Science.gov

Sample records for adenine nucleotides atp

  1. Modulation of F0F1-ATP synthase activity by cyclophilin D regulates matrix adenine nucleotide levels

    PubMed Central

    Chinopoulos, Christos; Konràd, Csaba; Kiss, Gergely; Metelkin, Eugeniy; Töröcsik, Beata; Zhang, Steven F.; Starkov, Anatoly A.

    2011-01-01

    Cyclophilin D was recently shown to bind to and decrease the activity of F0F1-ATP synthase in submitochondrial particles and permeabilized mitochondria (Giorgio et al. 2009, J Biol Chem, 284:33982). Cyclophilin D binding decreased both the ATP synthesis and hydrolysis rates. Here, we reaffirm these findings by demonstrating that in intact mouse liver mitochondria energized by ATP, absence of cyclophilin D or presence of cyclosporin A led to a decrease in the extent of uncoupler-induced depolarization. Accordingly, in substrate-energized mitochondria an increase in F0F1-ATP synthase activity mediated by a relief of inhibition by cyclophilin D was evident as slightly increased respiration rates during arsenolysis. However, the modulation of F0F1-ATP synthase by cyclophilin D did not increase the ANT-mediated ATP efflux rate in energized mitochondria or the ATP influx rate in de-energized mitochondria. The lack of effect of cyclophilin D on the ANT-mediated adenine nucleotide exchange rate was attributed to the ~2.2 times lower flux control coefficient of the F0F1-ATP synthase than that of ANT, deduced from measurements of adenine nucleotide flux rates in intact mitochondria. These findings were further supported by a recent kinetic model of the mitochondrial phosphorylation system, suggesting that a ~30% change in F0F1-ATP synthase activity in fully energized or fully deenergized mitochondria affects ADP-ATP exchange rate mediated by the ANT in the range of 1.38-1.7%. We conclude that in mitochondria exhibiting intact inner membranes, the absence of cyclophilin D or inhibition of its binding to F0F1-ATP synthase by cyclosporin A will affect only matrix adenine nucleotides levels. PMID:21281446

  2. [Closure of Ca2+-dependent pores by cyclosporin A: the role of magnesium ions, adenine nucleotides, and conformation status of the ADP/ATP antiporter].

    PubMed

    Andreev, A Iu; Mikhaĭlova, L M; Starkov, A A

    1994-10-01

    Effects of ADP and Mg2+ on the ability of cyclosporin A to "reseal" mitochondria permeabilized by Ca2+ and P(i) have been studied. Cyclosporin A was completely ineffective, when ADP and Mg2+ were not included into the incubation medium. Both ADP and Mg2+ used at high concentrations potentiated the effect of cyclosporin A and prevented it reversal by carboxyatractylate. Data on the influence of different concentrations of ADP and Mg2+ on the resealing efficiency of cyclosporin A suggest that the true effector modulating the state of the Ca(2+)-dependent pore is the ADP-Mg2+ complex, but not ADP or Mg2+ used separately. The ability of non-hydrolyzable analogs of adenine nucleotides, ADP-S and ATP-S, to potentiate the resealing action of cyclosporin on mitochondria permeabilized by loading of different Ca2+ concentrations to that of ADP was compared. ATP-S was ineffective when the pore was induced by high concentrations of Ca2+. The results obtained are discussed in terms of hypothesis on the direct involvement of the ADP/ATP antiporter in regulation of the inner mitochondrial membrane Ca(2+)-dependent pore state.

  3. In vitro adenine nucleotide catabolism in African catfish spermatozoa.

    PubMed

    Zietara, Marek S; Słomińska, Ewa; Rurangwa, Eugene; Ollevier, Frans; Swierczyński, Julian; Skorkowski, Edward F

    2004-08-01

    It has been shown recently that African catfish (Clarias gariepinus) spermatozoa possess relatively low ATP content and low adenylate energy charge (AEC). One of the possible explanations for this phenomenon is that the spermatozoa actively catabolize adenine nucleotides. A relatively high rate of such catabolism could then contribute to the low ATP concentration and low adenylate energy charge observed in the spermatozoa in vitro. To check this hypothesis, we investigated ATP content and adenine nucleotide catabolism in African catfish spermatozoa stored at 4 degrees C in the presence of glycine as an energetic substrate. Our results indicate that the storage of African catfish sperm at 4 degrees C in the presence of glycine causes time-dependent ATP depletion. In contrast to ATP, the AMP content increases significantly during the same period of sperm storage, while the ADP increases only slightly. Moreover, a significant increase of inosine and hypoxanthine content was also found. Hypoxanthine was accumulated in the storage medium, but xanthine was found neither in spermatozoa nor in the storage medium. It indicates that hypoxanthine is not converted to xanthine, probably due to lack of xanthine oxidase activity in catfish spermatozoa. Present results suggest that adenine nucleotides may be converted to hypoxanthine according to the following pathway: ATP-->ADP-->AMP (adenosine/IMP)-->inosine-->hypoxanthine. Moreover, hypoxanthine seems to be the end product of adenine nucleotide catabolism in African catfish spermatozoa. In conclusion, our results suggest that a relatively high rate of adenine nucleotide catabolism contributes to the low ATP concentration and low adenylate energy charge observed in African catfish spermatozoa in vitro.

  4. Applications of adenine nucleotide measurements in oceanography

    NASA Technical Reports Server (NTRS)

    Holm-Hansen, O.; Hodson, R.; Azam, F.

    1975-01-01

    The methodology involved in nucleotide measurements is outlined, along with data to support the premise that ATP concentrations in microbial cells can be extrapolated to biomass parameters. ATP concentrations in microorganisms and nucleotide analyses are studied.

  5. Adenine and guanine nucleotide metabolism during platelet storage at 22 degree C

    SciTech Connect

    Edenbrandt, C.M.; Murphy, S. )

    1990-11-01

    Adenine and guanine nucleotide metabolism of platelet concentrates (PCs) was studied during storage for transfusion at 22 +/- 2 degrees C over a 7-day period using high-pressure liquid chromatography. There was a steady decrease in platelet adenosine triphosphate (ATP) and adenosine diphosphate (ADP), which was balanced quantitatively by an increase in plasma hypoxanthine. As expected, ammonia accumulated along with hypoxanthine but at a far greater rate. A fall in platelet guanosine triphosphate (GTP) and guanosine diphosphate (GDP) paralleled the fall in ATP + ADP. When adenine was present in the primary anticoagulant, it was carried over into the PC and metabolized. ATP, GTP, total adenine nucleotides, and total guanine nucleotides declined more slowly in the presence of adenine than in its absence. With adenine, the increase in hypoxanthine concentration was more rapid and quantitatively balanced the decrease in adenine and platelet ATP + ADP. Plasma xanthine rose during storage but at a rate that exceeded the decline in GTP + GDP. When platelet ATP + ADP was labeled with 14C-adenine at the initiation of storage, half of the radioactivity was transferred to hypoxanthine (45%) and GTP + GDP + xanthine (5%) by the time storage was completed. The isotopic data were consistent with the presence of a radioactive (metabolic) and a nonradioactive (storage) pool of ATP + ADP at the initiation of storage with each pool contributing approximately equally to the decline in ATP + ADP during storage. The results suggested a continuing synthesis of GTP + GDP from ATP + ADP, explaining the slower rate of fall of GTP + GDP relative to the rate of rise of plasma xanthine. Throughout storage, platelets were able to incorporate 14C-hypoxanthine into both adenine and guanine nucleotides but at a rate that was only one fourth the rate of hypoxanthine accumulation.

  6. Labeling of mitochondrial adenine nucleotides of bovine sperm

    SciTech Connect

    Cheetham, J.; Lardy, H.A.

    1986-05-01

    Incorporation of /sup 32/P/sub i/ into the adenine nucleotide pool of intact bovine spermatozoa utilizing endogenous substrates results in a specific activity (S.A.) ratio ATP/ADP of 0.3 to 0.5, suggesting compartmentation of nucleotide pools or a pathway for phosphorylation of AMP in addition to the myokinase reaction. Incubation of filipin-permeabilized cells with pyruvate, acetylcarnitine, or ..cap alpha..-ketoglutarate (..cap alpha..KG) resulted in ATP-ADP S.A. ratios of 0.5, 0.8, and 1.6, respectively, for mitochondrial nucleotides. However, when malate was included with pyruvate or acetylcarnitine, the ATP/ADP S.A. ratio increased by 400% to 2.0 for pyruvate/malate and by 290% to 2.8 for acetylcarnitine/malate, while the ATP/ADP ratio increased by less than 100% in both cases. These results may indicate that under conditions of limited flux through the citric acid cycle a pathway for phosphorylation of AMP from a precursor other than ATP exists or that ATP is compartmented within the mitochondrion. In the presence of uncoupler and oligomycin with ..cap alpha..KG, pyruvate/malate, or acetylcarnitine/malate, /sup 32/P/sub i/ is incorporated primarily into ATP, resulting in an ATP/ADP S.A. ratio of 4.0 for ..cap alpha..KG, 2.7 for pyruvate/malate, and 2.8 for acetylcarnitine/malate. These data are consistent with phosphorylation of ADP during substrate level phosphorylation in the citric acid cycle.

  7. Radiation and thermal stabilities of adenine nucleotides.

    PubMed

    Demidov, V V; Potaman, V N; Solyanina, I P; Trofimov, V I

    1995-03-01

    We have investigated in detail radiation and thermal stabilities and transformations of adenosine mono- and triphosphates in liquid and frozen solid aqueous solutions within a wide range of absorbed radiation dose (up to 75 kGy) and temperature (up to 160 degrees C). Dephosphorylation is the main pathway of high temperature hydrolysis of adenine nucleotides. Basic thermodynamic and kinetic parameters of this process have been determined. Radiolysis of investigated compounds at room temperature results in scission of N-glycosidic bond with a radiation yield about of 1 mol/100 eV. Solution freezing significantly enhances radiation stability of nucleotides as well as other biomolecules. This circumstance is essential in the discussion of panspermia concepts.

  8. Diminution in adenine nucleotide hydrolysis by platelets and serum from rats submitted to Walker 256 tumour.

    PubMed

    Buffon, Andréia; Ribeiro, Vanessa B; Schanoski, Alessandra S; Sarkis, João J F

    2006-01-01

    Extracellular adenine nucleotide hydrolysis in the circulation is mediated by the action of an NTPDase (CD39, apyrase) and of a 5'-nucleotidase (CD73), presenting as a final product, adenosine. Among other properties described for adenine nucleotides, an anti-cancer activity is suggested, since ATP is considered a cytotoxic molecule in several tumour cell systems. Conversely, some studies demonstrate that adenosine presents a tumour-promoting activity. In this study, we evaluated the pattern of adenine nucleotide hydrolysis by serum and platelets from rats submitted to the Walker 256 tumour model. Extracellular adenine nucleotide hydrolysis by blood serum and platelets obtained from rats at, 6, 10 and 15 days after the subcutaneous Walker 256 tumour inoculation, was evaluated. Our results demonstrate a significant reduction in ATP, ADP and AMP hydrolysis in blood serum at 6, 10 and 15 days after tumour induction. In platelets, a significant reduction in ATP and AMP hydrolysis was observed at 10 and 15 days after tumour induction, while an inhibition of ADP hydrolysis was observed at all times studied. Based on these results, it is possible to suggest a physiologic protection mechanism against the tumoral process in circulation. The inhibition in nucleotide hydrolysis observed probably maintains ATP levels elevated (cytotoxic compound) and, at the same time, reduces the adenosine production (tumour-promoting molecule) in the circulation.

  9. Inhibitory and Restorative Effects of Adenine Nucleotides on Rickettsial Adsorption and Hemolysis

    PubMed Central

    Winkler, Herbert H.

    1974-01-01

    The adenine nucleotides, adenosine diphosphate, adenosine triphosphate, (ATP), and the methylene-bridge analogues are inhibitors of rickettsial adsorption to and the hemolysis of sheep erythrocytes. Other nucleotides, adenosine monophosphate, cyclic adenosine monophosphate, cytosine triphosphate, and guanosine triphosphate, are without effect. Adsorption and hemolysis require the generation of energy by the rickettsiae which is usually derived from glutamate. When the generation of energy from the metabolism of glutamate is inhibited by arsenite or cyanide, the addition of ATP can supply the energy to restore hemolysis. However, in the presence of the uncouplers, ATP can not restore hemolysis. Even when functioning in a restorative role, ATP still has its inhibitory properties. These results suggest that a high-energy intermediate (X ∼ I), rather than ATP itself, is the energy source. The interactions of inhibitory nucleotides suggest that these compounds share a common transport system. PMID:4357933

  10. Mathematical Model for Shear Stress Dependent NO and Adenine Nucleotide Production from Endothelial Cells

    PubMed Central

    Kirby, Patrick; Buerk, Donald G.; Parikh, Jaimit; Barbee, Kenneth A.; Jaron, Dov

    2015-01-01

    We developed a mass transport model for a parallel-plate flow chamber apparatus to predict the concentrations of nitric oxide (NO) and adenine nucleotides (ATP, ADP) produced by cultured endothelial cells (ECs) and investigated how the net rates of production, degradation, and mass transport for these three chemical species vary with changes in wall shear stress (τw). These simulations provide an improved understanding of experimental results obtained with parallel-plate flow chambers and allows quantitative analysis of the relationship between τw, adenine nucleotide concentrations, and NO produced by ECs. Experimental data obtained after altering ATP and ADP concentrations with apyrase were analyzed to quantify changes in the rate of NO production (RNO). The effects of different isoforms of apyrase on ATP and ADP concentrations and nucleotide-dependent changes in RNO could be predicted with the model. A decrease in ATP was predicted with apyrase, but an increase in ADP was simulated due to degradation of ATP. We found that a simple proportional relationship relating a component of RNO to the sum of ATP and ADP provided a close match to the fitted curve for experimentally measured changes in RNO with apyrase. Estimates for the proportionality constant ranged from 0.0067 to 0.0321 μM/s increase in RNO per nM nucleotide concentration, depending on which isoform of apyrase was modeled, with the largest effect of nucleotides on RNO at low τw (< 6 dyn/cm2). PMID:26529478

  11. The basal proton conductance of mitochondria depends on adenine nucleotide translocase content

    PubMed Central

    2005-01-01

    The basal proton conductance of mitochondria causes mild uncoupling and may be an important contributor to metabolic rate. The molecular nature of the proton-conductance pathway is unknown. We show that the proton conductance of muscle mitochondria from mice in which isoform 1 of the adenine nucleotide translocase has been ablated is half that of wild-type controls. Overexpression of the adenine nucleotide translocase encoded by the stress-sensitive B gene in Drosophila mitochondria increases proton conductance, and underexpression decreases it, even when the carrier is fully inhibited using carboxyatractylate. We conclude that half to two-thirds of the basal proton conductance of mitochondria is catalysed by the adenine nucleotide carrier, independently of its ATP/ADP exchange or fatty-acid-dependent proton-leak functions. PMID:16076285

  12. Adenine Nucleotide Levels in the Cytosol, Chloroplasts, and Mitochondria of Wheat Leaf Protoplasts 1

    PubMed Central

    Stitt, Mark; Lilley, Ross McC.; Heldt, Hans W.

    1982-01-01

    Recently, a new method has been described, in which membrane filtration is used to allow the levels of adenine nucleotides in the chloroplast stroma, the cytosol, and the mitochondrial matrix to be measured. This method is now used to investigate the effect of illumination, of respiratory inhibitors, and of uncouplers on the distribution of ATP, ADP, and AMP in wheat (Triticum aestivum var. `Timmo') leaf protoplasts. (a) The adenine nucleotides are apparently equilibrated by adenylate kinase in the stroma and the cytosol, but not in the mitochondrial matrix. (b) The ATP/ADP quotient in the cytosol is considerably higher than that in the mitochondrial matrix or the chloroplast stroma. (c) A large gradient exists between the ATP/ADP quotients in the cytosol and the mitochondrial matrix in the dark, with a very low ATP/ADP quotient in the mitochondria. This gradient is lowered by uncouplers or respiratory inhibitors showing that, as in animal tissues, it reflects the energization of the mitochondria. (d) In the dark, the stromal ATP/ADP is lower than in the light, and appears to be maintained, at least in part, by import from the cytosol. (e) The cytosolic ATP/ADP, however, actually decreases in the light. This contradicts the widespread assumption, that export of photosynthetically produced ATP from the chloroplast leads to an increase in the cytosolic ATP/ADP, which then inhibits oxidative phosphorylation in the mitochondria. (f) The mitochondrial ATP/ADP increases in the light, and the gradient between the cytosol and mitochondrial matrix falls. This is also difficult to understand in terms of an inhibition of oxidative phosphorylation in the light due to a lack of ADP in the cytosol. (g) The significance of the measured variations in the adenine nucleotide pools are discussed with respect to the diurnal carbohydrate metabolism in a leaf, and to the metabolic function of the chloroplast, the cytosol and the mitochondria. PMID:16662653

  13. Neonatal hypothyroidism affects the adenine nucleotides metabolism in astrocyte cultures from rat brain.

    PubMed

    Braganhol, Elizandra; Bruno, Alessandra Nejar; Bavaresco, Luci; Barreto-Chaves, Maria Luiza M; Sarkis, João José Freitas; Battastini, Ana Maria Oliveira

    2006-04-01

    Neonatal hypothyroidism is associated with multiple and severe brain alterations. We recently demonstrated a significant increase in hydrolysis of AMP to adenosine in brain of hypothyroid rats at different ages. However, the origin of this effect was unclear. Considering the effects of adenine nucleotides to brain functions and the harmful effects of neonatal hypothyroidism to normal development of the central nervous system, in this study we investigated the metabolism of adenine nucleotides in hippocampal, cortical and cerebellar astrocyte cultures from rats submitted to neonatal hypothyroidism. ATP and AMP hydrolysis were enhanced by 52 and 210%, respectively, in cerebellar astrocytes from hypothyroid rats. In hippocampus of hypothyroid rats, the 47% increase in AMP hydrolysis was significantly reverted when the astrocytes were treated with T3. Therefore, the imbalance in the ATP and adenosine levels in astrocytes, during brain development, may contribute to some of the effects described in neonatal hypothyroidism.

  14. Adenine Nucleotides Control Proliferation In Vivo of Rat Retinal Progenitors by P2Y1 Receptor.

    PubMed

    de Almeida-Pereira, Luana; Magalhães, Camila Feitosa; Repossi, Marinna Garcia; Thorstenberg, Maria Luiza Prates; Sholl-Franco, Alfred; Coutinho-Silva, Robson; Ventura, Ana Lucia Marques; Fragel-Madeira, Lucianne

    2016-08-24

    Previous studies demonstrated that exogenous ATP is able to regulate proliferation of retinal progenitor cells (RPCs) in vitro possibly via P2Y1 receptor, a G protein-coupled receptor. Here, we evaluated the function of adenine nucleotides in vivo during retinal development of newborn rats. Intravitreal injection of apyrase, an enzyme that hydrolyzes nucleotides, reduced cell proliferation in retinas at postnatal day 2 (P2). This decrease was reversed when retinas were treated together with ATPγ-S or ADPβ-S, two hydrolysis-resistant analogs of ATP and ADP, respectively. During early postnatal days (P0 to P5), an increase in ectonucleotidase (E-NTPDase) activity was observed in the retina, suggesting a decrease in the availability of adenine nucleotides, coinciding with the end of proliferation. Interestingly, intravitreal injection of the E-NTPDase inhibitor ARL67156 increased proliferation by around 60 % at P5 rats. Furthermore, immunolabeling against P2Y1 receptor was observed overall in retina layers from P2 rats, including proliferating Ki-67-positive cells in the neuroblastic layer (NBL), suggesting that this receptor could be responsible for the action of adenine nucleotides upon proliferation of RPCs. Accordingly, intravitreal injection of MRS2179, a selective antagonist of P2Y1 receptors, reduced cell proliferation by approximately 20 % in P2 rats. Moreover, treatment with MRS 2179 caused an increase in p57(KIP2) and cyclin D1 expression, a reduction in cyclin E and Rb phosphorylated expression and in BrdU-positive cell number. These data suggest that the adenine nucleotides modulate the proliferation of rat RPCs via activation of P2Y1 receptors regulating transition from G1 to S phase of the cell cycle.

  15. Brain Injury Alters Ectonucleotidase Activities and Adenine Nucleotide Levels in Rat Serum

    PubMed Central

    Laketa, Danijela; Savić, Jasmina; Bjelobaba, Ivana; Lavrnja, Irena; Vasić, Vesna; Stojiljković, Mirjana; Nedeljković, Nadežda

    2015-01-01

    Summary Background Cortical stab injury (CSI) induces changes in the activity, expression and cellular distribution of specific ectonucleotidases at the injury site. Also, several experimentally induced neuropathologies are associated with changes in soluble ectonucleotidase activities in the plasma and serum, whilst various insults to the brain alter purine compounds levels in cerebrospinal fluid, but also in serum, indicating that insults to the brain may induce alterations in nucleotides release and rate of their hydrolysis in the vascular system. Since adenine nucleotides and adenosine regulate diverse cellular functions in the vascular system, including vascular tone, platelet aggregation and inflammatory responses of lymphocytes and macrophages, alterations of ectonucleotidase activities in the vascular system may be relevant for the clinical outcome of the primary insult. Methods We explored ectonucleotidase activities using specific enzyme assays and determined adenine nucleotides concentrations by the UPLC method in the rat serum after cortical stab injury. Results At 4-h post-injury, ATP and AMP hydrolysis increased by about 60% and 40%, respectively, while phosphodiesterase activity remained unchanged. Also, at 4-h post-injury a marked decrease in ATP concentration and more than 2-fold increase in AMP concentration were recorded. Conclusions CSI induces rapid up-regulation of nucleotide catabolizing soluble ectonucleotidases in rat serum, which leads to the observed shift in serum nucleotide levels. The results obtained imply that ectonucleotidases and adenine nucleotides participate in the communication between the brain and the vascular system in physiological and pathological conditions and thereby may be involved in the development of various human neuropathologies.

  16. A distinct sequence in the adenine nucleotide translocase from Artemia franciscana embryos is associated with insensitivity to bongkrekate and atypical effects of adenine nucleotides on Ca2+ uptake and sequestration.

    PubMed

    Konràd, Csaba; Kiss, Gergely; Töröcsik, Beata; Lábár, János L; Gerencser, Akos A; Mándi, Miklós; Adam-Vizi, Vera; Chinopoulos, Christos

    2011-03-01

    Mitochondria isolated from embryos of the crustacean Artemia franciscana lack the Ca(2+)-induced permeability transition pore. Although the composition of the pore described in mammalian mitochondria is unknown, the impacts of several effectors of the adenine nucleotide translocase (ANT) on pore opening are firmly established. Notably, ADP, ATP and bongkrekate delay, whereas carboxyatractyloside hastens, Ca(2+)-induced pore opening. Here, we report that adenine nucleotides decreased, whereas carboxyatractyloside increased, Ca(2+) uptake capacity in mitochondria isolated from Artemia embryos. Bongkrekate had no effect on either Ca(2+) uptake or ADP-ATP exchange rate. Transmission electron microscopy imaging of Ca(2+)-loaded Artemia mitochondria showed needle-like formations of electron-dense material in the absence of adenine nucleotides, and dot-like formations in the presence of adenine nucleotides or Mg(2+). Energy-filtered transmission electron microscopy showed the material to be rich in calcium and phosphorus. Sequencing of the Artemia mRNA coding for ANT revealed that it transcribes a protein with a stretch of amino acids in the 198-225 region with 48-56% similarity to those from other species, including the deletion of three amino acids in positions 211, 212 and 219. Mitochondria isolated from the liver of Xenopus laevis, in which the ANT shows similarity to that in Artemia except for the 198-225 amino acid region, demonstrated a Ca(2+)-induced bongkrekate-sensitive permeability transition pore, allowing the suggestion that this region of ANT may contain the binding site for bongkrekate.

  17. Purines 2010: Adenine Nucleosides and Nucleotides in Biomedicine.

    PubMed

    Sereda, Michal J

    2010-08-01

    The Purines 2010: Adenine Nucleosides and Nucleotides in Biomedicine meeting, held in Tarragona, Spain, included topics covering new findings in the field of purinergic signaling and the development of purine-based drugs. This conference report highlights selected presentations on developments in purinerigic signaling, medicinal chemistry, the therapeutic potential of purine-based drugs, and the role of purines and adenosine receptors in neurodegenerative disorders, sickle cell disease, bone homeostasis, pulmonary fibrosis and pain. Investigational drugs discussed include CF-101 (Can-Fite BioPharma Ltd/NIH/Kwang Dong Pharmaceutical Co Ltd/Seikagaku Corp) and denufosol tetrasodium (Cystic Fibrosis Foundation Therapeutics Inc/Inspire Pharmaceuticals Inc).

  18. An alternative membrane transport pathway for phosphate and adenine nucleotides in mitochondria and its possible function.

    PubMed

    Reynafarje, B; Lehninger, A L

    1978-10-01

    This paper describes the properties and a possible biological role of a transport process across the inner membrane of rat liver mitochondria resulting in the exchange of ATP(4-) (out) for ADP(3-) (in) + 0.5 phosphate(2-) (in). This transmembrane exchange reaction, designated as the ATP-ADP-phosphate exchange, is specific for the ligands shown, electroneutral, insensitive to N-ethylmaleimide or mersalyl, inhibited by atractyloside, and appears to occur only in the direction as written. It is thus distinct from the well-known phosphate-hydroxide and phosphate-dicarboxylate exchange systems, which are inhibited by mersalyl, and from the ATP-ADP exchanger, which does not transport phosphate. During ATP hydrolysis by mitochondria, half of the phosphate formed from ATP passes from the matrix to the medium by the mersalyl-insensitive ATP-ADP-phosphate exchange and the other half by the well-known mersalyl-sensitive phosphate-hydroxide exchange. These and other considerations have led to a hypothesis for the pathway and stoichiometry of ATP-dependent reverse electron transport, characterized by a requirement of 1.33 molecules of ATP per pair of electrons reversed and by the utilization of a different membrane transport pathway for phosphate and adenine nucleotides than is taken in forward electron flow and oxidative phosphorylation. The possible occurrence of independent pathways for ATP-forming forward electron flow and ATP-consuming reverse electron flow is consonant with the fact that the opposing degradative and synthetic pathways in the central routes of cell metabolism generally have different pathways that are independently regulated.

  19. Adenine nucleotide levels in a closed enzymatic digestion system for porcine islet isolation.

    PubMed

    Oshibe, Ikuro; Saito, Takuro; Sato, Yoshihiro; Saito, Takaharu; Tsukada, Manabu; Ise, Kazuya; Kenjo, Akira; Kimura, Takashi; Anazawa, Takayuki; Suzuki, Shigeya; Hashimoto, Yasuhiro; Gotoh, Mitusukazu

    2012-01-01

    Obtaining viable islets is a crucial step for successful islet transplantation. Adenosine triphosphate (ATP) is a marker of cell viability. However, little is known about any changes in the energy status of the tissues that are being digested during the digestion phase. We herein examined whether the ATP content in serially digested pancreatic tissue samples could be specific objective parameters that signal the optimal point to stop the digestion process. We obtained partial pancreata (body to tail) from 4- to 5-year-old pigs from a slaughterhouse. The tissue samples were preserved in M-Kyoto solution for less than 3 h. They were digested using an automated enzymatic and mechanical dissociation system at 37°C for 90 min following intraductal injection of Liberase HI. Samples were collected from the digestive circuit every 5 or 10 min to determine the ATP level, total adenine nucleotide (TAN) level, islet count (count/g), and yield of islet equivalent (IEQ) in the serial digestive fluids. The ATP and TAN levels, IEQ and islet count were increased and then decreased during digestion process. The profile of these parameters differed from case to case. However, when ATP changing ratio (respective value/precedent value) was compared with IEQ changing ratio, a greater than threefold increase in the ATP changing ratio followed by an increase in the islet count changing ratio within 5 min was consistently observed, indicating the optimal time to stop the digestion. The ATP levels of the handpicked islets in the digested samples were lower in the overdigested phase in comparison to those in the earlier digested phase. These results indicate that the ATP level in digested fluid could be an effective indicator to estimate the viability of cells as well as determine the optimal time to terminate the digestion process in order to obtain viable islets.

  20. The effects of cyclic adenosine 3',5'-monophosphate and other adenine nucleotides on body temperature.

    PubMed Central

    Dascombe, M J; Milton, A S

    1975-01-01

    1. Adenosine 3',5'-monophosphate (cAMP), its dibutyryl derivative (Db-cAMP) and other adenine nucleotides have been micro-injected into the hypothalamic region of the unanaesthetized cat and the effects on body temperature, and on behavioural and autonomic thermoregulatory activities observed. 2. Db-cAMP and cAMP both produced hypothermia when applied to the pre-optic anterior hypothalamus. With Db-cAMP the hypothermia was shown to be dose dependent between 50 and 500 mug (0-096-0-96 mumole). 3. AMP, ADP and ATP also produced hypothermia when injected into the pre-optic anterior hypothalamus. 4. The order of relative potencies of the adenine nucleotides with respect both to the hypothermia produced and to the autonomic thermoregulatory effects observed were similar. Db-cAMP was most potent and cAMP least. 5. Micro-injection into the pre-optic anterior hypothalamus of many substances including saline produced in most cats a non-specific rise in body temperature apparently the result of tissue damage. Intraperitoneal injection of 4-acetamidophenol (paracetamol 50 mg/kg) reduced or abolished this febrile response. 6. The hypothermic effect of the adenine nucleotides has been compared with the effects produced in these same cats by micro-injections of noradrenaline, 5-hydroxytryptamine, a mixture of acetylcholine and physostigmine (1:1), EDTA and excess Ca2+ ions. 7. It is concluded that as Db-cAMP and cAMP both produce hypothermia, it is unlikely that endogenous cAMP in the pre-optic anterior hypothalamus mediates the hyperthermic responses to pyrogens and prostaglandins. PMID:170396

  1. Homo- and heteroexchange of adenine nucleotides and nucleosides in rat hippocampal slices by the nucleoside transport system

    PubMed Central

    Sperlágh, Beáta; Szabó, Gábor; Erdélyi, Ferenc; Baranyi, Mária; Sylvester Vizi, E

    2003-01-01

    Here, we investigated how nucleotides and nucleosides affect the release of tritiated purines and endogenous adenosine 5′-triphosphate (ATP) from superfused rat hippocampal slices. ATP elicited concentration-dependent [3H]purine efflux from slices preloaded with [3H]adenosine. High-performance liquid chromatography analysis of the effluent showed that the tritium label represented the whole set of adenine nucleotides and nucleosides, and ATP significantly increased the outflow of [3H]ATP. Adenosine 5′-diphosphate, adenosine, uridine, uridine 5′-triphosphate, α,β-methylene-ATP and 3′-O-(4-benzoylbenzoyl)-ATP were also active in eliciting [3H]purine release. Adenosine (300 μM) also evoked endogenous ATP efflux from the hippocampal slices. Reverse transcription-coupled-polymerase chain reaction analysis revealed that mRNAs encoding a variety of P2X and P2Y receptor proteins are expressed in the rat hippocampus. Nevertheless, neither P2 receptor (i.e. pyridoxal-5-phosphate-6-azophenyl-2′,4′-disulphonic acid, 30 μM, suramin, 300 μM and reactive blue 2, 10 μM), nor adenosine receptor (8-cyclopentyl-1,3-dipropylxanthine, 250 nM and dimethyl-1-propargylxanthine, 250 nM) antagonists modified the effect of ATP (300 μM) to evoke [3H]purine release. The nucleoside transport inhibitors, dipyridamole (10 μM), nitrobenzylthioinosine (10 μM) and adenosine deaminase (2–10 U ml−1), but not the ecto-adenylate kinase inhibitor diadenosine pentaphosphate (200 μM) significantly reduced ATP-evoked [3H]purine efflux. In summary, we found that ATP and other nucleotides and nucleosides promote the release of one another and themselves by the nucleoside transport system. This action could have relevance during physiological and pathological elevation of extracellular purine levels high enough to reverse the nucleoside transporter. PMID:12788822

  2. Evidence for the presence and role of tightly bound adenine nucleotides in phospholipid-free purified Micrococcus lysodeikticus adenosine triphosphatase.

    PubMed

    Muñoz, C; Palacios, P; Muñoz, E

    1977-10-01

    [32P]-labeled ATPase was isolated in a highly purified state from Micrococcus lysodeikticus strain PNB grown in medium supplemented with [32P]orthophosphate. Selective extraction procedures allowed us to determine that at least 25% of the firmly bound label belonged to adenine nucleotides, ATP and ADP being present in equimolar amounts. However, no 32P label was found to be part of phospholipids. This was confirmed by purification of the ATPase from cells fed with [2-3H]glycerol. Using the luciferin-luciferase assay we estimated that ATPase freshly isolated by Sephadex chromatography (specific activity 10-14 micromole substrate transformed x min(-1) x mg protein(-1)) contained 2 moles ATP/mole of enzyme. The ratio fell with the age of enzyme and its purification by gel electrophoresis and this was paralleled by a loss of ATPase activity. The endogenous nucleotides were readily exchanged by added ADP or ATP. This result suggests that the sites for tight binding of adenine nucleotides are equivalent, although ADP seems to have a higher affinity for them. The last properties represent a peculiar characteristic of this bacterial ATPase as compared with other bacterial and organelle energy-transducing proteins.

  3. Interrelationships between hydrogen-supplying reactions, respiration rate and extramitochondrial adenine nucleotide pattern.

    PubMed

    Böhme, G; Schönfeld, P; Bohnensack, R; Küster, U; Kunz, W

    1982-01-01

    1. The influence of a diminished hydrogen supply on the regulation of oxidative phosphorylation of isolated rat liver mitochondria in dependence on the extramitochondrial (ATP)/(ADP) ratio was investigated. 2. The hydrogen supply was diminished by using various (beta-hydroxybutyrate)/(acetoacetate) ratios as a redox buffer and the results were compared with those of experiments using perifusion of immobilized mitochondria with non-saturating substrate concentrations. 3. In both experimental approaches the influence of a diminished hydrogen pressure on the maximum (ATP)/(ADP) ratio at minimum flux was low. An extreme decrease in the (beta-hydroxybutyrate)/(acetoacetate) ratio by more than two orders of magnetitude causes the (APT)/(ADP) ratio to decrease by about 50%. 4. The load capacity of oxidative phosphorylation (maximum flux) is considerably decreased by diminished hydrogen pressure. 5. The borderline cases of purely kinetic and thermodynamic limitations of hydrogen supply were calculated by computer simulation with respect to the regulating behaviour of oxidative phosphorylation and changes in the control strength of adenine nucleotide translocator and hydrogen supply in the overall reaction. 6. A prevalent thermodynamic influence of hydrogen supply on oxidative energy transformation in the cell is discussed in the light of experimental data.

  4. High membrane potential promotes alkenal-induced mitochondrial uncoupling and influences adenine nucleotide translocase conformation.

    PubMed

    Azzu, Vian; Parker, Nadeene; Brand, Martin D

    2008-07-15

    Mitochondria generate reactive oxygen species, whose downstream lipid peroxidation products, such as 4-hydroxynonenal, induce uncoupling of oxidative phosphorylation by increasing proton leak through mitochondrial inner membrane proteins such as the uncoupling proteins and adenine nucleotide translocase. Using mitochondria from rat liver, which lack uncoupling proteins, in the present study we show that energization (specifically, high membrane potential) is required for 4-hydroxynonenal to activate proton conductance mediated by adenine nucleotide translocase. Prolonging the time at high membrane potential promotes greater uncoupling. 4-Hydroxynonenal-induced uncoupling via adenine nucleotide translocase is prevented but not readily reversed by addition of carboxyatractylate, suggesting a permanent change (such as adduct formation) that renders the translocase leaky to protons. In contrast with the irreversibility of proton conductance, carboxyatractylate added after 4-hydroxynonenal still inhibits nucleotide translocation, implying that the proton conductance and nucleotide translocation pathways are different. We propose a model to relate adenine nucleotide translocase conformation to proton conductance in the presence or absence of 4-hydroxynonenal and/or carboxyatractylate.

  5. Some aspects of adenosine triphosphate synthesis from adenine and adenosine in human red blood cells

    PubMed Central

    Whittam, R.; Wiley, J. S.

    1968-01-01

    1. The synthesis of ATP has been studied in human erythrocytes. Fresh cells showed no net synthesis of ATP when incubated with adenine or adenosine, although labelled adenine was incorporated into ATP in small amounts. 2. Cold-stored cells (3-6 weeks old) became progressively depleted of adenine nucleotides but incubation with adenosine or adenine plus inosine restored the ATP concentration to normal within 4 hr. Incorporation of labelled adenine or adenosine into the ATP of incubated stored cells corresponded to net ATP synthesis by these cells. 3. Synthesis of ATP from adenosine plus adenine together was 75% derived from adenine and only 25% from adenosine, indicating that nucleotide synthesis from adenine inhibits the simultaneous synthesis of nucleotide from adenosine. PMID:5723519

  6. Probing the ATP site of GRP78 with nucleotide triphosphate analogs

    DOE PAGES

    Hughes, Scott J.; Antoshchenko, Tetyana; Chen, Yun; ...

    2016-05-04

    GRP78, a member of the ER stress protein family, can relocate to the surface of cancer cells, playing key roles in promoting cell proliferation and metastasis. GRP78 consists of two major functional domains: the ATPase and protein/peptide-binding domains. The protein/peptide-binding domain of cell-surface GRP78 has served as a novel functional receptor for delivering cytotoxic agents (e.g., a apoptosis-inducing peptide or taxol) across the cell membrane. Here, we report our study on the ATPase domain of GRP78 (GRP78ATPase), whose potential as a transmembrane delivery system of cytotoxic agents (e.g., ATP-based nucleotide triphosphate analogs) remains unexploited. As the binding of ligands (ATPmore » analogs) to a receptor (GRP78ATPase) is a pre-requisite for internalization, we determined the binding affinities and modes of GRP78ATPase for ADP, ATP and several ATP analogs using surface plasmon resonance and x-ray crystallography. The tested ATP analogs contain one of the following modifications: the nitrogen at the adenine ring 7-position to a carbon atom (7-deazaATP), the oxygen at the beta-gamma bridge position to a carbon atom (AMPPCP), or the removal of the 2'-OH group (2'-deoxyATP). We found that 7-deazaATP displays an affinity and a binding mode that resemble those of ATP regardless of magnesium ion (Mg++) concentration, suggesting that GRP78 is tolerant to modifications at the 7-position. By comparison, AMPPCP's binding affinity was lower than ATP and Mg++-dependent, as the removal of Mg++ nearly abolished binding to GRP78ATPase. The AMPPCP-Mg++ structure showed evidence for the critical role of Mg++ in AMPPCP binding affinity, suggesting that while GRP78 is sensitive to modifications at the β-γ bridge position, these can be tolerated in the presence of Mg++. Furthermore, 2'-deoxyATP's binding affinity was significantly lower than those for all other nucleotides tested, even in the presence of Mg++. The 2'-deoxyATP structure showed the conformation of

  7. De novo synthesis of adenine nucleotides in different skeletal muscle fiber types

    SciTech Connect

    Tullson, P.C.; John-Alder, H.B.; Hood, D.A.; Terjung, R.L.

    1988-09-01

    Management of adenine nucleotide catabolism differs among skeletal muscle fiber types. This study evaluated whether there are corresponding differences in the rates of de novo synthesis of adenine nucleotide among fiber type sections of skeletal muscle using an isolated perfused rat hindquarter preparation. Label incorporation into adenine nucleotides from the (1-14C)glycine precursor was determined and used to calculate synthesis rates based on the intracellular glycine specific radioactivity. Results show that intracellular glycine is closely related to the direct precursor pool. Rates of de novo synthesis were highest in fast-twitch red muscle (57.0 +/- 4.0, 58.2 +/- 4.4 nmol.h-1.g-1; deep red gastrocnemius and vastus lateralis), relatively high in slow-twitch red muscle (47.0 +/- 3.1; soleus), and low in fast-twitch white muscle (26.1 +/- 2.0 and 21.6 +/- 2.3; superficial white gastrocnemius and vastus lateralis). Rates for four mixed muscles were intermediate, ranging between 32.3 and 37.3. Specific de novo synthesis rates exhibited a strong correlation (r = 0.986) with muscle section citrate synthase activity. Turnover rates (de novo synthesis rate/adenine nucleotide pool size) were highest in high oxidative muscle (0.82-1.06%/h), lowest in low oxidative muscle (0.30-0.35%/h), and intermediate in mixed muscle (0.44-0.55%/h). Our results demonstrate that differences in adenine nucleotide management among fiber types extends to the process of de novo adenine nucleotide synthesis.

  8. PsANT, the adenine nucleotide translocase of Puccinia striiformis, promotes cell death and fungal growth

    PubMed Central

    Tang, Chunlei; Wei, Jinping; Han, Qingmei; Liu, Rui; Duan, Xiaoyuan; Fu, Yanping; Huang, Xueling; Wang, Xiaojie; Kang, Zhensheng

    2015-01-01

    Adenine nucleotide translocase (ANT) is a constitutive mitochondrial component that is involved in ADP/ATP exchange and mitochondrion-mediated apoptosis in yeast and mammals. However, little is known about the function of ANT in pathogenic fungi. In this study, we identified an ANT gene of Puccinia striiformis f. sp. tritici (Pst), designated PsANT. The PsANT protein contains three typical conserved mitochondrion-carrier-protein (mito-carr) domains and shares more than 70% identity with its orthologs from other fungi, suggesting that ANT is conserved in fungi. Immuno-cytochemical localization confirmed the mitochondrial localization of PsANT in normal Pst hyphal cells or collapsed cells. Over-expression of PsANT indicated that PsANT promotes cell death in tobacco, wheat and fission yeast cells. Further study showed that the three mito-carr domains are all needed to induce cell death. qRT-PCR analyses revealed an in-planta induced expression of PsANT during infection. Knockdown of PsANT using a host-induced gene silencing system (HIGS) attenuated the growth and development of virulent Pst at the early infection stage but not enough to alter its pathogenicity. These results provide new insight into the function of PsANT in fungal cell death and growth and might be useful in the search for and design of novel disease control strategies. PMID:26058921

  9. Thiaminylated adenine nucleotides. Chemical synthesis, structural characterization and natural occurrence.

    PubMed

    Frédérich, Michel; Delvaux, David; Gigliobianco, Tiziana; Gangolf, Marjorie; Dive, Georges; Mazzucchelli, Gabriel; Elias, Benjamin; De Pauw, Edwin; Angenot, Luc; Wins, Pierre; Bettendorff, Lucien

    2009-06-01

    Thiamine and its three phosphorylated derivatives (mono-, di- and triphosphate) occur naturally in most cells. Recently, we reported the presence of a fourth thiamine derivative, adenosine thiamine triphosphate, produced in Escherichia coli in response to carbon starvation. Here, we show that the chemical synthesis of adenosine thiamine triphosphate leads to another new compound, adenosine thiamine diphosphate, as a side product. The structure of both compounds was confirmed by MS analysis and 1H-, 13C- and 31P-NMR, and some of their chemical properties were determined. Our results show an upfield shifting of the C-2 proton of the thiazolium ring in adenosine thiamine derivatives compared with conventional thiamine phosphate derivatives. This modification of the electronic environment of the C-2 proton might be explained by a through-space interaction with the adenosine moiety, suggesting U-shaped folding of adenosine thiamine derivatives. Such a structure in which the C-2 proton is embedded in a closed conformation can be located using molecular modeling as an energy minimum. In E. coli, adenosine thiamine triphosphate may account for 15% of the total thiamine under energy stress. It is less abundant in eukaryotic organisms, but is consistently found in mammalian tissues and some cell lines. Using HPLC, we show for the first time that adenosine thiamine diphosphate may also occur in small amounts in E. coli and in vertebrate liver. The discovery of two natural thiamine adenine compounds further highlights the complexity and diversity of thiamine biochemistry, which is not restricted to the cofactor role of thiamine diphosphate.

  10. Effect of 1-aminoadamantanes on adenine nucleotide and serotonin storage in blood platelets.

    PubMed

    Wesemann, W; Muschalek, G; Stöltzing, H; von Pusch, I; Paul, N

    1981-12-01

    The platelet release reaction, the liberation of adenine nucleotides and serotonin (5-HT) from osmiophilic dense granules, can be induced in human platelets by C-alkyl-derivatives of the antiviral and anti-Parkinson drug 1-aminoadamantane (D 1). The release-inducing activity is enhanced with increasing chain length and with the number of C-alkylsubstituents, respectively. The parent compound, D 1, liberates only 5-HT. Analyses of LDH activity in the incubation medium of the platelets and electron micrographs of platelets treated with 1-aminoadamantanes support the assumption that ATP, ADP, and 5-HT are released from the organelles by an exocytosis-like process rather than by destruction of the plasma and organelle membranes. The number of osmiophilic dense granules in platelets isolated from human and rabbit blood is decreased by the action of the drugs. This is in contrast to other subcellular structures where no morphological changes can be observed. The ADP-stimulated platelet aggregation is inhibited by preincubation with 1-aminoadamantanes. The inhibitory activity of the drugs on platelet aggregation parallels the effects observed after induction of the release reaction: the inhibition of platelet aggregation is enhanced with increasing C-alkylation. Hence, the inhibition of ADP-induced platelet aggregation can be used to screen for the releasing activity of 1-aminoadamantanes which have, as far as tested, similar effects on 5-HT storage in blood platelets and in the CNS. The time-, temperature, and concentration-dependent 5-HT uptake by platelets (K = 0.75 micro M; V max = 0.22 nmoles/min X 10 9 cells) is noncompetitively inhibited by the drugs with K1-values varying from 10 to 100 micro M depending on the degree of C-alkylation.

  11. Deficiency in the mouse mitochondrial adenine nucleotide translocator isoform 2 gene is associated with cardiac noncompaction.

    PubMed

    Kokoszka, Jason E; Waymire, Katrina G; Flierl, Adrian; Sweeney, Katelyn M; Angelin, Alessia; MacGregor, Grant R; Wallace, Douglas C

    2016-08-01

    The mouse fetal and adult hearts express two adenine nucleotide translocator (ANT) isoform genes. The predominant isoform is the heart-muscle-brain ANT-isoform gene 1 (Ant1) while the other is the systemic Ant2 gene. Genetic inactivation of the Ant1 gene does not impair fetal development but results in hypertrophic cardiomyopathy in postnatal mice. Using a knockin X-linked Ant2 allele in which exons 3 and 4 are flanked by loxP sites combined in males with a protamine 1 promoter driven Cre recombinase we created females heterozygous for a null Ant2 allele. Crossing the heterozygous females with the Ant2(fl), PrmCre(+) males resulted in male and female ANT2-null embryos. These fetuses proved to be embryonic lethal by day E14.5 in association with cardiac developmental failure, immature cardiomyocytes having swollen mitochondria, cardiomyocyte hyperproliferation, and cardiac failure due to hypertrabeculation/noncompaction. ANTs have two main functions, mitochondrial-cytosol ATP/ADP exchange and modulation of the mitochondrial permeability transition pore (mtPTP). Previous studies imply that ANT2 biases the mtPTP toward closed while ANT1 biases the mtPTP toward open. It has been reported that immature cardiomyocytes have a constitutively opened mtPTP, the closure of which signals the maturation of cardiomyocytes. Therefore, we hypothesize that the developmental toxicity of the Ant2 null mutation may be the result of biasing the cardiomyocyte mtPTP to remain open thus impairing cardiomyocyte maturation and resulting in cardiomyocyte hyperproliferation and failure of trabecular maturation. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.

  12. Two adenine nucleotide translocase paralogues involved in cell proliferation and spermatogenesis in the silkworm Bombyx mori.

    PubMed

    Sugahara, Ryohei; Jouraku, Akiya; Nakakura, Takayo; Kusakabe, Takahiro; Yamamoto, Takenori; Shinohara, Yasuo; Miyoshi, Hideto; Shiotsuki, Takahiro

    2015-01-01

    Mitochondrial adenine nucleotide translocase (ANT) specifically acts in ADP/ATP exchange through the mitochondrial inner membrane. This transporter protein thereby plays a significant role in energy metabolism in eukaryotic cells. Most mammals have four paralogous ANT genes (ANT1-4) and utilize these paralogues in different types of cells. The fourth paralogue of ANT (ANT4) is present only in mammals and reptiles and is exclusively expressed in testicular germ cells where it is required for meiotic progression in the spermatocytes. Here, we report that silkworms harbor two ANT paralogues, the homeostatic paralogue (BmANTI1) and the testis-specific paralogue (BmANTI2). The BmANTI2 protein has an N-terminal extension in which the positions of lysine residues in the amino acid sequence are distributed as in human ANT4. An expression analysis showed that BmANTI2 transcripts were restricted to the testis, suggesting the protein has a role in the progression of spermatogenesis. By contrast, BmANTI1 was expressed in all tissues tested, suggesting it has an important role in homeostasis. We also observed that cultured silkworm cells required BmANTI1 for proliferation. The ANTI1 protein of the lepidopteran Plutella xylostella (PxANTI1), but not those of other insect species (or PxANTI2), restored cell proliferation in BmANTI1-knockdown cells suggesting that ANTI1 has similar energy metabolism functions across the Lepidoptera. Our results suggest that BmANTI2 is evolutionarily divergent from BmANTI1 and has developed a specific role in spermatogenesis similar to that of mammalian ANT4.

  13. Two Adenine Nucleotide Translocase Paralogues Involved in Cell Proliferation and Spermatogenesis in the Silkworm Bombyx mori

    PubMed Central

    Sugahara, Ryohei; Jouraku, Akiya; Nakakura, Takayo; Kusakabe, Takahiro; Yamamoto, Takenori; Shinohara, Yasuo; Miyoshi, Hideto; Shiotsuki, Takahiro

    2015-01-01

    Mitochondrial adenine nucleotide translocase (ANT) specifically acts in ADP/ATP exchange through the mitochondrial inner membrane. This transporter protein thereby plays a significant role in energy metabolism in eukaryotic cells. Most mammals have four paralogous ANT genes (ANT1-4) and utilize these paralogues in different types of cells. The fourth paralogue of ANT (ANT4) is present only in mammals and reptiles and is exclusively expressed in testicular germ cells where it is required for meiotic progression in the spermatocytes. Here, we report that silkworms harbor two ANT paralogues, the homeostatic paralogue (BmANTI1) and the testis-specific paralogue (BmANTI2). The BmANTI2 protein has an N-terminal extension in which the positions of lysine residues in the amino acid sequence are distributed as in human ANT4. An expression analysis showed that BmANTI2 transcripts were restricted to the testis, suggesting the protein has a role in the progression of spermatogenesis. By contrast, BmANTI1 was expressed in all tissues tested, suggesting it has an important role in homeostasis. We also observed that cultured silkworm cells required BmANTI1 for proliferation. The ANTI1 protein of the lepidopteran Plutella xylostella (PxANTI1), but not those of other insect species (or PxANTI2), restored cell proliferation in BmANTI1-knockdown cells suggesting that ANTI1 has similar energy metabolism functions across the Lepidoptera. Our results suggest that BmANTI2 is evolutionarily divergent from BmANTI1 and has developed a specific role in spermatogenesis similar to that of mammalian ANT4. PMID:25742135

  14. The adsorption and reaction of adenine nucleotides on montmorillonite

    NASA Technical Reports Server (NTRS)

    Ferris, James P.; Hagan, William J., Jr.

    1986-01-01

    The binding of AMP to Zn(2+)-montmorillonite is investigated in the presence of salts and Good's zwitterion buffers, PIPES and MES. The initial concentrations of nucleotide and the percent adsorbtion are used to calculate the adsorption isotherms, and the Langmuir adsorption equation is used for the analysis of data. The adsorption coefficient was found to be three times greater in the presence of 0.2 M PIPES than in its absence. In addition, basal spacings measured by X-ray diffraction were increased by the buffer. These results are interpreted in terms of a model in which the adsorption of AMP is mediated by a Zn(2+) complex of PIPES in different orientations in the interlamellar region of the montmorillonite. Mixed ligand complexes of this type are reminiscent of the complexes observed between metal ions and biological molecules in living systems.

  15. Adenine nucleotides stimulate migration in wounded cultures of kidney epithelial cells.

    PubMed Central

    Kartha, S; Toback, F G

    1992-01-01

    Adenine nucleotides speed structural and functional recovery when administered after experimental renal injury in the rat and stimulate proliferation of kidney epithelial cells. As cell migration is a component of renal regeneration after acute tubular necrosis, we have used an in vitro model of wound healing to study this process. High density, quiescent monkey kidney epithelial cultures were wounded by mechanically scraping away defined regions of the monolayer to simulate the effect of cell loss after tubular necrosis and the number of cells that migrated into the denuded area was counted. Migration was independent of cell proliferation. Provision of adenosine, adenine nucleotides, or cyclic AMP increased the number of migrating cells and accelerated repair of the wound. Other purine and pyrimidine nucleotides were not effective. Arginine-glycine-aspartic acid-serine peptide, which blocks the binding of extracellular fibronectin to its cell surface receptor, completely inhibited migration in the presence or absence of ADP. Very low concentrations of epidermal growth factor (K0.5 approximately 0.3 ng/ml) stimulated migration, whereas transforming growth factor-beta 2 was inhibitory (Ki approximately 0.2 ng/ml). Thus, adenosine and/or adenine nucleotides released from injured or dying renal cells, or administered exogenously, may stimulate surviving cells in the wounded nephron to migrate along the basement membrane, thereby rapidly restoring tubular structure and function. Images PMID:1634617

  16. Structure of dimeric, recombinant Sulfolobus solfataricus phosphoribosyl diphosphate synthase: a bent dimer defining the adenine specificity of the substrate ATP.

    PubMed

    Andersen, Rune W; Leggio, Leila Lo; Hove-Jensen, Bjarne; Kadziola, Anders

    2015-03-01

    The enzyme 5-phosphoribosyl-1-α-diphosphate (PRPP) synthase (EC 2.7.6.1) catalyses the Mg(2+)-dependent transfer of a diphosphoryl group from ATP to the C1 hydroxyl group of ribose 5-phosphate resulting in the production of PRPP and AMP. A nucleotide sequence specifying Sulfolobus solfataricus PRPP synthase was synthesised in vitro with optimised codon usage for expression in Escherichia coli. Following expression of the gene in E. coli PRPP synthase was purified by heat treatment and ammonium sulphate precipitation and the structure of S. solfataricus PRPP synthase was determined at 2.8 Å resolution. A bent dimer oligomerisation was revealed, which seems to be an abundant feature among PRPP synthases for defining the adenine specificity of the substrate ATP. Molecular replacement was used to determine the S. solfataricus PRPP synthase structure with a monomer subunit of Methanocaldococcus jannaschii PRPP synthase as a search model. The two amino acid sequences share 35 % identity. The resulting asymmetric unit consists of three separated dimers. The protein was co-crystallised in the presence of AMP and ribose 5-phosphate, but in the electron density map of the active site only AMP and a sulphate ion were observed. Sulphate ion, reminiscent of the ammonium sulphate precipitation step of the purification, seems to bind tightly and, therefore, presumably occupies and blocks the ribose 5-phosphate binding site. The activity of S. solfataricus PRPP synthase is independent of phosphate ion.

  17. Effects of increased heart work on glycolysis and adenine nucleotides in the perfused heart of normal and diabetic rats

    PubMed Central

    Opie, L. H.; Mansford, K. R. L.; Owen, Patricia

    1971-01-01

    1. In the isolated perfused rat heart, the contractile activity and the oxygen uptake were varied by altering the aortic perfusion pressure, or by the atrial perfusion technique (`working heart'). 2. The maximum increase in the contractile activity brought about an eightfold increase in the oxygen uptake. The rate of glycolytic flux rose, while tissue contents of hexose monophosphates, citrate, ATP and creatine phosphate decreased, and contents of ADP and AMP rose. 3. The changes in tissue contents of adenine nucleotides during increased heart work were time-dependent. The ATP content fell temporarily (30s and 2min) after the start of left-atrial perfusion; at 5 and 10min values were normal; and at 30 and 60min values were decreased. ADP and AMP values were increased in the first 15min, but were at control values 30 or 60min after the onset of increased heart work. 4. During increased heart work changes in the tissue contents of adenine nucleotide and of citrate appeared to play a role in altered regulation of glycolysis at the level of phosphofructokinase activity. 5. In recirculation experiments increased heart work for 30min was associated with increased entry of [14C]glucose (11.1mm) and glycogen into glycolysis and a comparable increase in formation of products of glycolysis (lactate, pyruvate and 14CO2). There was no major accumulation of intermediates. Glycogen was not a major fuel for respiration. 6. Increased glycolytic flux in Langendorff perfused and working hearts was obtained by the addition of insulin to the perfusion medium. The concomitant increases in the tissue values of hexose phosphates and of citrate contrasted with the decreased values of hexose monophosphates and of citrate during increased glycolytic flux obtained by increased heart work. 7. Decreased glycolytic flux in Langendorff perfused hearts was obtained by using acute alloxan-diabetic and chronic streptozotocin-diabetic rats; in the latter condition there were decreased tissue

  18. Adenine nucleotides and intracellular Ca2+ regulate a voltage-dependent and glucose-sensitive potassium channel in neurosecretory cells.

    PubMed

    Onetti, C G; Lara, J; García, E

    1996-05-01

    Effects of membrane potential, intracellular Ca2+ and adenine nucleotides on glucose-sensitive channels from X organ (XO) neurons of the crayfish were studied in excised inside-out patches. Glucose- sensitive channels were selective to K+ ions; the unitary conductance was 112 pS in symmetrical K+, and the K+ permeability (PK) was 1.3 x 10(-13) cm x s(-1). An inward rectification was observed when intracellular K+ was reduced. Using a quasi-physiological K+ gradient, a non-linear K+ current/voltage relationship was found showing an outward rectification and a slope conductance of 51 pS. The open-state probability (Po) increased with membrane depolarization as a result of an enhancement of the mean open time and a shortening of the longer period of closures. In quasi-physio- logical K+ concentrations, the channel was activated from a threshold of about -60 mV, and the activation midpoint was -2 mV. Po decreased noticeably at 50 microM internal adenosine 5'-triphosphate (ATP), and single-channel activity was totally abolished at 1 mM ATP. Hill analysis shows that this inhibition was the result of simultaneous binding of two ATP molecules to the channel, and the half-blocking concentration of ATP was 174 microM. Internal application of 5'-adenylylimidodiphosphate (AMP-PNP) as well as glibenclamide also decreased Po. By contrast, the application of internal ADP (0.1 to 2 mM) activated this channel. An optimal range of internal free Ca2+ ions (0.1 to 10 microM) was required for the activation of this channel. The glucose--sensitive K+ channel of XO neurons could be considered as a subtype of ATP-sensitive K+ channel, contributing substantially to macroscopic outward current.

  19. White spot syndrome virus VP12 interacts with adenine nucleotide translocase of Litopenaeus vannamei.

    PubMed

    Ma, Fang-fang; Chou, Zhi-guang; Liu, Qing-hui; Guan, Guangkuo; Li, Chen; Huang, Jie

    2014-05-01

    White spot syndrome virus VP12 contains cell attachment motif RGD which is considered to be critical for host cell binding. Until now, the function of this protein remains undefined. In this study, we explored the interaction of VP12 with host cells. A new shrimp protein (adenine nucleotide translocase of Litopenaeus vannamei, LvANT) is selected by far-western overlay assay. Tissue distribution of adenine nucleotide translocase mRNA showed that it was commonly spread in all the tissues detected. Cellular localization of LvANT in shrimp hemocytes showed that it was primarily located in the cytoplasm of hemocytes and colocalized with mitochondria. ELISA and far-western blot assay confirmed that VP12 interacted with LvANT. In vivo neutralization assay showed that anti-LvANT antibody can significantly reduce the mortality of shrimp challenged by WSSV at 48h post-treatment. Our results collectively showed that VP12 is involved in host cell binding via interaction with adenine nucleotide translocase.

  20. Probing the ATP site of GRP78 with nucleotide triphosphate analogs

    SciTech Connect

    Hughes, Scott J.; Antoshchenko, Tetyana; Chen, Yun; Lu, Hua; Pizarro, Juan C.; Park, Hee -Won

    2016-05-04

    GRP78, a member of the ER stress protein family, can relocate to the surface of cancer cells, playing key roles in promoting cell proliferation and metastasis. GRP78 consists of two major functional domains: the ATPase and protein/peptide-binding domains. The protein/peptide-binding domain of cell-surface GRP78 has served as a novel functional receptor for delivering cytotoxic agents (e.g., a apoptosis-inducing peptide or taxol) across the cell membrane. Here, we report our study on the ATPase domain of GRP78 (GRP78ATPase), whose potential as a transmembrane delivery system of cytotoxic agents (e.g., ATP-based nucleotide triphosphate analogs) remains unexploited. As the binding of ligands (ATP analogs) to a receptor (GRP78ATPase) is a pre-requisite for internalization, we determined the binding affinities and modes of GRP78ATPase for ADP, ATP and several ATP analogs using surface plasmon resonance and x-ray crystallography. The tested ATP analogs contain one of the following modifications: the nitrogen at the adenine ring 7-position to a carbon atom (7-deazaATP), the oxygen at the beta-gamma bridge position to a carbon atom (AMPPCP), or the removal of the 2'-OH group (2'-deoxyATP). We found that 7-deazaATP displays an affinity and a binding mode that resemble those of ATP regardless of magnesium ion (Mg++) concentration, suggesting that GRP78 is tolerant to modifications at the 7-position. By comparison, AMPPCP's binding affinity was lower than ATP and Mg++-dependent, as the removal of Mg++ nearly abolished binding to GRP78ATPase. The AMPPCP-Mg++ structure showed evidence for the critical role of Mg++ in AMPPCP binding affinity, suggesting that while GRP78 is sensitive to modifications at the β-γ bridge position, these can be tolerated in the presence of Mg++. Furthermore, 2'-deoxyATP's binding affinity was significantly lower than those for all other

  1. Receptor-promoted exocytosis of airway epithelial mucin granules containing a spectrum of adenine nucleotides.

    PubMed

    Kreda, Silvia M; Seminario-Vidal, Lucia; van Heusden, Catharina A; O'Neal, Wanda; Jones, Lisa; Boucher, Richard C; Lazarowski, Eduardo R

    2010-06-15

    Purinergic regulation of airway innate defence activities is in part achieved by the release of nucleotides from epithelial cells. However, the mechanisms of airway epithelial nucleotide release are poorly understood. We have previously demonstrated that ATP is released from ionomycin-stimulated airway epithelial goblet cells coordinately with mucin exocytosis, suggesting that ATP is released as a co-cargo molecule from mucin-containing granules. We now demonstrate that protease-activated-receptor (PAR) agonists also stimulate the simultaneous release of mucins and ATP from airway epithelial cells. PAR-mediated mucin and ATP release were dependent on intracellular Ca(2+) and actin cytoskeleton reorganization since BAPTA AM, cytochalasin D, and inhibitors of Rho and myosin light chain kinases blocked both responses. To test the hypothesis that ATP is co-released with mucin from mucin granules, we measured the nucleotide composition of isolated mucin granules purified based on their MUC5AC and VAMP-8 content by density gradients. Mucin granules contained ATP, but the levels of ADP and AMP within granules exceeded by nearly 10-fold that of ATP. Consistent with this finding, apical secretions from PAR-stimulated cells contained relatively high levels of ADP/AMP, which could not be accounted for solely based on ATP release and hydrolysis. Thus, mucin granules contribute to ATP release and also are a source of extracellular ADP and AMP. Direct release of ADP/AMP from mucin granules is likely to provide a major source of airway surface adenosine to signal in a paracrine faction ciliated cell A(2b) receptors to activate ion/water secretion and appropriately hydrate goblet cell-released mucins.

