditions tested.

  1. Automated Identification of Nucleotide Sequences

    NASA Technical Reports Server (NTRS)

    Osman, Shariff; Venkateswaran, Kasthuri; Fox, George; Zhu, Dian-Hui

    2007-01-01

    STITCH is a computer program that processes raw nucleotide-sequence data to automatically remove unwanted vector information, perform reverse-complement comparison, stitch shorter sequences together to make longer ones to which the shorter ones presumably belong, and search against the user s choice of private and Internet-accessible public 16S rRNA databases. ["16S rRNA" denotes a ribosomal ribonucleic acid (rRNA) sequence that is common to all organisms.] In STITCH, a template 16S rRNA sequence is used to position forward and reverse reads. STITCH then automatically searches known 16S rRNA sequences in the user s chosen database(s) to find the sequence most similar to (the sequence that lies at the smallest edit distance from) each spliced sequence. The result of processing by STITCH is the identification of the most similar well-described bacterium. Whereas previously commercially available software for analyzing genetic sequences operates on one sequence at a time, STITCH can manipulate multiple sequences simultaneously to perform the aforementioned operations. A typical analysis of several dozen sequences (length of the order of 103 base pairs) by use of STITCH is completed in a few minutes, whereas such an analysis performed by use of prior software takes hours or days.

  2. Modeling the high-energy electronic state manifold of adenine: Calibration for nonlinear electronic spectroscopy

    SciTech Connect

    Nenov, Artur Giussani, Angelo; Segarra-Martí, Javier; Jaiswal, Vishal K.; Rivalta, Ivan; Cerullo, Giulio; Mukamel, Shaul; Garavelli, Marco E-mail: marco.garavelli@ens-lyon.fr

    2015-06-07

    Pump-probe electronic spectroscopy using femtosecond laser pulses has evolved into a standard tool for tracking ultrafast excited state dynamics. Its two-dimensional (2D) counterpart is becoming an increasingly available and promising technique for resolving many of the limitations of pump-probe caused by spectral congestion. The ability to simulate pump-probe and 2D spectra from ab initio computations would allow one to link mechanistic observables like molecular motions and the making/breaking of chemical bonds to experimental observables like excited state lifetimes and quantum yields. From a theoretical standpoint, the characterization of the electronic transitions in the visible (Vis)/ultraviolet (UV), which are excited via the interaction of a molecular system with the incoming pump/probe pulses, translates into the determination of a computationally challenging number of excited states (going over 100) even for small/medium sized systems. A protocol is therefore required to evaluate the fluctuations of spectral properties like transition energies and dipole moments as a function of the computational parameters and to estimate the effect of these fluctuations on the transient spectral appearance. In the present contribution such a protocol is presented within the framework of complete and restricted active space self-consistent field theory and its second-order perturbation theory extensions. The electronic excited states of adenine have been carefully characterized through a previously presented computational recipe [Nenov et al., Comput. Theor. Chem. 1040–1041, 295-303 (2014)]. A wise reduction of the level of theory has then been performed in order to obtain a computationally less demanding approach that is still able to reproduce the characteristic features of the reference data. Foreseeing the potentiality of 2D electronic spectroscopy to track polynucleotide ground and excited state dynamics, and in particular its expected ability to provide

  3. Modeling the high-energy electronic state manifold of adenine: Calibration for nonlinear electronic spectroscopy.

    PubMed

    Nenov, Artur; Giussani, Angelo; Segarra-Martí, Javier; Jaiswal, Vishal K; Rivalta, Ivan; Cerullo, Giulio; Mukamel, Shaul; Garavelli, Marco

    2015-06-01

    Pump-probe electronic spectroscopy using femtosecond laser pulses has evolved into a standard tool for tracking ultrafast excited state dynamics. Its two-dimensional (2D) counterpart is becoming an increasingly available and promising technique for resolving many of the limitations of pump-probe caused by spectral congestion. The ability to simulate pump-probe and 2D spectra from ab initio computations would allow one to link mechanistic observables like molecular motions and the making/breaking of chemical bonds to experimental observables like excited state lifetimes and quantum yields. From a theoretical standpoint, the characterization of the electronic transitions in the visible (Vis)/ultraviolet (UV), which are excited via the interaction of a molecular system with the incoming pump/probe pulses, translates into the determination of a computationally challenging number of excited states (going over 100) even for small/medium sized systems. A protocol is therefore required to evaluate the fluctuations of spectral properties like transition energies and dipole moments as a function of the computational parameters and to estimate the effect of these fluctuations on the transient spectral appearance. In the present contribution such a protocol is presented within the framework of complete and restricted active space self-consistent field theory and its second-order perturbation theory extensions. The electronic excited states of adenine have been carefully characterized through a previously presented computational recipe [Nenov et al., Comput. Theor. Chem. 1040-1041, 295-303 (2014)]. A wise reduction of the level of theory has then been performed in order to obtain a computationally less demanding approach that is still able to reproduce the characteristic features of the reference data. Foreseeing the potentiality of 2D electronic spectroscopy to track polynucleotide ground and excited state dynamics, and in particular its expected ability to provide

  4. Modeling the high-energy electronic state manifold of adenine: Calibration for nonlinear electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Nenov, Artur; Giussani, Angelo; Segarra-Martí, Javier; Jaiswal, Vishal K.; Rivalta, Ivan; Cerullo, Giulio; Mukamel, Shaul; Garavelli, Marco

    2015-06-01

    Pump-probe electronic spectroscopy using femtosecond laser pulses has evolved into a standard tool for tracking ultrafast excited state dynamics. Its two-dimensional (2D) counterpart is becoming an increasingly available and promising technique for resolving many of the limitations of pump-probe caused by spectral congestion. The ability to simulate pump-probe and 2D spectra from ab initio computations would allow one to link mechanistic observables like molecular motions and the making/breaking of chemical bonds to experimental observables like excited state lifetimes and quantum yields. From a theoretical standpoint, the characterization of the electronic transitions in the visible (Vis)/ultraviolet (UV), which are excited via the interaction of a molecular system with the incoming pump/probe pulses, translates into the determination of a computationally challenging number of excited states (going over 100) even for small/medium sized systems. A protocol is therefore required to evaluate the fluctuations of spectral properties like transition energies and dipole moments as a function of the computational parameters and to estimate the effect of these fluctuations on the transient spectral appearance. In the present contribution such a protocol is presented within the framework of complete and restricted active space self-consistent field theory and its second-order perturbation theory extensions. The electronic excited states of adenine have been carefully characterized through a previously presented computational recipe [Nenov et al., Comput. Theor. Chem. 1040-1041, 295-303 (2014)]. A wise reduction of the level of theory has then been performed in order to obtain a computationally less demanding approach that is still able to reproduce the characteristic features of the reference data. Foreseeing the potentiality of 2D electronic spectroscopy to track polynucleotide ground and excited state dynamics, and in particular its expected ability to provide

  5. A DNA-templated silver nanocluster probe for label-free, turn-on fluorescence-based screening of homo-adenine binding molecules.

    PubMed

    Park, Ki Soo; Park, Hyun Gyu

    2015-02-15

    A novel, label-free, turn-on fluorescence strategy to detect molecules that bind to adenine-rich DNA sequences has been developed. The probe employs DNA-templated silver nanoclusters (DNA-AgNCs) as the key detection component. The new strategy relies on the formation of non-Watson-Crick homo-adenine DNA duplex, triggered by strong interactions with homo-adenine binding molecules, which brings a guanine-rich sequence in one strand close to DNA-AgNCs located on the opposite strand. This phenomenon transforms weakly fluorescent AgNCs into highly emissive species that display bright red fluorescence. Finally, we have shown that the new fluorescence turn-on strategy can be employed to detect coralyne, the most representative homo-adenine binding molecule that triggers formation of a non-Watson-Crick homo-adenine DNA duplex. PMID:25441410

  6. Fluorescent xDNA nucleotides as efficient substrates for a template-independent polymerase

    PubMed Central

    Jarchow-Choy, Sarah K.; Krueger, Andrew T.; Liu, Haibo; Gao, Jianmin; Kool, Eric T.

    2011-01-01

    Template independent polymerases, and terminal deoxynucleotidyl transferase (TdT) in particular, have been widely used in enzymatic labeling of DNA 3′-ends, yielding fluorescently-labeled polymers. The majority of fluorescent nucleotides used as TdT substrates contain tethered fluorophores attached to a natural nucleotide, and can be hindered by undesired fluorescence characteristics such as self-quenching. We previously documented the inherent fluorescence of a set of four benzo-expanded deoxynucleoside analogs (xDNA) that maintain Watson–Crick base pairing and base stacking ability; however, their substrate abilities for standard template-dependent polymerases were hampered by their large size. However, it seemed possible that a template-independent enzyme, due to lowered geometric constraints, might be less restrictive of nucleobase size. Here, we report the synthesis and study of xDNA nucleoside triphosphates, and studies of their substrate abilities with TdT. We find that this polymerase can incorporate each of the four xDNA monomers with kinetic efficiencies that are nearly the same as those of natural nucleotides, as measured by steady-state methods. As many as 30 consecutive monomers could be incorporated. Fluorescence changes over time could be observed in solution during the enzymatic incorporation of expanded adenine (dxATP) and cytosine (dxCTP) analogs, and after incorporation, when attached to a glass solid support. For (dxA)n polymers, monomer emission quenching and long-wavelength excimer emission was observed. For (dxC)n, fluorescence enhancement was observed in the polymer. TdT-mediated synthesis may be a useful approach for creating xDNA labels or tags on DNA, making use of the fluorescence and strong hybridization properties of the xDNA. PMID:20947563

  7. Adsorption of nucleotides on biomimetic apatite: The case of adenosine 5‧ monophosphate (AMP)

    NASA Astrophysics Data System (ADS)

    Hammami, K.; Feki, H. El; Marsan, O.; Drouet, C.

    2015-10-01

    This work investigates the interaction between the nucleotide adenosine 5‧ monophosphate molecule (AMP) and a biomimetic nanocrystalline carbonated apatite as a model for bone mineral. The analogy of the apatite phase used in this work with biological apatite was first pointed out by complementary techniques. AMP adsorption isotherms were then investigated. Obtained data were fitted to a Sips isotherm with an exponent greater than one suggesting positive cooperativity among adsorbed molecules. The data were compared to a previous study relative to the adsorption of another nucleotide, cytidine monophosphate (CMP) onto a similar substrate, evidencing some effect of the chemical nature of the nucleic base. An enhanced adsorption was observed under acidic (pH 6) conditions as opposed to pH 7.4, which parallels the case of DNA adsorption on biomimetic apatite. An estimated standard Gibbs free energy associated to the adsorption process (ΔG°ads ≅ -22 kJ/mol) intermediate between "physisorption" and "chemisorption" was found. The analysis of the solids after adsorption pointed to the preservation of the main characteristics of the apatite substrate but shifts or enhancements of Raman bands attributed to AMP showed the existence of chemical interactions involving both the phosphate and adenine parts of AMP. This contribution adds to the works conducted in view of better understanding the interaction of DNA/RNA and their constitutive nucleotides and the surface of biomimetic apatites. It could prove helpful in disciplines such as bone diagenesis (DNA/apatite interface in aged bones) or nanomedicine (setup of DNA- or RNA-loaded apatite systems). Also, the adsorption of nucleic acids on minerals like apatites could have played a role in the preservation of such biomolecules in the varying conditions known to exist at the origin of life on Earth, underlining the importance of dedicated adsorption studies.

  8. Nucleotide Salvage Deficiencies, DNA Damage and Neurodegeneration

    PubMed Central

    Fasullo, Michael; Endres, Lauren

    2015-01-01

    Nucleotide balance is critically important not only in replicating cells but also in quiescent cells. This is especially true in the nervous system, where there is a high demand for adenosine triphosphate (ATP) produced from mitochondria. Mitochondria are particularly prone to oxidative stress-associated DNA damage because nucleotide imbalance can lead to mitochondrial depletion due to low replication fidelity. Failure to maintain nucleotide balance due to genetic defects can result in infantile death; however there is great variability in clinical presentation for particular diseases. This review compares genetic diseases that result from defects in specific nucleotide salvage enzymes and a signaling kinase that activates nucleotide salvage after DNA damage exposure. These diseases include Lesch-Nyhan syndrome, mitochondrial depletion syndromes, and ataxia telangiectasia. Although treatment options are available to palliate symptoms of these diseases, there is no cure. The conclusions drawn from this review include the critical role of guanine nucleotides in preventing neurodegeneration, the limitations of animals as disease models, and the need to further understand nucleotide imbalances in treatment regimens. Such knowledge will hopefully guide future studies into clinical therapies for genetic diseases. PMID:25923076

  9. Surface enhanced Raman scattering investigation of protein-bound flavin adenine dinucleotide structure

    NASA Astrophysics Data System (ADS)

    Maskevich, S. A.; Strekal, N. D.; Artsukevich, I. M.; Kivach, L. N.; Chernikevich, I. P.

    1995-04-01

    The SERS spectra of alcohol oxidase from Pichia pastoris adsorbed on a silver electrode were obtained. The similarities and differences of these spectra with the SERS spectrum of free flavin adenine dinucleiotide were considered. The dependence of relative intensity of 1258 cm -1 band from the electrode potential in the protein SERS spectra differed from that of free flavin. From the data on this band being sensitive to the protein-flavin interaction a suggestion was made about incomplete dissociation of flavin from the protein. This conclusion is confirmed both by the fluorescence data and the SERS data on alcohol oxidase purified from Candida boidinii. The results of the SERS investigation of the interaction between the substrate, ethanol and the cofactor, FAD, as well as between protein-bound cofactor with the substrate are presented. The problem of retaining the protein enzyme activity is discussed.

  10. Isotope effect studies of the chemical mechanism of nicotinamide adenine dinucleotide malic enzyme from Crassula

    SciTech Connect

    Grissom, C.B.; Willeford, O.; Wedding, R.T.

    1987-05-05

    The /sup 13/C primary kinetic isotope effect on the decarboxylation of malate by nicotinamide adenine dinucleotide malic enzyme from Crassula argentea is 1.0199 +/- 0.0006 with proteo L-malate-2-H and 1.0162 +/- 0.0003 with malate-2-d. The primary deuterium isotope effect is 1.45 +/- 0.10 on V/K and 1.93 +/- 0.13 on V/sub max/. This indicates a stepwise conversion of malate to pyruvate and CO/sub 2/ with hydride transfer preceding decarboxylation, thereby suggesting a discrete oxaloacetate intermediate. This is in agreement with the stepwise nature of the chemical mechanism of other malic enzymes despite the Crassula enzyme's inability to reduce or decarboxylate oxaloacetate. Differences in morphology and allosteric regulation between enzymes suggest specialization of the Crassula malic enzyme for the physiology of crassulacean and acid metabolism while maintaining the catalytic events founds in malic enzymes from animal sources.

  11. Animal models of pediatric chronic kidney disease. Is adenine intake an appropriate model?

    PubMed

    Claramunt, Débora; Gil-Peña, Helena; Fuente, Rocío; Hernández-Frías, Olaya; Santos, Fernando

    2015-01-01

    Pediatric chronic kidney disease (CKD) has peculiar features. In particular, growth impairment is a major clinical manifestation of CKD that debuts in pediatric age because it presents in a large proportion of infants and children with CKD and has a profound impact on the self-esteem and social integration of the stunted patients. Several factors associated with CKD may lead to growth retardation by interfering with the normal physiology of growth plate, the organ where longitudinal growth rate takes place. The study of growth plate is hardly possible in humans and justifies the use of animal models. Young rats made uremic by 5/6 nephrectomy have been widely used as a model to investigate growth retardation in CKD. This article examines the characteristics of this model and analyzes the utilization of CKD induced by high adenine diet as an alternative research protocol. PMID:26522663

  12. [Absolute bioavailability of the adenine derivative VMA-99-82 possessing antiviral activity].

    PubMed

    Smirnova, L A; Suchkov, E A; Riabukha, A F; Kuznetsov, K A; Ozerov, A A

    2013-01-01

    Investigation of the main pharmacokinetic parameters of adenine derivative VMA-99-82 in rats showed large values of the half-life (T1/2 = 11.03 h) and the mean retention time of drug molecules in the organism (MRT = 9.53 h). A high rate of the drug concentration decrease in the plasma determines a small value of the area under the pharmacokinetic curve (AUC = 74.96 mg h/ml). The total distribution volume (V(d) = 10.61 l/kg) is 15.8 times greater than the volume of extracellular fluid in the body of rat, which is indicative of a high ability of VMA-99-82 to be distributed and accumulated in the organs and tissues. The absolute bioavailability of VMA-99-82 is 66%. PMID:24605425

  13. Prebiotic Synthesis of Adenine and Amino Acids Under Europa-like Conditions

    NASA Technical Reports Server (NTRS)

    Levy, Matthew; Miller, Stanley L.; Brinton, Karen; Bada, Jeffrey L.

    2003-01-01

    In order to simulate prebiotic synthetic processes on Europa and other ice-covered planets and satellites. we have investigated the prebiotic synthesis of organic compounds from dilute solutions of NH4CN frozen for 25 year at -20 and -78 C. In addition the aqueous products of spark discharge reactions from a reducing atmosphere were frozen for 5 years at -20%. We find that both adenine and guanine, as well as a simple set of amino acids dominated by glycine, are produced in substantial yields under these conditions. These results indicate that some of the key components necessary for the origin of life may have been available on Europa throughout its history and suggest that the circumstellar zone where life might arise may be m der than previously thought.

  14. Prebiotic synthesis of adenine and amino acids under Europa-like conditions

    NASA Technical Reports Server (NTRS)

    Levy, M.; Miller, S. L.; Brinton, K.; Bada, J. L.

    2000-01-01

    In order to simulate prebiotic synthetic processes on Europa and other ice-covered planets and satellites, we have investigated the prebiotic synthesis of organic compounds from dilute solutions of NH4CN frozen for 25 years at -20 and -78 degrees C. In addition, the aqueous products of spark discharge reactions from a reducing atmosphere were frozen for 5 years at -20 degrees C. We find that both adenine and guanine, as well as a simple set of amino acids dominated by glycine, are produced in substantial yields under these conditions. These results indicate that some of the key components necessary for the origin of life may have been available on Europa throughout its history and suggest that the circumstellar zone where life might arise may be wider than previously thought.

  15. Sites of adsorption of adenine, uracil, and their corresponding derivatives on sodium montmorillonite.

    PubMed

    Perezgasga, L; Serrato-Díaz, A; Negrón-Mendoza, A; De Pablo Galán, L; Mosqueira, F G

    2005-04-01

    Clay minerals are considered important to chemical evolution processes due to their properties, ancient origin, and wide distribution. To extend the knowledge of their role in the prebiotic epoch, the adsorption sites of adenine, adenosine, AMP, ADP, ATP, Poly A, uracil, uridine, UMP, UDP, UTP and Poly U on sodium montmorillonite are investigated. X-ray diffraction, ultraviolet and infrared spectroscopy studies indicate that these molecules distribute into the interlamellar channel and the edge of the clay crystals. Monomers are adsorbed predominantly in the interlamellar channel, whereas polymers adsorb along the crystal edges. Such behavior is discussed mainly in terms of bulk pH, pK(a) of the adsorbate, and Van der Waals interactions. PMID:16010992

  16. Conducting polymer and its composite materials based electrochemical sensor for Nicotinamide Adenine Dinucleotide (NADH).

    PubMed

    Omar, Fatin Saiha; Duraisamy, Navaneethan; Ramesh, K; Ramesh, S

    2016-05-15

    Nicotinamide Adenine Dinucleotide (NADH) is an important coenzyme in the human body that participates in many metabolic reactions. The impact of abnormal concentrations of NADH significantly causes different diseases in human body. Electrochemical detection of NADH using bare electrode is a challenging task especially in the presence of main electroactive interferences such as ascorbic acid (AA), uric acid (UA) and dopamine (DA). Modified electrodes have been widely explored to overcome the problems of poor sensitivity and selectivity occurred from bare electrodes. This review gives an overview on the progress of using conducting polymers, polyelectrolyte and its composites (co-polymer, carbonaceous, metal, metal oxide and clay) based modified electrodes for the sensing of NADH. In addition, developments on the fabrication of numerous conducting polymer composites based modified electrodes are clearly described. PMID:26774092

  17. Adaptive ligand binding by the purine riboswitch in the recognition of guanine and adenine analogs

    PubMed Central

    Gilbert, Sunny D.; Reyes, Francis E.; Edwards, Andrea L.; Batey, Robert T.

    2009-01-01

    SUMMARY Purine riboswitches discriminate between guanine and adenine by at least 10,000-fold based on the identity of a single pyrimidine (Y74) that forms a Watson-Crick base pair with the ligand. To understand how this high degree of specificity for closely related compounds is achieved through simple pairing, we investigated their interaction with purine analogs with varying functional groups at the 2- and 6-positions that have the potential to alter interactions with Y74. Using a combination of crystallographic and calorimetric approaches, we find that binding these purines is often facilitated by either small structural changes in the RNA or tautomeric changes in the ligand. This work also reveals that, along with base pairing, conformational restriction of Y74 significantly contributes to nucleobase selectivity. These results reveal that compounds that exploit the inherent local flexibility within riboswitch binding pockets can alter their ligand specificity. PMID:19523903

  18. External electric field promotes proton transfer in the radical cation of adenine-thymine

    NASA Astrophysics Data System (ADS)

    Zhang, Guiqing; Xie, Shijie

    2016-07-01

    According to pKa measurements, it has been predicted that proton transfer would not occur in the radical cation of adenine-thymine (A:T). However, recent theoretical calculations indicate that proton transfer takes place in the base pair in water below the room temperature. We have performed simulations of proton transfer in the cation of B-DNA stack composed of 10 A:T base pairs in water from 20 K to 300 K. Proton transfer occurs below the room temperature, meanwhile it could also be observed at the room temperature under the external electric field. Another case that interests us is that proton transfer bounces back after ˜300 fs from the appearance of proton transfer at low temperatures.

  19. The effects of tautomerization and protonation on the adenine-cytosine mismatches: a density functional theory study.

    PubMed

    Masoodi, Hamid Reza; Bagheri, Sotoodeh; Abareghi, Mahsa

    2016-06-01

    In the present work, we demonstrate the results of a theoretical study concerned with the question how tautomerization and protonation of adenine affect the various properties of adenine-cytosine mismatches. The calculations, in gas phase and in water, are performed at B3LYP/6-311++G(d,p) level. In gas phase, it is observed that any tautomeric form of investigated mismatches is more stabilized when adenine is protonated. As for the neutral mismatches, the mismatches containing amino form of cytosine and imino form of protonated adenine are more stable. The role of aromaticity on the stability of tautomeric forms of mismatches is investigated by NICS(1)ZZ index. The stability of mispairs decreases by going from gas phase to water. It can be explained using dipole moment parameter. The influence of hydrogen bonds on the stability of mismatches is examined by atoms in molecules and natural bond orbital analyses. In addition to geometrical parameters and binding energies, the study of the topological properties of electron charge density aids in better understanding of these mispairs. PMID:26198186

  20. Formation of Adenine from the Soft X-Ray Photo-Irradiation of N2-CH4 Ice

    NASA Astrophysics Data System (ADS)

    Pilling, S.; Andrade, D. P. P.; Neto, A. C.; Rittner, R.; de Brito, A. N.

    2010-04-01

    In this work, we present an experimental study of the chemical alteration produced by the interaction of soft X-rays (and secondary electrons) on Titan aerosol analogs producing prebiotic compounds such as adenine, one the constituents of the DNA molecule.

  1. Mechanism of bracken fern carcinogenesis: evidence for H-ras activation via initial adenine alkylation by ptaquiloside.

    PubMed

    Prakash, A S; Pereira, T N; Smith, B L; Shaw, G; Seawright, A A

    1996-01-01

    Bracken fern (Pteridium spp.) causes cancer of the oesophagus and the urinary bladder in cattle and sheep. Ptaquiloside (PT) is believed to be the carcinogenic principle which alkylates DNA when activated to its unstable dienone form (APT) under alkaline conditions. In this report we present evidence for the presence of PT-DNA adducts in the ileum of bracken fem-fed calves using the 32P-postlabelling assay. H-ras mutations were also observed in the ileum using single strand conformation polymorphism (SSCP) technique. Mutations corresponding to adenine to pyrimidine transversions in the codon 61 of H-ras were identified by the cycle sequencing method. In vitro DNA alkylation studies showed that APT alkylated H-ras primarily at the adenines. In addition, the rate of depurination of alkylated adenine was sequence dependent. Investigation of DNA template activity using a plasmid DNA showed that DNA synthesis by T7 DNA polymerase was terminated by the presence of all alkylated bases but certain apurinic sites allowed the DNA synthesis to continue. These results suggest that initial alkylation of adenine by PT in codon 61 followed by depurination and error in DNA synthesis lead to activation of H-ras proto-oncogene. PMID:8946397

  2. Few-layer graphene sheets with embedded gold nanoparticles for electrochemical analysis of adenine

    PubMed Central

    Biris, Alexandru R; Pruneanu, Stela; Pogacean, Florina; Lazar, Mihaela D; Borodi, Gheorghe; Ardelean, Stefania; Dervishi, Enkeleda; Watanabe, Fumiya; Biris, Alexandru S

    2013-01-01

    This work describes the synthesis of few-layer graphene sheets embedded with various amounts of gold nanoparticles (Gr-Au-x) over an Aux/MgO catalytic system (where × = 1, 2, or 3 wt%). The sheet-like morphology of the Gr-Au-x nanostructures was confirmed by transmission electron microscopy and high resolution transmission electron microscopy, which also demonstrated that the number of layers within the sheets varied from two to seven. The sample with the highest percentage of gold nanoparticles embedded within the graphitic layers (Gr-Au-3) showed the highest degree of crystallinity. This distinct feature, along with the large number of edge-planes seen in high resolution transmission electron microscopic images, has a crucial effect on the electrocatalytic properties of this material. The reaction yields (40%–50%) and the final purity (96%–98%) of the Gr-Au-x composites were obtained by thermogravimetric analysis. The Gr-Au-x composites were used to modify platinum substrates and subsequently to detect adenine, one of the DNA bases. For the bare electrode, no oxidation signal was recorded. In contrast, all of the modified electrodes showed a strong electrocatalytic effect, and a clear peak for adenine oxidation was recorded at approximately +1.05 V. The highest increase in the electrochemical signal was obtained using a platinum/Gr-Au-3-modified electrode. In addition, this modified electrode had an exchange current density (I0, obtained from the Tafel plot) one order of magnitude higher than that of the bare platinum electrode, which also confirmed that the transfer of electrons took place more readily at the Gr-Au-3-modified electrode. PMID:23610521

  3. Affinity chromatography of nicotinamide–adenine dinucleotide-linked dehydrogenases on immobilized derivatives of the dinucleotide

    PubMed Central

    Barry, Standish; O'Carra, Pádraig

    1973-01-01

    1. Three established methods for immobilization of ligands through primary amino groups promoted little or no attachment of NAD+ through the 6-amino group of the adenine residue. Two of these methods (coupling to CNBr-activated agarose and to carbodi-imide-activated carboxylated agarose derivatives) resulted instead in attachment predominantly through the ribosyl residues. Other immobilized derivatives were prepared by azolinkage of NAD+ (probably through the 8 position of the adenine residue) to a number of different spacer-arm–agarose derivatives. 2. The effectiveness of these derivatives in the affinity chromatography of a variety of NAD-linked dehydrogenases was investigated, applying rigorous criteria to distinguish general or non-specific adsorption effects from truly NAD-specific affinity (bio-affinity). The ribosyl-attached NAD+ derivatives displayed negligible bio-affinity for any of the NAD-linked dehydrogenases tested. The most effective azo-linked derivative displayed strong bio-affinity for glycer-aldehyde 3-phosphate dehydrogenase, weaker bio-affinity for lactate dehydrogenase and none at all for malate dehydrogenase, although these three enzymes have very similar affinities for soluble NAD+. Alcohol dehydrogenase and xanthine dehydrogenase were subject to such strong non-specific interactions with the hydrocarbon spacer-arm assembly that any specific affinity was completely eclipsed. 3. It is concluded that, in practice, the general effectiveness of a general ligand may be considerably distorted and attenuated by the nature of the immobilization linkage. However, this attenuation can result in an increase in specific effectiveness, allowing dehydrogenases to be separated from one another in a manner unlikely to be feasible if the general effectiveness of the ligand remained intact. 4. The bio-affinity of the various derivatives for lactate dehydrogenase is correlated with the known structure of the NAD+-binding site of this enzyme. Problems

  4. Nicotinamide Adenine Dinucleotide Phosphate-Dependent Formate Dehydrogenase from Clostridium thermoaceticum: Purification and Properties

    PubMed Central

    Andreesen, Jan R.; Ljungdahl, Lars G.