  2. Receptor-promoted exocytosis of airway epithelial mucin granules containing a spectrum of adenine nucleotides

    PubMed Central

    Kreda, Silvia M; Seminario-Vidal, Lucia; van Heusden, Catharina A; O’Neal, Wanda; Jones, Lisa; Boucher, Richard C; Lazarowski, Eduardo R

    2010-01-01

    Purinergic regulation of airway innate defence activities is in part achieved by the release of nucleotides from epithelial cells. However, the mechanisms of airway epithelial nucleotide release are poorly understood. We have previously demonstrated that ATP is released from ionomycin-stimulated airway epithelial goblet cells coordinately with mucin exocytosis, suggesting that ATP is released as a co-cargo molecule from mucin-containing granules. We now demonstrate that protease-activated-receptor (PAR) agonists also stimulate the simultaneous release of mucins and ATP from airway epithelial cells. PAR-mediated mucin and ATP release were dependent on intracellular Ca2+ and actin cytoskeleton reorganization since BAPTA AM, cytochalasin D, and inhibitors of Rho and myosin light chain kinases blocked both responses. To test the hypothesis that ATP is co-released with mucin from mucin granules, we measured the nucleotide composition of isolated mucin granules purified based on their MUC5AC and VAMP-8 content by density gradients. Mucin granules contained ATP, but the levels of ADP and AMP within granules exceeded by nearly 10-fold that of ATP. Consistent with this finding, apical secretions from PAR-stimulated cells contained relatively high levels of ADP/AMP, which could not be accounted for solely based on ATP release and hydrolysis. Thus, mucin granules contribute to ATP release and also are a source of extracellular ADP and AMP. Direct release of ADP/AMP from mucin granules is likely to provide a major source of airway surface adenosine to signal in a paracrine faction ciliated cell A2b receptors to activate ion/water secretion and appropriately hydrate goblet cell-released mucins. PMID:20421285

  3. Studies on the energy metabolism of opossum (Didelphis virginiana) erythrocytes: V. Utilization of hypoxanthine for the synthesis of adenine and guanine nucleotides in vitro

    SciTech Connect

    Bethlenfalvay, N.C.; White, J.C.; Chadwick, E.; Lima, J.E. )

    1990-06-01

    High pressure liquid radiochromatography was used to test the ability of opossum erythrocytes to incorporate tracer amounts of (G-{sup 3}H) hypoxanthine (Hy) into ({sup 3}H) labelled triphosphates of adenine and guanine. In the presence of supraphysiologic (30 mM) phosphate which is optimal for PRPP synthesis, both ATP and GTP are extensively labelled. When physiologic (1 mM) medium phosphate is used, red cells incubated under an atmosphere of nitrogen accumulate ({sup 3}H) ATP in a linear fashion suggesting ongoing PRPP synthesis in red cells whose hemoglobin is deoxygenated. In contrast, a lesser increase of labelled ATP is observed in cells incubated under oxygen, suggesting that conditions for purine nucleotide formation from ambient Hy are more favorable in the venous circulation.

  4. Hypothesis on Skeletal Muscle Aging: Mitochondrial Adenine Nucleotide Translocator Decreases Reactive Oxygen Species Production While Preserving Coupling Efficiency

    PubMed Central

    Diolez, Philippe; Bourdel-Marchasson, Isabelle; Calmettes, Guillaume; Pasdois, Philippe; Detaille, Dominique; Rouland, Richard; Gouspillou, Gilles

    2015-01-01

    Mitochondrial membrane potential is the major regulator of mitochondrial functions, including coupling efficiency and production of reactive oxygen species (ROS). Both functions are crucial for cell bioenergetics. We previously presented evidences for a specific modulation of adenine nucleotide translocase (ANT) appearing during aging that results in a decrease in membrane potential - and therefore ROS production—but surprisingly increases coupling efficiency under conditions of low ATP turnover. Careful study of the bioenergetic parameters (oxidation and phosphorylation rates, membrane potential) of isolated mitochondria from skeletal muscles (gastrocnemius) of aged and young rats revealed a remodeling at the level of the phosphorylation system, in the absence of alteration of the inner mitochondrial membrane (uncoupling) or respiratory chain complexes regulation. We further observed a decrease in mitochondrial affinity for ADP in aged isolated mitochondria, and higher sensitivity of ANT to its specific inhibitor atractyloside. This age-induced modification of ANT results in an increase in the ADP concentration required to sustain the same ATP turnover as compared to young muscle, and therefore in a lower membrane potential under phosphorylating—in vivo—conditions. Thus, for equivalent ATP turnover (cellular ATP demand), coupling efficiency is even higher in aged muscle mitochondria, due to the down-regulation of inner membrane proton leak caused by the decrease in membrane potential. In the framework of the radical theory of aging, these modifications in ANT function may be the result of oxidative damage caused by intra mitochondrial ROS and may appear like a virtuous circle where ROS induce a mechanism that reduces their production, without causing uncoupling, and even leading in improved efficiency. Because of the importance of ROS as therapeutic targets, this new mechanism deserves further studies. PMID:26733871

  5. Alterations of adenine nucleotide metabolism and function of blood platelets in patients with diabetes.

    PubMed

    Michno, Anna; Bielarczyk, Hanna; Pawełczyk, Tadeusz; Jankowska-Kulawy, Agnieszka; Klimaszewska, Joanna; Szutowicz, Andrzej

    2007-02-01

    Increased activity of blood platelets contributes to vascular complications in patients with diabetes. The aim of this work was to investigate whether persisting hyperglycemia in diabetic patients generates excessive accumulation of ATP/ADP, which may underlie platelet hyperactivity. Platelet ATP and ADP levels, thiobarbituric acid-reactive species synthesis, and aggregation of platelets from patients with diabetes were 18-82% higher than in platelets from healthy participants. In patients with diabetes, platelet stimulation with thrombin caused about two times greater release of ATP and ADP than in the healthy group while decreasing intraplatelet nucleotide content to similar levels in both groups. This indicates that the increased content of adenylate nucleotides in the releasable pool in the platelets of diabetic patients does not affect their level in metabolic cytoplasmic/mitochondrial compartments. Significant correlations between platelet ATP levels and plasma fructosamine, as well as between platelet ATP/ADP and platelet activities, have been found in diabetic patients. In conclusion, chronic hyperglycemia-evoked elevations of ATP/ADP levels and release from blood platelets of patients with diabetes may be important factors underlying platelet hyperactivity in the course of the disease.

  6. [Characteristics of adenine nucleotide translocator in mitochondria of rat cerebral cortex during hypobaric hypoxia exposure].

    PubMed

    Chen, Li-Fen; Liu, Jun-Ze; Li, Bing

    2006-02-25

    The purpose of the present study was to explore the effects of hypoxic exposure on mitochondrial adenine nucleotide translocator (ANT) activity and its characteristics. Male Wistar rats were exposed to hypoxia in a hypobaric chamber simulating high altitude at 5 000 m for 1, 5, 15 and 30 d. Control rats were fed outside the hypobaric chamber. Rats were sacrificed by decapitation and mitochondria from the cerebral cortex were isolated by differential centrifugation at each time point. The ANT activity was detected by the atractyloside (ATR)-inhibitor stop technique. Mitochondria was initiated by addition of (3)H-ADP and terminated after 12 s by quick addition of ATR. The radioactivity was measured in a liquid scintillation counter. Nonspecific binding of (3)H-ADP to mitochondria was estimated by incubation of mitochondrial samples with ATR prior to the addition of (3)H-ADP. This blank was substracted from the measured radioactivities. The activity of ANT was expressed as nanomoles (3)H-ADP per minute per milligram protein. The ANT density was determined by titrating the rate of state 3 respiration with increasing concentrations of carboxyatractyloside (CAT). Mitochondria were pre-incubated with CAT in a respiratory medium before ADP addition to initiate state 3 respiration. Plots of O2 consumption versus CAT appeared biphasic with an increasing inhibitory segment followed by a steady respiration, indicating that state 3 respiration was completely inhibited. The density of ANT was determined by the amount of CAT required to completely inhibit state 3 respiration, assuming a 1:1 binding stoichiometry, which was expressed as ANT density per milligram mitochondria protein. (ATP+ADP) in mitochondria was measured by high performance liquid chromatography (HPLC). The results showed that there was an obvious decrease in the ANT activity during hypoxic exposure. The lowest ANT activity was seen in 5 d group. Partial recovery of ANT activity was observed in 15 and 30 d groups

  7. Forward operation of adenine nucleotide translocase during F0F1-ATPase reversal: critical role of matrix substrate-level phosphorylation

    PubMed Central

    Chinopoulos, Christos; Gerencser, Akos A.; Mandi, Miklos; Mathe, Katalin; Töröcsik, Beata; Doczi, Judit; Turiak, Lilla; Kiss, Gergely; Konràd, Csaba; Vajda, Szilvia; Vereczki, Viktoria; Oh, Richard J.; Adam-Vizi, Vera

    2010-01-01

    In pathological conditions, F0F1-ATPase hydrolyzes ATP in an attempt to maintain mitochondrial membrane potential. Using thermodynamic assumptions and computer modeling, we established that mitochondrial membrane potential can be more negative than the reversal potential of the adenine nucleotide translocase (ANT) but more positive than that of the F0F1-ATPase. Experiments on isolated mitochondria demonstrated that, when the electron transport chain is compromised, the F0F1-ATPase reverses, and the membrane potential is maintained as long as matrix substrate-level phosphorylation is functional, without a concomitant reversal of the ANT. Consistently, no cytosolic ATP consumption was observed using plasmalemmal KATP channels as cytosolic ATP biosensors in cultured neurons, in which their in situ mitochondria were compromised by respiratory chain inhibitors. This finding was further corroborated by quantitative measurements of mitochondrial membrane potential, oxygen consumption, and extracellular acidification rates, indicating nonreversal of ANT of compromised in situ neuronal and astrocytic mitochondria; and by bioluminescence ATP measurements in COS-7 cells transfected with cytosolic- or nuclear-targeted luciferases and treated with mitochondrial respiratory chain inhibitors in the presence of glycolytic plus mitochondrial vs. only mitochondrial substrates. Our findings imply the possibility of a rescue mechanism that is protecting against cytosolic/nuclear ATP depletion under pathological conditions involving impaired respiration. This mechanism comes into play when mitochondria respire on substrates that support matrix substrate-level phosphorylation.—Chinopoulos, C., Gerencser, A. A., Mandi, M., Mathe, K., Töröcsik, B., Doczi, J., Turiak, L., Kiss, G., Konràd, C., Vajda, S., Vereczki, V., Oh, R. J., Adam-Vizi, V. Forward operation of adenine nucleotide translocase during F0F1-ATPase reversal: critical role of matrix substrate-level phosphorylation. PMID

  8. A new regulatory principle for in vivo biochemistry: pleiotropic low affinity regulation by the adenine nucleotides--illustrated for the glycolytic enzymes of Saccharomyces cerevisiae.

    PubMed

    Mensonides, Femke I C; Bakker, Barbara M; Cremazy, Frederic; Messiha, Hanan L; Mendes, Pedro; Boogerd, Fred C; Westerhoff, Hans V

    2013-09-02

    Enzymology tends to focus on highly specific effects of substrates, allosteric modifiers, and products occurring at low concentrations, because these are most informative about the enzyme's catalytic mechanism. We hypothesized that at relatively high in vivo concentrations, important molecular monitors of the state of living cells, such as ATP, affect multiple enzymes of the former and that these interactions have gone unnoticed in enzymology. We test this hypothesis in terms of the effect that ATP, ADP, and AMP might have on the major free-energy delivering pathway of the yeast Saccharomyces cerevisiae. Assaying cell-free extracts, we collected a comprehensive set of quantitative kinetic data concerning the enzymes of the glycolytic and the ethanol fermentation pathways. We determined systematically the extent to which the enzyme activities depend on the concentrations of the adenine nucleotides. We found that the effects of the adenine nucleotides on enzymes catalysing reactions in which they are not directly involved as substrate or product, are substantial. This includes effects on the Michaelis-Menten constants, adding new perspective on these, 100 years after their introduction.

  9. Direct thyroid hormone activation of mitochondria: identification of adenine nucleotide translocase (AdNT) as the hormone receptor.

    PubMed

    Sterling, K

    1987-01-01

    Earlier we presented preliminary data suggesting that the thyroid hormone triiodothyronine (T3) is bound with an association constant (Ka) approximating 2 X 10(11) M-1 by the ADP/ATP carrier, adenine nucleotide translocase (AdNT) purified from beef heart mitochondria (Endocrinology 110: 292, 1986). We now report that [125I] T3 is capable of photoaffinity labeling not only purified AdNT but also the carrier in intact beef heart mitochondria. The identity of the covalently labeled AdNT was corroborated by two dimensional electrophoresis (O'Farrell) with pI approximately 10 on electrofocusing (first dimension) and Mr approximately 31,000 on SDS gel (second dimension). Further identification of the covalently labeled material as authentic AdNT was afforded by recognition by specific monoclonal antibodies. Moreover, we found that addition of excess nonradioactive T3 to intact mitochondria or to mitochondrial protein solution prior to photoaffinity labeling resulted in inhibition of formation of labeled AdNT, compatible with saturation of limited capacity binding sites rather than nonspecific labeling with the ligand [125I] T3. It was considered highly significant that labeling in intact mitochondria was at least an order of magnitude greater than that observed with purified AdNT. This finding is compatible with our concept of an important role of the lipid microenvironment in the intact mitochondrial membrane in T3 binding.

  10. Thyroid hormone action: identification of the mitochondrial thyroid hormone receptor as adenine nucleotide translocase.

    PubMed

    Sterling, K

    1991-01-01

    A preliminary report from our laboratory suggested that the thyroid hormone triiodothyronine (T3) is bound with an association constant (Ka) approximating 2 x 10(11) M-1 by adenine nucleotide translocase (AdNT) purified from beef heart mitochondria. We now report that [125I]T3 is capable of photoaffinity labeling not only purified AdNT but also the carrier in intact beef heart mitochondria. Photoaffinity labeling in intact mitochondria was appreciably greater than that observed with purified AdNT. The covalently labeled AdNT was identified by 2-dimensional electrophoresis with pI of 10 on electrofocusing and M(r) of 31,000 on SDS gel. Identification of the covalently labeled protein as authentic AdNT was substantiated by its interaction with a specific monoclonal antibody preparation.

  11. Comparison of the effects of adenine-ribose with adenosine for maintenance of ATP concentrations in 5-day hypothermically perfused dog kidneys.

    PubMed

    McAnulty, J F; Southard, J H; Belzer, F O

    1988-10-01

    The quality of preservation of kidneys is dependent upon a number of factors, one of which may be the concentration of adenine nucleotides in the tissue during long-term perfusion preservation. In this study we have investigated how adenine (5 mM) and ribose (5 mM) in combination affect the concentration of adenine nucleotides in dog kidney cortical tissue after 5 days of continuous hypothermic perfusion preservation. These results were compared to kidneys perfused with adenosine and without any added purine precursors of adenine nucleotide synthesis. Additionally, we investigated how these conditions affected renal tissue slice function after 5 days of preservation and how adenine plus ribose affected renal function after autotransplantation in the dog. Adenosine is nearly completely degraded during 5 days of perfusion but there was little loss of adenine (10%). The adenosine triphosphate concentration in kidney cortical tissue was higher in adenine/ribose-perfused kidneys (1.41 +/- 0.19 mumol/g) than in adenosine-perfused kidneys (0.71 +/- 0.1 mumol/g) after 5 days of preservation. Tissue slices prepared from kidneys preserved in the presence of adenine plus ribose were metabolically more functional (slice volume control and electrolyte pump activity) than slices from adenosine-perfused kidneys. Adenine plus ribose had no detrimental effects on kidneys preserved for 3 days as tested in the autotransplant model but did not yield successful 5-day preservation. Because of some potentially detrimental factors in using adenosine as an adenine nucleotide synthesis precursor, we have now switched to the combination of adenine and ribose for perfusion preservation of kidneys both in the laboratory and in the clinic.

  12. Changes in the expression of the human adenine nucleotide translocase isoforms condition cellular metabolic/proliferative status

    PubMed Central

    Mampel, Teresa; Viñas, Octavi

    2016-01-01

    Human cells express four mitochondrial adenine nucleotide translocase (hANT) isoforms that are tissue-specific and developmentally regulated. hANT1 is mainly expressed in terminally differentiated muscle cells; hANT2 is growth-regulated and is upregulated in highly glycolytic and proliferative cells; and hANT3 is considered to be ubiquitous and non-specifically regulated. Here, we studied how the expression of hANT isoforms is regulated by proliferation and in response to metabolic stimuli, and examined the metabolic consequences of their silencing and overexpression. In HeLa and HepG2 cells, expression of hANT3 was upregulated by shifting metabolism towards oxidation or by slowed growth associated with contact inhibition or growth-factor deprivation, indicating that hANT3 expression is highly regulated. Under these conditions, changes in hANT2 mRNA expression were not observed in either HeLa or HepG2 cells, whereas in SGBS preadipocytes (which, unlike HeLa and HepG2 cells, are growth-arrest-sensitive cells), hANT2 mRNA levels decreased. Additionally, overexpression of hANT2 promoted cell growth and glycolysis, whereas silencing of hANT3 decreased cellular ATP levels, limited cell growth and induced a stress-like response. Thus, cancer cells require both hANT2 and hANT3, depending on their proliferation status: hANT2 when proliferation rates are high, and hANT3 when proliferation slows. PMID:26842067

  13. Capillary zone electrophoresis with field enhanced sample stacking as a tool for targeted metabolome analysis of adenine nucleotides and coenzymes in Paracoccus denitrificans.

    PubMed

    Musilová, Jindra; Sedlácek, Vojtech; Kucera, Igor; Glatz, Zdenek

    2009-07-01

    The main aim of this work was to demonstrate the applicability of capillary zone electrophoresis in combination with field enhanced sample stacking in targeted metabolome analyses of adenine nucleotides--AMP, ADP, ATP, coenzymes NAD(+), NADP(+) and their reduced forms in Paracoccus denitrificans. Sodium carbonate/hydrogencarbonate buffer (100 mM, pH 9.6) with the addition of beta-CD at a concentration of 10 mM was found to be an effective BGE for their separation within 20 min. Besides this, special attention was paid to the development of the procedure for the extraction of specific metabolites from the bacterium P. denitrificans. This procedure was not only optimised to achieve the highest metabolite yields but also to obtain a sample that was fully compatible with the online preconcetration strategy used. The developed methodology was finally applied in a study of the bacterium P. denitrificans at various stages of the active respiratory chain.

  14. Effect of treated-sewage contamination upon bacterial energy charge, adenine nucleotides, and DNA content in a sandy aquifer on cape cod

    USGS Publications Warehouse

    Metge, D.W.; Brooks, M.H.; Smith, R.L.; Harvey, R.W.

    1993-01-01

    Changes in adenylate energy charge (EC(A)) and in total adenine nucleotides (A(T)) and DNA content (both normalized to the abundance of free- living, groundwater bacteria) in response to carbon loading were determined for a laboratory-grown culture and for a contaminated aquifer. The latter study involved a 3-km-long transect through a contaminant plume resulting from continued on-land discharge of secondary sewage to a shallow, sandy aquifer on Cape Cod, Mass. With the exception of the most contaminated groundwater immediately downgradient from the contaminant source, DNA and adenylate levels correlated strongly with bacterial abundance and decreased exponentially with increasing distance downgradient. EC(A)s (0.53 to 0.60) and the ratios of ATP to DNA (0.001 to 0.003) were consistently low, suggesting that the unattached bacteria in this groundwater study are metabolically stressed, despite any eutrophication that might have occurred. Elevated EC(A)s (up to 0.74) were observed in glucose-amended groundwater, confirming that the metabolic state of this microbial community could be altered. In general, per-bacterium DNA and ATP contents were approximately twofold higher in the plume than in surrounding groundwater, although EC(A) and per-bacterium levels of A(T) differed little in the plume and the surrounding uncontaminated groundwater. However, per-bacterium levels of DNA and A(T) varied six- and threefold, respectively, during a 6-h period of decreasing growth rate for an unidentified pseudomonad isolated from contaminated groundwater and grown in batch culture. These data suggest that the DNA content of groundwater bacteria may be more sensitive than their A(T) to the degree of carbon loading, which may have significant ramifications in the use of nucleic acids and adenine nucleotides for estimating the metabolic status of bacterial communities within more highly contaminated aquifers.

  15. Biapigenin modulates the activity of the adenine nucleotide translocator in isolated rat brain mitochondria.

    PubMed

    Silva, Bruno A; Oliveira, Paulo J; Cristóvão, Armando; Dias, Alberto C P; Malva, João O

    2010-01-01

    In this study, we investigated the effects of biapigenin, a biflavone present in the extracts of Hypericum perforatum, in rat brain mitochondrial bioenergetics and calcium homeostasis. We found that biapigenin significantly decreased adenosine diphosphate (ADP)-induced membrane depolarization and increased repolarization (by 68 and 37%, respectively). These effects were blocked by atractyloside and bongkrekic acid, but not oligomycin. In the presence of biapigenin, an ADP-stimulated state 3 respiration was still noticeable, which did not happen in the presence of adenine nucleotide translocator (ANT) inhibitors. Taking in consideration the relevance of the ANT in the modulation of the mitochondrial permeability transition pore (mPTP), mitochondrial calcium homeostasis was evaluated alone or in the presence of biapigenin. We found that biapigenin reduces mitochondrial calcium retention by increasing calcium efflux, an effect that was blocked by ADP plus oligomycin, an efficient blocker of the mPTP in brain mitochondria. Taken together, the results in this article suggest that biapigenin modulates mPTP opening, possibly by modulating ANT function, contributing for enhanced mitochondrial calcium efflux, thereby reducing calcium burden and contributing for neuroprotection against excitotoxicity.

  16. Regulation of adenine nucleotide translocase and glycerol 3-phosphate dehydrogenase expression by thyroid hormones in different rat tissues.

    PubMed Central

    Dümmler, K; Müller, S; Seitz, H J

    1996-01-01

    Thyroid hormone (T3)-dependent gene expression of the adenine nucleotide translocase (ANT) and the FAD-linked glycerol 3-phosphate dehydrogenase (mGPDH) was investigated in several rat tissues. Both proteins provide an important link between cytosolic and mitochondrial metabolic pathways and seem to be involved in the stimulation of mitochondrial oxygen consumption in response to T3. Here we show that two ANT isoforms are expressed in rat, the muscle-specific ANT1 form and the ubiquitous ANT2 form. The expression of ANT1 mRNA is not sensitive to T3 whereas the amount of ANT2 mRNA is increased 7-9-fold in liver and heart within 12-48 h after T3 application. Little or no effect of T3 on ANT2 mRNA was observed in kidney and brain. The mRNA changes are paralleled by an increase in ANT protein, thus explaining the accelerated ADP/ATP exchange observed in mitochondria isolated from hyperthyroid rats. The key role of ANT2 in the control of hyperthyroid metabolism is evident because the expression of the mersalyl-sensitive phosphate carrier and the mitochondrial creatine kinase mRNA, which are functionally linked to ANT, did not respond to T3. Similarly to the ADP/ATP exchange, the transfer of cytosolic NADH to the respiratory chain via the glycerophosphate shuttle is very sensitive to T3. Recently we demonstrated the 10-15-fold induction of mGPDH mRNA in rat liver after administration of T3 [Müller and Seitz (1994) Proc. Natl. Acad. Sci. U.S.A. 91, 10581-10585]. Here we show that, in contrast with ANT2, the time course of induction is fast (4-6 h). Furthermore, mGPDH mRNA is induced 6-fold by T3 in heart and 4-fold in kidney. From these results we conclude that the T3-mediated transcriptional induction leading to increased activity of ANT2 and mGPDH contributes considerably to the increase in mitochondrial oxygen consumption in rat tissues. PMID:8760382

  17. Inhibition of the adenine nucleotide translocator by N-acetyl perfluorooctane sulfonamides in vitro

    SciTech Connect

    O'Brien, Timothy M. Oliveira, Paulo J.; Wallace, Kendall B.

    2008-03-01

    N-alkyl perfluorooctane sulfonamides have been widely used as surfactants on fabrics and papers, fire retardants, and anti-corrosion agents, among many other commercial applications. The global distribution and environmental persistence of these compounds has generated considerable interest regarding potential toxic effects. We have previously reported that perfluorooctanesulfonamidoacetate (FOSAA) and N-ethylperfluorooctanesulfonamidoacetate (N-EtFOSAA) induce the mitochondrial permeability transition (MPT) in vitro. In this study we tested the hypothesis that FOSAA and N-EtFOSAA interact with the adenine nucleotide translocator (ANT) resulting in a functional inhibition of the translocator and induction of the MPT. Respiration and membrane potential of freshly isolated liver mitochondria from Sprague-Dawley rats were measured using an oxygen electrode and a tetraphenylphosphonium-selective (TPP{sup +}) electrode, respectively. Mitochondrial swelling was measured spectrophotometrically. The ANT ligands bongkregkic acid (BKA) and carboxyatractyloside (cATR) inhibited uncoupling of mitochondrial respiration caused by 10 {mu}M N-EtFOSAA, 40 {mu}M FOSAA, and the positive control 8 {mu}M oleic acid. ADP-stimulated respiration and depolarization of mitochondrial membrane potential were inhibited by cATR, FOSAA, N-EtFOSAA, and oleic acid, but not by FCCP. BKA inhibited calcium-dependent mitochondrial swelling induced by FOSAA, N-EtFOSAA, and oleic acid. Seventy-five micromolar ADP also inhibited swelling induced by the test compounds, but cATR induced swelling was not inhibited by ADP. Results of this investigation indicate that N-acetyl perfluorooctane sulfonamides interact directly with the ANT to inhibit ADP translocation and induce the MPT, one or both of which may account for the metabolic dysfunction observed in vivo.

  18. Adenine nucleotide translocase 4 is expressed within embryonic ovaries and dispensable during oogenesis.

    PubMed

    Lim, Chae Ho; Brower, Jeffrey V; Resnick, James L; Oh, S Paul; Terada, Naohiro

    2015-02-01

    Adenine nucleotide translocase (Ant) facilitates the exchange of adenosine triphosphate across the mitochondrial inner membrane and plays a critical role for bioenergetics in eukaryotes. Mice have 3 Ant paralogs, Ant1 (Slc25a4), Ant2 (Slc25a5), and Ant4 (Slc25a31), which are expressed in a tissue-dependent manner. We previously identified that Ant4 was expressed exclusively in testicular germ cells in adult mice and essential for spermatogenesis and subsequently male fertility. Further investigation into the process of spermatogenesis revealed that Ant4 was particularly highly expressed during meiotic prophase I and indispensable for normal progression of leptotene spermatocytes to the stages thereafter. In contrast, the expression and roles of Ant4 in female germ cells have not previously been elucidated. Here, we demonstrate that the Ant4 gene is expressed during embryonic ovarian development during which meiotic prophase I occurs. We confirmed embryonic ovary-specific Ant4 expression using a bacterial artificial chromosome transgene. In contrast to male, however, Ant4 null female mice were fertile although the litter size was slightly decreased. They showed apparently normal ovarian development which was morphologically indistinguishable from the control animals. These data indicate that Ant4 is a meiosis-specific gene expressed during both male and female gametogenesis however indispensable only during spermatogenesis and not oogenesis. The differential effects of Ant4 depletion within the processes of male and female gametogenesis may be explained by meiosis-specific inactivation of the X-linked Ant2 gene in male, a somatic paralog of the Ant4 gene.

  19. ADENINE NUCLEOTIDE TRANSLOCASE-1 INDUCES CARDIOMYOCYTE DEATH THROUGH UPREGULATION OF THE PRO-APOPTOTIC PROTEIN BAX

    PubMed Central

    Baines, Christopher P.; Molkentin, Jeffery D.

    2009-01-01

    Overexpression of the adenine nucleotide translocase (ANT) has been shown to be cytotoxic in several cell types. Although ANT was originally proposed to be a critical component of the mitochondrial permeability transition (MPT) pore, recent data have suggested that this may not be the case. We therefore hypothesized that the cytotoxic actions of ANT are through an alternative mechanism, independent of the MPT pore. Infection of cultured neonatal cardiomyocytes with an ANT1-encoding adenovirus induced a gene dosage-dependent increase in cell death. However, ANT1 overexpression failed to induce MPT, and neither pharmacological nor genetic inhibition of the MPT pore was able to prevent ANT1-induced cell death. These data suggested that ANT1-induced death progressed through an MPT pore-independent pathway. Somewhat surprisingly, we observed that protein levels of Bax, a pro-apoptotic Bcl protein, were consistently elevated in ANT1-infected cardiomyocytes. Membranes isolated from ANT1-infected myocytes exhibited significantly increased amounts of membrane-inserted Bax, and immunocytochemistry revealed increased Bax activation in ANT1-infected myocytes. Co-expression with the Bax antagonist Bcl2 was able to greatly reduce the degree of ANT1-induced cell death. Furthermore, Bax/Bak-deficient fibroblasts were resistant to the cytotoxic effects of ANT1 overexpression. Interestingly, ANT1 overexpression was also associated with enhanced production of reactive oxygen species (ROS), and the antioxidant MnTBAP was able to significantly attenuate both the ANT1-induced upregulation of Bax and cell death. Taken together, these data indicate that ANT mediates cell death, not through the MPT pore, but rather via a ROS-dependent upregulation and activation of Bax. PMID:19452617

  20. Caffeic acid treatment alters the extracellular adenine nucleotide hydrolysis in platelets and lymphocytes of adult rats.

    PubMed

    Anwar, Javed; Spanevello, Roselia Maria; Pimentel, Victor Camera; Gutierres, Jessié; Thomé, Gustavo; Cardoso, Andreia; Zanini, Daniela; Martins, Caroline; Palma, Heloisa Einloft; Bagatini, Margarete Dulce; Baldissarelli, Jucimara; Schmatz, Roberta; Leal, Cláudio Alberto Martins; da Costa, Pauline; Morsch, Vera Maria; Schetinger, Maria Rosa Chitolina

    2013-06-01

    This study evaluated the effects of caffeic acid on ectonucleotidase activities such as NTPDase (nucleoside triphosphate diphosphohydrolase), Ecto-NPP (nucleotide pyrophosphatase/phosphodiesterase), 5'-nucleotidase and adenosine deaminase (ADA) in platelets and lymphocytes of rats, as well as in the profile of platelet aggregation. Animals were divided into five groups: I (control); II (oil); III (caffeic acid 10 mg/kg); IV (caffeic acid 50 mg/kg); and V (caffeic acid 100 mg/kg). Animals were treated with caffeic acid diluted in oil for 30 days. In platelets, caffeic acid decreased the ATP hydrolysis and increased ADP hydrolysis in groups III, IV and V when compared to control (P<0.05). The 5'-nucleotidase activity was decreased, while E-NPP and ADA activities were increased in platelets of rats of groups III, IV and V (P<0.05). Caffeic acid reduced significantly the platelet aggregation in the animals of groups III, IV and V in relation to group I (P<0.05). In lymphocytes, the NTPDase and ADA activities were increased in all groups treated with caffeic acid when compared to control (P<0.05). These findings demonstrated that the enzymes were altered in tissues by caffeic acid and this compound decreased the platelet aggregation suggesting that caffeic acid should be considered a potentially therapeutic agent in disorders related to the purinergic system.

  1. Direct Monitoring of Nucleotide Turnover in Human Cell Extracts and Cells by Fluorogenic ATP Analogs.

    PubMed

    Hacker, Stephan M; Buntz, Annette; Zumbusch, Andreas; Marx, Andreas

    2015-11-20

    Nucleotides containing adenosine play pivotal roles in every living cell. Adenosine triphosphate (ATP), for example, is the universal energy currency, and ATP-consuming processes also contribute to posttranslational protein modifications. Nevertheless, detecting the turnover of adenosine nucleotides in the complex setting of a cell remains challenging. Here, we demonstrate the use of fluorogenic analogs of ATP and adenosine tetraphosphate to study nucleotide hydrolysis in lysates of human cell lines and in intact human cells. We found that the adenosine triphosphate analog is completely stable in lysates of human cell lines, whereas the adenosine tetraphosphate analog is rapidly turned over. The observed activity in human cell lysates can be assigned to a single enzyme, namely, the human diadenosine tetraphosphate hydrolase NudT2. Since NudT2 has been shown to be a prognostic factor for breast cancer, the adenosine tetraphosphate analog might contribute to a better understanding of its involvement in cancerogenesis and allow the straightforward screening for inhibitors. Studying hydrolysis of the analogs in intact cells, we found that electroporation is a suitable method to deliver nucleotide analogs into the cytoplasm and show that high FRET efficiencies can be detected directly after internalization. Time-dependent experiments reveal that adenosine triphosphate and tetraphosphate analogs are both processed in the cellular environment. This study demonstrates that these nucleotide analogs indeed bear the potential to be powerful tools for the exploration of nucleotide turnover in the context of whole cells.

  2. Nucleotide binding by the epidermal growth factor receptor protein-tyrosine kinase. Trinitrophenyl-ATP as a spectroscopic probe.

    PubMed

    Cheng, K; Koland, J G

    1996-01-05

    The nucleotide binding properties of the epidermal growth factor (EGF) receptor protein-tyrosine kinase were investigated with the fluorescent nucleotide analog 2'(3')-O-(2,4,6-trinitrophenyl)adenosine 5'-triphosphate (TNP-ATP). TNP-ATP was found to be an active substrate for the autophosphorylation reaction of the recombinant EGF receptor protein-tyrosine kinase domain (TKD). Whereas the Vmax for the TNP-ATP-dependent autophosphorylation reaction was approximately 200-fold lower than that of ATP, the Km for this reaction was similar to that observed with ATP. The nucleotide analog was also shown to be an inhibitor of the ATP-dependent autophosphorylation and substrate phosphorylation reactions of the TKD. Spectroscopic studies demonstrated both a high affinity binding of TNP-ATP to the recombinant TKD and a markedly enhanced fluorescence of the bound nucleotide analog. The fluorescence of enzyme-bound TNP-ATP was attenuated in the presence of ATP, which enabled determination of the dissociation constants for both ATP and the Mn2+ complex of ATP. A truncated form of the EGF receptor TKD lacking the C-terminal autophosphorylation domain exhibited an enhanced affinity for TNP-ATP, which indicated that the autophosphorylation domain occupied the peptide substrate binding site of the TKD and modulated the binding of the nucleotide substrates.

  3. ATP-binding site of adenylate kinase: mechanistic implications of its homology with ras-encoded p21, F1-ATPase, and other nucleotide-binding proteins.

    PubMed

    Fry, D C; Kuby, S A; Mildvan, A S

    1986-02-01

    The MgATP binding site of adenylate kinase, located by a combination of NMR and x-ray diffraction, is near three protein segments, five to seven amino acids in length, that are homologous in sequence to segments found in other nucleotide-binding phosphotransferases, such as myosin and F1-ATPase, ras p21 and transducin GTPases, and cAMP-dependent and src protein kinases, suggesting equivalent mechanistic roles of these segments in all of these proteins. Segment 1 is a glycine-rich flexible loop that, on adenylate kinase, may control access to the ATP-binding site by changing its conformation. Segment 2 is an alpha-helix containing two hydrophobic residues that interact with the adenine-ribose moiety of ATP, and a lysine that may bind to the beta- and gamma-phosphates of ATP. Segment 3 is a hydrophobic strand of parallel beta-pleated sheet, terminated by a carboxylate, that flanks the triphosphate binding site. The various reported mutations of ras p21 that convert it to a transforming agent all appear to involve segment 1, and such substitutions may alter the properties of p21 by hindering a conformational change at this segment. In F1-ATPase, the flexible loop may, by its position, control both the accessibility and the ATP/ADP equilibrium constant on the enzyme.

  4. ATP-binding site of adenylate kinase: mechanistic implications of its homology with ras-encoded p21, F1-ATPase, and other nucleotide-binding proteins.

    PubMed Central

    Fry, D C; Kuby, S A; Mildvan, A S

    1986-01-01

    The MgATP binding site of adenylate kinase, located by a combination of NMR and x-ray diffraction, is near three protein segments, five to seven amino acids in length, that are homologous in sequence to segments found in other nucleotide-binding phosphotransferases, such as myosin and F1-ATPase, ras p21 and transducin GTPases, and cAMP-dependent and src protein kinases, suggesting equivalent mechanistic roles of these segments in all of these proteins. Segment 1 is a glycine-rich flexible loop that, on adenylate kinase, may control access to the ATP-binding site by changing its conformation. Segment 2 is an alpha-helix containing two hydrophobic residues that interact with the adenine-ribose moiety of ATP, and a lysine that may bind to the beta- and gamma-phosphates of ATP. Segment 3 is a hydrophobic strand of parallel beta-pleated sheet, terminated by a carboxylate, that flanks the triphosphate binding site. The various reported mutations of ras p21 that convert it to a transforming agent all appear to involve segment 1, and such substitutions may alter the properties of p21 by hindering a conformational change at this segment. In F1-ATPase, the flexible loop may, by its position, control both the accessibility and the ATP/ADP equilibrium constant on the enzyme. Images PMID:2869483

  5. Novel nucleotide-binding sites in ATP-sensitive potassium channels formed at gating interfaces.

    PubMed

    Dong, Ke; Tang, Lie-Qi; MacGregor, Gordon G; Leng, Qiang; Hebert, Steven C

    2005-04-06

    The coupling of cell metabolism to membrane electrical activity is a vital process that regulates insulin secretion, cardiac and neuronal excitability and the responses of cells to ischemia. ATP-sensitive potassium channels (K(ATP); Kir6.x) are a major part of this metabolic-electrical coupling system and translate metabolic signals such as the ATP:ADP ratio to changes in the open or closed state (gate) of the channel. The localization of the nucleotide-binding site (NBS) on Kir6.x channels and how nucleotide binding gates these K(ATP) channels remain unclear. Here, we use fluorescent nucleotide binding to purified Kir6.x proteins to define the peptide segments forming the NBS on Kir6.x channels and show that unique N- and C-terminal interactions from adjacent subunits are required for high-affinity nucleotide binding. The short N- and C-terminal segments comprising the novel intermolecular NBS are next to helices that likely move with channel opening/closing, suggesting a lock-and-key model for ligand gating.

  6. Lipid-Loving ANTs: Molecular Simulations of Cardiolipin Interactions and the Organization of the Adenine Nucleotide Translocase in Model Mitochondrial Membranes

    PubMed Central

    2016-01-01

    The exchange of ADP and ATP across the inner mitochondrial membrane is a fundamental cellular process. This exchange is facilitated by the adenine nucleotide translocase, the structure and function of which are critically dependent on the signature phospholipid of mitochondria, cardiolipin (CL). Here we employ multiscale molecular dynamics simulations to investigate CL interactions within a membrane environment. Using simulations at both coarse-grained and atomistic resolutions, we identify three CL binding sites on the translocase, in agreement with those seen in crystal structures and inferred from nuclear magnetic resonance measurements. Characterization of the free energy landscape for lateral lipid interaction via potential of mean force calculations demonstrates the strength of interaction compared to those of binding sites on other mitochondrial membrane proteins, as well as their selectivity for CL over other phospholipids. Extending the analysis to other members of the family, yeast Aac2p and mouse uncoupling protein 2, suggests a degree of conservation. Simulation of large patches of a model mitochondrial membrane containing multiple copies of the translocase shows that CL interactions persist in the presence of protein–protein interactions and suggests CL may mediate interactions between translocases. This study provides a key example of how computational microscopy may be used to shed light on regulatory lipid–protein interactions. PMID:27786441

  7. Extracellular ATP and other nucleotides-ubiquitous triggers of intercellular messenger release.

    PubMed

    Zimmermann, Herbert

    2016-03-01

    Extracellular nucleotides, and ATP in particular, are cellular signal substances involved in the control of numerous (patho)physiological mechanisms. They provoke nucleotide receptor-mediated mechanisms in select target cells. But nucleotides can considerably expand their range of action. They function as primary messengers in intercellular communication by stimulating the release of other extracellular messenger substances. These in turn activate additional cellular mechanisms through their own receptors. While this applies also to other extracellular messengers, its omnipresence in the vertebrate organism is an outstanding feature of nucleotide signaling. Intercellular messenger substances released by nucleotides include neurotransmitters, hormones, growth factors, a considerable variety of other proteins including enzymes, numerous cytokines, lipid mediators, nitric oxide, and reactive oxygen species. Moreover, nucleotides activate or co-activate growth factor receptors. In the case of hormone release, the initially paracrine or autocrine nucleotide-mediated signal spreads through to the entire organism. The examples highlighted in this commentary suggest that acting as ubiquitous triggers of intercellular messenger release is one of the major functional roles of extracellular nucleotides. While initiation of messenger release by nucleotides has been unraveled in many contexts, it may have been overlooked in others. It can be anticipated that additional nucleotide-driven messenger functions will be uncovered with relevance for both understanding physiology and development of therapy.

  8. Modulation of murine dendritic cell function by adenine nucleotides and adenosine: involvement of the A(2B) receptor.

    PubMed

    Ben Addi, Abduelhakem; Lefort, Anne; Hua, Xiaoyang; Libert, Frédérick; Communi, Didier; Ledent, Catherine; Macours, Pascale; Tilley, Stephen L; Boeynaems, Jean-Marie; Robaye, Bernard

    2008-06-01

    Adenosine triphosphate has previously been shown to induce semi-mature human monocyte-derived dendritic cells (DC). These are characterized by the up-regulation of co-stimulatory molecules, the inhibition of IL-12 and the up-regulation of some genes involved in immune tolerance, such as thrombospondin-1 and indoleamine 2,3-dioxygenase. The actions of adenosine triphosphate are mediated by the P2Y(11) receptor; since there is no functional P2Y(11) gene in the murine genome, we investigated the action of adenine nucleotides on murine DC. Adenosine 5'-(3-thiotriphosphate) and adenosine inhibited the production of IL-12p70 by bone marrow-derived DC (BMDC). These inhibitions were relieved by 8-p-sulfophenyltheophylline, an adenosine receptor antagonist. The use of selective ligands and A(2B) (-/-) BMDC indicated the involvement of the A(2B) receptor. A microarray experiment, confirmed by quantitative PCR, showed that, in presence of LPS, 5'-(N-ethylcarboxamido) adenosine (NECA, the most potent A(2B) receptor agonist) regulated the expression of several genes: arginase I and II, thrombospondin-1 and vascular endothelial growth factor were up-regulated whereas CCL2 and CCL12 were down-regulated. We further showed that NECA, in combination with LPS, increased the arginase I enzymatic activity. In conclusion, the described actions of adenine nucleotides on BMDC are mediated by their degradation product, adenosine, acting on the A(2B) receptor, and will possibly lead to an impairment of Th1 response or tolerance.

  9. Hydrolysis at One of the Two Nucleotide-binding Sites Drives the Dissociation of ATP-binding Cassette Nucleotide-binding Domain Dimers

    SciTech Connect

    Zoghbi, M. E.; Altenberg, G. A.

    2013-10-15

    The functional unit of ATP-binding cassette (ABC) transporters consists of two transmembrane domains and two nucleotide-binding domains (NBDs). ATP binding elicits association of the two NBDs, forming a dimer in a head-to-tail arrangement, with two nucleotides “sandwiched” at the dimer interface. Each of the two nucleotide-binding sites is formed by residues from the two NBDs. We recently found that the prototypical NBD MJ0796 from Methanocaldococcus jannaschii dimerizes in response to ATP binding and dissociates completely following ATP hydrolysis. However, it is still unknown whether dissociation of NBD dimers follows ATP hydrolysis at one or both nucleotide-binding sites. Here, we used luminescence resonance energy transfer to study heterodimers formed by one active (donor-labeled) and one catalytically defective (acceptor-labeled) NBD. Rapid mixing experiments in a stop-flow chamber showed that NBD heterodimers with one functional and one inactive site dissociated at a rate indistinguishable from that of dimers with two hydrolysis-competent sites. Comparison of the rates of NBD dimer dissociation and ATP hydrolysis indicated that dissociation followed hydrolysis of one ATP. We conclude that ATP hydrolysis at one nucleotide-binding site drives NBD dimer dissociation.

  10. Adsorption of nucleotides on biomimetic apatite: The case of adenosine 5⿲ triphosphate (ATP)

    NASA Astrophysics Data System (ADS)

    Hammami, Khaled; El-Feki, Hafed; Marsan, Olivier; Drouet, Christophe

    2016-01-01

    ATP is a well-known energy supplier in cells. The idea to associate ATP to pharmaceutical formulations/biotechnological devices to promote cells activity by potentially modulating their microenvironment thus appears as an appealing novel approach. Since biomimetic nanocrystalline apatites have shown great promise for biomedical applications (bone regeneration, cells diagnostics/therapeutics, ⿦), thanks to a high surface reactivity and an intrinsically high biocompatibility, the present contribution was aimed at exploring ATP/apatite interactions. ATP adsorption on a synthetic carbonated nanocrystalline apatite preliminarily characterized (by XRD, FTIR, Raman, TG-DTA and SEM-EDX) was investigated in detail, pointing out a good agreement with Sips isothermal features. Adsorption characteristics were compared to those previously obtained on monophosphate nucleotides (AMP, CMP), unveiling some specificities. ATP was found to adsorb effectively onto biomimetic apatite: despite smaller values of the affinity constant KS and the exponential factor m, larger adsorbed amounts were reached for ATP as compared to AMP for any given concentration in solution. m < 1 suggests that the ATP/apatite adsorption process is mostly guided by direct surface bonding rather than through stabilizing intermolecular interactions. Although standard οGads ° was estimated to only ⿿4 kJ/mol, the large value of Nmax led to significantly negative effective οGads values down to ⿿33 kJ/mol, reflecting the spontaneous character of adsorption process. Vibrational spectroscopy data (FTIR and Raman) pointed out spectral modifications upon adsorption, confirming chemical-like interactions where both the triphosphate group of ATP and its nucleic base were involved. The present study is intended to serve as a basis for future research works involving ATP and apatite nanocrystals/nanoparticles in view of biomedical applications (e.g. bone tissue engineering, intracellular drug delivery, ⿦).

  11. Exercise effects on activities of Na(+),K(+)-ATPase, acetylcholinesterase and adenine nucleotides hydrolysis in ovariectomized rats.

    PubMed

    Ben, Juliana; Soares, Flávia Mahatma Schneider; Cechetti, Fernanda; Vuaden, Fernanda Cenci; Bonan, Carla Denise; Netto, Carlos Alexandre; Wyse, Angela Terezinha de Souza

    2009-12-11

    Hormone deficiency following ovariectomy causes activation of Na(+),K(+)-ATPase and acetylcholinesterase (AChE) that has been related to cognitive deficits in experimental animals. Considering that physical exercise presents neuroprotector effects, we decide to investigate whether exercise training would affect enzyme activation in hippocampus and cerebral cortex, as well as adenosine nucleotide hydrolysis in synaptosomes from cerebral cortex of ovariectomized rats. Female adult Wistar rats were assigned to one of the following groups: sham (submitted to surgery without removal of the ovaries), exercise, ovariectomized (Ovx) and Ovx plus exercise. Thirty days after surgery, animals were submitted to one month of exercise training, three times per week. After, rats were euthanized, blood serum was collected and hippocampus and cerebral cortex were dissected. Data demonstrated that exercise reversed the activation of Na(+),K(+)-ATPase and AChE activities both in hippocampus and cerebral cortex of ovariectomized rats. Ovariectomy decreased AMP hydrolysis in cerebral cortex and did not alter adenine nucleotides hydrolysis in blood serum. Exercise per se decreased ADP and AMP hydrolysis in cerebral cortex. On the other hand, AMP hydrolysis in blood serum was increased by exercise in ovariectomized adult rats. Present data support that physical exercise might have beneficial effects and constitute a therapeutic alternative to hormone replacement therapy for estrogen deprivation.

  12. Genetic mapping of human heart-skeletal muscle adenine nucleotide translocator and its relationship to the facioscapulohumeral muscular dystrophy locus

    SciTech Connect

    Haraguchi, Y.; Chung, A.B.; Torroni, A.; Stepien, G.; Shoffner, J.M.; Costigan, D.A.; Polak, M.; Wasmuth, J.J.; Altherr, M.R.; Winokur, S.T.

    1993-05-01

    The mitochondrial heart-skeletal muscle adenine nucleotide translocator (ANT1) was regionally mapped to 4q35-qter using somatic cell hybrids containing deleted chromosome 4. The regional location was further refined through family studies using ANT1 intron and promoter nucleotide polymorphisms recognized by the restriction endonucleases MboII, NdeI, and HaeIII. Two alleles were found, each at a frequency of 0.5. The ANT1 locus was found to be closely linked to D4S139, D4S171, and the dominant skeletal muscle disease locus facioscapulohumeral muscular dystrophy (FSHD). A crossover that separated D4S171 and ANT1 from D4S139 was found. Since previous studies have established the chromosome 4 map order as centromere-D4S171-D4S139-FSHD, it was concluded that ANT1 is located on the side of D4S139, that is opposite from FSHD. This conclusion was confirmed by sequencing the exons and analyzing the transcripts of ANT1 from several FSHD patients and finding no evidence of aberration. 35 refs., 5 figs., 1 tab.

  13. Preferential activation of excitatory adenosine receptors at rat hippocampal and neuromuscular synapses by adenosine formed from released adenine nucleotides.

    PubMed Central

    Cunha, R. A.; Correia-de-Sá, P.; Sebastião, A. M.; Ribeiro, J. A.

    1996-01-01

    1. In the present work, we investigated the action of adenosine originating from extracellular catabolism of adenine nucleotides, in two preparations where synaptic transmission is modulated by both inhibitory A1 and excitatory A(2a)-adenosine receptors, the rat hippocampal Schaffer fibres/CA1 pyramid synapses and the rat innervated hemidiaphragm. 2. Endogenous adenosine tonically inhibited synaptic transmission, since 0.5-2 u ml-1 of adenosine deaminase increased both the population spike amplitude (30 +/- 4%) and field excitatory post-synaptic potential (f.e.p.s.p.) slope (27 +/- 4%) recorded from hippocampal slices and the evoked [3H]-acetylcholine ([3H]-ACh) release from the motor nerve terminals (25 +/- 2%). 3. alpha, beta-Methylene adenosine diphosphate (AOPCP) in concentrations (100-200 microM) that almost completely inhibited the formation of adenosine from the extracellular catabolism of AMP, decreased population spike amplitude by 39 +/- 5% and f.e.p.s.p. slope by 32 +/- 3% in hippocampal slices and [3H]-ACh release from motor nerve terminals by 27 +/- 3%. 4. Addition of exogenous 5'-nucleotidase (5 u ml-1) prevented the inhibitory effect of AOPCP on population spike amplitude and f.e.p.s.p. slope by 43-57%, whereas the P2 antagonist, suramin (100 microM), did not modify the effect of AOPCP. 5. In both preparations, the effect of AOPCP resulted from prevention of adenosine formation since it was no longer evident when accumulation of extracellular adenosine was hindered by adenosine deaminase (0.5-2 u ml-1). The inhibitory effect of AOPCP was still evident when A1 receptors were blocked by 1,3-dipropyl-8-cyclopentylxanthine (2.5-5 nM), but was abolished by the A2 antagonist, 3,7-dimethyl-1-propargylxanthine (10 microM). 6. These results suggest that adenosine originating from catabolism of released adenine nucleotides preferentially activates excitatory A2 receptors in hippocampal CAI pyramid synapses and in phrenic motor nerve endings. PMID:8886406

  14. Nucleotide sequence of yeast GDH1 encoding nicotinamide adenine dinucleotide phosphate-dependent glutamate dehydrogenase.

    PubMed

    Moye, W S; Amuro, N; Rao, J K; Zalkin, H

    1985-07-15

    The yeast GDH1 gene encodes NADP-dependent glutamate dehydrogenase. This gene was isolated by complementation of an Escherichia coli glutamate auxotroph. NADP-dependent glutamate dehydrogenase was overproduced 6-10-fold in Saccharomyces cerevisiae bearing GDH1 on a multicopy plasmid. The nucleotide sequence of the 1362-base pair coding region and 5' and 3' flanking sequences were determined. Transcription start sites were located by S1 nuclease mapping. Regulation of GDH1 was not maintained when the gene was present on a multicopy plasmid. Protein secondary structure predictions identified a region with potential to form the dinucleotide-binding domain. The amino acid sequences of the yeast and Neurospora crassa enzymes are 63% conserved. Unlike the N. crassa gene, yeast GDH1 has no introns.

  15. Extremely conserved ATP- or ADP-dependent enzymatic system for nicotinamide nucleotide repair.

    PubMed

    Marbaix, Alexandre Y; Noël, Gaëtane; Detroux, Aline M; Vertommen, Didier; Van Schaftingen, Emile; Linster, Carole L

    2011-12-02

    The reduced forms of NAD and NADP, two major nucleotides playing a central role in metabolism, are continuously damaged by enzymatic or heat-dependent hydration. We report the molecular identification of the eukaryotic dehydratase that repairs these nucleotides and show that this enzyme (Carkd in mammals, YKL151C in yeast) catalyzes the dehydration of the S form of NADHX and NADPHX, at the expense of ATP, which is converted to ADP. Surprisingly, the Escherichia coli homolog, YjeF, a bidomain protein, catalyzes a similar reaction, but using ADP instead of ATP. The latter reaction is ascribable to the C-terminal domain of YjeF. This represents an unprecedented example of orthologous enzymes using either ADP or ATP as phosphoryl donor. We also show that eukaryotic proteins homologous to the N-terminal domain of YjeF (apolipoprotein A-1-binding protein (AIBP) in mammals, YNL200C in yeast) catalyze the epimerization of the S and R forms of NAD(P)HX, thereby allowing, in conjunction with the energy-dependent dehydratase, the repair of both epimers of NAD(P)HX. Both enzymes are very widespread in eukaryotes, prokaryotes, and archaea, which together with the ADP dependence of the dehydratase in some species indicates the ancient origin of this repair system.

  16. Antagonistic regulation of native Ca2+- and ATP-sensitive cation channels in brain capillaries by nucleotides and decavanadate.

    PubMed

    Csanády, László; Adam-Vizi, Vera

    2004-06-01

    Regulation by cytosolic nucleotides of Ca2+- and ATP-sensitive nonselective cation channels (CA-NSCs) in rat brain capillary endothelial cells was studied in excised inside-out patches. Open probability (Po) was suppressed by cytosolic nucleotides with apparent KI values of 17, 9, and 2 microM for ATP, ADP, and AMP, as a consequence of high-affinity inhibition of channel opening rate and low-affinity stimulation of closing rate. Cytosolic [Ca2+] and voltage affected inhibition of Po, but not of opening rate, by ATP, suggesting that the conformation of the nucleotide binding site is influenced only by the state of the channel gate, not by that of the Ca2+ and voltage sensors. ATP inhibition was unaltered by channel rundown. Nucleotide structure affected inhibitory potency that was little sensitive to base substitutions, but was greatly diminished by 3'-5' cyclization, removal of all phosphates, or complete omission of the base. In contrast, decavanadate potently (K1/2 = 90 nM) and robustly stimulated Po, and functionally competed with inhibitory nucleotides. From kinetic analyses we conclude that (a) ATP, ADP, and AMP bind to a common site; (b) inhibition by nucleotides occurs through simple reversible binding, as a consequence of tighter binding to the closed-channel relative to the open-channel conformation; (c) the conformation of the nucleotide binding site is not directly modulated by Ca2+ and voltage; (d) the differences in inhibitory potency of ATP, ADP, and AMP reflect their different affinities for the closed channel; and (e) though decavanadate is the only example found to date of a compound that stimulates Po with high affinity even in the presence of millimolar nucleotides, apparently by competing for the nucleotide binding site, a comparable mechanism might allow CA-NSC channels to open in living cells despite physiological levels of nucleotides. Decavanadate now provides a valuable tool for studying native CA-NSC channels and for screening cloned

  17. New ribose-modified fluorescent analogs of adenine and guanine nucleotides available as substrates for various enzymes.

    PubMed

    Hiratsuka, T

    1983-02-15

    The synthesis of fluorescent derivatives of nucleosides and nucleotides, by reaction with isatoic anhydride in aqueous solution at mild pH and temperature, yielding their 3'-O-anthraniloyl derivatives, is here described. The N-methylanthraniloyl derivatives were also synthesized by reaction with N-methylisatoic anhydride. Upon excitation at 330-350 nm these derivatives exhibited maximum fluorescence emission at 430-445 nm in aqueous solution with quantum yields of 0.12-0.24. Their fluorescence was sensitive to the polarity of the solvent; in N,N-dimethylformamide the quantum yields were 0.83-0.93. The major differences between the two fluorophores were the longer wavelength of the emission maximum of the N-methylanthraniloyl group and its greater quantum yield in water. All anthraniloyl derivatives, as well as the N-methylanthraniloyl ones, had virtually identical fluorescent properties, regardless of their base structures. The ATP derivatives showed considerable substrate activity as a replacement of ATP with adenylate kinase, guanylate kinase, glutamine synthetase, myosin ATPase and sodium-potassium transport ATPase. The ADP derivatives were good substrates for creatine kinase and glutamine synthetase (gamma-glutamyl transfer activity). The GMP and adenosine derivatives were substrates for guanylate kinase and adenosine deaminase, respectively. All derivatives had only slightly altered Km values for these enzymes. While more fluorescent in water, the N-methylanthraniloyl derivatives were found to show relatively low substrate activities against some of these enzymes. The results indicate that these ribose-modified nucleosides and nucleotides can be versatile fluorescent substrate analogs for various enzymes.

  18. Trinitrophenyl-ATP blocks colonic Cl- channels in planar phospholipid bilayers. Evidence for two nucleotide binding sites

    PubMed Central

    1993-01-01

    Outwardly rectifying 30-50-pS Cl- channels mediate cell volume regulation and transepithelial transport. Several recent reports indicate that rectifying Cl- channels are blocked after addition of ATP to the extracellular bath (Alton, E. W. F. W., S. D. Manning, P. J. Schlatter, D. M. Geddes, and A. J. Williams. 1991. Journal of Physiology. 443:137-159; Paulmichl, M., Y. Li, K. Wickman, M. Ackerman, E. Peralta, and D. Clapham. 1992. Nature. 356:238-241). Therefore, we decided to conduct a more detailed study of the ATP binding site using a higher affinity probe. We tested the ATP derivative, 2',3',O-(2,4,6- trinitrocyclohexadienylidene) adenosine 5'-triphosphate (TNP-ATP), which has a high affinity for certain nucleotide binding sites. Here we report that TNP-ATP blocked colonic Cl- channels when added to either bath and that blockade was consistent with the closed-open-blocked kinetic model. The TNP-ATP concentration required for a 50% decrease in open probability was 0.27 microM from the extracellular (cis) side and 20 microM from the cytoplasmic (trans) side. Comparison of the off rate constants revealed that TNP-ATP remained bound 28 times longer when added to the extracellular side compared with the cytoplasmic side. We performed competition studies to determine if TNP-ATP binds to the same sites as ATP. Addition of ATP to the same bath containing TNP-ATP reduced channel amplitude and increased the time the channel spent in the open and fast-blocked states (i.e., burst duration). This is the result expected if TNP-ATP and ATP compete for block, presumably by binding to common sites. In contrast, addition of ATP to the bath opposite to the side containing TNP-ATP reduced amplitude but did not alter burst duration. This is the result expected if opposite-sided TNP- ATP and ATP bind to different sites. In summary, we have identified an ATP derivative that has a nearly 10-fold higher affinity for reconstituted rectifying colonic Cl- channels than any previously

  19. Simulation of the coupling between nucleotide binding and transmembrane domains in the ATP binding cassette transporter BtuCD.

    PubMed

    Sonne, Jacob; Kandt, Christian; Peters, Günther H; Hansen, Flemming Y; Jensen, Morten Ø; Tieleman, D Peter

    2007-04-15

    The nucleotide-induced structural rearrangements in ATP binding cassette (ABC) transporters, leading to substrate translocation, are largely unknown. We have modeled nucleotide binding and release in the vitamin B(12) importer BtuCD using perturbed elastic network calculations and biased molecular dynamics simulations. Both models predict that nucleotide release decreases the tilt between the two transmembrane domains and opens the cytoplasmic gate. Nucleotide binding has the opposite effect. The observed coupling may be relevant for all ABC transporters because of the conservation of nucleotide binding domains and the shared role of ATP in ABC transporters. The rearrangements in the cytoplasmic gate region do not provide enough space for B(12) to diffuse from the transporter pore into the cytoplasm, which could suggest that peristaltic forces are needed to exclude B(12) from the transporter pore.

  20. Modulation of TASK-like background potassium channels in rat arterial chemoreceptor cells by intracellular ATP and other nucleotides.

    PubMed

    Varas, Rodrigo; Wyatt, Christopher N; Buckler, Keith J

    2007-09-01

    The carotid body's physiological role is to sense arterial oxygen, CO(2) and pH. It is however, also powerfully excited by inhibitors of oxidative phosphorylation. This latter observation is the cornerstone of the mitochondrial hypothesis which proposes that oxygen is sensed through changes in energy metabolism. All of these stimuli act in a similar manner, i.e. by inhibiting a background TASK-like potassium channel (K(B)) they induce membrane depolarization and thus neurosecretion. In this study we have evaluated the role of ATP in modulating K(B) channels. We find that K(B) channels are strongly activated by MgATP (but not ATP(4)(-)) within the physiological range (K(1/2) = 2.3 mm). This effect was mimicked by other Mg-nucleotides including GTP, UTP, AMP-PCP and ATP-gamma-S, but not by PP(i) or AMP, suggesting that channel activity is regulated by a Mg-nucleotide sensor. Channel activation by MgATP was not antagonized by either 1 mm AMP or 500 microm ADP. Thus MgATP is probably the principal nucleotide regulating channel activity in the intact cell. We therefore investigated the effects of metabolic inhibition upon both [Mg(2+)](i), as an index of MgATP depletion, and channel activity in cell-attached patches. The extent of increase in [Mg(2+)](i) (and thus MgATP depletion) in response to inhibition of oxidative phosphorylation were consistent with a decline in [MgATP](i) playing a prominent role in mediating inhibition of K(B) channel activity, and the response of arterial chemoreceptors to metabolic compromise.

  1. Microarray study of single nucleotide polymorphisms and expression of ATP-binding cassette genes in breast tumors

    NASA Astrophysics Data System (ADS)

    Tsyganov, M. M.; Ibragimova, M. K.; Karabut, I. V.; Freydin, M. B.; Choinzonov, E. L.; Litvyakov, N. V.

    2015-11-01

    Our previous research establishes that changes of expression of the ATP-binding cassette genes family is connected with the neoadjuvant chemotherapy effect. However, the mechanism of regulation of resistance gene expression remains unclear. As many researchers believe, single nucleotide polymorphisms can be involved in this process. Thereupon, microarray analysis is used to study polymorphisms in ATP-binding cassette genes. It is thus found that MDR gene expression is connected with 5 polymorphisms, i.e. rs241432, rs241429, rs241430, rs3784867, rs59409230, which participate in the regulation of expression of own genes.

  2. The mitochondrial BKCa channel cardiac interactome reveals BKCa association with the mitochondrial import receptor subunit Tom22, and the adenine nucleotide translocator.

    PubMed

    Zhang, Jin; Li, Min; Zhang, Zhu; Zhu, Ronghui; Olcese, Riccardo; Stefani, Enrico; Toro, Ligia

    2017-03-01

    Mitochondrial BKCa channel, mitoBKCa, regulates mitochondria function in the heart but information on its protein partnerships in cardiac mitochondria is missing. A directed proteomic approach discovered the novel interaction of BKCa with Tom22, a component of the mitochondrion outer membrane import system, and the adenine nucleotide translocator (ANT). The expressed protein partners co-immunoprecipitated and co-segregated into mitochondrial fractions in HEK293T cells. The BKCa 50 amino acid splice insert, DEC, facilitated BKCa interaction with ANT. Further, BKCa transmembrane domain was required for the association with both Tom22 and ANT. The results serve as a working framework to understand mitoBKCa import and functional relationships.

  3. Enzymes that hydrolyze adenine nucleotides in platelets and polymorphisms in the alpha2 gene of integrin alpha2beta1 in patients with von Willebrand disease.

    PubMed

    Santos, Karen Freitas; Battisti, Vanessa; Corrêa, Maísa de Carvalho; Mann, Thaís Rapachi; Pereira, Renata da Silva; Araújo, Maria do Carmo; Brülê, Alice Odete; Schetinger, Maria Rosa Chitolina; Morsch, Vera Maria

    2010-07-01

    Von Willebrand disease (VWD) is one of the most common inherited bleeding diseases caused by a qualitative or quantitative deficiency of the von Willebrand factor (FvW). FvW is a multimeric glycoprotein synthesized by megakaryocytes and endothelial cells and it is present in the subendothelial matrix, blood plasma, platelets, and endothelium. This glycoprotein plays an important role in thrombus formation by initiating platelet adhesion to sites of injury as well as platelet aggregation. The aim of this study was to evaluate the activities of enzymes that hydrolyze adenine nucleotides in platelets, ristocetin-induced platelet aggregation (RIPA), and polymorphisms of the alpha2 gene of alpha2beta1 integrin from VWD patients. Platelet nucleoside triphosphate diphosphohydrolase (NTPDase), 5'-nucleotidase, and ecto-nucleotide pyrophosphatase/phosphodiesterase (E-NPP) activities were verified in 14 VWD patients. For RIPA determination, a final concentration of 1.25 mg/ml of ristocetin was used. Polymorphisms of the alpha2 gene were analyzed through PCR. Platelet NTPDase and E-NPP were decreased in VWD patients. 5'-Nucleotidase activity was not statistically significant between controls and VWD patients. RIPA was significantly reduced, with an allelic frequency of 78.57% for 807C in VWD patients. Our results indicated reduced platelet NTPDase and E-NPP activities which might be related to the low platelet adhesiveness. The prevalence of the 807C allele might account for the variability in bleeding in VWD.

  4. Identification and Characterization of a Plastidic Adenine Nucleotide Uniporter (OsBT1-3) Required for Chloroplast Development in the Early Leaf Stage of Rice

    PubMed Central

    Hu, Daoheng; Li, Yang; Jin, Wenbin; Gong, Hanyu; He, Qiong; Li, Yangsheng

    2017-01-01

    Chloroplast development is an important subject in botany. In this study, a rice (Oryza sativa) mutant exhibiting impairment in early chloroplast development (seedling leaf albino (sla)) was isolated from a filial generation via hybridization breeding. The sla mutant seedlings have an aberrant form of chloroplasts, which resulted in albinism at the first and second leaves; however, the leaf sheath was green. The mutant gradually turned green after the two-leaf stage, and the third leaf was a normal shade of green. Map-based cloning indicated that the gene OsBT1-3, which belongs to the mitochondrial carrier family (MCF), is responsible for the sla mutant phenotype. OsBT1-3 expression was high in the young leaves, decreased after the two-leaf stage, and was low in the sheath, and these findings are consistent with the recovery of a number of chloroplasts in the third leaf of sla mutant seedlings. The results also showed that OsBT1-3-yellow fluorescent protein (YFP) was targeted to the chloroplast, and a Western blot assay using a peptide-specific antibody indicated that OsBT1-3 localizes to the chloroplast envelope. We also demonstrated that OsBT1-3 functions as a unidirectional transporter of adenine nucleotides. Based on these findings, OsBT1-3 likely acts as a plastid nucleotide uniporter and is essential for chloroplast development in rice leaves at the young seedling stage. PMID:28134341

  5. Biospecific affinity chromatography of an adenosine 3′:5′-cyclic monophosphate-stimulated protein kinase (protamine kinase from trout testis) by using immobilized adenine nucleotides

    PubMed Central

    Jergil, Bengt; Guilford, Hugh; Mosbach, Klaus

    1974-01-01

    1. Two adenine nucleotides, 8-(6-aminohexyl)aminoadenosine 3′:5′-cyclic monophosphate and 8-(6-aminohexyl)amino-AMP, were synthesized. Their structures were established in particular by using mass spectroscopy. 2. Free cyclic AMP and 8-(6-aminohexyl)amino cyclic AMP both stimulate protamine kinase activity at low concentrations, but are inhibitory at concentrations above 0.1mm. AMP is an inhibitor of enzymic activity, whereas neither 8-(6-aminohexyl)amino-AMP nor the earlier synthesized N6-(6-aminohexyl)-AMP is inhibitory. 3. The nucleotides were coupled to Sepharose 4B and used for biospecific chromatography of partially purified protamine kinase. Enzyme applied at high buffer concentrations to the cyclic AMP–Sepharose material was retarded and thereby purified tenfold. At low buffer concentrations the enzyme was adsorbed to the affinity material, and was subsequently released by a pulse of the inhibitor AMP, yielding a 50–100-fold purification. Enzyme applied to immobilized 8-(6-aminohexyl)amino-AMP or N6-(6-aminohexyl)-AMP was eluted together with the main protein peak in the void volume. 4. Protamine kinase eluted from 8-(6-aminohexyl)amino cyclic AMP–Sepharose was no longer activated by cyclic AMP. Results from sucrose gradient centrifugation suggest that a dissociation of the enzyme took place on the immobilized nucleotide. 5. Further information on the mass spectroscopy has been deposited as Supplementary Publication SUP 50026 at the British Library (Lending Division) (formerly the National Lending Library for Science and Technology), Boston Spa, Yorks. LS23 7BQ, U.K., from whom copies may be obtained on the terms given in Biochem. J. (1973) 131, 5. PMID:4374933

  6. RHAU helicase stabilizes G4 in its nucleotide-free state and destabilizes G4 upon ATP hydrolysis

    PubMed Central

    You, Huijuan; Lattmann, Simon; Rhodes, Daniela; Yan, Jie

    2017-01-01

    The DEAH-box ATP-dependent RHAU helicases specifically unfold RNA and DNA G-quadruplexes (G4s). However, it remains unclear how the RHAU's G4 unfolding activity is coupled to different stages of the ATPase cycle. Here, using a single-molecule manipulation approach, we show that binding of Drosophila RHAU stabilizes an intramolecularly folded parallel DNA G4 against mechanical unfolding in its nucleotide-free and in its AMP-PNP or ADP bound states, while it destabilizes the G4 when coupled to ATP hydrolysis. Importantly, our results show that the ADP·AlF\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$_4^-$\\end{document}-bound RHAU does not stabilize the G4. We also found that both a single-stranded 3′ DNA tail and the RSM domain of RHAU that binds specifically to the G4 structure, are dispensable for the stabilization of the G4, but both are required for G4 destabilization. Our study provides the first evidence that the unfolding kinetics of a G-quadruplex can be modulated by different nucleotide-bound states of the helicase. PMID:28069994

  7. 2-O-β-D-Glucopyranosyl-carboxyatractyligenin from Coffea L. inhibits adenine nucleotide translocase in isolated mitochondria but is quantitatively degraded during coffee roasting.

    PubMed

    Lang, Roman; Fromme, Tobias; Beusch, Anja; Wahl, Anika; Klingenspor, Martin; Hofmann, Thomas

    2013-09-01

    Atractyloside (1) and carboxyatractyloside (2) are well-known inhibitors of the adenine nucleotide translocase (ANT) in mitochondria, thus effectively blocking oxidative phosphorylation. Structurally related derivatives atractyligenin (3), 2-O-β-D-glucopyranosyl-atractyligenin (4), 3'-O-β-D-glucopyranosyl-2'-O-isovaleryl-2β-(2-desoxy-atractyligenin)-β-D-glucopyranoside (5), and 2-O-β-D-glucopyranosyl-carboxyatractyligenin (6) were isolated from raw beans of Coffea L. and the impact of 1-6 on ANT activity was evaluated in isolated mitochondria. Among the coffee components, 6 significantly inhibited ANT activity leading to reduced respiration. Quantitative analysis in commercial coffees, experimental roastings of coffee, and model experiments using purified compound 6 consistently revealed a complete degradation during thermal treatment. In comparison, raw coffee extracts were found to contain high levels of 6, which are therefore expected to be present in food products enriched with raw coffee extracts. This implies the necessity of analytically controlling the levels of 6 in raw coffee extracts when used as additives for food products.

  8. To involvement the conformation of the adenine nucleotide translocase in opening the Tl(+)-induced permeability transition pore in Ca(2+)-loaded rat liver mitochondria.

    PubMed

    Korotkov, Sergey M; Konovalova, Svetlana A; Brailovskaya, Irina V; Saris, Nils-Erik L

    2016-04-01

    The conformation of adenine nucleotide translocase (ANT) has a profound impact in opening the mitochondrial permeability transition pore (MPTP) in the inner membrane. Fixing the ANT in 'c' conformation by phenylarsine oxide (PAO), tert-butylhydroperoxide (tBHP), and carboxyatractyloside as well as the interaction of 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS) with mitochondrial thiols markedly attenuated the ability of ADP to inhibit the MPTP opening. We earlier found (Korotkov and Saris, 2011) that calcium load of rat liver mitochondria in medium containing TlNO3 and KNO3 stimulated the Tl(+)-induced MPTP opening in the inner mitochondrial membrane. The MPTP opening as well as followed increase in swelling, a drop in membrane potential (ΔΨmito), and a decrease in state 3, state 4, and 2,4-dinitrophenol-uncoupled respiration were visibly enhanced in the presence of PAO, tBHP, DIDS, and carboxyatractyloside. However, these effects were markedly inhibited by ADP and membrane-penetrant hydrophobic thiol reagent, N-ethylmaleimide (NEM) which fix the ANT in 'm' conformation. Cyclosporine A additionally potentiated these effects of ADP and NEM. Our data suggest that conformational changes of the ANT may be directly involved in the opening of the Tl(+)-induced MPTP in the inner membrane of Ca(2+)-loaded rat liver mitochondria. Using the Tl(+)-induced MPTP model is discussed in terms finding new transition pore inhibitors and inducers among different chemical and natural compounds.

  9. A conserved 11 nucleotide sequence contains an essential promoter element of the maize mitochondrial atp1 gene.

    PubMed Central

    Rapp, W D; Stern, D B

    1992-01-01

    To determine the structure of a functional plant mitochondrial promoter, we have partially purified an RNA polymerase activity that correctly initiates transcription at the maize mitochondrial atp1 promoter in vitro. Using a series of 5' deletion constructs, we found that essential sequences are located within--19 nucleotides (nt) of the transcription initiation site. The region surrounding the initiation site includes conserved sequence motifs previously proposed to be maize mitochondrial promoter elements. Deletion of a conserved 11 nt sequence showed that it is critical for promoter function, but deletion or alteration of conserved upstream G(A/T)3-4 repeats had no effect. When the atp1 11 nt sequence was inserted into different plasmids lacking mitochondrial promoter activity, transcription was only observed for one of these constructs. We infer from these data that the functional promoter extends beyond this motif, most likely in the 5' direction. The maize mitochondrial cox3 and atp6 promoters also direct transcription initiation in this in vitro system, suggesting that it may be widely applicable for studies of mitochondrial transcription in this species. Images PMID:1372246

  10. Purine metabolite and energy charge analysis of Trypanosoma brucei cells in different growth phases using an optimized ion-pair RP-HPLC/UV for the quantification of adenine and guanine pools.

    PubMed

    Graven, Patricia; Tambalo, Margherita; Scapozza, Leonardo; Perozzo, Remo

    2014-06-01

    Human African Trypanosomiasis (HAT) is caused by the protozoan parasite Trypanosoma brucei. Although trypanosomes are well-studied model organisms, only little is known about their adenine and guanine nucleotide pools. Besides being building blocks of RNA and DNA, these nucleotides are also important modulators of diverse biochemical cellular processes. Adenine nucleotides also play an important role in the regulation of metabolic energy. The energetic state of cells is evaluated by the energy charge which gives information about how much energy is available in form of high energy phosphate bonds of adenine nucleotides. A sensitive and reproducible ion-pair RP-HPLC/UV method was developed and optimized, allowing the quantification of guanine and adenine nucleosides/nucleotides in T. brucei. With this method, the purine levels and their respective ratios were investigated in trypanosomes during logarithmic, stationary and senescent growth phases. Results of this study showed that all adenine and guanine purines under investigation were in the low mM range. The energy charge was found to decrease from logarithmic to static and to senescent phase whereas AMP/ATP, ADP/ATP and GDP/GTP ratios increased in the same order. In addition, the AMP/ATP ratio varied as the square of the ADP/ATP ratio, indicating AMP to be the key energy sensor molecule in trypanosomes.

  11. Functional Analysis of the Streptomyces coelicolor NrdR ATP-Cone Domain: Role in Nucleotide Binding, Oligomerization, and DNA Interactions▿ †

    PubMed Central

    Grinberg, Inna; Shteinberg, Tatyana; Hassan, A. Quamrul; Aharonowitz, Yair; Borovok, Ilya; Cohen, Gerald

    2009-01-01

    Ribonucleotide reductases (RNRs) are essential enzymes in all living cells, providing the only known de novo pathway for the biosynthesis of deoxyribonucleotides (dNTPs), the immediate precursors of DNA synthesis and repair. RNRs catalyze the controlled reduction of all four ribonucleotides to maintain a balanced pool of dNTPs during the cell cycle. Streptomyces species contain genes, nrdAB and nrdJ, coding for oxygen-dependent class I and oxygen-independent class II RNRs, either of which is sufficient for vegetative growth. Both sets of genes are transcriptionally repressed by NrdR. NrdR contains a zinc ribbon DNA-binding domain and an ATP-cone domain similar to that present in the allosteric activity site of many class I and class III RNRs. Purified NrdR contains up to 1 mol of tightly bound ATP or dATP per mol of protein and binds to tandem 16-bp sequences, termed NrdR-boxes, present in the upstream regulatory regions of bacterial RNR operons. Previously, we showed that the ATP-cone domain alone determines nucleotide binding and that an NrdR mutant defective in nucleotide binding was unable to bind to DNA probes containing NrdR-boxes. These observations led us to propose that when NrdR binds ATP/dATP it undergoes a conformational change that affects DNA binding and hence RNR gene expression. In this study, we analyzed a collection of ATP-cone mutant proteins containing changes in residues inferred to be implicated in nucleotide binding and show that they result in pleiotrophic effects on ATP/dATP binding, on protein oligomerization, and on DNA binding. A model is proposed to integrate these observations. PMID:19047342

  12. Adenosine produced from adenine nucleotides through an interaction between apoptotic cells and engulfing macrophages contributes to the appearance of transglutaminase 2 in dying thymocytes.

    PubMed

    Sándor, Katalin; Pallai, Anna; Duró, Edina; Legendre, Pascal; Couillin, Isabelle; Sághy, Tibor; Szondy, Zsuzsa

    2017-03-01

    Transglutaminase 2 (TG2) has been known for a long time to be associated with the in vivo apoptosis program of various cell types, including T cells. Though the expression of the enzyme is strongly induced in mouse thymocytes following apoptosis induction in vivo, no significant induction of TG2 can be detected, when thymocytes are induced to die by the same stimuli in vitro indicating that signals arriving from the tissue environment are required for the proper in vivo induction of the enzyme. Previous studies from our laboratory have demonstrated that two of these signals, transforming growth factor-β (TGF-β) and retinoids, are produced by macrophages engulfing apoptotic cells. However, in addition to TGF-β and retinoids, engulfing macrophages produce adenosine as well. Here, we show that in vitro adenosine, adenosine, and retinoic acid or adenosine, TGF-β and retinoic acids together can significantly enhance the TG2 mRNA expression in dying thymocytes. The effect of adenosine is mediated via adenosine A2A receptors (A2ARs) and the A2AR-triggered adenylate cyclase signaling pathway. In accordance, loss of A2ARs in A2AR null mice significantly attenuates the in vivo induction of TG2 following apoptosis induction in the thymus indicating that adenosine indeed contributes in vivo to the apoptosis-related appearance of the enzyme. We also demonstrate that adenosine is produced extracellularly during engulfment of apoptotic thymocytes, partly from adenine nucleotides released via thymocyte pannexin-1 channels. Our data reveal a novel crosstalk between macrophages and apoptotic cells, in which apoptotic cell uptake-related adenosine production contributes to the appearance of TG2 in the dying thymocytes.

  13. Role of Mg(2+) in Ca(2+)-induced Ca(2+) release through ryanodine receptors of frog skeletal muscle: modulations by adenine nucleotides and caffeine.

    PubMed Central

    Murayama, T; Kurebayashi, N; Ogawa, Y

    2000-01-01

    Mg(2+) serves as a competitive antagonist against Ca(2+) in the high-affinity Ca(2+) activation site (A-site) and as an agonist of Ca(2+) in the low-affinity Ca(2+) inactivation site (I-site) of the ryanodine receptor (RyR), which mediates Ca(2+)-induced Ca(2+) release (CICR). This paper presents the quantitative determination of the affinities for Ca(2+) and Mg(2+) of A- and I-sites of RyR in frog skeletal muscles by measuring [(3)H]ryanodine binding to purified alpha- and beta-RyRs and CICR activity in skinned fibers. There was only a minor difference in affinity at most between alpha- and beta-RyRs. The A-site favored Ca(2+) 20- to 30-fold over Mg(2+), whereas the I-site was nonselective between the two cations. The RyR in situ showed fivefold higher affinities for Ca(2+) and Mg(2+) of both sites than the purified alpha- and beta-RyRs with unchanged cation selectivity. Adenine nucleotides, whose stimulating effect was found to be indistinguishable between free and complexed forms, did not alter the affinities for cations in either site, except for the increased maximum activity of RyR. Caffeine increased not only the affinity of the A-site for Ca(2+) alone, but also the maximum activity of RyR with otherwise minor changes. The results presented here suggest that the rate of CICR in frog skeletal muscles appears to be too low to explain the physiological Ca(2+) release, even though Mg(2+) inhibition disappears. PMID:10733962

  14. Identification of mutations in regions corresponding to the two putative nucleotide (ATP)-binding folds of the cystic fibrosis gene

    SciTech Connect

    Kerem, B.; Zielenski, J.; Markiewicz, D.; Bozon, D.; Kennedy, D.; Rommens, J.M. ); Gazit, E. ); Yahav, J. ); Riordan, J.R. ); Collins, F.S. ); Tsui, Lapchee Univ. of Toronto, Ontario )

    1990-11-01

    Additional mutations in the cystic fibrosis (CF) gene were identified in the regions corresponding to the two putative nucleotide (ATP)-binding folds (NBFs) of the predicted polypeptide. The patient cohort included 46 Canadian CF families with well-characterized DNA marker haplotypes spanning the disease locus and several other families from Israel. Eleven mutations were found in the first NBF, 2 were found in the second NBF, but none was found in the R-domain. Seven of the mutations were of the missense type affecting some of the highly conserved amino acid residues in the first NBF; 3 were nonsense mutations; 2 would probably affect mRNA splicing; 2 corresponded to small deletions, including another 3-base-pair deletion different from the major mutation ({delta}F508), which could account for 70% of the CF chromosomes in the population. Nine of these mutations accounted for 12 of the 31 non-{delta}F508 CF chromosomes in the Canadian families. The highly heterogeneous nature of the remaining CF mutations provides important insights into the structure and function of the protein, but it also suggests that DNA-based genetic screening for CF carrier status will not be straightforward.

  15. Extracellular ATP metabolism on vascular endothelial cells: A pathway with pro-thrombotic and anti-thrombotic molecules.

    PubMed

    Fuentes, Eduardo; Palomo, Iván

    2015-12-01

    Vascular endothelial contributes to the metabolism and interconversion of extracellular adenine nucleotides via ecto-ATPase/ADPase (CD39) and ecto-5'nucleotidase (CD73) activities. These enzymes collectively dephosphorylate ATP, ADP, and AMP with the production of additional adenosine. In the vascular system, adenine nucleotides (ATP and ADP) and nucleoside adenosine represent an important class of extracellular molecules involved in modulating the processes linked to vascular thrombosis exerting various effects in platelets. Yet, the mechanisms by which the extracellular ATP metabolism in the local environment trigger pro-thrombotic and anti-thrombotic states are yet to be fully elucidated. In this article, the relative contribution of extracellular ATP metabolism in platelet regulation is explored.

  16. The role of ATP-sensitive potassium channels in cellular function and protection in the cardiovascular system.

    PubMed

    Tinker, Andrew; Aziz, Qadeer; Thomas, Alison

    2014-01-01

    ATP-sensitive potassium channels (K(ATP)) are widely distributed and present in a number of tissues including muscle, pancreatic beta cells and the brain. Their activity is regulated by adenine nucleotides, characteristically being activated by falling ATP and rising ADP levels. Thus, they link cellular metabolism with membrane excitability. Recent studies using genetically modified mice and genomic studies in patients have implicated K(ATP) channels in a number of physiological and pathological processes. In this review, we focus on their role in cellular function and protection particularly in the cardiovascular system.

  17. The nucleotide-binding domains of sulfonylurea receptor 2A and 2B play different functional roles in nicorandil-induced activation of ATP-sensitive K+ channels.

    PubMed

    Yamada, Mitsuhiko; Kurachi, Yoshihisa

    2004-05-01

    Nicorandil activates ATP-sensitive K(+) channels composed of Kir6.2 and either sulfonylurea receptor (SUR) 2A or 2B. Although SUR2A and SUR2B differ only in their C-terminal 42 amino acids (C42) and possess identical drug receptors and nucleotide-binding domains (NBDs), nicorandil more potently activates SUR2B/Kir6.2 than SUR2A/Kir6.2 channels. Here, we analyzed the roles of NBDs in these channels' response to nicorandil with the inside-out configuration of the patch-clamp method. Binding and hydrolysis of nucleotides by NBDs were impaired by mutations in the Walker A motif of NBD1 (K708A) and NBD2 (K1349A) and in the Walker B motif of NBD2 (D1470N). Experiments were done with internal ATP (1 mM). In SUR2A/Kir6.2 channels, the K708A mutation abolished, and the K1349A but not D1470N mutation reduced the sensitivity to nicorandil. ADP (100 microM) significantly increased the wild-type channels' sensitivity to nicorandil, which was abolished by the K1349A or D1470N mutation. Thus, the SUR2A/Kir6.2 channels' response to nicorandil critically depends on ATP-NBD1 interaction and is facilitated by interactions of ATP or ADP with NBD2. In SUR2B/Kir6.2 channels, either the K708A or K1349A mutation partially suppressed the response to nicorandil, and double mutations abolished it. The D1470N mutation also significantly impaired the response. ADP did not sensitize the channels. Thus, NBD2 hydrolyzes ATP, and NBD1 and NBD2 equally contribute to the response by interacting with ATP and ADP, accounting for the higher nicorandil sensitivity of SUR2B/Kir6.2 than SUR2A/Kir6.2 channels in the presence of ATP alone. Thus, C42 modulates the interaction of both NBDs with intracellular nucleotides.

  18. Fluorometric Determination of Adenosine Nucleotide Derivatives as Measures of the Microfouling, Detrital, and Sedimentary Microbial Biomass and Physiological Status

    PubMed Central

    Davis, William M.; White, David C.

    1980-01-01

    Adenosine, adenine, cyclic adenosine monophosphate (AMP), AMP, nicotinamide adenine dinucleotide, adenosine diphosphate, and adenosine triphosphate (ATP) were recovered quantitatively from aqueous portions of lipid extracts of microfouling, detrital, and sedimentary microbial communities. These could be detected quantitatively in the picomolar range by forming their 1-N6-etheno derivatives and analyzing by high-pressure liquid chromatography with fluorescence detection. Lipid extraction and subsequent analysis allowed the simultaneous measurement of the microbial community structure, total microbial biomass with the quantitative recovery of the adenine-containing cellular components, which were protected from enzymatic destruction. This extraction and fluorescent derivatization method showed equivalency with the luciferin-luciferase method for bacterial ATP measurements. Quick-freezing samples in the field with dry ice-acetone preserved the ATP and energy charge (a ratio of adenosine nucleotides) for analysis at remote laboratories. The metabolic lability of ATP in estuarine detrital and microfouling communities, as well as bacterial monocultures of constant biomass, showed ATP to be a precarious measure of biomass under some conditions. Combinations of adenosine and adenine nucleotides gave better correlations with microbial biomass measured as extractable lipid phosphate in the detrital and microfouling microbial communities than did ATP alone. Stresses such as anoxia or filtration are reflected in the rapid accumulation of intracellular adenosine and the excretion of adenosine and AMP into the surrounding milieu. Increases in AMP and adenosine may prove to be more sensitive indicators of metabolic status than the energy charge. PMID:16345633

  19. A Single Nucleotide Polymorphism Associates With the Response of Muscle ATP Synthesis to Long-Term Exercise Training in Relatives of Type 2 Diabetic Humans

    PubMed Central

    Kacerovsky-Bielesz, Gertrud; Kacerovsky, Michaela; Chmelik, Marek; Farukuoye, Michaela; Ling, Charlotte; Pokan, Rochus; Tschan, Harald; Szendroedi, Julia; Schmid, Albrecht Ingo; Gruber, Stephan; Herder, Christian; Wolzt, Michael; Moser, Ewald; Pacini, Giovanni; Smekal, Gerhard; Groop, Leif; Roden, Michael

    2012-01-01

    OBJECTIVE Myocellular ATP synthesis (fATP) associates with insulin sensitivity in first-degree relatives of subjects with type 2 diabetes. Short-term endurance training can modify their fATP and insulin sensitivity. This study examines the effects of moderate long-term exercise using endurance or resistance training in this cohort. RESEARCH DESIGN AND METHODS A randomized, parallel-group trial tested 16 glucose-tolerant nonobese relatives (8 subjects in the endurance training group and 8 subjects in the resistance training group) before and after 26 weeks of endurance or resistance training. Exercise performance was assessed from power output and oxygen uptake (Vo2) during incremental tests and from maximal torque of knee flexors (MaxTflex) and extensors (MaxText) using isokinetic dynamometry. fATP and ectopic lipids were measured with 1H/31P magnetic resonance spectroscopy. RESULTS Endurance training increased power output and Vo2 by 44 and 30%, respectively (both P < 0.001), whereas resistance training increased MaxText and MaxTflex by 23 and 40%, respectively (both P < 0.001). Across all groups, insulin sensitivity (382 ± 90 vs. 389 ± 40 mL ⋅ min−1 ⋅ m−2) and ectopic lipid contents were comparable after exercise training. However, 8 of 16 relatives had 26% greater fATP, increasing from 9.5 ± 2.3 to 11.9 ± 2.4 μmol ⋅ mL−1 ⋅ m−1 (P < 0.05). Six of eight responders were carriers of the G/G single nucleotide polymorphism rs540467 of the NDUFB6 gene (P = 0.019), which encodes a subunit of mitochondrial complex I. CONCLUSIONS Moderate exercise training for 6 months does not necessarily improve insulin sensitivity but may increase ATP synthase flux. Genetic predisposition can modify the individual response of the ATP synthase flux independently of insulin sensitivity. PMID:22190678

  20. Time-resolved Fourier Transform Infrared Spectroscopy of the Nucleotide-binding Domain from the ATP-binding Cassette Transporter MsbA

    PubMed Central

    Syberg, Falk; Suveyzdis, Yan; Kötting, Carsten; Gerwert, Klaus; Hofmann, Eckhard

    2012-01-01

    MsbA is an essential Escherichia coli ATP-binding cassette (ABC) transporter involved in the flipping of lipid A across the cytoplasmic membrane. It is a close homologue of human P-glycoprotein involved in multidrug resistance, and it similarly accepts a variety of small hydrophobic xenobiotics as transport substrates. X-ray structures of three full-length ABC multidrug exporters (including MsbA) have been published recently and reveal large conformational changes during the transport cycle. However, how ATP hydrolysis couples to these conformational changes and finally the transport is still an open question. We employed time-resolved FTIR spectroscopy, a powerful method to elucidate molecular reaction mechanisms of soluble and membrane proteins, to address this question with high spatiotemporal resolution. Here, we monitored the hydrolysis reaction in the nucleotide-binding domain of MsbA at the atomic level. The isolated MsbA nucleotide-binding domain hydrolyzed ATP with Vmax = 45 nmol mg−1 min−1, similar to the full-length transporter. A Hill coefficient of 1.49 demonstrates positive cooperativity between the two catalytic sites formed upon dimerization. Global fit analysis of time-resolved FTIR data revealed two apparent rate constants of ∼1 and 0.01 s−1, which were assigned to formation of the catalytic site and hydrolysis, respectively. Using isotopically labeled ATP, we identified specific marker bands for protein-bound ATP (1245 cm−1), ADP (1101 and 1205 cm−1), and free phosphate (1078 cm−1). Cleavage of the β-phosphate–γ-phosphate bond was found to be the rate-limiting step; no protein-bound phosphate intermediate was resolved. PMID:22593573

  1. Specific and nonspecific metal ion-nucleotide interactions at aqueous/solid interfaces functionalized with adenine, thymine, guanine, and cytosine oligomers.

    PubMed

    Holland, Joseph G; Malin, Jessica N; Jordan, David S; Morales, Esmeralda; Geiger, Franz M

    2011-03-02

    This article reports nonlinear optical measurements that quantify, for the first time directly and without labels, how many Mg(2+) cations are bound to DNA 21-mers covalently linked to fused silica/water interfaces maintained at pH 7 and 10 mM NaCl, and what the thermodynamics are of these interactions. The overall interaction of Mg(2+) with adenine, thymine, guanine, and cytosine is found to involve -10.0 ± 0.3, -11.2 ± 0.3, -14.0 ± 0.4, and -14.9 ± 0.4 kJ/mol, and nonspecific interactions with the phosphate and sugar backbone are found to contribute -21.0 ± 0.6 kJ/mol for each Mg(2+) ion bound. The specific and nonspecific contributions to the interaction energy of Mg(2+) with oligonucleotide single strands is found to be additive, which suggests that within the uncertainty of these surface-specific experiments, the Mg(2+) ions are evenly distributed over the oligomers and not isolated to the most strongly binding nucleobase. The nucleobases adenine and thymine are found to bind only three Mg(2+) ions per 21-mer oligonucleotide, while the bases cytosine and guanine are found to bind eleven Mg(2+) ions per 21-mer oligonucleotide.

  2. Trypanosoma brucei adenine-phosphoribosyltransferases mediate adenine salvage and aminopurinol susceptibility but not adenine toxicity.

    PubMed

    Lüscher, Alexandra; Lamprea-Burgunder, Estelle; Graf, Fabrice E; de Koning, Harry P; Mäser, Pascal

    2014-04-01

    African trypanosomes, like all obligate parasitic protozoa, cannot synthesize purines de novo and import purines from their hosts to build nucleic acids. The purine salvage pathways of Trypanosoma brucei being redundant, none of the involved enzymes is likely to be essential. Nevertheless they can be of pharmacological interest due to their role in activation of purine nucleobase or nucleoside analogues, which only become toxic when converted to nucleotides. Aminopurine antimetabolites, in particular, are potent trypanocides and even adenine itself is toxic to trypanosomes at elevated concentrations. Here we report on the T. brucei adenine phosphoribosyltransferases TbAPRT1 and TbAPRT2, encoded by the two genes Tb927.7.1780 and Tb927.7.1790, located in tandem on chromosome seven. The duplication is syntenic in all available Trypanosoma genomes but not in Leishmania. While TbAPRT1 is cytosolic, TbAPRT2 possesses a glycosomal targeting signal and co-localizes with the glycosomal marker aldolase. Interestingly, the distribution of glycosomal targeting signals among trypanosomatid adenine phosphoribosyltransferases is not consistent with their phylogeny, indicating that the acquisition of adenine salvage to the glycosome happened after the radiation of Trypanosoma. Double null mutant T. brucei Δtbaprt1,2 exhibited no growth phenotype but no longer incorporated exogenous adenine into the nucleotide pool. This, however, did not reduce their sensitivity to adenine. The Δtbaprt1,2 trypanosomes were resistant to the adenine isomer aminopurinol, indicating that it is activated by phosphoribosyl transfer. Aminopurinol was about 1000-fold more toxic to bloodstream-form T. brucei than the corresponding hypoxanthine isomer allopurinol. Aminopurinol uptake was not dependent on the aminopurine permease P2 that has been implicated in drug resistance.

  3. Neonatal Diabetes Caused by Mutations in Sulfonylurea Receptor 1: Interplay between Expression and Mg-Nucleotide Gating Defects of ATP-Sensitive Potassium Channels

    PubMed Central

    Zhou, Qing; Garin, Intza; Castaño, Luis; Argente, Jesús; Muñoz-Calvo, Ma. Teresa; Perez de Nanclares, Guiomar; Shyng, Show-Ling

    2010-01-01

    Context: ATP-sensitive potassium (KATP) channels regulate insulin secretion by coupling glucose metabolism to β-cell membrane potential. Gain-of-function mutations in the sulfonylurea receptor 1 (SUR1) or Kir6.2 channel subunit underlie neonatal diabetes. Objective: The objective of the study was to determine the mechanisms by which two SUR1 mutations, E208K and V324M, associated with transient neonatal diabetes affect KATP channel function. Design: E208K or V324M mutant SUR1 was coexpressed with Kir6.2 in COS cells, and expression and gating properties of the resulting channels were assessed biochemically and electrophysiologically. Results: Both E208K and V324M augment channel response to MgADP stimulation without altering sensitivity to ATP4− or sulfonylureas. Surprisingly, whereas E208K causes only a small increase in MgADP response consistent with the mild transient diabetes phenotype, V324M causes a severe activating gating defect. Unlike E208K, V324M also impairs channel expression at the cell surface, which is expected to dampen its functional impact on β-cells. When either mutation was combined with a mutation in the second nucleotide binding domain of SUR1 previously shown to abolish Mg-nucleotide response, the activating effect of E208K and V324M was also abolished. Moreover, combination of E208K and V324M results in channels with Mg-nucleotide sensitivity greater than that seen in individual mutations alone. Conclusion: The results demonstrate that E208K and V324M, located in distinct domains of SUR1, enhance transduction of Mg-nucleotide stimulation from the SUR1 nucleotide binding folds to Kir6.2. Furthermore, they suggest that diabetes severity is determined by interplay between effects of a mutation on channel expression and channel gating. PMID:20810569

  4. The nucleobase adenine as a signalling molecule in the kidney.

    PubMed

    Thimm, D; Schiedel, A C; Peti-Peterdi, J; Kishore, B K; Müller, C E

    2015-04-01

    In 2002, the first receptor activated by the nucleobase adenine was discovered in rats. In the past years, two adenine receptors (AdeRs) in mice and one in Chinese hamsters, all of which belong to the family of G protein-coupled receptors (GPCRs), were cloned and pharmacologically characterized. Based on the nomenclature for other purinergic receptor families (P1 for adenosine receptors and P2 for nucleotide, e.g. ATP, receptors), AdeRs were designated P0 receptors. Pharmacological data indicate the existence of G protein-coupled AdeRs in pigs and humans as well; however, those have not been cloned so far. Current data suggest a role for adenine and AdeRs in renal proximal tubules. Furthermore, AdeRs are suggested to be functional counterplayers of vasopressin in the collecting duct system, thus exerting diuretic effects. We are only at the beginning of understanding the significance of this new class of purinergic receptors, which might become future drug targets.

  5. Measurement of ADP-ATP exchange in relation to mitochondrial transmembrane potential and oxygen consumption.

    PubMed

    Chinopoulos, Christos; Kiss, Gergely; Kawamata, Hibiki; Starkov, Anatoly A

    2014-01-01

    We have previously described a fluorometric method to measure ADP-ATP exchange rates in mitochondria of permeabilized cells, in which several enzymes that consume substantial amounts of ATP and other competing reactions interconverting adenine nucleotides are present. This method relies on recording changes in free extramitochondrial Mg(2+) with the Mg(2+)-sensitive fluorescent indicator Magnesium Green (MgGr)™, exploiting the differential affinity of ADP and ATP for Mg(2+). In particular, cells are permeabilized with digitonin in the presence of BeF3(-) and Na3VO4, inhibiting all ATP- and ADP-utilizing reactions but mitochondrial exchange of ATP with ADP catalyzed by the adenine nucleotide translocase. The rate of ATP appearing in the medium upon the addition of ADP to energized mitochondria is then calculated from the rate of change in free extramitochondrial Mg(2+) using standard binding equations. Here, we describe a variant of this method involving an improved calibration step. This step minimizes errors that may be introduced during the conversion of the MgGr™ signal into free extramitochondrial [Mg(2+)] and ATP. Furthermore, we describe an approach for combining this methodology with the measurement of mitochondrial membrane potential and oxygen consumption in the same sample. The method described herein is useful for the study of malignant cells, which are known to thrive in hypoxic environments and to harbor mitochondria with profound functional alterations.

  6. Measurement of ADP–ATP Exchange in Relation to Mitochondrial Transmembrane Potential and Oxygen Consumption

    PubMed Central

    Chinopoulos, Christos; Kiss, Gergely; Kawamata, Hibiki; Starkov, Anatoly A.

    2015-01-01

    We have previously described a fluorometric method to measure ADP–ATP exchange rates in mitochondria of permeabilized cells, in which several enzymes that consume substantial amounts of ATP and other competing reactions interconverting adenine nucleotides are present. This method relies on recording changes in free extramitochondrial Mg2+ with the Mg2+-sensitive fluorescent indicator Magnesium Green (MgGr)™, exploiting the differential affinity of ADP and ATP for Mg2+. In particular, cells are permeabilized with digitonin in the presence of BeF3− and Na3VO4, inhibiting all ATP- and ADP-utilizing reactions but mitochondrial exchange of ATP with ADP catalyzed by the adenine nucleotide translocase. The rate of ATP appearing in the medium upon the addition of ADP to energized mitochondria is then calculated from the rate of change in free extramitochondrial Mg2+ using standard binding equations. Here, we describe a variant of this method involving an improved calibration step. This step minimizes errors that may be introduced during the conversion of the MgGr™ signal into free extramitochondrial [Mg2+] and ATP. Furthermore, we describe an approach for combining this methodology with the measurement of mitochondrial membrane potential and oxygen consumption in the same sample. The method described herein is useful for the study of malignant cells, which are known to thrive in hypoxic environments and to harbor mitochondria with profound functional alterations. PMID:24862274

  7. A kinetic assay of mitochondrial ADP-ATP exchange rate in permeabilized cells.

    PubMed

    Kawamata, Hibiki; Starkov, Anatoly A; Manfredi, Giovanni; Chinopoulos, Christos

    2010-12-01

    We previously described a method to measure ADP-ATP exchange rates in isolated mitochondria by recording the changes in free extramitochondrial [Mg(2+)] reported by an Mg(2+)-sensitive fluorescent indicator, exploiting the differential affinity of ADP and ATP to Mg(2+). In the current article, we describe a modification of this method suited for following ADP-ATP exchange rates in environments with competing reactions that interconvert adenine nucleotides such as in permeabilized cells that harbor phosphorylases and kinases, ion pumps exhibiting substantial ATPase activity, and myosin ATPase activity. Here we report that the addition of BeF(3)(-) and sodium orthovanadate (Na(3)VO(4)) to medium containing digitonin-permeabilized cells inhibits all ADP-ATP-using reactions except the adenine nucleotide translocase (ANT)-mediated mitochondrial ADP-ATP exchange. An advantage of this assay is that mitochondria that may have been also permeabilized by digitonin do not contribute to ATP consumption by the exposed F(1)F(o)-ATPase due to its sensitivity to BeF(3)(-) and Na(3)VO(4). With this assay, ADP-ATP exchange rate mediated by the ANT in permeabilized cells is measured for the entire range of mitochondrial membrane potential titrated by stepwise additions of an uncoupler and expressed as a function of citrate synthase activity per total amount of protein.

  8. Influence of local sequence context on damaged base conformation in human DNA polymerase iota: molecular dynamics studies of nucleotide incorporation opposite a benzo[a]pyrene-derived adenine lesion.

    PubMed

    Donny-Clark, Kerry; Broyde, Suse

    2009-11-01

    Human DNA polymerase iota is a lesion bypass polymerase of the Y family, capable of incorporating nucleotides opposite a variety of lesions in both near error-free and error-prone bypass. With undamaged templating purines polymerase iota normally favors Hoogsteen base pairing. Polymerase iota can incorporate nucleotides opposite a benzo[a]pyrene-derived adenine lesion (dA*); while mainly error-free, the identity of misincorporated bases is influenced by local sequence context. We performed molecular modeling and molecular dynamics simulations to elucidate the structural basis for lesion bypass. Our results suggest that hydrogen bonds between the benzo[a]pyrenyl moiety and nearby bases limit the movement of the templating base to maintain the anti glycosidic bond conformation in the binary complex in a 5'-CAGA*TT-3' sequence. This facilitates correct incorporation of dT via a Watson-Crick pair. In a 5'-TTTA*GA-3' sequence the lesion does not form these hydrogen bonds, permitting dA* to rotate around the glycosidic bond to syn and incorporate dT via a Hoogsteen pair. With syn dA*, there is also an opportunity for increased misincorporation of dGTP. These results expand our understanding of the versatility and flexibility of polymerase iota and its lesion bypass functions in humans.

  9. Small-angle X-ray scattering study of the ATP modulation of the structural features of the nucleotide binding domains of the CFTR in solution.

    PubMed

    Galeno, Lauretta; Galfrè, Elena; Moran, Oscar

    2011-07-01

    Nucleotide binding domains (NBD1 and NBD2) of the cystic fibrosis transmembrane conductance (CFTR), the defective protein in cystic fibrosis, are responsible for controlling the gating of the chloride channel and are the putative binding site for several candidate drugs in the disease treatment. We studied the structural properties of recombinant NBD1, NBD2, and an equimolar NBD1/NBD2 mixture in solution by small-angle X-ray scattering. We demonstrated that NBD1 or NBD2 alone have an overall structure similar to that observed for crystals. Application of 2 mM ATP induces a dimerization of NBD1 but does not modify the NBD2 monomeric conformation. An equimolar mixture of NBD1/NBD2 in solution shows a dimeric conformation, and the application of ATP to the solution causes a conformational change in the NBD1/NBD2 complex into a tight heterodimer. We hypothesize that a similar conformation change occurs in situ and that transition is part of the gating mechanism. To our knowledge, this is the first direct observation of a conformational change of the NBD1/NBD2 interaction by ATP. This information may be useful to understand the physiopathology of cystic fibrosis.

  10. Role of base sequence context in conformational equilibria and nucleotide excision repair of benzo[a]pyrene diol epoxide-adenine adducts.

    PubMed

    Yan, Shixiang; Wu, Min; Buterin, Tonko; Naegeli, Hanspeter; Geacintov, Nicholas E; Broyde, Suse

    2003-03-04

    We investigate the influence of base sequence context on the conformations of the 10S (+)- and 10R (-)-trans-anti-[BP]-N(6)-dA adducts through molecular dynamics (MD) simulations with free energy calculations, and relate the structural findings to results of nucleotide excision repair (NER) assays in human cell extracts. In previous studies, these adducts were studied in the CA*A sequence context, and here we report results for the CA*C sequence. Our simulations indicate that the base sequence context affects the syn-anti conformational equilibrium in the 10S (+) adduct by modulating the barrier heights between these states on the energy surface, with a higher barrier in the CA*C case. Our nucleotide excision repair assay finds greater NER susceptibilities in the 10S (+) adduct for the CA*C sequence context. A structural rationale ties together these results. A sequence specific hydrogen bond, accompanied by a significantly increased roll and consequent bending in the 10S (+) adduct, has been found in our simulations for the CA*C sequence, which could account for the enhanced nucleotide excision repair as well as the syn-anti equilibrium difference we observe in this isomer and sequence. Such sequence specific differential repair could contribute to the existence of mutational hotspots and thereby contribute to the complexity of cancer initiation.

  11. Adenine and adenosine salvage in Leishmania donovani.

    PubMed

    Boitz, Jan M; Ullman, Buddy

    2013-08-01

    6-aminopurine metabolism in Leishmania is unique among trypanosomatid pathogens since this genus expresses two distinct routes for adenine salvage: adenine phosphoribosyltransferase (APRT) and adenine deaminase (AAH). To evaluate the relative contributions of APRT and AAH, adenine salvage was evaluated in Δaprt, Δaah, and Δaprt/Δaah null mutants of L. donovani. The data confirm that AAH plays the dominant role in adenine metabolism in L. donovani, although either enzyme alone is sufficient for salvage. Adenosine salvage was also evaluated in a cohort of null mutants. Adenosine is also primarily converted to hypoxanthine, either intracellularly or extracellularly, but can also be phosphorylated to the nucleotide level by adenosine kinase when the predominant pathways are genetically or pharmacologically blocked. These data provide genetic verification for the relative contributions of 6-aminopurine metabolizing pathways in L. donovani and demonstrate that all of the pathways can function under appropriate conditions of genetic or pharmacologic perturbation.

  12. In vitro studies of immunoglobulin heavy-chain binding protein (BiP, GRP78). Interactions of BiP with newly synthesized proteins and adenine nucleotides

    SciTech Connect

    Kassenbrock, C.K.

    1988-01-01

    Here we examine the interaction of BiP with newly synthesized polypeptides in an in vitro protein translations-translocation system. We find that BiP forms tight complexes with nonglycosylated yeast invertase and incorrectly disulfide-bonded prolactin but not with glycosylated invertase or correctly disulfide-bonded prolactin. Moreover, BiP associates detectably only with completed chains of prolactin, not with chains undergoing synthesis. We conclude that BiP recognizes and binds with high affinity to aberrantly folded or aberrantly glycosylated polypeptides in vitro, but not to all nascent chains as they are folding. BiP also binds APT and can be purified by APT affinity chromatography. We show that submicromolar levels of ATP or ADP decrease the rate of absorption of {sup 125}I-BiP to nitrocellulose filters coated with protein or nonionic detergents. ATP and ADP also protect portions of BiP from proteolytic degradation. In contrast, micromolar levels of AMP increase the rate of adsorption and the rate of proteolytic degradation of BiP. We also show that an ATPase activity co-purifies with BiP, but its slow turnover number suggests a regulatory, rather than a functional role. The BiP-associated ATPase shares several properties with the related cytoplasmic protein, HSC70/clathrin uncoating ATPase.

  13. 2-Substitution of adenine nucleotide analogues containing a bicyclo[3.1.0]hexane ring system locked in a northern conformation: enhanced potency as P2Y1 receptor antagonists.

    PubMed

    Kim, Hak Sung; Ohno, Michihiro; Xu, Bin; Kim, Hea Ok; Choi, Yongseok; Ji, Xiao D; Maddileti, Savitri; Marquez, Victor E; Harden, T Kendall; Jacobson, Kenneth A

    2003-11-06

    Preference for the northern (N) ring conformation of the ribose moiety of adenine nucleotide 3',5'-bisphosphate antagonists of P2Y(1) receptors was established by using a ring-constrained methanocarba (a bicyclo[3.1.0]hexane) ring as a ribose substitute (Nandanan et al. J. Med. Chem. 2000, 43, 829-842). We have now combined the ring-constrained (N)-methanocarba modification with other functionalities at the 2-position of the adenine moiety. A new synthetic route to this series of bisphosphate derivatives was introduced, consisting of phosphorylation of the pseudoribose moiety prior to coupling with the adenine base. The activity of the newly synthesized analogues was determined by measuring antagonism of 2-methylthio-ADP-stimulated phospholipase C (PLC) activity in 1321N1 human astrocytoma cells expressing the recombinant human P2Y(1) receptor and by using the radiolabeled antagonist [(3)H]2-chloro-N(6)-methyl-(N)-methanocarba-2'-deoxyadenosine 3',5'-bisphosphate 5 in a newly developed binding assay in Sf9 cell membranes. Within the series of 2-halo analogues, the most potent molecule at the hP2Y(1) receptor was an (N)-methanocarba N(6)-methyl-2-iodo analogue 12, which displayed a K(i) value in competition for binding of [(3)H]5 of 0.79 nM and a K(B) value of 1.74 nM for inhibition of PLC. Thus, 12 is the most potent antagonist selective for the P2Y(1) receptor yet reported. The 2-iodo group was substituted with trimethyltin, thus providing a parallel synthetic route for the introduction of an iodo group in this high-affinity antagonist. The (N)-methanocarba-2-methylthio, 2-methylseleno, 2-hexyl, 2-(1-hexenyl), and 2-(1-hexynyl) analogues bound less well, exhibiting micromolar affinity at P2Y(1) receptors. An enzymatic method of synthesis of the 3',5'-bisphosphate from the corresponding 3'-monophosphate, suitable for the preparation of a radiophosphorylated analogue, was explored.

  14. Influence of sprint training on human skeletal muscle purine nucleotide metabolism.

    PubMed

    Stathis, C G; Febbraio, M A; Carey, M F; Snow, R J

    1994-04-01

    To examine the effect of sprint training on human skeletal muscle purine nucleotide metabolism, eight active untrained subjects completed a maximal 30-s sprint bout on a cycle ergometer before and after 7 wk of sprint training. Resting muscle ATP and total adenine nucleotide content were reduced (P < 0.05) by 19 and 18%, respectively, after training. Training resulted in a 52% attenuation (P < 0.05) in the magnitude of ATP depletion after exercise and a similar reduction (P < 0.05) in the accumulation of inosine 5'-monophosphate and ammonia. During recovery, muscle inosine 5'-monophosphate (P < 0.05) and inosine (P < 0.01) content were reduced after training, as was the accumulation of inosine (P < 0.05). Plasma ammonia was higher (P < 0.05) after training early in recovery; in contrast, plasma hypoxanthine concentrations were reduced (P < 0.05) during the latter stages of recovery. The attenuated resting ATP and total adenine nucleotide contents after training probably result from the acute effects of prior training sessions. The reduction in the magnitude of ATP depletion during a 30-s sprint bout after training must reflect an improved balance between ATP hydrolysis and resynthesis. It is unclear which mechanism(s) is responsible for the reduction in the magnitude of ATP degradation after training.

  15. Simultaneous determination of adenine nucleotides, creatine phosphate and creatine in rat liver by high performance liquid chromatography-electrospray ionization-tandem mass spectrometry.

    PubMed

    Jiang, Yang; Sun, Chengjun; Ding, Xueqin; Yuan, Ding; Chen, Kefei; Gao, Bo; Chen, Yi; Sun, Aimin

    2012-07-01

    A high performance liquid chromatography-electrospray ionization-tandem mass spectrometric method (HPLC-ESI-MS/MS) was developed for simultaneous determination of adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate (ADP), adenosine 5'-monophosphate (AMP), creatine phosphate (CP), and creatine in rat liver. After extraction with pre-cooled (4 °C) methanol/water (1:1, v/v), the analytes were separated on a porous graphitic carbon (Hypercarb) column (2.1 mm × 150 mm, 5 μm) using a programmed gradient elution with a mobile phase consisting of 2 mmol/L ammonium acetate in water and 2 mmol/L ammonium acetate in acetonitrile (pH=10.0). The analytes were detected in a way of multiple reaction monitoring (MRM) under negative scan mode by a triple quadrupole mass spectrometer with electrospray ionization (ESI). An external calibration method with linear ranges from 10 to 5000 ng/mL for the five target compounds was used for quantification with a correlation coefficients≥0.9973. The limits of detection and limits of quantification for all analytes were in ranges from 0.50 to 1.5 ng/mL and 1.6 to 0.5 ng/mL, respectively. The average recoveries spiked in three levels were from 77.2% to 102% and precisions expressed in RSDs were from 0.2% to 4.8%. The established method was successfully applied to determination of ATP, ADP, AMP, CP and creatine in liver tissue.

  16. Photo-excitation of adenine cation radical [A•+] in the near UV-vis region produces sugar radicals in Adenosine and in its nucleotides

    PubMed Central

    Adhikary, Amitava; Khanduri, Deepti; Kumar, Anil; Sevilla, Michael D.

    2011-01-01

    In this study, we report the formation of ribose sugar radicals in high yields (85 – 100%) via photo-excitation of adenine cation radical (A•+) in Ado and its ribonucleotides. Photo-excitation of A•+ at low temperatures in homogenous aqueous glassy samples of Ado, 2′-AMP, 3′-AMP and 5′-AMP forms sugar radicals predominantly at C5′- and also at C3′-sites. The C5′• and C3′• sugar radicals were identified employing Ado deuterated at specific carbon sites: C1′, C2′, and at C5′. Phosphate substitution is found to deactivate sugar radical formation at the site of substitution. Thus, in 5′-AMP, C3′• is observed to be the main radical formed via photo-excitation at ca. 143 K whereas in 3′-AMP, C5′• is the only species found. These results were supported by results obtained employing 5′-AMP with specific deuteration at C5′-site (i.e., 5′,5′-D,D-5′-AMP). Moreover, contrary to the C5′• observed in 3′-dAMP, we find that C5′• in 3′-AMP shows a clear pH dependent conformational change as evidenced by a large increase in the C4′ β–hyperfine coupling on increasing the pH from 6 to 9. Calculations performed employing DFT (B3LYP/6-31G*) for C5′• in 3′-AMP show that the two conformations of C5′• result from strong hydrogen bond formation between the O5′-H and the 3′-phosphate dianion at higher pHs. Employing time-dependent density functional theory [TD-DFT, B3LYP/6-31G(d)] we show that in the excited state, the hole transfers to the sugar moiety and has significant hole localization at the C5′-site in a number of allowed transitions. This hole localization is proposed to lead to the formation of the neutral C5′-radical (C5′•) via deprotonation. PMID:19367991

  17. The Nucleotide-Binding Sites of SUR1: A Mechanistic Model

    PubMed Central

    Vedovato, Natascia; Ashcroft, Frances M.; Puljung, Michael C.

    2015-01-01

    ATP-sensitive potassium (KATP) channels comprise four pore-forming Kir6.2 subunits and four modulatory sulfonylurea receptor (SUR) subunits. The latter belong to the ATP-binding cassette family of transporters. KATP channels are inhibited by ATP (or ADP) binding to Kir6.2 and activated by Mg-nucleotide interactions with SUR. This dual regulation enables the KATP channel to couple the metabolic state of a cell to its electrical excitability and is crucial for the KATP channel’s role in regulating insulin secretion, cardiac and neuronal excitability, and vascular tone. Here, we review the regulation of the KATP channel by adenine nucleotides and present an equilibrium allosteric model for nucleotide activation and inhibition. The model can account for many experimental observations in the literature and provides testable predictions for future experiments. PMID:26682803

  18. Domain Interactions in the Yeast ATP Binding Cassette Transporter Ycf1p: Intragenic Suppressor Analysis of Mutations in the Nucleotide Binding Domains

    PubMed Central

    Falcón-Pérez, Juan M.; Martínez-Burgos, Mónica; Molano, Jesús; Mazón, María J.; Eraso, Pilar

    2001-01-01

    The yeast cadmium factor (Ycf1p) is a vacuolar ATP binding cassette (ABC) transporter required for heavy metal and drug detoxification. Cluster analysis shows that Ycf1p is strongly related to the human multidrug-associated protein (MRP1) and cystic fibrosis transmembrane conductance regulator and therefore may serve as an excellent model for the study of eukaryotic ABC transporter structure and function. Identifying intramolecular interactions in these transporters may help to elucidate energy transfer mechanisms during transport. To identify regions in Ycf1p that may interact to couple ATPase activity to substrate binding and/or movement across the membrane, we sought intragenic suppressors of ycf1 mutations that affect highly conserved residues presumably involved in ATP binding and/or hydrolysis. Thirteen intragenic second-site suppressors were identified for the D777N mutation which affects the invariant Asp residue in the Walker B motif of the first nucleotide binding domain (NBD1). Two of the suppressor mutations (V543I and F565L) are located in the first transmembrane domain (TMD1), nine (A1003V, A1021T, A1021V, N1027D, Q1107R, G1207D, G1207S, S1212L, and W1225C) are found within TMD2, one (S674L) is in NBD1, and another one (R1415G) is in NBD2, indicating either physical proximity or functional interactions between NBD1 and the other three domains. The original D777N mutant protein exhibits a strong defect in the apparent affinity for ATP and Vmax of transport. The phenotypic characterization of the suppressor mutants shows that suppression does not result from restoring these alterations but rather from a change in substrate specificity. We discuss the possible involvement of Asp777 in coupling ATPase activity to substrate binding and/or transport across the membrane. PMID:11466279

  19. Energy metabolic state in hypothermically stored boar spermatozoa using a revised protocol for efficient ATP extraction.

    PubMed

    Nguyen, Quynh Thu; Wallner, Ulrike; Schmicke, Marion; Waberski, Dagmar; Henning, Heiko

    2016-11-15

    Mammalian spermatozoa utilize ATP as the energy source for key functions on the route to fertilization. ATP and its precursor nucleotides ADP and AMP are regularly investigated in sperm physiology studies, mostly by bioluminescence assays. Assay results vary widely, mainly due to different efficiencies in nucleotide extraction and prevention of their enzymatic degradation. Here, we describe a revised, validated protocol for efficient phosphatase inhibition and adenine nucleotide extraction resulting in consistently high ATP concentrations exceeding previously reported values for boar spermatozoa up to 20-fold. The revised assay is applicable for determining ATP concentrations and adenylate energy charge in extracts from fresh and frozen samples, thereby allowing simultaneous assessment of semen samples from long-term storage experiments. After validation, the assay was applied to liquid-preserved boar spermatozoa stored at 17°C and 5°C for 24 and 72 h. Cooling to 5°C, but not storage duration, reduced ATP concentration in spermatozoa (P<0.05), which was accompanied by the appearance of AMP and ADP in the preservation medium. ATP and energy charge were highly correlated to the proportion of membrane-intact spermatozoa, supporting the idea of nucleotides leaking through disrupted membranes in cold-shocked cells. The present assay allows highly standardized studies of energy metabolism in spermatozoa.

  20. Energy metabolic state in hypothermically stored boar spermatozoa using a revised protocol for efficient ATP extraction

    PubMed Central

    Nguyen, Quynh Thu; Wallner, Ulrike; Schmicke, Marion; Waberski, Dagmar

    2016-01-01

    ABSTRACT Mammalian spermatozoa utilize ATP as the energy source for key functions on the route to fertilization. ATP and its precursor nucleotides ADP and AMP are regularly investigated in sperm physiology studies, mostly by bioluminescence assays. Assay results vary widely, mainly due to different efficiencies in nucleotide extraction and prevention of their enzymatic degradation. Here, we describe a revised, validated protocol for efficient phosphatase inhibition and adenine nucleotide extraction resulting in consistently high ATP concentrations exceeding previously reported values for boar spermatozoa up to 20-fold. The revised assay is applicable for determining ATP concentrations and adenylate energy charge in extracts from fresh and frozen samples, thereby allowing simultaneous assessment of semen samples from long-term storage experiments. After validation, the assay was applied to liquid-preserved boar spermatozoa stored at 17°C and 5°C for 24 and 72 h. Cooling to 5°C, but not storage duration, reduced ATP concentration in spermatozoa (P<0.05), which was accompanied by the appearance of AMP and ADP in the preservation medium. ATP and energy charge were highly correlated to the proportion of membrane-intact spermatozoa, supporting the idea of nucleotides leaking through disrupted membranes in cold-shocked cells. The present assay allows highly standardized studies of energy metabolism in spermatozoa. PMID:27612509

  1. Cyclen-based bismacrocycles for biological anion recognition. A potentiometric and NMR study of AMP, ADP and ATP nucleotide complexation.

    PubMed

    Delépine, Anne-Sophie; Tripier, Raphaël; Handel, Henri

    2008-05-21

    The behaviour of two cyclen-based bismacrocycles linked by aromatic spacers as receptors of adenosine monophosphate (AMP), adenosine diphosphate (ADP) and adenosine triphosphate (ATP) anions is explored. The two bismacrocycles differ from one another by the nature of their spacers, which are respectively 1,3-dimethylbenzene (BMC), or 2,6-dimethylpyridine (BPyC). Potentiometric investigations supported by (1)H and (31)P NMR measurements were performed over a wide pH range to characterize and understand the driving forces implicated in the supramolecular assemblies. A comparison is also carried out with the results presented in this work and those obtained previously with these two ligands and inorganic phosphates. The comparison exhibits the importance of pi-stacking capability of the organic anions in the binding and hydrogen-bonding network. For BPyC, NMR studies highlight two coordination schemes depending on the protonation of the nitrogen atom of the pyridinyl spacer, which acts in acidic media as a supplementary anchoring point.

  2. Inhibition of Multidrug Resistance-Linked P-Glycoprotein (ABCB1) Function by 5′-Fluorosulfonylbenzoyl 5′-Adenosine: Evidence for an ATP Analog That Interacts With Both Drug-Substrate- and Nucleotide-Binding Sites†

    PubMed Central

    Ohnuma, Shinobu; Chufan, Eduardo; Nandigama, Krishnamachary; Miller Jenkins, Lisa M.; Durell, Stewart R.; Appella, Ettore; Sauna, Zuben E.; Ambudkar, Suresh V.