    1974-01-01

    The nicotinamide adenine dinucleotide phosphate (NADP)-dependent formate dehydrogenase in Clostridium thermoaceticum used, in addition to its natural electron acceptor, methyl and benzyl viologen. The enzyme was purified to a specific activity of 34 (micromoles per minute per milligram of protein) with NADP as electron acceptor. Disc gel electrophoresis of the purified enzyme yielded two major and two minor protein bands, and during centrifugation in sucrose gradients two components of apparent molecular weights of 270,000 and 320,000 were obtained, both having formate dehydrogenase activity. The enzyme preparation catalyzed the reduction of riboflavine 5′-phosphate flavine adenine dinucleotide and methyl viologen by using reduced NADP as a source of electrons. It also had reduced NADP oxidase activity. The enzyme was strongly inhibited by cyanide and ethylenediaminetetraacetic acid. It was also inhibited by hypophosphite, an inhibition that was reversed by formate. Sulfite inhibited the activity with NADP but not with methyl viologen as acceptor. The apparent Km at 55 C and pH 7.5 for formate was 2.27 × 10−4 M with NADP and 0.83 × 10−4 with methyl viologen as acceptor. The apparent Km for NADP was 1.09 × 10−4 M and for methyl viologen was 2.35 × 10−3 M. NADP showed substrate inhibition at 5 × 10−3 M and higher concentrations. With NADP as electron acceptor, the enzyme had a broad pH optimum between 7 and 9.5. The apparent temperature optimum was 85 C. In the absence of substrates, the enzyme was stable at 70 C but was rapidly inactivated at temperatures above 73 C. The enzyme was very sensitive to oxygen but was stabilized by thiol-iron complexes and formate. PMID:4154039

  5. Adenine Synthesis in Interstellar Space: Mechanisms of Prebiotic Pyrimidine-Ring Formation of Monocyclic HCN-Pentamers

    NASA Astrophysics Data System (ADS)

    Glaser, Rainer; Hodgen, Brian; Farrelly, Dean; McKee, Elliot

    2007-06-01

    The question whether the nucleobases can be synthesized in interstellar space is of fundamental significance in considerations of the origin of life. Adenine is formally the HCN pentamer, and experiments have demonstrated that adenine is formed under certain conditions by HCN pentamerization in gas, liquid, and condensed phases. Most mechanistic proposals invoke the intermediacy of the HCN tetramer AICN (4), and it is thought that adenine synthesis is completed by addition of the 5th HCN to 4 to form amidine 5 and subsequent pyrimidine cyclization. In this context, we have been studying the mechanism for prebiotic pyrimidine-ring formation of monocyclic HCN-pentamers with ab initio electronic structure theory. The calculations model gas phase chemistry, and the results primarily inform discussions of adenine synthesis in interstellar space. Purine formation requires tautomerization of 5 to the conjugated amidine 6 (via hydrogen-tunneling, thermally with H+ -catalysis, or by photolysis) or to keteneimine 7 (by photolysis). It was found that 5-(N'-formamidinyl)-1H-imidazole-4-carbonitrile (6) can serve as a substrate for proton-catalyzed purine formation under photolytic conditions and N-(4-(iminomethylene)-1H-imidazol-5(4H)-ylidene)formamidine (7) can serve as a substrate for uncatalyzed purine formation under photolytic conditions. The absence of any sizeable activation barrier for the cyclization of 7 to the (Z)-imino form of 9H-adenine (Z)-2 is quite remarkable, and it is this feature that allows for the formation of the purine skeleton from 7 without any further activation.

  6. Prokaryotic Nucleotide Composition Is Shaped by Both Phylogeny and the Environment

    PubMed Central

    Reichenberger, Erin R.; Rosen, Gail; Hershberg, Uri; Hershberg, Ruth

    2015-01-01

    The causes of the great variation in nucleotide composition of prokaryotic genomes have long been disputed. Here, we use extensive metagenomic and whole-genome data to demonstrate that both phylogeny and the environment shape prokaryotic nucleotide content. We show that across environments, various phyla are characterized by different mean guanine and cytosine (GC) values as well as by the extent of variation on that mean value. At the same time, we show that GC-content varies greatly as a function of environment, in a manner that cannot be entirely explained by disparities in phylogenetic composition. We find environmentally driven differences in nucleotide content not only between highly diverged environments (e.g., soil, vs. aquatic vs. human gut) but also within a single type of environment. More specifically, we demonstrate that some human guts are associated with a microbiome that is consistently more GC-rich across phyla, whereas others are associated with a more AT-rich microbiome. These differences appear to be driven both by variations in phylogenetic composition and by environmental differences—which are independent of these phylogenetic composition differences. Combined, our results demonstrate that both phylogeny and the environment significantly affect nucleotide composition and that the environmental differences affecting nucleotide composition are far subtler than previously appreciated. PMID:25861819

  7. Single Nucleotide Polymorphisms and Osteoarthritis

    PubMed Central

    Wang, Ting; Liang, Yuting; Li, Hong; Li, Haibo; He, Quanze; Xue, Ying; Shen, Cong; Zhang, Chunhua; Xiang, Jingjing; Ding, Jie; Qiao, Longwei; Zheng, Qiping

    2016-01-01

    Abstract Osteoarthritis (OA) is a complex disorder characterized by degenerative articular cartilage and is largely attributed to genetic risk factors. Single nucleotide polymorphisms (SNPs) are common DNA variants that have shown promising and efficiency, compared with positional cloning, to map candidate genes of complex diseases, including OA. In this study, we aim to provide an overview of multiple SNPs from a number of genes that have recently been linked to OA susceptibility. We also performed a comprehensive meta-analysis to evaluate the association of SNP rs7639618 of double von Willebrand factor A domains (DVWA) gene with OA susceptibility. A systematic search of studies on the association of SNPs with susceptibility to OA was conducted in PubMed and Google scholar. Studies subjected to meta-analysis include human and case-control studies that met the Hardy–Weinberg equilibrium model and provide sufficient data to calculate an odds ratio (OR). A total of 9500 OA cases and 9365 controls in 7 case-control studies relating to SNP rs7639618 were included in this study and the ORs with 95% confidence intervals (CIs) were calculated. Over 50 SNPs from different genes have been shown to be associated with either hip (23), or knee (20), or both (13) OA. The ORs of these SNPs for OA and the subtypes are not consistent. As to SNP rs7639618 of DVWA, increased knee OA risk was observed in all genetic models analyzed. Specifically, people from Asian with G-allele showed significantly increased risk of knee OA (A versus G: OR = 1.28, 95% CI 1.13–1.46; AA versus GG: OR = 1.60, 95% CI 1.25–2.05; GA versus GG: OR = 1.31, 95% CI 1.18–1.44; AA versus GA+GG: OR = 1.34, 95% CI 1.12–1.61; AA+GA versus GG: OR = 1.40, 95% CI 1.19–1.64), but not in Caucasians or with hip OA. Our results suggest that multiple SNPs play different roles in the pathogenesis of OA and its subtypes; SNP rs7639618 of DVWA gene is associated with a significantly increased

  8. Advances in targeting cyclic nucleotide phosphodiesterases

    PubMed Central

    Maurice, Donald H.; Ke, Hengming; Ahmad, Faiyaz; Wang, Yousheng; Chung, Jay; Manganiello, Vincent C.

    2014-01-01

    Cyclic nucleotide phosphodiesterases (PDEs) catalyse the hydrolysis of cyclic AMP and cyclic GMP, thereby regulating the intracellular concentrations of these cyclic nucleotides, their signalling pathways and, consequently, myriad biological responses in health and disease. Currently, a small number of PDE inhibitors are used clinically for treating the pathophysiological dysregulation of cyclic nucleotide signalling in several disorders, including erectile dysfunction, pulmonary hypertension, acute refractory cardiac failure, intermittent claudication and chronic obstructive pulmonary disease. However, pharmaceutical interest in PDEs has been reignited by the increasing understanding of the roles of individual PDEs in regulating the subcellular compartmentalization of specific cyclic nucleotide signalling pathways, by the structure-based design of novel specific inhibitors and by the development of more sophisticated strategies to target individual PDE variants. PMID:24687066

  9. Advances in targeting cyclic nucleotide phosphodiesterases.

    PubMed

    Maurice, Donald H; Ke, Hengming; Ahmad, Faiyaz; Wang, Yousheng; Chung, Jay; Manganiello, Vincent C

    2014-04-01

    Cyclic nucleotide phosphodiesterases (PDEs) catalyse the hydrolysis of cyclic AMP and cyclic GMP, thereby regulating the intracellular concentrations of these cyclic nucleotides, their signalling pathways and, consequently, myriad biological responses in health and disease. Currently, a small number of PDE inhibitors are used clinically for treating the pathophysiological dysregulation of cyclic nucleotide signalling in several disorders, including erectile dysfunction, pulmonary hypertension, acute refractory cardiac failure, intermittent claudication and chronic obstructive pulmonary disease. However, pharmaceutical interest in PDEs has been reignited by the increasing understanding of the roles of individual PDEs in regulating the subcellular compartmentalization of specific cyclic nucleotide signalling pathways, by the structure-based design of novel specific inhibitors and by the development of more sophisticated strategies to target individual PDE variants. PMID:24687066

  10. In vitro incorporation of LNA nucleotides.

    PubMed

    Veedu, Rakesh N; Vester, Birte; Wengel, Jesper

    2007-01-01

    An LNA modified nucleoside triphosphate 1 was synthesized in order to investigate its potential to act as substrate for DNA strand synthesis by polymerases. Primer extension assays for the incorporation experiments revealed that Phusion High Fidelity DNA polymerase is an efficient enzyme for incorporation of the LNA nucleotide and for extending strand to full length. It was also observed that pfu DNA polymerase could incorporate the LNA nucleotide but it failed to extend the strand to a full length product. PMID:18058567

  11. Regulation of mammalian nucleotide metabolism and biosynthesis

    PubMed Central

    Lane, Andrew N.; Fan, Teresa W.-M.

    2015-01-01

    Nucleotides are required for a wide variety of biological processes and are constantly synthesized de novo in all cells. When cells proliferate, increased nucleotide synthesis is necessary for DNA replication and for RNA production to support protein synthesis at different stages of the cell cycle, during which these events are regulated at multiple levels. Therefore the synthesis of the precursor nucleotides is also strongly regulated at multiple levels. Nucleotide synthesis is an energy intensive process that uses multiple metabolic pathways across different cell compartments and several sources of carbon and nitrogen. The processes are regulated at the transcription level by a set of master transcription factors but also at the enzyme level by allosteric regulation and feedback inhibition. Here we review the cellular demands of nucleotide biosynthesis, their metabolic pathways and mechanisms of regulation during the cell cycle. The use of stable isotope tracers for delineating the biosynthetic routes of the multiple intersecting pathways and how these are quantitatively controlled under different conditions is also highlighted. Moreover, the importance of nucleotide synthesis for cell viability is discussed and how this may lead to potential new approaches to drug development in diseases such as cancer. PMID:25628363

  12. Insight into G-quadruplex-hemin DNAzyme/RNAzyme: adjacent adenine as the intramolecular species for remarkable enhancement of enzymatic activity

    PubMed Central

    Li, Wang; Li, Yong; Liu, Zhuoliang; Lin, Bin; Yi, Haibo; Xu, Feng; Nie, Zhou; Yao, Shouzhuo

    2016-01-01

    G-quadruplex (G4) with stacked G-tetrads structure is able to bind hemin (iron (III)-protoporphyrin IX) to form a unique type of DNAzyme/RNAzyme with peroxidase-mimicking activity, which has been widely employed in multidisciplinary fields. However, its further applications are hampered by its relatively weak activity compared with protein enzymes. Herein, we report a unique intramolecular enhancement effect of the adjacent adenine (EnEAA) at 3′ end of G4 core sequences that significantly improves the activity of G4 DNAzymes. Through detailed investigations of the EnEAA, the added 3′ adenine was proved to accelerate the compound I formation in catalytic cycle and thus improve the G4 DNAzyme activity. EnEAA was found to be highly dependent on the unprotonated state of the N1 of adenine, substantiating that adenine might function as a general acid–base catalyst. Further adenine analogs analysis supported that both N1 and exocyclic 6-amino groups in adenine played key role in the catalysis. Moreover, we proved that EnEAA was generally applicable for various parallel G-quadruplex structures and even G4 RNAzyme. Our studies implied that adenine might act analogously as the distal histidine in protein peroxidases, which shed light on the fundamental understanding and rational design of G4 DNAzyme/RNAzyme catalysts with enhanced functions. PMID:27422869

  13. Interaction of pigeon-liver nicotinamide-adenine dinucleotide kinase with cibacron blue F3GA.

    PubMed Central

    Apps, D K; Gleed, C D

    1976-01-01

    The interaction of pigeon liver NAD kinase with Cibacron Blue F3GA was investigated. By using steady-state rate measurements, spectrophotometric titration and chromatography of the enzyme on immobilized dye, it was shown that binding occurs at two nucleotide sites with different affinities, and also at a site distinct from the substrate-binding region. PMID:187176

  14. Comparative study of myocardial high energy phosphate substrate content in slow and fast growing chicken and in chickens with heart failure and ascites.

    PubMed

    Olkowski, A A; Nain, S; Wojnarowicz, C; Laarveld, B; Alcorn, J; Ling, B B

    2007-09-01

    In order to explain the biochemical mechanisms associated with deteriorating heart function in broiler chickens, this study compared myocardial high energy phosphate substrates in leghorns, feed restricted (Broilers-Res) broilers, ad libitum fed broilers (Broilers-AL), and in broilers that developed heart failure and ascites. The profile of adenine nucleotide content in the heart tissue did not differ between leghorns and Broilers-Res, but there were significant differences among Broilers-Res, Broilers-AL, and broilers with ascites. During intensive growth periods, leghorns and Broilers-Res showed increasing trends in heart ATP levels, whereas in fast growing broilers the heart ATP declined (p<0.021). ATP:ADP and ATP:CrP ratios increased with age in both leghorn and Broilers-Res, declined in fast growing broilers, and were the lowest in broilers that developed heart failure. The changes in heart high energy phosphate profile in broilers suggest that the energy demand of the heart during a rapid growth phase may exceed the bird's metabolic capacity to supply adequate levels of high energy phosphate substrate. The insufficiency of energy substrate likely contributes to the declining heart rate. In some individuals this may lead to impaired heart pump function, and in more severe cases may progress to heart pump failure. PMID:17524693

  15. Minor groove site coordination of adenine by platinum group metal ions: effects on basicity, base pairing, and electronic structure.

    PubMed

    Amantia, David; Price, Clayton; Shipman, Michelle A; Elsegood, Mark R J; Clegg, William; Houlton, Andrew

    2003-05-01

    Dithioether- or diamine-tethered adenine derivatives react with Pt(II), Pd(II), and Rh(III) ions to give N3-coordinated complexes of the types [MCl(SSN)](+) (M = Pt or Pd), [RhCl(3)(SSN)], or [RhCl(3)(NNN)] (where SSN = 1-(N9-adenine)-3,6-dithia-heptane or 1-(N9-adenine)-4,7-dithia-octane; NNN = ethylenediamine-N,9-ethyladenine). Single-crystal X-ray analysis confirms the nature of the metal-nucleobase interaction and highlights a conserved intermolecular hydrogen-bonding motif for all the complexes, irrespective of the metal-ion geometry. Coordination significantly reduces the basicity of the adeninyl group, as indicated by a pK(a) value of -0.16 for [PtCl(N3-1-(N9-adenine)-3,6-dithia-heptane)]BF(4), compared to a pK(a) value of 4.2 for 9-ethyladenine. The site of proton binding, N1 or N7, could not be unambiguously assigned from the (1)H NMR data, because of the similar effect on the chemical shifts of the H2 and H8 protons. Density functional calculations at the BP-LACVP level suggest N1 as the site of protonation for this type of complex. This is in contrast to the N7-protonation reported for [Pt(dien)(N3-6,6',9-trimethyladenine)](2+), as reported elsewhere (Meiser et al., Chem.-Eur. J. 1997, 3, 388). However, further electronic structure calculations in the gas phase reveal that the preferred site for protonation for N3-bound complexes is conformationally dependent. N3 coordination was also found to reduce the extent of base pairing between adenine and thymine in dimethylsulfoxide for the self-complementary complex [PtCl(L3)](+) (L3 = 1-(N9-adenine)-3,6-dithia-9-(N1-thymine)nonane), compared to that for the uncomplexed ligand. PMID:12716200

  16. Rigid Adenine Nucleoside Derivatives as Novel Modulators of the Human Sodium Symporters for Dopamine and Norepinephrine.

    PubMed

    Janowsky, Aaron; Tosh, Dilip K; Eshleman, Amy J; Jacobson, Kenneth A

    2016-04-01

    Thirty-two congeneric rigid adenine nucleoside derivatives containing a North (N)-methanocarba ribose substitution and a 2-arylethynyl group either enhanced (up to 760% of control) or inhibited [(125)I] methyl (1R,2S,3S)-3-(4-iodophenyl)-8-methyl-8-azabicyclo[3.2.1]octane-2-carboxylate (RTI-55) binding at the human dopamine (DA) transporter (DAT) and inhibited DA uptake. Several nucleosides also enhanced [(3)H]mazindol [(±)-5-(4-chlorophenyl)-3,5-dihydro-2H-imidazo[2,1-a]isoindol-5-ol] binding to the DAT. The combination of binding enhancement and functional inhibition suggests possible allosteric interaction with the tropanes. The structure-activity relationship of this novel class of DAT ligands was explored: small N(6)-substition (methyl or ethyl) was favored, while the N1 of the adenine ring was essential. Effective terminal aryl groups include thien-2-yl (compounds 9 and 16), with EC50 values of 35.1 and 9.1 nM, respectively, in [(125)I]RTI-55 binding enhancement, and 3,4-difluorophenyl as in the most potent DA uptake inhibitor (compound 6) with an IC50 value of 92 nM (3-fold more potent than cocaine), but not nitrogen heterocycles. Several compounds inhibited or enhanced binding at the norepinephrine transporter (NET) and serotonin transporter (SERT) and inhibited function in the micromolar range; truncation at the 4'-position in compound 23 allowed for weak inhibition of the SERT. We have not yet eliminated adenosine receptor affinity from this class of DAT modulators, but we identified modifications that remove DAT inhibition as an off-target effect of potent adenosine receptor agonists. Thus, we have identified a new class of allosteric DAT ligands, rigidified adenosine derivatives, and explored their initial structural requirements. They display a very atypical pharmacological profile, i.e., either enhancement by increasing affinity or inhibition of radioligand binding at the DAT, and in some cases the NET and SERT, and inhibition of neurotransmitter

  17. Poly-adenine-based programmable engineering of gold nanoparticles for highly regulated spherical DNAzymes

    NASA Astrophysics Data System (ADS)

    Zhu, Dan; Pei, Hao; Chao, Jie; Su, Shao; Aldalbahi, Ali; Rahaman, Mostafizur; Wang, Lihua; Wang, Lianhui; Huang, Wei; Fan, Chunhai; Zuo, Xiaolei

    2015-11-01

    Enzyme complexes are assembled at the two-dimensional lipid membrane or prearranged on three-dimensional scaffolding proteins to regulate their catalytic activity in cells. Inspired by nature, we have developed gold nanoparticle-based spherical DNAzymes (SNAzymes) with programmably engineered activities by exploiting poly-adenine (polyA)-Au interactions. In a SNAzyme, AuNPs serve as the metal core, which is decorated with a functional shell of DNAzymes. Conventional thiolated DNAzyme-based assembly leads to disordered structures with suppressed activity. In contrast, by using an anchoring block of polyA tails, we find that the activity of SNAzymes can be programmably regulated. By using a polyA30 tail, SNAzymes demonstrated remarkably enhanced binding affinity compared to the thiolated DNAzyme-based assembly (~75-fold) or individual DNAzymes in the solution phase (~10-fold). More significantly, this increased affinity is directly translated to the sensitivity improvement in the SNAzyme-based lead sensor. Hence, this design of SNAzymes may provide new opportunities for developing biosensors and bioimaging probes for theranostic applications.Enzyme complexes are assembled at the two-dimensional lipid membrane or prearranged on three-dimensional scaffolding proteins to regulate their catalytic activity in cells. Inspired by nature, we have developed gold nanoparticle-based spherical DNAzymes (SNAzymes) with programmably engineered activities by exploiting poly-adenine (polyA)-Au interactions. In a SNAzyme, AuNPs serve as the metal core, which is decorated with a functional shell of DNAzymes. Conventional thiolated DNAzyme-based assembly leads to disordered structures with suppressed activity. In contrast, by using an anchoring block of polyA tails, we find that the activity of SNAzymes can be programmably regulated. By using a polyA30 tail, SNAzymes demonstrated remarkably enhanced binding affinity compared to the thiolated DNAzyme-based assembly (~75-fold) or

  18. Rigid Adenine Nucleoside Derivatives as Novel Modulators of the Human Sodium Symporters for Dopamine and Norepinephrine

    PubMed Central

    Tosh, Dilip K.; Eshleman, Amy J.; Jacobson, Kenneth A.

    2016-01-01

    Thirty-two congeneric rigid adenine nucleoside derivatives containing a North (N)-methanocarba ribose substitution and a 2-arylethynyl group either enhanced (up to 760% of control) or inhibited [125I] methyl (1R,2S,3S)-3-(4-iodophenyl)-8-methyl-8-azabicyclo[3.2.1]octane-2-carboxylate (RTI-55) binding at the human dopamine (DA) transporter (DAT) and inhibited DA uptake. Several nucleosides also enhanced [3H]mazindol [(±)-5-(4-chlorophenyl)-3,5-dihydro-2H-imidazo[2,1-a]isoindol-5-ol] binding to the DAT. The combination of binding enhancement and functional inhibition suggests possible allosteric interaction with the tropanes. The structure-activity relationship of this novel class of DAT ligands was explored: small N6-substition (methyl or ethyl) was favored, while the N1 of the adenine ring was essential. Effective terminal aryl groups include thien-2-yl (compounds 9 and 16), with EC50 values of 35.1 and 9.1 nM, respectively, in [125I]RTI-55 binding enhancement, and 3,4-difluorophenyl as in the most potent DA uptake inhibitor (compound 6) with an IC50 value of 92 nM (3-fold more potent than cocaine), but not nitrogen heterocycles. Several compounds inhibited or enhanced binding at the norepinephrine transporter (NET) and serotonin transporter (SERT) and inhibited function in the micromolar range; truncation at the 4′-position in compound 23 allowed for weak inhibition of the SERT. We have not yet eliminated adenosine receptor affinity from this class of DAT modulators, but we identified modifications that remove DAT inhibition as an off-target effect of potent adenosine receptor agonists. Thus, we have identified a new class of allosteric DAT ligands, rigidified adenosine derivatives, and explored their initial structural requirements. They display a very atypical pharmacological profile, i.e., either enhancement by increasing affinity or inhibition of radioligand binding at the DAT, and in some cases the NET and SERT, and inhibition of neurotransmitter uptake

  19. Kinetic approach for the purification of nucleotides with magnetic separation.

    PubMed

    Tural, Servet; Tural, Bilsen; Ece, Mehmet Şakir; Yetkin, Evren; Özkan, Necati

    2014-11-01

    The isolation of β-nicotinamide adenine dinucleotide is of great importance since it is widely used in different scientific and technologic fields such as biofuel cells, sensor technology, and hydrogen production. In order to isolate β-nicotinamide adenine dinucleotide, first 3-aminophenyboronic acid functionalized magnetic nanoparticles were prepared to serve as a magnetic solid support and subsequently they were used for reversible adsorption/desorption of β-nicotinamide adenine dinucleotide in a batch fashion. The loading capacity of the 3-aminophenyboronic acid functionalized nanoparticles for β-nicotinamide adenine dinucleotide adsorption was 13.0 μmol/g. Adsorption kinetic and isotherm studies showed that the adsorption process followed a pseudo-second-order kinetic model and the experimental data can be represented using Langmuir isotherm model. The 3-aminophenyboronic acid functionalized magnetic nanoparticles were proposed as an alternative support for the β-nicotinamide adenine dinucleotide purification. The results elucidated the significance of magnetic separation as a fast, relatively simple, and low-cost technique. Furthermore, the magnetic supports can be reused at least five times for purification processes. PMID:25199632

  20. Polymerization of amino acids containing nucleotide bases

    NASA Technical Reports Server (NTRS)

    Ben Cheikh, Azzouz; Orgel, Leslie E.

    1990-01-01

    The nucleoamino acids 1-(3'-amino,3'-carboxypropyl)uracil (3) and 9-(3'-amino,3'-carboxypropyl)adenine (4) have been prepared as (L)-en-antiomers and as racemic mixtures. When 3 or 4 is suspended in water and treated with N,N'-carbon-yldiimidazole, peptides are formed in good yield. The products formed from the (L)-enantiomers are hydrolyzed to the monomeric amino acids by pronase. Attempts to improve the efficiency of these oligomerizations by including a polyuridylate template in the reaction mixture were not successful. Similarly, oligomers derived from the (L)-enantiomer of 3 did not act as templates to facilitate the oligomerization of 4.

  1. Photoinitiator Nucleotide for Quantifying Nucleic Acid Hybridization

    PubMed Central

    Johnson, Leah M.; Hansen, Ryan R.; Urban, Milan; Kuchta, Robert D.; Bowman, Christopher N.

    2010-01-01

    This first report of a photoinitiator-nucleotide conjugate demonstrates a novel approach for sensitive, rapid and visual detection of DNA hybridization events. This approach holds potential for various DNA labeling schemes and for applications benefiting from selective DNA-based polymerization initiators. Here, we demonstrate covalent, enzymatic incorporation of an eosin-photoinitiator 2′-deoxyuridine-5′-triphosphate (EITC-dUTP) conjugate into surface-immobilized DNA hybrids. Subsequent radical chain photoinitiation from these sites using an acrylamide/bis-acrylamide formulation yields a dynamic detection range between 500pM and 50nM of DNA target. Increasing EITC-nucleotide surface densities leads to an increase in surface-based polymer film heights until achieving a film height plateau of 280nm ±20nm at 610 ±70 EITC-nucleotides/μm2. Film heights of 10–20 nm were obtained from eosin surface densities of approximately 20 EITC-nucleotides/μm2 while below the detection limit of ~10 EITC-nucleotides/μm2, no detectable films were formed. This unique threshold behavior is utilized for instrument-free, visual quantification of target DNA concentration ranges. PMID:20337438

  2. Proofreading of misincorporated nucleotides in DNA transcription.

    PubMed

    Voliotis, Margaritis; Cohen, Netta; Molina-París, Carmen; Liverpool, Tanniemola B

    2012-06-01

    The accuracy of DNA transcription is crucial for the proper functioning of the cell. Although RNA polymerases demonstrate selectivity for correct nucleotides, additional active mechanisms of transcriptional error correction are required to achieve observed levels of fidelity. Recent experimental findings have shed light on a particular mechanism of transcriptional error correction involving: (i) diffusive translocation of the RNA polymerase along the DNA (backtracking) and (ii) irreversible RNA cleavage. This mechanism achieves preferential cleavage of misincorporated nucleotides by biasing the local rates of translocation. Here, we study how misincorporated nucleotides affect backtracking dynamics and how this effect determines the level of transcriptional fidelity. We consider backtracking as a diffusive process in a periodic, one-dimensional energy landscape, which at a coarse-grained level gives rise to a hopping process between neighboring local minima. We propose a model for how misincorporated nucleotides deform this energy landscape and hence affect the hopping rates. In particular, we show that this model can be used to derive both the theoretical limit on the fidelity (i.e. the minimum fraction of misincorporated nucleotides) and the actual fidelity relative to this optimum, achieved for specific combinations of the cleavage and polymerization rates. Finally, we study how external factors influencing backtracking dynamics affect transcriptional fidelity. We show that biologically relevant loads, similar to those exerted by nucleosomes or other transcriptional barriers, increase error correction. PMID:22643861

  3. Proofreading of misincorporated nucleotides in DNA transcription.

    PubMed

    Voliotis, Margaritis; Cohen, Netta; Molina-París, Carmen; Liverpool, Tanniemola B

    2012-06-01

    The accuracy of DNA transcription is crucial for the proper functioning of the cell. Although RNA polymerases demonstrate selectivity for correct nucleotides, additional active mechanisms of transcriptional error correction are required to achieve observed levels of fidelity. Recent experimental findings have shed light on a particular mechanism of transcriptional error correction involving: (i) diffusive translocation of the RNA polymerase along the DNA (backtracking) and (ii) irreversible RNA cleavage. This mechanism achieves preferential cleavage of misincorporated nucleotides by biasing the local rates of translocation. Here, we study how misincorporated nucleotides affect backtracking dynamics and how this effect determines the level of transcriptional fidelity. We consider backtracking as a diffusive process in a periodic, one-dimensional energy landscape, which at a coarse-grained level gives rise to a hopping process between neighbouring local minima. We propose a model for how misincorporated nucleotides deform this energy landscape and hence affect the hopping rates. In particular, we show that this model can be used to derive both the theoretical limit on the fidelity (i.e. the minimum fraction of misincorporated nucleotides) and the actual fidelity relative to this optimum, achieved for specific combinations of the cleavage and polymerization rates. Finally, we study how external factors influencing backtracking dynamics affect transcriptional fidelity. We show that biologically relevant loads, similar to those exerted by nucleosomes or other transcriptional barriers, increase error correction. PMID:22551978

  4. A Nucleotide Phosphatase Activity in the Nucleotide Binding Domain of an Orphan Resistance Protein from Rice*

    PubMed Central

    Fenyk, Stepan; de San Eustaquio Campillo, Alba; Pohl, Ehmke; Hussey, Patrick J.; Cann, Martin J.

    2012-01-01

    Plant resistance proteins (R-proteins) are key components of the plant immune system activated in response to a plethora of different pathogens. R-proteins are P-loop NTPase superfamily members, and current models describe their main function as ATPases in defense signaling pathways. Here we show that a subset of R-proteins have evolved a new function to combat pathogen infection. This subset of R-proteins possesses a nucleotide phosphatase activity in the nucleotide-binding domain. Related R-proteins that fall in the same phylogenetic clade all show the same nucleotide phosphatase activity indicating a conserved function within at least a subset of R-proteins. R-protein nucleotide phosphatases catalyze the production of nucleoside from nucleotide with the nucleotide monophosphate as the preferred substrate. Mutation of conserved catalytic residues substantially reduced activity consistent with the biochemistry of P-loop NTPases. Kinetic analysis, analytical gel filtration, and chemical cross-linking demonstrated that the nucleotide-binding domain was active as a multimer. Nuclear magnetic resonance and nucleotide analogues identified the terminal phosphate bond as the target of a reaction that utilized a metal-mediated nucleophilic attack by water on the phosphoester. In conclusion, we have identified a group of R-proteins with a unique function. This biochemical activity appears to have co-evolved with plants in signaling pathways designed to resist pathogen attack. PMID:22157756

  5. Conversion of adenine to 5-amino-4-pyrimidinylimidazole caused by acetyl capping during solid phase oligonucleotide synthesis.

    PubMed

    Rodriguez, Andrew A; Cedillo, Isaiah; McPherson, Andrew K

    2016-08-01

    The acetyl capping reaction used throughout solid phase oligonucleotide synthesis is meant to minimize n-1 deletionmer impurities by terminating sequences that fail to couple to a phosphoramidite. However, the reaction is also responsible for the formation of a number of impurities. One capping-related impurity has an additional mass of 98amu from the parent oligonucleotide. The n+98 amu impurity was found to result from modification of an adenine nucleobase. The structure of the impurity was determined by preparation of an oligonucleotide enriched in n+98 amu, enzymatic digestion to individual nucleosides, isolation of the pure nucleoside+98 amu species, crystallization, and X-ray crystallographic analysis. The n+98 amu impurity is an oligonucleotide in which one adenine residue has been converted to 5-amino-4-pyrimidinylimidazole. The mechanism of formation of the impurity was investigated, and a mechanism is proposed. PMID:27353533

  6. The contribution of adenines in the catalytic core of 10-23 DNAzyme improved by the 6-amino group modifications.

    PubMed

    Zhu, Junfei; Li, Zhiwen; Wang, Qi; Liu, Yang; He, Junlin

    2016-09-15

    In the catalytic core of 10-23 DNAzyme, its five adenine residues are moderate conservative, but with highly conserved functional groups like 6-amino group and 7-nitrogen atom. It is this critical conservation that these two groups could be modified for better contribution. With 2'-deoxyadenosine analogues, several functional groups were introduced at the 6-amino group of the five adenine residues. 3-Aminopropyl substituent at 6-amino group of A15 resulted in a five-fold increase of kobs. More efficient DNAzymes are expected by delicate design of the linkage and the external functional groups for this 6-amino group of A15. With this modification approach, other functional groups or residues could be optimized for 10-23 DNAzyme. PMID:27506560

  7. Synthesis of adenine, guanine, cytosine, and other nitrogen organic compounds by a Fischer-Tropsch-like process.

    NASA Technical Reports Server (NTRS)

    Yang, C. C.; Oro, J.

    1971-01-01

    Study of the formation of purines, pyrimidines, and other bases from CO, H2, and NH3 under conditions similar to those used in the Fischer-Tropsch process. It is found that industrial nickel/iron alloy catalyzes the synthesis of adenine, guanine, cytosine, and other nitrogenous compounds from mixtures of CO, H2, and NH3 at temperatures of about 600 C. Sufficient sample was accumulated to isolate as solid products adenine, guanine, and cytosine, which were identified by infrared spectrophotometry. In the absence of nickel/iron catalyst, at 650 C, or in the presence of this catalyst, at 450 C, no purines or pyrimidines were synthesized. These results confirm and extend some of the work reported by Kayatsu et al. (1968).

  8. Adenine methylation in eukaryotes: Apprehending the complex evolutionary history and functional potential of an epigenetic modification.

    PubMed

    Iyer, Lakshminarayan M; Zhang, Dapeng; Aravind, L

    2016-01-01

    While N(6) -methyladenosine (m(6) A) is a well-known epigenetic modification in bacterial DNA, it remained largely unstudied in eukaryotes. Recent studies have brought to fore its potential epigenetic role across diverse eukaryotes with biological consequences, which are distinct and possibly even opposite to the well-studied 5-methylcytosine mark. Adenine methyltransferases appear to have been independently acquired by eukaryotes on at least 13 occasions from prokaryotic restriction-modification and counter-restriction systems. On at least four to five instances, these methyltransferases were recruited as RNA methylases. Thus, m(6) A marks in eukaryotic DNA and RNA might be more widespread and diversified than previously believed. Several m(6) A-binding protein domains from prokaryotes were also acquired by eukaryotes, facilitating prediction of potential readers for these marks. Further, multiple lineages of the AlkB family of dioxygenases have been recruited as m(6) A demethylases. Although members of the TET/JBP family of dioxygenases have also been suggested to be m(6) A demethylases, this proposal needs more careful evaluation. Also watch the Video Abstract. PMID:26660621

  9. DNA methyltransferase detection based on digestion triggering the combination of poly adenine DNA with gold nanoparticles.

    PubMed

    Liu, Pei; Wang, Dandan; Zhou, Yunlei; Wang, Haiyan; Yin, Huanshun; Ai, Shiyun

    2016-06-15

    DNA methyltransferase (MTase) has received a large amount of attention due to its catalyzation of DNA methylation in both eukaryotes and prokaryotes, which has a close relationship to cancer and bacterial diseases. Herein, a novel electrochemical strategy based on Dpn I digestion triggering the combination of poly adenine (polyA) DNA with a gold nanoparticles functioned glassy carbon electrode (AuNPs/GCE), is developed for the simple and efficient detection of DNA MTase and inhibitor screening. Only one methylene blue (MB)-labeled DNA hairpin probe and two enzymes are involved in this designed method. In the presence of Dam MTase, the hairpin probe can be methylated and then cleaved by the restriction endonuclease. Thus, a MB-labeled polyA signal-stranded DNA product is introduced to the surface of AuNPs/GCE through the effect between polyA and AuNPs, resulting in an obvious electrochemical signal. On the contrary, in the absence of Dam MTase, the DNA probe cannot be cleaved and a relatively small electrochemical response can be observed. As a result, the as-proposed biosensor offered an efficient way for Dam MTase activity monitoring with a low detection of 0.27U/mL, a wide linear range and good stability. Additionally, this assay holds great potential for further application in real biological matrices and inhibitors screening, which is expected to be useful in disease diagnosis and drug discovery. PMID:26807517

  10. Tools for DNA adenine methyltransferase identification analysis of nuclear organization during C. elegans development.

    PubMed

    Sharma, Rahul; Ritler, Dominic; Meister, Peter

    2016-04-01

    C. elegans has recently emerged as a valuable model to understand the link between nuclear organization and cell fate, by combining microscopy approaches, genome-wide mapping techniques with advanced genetics. Crucial to these analyses are techniques to determine the genome-wide interaction pattern of proteins with DNA. Chromatin immunoprecipitation has proven valuable but it requires considerable amounts of starting material. This is sometimes difficult to achieve, in particular for specific genotypes (balanced strains, different sexes, severe phenotypes…). As an alternative to ChIP, DNA adenine methyltransferase identification by sequencing (DamID-seq) was recently shown to be able to characterize binding sites in single mammalian cells. Additionally, DamID can be achieved for cell-type specific analysis by expressing Dam fusion proteins under tissue specific promoters in a controlled manner. In this report, we present a user-friendly pipeline to analyse DamID-seq data in C. elegans. Based upon this pipeline, we provide a comparative analysis of libraries generated with different starting material and discuss important library features. Moreover, we introduce an adaptation of an imaging based tool to visualize in vivo the cell-specific tridimensional binding pattern of any protein of interest. genesis 54:151-159, 2016. © 2016 Wiley Periodicals, Inc. PMID:26845390

  11. Identification of the active oligomeric state of an essential adenine DNA methyltransferase from Caulobacter crescentus.

    PubMed

    Shier, V K; Hancey, C J; Benkovic, S J

    2001-05-01

    Caulobacter crescentus contains one of the two known prokaryotic DNA methyltransferases that lacks a cognate endonuclease. This endogenous cell cycle regulated adenine DNA methyltransferase (CcrM) is essential for C. crescentus cellular viability. DNA methylation catalyzed by CcrM provides an obligatory signal for the proper progression through the cell cycle. To further our understanding of the regulatory role played by CcrM, we sought to investigate its biophysical properties. In this paper we employed equilibrium ultracentrifugation, velocity ultracentrifugation, and chemical cross-linking to show that CcrM is dimeric at physiological concentrations. However, surface plasmon resonance experiments in the presence of S-adenosyl-homocysteine evince that CcrM binds as a monomer to a defined hemi-methylated DNA substrate containing the canonical methylation sequence, GANTC. Initial velocity experiments demonstrate that dimerization of CcrM does not affect DNA methylation. Collectively, these findings suggest that CcrM is active as a monomer and provides a possible in vivo role for dimerization as a means to stabilize CcrM from premature catabolism. PMID:11278726

  12. A method of preparation and purification of (4R)-deuterated-reduced nicotinamide adenine dinucleotide phosphate.

    PubMed

    Jeong, S S; Gready, J E

    1994-09-01

    (4R)-Deuterated-reduced nicotinamide adenine dinucleotide phosphate, (4R)-[2H]NADPH, was prepared by reduction of NADP+ using an NADP(+)-dependent alcohol dehydrogenase (EC 1.1.1.2) from Thermoanaerobium brockii and isopropanol-d8 as substrate at 43 degrees C, pH 9. More than 80% of the product was identified as reduced cofactor by reverse-phase (ODS) HPLC, and a 1H NMR study showed that all of the reduced cofactor was (4R)-deuterated. Less than 10% of the product was oxidized cofactor, the remainder being impurities from the breakdown of the dinucleotide compound. Subsequent purification carried out by semipreparative reverse-phase HPLC with 0.1 M NaCl at pH 8.5 gave a compound of more than 96% purity. Separated (4R)-[2H]NADPH fractions were freeze-dried and the white solid was stored at 5 degrees C with desiccant. PMID:7810866

  13. Alteration of the Intestinal Environment by Lubiprostone Is Associated with Amelioration of Adenine-Induced CKD.

    PubMed

    Mishima, Eikan; Fukuda, Shinji; Shima, Hisato; Hirayama, Akiyoshi; Akiyama, Yasutoshi; Takeuchi, Yoichi; Fukuda, Noriko N; Suzuki, Takehiro; Suzuki, Chitose; Yuri, Akinori; Kikuchi, Koichi; Tomioka, Yoshihisa; Ito, Sadayoshi; Soga, Tomoyoshi; Abe, Takaaki

    2015-08-01

    The accumulation of uremic toxins is involved in the progression of CKD. Various uremic toxins are derived from gut microbiota, and an imbalance of gut microbiota or dysbiosis is related to renal failure. However, the pathophysiologic mechanisms underlying the relationship between the gut microbiota and renal failure are still obscure. Using an adenine-induced renal failure mouse model, we evaluated the effects of the ClC-2 chloride channel activator lubiprostone (commonly used for the treatment of constipation) on CKD. Oral administration of lubiprostone (500 µg/kg per day) changed the fecal and intestinal properties in mice with renal failure. Additionally, lubiprostone treatment reduced the elevated BUN and protected against tubulointerstitial damage, renal fibrosis, and inflammation. Gut microbiome analysis of 16S rRNA genes in the renal failure mice showed that lubiprostone treatment altered their microbial composition, especially the recovery of the levels of the Lactobacillaceae family and Prevotella genus, which were significantly reduced in the renal failure mice. Furthermore, capillary electrophoresis-mass spectrometry-based metabolome analysis showed that lubiprostone treatment decreased the plasma level of uremic toxins, such as indoxyl sulfate and hippurate, which are derived from gut microbiota, and a more recently discovered uremic toxin, trans-aconitate. These results suggest that lubiprostone ameliorates the progression of CKD and the accumulation of uremic toxins by improving the gut microbiota and intestinal environment. PMID:25525179

  14. Excess electron trapping in duplex DNA: long range transfer via stacked adenines.

    PubMed

    Black, Paul J; Bernhard, William A

    2012-11-01

    An understanding of charge transfer (CT) in DNA lies at the root of assessing the risks and benefits of exposure to ionizing radiation. Energy deposition by high-energy photons and fast-charged particles creates holes and excess electrons (EEs) in DNA, and the subsequent reactions determine the complexity of DNA damage and ultimately the risk of disease. Further interest in CT comes from the possibility that hole transfer, excess electron transfer (EET), or both in DNA might be used to develop nanoscale circuits. To study EET in DNA, EPR spectroscopy was used to determine the distribution of EE trapping by oligodeoxynucleotides irradiated and observed at 4 K. Our results indicate that stretches of consecutive adenine bases on the same strand serve as an ideal conduit for intrastrand EET in duplex DNA at 4 K. Specifically, we show that A is an efficient trap for EE at 4 K if, and only if, the A strand of the duplex does not contain one of the other three bases. If there is a T, C, or G on the A strand, then trapping occurs at T or C instead of A. This holds true for stretches up to 32 A's. Whereas T competes effectively against A for the EE, it does not compete effectively against C. Long stretches of T pass the majority of EE to C. Our results show that AT stretches channel EE to cytosine, an end point with significance to both radiation damage and the photochemical repair of pyrimidine dimers. PMID:23067129

  15. Electron impact fragmentation of adenine: partial ionization cross sections for positive fragments

    NASA Astrophysics Data System (ADS)

    van der Burgt, Peter J. M.; Finnegan, Sinead; Eden, Samuel

    2015-07-01

    Using computer-controlled data acquisition we have measured mass spectra of positive ions for electron impact on adenine, with electron energies up to 100 eV. Ion yield curves for 50 ions have been obtained and normalized by comparing their sum to the average of calculated total ionization cross sections. Appearance energies have been determined for 37 ions; for 20 ions for the first time. All appearance energies are consistent with the fragmentation pathways identified in the literature. Second onset energies have been determined for 12 fragment ions (for 11 ions for the first time), indicating the occurrence of more than one fragmentation process e.g. for 39 u (C2HN+) and 70 u (C2H4N3+). Matching ion yield shapes (118-120 u, 107-108 u, 91-92 u, and 54-56 u) provide new evidence supporting closely related fragmentation pathways and are attributed to hydrogen rearrangement immediately preceding the fragmentation. We present the first measurement of the ion yield curve of the doubly charged parent ion (67.5 u), with an appearance energy of 23.5 ± 1.0 eV. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey Solov'yov, Nigel Mason, Gustavo García, Eugene Surdutovich.

  16. Magnitude of malate-aspartate reduced nicotinamide adenine dinucleotide shuttle activity in intact respiring tumor cells.

    PubMed

    Greenhouse, W V; Lehninger, A L

    1977-11-01

    Measurements of respiration, CO2 and lactate production, and changes in the levels of various key metabolites of the glycolytic sequence and tricarboxylic acid cycle were made on five lines of rodent ascites tumor cells (two strains of Ehrlich ascites tumor cells, Krebs II carcinoma, AS-30D carcinoma, and L1210 cells) incubated aerobically in the presence of uniformly labeled D-[14C]glucose. From these data, as well as earlier evidence demonstrating that the reduced nicotinamide adenine dinucleotide (NADH) shuttle in these cells requires a transaminase step and is thus identified as the malate-aspartate shuttle (W.V.V. Greenhouse and A.L. Lehninger, Cancer Res., 36: 1392-1396, 1976), metabolic flux diagrams were constructed for the five cell lines. These diagrams show the relative rates of glycolysis, the tricarboxylic acid cycle, electron transport, and the malate-aspartate shuttle in these tumors. Large amounts of cytosolic NADH were oxidized by the mitochondrial respiratory chain via the NADH shuttle, comprising anywhere from about 20 to 80% of the total flow of reducing equivalents to oxygen in these tumors. Calculations of the sources of energy for adenosine triphosphate synthesis indicated that on the average about one-third of the respiratory adenosine triphosphate is generated by electron flow originating from cytosolic NADH via the malate-aspartate shuttle. PMID:198130

  17. High-mobility Group Box-1 Protein Promotes Granulomatous Nephritis in Adenine-induced nephropathy

    PubMed Central

    Oyama, Yoko; Hashiguchi, Teruto; Taniguchi, Noboru; Tancharoen, Salunya; Uchimura, Tomonori; Biswas, Kamal K.; Kawahara, Ko-ichi; Nitanda, Takao; Umekita, Yoshihisa; Lotz, Martin; Maruyama, Ikuro

    2011-01-01

    Granulomatous nephritis can be triggered by diverse factors and results in kidney failure. However, despite accumulating data about granulomatous inflammation, pathogenetic mechanisms in nephritis remain unclear. The DNA-binding high-mobility group box-1 protein (HMGB1) initiates and propagates inflammation when released by activated macrophages, functions as an “alarm cytokine” signaling tissue damage. In this study, we demonstrated elevated HMGB1 expression in renal granulomas in rats with crystal-induced granulomatous nephritis caused by feeding an adenine-rich diet. HMGB1 levels were also raised in urine and serum, as well as monocyte chemoattractant protein-1 (MCP-1), a mediator of granulomatous inflammation. Injection of HMGB1 worsened renal function and upregulated MCP-1 in rats with crystal-induced granulomatous nephritis. HMGB1 also induced MCP-1 secretion through mitogen-activated protein kinase (MAPK) and phosphoinositide-3-kinase (PI3K) pathways in rat renal tubular epithelial cells in vitro. Hmgb1+/− mice with crystal-induced nephritis displayed reduced MCP-1 expression in the kidneys and in urine and the number of macrophages in the kidneys was significantly decreased. We conclude that HMGB1 is a new mediator involved in crystal-induced nephritis that amplifies granulomatous inflammation in a cycle where MCP-1 attracts activated macrophages, resulting in excessive and sustained HMGB1 release. HMGB1 could be a novel target for inhibiting chronic granulomatous diseases. PMID:20231821

  18. BRCA1 as a nicotinamide adenine dinucleotide (NAD)-dependent metabolic switch in ovarian cancer

    PubMed Central

    Li, Da; Chen, Na-Na; Cao, Ji-Min; Sun, Wu-Ping; Zhou, Yi-Ming; Li, Chun-Yan; Wang, Xiu-Xia

    2014-01-01

    Both hereditary factors (e.g., BRCA1) and nicotinamide adenine dinucleotide (NAD)-dependent metabolic pathways are implicated in the initiation and progression of ovarian cancer. However, whether crosstalk exists between BRCA1 and NAD metabolism remains largely unknown. Here, we showed that: (i) BRCA1 inactivation events (mutation and promoter methylation) were accompanied by elevated levels of NAD; (ii) the knockdown or overexpression of BRCA1 was an effective way to induce an increase or decrease of nicotinamide phosphoribosyltransferase (Nampt)-related NAD synthesis, respectively; and (iii) BRCA1 expression patterns were inversely correlated with NAD levels in human ovarian cancer specimens. In addition, it is worth noting that: (i) NAD incubation induced increased levels of BRCA1 in a concentration-dependent manner; (ii) Nampt knockdown-mediated reduction in NAD levels was effective at inhibiting BRCA1 expression; and (iii) the overexpression of Nampt led to higher NAD levels and a subsequent increase in BRCA1 levels in primary ovarian cancer cells and A2780, HO-8910 and ES2 ovarian cancer cell lines. These results highlight a novel link between BRCA1 and NAD. Our findings imply that genetic (e.g., BRCA1 inactivation) and NAD-dependent metabolic pathways are jointly involved in the malignant progression of ovarian cancer. PMID:25486197

  19. 3-Picolyl Azide Adenine Dinucleotide as a Probe of Femtosecond to Picosecond Enzyme Dynamics

    PubMed Central

    Dutta, Samrat; Li, Yun-Liang; Rock, William; Houtman, Jon C. D.; Kohen, Amnon; Cheatum, Christopher M.

    2012-01-01

    Functionally relevant femtosecond to picosecond dynamics in enzyme active sites can be difficult to measure because of a lack of spectroscopic probes that can be located in the active site without altering the behavior of the enzyme. We have developed a new NAD+ analog 3-Picolyl Azide Adenine Dinucleotide (PAAD+), which has the potential to be a general spectroscopic probe for NAD-dependent enzymes. This analog is stable and binds in the active site of a typical NAD-dependent enzyme formate dehydrogenase (FDH) with similar characteristics to natural NAD+. It has an isolated infrared transition with high molar absorptivity that makes it suitable for observing enzyme dynamics using 2D IR spectroscopy. 2D IR experiments show that in aqueous solution, the analog undergoes complete spectral diffusion within hundreds of femtoseconds consistent with the water hydrogen bonding dynamics that would be expected. When bound to FDH in a binary complex, it shows picosecond fluctuations and a large static offset, consistent with previous studies of the binary complexes of this enzyme. These results show that PAAD+ is an excellent probe of local dynamics and that it should be a general tool for probing the dynamics of a wide range of NAD-dependent enzymes. PMID:22126535

  20. Preclinical evidence of mitochondrial nicotinamide adenine dinucleotide as an effective alarm parameter under hypoxia

    NASA Astrophysics Data System (ADS)

    Shi, Hua; Sun, Nannan; Mayevsky, Avraham; Zhang, Zhihong; Luo, Qingming

    2014-01-01

    Early detection of tissue hypoxia in the intensive care unit is essential for effective treatment. Reduced nicotinamide adenine dinucleotide (NADH) has been suggested to be the most sensitive indicator of tissue oxygenation at the mitochondrial level. However, no experimental evidence comparing the kinetics of changes in NADH and other physiological parameters has been provided. The aim of this study is to obtain the missing data in a systematic and reliable manner. We constructed four acute hypoxia models, including hypoxic hypoxia, hypemic hypoxia, circulatory hypoxia, and histogenous hypoxia, and measured NADH fluorescence, tissue reflectance, cerebral blood flow, respiration, and electrocardiography simultaneously from the induction of hypoxia until death. We found that NADH was not always the first onset parameter responding to hypoxia. The order of responses was mainly affected by the cause of hypoxia. However, NADH reached its alarm level earlier than the other monitored parameters, ranging from several seconds to >10 min. As such, we suggest that the NADH can be used as a hypoxia indicator, although the exact level that should be used must be further investigated. When the NADH alarm is detected, the body still has a chance to recover if appropriate and timely treatment is provided.

  1. Adenine methylation in eukaryotes: Apprehending the complex evolutionary history and functional potential of an epigenetic modification

    PubMed Central

    Iyer, Lakshminarayan M.; Zhang, Dapeng

    2015-01-01

    While N6‐methyladenosine (m6A) is a well‐known epigenetic modification in bacterial DNA, it remained largely unstudied in eukaryotes. Recent studies have brought to fore its potential epigenetic role across diverse eukaryotes with biological consequences, which are distinct and possibly even opposite to the well‐studied 5‐methylcytosine mark. Adenine methyltransferases appear to have been independently acquired by eukaryotes on at least 13 occasions from prokaryotic restriction‐modification and counter‐restriction systems. On at least four to five instances, these methyltransferases were recruited as RNA methylases. Thus, m6A marks in eukaryotic DNA and RNA might be more widespread and diversified than previously believed. Several m6A‐binding protein domains from prokaryotes were also acquired by eukaryotes, facilitating prediction of potential readers for these marks. Further, multiple lineages of the AlkB family of dioxygenases have been recruited as m6A demethylases. Although members of the TET/JBP family of dioxygenases have also been suggested to be m6A demethylases, this proposal needs more careful evaluation. Also watch the Video Abstract. PMID:26660621

  2. Poly-adenine-based programmable engineering of gold nanoparticles for highly regulated spherical DNAzymes.

    PubMed

    Zhu, Dan; Pei, Hao; Chao, Jie; Su, Shao; Aldalbahi, Ali; Rahaman, Mostafizur; Wang, Lihua; Wang, Lianhui; Huang, Wei; Fan, Chunhai; Zuo, Xiaolei

    2015-11-28

    Enzyme complexes are assembled at the two-dimensional lipid membrane or prearranged on three-dimensional scaffolding proteins to regulate their catalytic activity in cells. Inspired by nature, we have developed gold nanoparticle-based spherical DNAzymes (SNAzymes) with programmably engineered activities by exploiting poly-adenine (polyA)-Au interactions. In a SNAzyme, AuNPs serve as the metal core, which is decorated with a functional shell of DNAzymes. Conventional thiolated DNAzyme-based assembly leads to disordered structures with suppressed activity. In contrast, by using an anchoring block of polyA tails, we find that the activity of SNAzymes can be programmably regulated. By using a polyA30 tail, SNAzymes demonstrated remarkably enhanced binding affinity compared to the thiolated DNAzyme-based assembly (∼75-fold) or individual DNAzymes in the solution phase (∼10-fold). More significantly, this increased affinity is directly translated to the sensitivity improvement in the SNAzyme-based lead sensor. Hence, this design of SNAzymes may provide new opportunities for developing biosensors and bioimaging probes for theranostic applications. PMID:26498866

  3. Structural Basis for Avoidance of Promutagenic DNA Repair by MutY Adenine DNA Glycosylase*

    PubMed Central

    Wang, Lan; Lee, Seung-Joo; Verdine, Gregory L.