    2011-01-01

    5′-fluorosulfonylbenzonyl 5′-adenosine (FSBA) is an ATP analog that covalently modifies several residues in the nucleotide-binding domains (NBDs) of several ATPases, kinases and other proteins. P-glycoprotein (P-gp, ABCB1) is a member of the ATP-binding cassette (ABC) transporter superfamily that utilizes energy from ATP hydrolysis for the efflux of amphipathic anticancer agents from cancer cells. We investigated the interactions of FSBA with P-gp to study the catalytic cycle of ATP hydrolysis. Incubation of P-gp with FSBA inhibited ATP hydrolysis (IC50= 0.21 mM) and the binding of 8-azido[α–32P]ATP (IC50= 0.68 mM). In addition, 14C-FSBA crosslinks to P-gp, suggesting that FSBA-mediated inhibition of ATP hydrolysis is irreversible due to covalent modification of P-gp. However, when the NBDs were occupied with a saturating concentration of ATP prior to treatment, FSBA stimulated ATP hydrolysis by P-gp. Furthermore, FSBA inhibited the photocrosslinking of P-gp with [125I]-Iodoaryl-azidoprazosin (IAAP; IC50 = 0.17 mM). As IAAP is a transport substrate for P-gp, this suggests that FSBA affects not only the NBDs, but also the transport-substrate site in the transmembrane domains. Consistent with these results, FSBA blocked efflux of rhodamine 123 from P-gp-expressing cells. Additionally, mass spectrometric analysis identified FSBA crosslinks to residues within or nearby the NBDs but not in the transmembrane domains and docking of FSBA in a homology model of human P-gp NBDs supports the biochemical studies. Thus, FSBA is an ATP analog that interacts with both the drug-binding and ATP-binding sites of P-gp, but fluorosulfonyl-mediated crosslinking is observed only at the NBDs. PMID:21452853

  3. Structural Models of Zebrafish (Danio rerio) NOD1 and NOD2 NACHT Domains Suggest Differential ATP Binding Orientations: Insights from Computational Modeling, Docking and Molecular Dynamics Simulations

    PubMed Central

    Maharana, Jitendra; Sahoo, Bikash Ranjan; Bej, Aritra; Sahoo, Jyoti Ranjan; Dehury, Budheswar; Patra, Mahesh Chandra; Martha, Sushma Rani; Balabantray, Sucharita; Pradhan, Sukanta Kumar; Behera, Bijay Kumar

    2015-01-01

    Nucleotide-binding oligomerization domain-containing protein 1 (NOD1) and NOD2 are cytosolic pattern recognition receptors playing pivotal roles in innate immune signaling. NOD1 and NOD2 recognize bacterial peptidoglycan derivatives iE-DAP and MDP, respectively and undergoes conformational alternation and ATP-dependent self-oligomerization of NACHT domain followed by downstream signaling. Lack of structural adequacy of NACHT domain confines our understanding about the NOD-mediated signaling mechanism. Here, we predicted the structure of NACHT domain of both NOD1 and NOD2 from model organism zebrafish (Danio rerio) using computational methods. Our study highlighted the differential ATP binding modes in NOD1 and NOD2. In NOD1, γ-phosphate of ATP faced toward the central nucleotide binding cavity like NLRC4, whereas in NOD2 the cavity was occupied by adenine moiety. The conserved ‘Lysine’ at Walker A formed hydrogen bonds (H-bonds) and Aspartic acid (Walker B) formed electrostatic interaction with ATP. At Sensor 1, Arg328 of NOD1 exhibited an H-bond with ATP, whereas corresponding Arg404 of NOD2 did not. ‘Proline’ of GxP motif (Pro386 of NOD1 and Pro464 of NOD2) interacted with adenine moiety and His511 at Sensor 2 of NOD1 interacted with γ-phosphate group of ATP. In contrast, His579 of NOD2 interacted with the adenine moiety having a relatively inverted orientation. Our findings are well supplemented with the molecular interaction of ATP with NLRC4, and consistent with mutagenesis data reported for human, which indicates evolutionary shared NOD signaling mechanism. Together, this study provides novel insights into ATP binding mechanism, and highlights the differential ATP binding modes in zebrafish NOD1 and NOD2. PMID:25811192

  4. Nucleotide-protectable labeling of sulfhydryl groups in subunit I of the ATPase from Halobacterium saccharovorum

    NASA Technical Reports Server (NTRS)

    Sulzner, Michael; Stan-Lotter, Helga; Hochstein, Lawrence I.

    1992-01-01

    The membrane ATPase from Halobacterium saccharovorum was purified as described by Hochstein et al. (1987) and was incubated with C-14 labeled N-ethylmaleimide (NEM), with and without adenine nucleotides, to determine the effect of nucleotides on the enzyme labeling. It was found that NEM incorporates into the 87,000-Da subunit (subunit I) of the enzyme and that the conditions for enzyme modification are similar to those which result in the inhibition of the enzyme activity. The presence of ATP, ADP, and AMP was found to reduce both the inhibitor incorporation and enzyme inhibition. It was shown that the reaction involves a modification of thiol groups.

  5. H+/ATP ratio during ATP hydrolysis by mitochondria: modification of the chemiosmotic theory.

    PubMed

    Brand, M D; Lehninger, A L

    1977-05-01

    The stoichiometry of H+ ejection by mitochondria during hydrolysis of a small pulse of ATP (the H+/ATP ratio) has been reexamined in the light of our recent observation that the stoichiometry of H+ ejection during mitochondrial electron transport (the H+/site ratio) was previously underestimated. We show that earlier estimates of the H+/ATP ratio in intact mitochondria were based upon an invalid correction for scaler H+ production and describe a modified method for determination of this ratio which utilizes mersalyl or N-ethylmaleimide to prevent complicating transmembrane movements of phosphate and H+. This method gives a value for the H+/ATP ratio of 2.0 without the need for questionable corrections, compared with a value of 3.0 for the H+/site ratio also obtained by pulse methods. A modified version of the chemiosmotic theory is presented, in which 3 H+ are ejected per pair of electrons traversing each energy-conserving site of the respiratory chain. Of these, 2 H+ return to the matrix through the ATPase to form ATP from ADP and phosphate, and 1 H+ returns through the combined action of the phosphate and adenine nucleotide exchange carriers of the inner membrane to allow the energy-requiring influx of Pi and ADP3- and efflux of ATP4-. Thus, up to one-third of the energy input into synthesis of extramitochondrial ATP may be required for transport work. Since other methods suggest that the H+/site significantly exceeds 3.0, an alternative possibility is that 4 h+ are ejected per site, followed by return of 3 H+ through the ATPase and 1 H+ through the operation of the proton-coupled membrane transport systems.

  6. Reverse transcriptase incorporation of 1,5-anhydrohexitol nucleotides

    PubMed Central

    Vastmans, Karen; Froeyen, Matheus; Kerremans, Luc; Pochet, Sylvie; Herdewijn, Piet

    2001-01-01

    Several reverse transcriptases were studied for their ability to accept anhydrohexitol triphosphates, having a conformationally restricted six-membered ring, as substrate for template-directed synthesis of HNA. It was found that AMV, M-MLV, M-MLV (H–), RAV2 and HIV-1 reverse transcriptases were able to recognise the anhydrohexitol triphosphate as substrate and to efficiently catalyse the incorporation of one non-natural anhydrohexitol nucleotide opposite a natural complementary nucleotide. However, only the dimeric enzymes, the RAV2 and HIV-1 reverse transcriptases, seemed to be able to further extend the primer with another anhydrohexitol building block. Subsequently, several HIV-1 mutants (4×AZT, 4×AZT/L100I, L74V, M184V and K65A) were likewise analysed, resulting in selection of K65A and, in particular, M184V as the most succesful mutant HIV-1 reverse transcriptases capable of elongating a DNA primer with several 1,5-anhydrohexitol adenines in an efficient way. Results of kinetic experiments in the presence of this enzyme revealed that incorporation of one anhydrohexitol nucleotide of adenine or thymine gave an increased (for 1,5-anhydrohexitol-ATP) and a slightly decreased (for 1,5-anhydrohexitol-TTP) Km value in comparison to that of their natural counterparts. However, no more than four analogues could be inserted under the experimental conditions required for selective incorporation. Investigation of incorporation of the altritol anhydrohexitol nucleotide of adenine in the presence of M184V and Vent (exo–) DNA polymerase proved that an adjacent hydroxyl group on C3 of 1,5-anhydrohexitol-ATP has a detrimental effect on the substrate activity of the six-ring analogue. These results could be rationalised based on the X-ray structure of HIV-1 reverse transcriptase. PMID:11470872

  7. Molecular and Subcellular-Scale Modeling of Nucleotide Diffusion in the Cardiac Myofilament Lattice

    PubMed Central

    Kekenes-Huskey, Peter M.; Liao, Tao; Gillette, Andrew K.; Hake, Johan E.; Zhang, Yongjie; Michailova, Anushka P.; McCulloch, Andrew D.; McCammon, J. Andrew

    2013-01-01

    Contractile function of cardiac cells is driven by the sliding displacement of myofilaments powered by the cycling myosin crossbridges. Critical to this process is the availability of ATP, which myosin hydrolyzes during the cross-bridge cycle. The diffusion of adenine nucleotides through the myofilament lattice has been shown to be anisotropic, with slower radial diffusion perpendicular to the filament axis relative to parallel, and is attributed to the periodic hexagonal arrangement of the thin (actin) and thick (myosin) filaments. We investigated whether atomistic-resolution details of myofilament proteins can refine coarse-grain estimates of diffusional anisotropy for adenine nucleotides in the cardiac myofibril, using homogenization theory and atomistic thin filament models from the Protein Data Bank. Our results demonstrate considerable anisotropy in ATP and ADP diffusion constants that is consistent with experimental measurements and dependent on lattice spacing and myofilament overlap. A reaction-diffusion model of the half-sarcomere further suggests that diffusional anisotropy may lead to modest adenine nucleotide gradients in the myoplasm under physiological conditions. PMID:24209858

  8. Critical role of γ-phosphate in structural transition of Na,K-ATPase upon ATP binding

    NASA Astrophysics Data System (ADS)

    Petrushanko, Irina Yu.; Mitkevich, Vladimir A.; Anashkina, Anastasia A.; Klimanova, Elizaveta A.; Dergousova, Elena A.; Lopina, Olga D.; Makarov, Alexander A.

    2014-06-01

    Active transport of sodium and potassium ions by Na,K-ATPase is accompanied by the enzyme conformational transition between E1 and E2 states. ATP and ADP bind to Na,K-ATPase in the E1 conformation with similar affinity but the properties of enzyme in complexes with these nucleotides are different. We have studied thermodynamics of Na,K-ATPase binding with adenine nucleotides at different temperatures using isothermal titration calorimetry. Our data indicate that β-phosphate is involved in complex formation by increasing the affinity of adenine nucleotides to Na,K-ATPase by an order of magnitude, while γ-phosphate does not affect it. ATP binding to Na,K-ATPase in contrast to ADP binding generates a structural transition in the enzyme, which is consistent with the movement of a significant portion of the surface area to a solvent-protected state. We propose that ATP binding leads to convergence of the nucleotide-binding and phosphorylation domains transferring the enzyme from the ``E1-open'' to ``E1-closed'' conformation ready for phosphorylation.

  9. De novo synthesis of purine nucleotides in different fiber types of rat skeletal muscle

    SciTech Connect

    Tullson, P.C.; John-Alder, H.; Hood, D.A.; Terjung, R.L.

    1986-03-01

    The contribution of de novo purine nucleotide synthesis to nucleotide metabolism in skeletal muscles is not known. The authors have determined rates of de novo synthesis in soleus (slow-twitch red), red gastrocnemius (fast-twitch red), and white gastrocnemius (fast-twitch white) using the perfused rat hindquarter. /sup 14/C glycine incorporation into ATP was linear after 1 and 2 hours of perfusion with 0.2 mM added glycine. The intracellular (I) and extracellular (E) specific activity of /sup 14/C glycine was determined by HPLC of phenylisothiocyanate derivatives of neutralized PCA extracts. The rates of de novo synthesis when expressed relative to muscle ATP content show slow and fast-twitch red muscles to be similar and about twice as great as fast-twitch white muscles. This could represent a greater turnover of the adenine nucleotide pool in more oxidative red muscle types.

  10. Search for interstellar adenine

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Sandip K.; Majumdar, Liton; Das, Ankan; Chakrabarti, Sonali

    2015-05-01

    It is long debated if pre-biotic molecules are indeed present in the interstellar medium. Despite substantial works pointing to their existence, pre-biotic molecules are yet to be discovered with a complete confidence. In this paper, our main aim is to study the chemical evolution of interstellar adenine under various circumstances. We prepare a large gas-grain chemical network by considering various pathways for the formation of adenine. Majumdar et al. (New Astron. 20:15, 2013) proposed that in the absence of adenine detection, one could try to trace two precursors of adenine, namely, HCCN and NH2CN. Recently Merz et al. (J. Phys. Chem. A 118:3637-3644, 2014), proposed another route for the formation of adenine in interstellar condition. They proposed two more precursor molecules. But it was not verified by any accurate gas-grain chemical model. Neither was it known if the production rate would be high or low. Our paper fills this important gap. We include this new pathways to find that the contribution through this pathways for the formation of Adenine is the most dominant one in the context of interstellar medium. We propose that observers may look for the two precursors (C3NH and HNCNH) in the interstellar media which are equally important for predicting abundances of adenine. We perform quantum chemical calculations to find out spectral properties of adenine and its two new precursor molecules in infrared, ultraviolet and sub-millimeter region. Our present study would be useful for predicting abundance of adenine.

  11. The nucleotide exchange factor MGE exerts a key function in the ATP-dependent cycle of mt-Hsp70-Tim44 interaction driving mitochondrial protein import.

    PubMed Central

    Schneider, H C; Westermann, B; Neupert, W; Brunner, M

    1996-01-01

    Import of preproteins into the mitochondrial matrix is driven by the ATP-dependent interaction of mt-Hsp70 with the peripheral inner membrane import protein Tim44 and the preprotein in transit. We show that Mge1p, a co-chaperone of mt-Hsp70, plays a key role in the ATP-dependent import reaction cycle in yeast. Our data suggest a cycle in which the mt-Hsp70-Tim44 complex forms with ATP: Mge1p promotes assembly of the complex in the presence of ATP. Hydrolysis of ATP by mt-Hsp70 occurs in complex with Tim44. Mge1p is then required for the dissociation of the ADP form of mt-Hsp70 from Tim44 after release of inorganic phosphate but before release of ADP. ATP hydrolysis and complex dissociation are accompanied by tight binding of mt-Hsp70 to the preprotein in transit. Subsequently, the release of mt-Hsp70 from the polypeptide chain is triggered by Mge1p which promotes release of ADP from mt-Hsp70. Rebinding of ATP to mt-Hsp70 completes the reaction cycle. Images PMID:8918457

  12. Studies on adenosine triphosphate transphosphorylases. XVIII. Synthesis and preparation of peptides and peptide fragments of rabbit muscle ATP-AMP transphosphorylase (adenylate kinase) and their nucleotide-binding properties.

    PubMed

    Kuby, S A; Hamada, M; Johnson, M S; Russell, G A; Manship, M; Palmieri, R H; Fleming, G; Bredt, D S; Mildvan, A S

    1989-08-01

    Two peptide fragments, derived from the head and tail of rabbit muscle myokinase, were found to possess remarkable and specific ligand-binding properties (Hamada et al., 1979). By initiating systematic syntheses and measurements of equilibrium substrate-binding properties of these two sets of peptides, or portions thereof, which encompass the binding sites for (a) the magnesium complexes of the nucleotide substrates (MgATP2- and MgADP-) and (b) the uncomplexed nucleotide substrates (ADP3- and AMP2-) of rabbit muscle myokinase, some of the requirements for binding of the substrates to ATP-AMP transphosphorylase are being deduced and chemically outlined. One requirement for tight nucleotide binding appears to be a minimum peptide length of 15-25 residues. In addition, Lys-172 and/or Lys-194 may be involved in the binding of epsilon AMP. The syntheses are described as a set of peptides corresponding to residues 31-45, 20-45, 5-45, and 1-45, and a set of peptides corresponding to residues 178-192, 178-194, and 172-194 of rabbit muscle adenylate kinase. The ligand-binding properties of the first set of synthetic peptides to the fluorescent ligands: epsilon MgATP/epsilon ATP and epsilon MgADP/epsilon ADP are quantitatively presented in terms of their intrinsic dissociation constants (K'd) and values of N (maximal number of moles bound per mole of peptide); and compared with the peptide fragment MT-I (1-44) obtained from rabbit muscle myokinase (Kuby et al., 1984) and with the native enzyme (Hamada et al., 1979). In addition, the values of N and K'd are given for the second set of synthetic peptides to the fluorescent ligands epsilon AMP and epsilon ADP as well as for the peptide fragments MT-XII(172-194) and CB-VI(126-194) (Kuby et al., 1984) and, in turn, compared with the native enzyme. A few miscellaneous dissociation constants which had been derived kinetically are also given for comparison (e.g., the Ki for epsilon AMP and the value of KMg epsilon ATP obtained for

  13. A Kinetic Assay of Mitochondrial ATP-ADP Exchange Rate in Permeabilized Cells

    PubMed Central

    Kawamata, Hibiki; Starkov, Anatoly A; Manfredi, Giovanni; Chinopoulos, Christos

    2010-01-01

    We have previously described a method to measure ADP-ATP exchange rates in isolated mitochondria by recording the changes in free extramitochondrial [Mg2+] reported by a Mg2+-sensitive fluorescent indicator, exploiting the differential affinity of ADP and ATP to Mg2+. In this manuscript we describe a modification of this method suited for following ADP-ATP exchange rates in environments with competing reactions that interconvert adenine nucleotides, such as in permeabilized cells that harbor phosphorylases and kinases, ion pumps exhibiting substantial ATPase activity and myosin ATPase activity. Here we report that addition of BeF3− and Na3VO4 to media containing digitonin-permeabilized cells inhibit all ATP-ADP utilizing reactions, except the ANT-mediated mitochondrial ATP-ADP exchange. An advantage of this assay is that mitochondria that may have been also permeabilized by digitonin do not contribute to ATP consumption by the exposed F1Fo-ATPase, due to its sensitivity to BeF3− and Na3VO4. With this assay, ADP-ATP exchange rate mediated by the ANT in permeabilized cells is measured for the entire range of mitochondrial membrane potential titrated by stepwise additions of an uncoupler, and expressed as a function of citrate synthase activity per total amount of protein. PMID:20691655

  14. Cerulenin-mediated apoptosis is involved in adenine metabolic pathway

    SciTech Connect

    Chung, Kyung-Sook; Sun, Nam-Kyu; Lee, Seung-Hee; Lee, Hyun-Jee; Choi, Shin-Jung; Kim, Sun-Kyung; Song, Ju-Hyun; Jang, Young-Joo; Song, Kyung-Bin; Yoo, Hyang-Sook; Simon, Julian . E-mail: jsimon@fhcrc.org; Won, Misun . E-mail: misun@kribb.re.kr

    2006-10-27

    Cerulenin, a fatty acid synthase (FAS) inhibitor, induces apoptosis of variety of tumor cells. To elucidate mode of action by cerulenin, we employed the proteomics approach using Schizosaccharomyces pombe. The differential protein expression profile of S. pombe revealed that cerulenin modulated the expressions of proteins involved in stresses and metabolism, including both ade10 and adk1 proteins. The nutrient supplementation assay demonstrated that cerulenin affected enzymatic steps transferring a phosphoribosyl group. This result suggests that cerulenin accumulates AMP and p-ribosyl-s-amino-imidazole carboxamide (AICAR) and reduces other necessary nucleotides, which induces feedback inhibition of enzymes and the transcriptional regulation of related genes in de novo and salvage adenine metabolic pathway. Furthermore, the deregulation of adenine nucleotide synthesis may interfere ribonucleotide reductase and cause defects in cell cycle progression and chromosome segregation. In conclusion, cerulenin induces apoptosis through deregulation of adenine nucleotide biosynthesis resulting in nuclear division defects in S. pombe.

  15. Adenine formation without HCN.

    PubMed

    Merz, Kenneth M; Aguiar, Eduardo C; da Silva, Joao Bosco P

    2014-05-22

    From a historic point of view adenine was always presumed to be the product of HCN pentamerization. In this work a new mechanism for adenine synthesis in the gas phase without HCN is proposed. The concept of retrosynthetic analysis was employed to create a tautomer of adenine, which can be reached from previously observed interstellar molecules C3NH and HNCNH and its isomer H2NCN. MP2/6-311++G(2d,2p) calculations were performed to calculate the Gibbs free energy of the minimum and the transition state (TS) structures involved in the six step mechanism. This new mechanism requires a smaller number of steps, the reaction energy is twice as exergonic, and the rate determining TS is lower in energy than the corresponding ones proposed elsewhere in the literature.

  16. Adenine suppresses IgE-mediated mast cell activation.

    PubMed

    Silwal, Prashanta; Shin, Keuna; Choi, Seulgi; Kang, Seong Wook; Park, Jin Bong; Lee, Hyang-Joo; Koo, Suk-Jin; Chung, Kun-Hoe; Namgung, Uk; Lim, Kyu; Heo, Jun-Young; Park, Jong Il; Park, Seung-Kiel

    2015-06-01

    Nucleobase adenine is produced by dividing human lymphoblasts mainly from polyamine synthesis and inhibits immunological functions of lymphocytes. We investigated the anti-allergic effect of adenine on IgE-mediated mast cell activation in vitro and passive cutaneous anaphylaxis (PCA) in mice. Intraperitoneal injection of adenine to IgE-sensitized mice attenuated IgE-mediated PCA reaction in a dose dependent manner, resulting in a median effective concentration of 4.21 mg/kg. In mast cell cultures, only adenine among cytosine, adenine, adenosine, ADP and ATP dose-dependently suppressed FcɛRI (a high affinity receptor for IgE)-mediated degranulation with a median inhibitory concentration of 1.6mM. It also blocked the production of LTB4, an inflammatory lipid mediator, and inflammatory cytokines TNF-α and IL-4. In addition, adenine blocked thapsigargin-induced degranulation which is FcɛRI-independent but shares FcɛRI-dependent signaling events. Adenine inhibited the phosphorylation of signaling molecules important to FcɛRI-mediated allergic reactions such as Syk, PLCγ2, Gab2, Akt, and mitogen activated protein kinases ERK and JNK. From this result, we report for the first time that adenine inhibits PCA in mice and allergic reaction by inhibiting FcɛRI-mediated signaling events in mast cells. Therefore, adenine may be useful for the treatment of mast cell-mediated allergic diseases. Also, the upregulation of adenine production may provide another mechanism for suppressing mast cell activity especially at inflammatory sites.

  17. 'Domino' systems biology and the 'A' of ATP.

    PubMed

    Verma, Malkhey; Zakhartsev, Maksim; Reuss, Matthias; Westerhoff, Hans V

    2013-01-01

    We develop a strategic 'domino' approach that starts with one key feature of cell function and the main process providing for it, and then adds additional processes and components only as necessary to explain provoked experimental observations. The approach is here applied to the energy metabolism of yeast in a glucose limited chemostat, subjected to a sudden increase in glucose. The puzzles addressed include (i) the lack of increase in adenosine triphosphate (ATP) upon glucose addition, (ii) the lack of increase in adenosine diphosphate (ADP) when ATP is hydrolyzed, and (iii) the rapid disappearance of the 'A' (adenine) moiety of ATP. Neither the incorporation of nucleotides into new biomass, nor steady de novo synthesis of adenosine monophosphate (AMP) explains. Cycling of the 'A' moiety accelerates when the cell's energy state is endangered, another essential domino among the seven required for understanding of the experimental observations. This new domino analysis shows how strategic experimental design and observations in tandem with theory and modeling may identify and resolve important paradoxes. It also highlights the hitherto unexpected role of the 'A' component of ATP.

  18. Interaction between ATP, metal ions, glycine, and several minerals

    NASA Technical Reports Server (NTRS)

    Rishpon, J.; Ohara, P. J.; Lawless, J. G.; Lahav, N.

    1982-01-01

    Interactions between ATP, glycine and montmorillonite and kaolinite clay minerals in the presence of various metal cations are investigated. The adsorption of adenine nucleotides on clays and Al(OH)3 was measured as a function of pH, and glycine condensation was followed in the presence of ATP, ZnCl2, MgCl2 and either kaolinite or montmorillonite. The amounts of ATP and ADP adsorbed are found to decrease with increasing Ph, and to be considerably enhanced in experiments with Mg(2+)- and Zn(2+)-montmorillonite with respect to Na(+)-montmorillonite. The effects of divalent cations are less marked in kaolinite. Results for Al(OH)3 show the importance of adsorption at clay platelet edges at high pH. The decomposition of ATP during drying at high temperature is observed to be inhibited by small amounts of clay, vacuum, or Mg(2+) or Zn(2+) ions, and to be accompanied by peptide formation in the presence of glycine. Results suggest the importance of Zn(2+) and Mg(2+) in chemical evolution.

  19. The complete nucleotide sequence of the cassava (Manihot esculenta) chloroplast genome and the evolution of atpF in Malpighiales: RNA editing and multiple losses of a group II intron

    PubMed Central

    Wurdack, Kenneth J.; Kanagaraj, Anderson; Lee, Seung-Bum; Saski, Christopher; Jansen, Robert K.

    2008-01-01

    The complete sequence of the chloroplast genome of cassava (Manihot esculenta, Euphorbiaceae) has been determined. The genome is 161,453 bp in length and includes a pair of inverted repeats (IR) of 26,954 bp. The genome includes 128 genes; 96 are single copy and 16 are duplicated in the IR. There are four rRNA genes and 30 distinct tRNAs, seven of which are duplicated in the IR. The infA gene is absent; expansion of IRb has duplicated 62 amino acids at the 3′ end of rps19 and a number of coding regions have large insertions or deletions, including insertions within the 23S rRNA gene. There are 17 intron-containing genes in cassava, 15 of which have a single intron while two (clpP, ycf3) have two introns. The usually conserved atpF group II intron is absent and this is the first report of its loss from land plant chloroplast genomes. The phylogenetic distribution of the atpF intron loss was determined by a PCR survey of 251 taxa representing 34 families of Malpighiales and 16 taxa from closely related rosids. The atpF intron is not only missing in cassava but also from closely related Euphorbiaceae and other Malpighiales, suggesting that there have been at least seven independent losses. In cassava and all other sequenced Malphigiales, atpF gene sequences showed a strong association between C-to-T substitutions at nucleotide position 92 and the loss of the intron, suggesting that recombination between an edited mRNA and the atpF gene may be a possible mechanism for the intron loss. PMID:18214421

  20. Nucleotide release provides a mechanism for airway surface liquid homeostasis.

    PubMed

    Lazarowski, Eduardo R; Tarran, Robert; Grubb, Barbara R; van Heusden, Catharina A; Okada, Seiko; Boucher, Richard C

    2004-08-27

    Nucleotides within the airway surface liquid (ASL) regulate airway epithelial ion transport rates by Ca(2+) -and protein kinase C-dependent mechanisms via activation of specific P2Y receptors. Extracellular adenine nucleotides also serve as precursors for adenosine, which promotes cyclic AMP-mediated activation of the cystic fibrosis transmembrane regulator chloride channel via A(2b) adenosine receptors. A biological role for extracellular ATP in ASL volume homeostasis has been suggested by the demonstration of regulated ATP release from airway epithelia. However, nucleotide hydrolysis at the airway surface makes it difficult to assess the magnitude of ATP release and the relative abundance of adenyl purines and, hence, to define their biological functions. We have combined ASL microsampling and high performance liquid chromatography analysis of fluorescent 1,N(6)-ethenoadenine derivatives to measure adenyl purines in ASL. We found that adenosine, AMP, and ADP accumulated in high concentrations relative to ATP within the ASL covering polarized primary human normal or cystic fibrosis airway epithelial cells. By using immortalized epithelial cell monolndogenayers that eously express a luminal A(2b) adenosine receptor, we found that basal as well asforskolin-promoted cyclic AMP production was reduced by exogenous adenosine deaminase, suggesting that A(2b) receptors sense endogenous adenosine within the ASL. The physiological role of adenosine was further established by illustrating that adenosine removal or inhibition of adenosine receptors in primary cultures impaired ASL volume regulation. Our data reveal a complex pattern of nucleotides/nucleosides in ASL under resting conditions and suggest that adenosine may play a key role in regulating ASL volume homeostasis.

  1. Nucleotide Release Provides a Mechanism for Airway Surface Liquid Homeostasis*

    PubMed Central

    Lazarowski, Eduardo R.; Tarran, Robert; Grubb, Barbara R.; van Heusden, Catharina A.; Okada, Seiko; Boucher, Richard C.

    2010-01-01

    Nucleotides within the airway surface liquid (ASL) regulate airway epithelial ion transport rates by Ca2+- and protein kinase C-dependent mechanisms via activation of specific P2Y receptors. Extracellular adenine nucleotides also serve as precursors for adenosine, which promotes cyclic AMP-mediated activation of the cystic fibrosis transmembrane regulator chloride channel via A2b adenosine receptors. A biological role for extracellular ATP in ASL volume homeostasis has been suggested by the demonstration of regulated ATP release from airway epithelia. However, nucleotide hydrolysis at the airway surface makes it difficult to assess the magnitude of ATP release and the relative abundance of adenyl purines and, hence, to define their biological functions. We have combined ASL microsampling and high performance liquid chromatography analysis of fluorescent 1,N6-ethenoadenine derivatives to measure adenyl purines in ASL. We found that adenosine, AMP, and ADP accumulated in high concentrations relative to ATP within the ASL covering polarized primary human normal or cystic fibrosis airway epithelial cells. By using immortalized epithelial cell monolayers that endogenously express a luminal A2b adenosine receptor, we found that basal as well as forskolin-promoted cyclic AMP production was reduced by exogenous adenosine deaminase, suggesting that A2b receptors sense endogenous adenosine within the ASL. The physiological role of adenosine was further established by illustrating that adenosine removal or inhibition of adenosine receptors in primary cultures impaired ASL volume regulation. Our data reveal a complex pattern of nucleotides/nucleosides in ASL under resting conditions and suggest that adenosine may play a key role in regulating ASL volume homeostasis. PMID:15210701

  2. A Novel Kinetic Assay of Mitochondrial ATP-ADP Exchange Rate Mediated by the ANT

    PubMed Central

    Chinopoulos, Christos; Vajda, Szilvia; Csanády, László; Mándi, Miklós; Mathe, Katalin; Adam-Vizi, Vera

    2009-01-01

    A novel method exploiting the differential affinity of ADP and ATP to Mg2+ was developed to measure mitochondrial ADP-ATP exchange rate. The rate of ATP appearing in the medium after addition of ADP to energized mitochondria, is calculated from the measured rate of change in free extramitochondrial [Mg2+] reported by the membrane-impermeable 5K+ salt of the Mg2+-sensitive fluorescent indicator, Magnesium Green, using standard binding equations. The assay is designed such that the adenine nucleotide translocase (ANT) is the sole mediator of changes in [Mg2+] in the extramitochondrial volume, as a result of ADP-ATP exchange. We also provide data on the dependence of ATP efflux rate within the 6.8–7.8 matrix pH range as a function of membrane potential. Finally, by comparing the ATP-ADP steady-state exchange rate to the amount of the ANT in rat brain synaptic, brain nonsynaptic, heart and liver mitochondria, we provide molecular turnover numbers for the known ANT isotypes. PMID:19289073

  3. Conserved Asp327 of Walker B motif in the N-terminal Nucleotide Binding Domain (NBD-1) of Cdr1p of Candida albicans has acquired a new role in ATP hydrolysis

    PubMed Central

    Rai, Versha; Gaur, Manisha; Shukla, Sudhanshu; Shukla, Suneet; Ambudkar, Suresh V.; Komath, Sneha Sudha; Prasad, Rajendra

    2008-01-01

    The Walker A and B motifs of nucleotide binding domains (NBDs) of Cdr1p though almost identical to all ABC transporters, has unique substitutions. We have in the past shown that Trp326 of Walker B and Cys193 of Walker A motifs of N-terminal NBD of Cdr1p have distinct roles in ATP binding and hydrolysis, respectively. In the present study, we have examined the role of a well conserved Asp327 in the Walker B motif of the N-terminal NBD which is preceded (Trp326) and followed (Asn328) by atypical amino acid substitutions and compared it with its equivalent well conserved Asp1026 of the C-terminal NBD of Cdr1p. We observed that the removal of the negative charge by D327N, D327A, D1026N, D1026A and D327N/D1026N substitutions, resulted in Cdr1p mutant variants that were severely impaired in ATPase activity and drug efflux. Importantly, all the mutant variants showed characteristics similar to those of wild type with respect to cell surface expression and photoaffinity drug analogue [125I] IAAP and [3H] azidopine labeling. While Cdr1p D327N mutant variant showed comparable binding with [α-32P] 8-azido ATP, Cdr1p D1026N and Cdr1p D327N/D1026N mutant variants were crippled in nucleotide binding. That the two conserved carboxylate residues Asp327 and Asp1026 are functionally different was further evident from the pH profile of ATPase activity. Cdr1p D327N mutant variant showed ∼40% enhancement of its residual ATPase activity at acidic pH while no such pH effect was seen with Cdr1p D1026N mutant variant. Our experimental data suggest that Asp327 of N-terminal NBD has acquired a new role to act as a catalytic base in ATP hydrolysis, a role normally conserved for Glu present adjacent to the conserved Asp in the Walker B motif of all the non-fungal transporters. PMID:17144665

  4. Crystal Structure of Escherichia coli Cytidine Triphosphate Synthetase, a Nucleotide-Regulated Glutamine Amidotransferase/ATP-Dependent Amidoligase Fusion Protein and Homologue of Anticancer and Antiparasitic Drug Targets†,‡

    PubMed Central

    Endrizzi, James A.; Kim, Hanseong; Anderson, Paul M.; Baldwin, Enoch P.

    2010-01-01

    Cytidine triphosphate synthetases (CTPSs) produce CTP from UTP and glutamine, and regulate intracellular CTP levels through interactions with the four ribonucleotide triphosphates. We solved the 2.3-Å resolution crystal structure of Escherichia coli CTPS using Hg-MAD phasing. The structure reveals a nearly symmetric 222 tetramer, in which each bifunctional monomer contains a dethiobiotin synthetase-like amidoligase N-terminal domain and a Type 1 glutamine amidotransferase C-terminal domain. For each amidoligase active site, essential ATP- and UTP-binding surfaces are contributed by three monomers, suggesting that activity requires tetramer formation, and that a nucleotide-dependent dimer–tetramer equilibrium contributes to the observed positive cooperativity. A gated channel that spans 25 Å between the glutamine hydrolysis and amidoligase active sites provides a path for ammonia diffusion. The channel is accessible to solvent at the base of a cleft adjoining the glutamine hydrolysis active site, providing an entry point for exogenous ammonia. Guanine nucleotide binding sites of structurally related GTPases superimpose on this cleft, providing insights into allosteric regulation by GTP. Mutations that confer nucleoside drug resistance and release CTP inhibition map to a pocket that neighbors the UTP-binding site and can accommodate a pyrimidine ring. Its location suggests that competitive feedback inhibition is affected via a distinct product/drug binding site that overlaps the substrate triphosphate binding site. Overall, the E. coli structure provides a framework for homology modeling of other CTPSs and structure-based design of anti-CTPS therapeutics. PMID:15157079

  5. ATP synthase superassemblies in animals and plants: two or more are better.

    PubMed

    Seelert, Holger; Dencher, Norbert A

    2011-09-01

    ATP synthases are part of the sophisticated cellular metabolic network and therefore multiple interactions have to be considered. As discussed in this review, ATP synthases form various supramolecular structures. These include dimers and homooligomeric species. But also interactions with other proteins, particularly those involved in energy conversion exist. The supramolecular assembly of the ATP synthase affects metabolism, organellar structure, diseases, ageing and vice versa. The most common approaches to isolate supercomplexes from native membranes by use of native electrophoresis or density gradients are introduced. On the one hand, isolated ATP synthase dimers and oligomers are employed for structural studies and elucidation of specific protein-protein interactions. On the other hand, native electrophoresis and other techniques serve as tool to trace changes of the supramolecular organisation depending on metabolic alterations. Upon analysing the structure, dimer-specific subunits can be identified as well as interactions with other proteins, for example, the adenine nucleotide translocator. In the organellar context, ATP synthase dimers and oligomers are involved in the formation of mitochondrial cristae. As a consequence, changes in the amount of such supercomplexes affect mitochondrial structure and function. Alterations in the cellular power plant have a strong impact on energy metabolism and ultimately play a significant role in pathophysiology. In plant systems, dimers of the ATP synthase have been also identified in chloroplasts. Similar to mammals, a correlation between metabolic changes and the amount of the chloroplast ATP synthase dimers exists. Therefore, this review focusses on the interplay between metabolism and supramolecular organisation of ATP synthase in different organisms.

  6. Dynamics of ATP-induced Calcium Signaling in Single Mouse Thymocytes

    PubMed Central

    Ross, Paul E.; Ehring, George R.; Cahalan, Michael D.

    1997-01-01

    Extracellular ATP (ATPo) elicits a robust change in the concentration of intracellular Ca2+ ([Ca2+]i) in fura-2–loaded mouse thymocytes. Most thymocytes (60%) exposed to ATPo exhibited a biphasic rise in [Ca2+]i; [Ca2+]i rose slowly at first to a mean value of 260 nM after 163 s and then increased rapidly to a peak level of 735 nM. In many cells, a declining plateau, which lasted for more than 10 min, followed the crest in [Ca2+]i. Experiments performed in the absence of extracellular [Ca2+]o abolished the rise in thymocyte [Ca2+]i, indicating that Ca2+ influx, rather than the release of stored Ca2+, is stimulated by ATPo. ATPo- mediated Ca2+ influx was potentiated as the [Mg2+]o was reduced, confirming that ATP4− is the active agonist form. In the absence of Mg2+o, 3′-O-(4-benzoyl)benzoyl-ATP (BzATP) proved to be the most effective agonist of those tested. The rank order of potency for adenine nucleotides was BzATP4−>ATP4−>MgATP2−>ADP3−, suggesting purinoreceptors of the P2X7/P2Z class mediate the ATPo response. Phenotyping experiments illustrate that both immature (CD4−CD8−, CD4+CD8+) and mature (CD4+CD8−, CD4−CD8+) thymocyte populations respond to ATP. Further separation of the double-positive population by size revealed that the ATPo-mediated [Ca2+]i response was much more pronounced in large (actively dividing) than in small (terminally differentiated) CD4+CD8+ thymocytes. We conclude that thymocytes vary in sensitivity to ATPo depending upon the degree of maturation and suggest that ATPo may be involved in processes that control cellular differentiation within the thymus. PMID:9281578

  7. Adenine phosphoribosyltransferase deficiency.

    PubMed

    Bollée, Guillaume; Harambat, Jérôme; Bensman, Albert; Knebelmann, Bertrand; Daudon, Michel; Ceballos-Picot, Irène

    2012-09-01

    Complete adenine phosphoribosyltransferase (APRT) deficiency is a rare inherited metabolic disorder that leads to the formation and hyperexcretion of 2,8-dihydroxyadenine (DHA) into urine. The low solubility of DHA results in precipitation of this compound and the formation of urinary crystals and stones. The disease can present as recurrent urolithiasis or nephropathy secondary to crystal precipitation into renal parenchyma (DHA nephropathy). The diagnostic tools available-including stone analysis, crystalluria, and APRT activity measurement-make the diagnosis easy to confirm when APRT deficiency is suspected. However, the disease can present at any age, and the variability of symptoms can present a diagnostic challenge to many physicians. The early recognition and treatment of APRT deficiency are of crucial importance for preventing irreversible loss of renal function, which still occurs in a non-negligible proportion of cases. This review summarizes the genetic and metabolic mechanisms underlying stone formation and renal disease, along with the diagnosis and management of APRT deficiency.

  8. A Nucleotide-Analogue-Induced Gain of Function Corrects the Error-Prone Nature of Human DNA Polymerase iota

    SciTech Connect

    Ketkar, Amit; Zafar, Maroof K.; Banerjee, Surajit; Marquez, Victor E.; Egli, Martin; Eoff, Robert L.

    2012-10-25

    Y-family DNA polymerases participate in replication stress and DNA damage tolerance mechanisms. The properties that allow these enzymes to copy past bulky adducts or distorted template DNA can result in a greater propensity for them to make mistakes. Of the four human Y-family members, human DNA polymerase iota (hpol{iota}) is the most error-prone. In the current study, we elucidate the molecular basis for improving the fidelity of hpol{iota} through use of the fixed-conformation nucleotide North-methanocarba-2{prime}-deoxyadenosine triphosphate (N-MC-dATP). Three crystal structures were solved of hpol{iota} in complex with DNA containing a template 2{prime}-deoxythymidine (dT) paired with an incoming dNTP or modified nucleotide triphosphate. The ternary complex of hpol{iota} inserting N-MC-dATP opposite dT reveals that the adenine ring is stabilized in the anti orientation about the pseudo-glycosyl torsion angle, which mimics precisely the mutagenic arrangement of dGTP:dT normally preferred by hpol{iota}. The stabilized anti conformation occurs without notable contacts from the protein but likely results from constraints imposed by the bicyclo[3.1.0]hexane scaffold of the modified nucleotide. Unmodified dATP and South-MC-dATP each adopt syn glycosyl orientations to form Hoogsteen base pairs with dT. The Hoogsteen orientation exhibits weaker base-stacking interactions and is less catalytically favorable than anti N-MC-dATP. Thus, N-MC-dATP corrects the error-prone nature of hpol{iota} by preventing the Hoogsteen base-pairing mode normally observed for hpol{iota}-catalyzed insertion of dATP opposite dT. These results provide a previously unrecognized means of altering the efficiency and the fidelity of a human translesion DNA polymerase.

  9. adPEO mutations in ANT1 impair ADP-ATP translocation in muscle mitochondria.

    PubMed

    Kawamata, Hibiki; Tiranti, Valeria; Magrané, Jordi; Chinopoulos, Christos; Manfredi, Giovanni

    2011-08-01

    Mutations in the heart and muscle isoform of adenine nucleotide translocator 1 (ANT1) are associated with autosomal-dominant progressive external opthalmoplegia (adPEO) clinically characterized by exercise intolerance, ptosis and muscle weakness. The pathogenic mechanisms underlying the mitochondrial myopathy caused by ANT1 mutations remain largely unknown. In yeast, expression of ANT1 carrying mutations corresponding to the human adPEO ones causes a wide range of mitochondrial abnormalities. However, functional studies of ANT1 mutations in mammalian cells are lacking, because they have been hindered by the fact that ANT1 expression leads to apoptotic cell death in commonly utilized replicating cell lines. Here, we successfully express functional ANT1 in differentiated mouse myotubes, which naturally contain high levels of ANT1, without causing cell death. We demonstrate, for the first time in these disease-relevant mammalian cells, that mutant human ANT1 causes dominant mitochondrial defects characterized by decreased ADP-ATP exchange function and abnormal translocator reversal potential. These abnormalities are not due to ANT1 loss of function, because knocking down Ant1 in myotubes causes functional changes different from ANT1 mutants. Under certain physiological conditions, mitochondria consume ATP to maintain membrane potential by reversing the ADP-ATP transport. The modified properties of mutant ANT1 can be responsible for disease pathogenesis in adPEO, because exchange reversal occurring at higher than normal membrane potential can cause excessive energy depletion and nucleotide imbalance in ANT1 mutant muscle cells.

  10. The bovine ATP-binding cassette transporter ABCG2 Tyr581Ser single-nucleotide polymorphism increases milk secretion of the fluoroquinolone danofloxacin.

    PubMed

    Otero, Jon A; Real, Rebeca; de la Fuente, Álvaro; Prieto, Julio G; Marqués, Margarita; Álvarez, Ana I; Merino, Gracia

    2013-03-01

    The bovine adenosine triphosphate-binding cassette transporter G2 (ABCG2/breast cancer resistance protein) polymorphism Tyr581Ser (Y581S) has recently been shown to increase in vitro transepithelial transport of antibiotics. Since this transporter has been extensively related to the active secretion of drugs into milk, the potential in vivo effect of this polymorphism on secretion of xenobiotics in livestock could have striking consequences for milk production, the dairy industry, and public health. Our purpose was to study the in vivo effect of this polymorphism on the secretion of danofloxacin, a widely used veterinary antibiotic, into milk. Danofloxacin (1.25 mg/kg) was administered to six Y/Y 581 homozygous and six Y/S 581 heterozygous lactating cows, and plasma and milk samples were collected and analyzed by high-performance liquid chromatography. No differences were found in the pharmacokinetic parameters of danofloxacin in plasma between the two groups of animals. In contrast, Y/S heterozygous cows showed a 2-fold increase in danofloxacin levels in milk. In addition, the pharmacokinetic elimination parameters, mean residence time and elimination half-life, were significantly lower in the milk of the animals carrying the Y/S polymorphism. These in vivo results are in agreement with our previously published in vitro data, which showed a greater capacity of the S581 variant in accumulation assays, and demonstrate, for the first time, an important effect of the Y581S single-nucleotide polymorphism on antibiotic secretion into cow milk. These findings could be extended to other ABCG2 substrates, and may be relevant for the treatment of mastitis and for the design of accurate and novel strategies to handle milk residues.

  11. Calcium-induced conformational changes in the regulatory domain of the human mitochondrial ATP-Mg/Pi carrier

    PubMed Central

    Harborne, Steven P.D.; Ruprecht, Jonathan J.; Kunji, Edmund R.S.

    2015-01-01

    The mitochondrial ATP-Mg/Pi carrier imports adenine nucleotides from the cytosol into the mitochondrial matrix and exports phosphate. The carrier is regulated by the concentration of cytosolic calcium, altering the size of the adenine nucleotide pool in the mitochondrial matrix in response to energetic demands. The protein consists of three domains; (i) the N-terminal regulatory domain, which is formed of two pairs of fused calcium-binding EF-hands, (ii) the C-terminal mitochondrial carrier domain, which is involved in transport, and (iii) a linker region with an amphipathic α-helix of unknown function. The mechanism by which calcium binding to the regulatory domain modulates substrate transport in the carrier domain has not been resolved. Here, we present two new crystal structures of the regulatory domain of the human isoform 1. Careful analysis by SEC confirmed that although the regulatory domain crystallised as dimers, full-length ATP-Mg/Pi carrier is monomeric. Therefore, the ATP-Mg/Pi carrier must have a different mechanism of calcium regulation than the architecturally related aspartate/glutamate carrier, which is dimeric. The structure showed that an amphipathic α-helix is bound to the regulatory domain in a hydrophobic cleft of EF-hand 3/4. Detailed bioinformatics analyses of different EF-hand states indicate that upon release of calcium, EF-hands close, meaning that the regulatory domain would release the amphipathic α-helix. We propose a mechanism for ATP-Mg/Pi carriers in which the amphipathic α-helix becomes mobile upon release of calcium and could block the transport of substrates across the mitochondrial inner membrane. PMID:26164100

  12. Crystal structure and substrate specificity of plant adenylate isopentenyltransferase from Humulus lupulus: distinctive binding affinity for purine and pyrimidine nucleotides.

    PubMed

    Chu, Hsing-Mao; Ko, Tzu-Ping; Wang, Andrew H-J

    2010-03-01

    Cytokinins are important plant hormones, and their biosynthesis most begins with the transfer of isopentenyl group from dimethylallyl diphosphate (DMAPP) to the N6-amino group of adenine by either adenylate isopentenyltransferase (AIPT) or tRNA-IPT. Plant AIPTs use ATP/ADP as an isopentenyl acceptor and bacterial AIPTs prefer AMP, whereas tRNA-IPTs act on specific sites of tRNA. Here, we present the crystal structure of an AIPT-ATP complex from Humulus lupulus (HlAIPT), which is similar to the previous structures of Agrobacterium AIPT and yeast tRNA-IPT. The enzyme is structurally homologous to the NTP-binding kinase family of proteins but forms a solvent-accessible channel that binds to the donor substrate DMAPP, which is directed toward the acceptor substrate ATP/ADP. When measured with isothermal titration calorimetry, some nucleotides displayed different binding affinities to HlAIPT with an order of ATP > dATP approximately ADP > GTP > CTP > UTP. Two basic residues Lys275 and Lys220 in HlAIPT interact with the beta and gamma-phosphate of ATP. By contrast, the interactions are absent in Agrobacterium AIPT because they are replaced by the acidic residues Asp221 and Asp171. Despite its structural similarity to the yeast tRNA-IPT, HlAIPT has evolved with a different binding strategy for adenylate.

  13. Nickel(II), copper(II) and zinc(II) complexes of 9-[2- (phosphonomethoxy)ethyl]-8-azaadenine (9,8aPMEA), the 8-aza derivative of the antiviral nucleotide analogue 9-[2-(phosphonomethoxy)ethyl] adenine (PMEA). Quantification of four isomeric species in aqueous solution.

    PubMed

    Gómez-Coca, Raquel B; Holý, Antonín; Vilaplana, Rosario A; González-Vílchez, Francisco; Sigel, Helmut

    2004-01-01

    The acidity constants of the twofold protonated acyclic nucleotide analogue 9-[2-(phosphonomethoxy)- ethyl]-8-azaadenine, H(2)(9,8aPMEA)(+/-), as well as the stability constants of the M(H;9,8aPMEA)(+) and M(9,8aPMEA) complexes with the metal ions M(2+) =Ni(2+), Cu(2+) or Zn(2+), have been determined by potentiometric pH titrations in aqueous solution at I=0.1 M (NaNO(3)) and 25. The result for the release of the first proton from H(2)(9,8aPMEA)(+) (pK(a)= 2.73), which originates from the (N1)H(+) site, was confirmed by UV-spectrophotometric measurements. Application of previously determined straight-line plots of log KMM(R-PO(3)) versus PKH(3)(R-HPO(3))' for simple phosph(on)ate ligands, R- PO-, where R represents a residue without an affinity for metal ions, proves that the primary binding site of 9,8aPMEA(2-) is the phosphonate group for all three metal ions studied. By stability constant comparisons with related ligands it is shown, in agreement with conclusions reached earlier for the Cu(PMEA) system [PMEA(2-)=dianion of 9-[2- (phosphonomethoxy)ethyl]adenine], that in total four different isomers are in equilibrium with each other, i.e. (i) an open isomer with a sole phosphonate coordination, M(PA)(op), where PA(2-)=PMEA(2-)or 9,8aPMEA(2-), (ii) an isomer with a 5-membered chelate involving the ether oxygen, M(PA)cl/o, (iii) an isomer which contains 5- and 7-membered chelates formed by coordination of the phosphonate group, the ether oxygen and the N3 site of the adenine residue, M(PA)(cl/O/N3), and finally (iv) a macrochelated isomer involving N7, M(PA)(cl/]N7). The Cu(2+) systems of PMEA(2-) and 9,8aPMEA(2-) behave quite alike; the formation degrees for Cu(PA)(op), CuM(PA)(cl/O), Cu(PA)(cl/O/N3) and Cu(PA)(cl/N3) are approximately 16, 32, 45 and 7%, respectively, which shows that Cu(PA)(cl/N7) is a minority species. In the Ni(2+) and Zn(2+) systems the open isomer is the dominating one followed by M(PA)(cl/O), but there are indications that the other two

  14. KATP channels process nucleotide signals in muscle thermogenic response

    PubMed Central

    Reyes, Santiago; Park, Sungjo; Terzic, Andre; Alekseev, Alexey E.

    2014-01-01

    Uniquely gated by intracellular adenine nucleotides, sarcolemmal ATP-sensitive K+ (KATP) channels have been typically assigned to protective cellular responses under severe energy insults. More recently, KATP channels have been instituted in the continuous control of muscle energy expenditure under non-stressed, physiological states. These advances raised the question of how KATP channels can process trends in cellular energetics within a milieu where each metabolic system is set to buffer nucleotide pools. Unveiling the mechanistic basis of the KATP channel-driven thermogenic response in muscles thus invites the concepts of intracellular compartmentalization of energy and proteins, along with nucleotide signaling over diffusion barriers. Furthermore, it requires gaining insight into the properties of reversibility of intrinsic ATPase activity associated with KATP channel complexes. Notwithstanding the operational paradigm, the homeostatic role of sarcolemmal KATP channels can be now broadened to a wider range of environmental cues affecting metabolic well-being. In this way, under conditions of energy deficit such as ischemic insult or adrenergic stress, the operation of KATP channel complexes would result in protective energy saving, safeguarding muscle performance and integrity. Under energy surplus, downregulation of KATP channel function may find potential implications in conditions of energy imbalance linked to obesity, cold intolerance and associated metabolic disorders. PMID:20925594

  15. Nucleotide signalling during inflammation

    PubMed Central

    Idzko, Marco; Ferrari, Davide; Eltzschig, Holger K.

    2014-01-01

    Inflammatory conditions are associated with the extracellular release of nucleotides, particularly ATP. In the extracellular compartment, ATP predominantly functions as a signalling molecule through the activation of purinergic P2 receptors. Metabotropic P2Y receptors are G-protein-coupled, whereas ionotropic P2X receptors are ATP-gated ion channels. Here we discuss how signalling events through P2 receptors alter the outcomes of inflammatory or infectious diseases. Recent studies implicate a role for P2X/P2Ysignalling in mounting appropriate inflammatory responses critical for host defence against invading pathogens or tumours. Conversely, P2X/P2Y signalling can promote chronic inflammation during ischaemia and reperfusion injury, inflammatory bowel disease or acute and chronic diseases of the lungs. Although nucleotide signalling has been used clinically in patients before, research indicates an expanding field of opportunities for specifically targeting individual P2 receptors for the treatment of inflammatory or infectious diseases. PMID:24828189

  16. Caffeine biosynthesis and adenine metabolism in transgenic Coffea canephora plants with reduced expression of N-methyltransferase genes.

    PubMed

    Ashihara, Hiroshi; Zheng, Xin-Qiang; Katahira, Riko; Morimoto, Masayuki; Ogita, Shinjiro; Sano, Hiroshi

    2006-05-01

    In anti-sense and RNA interference transgenic plants of Coffea canephora in which the expression of CaMXMT1 was suppressed, caffeine biosynthesis from [8-(14)C]adenine was investigated, together with the overall metabolism of [8-(14)C]adenine. Compared with wild type control plants, total purine alkaloid biosynthesis from adenine and conversion of theobromine to caffeine were both reduced in the transgenic plants. As found previously, [8-(14)C]adenine was metabolised to salvage products (nucleotides and RNA), to degradation products (ureides and CO(2)) and to purine alkaloids (theobromine and caffeine). In the transgenic plants, metabolism of [8-(14)C]adenine shifted from purine alkaloid synthesis to purine catabolism or salvage for nucleotides. HPLC analysis revealed a significantly reduced caffeine content in the transgenic plants. A small quantity (less than 20 nmol g(-1) fresh weight) of xanthosine had accumulated in at least one of the transgenic plants.

  17. Protein modification by adenine propenal.

    PubMed

    Shuck, Sarah C; Wauchope, Orrette R; Rose, Kristie L; Kingsley, Philip J; Rouzer, Carol A; Shell, Steven M; Sugitani, Norie; Chazin, Walter J; Zagol-Ikapitte, Irene; Boutaud, Olivier; Oates, John A; Galligan, James J; Beavers, William N; Marnett, Lawrence J

    2014-10-20

    Base propenals are products of the reaction of DNA with oxidants such as peroxynitrite and bleomycin. The most reactive base propenal, adenine propenal, is mutagenic in Escherichia coli and reacts with DNA to form covalent adducts; however, the reaction of adenine propenal with protein has not yet been investigated. A survey of the reaction of adenine propenal with amino acids revealed that lysine and cysteine form adducts, whereas histidine and arginine do not. N(ε)-Oxopropenyllysine, a lysine-lysine cross-link, and S-oxopropenyl cysteine are the major products. Comprehensive profiling of the reaction of adenine propenal with human serum albumin and the DNA repair protein, XPA, revealed that the only stable adduct is N(ε)-oxopropenyllysine. The most reactive sites for modification in human albumin are K190 and K351. Three sites of modification of XPA are in the DNA-binding domain, and two sites are subject to regulatory acetylation. Modification by adenine propenal dramatically reduces XPA's ability to bind to a DNA substrate.

  18. Factors influencing the rate of non-enzymatic activation of carboxylic and amino acids by ATP

    NASA Technical Reports Server (NTRS)

    Mullins, D. W., Jr.; Lacey, J. C., Jr.

    1981-01-01

    The nonenzymatic formation of adenylate anhydrides of carboxylic and amino acids is discussed as a necessary step in the origin of the genetic code and protein biosynthesis. Results of studies are presented which have shown the rate of activation to depend on the pKa of the carboxyl group, the pH of the medium, temperature, the divalent metal ion catalyst, salt concentration, and the nature of the amino acid. In particular, it was found that of the various amino acids investigated, phenylalanine had the greatest affinity for the adenine derivatives adenosine and ATP. Results thus indicate that selective affinities between amino acids and nucleotides were important during prebiotic chemical evolution, and may have played a major role in the origin of protein synthesis and genetic coding.

  19. Mitochondrial ATP transporter depletion protects mice against liver steatosis and insulin resistance

    PubMed Central

    Cho, Joonseok; Zhang, Yujian; Park, Shi-Young; Joseph, Anna-Maria; Han, Chul; Park, Hyo-Jin; Kalavalapalli, Srilaxmi; Chun, Sung-Kook; Morgan, Drake; Kim, Jae-Sung; Someya, Shinichi; Mathews, Clayton E.; Lee, Young Jae; Wohlgemuth, Stephanie E.; Sunny, Nishanth E.; Lee, Hui-Young; Choi, Cheol Soo; Shiratsuchi, Takayuki; Oh, S. Paul; Terada, Naohiro

    2017-01-01

    Non-alcoholic fatty liver disease (NAFLD) is a common metabolic disorder in obese individuals. Adenine nucleotide translocase (ANT) exchanges ADP/ATP through the mitochondrial inner membrane, and Ant2 is the predominant isoform expressed in the liver. Here we demonstrate that targeted disruption of Ant2 in mouse liver enhances uncoupled respiration without damaging mitochondrial integrity and liver functions. Interestingly, liver specific Ant2 knockout mice are leaner and resistant to hepatic steatosis, obesity and insulin resistance under a lipogenic diet. Protection against fatty liver is partially recapitulated by the systemic administration of low-dose carboxyatractyloside, a specific inhibitor of ANT. Targeted manipulation of hepatic mitochondrial metabolism, particularly through inhibition of ANT, may represent an alternative approach in NAFLD and obesity treatment. PMID:28205519

  20. Dietary nucleotides enhance the liver redox state and protein synthesis in cirrhotic rats.

    PubMed

    Pérez, María José; Sánchez-Medina, Fermín; Torres, Maribel; Gil, Angel; Suárez, Antonio

    2004-10-01

    Cirrhosis is characterized by altered lipid and protein metabolism and an excessive accumulation of extracellular matrix components. The aim of this work was to determine the effect of dietary nucleotide intake on the intracellular pools of nucleic acids and nucleotides, hepatic redox state, and protein synthesis during cirrhosis. Rats were given 300 mg/L thioacetamide (TAA) in drinking water and were fed diets without (TAA-Nt) or with nucleotides (Nt) (TAA+Nt, 3 g each of AMP, inosine 5'-monophosphate, CMP, GMP, and UMP per kg diet) for 4 mo. The degree of liver histological injury was less in group TAA+Nt than in TAA-Nt. The intake of nucleotides significantly increased the hepatic concentration of total nucleotides, adenine nucleotides, and ATP+ADP+AMP. Interestingly, the concentration of CDP-choline, a nucleotide necessary for phospholipid synthesis, was significantly higher in TAA+Nt than in TAA-Nt. The hepatic pyruvate:lactate (P = 0.075) and acetoacetate:beta-hydrodybutyrate (P < 0.05) ratios, indicators of cytosolic and mitochondrial redox states, were lower in TAA-Nt than in TAA+Nt. The total protein concentration was higher in the livers of TAA+Nt than in TAA-Nt. Although there were no differences in the expression of the albumin gene, the hepatic albumin concentration was significantly higher in TAA+Nt than in TAA-Nt. These data indicate that the reduction of liver injury in nucleotide-supplemented rats may be due to the increased intracellular availability of key metabolic nucleotides, the restoration of mitochondrial function, and the augmentation of protein synthesis.

  1. Mitochondrial diaphorases as NAD+ donors to segments of the citric acid cycle that support substrate-level phosphorylation yielding ATP during respiratory inhibition

    PubMed Central

    Kiss, Gergely; Konrad, Csaba; Pour-Ghaz, Issa; Mansour, Josef J.; Németh, Beáta; Starkov, Anatoly A.; Adam-Vizi, Vera; Chinopoulos, Christos

    2014-01-01

    Substrate-level phosphorylation mediated by succinyl-CoA ligase in the mitochondrial matrix produces high-energy phosphates in the absence of oxidative phosphorylation. Furthermore, when the electron transport chain is dysfunctional, provision of succinyl-CoA by the α-ketoglutarate dehydrogenase complex (KGDHC) is crucial for maintaining the function of succinyl-CoA ligase yielding ATP, preventing the adenine nucleotide translocase from reversing. We addressed the source of the NAD+ supply for KGDHC under anoxic conditions and inhibition of complex I. Using pharmacologic tools and specific substrates and by examining tissues from pigeon liver exhibiting no diaphorase activity, we showed that mitochondrial diaphorases in the mouse liver contribute up to 81% to the NAD+ pool during respiratory inhibition. Under these conditions, KGDHC's function, essential for the provision of succinyl-CoA to succinyl-CoA ligase, is supported by NAD+ derived from diaphorases. Through this process, diaphorases contribute to the maintenance of substrate-level phosphorylation during respiratory inhibition, which is manifested in the forward operation of adenine nucleotide translocase. Finally, we show that reoxidation of the reducible substrates for the diaphorases is mediated by complex III of the respiratory chain.—Kiss, G., Konrad, C., Pour-Ghaz, I., Mansour, J. J., Németh, B., Starkov, A. A., Adam-Vizi, V., Chinopoulos, C. Mitochondrial diaphorases as NAD+ donors to segments of the citric acid cycle that support substrate-level phosphorylation yielding ATP during respiratory inhibition. PMID:24391134

  2. Altered extracellular ATP, ADP, and AMP hydrolysis in blood serum of sedentary individuals after an acute, aerobic, moderate exercise session.