    2015-01-01

    The highly mutagenic A:oxoG (8-oxoguanine) base pair in DNA most frequently arises by aberrant replication of the primary oxidative lesion C:oxoG. This lesion is particularly insidious because neither of its constituent nucleobases faithfully transmit genetic information from the original C:G base pair. Repair of A:oxoG is initiated by adenine DNA glycosylase, which catalyzes hydrolytic cleavage of the aberrant A nucleobase from the DNA backbone. These enzymes, MutY in bacteria and MUTYH in humans, scrupulously avoid processing of C:oxoG because cleavage of the C residue in C:oxoG would actually promote mutagenic conversion to A:oxoG. Here we analyze the structural basis for rejection of C:oxoG by MutY, using a synthetic crystallography approach to capture the enzyme in the process of inspecting the C:oxoG anti-substrate, with which it ordinarily binds only fleetingly. We find that MutY uses two distinct strategies to avoid presentation of C to the enzyme active site. Firstly, MutY possesses an exo-site that serves as a decoy for C, and secondly, repulsive forces with a key active site residue prevent stable insertion of C into the nucleobase recognition pocket within the enzyme active site. PMID:25995449

  4. Mutations in adenine-binding pockets enhance catalytic properties of NAD(P)H-dependent enzymes.

    PubMed

    Cahn, J K B; Baumschlager, A; Brinkmann-Chen, S; Arnold, F H

    2016-01-01

    NAD(P)H-dependent enzymes are ubiquitous in metabolism and cellular processes and are also of great interest for pharmaceutical and industrial applications. Here, we present a structure-guided enzyme engineering strategy for improving catalytic properties of NAD(P)H-dependent enzymes toward native or native-like reactions using mutations to the enzyme's adenine-binding pocket, distal to the site of catalysis. Screening single-site saturation mutagenesis libraries identified mutations that increased catalytic efficiency up to 10-fold in 7 out of 10 enzymes. The enzymes improved in this study represent three different cofactor-binding folds (Rossmann, DHQS-like, and FAD/NAD binding) and utilize both NADH and NADPH. Structural and biochemical analyses show that the improved activities are accompanied by minimal changes in other properties (cooperativity, thermostability, pH optimum, uncoupling), and initial tests on two enzymes (ScADH6 and EcFucO) show improved functionality in Escherichia coli. PMID:26512129

  5. Structural Basis for Avoidance of Promutagenic DNA Repair by MutY Adenine DNA Glycosylase.

    PubMed

    Wang, Lan; Lee, Seung-Joo; Verdine, Gregory L

    2015-07-10

    The highly mutagenic A:oxoG (8-oxoguanine) base pair in DNA most frequently arises by aberrant replication of the primary oxidative lesion C:oxoG. This lesion is particularly insidious because neither of its constituent nucleobases faithfully transmit genetic information from the original C:G base pair. Repair of A:oxoG is initiated by adenine DNA glycosylase, which catalyzes hydrolytic cleavage of the aberrant A nucleobase from the DNA backbone. These enzymes, MutY in bacteria and MUTYH in humans, scrupulously avoid processing of C:oxoG because cleavage of the C residue in C:oxoG would actually promote mutagenic conversion to A:oxoG. Here we analyze the structural basis for rejection of C:oxoG by MutY, using a synthetic crystallography approach to capture the enzyme in the process of inspecting the C:oxoG anti-substrate, with which it ordinarily binds only fleetingly. We find that MutY uses two distinct strategies to avoid presentation of C to the enzyme active site. Firstly, MutY possesses an exo-site that serves as a decoy for C, and secondly, repulsive forces with a key active site residue prevent stable insertion of C into the nucleobase recognition pocket within the enzyme active site. PMID:25995449

  6. Probing the ATP Site of GRP78 with Nucleotide Triphosphate Analogs.

    PubMed

    Hughes, Scott J; Antoshchenko, Tetyana; Chen, Yun; Lu, Hua; Pizarro, Juan C; Park, Hee-Won

    2016-01-01

    GRP78, a member of the ER stress protein family, can relocate to the surface of cancer cells, playing key roles in promoting cell proliferation and metastasis. GRP78 consists of two major functional domains: the ATPase and protein/peptide-binding domains. The protein/peptide-binding domain of cell-surface GRP78 has served as a novel functional receptor for delivering cytotoxic agents (e.g., a apoptosis-inducing peptide or taxol) across the cell membrane. Here, we report our study on the ATPase domain of GRP78 (GRP78ATPase), whose potential as a transmembrane delivery system of cytotoxic agents (e.g., ATP-based nucleotide triphosphate analogs) remains unexploited. As the binding of ligands (ATP analogs) to a receptor (GRP78ATPase) is a pre-requisite for internalization, we determined the binding affinities and modes of GRP78ATPase for ADP, ATP and several ATP analogs using surface plasmon resonance and x-ray crystallography. The tested ATP analogs contain one of the following modifications: the nitrogen at the adenine ring 7-position to a carbon atom (7-deazaATP), the oxygen at the β-γ bridge position to a carbon atom (AMPPCP), or the removal of the 2'-OH group (2'-deoxyATP). We found that 7-deazaATP displays an affinity and a binding mode that resemble those of ATP regardless of magnesium ion (Mg++) concentration, suggesting that GRP78 is tolerant to modifications at the 7-position. By comparison, AMPPCP's binding affinity was lower than ATP and Mg++-dependent, as the removal of Mg++ nearly abolished binding to GRP78ATPase. The AMPPCP-Mg++ structure showed evidence for the critical role of Mg++ in AMPPCP binding affinity, suggesting that while GRP78 is sensitive to modifications at the β-γ bridge position, these can be tolerated in the presence of Mg++. Furthermore, 2'-deoxyATP's binding affinity was significantly lower than those for all other nucleotides tested, even in the presence of Mg++. The 2'-deoxyATP structure showed the conformation of the bound

  7. Probing the ATP Site of GRP78 with Nucleotide Triphosphate Analogs

    PubMed Central

    Chen, Yun; Lu, Hua; Pizarro, Juan C.; Park, Hee-Won

    2016-01-01

    GRP78, a member of the ER stress protein family, can relocate to the surface of cancer cells, playing key roles in promoting cell proliferation and metastasis. GRP78 consists of two major functional domains: the ATPase and protein/peptide-binding domains. The protein/peptide-binding domain of cell-surface GRP78 has served as a novel functional receptor for delivering cytotoxic agents (e.g., a apoptosis-inducing peptide or taxol) across the cell membrane. Here, we report our study on the ATPase domain of GRP78 (GRP78ATPase), whose potential as a transmembrane delivery system of cytotoxic agents (e.g., ATP-based nucleotide triphosphate analogs) remains unexploited. As the binding of ligands (ATP analogs) to a receptor (GRP78ATPase) is a pre-requisite for internalization, we determined the binding affinities and modes of GRP78ATPase for ADP, ATP and several ATP analogs using surface plasmon resonance and x-ray crystallography. The tested ATP analogs contain one of the following modifications: the nitrogen at the adenine ring 7-position to a carbon atom (7-deazaATP), the oxygen at the β-γ bridge position to a carbon atom (AMPPCP), or the removal of the 2’-OH group (2’-deoxyATP). We found that 7-deazaATP displays an affinity and a binding mode that resemble those of ATP regardless of magnesium ion (Mg++) concentration, suggesting that GRP78 is tolerant to modifications at the 7-position. By comparison, AMPPCP’s binding affinity was lower than ATP and Mg++-dependent, as the removal of Mg++ nearly abolished binding to GRP78ATPase. The AMPPCP-Mg++ structure showed evidence for the critical role of Mg++ in AMPPCP binding affinity, suggesting that while GRP78 is sensitive to modifications at the β-γ bridge position, these can be tolerated in the presence of Mg++. Furthermore, 2’-deoxyATP’s binding affinity was significantly lower than those for all other nucleotides tested, even in the presence of Mg++. The 2’-deoxyATP structure showed the conformation of the

  8. Probing the ATP site of GRP78 with nucleotide triphosphate analogs

    DOE PAGESBeta

    Hughes, Scott J.; Antoshchenko, Tetyana; Chen, Yun; Lu, Hua; Pizarro, Juan C.; Park, Hee -Won

    2016-05-04

    GRP78, a member of the ER stress protein family, can relocate to the surface of cancer cells, playing key roles in promoting cell proliferation and metastasis. GRP78 consists of two major functional domains: the ATPase and protein/peptide-binding domains. The protein/peptide-binding domain of cell-surface GRP78 has served as a novel functional receptor for delivering cytotoxic agents (e.g., a apoptosis-inducing peptide or taxol) across the cell membrane. Here, we report our study on the ATPase domain of GRP78 (GRP78ATPase), whose potential as a transmembrane delivery system of cytotoxic agents (e.g., ATP-based nucleotide triphosphate analogs) remains unexploited. As the binding of ligands (ATPmore » analogs) to a receptor (GRP78ATPase) is a pre-requisite for internalization, we determined the binding affinities and modes of GRP78ATPase for ADP, ATP and several ATP analogs using surface plasmon resonance and x-ray crystallography. The tested ATP analogs contain one of the following modifications: the nitrogen at the adenine ring 7-position to a carbon atom (7-deazaATP), the oxygen at the beta-gamma bridge position to a carbon atom (AMPPCP), or the removal of the 2'-OH group (2'-deoxyATP). We found that 7-deazaATP displays an affinity and a binding mode that resemble those of ATP regardless of magnesium ion (Mg++) concentration, suggesting that GRP78 is tolerant to modifications at the 7-position. By comparison, AMPPCP's binding affinity was lower than ATP and Mg++-dependent, as the removal of Mg++ nearly abolished binding to GRP78ATPase. The AMPPCP-Mg++ structure showed evidence for the critical role of Mg++ in AMPPCP binding affinity, suggesting that while GRP78 is sensitive to modifications at the β-γ bridge position, these can be tolerated in the presence of Mg++. Furthermore, 2'-deoxyATP's binding affinity was significantly lower than those for all other nucleotides tested, even in the presence of Mg++. The 2'-deoxyATP structure showed the conformation of

  9. The International Nucleotide Sequence Database Collaboration.

    PubMed

    Cochrane, Guy; Karsch-Mizrachi, Ilene; Takagi, Toshihisa

    2016-01-01

    The International Nucleotide Sequence Database Collaboration (INSDC; http://www.insdc.org) comprises three global partners committed to capturing, preserving and providing comprehensive public-domain nucleotide sequence information. The INSDC establishes standards, formats and protocols for data and metadata to make it easier for individuals and organisations to submit their nucleotide data reliably to public archives. This work enables the continuous, global exchange of information about living things. Here we present an update of the INSDC in 2015, including data growth and diversification, new standards and requirements by publishers for authors to submit their data to the public archives. The INSDC serves as a model for data sharing in the life sciences. PMID:26657633

  10. Nucleotide `maps' of digests of deoxyribonucleic acid

    PubMed Central

    Murray, K.

    1970-01-01

    Various digests of 32P-labelled DNA were examined by two-dimensional ionophoresis on cellulose acetate and DEAE-cellulose paper. The products from digestion with pancreatic deoxyribonuclease and Neurospora crassa endonuclease were qualitatively closely similar, but very complex, and were used to investigate the mapping behaviour of nucleotides in various ionophoretic systems. Ionophoresis on DEAE-cellulose paper in triethylamine carbonate, pH 9.7, followed by ionophoresis in the second dimension at pH1.9 gave high resolution of nucleotides in very complex mixtures and permitted the fractionation of larger quantities than is possible on cellulose acetate. High resolution of nucleotides in compact spots was obtained with two-dimensional ionophoresis on cellulose acetate and AE-cellulose paper, a system that is a useful supplement to those based on DEAE-cellulose paper. ImagesPLATE 7PLATE 1PLATE 2PLATE 3PLATE 4PLATE 5PLATE 6 PMID:5476726

  11. Determination of guanine and adenine by high-performance liquid chromatography with a self-fabricated wall-jet/thin-layer electrochemical detector at a glassy carbon electrode.

    PubMed

    Zhou, Yaping; Yan, Hongling; Xie, Qingji; Yao, Shouzhuo

    2015-03-01

    A sensitive wall-jet/thin-layer amperometric electrochemical detector (ECD) coupled to high-performance liquid chromatography (HPLC) was developed for simultaneous determination of guanine (G) and adenine (A). The analytes were detected at a glassy carbon electrode (GCE) and the HPLC-ECD calibration curves showed good linearity (R(2)>0.997) under optimized conditions. Limits of detection for G and A are 0.6 nM and 1.4 nM (S/N=3), respectively, which are lower than those obtained with an UV-vis detector and a commercial electrochemical detector. We have successfully applied this HPLC-ECD to assess the contents of G and A in hydrochloric acid-digested calf thymus double-stranded DNA. In addition, we compared in detail the analysis of G and A by cyclic voltammetry (CV) and by the HPLC-ECD system on both bare GCE and electroreduced graphene oxide (ERGO) modified GCE. We found that the adsorption of G and A on the electrode surfaces can vary their anodic CV peaks and the competitive adsorption of G and A on the limited sites of the electrode surfaces can cause crosstalk effects on their anodic CV peak signals, but the HPLC-ECD system is insensitive to such electrode-adsorption and can give more reliable analytical results. PMID:25618679

  12. Dispensability of the [4Fe-4S] cluster in novel homologues of adenine glycosylase MutY.

    PubMed

    Trasviña-Arenas, Carlos H; Lopez-Castillo, Laura M; Sanchez-Sandoval, Eugenia; Brieba, Luis G

    2016-02-01

    7,8-Dihydro-8-deoxyguanine (8oG) is one of the most common oxidative lesions in DNA. DNA polymerases misincorporate an adenine across from this lesion. Thus, 8oG is a highly mutagenic lesion responsible for G:C→T:A transversions. MutY is an adenine glycosylase, part of the base excision repair pathway that removes adenines, when mispaired with 8oG or guanine. Its catalytic domain includes a [4Fe-4S] cluster motif coordinated by cysteinyl ligands. When this cluster is absent, MutY activity is depleted and several studies concluded that the [4Fe-4S] cluster motif is an indispensable component for DNA binding, substrate recognition and enzymatic activity. In the present study, we identified 46 MutY homologues that lack the canonical cysteinyl ligands, suggesting an absence of the [4Fe-4S] cluster. A phylogenetic analysis groups these novel MutYs into two different clades. One clade is exclusive of the order Lactobacillales and another clade has a mixed composition of anaerobic and microaerophilic bacteria and species from the protozoan genus Entamoeba. Structural modeling and sequence analysis suggests that the loss of the [4Fe-4S] cluster is compensated by a convergent solution in which bulky amino acids substitute the [4Fe-4S] cluster. We functionally characterized MutYs from Lactobacillus brevis and Entamoeba histolytica as representative members from each clade and found that both enzymes are active adenine glycosylases. Furthermore, chimeric glycosylases, in which the [4Fe-4S] cluster of Escherichia coli MutY is replaced by the corresponding amino acids of LbY and EhY, are also active. Our data indicates that the [4Fe-4S] cluster plays a structural role in MutYs and evidences the existence of alternative functional solutions in nature. PMID:26613369

  13. Complex formation of cadmium with sugar residues, nucleobases, phosphates, nucleotides, and nucleic acids.

    PubMed

    Sigel, Roland K O; Skilandat, Miriam; Sigel, Astrid; Operschall, Bert P; Sigel, Helmut

    2013-01-01

    Cadmium(II), commonly classified as a relatively soft metal ion, prefers indeed aromatic-nitrogen sites (e.g., N7 of purines) over oxygen sites (like sugar-hydroxyl groups). However, matters are not that simple, though it is true that the affinity of Cd(2+) towards ribose-hydroxyl groups is very small; yet, a correct orientation brought about by a suitable primary binding site and a reduced solvent polarity, as it is expected to occur in a folded nucleic acid, may facilitate metal ion-hydroxyl group binding very effectively. Cd(2+) prefers the guanine(N7) over the adenine(N7), mainly because of the steric hindrance of the (C6)NH(2) group in the adenine residue. This Cd(2+)-(N7) interaction in a guanine moiety leads to a significant acidification of the (N1)H meaning that the deprotonation reaction occurs now in the physiological pH range. N3 of the cytosine residue, together with the neighboring (C2)O, is also a remarkable Cd(2+) binding site, though replacement of (C2)O by (C2)S enhances the affinity towards Cd(2+) dramatically, giving in addition rise to the deprotonation of the (C4)NH(2) group. The phosphodiester bridge is only a weak binding site but the affinity increases further from the mono- to the di- and the triphosphate. The same also holds for the corresponding nucleotides. Complex stability of the pyrimidine-nucleotides is solely determined by the coordination tendency of the phosphate group(s), whereas in the case of purine-nucleotides macrochelate formation takes place by the interaction of the phosphate-coordinated Cd(2+) with N7. The extents of the formation degrees of these chelates are summarized and the effect of a non-bridging sulfur atom in a thiophosphate group (versus a normal phosphate group) is considered. Mixed ligand complexes containing a nucleotide and a further mono- or bidentate ligand are covered and it is concluded that in these species N7 is released from the coordination sphere of Cd(2+). In the case that the other ligand

  14. Regulation of Ion Channels by Pyridine Nucleotides

    PubMed Central

    Kilfoil, Peter J.; Tipparaju, Srinivas M.; Barski, Oleg A.; Bhatnagar, Aruni

    2014-01-01

    Recent research suggests that in addition to their role as soluble electron carriers, pyridine nucleotides [NAD(P)(H)] also regulate ion transport mechanisms. This mode of regulation seems to have been conserved through evolution. Several bacterial ion–transporting proteins or their auxiliary subunits possess nucleotide-binding domains. In eukaryotes, the Kv1 and Kv4 channels interact with pyridine nucleotide–binding β-subunits that belong to the aldo-keto reductase superfamily. Binding of NADP+ to Kvβ removes N-type inactivation of Kv currents, whereas NADPH stabilizes channel inactivation. Pyridine nucleotides also regulate Slo channels by interacting with their cytosolic regulator of potassium conductance domains that show high sequence homology to the bacterial TrkA family of K+ transporters. These nucleotides also have been shown to modify the activity of the plasma membrane KATP channels, the cystic fibrosis transmembrane conductance regulator, the transient receptor potential M2 channel, and the intracellular ryanodine receptor calcium release channels. In addition, pyridine nucleotides also modulate the voltage-gated sodium channel by supporting the activity of its ancillary subunit—the glycerol-3-phosphate dehydrogenase-like protein. Moreover, the NADP+ metabolite, NAADP+, regulates intracellular calcium homeostasis via the 2-pore channel, ryanodine receptor, or transient receptor potential M2 channels. Regulation of ion channels by pyridine nucleotides may be required for integrating cell ion transport to energetics and for sensing oxygen levels or metabolite availability. This mechanism also may be an important component of hypoxic pulmonary vasoconstriction, memory, and circadian rhythms, and disruption of this regulatory axis may be linked to dysregulation of calcium homeostasis and cardiac arrhythmias. PMID:23410881

  15. Overoxidized polypyrrole/graphene nanocomposite with good electrochemical performance as novel electrode material for the detection of adenine and guanine.

    PubMed

    Gao, Yan-Sha; Xu, Jing-Kun; Lu, Li-Min; Wu, Li-Ping; Zhang, Kai-Xin; Nie, Tao; Zhu, Xiao-Fei; Wu, Yao

    2014-12-15

    Most conducting polymer/graphene composites have excellent electrical conductivity. However, the background currents of these composites modified electrodes are much larger. In order to improve the sensitivities of these methods, it is necessary to decrease the background signal. In this paper, porous structure films of overoxidized polypyrrole/graphene (PPyox/GR) have been electrochemically coated onto glassy carbon electrode (GCE) and successfully utilized as an efficient electrode material for the quantitive detection of adenine and guanine, two of the most important components of DNA and RNA. The permselective polymer coatings with low background current could improve the selectivity and sensitivity of microelectrodes for the electropositive purine bases. The GRs into these polymers would further improve sensitivity by increasing the electroactive surface area. The electrochemical sensor can be applied to the quantification of adenine and guanine with a linear range covering 0.06-100 µM and 0.04-100 µM, and a low detection limit of 0.02 μM and 0.01 μM, respectively. More importantly, the proposed method was applied to quantify adenine and guanine in calf thymus DNA with satisfactory results. PMID:25022509

  16. Inhibition of erythrocyte plasma membrane NADH dehydrogenase by nucleotides and uncouplers.

    PubMed

    Howland, J L; Osrin, D; Donatelli, M; Theofrastous, J P

    1984-12-19

    Erythrocyte ghost NADH dehydrogenase is inhibited in a competitive fashion by ATP and ADP whereas other nucleoside di- and triphosphates, cyclic nucleosides, as well as non-phosphorylating ATP analogs are relatively ineffective. In addition, this enzyme, measured with ferricyanide as electron acceptor, is inhibited by uncouplers of oxidative phosphorylation (proton-conducting reagents), the inhibition being competitive in character (i.e., the uncouplers were without influence upon maximum velocity). The effectiveness of the uncouplers was in the order of their hydrophobic character with the presence of the alkyl side chain rendering nonyl-dinitrophenol much more active than 2,6-dinitrophenol itself. Hydrophobic compounds that are not protonophores (e.g., eosin, proflavin or valinomycin) were not inhibitory. Whereas adenine nucleotides probably inhibit NADH oxidation competitively through structural similarity with the substrate, it appears unlikely that uncouplers compete at the NADH site directly. Rather, the apparently-competitive inhibition in the latter case may reflect competition for proton transfer to an acceptor residing in a hydrophobic region of the enzyme complex. PMID:6509043

  17. Nucleotide Binding Preference of the Monofunctional Platinum Anticancer-Agent Phenanthriplatin.

    PubMed

    Riddell, Imogen A; Johnstone, Timothy C; Park, Ga Young; Lippard, Stephen J

    2016-05-23

    The monofunctional platinum anticancer agent phenanthriplatin generates covalent adducts with the purine bases guanine and adenine. Preferential nucleotide binding was investigated by using a polymerase stop assay and linear DNA amplification with a 163-base pair DNA double helix. Similarly to cisplatin, phenanthriplatin forms the majority of adducts at guanosine residues, but significant differences in both the number and position of platination sites emerge when comparing results for the two complexes. Notably, the monofunctional complex generates a greater number of polymerase-halting lesions at adenosine residues than does cisplatin. Studies with 9-methyladenine reveal that, under abiological conditions, phenanthriplatin binds to the N(1) or N(7) position of 9-methyladenine in approximately equimolar amounts. By contrast, comparable reactions with 9-methylguanine afforded only the N(7) -bound species. Both of the 9-methyladenine linkage isomers (N(1) and N(7) ) exist as two diastereomeric species, arising from hindered rotation of the aromatic ligands about their respective platinum-nitrogen bonds. Eyring analysis of rate constants extracted from variable-temperature NMR spectroscopic data revealed that the activation energies for ligand rotation in the N(1) -bound platinum complex and the N(7) -linkage isomers are comparable. Finally, a kinetic analysis indicated that phenanthriplatin reacts more rapidly, by a factor of eight, with 9-methylguanine than with 9-methyladenine, suggesting that the distribution of lesions formed on double-stranded DNA is kinetically controlled. In addition, implications for the potent anticancer activity of phenanthriplatin are discussed herein. PMID:27111128

  18. Coupled optical assay for adenine phosphoribosyltransferase and its extension for the spectrophotometric and radioenzymatic determination of 5-phosphoribosyl-1-pyrophosphate in mixtures and in tissue extracts

    SciTech Connect

    Ipata, P.L.; Mura, U.; Camici, M.; Giovannitti, M.P.

    1987-08-01

    A reliable assay was developed to characterize crude cell homogenates with regard to their adenine phosphoribosyltransferase activities. The 5-phosphoribosyl-1-pyrophosphate (PRPP)-dependent formation of AMP from adenine is followed spectrophotometrically at 265 nm by coupling it with the following two-stage enzymatic conversion: AMP + H/sub 2/O----adenosine + Pi (5'-nucleotidase); adenosine + H/sub 2/O----inosine + NH/sub 3/ (adenosine deaminase). The same principle was applied to develop a spectrophotometric and a radioenzymatic assay for PRPP. The basis of the spectrophotometric assay is the absorbance change at 265 nm associated with the enzymatic conversion of PRPP into inosine, catalyzed by the sequential action of partially purified adenine phosphoribosyltransferase, commercial 5'-nucleotidase, and commercial adenosine deaminase, in the presence of excess adenine. In the radiochemical assay PRPP is quantitatively converted into (/sup 14/C)inosine via the same combined reaction. Tissue extracts are incubated with excess (/sup 14/C)adenine. The radioactivity of inosine, separated by a thin-layer chromatographic system, is a measure of PRPP present in tissue extracts. The radioenzymatic assay is at least as sensitive as other methods based on the use of adenine phosphoribosyltransferase. However, it overcomes the reversibility of the reaction and the need to use transferase preparations free of any phosphatase and adenosine deaminase activities.

  19. A new microplatform based on titanium dioxide nanofibers/graphene oxide nanosheets nanocomposite modified screen printed carbon electrode for electrochemical determination of adenine in the presence of guanine.

    PubMed

    Arvand, Majid; Ghodsi, Navid; Zanjanchi, Mohammad Ali

    2016-03-15

    The current techniques for determining adenine have several shortcomings such as high cost, high time consumption, tedious pretreatment steps and the requirements for highly skilled personnel often restrict their use in routine analytical practice. This paper describes the development and utilization of a new nanocomposite consisting of titanium dioxide nanofibers (TNFs) and graphene oxide nanosheets (GONs) for screen printed carbon electrode (SPCE) modification. The synthesized GONs and TNFs were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). The modified electrode (TNFs/GONs/SPCE) was used for electrochemical characterization of adenine. The TNFs/GONs/SPCE exhibited an increase in peak current and the electron transfer kinetics and decrease in the overpotential for the oxidation reaction of adenine. Using differential pulse voltammetry (DPV), the prepared sensor showed good sensitivity for determining adenine in two ranges from 0.1-1 and 1-10 μM, with a detection limit (DL) of 1.71 nM. Electrochemical studies suggested that the TNFs/GONs/SPCE provided a synergistic augmentation on the voltammetric behavior of electrochemical oxidation of adenine, which was indicated by the improvement of anodic peak current and a decrease in anodic peak potential. The amount of adenine in pBudCE4.1 plasmid was determined via the proposed sensor and the result was in good compatibility with the sequence data of pBudCE4.1 plasmid. PMID:26556182

  20. Three new double-headed nucleotides with additional nucleobases connected to C-5 of pyrimidines; synthesis, duplex and triplex studies.

    PubMed

    Kumar, Pawan; Sharma, Pawan K; Hansen, Jonas; Jedinak, Lukas; Reslow-Jacobsen, Charlotte; Hornum, Mick; Nielsen, Poul

    2016-02-15

    In the search for double-coding DNA-systems, three new pyrimidine nucleosides, each coded with an additional nucleobase anchored to the major groove face, are synthesized. Two of these building blocks carry a thymine at the 5-position of 2'-deoxyuridine through a methylene linker and a triazolomethylene linker, respectively. The third building block carries an adenine at the 6-position of pyrrolo-2'-deoxycytidine through a methylene linker. These double-headed nucleosides are introduced into oligonucleotides and their effects on the thermal stabilities of duplexes are studied. All studied double-headed nucleotide monomers reduce the thermal stability of the modified duplexes, which is partially compensated by using consecutive incorporations of the modified monomers or by flanking the new double-headed analogs with members of our former series containing propyne linkers. Also their potential in triplex-forming oligonucleotides is studied for two of the new double-headed nucleotides as well as the series of analogs with propyne linkers. The most stable triplexes are obtained with single incorporations of additional pyrimidine nucleobases connected via the propyne linker. PMID:26778611

  1. AMPK antagonizes hepatic glucagon-stimulated cyclic AMP signalling via phosphorylation-induced activation of cyclic nucleotide phosphodiesterase 4B

    PubMed Central

    Johanns, M.; Lai, Y.-C.; Hsu, M.-F.; Jacobs, R.; Vertommen, D.; Van Sande, J.; Dumont, J. E.; Woods, A.; Carling, D.; Hue, L.; Viollet, B.; Foretz, M; Rider, M H

    2016-01-01

    Biguanides such as metformin have previously been shown to antagonize hepatic glucagon-stimulated cyclic AMP (cAMP) signalling independently of AMP-activated protein kinase (AMPK) via direct inhibition of adenylate cyclase by AMP. Here we show that incubation of hepatocytes with the small-molecule AMPK activator 991 decreases glucagon-stimulated cAMP accumulation, cAMP-dependent protein kinase (PKA) activity and downstream PKA target phosphorylation. Moreover, incubation of hepatocytes with 991 increases the Vmax of cyclic nucleotide phosphodiesterase 4B (PDE4B) without affecting intracellular adenine nucleotide concentrations. The effects of 991 to decrease glucagon-stimulated cAMP concentrations and activate PDE4B are lost in hepatocytes deleted for both catalytic subunits of AMPK. PDE4B is phosphorylated by AMPK at three sites, and by site-directed mutagenesis, Ser304 phosphorylation is important for activation. In conclusion, we provide a new mechanism by which AMPK antagonizes hepatic glucagon signalling via phosphorylation-induced PDE4B activation. PMID:26952277

  2. Palindromic-nucleotide substitutions (PNS) of hepatitis C virus genotypes 1 and 5a from South Africa.

    PubMed

    Prabdial-Sing, N; Giangaspero, M; Puren, A J; Mahlangu, J; Barrow, P; Bowyer, S M

    2011-08-01

    The HCV stem-loop subdomains III-a, -b and -c have been shown to reflect the characteristics of the virus and identify isolates by genus, genotype and subtype. The aim of this study was to investigate the genotype-specific PNS within the 5'UTR of prevalent HCV genotypes (1 and 5a) found in South Africa. The genotype 5a (N = 35) and genotype 1 sequences (N=20) were from patients presenting with liver disease or haemophilia, respectively. PNS HCV typing characteristics, defined previously, were observed. The PNS method differentiated subtypes 1a and 1c from subtype 1b by the base change at nucleotide position 243. A lack of structural data from the variable loci V1 of the 5'UTR did not allow us to further differentiate the subtypes of 1. A nucleotide change from a thymine (T) to a cytosine (C) at position 183 was found among genotype 5a sequences. This mutation changed the stable U-AA bond to a Y AA bulge at base-pair position 32. There was an insertion of a single adenine (A) at position 207. At present PNS analysis is labour intensive but, with development of further software to aid the computer analysis, it has the potential to provide a rapid, reliable alternative to phylogenetic analysis. PMID:21600241

  3. A working hypothesis on the interdependent genesis of nucleotide bases, protein amino acids, and primitive genetic code

    NASA Astrophysics Data System (ADS)

    Egami, Fujio

    1981-09-01

    In the course of experimental approach to the chemical evolution in the primeval sea, we have found that the main products from formaldehyde and hydroxylamine are glycine, alanine, serine, aspartic acid etc., and the products from glycine and formaldehyde are serine and aspartic acid. Guanine is found in the two-letter genetic codons of all these amino acids. Based upon the finding and taking into consideration the probable synthetic pathways of nucleotide bases and protein amino acids in the course of chemical evolution and a correlation between the two-letter codons and the number of carbon atoms in the carbon skeleton of amino acids, 1 have been led to a working hypothesis on the interdependent genesis of nucleotide bases, protein amino acids, and primitive genetic code as shown in Table I. Protein amino acids can be classified into two groups: Purine Group amino acids and Pyrimidine Group amino acids. Purine bases and Pyrimidine bases are predominant in two-letter codons of amino acids belonging to the former and the latter group respectively. Guanine, adenine, and amino acids of the Purine Group may be regarded as synthesized from C1 and C2 compounds and N1 compounds (including C1N1 compunds such as HCN), probably through glycine, in the early stage of chemical evolution. Uracil, cytosine, and amino acids of the Pyrimidine Group may be regarded as synthesized directly or indirectly from three-carbon chain compounds. This synthesis became possible after the accumulation of three-carbon chain compounds and their derivatives in the primeval sea. The Purine Group can be further classified into a Guanine or (Gly+nC1) Subgroup and an Adenine or (Gly+nC2) Subgroup or simply nC2 Subgroup. The Pyrimidine Group can be further classified into a Uracil or C3C6C9 Subgroup and a Cytosine or C5-chain Subgroup (Table I). It is suggested that the primitive genetic code was established by a specific interaction between amino acids and their respective nucleotide bases. The

  4. Nucleotide sequence of bacteriophage fd DNA.

    PubMed Central

    Beck, E; Sommer, R; Auerswald, E A; Kurz, C; Zink, B; Osterburg, G; Schaller, H; Sugimoto, K; Sugisaki, H; Okamoto, T; Takanami, M

    1978-01-01

    The sequence of the 6,408 nucleotides of bacteriophage fd DNA has been determined. This allows to deduce the exact organisation of the filamentous phage genome and provides easy access to DNA segments of known structure and function. PMID:745987