    PubMed

    Moritz, Cesar Eduardo Jacintho; Teixeira, Bruno Costa; Rockenbach, Liliana; Reischak-Oliveira, Alvaro; Casali, Emerson André; Battastini, Ana Maria Oliveira

    2017-02-01

    Nucleotidases participate in the regulation of physiological and pathological events, such as inflammation and coagulation. Exercise promotes distinct adaptations, and can influence purinergic signaling. In the present study, we investigated soluble nucleotidase activities in the blood serum of sedentary young male adults at pre- and post-acute moderate aerobic exercise. In addition, we evaluated how this kind of exercise could influence adenine nucleotide concentrations in the blood serum. Sedentary individuals were submitted to moderate aerobic exercise on a treadmill; blood samples were collected pre- and post-exercise, and serum was separated for analysis. Results showed increases in ATP, ADP, and AMP hydrolysis post-exercise, compared to pre-exercise values. The ecto-nucleotide pyrophosphatase/phosphodiesterase was also evaluated, showing an increased activity post-exercise, compared to pre-exercise. Purine levels were analyzed by HPLC in the blood serum, pre- and post-exercise. Decreased levels of ATP and ADP were found post-exercise, in contrast with pre-exercise values. Conversely, post-exercise levels of adenosine and inosine increased compared to pre-exercise levels. Our results indicate an influence of acute exercise on ATP metabolism, modifying enzymatic behavior to promote a protective biological environment.

  3. Was adenine the first purine?

    NASA Technical Reports Server (NTRS)

    Schwartz, Alan W.; Bakker, C. G.

    1989-01-01

    Oligomerization of HCN (1 molar) in the presence of added formaldehyde (0.5 molar) produced an order of magnitude more 8-hydroxymethyladenine than adenine or any other biologically significant purine. This result suggests that on the prebiotic earth, nucleoside analogs may have been synthesized directly in more complex mixtures of HCN with other aldehydes.

  4. The adsorption and reaction of adenine nucleotides on montmorillonite

    NASA Astrophysics Data System (ADS)

    Ferris, James P.; Hagan, William J.

    1986-03-01

    The binding of AMP to Zn2+-montmorillonite was investigated in the presence of buffers and salts. Good's buffers, piperazine-N,N'-bis(2-ethanesulfonate) [PIPES] and morpholine-N-2-ethanesulfonate [MES], perturbed the exchangeable cations to a lesser extent (only 9% of Zn2+ displaced by 0.2 M buffer) than was observed with imidazole and lutidine buffers or NaCl and KCl salts (up to 80% of Zn2+ displaced). AMP adsorption isotherms measured in the presence of 0.2 M PIPES, MES or Na2SO4 exhibited normal Langmuir-type behavior. The adsorption coefficient, KL, is 3-fold greater in the presence of HEPES or PIPES than it is in the absence of buffers. Basal spacings measured by X-ray diffraction for Zn2+-montmorillonite are 13 and 15 Å in the presence of PIPES, while a value of 12.8 Å was determined in the absence of PIPES. These data are interpreted in a model in which the adsorption of AMP is mediated by a Zn2+ complex of PIPES in different orientations in the interlamellar region of the montmorillonite. The type of exchangeable cation does not affect the ability of the lattice-bound Fe3+ in the montmorillonite to oxidize diaminomaleonitrile (DAMN). Exchangeable Cu2+ oxidizes DAMN, but exchangeable Fe3+ is nearly ineffective as an oxidant. The addition if DISN to 3'-AMP bound to Zn2+-montmorillonite in the presence of 0.2 M PIPES resulted in a higher yield of 2', 3'-cAMP than is observed with a comparable concentration of Zn2+, a result which implicates surface catalystis by the montmorillonite.

  5. Structural basis of AMPK regulation by adenine nucleotides and glycogen

    SciTech Connect

    Li, Xiaodan; Wang, Lili; Zhou, X. Edward; Ke, Jiyuan; de Waal, Parker W.; Gu, Xin; Tan, M. H. Eileen; Wang, Dongye; Wu, Donghai; Xu, H. Eric; Melcher, Karsten

    2014-11-21

    AMP-activated protein kinase (AMPK) is a central cellular energy sensor and regulator of energy homeostasis, and a promising drug target for the treatment of diabetes, obesity, and cancer. Here we present low-resolution crystal structures of the human α1β2γ1 holo-AMPK complex bound to its allosteric modulators AMP and the glycogen-mimic cyclodextrin, both in the phosphorylated (4.05 Å) and non-phosphorylated (4.60 Å) state. In addition, we have solved a 2.95 Å structure of the human kinase domain (KD) bound to the adjacent autoinhibitory domain (AID) and have performed extensive biochemical and mutational studies. Altogether, these studies illustrate an underlying mechanism of allosteric AMPK modulation by AMP and glycogen, whose binding changes the equilibria between alternate AID (AMP) and carbohydrate-binding module (glycogen) interactions.

  6. Structural basis of AMPK regulation by adenine nucleotides and glycogen

    DOE PAGES

    Li, Xiaodan; Wang, Lili; Zhou, X. Edward; ...

    2014-11-21

    AMP-activated protein kinase (AMPK) is a central cellular energy sensor and regulator of energy homeostasis, and a promising drug target for the treatment of diabetes, obesity, and cancer. Here we present low-resolution crystal structures of the human α1β2γ1 holo-AMPK complex bound to its allosteric modulators AMP and the glycogen-mimic cyclodextrin, both in the phosphorylated (4.05 Å) and non-phosphorylated (4.60 Å) state. In addition, we have solved a 2.95 Å structure of the human kinase domain (KD) bound to the adjacent autoinhibitory domain (AID) and have performed extensive biochemical and mutational studies. Altogether, these studies illustrate an underlying mechanism of allostericmore » AMPK modulation by AMP and glycogen, whose binding changes the equilibria between alternate AID (AMP) and carbohydrate-binding module (glycogen) interactions.« less

  7. MicroRNA-15b Modulates Cellular ATP Levels and Degenerates Mitochondria via Arl2 in Neonatal Rat Cardiac Myocytes*

    PubMed Central

    Nishi, Hitoo; Ono, Koh; Iwanaga, Yoshitaka; Horie, Takahiro; Nagao, Kazuya; Takemura, Genzou; Kinoshita, Minako; Kuwabara, Yasuhide; Mori, Rieko Takanabe; Hasegawa, Koji; Kita, Toru; Kimura, Takeshi

    2010-01-01

    MicroRNAs (miRNAs or miRs) are small, non-coding RNAs that modulate mRNA stability and post-transcriptional translation. A growing body of evidence indicates that specific miRNAs can affect the cellular function of cardiomyocytes. In the present study, miRNAs that are highly expressed in the heart were overexpressed in neonatal rat ventricular myocytes, and cellular ATP levels were assessed. As a result, miR-15b, -16, -195, and -424, which have the same seed sequence, the most critical determinant of miRNA targeting, decreased cellular ATP levels. These results suggest that these miRNAs could specifically down-regulate the same target genes and consequently decrease cellular ATP levels. Through a bioinformatics approach, ADP-ribosylation factor-like 2 (Arl2) was identified as a potential target of miR-15b. It has already been shown that Arl2 localizes to adenine nucleotide transporter 1, the exchanger of ADP/ATP in mitochondria. Overexpression of miR-15b, -16, -195, and -424 suppressed the activity of a luciferase reporter construct fused with the 3′-untranslated region of Arl2. In addition, miR-15b overexpression decreased Arl2 mRNA and protein expression levels. The effects of Arl2 siRNA on cellular ATP levels were the same as those of miR-15b, and the expression of Arl2 could restore ATP levels reduced by miR-15b. A loss-of-function study of miR-15b resulted in increased Arl2 protein and cellular ATP levels. Electron microscopic analysis revealed that mitochondria became degenerated in cardiomyocytes that had been transduced with miR-15b and Arl2 siRNA. The present results suggest that miR-15b may decrease mitochondrial integrity by targeting Arl2 in the heart. PMID:20007690

  8. Low energy costs of F1Fo ATP synthase reversal in colon carcinoma cells deficient in mitochondrial complex IV.

    PubMed

    Zhdanov, Alexander V; Andreev, Dmitry E; Baranov, Pavel V; Papkovsky, Dmitri B

    2017-05-01

    Mitochondrial polarisation is paramount for a variety of cellular functions. Under ischemia, mitochondrial membrane potential (ΔΨm) and proton gradient (ΔpH) are maintained via a reversal of mitochondrial F1Fo ATP synthase (mATPase), which can rapidly deplete ATP and drive cells into energy crisis. We found that under normal conditions in cells with disassembled cytochrome c oxidase complex (COX-deficient HCT116), mATPase maintains ΔΨm at levels only 15-20% lower than in WT cells, and for this utilises relatively little ATP. For a small energy expenditure, mATPase enables mitochondrial ΔpH, protein import, Ca(2+) turnover, and supports free radical detoxication machinery enlarged to protect the cells from oxidative damage. Whereas in COX-deficient cells the main source of ATP is glycolysis, the ΔΨm is still maintained upon inhibition of the adenine nucleotide translocators with bongkrekic acid and carboxyatractyloside, indicating that the role of ANTs is redundant, and matrix substrate level phosphorylation alone or in cooperation with ATP-Mg/Pi carriers can continuously support the mATPase activity. Intriguingly, we found that mitochondrial complex III is active, and it contributes not only to free radical production, but also to ΔΨm maintenance and energy budget of COX-deficient cells. Overall, this study demonstrates that F1Fo ATP synthase can support general mitochondrial and cellular functions, working in extremely efficient 'energy saving' reverse mode and flexibly recruiting free radical detoxication and ATP producing / transporting pathways.

  9. Calcium regulation of the human mitochondrial ATP-Mg/Pi carrier SLC25A24 uses a locking pin mechanism

    PubMed Central

    Harborne, Steven P. D.; King, Martin S.; Crichton, Paul G.; Kunji, Edmund R. S.

    2017-01-01

    Mitochondrial ATP-Mg/Pi carriers import adenine nucleotides into the mitochondrial matrix and export phosphate to the cytosol. They are calcium-regulated to control the size of the matrix adenine nucleotide pool in response to cellular energetic demands. They consist of three domains: an N-terminal regulatory domain containing four calcium-binding EF-hands, a linker loop domain with an amphipathic α-helix and a C-terminal mitochondrial carrier domain for the transport of substrates. Here, we use thermostability assays to demonstrate that the carrier is regulated by calcium via a locking pin mechanism involving the amphipathic α-helix. When calcium levels in the intermembrane space are high, the N-terminus of the amphipathic α-helix is bound to a cleft in the regulatory domain, leading to substrate transport by the carrier domain. When calcium levels drop, the cleft closes, and the amphipathic α-helix is released to bind to the carrier domain via its C-terminus, locking the carrier in an inhibited state. PMID:28350015

  10. ATP synthase.

    PubMed

    Junge, Wolfgang; Nelson, Nathan

    2015-01-01

    Oxygenic photosynthesis is the principal converter of sunlight into chemical energy. Cyanobacteria and plants provide aerobic life with oxygen, food, fuel, fibers, and platform chemicals. Four multisubunit membrane proteins are involved: photosystem I (PSI), photosystem II (PSII), cytochrome b6f (cyt b6f), and ATP synthase (FOF1). ATP synthase is likewise a key enzyme of cell respiration. Over three billion years, the basic machinery of oxygenic photosynthesis and respiration has been perfected to minimize wasteful reactions. The proton-driven ATP synthase is embedded in a proton tight-coupling membrane. It is composed of two rotary motors/generators, FO and F1, which do not slip against each other. The proton-driven FO and the ATP-synthesizing F1 are coupled via elastic torque transmission. Elastic transmission decouples the two motors in kinetic detail but keeps them perfectly coupled in thermodynamic equilibrium and (time-averaged) under steady turnover. Elastic transmission enables operation with different gear ratios in different organisms.

  11. The Pool of ADP and ATP Regulates Anaerobic Product Formation in Resting Cells of Lactococcus lactis

    PubMed Central

    Palmfeldt, Johan; Paese, Marco; Hahn-Hägerdal, Bärbel; van Niel, Ed W. J.

    2004-01-01

    Lactococcus lactis grows homofermentatively on glucose, while its growth on maltose under anaerobic conditions results in mixed acid product formation in which formate, acetate, and ethanol are formed in addition to lactate. Maltose was used as a carbon source to study mixed acid product formation as a function of the growth rate. In batch and nitrogen-limited chemostat cultures mixed acid product formation was shown to be linked to the growth rate, and homolactic fermentation occurred only in resting cells. Two of the four lactococcal strains investigated with maltose, L. lactis 65.1 and MG1363, showed more pronounced mixed acid product formation during growth than L. lactis ATCC 19435 or IL-1403. In resting cell experiments all four strains exhibited homolactic fermentation. In resting cells the intracellular concentrations of ADP, ATP, and fructose 1,6-bisphosphate were increased and the concentration of Pi was decreased compared with the concentrations in growing cells. Addition of an ionophore (monensin or valinomycin) to resting cultures of L. lactis 65.1 induced mixed acid product formation concomitant with decreases in the ADP, ATP, and fructose 1,6-bisphosphate concentrations. ADP and ATP were shown to inhibit glyceraldehyde-3-phosphate dehydrogenase, lactate dehydrogenase, and alcohol dehydrogenase in vitro. Alcohol dehydrogenase was the most sensitive enzyme and was totally inhibited at an adenine nucleotide concentration of 16 mM, which is close to the sum of the intracellular concentrations of ADP and ATP of resting cells. This inhibition of alcohol dehydrogenase might be partially responsible for the homolactic behavior of resting cells. A hypothesis regarding the level of the ATP-ADP pool as a regulating mechanism for the glycolytic flux and product formation in L. lactis is discussed. PMID:15345435

  12. Onset of chiral adenine surface growth.

    PubMed

    Capitán, María Jose; Álvarez, Jesús; Wang, Yang; Otero, Roberto; Alcamí, Manuel; Martín, Fernando; Miranda, Rodolfo

    2013-10-07

    The structure and stability of adenine crystals and thin layers has been studied by using scanning tunneling microscopy, X-ray diffraction, and density functional theory calculations. We have found that adenine crystals can be grown in two phases that are energetically quasi-degenerate, the structure of which can be described as a pile-up of 2D adenine planes. In each plane, the structure can be described as an aggregation of adenine dimers. Under certain conditions, kinetic effects can favor the growth of the less stable phase. These results have been used to understand the growth of adenine thin films on gold under ultra-high vacuum conditions. We have found that the grown phase corresponds to the α-phase, which is composed of stacked prochiral planes. In this way, the adenine nanocrystals exhibit a surface that is enantiopure. These results could open new insight into the applications of adenine in biological, medical, and enantioselective or pharmaceutical fields.

  13. Intramolecular interactions in aminoacyl nucleotides: Implications regarding the origin of genetic coding and protein synthesis

    NASA Technical Reports Server (NTRS)

    Lacey, J. C., Jr.; Mullins, D. W., Jr.; Watkins, C. L.; Hall, L. M.

    1986-01-01

    Cellular organisms store information as sequences of nucleotides in double stranded DNA. This information is useless unless it can be converted into the active molecular species, protein. This is done in contemporary creatures first by transcription of one strand to give a complementary strand of mRNA. The sequence of nucleotides is then translated into a specific sequence of amino acids in a protein. Translation is made possible by a genetic coding system in which a sequence of three nucleotides codes for a specific amino acid. The origin and evolution of any chemical system can be understood through elucidation of the properties of the chemical entities which make up the system. There is an underlying logic to the coding system revealed by a correlation of the hydrophobicities of amino acids and their anticodonic nucleotides (i.e., the complement of the codon). Its importance lies in the fact that every amino acid going into protein synthesis must first be activated. This is universally accomplished with ATP. Past studies have concentrated on the chemistry of the adenylates, but more recently we have found, through the use of NMR, that we can observe intramolecular interactions even at low concentrations, between amino acid side chains and nucleotide base rings in these adenylates. The use of this type of compound thus affords a novel way of elucidating the manner in which amino acids and nucleotides interact with each other. In aqueous solution, when a hydrophobic amino acid is attached to the most hydrophobic nucleotide, AMP, a hydrophobic interaction takes place between the amino acid side chain and the adenine ring. The studies to be reported concern these hydrophobic interactions.

  14. Detection of ATP and NADH: A Bioluminescent Experience.

    ERIC Educational Resources Information Center

    Selig, Ted C.; And Others

    1984-01-01

    Described is a bioluminescent assay for adenosine triphosphate (ATP) and reduced nicotineamide-adenine dinucleotide (NADH) that meets the requirements of an undergraduate biochemistry laboratory course. The 3-hour experiment provides students with experience in bioluminescence and analytical biochemistry yet requires limited instrumentation,…

  15. Impaired mitochondrial Ca{sup 2+} homeostasis in respiratory chain-deficient cells but efficient compensation of energetic disadvantage by enhanced anaerobic glycolysis due to low ATP steady state levels

    SciTech Connect

    Kleist-Retzow, Juergen-Christoph von ||. E-mail: juergen-christoph.vonkleist@uk-koeln.de; Hue-Tran Hornig-Do; Schauen, Matthias; Eckertz, Sabrina; Tuan Anh Duong Dinh; Stassen, Frank; Lottmann, Nadine; Bust, Maria; Galunska, Bistra; Wielckens, Klaus; Hein, Wolfgang; Beuth, Joseph; Braun, Jan-Matthias; Fischer, Juergen H.; Ganitkevich, Vladimir Y. |; Maniura-Weber, Katharina; Wiesner, Rudolf J. |

    2007-08-15

    Energy-producing pathways, adenine nucleotide levels, oxidative stress response and Ca{sup 2+} homeostasis were investigated in cybrid cells incorporating two pathogenic mitochondrial DNA point mutations, 3243A > G and 3302A > G in tRNA{sup Leu(UUR)}, as well as Rho{sup 0} cells and compared to their parental 143B osteosarcoma cell line. All cells suffering from a severe respiratory chain deficiency were able to proliferate as fast as controls. The major defect in oxidative phosphorylation was efficiently compensated by a rise in anaerobic glycolysis, so that the total ATP production rate was preserved. This enhancement of glycolysis was enabled by a considerable decrease of cellular total adenine nucleotide pools and a concomitant shift in the AMP + ADP/ATP ratios, while the energy charge potential was still in the normal range. Further important consequences were an increased production of superoxide which, however, was neither escorted by major changes in the antioxidative defence systems nor was it leading to substantial oxidative damage. Most interestingly, the lowered mitochondrial membrane potential led to a disturbed intramitochondrial calcium homeostasis, which most likely is a major pathomechanism in mitochondrial diseases.

  16. Facilitation of ß-cell K(ATP) channel sulfonylurea sensitivity by a cAMP analog selective for the cAMP-regulated guanine nucleotide exchange factor Epac.

    PubMed

    Leech, Colin A; Dzhura, Igor; Chepurny, Oleg G; Schwede, Frank; Genieser, Hans-G; Holz, George G

    2010-01-01

    Clinical studies demonstrate that combined administration of sulfonylureas with exenatide can induce hypoglycemia in type 2 diabetic subjects. Whereas sulfonylureas inhibit ß-cell K(ATP) channels by binding to the sulfonylurea receptor-1 (SUR1), exenatide binds to the GLP-1 receptor, stimulates ß-cell cAMP production and activates both PKA and Epac. In this study, we hypothesized that the adverse in vivo interaction of sulfonylureas and exenatide to produce hypoglycemia might be explained by Epac-mediated facilitation of K(ATP) channel sulfonylurea sensitivity. We now report that the inhibitory action of a sulfonylurea (tolbutamide) at K(ATP) channels was facilitated by 2’-O-Me-cAMP, a selective activator of Epac. Thus, under conditions of excised patch recording, the dose-response relationship describing the inhibitory action of tolbutamide at human ß-cell or rat INS-1 cell K(ATP) channels was left-shifted in the presence of 2’-O-Me-cAMP, and this effect was abolished in INS-1 cells expressing a dominant-negative Epac2. Using an acetoxymethyl ester prodrug of an Epac-selective cAMP analog (8-pCP T-2’-O-Me-cAMP-AM), the synergistic interaction of an Epac activator and tolbutamide to depolarize INS-1 cells and to raise [Ca²(+)](i) was also measured. This effect of 8-pCP T-2’-O-Me-cAMP-AM correlated with its ability to stimulate phosphatidylinositol 4,5-bisphosphate hydrolysis that might contribute to the changes in K(ATP) channel sulfonylurea-sensitivity reported here. On the basis of such findings, we propose that the adverse interaction of sulfonylureas and exenatide to induce hypoglycemia involves at least in part, a functional interaction of these two compounds to close K(ATP) channels, to depolarize ß-cells and to promote insulin secretion.

  17. Purification and characterization of TnsC, a Tn7 transposition protein that binds ATP and DNA.

    PubMed Central

    Gamas, P; Craig, N L

    1992-01-01

    The bacterial transposon Tn7 encodes five transposition genes tnsABCDE. We report a simple and rapid procedure for the purification of TnsC protein. We show that purified TnsC is active in and required for Tn7 transposition in a cell-free recombination system. This finding demonstrates that TnsC participates directly in Tn7 transposition and explains the requirement for tnsC function in Tn7 transposition. We have found that TnsC binds adenine nucleotides and is thus a likely site of action of the essential ATP cofactor in Tn7 transposition. We also report that TnsC binds non-specifically to DNA in the presence of ATP or the generally non-hydrolyzable analogues AMP-PNP and ATP-gamma-S, and that TnsC displays little affinity for DNA in the presence of ADP. We speculate that TnsC plays a central role in the selection of target DNA during Tn7 transposition. Images PMID:1317955

  18. Comparative study of spontaneous deamination of adenine and cytosine in unbuffered aqueous solution at room temperature

    NASA Astrophysics Data System (ADS)

    Wang, Shiliang; Hu, Anguang

    2016-06-01

    Adenine in unbuffered nanopure water at a concentration of 2 mM is completely deaminated (>99%) to hypoxanthine at room temperature in ca. 10 weeks, with an estimated half-life (t1/2) less than 10 days, about six orders of magnitude faster than previously reported. Cytosine is not deaminated under the same condition, even after 3 years. This is in contrast to previous observations that cytosine deaminates 20-40 times faster than adenine free base, in nucleoside, in nucleotide and in single-stranded DNA in buffered neutral aqueous solutions.

  19. Nucleotide capacitance calculation for DNA sequencing

    SciTech Connect

    Lu, Jun-Qiang; Zhang, Xiaoguang

    2008-01-01

    Using a first-principles linear response theory, the capacitance of the DNA nucleotides, adenine, cytosine, guanine and thymine, are calculated. The difference in the capacitance between the nucleotides is studied with respect to conformational distortion. The result suggests that although an alternate current capacitance measurement of a single-stranded DNA chain threaded through a nano-gap electrodes may not sufficient to be used as a stand alone method for rapid DNA sequencing, the capacitance of the nucleotides should be taken into consideration in any GHz-frequency electric measurements and may also serve as an additional criterion for identifying the DNA sequence.

  20. Mitochondrial diaphorases as NAD⁺ donors to segments of the citric acid cycle that support substrate-level phosphorylation yielding ATP during respiratory inhibition.

    PubMed

    Kiss, Gergely; Konrad, Csaba; Pour-Ghaz, Issa; Mansour, Josef J; Németh, Beáta; Starkov, Anatoly A; Adam-Vizi, Vera; Chinopoulos, Christos

    2014-04-01

    Substrate-level phosphorylation mediated by succinyl-CoA ligase in the mitochondrial matrix produces high-energy phosphates in the absence of oxidative phosphorylation. Furthermore, when the electron transport chain is dysfunctional, provision of succinyl-CoA by the α-ketoglutarate dehydrogenase complex (KGDHC) is crucial for maintaining the function of succinyl-CoA ligase yielding ATP, preventing the adenine nucleotide translocase from reversing. We addressed the source of the NAD(+) supply for KGDHC under anoxic conditions and inhibition of complex I. Using pharmacologic tools and specific substrates and by examining tissues from pigeon liver exhibiting no diaphorase activity, we showed that mitochondrial diaphorases in the mouse liver contribute up to 81% to the NAD(+) pool during respiratory inhibition. Under these conditions, KGDHC's function, essential for the provision of succinyl-CoA to succinyl-CoA ligase, is supported by NAD(+) derived from diaphorases. Through this process, diaphorases contribute to the maintenance of substrate-level phosphorylation during respiratory inhibition, which is manifested in the forward operation of adenine nucleotide translocase. Finally, we show that reoxidation of the reducible substrates for the diaphorases is mediated by complex III of the respiratory chain.

  1. Myoadenylate deaminase deficiency. Functional and metabolic abnormalities associated with disruption of the purine nucleotide cycle.

    PubMed Central

    Sabina, R L; Swain, J L; Olanow, C W; Bradley, W G; Fishbein, W N; DiMauro, S; Holmes, E W

    1984-01-01

    by the combined increases of adenosine, inosine, hypoxanthine, and IMP. Studies performed in vitro with muscle samples from seven MDD and seven non-MDD subjects demonstrated that ATP catabolism was associated with a fivefold greater increase in IMP in non-MDD muscle. There were significant increases in AMP and ADP content of the muscle from MDD patients following ATP catabolism in vitro, while there was no detectable increase in AMP or ADP in non-MDD muscle. Adenosine content of MDD muscle increased following ATP catabolism, but there was no detectable increase in adenosine content of non-MDD muscle following ATP catabolism in vitro. These studies demonstrate that AMP deaminase deficiency leads to reduced entry of adenine nucleotides into the purine nucleotide cycle during exercise. We postulate that the resultant disruption of the purine nucleotide cycle accounts for the muscle dysfunction observed in these patients. Images PMID:6707201

  2. Bound Anionic States of Adenine

    SciTech Connect

    Haranczyk, Maciej; Gutowski, Maciej S.; Li, Xiang; Bowen, Kit H.

    2007-03-20

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Anionic states of nucleic acid bases are involved in DNA damage by low-energy electrons and in charge transfer through DNA. Previous gas phase studies of free, unsolvated nucleic acid base parent anions probed only dipole-bound states, which are not present in condensed phase environments, but did not observe valence anionic states, which for purine bases are thought to be adiabatically unbound. Contrary to this expectation, we have demonstrated that some thus far ignored tautomers of adenine, which result from enamine-imine transformations, support valence anionic states with electron vertical detachment energies as large as 2.2 eV, and at least one of these anionic tautomers is adiabatically bound. Moreover, we predict that the new anionic tautomers should also dominate in solutions and should be characterized by larger values of electron vertical detachment energy than the canonical valence anion. All of the newfound anionic tautomers might be formed in the course of dissociative electron attachment followed by a hydrogen atom attachment to a carbon atom, and they might affect the structure and properties of DNA and RNA exposed to low-energy electrons. The new valence states observed here, unlike the dipole-bound state, could exist in condensed phases and might be relevant to radiobiological damage. The discovery of these valence anionic states of adenine was facilitated by the development of (i) an experimental method for preparing parent anions of nucleic acid bases for photoelectron experiments, and (it) a combinatorial/quantum chemical approach for identification of the most stable tautomers of organic molecules.

  3. Adenine Aminohydrolase from Leishmania donovani

    PubMed Central

    Boitz, Jan M.; Strasser, Rona; Hartman, Charles U.; Jardim, Armando; Ullman, Buddy

    2012-01-01

    Adenine aminohydrolase (AAH) is an enzyme that is not present in mammalian cells and is found exclusively in Leishmania among the protozoan parasites that infect humans. AAH plays a paramount role in purine metabolism in this genus by steering 6-aminopurines into 6-oxypurines. Leishmania donovani AAH is 38 and 23% identical to Saccharomyces cerevisiae AAH and human adenosine deaminase enzymes, respectively, catalyzes adenine deamination to hypoxanthine with an apparent Km of 15.4 μm, and does not recognize adenosine as a substrate. Western blot analysis established that AAH is expressed in both life cycle stages of L. donovani, whereas subcellular fractionation and immunofluorescence studies confirmed that AAH is localized to the parasite cytosol. Deletion of the AAH locus in intact parasites established that AAH is not an essential gene and that Δaah cells are capable of salvaging the same range of purine nucleobases and nucleosides as wild type L. donovani. The Δaah null mutant was able to infect murine macrophages in vitro and in mice, although the parasite loads in both model systems were modestly reduced compared with wild type infections. The Δaah lesion was also introduced into a conditionally lethal Δhgprt/Δxprt mutant in which viability was dependent on pharmacologic ablation of AAH by 2′-deoxycoformycin. The Δaah/Δhgprt/Δxprt triple knock-out no longer required 2′-deoxycoformycin for growth and was avirulent in mice with no persistence after a 4-week infection. These genetic studies underscore the paramount importance of AAH to purine salvage by L. donovani. PMID:22238346

  4. Running out of time: the decline of channel activity and nucleotide activation in adenosine triphosphate-sensitive K-channels

    PubMed Central

    Proks, Peter; Puljung, Michael C.; Vedovato, Natascia; Sachse, Gregor; Mulvaney, Rachel; Ashcroft, Frances M.

    2016-01-01

    KATP channels act as key regulators of electrical excitability by coupling metabolic cues—mainly intracellular adenine nucleotide concentrations—to cellular potassium ion efflux. However, their study has been hindered by their rapid loss of activity in excised membrane patches (rundown), and by a second phenomenon, the decline of activation by Mg-nucleotides (DAMN). Degradation of PI(4,5)P2 and other phosphoinositides is the strongest candidate for the molecular cause of rundown. Broad evidence indicates that most other determinants of rundown (e.g. phosphorylation, intracellular calcium, channel mutations that affect rundown) also act by influencing KATP channel regulation by phosphoinositides. Unfortunately, experimental conditions that reproducibly prevent rundown have remained elusive, necessitating post hoc data compensation. Rundown is clearly distinct from DAMN. While the former is associated with pore-forming Kir6.2 subunits, DAMN is generally a slower process involving the regulatory sulfonylurea receptor (SUR) subunits. We speculate that it arises when SUR subunits enter non-physiological conformational states associated with the loss of SUR nucleotide-binding domain dimerization following prolonged exposure to nucleotide-free conditions. This review presents new information on both rundown and DAMN, summarizes our current understanding of these processes and considers their physiological roles. This article is part of the themed issue ‘Evolution brings Ca2+ and ATP together to control life and death’. PMID:27377720

  5. Cleavage of nicotinamide adenine dinucleotide by the ribosome-inactivating protein from Momordica charantia.

    PubMed

    Vinkovic, M; Dunn, G; Wood, G E; Husain, J; Wood, S P; Gill, R

    2015-09-01

    The interaction of momordin, a type 1 ribosome-inactivating protein from Momordica charantia, with NADP(+) and NADPH has been investigated by X-ray diffraction analysis of complexes generated by co-crystallization and crystal soaking. It is known that the proteins of this family readily cleave the adenine-ribose bond of adenosine and related nucleotides in the crystal, leaving the product, adenine, bound to the enzyme active site. Surprisingly, the nicotinamide-ribose bond of oxidized NADP(+) is cleaved, leaving nicotinamide bound in the active site in the same position but in a slightly different orientation to that of the five-membered ring of adenine. No binding or cleavage of NADPH was observed at pH 7.4 in these experiments. These observations are in accord with current views of the enzyme mechanism and may contribute to ongoing searches for effective inhibitors.

  6. Chemical probing of adenine residues within the secondary structure of rabbit /sup 18/S ribosomal RNA

    SciTech Connect

    Rairkar, A.; Rubino, H.M.; Lockard, R.E.

    1988-01-26

    The location of unpaired adenine residues within the secondary structure of rabbit /sup 18/S ribosomal RNA was determined by chemical probing. Naked /sup 18/S rRNA was first prepared by digestion of purified 40S subunits with matrix-bound proteinase K in sodium dodecyl sulfate, thereby omitting the use of nucleic acid denaturants. Adenines within naked /sup 18/S rRNA were chemically probed by using either diethyl pyrocarbonate or dimethyl sulfate, which specifically react with unpaired nucleotides. Adenine modification sites were identified by polyacrylamide sequencing gel electrophoresis either upon aniline-induced strand scission of /sup 32/P-end-labeled intact and fragmented rRNA or by primer extension using sequence-specific DNA oligomers with reverse transcriptase. The data indicate good agreement between the general pattern of adenine reactivity and the location of unpaired regions in /sup 18/S rRNA determined by comparative sequence analysis. The overall reactivity of adenine residues toward single-strand-specific chemical probes was, also, similar for both rabbit and Escherichia coli small rRNA. The number of strongly reactive adenines appearing within phylogenetically determined helical segments, however, was greater in rabbit /sup 18/S rRNA than for E. coli /sup 16/S rRNA. Some of these adenines were found clustered in specific helices. Such differences suggest a greater irregularity of many of the helical elements within mammalian /sup 18/S rRNA, as compared with prokaryotic /sup 16/S rRNA. These helical irregularities could be important for protein association and also may represent biologically relevant flexible regions of the molecule.

  7. Bound anionic states of adenine

    SciTech Connect

    Haranczyk, Maciej; Gutowski, Maciej S; Li, Xiang; Bowen, Kit H

    2007-03-20

    Anionic states of nucleic acid bases are involved in DNA damage by low-energy electrons and in charge transfer through DNA. Previous gas phase studies of free, unsolvated nucleic acid base parent anions probed only dipole-bound states, which are not present in condensed phase environments, but did not observe valence anionic states, which for purine bases, are thought to be adiabatically unbound. Contrary to this expectation, we have demonstrated that some thus far ignored tautomers of adenine, which result from enamine-imine transformations, support valence anionic states with electron vertical detachment energies as large as 2.2 eV, and at least one of these anionic tautomers is adiabatically bound. Moreover, we predict that the new anionic tautomers should also dominate in solutions and should be characterized by larger values of electron vertical detachment energy than the canonical valence anion. All of the new-found anionic tautomers might be formed in the course of dissociative electron attachment followed by a hydrogen atom attachment to a carbon atom, and they might affect the structure and properties of DNA and RNA exposed to low-energy electrons. The discovery of these valence anionic states of adenine was facilitated by the development of: (i) a new experimental method for preparing parent anions of nucleic acid bases for photoelectron experiments, and (ii) a new combinatorial/ quantum chemical approach for identification of the most stable tautomers of organic molecules. The computational portion of this work was supported by the: (i) Polish State Committee for Scientific Research (KBN) Grants: DS/8000-4-0140-7 (M.G.) and N204 127 31/2963 (M.H.), (ii) European Social Funds (EFS) ZPORR/2.22/II/2.6/ARP/U/2/05 (M.H.), and (iii) US DOE Office of Biological and Environmental Research, Low Dose Radiation Research Program (M.G.). M.H. holds the Foundation for Polish Science (FNP) award for young scientists. The calculations were performed at the Academic

  8. ATP and related purines stimulate motility, spatial congregation, and coalescence in red algal spores.

    PubMed

    Huidobro-Toro, Juan P; Donoso, Verónica; Flores, Verónica; Santelices, Bernabé

    2015-04-01

    Adenosine 5'-triphosphate (ATP) is a versatile extracellular signal along the tree of life, whereas cAMP plays a major role in vertebrates as an intracellular messenger for hormones, transmitters, tastants, and odorants. Since red algal spore coalescence may be considered analogous to the congregation process of social amoeba, which is stimulated by cAMP, we ascertained whether exogenous applications of ATP, cAMP, adenine, or adenosine modified spore survival and motility, spore settlement and coalescence. Concentration-response studies were performed with carpospores of Mazzaella laminarioides (Gigartinales), incubated with and without added purines. Stirring of algal blades released ADP/ATP to the cell media in a time-dependent manner. 10-300 μM ATP significantly increased spore survival; however, 1,500 μM ATP, cAMP or adenine induced 100% mortality within less than 24 h; the exception was adenosine, which up to 3,000 μM, did not alter spore survival. ATP exposure elicited spore movement with speeds of 2.2-2.5 μm · s(-1) . 14 d after 1,000 μM ATP addition, spore abundance in the central zone of the plaques was increased 2.7-fold as compared with parallel controls. Likewise, 1-10 μM cAMP or 30-100 μM adenine also increased central zone spore abundance, albeit these purines were less efficacious than ATP; adenosine up to 3,000 μM did not influence settlement. Moreover, 1,000 μM ATP markedly accelerated coalescence, the other purines caused a variable effect. We conclude that exogenous cAMP, adenine, but particularly ATP, markedly influence red algal spore physiology; effects are compatible with the expression of one or more membrane purinoceptor(s), discarding adenosine receptor participation.

  9. Phosphorylation and nucleotide-dependent dephosphorylation of hepatic polypeptides related to the plasma cell differentiation antigen PC-1.

    PubMed Central

    Uriarte, M; Stalmans, W; Hickman, S; Bollen, M

    1993-01-01

    A glycoprotein fraction was isolated from rat liver membranes by affinity chromatography on immobilized wheat-germ lectin. Incubation of this fraction with MgATP or MgGTP resulted in a sequential phosphorylation and dephosphorylation of a complex of three polypeptides (118, 128 and 197 kDa on SDS/PAGE) with N-linked sialyloligosaccharides. Each polypeptide was recognized by polyclonal antibodies against recombinant plasma cell differentiation antigen PC-1. The relationship of the 118 kDa and 128 kDa polypeptides with PC-1 was confirmed by observations that they are linked by disulphide bonds into a larger protein, and that they are exclusively phosphorylated on Thr residues. Phosphorylation of p118, p128 and p197 only occurred after a lag period (up to 90 min at 30 degrees C), which lasted until most of the ATP had been converted to adenosine and Pi, with ADP and AMP as intermediate products. The length of the latency period increased with the concentration of initially added ATP (5-1000 microM) and could be prolonged by a second addition of similar concentrations of ATP, ADP, AMP and various nucleotide analogues. Most potent were the alpha beta-methylene derivatives of ADP and ATP. Adenosine was poorly effective. AMP, ADP, and perhaps ATP, emerge as the direct determinants of the latency. After further purification of the lectin-purified membrane fraction on anion-exchange and molecular-sieve columns, the complex of p118, p128 and p197 was still capable of autophosphorylation and dephosphorylation. The dephosphorylation was not affected by classical inhibitors (NaF, okadaic acid, EDTA, EGTA, phenylalanine). It was stimulated about 20-fold by various adenine nucleotides and analogues, with the same order of efficiency as noted for the induction of the latency. A similar stimulation of dephosphorylation was caused by 0.5 mM Na3VO4, which also prevented the phosphorylation of the three polypeptides. The likely explanation for the latency that precedes the

  10. AMP promotes oxygen consumption and ATP synthesis in heart mitochondria through the adenylate kinase reaction: an NMR spectroscopy and polarography study.

    PubMed

    Doliba, Nicolai M; Babsky, Andriy M; Doliba, Nataliya M; Wehrli, Suzanne L; Osbakken, Mary D

    2015-03-01

    Adenylate kinase plays an important role in cellular energy homeostasis by catalysing the interconversion of adenine nucleotides. The goal of present study was to evaluate the contribution of the adenylate kinase reaction to oxidative ATP synthesis by direct measurements of ATP using (31) P NMR spectroscopy. Results show that AMP can stimulate ATP synthesis in the presence or absence of ADP. In particular, addition of 1 mM AMP to the 0.6 mM ADP superfusion system of isolated superfused mitochondria (contained and maintained in agarose beads) led to a 25% increase in ATP synthesis as measured by the increase in βATP signal. More importantly, we show that AMP can support ATP synthesis in the absence of ADP, demonstrated as follows. Superfusion of mitochondria without ADP led to the disappearance of ATP γ, α and β signals and the increase of Pi . Addition of AMP to the medium restored the production of ATP, as demonstrated by the reappearance of γ, α and β ATP signals, in conjunction with a decrease in Pi , which is being used for ATP synthesis. Polarographic studies showed Mg(2+) dependence of this process, confirming the specificity of the adenylate kinase reaction. Furthermore, data obtained from this study demonstrate, for the first time, that different aspects of the adenylate kinase reaction can be evaluated with (31) P NMR spectroscopy. SIGNIFICANCE OF RESEARCH PARAGRAPH: The data generated in the present study indicate that (31) P NMR spectroscopy can effectively be used to study the adenylate kinase reaction under a variety of conditions. This is important because understanding of adenylate kinase function and/or malfunction is essential to understanding its role in health and disease. The data obtained with (31) P NMR were confirmed by polarographic studies, which further strengthens the robustness of the NMR findings. In summary, (31) P NMR spectroscopy provides a sensitive tool to study adenylate kinase activity in different physiological and

  11. No effects of oral ribose supplementation on repeated maximal exercise and de novo ATP resynthesis.

    PubMed

    Eijnde, B O; Van Leemputte, M; Brouns, F; Van Der Vusse, G J; Labarque, V; Ramaekers, M; Van Schuylenberg, R; Verbessem, P; Wijnen, H; Hespel, P

    2001-11-01

    A double-blind randomized study was performed to evaluate the effect of oral ribose supplementation on repeated maximal exercise and ATP recovery after intermittent maximal muscle contractions. Muscle power output was measured during dynamic knee extensions with the right leg on an isokinetic dynamometer before (pretest) and after (posttest) a 6-day training period in conjunction with ribose (R, 4 doses/day at 4 g/dose, n = 10) or placebo (P, n = 9) intake. The exercise protocol consisted of two bouts (A and B) of maximal contractions, separated by 15 s of rest. Bouts A and B consisted of 15 series of 12 contractions each, separated by a 60-min rest period. During the training period, the subjects performed the same exercise protocol twice per day, with 3-5 h of rest between exercise sessions. Blood samples were collected before and after bouts A and B and 24 h after bout B. Knee-extension power outputs were approximately 10% higher in the posttest than in the pretest but were similar between P and R for all contraction series. The exercise increased blood lactate and plasma ammonia concentrations (P < 0.05), with no significant differences between P and R at any time. After a 6-wk washout period, in a subgroup of subjects (n = 8), needle-biopsy samples were taken from the vastus lateralis before, immediately after, and 24 h after an exercise bout similar to the pretest. ATP and total adenine nucleotide content were decreased by approximately 25 and 20% immediately after and 24 h after exercise in P and R. Oral ribose supplementation with 4-g doses four times a day does not beneficially impact on postexercise muscle ATP recovery and maximal intermittent exercise performance.

  12. Release of beta-nicotinamide adenine dinucleotide upon stimulation of postganglionic nerve terminals in blood vessels and urinary bladder.

    PubMed

    Smyth, Lisa M; Bobalova, Janette; Mendoza, Michael G; Lew, Christy; Mutafova-Yambolieva, Violeta N

    2004-11-19

    Chemical signaling in autonomic neuromuscular transmission involves agents that function as neurotransmitters and/or neuromodulators. Using high performance liquid chromatography techniques with fluorescence and electrochemical detection we observed that, in addition to ATP and norepinephrine (NE), electrical field stimulation (EFS, 4-16 Hz, 0.1-0.3 ms, 15 V, 60-120 s) of isolated vascular and non-vascular preparations co-releases a previously unidentified compound with apparent nucleotide or nucleoside structure. Extensive screening of more than 25 nucleotides and nucleosides followed by detailed peak identification revealed that beta-nicotinamide adenine dinucleotide (beta-NAD) is released in tissue superfusates upon EFS of canine mesenteric artery (CMA), canine urinary bladder, and murine urinary bladder in the amounts of 7.1 +/- 0.7, 26.5 +/- 4.5, and 15.1 +/- 3.2 fmol/mg of tissue, respectively. Smaller amounts of the beta-NAD metabolites cyclic adenosine 5'-diphosphoribose (cADPR) and ADPR were also present in the superfusates collected during EFS of CMA (2.5 +/- 0.9 and 5.8 +/- 0.8 fmol/mg of tissue, respectively), canine urinary bladder (1.8 +/- 0.5 and 9.0 +/- 6.0 fmol/mg of tissue, respectively), and murine urinary bladder (1.4 +/- 0.1 and 6.2 +/- 2.4 fmol/mg of tissue, respectively). The three nucleotides were also detected in the samples collected before EFS (0.2-1.6 fmol/mg of tissue). Exogenous beta-NAD, cADPR, and ADPR (all 100 nm) reduced the release of NE in CMA at 16 Hz from 27.8 +/- 6.0 fmol/mg of tissue to 15.5 +/- 5.0, 12 +/- 3.0, and 10.0 +/- 4.0 fmol/mg of tissue, respectively. In conclusion, we detected constitutive and nerve-evoked overflow of beta-NAD, cADPR, and ADPR in vascular and non-vascular smooth muscles, beta-NAD being the prevailing compound. These substances modulate the release of NE, implicating novel nucleotide mechanisms of autonomic nervous system control of smooth muscle.

  13. ATP in the pathogenesis of lung emphysema.

    PubMed

    Mortaz, Esmaeil; Braber, Saskia; Nazary, Maiwand; Givi, Masoumh Ezzati; Nijkamp, Frans P; Folkerts, Gert

    2009-10-01

    Extracellular ATP is a signaling molecule that often serves as a danger signal to alert the immune system of tissue damage. This molecule activates P2 nucleotide receptors, that include the ionotropic P2X receptors and metabotropic P2Y receptors. Recently, it has been reported that ATP accumulates in the airways of both asthmatic patients and sensitized mice after allergen challenge. The role and function of ATP in the pathogenesis of chronic obstructive pulmonary diseases (COPD) are not well understood. In this study we investigated the effect of cigarette smoke on purinergic receptors and ATP release by neutrophils. Neutrophils and their mediators are key players in the pathogenesis of lung emphysema. Here we demonstrated that in an in vivo model of cigarette smoke-induced lung emphysema, the amount of ATP was increased in the bronchoalveolar lavage fluid. Moreover, activation of neutrophils with cigarette smoke extract induced ATP release. Treatment of neutrophils with apyrase (catalyses the hydrolysis of ATP to yield AMP) and suramin (P2-receptor antagonist) abrogated the release of CXCL8 and elastase induced by cigarette smoke extract and exogenous ATP. These observations indicate that activation of purinergic signaling by cigarette smoke may take part in the pathogenesis of lung emphysema.

  14. Vesicular nucleotide transporter regulates the nucleotide content in airway epithelial mucin granules

    PubMed Central

    Sesma, Juliana I.; Kreda, Silvia M.; Okada, Seiko F.; van Heusden, Catharina; Moussa, Lama; Jones, Lisa C.; O'Neal, Wanda K.; Togawa, Natsuko; Hiasa, Miki; Moriyama, Yoshinori

    2013-01-01

    Nucleotides within the airway surface liquid promote fluid secretion via activation of airway epithelial purinergic receptors. ATP is stored within and released from mucin granules as co-cargo with mucins, but the mechanism by which ATP, and potentially other nucleotides, enter the lumen of mucin granules is not known. We assessed the contribution of the recently identified SLC17A9 vesicle nucleotide transporter (VNUT) to the nucleotide availability within isolated mucin granules and further examined the involvement of VNUT in mucin granule secretion-associated nucleotide release. RT-PCR and Western blot analyses indicated that VNUT is abundantly expressed in airway epithelial goblet-like Calu-3 cells, migrating as a duplex with apparent mobility of 55 and 60 kDa. Subcellular fractionation studies indicated that VNUT55 was associated with high-density mucin granules, whereas VNUT60 was associated with low-density organelles. Immunofluorescence studies showed that recombinant VNUT localized to mucin granules and other organelles. Mucin granules isolated from VNUT short hairpin RNA-expressing cells exhibited a marked reduction of ATP, ADP, AMP, and UTP levels within granules. Ca2+-regulated vesicular ATP release was markedly reduced in these cells, but mucin secretion was not affected. These results suggest that VNUT is the relevant nucleotide transporter responsible for the uptake of cytosolic nucleotides into mucin granules. By controlling the entry of nucleotides into mucin granules, VNUT contributes to the release of purinergic signaling molecules necessary for the proper hydration of co-released mucins. PMID:23467297

  15. Vesicular nucleotide transporter regulates the nucleotide content in airway epithelial mucin granules.

    PubMed

    Sesma, Juliana I; Kreda, Silvia M; Okada, Seiko F; van Heusden, Catharina; Moussa, Lama; Jones, Lisa C; O'Neal, Wanda K; Togawa, Natsuko; Hiasa, Miki; Moriyama, Yoshinori; Lazarowski, Eduardo R

    2013-05-15

    Nucleotides within the airway surface liquid promote fluid secretion via activation of airway epithelial purinergic receptors. ATP is stored within and released from mucin granules as co-cargo with mucins, but the mechanism by which ATP, and potentially other nucleotides, enter the lumen of mucin granules is not known. We assessed the contribution of the recently identified SLC17A9 vesicle nucleotide transporter (VNUT) to the nucleotide availability within isolated mucin granules and further examined the involvement of VNUT in mucin granule secretion-associated nucleotide release. RT-PCR and Western blot analyses indicated that VNUT is abundantly expressed in airway epithelial goblet-like Calu-3 cells, migrating as a duplex with apparent mobility of 55 and 60 kDa. Subcellular fractionation studies indicated that VNUT55 was associated with high-density mucin granules, whereas VNUT60 was associated with low-density organelles. Immunofluorescence studies showed that recombinant VNUT localized to mucin granules and other organelles. Mucin granules isolated from VNUT short hairpin RNA-expressing cells exhibited a marked reduction of ATP, ADP, AMP, and UTP levels within granules. Ca(2+)-regulated vesicular ATP release was markedly reduced in these cells, but mucin secretion was not affected. These results suggest that VNUT is the relevant nucleotide transporter responsible for the uptake of cytosolic nucleotides into mucin granules. By controlling the entry of nucleotides into mucin granules, VNUT contributes to the release of purinergic signaling molecules necessary for the proper hydration of co-released mucins.

  16. Different responses of astrocytes and neurons to nitric oxide: The role of glycolytically generated ATP in astrocyte protection

    PubMed Central

    Almeida, Angeles; Almeida, Julia; Bolaños, Juan P.; Moncada, Salvador

    2001-01-01

    It was recently proposed that in Jurkat cells, after inhibition of respiration by NO, glycolytically generated ATP plays a critical role in preventing the collapse of mitochondrial membrane potential (Δψm) and thus apoptotic cell death. We have investigated this observation further in primary cultures of rat cortical neurons and astrocytes—cell types that differ greatly in their glycolytic capacity. Continuous and significant (≈85%) inhibition of respiration by NO (1.4 μM at 175 μM O2) generated by [(z)-1-[2-aminoethyl]-N-[2-ammonioethyl]amino]diazen-1-ium-1,2 diolate (DETA-NO) initially (10 min) depleted ATP concentrations by ≈25% in both cell types and increased the rate of glycolysis in astrocytes but not in neurons. Activation of glycolysis in astrocytes, as judged by lactate production, prevented further ATP depletion, whereas in neurons, which do not invoke this mechanism, there was a progressive decrease in ATP concentrations over the next 60 min. During this time, there was a persistent mitochondrial hyperpolarization and absence of apoptotic cell death in astrocytes, whereas in the neurons there was a progressive fall in Δψm and increased apoptosis. After glucose deprivation or treatment with inhibitors of the F1F0-ATPase and adenine nucleotide translocase, astrocytes responded to NO with a fall in Δψm and apoptotic cell death similar to the response in neurons. Finally, although treatment of astrocytes with NO partially prevented staurosporin-induced collapse in Δψm and cell death, NO and staurosporin synergized in decreasing Δψm and inducing apoptosis in neurons. These results demonstrate that although inhibition of cellular respiration by NO leads to neurotoxicity, it may also result in initial neuroprotection, depending on the glycolytic capacity of the particular cell. PMID:11742096

  17. Mitochondrial ADP/ATP exchange inhibition: a novel off-target mechanism underlying ibipinabant-induced myotoxicity

    PubMed Central

    Schirris, Tom J. J.; Ritschel, Tina; Herma Renkema, G.; Willems, Peter H. G. M.; Smeitink, Jan A. M.; Russel, Frans G. M.

    2015-01-01

    Cannabinoid receptor 1 (CB1R) antagonists appear to be promising drugs for the treatment of obesity, however, serious side effects have hampered their clinical application. Rimonabant, the first in class CB1R antagonist, was withdrawn from the market because of psychiatric side effects. This has led to the search for more peripherally restricted CB1R antagonists, one of which is ibipinabant. However, this 3,4-diarylpyrazoline derivative showed muscle toxicity in a pre-clinical dog study with mitochondrial dysfunction. Here, we studied the molecular mechanism by which ibipinabant induces mitochondrial toxicity. We observed a strong cytotoxic potency of ibipinabant in C2C12 myoblasts. Functional characterization of mitochondria revealed increased cellular reactive oxygen species generation and a decreased ATP production capacity, without effects on the catalytic activities of mitochondrial enzyme complexes I–V or the complex specific-driven oxygen consumption. Using in silico off-target prediction modelling, combined with in vitro validation in isolated mitochondria and mitoplasts, we identified adenine nucleotide translocase (ANT)-dependent mitochondrial ADP/ATP exchange as a novel molecular mechanism underlying ibipinabant-induced toxicity. Minor structural modification of ibipinabant could abolish ANT inhibition leading to a decreased cytotoxic potency, as observed with the ibipinabant derivative CB23. Our results will be instrumental in the development of new types of safer CB1R antagonists. PMID:26416158

  18. Photophysical deactivation pathways in adenine oligonucleotides.

    PubMed

    Spata, Vincent A; Matsika, Spiridoula

    2015-12-14

    In this work we study deactivation processes in adenine oligomers after absorption of UV radiation using Quantum Mechanics combined with Molecular Mechanics (QM/MM). Correlated electronic structure methods appropriate for describing the excited states are used to describe a π-stacked dimer of adenine bases incorporated into (dA)20(dT)20. The results of these calculations reveal three different types of excited state minima which play a role in deactivation processes. Within this set of minima there are minima where the excited state is localized on one adenine (monomer-like) as well as minima where the excited state is delocalized on two adenines, forming different types of excimers and bonded excimers of varying but inter-related character. The proximity of their energies reveals that the minima can decay into one another along a flat potential energy surface dependent on the interbase separation. Additionally, analysis of the emissive energies and other physical properties, including theoretical anisotropy calculations, and comparison with fluorescence experiments, provides evidence that excimers play an important role in long-lived signals in adenine oligonucleotides while the subpicosecond decay is attributed to monomer-like minima. The necessity for a close approach of the nucleobases reveals that the deactivation mechanism is tied to macro-molecular motion.

  19. Essential role of vesicular nucleotide transporter in vesicular storage and release of nucleotides in platelets

    PubMed Central

    Hiasa, Miki; Togawa, Natsuko; Miyaji, Takaaki; Omote, Hiroshi; Yamamoto, Akitsugu; Moriyama, Yoshinori

    2014-01-01

    Abstract Nucleotides are stored in the dense granules of platelets. The release of nucleotides triggers one of the first steps in a series of cascades responsible for blood coagulation. However, the mechanism of how the nucleotides are accumulated in the granules is still far less understood. The transporter protein responsible for storage of nucleotides in the neuroendocrine cells has been identified and characterized. We hypothesized that the vesicular nucleotide transporter (VNUT) is also involved in the vesicular storage of nucleotides in platelets. In this article, we present three lines of evidence that VNUT is responsible for the vesicular storage of nucleotides in platelets and that vesicular ATP transport is crucial for platelet function, detection and characterization of VNUT activity in platelets isolated from healthy humans and MEG‐01 cells, RNA interference experiments on MEG‐01 cells, and studies on nucleotide transport and release with a selective inhibitor. PMID:24907298

  20. NMR studies of the MgATP binding site of adenylate kinase and of a 45-residue peptide fragment of the enzyme.

    PubMed

    Fry, D C; Kuby, S A; Mildvan, A S

    1985-08-13

    Proton NMR was used to study the interaction of beta,gamma-bidentate Cr3+ATP and MgATP with rabbit muscle adenylate kinase, which has 194 amino acids, and with a synthetic peptide consisting of residues 1-45 of the enzyme, which has previously been shown to bind MgepsilonATP [Hamada, M., Palmieri, R. H., Russell, G. A., & Kuby, S. A. (1979) Arch. Biochem. Biophys. 195, 155-177]. The peptide is globular and binds Cr3+ATP competitively with MgATP with a dissociation constant, KD(Cr3+ATP) = 35 microM, comparable to that of the complete enzyme [KI(Cr3+ATP) = 12 microM]. Time-dependent nuclear Overhauser effects (NOE's) were used to measure interproton distances on enzyme- and peptide-bound MgATP. The correlation time was measured directly for peptide-bound MgATP by studying the frequency dependence of the NOE's at 250 and 500 MHz. The H2' to H1' distance so obtained (3.07 A) was within the range established by X-ray and model-building studies of nucleotides (2.9 +/- 0.2 A). Interproton distances yielded conformations of enzyme- and peptide-bound MgATP with indistinguishable anti-glycosyl torsional angles (chi = 63 +/- 12 degrees) and 3'-endo/O1'-endo ribose puckers (sigma = 96 +/- 12 degrees). Enzyme- and peptide-bound MgATP molecules exhibited different C4'-C5' torsional angles (gamma) of 170 degrees and 50 degrees, respectively. Ten intermolecular NOE's from protons of the enzyme and four such NOE's from protons of the peptide to protons of bound MgATP were detected, which indicated proximity of the adenine ribose moiety to the same residues on both the enzyme and the peptide. Paramagnetic effects of beta,gamma-bidentate Cr3+ATP on the longitudinal relaxation rates of protons of the peptide provided a set of distances to the side chains of five residues, which allowed the location of the bound Cr3+ atom to be uniquely defined. Distances from enzyme-bound Cr3+ATP to the side chains of three residues of the protein agreed with those measured for the peptide. The mutual

  1. Regulation of innate immunity by extracellular nucleotides

    PubMed Central

    Gorini, Stefania; Gatta, Lucia; Pontecorvo, Laura; Vitiello, Laura; la Sala, Andrea

    2013-01-01

    Extracellular ATP (eATP) is the most abundant among extracellular nucleotides and is commonly considered as a classical danger signal, which stimulates immune responses in the presence of tissue injury. In fact, increased nucleotide concentration in the extracellular space is generally closely associated with tissue stress or damage. However non-lytic nucleotide release may also occur in many cell types under a variety of conditions. Extracellular nucleotides are sensed by a class of plasma membrane receptors called P2 purinergic receptors (P2Rs). P2 receptors are expressed by all immunological cells and their activation elicits different responses. Extracellular ATP can act as an initiator or terminator of immune responses being able to induce different effects on immune cells depending on the pattern of P2 receptors engaged, the duration of the stimulus and its concentration in the extracellular milieu. Millimolar (high) concentrations of extracellular ATP, induce predominantly proinflammatory effects, while micromolar (low) doses exert mainly tolerogenic/immunosuppressive action. Moreover small, but significant differences in the pattern of P2 receptor expression in mice and humans confer diverse capacities of ATP in regulating the immune response. PMID:23358447

  2. Trichomonas vaginalis NTPDase and ecto-5'-nucleotidase hydrolyze guanine nucleotides and increase extracellular guanosine levels under serum restriction.

    PubMed

    Menezes, Camila Braz; Durgante, Juliano; de Oliveira, Rafael Rodrigues; Dos Santos, Victor Hugo Jacks Mendes; Rodrigues, Luiz Frederico; Garcia, Solange Cristina; Dos Santos, Odelta; Tasca, Tiana

    2016-05-01

    Trichomonas vaginalis is the aethiologic agent of trichomoniasis, the most common non-viral sexually transmitted disease in the world. The purinergic signaling pathway is mediated by extracellular nucleotides and nucleosides that are involved in many biological effects as neurotransmission, immunomodulation and inflammation. Extracellular nucleotides can be hydrolyzed by a family of enzymes known as ectonucleotidases including the ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases) family which hydrolyses nucleosides triphosphate and diphosphate as preferential substrates and ecto-5'-nucleotidase which catalyzes the conversion of monophosphates into nucleosides. In T. vaginalis the E-NTPDase and ecto-5'-nucleotidase activities upon adenine nucleotides have already been characterized in intact trophozoites but little is known concerning guanine nucleotides and nucleoside. These enzymes may exert a crucial role on nucleoside generation, providing the purine sources for the synthesis de novo of these essential nutrients, sustaining parasite growth and survival. In this study, we investigated the hydrolysis profile of guanine-related nucleotides and nucleoside in intact trophozoites from long-term-grown and fresh clinical isolates of T. vaginalis. Knowing that guanine nucleotides are also substrates for T. vaginalis ectoenzymes, we evaluated the profile of nucleotides consumption and guanosine uptake in trophozoites submitted to a serum limitation condition. Results show that guanine nucleotides (GTP, GDP, GMP) were substrates for T. vaginalis ectonucleotidases, with expected kinetic parameters for this enzyme family. Different T. vaginalis isolates (two from the ATCC and nine fresh clinical isolates) presented a heterogeneous hydrolysis profile. The serum culture condition increased E-NTPDase and ecto-5'-nucleotidase activities with high consumption of extracellular GTP generating enhanced GDP, GMP and guanosine levels as demonstrated by HPLC, with final

  3. Characterization of the Catalytic and Nucleotide Binding Properties of the α-Kinase Domain of Dictyostelium Myosin-II Heavy Chain Kinase A*

    PubMed Central

    Yang, Yidai; Ye, Qilu; Jia, Zongchao; Côté, Graham P.

    2015-01-01

    The α-kinases are a widely expressed family of serine/threonine protein kinases that exhibit no sequence identity with conventional eukaryotic protein kinases. In this report, we provide new information on the catalytic properties of the α-kinase domain of Dictyostelium myosin-II heavy chain kinase-A (termed A-CAT). Crystallization of A-CAT in the presence of MgATP yielded structures with AMP or adenosine in the catalytic cleft together with a phosphorylated Asp-766 residue. The results show that the β- and α-phosphoryl groups are transferred either directly or indirectly to the catalytically essential Asp-766. Biochemical assays confirmed that A-CAT hydrolyzed ATP, ADP, and AMP with kcat values of 1.9, 0.6, and 0.32 min−1, respectively, and showed that A-CAT can use ADP to phosphorylate peptides and proteins. Binding assays using fluorescent 2′/3′-O-(N-methylanthraniloyl) analogs of ATP and ADP yielded Kd values for ATP, ADP, AMP, and adenosine of 20 ± 3, 60 ± 20, 160 ± 60, and 45 ± 15 μm, respectively. Site-directed mutagenesis showed that Glu-713, Leu-716, and Lys-645, all of which interact with the adenine base, were critical for nucleotide binding. Mutation of the highly conserved Gln-758, which chelates a nucleotide-associated Mg2+ ion, eliminated catalytic activity, whereas loss of the highly conserved Lys-722 and Arg-592 decreased kcat values for kinase and ATPase activities by 3–6-fold. Mutation of Asp-663 impaired kinase activity to a much greater extent than ATPase, indicating a specific role in peptide substrate binding, whereas mutation of Gln-768 doubled ATPase activity, suggesting that it may act to exclude water from the active site. PMID:26260792

  4. Binding of ATP by pertussis toxin and isolated toxin subunits

    SciTech Connect

    Hausman, S.Z.; Manclark, C.R.; Burns, D.L. )

    1990-07-03

    The binding of ATP to pertussis toxin and its components, the A subunit and B oligomer, was investigated. Whereas, radiolabeled ATP bound to the B oligomer and pertussis toxin, no binding to the A subunit was observed. The binding of ({sup 3}H)ATP to pertussis toxin and the B oligomer was inhibited by nucleotides. The relative effectiveness of the nucleotides was shown to be ATP > GTP > CTP > TTP for pertussis toxin and ATP > GTP > TTP > CTP for the B oligomer. Phosphate ions inhibited the binding of ({sup 3}H)ATP to pertussis toxin in a competitive manner; however, the presence of phosphate ions was essential for binding of ATP to the B oligomer. The toxin substrate, NAD, did not affect the binding of ({sup 3}H)ATP to pertussis toxin, although the glycoprotein fetuin significantly decreased binding. These results suggest that the binding site for ATP is located on the B oligomer and is distinct from the enzymatically active site but may be located near the eukaryotic receptor binding site.

  5. 1H and 31P nuclear magnetic resonance and kinetic studies of the active site structure of chloroplast CF1 ATP synthase.

    PubMed

    Devlin, C C; Grisham, C M

    1990-07-03

    The interaction of nucleotides and nucleotide analogues and their metal complexes with Mn2+ bound to both the latent and dithiothreitol-activated CF1 ATP synthase has been examined by means of steady-state kinetics, water proton relaxation rate (PRR) measurements, and 1H and 31P nuclear relaxation measurements. Titration of both the latent and activated Mn(2+)-CF1 complexes with ATP, ADP, Pi, Co(NH3)4ATP, Co(NH3)4ADP, and Co(NH3)4AMPPCP leads to increases in the water relaxation enhancement, consistent with enhanced metal binding and a high ternary complex enhancement. Steady-state kinetic studies are consistent with competitive inhibition of CF1 by Co(NH3)4AMPPCP with respect to CaATP. The data are consistent with a Ki for Co(NH3)4AMPPCP of 650 microM, in good agreement with a previous Ki of 724 microM for Cr(H2O)4ATP [Frasch, W., & Selman, B. (1982) Biochemistry 21, 3636-3643], and a best fit KD of 209 microM from the water PRR measurements. 1H and 31P nuclear relaxation measurements in solutions of CF1 and Co(NH3)4AMPPCP were used to determine the conformation of the bound substrate analogue and the arrangement with respect to this structure of high- and low-affinity sites for Mn2+. The bound nucleotide analogue adopts a bent conformation, with the low-affinity Mn2+ site situated between the adenine and triphosphate moieties and the high-affinity metal site located on the far side of the triphosphate chain. The low-affinity metal forms a distorted inner-sphere complex with the beta-P and gamma-P of the substrate. The distances from Mn2+ to the triphosphate chain are too large for first coordination sphere complexes but are appropriate for second-sphere complexes involving, for example, intervening hydrogen-bonded water molecules or residues from the protein.

  6. Structural Mechanism of Allosteric Activity Regulation in a Ribonucleotide Reductase with Double ATP Cones.

    PubMed

    Johansson, Renzo; Jonna, Venkateswara Rao; Kumar, Rohit; Nayeri, Niloofar; Lundin, Daniel; Sjöberg, Britt-Marie; Hofer, Anders; Logan, Derek T

    2016-06-07

    Ribonucleotide reductases (RNRs) reduce ribonucleotides to deoxyribonucleotides. Their overall activity is stimulated by ATP and downregulated by dATP via a genetically mobile ATP cone domain mediating the formation of oligomeric complexes with varying quaternary structures. The crystal structure and solution X-ray scattering data of a novel dATP-induced homotetramer of the Pseudomonas aeruginosa class I RNR reveal the structural bases for its unique properties, namely one ATP cone that binds two dATP molecules and a second one that is non-functional, binding no nucleotides. Mutations in the observed tetramer interface ablate oligomerization and dATP-induced inhibition but not the ability to bind dATP. Sequence analysis shows that the novel type of ATP cone may be widespread in RNRs. The present study supports a scenario in which diverse mechanisms for allosteric activity regulation are gained and lost through acquisition and evolutionary erosion of different types of ATP cone.

  7. Molecular determinants for ATP-binding in proteins: a data mining and quantum chemical analysis.

    PubMed

    Mao, Lisong; Wang, Yanli; Liu, Yuemin; Hu, Xiche

    2004-02-20

    Adenosine 5'-triphosphate (ATP) plays an essential role in all forms of life. Molecular recognition of ATP in proteins is a subject of great importance for understanding enzymatic mechanism and for drug design. We have carried out a large-scale data mining of the Protein Data Bank (PDB) to analyze molecular determinants for recognition of the adenine moiety of ATP by proteins. Non-bonded intermolecular interactions (hydrogen bonding, pi-pi stacking interactions, and cation-pi interactions) between adenine base and surrounding residues in its binding pockets are systematically analyzed for 68 non-redundant, high-resolution crystal structures of adenylate-binding proteins. In addition to confirming the importance of the widely known hydrogen bonding, we found out that cation-pi interactions between adenine base and positively charged residues (Lys and Arg) and pi-pi stacking interactions between adenine base and surrounding aromatic residues (Phe, Tyr, Trp) are also crucial for adenine binding in proteins. On average, there exist 2.7 hydrogen bonding interactions, 1.0 pi-pi stacking interactions, and 0.8 cation-pi interactions in each adenylate-binding protein complex. Furthermore, a high-level quantum chemical analysis was performed to analyze contributions of each of the three forms of intermolecular interactions (i.e. hydrogen bonding, pi-pi stacking interactions, and cation-pi interactions) to the overall binding force of the adenine moiety of ATP in proteins. Intermolecular interaction energies for representative configurations of intermolecular complexes were analyzed using the supermolecular approach at the MP2/6-311 + G* level, which resulted in substantial interaction strengths for all the three forms of intermolecular interactions. This work represents a timely undertaking at a historical moment when a large number of X-ray crystallographic structures of proteins with bound ATP ligands have become available, and when high-level quantum chemical analysis of

  8. sup 1 H and sup 31 P nuclear magnetic resonance and kinetic studies of the active site structure of chloroplast CF sub 1 ATP synthase

    SciTech Connect

    Devlin, C.C.; Grisham, C.M. )

    1990-07-03

    The interaction of nucleotides and nucleotide analogues and their complexes with Mn{sup 2+} bound to both the latent and dithiothreitol-activated CF{sub 1} ATP synthase has been examined by means of steady-state kinetics, water proton relaxation rate (PRR) measurements, and {sup 1}H and {sup 31}P nuclear relaxation measurements. Titration of both the latent and activated Mn{sup 2+}-CF{sub 1} complexes with ATP, ADP, P{sub i}, Co(NH{sub 3}){sub 4}ATP, Co(NH{sub 3}){sub 4}ADP, and Co(NH{sub 3}){sub 4}AMPPCP leads to increases in the water relaxation enhancement, consistent with enhanced metal binding and a high ternary complex enhancement. Steady-state kinetic studies are consistent with competitive inhibition of CF{sub 1} by Co(NH{sub 3}){sub 4}AMPPCP with respect to CaATP. {sup 1}H and {sup 31}P nuclear relaxation measurements in solutions of CF{sub 1} and Co(NH{sub 3}){sub 4}AMPPCP were used to determine the conformation of the bound substrate analogue and the arrangement with respect to this structure of high- and low-affinity sites for Mn{sup 2+}. The bound nucleotide analogue adopts a bent conformation, with the low-affinity sites for Mn{sup 2+}. The bound nucleotide analogue adopts a bent conformation, with the low-affinity Mn{sup 2+} site situated between the adenine and triphosphate moieties and the high-affinity metal site located on the far side of the triphosphate chain. The low-affinity metal forms a distorted inner-sphere complex with the {beta}-P and {gamma}-P of the substrate. The distances from Mn{sup 2+} to the triphosphate chain are too large for first coordination sphere complexes but are appropriate for second-sphere complexes involving, for example, intervening hydrogen-bonded water molecules or residues from the protein.

  9. Snapshots of the maltose transporter during ATP hydrolysis

    SciTech Connect

    Oldham, Michael L.; Chen, Jue

    2011-12-05

    ATP-binding cassette transporters are powered by ATP, but the mechanism by which these transporters hydrolyze ATP is unclear. In this study, four crystal structures of the full-length wild-type maltose transporter, stabilized by adenosine 5{prime}-({beta},{gamma}-imido)triphosphate or ADP in conjunction with phosphate analogs BeF{sub 3}{sup -}, VO{sub 4}{sup 3-}, or AlF{sub 4}{sup -}, were determined to 2.2- to 2.4-{angstrom} resolution. These structures led to the assignment of two enzymatic states during ATP hydrolysis and demonstrate specific functional roles of highly conserved residues in the nucleotide-binding domain, suggesting that ATP-binding cassette transporters catalyze ATP hydrolysis via a general base mechanism.

  10. A novel method for measuring the ATP-related compounds in human erythrocytes.

    PubMed

    Aragon-Martinez, Othoniel Hugo; Galicia, Othir; Isiordia-Espinoza, Mario Alberto; Martinez-Morales, Flavio

    2014-01-01

    The ATP-related compounds in whole blood or red blood cells have been used to evaluate the energy status of erythrocytes and the degradation level of the phosphorylated compounds under various conditions, such as chronic renal failure, drug monitoring, cancer, exposure to environmental toxics, and organ preservation. The complete interpretation of the energetic homeostasis of erythrocytes is only performed using the compounds involved in the degradation pathway for adenine nucleotides alongside the uric acid value. For the first time, we report a liquid chromatographic method using a diode array detector that measures all of these compounds in a small human whole blood sample (125 μL) within an acceptable time of 20 min. The stability was evaluated for all of the compounds and ranged from 96.3 to 105.1% versus the day zero values. The measurement had an adequate sensitivity for the ATP-related compounds (detection limits from 0.001 to 0.097 μmol/L and quantification limits from 0.004 to 0.294 μmol/L). This method is particularly useful for measuring inosine monophosphate, inosine, hypoxanthine, and uric acid. Moreover, this assay had acceptable linearity (r > 0.990), precision (coefficients of variation ranged from 0.1 to 2.0%), specificity (similar retention times and spectra in all samples) and recoveries (ranged from 89.2 to 104.9%). The newly developed method is invaluable for assessing the energetic homeostasis of red blood cells under diverse conditions, such as in vitro experiments and clinical settings.

  11. Adenine auxotrophy--be aware: some effects of adenine auxotrophy in Saccharomyces cerevisiae strain W303-1A.

    PubMed

    Kokina, Agnese; Kibilds, Juris; Liepins, Janis

    2014-08-01

    Adenine auxotrophy is a commonly used genetic marker in haploid yeast strains. Strain W303-1A, which carries the ade2-1 mutation, is widely used in physiological and genetic research. Yeast extract-based rich medium contains a low level of adenine, so that adenine is often depleted before glucose. This could affect the cell physiology of adenine auxotrophs grown in rich medium. The aim of our study was to assess the effects of adenine auxotrophy on cell morphology and stress physiology. Our results show that adenine depletion halts cell division, but that culture optical density continues to increase due to cell swelling. Accumulation of trehalose and a coincident 10-fold increase in desiccation stress tolerance is observed in adenine auxotrophs after adenine depletion, when compared to prototrophs. Under adenine starvation, long-term survival of W303-1A is lower than during carbon starvation, but higher than during leucine starvation. We observed drastic adenine-dependent changes in cell stress physiology, suggesting that results may be biased when adenine auxotrophs are grown in rich media without adenine supplementation.

  12. Graphene-Enhanced Raman Scattering from the Adenine Molecules

    NASA Astrophysics Data System (ADS)

    Dolgov, Leonid; Pidhirnyi, Denys; Dovbeshko, Galyna; Lebedieva, Tetiana; Kiisk, Valter; Heinsalu, Siim; Lange, Sven; Jaaniso, Raivo; Sildos, Ilmo

    2016-04-01

    An enhanced Raman scattering from a thin layer of adenine molecules deposited on graphene substrate was detected. The value of enhancement depends on the photon energy of the exciting light. The benzene ring in the structure of adenine molecule suggests π-stacking of adenine molecule on top of graphene. So, it is proposed that the enhancement in the adenine Raman signal is explained by the resonance electron transfer from the Fermi level of graphene to the lowest unoccupied molecular orbital (LUMO) level of adenine.

  13. Suppression of glycine-15N incorporation into urinary uric acid by adenine-8-13C in normal and gouty subjects

    PubMed Central

    Seegmiller, J. Edwin; Klinenberg, James R.; Miller, John; Watts, R. W. E.

    1968-01-01

    Adenine inhibited the de novo synthesis of purines in both normal and gouty man as shown by inhibition of the incorporation of glycine-15N into urinary uric acid without altering the incorporation of glycine-15N into urinary creatinine. The diminished purine synthesis did not result in a diminution in the 24 hr excretion of uric acid. This observation was explainable in part by the prompt conversion of adenine to uric acid. In addition to this direct conversion, adenine-8-13C provided a slow and prolonged contribution to urinary uric acid. A feedback inhibition of purine synthesis by nucleotides derived from adenine provides the best interpretation of these results. PMID:5645862

  14. SVOP Is a Nucleotide Binding Protein

    PubMed Central

    Yao, Jia; Bajjalieh, Sandra M.

    2009-01-01

    Background Synaptic Vesicle Protein 2 (SV2) and SV2-related protein (SVOP) are transporter-like proteins that localize to neurotransmitter-containing vesicles. Both proteins share structural similarity with the major facilitator (MF) family of small molecule transporters. We recently reported that SV2 binds nucleotides, a feature that has also been reported for another MF family member, the human glucose transporter 1 (Glut1). In the case of Glut1, nucleotide binding affects transport activity. In this study, we determined if SVOP also binds nucleotides and assessed its nucleotide binding properties. Methodology/Principal Findings We performed in vitro photoaffinity labeling experiments with the photoreactive ATP analogue, 8-azido-ATP[γ] biotin and purified recombinant SVOP-FLAG fusion protein. We found that SVOP is a nucleotide-binding protein, although both its substrate specificity and binding site differ from that of SV2. Within the nucleotides tested, ATP, GTP and NAD show same level of inhibition on SVOP-FLAG labeling. Dose dependent studies indicated that SVOP demonstrates the highest affinity for NAD, in contrast to SV2, which binds both NAD and ATP with equal affinity. Mapping of the binding site revealed a single region spanning transmembrane domains 9–12, which contrasts to the two binding sites in the large cytoplasmic domains in SV2A. Conclusions/Significance SVOP is the third MF family member to be found to bind nucleotides. Given that the binding sites are unique in SVOP, SV2 and Glut1, this feature appears to have arisen separately. PMID:19390693

  15. Atomic substitution reveals the structural basis for substrate adenine recognition and removal by adenine DNA glycosylase

    SciTech Connect

    Lee, Seongmin; Verdine, Gregory L.

    2010-01-14

    Adenine DNA glycosylase catalyzes the glycolytic removal of adenine from the promutagenic A {center_dot} oxoG base pair in DNA. The general features of DNA recognition by an adenine DNA glycosylase, Bacillus stearothermophilus MutY, have previously been revealed via the X-ray structure of a catalytically inactive mutant protein bound to an A:oxoG-containing DNA duplex. Although the structure revealed the substrate adenine to be, as expected, extruded from the DNA helix and inserted into an extrahelical active site pocket on the enzyme, the substrate adenine engaged in no direct contacts with active site residues. This feature was paradoxical, because other glycosylases have been observed to engage their substrates primarily through direct contacts. The lack of direct contacts in the case of MutY suggested that either MutY uses a distinctive logic for substrate recognition or that the X-ray structure had captured a noncatalytically competent state in lesion recognition. To gain further insight into this issue, we crystallized wild-type MutY bound to DNA containing a catalytically inactive analog of 2'-deoxyadenosine in which a single 2'-H atom was replaced by fluorine. The structure of this fluorinated lesion-recognition complex (FLRC) reveals the substrate adenine buried more deeply into the active site pocket than in the prior structure and now engaged in multiple direct hydrogen bonding and hydrophobic interactions. This structure appears to capture the catalytically competent state of adenine DNA glycosylases, and it suggests a catalytic mechanism for this class of enzymes, one in which general acid-catalyzed protonation of the nucleobase promotes glycosidic bond cleavage.

  16. Differences in Electrostatic Potential Around DNA Fragments Containing Adenine and 8-oxo-Adenine. An Analysis Based on Regular Cylindrical Projection

    SciTech Connect

    Haranczyk, Maciej; Miller, John H; Gutowski, Maciej S

    2007-07-01

    Changes of electrostatic potential (EP) around the DNA molecule resulting from chemical modifications of nucleotides may play a role in enzymatic recognition of damaged sites. Effects of chemical modifications of nucleotides on the structure of DNA have been characterized through large scale density functional theory computations. Quantum mechanical structural optimizations of DNA fragments with three pairs of nucleotides and accompanying counteractions were performed with a B3LYP exchange-correlation functional and 6-31G** basis sets. The “intact” DNA fragment contained adenine in the middle layer, while the “damaged” fragment had the adenine replaced with 8-oxo-adenine. The electrostatic potential around these DNA fragments was projected on a cylindrical surface around the double helix. The two-dimensional maps of EP of the intact and damaged DNA fragments were analyzed to identify these modifications of EP that result from the occurrence of 8-oxo-adenine (8oA). It was found that distortions of a phosphate group neighboring 8oA and displacements of the accompanying countercation are clearly reflected in the EP maps. Helpful discussions Michel Dupuis are gratefully acknowledged. Authors wish to thank Marcel Swart for directing us to a compilation of van der Waals radii. This work was supported by the: (i) US DOE Office of Biological and Environmental Research, Low Dose Radiation Research Program (M.G. and M.H.), (ii) the Office of Science (BER), U. S. Department of Energy, Grant No. DE-FG03-02ER63470 (JHM), (iii) Polish State Committee for Scientific Research (KBN) Grant DS/8221-4-0140-6 (MG), (iv) European Social Funds (EFS) ZPORR/2.22/II/2.6/ARP/U/2/05 (M.H.). M.H. holds the Foundation for Polish Science (FNP) award for young scientists. The calculations were performed at the Academic Computer Center in Gdansk (TASK) and at the Molecular Science Computing Facility (MSCF) in the William R. Wiley Environmental Molecular Sciences Laboratory, a national

  17. beta-NAD is a novel nucleotide released on stimulation of nerve terminals in human urinary bladder detrusor muscle.

    PubMed

    Breen, Leanne T; Smyth, Lisa M; Yamboliev, Ilia A; Mutafova-Yambolieva, Violeta N

    2006-02-01

    Endogenous nucleotides with extracellular functions may be involved in the complex neural control of human urinary bladder (HUB). Using HPLC techniques with fluorescence detection, we observed that in addition to ATP and its metabolites ADP, AMP and adenosine, electrical field stimulation (EFS; 4-16 Hz, 0.1 ms, 15 V, 60 s) of HUB detrusor smooth muscle coreleases novel nucleotide factors, which produce etheno-1N(6)-ADP-ribose (eADPR) on etheno-derivatization at high temperature. A detailed HPLC fraction analysis determined that nicotinamide adenine dinucleotide (beta-NAD+; 7.0 +/- 0.7 fmol/mg tissue) is the primary nucleotide that contributes to the formation of eADPR. The tissue superfusates collected during EFS also contained the beta-NAD+ metabolite ADPR (0.35 +/- 0.2 fmol/mg tissue) but not cyclic ADPR (cADPR). HUB failed to degrade nicotinamide guanine dinucleotide (NGD+), a specific substrate of ADP ribosyl cyclase, suggesting that the activity of this enzyme in the HUB is negligible. The EFS-evoked release of beta-NAD+ was frequency dependent and is reduced in the presence of tetrodotoxin (TTX; 0.3 micromol/l), omega-conotoxin GVIA (50 nmol/l), and botulinum neurotoxin A (BoNT/A; 100 nmol/l), but remained unchanged in the presence of guanethidine (3 micromol/l), omega-agatoxin IVA (50 nmol/l), or charbachol (1 micromol/l). Capsaicin (10 micromol/l) increased both the resting and EFS-evoked overflow of beta-NAD+. Exogenous beta-NAD+ (1 micromol/l) reduced both the frequency and amplitude of spontaneous contractions. In conclusion, we detected nerve-evoked overflow of beta-NAD+ and ADPR in HUB. The beta-NAD(+)/ADPR system may constitute a novel inhibitory extracellular nucleotide mechanism of neural control of the human bladder.

  18. The catalase activity of diiron adenine deaminase

    SciTech Connect

    Kamat S. S.; Swaminathan S.; Holmes-Hampton, G. P.; Bagaria, A.; Kumaran, D.; Tichy, S. E.; Gheyi, T.; Zheng, X.; Bain, K.; Groshong, C.; Emtage, S.; Sauder, J. M.; Burley, S. K.; Lindahl, P. A.; Raushel, F. M.

    2011-12-01

    Adenine deaminase (ADE) from the amidohydrolase superfamily (AHS) of enzymes catalyzes the conversion of adenine to hypoxanthine and ammonia. Enzyme isolated from Escherichia coli was largely inactive toward the deamination of adenine. Molecular weight determinations by mass spectrometry provided evidence that multiple histidine and methionine residues were oxygenated. When iron was sequestered with a metal chelator and the growth medium supplemented with Mn{sup 2+} before induction, the post-translational modifications disappeared. Enzyme expressed and purified under these conditions was substantially more active for adenine deamination. Apo-enzyme was prepared and reconstituted with two equivalents of FeSO{sub 4}. Inductively coupled plasma mass spectrometry and Moessbauer spectroscopy demonstrated that this protein contained two high-spin ferrous ions per monomer of ADE. In addition to the adenine deaminase activity, [Fe{sup II}/Fe{sup II}]-ADE catalyzed the conversion of H{sub 2}O{sub 2} to O{sub 2} and H{sub 2}O. The values of k{sub cat} and k{sub cat}/K{sub m} for the catalase activity are 200 s{sup -1} and 2.4 x 10{sup 4} M{sup -1} s{sup -1}, respectively. [Fe{sup II}/Fe{sup II}]-ADE underwent more than 100 turnovers with H{sub 2}O{sub 2} before the enzyme was inactivated due to oxygenation of histidine residues critical for metal binding. The iron in the inactive enzyme was high-spin ferric with g{sub ave} = 4.3 EPR signal and no evidence of anti-ferromagnetic spin-coupling. A model is proposed for the disproportionation of H{sub 2}O{sub 2} by [Fe{sup II}/Fe{sup II}]-ADE that involves the cycling of the binuclear metal center between the di-ferric and di-ferrous oxidation states. Oxygenation of active site residues occurs via release of hydroxyl radicals. These findings represent the first report of redox reaction catalysis by any member of the AHS.

  19. Classification of pseudo pairs between nucleotide bases and amino acids by analysis of nucleotide-protein complexes.

    PubMed

    Kondo, Jiro; Westhof, Eric

    2011-10-01

    Nucleotide bases are recognized by amino acid residues in a variety of DNA/RNA binding and nucleotide binding proteins. In this study, a total of 446 crystal structures of nucleotide-protein complexes are analyzed manually and pseudo pairs together with single and bifurcated hydrogen bonds observed between bases and amino acids are classified and annotated. Only 5 of the 20 usual amino acid residues, Asn, Gln, Asp, Glu and Arg, are able to orient in a coplanar fashion in order to form pseudo pairs with nucleotide bases through two hydrogen bonds. The peptide backbone can also form pseudo pairs with nucleotide bases and presents a strong bias for binding to the adenine base. The Watson-Crick side of the nucleotide bases is the major interaction edge participating in such pseudo pairs. Pseudo pairs between the Watson-Crick edge of guanine and Asp are frequently observed. The Hoogsteen edge of the purine bases is a good discriminatory element in recognition of nucleotide bases by protein side chains through the pseudo pairing: the Hoogsteen edge of adenine is recognized by various amino acids while the Hoogsteen edge of guanine is only recognized by Arg. The sugar edge is rarely recognized by either the side-chain or peptide backbone of amino acid residues.

  20. ATP: The crucial component of secretory vesicles.

    PubMed

    Estévez-Herrera, Judith; Domínguez, Natalia; Pardo, Marta R; González-Santana, Ayoze; Westhead, Edward W; Borges, Ricardo; Machado, José David

    2016-07-12

    The colligative properties of ATP and catecholamines demonstrated in vitro are thought to be responsible for the extraordinary accumulation of solutes inside chromaffin cell secretory vesicles, although this has yet to be demonstrated in living cells. Because functional cells cannot be deprived of ATP, we have knocked down the expression of the vesicular nucleotide carrier, the VNUT, to show that a reduction in vesicular ATP is accompanied by a drastic fall in the quantal release of catecholamines. This phenomenon is particularly evident in newly synthesized vesicles, which we show are the first to be released. Surprisingly, we find that inhibiting VNUT expression also reduces the frequency of exocytosis, whereas the overexpression of VNUT drastically increases the quantal size of exocytotic events. To our knowledge, our data provide the first demonstration that ATP, in addition to serving as an energy source and purinergic transmitter, is an essential element in the concentration of catecholamines in secretory vesicles. In this way, cells can use ATP to accumulate neurotransmitters and other secreted substances at high concentrations, supporting quantal transmission.

  1. ATP: The crucial component of secretory vesicles

    PubMed Central

    Estévez-Herrera, Judith; Domínguez, Natalia; Pardo, Marta R.; González-Santana, Ayoze; Westhead, Edward W.; Borges, Ricardo; Machado, José David

    2016-01-01

    The colligative properties of ATP and catecholamines demonstrated in vitro are thought to be responsible for the extraordinary accumulation of solutes inside chromaffin cell secretory vesicles, although this has yet to be demonstrated in living cells. Because functional cells cannot be deprived of ATP, we have knocked down the expression of the vesicular nucleotide carrier, the VNUT, to show that a reduction in vesicular ATP is accompanied by a drastic fall in the quantal release of catecholamines. This phenomenon is particularly evident in newly synthesized vesicles, which we show are the first to be released. Surprisingly, we find that inhibiting VNUT expression also reduces the frequency of exocytosis, whereas the overexpression of VNUT drastically increases the quantal size of exocytotic events. To our knowledge, our data provide the first demonstration that ATP, in addition to serving as an energy source and purinergic transmitter, is an essential element in the concentration of catecholamines in secretory vesicles. In this way, cells can use ATP to accumulate neurotransmitters and other secreted substances at high concentrations, supporting quantal transmission. PMID:27342860

  2. Role of ATP-bound divalent metal ion in the conformation and function of actin. Comparison of Mg-ATP, Ca-ATP, and metal ion-free ATP-actin.

    PubMed

    Valentin-Ranc, C; Carlier, M F

    1991-04-25

    The fluorescence of N-acetyl-N'-(sulfo-1-naphthyl)ethylenediamine (AEDANS) covalently bound to Cys-374 of actin is used as a probe for different conformational states of G-actin according to whether Ca-ATP, Mg-ATP, or unchelated ATP is bound to the nucleotide site. Upon addition of large amounts (greater than 10(2)-fold molar excess) of EDTA to G-actin, metal ion-free ATP-G-actin is obtained with EDTA bound. Metal ion free ATP-G-actin is characterized by a higher AEDANS fluorescence than Mg-ATP-G-actin, which itself has a higher fluorescence than Ca-ATP-G-actin. Evidence for EDTA binding to G-actin is shown using difference spectrophotometry. Upon binding of EDTA, the rate of dissociation of the divalent metal ion from G-actin is increased (2-fold for Ca2+, 10-fold for Mg2+) in a range of pH from 7.0 to 8.0. A model is proposed that quantitatively accounts for the kinetic data. The affinity of ATP is weakened 10(6)-fold upon removal of the metal ion. Metal ion-free ATP-G-actin is in a partially open conformation, as indicated by the greater accessibility of -SH residues, yet it retains functional properties of polymerization and ATP hydrolysis that appear almost identical to those of Ca-ATP-actin, therefore different from those of Mg-ATP-actin. These results are discussed in terms of the role of the ATP-bound metal ion in actin structure and function.

  3. Conformational Dynamics of the Bovine Mitochondrial ADP/ATP Carrier Isoform 1 Revealed by Hydrogen/Deuterium Exchange Coupled to Mass Spectrometry*

    PubMed Central

    Rey, Martial; Man, Petr; Clémençon, Benjamin; Trézéguet, Véronique; Brandolin, Gérard; Forest, Eric; Pelosi, Ludovic

    2010-01-01

    The mitochondrial adenine nucleotide carrier (Ancp) catalyzes the transport of ADP and ATP across the mitochondrial inner membrane, thus playing an essential role in cellular energy metabolism. During the transport mechanism the carrier switches between two different conformations that can be blocked by two toxins: carboxyatractyloside (CATR) and bongkrekic acid. Therefore, our understanding of the nucleotide transport mechanism can be improved by analyzing structural differences of the individual inhibited states. We have solved the three-dimensional structure of bovine carrier isoform 1 (bAnc1p) in a complex with CATR, but the structure of the carrier-bongkrekic acid complex, and thus, the detailed mechanism of transport remains unknown. Improvements in sample processing in the hydrogen/deuterium exchange technique coupled to mass spectrometry (HDX-MS) have allowed us to gain novel insights into the conformational changes undergone by bAnc1p. This paper describes the first study of bAnc1p using HDX-MS. Results obtained with the CATR-bAnc1p complex were fully in agreement with published results, thus, validating our approach. On the other hand, the HDX kinetics of the two complexes displays marked differences. The bongkrekic acid-bAnc1p complex exhibits greater accessibility to the solvent on the matrix side, whereas the CATR-bAnc1p complex is more accessible on the intermembrane side. These results are discussed with respect to the structural and biochemical data available on Ancp. PMID:20805227

  4. Exploration of Excited State Deactivation Pathways of Adenine Monohydrates.

    PubMed

    Chaiwongwattana, Sermsiri; Sapunar, Marin; Ponzi, Aurora; Decleva, Piero; Došlić, Nađa

    2015-10-29

    Binding of a single water molecule has a dramatic effect on the excited state lifetime of adenine. Here we report a joint nonadiabatic dynamics and reaction paths study aimed at understanding the sub-100 fs lifetime of adenine in the monohydrates. Our nonadiabatic dynamics simulations, performed using the ADC(2) electronic structure method, show a shortening of the excited state lifetime in the monohydrates with respect to bare adenine. However, the computed lifetimes were found to be significantly longer that the observed one. By comparing the reaction pathways of several excited state deactivation processes in adenine and adenine monohydrates, we show that electron-driven proton transfer from water to nitrogen atom N3 of the adenine ring may be the process responsible for the observed ultrafast decay. The inaccessibility of the electron-driven proton transfer pathway to trajectory-based nonadiabatic dynamics simulation is discussed.

  5. A cell wall-bound adenosine nucleosidase is involved in the salvage of extracellular ATP in Solanum tuberosum.

    PubMed

    Riewe, David; Grosman, Lukasz; Fernie, Alisdair R; Zauber, Henrik; Wucke, Cornelia; Geigenberger, Peter

    2008-10-01

    Extracellular ATP (eATP) has recently been demonstrated to play a crucial role in plant development and growth. To investigate the fate of eATP within the apoplast, we used intact potato (Solanum tuberosum) tuber slices as an experimental system enabling access to the apoplast without interference of cytosolic contamination. (i) Incubation of intact tuber slices with ATP led to the formation of ADP, AMP, adenosine, adenine and ribose, indicating operation of apyrase, 5'-nucleotidase and nucleosidase. (ii) Measurement of apyrase, 5'-nucleotidase and nucleosidase activities in fractionated tuber tissue confirmed the apoplastic localization for apyrase and phosphatase in potato and led to the identification of a novel cell wall-bound adenosine nucleosidase activity. (iii) When intact tuber slices were incubated with saturating concentrations of adenosine, the conversion of adenosine into adenine was much higher than adenosine import into the cell, suggesting a potential bypass of adenosine import. Consistent with this, import of radiolabeled adenine into tuber slices was inhibited when ATP, ADP or AMP were added to the slices. (iv) In wild-type plants, apyrase and adenosine nucleosidase activities were found to be co-regulated, indicating functional linkage of these enzymes in a shared pathway. (v) Moreover, adenosine nucleosidase activity was reduced in transgenic lines with strongly reduced apoplastic apyrase activity. When taken together, these results suggest that a complete ATP salvage pathway is present in the apoplast of plant cells.

  6. Regulation of ClC-2 gating by intracellular ATP.

    PubMed

    Stölting, Gabriel; Teodorescu, Georgeta; Begemann, Birgit; Schubert, Julian; Nabbout, Rima; Toliat, Mohammad Reza; Sander, Thomas; Nürnberg, Peter; Lerche, Holger; Fahlke, Christoph

    2013-10-01

    ClC-2 is a voltage-dependent chloride channel that activates slowly at voltages negative to the chloride reversal potential. Adenosine triphosphate (ATP) and other nucleotides have been shown to bind to carboxy-terminal cystathionine-ß-synthase (CBS) domains of ClC-2, but the functional consequences of binding are not sufficiently understood. We here studied the effect of nucleotides on channel gating using single-channel and whole-cell patch clamp recordings on transfected mammalian cells. ATP slowed down macroscopic activation and deactivation time courses in a dose-dependent manner. Removal of the complete carboxy-terminus abolishes the effect of ATP, suggesting that CBS domains are necessary for ATP regulation of ClC-2 gating. Single-channel recordings identified long-lasting closed states of ATP-bound channels as basis of this gating deceleration. ClC-2 channel dimers exhibit two largely independent protopores that are opened and closed individually as well as by a common gating process. A seven-state model of common gating with altered voltage dependencies of opening and closing transitions for ATP-bound states correctly describes the effects of ATP on macroscopic and microscopic ClC-2 currents. To test for a potential pathophysiological impact of ClC-2 regulation by ATP, we studied ClC-2 channels carrying naturally occurring sequence variants found in patients with idiopathic generalized epilepsy, G715E, R577Q, and R653T. All naturally occurring sequence variants accelerate common gating in the presence but not in the absence of ATP. We propose that ClC-2 uses ATP as a co-factor to slow down common gating for sufficient electrical stability of neurons under physiological conditions.

  7. Customized ATP towpreg

    NASA Astrophysics Data System (ADS)

    Sandusky, Donald A.; Marchello, Joseph M.; Baucom, Robert M.; Johnston, Norman J.

    Automated tow placement (ATP) utilizes robotic technology to lay down adjacent polymer-matrix-impregnated carbon fiber tows on a tool surface. Consolidation and cure during ATP requires that void elimination and polymer matrix adhesion be accomplished in the short period of heating and pressure rolling that follows towpreg ribbon placement from the robot head to the tool. This study examined the key towpreg ribbon properties and dimensions which play a significant role in ATP. Analysis of the heat transfer process window indicates that adequate heating can be achieved at lay down rates as high as 1 m/sec. While heat transfer did not appear to be the limiting factor, resin flow and fiber movement into tow lap gaps could be. Accordingly, consideration was given to towpreg ribbon having uniform yet non-rectangular cross sections. Dimensional integrity of the towpreg ribbon combined with customized ribbon architecture offer great promise for processing advances in ATP of high performance composites.

  8. In vitro selection of adenine-dependent ribozyme against Tpl2/Cot oncogene.

    PubMed

    Li, Yan-Li; Vergne, Jacques; Torchet, Claire; Maurel, Marie-Christine

    2009-01-01

    Hairpin ribozymes possess the properties of RNA sequence-specific recognition and site-specific cleavage. These properties make them a powerful extension of the antisense approach for the inhibition of gene expression. From a randomized RNA pool of hairpin ribozymes, using the systematic evolution of ligands by exponential enrichment, we have obtained an adenine-dependent hairpin ribozyme, Tpl2/Cot (tumour progression locus 2) ribozyme, which cleaves the Tpl2/Cot kinase mRNA sequence at nucleotides A225/G226 relative to the start codon of translation. This serine/threonine kinase activates the mitogen-activated protein kinase pathway implicated in cell proliferation in cancer. The selected 'Tpl2/Cot-YL ribozyme' efficiently cleaves its target sequence in cis and in trans; furthermore, the ribozyme efficiently cleaves a longer target sequence of 54 nucleotides in trans, as well as the full-length mRNA.

  9. Electrophysiological effects of ATP on brain neurones.

    PubMed

    Illes, P; Nieber, K; Nörenberg, W

    1996-12-01

    1. The electrophysiological effects of ATP on brain neurones are either due to the direct activation of P2 purinoceptors by the unmetabolized nucleotide or to the indirect activation of P1. purinoceptors by the degradation product adenosine. 2. Two subtypes of P2 purinoceptors are involved, a ligand-activated ion channel (P2X) and a G protein-coupled receptor (P2Y). Hence, the stimulation of P2X purinoceptors leads to a cationic conductance increase, while the stimulation of P2Y purinoceptors leads to a G protein-mediated opening or closure of potassium channels. 3. ATP may induce a calcium-dependent potassium current by increasing the intracellular Ca2+ concentration. This is due either to the entry of Ca2+ via P2X purinoceptors or to the activation of metabotropic P2Y purinoceptors followed by signaling via the G protein/phospholipase C/inositol 1,4,5-trisphosphate (IP3) cascade. Eventually, IP3 releases Ca2+ from its intracellular pools. 4. There is no convincing evidence for the presence of P2U purinoceptors sensitive to both ATP and UTP, or pyrimidinoceptors sensitive to UTP only, in the central nervous system (CNS). 5. ATP-sensitive P2X and P2Y purinoceptors show a wide distribution in the CNS and appear to regulate important neuronal functions.

  10. Characterization of a phosphate binding domain on the alpha-subunit of chloroplast ATP synthase using the photoaffinity phosphate analogue 4-azido-2-nitrophenyl phosphate.

    PubMed

    Groth, G; Mills, D A; Christiansen, E; Richter, M L; Huchzermeyer, B

    2000-11-14

    The photoaffinity phosphate analogue 4-azido-2 nitrophenyl phosphate (ANPP) was shown previously (Pougeois, R., Lauquin, G. J.-M., and Vignais, P. V. (1983) Biochemistry 22, 1241-1245) to bind covalently and specifically to a single catalytic site on one of the three beta-subunits of the isolated chloroplast coupling factor 1 (CF(1)). Modification by ANPP strongly inhibited ATP hydrolysis activity. In this study, we examined labeling of membrane-bound CF(1) by ANPP by exposing thylakoid membranes to increasing concentrations of the reagent. ANPP exhibited saturable binding to two sites on CF(1), one on the beta-subunit and one on the alpha-subunit. Labeling by ANPP resulted in the complete inhibition of both ATP synthesis and ATP hydrolysis by the membrane-bound enzyme. Labeling of both sites by ANPP was reduced by more than 80% in the presence of P(i) (> or = 10 mM) and ATP (> or = 0.5 mM). ADP was less effective in competing with ANPP for binding, giving a maximum of approximately 35% inhibition at concentrations > or = 2 mM. ANPP-labeled tryptic peptides of the alpha-subunit were isolated and sequenced. The majority of the probe was contained in three peptides corresponding to residues Gln(173) to Arg(216), Gly(217) to Arg(253), and His(256) to Arg(272) of the alpha-subunit. In the mitochondrial F(1) (Abrahams, J. P., Leslie, A. G. W., Lutter, R., and Walker, J. E. (1994) Nature 370, 621-628), all three analogous peptides are located within the nucleotide binding pocket and within close proximity to the gamma-phosphate binding site. The data indicate, however, that the azidophenyl group of bound ANPP is oriented at approximately 180 degrees in the opposite direction to the adenine binding site with reference to the phosphate binding site on the alpha-subunit. The study has confirmed that ANPP is a bona fide phosphate analogue and suggests that it specifically targets the gamma-phosphate binding site within the nucleotide binding pockets on the alpha- and beta

  11. Prolonged Nonhydrolytic Interaction of Nucleotide with CFTR's NH2-terminal Nucleotide Binding Domain and its Role in Channel Gating

    PubMed Central

    Basso, Claudia; Vergani, Paola; Nairn, Angus C.; Gadsby, David C.

    2003-01-01

    CFTR, the protein defective in cystic fibrosis, functions as a Cl− channel regulated by cAMP-dependent protein kinase (PKA). CFTR is also an ATPase, comprising two nucleotide-binding domains (NBDs) thought to bind and hydrolyze ATP. In hydrolyzable nucleoside triphosphates, PKA-phosphorylated CFTR channels open into bursts, lasting on the order of a second, from closed (interburst) intervals of a second or more. To investigate nucleotide interactions underlying channel gating, we examined photolabeling by [α32P]8-N3ATP or [γ32P]8-N3ATP of intact CFTR channels expressed in HEK293T cells or Xenopus oocytes. We also exploited split CFTR channels to distinguish photolabeling at NBD1 from that at NBD2. To examine simple binding of nucleotide in the absence of hydrolysis and gating reactions, we photolabeled after incubation at 0°C with no washing. Nucleotide interactions under gating conditions were probed by photolabeling after incubation at 30°C, with extensive washing, also at 30°C. Phosphorylation of CFTR by PKA only slightly influenced photolabeling after either protocol. Strikingly, at 30°C nucleotide remained tightly bound at NBD1 for many minutes, in the form of nonhydrolyzed nucleoside triphosphate. As nucleotide-dependent gating of CFTR channels occurred on the time scale of seconds under comparable conditions, this suggests that the nucleotide interactions, including hydrolysis, that time CFTR channel opening and closing occur predominantly at NBD2. Vanadate also appeared to act at NBD2, presumably interrupting its hydrolytic cycle, and markedly delayed termination of channel open bursts. Vanadate somewhat increased the magnitude, but did not alter the rate, of the slow loss of nucleotide tightly bound at NBD1. Kinetic analysis of channel gating in Mg8-N3ATP or MgATP reveals that the rate-limiting step for CFTR channel opening at saturating [nucleotide] follows nucleotide binding to both NBDs. We propose that ATP remains tightly bound or occluded at

  12. Adenine oxidation by pyrite-generated hydroxyl radicals.

    PubMed

    Cohn, Corey A; Fisher, Shawn C; Brownawell, Bruce J; Schoonen, Martin Aa

    2010-04-26

    Cellular exposure to particulate matter with concomitant formation of reactive oxygen species (ROS) and oxidization of biomolecules may lead to negative health outcomes. Evaluating the particle-induced formation of ROS and the oxidation products from reaction of ROS with biomolecules is useful for gaining a mechanistic understanding of particle-induced oxidative stress. Aqueous suspensions of pyrite particles have been shown to form hydroxyl radicals and degrade nucleic acids. Reactions between pyrite-induced hydroxyl radicals and nucleic acid bases, however, remain to be determined. Here, we compared the oxidation of adenine by Fenton-generated (i.e., ferrous iron and hydrogen peroxide) hydroxyl radicals to adenine oxidation by hydroxyl radicals generated in pyrite aqueous suspensions. Results show that adenine oxidizes in the presence of pyrite (without the addition of hydrogen peroxide) and that the rate of oxidation is dependent on the pyrite loading. Adenine oxidation was prevented by addition of either catalase or ethanol to the pyrite/adenine suspensions, which implies that hydrogen peroxide and hydroxyl radicals are causing the adenine oxidation. The adenine oxidation products, 8-oxoadenine and 2-hydroxyadenine, were the same whether hydroxyl radicals were generated by Fenton or pyrite-initiated reactions. Although nucleic acid bases are unlikely to be directly exposed to pyrite particles, the formation of ROS in the vicinity of cells may lead to oxidative stress.

  13. Adenine Addition Restores Cell Viability and Butanol Production in Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564) Cultivated at 37°C.

    PubMed

    Kiyoshi, Keiji; Kawashima, Sohei; Nobuki, Kosuke; Kadokura, Toshimori; Nakazato, Atsumi; Suzuki, Ken-Ichiro; Nakayama, Shunichi

    2017-04-01

    We have developed butanol-producing consolidated bioprocessing from cellulosic substrates through coculture of cellulolytic clostridia and butanol-producing Clostridium saccharoperbutylacetonicum strain N1-4. However, the butanol fermentation by strain N1-4 (which has an optimal growth temperature of 30°C) is sensitive to the higher cultivation temperature of 37°C; the nature of this deleterious effect remains unclear. Comparison of the intracellular metabolites of strain N1-4 cultivated at 30°C and 37°C revealed decreased levels of multiple primary metabolites (notably including nucleic acids and cofactors) during growth at the higher temperature. Supplementation of the culture medium with 250 mg/liter adenine enhanced both cell growth (with the optical density at 600 nm increasing from 4.3 to 10.2) and butanol production (increasing from 3.9 g/liter to 9.6 g/liter) at 37°C, compared to those obtained without adenine supplementation, such that the supplemented 37°C culture exhibited growth and butanol production approaching those observed at 30°C in the absence of adenine supplementation. These improved properties were based on the maintenance of cell viability. We further showed that adenine supplementation enhanced cell viability during growth at 37°C by maintaining ATP levels and inhibiting spore formation. This work represents the first demonstration (to our knowledge) of the importance of adenine-related metabolism for clostridial butanol production, suggesting a new means of enhancing target pathways based on metabolite levels.IMPORTANCE Metabolomic analysis revealed decreased levels of multiple primary metabolites during growth at 37°C, compared to 30°C, in C. saccharoperbutylacetonicum strain N1-4. We found that adenine supplementation restored the cell growth and butanol production of strain N1-4 at 37°C. The effects of adenine supplementation reflected the maintenance of cell viability originating from the maintenance of ATP levels and the

  14. Structural basis of PP2A activation by PTPA, an ATP-dependent activation chaperone

    SciTech Connect

    Guo, Feng; Stanevich, Vitali; Wlodarchak, Nathan; Sengupta, Rituparna; Jiang, Li; Satyshur, Kenneth A.; Xing, Yongna

    2013-10-08

    Proper activation of protein phosphatase 2A (PP2A) catalytic subunit is central for the complex PP2A regulation and is crucial for broad aspects of cellular function. The crystal structure of PP2A bound to PP2A phosphatase activator (PTPA) and ATPγS reveals that PTPA makes broad contacts with the structural elements surrounding the PP2A active site and the adenine moiety of ATP. PTPA-binding stabilizes the protein fold of apo-PP2A required for activation, and orients ATP phosphoryl groups to bind directly to the PP2A active site. This allows ATP to modulate the metal-binding preferences of the PP2A active site and utilize the PP2A active site for ATP hydrolysis. In vitro, ATP selectively and drastically enhances binding of endogenous catalytic metal ions, which requires ATP hydrolysis and is crucial for acquisition of pSer/Thr-specific phosphatase activity. Furthermore, both PP2A- and ATP-binding are required for PTPA function in cell proliferation and survival. Our results suggest novel mechanisms of PTPA in PP2A activation with structural economy and a unique ATP-binding pocket that could potentially serve as a specific therapeutic target.

  15. Mechanism of nucleotide sensing in group II chaperonins

    PubMed Central

    Pereira, Jose H; Ralston, Corie Y; Douglas, Nicholai R; Kumar, Ramya; Lopez, Tom; McAndrew, Ryan P; Knee, Kelly M; King, Jonathan A; Frydman, Judith; Adams, Paul D

    2012-01-01

    Group II chaperonins mediate protein folding in an ATP-dependent manner in eukaryotes and archaea. The binding of ATP and subsequent hydrolysis promotes the closure of the multi-subunit rings where protein folding occurs. The mechanism by which local changes in the nucleotide-binding site are communicated between individual subunits is unknown. The crystal structure of the archaeal chaperonin from Methanococcus maripaludis in several nucleotides bound states reveals the local conformational changes associated with ATP hydrolysis. Residue Lys-161, which is extremely conserved among group II chaperonins, forms interactions with the γ-phosphate of ATP but shows a different orientation in the presence of ADP. The loss of the ATP γ-phosphate interaction with Lys-161 in the ADP state promotes a significant rearrangement of a loop consisting of residues 160–169. We propose that Lys-161 functions as an ATP sensor and that 160–169 constitutes a nucleotide-sensing loop (NSL) that monitors the presence of the γ-phosphate. Functional analysis using NSL mutants shows a significant decrease in ATPase activity, suggesting that the NSL is involved in timing of the protein folding cycle. PMID:22193720

  16. Nucleotide-dependent displacement and dynamics of the α-1 helix in kinesin revealed by site-directed spin labeling EPR

    SciTech Connect

    Yasuda, Satoshi; Yanagi, Takanori; Yamada, Masafumi D.; Ueki, Shoji; Maruta, Shinsaku; Inoue, Akio; Arata, Toshiaki

    2014-01-17

    Highlights: •Dipolar EPR detects the distance between the spin-labeled kinesin α-1 and α-2 helices. •The distance has at least two populations: 1.5 nm (in crystal form: 20%) and >2.5 nm. •The short distance conformer was populated 40% in the apo state with microtubules. •ATP analog or ADP binding caused the 1.5 nm distance to be less populated (∼20%). •The α-1 helix moves closer to the neck-linker (away from α-2) to facilitate docking. -- Abstract: In kinesin X-ray crystal structures, the N-terminal region of the α-1 helix is adjacent to the adenine ring of the bound nucleotide, while the C-terminal region of the helix is near the neck-linker (NL). Here, we monitor the displacement of the α-1 helix within a kinesin monomer bound to microtubules (MTs) in the presence or absence of nucleotides using site-directed spin labeling EPR. Kinesin was doubly spin-labeled at the α-1 and α-2 helices, and the resulting EPR spectrum showed dipolar broadening. The inter-helix distance distribution showed that 20% of the spins have a peak characteristic of 1.4–1.7 nm separation, which is similar to what is predicted from the X-ray crystal structure, albeit 80% were beyond the sensitivity limit (>2.5 nm) of the method. Upon MT binding, the fraction of kinesin exhibiting an inter-helix distance of 1.4–1.7 nm in the presence of AMPPNP (a non-hydrolysable ATP analog) and ADP was 20% and 25%, respectively. In the absence of nucleotide, this fraction increased to 40–50%. These nucleotide-induced changes in the fraction of kinesin undergoing displacement of the α-1 helix were found to be related to the fraction in which the NL undocked from the motor core. It is therefore suggested that a shift in the α-1 helix conformational equilibrium occurs upon nucleotide binding and release, and this shift controls NL docking onto the motor core.

  17. Unidirectional Transport Mechanism in an ATP Dependent Exporter

    PubMed Central

    2017-01-01

    ATP-binding cassette (ABC) transporters use the energy of ATP binding and hydrolysis to move a large variety of compounds across biological membranes. P-glycoprotein, involved in multidrug resistance, is the most investigated eukaryotic family member. Although a large number of biochemical and structural approaches have provided important information, the conformational dynamics underlying the coupling between ATP binding/hydrolysis and allocrite transport remains elusive. To tackle this issue, we performed molecular dynamic simulations for different nucleotide occupancy states of Sav1866, a prokaryotic P-glycoprotein homologue. The simulations reveal an outward-closed conformation of the transmembrane domain that is stabilized by the binding of two ATP molecules. The hydrolysis of a single ATP leads the X-loop, a key motif of the ATP binding cassette, to interfere with the transmembrane domain and favor its outward-open conformation. Our findings provide a structural basis for the unidirectionality of transport in ABC exporters and suggest a ratio of one ATP hydrolyzed per transport cycle. PMID:28386603

  18. Adenine and guanine 8CH exchange in nucleic acids: resolution and measurement by Raman optical multichannel analysis.

    PubMed

    Lamba, O P; Becka, R; Thomas, G J

    Deuterium exchange of 8C protons of adenine and guanine in nucleic acids is conveniently monitored by laser Raman spectrophotometry, and the average exchange rate so determined [kA + kG] can be exploited as a dynamic probe of the secondary structure of DNA or RNA [J. M. Benevides and G. J. Thomas, Jr. (1985) Biopolymers 24, 667-682]. The present work describes a rapid Raman procedure, based upon optical multichannel analysis, which permits discrimination of the different 8CH exchange rates, kA of adenine and kG of guanine, in a single experimental protocol. For this procedure, simultaneous measurements are made of the intensity decay or frequency shift in separately resolved Raman bands of adenine and guanine, each of which is sensitive only to 8C deuteration of its respective purine. Resolution of the rates kA and kG is demonstrated for the mononucleotide mixtures, 5'-rAMP + 5'-rGMP and 5'-dAMP + 5'-dGMP, for the polynucleotides poly(dA-dT).poly(dA-dT) and poly(dG-dC).poly(dG-dC), for calf thymus DNA, and for the 17 base-pair operator OR3. We show that the different exchange rates of adenine and guanine, in nucleotide mixtures and in DNA, may also be calculated independently from intensity decay of the composite 1481-cm-1 band, comprising overlapped adenine and guanine components, over a time domain that encompasses two distinct regimes: (1) a relatively more rapid exchange of guanine, and (2) a concurrent slower exchange of adenine. Both methods developed here yield consistent results. We find, first, that exchange of guanine is approximately twofold more rapid than that of adenine when both purines are present in the same structure and solvent environment, presumably a consequence of the greater basicity of the 7N site of guanine. Second, we find that adenine suffers greater retardation of exchange than guanine when both purines are incorporated into a "classical" B-DNA secondary structure, such as that of calf thymus DNA. This finding suggests different

  19. cDNA, genomic sequence cloning and overexpression of giant panda (Ailuropoda melanoleuca) mitochondrial ATP synthase ATP5G1.

    PubMed

    Hou, W-R; Hou, Y-L; Ding, X; Wang, T

    2012-09-03

    The ATP5G1 gene is one of the three genes that encode mitochondrial ATP synthase subunit c of the proton channel. We cloned the cDNA and determined the genomic sequence of the ATP5G1 gene from the giant panda (Ailuropoda melanoleuca) using RT-PCR technology and touchdown-PCR, respectively. The cloned cDNA fragment contains an open reading frame of 411 bp encoding 136 amino acids; the length of the genomic sequence is of 1838 bp, containing three exons and two introns. Alignment analysis revealed that the nucleotide sequence and the deduced protein sequence are highly conserved compared to Homo sapiens, Mus musculus, Rattus norvegicus, Bos taurus, and Sus scrofa. The homologies for nucleotide sequences of the giant panda ATP5G1 to those of these species are 93.92, 92.21, 92.46, 93.67, and 92.46%, respectively, and the homologies for amino acid sequences are 90.44, 95.59, 93.38, 94.12, and 91.91%, respectively. Topology prediction showed that there is one protein kinase C phosphorylation site, one casein kinase II phosphorylation site, five N-myristoylation sites, and one ATP synthase c subunit signature in the ATP5G1 protein of the giant panda. The cDNA of ATP5G1 was transfected into Escherichia coli, and the ATP5G1 fused with the N-terminally GST-tagged protein gave rise to accumulation of an expected 40-kDa polypeptide, which had the characteristics of the predicted protein.

  20. Possible role of firmly bound ATP in the energy transduction of photosynthetic membranes.

    PubMed

    Lutz, H U; Beyeler, W; Pflugshaupt, C; Bachofen, R

    1975-01-01

    Chromatophores of Rhodospirillum rubrum and spinach chloroplasts contain firmly bound ATP that is rapidly labeled along with ADP in the presence of 32Pi and endogenous nucleotides. The labeling is not entirely dependent on light. In chloroplasts three types of bound ATP can be defined methodologically by their extraction properties: buffer-soluble; acid-soluble; and SDS-soluble or firmly bound ATP. Extensive washing of the chloroplasts does reduce buffer-soluble but not acid-soluble and firmly bound ATP. Buffer-soluble [32P] ATP is almost exclusively gamma labeled while acid-soluble and firmly bound ATP are labeled in the beta and gamma position equally. CCCP, desaspidin, and phlorizin do not inhibit the labeling of firmly bound ATP, whereas the phosphorylation is almost abolished. However, EDTA and NEM pretreatments of the chloroplasts affect both reactions similarly. The postillumination [32P] ATP synthesis with chromatophores can be inhibited by adding ATP to the incubation mixture after illumination if 32Pi is included only during the dark incubation, but is without effect if 32Pi is present only during illumination. On the other hand, ADP added after illumination inhibits post-illumination [32P] ATP formation in both chromatophores and chloroplasts only if 32Pi is present during illumination. The data can be explained by a coupling factor having two sites, as proposed previously on the basis that firmly bound ATP does not transfer its phosphoryl group but seems to drive a synthesis of acid-soluble ATP which incorporates free phosphate.

  1. A Computational Analysis of ATP Binding of SV40 Large Tumor Antigen Helicase Motor

    PubMed Central

    Shi, Yemin; Liu, Hanbin; Gai, Dahai; Ma, Jianpeng; Chen, Xiaojiang S.

    2009-01-01

    Simian Virus 40 Large Tumor Antigen (LTag) is an efficient helicase motor that unwinds and translocates DNA. The DNA unwinding and translocation of LTag is powered by ATP binding and hydrolysis at the nucleotide pocket between two adjacent subunits of an LTag hexamer. Based on the set of high-resolution hexameric structures of LTag helicase in different nucleotide binding states, we simulated a conformational transition pathway of the ATP binding process using the targeted molecular dynamics method and calculated the corresponding energy profile using the linear response approximation (LRA) version of the semi-macroscopic Protein Dipoles Langevin Dipoles method (PDLD/S). The simulation results suggest a three-step process for the ATP binding from the initial interaction to the final tight binding at the nucleotide pocket, in which ATP is eventually “locked” by three pairs of charge-charge interactions across the pocket. Such a “cross-locking” ATP binding process is similar to the binding zipper model reported for the F1-ATPase hexameric motor. The simulation also shows a transition mechanism of Mg2+ coordination to form the Mg-ATP complex during ATP binding, which is accompanied by the large conformational changes of LTag. This simulation study of the ATP binding process to an LTag and the accompanying conformational changes in the context of a hexamer leads to a refined cooperative iris model that has been proposed previously. PMID:19779548

  2. Nicotinamide adenine dinucleotide biosynthesis promotes liver regeneration.

    PubMed

    Mukherjee, Sarmistha; Chellappa, Karthikeyani; Moffitt, Andrea; Ndungu, Joan; Dellinger, Ryan W; Davis, James G; Agarwal, Beamon; Baur, Joseph A

    2017-02-01

    The regenerative capacity of the liver is essential for recovery from surgical resection or injuries induced by trauma or toxins. During liver regeneration, the concentration of nicotinamide adenine dinucleotide (NAD) falls, at least in part due to metabolic competition for precursors. To test whether NAD availability restricts the rate of liver regeneration, we supplied nicotinamide riboside (NR), an NAD precursor, in the drinking water of mice subjected to partial hepatectomy. NR increased DNA synthesis, mitotic index, and mass restoration in the regenerating livers. Intriguingly, NR also ameliorated the steatosis that normally accompanies liver regeneration. To distinguish the role of hepatocyte NAD levels from any systemic effects of NR, we generated mice overexpressing nicotinamide phosphoribosyltransferase, a rate-limiting enzyme for NAD synthesis, specifically in the liver. Nicotinamide phosphoribosyltransferase overexpressing mice were mildly hyperglycemic at baseline and, similar to mice treated with NR, exhibited enhanced liver regeneration and reduced steatosis following partial hepatectomy. Conversely, mice lacking nicotinamide phosphoribosyltransferase in hepatocytes exhibited impaired regenerative capacity that was completely rescued by administering NR.

  3. Butyrate influences intracellular levels of adenine and adenine derivatives in the fungus Penicillium restrictum.

    PubMed

    Zutz, Christoph; Chiang, Yi Ming; Faehnrich, Bettina; Bacher, Markus; Hellinger, Roland; Kluger, Bernhard; Wagner, Martin; Strauss, Joseph; Rychli, Kathrin

    2017-04-01

    Butyrate, a small fatty acid, has an important role in the colon of ruminants and mammalians including the inhibition of inflammation and the regulation of cell proliferation. There is also growing evidence that butyrate is influencing the histone structure in mammalian cells by inhibition of histone deacetylation. Butyrate shows furthermore an antimicrobial activity against fungi, yeast and bacteria, which is linked to its toxicity at a high concentration. In fungi there are indications that butyrate induces the production of secondary metabolites potentially via inhibition of histone deacetylases. However, information about the influence of butyrate on growth, primary metabolite production and metabolism, besides lipid catabolism, in fungi is scarce. We have identified the filamentous fungus Penicillium (P.) restrictum as a susceptible target for butyrate treatment in an antimicrobial activity screen. The antimicrobial activity was detected only in the mycelium of the butyrate treated culture. We investigated the effect of butyrate ranging from low (0.001mM) to high (30mM), potentially toxic, concentrations on biomass and antimicrobial activity. Butyrate at high concentrations (3 and 30mM) significantly reduced the fungal biomass. In contrast P. restrictum treated with 0.03mM of butyrate showed the highest antimicrobial activity. We isolated three antimicrobial active compounds, active against Staphylococcus aureus, from P. restrictum cellular extracts treated with butyrate: adenine, its derivate hypoxanthine and the nucleoside derivate adenosine. Production of all three compounds was increased at low butyrate concentrations. Furthermore we found that butyrate influences the intracellular level of the adenine nucleoside derivate cAMP, an important signalling molecule in fungi and various organisms. In conclusion butyrate treatment increases the intracellular levels of adenine and its respective derivatives.

  4. Comparative single-molecule and ensemble myosin enzymology: sulfoindocyanine ATP and ADP derivatives.

    PubMed Central

    Oiwa, K; Eccleston, J F; Anson, M; Kikumoto, M; Davis, C T; Reid, G P; Ferenczi, M A; Corrie, J E; Yamada, A; Nakayama, H; Trentham, D R

    2000-01-01

    Single-molecule and macroscopic reactions of fluorescent nucleotides with myosin have been compared. The single-molecule studies serve as paradigms for enzyme-catalyzed reactions and ligand-receptor interactions analyzed as individual stochastic processes. Fluorescent nucleotides, called Cy3-EDA-ATP and Cy5-EDA-ATP, were derived by coupling the dyes Cy3.29.OH and Cy5.29.OH (compounds XI and XIV, respectively, in, Bioconjug. Chem. 4:105-111)) with 2'(3')-O-[N-(2-aminoethyl)carbamoyl]ATP (EDA-ATP). The ATP(ADP) analogs were separated into their respective 2'- and 3'-O-isomers, the interconversion rate of which was 30[OH(-)] s(-1) (0.016 h(-1) at pH 7.1) at 22 degrees C. Macroscopic studies showed that 2'(3')-O-substituted nucleotides had properties similar to those of ATP and ADP in their interactions with myosin, actomyosin, and muscle fibers, although the ATP analogs did not relax muscle as well as ATP did. Significant differences in the fluorescence intensity of Cy3-nucleotide 2'- and 3'-O-isomers in free solution and when they interacted with myosin were evident. Single-molecule studies using total internal reflection fluorescence microscopy showed that reciprocal mean lifetimes of the nucleotide analogs interacting with myosin filaments were one- to severalfold greater than predicted from macroscopic data. Kinetic and equilibrium data of nucleotide-(acto)myosin interactions derived from single-molecule microscopy now have a biochemical and physiological framework. This is important for single-molecule mechanical studies of motor proteins. PMID:10827983

  5. Adenine adlayers on Cu(111): XPS and NEXAFS study.

    PubMed

    Tsud, Nataliya; Bercha, Sofiia; Ševčíková, Klára; Acres, Robert G; Prince, Kevin C; Matolín, Vladimír

    2015-11-07

    The adsorption of adenine on Cu(111) was studied by photoelectron and near edge x-ray absorption fine structure spectroscopy. Disordered molecular films were deposited by means of physical vapor deposition on the substrate at room temperature. Adenine chemisorbs on the Cu(111) surface with strong rehybridization of the molecular orbitals and the Cu 3d states. Annealing at 150 °C caused the desorption of weakly bonded molecules accompanied by formation of a short-range ordered molecular adlayer. The interface is characterized by the formation of new states in the valence band at 1.5, 7, and 9 eV. The present work complements and refines existing knowledge of adenine interaction with this surface. The coverage is not the main parameter that defines the adenine geometry and adsorption properties on Cu(111). Excess thermal energy can further rearrange the molecular adlayer and, independent of the initial coverage, the flat lying stable molecular adlayer is formed.