  5. Nucleotide-metabolizing enzymes in Chlamydomonas flagella.

    PubMed

    Watanabe, T; Flavin, M

    1976-01-10

    Nucleotides have at least two functions in eukaryotic cilia and flagella. ATP, originating in the cells, is utilized for motility by energy-transducing protein(s) called dynein, and the binding of guanine nucleotides to tubulin, and probably certain transformations of the bound nucleotides, are prerequisites for the assembly of microtubules. Besides dynein, which can be solubulized from Chlamydomonas flagella as a heterogeneous, Mg2+ or Ca2+-activated ATPase, we have purified and characterized five other flagellar enzymes involved in nucleotide transformations. A homogeneous, low molecular weight, Ca2+-specific adenosine triphosphatase was isolated, which was inhibited by Mg2+ and was not specific for ATP. This enzyme was not formed by treating purified dynein with proteases. It was absent from extracts of Tetrahymena cilia. Its function might be an auxiliary energy transducer, or in steering or tactic responses. Two species of adenylate kinase were isolated, one of which was much elevated in regenerating flagella; the latter was also present in cell bodies. A large part of flagellar nucleoside diphosphokinase activity could not be solubilized. Two soluble enzyme species were identified, one of which was also present in cell bodies. Since these enzymes are of interest because they might function in microtubule assembly, we studied the extent to which brain nucleoside diphosphokinase co-polymerizes with tubulin purified by repeated cycles of polymerization. Arginine kinase was not detected in Chlamydomonas flagellar extracts. PMID:397

  6. Nucleotide variation in the Toxoplasma gondii micronemal protein 8 gene.

    PubMed

    Li, Z Y; Song, H Q; Wang, C R; Zhu, X Q

    2016-01-01

    Toxoplasma gondii is a successful opportunistic protozoan distributed worldwide, which can infect all vertebrates, leading to serious infection, blindness, and abortion. Micronemal (MIC) proteins are critically important for T. gondii infection, as they participate in various stages of the Toxoplasma life cycle, including invasion and attachment to host cells. MIC8 secretion relies on the concentration of intracellular calcium, and can mediate the invasion of T. gondii by interacting with soluble MIC3. To investigate genetic diversity of the MIC8 gene, 16 T. gondii strains from different hosts and geographical locations, and two reference isolates (ToxoDB: TGME49_245490 and TGVEG_245490) were examined in this study. The results showed that all the examined MIC8 genes are 2055 bp, with an A+T content ranging from 50.2 to 50.6%. Conversely, lower levels of variation were detected within their nucleotide and amino acid sequences. Phylogenetic analyses indicated that three classical genotypes of T. gondii and the ToxoDB#9 genotype did not group exclusively via Bayesian inference, maximum parsimony, neighbor joining, and/or maximum likelihood assays based on the nucleotide and amino acid sequences of the MIC8 gene. In summary, the T. gondii MIC8 gene is not a suitable marker for population genetic studies of this parasite. PMID:27173337

  7. Cyclic nucleotide phosphodiesterase 1 and vascular aging.

    PubMed

    Yan, Chen

    2015-12-01

    VSMCs (vascular smooth muscle cells) play critical roles in arterial remodelling with aging, hypertension and atherosclerosis. VSMCs exist in diverse phenotypes and exhibit phenotypic plasticity, e.g. changing from a quiescent/contractile phenotype to an active myofibroblast-like, often called 'synthetic', phenotype. Synthetic VSMCs are able to proliferate, migrate and secrete ECM (extracellular matrix) proteinases and ECM proteins. In addition, they produce pro-inflammatory molecules, providing an inflammatory microenvironment for leucocyte penetration, accumulation and activation. The aging VSMCs have also shown changes in cellular phenotype, responsiveness to contracting and relaxing mediators, replicating potential, matrix synthesis, inflammatory mediators and intracellular signalling. VSMC dysfunction plays a key role in age-associated vascular remodelling. Cyclic nucleotide PDEs (phosphodiesterases), by catalysing cyclic nucleotide hydrolysis, play a critical role in regulating the amplitude, duration and compartmentalization of cyclic nucleotide signalling. Abnormal alterations of PDEs and subsequent changes in cyclic nucleotide homoeostasis have been implicated in a number of different diseases. In the study published in the latest issue of Clinical Science, Bautista Niño and colleagues have shown that, in cultured senescent human VSMCs, PDE1A and PDE1C mRNA levels are significantly up-regulated and inhibition of PDE1 activity with vinpocetine reduced cellular senescent makers in senescent VSMCs. Moreover, in the premature aging mice with genomic instability (Ercc1(d/-)), impaired aortic ring relaxation in response to SNP (sodium nitroprusside), an NO (nitric oxide) donor, was also largely improved by vinpocetine. More interestingly, using data from human GWAS (genome-wide association studies), it has been found that PDE1A single nucleotide polymorphisms is significantly associated with diastolic blood pressure and carotid intima-media thickening, two

  8. Electrochemical oxidation of dihydronicotinamide adenine dinucleotide at nitrogen-doped carbon nanotube electrodes.

    PubMed

    Goran, Jacob M; Favela, Carlos A; Stevenson, Keith J

    2013-10-01

    Nitrogen-doped carbon nanotubes (N-CNTs) substantially lower the overpotential necessary for dihydronicotinamide adenine dinucleotide (NADH) oxidation compared to nondoped CNTs or traditional carbon electrodes such as glassy carbon (GC). We observe a 370 mV shift in the peak potential (Ep) from GC to CNTs and another 170 mV shift from CNTs to 7.4 atom % N-CNTs in a sodium phosphate buffer solution (pH 7.0) with 2.0 mM NADH (scan rate 10 mV/s). The sensitivity of 7.4 atom % N-CNTs to NADH was measured at 0.30 ± 0.04 A M(-1) cm(-2), with a limit of detection at 1.1 ± 0.3 μM and a linear range of 70 ± 10 μM poised at a low potential of -0.32 V (vs Hg/Hg2SO4). NADH fouling, known to occur to the electrode surface during NADH oxidation, was investigated by measuring both the change in Ep and the resulting loss of electrode sensitivity. NADH degradation, known to occur in phosphate buffer, was characterized by absorbance at 340 nm and correlated with the loss of NADH electroactivity. N-CNTs are further demonstrated to be an effective platform for dehydrogenase-based biosensing by allowing glucose dehydrogenase to spontaneously adsorb onto the N-CNT surface and measuring the resulting electrode's sensitivity to glucose. The glucose biosensor had a sensitivity of 0.032 ± 0.003 A M(-1) cm(-2), a limit of detection at 6 ± 1 μM, and a linear range of 440 ± 50 μM. PMID:23991631

  9. Nicotinic acid-adenine dinucleotide phosphate activates the skeletal muscle ryanodine receptor.

    PubMed Central

    Hohenegger, Martin; Suko, Josef; Gscheidlinger, Regina; Drobny, Helmut; Zidar, Andreas

    2002-01-01

    Calcium is a universal second messenger. The temporal and spatial information that is encoded in Ca(2+)-transients drives processes as diverse as neurotransmitter secretion, axonal outgrowth, immune responses and muscle contraction. Ca(2+)-release from intracellular Ca(2+) stores can be triggered by diffusible second messengers like Ins P (3), cyclic ADP-ribose or nicotinic acid-adenine dinucleotide phosphate (NAADP). A target has not yet been identified for the latter messenger. In the present study we show that nanomolar concentrations of NAADP trigger Ca(2+)-release from skeletal muscle sarcoplasmic reticulum. This was due to a direct action on the Ca(2+)-release channel/ryanodine receptor type-1, since in single channel recordings, NAADP increased the open probability of the purified channel protein. The effects of NAADP on Ca(2+)-release and open probability of the ryanodine receptor occurred over a similar concentration range (EC(50) approximately 30 nM) and were specific because (i) they were blocked by Ruthenium Red and ryanodine, (ii) the precursor of NAADP, NADP, was ineffective at equimolar concentrations, (iii) NAADP did not affect the conductance and reversal potential of the ryanodine receptor. Finally, we also detected an ADP-ribosyl cyclase activity in the sarcoplasmic reticulum fraction of skeletal muscle. This enzyme was not only capable of synthesizing cyclic GDP-ribose but also NAADP, with an activity of 0.25 nmol/mg/min. Thus, we conclude that NAADP is generated in the vicinity of type 1 ryanodine receptor and leads to activation of this ion channel. PMID:12102654

  10. The two-photon excitation cross section of 6MAP, a fluorescent adenine analogue.

    PubMed

    Stanley, Robert J; Hou, Zhanjia; Yang, Aiping; Hawkins, Mary E

    2005-03-01

    6MAP is a fluorescent analogue of adenine that undergoes Watson-Crick base pairing and base stacking in double-stranded DNA. The one-photon absorption spectrum of 6MAP is characterized by a maximum around 330 nm with moderate quantum yield fluorescence centered at about 420 nm. To take advantage of this probe for confocal and single-molecule microscopy, it would be advantageous to be able to excite the analogue via two photons. We report the first determination of the two-photon excitation cross section and spectrum for 6MAP from 614 to 700 nm. The power dependence of the fluorescence indicates that emission results from the absorption of two photons. The one-photon and two-photon emission line shapes are identical within experimental error. A study of the concentration dependence of the fluorescence yield for one-photon excitation shows no measurable quenching up to about 5 microM. The maximum in the two-photon excitation spectrum gives a two-photon cross section, delta(TPE), of 3.4 +/- 0.1 Goeppert-Mayer (G.M.) at 659 nm, which correlates well with the one-photon absorption maximum. This compares quite favorably with cross sections of various naturally fluorescent biological molecules such as flavins and nicotiamide. In addition, we have also obtained the two-photon-induced fluorescence emission spectrum of quinine sulfate. It is approximately the same as that for one-photon excitation, suggesting that two-photon excitation of quinine sulfate may be used for calibration purposes. PMID:16851408

  11. Vacuum-Ultraviolet photoionization studies of the microhydrationof DNA bases (Guanine, Cytosine, Adenine and Thymine)

    SciTech Connect

    Belau, L.; Wilson, K.R.; Leone, S.R.; Musahid, Ahmed

    2007-01-22

    In this work, we report on a photoionization study of the microhydration of the four DNA bases. Gas-phase clusters of water with DNA bases [guanine (G), cytosine (C), adenine (A), and thymine (T)] are generated via thermal vaporization of the bases and expansion of the resultant vapor in a continuous supersonic jet expansion of water seeded in Ar. The resulting clusters are investigated by single-photon ionization with tunable vacuum-ultraviolet synchrotron radiation and mass analyzed using reflectron mass spectrometry. Photoionization efficiency (PIE) curves are recorded for the DNA bases and the following water (W) clusters: G, GW{sub n} (n = 1-3); C, CW{sub n} (n = 1-3); A, AW{sub n} (n = 1,2); and T, TW{sub n} (n = 1-3). Appearance energies (AE) are derived from the onset of these PIE curves (all energies in eV): G (8.1 {+-} 0.1), GW (8.0 {+-} 0.1), GW{sub 2} (8.0 {+-} 0.1), and GW{sub 3} (8.0); C (8.65 {+-} 0.05), CW (8.45 {+-} 0.05), CW{sub 2} (8.4 {+-} 0.1), and CW{sub 3} (8.3 {+-} 0.1); A (8.30 {+-} 0.05), AW (8.20 {+-} 0.05), and AW{sub 2} (8.1 {+-} 0.1); T (8.90 {+-} 0.05); and TW (8.75 {+-} 0.05), TW{sub 2} (8.6 {+-} 0.1), and TW{sub 3} (8.6 {+-} 0.1). The AEs of the DNA bases decrease slightly with the addition of water molecules (up to three) but do not converge to values found for photoinduced electron removal from DNA bases in solution.

  12. Development and Evaluation of Solid Lipid Nanoparticles of N-6-Furfuryl Adenine for Prevention of Photoaging.

    PubMed

    Goindi, Shishu; Guleria, Ankita; Aggarwal, Nidhi

    2015-10-01

    N-6-furfuryl adenine (N6FA) also known as "kinetin" is a biologically active natural phytochemical. It belongs to the category of cytokinins, the natural plant growth hormones that promote cell division and play role in cell differentiation. Overall, N6FA aids in increasing the plant's life span. Human cells also contain.small quantities of N6FA. Scientists are trying to understand its function in humans. N6FA is being investigated for its properties such as antiplatelet, antioxidant, antiproliferative and anti-aging effects on human cells. The aim of the present investigation was to prepare solid lipid nanoparticle (SLN) based topical formulations of N6FA and to evaluate its efficacy against ultraviolet (UV) radiation induced skin photodamage. SLNs were prepared by hot microemulsion technique and optimized for the type and concentration of lipid and surfactant(s). The optimized SLN formulation was characterized in terms of particle size, drug entrapment efficiency, zeta potential and pH; evaluated for stability, spreadability, ex-vivo skin permeation and photoprotective effects against UV induced skin damage. The cumulative amount of drug permeated through mice skin using SLNs was 3 folds higher than from conventional cream base. The results of biochemical and histopathological investigations of skin treated with N6FA loaded SLNs clearly demonstrated the efficacy of optimized formulation in preventing photodamage (lesions, ulcers and changes in skin integrity) due to chronic UV exposure. The effects were comparable with widely used marketed formulation, Garnier wrinkle lift anti-aging cream. Results suggested that N6FA incorporated into SLNs may provide therapeutic as well as cosmeceutical benefits. PMID:26502637

  13. Sodium thiosulfate protects brain in rat model of adenine induced vascular calcification.

    PubMed

    Subhash, N; Sriram, R; Kurian, Gino A

    2015-11-01

    Vascular bed calcification is a common feature of ends stage renal disease that may lead to a complication in cardiovascular and cerebrovascular beds, which is a promoting cause of myocardial infarction, stroke, dementia and aneurysms. Sodium thiosulfate (STS) due to its multiple properties such as antioxidant and calcium chelation has been reported to prevent vascular calcification in uremic rats, without mentioning its impact on cerebral function. Moreover, the previous studies have not explored the effect of STS on the mitochondrial dysfunction, one of the main pathophysiological features associated with the disease and the main site for STS metabolism. The present study addresses this limitation by using a rat model where 0.75% adenine was administered to induce vascular calcification and 400 mg/kg b wt. of STS was given as preventive and curative agent. The blood and urine chemistries along with histopathology of aorta confirms the renal protective effect of STS in two modes of administration. The brain oxidative stress assessment was made through TBARS level, catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities, found to be in the near normal level. STS administration not only reduced the mitochondrial oxidative stress (measured by TBARS, SOD, GPx and CAT) but also preserved the mitochondrial respiratory enzyme activities (NADH dehydrogenase, Succinate dehydrogenase and Malate dehydrogenase) and its physiology (measured by P/O ratio and RCR). In fact, the protective effect of STS was prominent, when it was administered as a curative agent, where low H2S and high thiosulfate level was observed along with low cystathionine β synthase activity, confirms thiosulfate mediated renal protection. In conclusion, STS when given after induction of calcification is protective to the brain by preserving its mitochondria, compared to the treatment given concomitantly. PMID:26363090

  14. Elevated intracellular Ca2+ reveals a functional membrane nucleotide pool in intact human red blood cells

    PubMed Central

    Tiffert, Teresa

    2011-01-01

    Elevated intracellular calcium generates rapid, profound, and irreversible changes in the nucleotide metabolism of human red blood cells (RBCs), triggered by the adenosine triphosphatase (ATPase) activity of the powerful plasma membrane calcium pump (PMCA). In the absence of glycolytic substrates, Ca2+-induced nucleotide changes are thought to be determined by the interaction between PMCA ATPase, adenylate kinase, and AMP-deaminase enzymes, but the extent to which this three-enzyme system can account for the Ca2+-induced effects has not been investigated in detail before. Such a study requires the formulation of a model incorporating the known kinetics of the three-enzyme system and a direct comparison between its predictions and precise measurements of the Ca2+-induced nucleotide changes, a precision not available from earlier studies. Using state-of-the-art high-performance liquid chromatography, we measured the changes in the RBC contents of ATP, ADP, AMP, and IMP during the first 35 min after ionophore-induced pump-saturating Ca2+ loads in the absence of glycolytic substrates. Comparison between measured and model-predicted changes revealed that for good fits it was necessary to assume mean ATPase Vmax values much higher than those ever measured by PMCA-mediated Ca2+ extrusion. These results suggest that the local nucleotide concentrations generated by ATPase activity at the inner membrane surface differed substantially from those measured in bulk cell extracts, supporting previous evidence for the existence of a submembrane microdomain with a distinct nucleotide metabolism. PMID:21948947

  15. A nucleotide-analogue-induced gain of function corrects the error-prone nature of human DNA polymerase iota.

    PubMed

    Ketkar, Amit; Zafar, Maroof K; Banerjee, Surajit; Marquez, Victor E; Egli, Martin; Eoff, Robert L

    2012-06-27

    Y-family DNA polymerases participate in replication stress and DNA damage tolerance mechanisms. The properties that allow these enzymes to copy past bulky adducts or distorted template DNA can result in a greater propensity for them to make mistakes. Of the four human Y-family members, human DNA polymerase iota (hpol ι) is the most error-prone. In the current study, we elucidate the molecular basis for improving the fidelity of hpol ι through use of the fixed-conformation nucleotide North-methanocarba-2'-deoxyadenosine triphosphate (N-MC-dATP). Three crystal structures were solved of hpol ι in complex with DNA containing a template 2'-deoxythymidine (dT) paired with an incoming dNTP or modified nucleotide triphosphate. The ternary complex of hpol ι inserting N-MC-dATP opposite dT reveals that the adenine ring is stabilized in the anti orientation about the pseudo-glycosyl torsion angle, which mimics precisely the mutagenic arrangement of dGTP:dT normally preferred by hpol ι. The stabilized anti conformation occurs without notable contacts from the protein but likely results from constraints imposed by the bicyclo[3.1.0]hexane scaffold of the modified nucleotide. Unmodified dATP and South-MC-dATP each adopt syn glycosyl orientations to form Hoogsteen base pairs with dT. The Hoogsteen orientation exhibits weaker base-stacking interactions and is less catalytically favorable than anti N-MC-dATP. Thus, N-MC-dATP corrects the error-prone nature of hpol ι by preventing the Hoogsteen base-pairing mode normally observed for hpol ι-catalyzed insertion of dATP opposite dT. These results provide a previously unrecognized means of altering the efficiency and the fidelity of a human translesion DNA polymerase. PMID:22632140

  16. A Nucleotide-Analogue-Induced Gain of Function Corrects the Error-Prone Nature of Human DNA Polymerase iota

    SciTech Connect

    Ketkar, Amit; Zafar, Maroof K.; Banerjee, Surajit; Marquez, Victor E.; Egli, Martin; Eoff, Robert L.

    2012-10-25

    Y-family DNA polymerases participate in replication stress and DNA damage tolerance mechanisms. The properties that allow these enzymes to copy past bulky adducts or distorted template DNA can result in a greater propensity for them to make mistakes. Of the four human Y-family members, human DNA polymerase iota (hpol{iota}) is the most error-prone. In the current study, we elucidate the molecular basis for improving the fidelity of hpol{iota} through use of the fixed-conformation nucleotide North-methanocarba-2{prime}-deoxyadenosine triphosphate (N-MC-dATP). Three crystal structures were solved of hpol{iota} in complex with DNA containing a template 2{prime}-deoxythymidine (dT) paired with an incoming dNTP or modified nucleotide triphosphate. The ternary complex of hpol{iota} inserting N-MC-dATP opposite dT reveals that the adenine ring is stabilized in the anti orientation about the pseudo-glycosyl torsion angle, which mimics precisely the mutagenic arrangement of dGTP:dT normally preferred by hpol{iota}. The stabilized anti conformation occurs without notable contacts from the protein but likely results from constraints imposed by the bicyclo[3.1.0]hexane scaffold of the modified nucleotide. Unmodified dATP and South-MC-dATP each adopt syn glycosyl orientations to form Hoogsteen base pairs with dT. The Hoogsteen orientation exhibits weaker base-stacking interactions and is less catalytically favorable than anti N-MC-dATP. Thus, N-MC-dATP corrects the error-prone nature of hpol{iota} by preventing the Hoogsteen base-pairing mode normally observed for hpol{iota}-catalyzed insertion of dATP opposite dT. These results provide a previously unrecognized means of altering the efficiency and the fidelity of a human translesion DNA polymerase.

  17. Measurements of single nucleotide electronic states as nanoelectronic fingerprints for identification of DNA nucleobases, their protonated and unprotonated states, isomers, and tautomers.

    PubMed

    Ribot, Josep Casamada; Chatterjee, Anushree; Nagpal, Prashant

    2015-04-16

    Several nanoelectronic techniques have been explored to distinguish the sequence of nucleic acids in DNA macromolecules. Identification of unique electronic signatures using nanopore conductance, tunneling spectroscopy, or other nanoelectronic techniques depends on electronic states of the DNA nucleotides. While several experimental and computational studies have focused on interaction of nucleobases with different substrates, the effect of nucleic acid biochemistry on its electronic properties has been largely unexplored. Here, we present correlated measurements of frontier molecular orbitals and higher-order electronic states for four DNA nucleobases (adenine, cytosine, thymine, and guanine), and first-principle quantum chemical density functional theoretical (DFT) computations. Using different pH conditions in our experiments, we show that small changes in the biochemical state of these nucleic acids strongly affect the intrinsic electronic structure, measured using scanning tunneling spectroscopy (STS). In our experimental measurements and computations, significant differences were observed between the position of frontier orbitals and higher-energy states between protonated and unprotonated nucleic acids, isomers, and different keto-enol tautomer's formed in these nucleotides, leading to their facile identification. Furthermore, we show unique "electronic fingerprints" for all nucleotides (A, G, T, C) using STS, with most distinct states identified at acidic pH. These results can have important implications for identification of nucleic acid sequences in DNA molecules using a high-throughput nanoelectronic identification technique. PMID:25793310

  18. Clay catalysis of oligonucleotide formation: kinetics of the reaction of the 5'-phosphorimidazolides of nucleotides with the non-basic heterocycles uracil and hypoxanthine

    NASA Technical Reports Server (NTRS)

    Kawamura, K.; Ferris, J. P.

    1999-01-01

    The montmorillonite clay catalyzed condensation of activated monocleotides to oligomers of RNA is a possible first step in the formation of the proposed RNA world. The rate constants for the condensation of the phosphorimidazolide of adenosine were measured previously and these studies have been extended to the phosphorimidazolides of inosine and uridine in the present work to determine of substitution of neutral heterocycles for the basic adenine ring changes the reaction rate or regioselectivity. The oligomerization reactions of the 5'-phosphoromidazolides of uridine (ImpU) and inosine (ImpI) on montmorillonite yield oligo(U)s and oligo(I)s as long as heptamers. The rate constants for oligonucleotide formation were determined by measuring the rates of formation of the oligomers by HPLC. Both the apparent rate constants in the reaction mixture and the rate constants on the clay surface were calculated using the partition coefficients of the oligomers between the aqueous and clay phases. The rate constants for trimer formation are much greater than those dimer synthesis but there was little difference in the rate constants for the formation of trimers and higher oligomers. The overall rates of oligomerization of the phosphorimidazolides of purine and pyrimidine nucleosides in the presence of montmorillonite clay are the same suggesting that RNA formed on the primitive Earth could have contained a variety of heterocyclic bases. The rate constants for oligomerization of pyrimidine nucleotides on the clay surface are significantly higher than those of purine nucleotides since the pyrimidine nucleotides bind less strongly to the clay than do the purine nucleotides. The differences in the binding is probably due to Van der Waals interactions between the purine bases and the clay surface. Differences in the basicity of the heterocyclic ring in the nucleotide have little effect on the oligomerization process.

  19. Grid selection of models of nucleotide substitution

    PubMed Central

    Loureiro, Marta; Pan, Miguel; Rodríguez-Pascual, Manuel; Posada, David; Mayo, Rafael

    2016-01-01

    jModelTest is a Java program for the statistical selection of models of nucleotide substitution with thousands of users around the world. For large data sets, the calculations carried out by this program can be too expensive for many users. Here we describe the port of the jModeltest code for Grid computing using DRMAA. This work should facilitate the use of jModelTest on a broad scale. PMID:20543444

  20. Investigation of the C-terminal domain of the bacterial DNA-(adenine N6)-methyltransferase CcrM.

    PubMed

    Maier, Johannes A H; Albu, Razvan F; Jurkowski, Tomasz P; Jeltsch, Albert

    2015-12-01

    CcrM-related DNA-(adenine N6)-methyltransferases play very important roles in the biology of Caulobacter crescentus and other alpha-proteobacteria. These enzymes methylate GANTC sequences, but the molecular mechanism by which they recognize their target sequence is unknown. We carried out multiple sequence alignments and noticed that CcrM enzymes contain a conserved C-terminal domain (CTD) which is not present in other DNA-(adenine N6)-methyltransferases and we show here that deletion of this part abrogates catalytic activity and DNA binding of CcrM. A mutational study identified 7 conserved residues in the CTD (out of 13 tested), mutation of which led to a strong reduction in catalytic activity. All of these mutants showed altered DNA binding, but no change in AdoMet binding and secondary structure. Some mutants exhibited reduced DNA binding, but others showed an enhanced DNA binding. Moreover, we show that CcrM does not specifically bind to DNA containing GANTC sequences. Taken together, these findings suggest that the specific CcrM-DNA complex undergoes a conformational change, which is endergonic but essential for catalytic activity and this step is blocked by some of the mutations. Moreover, our data indicate that the CTD of CcrM is involved in DNA binding and recognition. This suggests that the CTD functions as target recognition domain of CcrM and, therefore, CcrM can be considered the first example of a δ-type DNA-(adenine N6)-methyltransferase identified so far. PMID:26475175

  1. Nephrogenic systemic fibrosis-like effects of magnetic resonance imaging contrast agents in rats with adenine-induced renal failure.

    PubMed

    Fretellier, Nathalie; Bouzian, Nejma; Parmentier, Nadège; Bruneval, Patrick; Jestin, Gaëlle; Factor, Cécile; Mandet, Chantal; Daubiné, Florence; Massicot, France; Laprévote, Olivier; Hollenbeck, Claire; Port, Marc; Idée, Jean-Marc; Corot, Claire

    2013-01-01

    Nephrogenic systemic fibrosis (NSF) is a scleroderma-like disease associated with prior administration of certain gadolinium chelates (GCs). NSF occurs in patients with severe renal failure. The purpose of this study was to set up a rat model of GC-associated NSF to elucidate the mechanism of this devastating disease. Firstly, after characterization of the model, male Wistar rats received a 0.75% adenine-enriched diet for 8, 14, or 16 days to obtain various degrees of renal failure. Rats received five consecutive daily iv injections of saline or gadodiamide (2.5 mmol/kg/day). Secondly, the safety profile and in vivo propensity to dissociate of all categories of marketed GCs (gadoterate, gadobutrol, gadobenate, gadopentetate, and gadodiamide) were compared in rats receiving adenine-enriched diet for 16 days. Serial skin biopsies were performed for blinded histopathological study. Total Gd concentration in tissues was measured by Inductively Coupled Plasma Mass Spectrometry. Relaxometry was used to evaluate the presence of dissociated Gd in skin and bone. Gadodiamide-induced high mortality and skin lesions (dermal fibrosis, calcification, and inflammation) were related to adenine diet duration. No skin lesions were observed with other molecules. Unlike macrocyclic GCs, gadodiamide, gadopentetate, and gadobenate gradually increased the r(1) relaxivity value, consistent with in vivo dissociation and release of soluble Gd (or, in the case of gadobenate, the consequence of protein binding). Gadodiamide-induced cutaneous and systemic toxicity depended on baseline renal function. We demonstrate in vivo dissociation of linear GCs, gadodiamide, and gadopentetate, whereas macrocyclic agents remained stable over the study period. PMID:22977165

  2. Various cytosine/adenine permease homologues are involved in the toxicity of 5-fluorocytosine in Saccharomyces cerevisiae.

    PubMed

    Paluszynski, John P; Klassen, Roland; Rohe, Matthias; Meinhardt, Friedhelm

    2006-07-15

    5-Fluorocytosine (5-FC), a medically applied antifungal agent (Ancotil), is also active against the model organism Saccharomyces cerevisiae. 5-FC uptake in S. cerevisiae was considered to be mediated by the FCY2-encoded cytosine/adenine permease. By applying a highly sensitive assay, a low-level but dose-dependent toxicity of 5-FC in fcy2 mutants was detected, whereas cells deficient in the cytosine deaminase (encoded by FCY1), which is essential for intracellular conversion of 5-FC to 5-fluorouracil, display strong dose-independent resistance. Thus, an alternative, Fcy2-independent access pathway for 5-FC exists in S. cerevisiae. A genome-wide search for cytosine permease homologues identified two uncharacterized candidate genes, designated FCY21 and FCY22, both of which exhibit highest similarity to FCY2. Disruption of either FCY21 or FCY22 resulted in strains displaying low-level resistance, indicating the functional involvement of both gene products in 5-FC toxicity. When mutations in FCY21 or FCY22 were combined with the FCY2 disruption, both double mutants displayed stronger resistance when compared to the FCY2 mutant alone. Disruptions in all three permease genes consequently conferred the highest degree of resistance, not only towards 5-FC but also to the toxic adenine analogon 8-azaadenine. As residual 5-FC sensitivity was, however, even detectable in the fcy2 fcy21 fcy22 mutant, we analysed the relevance of other FCY2 homologues, i.e. TPN1, FUR4, DAL4, FUI1 and yOR071c, for 5-FC toxicity. Among these, Tpn1, Fur4 and the one encoded by yOR071c were found to contribute significantly to 5-FC toxicity, thus revealing alternative entry routes for 5-FC via other cytosine/adenine permease homologues. PMID:16845689

  3. Quantitative Subtractively Normalized Interfacial Fourier Transform Infrared Reflection Spectroscopy Study of the Adsorption of Adenine on Au(111) Electrodes.