  6. Adenine adlayers on Cu(111): XPS and NEXAFS study

    SciTech Connect

    Tsud, Nataliya; Bercha, Sofiia; Ševčíková, Klára; Matolín, Vladimír; Acres, Robert G.; Prince, Kevin C.

    2015-11-07

    The adsorption of adenine on Cu(111) was studied by photoelectron and near edge x-ray absorption fine structure spectroscopy. Disordered molecular films were deposited by means of physical vapor deposition on the substrate at room temperature. Adenine chemisorbs on the Cu(111) surface with strong rehybridization of the molecular orbitals and the Cu 3d states. Annealing at 150 °C caused the desorption of weakly bonded molecules accompanied by formation of a short-range ordered molecular adlayer. The interface is characterized by the formation of new states in the valence band at 1.5, 7, and 9 eV. The present work complements and refines existing knowledge of adenine interaction with this surface. The coverage is not the main parameter that defines the adenine geometry and adsorption properties on Cu(111). Excess thermal energy can further rearrange the molecular adlayer and, independent of the initial coverage, the flat lying stable molecular adlayer is formed.

  7. Intermolecular band dispersion in quasi-one-dimensional adenine assemblies.

    PubMed

    Wang, Ying; Fleurence, Antoine; Yamada-Takamura, Yukiko; Friedlein, Rainer

    2011-12-07

    Highly-ordered, hydrated adenine multilayer films grown on the surface of highly-oriented pyrolytic graphite, HOPG(0001), display extended electronic states, affording anisotropic band-like charge transport along the π-π stacking direction.

  8. Characterization of the ATP-G-actin aggregates formed at low potassium chloride concentration.

    PubMed Central

    Grazi, E; Aleotti, A; Ferri, A

    1984-01-01

    The ATP-G-actin aggregates formed by incubation of ATP-G-actin in 7.5 mM-KCl were characterized by electron-microscopical observation, by high-pressure liquid chromatography and by the study of the 1,N6-etheno-ATP-ATP exchange reaction between the free and the actin-bound nucleotide. In 30 mM-KCl the initial rate of the reduced-viscosity increase is found to be directly related to the amount of the aggregates formed in the course of the preincubation in 7.5 mM-KCl. Images Fig. 1. PMID:6721856

  9. Uncovering the polymerase-induced cytotoxicity of an oxidized nucleotide

    NASA Astrophysics Data System (ADS)

    Freudenthal, Bret D.; Beard, William A.; Perera, Lalith; Shock, David D.; Kim, Taejin; Schlick, Tamar; Wilson, Samuel H.

    2015-01-01

    Oxidative stress promotes genomic instability and human diseases. A common oxidized nucleoside is 8-oxo-7,8-dihydro-2'-deoxyguanosine, which is found both in DNA (8-oxo-G) and as a free nucleotide (8-oxo-dGTP). Nucleotide pools are especially vulnerable to oxidative damage. Therefore cells encode an enzyme (MutT/MTH1) that removes free oxidized nucleotides. This cleansing function is required for cancer cell survival and to modulate Escherichia coli antibiotic sensitivity in a DNA polymerase (pol)-dependent manner. How polymerases discriminate between damaged and non-damaged nucleotides is not well understood. This analysis is essential given the role of oxidized nucleotides in mutagenesis, cancer therapeutics, and bacterial antibiotics. Even with cellular sanitizing activities, nucleotide pools contain enough 8-oxo-dGTP to promote mutagenesis. This arises from the dual coding potential where 8-oxo-dGTP(anti) base pairs with cytosine and 8-oxo-dGTP(syn) uses its Hoogsteen edge to base pair with adenine. Here we use time-lapse crystallography to follow 8-oxo-dGTP insertion opposite adenine or cytosine with human pol β, to reveal that insertion is accommodated in either the syn- or anti-conformation, respectively. For 8-oxo-dGTP(anti) insertion, a novel divalent metal relieves repulsive interactions between the adducted guanine base and the triphosphate of the oxidized nucleotide. With either templating base, hydrogen-bonding interactions between the bases are lost as the enzyme reopens after catalysis, leading to a cytotoxic nicked DNA repair intermediate. Combining structural snapshots with kinetic and computational analysis reveals how 8-oxo-dGTP uses charge modulation during insertion that can lead to a blocked DNA repair intermediate.

  10. Regulation of transepithelial ion transport and intracellular calcium by extracellular ATP in human normal and cystic fibrosis airway epithelium.

    PubMed Central

    Mason, S. J.; Paradiso, A. M.; Boucher, R. C.

    1991-01-01

    1 The role of extracellular nucleotides in regulation of ion transport activities (short circuit current, Isc) of human respiratory epithelia was studied. 2 Application of nucleotides to the apical or basolateral membrane of human nasal epithelium induced a concentration-dependent increase in Isc. 3 The rank order of potency of purine- or pyrimidine-induced changes in Isc of normal human nasal epithelium when applied to the apical membrane (UTP greater than or equal to ATP greater than ATP gamma S greater than 2MeSATP greater than ADP beta S much greater than beta gamma MeATP greater than or equal to alpha beta MeATP) or basolateral membrane (2MeSATP greater than UTP greater than ATP greater than ATP gamma S greater than alpha beta MeATP greater than beta gamma MeATP) is consistent with involvement of a P2 purinoceptor. A similar rank order of potencies was observed for nucleotide effects on intracellular calcium measured by Fura-2 fluorescence using microspectrofluorimetry. 4 Similar nucleotide potency in the regulation of ion transport and intracellular calcium in cystic fibrosis (CF) airway epithelium (UTP greater than or equal to ATP) was observed, suggesting purinoceptors might be used to stimulate ion transport processes that would promote hydration of airway secretions and facilitate their clearance from CF lungs. 5 These data provide evidence for the regulation of ion transport by P2 purinoceptors in normal and cystic fibrosis human airway epithelium. PMID:1718521

  11. A three-state model for the photophysics of adenine.

    PubMed

    Serrano-Andrés, Luis; Merchán, Manuela; Borin, Antonio Carlos

    2006-08-25

    An ab initio theoretical study at the CASPT2 level is reported on minimum energy reaction paths, state minima, transition states, reaction barriers, and conical intersections on the potential energy hypersurfaces of two tautomers of adenine: 9H- and 7H-adenine. The obtained results led to a complete interpretation of the photophysics of adenine and derivatives, both under jet-cooled conditions and in solution, within a three-state model. The ultrafast subpicosecond fluorescence decay measured in adenine is attributed to the low-lying conical intersection (gs/pipi* La)(CI), reached from the initially populated 1(pipi* La) state along a path which is found to be barrierless only in 9H-adenine, while for the 7H tautomer the presence of an intermediate plateau corresponding to an NH2-twisted conformation may explain the absence of ultrafast decay in 7-substituted compounds. A secondary picosecond decay is assigned to a path involving switches towards two other states, 1(pipi* Lb) and 1(npi*), ultimately leading to another conical intersection with the ground state, (gs/npi*), with a perpendicular disposition of the amino group. The topology of the hypersurfaces and the state properties explain the absence of secondary decay in 9-substituted adenines in water in terms of the higher position of the 1(npi*) state and also that the 1(pipi* Lb) state of 7H-adenine is responsible for the observed fluorescence in water. A detailed discussion comparing recent experimental and theoretical findings is given. As for other nucleobases, the predominant role of a pipi*-type state in the ultrafast deactivation of adenine is confirmed.

  12. Nucleotide Selectivity of Antibiotic Kinases▿

    PubMed Central

    Shakya, Tushar; Wright, Gerard D.

    2010-01-01

    Antibiotic kinases, which include aminoglycoside and macrolide phosphotransferases (APHs and MPHs), pose a serious threat to currently used antimicrobial therapies. These enzymes show structural and functional homology with Ser/Thr/Tyr kinases, which is suggestive of a common ancestor. Surprisingly, recent in vitro studies using purified antibiotic kinase enzymes have revealed that a number are able to utilize GTP as the antibiotic phospho donor, either preferentially or exclusively compared to ATP, the canonical phosphate donor in most biochemical reactions. To further explore this phenomenon, we examined three enzymes, APH(3′)-IIIa, APH(2″)-Ib, and MPH(2′)-I, using a competitive assay that mimics in vivo nucleotide triphosphate (NTP) concentrations and usage by each enzyme. Downstream analysis of reaction products by high-performance liquid chromatography enabled the determination of partitioning of phosphate flux from NTP donors to antibiotics. Using this ratio along with support from kinetic analysis and inhibitor studies, we find that under physiologic concentrations of NTPs, APH(3′)-IIIa exclusively uses ATP, MPH(2′)-I exclusively uses GTP, and APH(2″)-Ib is able to use both species with a preference for GTP. These differences reveal likely different pathways in antibiotic resistance enzyme evolution and can be exploited in selective inhibitor design to counteract resistance. PMID:20231391

  13. Nucleotide selectivity of antibiotic kinases.

    PubMed

    Shakya, Tushar; Wright, Gerard D

    2010-05-01

    Antibiotic kinases, which include aminoglycoside and macrolide phosphotransferases (APHs and MPHs), pose a serious threat to currently used antimicrobial therapies. These enzymes show structural and functional homology with Ser/Thr/Tyr kinases, which is suggestive of a common ancestor. Surprisingly, recent in vitro studies using purified antibiotic kinase enzymes have revealed that a number are able to utilize GTP as the antibiotic phospho donor, either preferentially or exclusively compared to ATP, the canonical phosphate donor in most biochemical reactions. To further explore this phenomenon, we examined three enzymes, APH(3')-IIIa, APH(2'')-Ib, and MPH(2')-I, using a competitive assay that mimics in vivo nucleotide triphosphate (NTP) concentrations and usage by each enzyme. Downstream analysis of reaction products by high-performance liquid chromatography enabled the determination of partitioning of phosphate flux from NTP donors to antibiotics. Using this ratio along with support from kinetic analysis and inhibitor studies, we find that under physiologic concentrations of NTPs, APH(3')-IIIa exclusively uses ATP, MPH(2')-I exclusively uses GTP, and APH(2'')-Ib is able to use both species with a preference for GTP. These differences reveal likely different pathways in antibiotic resistance enzyme evolution and can be exploited in selective inhibitor design to counteract resistance.

  14. Curtains for ATP?

    NASA Astrophysics Data System (ADS)

    The administration's efforts to keep various technology-transfer programs afloat in the budget process appear to be stalled. House Science Committee chair Robert Walker (R-Pa.) advised in early April that the Republican agenda for the pending budget process entails zeroing out the Commerce Department's Advanced Technology Program (ATP), which was funded at 431 million in fiscal year 1995. The ATP would lose about 90 million from its FY 95 budget. Although Walker says that the Republican leadership has no intention to dictate to the subcommittees how cuts should be made, they will be held to the "fairly severe caps" established by the House Budget Committee. In other words, Walker says, if ATP stays, something else will have to go in its place. In addition, a bill to rescind about 223 million from the FY 1995 budget of the Technology Reinvestment Project and another 77 million from TRP's FY 1994 budget, which has not been spent, is heading for the president's signature. Yet Walker says while he supports the merits of technology transfer, "the question is do you have to create government programs to get the technology out?"

  15. Vertical Singlet Excitations on Adenine Dimer: A Time Dependent Density Functional Study

    NASA Astrophysics Data System (ADS)

    Crespo-Hernández, Carlos E.; Marai, Christopher N. J.

    2007-12-01

    The condense phase, excited state dynamics of the adenylyl(3'→5')adenine (ApA) dinucleotide has been previously studied using transient absorption spectroscopy with femtosecond time resolution (Crespo-Hernández et al. Chem. Rev. 104, 1977-2019 (2004)). An ultrafast and a long-lived component were observed with time constants of <1 ps and 60±16 ps, respectively. Comparison of the time constants measured for the dinucleotide with that for the adenine nucleotide suggested that the fast component observed in ApA could be assigned to monomer dynamics. The long-lived component observed in ApA was assigned to an excimer state that originates from a fraction of base stacked conformations present at the time of excitation. In this contribution, supermolecule calculations using the time dependent implementation of density functional theory is used to provide more insights on the origin of the initial Franck-Condon excitations. Monomer-like, localized excitations are observed for conformations having negligible base stacking interactions, whereas delocalized excitations are predicted for conformations with significant vertical base-base overlap.

  16. The suppressor of AAC2 Lethality SAL1 modulates sensitivity of heterologously expressed artemia ADP/ATP carrier to bongkrekate in yeast.

    PubMed

    Wysocka-Kapcinska, Monika; Torocsik, Beata; Turiak, Lilla; Tsaprailis, George; David, Cynthia L; Hunt, Andrea M; Vekey, Karoly; Adam-Vizi, Vera; Kucharczyk, Roza; Chinopoulos, Christos

    2013-01-01

    The ADP/ATP carrier protein (AAC) expressed in Artemia franciscana is refractory to bongkrekate. We generated two strains of Saccharomyces cerevisiae where AAC1 and AAC3 were inactivated and the AAC2 isoform was replaced with Artemia AAC containing a hemagglutinin tag (ArAAC-HA). In one of the strains the suppressor of ΔAAC2 lethality, SAL1, was also inactivated but a plasmid coding for yeast AAC2 was included, because the ArAACΔsal1Δ strain was lethal. In both strains ArAAC-HA was expressed and correctly localized to the mitochondria. Peptide sequencing of ArAAC expressed in Artemia and that expressed in the modified yeasts revealed identical amino acid sequences. The isolated mitochondria from both modified strains developed 85% of the membrane potential attained by mitochondria of control strains, and addition of ADP yielded bongkrekate-sensitive depolarizations implying acquired sensitivity of ArAAC-mediated adenine nucleotide exchange to this poison, independent from SAL1. However, growth of ArAAC-expressing yeasts in glycerol-containing media was arrested by bongkrekate only in the presence of SAL1. We conclude that the mitochondrial environment of yeasts relying on respiratory growth conferred sensitivity of ArAAC to bongkrekate in a SAL1-dependent manner.

  17. Absence of Ca2+-Induced Mitochondrial Permeability Transition but Presence of Bongkrekate-Sensitive Nucleotide Exchange in C. crangon and P. serratus

    PubMed Central

    Konrad, Csaba; Kiss, Gergely; Torocsik, Beata; Adam-Vizi, Vera; Chinopoulos, Christos

    2012-01-01

    Mitochondria from the embryos of brine shrimp (Artemia franciscana) do not undergo Ca2+-induced permeability transition in the presence of a profound Ca2+ uptake capacity. Furthermore, this crustacean is the only organism known to exhibit bongkrekate-insensitive mitochondrial adenine nucleotide exchange, prompting the conjecture that refractoriness to bongkrekate and absence of Ca2+-induced permeability transition are somehow related phenomena. Here we report that mitochondria isolated from two other crustaceans, brown shrimp (Crangon crangon) and common prawn (Palaemon serratus) exhibited bongkrekate-sensitive mitochondrial adenine nucleotide transport, but lacked a Ca2+-induced permeability transition. Ca2+ uptake capacity was robust in the absence of adenine nucleotides in both crustaceans, unaffected by either bongkrekate or cyclosporin A. Transmission electron microscopy images of Ca2+-loaded mitochondria showed needle-like formations of electron-dense material strikingly similar to those observed in mitochondria from the hepatopancreas of blue crab (Callinectes sapidus) and the embryos of Artemia franciscana. Alignment analysis of the partial coding sequences of the adenine nucleotide translocase (ANT) expressed in Crangon crangon and Palaemon serratus versus the complete sequence expressed in Artemia franciscana reappraised the possibility of the 208-214 amino acid region for conferring sensitivity to bongkrekate. However, our findings suggest that the ability to undergo Ca2+-induced mitochondrial permeability transition and the sensitivity of adenine nucleotide translocase to bongkrekate are not necessarily related phenomena. PMID:22768139

  18. N-Sulfomethylation of guanine, adenine and cytosine with formaldehyde-bisulfite. A selective modification of guanine in DNA.

    PubMed

    Hayatsu, H; Yamashita, Y; Yui, S; Yamagata, Y; Tomita, K; Negishi, K

    1982-10-25

    When guanine-, adenine- and cytosine-nucleosides and nucleotides were treated with formaldehyde and then with bisulfite, stable N-sulfomethyl compounds were formed. N2-Sulfomethylguanine, N6-sulfomethyladenine, N4-sulfomthylcytosine and N6-sulfomethyl-9-beta-D-arabinofuranosyladenine were isolated as crystals and characterized. A guanine-specific sulfomethylation was brought about by treatment and denatured single-stranded DNA with formaldehyde and then with bisulfite at pH 7 and 4 degrees C. Since native double-stranded DNA was not modified by this treatment, this new method of modification is expected to be useful as a conformational probe for polynucleotides.

  19. N-Sulfomethylation of guanine, adenine and cytosine with formaldehyde-bisulfite. A selective modification of guanine in DNA.

    PubMed Central

    Hayatsu, H; Yamashita, Y; Yui, S; Yamagata, Y; Tomita, K; Negishi, K

    1982-01-01

    When guanine-, adenine- and cytosine-nucleosides and nucleotides were treated with formaldehyde and then with bisulfite, stable N-sulfomethyl compounds were formed. N2-Sulfomethylguanine, N6-sulfomethyladenine, N4-sulfomthylcytosine and N6-sulfomethyl-9-beta-D-arabinofuranosyladenine were isolated as crystals and characterized. A guanine-specific sulfomethylation was brought about by treatment and denatured single-stranded DNA with formaldehyde and then with bisulfite at pH 7 and 4 degrees C. Since native double-stranded DNA was not modified by this treatment, this new method of modification is expected to be useful as a conformational probe for polynucleotides. PMID:7177848

  20. Updating Our View of Organelle Genome Nucleotide Landscape

    PubMed Central

    Smith, David Roy

    2012-01-01

    Organelle genomes show remarkable variation in architecture and coding content, yet their nucleotide composition is relatively unvarying across the eukaryotic domain, with most having a high adenine and thymine (AT) content. Recent studies, however, have uncovered guanine and cytosine (GC)-rich mitochondrial and plastid genomes. These sequences come from a small but eclectic list of species, including certain green plants and animals. Here, I review GC-rich organelle DNAs and the insights they have provided into the evolution of nucleotide landscape. I emphasize that GC-biased mitochondrial and plastid DNAs are more widespread than once thought, sometimes occurring together in the same species, and suggest that the forces biasing their nucleotide content can differ both among and within lineages, and may be associated with specific genome architectural features and life history traits. PMID:22973299

  1. Metabolism of Benzyladenine is Impaired in a Mutant of Arabidopsis thaliana Lacking Adenine Phosphoribosyltransferase Activity 1

    PubMed Central

    Moffatt, Barbara; Pethe, Claude; Laloue, Michel

    1991-01-01

    Formation of the riboside-5′-monophosphate is a general feature of the metabolism of cytokinins in plants. As part of a study of the biological significance of the nucleotide form of cytokinins, we analyzed a mutant of Arabidopsis thaliana deficient in adenine phosphoribosyltransferase (APRT) activity for its ability to metabolize N6-benzyladenine (BA). Formation of N6-benzyladenosine-5′-monophosphate (BAMP) was assayed in vivo, by feeding tritiated BA to wild-type and mutant plantlets, and in crude plantlet extracts. Metabolites were separated by high performance liquid chromatography and quantitated by on-line liquid scintillation spectrometry. BA was rapidly absorbed by A. thaliana plantlets and primarily converted to BAMP and to BA 7- and 9-glucosides. BA was also rapidly absorbed by APRT-deficient plantlets, but its conversion to BAMP was strongly reduced. Formation of BAMP from N6-benzyladenosine was not affected in the mutant plantlets. In vitro conversion of BA to its nucleoside-5′-monophosphate was detected in crude extracts of wild-type plantlets, but not in extracts of APRT-deficient plantlets. Therefore, results of both assays indicate that APRT-deficient tissue does not convert BA to BAMP to a significant extent. Further, nondenaturing isoelectric focusing analysis of APRT activity in leaf extracts indicated that the enzyme activities which metabolize adenine and BA into their corresponding riboside-5′-monophosphate in extracts of wild-type plantlets have the same apparent isoelectric point. These activities were not detected in extracts prepared from APRT-deficient plantlets. Thus, these results demonstrate that APRT is the main enzyme which converts BA to its nucleotide form in young A. thaliana plants and that the ribophosphorylation of BA is not a prerequisite of its absorption by the plantlets. Images Figure 4 PMID:16668070

  2. ATP-dependent degradation of ubiquitin-protein conjugates.

    PubMed Central

    Hershko, A; Leshinsky, E; Ganoth, D; Heller, H

    1984-01-01

    Previous studies have indicated that the ATP-requiring conjugation of ubiquitin with proteins plays a role in the energy-dependent degradation of intracellular proteins. To examine whether such conjugates are indeed intermediates in protein breakdown, conjugates of 125I-labeled lysozyme with ubiquitin were isolated and incubated with a fraction of reticulocyte extract that lacks the enzymes that carry out ubiquitin-protein conjugation. ATP markedly stimulated degradation of the lysozyme moiety of ubiquitin conjugates to products soluble in trichloroacetic acid. By contrast, free 125I-labeled lysozyme was not degraded under these conditions, unless ubiquitin and the three enzymes required for ubiquitin conjugation were supplemented. Mg2+ was absolutely required for conjugate breakdown. Of various nucleotides, only CTP replaced ATP. Nonhydrolyzable analogs of ATP were not effective. In the absence of ATP, free lysozyme is released from ubiquitin-lysozyme conjugates by isopeptidases present in the extract. Thus, ATP is involved in both the formation and the breakdown of ubiquitin-protein conjugates. Images PMID:6324208

  3. A genetically encoded fluorescent reporter of ATP/ADP ratio

    PubMed Central

    Berg, Jim; Hung, Yin Pun; Yellen, Gary

    2008-01-01

    A fluorescent sensor of adenylate nucleotides was constructed by combining a circularly permuted variant of green fluorescent protein with a bacterial regulatory protein, GlnK1, from Methanococcus jannaschii. The affinity for Mg-ATP is below 100 nM, as seen for the other members of the bacterial PII regulator family – a surprisingly high affinity given normal intracellular [ATP] in the millimolar range. ADP binds to the same site, competing with Mg-ATP but producing a smaller change in fluorescence. With normal physiological concentrations of ATP and ADP, the binding site is saturated, but competition between the two substrates causes the sensor to behave as a nearly ideal reporter of the ATP/ADP concentration ratio. This principle for sensing the ratio of two analytes by competition at a high affinity site probably underlies the normal functioning of PII regulatory proteins. The engineered sensor, Perceval, can be used to monitor the ATP/ADP ratio during live cell imaging. PMID:19122669

  4. Real-time imaging of inflation-induced ATP release in the ex vivo rat lung.

    PubMed

    Furuya, Kishio; Tan, Ju Jing; Boudreault, Francis; Sokabe, Masahiro; Berthiaume, Yves; Grygorczyk, Ryszard

    2016-11-01

    Extracellular ATP and other nucleotides are important autocrine/paracrine mediators that regulate diverse processes critical for lung function, including mucociliary clearance, surfactant secretion, and local blood flow. Cellular ATP release is mechanosensitive; however, the impact of physical stimuli on ATP release during breathing has never been tested in intact lungs in real time and remains elusive. In this pilot study, we investigated inflation-induced ATP release in rat lungs ex vivo by real-time luciferin-luciferase (LL) bioluminescence imaging coupled with simultaneous infrared tissue imaging to identify ATP-releasing sites. With LL solution introduced into air spaces, brief inflation of such edematous lung (1 s, ∼20 cmH2O) induced transient (<30 s) ATP release in a limited number of air-inflated alveolar sacs during their recruitment/opening. Released ATP reached concentrations of ∼10(-6) M, relevant for autocrine/paracrine signaling, but it remained spatially restricted to single alveolar sacs or their clusters. ATP release was stimulus dependent: prolonged (100 s) inflation evoked long-lasting ATP release that terminated upon alveoli deflation/derecruitment while cyclic inflation/suction produced cyclic ATP release. With LL introduced into blood vessels, inflation induced transient ATP release in many small patchlike areas the size of alveolar sacs. Findings suggest that inflation induces ATP release in both alveoli and the surrounding blood capillary network; the functional units of ATP release presumably consist of alveolar sacs or their clusters. Our study demonstrates the feasibility of real-time ATP release imaging in ex vivo lungs and provides the first direct evidence of inflation-induced ATP release in lung air spaces and in pulmonary blood capillaries, highlighting the importance of purinergic signaling in lung function.

  5. Copper binding triggers compaction in N-terminal tail of human copper pump ATP7B.

    PubMed

    Mondol, Tanumoy; Åden, Jörgen; Wittung-Stafshede, Pernilla

    2016-02-12

    Protein conformational changes are fundamental to biological reactions. For copper ion transport, the multi-domain protein ATP7B in the Golgi network receives copper from the cytoplasmic copper chaperone Atox1 and, with energy from ATP hydrolysis, moves the metal to the lumen for loading of copper-dependent enzymes. Although anticipated, conformational changes involved in ATP7B's functional cycle remain elusive. Using spectroscopic methods we here demonstrate that the four most N-terminal metal-binding domains in ATP7B, upon stoichiometric copper addition, adopt a more compact arrangement which has a higher thermal stability than in the absence of copper. In contrast to previous reports, no stable complex was found in solution between the metal-binding domains and the nucleotide-binding domain of ATP7B. Metal-dependent movement of the first four metal-binding domains in ATP7B may be a trigger that initiates the overall catalytic cycle.

  6. The Use of ATP-MgCl2 in the Treatment of Injury and Shock.

    DTIC Science & Technology

    1986-03-11

    glycerophosphate dehydrogenase in the lung. 16-17 2. CIRCULATORY FAILURE -- ENERGY LEVELS AND MEMBRANE MEDIATED EFFECTS a) Alterations in high-energy...1976 (abstract). 11. Krumholz, M., Sayeed, M.M., Romano, R., Chaudry, I.H. and Baue, A.E. "Low levels ofc- glycerophosphate dehydrogenases in lung." Fed...Baue, A.E. and Kashgarian, M. "Enhanced recovery from acute renal failure by the post-ischemic infusion of adenine nucleotides - magnesium chloride

  7. Kidney Disease in Adenine Phosphoribosyltransferase Deficiency

    PubMed Central

    Runolfsdottir, Hrafnhildur Linnet; Palsson, Runolfur; Sch. Agustsdottir, Inger M.; Indridason, Olafur S.; Edvardsson, Vidar O.

    2015-01-01

    Background Adenine phosphoribosyltransferase (APRT) deficiency is a purine metabolism disorder causing kidney stones and chronic kidney disease (CKD). The course of nephrolithiasis and CKD has not been well characterized. The objective of this study was to examine long-term kidney outcomes in patients with APRT deficiency. Study Design An observational cohort study. Setting & Participants All patients enrolled in the APRT Deficiency Registry of the Rare Kidney Stone Consortium. Outcomes Kidney stones, acute kidney injury (AKI), stage of CKD and kidney failure, estimated glomerular filtration rate (eGFR) and changes in eGFR. Measurements Serum creatinine and eGFR calculated using creatinine-based equations. Results Of 53 patients, 30 (57%) were female and median age at diagnosis was 37.0 (range, 0.6–67.9) years. The median duration of follow-up was 10.3 (range, 0.0–31.5) years. At diagnosis, kidney stones had developed in 29 patients (55%) and 20 (38%) had CKD stages 3–5, including 11 patients (21%) with stage 5. At latest follow-up, 33 patients (62%) had had kidney stones; 18 (34%), AKI; and 22 (42%), CKD stage 3–5. Of the 14 (26%) patients with CKD stage 5, 12 had initiated renal replacement therapy. Kidney stones recurred in 18 of 33 patients (55%). The median eGFR slope was −0.38 (range, −21.99 to 1.42) mL/min/1.73 m2 per year in patients receiving treatment with xanthine dehydrogenase inhibitor and −5.74 (range, −75.8 to −0.10) mL/min/1.73 m2 per year in those not treated prior to the development of stage 5 CKD (p=0.001). Limitations Use of observational registry data. Conclusions Progressive CKD and AKI episodes are major features of APRT deficiency, while nephrolithiasis is the most common presentation. Advanced CKD without history of kidney stones is more prevalent than previously reported. Our data suggest that timely therapy may retard CKD progression. PMID:26724837

  8. [Nucleotide receptors in learning and neuronal plasticity].

    PubMed

    Czajkowski, Rafał

    2014-01-01

    Nucleotide signalling plays an important role in neuronal plasticity and learning. Nucleotides are released at the synaptic terminals and may act pre- and postsynaptically by activating Pland P2 receptors. The A1 receptor, activated tonically by resting concentration of adenosine regulates basal neurotransmission. The A2A receptor is activated by increased adenosine levels and participates in plastic changes. ATP may act as an independent neurotransmitter on the P2X1 receptor, or via P2X3 subtype as a neuromodulator that affects NMDA receptor signalling. The G protein coupled P2Y receptors also evoke neuromodulatory effect on the neuronal plasticity, inhibiting LTD in prefrontal cortex. P2X7 receptor is responsible for communication between astrocytes and for synchronizing their activity. ATP and adenosine released by astrocytes act as neuromodulators both at the release site and heterosynaptically. Taken together, these multiple actions of nucleotides constitute a mechanism regulating homeostatic processes that are necessary for proper brain functioning: synaptic scaling and metaplasticity.

  9. Pharmacological dissociation of UTP- and ATP-elicited contractions and relaxations in isolated rat aorta.

    PubMed

    Garcia-Velasco, G; Sanchez, M; Hidalgo, A; Garcia de Boto, M J

    1995-12-29

    Effects of UTP have been described in many tissues, but it is not clear whether these are due to purinoceptors. Specific receptors for UTP, 'pyrimidinoceptors', and 'nucleotide receptors' have also been proposed. We pharmacologically characterized the receptors involved in the ATP- and UTP-induced contraction under basal tone and the relaxation of raised tone elicited by noradrenaline in isolated rat aorta. The rank order of potency for the agonists for the contraction was alpha,beta-methylene ATP > > ATP, and the desensitization by alpha,beta-methylene ATP suggests that ATP contractions were mediated via P2X purinoceptors which were located on the vascular smooth muscle. The rank order of potency of the agonists for relaxation was 2-methyl-thio ATP > > ATP, which is suggestive of a P2Y purinoceptor. However, the relaxation seems to be unrelated to the classical P2Y subtype and a heterogeneous population of purinoceptors might therefore exist. The evidence comes from the distinct location and the different pharmacological effect of reactive blue 2 on 2-methyl-thio ATP and ATP receptors. 2-Methyl-thio ATP produced an endothelium-dependent relaxation while ATP-induced relaxation was produced via endothelium-dependent and endothelium-independent mechanisms, unrelated to adenosine receptors. It is unlikely that UTP-induced contractions and the endothelium-dependent relaxation were produced via purinoceptors since the pharmacology is not consistent with that of the classical P2 purinoceptors studied. Furthermore, UTP-sensitive receptors showed a pharmacological property that was also distinct from that of the 'nucleotide' or P2U receptor reported. The results suggest the presence of a heterogeneous population of purinoceptors and pyrimidinoceptors pharmacologically different from the receptors for ATP.

  10. [Study of some pharmacological properties of a new adenine derivative].

    PubMed

    Iasnetsov; Ozerov, A A; Motin, V G; Iasnetsov, Vik V; Karsanova, S K; Ivanov, Iu V; Chel'naia, N A

    2014-01-01

    It is established that the new compound, 9-[2-(4-isopropylphenoxy)ethyl]adenine (9-IPE-adenine) in a dose of 10 mg/kg per day produces neuroprotective effect in rats with brain ischemia model. 9-IPE-adenine decreased the neurologic deficiency 1.2 times more effectively (p < 0.05) than the reference drug mexidol in analogous dose, and had equal effect with this drug at 25 mg/kg per day on the neurologic deficiency and survival of animals. Electrophysiological studies in hippocampal slices in rats showed that 9-IPE-adenine depressed orthodromic population spikes in CA1 area by 42 ± 4%. Non-competitive antagonist of NMDA receptor complex MK-801, in contrast to D-AP5 (competitive NMDA receptor antagonist) and CNQX (competitive AMPA receptor antagonist), enhanced the depressive effect of the new drug more than two times. These ese results are indicative of the ability of 9-IPE-adenine to modulate the ion channel of NMDA receptor complex.

  11. DNA adenine hypomethylation leads to metabolic rewiring in Deinococcus radiodurans.

    PubMed

    Shaiwale, Nayana S; Basu, Bhakti; Deobagkar, Deepti D; Deobagkar, Dileep N; Apte, Shree K

    2015-08-03

    The protein encoded by DR_0643 gene from Deinococcus radiodurans was shown to be an active N-6 adenine-specific DNA methyltransferase (Dam). Deletion of corresponding protein reduced adenine methylation in the genome by 60% and resulted in slow-growth phenotype. Proteomic changes induced by DNA adenine hypomethylation were mapped by two-dimensional protein electrophoresis coupled with mass spectrometry. As compared to wild type D. radiodurans cells, at least 54 proteins were differentially expressed in Δdam mutant. Among these, 39 metabolic enzymes were differentially expressed in Δdam mutant. The most prominent change was DNA adenine hypomethylation induced de-repression of pyruvate dehydrogenase complex, E1 component (aceE) gene resulting in 10 fold increase in the abundance of corresponding protein. The observed differential expression profile of metabolic enzymes included increased abundance of enzymes involved in fatty acid and amino acid degradation to replenish acetyl Co-A and TCA cycle intermediates and diversion of phosphoenolpyruvate and pyruvate into amino acid biosynthesis, a metabolic rewiring attempt by Δdam mutant to restore energy generation via glycolysis-TCA cycle axis. This is the first report of DNA adenine hypomethylation mediated rewiring of metabolic pathways in prokaryotes.

  12. Theoretical study on absorption and emission spectra of adenine analogues.

    PubMed

    Liu, Hongxia; Song, Qixia; Yang, Yan; Li, Yan; Wang, Haijun

    2014-04-01

    Fluorescent nucleoside analogues have attracted much attention in studying the structure and dynamics of nucleic acids in recent years. In the present work, we use theoretical calculations to investigate the structural and optical properties of four adenine analogues (termed as A1, A2, A3, and A4), and also consider the effects of aqueous solution and base pairing. The results show that the fluorescent adenine analogues can pair with thymine to form stable H-bonded WC base pairs. The excited geometries of both adenine analogues and WC base pairs are similar to the ground geometries. The absorption and emission maxima of adenine analogues are greatly red shifted compared with nature adenine, the oscillator strengths of A1 and A2 are stronger than A3 and A4 in both absorption and emission spectra. The calculated low-energy peaks in the absorption spectra are in good agreement with the experimental data. In general, the aqueous solution and base pairing can slightly red-shift both the absorption and emission maxima, and can increase the oscillator strengths of absorption spectra, but significantly decrease the oscillator strengths of A3 in emission spectra.

  13. Increase of reduced nicotinamide adenine dinucleotide fluorescence lifetime precedes mitochondrial dysfunction in staurosporine-induced apoptosis of HeLa cells

    NASA Astrophysics Data System (ADS)

    Yu, Jia-Sin; Guo, Han-Wen; Wang, Chih-Hao; Wei, Yau-Huei; Wang, Hsing-Wen

    2011-03-01

    In vivo noninvasive detection of apoptosis represents a new tool that may yield a more definite diagnosis, a more accurate prognosis, and help improve therapies for human diseases. The intrinsic fluorescence of reduced nicotinamide adenine dinucleotide (NADH) may be a potential optical biomarker for the apoptosis detection because NADH is involved in the respiration for the mitochondrial membrane potential (ΔΨ) formation and adenosine-5'-triphosphate (ATP) synthesis, and the depletion of ΔΨ and ATP level is the hallmark of apoptosis. We have previously observed the NADH fluorescence lifetime change is associated with staurosporine (STS)-induced mitochondria-mediated apoptosis. However, its relationship with mitochondrial functions such as ΔΨ, ATP, and oxygen consumption rate is not clear. In this study, we investigated this relationship. Our results indicate that the NADH fluorescence lifetime increased when ΔΨ and ATP levels were equal to or higher than their values of controls and decreased before the depletion of ΔΨ and ATP, and the oxygen consumption rate did not change. These findings suggest that the increased NADH fluorescence lifetime in STS-induced cell death occurred before the depletion of ΔΨ and ATP and activation of caspase 3, and was not simply caused by cellular metabolic change. Furthermore, the NADH fluorescence lifetime change is associated with the pace of apoptosis.

  14. The structural switch of nucleotide-free kinesin

    PubMed Central

    Cao, Luyan; Cantos-Fernandes, Soraya; Gigant, Benoît

    2017-01-01

    Kinesin-1 is an ATP-dependent motor protein that moves towards microtubules (+)-ends. Whereas structures of isolated ADP-kinesin and of complexes with tubulin of apo-kinesin and of ATP-like-kinesin are available, structural data on apo-kinesin-1 in the absence of tubulin are still missing, leaving the role of nucleotide release in the structural cycle unsettled. Here, we identified mutations in the kinesin nucleotide-binding P-loop motif that interfere with ADP binding. These mutations destabilize the P-loop (T87A mutant) or magnesium binding (T92V), highlighting a dual mechanism for nucleotide release. The structures of these mutants in their apo form are either isomorphous to ADP-kinesin-1 or to tubulin-bound apo-kinesin-1. Remarkably, both structures are also obtained from the nucleotide-depleted wild-type protein. Our results lead to a model in which, when detached from microtubules, apo-kinesin possibly occupies the two conformations we characterized, whereas, upon microtubule binding, ADP-kinesin converts to the tubulin-bound apo-kinesin conformation and releases ADP. This conformation is primed to bind ATP and, therefore, to run through the natural nucleotide cycle of kinesin-1. PMID:28195215

  15. Optogenetic control of ATP release

    NASA Astrophysics Data System (ADS)

    Lewis, Matthew A.; Joshi, Bipin; Gu, Ling; Feranchak, Andrew; Mohanty, Samarendra K.

    2013-03-01

    Controlled release of ATP can be used for understanding extracellular purinergic signaling. While coarse mechanical forces and hypotonic stimulation have been utilized in the past to initiate ATP release from cells, these methods are neither spatially accurate nor temporally precise. Further, these methods cannot be utilized in a highly effective cell-specific manner. To mitigate the uncertainties regarding cellular-specificity and spatio-temporal release of ATP, we herein demonstrate use of optogenetics for ATP release. ATP release in response to optogenetic stimulation was monitored by Luciferin-Luciferase assay (North American firefly, photinus pyralis) using luminometer as well as mesoscopic bioluminescence imaging. Our result demonstrates repetitive release of ATP subsequent to optogenetic stimulation. It is thus feasible that purinergic signaling can be directly detected via imaging if the stimulus can be confined to single cell or in a spatially-defined group of cells. This study opens up new avenue to interrogate the mechanisms of purinergic signaling.

  16. Microsporidia: Why Make Nucleotides if You Can Steal Them?

    PubMed Central

    Dean, Paul; Hirt, Robert P.

    2016-01-01

    Microsporidia are strict obligate intracellular parasites that infect a wide range of eukaryotes including humans and economically important fish and insects. Surviving and flourishing inside another eukaryotic cell is a very specialised lifestyle that requires evolutionary innovation. Genome sequence analyses show that microsporidia have lost most of the genes needed for making primary metabolites, such as amino acids and nucleotides, and also that they have only a limited capacity for making adenosine triphosphate (ATP). Since microsporidia cannot grow and replicate without the enormous amounts of energy and nucleotide building blocks needed for protein, DNA, and RNA biosynthesis, they must have evolved ways of stealing these substrates from the infected host cell. Providing they can do this, genome analyses suggest that microsporidia have the enzyme repertoire needed to use and regenerate the imported nucleotides efficiently. Recent functional studies suggest that a critical innovation for adapting to intracellular life was the acquisition by lateral gene transfer of nucleotide transport (NTT) proteins that are now present in multiple copies in all microsporidian genomes. These proteins are expressed on the parasite surface and allow microsporidia to steal ATP and other purine nucleotides for energy and biosynthesis from their host. However, it remains unclear how other essential metabolites, such as pyrimidine nucleotides, are acquired. Transcriptomic and experimental studies suggest that microsporidia might manipulate host cell metabolism and cell biological processes to promote nucleotide synthesis and to maximise the potential for ATP and nucleotide import. In this review, we summarise recent genomic and functional data relating to how microsporidia exploit their hosts for energy and building blocks needed for growth and nucleic acid metabolism and we identify some remaining outstanding questions. PMID:27855212

  17. Modeling regulation of cardiac KATP and L-type Ca2+ currents by ATP, ADP, and Mg2+

    NASA Technical Reports Server (NTRS)

    Michailova, Anushka; Saucerman, Jeffrey; Belik, Mary Ellen; McCulloch, Andrew D.

    2005-01-01

    Changes in cytosolic free Mg(2+) and adenosine nucleotide phosphates affect cardiac excitability and contractility. To investigate how modulation by Mg(2+), ATP, and ADP of K(ATP) and L-type Ca(2+) channels influences excitation-contraction coupling, we incorporated equations for intracellular ATP and MgADP regulation of the K(ATP) current and MgATP regulation of the L-type Ca(2+) current in an ionic-metabolic model of the canine ventricular myocyte. The new model: 1), quantitatively reproduces a dose-response relationship for the effects of changes in ATP on K(ATP) current, 2), simulates effects of ADP in modulating ATP sensitivity of K(ATP) channel, 3), predicts activation of Ca(2+) current during rapid increase in MgATP, and 4), demonstrates that decreased ATP/ADP ratio with normal total Mg(2+) or increased free Mg(2+) with normal ATP and ADP activate K(ATP) current, shorten action potential, and alter ionic currents and intracellular Ca(2+) signals. The model predictions are in agreement with experimental data measured under normal and a variety of pathological conditions.

  18. ATP release through pannexon channels

    PubMed Central

    Dahl, Gerhard

    2015-01-01

    Extracellular adenosine triphosphate (ATP) serves as a signal for diverse physiological functions, including spread of calcium waves between astrocytes, control of vascular oxygen supply and control of ciliary beat in the airways. ATP can be released from cells by various mechanisms. This review focuses on channel-mediated ATP release and its main enabler, Pannexin1 (Panx1). Six subunits of Panx1 form a plasma membrane channel termed ‘pannexon’. Depending on the mode of stimulation, the pannexon has large conductance (500 pS) and unselective permeability to molecules less than 1.5 kD or is a small (50 pS), chloride-selective channel. Most physiological and pathological stimuli induce the large channel conformation, whereas the small conformation so far has only been observed with exclusive voltage activation of the channel. The interaction between pannexons and ATP is intimate. The pannexon is not only the conduit for ATP, permitting ATP efflux from cells down its concentration gradient, but the pannexon is also modulated by ATP. The channel can be activated by ATP through both ionotropic P2X as well as metabotropic P2Y purinergic receptors. In the absence of a control mechanism, this positive feedback loop would lead to cell death owing to the linkage of purinergic receptors with apoptotic processes. A control mechanism preventing excessive activation of the purinergic receptors is provided by ATP binding (with low affinity) to the Panx1 protein and gating the channel shut. PMID:26009770

  19. Photophysical properties of popular fluorescent adenosine nucleotide analogs used in enzyme mechanism probing.

    PubMed

    Leskovar, Adriane; Reinstein, Jochen

    2008-05-01

    Fluorescent nucleotide analogs are widely used in mechanistic studies of nucleotide binding and utilizing proteins. We describe here an overview of the photophysical parameters of the most popular nucleotide analogs that have a fluorescent N-methylanthraniloyl-group attached at various positions of the nucleotide. Steady state absorption and fluorescence spectra of free chromophores depend on the type of modification (ribose, base or phosphate moiety) and the addition of proteins suggests that the labeled nucleotides also vary in sensitivity depending upon their local protein environment. Fluorescence lifetime measurements imply two to three lifetimes for each nucleotide with complex changes in dependence on solvent but more importantly also on the protein. The measured quantum yields quantify the increase in fluorescence for (C8)-MABA-ADP, MANT-ATP and (Pgamma)-MABA-ATP as 153%, 93% and 14% when bound to DnaK, ClpB and Trap1, respectively, compared to free in buffer solution.

  20. Mammalian mismatches in nucleotide metabolism: implications for xenotransplantation.

    PubMed

    Khalpey, Zain; Yuen, Ada H Y; Lavitrano, Marialuisa; McGregor, Christopher G A; Kalsi, Kameljit K; Yacoub, Magdi H; Smolenski, Ryszard T

    2007-10-01

    Acute humoral rejection (AHR) limits the clinical application of animal organs for xenotransplantation. Mammalian disparities in nucleotide metabolism may contribute significantly to the microvascular component in AHR; these, however remain ill-defined. We evaluated the extent of species-specific differences in nucleotide metabolism. HPLC analysis was performed on venous blood samples (nucleotide metabolites) and heart biopsies (purine enzymes) from wild type mice, rats, pigs, baboons, and human donors.Ecto-5'-nucleotidase (E5'N) activities were 4-fold lower in pigs and baboon hearts compared to human and mice hearts while rat activity was highest. Similar differences between pigs and humans were also observed with kidneys and endothelial cells. More than 10-fold differences were observed with other purine enzymes. AMP deaminase (AMPD) activity was exceptionally high in mice but very low in pig and baboon hearts. Adenosine deaminase (ADA) activity was highest in baboons. Adenosine kinase (AK) activity was more consistent across different species. Pig blood had the highest levels of hypoxanthine, inosine and adenine. Human blood uric acid concentration was almost 100 times higher than in other species studied. We conclude that species-specific differences in nucleotide metabolism may affect compatibility of pig organs within a human metabolic environment. Furthermore, nucleotide metabolic mismatches may affect clinical relevance of animal organ transplant models. Supplementation of deficient precursors or application of inhibitors of nucleotide metabolism (e.g., allopurinol) or transgenic upregulation of E5'N may overcome some of these differences.

  1. ATP formation and ATP hydrolysis during fatiguing, intermittent stimulation of different types of single muscle fibres from Xenopus laevis.

    PubMed

    Nagesser, A S; Van der Laarse, W J; Elzinga, G

    1993-12-01

    This report describes changes of the rate of ATP hydrolysis in single, intact muscle fibres during the development of fatigue induced by intermittent tetanic stimulation. High (type 3) and low (type 1) oxidative muscle fibres dissected from the iliofibularis muscle of Xenopus laevis were studied at 20 degrees C. The rate of ATP hydrolysis was calculated during different time intervals from changes in the content of nucleotides, creatine compounds and lactate, as well as lactate efflux and oxygen uptake. During the first phase of intermittent stimulation, phosphocreatine is fully reduced while the rate of oxygen consumption increases to its maximum, the lactate content increases to a maximum level, and a small amount of IMP is formed; the rate of ATP hydrolysis in type 3 fibres is constant while force decreases, whereas the rate decreases approximately in proportion to force in type 1 fibres. After the first phase, the rate of ATP hydrolysis in type 3 fibres decreases slightly and the fibres reach a steady metabolic state in which the rates of ATP formation and hydrolysis are equal; in type 1 fibres a drastic change of the rate of ATP hydrolysis occurs and a steady metabolic state is not reached. On the basis of the time courses of the metabolic changes, it is concluded that the rate of ATP hydrolysis in type 3 fibres is reduced by acidification and/or a reduced calcium efflux from the sarcoplasmic reticulum, whereas in type 1 fibres inorganic phosphate and/or acidification inhibit the rate initially and ADP is a likely candidate to explain the drastic fall of the rate of ATP hydrolysis during late phases of fatiguing stimulation.

  2. Dorsal horn neurons release extracellular ATP in a VNUT-dependent manner that underlies neuropathic pain

    PubMed Central

    Masuda, Takahiro; Ozono, Yui; Mikuriya, Satsuki; Kohro, Yuta; Tozaki-Saitoh, Hidetoshi; Iwatsuki, Ken; Uneyama, Hisayuki; Ichikawa, Reiko; Salter, Michael W.; Tsuda, Makoto; Inoue, Kazuhide

    2016-01-01

    Activation of purinergic receptors in the spinal cord by extracellular ATP is essential for neuropathic hypersensitivity after peripheral nerve injury (PNI). However, the cell type responsible for releasing ATP within the spinal cord after PNI is unknown. Here we show that PNI increases expression of vesicular nucleotide transporter (VNUT) in the spinal cord. Extracellular ATP content ([ATP]e) within the spinal cord was increased after PNI, and this increase was suppressed by exocytotic inhibitors. Mice lacking VNUT did not show PNI-induced increase in [ATP]e and had attenuated hypersensitivity. These phenotypes were recapitulated in mice with specific deletion of VNUT in spinal dorsal horn (SDH) neurons, but not in mice lacking VNUT in primary sensory neurons, microglia or astrocytes. Conversely, ectopic VNUT expression in SDH neurons of VNUT-deficient mice restored PNI-induced increase in [ATP]e and pain. Thus, VNUT is necessary for exocytotic ATP release from SDH neurons which contributes to neuropathic pain. PMID:27515581

  3. Adenine and 2-aminopurine: paradigms of modern theoretical photochemistry.

    PubMed

    Serrano-Andrés, Luis; Merchán, Manuela; Borin, Antonio C

    2006-06-06

    Distinct photophysical behavior of nucleobase adenine and its constitutional isomer, 2-aminopurine, has been studied by using quantum chemical methods, in particular an accurate ab initio multiconfigurational second-order perturbation theory. After light irradiation, the efficient, ultrafast energy dissipation observed for nonfluorescent 9H-adenine is explained here by the nonradiative internal conversion process taking place along a barrierless reaction path from the initially populated 1(pipi* La) excited state toward a low-lying conical intersection (CI) connected with the ground state. In contrast, the strong fluorescence recorded for 2-aminopurine at 4.0 eV with large decay lifetime is interpreted by the presence of a minimum in the 1(pipi* La) hypersurface lying below the lowest CI and the subsequent potential energy barrier required to reach the funnel to the ground state. Secondary deactivation channels were found in the two systems related to additional CIs involving the 1(pipi* Lb) and 1(npi*) states. Although in 9H-adenine a population switch between both states is proposed, in 7H-adenine this may be perturbed by a relatively larger barrier to access the 1(npi*) state, and, therefore, the 1(pipi* Lb) state becomes responsible for the weak fluorescence measured in aqueous adenine at approximately 4.5 eV. In contrast to previous models that explained fluorescence quenching in adenine, unlike in 2-aminopurine, on the basis of the vibronic coupling of the nearby 1(pipi*) and 1(npi*) states, the present results indicate that the 1(npi*) state does not contribute to the leading photophysical event and establish the prevalence of a model based on the CI concept in modern photochemistry.

  4. Negative ion formation in potassium-adenine collisions

    NASA Astrophysics Data System (ADS)

    Chunha, T.; Mendes, M.; Ferreira da Silva, F.; García, G.; Limáo Vieira, P.

    2016-09-01

    We have devoted experimental studies to time-of-flight negative ion formation in electron transfer experiments from neutral potassium atoms with neutral adenine molecules1. Total partial cross sections have been obtained as a function of the collision energy, together with branching ratios for the most relevant fragment anions. Additional set of measurements in adenine derivatives have been performed in order to probe the role of negative ions as well as to probe whether site- and bond-selective excision is also a prevalent mechanism within electron transfer in atom-molecule collision experiments.

  5. Heterogeneous nucleotide occupancy stimulates functionality of phage shock protein F, an AAA+ transcriptional activator.

    PubMed

    Joly, Nicolas; Schumacher, Jörg; Buck, Martin

    2006-11-17

    The catalytic AAA+ domain (PspF1-275) of an enhancer-binding protein is necessary and sufficient to contact sigma54-RNA polymerase holoenzyme (Esigma54), remodel it, and in so doing catalyze open promoter complex formation. Whether ATP binding and hydrolysis is coordinated between subunits of PspF and the precise nature of the nucleotide(s) bound to the oligomeric forms responsible for substrate remodeling are unknown. We demonstrate that ADP stimulates the intrinsic ATPase activity of PspF1-275 and propose that this heterogeneous nucleotide occupancy in a PspF1-275 hexamer is functionally important for specific activity. Binding of ADP and ATP triggers the formation of functional PspF1-275 hexamers as shown by a gain of specific activity. Furthermore, ATP concentrations congruent with stoichiometric ATP binding to PspF1-275 inhibit ATP hydrolysis and Esigma54-promoter open complex formation. Demonstration of a heterogeneous nucleotide-bound state of a functional PspF1-275.Esigma54 complex provides clear biochemical evidence for heterogeneous nucleotide occupancy in this AAA+ protein. Based on our data, we propose a stochastic nucleotide binding and a coordinated hydrolysis mechanism in PspF1-275 hexamers.

  6. Differential effects of Mg(ii) and N(alpha)-4-tosyl-l-arginine methyl ester hydrochloride on the recognition and catalysis in ATP hydrolysis.

    PubMed

    Ma, Yanqing; Lu, Gongxuan

    2008-02-28

    The supramolecular interactions of Mg(ii) and N(alpha)-4-tosyl-l-arginine methyl ester hydrochloride (TAME) with ATP have been investigated using (1)H and (31)P NMR spectra. Furthermore, the hydrolysis of ATP catalyzed by Mg(ii) and TAME has been studied at 60 degrees C and pH 7 using (31)P NMR spectra. In the Mg(ii)-ATP-TAME ternary system, the binding interaction of Mg(2+) with ATP involves not only N1 and N7 in the adenine ring but also beta- and gamma-phosphate of ATP. The binding forces are mainly electrostatic interaction and cation (Mg(2+))-pi interaction. The guanidinium group and the aromatic ring of TAME interacts with ATP by beta and gamma phosphate and the adenine ring of ATP. The binding forces are mainly electrostatic interactions and pi-pi stacking. A significant difference between the binary and the ternary system indicates that TAME is essential to the stablization of the intermediate. Kinetic studies show that the hydrolysis rate constant of ATP is 2.16 x 10(-2) h(-1) at pH 7 in the Mg(ii)-TAME-ATP ternary system. The Mg(ii) ion and TAME can accelerate the ATP hydrolysis process. A possible mechanism has been proposed that the hydrolysis occurs through an addition-elimination, in which the phosphoramidate intermediate was observed at 3.21 ppm in the (31)P NMR of the ternary system. These results provide further information concerning the effect of the key amino acid residue and metal ions as cofactors of ATPase on ATP synthesis/hydrolysis at the molecular level.

  7. Caffeine inhibits glucose transport by binding at the GLUT1 nucleotide-binding site.

    PubMed

    Sage, Jay M; Cura, Anthony J; Lloyd, Kenneth P; Carruthers, Anthony

    2015-05-15

    Glucose transporter 1 (GLUT1) is the primary glucose transport protein of the cardiovascular system and astroglia. A recent study proposes that caffeine uncompetitive inhibition of GLUT1 results from interactions at an exofacial GLUT1 site. Intracellular ATP is also an uncompetitive GLUT1 inhibitor and shares structural similarities with caffeine, suggesting that caffeine acts at the previously characterized endofacial GLUT1 nucleotide-binding site. We tested this by confirming that caffeine uncompetitively inhibits GLUT1-mediated 3-O-methylglucose uptake in human erythrocytes [Vmax and Km for transport are reduced fourfold; Ki(app) = 3.5 mM caffeine]. ATP and AMP antagonize caffeine inhibition of 3-O-methylglucose uptake in erythrocyte ghosts by increasing Ki(app) for caffeine inhibition of transport from 0.9 ± 0.3 mM in the absence of intracellular nucleotides to 2.6 ± 0.6 and 2.4 ± 0.5 mM in the presence of 5 mM intracellular ATP or AMP, respectively. Extracellular ATP has no effect on sugar uptake or its inhibition by caffeine. Caffeine and ATP displace the fluorescent ATP derivative, trinitrophenyl-ATP, from the GLUT1 nucleotide-binding site, but d-glucose and the transport inhibitor cytochalasin B do not. Caffeine, but not ATP, inhibits cytochalasin B binding to GLUT1. Like ATP, caffeine renders the GLUT1 carboxy-terminus less accessible to peptide-directed antibodies, but cytochalasin B and d-glucose do not. These results suggest that the caffeine-binding site bridges two nonoverlapping GLUT1 endofacial sites-the regulatory, nucleotide-binding site and the cytochalasin B-binding site. Caffeine binding to GLUT1 mimics the action of ATP but not cytochalasin B on sugar transport. Molecular docking studies support this hypothesis.

  8. DNA aptamer selection in methanolic media: Adenine-aptamer as proof-of-concept.

    PubMed

    Chaou, Thinhinane; Vialet, Brune; Azéma, Laurent

    2016-03-15

    The major objective of this study is to investigate the usefulness of aptamers as in situ detection tool in organic solvents, which are often used for environmental extraction. But two problems related to the use of methanol-containing buffers have to be addressed. Firstly, the folding of nucleic acids can be impaired, because of weaker hydrogen bonding interactions. Secondly, the affinity of aptamers selected in aqueous buffers can be altered by the presence of methanol. Thus, in order to improve hydrophobicity of the DNA pool, nucleotide with hydrophobic modification 5-(octa1,7-diynyl)-2'-deoxyuridine (ODT) has been chosen instead of thymidine. As a proof of concept, an adenine aptamer operating in presence 25% of methanol has been selected. We have shown that the modified nucleotide is essential for target binding in organic media, in addition to essential structural pattern as proposed through analysing truncated sequences analysis. The strategy described in this paper offers preliminary insight on the adaptability of the implementation of aptamers as key instrument for in situ detection. It could be broaden to identify other aptamers directed against other chemical species after alcoholic extraction or for monitoring by-product traces in drugs production.

  9. Structure of ATP-Bound Human ATP:Cobalamin Adenosyltransferase

    SciTech Connect

    Schubert,H.; Hill, C.

    2006-01-01

    Mutations in the gene encoding human ATP:cobalamin adenosyltransferase (hATR) can result in the metabolic disorder known as methylmalonic aciduria (MMA). This enzyme catalyzes the final step in the conversion of cyanocobalamin (vitamin B{sub 12}) to the essential human cofactor adenosylcobalamin. Here we present the 2.5 {angstrom} crystal structure of ATP bound to hATR refined to an R{sub free} value of 25.2%. The enzyme forms a tightly associated trimer, where the monomer comprises a five-helix bundle and the active sites lie on the subunit interfaces. Only two of the three active sites within the trimer contain the bound ATP substrate, thereby providing examples of apo- and substrate-bound-active sites within the same crystal structure. Comparison of the empty and occupied sites indicates that twenty residues at the enzyme's N-terminus become ordered upon binding of ATP to form a novel ATP-binding site and an extended cleft that likely binds cobalamin. The structure explains the role of 20 invariant residues; six are involved in ATP binding, including Arg190, which hydrogen bonds to ATP atoms on both sides of the scissile bond. Ten of the hydrogen bonds are required for structural stability, and four are in positions to interact with cobalamin. The structure also reveals how the point mutations that cause MMA are deficient in these functions.

  10. Aptamer fluorescence anisotropy sensors for adenosine triphosphate by comprehensive screening tetramethylrhodamine labeled nucleotides.

    PubMed

    Zhao, Qiang; Lv, Qin; Wang, Hailin

    2015-08-15

    We previously reported a fluorescence anisotropy (FA) approach for small molecules using tetramethylrhodamine (TMR) labeled aptamer. It relies on target-binding induced change of intramolecular interaction between TMR and guanine (G) base. TMR-labeling sites are crucial for this approach. Only terminal ends and thymine (T) bases could be tested for TMR labeling in our previous work, possibly causing limitation in analysis of different targets with this FA strategy. Here, taking the analysis of adenosine triphosphate (ATP) as an example, we demonstrated a success of conjugating TMR on other bases of aptamer adenine (A) or cytosine (C) bases and an achievement of full mapping various labeling sites of aptamers. We successfully constructed aptamer fluorescence anisotropy (FA) sensors for adenosine triphosphate (ATP). We conjugated single TMR on adenine (A), cytosine (C), or thymine (T) bases or terminals of a 25-mer aptamer against ATP and tested FA responses of 14 TMR-labeled aptamer to ATP. The aptamers having TMR labeled on the 16th base C or 23rd base A were screened out and exhibited significant FA-decreasing or FA-increasing responses upon ATP, respectively. These two favorable TMR-labeled aptamers enabled direct FA sensing ATP with a detection limit of 1 µM and the analysis of ATP in diluted serum. The comprehensive screening various TMR labeling sites of aptamers facilitates the successful construction of FA sensors using TMR-labeled aptamers. It will expand application of TMR-G interaction based aptamer FA strategy to a variety of targets.

  11. Detection of electronically equivalent tautomers of adenine base: DFT study

    SciTech Connect

    Siddiqui, Shamoon Ahmad; Bouarissa, Nadir; Rasheed, Tabish; Al-Assiri, M.S.; Al-Hajry, A.

    2014-03-01

    Graphical abstract: - Highlights: • DFT calculations have been performed on adenine and its rare tautomer Cu{sup 2+} complexes. • Interaction of A-Cu{sup 2+} and rA-Cu{sup 2+} complexes with AlN modified fullerene (C{sub 60}) have been studied briefly. • It is found that AlN modified C{sub 60} could be used as a nanoscale sensor to detect these two A-Cu{sup 2+} and rA-Cu{sup 2+} complexes. - Abstract: In the present study, quantum chemical calculations were carried out to investigate the electronic structures and stabilities of adenine and its rare tautomer along with their Cu{sup 2+} complexes. Density Functional Theory (B3LYP method) was used in all calculations. The two Cu{sup 2+} complexes of adenine have almost similar energies and electronic structures; hence, their chemical differentiation is very difficult. For this purpose, interactions of these complexes with AlN modified fullerene (C{sub 60}) have been studied. Theoretical investigations reveal that AlN-doped C{sub 60} may serve as a potentially viable nanoscale sensor for detection of the two Cu{sup 2+} complexes of adenine.

  12. Catalytic Mechanism and Three-Dimensional Structure of Adenine Deaminase

    SciTech Connect

    S Kamat; A Bagaria; D Kumaran; G Holmes-Hampton; H Fan; A Sali; J Sauder; S Burley; P Lindahl; et. al.