    PubMed

    Prieto, Francisco; Su, Zhangfei; Leitch, J Jay; Rueda, Manuela; Lipkowski, Jacek

    2016-04-26

    Quantitative subtractively normalized interfacial Fourier transform infrared reflection spectroscopy (SNIFTIRS) was used to determine the molecular orientation and identify the metal-molecular interactions responsible for the adsorption of adenine from the bulk electrolyte solution onto the surface of the Au(111) electrode. The recorded p-polarized IR spectra of the adsorbed species were subtracted from the collected s-polarized IR spectra to remove the IR contributions of the vibrational bands of the desorbed molecules that are located within the thin layer cavity of the spectroelectrochemical cell. The intense IR band around 1640 cm(-1), which is assigned to the pyrimidine ring stretching vibrations of the C5-C6 and C6-N10 bonds, and the IR band at 1380 cm(-1), which results from a combination of the ring stretching vibration of the C5-C7 bond and the in-plane CH bending vibration, were selected for the quantitative analysis measurements. The transition dipoles of these bands were evaluated by DFT calculations. Their orientations differed by 85 ± 5°. The tilt angles of adsorbed adenine molecules were calculated from the intensity of these two vibrations at different potentials. The results indicate that the molecular plane is tilted at an angle of 40° with respect to the surface normal of the electrode and rotates by 16° around its normal axis with increasing electrode potential. This orientation results from the chemical interaction between the N10 and gold atoms coupled with the π-π parallel stacking interactions between the adjacent adsorbed molecules. Furthermore, the changes in the molecular plane rotation with the electric field suggests that the N1 atom of adenine must also participate in the interaction between the molecule and metal. PMID:27040121

  4. Multiple Decay Mechanisms and 2D-UV Spectroscopic Fingerprints of Singlet Excited Solvated Adenine-Uracil Monophosphate.

    PubMed

    Li, Quansong; Giussani, Angelo; Segarra-Martí, Javier; Nenov, Artur; Rivalta, Ivan; Voityuk, Alexander A; Mukamel, Shaul; Roca-Sanjuán, Daniel; Garavelli, Marco; Blancafort, Lluís

    2016-05-23

    The decay channels of singlet excited adenine uracil monophosphate (ApU) in water are studied with CASPT2//CASSCF:MM potential energy calculations and simulation of the 2D-UV spectroscopic fingerprints with the aim of elucidating the role of the different electronic states of the stacked conformer in the excited state dynamics. The adenine (1) La state can decay without a barrier to a conical intersection with the ground state. In contrast, the adenine (1) Lb and uracil S(U) states have minima that are separated from the intersections by sizeable barriers. Depending on the backbone conformation, the CT state can undergo inter-base hydrogen transfer and decay to the ground state through a conical intersection, or it can yield a long-lived minimum stabilized by a hydrogen bond between the two ribose rings. This suggests that the (1) Lb , S(U) and CT states of the stacked conformer may all contribute to the experimental lifetimes of 18 and 240 ps. We have also simulated the time evolution of the 2D-UV spectra and provide the specific fingerprint of each species in a recommended probe window between 25 000 and 38 000 cm(-1) in which decongested, clearly distinguishable spectra can be obtained. This is expected to allow the mechanistic scenarios to be discerned in the near future with the help of the corresponding experiments. Our results reveal the complexity of the photophysics of the relatively small ApU system, and the potential of 2D-UV spectroscopy to disentangle the photophysics of multichromophoric systems. PMID:27113273

  5. The multiple codes of nucleotide sequences.

    PubMed

    Trifonov, E N

    1989-01-01

    Nucleotide sequences carry genetic information of many different kinds, not just instructions for protein synthesis (triplet code). Several codes of nucleotide sequences are discussed including: (1) the translation framing code, responsible for correct triplet counting by the ribosome during protein synthesis; (2) the chromatin code, which provides instructions on appropriate placement of nucleosomes along the DNA molecules and their spatial arrangement; (3) a putative loop code for single-stranded RNA-protein interactions. The codes are degenerate and corresponding messages are not only interspersed but actually overlap, so that some nucleotides belong to several messages simultaneously. Tandemly repeated sequences frequently considered as functionless "junk" are found to be grouped into certain classes of repeat unit lengths. This indicates some functional involvement of these sequences. A hypothesis is formulated according to which the tandem repeats are given the role of weak enhancer-silencers that modulate, in a copy number-dependent way, the expression of proximal genes. Fast amplification and elimination of the repeats provides an attractive mechanism of species adaptation to a rapidly changing environment. PMID:2673451

  6. Vacuum ultraviolet photoionization of carbohydrates and nucleotides.

    PubMed

    Shin, Joong-Won; Bernstein, Elliot R

    2014-01-28

    Carbohydrates (2-deoxyribose, ribose, and xylose) and nucleotides (adenosine-, cytidine-, guanosine-, and uridine-5(')-monophosphate) are generated in the gas phase, and ionized with vacuum ultraviolet photons (VUV, 118.2 nm). The observed time of flight mass spectra of the carbohydrate fragmentation are similar to those observed [J.-W. Shin, F. Dong, M. Grisham, J. J. Rocca, and E. R. Bernstein, Chem. Phys. Lett. 506, 161 (2011)] for 46.9 nm photon ionization, but with more intensity in higher mass fragment ions. The tendency of carbohydrate ions to fragment extensively following ionization seemingly suggests that nucleic acids might undergo radiation damage as a result of carbohydrate, rather than nucleobase fragmentation. VUV photoionization of nucleotides (monophosphate-carbohydrate-nucleobase), however, shows that the carbohydrate-nucleobase bond is the primary fragmentation site for these species. Density functional theory (DFT) calculations indicate that the removed carbohydrate electrons by the 118.2 nm photons are associated with endocyclic C-C and C-O ring centered orbitals: loss of electron density in the ring bonds of the nascent ion can thus account for the observed fragmentation patterns following carbohydrate ionization. DFT calculations also indicate that electrons removed from nucleotides under these same conditions are associated with orbitals involved with the nucleobase-saccharide linkage electron density. The calculations give a general mechanism and explanation of the experimental results. PMID:25669546

  7. Evolution of functional six-nucleotide DNA.

    PubMed

    Zhang, Liqin; Yang, Zunyi; Sefah, Kwame; Bradley, Kevin M; Hoshika, Shuichi; Kim, Myong-Jung; Kim, Hyo-Joong; Zhu, Guizhi; Jiménez, Elizabeth; Cansiz, Sena; Teng, I-Ting; Champanhac, Carole; McLendon, Christopher; Liu, Chen; Zhang, Wen; Gerloff, Dietlind L; Huang, Zhen; Tan, Weihong; Benner, Steven A

    2015-06-01

    Axiomatically, the density of information stored in DNA, with just four nucleotides (GACT), is higher than in a binary code, but less than it might be if synthetic biologists succeed in adding independently replicating nucleotides to genetic systems. Such addition could also add functional groups not found in natural DNA, but useful for molecular performance. Here, we consider two new nucleotides (Z and P, 6-amino-5-nitro-3-(1'-β-D-2'-deoxyribo-furanosyl)-2(1H)-pyridone and 2-amino-8-(1'-β-D-2'-deoxyribofuranosyl)-imidazo[1,2-a]-1,3,5-triazin-4(8H)-one). These are designed to pair via complete Watson-Crick geometry. These were added to a library of oligonucleotides used in a laboratory in vitro evolution (LIVE) experiment; the GACTZP library was challenged to deliver molecules that bind selectively to liver cancer cells, but not to untransformed liver cells. Unlike in classical in vitro selection, low levels of mutation allow this system to evolve to create binding molecules not necessarily present in the original library. Over a dozen binding species were recovered. The best had Z and/or P in their sequences. Several had multiple, nearby, and adjacent Zs and Ps. Only the weaker binders contained no Z or P at all. This suggests that this system explored much of the sequence space available to this genetic system and that GACTZP libraries are richer reservoirs of functionality than standard libraries. PMID:25966323

  8. Vacuum ultraviolet photoionization of carbohydrates and nucleotides

    SciTech Connect

    Shin, Joong-Won; Bernstein, Elliot R.

    2014-01-28

    Carbohydrates (2-deoxyribose, ribose, and xylose) and nucleotides (adenosine-, cytidine-, guanosine-, and uridine-5{sup ′}-monophosphate) are generated in the gas phase, and ionized with vacuum ultraviolet photons (VUV, 118.2 nm). The observed time of flight mass spectra of the carbohydrate fragmentation are similar to those observed [J.-W. Shin, F. Dong, M. Grisham, J. J. Rocca, and E. R. Bernstein, Chem. Phys. Lett. 506, 161 (2011)] for 46.9 nm photon ionization, but with more intensity in higher mass fragment ions. The tendency of carbohydrate ions to fragment extensively following ionization seemingly suggests that nucleic acids might undergo radiation damage as a result of carbohydrate, rather than nucleobase fragmentation. VUV photoionization of nucleotides (monophosphate-carbohydrate-nucleobase), however, shows that the carbohydrate-nucleobase bond is the primary fragmentation site for these species. Density functional theory (DFT) calculations indicate that the removed carbohydrate electrons by the 118.2 nm photons are associated with endocyclic C–C and C–O ring centered orbitals: loss of electron density in the ring bonds of the nascent ion can thus account for the observed fragmentation patterns following carbohydrate ionization. DFT calculations also indicate that electrons removed from nucleotides under these same conditions are associated with orbitals involved with the nucleobase-saccharide linkage electron density. The calculations give a general mechanism and explanation of the experimental results.

  9. Visualization of cyclic nucleotide dynamics in neurons

    PubMed Central

    Gorshkov, Kirill; Zhang, Jin

    2014-01-01

    The second messengers cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) transduce many neuromodulatory signals from hormones and neurotransmitters into specific functional outputs. Their production, degradation and signaling are spatiotemporally regulated to achieve high specificity in signal transduction. The development of genetically encodable fluorescent biosensors has provided researchers with useful tools to study these versatile second messengers and their downstream effectors with unparalleled spatial and temporal resolution in cultured cells and living animals. In this review, we introduce the general design of these fluorescent biosensors and describe several of them in more detail. Then we discuss a few examples of using cyclic nucleotide fluorescent biosensors to study regulation of neuronal function and finish with a discussion of advances in the field. Although there has been significant progress made in understanding how the specific signaling of cyclic nucleotide second messengers is achieved, the mechanistic details in complex cell types like neurons are only just beginning to surface. Current and future fluorescent protein reporters will be essential to elucidate the role of cyclic nucleotide signaling dynamics in the functions of individual neurons and their networks. PMID:25538560

  10. Regioselective Palmitoylation of 9-(2,3-Dihydroxy- propyl)adenine Catalyzed by a Glycopolymer-enzyme Conjugate.

    PubMed

    Brabcová, Jana; Blažek, Jiří; Krečmerová, Marcela; Vondrášek, Jiří; Palomo, Jose M; Zarevúcka, Marie

    2016-01-01

    The enzymatic regioselective monopalmitoylation of racemic 9-(2,3-dihydroxypropyl)- adenine (DHPA), an approved antiviral agent, has been performed by an immobilized form of Candida antarctica B lipase (CAL-B) using a 4:1 DMF/hexane mixture as the reaction medium. To improve the chemical yield of the desired monopalmitoylation reaction, solid-phase chemical modifications of the lipase were evaluated. The reaction yield was successfully increased obtaining 100% product after a second treatment of the product solution with fresh immobilised chemically glycosylated-CAL-B. PMID:27196879

  11. Synthesis and biological properties of prodrugs of (S)-3-(adenin-9-yl)-2-(phosphonomethoxy)propanoic acid.

    PubMed

    Kaiser, Martin Maxmilian; Poštová-Slavětínská, Lenka; Dračínský, Martin; Lee, Yu-Jen; Tian, Yang; Janeba, Zlatko

    2016-01-27

    The lack of antiviral activity of recently described (S)-3-(adenin-9-yl)-2-(phosphonomethoxy)propanoic acid, or (S)-CPMEA in brief, has been speculated to possibly be due to the increased hydrophilicity of the molecule and, thus, by its limited cellular permeability. Efficient syntheses of novel lipophilic prodrugs of (S)-CPMEA masking either the carboxylic group or preferably both the phosphonate and carboxylic moieties, have been developed in order to increase bioavailability of the parent compound. Two prodrugs of (S)-CPMEA, namely phosphonate bis-amidate 15 and phenyloxy amidate 16, exhibited pan-genotypic anti-HCV activity at submicromolar concentrations. PMID:26706348

  12. Relationships between laser powers and photoacoustic signal intensities of flavin adenine dinucleotide and beta-carotene dissolved in solutions

    NASA Astrophysics Data System (ADS)

    Imakubo, Keiichi

    1994-10-01

    Ar ion laser-induced photoacoustic spectroscopy has been performed on 0.01 mu M flavin adenine dinucleotide in H2O and 0.01 mu M beta-carotene in n-hexane where the optical absorption spectroscopy is not applicable. On the basis of the linear relationships between laser powers and photoacoustic signal intensities up to 500 mW, it may be concluded that laser power ranging from 10 to 50 mW is required for the successful observation of photoacoustic signals without any photochemical or photobiological effects.

  13. The GC-Rich Mitochondrial and Plastid Genomes of the Green Alga Coccomyxa Give Insight into the Evolution of Organelle DNA Nucleotide Landscape

    SciTech Connect

    Smith, David Roy; Burki, Fabien; Yamada, Takashi; Grimwood, Jane; Grigoriev, Igor V.; Van Etten, James L.; Keeling, Patrick J.

    2011-05-13

    Most of the available mitochondrial and plastid genome sequences are biased towards adenine and thymine (AT) over guanine and cytosine (GC). Examples of GC-rich organelle DNAs are limited to a small but eclectic list of species, including certain green algae. Here, to gain insight in the evolution of organelle nucleotide landscape, we present the GC-rich mitochondrial and plastid DNAs from the trebouxiophyte green alga Coccomyxa sp. C-169. We compare these sequences with other GC-rich organelle DNAs and argue that the forces biasing them towards G and C are nonadaptive and linked to the metabolic and/or life history features of this species. The Coccomyxa organelle genomes are also used for phylogenetic analyses, which highlight the complexities in trying to resolve the interrelationships among the core chlorophyte green algae, but ultimately favour a sister relationship between the Ulvophyceae and Chlorophyceae, with the Trebouxiophyceae branching at the base of the chlorophyte crown.

  14. High-mobility group box-1 protein in adenine-induced chronic renal failure and the influence of gum arabic thereon.

    PubMed

    Ali, B H; Al Za'abi, M; Al Shukaili, A; Nemmar, A

    2015-01-01

    Pathogenesis of adenine-induced chronic renal failure may involve inflammatory, immunological and/or oxidant mechanisms. Gum arabic (GA) is a complex polysaccharide that acts as an anti-oxidant which can modulate inflammatory and/or immunological processes. Therefore, we tested here the effect of GA treatment (15 % in the drinking water for 4 weeks) in plasma and urine of rats, on a novel cytokine that has been shown to be pro-inflammatory, viz, DNA-binding high-mobility group box-1 protein (HMGB1). Adenine (0.75 % in the feed, 4 weeks) significantly increased indoxyl sulphate, urea and creatinine concentrations in plasma, and significantly decreased the creatinine clearance. GA significantly abated these effects. The concentrations of HMGB1 in urine before the start of the experiment were similar in all four groups. However, 24 h after the last treatment, adenine treatment increased significantly the concentration of HMGB1 when compared with the control. GA treatment did not affect the HMGB1 concentration in urine. Moreover, the concentration of HMGB1 in plasma obtained 24 h after the last treatment in rats treated with adenine was drastically reduced compared with the control group. This may explain its significant rise in urine. In conclusion, HMGB1 can be considered a potentially useful biomarker in adenine induced CRF and its treatment. PMID:25194125

  15. Reactivity of nitrogen atoms in adenine and (Ade)2Cu complexes towards ribose and 2-furanmethanol: Formation of adenosine and kinetin.

    PubMed

    Nashalian, Ossanna; Yaylayan, Varoujan A

    2017-01-15

    To explore the interaction of nucleosides and nucleobases in the context of the Maillard reaction and to identify the selectivity of purine nitrogen atoms towards various electrophiles, model systems composed of adenine or adenosine, glycine, ribose and/or 2-furanmethanol (with and without copper) were studied in aqueous solutions heated at 110°C for 2h and subsequently analyzed by ESI/qTOF/MS/MS in addition to isotope labelling techniques. The results indicated that ribose selectively formed mono-ribosylated N(6) adenine, but in the presence of (Ade)2Cu complex the reaction mixture generated mono-, di- and tri-substituted sugar complexes and their hydrolysis products of mono-ribosylated N(6) and N(9) adenine adducts and di-ribosylated N(6,9) adenine. Furthermore, the reaction of 2-furanmethanol with adenine in the presence of ribose generated kinetin and its isomer, while its reaction with adenosine generated kinetin riboside, as confirmed by comparing the MS/MS profiles of these adducts to those of commercial standards. PMID:27542499

  16. Thiamin and riboflavin vitamers in human milk: effects of lipid-based nutrient supplementation and stage of lactation on vitamer secretion and contributions to total vitamin content

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While thiamin and riboflavin in breast milk have been analyzed for over 50 years, less attention has been given to the different forms of each vitamin. Thiamin-monophosphate (TMP) and free thiamin contribute to total thiamin content; flavin adenine-dinucleotide (FAD) and free riboflavin are the main...

  17. p53 controls global nucleotide excision repair of low levels of structurally diverse benzo(g)chrysene-DNA adducts in human fibroblasts.

    PubMed

    Lloyd, Daniel R; Hanawalt, Philip C

    2002-09-15

    Benzo(g)chrysene is a widespread environmental contaminant and potent carcinogen. We have measured the formation and nucleotide excision repair of covalent DNA adducts formed by the DNA-reactive metabolite of this compound in human fibroblasts, in which expression of the p53 tumor suppressor gene could be controlled by a tetracycline-inducible promoter. Cells were exposed for 1 h to 0.01, 0.1, or 1.2 microM (+/-)-anti-benzo(g)chrysene diol-epoxide, and DNA adducts were assessed at various post-treatment times by subjecting isolated DNA to (32)P-postlabeling analysis. Four major DNA adducts were detected, corresponding to the reaction of either the (+)- or (-)-anti-benzo(g)chrysene diol-epoxide stereoisomer with adenine or guanine. Treatment with 1.2 microM resulted in a level of 1100 total adducts/10(8) nucleotides for both p53-proficient and -deficient cells; removal of adducts was not observed in either case. In cells treated with 0.1 microM, the maximum level of total adducts at 24 h was 150/10(8) nucleotides in p53-proficient cells and 210 adducts/10(8) nucleotides in p53-deficient cells. A concentration of 0.01 microM resulted in a maximum of 20 adducts/10(8) nucleotides in p53-proficient cells at 4 h, but 40 adducts/10(8) nucleotides persisted in p53-deficient cells at 24 h. Whereas there were clear differences in the time course of adduct levels in p53-proficient compared with p53-deficient cells treated with 0.1 microM or 0.01 microM, these levels did not decrease extensively over 3 days. This is likely because of the stabilization of the diol-epoxide in cells, and consequent exposure and formation of adducts for many hours after the initial treatment. Furthermore, despite minor quantitative differences, all 4 of the adducts behaved similarly with respect to the effect of p53 expression on their removal. p53 appears to minimize the appearance of benzo(g)chrysene adducts in human cells by up-regulating global nucleotide excision repair and reducing the

  18. Control of dinucleoside polyphosphates by the FHIT-homologous HNT2 gene, adenine biosynthesis and heat shock in Saccharomyces cerevisiae

    PubMed Central

    Rubio-Texeira, Marta; Varnum, James M; Bieganowski, Pawel; Brenner, Charles

    2002-01-01

    Background The FHIT gene is lost early in the development of many tumors. Fhit possesses intrinsic ApppA hydrolase activity though ApppA cleavage is not required for tumor suppression. Because a mutant form of Fhit that is functional in tumor suppression and defective in catalysis binds ApppA well, it was hypothesized that Fhit-substrate complexes are the active, signaling form of Fhit. Which substrates are most important for Fhit signaling remain unknown. Results Here we demonstrate that dinucleoside polyphosphate levels increase 500-fold to hundreds of micromolar in strains devoid of the Saccharomyces cerevisiae homolog of Fhit, Hnt2. Accumulation of dinucleoside polyphosphates is reversed by re-expression of Hnt2 and is active site-dependent. Dinucleoside polyphosphate levels depend on an intact adenine biosynthetic pathway and time in liquid culture, and are induced by heat shock to greater than 0.1 millimolar even in Hnt2+ cells. Conclusions The data indicate that Hnt2 hydrolyzes both ApppN and AppppN in vivo and that, in heat-shocked, adenine prototrophic yeast strains, dinucleoside polyphosphates accumulate to levels in which they may saturate Hnt2. PMID:12028594

  19. The conserved baculovirus protein p33 (Ac92) is a flavin adenine dinucleotide-linked sulfhydryl oxidase

    SciTech Connect

    Long, C.M.; Rohrmann, G.F.; Merrill, G.F.

    2009-06-05

    Open reading frame 92 of the Autographa californica baculovirus (Ac92) is one of about 30 core genes present in all sequenced baculovirus genomes. Computer analyses predicted that the Ac92 encoded protein (called p33) and several of its baculovirus orthologs were related to a family of flavin adenine dinucleotide (FAD)-linked sulfhydryl oxidases. Alignment of these proteins indicated that, although they were highly diverse, a number of amino acids in common with the Erv1p/Alrp family of sulfhydryl oxidases are present. Some of these conserved amino acids are predicted to stack against the isoalloxazine and adenine components of FAD, whereas others are involved in electron transfer. To investigate this relationship, Ac92 was expressed in bacteria as a His-tagged fusion protein, purified, and characterized both spectrophotometrically and for its enzymatic activity. The purified protein was found to have the color (yellow) and absorption spectrum consistent with it being a FAD-containing protein. Furthermore, it was demonstrated to have sulfhydryl oxidase activity using dithiothreitol and thioredoxin as substrates.

  20. Localization of a hole on an adenine-thymine radical cation in B-form DNA in water.

    PubMed

    Kravec, S M; Kinz-Thompson, C D; Conwell, E M

    2011-05-19

    A quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulation has been carried out using CP2K for a hole introduced into a B-form DNA molecule consisting of 10 adenine-thymine (A/T) pairs in water. At the beginning of the simulation, the hole wave function is extended over several adenines. Within 20-25 fs, the hole wave function contracts so that it is localized on a single A. At 300 K, it stays on this A for the length of the simulation, several hundred fs, with the wave function little changed. In a range of temperatures below 300 K, proton transfer from A to T is seen to take place within the A/T occupied by the hole; it is completed by ∼40 fs after the contraction. We show that the contraction is due to polarization of the water by the hole. This polarization also plays a role in the proton transfer. Implications for transport are considered. PMID:21491917

  1. Nicotinic Acid Adenine Dinucleotide Phosphate (Naadp+) Is an Essential Regulator of T-Lymphocyte Ca2+-Signaling

    PubMed Central

    Berg, Ingeborg; Potter, Barry V.L.; Mayr, Georg W.; Guse, Andreas H.

    2000-01-01

    Microinjection of human Jurkat T-lymphocytes with nicotinic acid adenine dinucleotide phosphate (NAADP+) dose-dependently stimulated intracellular Ca2+-signaling. At a concentration of 10 nM NAADP+ evoked repetitive and long-lasting Ca2+-oscillations of low amplitude, whereas at 50 and 100 nM, a rapid and high initial Ca2+-peak followed by trains of smaller Ca2+-oscillations was observed. Higher concentrations of NAADP+ (1 and 10 μM) gradually reduced the initial Ca2+-peak, and a complete self-inactivation of Ca2+-signals was seen at 100 μM. The effect of NAADP+ was specific as it was not observed with nicotinamide adenine dinucleotide phosphate. Both inositol 1,4,5-trisphosphate– and cyclic adenosine diphosphoribose–mediated Ca2+-signaling were efficiently inhibited by coinjection of a self-inactivating concentration of NAADP+. Most importantly, microinjection of a self-inactivating concentration of NAADP+ completely abolished subsequent stimulation of Ca2+-signaling via the T cell receptor/CD3 complex, indicating that a functional NAADP+ Ca2+-release system is essential for T-lymphocyte Ca2+-signaling. PMID:10931869

  2. Bud endophytes of Scots pine produce adenine derivatives and other compounds that affect morphology and mitigate browning of callus cultures.

    PubMed

    Pirttilä, Anna Maria; Joensuu, Päivi; Pospiech, Helmut; Jalonen, Jorma; Hohtola, Anja

    2004-06-01

    Endophytes are found in meristematic bud tissues of Scots pine (Pinus sylvestris L.) especially prior to growth, which would suggest their involvement in growth of the bud. To test this hypothesis, production of phytohormones by two bacterial (Methylobacterium extorquens, Pseudomonas synxantha) and one fungal endophyte (Rhodotorula minuta) was studied by mass spectrometry. The most common gibberellins, auxins, or cytokinins were not detected in the fractions studied. Instead, M. extorquens and R. minuta produced adenine derivatives that may be used as precursors in cytokinin biosynthesis. A plant tissue culture medium was conditioned with the endophytes, and pine tissue cultures were started on the media. Tetracycline inhibited callus production, which was restored on the endophyte-conditioned media. In addition, conditioning mitigated browning of the Scots pine explants. However, a decrease in tissue size was observed on the endophyte-conditioned media. Addition of adenosine monophosphate in the plant culture medium restored callus production and increased growth of the tissues, but had no effect on browning. Therefore, production of adenine ribosides by endophytes may play some role in the morphological effect observed in the pine tissues. PMID:15153198

  3. Characterization of a DNA Adenine Methyltransferase Gene of Borrelia hermsii and Its Dispensability for Murine Infection and Persistence

    PubMed Central

    James, Allison E.; Rogovskyy, Artem S.; Crowley, Michael A.; Bankhead, Troy

    2016-01-01

    DNA methyltransferases have been implicated in the regulation of virulence genes in a number of pathogens. Relapsing fever Borrelia species harbor a conserved, putative DNA methyltransferase gene on their chromosome, while no such ortholog can be found in the annotated genome of the Lyme disease agent, Borrelia burgdorferi. In the relapsing fever species Borrelia hermsii, the locus bh0463A encodes this putative DNA adenine methyltransferase (dam). To verify the function of the BH0463A protein product as a Dam, the gene was cloned into a Dam-deficient strain of Escherichia coli. Restriction fragment analysis subsequently demonstrated that complementation of this E. coli mutant with bh0463A restored adenine methylation, verifying bh0463A as a Dam. The requirement of bh0463A for B. hermsii viability, infectivity, and persistence was then investigated by genetically disrupting the gene. The dam- mutant was capable of infecting immunocompetent mice, and the mean level of spirochetemia in immunocompetent mice was not significantly different from wild type B. hermsii. Collectively, the data indicate that dam is dispensable for B. hermsii viability, infectivity, and persistence. PMID:27195796

  4. Modified Iterative Extended Hueckel. 2: Application to the interaction of Na(+), Na(+)(aq.), Mg(+)-2(aq.) with adenine and thymine

    NASA Technical Reports Server (NTRS)

    Aronowitz, S.; Macelroy, R.; Chang, S.

    1980-01-01

    Modified Iterative Extended Hueckel, which includes explicit effective internuclear and electronic interactions, is applied to the study of the energetics of Na(+),Mg(+), Na(+) (aqueous), and Mg(+2) (aqueous) ions approaching various possible binding sites on adenine and thymine. Results for the adenine + ion and thymine + ion are in good qualitative agreement with ab initio work on analogous systems. Energy differences between competing sites are in excellent agreement. Hydration appears to be a critical factor in determining favorable binding sites. That the adenine Nl and N3 sites cannot displace a water molecule from the hydrated cation indicates that they are not favorable binding sites in aqueous media. Of those sites investigated, 04 was the most favorable binding site on the thymine for the bare Na(+). However, the 02 site was the most favorable binding site for either hydrated cation.

  5. Evolution of Functional Six-Nucleotide DNA

    PubMed Central

    Zhang, Liqin; Yang, Zunyi; Sefah, Kwame; Bradley, Kevin M.; Hoshika, Shuichi; Kim, Myong-Jung; Kim, Hyo-Joong; Zhu1, Guizhi; Jiménez, Elizabeth; Cansiz, Sena; Teng, I-Ting; Champanhac, Carole; McLendon, Christopher; Liu, Chen; Zhang, Wen; Gerloff, Dietlind L.

    2015-01-01

    Axiomatically, the density of information stored in DNA, with just four nucleotides (GACT), is higher than in a binary code, but less than it might be if synthetic biologists succeed in adding independently replicating nucleotides to genetic systems. Such addition could also add additional functional groups, not found in natural DNA but useful for molecular performance. Here, we consider two new nucleotides (Z and P, 6-amino-5-nitro-3-(1′-β-D-2′-deoxyribo-furanosyl)-2(1H)-pyridone and 2-amino-8-(1′-β-D-2′-deoxyribofuranosyl)-imidazo[1,2-a]-1,3,5-triazin-4(8H)-one). These are designed to pair via strict Watson-Crick geometry. These were added to lies in a ibrarlaboratory in vitro evolution (LIVE) experiment; the GACTZP library was challenged to deliver molecules that bind selectively to liver cancer cells, but not to untransformed liver cells. Unlike in classical in vitro selection systems, low levels of mutation allow this system to evolve to create binding molecules not necessarily present in the original library. Over a dozen binding species were recovered. The best had Z and/or P in their sequences. Several had multiple, nearby, and adjacent Z’s and P’s. Only the weaker binders contained no Z or P at all. This suggests that this system explored much of the sequence space available to this genetic system, and that GACTZP libraries are richer reservoir of functionality than standard libraries. PMID:25966323

  6. Navigating the Nucleotide Excision Repair Threshold

    PubMed Central

    Liu, Liren; Lee, Jennifer; Zhou, Pengbo

    2010-01-01

    Nucleotide excision repair (NER) is the primary DNA repair pathway that removes helix-distorting DNA strand damage induced by ultraviolet light (UV) irradiation or chemical carcinogens to ensure genome integrity. While the core NER proteins that carry out damage recognition, excision and repair reactions have been identified and extensively characterized, and the NER pathway has been reconstituted in vitro, the regulatory pathways that govern the threshold levels of NER have not been fully elucidated. This mini-review focuses on recently discovered transcriptional and post-translational mechanisms that specify the capacity of NER, and suggests the potential implications of modulating NER activity in cancer prevention and therapeutic intervention. PMID:20458729

  7. Complete Nucleotide Sequence of Tn10

    PubMed Central

    Chalmers, Ronald; Sewitz, Sven; Lipkow, Karen; Crellin, Paul

    2000-01-01

    The complete nucleotide sequence of Tn10 has been determined. The dinucleotide signature and percent G+C of the sequence had no discontinuities, indicating that Tn10 constitutes a homogeneous unit. The new sequence contained three new open reading frames corresponding to a glutamate permease, repressors of heavy metal resistance operons, and a hypothetical protein in Bacillus subtilis. The glutamate permease was fully functional when expressed, but Tn10 did not protect Escherichia coli from the toxic effects of various metals. PMID:10781570

  8. Erythro-9-(2-hydroxy-3-nonyl) Adenine alone and in combination with 9-beta-D-arabinofuranosyladenine in treatment of systemic herpesvirus infections in mice.

    PubMed Central

    Shannon, W M; Arnett, G; Schabel, F M; North, T W; Cohen, S S

    1980-01-01

    Although the antiviral activity of erythro-9-(2-hydroxy-3-nonyl)adenine, a potent adenosine deaminase inhibitor, against herpes simplex virus type 1 in cell culture was readily confirmed, the compound was found to be totally ineffective in the treatment of experimentally induced systemic herpes simplex virus type 1 infections in Swiss mice. Data were obtained, however, which clearly indicated that the antiviral potency of 9-beta-D-arabinofuranosyladenine in vivo could be enhanced by the co-administration of low, nontoxic doses of erythro-9-(2-hydroxy-3-nonyl)adenine. PMID:6255863

  9. (Biological applications of nucleosides and nucleotides)

    SciTech Connect

    Srivastava, P.C.

    1990-08-20

    The traveler was invited to visit The Meditech Group, VTT Technology, Inc., Reactor Laboratory, VTT Technical Research Center of Finland (VTT), Otakaari, Espoo, Finland. The Meditech Group commands a 70 percent market share of Finland's radiopharmaceutical business and plans to expand its activities to other Scandinavian countries as well as in the Leningrad area of USSR. Meditech has plans to separate itself from Technical Research Center of Finland and its subsidiary VTT Technology, Inc., to become a private radiopharmaceutical company in the near future. As a private company, Meditech could expand its activities to encompass radiopharmaceutical research and development and may require foreign technical experts to support its research endeavors. The traveler also attended the Ninth International Round Table Conference on Nucleosides, Nucleotides, and Their Biological Applications held at the Biomedical Center, University of Uppsala, Uppsala, Sweden. The meeting focused on the chemistry and biology of RNA and DNA and their building blocks, nucleosides and nucleotides. The traveler also presented an invited paper entitled Design, Synthesis and Tumor Specificity of Azomycin Ribo- and Acyclonucleosides,'' describing his recent work at Oak Ridge National Laboratory.

  10. The role of dietary nucleotides in reduction of DNA damage induced by T-2 toxin and deoxynivalenol in chicken leukocytes.

    PubMed

    Frankic, T; Pajk, T; Rezar, V; Levart, A; Salobir, J

    2006-11-01

    The objective of present study was to determine the effect of T-2 toxin and deoxynivalenol (DON) on DNA fragmentation in spleen leukocytes and oxidative stress in chickens, and furthermore, to evaluate the potential of dietary nucleotides in reduction of toxin-induced DNA damage. Male broiler chickens were exposed to 10mg/kg feed of either T-2 toxin or DON with or without addition of dietary nucleotides. After 17 days of treatment DNA damage of spleen leukocytes was measured by Comet assay, lipid peroxidation was studied by malondialdehyde (MDA), total antioxidant status (TAS) of plasma and glutathione peroxidase (GPx) assays, and the hepatotoxicity was studied by measuring plasma liver enzyme levels (ALT, AST and GGT) levels. T-2 toxin and DON induced DNA fragmentation in chicken spleen leukocytes and supplementation with nucleotides reduced the amount of damage only when added to T-2 toxin. In comparison to control group, values of TAS and AST decreased significantly in the groups fed T-2 toxin with or without nucleotide supplementation. Plasma and liver MDA content in groups fed T-2 toxin and DON did not differ significantly from the control. Dietary nucleotides did not affect MDA formation when added to the diets with mycotoxins. The results obtained suggest that dietary nucleotides have the potency to reduce the extent of DNA damage induced by the action of T-2 toxin in immune cells. This underlines their possible beneficial effect on the immune system in mycotoxin intoxication. PMID:16875771

  11. Incorporation of reporter-labeled nucleotides by DNA polymerases.

    PubMed

    Anderson, Jon P; Angerer, Bernhard; Loeb, Lawrence A

    2005-02-01

    The incorporation of fluorescently labeled nucleotides into DNA by DNA polymerases has been used extensively for tagging genes and for labeling DNA. However, we lack studies comparing polymerase efficiencies for incorporating different fluorescently labeled nucleotides. We analyzed the incorporation of fluorescent deoxynucleoside triphosphates by 10 different DNA polymerases, representing a cross-section of DNA polymerases from families A, B, and reverse transcriptase. The substitution of one or more different reporter-labeled nucleotides for the cognate nucleotides was initially investigated by using an in vitro polymerase extension filter-binding assay with natural DNA as a template. Further analysis on longer DNA fragments containing one or more nucleotide analogs was performed using a newly developed extension cut assay. The results indicate that incorporation of fluorescent nucleotides is dependent on the DNA polymerase, fluorophore, linker between the nucleotide and the fluorophore, and position for attachment of the linker and the cognate nucleotide. Of the polymerases tested, Taq and Vent exo DNA polymerases were most efficient at incorporating a variety of fluorescently labeled nucleotides. This study suggests that it should be feasible to copy DNA with reactions mixtures that contain all four fluorescently labeled nucleotides allowing for high-density labeling of DNA. PMID:15727132

  12. Coupling of guanine nucleotide inhibitory protein to somatostatin receptors on pancreatic acinar membranes

    SciTech Connect

    Sakamoto, C.; Matozaki, T.; Nagao, M.; Baba, S.

    1987-09-01

    Guanine nucleotides and pertussis toxin were used to investigate whether somatostatin receptors interact with the guanine nucleotide inhibitory protein (NI) on pancreatic acinar membranes in the rat. Guanine nucleotides reduced /sup 125/I-(Tyr/sup 1/)somatostatin binding to acinar membranes up to 80%, with rank order of potency being 5'-guanylyl imidodiphosphate (Gpp(NH)p)>GTP>TDP>GMP. Scatchard analysis revealed that the decrease in somatostatin binding caused by Gpp(NH)p was due to the decrease in the maximum binding capacity without a significant change in the binding affinity. The inhibitory effect of Gpp(NH)p was partially abolished in the absence of Mg/sup 2 +/. When pancreatic acini were treated with 1 ..mu..g/ml pertussis toxin for 4 h, subsequent /sup 125/I-(Tyr/sup 1/)somatostatin binding to acinar membranes was reduced. Pertussis toxin treatment also abolished the inhibitory effect of somatostatin on vasoactive intestinal peptide-stimulated increase in cellular content of adenosine 3',5'-cyclic monophosphate (cAMP) in the acini. The present results suggest that 1) somatostatin probably functions in the pancreas to regulate adenylate cyclase enzyme system via Ni, 2) the extent of modification of Ni is correlated with the ability of somatostatin to inhibit cAMP accumulation in acini, and 3) guanine nucleotides also inhibit somatostatin binding to its receptor.

  13. Formation of Amino Acids and Nucleotide Bases in a Titan Atmosphere Simulation Experiment

    PubMed Central

    Yelle, R.V.; Buch, A.; Carrasco, N.; Cernogora, G.; Dutuit, O.; Quirico, E.; Sciamma-O'Brien, E.; Smith, M.A.; Somogyi, Á.; Szopa, C.; Thissen, R.; Vuitton, V.

    2012-01-01

    Abstract The discovery of large (>100 u) molecules in Titan's upper atmosphere has heightened astrobiological interest in this unique satellite. In particular, complex organic aerosols produced in atmospheres containing C, N, O, and H, like that of Titan, could be a source of prebiotic molecules. In this work, aerosols produced in a Titan atmosphere simulation experiment with enhanced CO (N2/CH4/CO gas mixtures of 96.2%/2.0%/1.8% and 93.2%/5.0%/1.8%) were found to contain 18 molecules with molecular formulae that correspond to biological amino acids and nucleotide bases. Very high-resolution mass spectrometry of isotopically labeled samples confirmed that C4H5N3O, C4H4N2O2, C5H6N2O2, C5H5N5, and C6H9N3O2 are produced by chemistry in the simulation chamber. Gas chromatography–mass spectrometry (GC-MS) analyses of the non-isotopic samples confirmed the presence of cytosine (C4H5N3O), uracil (C5H4N2O2), thymine (C5H6N2O2), guanine (C5H5N5O), glycine (C2H5NO2), and alanine (C3H7NO2). Adenine (C5H5N5) was detected by GC-MS in isotopically labeled samples. The remaining prebiotic molecules were detected in unlabeled samples only and may have been affected by contamination in the chamber. These results demonstrate that prebiotic molecules can be formed by the high-energy chemistry similar to that which occurs in planetary upper atmospheres and therefore identifies a new source of prebiotic material, potentially increasing the range of planets where life could begin. Key Words: Astrochemistry—Planetary atmospheres—Titan—Astrobiology. Astrobiology 12, 809–817. PMID:22917035

  14. Polyamine/Nucleotide Coacervates Provide Strong Compartmentalization of Mg²⁺, Nucleotides, and RNA.

    PubMed

    Frankel, Erica A; Bevilacqua, Philip C; Keating, Christine D

    2016-03-01

    Phase separation of aqueous solutions containing polyelectrolytes can lead to formation of dense, solute-rich liquid droplets referred to as coacervates, surrounded by a dilute continuous phase of much larger volume. This type of liquid-liquid phase separation is thought to help explain the appearance of polyelectrolyte-rich intracellular droplets in the cytoplasm and nucleoplasm of extant biological cells and may be relevant to protocellular compartmentalization of nucleic acids on the early Earth. Here we describe complex coacervates formed upon mixing the polycation poly(allylamine) (PAH, 15 kDa) with the anionic nucleotides adenosine 5'-mono-, di-, and triphosphate (AMP, ADP, and ATP). Droplet formation was observed over a wide range of pH and MgCl2 concentrations. The nucleotides themselves as well as Mg(2+) and RNA oligonucleotides were all extremely concentrated within the coacervates. Nucleotides present at just 2.5 mM in bulk solution had concentrations greater than 1 M inside the coacervate droplets. A solution with a total Mg(2+) concentration of 10 mM had 1-5 M Mg(2+) in the coacervates, and RNA random sequence (N54) partitioned ∼10,000-fold into the coacervates. Coacervate droplets are thus rich in nucleotides, Mg(2+), and RNA, providing a medium favorable for generating functional RNAs. Compartmentalization of nucleotides at high concentrations could have facilitated their polymerization to form oligonucleotides, which preferentially accumulate in the droplets. Locally high Mg(2+) concentrations could have aided folding and catalysis in an RNA world, making coacervate droplets an appealing platform for exploring protocellular environments. PMID:26844692

  15. The Human SLC25A33 and SLC25A36 Genes of Solute Carrier Family 25 Encode Two Mitochondrial Pyrimidine Nucleotide Transporters*

    PubMed Central

    Di Noia, Maria Antonietta; Todisco, Simona; Cirigliano, Angela; Rinaldi, Teresa; Agrimi, Gennaro; Iacobazzi, Vito; Palmieri, Ferdinando

    2014-01-01

    The human genome encodes 53 members of the solute carrier family 25 (SLC25), also called the mitochondrial carrier family, many of which have been shown to transport inorganic anions, amino acids, carboxylates, nucleotides, and coenzymes across the inner mitochondrial membrane, thereby connecting cytosolic and matrix functions. Here two members of this family, SLC25A33 and SLC25A36, have been thoroughly characterized biochemically. These proteins were overexpressed in bacteria and reconstituted in phospholipid vesicles. Their transport properties and kinetic parameters demonstrate that SLC25A33 transports uracil, thymine, and cytosine (deoxy)nucleoside di- and triphosphates by an antiport mechanism and SLC25A36 cytosine and uracil (deoxy)nucleoside mono-, di-, and triphosphates by uniport and antiport. Both carriers also transported guanine but not adenine (deoxy)nucleotides. Transport catalyzed by both carriers was saturable and inhibited by mercurial compounds and other inhibitors of mitochondrial carriers to various degrees. In confirmation of their identity (i) SLC25A33 and SLC25A36 were found to be targeted to mitochondria and (ii) the phenotypes of Saccharomyces cerevisiae cells lacking RIM2, the gene encoding the well characterized yeast mitochondrial pyrimidine nucleotide carrier, were overcome by expressing SLC25A33 or SLC25A36 in these cells. The main physiological role of SLC25A33 and SLC25A36 is to import/export pyrimidine nucleotides into and from mitochondria, i.e. to accomplish transport steps essential for mitochondrial DNA and RNA synthesis and breakdown. PMID:25320081

  16. Modification of Metabolic Pattern by Variation of Nicotinamide Adenine Dinucleotide Phosphate Level 1

    PubMed Central

    Yamamoto, Yukio

    1969-01-01

    The experiments were designed to get some information on the metabolism controlled by variation of the NADP level, which is known to change with the variation of environmental factors. The exogenous NADP added to the mitochondria prepared from Vigna sesquipedalis cotyledons was associated with and/or penetrated into the mitochondria. The combined NADP served in the operation of the mitochondrial NADP-isocitric acid dehydrogenase. The variation of NADP level by exogenous NADP was observed to modify the rates of metabolic processes. The increase of exogenous NADP in Vigna hypocotyl slices lowered malic- and citric-acid contents and raised the α-ketoglutaric acid content. The incorporation of 14C from acetate-2-14C into lipid, organic acid, amino acid, was promoted with the exogenous NADP. The 14C-incorporation into glycolic acid, malic acid and glutamic acid was accelerated. In the mannitol homogenate of Vigna cotyledon, 14CO2 evolution and 14C-incorporation into lipid, sugar, and glycolic acid from acetate-2-14C were promoted with the exogenous NADP. Endogenous citric acid content was lowered by NADP, while malic acid content was increased. The activation of NADP-enzymes by NADP was discussed to be involved in these variations. PMID:16657076

  17. Panzea: An Update on New Content and Features

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Panzea (http://www.panzea.org), the public web site of the project “Molecular and Functional Diversity in the Maize Genome,” has expanded over the past two years in data content, display tools and informational sections. The most significant data content expansions occurred for the single nucleotide...

  18. Structural Basis for Nucleotide Exchange in Heterotrimeric G Proteins

    PubMed Central

    Dror, Ron O.; Mildorf, Thomas J.; Hilger, Daniel; Manglik, Aashish; Borhani, David W.; Arlow, Daniel H.; Philippsen, Ansgar; Villanueva, Nicolas; Yang, Zhongyu; Lerch, Michael T.; Hubbell, Wayne L.; Kobilka, Brian K.; Sunahara, Roger K.; Shaw, David E.

    2016-01-01

    G protein–coupled receptors (GPCRs) relay diverse extracellular signals into cells by catalyzing nucleotide release from heterotrimeric G proteins, but the mechanism underlying this quintessential molecular signaling event has remained unclear. Here we use atomic-level simulations to elucidate the nucleotide-release mechanism. We find that the G protein α subunit Ras and helical domains—previously observed to separate widely upon receptor binding to expose the nucleotide-binding site—separate spontaneously and frequently even in the absence of a receptor. Domain separation is necessary but not sufficient for rapid nucleotide release. Rather, receptors catalyze nucleotide release by favoring an internal structural rearrangement of the Ras domain that weakens its nucleotide affinity. We use double electron-electron resonance spectroscopy and protein engineering to confirm predictions of our computationally determined mechanism. PMID:26089515

  19. CysLT1 leukotriene receptor antagonists inhibit the effects of nucleotides acting at P2Y receptors

    PubMed Central

    Mamedova, Liaman; Capra, Valérie; Accomazzo, Maria Rosa; Gao, Zhan-Guo; Ferrario, Silvia; Fumagalli, Marta; Abbracchio, Maria P.; Rovati, G. Enrico; Jacobson, Kenneth A.

    2016-01-01

    Montelukast and pranlukast are orally active leukotriene receptor antagonists selective for the CysLT1 receptor. Conversely, the hP2Y1,2,4,6,11,12,13,14 receptors represent a large family of GPCRs responding to either adenine or uracil nucleotides, or to sugar-nucleotides. Montelukast and pranlukast were found to inhibit nucleotide-induced calcium mobilization in a human monocyte-macrophage like cell line, DMSO-differentiated U937 (dU937). Montelukast and pranlukast inhibited the effects of UTP with IC50 values of 7.7 and 4.3 μM, respectively, and inhibited the effects of UDP with IC50 values of 4.5 and 1.6 μM, respectively, in an insurmountable manner. Furthermore, ligand binding studies using [3H]LTD4 excluded the possibility of orthosteric nucleotide binding to the CysLT1 receptor. dU937 cells were shown to express P2Y2, P2Y4, P2Y6, P2Y11, P2Y13 and P2Y14 receptors. Therefore, these antagonists were studied functionally in a heterologous expression system for the human P2Y receptors. In 1321N1 astrocytoma cells stably expressing human P2Y1,2,4,6 receptors, CysLT1 antagonists inhibited both the P2Y agonist-induced activation of phospholipase C and intracellular Ca2+ mobilization. IC50 values at P2Y1 and P2Y6 receptors were <1 μM. In control astrocytoma cells expressing an endogenous M3 muscarinic receptor, 10 μM montelukast had no effect on the carbachol-induced rise in intracellular Ca2+. These data demonstrated that CysLT1 receptor antagonists interact functionally with signaling pathways of P2Y receptors, and this should foster the study of possible implications for the clinical use of these compounds in asthma or in other inflammatory conditions. PMID:16280122

  20. Analysis of a nucleotide-binding site of 5-lipoxygenase by affinity labelling: binding characteristics and amino acid sequences.

    PubMed Central

    Zhang, Y Y; Hammarberg, T; Radmark, O; Samuelsson, B; Ng, C F; Funk, C D; Loscalzo, J

    2000-01-01

    5-Lipoxygenase (5LO) catalyses the first two steps in the biosynthesis of leukotrienes, which are inflammatory mediators derived from arachidonic acid. 5LO activity is stimulated by ATP; however, a consensus ATP-binding site or nucleotide-binding site has not been found in its protein sequence. In the present study, affinity and photoaffinity labelling of 5LO with 5'-p-fluorosulphonylbenzoyladenosine (FSBA) and 2-azido-ATP showed that 5LO bound to the ATP analogues quantitatively and specifically and that the incorporation of either analogue inhibited ATP stimulation of 5LO activity. The stoichiometry of the labelling was 1.4 mol of FSBA/mol of 5LO (of which ATP competed with 1 mol/mol) or 0.94 mol of 2-azido-ATP/mol of 5LO (of which ATP competed with 0.77 mol/mol). Labelling with FSBA prevented further labelling with 2-azido-ATP, indicating that the same binding site was occupied by both analogues. Other nucleotides (ADP, AMP, GTP, CTP and UTP) also competed with 2-azido-ATP labelling, suggesting that the site was a general nucleotide-binding site rather than a strict ATP-binding site. Ca(2+), which also stimulates 5LO activity, had no effect on the labelling of the nucleotide-binding site. Digestion with trypsin and peptide sequencing showed that two fragments of 5LO were labelled by 2-azido-ATP. These fragments correspond to residues 73-83 (KYWLNDDWYLK, in single-letter amino acid code) and 193-209 (FMHMFQSSWNDFADFEK) in the 5LO sequence. Trp-75 and Trp-201 in these peptides were modified by the labelling, suggesting that they were immediately adjacent to the C-2 position of the adenine ring of ATP. Given the stoichiometry of the labelling, the two peptide sequences of 5LO were probably near each other in the enzyme's tertiary structure, composing or surrounding the ATP-binding site of 5LO. PMID:11042125

  1. Determination of Plaque Inhibitory Activity of Adenine Arabinoside (9-β-d-Arabinofuranosyladenine) for Herpesviruses Using an Adenosine Deaminase Inhibitor

    PubMed Central

    Bryson, Yvonne; Connor, James D.; Sweetman, Lawrence; Carey, Sharen; Stuckey, Margaret A.; Buchanan, Robert

    1974-01-01

    The in vitro susceptibility of type 1 and type 2 strains of Herpesvirus hominis to 9-β-d-arabinofuranosyladenine (adenine arabinoside, ara-A) was measured in a system where deamination was inhibited. Under these conditions, it was possible to measure the activity of low concentrations of ara-A. It was determined that plaque inhibitory concentration for type 1 viruses was less than 3 μg/ml for all strains tested. The plaque inhibitory concentration for 7 of 10 type 2 strains was also less than 3 μg/ml. The method used identified and controlled the interaction between antiviral agent (ara-A) and the indicator system, human skin fibroblastic cells. Otherwise, metabolism of ara-A resulted in rapid enzymatic degradation and loss of antiviral activity. PMID:15828177

  2. Signal transduction by guanine nucleotide binding proteins.

    PubMed

    Spiegel, A M

    1987-01-01

    High affinity binding of guanine nucleotides and the ability to hydrolyze bound GTP to GDP are characteristics of an extended family of intracellular proteins. Subsets of this family include cytosolic initiation and elongation factors involved in protein synthesis, and cytoskeletal proteins such as tubulin (Hughes, S.M. (1983) FEBS Lett. 164, 1-8). A distinct subset of guanine nucleotide binding proteins is membrane-associated; members of this subset include the ras gene products (Ellis, R.W. et al. (1981) Nature 292, 506-511) and the heterotrimeric G-proteins (also termed N-proteins) (Gilman, A.G. (1984) Cell 36, 577-579). Substantial evidence indicates that G-proteins act as signal transducers by coupling receptors (R) to effectors (E). A similar function has been suggested but not proven for the ras gene products. Known G-proteins include Gs and Gi, the G-proteins associated with stimulation and inhibition, respectively, of adenylate cyclase; transducin (TD), the G-protein coupling rhodopsin to cGMP phosphodiesterase in rod photoreceptors (Bitensky, M.W. et al. (1981) Curr. Top. Membr. Transp. 15, 237-271; Stryer, L. (1986) Annu. Rev. Neurosci. 9, 87-119), and Go, a G-protein of unknown function that is highly abundant in brain (Sternweis, P.C. and Robishaw, J.D. (1984) J. Biol. Chem. 259, 13806-13813; Neer, E.J. et al. (1984) J. Biol. Chem. 259, 14222-14229). G-proteins also participate in other signal transduction pathways, notably that involving phosphoinositide breakdown. In this review, I highlight recent progress in our understanding of the structure, function, and diversity of G-proteins. PMID:2435586

  3. Effects of low-molecular-weight-chitosan on the adenine-induced chronic renal failure rats in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Zhi, Xuan; Han, Baoqin; Sui, Xianxian; Hu, Rui; Liu, Wanshun

    2015-02-01

    The effects of low-molecular-weight-chitosan (LMWC) on chronic renal failure (CRF) rats induced by adenine were investigated in vivo and in vitro. Chitosan were hydrolyzed using chitosanase at pH 6-7 and 37° for 24 h to obtain LMWC. In vitro, the effect of LMWC on the proliferation of renal tubular epithelial cells (RTEC) showed that it had no cytotoxic effect and could promote cell growth. For the in vivo experiment, chronic renal failure rats induced by adenine were randomly divided into control group, Niaoduqing group, and high-, medium- and low-dose LMWC groups. For each group, we detected serum creatinine (SCR), blood urea nitrogen (BUN), and total superoxide dismutase (T-SOD), glutathione oxidase (GSH-Px) activities of renal tissue, and obtained the ratio of kidney weight/body weight, pathological changes of kidney. The levels of serum SCR, BUN were higher in the adenine-induced rats than those in the control group, indicating that the rat chronic renal failure model worked successfully. The results after treatment showed that LMWC could reduce the SCR and BUN levels and enhance the activities/levels of T-SOD and GSH-PX in kidney compared to control group. Histopathological examination revealed that adenine-induced renal alterations were restored by LMWC at three tested dosages, especially at the low dosage of 100 mg kg-1 d-1.

  4. Dynamics of dipole- and valence bound anions in iodide-adenine binary complexes: A time-resolved photoelectron imaging and quantum mechanical investigation

    SciTech Connect

    Stephansen, Anne B.; King, Sarah B.; Li, Wei-Li; Kunin, Alice; Yokoi, Yuki; Minoshima, Yusuke; Takayanagi, Toshiyuki; Neumark, Daniel M.

    2015-09-14

    Dipole bound (DB) and valence bound (VB) anions of binary iodide-adenine complexes have been studied using one-color and time-resolved photoelectron imaging at excitation energies near the vertical detachment energy. The experiments are complemented by quantum chemical calculations. One-color spectra show evidence for two adenine tautomers, the canonical, biologically relevant A9 tautomer and the A3 tautomer. In the UV-pump/IR-probe time-resolved experiments, transient adenine anions can be formed by electron transfer from the iodide. These experiments show signals from both DB and VB states of adenine anions formed on femto- and picosecond time scales, respectively. Analysis of the spectra and comparison with calculations suggest that while both the A9 and A3 tautomers contribute to the DB signal, only the DB state of the A3 tautomer undergoes a transition to the VB anion. The VB anion of A9 is higher in energy than both the DB anion and the neutral, and the VB anion is therefore not accessible through the DB state. Experimental evidence of the metastable A9 VB anion is instead observed as a shape resonance in the one-color photoelectron spectra, as a result of UV absorption by A9 and subsequent electron transfer from iodide into the empty π-orbital. In contrast, the iodide-A3 complex constitutes an excellent example of how DB states can act as doorway state for VB anion formation when the VB state is energetically available.

  5. Dynamics of dipole- and valence bound anions in iodide-adenine binary complexes: A time-resolved photoelectron imaging and quantum mechanical investigation

    NASA Astrophysics Data System (ADS)

    Stephansen, Anne B.; King, Sarah B.; Yokoi, Yuki; Minoshima, Yusuke; Li, Wei-Li; Kunin, Alice; Takayanagi, Toshiyuki; Neumark, Daniel M.

    2015-09-01

    Dipole bound (DB) and valence bound (VB) anions of binary iodide-adenine complexes have been studied using one-color and time-resolved photoelectron imaging at excitation energies near the vertical detachment energy. The experiments are complemented by quantum chemical calculations. One-color spectra show evidence for two adenine tautomers, the canonical, biologically relevant A9 tautomer and the A3 tautomer. In the UV-pump/IR-probe time-resolved experiments, transient adenine anions can be formed by electron transfer from the iodide. These experiments show signals from both DB and VB states of adenine anions formed on femto- and picosecond time scales, respectively. Analysis of the spectra and comparison with calculations suggest that while both the A9 and A3 tautomers contribute to the DB signal, only the DB state of the A3 tautomer undergoes a transition to the VB anion. The VB anion of A9 is higher in energy than both the DB anion and the neutral, and the VB anion is therefore not accessible through the DB state. Experimental evidence of the metastable A9 VB anion is instead observed as a shape resonance in the one-color photoelectron spectra, as a result of UV absorption by A9 and subsequent electron transfer from iodide into the empty π-orbital. In contrast, the iodide-A3 complex constitutes an excellent example of how DB states can act as doorway state for VB anion formation when the VB state is energetically available.

  6. Flow injection determination of adenine at trace level based on luminol-K2Cr2O7 chemiluminescence in a micellar medium.

    PubMed

    Erbao, Liu; Bingchun, Xue

    2006-05-01

    A novel flow injection chemiluminescence (CL) analysis method for the determination of adenine in the presence of sodium dodecylbenzene sulfonate (SDBS) surfactant micelles is described. This method is based on the luminescent properties of the luminol-K2Cr2O7-adenine in alkaline medium sensitized by SDBS. The optimized experimental conditions were evaluated and the possible mechanism was discussed by examining CL emission spectrum and the effect of various free radical scavengers on CL emission intensity. The CL increase is linearly related to the concentration of adenine in the range of 2.92x10(-6) to 4.38x10(-10) mol l-1 with a detection limit of 2.46x10(-10) mol l-1 (S/N=3). The relative standard deviation for 2.92x10(-7) mol l-1 samples was 1.67% (n=12). The proposed method has been applied to the determination of adenine in human serum. PMID:16413727

  7. Determination of Activity of the Enzymes Hypoxanthine Phosphoribosyl Transferase (HPRT) and Adenine Phosphoribosyl Transferase (APRT) in Blood Spots on Filter Paper.

    PubMed

    Auler, Kasie; Broock, Robyn; Nyhan, William L

    2015-01-01

    Hypoxanthine-guanine phosphoribosyl-transferase (HPRT) deficiency is the cause of Lesch-Nyhan disease. Adenine phosphoribosyl-transferase (APRT) deficiency causes renal calculi. The activity of each enzyme is readily determined on spots of whole blood on filter paper. This unit describes a method for detecting deficiencies of HPRT and APRT. PMID:26132002

  8. Metal-organic frameworks and β-cyclodextrin-based composite electrode for simultaneous quantification of guanine and adenine in a lab-on-valve manifold.

    PubMed

    Wang, Yang; Chen, Huanhuan; Wu, Yichun; Ge, Huali; Ye, Guiqin; Hu, Xiaoya

    2014-12-01

    In this work, a novel chemically modified electrode is constructed based on metal-organic frameworks and β-cyclodextrin (Cu3(BTC)2/β-CD, BTC = benzene-1,3,5-tricarboxylate) composite material. The electrode was used for simultaneous determination of guanine and adenine in a sequential injection lab-on-valve format and exhibited sensitive responses to guanine and adenine oxidation due to the π-π stacking interaction of Cu3(BTC)2 and the inclusion behavior of β-CD. The analytical performance was assessed with respect to the supporting electrolyte and its pH, accumulation time and accumulation potential, and the fluid flow rates. Under optimal conditions, linear calibration ranges for both guanine and adenine were from 1.0 × 10(-7) to 1.0 × 10(-5) mol L(-1), and detection limits (S/N = 3) were found to be 5.2 × 10(-8) and 2.8 × 10(-8) mol L(-1), respectively. The proposed sensor showed advantages of high sensitivity, simple sample preparation protocol, enhanced throughput and good reproducibility. Finally, the practical application of the proposed sensor has been performed for the determination of guanine and adenine in real samples with satisfactory results. PMID:25299249

  9. Endogenously elevated bilirubin modulates kidney function and protects from circulating oxidative stress in a rat model of adenine-induced kidney failure

    PubMed Central

    Boon, Ai-Ching; Lam, Alfred K.; Gopalan, Vinod; Benzie, Iris F.; Briskey, David; Coombes, Jeff S.; Fassett, Robert G.; Bulmer, Andrew C.

    2015-01-01

    Mildly elevated bilirubin is associated with a reduction in the presence and progression of chronic kidney disease and related mortality, which may be attributed to bilirubin’s antioxidant properties. This study investigated whether endogenously elevated bilirubin would protect against adenine-induced kidney damage in male hyperbilirubinaemic Gunn rats and littermate controls. Animals were orally administered adenine or methylcellulose solvent (vehicle) daily for 10 days and were then monitored for 28 days. Serum and urine were assessed throughout the protocol for parameters of kidney function and antioxidant/oxidative stress status and kidneys were harvested for histological examination upon completion of the study. Adenine-treated animals experienced weight-loss, polyuria and polydipsia; however, these effects were significantly attenuated in adenine-treated Gunn rats. No difference in the presence of dihydroadenine crystals, lymphocytic infiltration and fibrosis were noted in Gunn rat kidneys versus controls. However, plasma protein carbonyl and F2-isoprostane concentrations were significantly decreased in Gunn rats versus controls, with no change in urinary 8-oxo-7,8-dihydro-2′-deoxyguanosine or kidney tissue F2-isoprostane concentrations. These data indicated that endogenously elevated bilirubin specifically protects from systemic oxidative stress in the vascular compartment. These data may help to clarify the protective relationship between bilirubin, kidney function and cardiovascular mortality in clinical investigations. PMID:26498893

  10. DamID-seq: Genome-wide Mapping of Protein-DNA Interactions by High Throughput Sequencing of Adenine-methylated DNA Fragments.

    PubMed

    Wu, Feinan; Olson, Brennan G; Yao, Jie

    2016-01-01

    The DNA adenine methyltransferase identification (DamID) assay is a powerful method to detect protein-DNA interactions both locally and genome-wide. It is an alternative approach to chromatin immunoprecipitation (ChIP). An expressed fusion protein consisting of the protein of interest and the E. coli DNA adenine methyltransferase can methylate the adenine base in GATC motifs near the sites of protein-DNA interactions. Adenine-methylated DNA fragments can then be specifically amplified and detected. The original DamID assay detects the genomic locations of methylated DNA fragments by hybridization to DNA microarrays, which is limited by the availability of microarrays and the density of predetermined probes. In this paper, we report the detailed protocol of integrating high throughput DNA sequencing into DamID (DamID-seq). The large number of short reads generated from DamID-seq enables detecting and localizing protein-DNA interactions genome-wide with high precision and sensitivity. We have used the DamID-seq assay to study genome-nuclear lamina (NL) interactions in mammalian cells, and have noticed that DamID-seq provides a high resolution and a wide dynamic range in detecting genome-NL interactions. The DamID-seq approach enables probing NL associations within gene structures and allows comparing genome-NL interaction maps with other functional genomic data, such as ChIP-seq and RNA-seq. PMID:26862720

  11. A Poly Adenine-Mediated Assembly Strategy for Designing Surface-Enhanced Resonance Raman Scattering Substrates in Controllable Manners.

    PubMed

    Zhu, Ying; Jiang, Xiangxu; Wang, Houyu; Wang, Siyi; Wang, Hui; Sun, Bin; Su, Yuanyuan; He, Yao

    2015-07-01

    In this article, we introduce a Poly adenine (Poly A)-assisted fabrication method for rationally designing surface-enhanced resonance Raman scattering (SERRS) substrates in controllable and reliable manners, enabling construction of core-satellite SERRS assemblies in both aqueous and solid phase (e.g., symmetric core (Au)-satellite (Au) nanoassemblies (Au-Au NPs), and asymmetric Ag-Au NPs-decorated silicon wafers (Ag-Au NPs@Si)). Of particular significance, assembly density is able to be controlled by varying the length of the Poly A block (e.g., 10, 30, and 50 consecutive adenines at the 5' end of DNA sequence, Poly A10/A30/A50), producing the asymmetric core-satellite nanoassemblies with adjustable surface density of Au NPs assembly on core NPs surface. Based on quantitative interrogation of the relationship between SERRS performance and assemble density, the Ag-Au NPs@Si featuring the strongest SERRS enhancement factor (EF ≈ 10(7)) and excellent reproducibility can be achieved under optimal conditions. We further employ the resultant Ag-Au NPs@Si as a high-performance SERRS sensing platform for the selective and sensitive detection of mercury ions (Hg(2+)) in a real system, with a low detection limit of 100 fM, which is ∼5 orders of magnitude lower than the United States Environmental Protection Agency (USEPA)-defined limit (10 nM) in drinkable water. These results suggest the Poly A-mediated assembly method as new and powerful tools for designing high-performance SERRS substrates with controllable structures, facilitating improvement of sensitivity, reliability, and reproducibility of SERRS signals. PMID:26028356

  12. Separation of the primary dehydrogenase from the cytochromes of the nicotinamide adenine dinucleotide (reduced form) oxidase of Bacillus megaterium.

    PubMed

    Yu, L; Wolin, M J

    1972-01-01

    A selective extraction procedure was developed for sequentially extracting a fraction containing the primary dehydrogenase and a fraction containing the cytochromes of the nicotinamide adenine dinucleotide (reduced form) (NADH) oxidase of Bacillus megaterium KM membranes. The primary dehydrogenase (NADH-2,6-dichlorophenolindophenol oxidoreductase) activity was extracted from sonically treated membranes with 0.4% sodium deoxycholate for 30 min at 4 C. The insoluble residue was extracted with 0.4% sodium deoxycholate in 1 m KCl for 30 min at 25 C. A combination of the two extracts and dilution in Mg(2+) gave good recovery of the original membrane NADH oxidase activity. The primary dehydrogenase fraction contained 41% of the membrane protein, no cytochromes, flavine adenine dinucleotide as the sole acid-extractable flavine, and most of the membrane ribonucleic acid (RNA). The cytochrome-containing fraction had 16% of the membrane protein, 61% of the membrane cytochrome with the same relative amounts of cytochromes a and b as the original membrane, no acid-extractable flavine, little RNA, and no oxidoreductase activity. The oxidoreductase fraction remained soluble after removal of deoxycholate whereas the cytochrome fraction became insoluble after removal of deoxycholate-KCl, but the precipitated fraction could be redissolved in 0.4% sodium deoxycholate. Treatment of both fractions with ribonuclease to destroy all of the RNA present did not affect the ability of the fractions to recombine into a functional oxidase unit. Treatment of either fraction with phospholipase A prevented restoration of a functional oxidase when the oxidoreductase and cytochrome fractions were treated in solution, but no affect on restoration of oxidase was observed when the phospholipase A treatment was carried out with the soluble oxidoreductase fraction and the insoluble cytochrome fraction. PMID:4333382

  13. Biochemical characterization of a flavin adenine dinucleotide-dependent monooxygenase, ornithine hydroxylase from Pseudomonas aeruginosa, suggests a novel reaction mechanism.

    PubMed

    Meneely, Kathleen M; Lamb, Audrey L

    2007-10-23

    Pyoverdin is the hydroxamate siderophore produced by the opportunistic pathogen Pseudomonas aeruginosa under the iron-limiting conditions of the human host. This siderophore includes derivatives of ornithine in the peptide backbone that serve as iron chelators. PvdA is the ornithine hydroxylase, which performs the first enzymatic step in preparation of these derivatives. PvdA requires both flavin adenine dinucleotide (FAD) and nicotinamide adenine dinucleotide phosphate (NADPH) for activity; it was found to be a soluble monomer most active at pH 8.0. The enzyme demonstrated Michaelis-Menten kinetics in an NADPH oxidation assay, but a hydroxylation assay indicated substrate inhibition at high ornithine concentration. PvdA is highly specific for both substrate and coenzyme, and lysine was shown to be a nonsubstrate effector and mixed inhibitor of the enzyme with respect to ornithine. Chloride is a mixed inhibitor of PvdA with respect to ornithine but a competitive inhibitor with respect to NADPH, and a bulky mercurial compound (p-chloromercuribenzoate) is a mixed inhibitor with respect to ornithine. Steady-state experiments indicate that PvdA/FAD forms a ternary complex with NADPH and ornithine for catalysis. PvdA in the absence of ornithine shows slow substrate-independent flavin reduction by NADPH. Biochemical comparison of PvdA to p-hydroxybenzoate hydroxylase (PHBH, from Pseudomonas fluorescens) and flavin-containing monooxygenases (FMOs, from Schizosaccharomyces pombe and hog liver microsomes) leads to the hypothesis that PvdA catalysis proceeds by a novel reaction mechanism. PMID:17900176

  14. Photocatalytic Reduction of Artificial and Natural Nucleotide Co-factors with a Chlorophyll-Like Tin-Dihydroporphyrin Sensitizer

    PubMed Central

    2013-01-01

    An efficient photocatalytic two-electron reduction and protonation of nicotine amide adenine dinucleotide (NAD+), as well as the synthetic nucleotide co-factor analogue N-benzyl-3-carbamoyl-pyridinium (BNAD+), powered by photons in the long-wavelength region of visible light (λirr > 610 nm), is demonstrated for the first time. This functional artificial photosynthetic counterpart of the complete energy-trapping and solar-to-fuel conversion primary processes occurring in natural photosystem I (PS I) is achieved with a robust water-soluble tin(IV) complex of meso-tetrakis(N-methylpyridinium)-chlorin acting as the light-harvesting sensitizer (threshold wavelength of λthr = 660 nm). In buffered aqueous solution, this chlorophyll-like compound photocatalytically recycles a rhodium hydride complex of the type [Cp*Rh(bpy)H]+, which is able to mediate regioselective hydride transfer processes. Different one- and two-electron donors are tested for the reductive quenching of the irradiated tin complex to initiate the secondary dark reactions leading to nucleotide co-factor reduction. Very promising conversion efficiencies, quantum yields, and excellent photosensitizer stabilities are observed. As an example of a catalytic dark reaction utilizing the reduction equivalents of accumulated NADH, an enzymatic process for the selective transformation of aldehydes with alcohol dehydrogenase (ADH) coupled to the primary photoreactions of the system is also demonstrated. A tentative reaction mechanism for the transfer of two electrons and one proton from the reductively quenched tin chlorin sensitizer to the rhodium co-catalyst, acting as a reversible hydride carrier, is proposed. PMID:24073596

  15. Genetic control of biosynthesis and transport of riboflavin and flavin nucleotides and construction of robust biotechnological producers.

    PubMed

    Abbas, Charles A; Sibirny, Andriy A

    2011-06-01

    Riboflavin [7,8-dimethyl-10-(1'-d-ribityl)isoalloxazine, vitamin B₂] is an obligatory component of human and animal diets, as it serves as the precursor of flavin coenzymes, flavin mononucleotide, and flavin adenine dinucleotide, which are involved in oxidative metabolism and other processes. Commercially produced riboflavin is used in agriculture, medicine, and the food industry. Riboflavin synthesis starts from GTP and ribulose-5-phosphate and proceeds through pyrimidine and pteridine intermediates. Flavin nucleotides are synthesized in two consecutive reactions from riboflavin. Some microorganisms and all animal cells are capable of riboflavin uptake, whereas many microorganisms have distinct systems for riboflavin excretion to the medium. Regulation of riboflavin synthesis in bacteria occurs by repression at the transcriptional level by flavin mononucleotide, which binds to nascent noncoding mRNA and blocks further transcription (named the riboswitch). In flavinogenic molds, riboflavin overproduction starts at the stationary phase and is accompanied by derepression of enzymes involved in riboflavin synthesis, sporulation, and mycelial lysis. In flavinogenic yeasts, transcriptional repression of riboflavin synthesis is exerted by iron ions and not by flavins. The putative transcription factor encoded by SEF1 is somehow involved in this regulation. Most commercial riboflavin is currently produced or was produced earlier by microbial synthesis using special selected strains of Bacillus subtilis, Ashbya gossypii, and Candida famata. Whereas earlier RF overproducers were isolated by classical selection, current producers of riboflavin and flavin nucleotides have been developed using modern approaches of metabolic engineering that involve overexpression of structural and regulatory genes of the RF biosynthetic pathway as well as genes involved in the overproduction of the purine precursor of riboflavin, GTP. PMID:21646432

  16. Genetic Control of Biosynthesis and Transport of Riboflavin and Flavin Nucleotides and Construction of Robust Biotechnological Producers†

    PubMed Central

    Abbas, Charles A.; Sibirny, Andriy A.

    2011-01-01

    Summary: Riboflavin [7,8-dimethyl-10-(1′-d-ribityl)isoalloxazine, vitamin B2] is an obligatory component of human and animal diets, as it serves as the precursor of flavin coenzymes, flavin mononucleotide, and flavin adenine dinucleotide, which are involved in oxidative metabolism and other processes. Commercially produced riboflavin is used in agriculture, medicine, and the food industry. Riboflavin synthesis starts from GTP and ribulose-5-phosphate and proceeds through pyrimidine and pteridine intermediates. Flavin nucleotides are synthesized in two consecutive reactions from riboflavin. Some microorganisms and all animal cells are capable of riboflavin uptake, whereas many microorganisms have distinct systems for riboflavin excretion to the medium. Regulation of riboflavin synthesis in bacteria occurs by repression at the transcriptional level by flavin mononucleotide, which binds to nascent noncoding mRNA and blocks further transcription (named the riboswitch). In flavinogenic molds, riboflavin overproduction starts at the stationary phase and is accompanied by derepression of enzymes involved in riboflavin synthesis, sporulation, and mycelial lysis. In flavinogenic yeasts, transcriptional repression of riboflavin synthesis is exerted by iron ions and not by flavins. The putative transcription factor encoded by SEF1 is somehow involved in this regulation. Most commercial riboflavin is currently produced or was produced earlier by microbial synthesis using special selected strains of Bacillus subtilis, Ashbya gossypii, and Candida famata. Whereas earlier RF overproducers were isolated by classical selection, current producers of riboflavin and flavin nucleotides have been developed using modern approaches of metabolic engineering that involve overexpression of structural and regulatory genes of the RF biosynthetic pathway as well as genes involved in the overproduction of the purine precursor of riboflavin, GTP. PMID:21646432

  17. Pyridine nucleotide coenzymes: Chemical, biological, and medical aspects. Vol. 2, Pt. A

    SciTech Connect

    Dolphin, D.; Poulson, R.; Avramovic, O.

    1987-01-01

    This text contains the following: History of the Pyridine Nucleotides Nomenclature; Evolution of Pyridine Nucleotide; Relationship Between Biosynthesis and Evolution; Crystal Structure; Coenzyme Conformations; Protein Interactions; Optical Spectroscopy of the Pyridine Nucleotides; Excited States of Pyridine Nucleotide Coenzymes; Fluorescence and Phosphorescence; Nuclear Magnetic Resonance Spectroscopy of Pyridine Nucleotides; Mass Spectrometry of Pyridine Nucleotides; Mechanism of Action of the Pyridine Nucleotides; Chemical Stability and Reactivity of Pyridine Nucleotide Coenzymes; Stereochemistry of Fatty Acid Biosynthesis and Metabolism; Kinetics of Pyridine Nucleotide-Utilizing Enzymes; Preparation and Properties of NAD and NADP Analogs; Model Studies and Biological Activity of Analogs; and Spin-Labeled Pyridine Nucleotide Derivatives.

  18. PerPlot & PerScan: tools for analysis of DNA curvature-related periodicity in genomic nucleotide sequences

    PubMed Central

    2011-01-01

    Background Periodic spacing of short adenine or thymine runs phased with DNA helical period of ~10.5 bp is associated with intrinsic DNA curvature and deformability, which play important roles in DNA-protein interactions and in the organization of chromosomes in both eukaryotes and prokaryotes. Local differences in DNA sequence periodicity have been linked to differences in gene expression in some organisms. Despite the significance of these periodic patterns, there are virtually no publicly accessible tools for their analysis. Results We present novel tools suitable for assessments of DNA curvature-related sequence periodicity in nucleotide sequences at the genome scale. Utility of the present software is demonstrated on a comparison of sequence periodicities in the genomes of Haemophilus influenzae, Methanocaldococcus jannaschii, Saccharomyces cerevisiae, and Arabidopsis thaliana. The software can be accessed through a web interface and the programs are also available for download. Conclusions The present software is suitable for comparing DNA curvature-related sequence periodicity among different genomes as well as for analysis of intrachromosomal heterogeneity of the sequence periodicity. It provides a quick and convenient way to detect anomalous regions of chromosomes that could have unusual structural and functional properties and/or distinct evolutionary history. PMID:22587738

  19. Exocyclic carbons adjacent to the N6 of adenine are targets for oxidation by the Escherichia coli adaptive response protein AlkB.

    PubMed

    Li, Deyu; Delaney, James C; Page, Charlotte M; Yang, Xuedong; Chen, Alvin S; Wong, Cintyu; Drennan, Catherine L; Essigmann, John M

    2012-05-30

    The DNA and RNA repair protein AlkB removes alkyl groups from nucleic acids by a unique iron- and α-ketoglutarate-dependent oxidation strategy. When alkylated adenines are used as AlkB targets, earlier work suggests that the initial target of oxidation can be the alkyl carbon adjacent to N1. Such may be the case with ethano-adenine (EA), a DNA adduct formed by an important anticancer drug, BCNU, whereby an initial oxidation would occur at the carbon adjacent to N1. In a previous study, several intermediates were observed suggesting a pathway involving adduct restructuring to a form that would not hinder replication, which would match biological data showing that AlkB almost completely reverses EA toxicity in vivo. The present study uses more sensitive spectroscopic methodology to reveal the complete conversion of EA to adenine; the nature of observed additional putative intermediates indicates that AlkB conducts a second oxidation event in order to release the two-carbon unit completely. The second oxidation event occurs at the exocyclic carbon adjacent to the N(6) atom of adenine. The observation of oxidation of a carbon at N(6) in EA prompted us to evaluate N(6)-methyladenine (m6A), an important epigenetic signal for DNA replication and many other cellular processes, as an AlkB substrate in DNA. Here we show that m6A is indeed a substrate for AlkB and that it is converted to adenine via its 6-hydroxymethyl derivative. The observation that AlkB can demethylate m6A in vitro suggests a role for AlkB in regulation of important cellular functions in vivo. PMID:22512456

  20. Single nucleotide polymorphism genotyping using BeadChip microarrays.

    PubMed

    Lambert, Gilliam; Tsinajinnie, Darwin; Duggan, David

    2013-07-01

    The genotyping of single nucleotide polymorphisms (SNPs) has successfully contributed to the study of complex diseases more than any other technology to date. Genome-wide association studies (GWAS) using 10,000s to >1,000,000 SNPs have identified 1000s of statistically significant SNPs pertaining to 17 different human disease and trait categories. Post-GWAS fine-mapping studies using 10,000s to 100,000s SNPs on a microarray have narrowed the region of interest for many of these GWAS findings; in addition, independent signals within the original GWAS region have been identified. Focused content, SNP-based microarrays such as the human exome, for example, have too been used successfully to identify novel disease associations. Success has come to studies where 100s to 10,000s (mostly) to >100,000 samples were genotyped. For the time being, SNP-based microarrays remain cost-effective especially when studying large numbers of samples compared to other "genotyping" technologies including next generation sequencing. In this unit, protocols for manual (LIMS-free), semi-manual, and automated processing of BeadChip microarrays are presented. Lower throughput studies will find value in the manual and semi-manual protocols, while all types of studies--low-, medium-, and high-throughput--will find value in the semi-manual and automated protocols. PMID:23853082

  1. Vesicular nucleotide transport: a brief history and the vesicular nucleotide transporter as a target for drug development.

    PubMed

    Hiasa, Miki; Togawa, Natsuko; Moriyama, Yoshinori

    2014-01-01

    Neurons and neuroendocrine cells store nucleotides in vesicles and release them upon stimulation, leading to intercellular purinergic signaling. The molecular machinery responsible for the vesicular storage of nucleotides was a long standing enigma, however, recently the transporter involving in the process was identified. This article summarizes the history of vesicular storage of nucleotides and the identification of the vesicular nucleotide transporter (VNUT) responsible for the process. The significance of VNUT as a drug target to control purinergic chemical transmission is also discussed. PMID:23886392

  2. Nucleotide-Induced Conformational Changes in Escherichia coli DnaA Protein Are Required for Bacterial ORC to Pre-RC Conversion at the Chromosomal Origin

    PubMed Central

    Saxena, Rahul; Vasudevan, Sona; Patil, Digvijay; Ashoura, Norah; Grimwade, Julia E.; Crooke, Elliott

    2015-01-01

    DnaA oligomerizes when bound to origins of chromosomal replication. Structural analysis of a truncated form of DnaA from Aquifex aeolicus has provided insight into crucial conformational differences within the AAA+ domain that are specific to the ATP- versus ADP- bound form of DnaA. In this study molecular docking of ATP and ADP onto Escherichia coli DnaA, modeled on the crystal structure of Aquifex aeolicus DnaA, reveals changes in the orientation of amino acid residues within or near the vicinity of the nucleotide-binding pocket. Upon limited proteolysis with trypsin or chymotrypsin ADP-DnaA, but not ATP-DnaA generated relatively stable proteolytic fragments of various sizes. Examined sites of limited protease susceptibility that differ between ATP-DnaA and ADP-DnaA largely reside in the amino terminal half of DnaA. The concentration of adenine nucleotide needed to induce conformational changes, as detected by these protease susceptibilities of DnaA, coincides with the conversion of an inactive bacterial origin recognition complex (bORC) to a replication efficient pre-replication complex (pre-RC) at the E. coli chromosomal origin of replication (oriC). PMID:26610483

  3. Nucleotide-Induced Conformational Changes in Escherichia coli DnaA Protein Are Required for Bacterial ORC to Pre-RC Conversion at the Chromosomal Origin.

    PubMed

    Saxena, Rahul; Vasudevan, Sona; Patil, Digvijay; Ashoura, Norah; Grimwade, Julia E; Crooke, Elliott

    2015-01-01

    DnaA oligomerizes when bound to origins of chromosomal replication. Structural analysis of a truncated form of DnaA from Aquifex aeolicus has provided insight into crucial conformational differences within the AAA+ domain that are specific to the ATP- versus ADP- bound form of DnaA. In this study molecular docking of ATP and ADP onto Escherichia coli DnaA, modeled on the crystal structure of Aquifex aeolicus DnaA, reveals changes in the orientation of amino acid residues within or near the vicinity of the nucleotide-binding pocket. Upon limited proteolysis with trypsin or chymotrypsin ADP-DnaA, but not ATP-DnaA generated relatively stable proteolytic fragments of various sizes. Examined sites of limited protease susceptibility that differ between ATP-DnaA and ADP-DnaA largely reside in the amino terminal half of DnaA. The concentration of adenine nucleotide needed to induce conformational changes, as detected by these protease susceptibilities of DnaA, coincides with the conversion of an inactive bacterial origin recognition complex (bORC) to a replication efficient pre-replication complex (pre-RC) at the E. coli chromosomal origin of replication (oriC). PMID:26610483

  4. Nucleotide sequence of the Dpn II DNA methylase gene of Streptococcus pneumoniae and its relationship to the dam gene of Escherichia coli

    SciTech Connect

    Mannarelli, B.M.; Balganesh, T.S.; Greenberg, B.; Springhorn, S.S.; Lacks, S.A.

    1985-07-01

    The structural gene (dpnM) for the Dpn II DNA methylase of Streptococcus pneumoniae, which is part of the Dpn II restriction system and methylates adenine in the sequence 5'-G-A-T-C-3', was identified by subcloning fragments of a chromosomal segment from a Dpn II-producing strain in an S. pneumoniae host/vector cloning system and demonstrating function of the gene also in Bacillus subtilis. Determination of the nucleotide sequence of the gene and adjacent DNA indicates that it encodes a polypeptide of 32,903 daltons. A putative promoter for transcription of the gene lies within a hundred nucleotides of the polypeptide start codon. Comparison of the coding sequence to that of the dam gene of Escherichia coli, which encodes a similar methylase, revealed 30% of the amino acid residues in the two enzymes to be identical. This homology presumably reflects a common origin of the two genes prior to the divergence of Gram-positive and Gram-negative bacteria. It is suggested that the restriction function of the gene is primitive, and that the homologous restriction system in E. coli has evolved to play an accessory role in heteroduplex DNA base mismatch repair.

  5. Microbial metabolism of thiopurines: A method to measure thioguanine nucleotides.

    PubMed

    Movva, Ramya; Lobb, Michael; Ó Cuív, Páraic; Florin, Timothy H J; Duley, John A; Oancea, Iulia

    2016-09-01

    Thiopurines are anti-inflammatory prodrugs. We hypothesised that bacteria may contribute to conversion to active drug. Escherichia coli strain DH5α was evaluated to determine whether it could metabolise the thiopurine drugs, thioguanine or mercaptopurine, to thioguanine nucleotides. A rapid and reliable high performance liquid chromatography (ultraviolet detection) method was developed to quantify indirectly thioguanine nucleotides, by measuring thioguanine nucleoside. PMID:27444548

  6. [Correlation of the DNA nucleotide makeup with the physiological and cytological characteristics of spore-forming anaerobic bacteria].

    PubMed

    Duda, V I; Dobritsa, S V

    1975-01-01

    The nucleotide composition of DNA from 12 studied species of anaerobic bacteria belongs to AT type, with G+C varying from 28.4 to 36.8 mole%. In the anaerobic group of Clostridium bifermentans, a correlation has been established between the nucleotide composition of DNA, the type of appendages on spores, and some physiologo-biochemical characteristics. The nucleotide composition of DNA in the spores of four anaerobic species is shifted toward GC type as compared to DNA in the vegetative cells. Data on the content of GC pairs in DNA of the spores may sometimes be of a higher taxonomic value than the corresponding evidence on DNA of the vegetative cells. PMID:1207507

  7. From Single Nucleotide Polymorphism to Transcriptional Mechanism

    PubMed Central

    Martini, Sebastian; Nair, Viji; Patel, Sanjeevkumar R.; Eichinger, Felix; Nelson, Robert G.; Weil, E. Jennifer; Pezzolesi, Marcus G.; Krolewski, Andrzej S.; Randolph, Ann; Keller, Benjamin J.; Werner, Thomas; Kretzler, Matthias

    2013-01-01

    Genome-wide association studies