    2011-12-31

    Adenine deaminase (ADE) catalyzes the conversion of adenine to hypoxanthine and ammonia. The enzyme isolated from Escherichia coli using standard expression conditions was low for the deamination of adenine (k{sub cat} = 2.0 s{sup -1}; k{sub cat}/K{sub m} = 2.5 x 10{sup 3} M{sup -1} s{sup -1}). However, when iron was sequestered with a metal chelator and the growth medium was supplemented with Mn{sup 2+} prior to induction, the purified enzyme was substantially more active for the deamination of adenine with k{sub cat} and k{sub cat}/K{sub m} values of 200 s{sup -1} and 5 x 10{sup 5} M{sup -1} s{sup -1}, respectively. The apoenzyme was prepared and reconstituted with Fe{sup 2+}, Zn{sup 2+}, or Mn{sup 2+}. In each case, two enzyme equivalents of metal were necessary for reconstitution of the deaminase activity. This work provides the first example of any member of the deaminase subfamily of the amidohydrolase superfamily to utilize a binuclear metal center for the catalysis of a deamination reaction. [Fe{sup II}/Fe{sup II}]-ADE was oxidized to [Fe{sup III}/Fe{sup III}]-ADE with ferricyanide with inactivation of the deaminase activity. Reducing [Fe{sup III}/Fe{sup III}]-ADE with dithionite restored the deaminase activity, and thus, the diferrous form of the enzyme is essential for catalytic activity. No evidence of spin coupling between metal ions was evident by electron paramagnetic resonance or Moessbauer spectroscopy. The three-dimensional structure of adenine deaminase from Agrobacterium tumefaciens (Atu4426) was determined by X-ray crystallography at 2.2 {angstrom} resolution, and adenine was modeled into the active site on the basis of homology to other members of the amidohydrolase superfamily. On the basis of the model of the adenine-ADE complex and subsequent mutagenesis experiments, the roles for each of the highly conserved residues were proposed. Solvent isotope effects, pH-rate profiles, and solvent viscosity were utilized to propose a chemical reaction

  13. Catalytic Mechanism and Three-Dimensional Structure of Adenine Deaminase

    SciTech Connect

    Kamat, S.S.; Swaminathan, S.; Bagaria, A.; Kumaran, D.; Holmes-Hampton, G. P.; Fan, H.; Sali, A.; Sauder, J. M.; Burley, S. K.; Lindahl, P. A.; Raushel, F. M.

    2011-03-22

    Adenine deaminase (ADE) catalyzes the conversion of adenine to hypoxanthine and ammonia. The enzyme isolated from Escherichia coli using standard expression conditions was low for the deamination of adenine (k{sub cat} = 2.0 s{sup -1}; k{sub cat}/K{sub m} = 2.5 x 10{sup 3} M{sup -1} s{sup -1}). However, when iron was sequestered with a metal chelator and the growth medium was supplemented with Mn{sup 2+} prior to induction, the purified enzyme was substantially more active for the deamination of adenine with kcat and kcat/Km values of 200 s{sup -1} and 5 x 10{sup 5} M{sup -1} s{sup -1}, respectively. The apoenzyme was prepared and reconstituted with Fe{sup 2+}, Zn{sup 2+}, or Mn{sup 2+}. In each case, two enzyme equivalents of metal were necessary for reconstitution of the deaminase activity. This work provides the first example of any member of the deaminase subfamily of the amidohydrolase superfamily to utilize a binuclear metal center for the catalysis of a deamination reaction. [Fe{sup II}/Fe{sup II}]-ADE was oxidized to [Fe{sup III}/Fe{sup III}]-ADE with ferricyanide with inactivation of the deaminase activity. Reducing [Fe{sup III}/Fe{sup III}]-ADE with dithionite restored the deaminase activity, and thus, the diferrous form of the enzyme is essential for catalytic activity. No evidence of spin coupling between metal ions was evident by electron paramagnetic resonance or Moessbauer spectroscopy. The three-dimensional structure of adenine deaminase from Agrobacterium tumefaciens (Atu4426) was determined by X-ray crystallography at 2.2 {angstrom} resolution, and adenine was modeled into the active site on the basis of homology to other members of the amidohydrolase superfamily. On the basis of the model of the adenine-ADE complex and subsequent mutagenesis experiments, the roles for each of the highly conserved residues were proposed. Solvent isotope effects, pH-rate profiles, and solvent viscosity were utilized to propose a chemical reaction mechanism and the

  14. ATP induces mild hypothermia in rats but has a strikingly detrimental impact on focal cerebral ischemia.

    PubMed

    Zhang, Meijuan; Li, Wenjin; Niu, Guangming; Leak, Rehana K; Chen, Jun; Zhang, Feng

    2013-01-01

    Ischemic stroke is a devastating condition lacking effective therapies. A promising approach to attenuate ischemic injury is mild hypothermia. Recent studies show that adenosine nucleotides can induce hypothermia in mice. The purpose of the present study was to test the hypothesis that adenosine 5'-triphosphate (ATP) induces mild hypothermia in rats and reduces ischemic brain injury. We found that intraperitoneal injections of ATP decreased core body temperature in a dose-dependent manner; the dose appropriate for mild hypothermia was 2 g/kg. When ATP-induced hypothermia was applied to stroke induced by middle cerebral artery occlusion, however, a neuroprotective effect was not observed. Instead, the infarct volume grew even larger in ATP-treated rats. This was accompanied by an increased rate of seizure events, hemorrhagic transformation, and higher mortality. Continuous monitoring of physiologic parameters revealed that ATP reduced heartbeat rate and blood pressure. ATP also increased blood glucose, accompanied by severe acidosis and hypocalcemia. Western blotting showed that ATP decreased levels of both phospho-Akt and total-Akt in the cortex. Our results reveal that, despite inducing hypothermia, ATP is not appropriate for protecting the brain against stroke. Instead, we show for the first time that ATP treatment is associated with exaggerated ischemic outcomes and dangerous systemic side effects.

  15. Mechanisms of ATP release and signalling in the blood vessel wall

    PubMed Central

    Lohman, Alexander W.; Billaud, Marie; Isakson, Brant E.

    2012-01-01

    The nucleotide adenosine 5′-triphosphate (ATP) has classically been considered the cell's primary energy currency. Importantly, a novel role for ATP as an extracellular autocrine and/or paracrine signalling molecule has evolved over the past century and extensive work has been conducted to characterize the ATP-sensitive purinergic receptors expressed on almost all cell types in the body. Extracellular ATP elicits potent effects on vascular cells to regulate blood vessel tone but can also be involved in vascular pathologies such as atherosclerosis. While the effects of purinergic signalling in the vasculature have been well documented, the mechanism(s) mediating the regulated release of ATP from cells in the blood vessel wall and circulation are now a key target of investigation. The aim of this review is to examine the current proposed mechanisms of ATP release from vascular cells, with a special emphasis on the transporters and channels involved in ATP release from vascular smooth muscle cells, endothelial cells, circulating red blood cells, and perivascular sympathetic nerves, including vesicular exocytosis, plasma membrane F1/F0-ATP synthase, ATP-binding cassette (ABC) transporters, connexin hemichannels, and pannexin channels. PMID:22678409

  16. Nucleotide correlations and electronic transport of DNA sequences

    NASA Astrophysics Data System (ADS)

    Albuquerque, E. L.; Vasconcelos, M. S.; Lyra, M. L.; de Moura, F. A. B. F.

    2005-02-01

    We use a tight-binding formulation to investigate the transmissivity and wave-packet dynamics of sequences of single-strand DNA molecules made up from the nucleotides guanine G , adenine A , cytosine C , and thymine T . In order to reveal the relevance of the underlying correlations in the nucleotides distribution, we compare the results for the genomic DNA sequence with those of two artificial sequences: (i) the Rudin-Shapiro one, which has long-range correlations; (ii) a random sequence, which is a kind of prototype of a short-range correlated system, presented here with the same first-neighbor pair correlations of the human DNA sequence. We found that the long-range character of the correlations is important to the persistence of resonances of finite segments. On the other hand, the wave-packet dynamics seems to be mostly influenced by the short-range correlations.

  17. Plant Cyclic Nucleotide Signalling

    PubMed Central

    Martinez-Atienza, Juliana; Van Ingelgem, Carl; Roef, Luc

    2007-01-01

    The presence of the cyclic nucleotides 3′,5′-cyclic adenyl monophosphate (cAMP) and 3′,5′-cyclic guanyl monophosphate (cGMP) in plants is now generally accepted. In addition, cAMP and cGMP have been implicated in the regulation of important plant processes such as stomatal functioning, monovalent and divalent cation fluxes, chloroplast development, gibberellic acid signalling, pathogen response and gene transcription. However, very little is known regarding the components of cyclic nucleotide signalling in plants. In this addendum, the evidence for specific mechanisms of plant cyclic nucleotide signalling is evaluated and discussed. PMID:19704553

  18. ATP-Dependent Interactions between Escherichia coli Min Proteins and the Phospholipid Membrane In Vitro

    PubMed Central

    Lackner, Laura L.; Raskin, David M.; de Boer, Piet A. J.

    2003-01-01

    Proper placement of the division apparatus in Escherichia coli requires pole-to-pole oscillation of the MinC division inhibitor. MinC dynamics involves a membrane association-dissociation cycle that is driven by the activities of the MinD ATPase and the MinE topological specificity factor, which themselves undergo coupled oscillatory localization cycles. To understand the biochemical mechanisms underlying Min protein dynamics, we studied the interactions of purified Min proteins with phospholipid vesicles and the role of ATP in these interactions. We show that (i) the ATP-bound form of MinD (MinD.ATP) readily associates with phospholipid vesicles in the presence of Mg2+, whereas the ADP-bound form (MinD.ADP) does not; (ii) MinD.ATP binds membrane in a self-enhancing fashion; (iii) both MinC and MinE can be recruited to MinD.ATP-decorated vesicles; (iv) MinE stimulates dissociation of MinD.ATP from the membrane in a process requiring hydrolysis of the nucleotide; and (v) MinE stimulates dissociation of MinC from MinD.ATP-membrane complexes, even when ATP hydrolysis is blocked. The results support and extend recent work by Z. Hu et al. (Z. Hu, E. P. Gogol, and J. Lutkenhaus, Proc. Natl. Acad. Sci. USA 99:6761-6766, 2002) and support models of protein oscillation wherein MinE induces Min protein dynamics by stimulating the conversion of the membrane-bound form of MinD (MinD.ATP) to the cytoplasmic form (MinD.ADP). The results also indicate that MinE-stimulated dissociation of MinC from the MinC-MinD.ATP-membrane complex can, and may, occur prior to hydrolysis of the nucleotide. PMID:12533449

  19. B3LYP, BLYP and PBE DFT band structures of the nucleotide base stacks

    NASA Astrophysics Data System (ADS)

    Szekeres, Zs; Bogár, F.; Ladik, J.

    DFT crystal orbital (band structure) calculations have been performed for the nucleotide base stacks of cytosine, thymine, adenine, and guanine arranged in DNA B geometry. The band structures obtained with PBE, BLYP, and B3LYP functionals are presented and compared to other related experimental and theoretical results. The influence of the quality of the basis set on the fundamental gap values was also investigated using Clementi's double ζ, 6-31G and 6-31G* basis sets.

  20. Nucleotide-binding properties of kinase-deficient epidermal-growth-factor-receptor mutants.

    PubMed

    Cheng, K; Koland, J G

    1998-02-15

    The nucleotide-binding properties of wild-type epidermal- growth-factor (EGF)-receptor protein tyrosine kinase (PTK) and EGF-receptor mutants with site-specific amino acid substitutions known to attenuate protein kinase activity were analysed by a fluorescence competition assay employing the nucleotide analogue 2'(3')-O-(2,4,6-trinitrophenyl)adenosine 5'-triphosphate. Binding affinities for ATP and Mn.ATP complex were determined for the PTK domains of the wild-type and two mutant proteins. Surprisingly, mutation of the highly conserved Lys-721 residue in the nucleotide-binding site of the EGF- receptor PTK domain did not abolish ATP and Mn.ATP binding, although the binding affinity for the Mn.ATP complex was significantly reduced. A second kinase-inactivating mutation that targeted the highly conserved Asp-813 residue had little effect on the nucleotide-binding properties of the EGF-receptor PTK domain. These results indicated that the principle effect of these two kinase-inactivating amino acid substitutions is not to block nucleotide binding, but is instead an inhibition of the phospho-transfer reaction.

  1. Nucleotide-binding properties of kinase-deficient epidermal-growth-factor-receptor mutants.

    PubMed Central

    Cheng, K; Koland, J G

    1998-01-01

    The nucleotide-binding properties of wild-type epidermal- growth-factor (EGF)-receptor protein tyrosine kinase (PTK) and EGF-receptor mutants with site-specific amino acid substitutions known to attenuate protein kinase activity were analysed by a fluorescence competition assay employing the nucleotide analogue 2'(3')-O-(2,4,6-trinitrophenyl)adenosine 5'-triphosphate.Binding affinities for ATP and Mn.ATP complex were determined for the PTK domains of the wild-type and two mutant proteins. Surprisingly, mutation of the highly conserved Lys-721 residue in the nucleotide-binding site of the EGF- receptor PTK domain did not abolish ATP and Mn.ATP binding, although the binding affinity for the Mn.ATP complex was significantly reduced. A second kinase-inactivating mutation that targeted the highly conserved Asp-813 residue had little effect on the nucleotide-binding properties of the EGF-receptor PTK domain. These results indicated that the principle effect of these two kinase-inactivating amino acid substitutions is not to block nucleotide binding, but is instead an inhibition of the phospho-transfer reaction. PMID:9461530

  2. OmpF, a nucleotide-sensing nanoprobe, computational evaluation of single channel activities

    NASA Astrophysics Data System (ADS)

    Abdolvahab, R. H.; Mobasheri, H.; Nikouee, A.; Ejtehadi, M. R.

    2016-09-01

    The results of highthroughput practical single channel experiments should be formulated and validated by signal analysis approaches to increase the recognition precision of translocating molecules. For this purpose, the activities of the single nano-pore forming protein, OmpF, in the presence of nucleotides were recorded in real time by the voltage clamp technique and used as a means for nucleotide recognition. The results were analyzed based on the permutation entropy of current Time Series (TS), fractality, autocorrelation, structure function, spectral density, and peak fraction to recognize each nucleotide, based on its signature effect on the conductance, gating frequency and voltage sensitivity of channel at different concentrations and membrane potentials. The amplitude and frequency of ion current fluctuation increased in the presence of Adenine more than Cytosine and Thymine in milli-molar (0.5 mM) concentrations. The variance of the current TS at various applied voltages showed a non-monotonic trend whose initial increasing slope in the presence of Thymine changed to a decreasing one in the second phase and was different from that of Adenine and Cytosine; e.g., by increasing the voltage from 40 to 140 mV in the 0.5 mM concentration of Adenine or Cytosine, the variance decreased by one third while for the case of Thymine it was doubled. Moreover, according to the structure function of TS, the fractality of current TS differed as a function of varying membrane potentials (pd) and nucleotide concentrations. Accordingly, the calculated permutation entropy of the TS, validated the biophysical approach defined for the recognition of different nucleotides at various concentrations, pd's and polarities. Thus, the promising outcomes of the combined experimental and theoretical methodologies presented here can be implemented as a complementary means in pore-based nucleotide recognition approaches.

  3. Study on the oxidation form of adenine in phosphate buffer solution.

    PubMed

    Song, Yuan-Zhi; Zhou, Jian-Feng; Zhu, Feng-Xia; Ye, Yong; Xie, Ji-Min

    2010-07-01

    The oxidation of adenine in phosphate buffer solution is investigated using square-wave voltammetry and in situ UV spectroelectrochemistry. The geometry of adenine and the derivatives optimized at DFTB3LYP-6-31G (d, p)-PCM level is in agreement with the crystal structure, and the imitated UV spectra of adenine and the product at electrode are consistent with the in situ UV spectra. The relationship between the electrochemical property and the molecular structure is also discussed. The experimental and theoretical results show that the adenine oxidation origins from the neutral adenine.

  4. Evolving nucleotide binding surfaces

    NASA Technical Reports Server (NTRS)

    Kieber-Emmons, T.; Rein, R.

    1981-01-01

    An analysis is presented of the stability and nature of binding of a nucleotide to several known dehydrogenases. The employed approach includes calculation of hydrophobic stabilization of the binding motif and its intermolecular interaction with the ligand. The evolutionary changes of the binding motif are studied by calculating the Euclidean deviation of the respective dehydrogenases. Attention is given to the possible structural elements involved in the origin of nucleotide recognition by non-coded primordial polypeptides.

  5. Proteome-wide Discovery and Characterizations of Nucleotide-binding Proteins with Affinity-labeled Chemical Probes

    PubMed Central

    Xiao, Yongsheng; Guo, Lei; Jiang, Xinning; Wang, Yinsheng

    2013-01-01

    Nucleotide-binding proteins play pivotal roles in many cellular processes including cell signaling. However, targeted study of sub-proteome of nucleotide-binding proteins, especially protein kinases and GTP-binding proteins, remained challenging. Here, we reported a general strategy in using affinity-labeled chemical probes to enrich, identify, and quantify ATP- and GTP-binding proteins in the entire human proteome. Our results revealed that the ATP/GTP affinity probes facilitated the identification of 100 GTP-binding proteins and 206 kinases with the use of low mg quantities of lysate of HL-60 cells. In combination with the use of SILAC-based quantitative proteomics method, we assessed the ATP/GTP binding selectivities of nucleotide-binding proteins at the global proteome scale. Our results confirmed known and, more importantly, unveiled new ATP/GTP-binding preferences of hundreds of nucleotide-binding proteins. Additionally, our strategy led to the identification of three and one unique nucleotide-binding motifs for kinases and GTP-binding proteins, respectively, and the characterizations of the nucleotide binding selectivities of individual motifs. Our strategy for capturing and characterizing ATP/GTP-binding proteins should be generally applicable for those proteins that can interact with other nucleotides. PMID:23413923

  6. Evaluation of adenine as scaffold for the development of novel P2X3 receptor antagonists.

    PubMed

    Lambertucci, Catia; Sundukova, Mayya; Kachare, Dhuldeo D; Panmand, Deepak S; Dal Ben, Diego; Buccioni, Michela; Marucci, Gabriella; Marchenkova, Anna; Thomas, Ajiroghene; Nistri, Andrea; Cristalli, Gloria; Volpini, Rosaria

    2013-07-01

    Ligands that selectively block P2X3 receptors localized on nociceptive sensory fibres may be useful for the treatment of chronic pain conditions including neuropathic pain, migraine, and inflammatory pain. With the aim at exploring the suitability of adenine moiety as a scaffold for the development of antagonists of this receptor, a series of 9-benzyl-2-aminoadenine derivatives were designed and synthesized. These new compounds were functionally evaluated at rat or human P2X3 receptors expressed in human embryonic kidney (HEK) cells and on native P2X3 receptors from mouse trigeminal ganglion sensory neurons using patch clamp recording under voltage clamp configuration. The new molecules behaved as P2X3 antagonists, as they rapidly and reversibly inhibited (IC50 in the low micromolar range) the membrane currents induced via P2X3 receptor activation by the full agonist α,β-methyleneATP. Introduction of a small lipophilic methyl substituent at the 6-amino group enhanced the activity, in comparison to the corresponding unsubstituted derivative, resulting in the 9-(5-iodo-2-isopropyl-4-methoxybenzyl)-N(6)-methyl-9H-purine-2,6-diamine (24), which appears to be a good antagonist on recombinant and native P2X3 receptors with IC50 = 1.74 ± 0.21 μM.

  7. Fluorescence studies on the nucleotide binding domains of the P-glycoprotein multidrug transporter.

    PubMed

    Liu, R; Sharom, F J

    1997-03-11

    One of the major causes of multidrug resistance in human cancers is expression of the P-glycoprotein multidrug transporter, which acts as an efflux pump for a diverse range of natural products, chemotherapeutic drugs, and hydrophobic peptides. In the present study, fluorescence techniques were used to probe the nucleotide binding domains (NBD) of P-glycoprotein. The transporter was labeled at two conserved cysteine residues, one within each NBD, using the thiol-reactive fluor 2-(4'-maleimidylanilino)-naphthalene-6-sulfonic acid (MIANS), and collisional quenching was used to assess solvent accessibility of the bound probe. Acrylamide was a poor quencher, which suggests that MIANS is buried in a relatively inaccessible region of the protein. Iodide ion was a highly effective quencher, whereas Cs+ was not, demonstrating the presence of a positive charge in the region close to the ATP binding site. The fluorescent nucleotide derivative 2'(3')-O-(2,4,6-trinitrophenyl)-ATP (TNP-ATP) was hydrolysed slowly by P-glycoprotein, with a V(max) approximately 20-fold lower than that for unmodified ATP, and a K(M) of 81 microM. TNP-ATP and TNP-ADP inhibited P-glycoprotein ATPase activity, indicating that they interact with the NBD, whereas TNP-AMP was a very poor inhibitor. When TNP-nucleotides bound to P-glycoprotein, their fluorescence intensity was enhanced in a concentration-dependent manner. Both TNP-ATP and TNP-ADP bound to P-glycoprotein with substantially higher affinity than ATP, with K(d) values of 43 and 36 microM, respectively. Addition of ATP led to only partial displacement of TNP-ATP. Resonance energy transfer was observed between cysteine-bound MIANS and TNP-ATP/ADP, which indicated that the two fluorescent groups are located close to each other within the catalytic site of P-glycoprotein.

  8. Comparing the catalytic strategy of ATP hydrolysis in biomolecular motors.

    PubMed

    Kiani, Farooq Ahmad; Fischer, Stefan

    2016-07-27

    ATP-driven biomolecular motors utilize the chemical energy obtained from the ATP hydrolysis to perform vital tasks in living cells. Understanding the mechanism of enzyme-catalyzed ATP hydrolysis reaction has substantially progressed lately thanks to combined quantum/classical molecular mechanics (QM/MM) simulations. Here, we present a comparative summary of the most recent QM/MM results for myosin, kinesin and F1-ATPase motors. These completely different motors achieve the acceleration of ATP hydrolysis through a very similar catalytic mechanism. ATP hydrolysis has high activation energy because it involves the breaking of two strong bonds, namely the Pγ-Oβγ bond of ATP and the H-O bond of lytic water. The key to the four-fold decrease in the activation barrier by the three enzymes is that the breaking of the Pγ-Oβγ bond precedes the deprotonation of the lytic water molecule, generating a metaphosphate hydrate complex. The resulting singly charged trigonal planar PγO3(-) metaphosphate is a better electrophilic target for attack by an OaH(-) hydroxyl group. The formation of this OaH(-) is promoted by a strong polarization of the lytic water: in all three proteins, this water is forming a hydrogen-bond with a backbone carbonyl group and interacts with the carboxylate group of glutamate (either directly or via an intercalated water molecule). This favors the shedding of one proton by the attacking water. The abstracted proton is transferred to the γ-phosphate via various proton wires, resulting in a H2PγO4(-)/ADP(3-) product state. This catalytic strategy is so effective that most other nucleotide hydrolyzing enzymes adopt a similar approach, as suggested by their very similar triphosphate binding sites.

  9. Excited State Pathways Leading to Formation of Adenine Dimers.

    PubMed

    Banyasz, Akos; Martinez-Fernandez, Lara; Ketola, Tiia-Maaria; Muñoz-Losa, Aurora; Esposito, Luciana; Markovitsi, Dimitra; Improta, Roberto

    2016-06-02

    The reaction intermediate in the path leading to UV-induced formation of adenine dimers A═A and AA* is identified for the first time quantum mechanically, using PCM/TD-DFT calculations on (dA)2 (dA: 2'deoxyadenosine). In parallel, its fingerprint is detected in the absorption spectra recorded on the millisecond time-scale for the single strand (dA)20 (dA: 2'deoxyadenosine).

  10. High resolution dissociative electron attachment to gas phase adenine

    SciTech Connect

    Huber, D.; Beikircher, M.; Denifl, S.; Zappa, F.; Matejcik, S.; Bacher, A.; Grill, V.; Maerk, T. D.; Scheier, P.

    2006-08-28

    The dissociative electron attachment to the gas phase nucleobase adenine is studied using two different experiments. A double focusing sector field mass spectrometer is utilized for measurements requiring high mass resolution, high sensitivity, and relative ion yields for all the fragment anions and a hemispherical electron monochromator instrument for high electron energy resolution. The negative ion mass spectra are discussed at two different electron energies of 2 and 6 eV. In contrast to previous gas phase studies a number of new negative ions are discovered in the mass spectra. The ion efficiency curves for the negative ions of adenine are measured for the electron energy range from about 0 to 15 eV with an electron energy resolution of about 100 meV. The total anion yield derived via the summation of all measured fragment anions is compared with the total cross section for negative ion formation measured recently without mass spectrometry. For adenine the shape of the two cross section curves agrees well, taking into account the different electron energy resolutions; however, for thymine some peculiar differences are observed.

  11. Fragmentation mechanisms of cytosine, adenine and guanine ionized bases.

    PubMed

    Sadr-Arani, Leila; Mignon, Pierre; Chermette, Henry; Abdoul-Carime, Hassan; Farizon, Bernadette; Farizon, Michel

    2015-05-07

    The different fragmentation channels of cytosine, adenine and guanine have been studied through DFT calculations. The electronic structure of bases, their cations, and the fragments obtained by breaking bonds provides a good understanding of the fragmentation process that can complete the experimental approach. The calculations allow assigning various fragments to the given peaks. The comparison between the energy required for the formation of fragments and the peak intensity in the mass spectrum is used. For cytosine and guanine the elimination of the HNCO molecule is a major route of dissociation, while for adenine multiple loss of HCN or HNC can be followed up to small fragments. For cytosine, this corresponds to the initial bond cleavage of N3-C4/N1-C2, which represents the main dissociation route. For guanine the release of HNCO is obtained through the N1-C2/C5-C6 bond cleavage (reverse order also possible) leading to the largest peak of the spectrum. The corresponding energies of 3.5 and 3.9 eV are typically in the range available in the experiments. The loss of NH3 or HCN is also possible but requires more energy. For adenine, fragmentation consists of multiple loss of the HCN molecule and the main route corresponding to HC8N9 loss is followed by the release of HC2N1.

  12. Self-association of 1,N6-ethenoadenosine 5'-triphosphate (epsilon-ATP) and promotion by metal ions.

    PubMed

    Scheller, K H; Sigel, H

    1986-05-15

    The concentration dependence of the chemical shifts of the protons H-2, H-8, H-10, H-11, and H-1' of 1,N6-ethenoadenosine 5'-triphosphate (epsilon-ATP4-) has been measured in D2O at 27 degrees C to elucidate the self-association. The results are consistent with the isodesmic model of indefinite noncooperative stacking; the association constant, K = 1.9 +/- 0.2 M-1, is only slightly larger than the value for ATP4-, K = 1.3 +/- 0.2 M-1. The self-stacking tendency of epsilon-ATP4- is promoted by a factor of about 4 by (1:1) coordination of Mg2+ to the phosphate moieties, which probably links these together and also neutralizes part of the negative charge; Zn2+ is only about half as effective as Mg2+ in promoting the self-association. This result contrasts with the self-stacking properties of Mg(ATP)2- and Zn(ATP)2-, Zn2+ being considerably more effective in a 1:1 ATP system. It is assumed that due to the enhanced affinity of the N-6/N-7 site of the epsilon-adenine moiety towards Zn2+ repulsion of the bases occurs resulting thus in a lower stacking tendency; in addition, the simple isodesmic model is no longer applicable to the Zn(epsilon-ATP)2- system: to explain the experimental data, the formation of an intermolecular metal ion bridge in the dimeric stacks is proposed. The experimental conditions required for studies of the properties of monomeric epsilon-ATP systems are described. Care should be exercised in employing epsilon-ATP as a probe for ATP.

  13. Photoaffinity labeling of high affinity nicotinic acid adenine dinucleotide phosphate (NAADP)-binding proteins in sea urchin egg.

    PubMed

    Walseth, Timothy F; Lin-Moshier, Yaping; Jain, Pooja; Ruas, Margarida; Parrington, John; Galione, Antony; Marchant, Jonathan S; Slama, James T

    2012-01-20

    Nicotinic acid adenine dinucleotide phosphate (NAADP) is a messenger that regulates calcium release from intracellular acidic stores. Recent studies have identified two-pore channels (TPCs) as endolysosomal channels that are regulated by NAADP; however, the nature of the NAADP receptor binding site is unknown. To further study NAADP binding sites, we have synthesized and characterized [(32)P-5-azido]nicotinic acid adenine dinucleotide phosphate ([(32)P-5N(3)]NAADP) as a photoaffinity probe. Photolysis of sea urchin egg homogenates preincubated with [(32)P-5N(3)]NAADP resulted in specific labeling of 45-, 40-, and 30-kDa proteins, which was prevented by inclusion of nanomolar concentrations of unlabeled NAADP or 5N(3)-NAADP, but not by micromolar concentrations of structurally related nucleotides such as NAD, nicotinic acid adenine dinucleotide, nicotinamide mononucleotide, nicotinic acid, or nicotinamide. [(32)P-5N(3)]NAADP binding was saturable and displayed high affinity (K(d) ∼10 nM) in both binding and photolabeling experiments. [(32)P-5N(3)]NAADP photolabeling was irreversible in a high K(+) buffer, a hallmark feature of NAADP binding in the egg system. The proteins photolabeled by [(32)P-5N(3)]NAADP have molecular masses smaller than the sea urchin TPCs, and antibodies to TPCs do not detect any immunoreactivity that comigrates with either the 45-kDa or the 40-kDa photolabeled proteins. Interestingly, antibodies to TPC1 and TPC3 were able to immunoprecipitate a small fraction of the 45- and 40-kDa photolabeled proteins, suggesting that these proteins associate with TPCs. These data suggest that high affinity NAADP binding sites are distinct from TPCs.

  14. Structure and Mechanism of Soybean ATP Sulfurylase and the Committed Step in Plant Sulfur Assimilation*

    PubMed Central

    Herrmann, Jonathan; Ravilious, Geoffrey E.; McKinney, Samuel E.; Westfall, Corey S.; Lee, Soon Goo; Baraniecka, Patrycja; Giovannetti, Marco; Kopriva, Stanislav; Krishnan, Hari B.; Jez, Joseph M.

    2014-01-01

    Enzymes of the sulfur assimilation pathway are potential targets for improving nutrient content and environmental stress responses in plants. The committed step in this pathway is catalyzed by ATP sulfurylase, which synthesizes adenosine 5′-phosphosulfate (APS) from sulfate and ATP. To better understand the molecular basis of this energetically unfavorable reaction, the x-ray crystal structure of ATP sulfurylase isoform 1 from soybean (Glycine max ATP sulfurylase) in complex with APS was determined. This structure revealed several highly conserved substrate-binding motifs in the active site and a distinct dimerization interface compared with other ATP sulfurylases but was similar to mammalian 3′-phosphoadenosine 5′-phosphosulfate synthetase. Steady-state kinetic analysis of 20 G. max ATP sulfurylase point mutants suggests a reaction mechanism in which nucleophilic attack by sulfate on the α-phosphate of ATP involves transition state stabilization by Arg-248, Asn-249, His-255, and Arg-349. The structure and kinetic analysis suggest that ATP sulfurylase overcomes the energetic barrier of APS synthesis by distorting nucleotide structure and identifies critical residues for catalysis. Mutations that alter sulfate assimilation in Arabidopsis were mapped to the structure, which provides a molecular basis for understanding their effects on the sulfur assimilation pathway. PMID:24584934

  15. Regulation of calreticulin–major histocompatibility complex (MHC) class I interactions by ATP

    PubMed Central

    Wijeyesakere, Sanjeeva Joseph; Gagnon, Jessica K.; Arora, Karunesh; Brooks, Charles L.; Raghavan, Malini

    2015-01-01

    The MHC class I peptide loading complex (PLC) facilitates the assembly of MHC class I molecules with peptides, but factors that regulate the stability and dynamics of the assembly complex are largely uncharacterized. Based on initial findings that ATP, in addition to MHC class I-specific peptide, is able to induce MHC class I dissociation from the PLC, we investigated the interaction of ATP with the chaperone calreticulin, an endoplasmic reticulum (ER) luminal, calcium-binding component of the PLC that is known to bind ATP. We combined computational and experimental measurements to identify residues within the globular domain of calreticulin, in proximity to the high-affinity calcium-binding site, that are important for high-affinity ATP binding and for ATPase activity. High-affinity calcium binding by calreticulin is required for optimal nucleotide binding, but both ATP and ADP destabilize enthalpy-driven high-affinity calcium binding to calreticulin. ATP also selectively destabilizes the interaction of calreticulin with cellular substrates, including MHC class I molecules. Calreticulin mutants that affect ATP or high-affinity calcium binding display prolonged associations with monoglucosylated forms of cellular MHC class I, delaying MHC class I dissociation from the PLC and their transit through the secretory pathway. These studies reveal central roles for ATP and calcium binding as regulators of calreticulin–substrate interactions and as key determinants of PLC dynamics. PMID:26420867

  16. Asymmetric Structure of the Yeast F[subscript 1] ATPase in the Absence of Bound Nucleotides

    SciTech Connect

    Kabaleeswaran, Venkataraman; Shen, Hong; Symersky, Jindrich; Walker, John E.; Leslie, Andrew G.W.; Mueller, David M.

    2009-05-11

    The crystal structure of nucleotide-free yeast F{sub 1} ATPase has been determined at a resolution of 3.6 {angstrom}. The overall structure is very similar to that of the ground state enzyme. In particular, the {beta}{sub DP} and {beta}{sub TP} subunits both adopt the closed conformation found in the ground state structure despite the absence of bound nucleotides. This implies that interactions between the {gamma} and {beta} subunits are as important as nucleotide occupancy in determining the conformational state of the {beta} subunits. Furthermore, this result suggests that for the mitochondrial enzyme, there is no state of nucleotide occupancy that would result in more than one of the {beta} subunits adopting the open conformation. The adenine-binding pocket of the {beta}{sub TP} subunit is disrupted in the apoenzyme, suggesting that the {beta}{sub DP} subunit is responsible for unisite catalytic activity.

  17. Regulation of the Nicotinamide Adenine Dinucleotide- and Nicotinamide Adenine Dinucleotide Phosphate-Dependent Glutamate Dehydrogenases of Saccharomyces cerevisiae

    PubMed Central

    Roon, Robert J.; Even, Harvey L.

    1973-01-01

    Saccharomyces cerevisiae contains two distinct l-glutamate dehydrogenases. These enzymes are affected in a reciprocal fashion by growth on ammonia or dicarboxylic amino acids as the nitrogen source. The specific activity of the nicotinamide adenine dinucleotide phosphate (NADP) (anabolic) enzyme is highest in ammonia-grown cells and is reduced in cells grown on glutamate or aspartate. Conversely, the specific activity of the nicotinamide adenine dinucleotide (NAD) (catabolic) glutamate dehydrogenase is highest in cells grown on glutamate or aspartate and is much lower in cells grown on ammonia. The specific activity of both enzymes is very low in nitrogen-starved yeast. Addition of the ammonia analogue methylamine to the growth medium reduces the specific activity of the NAD-dependent enzyme and increases the specific activity of the NADP-dependent enzyme. PMID:4147647

  18. Changes in phosphorylation of adenosine phosphate and redox state of nicotinamide-adenine dinucleotide (phosphate) in Geobacter sulfurreducens in response to electron acceptor and anode potential variation.

    PubMed

    Rose, Nicholas D; Regan, John M

    2015-12-01

    Geobacter sulfurreducens is one of the dominant bacterial species found in biofilms growing on anodes in bioelectrochemical systems. The intracellular concentrations of reduced and oxidized forms of nicotinamide-adenine dinucleotide (NADH and NAD(+), respectively) and nicotinamide-adenine dinucleotide phosphate (NADPH and NADP(+), respectively) as well as adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP) were measured in G. sulfurreducens using fumarate, Fe(III)-citrate, or anodes poised at different potentials (110, 10, -90, and -190 mV (vs. SHE)) as the electron acceptor. The ratios of CNADH/CNAD+ (0.088±0.022) and CNADPH/CNADP+ (0.268±0.098) were similar under all anode potentials tested and with Fe(III)-citrate (reduced extracellularly). Both ratios significantly increased with fumarate as the electron acceptor (0.331±0.094 for NAD and 1.96±0.37 for NADP). The adenylate energy charge (the fraction of phosphorylation in intracellular adenosine phosphates) was maintained near 0.47 under almost all conditions. Anode-growing biofilms demonstrated a significantly higher molar ratio of ATP/ADP relative to suspended cultures grown on fumarate or Fe(III)-citrate. These results provide evidence that the cellular location of reduction and not the redox potential of the electron acceptor controls the intracellular redox potential in G. sulfurreducens and that biofilm growth alters adenylate phosphorylation.

  19. Nucleotide Binding in an Engineered Recombinant Ca(2+)-ATPase N-Domain.

    PubMed

    Páez-Pérez, Edgar D; De La Cruz-Torres, Valentín; Sampedro, José G

    2016-12-13

    A recombinant Ca(2+)-ATPase nucleotide binding domain (N-domain) harboring the mutations Trp552Leu and Tyr587Trp was expressed and purified. Chemical modification by N-bromosuccinimide and fluorescence quenching by acrylamide showed that the displaced Trp residue was located at the N-domain surface and slightly exposed to solvent. Guanidine hydrochloride-mediated N-domain unfolding showed the low structural stability of the α6-loop-α7 motif (the new Trp location) located near the nucleotide binding site. The binding of nucleotides (free and in complex with Mg(2+)) to the engineered N-domain led to significant intrinsic fluorescence quenching (ΔFmax ∼ 30%) displaying a saturable hyperbolic pattern; the calculated affinities decreased in the following order: ATP > ADP = ADP-Mg(2+) > ATP-Mg(2+). Interestingly, it was found that Ca(2+) binds to the N-domain as monitored by intrinsic fluorescence quenching (ΔFmax ∼ 12%) with a dissociation constant (Kd) of 50 μM. Notably, the presence of Ca(2+) (200 μM) increased the ATP and ADP affinity but favored the binding of ATP over that of ADP. In addition, binding of ATP to the N-domain generated slight changes in secondary structure as evidenced by circular dichroism spectral changes. Molecular docking of ATP to the N-domain provided different binding modes that potentially might be the binding stages prior to γ-phosphate transfer. Finally, the nucleotide binding site was studied by fluorescein isothiocyanate labeling and molecular docking. The N-domain of Ca(2+)-ATPase performs structural dynamics upon Ca(2+) and nucleotide binding. It is proposed that the increased affinity of the N-domain for ATP mediated by Ca(2+) binding may be involved in Ca(2+)-ATPase activation under normal physiological conditions.

  20. DNA ligase and the pyridine nucleotide cycle in Salmonella typhimurium.

    PubMed Central

    Park, U E; Olivera, B M; Hughes, K T; Roth, J R; Hillyard, D R

    1989-01-01

    Bacterial DNA ligases use NAD as an energy source. In this study we addressed two questions about these enzymes. First, what is the physiological consequence of completely removing the NAD-dependent enzyme and replacing it with an ATP-dependent DNA ligase? We constructed Salmonella typhimurium strains in which the endogenous NAD-dependent DNA ligase activity was inactivated by an insertion mutation and the ATP-dependent enzyme from bacteriophage T4 was provided by a cloned phage gene. Such strains were physiologically indistinguishable from the wild type, even under conditions of UV irradiation or treatment with alkylating agents. These results suggest that specific functional interactions between DNA ligase and other replication and repair enzymes may be unimportant under the conditions tested. Second, the importance of DNA ligation as the initiating event of the bacterial pyridine nucleotide cycle was critically assessed in these mutant strains. Surprisingly, our results indicate that DNA ligation makes a minimal contribution to the pyridine nucleotide cycle; the Salmonella strains with only an ATP-dependent ligase had the same NAD turnover rates as the wild-type strain with an NAD-dependent ligase. However, we found that NAD turnover was significantly decreased under anaerobic conditions. We suggest that most intracellular pyridine nucleotide breakdown occurs in a process that protects the cell against oxygen damage but involves a biochemical mechanism other than DNA ligation. Images PMID:2649488

  1. Nucleotide Binding Site Communication in Arabidopsis thaliana Adenosine 5;-Phosphosulfate Kinase

    SciTech Connect

    Ravilious, Geoffrey E.; Jez, Joseph M.

    2012-08-31

    Adenosine 5{prime}-phosphosulfate kinase (APSK) catalyzes the ATP-dependent synthesis of adenosine 3{prime}-phosphate 5{prime}-phosphosulfate (PAPS), which is an essential metabolite for sulfur assimilation in prokaryotes and eukaryotes. Using APSK from Arabidopsis thaliana, we examine the energetics of nucleotide binary and ternary complex formation and probe active site features that coordinate the order of ligand addition. Calorimetric analysis shows that binding can occur first at either nucleotide site, but that initial interaction at the ATP/ADP site was favored and enhanced affinity for APS in the second site by 50-fold. The thermodynamics of the two possible binding models (i.e. ATP first versus APS first) differs and implies that active site structural changes guide the order of nucleotide addition. The ligand binding analysis also supports an earlier suggestion of intermolecular interactions in the dimeric APSK structure. Crystallographic, site-directed mutagenesis, and energetic analyses of oxyanion recognition by the P-loop in the ATP/ADP binding site and the role of Asp136, which bridges the ATP/ADP and APS/PAPS binding sites, suggest how the ordered nucleotide binding sequence and structural changes are dynamically coordinated for catalysis.

  2. Effects of genetic deletion of soluble 5'-nucleotidases NT5C1A and NT5C2 on AMPK activation and nucleotide levels in contracting mouse skeletal muscles.

    PubMed

    Kviklyte, Samanta; Vertommen, Didier; Yerna, Xavier; Andersén, Harriet; Xu, Xiufeng; Gailly, Philippe; Bohlooly-Y, Mohammad; Oscarsson, Jan; Rider, Mark H

    2017-03-21

    AMP-activated protein kinase (AMPK) plays a key role in energy homeostasis and is activated in response to contraction-induced ATP depletion in skeletal muscle via a rise in intracellular AMP/ADP concentrations. AMP can be deaminated by AMP-deaminase to IMP, which is hydrolysed to inosine by cytosolic 5'-nucleotidase-II (NT5C2). AMP can also be hydrolysed to adenosine by cytosolic 5'-nucleotidase-IA (NT5C1A). Previous gene silencing and overexpression studies indicated control of AMPK activation by NT5C enzymes. In the present study using gene knockout mouse models, we investigated effects of NT5C1A and NT5C2 deletion on intracellular adenine nucleotide levels and AMPK activation in electrically stimulated skeletal muscles. Surprisingly, NT5C enzyme knockout did not lead to enhanced AMP or ADP concentrations in response to contraction, with no potentiation of increases in AMPK activity in extensor digitorum longus (EDL) and soleus mouse muscles. Moreover, dual blockade of AMP metabolism in EDL using an AMPD inhibitor combined with NT5C1A deletion did not enhance rises in AMP and ADP or increased AMPK activation by electrical stimulation. The results on muscles from the NT5C knockout mice contradict previous findings where AMP levels and AMPK activity were shown to be modulated by NT5C enzymes.

  3. Characterization of Nucleotide Misincorporation Patterns in the Iceman's Mitochondrial DNA

    PubMed Central

    Olivieri, Cristina; Ermini, Luca; Rizzi, Ermanno; Corti, Giorgio; Bonnal, Raoul; Luciani, Stefania; Marota, Isolina; De Bellis, Gianluca; Rollo, Franco

    2010-01-01

    Background The degradation of DNA represents one of the main issues in the genetic analysis of archeological specimens. In the recent years, a particular kind of post-mortem DNA modification giving rise to nucleotide misincorporation (“miscoding lesions”) has been the object of extensive investigations. Methodology/Principal Findings To improve our knowledge regarding the nature and incidence of ancient DNA nucleotide misincorporations, we have utilized 6,859 (629,975 bp) mitochondrial (mt) DNA sequences obtained from the 5,350–5,100-years-old, freeze-desiccated human mummy popularly known as the Tyrolean Iceman or Ötzi. To generate the sequences, we have applied a mixed PCR/pyrosequencing procedure allowing one to obtain a particularly high sequence coverage. As a control, we have produced further 8,982 (805,155 bp) mtDNA sequences from a contemporary specimen using the same system and starting from the same template copy number of the ancient sample. From the analysis of the nucleotide misincorporation rate in ancient, modern, and putative contaminant sequences, we observed that the rate of misincorporation is significantly lower in modern and putative contaminant sequence datasets than in ancient sequences. In contrast, type 2 transitions represent the vast majority (85%) of the observed nucleotide misincorporations in ancient sequences. Conclusions/Significance This study provides a further contribution to the knowledge of nucleotide misincorporation patterns in DNA sequences obtained from freeze-preserved archeological specimens. In the Iceman system, ancient sequences can be clearly distinguished from contaminants on the basis of nucleotide misincorporation rates. This observation confirms a previous identification of the ancient mummy sequences made on a purely phylogenetical basis. The present investigation provides further indication that the majority of ancient DNA damage is reflected by type 2 (cytosine→thymine/guanine→adenine) transitions and

  4. Crystal structures of the ATP-binding and ADP-release dwells of the V1 rotary motor

    PubMed Central

    Suzuki, Kano; Mizutani, Kenji; Maruyama, Shintaro; Shimono, Kazumi; Imai, Fabiana L.; Muneyuki, Eiro; Kakinuma, Yoshimi; Ishizuka-Katsura, Yoshiko; Shirouzu, Mikako; Yokoyama, Shigeyuki; Yamato, Ichiro; Murata, Takeshi

    2016-01-01

    V1-ATPases are highly conserved ATP-driven rotary molecular motors found in various membrane systems. We recently reported the crystal structures for the Enterococcus hirae A3B3DF (V1) complex, corresponding to the catalytic dwell state waiting for ATP hydrolysis. Here we present the crystal structures for two other dwell states obtained by soaking nucleotide-free V1 crystals in ADP. In the presence of 20 μM ADP, two ADP molecules bind to two of three binding sites and cooperatively induce conformational changes of the third site to an ATP-binding mode, corresponding to the ATP-binding dwell. In the presence of 2 mM ADP, all nucleotide-binding sites are occupied by ADP to induce conformational changes corresponding to the ADP-release dwell. Based on these and previous findings, we propose a V1-ATPase rotational mechanism model. PMID:27807367

  5. An ATP gate controls tubulin binding by the tethered head of kinesin-1.

    PubMed

    Alonso, Maria C; Drummond, Douglas R; Kain, Susan; Hoeng, Julia; Amos, Linda; Cross, Robert A

    2007-04-06

    Kinesin-1 is a two-headed molecular motor that walks along microtubules, with each step gated by adenosine triphosphate (ATP) binding. Existing models for the gating mechanism propose a role for the microtubule lattice. We show that unpolymerized tubulin binds to kinesin-1, causing tubulin-activated release of adenosine diphosphate (ADP). With no added nucleotide, each kinesin-1 dimer binds one tubulin heterodimer. In adenylyl-imidodiphosphate (AMP-PNP), a nonhydrolyzable ATP analog, each kinesin-1 dimer binds two tubulin heterodimers. The data reveal an ATP gate that operates independently of the microtubule lattice, by ATP-dependent release of a steric or allosteric block on the tubulin binding site of the tethered kinesin-ADP head.

  6. Effects of spinally administered adenine on dorsal horn neuronal responses in a rat model of inflammation.

    PubMed

    Matthews, Elizabeth A; Dickenson, Anthony H

    2004-02-19

    A novel G-protein-coupled receptor with adenine identified as the endogenous ligand has recently been described. In vivo electrophysiological techniques in the rat were used to record the response of dorsal horn neurones in response to transcutaneous electrical stimulation to the hindpaw receptive field. Spinal adenine (1-1000 microg) exerted facilitatory effects on the electrically-evoked neuronal responses, in a mildly dose-related manner. After establishment of carrageenan-induced inflammation to the hindpaw this excitatory effect of adenine was still apparent, yet reduced. C-fibre-evoked responses and other nociceptive related measures were most susceptible to the effects of adenine, whereas non-nociceptive Abeta-fibre evoked activity remained unaffected. Thus, activation of the adenine receptor site, via spinally applied adenine, suggests a pronociceptive role in nociceptive sensory transmission.

  7. Influence of hydrogen bonding on the geometry of the adenine fragment

    NASA Astrophysics Data System (ADS)

    Słowikowska, Joanna Maria; Woźniak, Krzysztof

    1996-01-01

    The crystal structures of two adenine derivatives, N(6),9-dimethyl-8-butyladenine (I) and its hydrate (1 : 1) (II), have been determined by single-crystal X-ray diffraction. The geometrical features of both structures are discussed. The influence of protonation, substitution and hydrogen bond formation on the geometry of the adenine fragment was studied, based on data retrieved from the Cambridge Structural Database. Total correlation analysis showed mutual correlation between the structural parameters in the adenine ring system; partial correlation calculations for the adenine nucleoside fragments suggest intercorrelation between the parameters of the hydrogen bonding involved in base pairing and the N(adenine)-C(sugar) bond through the adenine fragment; few such correlations were found for fragments without the sugar substituent.

  8. Sulfur and adenine metabolisms are linked, and both modulate sulfite resistance in wine yeast.

    PubMed

    Aranda, Agustín; Jiménez-Martí, Elena; Orozco, Helena; Matallana, Emilia; Del Olmo, Marcellí

    2006-08-09

    Sulfite treatment is the most common way to prevent grape must spoilage in winemaking because the yeast Saccharomyces cerevisiae is particularly resistant to this chemical. In this paper we report that sulfite resistance depends on sulfur and adenine metabolism. The amount of adenine and methionine in a chemically defined growth medium modulates sulfite resistance of wine yeasts. Mutations in the adenine biosynthetic pathway or the presence of adenine in a synthetic minimal culture medium increase sulfite resistance. The presence of methionine has the opposite effect, inducing a higher sensitivity to SO(2). The concentration of methionine, adenine, and sulfite in a synthetic grape must influences the progress of fermentation and at the transcriptional level the expression of genes involved in sulfur (MET16), adenine (ADE4), and acetaldehyde (ALD6) metabolism. Sulfite alters the pattern of expression of all these genes. This fact indicates that the response to this stress is complex and involves several metabolic pathways.

  9. Approach to the unfolding and folding dynamics of add A-riboswitch upon adenine dissociation using a coarse-grained elastic network model.

    PubMed

    Li, Chunhua; Lv, Dashuai; Zhang, Lei; Yang, Feng; Wang, Cunxin; Su, Jiguo; Zhang, Yang

    2016-07-07

    Riboswitches are noncoding mRNA segments that can regulate the gene expression via altering their structures in response to specific metabolite binding. We proposed a coarse-grained Gaussian network model (GNM) to examine the unfolding and folding dynamics of adenosine deaminase (add) A-riboswitch upon the adenine dissociation, in which the RNA is modeled by a nucleotide chain with interaction networks formed by connecting adjoining atomic contacts. It was shown that the adenine binding is critical to the folding of the add A-riboswitch while the removal of the ligand can result in drastic increase of the thermodynamic fluctuations especially in the junction regions between helix domains. Under the assumption that the native contacts with the highest thermodynamic fluctuations break first, the iterative GNM simulations showed that the unfolding process of the adenine-free add A-riboswitch starts with the denature of the terminal helix stem, followed by the loops and junctions involving ligand binding pocket, and then the central helix domains. Despite the simplified coarse-grained modeling, the unfolding dynamics and pathways are shown in close agreement with the results from atomic-level MD simulations and the NMR and single-molecule force spectroscopy experiments. Overall, the study demonstrates a new avenue to investigate the binding and folding dynamics of add A-riboswitch molecule which can be readily extended for other RNA molecules.

  10. Approach to the unfolding and folding dynamics of add A-riboswitch upon adenine dissociation using a coarse-grained elastic network model

    NASA Astrophysics Data System (ADS)

    Li, Chunhua; Lv, Dashuai; Zhang, Lei; Yang, Feng; Wang, Cunxin; Su, Jiguo; Zhang, Yang

    2016-07-01

    Riboswitches are noncoding mRNA segments that can regulate the gene expression via altering their structures in response to specific metabolite binding. We proposed a coarse-grained Gaussian network model (GNM) to examine the unfolding and folding dynamics of adenosine deaminase (add) A-riboswitch upon the adenine dissociation, in which the RNA is modeled by a nucleotide chain with interaction networks formed by connecting adjoining atomic contacts. It was shown that the adenine binding is critical to the folding of the add A-riboswitch while the removal of the ligand can result in drastic increase of the thermodynamic fluctuations especially in the junction regions between helix domains. Under the assumption that the native contacts with the highest thermodynamic fluctuations break first, the iterative GNM simulations showed that the unfolding process of the adenine-free add A-riboswitch starts with the denature of the terminal helix stem, followed by the loops and junctions involving ligand binding pocket, and then the central helix domains. Despite the simplified coarse-grained modeling, the unfolding dynamics and pathways are shown in close agreement with the results from atomic-level MD simulations and the NMR and single-molecule force spectroscopy experiments. Overall, the study demonstrates a new avenue to investigate the binding and folding dynamics of add A-riboswitch molecule which can be readily extended for other RNA molecules.

  11. Extracellular ATP induces cytokine expression and apoptosis through P2X7 receptor in murine mast cells.

    PubMed

    Bulanova, Elena; Budagian, Vadim; Orinska, Zane; Hein, Martina; Petersen, Frank; Thon, Lutz; Adam, Dieter; Bulfone-Paus, Silvia

    2005-04-01

    Extracellular ATP and other nucleotides act through specific cell surface receptors and regulate a wide variety of cellular responses in many cell types and tissues. In this study, we demonstrate that murine mast cells express several P2Y and P2X receptor subtypes including P2X(7), and describe functional responses of these cells to extracellular ATP. Stimulation of bone marrow-derived mast cells (BMMC), as well as MC/9 and P815 mast cell lines with millimolar concentrations of ATP, resulted in Ca(2+) influx across the cellular membrane and cell permeabilization. Moreover, brief exposures to ATP were sufficient to induce apoptosis in BMMCs, MC/9, and P815 cells which involved activation of caspase-3 and -8. However, in the time period between commitment to apoptosis and actual cell death, ATP triggered rapid but transient phosphorylation of multiple signaling molecules in BMMCs and MC/9 cells, including ERK, Jak2, and STAT6. In addition, ATP stimulation enhanced the expression of several proinflammatory cytokines, such as IL-4, IL-6, IL-13, and TNF-alpha. The effects of ATP were mimicked by submillimolar concentrations of 3-O-(4'-benzoyl)-benzoyl-benzoyl-ATP, and were inhibited by pretreatment of mast cells with a selective blocker of human and mouse P2X(7) receptor, 1[N,O-bis(5-isoquinolinesulphonyl)-N-methyl-l-tyrosyl]-4-phenylpiperazine, as well as oxidized ATP. The nucleotide selectivity and pharmacological profile data support the role for P2X(7) receptor as the mediator of the ATP-induced responses. Given the importance of mast cells in diverse pathological conditions, the ability of extracellular ATP to induce the P2X(7)-mediated apoptosis in these cells may facilitate the development of new strategies to modulate mast cell activities.

  12. Extracellular ATP released by osteoblasts is a key local inhibitor of bone mineralisation.

    PubMed

    Orriss, Isabel R; Key, Michelle L; Hajjawi, Mark O R; Arnett, Timothy R

    2013-01-01

    Previous studies have shown that exogenous ATP (>1 µM) prevents bone formation in vitro by blocking mineralisation of the collagenous matrix. This effect is thought to be mediated via both P2 receptor-dependent pathways and a receptor-independent mechanism (hydrolysis of ATP to produce the mineralisation inhibitor pyrophosphate, PP(i)). Osteoblasts are also known to release ATP constitutively. To determine whether this endogenous ATP might exert significant biological effects, bone-forming primary rat osteoblasts were cultured with 0.5-2.5 U/ml apyrase (which sequentially hydrolyses ATP to ADP to AMP + 2 P(i)). Addition of 0.5 U/ml apyrase to osteoblast culture medium degraded extracellular ATP to <1% of control levels within 2 minutes; continuous exposure to apyrase maintained this inhibition for up to 14 days. Apyrase treatment for the first 72 hours of culture caused small decreases (≤25%) in osteoblast number, suggesting a role for endogenous ATP in stimulating cell proliferation. Continuous apyrase treatment for 14 days (≥0.5 U/ml) increased mineralisation of bone nodules by up to 3-fold. Increases in bone mineralisation were also seen when osteoblasts were cultured with the ATP release inhibitors, NEM and brefeldin A, as well as with P2X1 and P2X7 receptor antagonists. Apyrase decreased alkaline phosphatase (TNAP) activity by up to 60%, whilst increasing the activity of the PP(i)-generating ecto-nucleotide pyrophosphatase/phosphodiesterases (NPPs) up to 2.7-fold. Both collagen production and adipocyte formation were unaffected. These data suggest that nucleotides released by osteoblasts in bone could act locally, via multiple mechanisms, to limit mineralisation.

  13. HYDROGEN-BONDED DIMERS OF ADENINE AND URACIL DERIVATIVES.

    PubMed

    HAMLIN, R M; LORD, R C; RICH, A

    1965-06-25

    In concentrated solutions of either 9-ethyladenine or 1-cyclohexyluracil in deuterochloroform, absorption bands in the infrared spectrum demonstrate hydrogen bonding of the adenine and uracil derivatives with themselves. In dilute solutions, there is very little hydrogen bonding. However, when dilute solutions of 9-ethyladenine and 1-cyclohexyluracil are mixed, a series of bands appear which show that these molecules are hydrogen-bonding with each other much more strongly than with themselves. A study of the stoichiometry of this association indicates formation of 1:1 hydrogen-bonded pairs in solution.

  14. Adenosine triphosphate (ATP) reduces amyloid-β protein misfolding in vitro.

    PubMed

    Coskuner, Orkid; Murray, Ian V J

    2014-01-01

    Alzheimer's disease (AD) is a devastating disease of aging that initiates decades prior to clinical manifestation and represents an impending epidemic. Two early features of AD are metabolic dysfunction and changes in amyloid-β protein (Aβ) levels. Since levels of ATP decrease over the course of the disease and Aβ is an early biomarker of AD, we sought to uncover novel linkages between the two. First and remarkably, a GxxxG motif is common between both Aβ (oligomerization motif) and nucleotide binding proteins (Rossmann fold). Second, ATP was demonstrated to protect against Aβ mediated cytotoxicity. Last, there is structural similarity between ATP and amyloid binding/inhibitory compounds such as ThioT, melatonin, and indoles. Thus, we investigated whether ATP alters misfolding of the pathologically relevant Aβ42. To test this hypothesis, we performed computational and biochemical studies. Our computational studies demonstrate that ATP interacts strongly with Tyr10 and Ser26 of Aβ fibrils in solution. Experimentally, both ATP and ADP reduced Aβ misfolding at physiological intracellular concentrations, with thresholds at ~500 μM and 1 mM respectively. This inhibition of Aβ misfolding is specific; requiring Tyr10 of Aβ and is enhanced by magnesium. Last, cerebrospinal fluid ATP levels are in the nanomolar range and decreased with AD pathology. This initial and novel finding regarding the ATP interaction with Aβ and reduction of Aβ misfolding has potential significance to the AD field. It provides an underlying mechanism for published links between metabolic dysfunction and AD. It also suggests a potential role of ATP in AD pathology, as the occurrence of misfolded extracellular Aβ mirrors lowered extracellular ATP levels. Last, the findings suggest that Aβ conformation change may be a sensor of metabolic dysfunction.

  15. The molecular motor F-ATP synthase is targeted by the tumoricidal protein HAMLET.

    PubMed

    Ho, James; Sielaff, Hendrik; Nadeem, Aftab; Svanborg, Catharina; Grüber, Gerhard

    2015-05-22

    HAMLET (human alpha-lactalbumin made lethal to tumor cells) interacts with multiple tumor cell compartments, affecting cell morphology, metabolism, proteasome function, chromatin structure and viability. This study investigated if these diverse effects of HAMLET might be caused, in part, by a direct effect on the ATP synthase and a resulting reduction in cellular ATP levels. A dose-dependent reduction in cellular ATP levels was detected in A549 lung carcinoma cells, and by confocal microscopy, co-localization of HAMLET with the nucleotide-binding subunits α (non-catalytic) and β (catalytic) of the energy converting F1F0 ATP synthase was detected. As shown by fluorescence correlation spectroscopy, HAMLET binds to the F1 domain of the F1F0 ATP synthase with a dissociation constant (KD) of 20.5μM. Increasing concentrations of the tumoricidal protein HAMLET added to the enzymatically active α3β3γ complex of the F-ATP synthase lowered its ATPase activity, demonstrating that HAMLET binding to the F-ATP synthase effects the catalysis of this molecular motor. Single-molecule analysis was applied to study HAMLET-α3β3γ complex interaction. Whereas the α3β3γ complex of the F-ATP synthase rotated in a counterclockwise direction with a mean rotational rate of 3.8±0.7s(-1), no rotation could be observed in the presence of bound HAMLET. Our findings suggest that direct effects of HAMLET on the F-ATP synthase may inhibit ATP-dependent cellular processes.

  16. Investigation of coordination properties of isolated adenine to copper metal: a systematic spectroscopic and DFT study.

    PubMed

    Prakash, Om; Singh, Sachin Kumar; Singh, Bachcha; Singh, Ranjan K

    2013-08-01

    The coordination properties of copper with adenine have been studied by the analyzing the changes in Fourier Transform Infra-red (FTIR) and Raman spectra of adenine and adenine-copper complex. The geometry of adenine and adenine copper complex were optimized and theoretical Infra-red and Raman spectra of the optimized structures were calculated using Density Functional Theory (DFT). During synthesis of adenine-copper complex specific procedure was adopted to attach the Cu atom with particular N-atom of adenine (N9). The results of Raman and DFT confirmed the attachment. The Raman bands at 625, 330 and 230 cm(-1) of adenine-copper complex contain significant contribution of the vibrational motions of Cu metal coordinated to N9 and Cl atoms. The DFT calculations give additional vibrational modes containing the Cu, N9 and N9* atoms, which are not observed in FTIR and Raman spectra. The Raman, IR and DFT study confirm that Cu metal has good binding affinity to the isolated adenine base.

  17. Molecular mechanism of ATP binding and ion channel activation in P2X receptors

    SciTech Connect

    Hattori, Motoyuki; Gouaux, Eric

    2012-10-24

    P2X receptors are trimeric ATP-activated ion channels permeable to Na{sup +}, K{sup +} and Ca{sup 2+}. The seven P2X receptor subtypes are implicated in physiological processes that include modulation of synaptic transmission, contraction of smooth muscle, secretion of chemical transmitters and regulation of immune responses. Despite the importance of P2X receptors in cellular physiology, the three-dimensional composition of the ATP-binding site, the structural mechanism of ATP-dependent ion channel gating and the architecture of the open ion channel pore are unknown. Here we report the crystal structure of the zebrafish P2X4 receptor in complex with ATP and a new structure of the apo receptor. The agonist-bound structure reveals a previously unseen ATP-binding motif and an open ion channel pore. ATP binding induces cleft closure of the nucleotide-binding pocket, flexing of the lower body {beta}-sheet and a radial expansion of the extracellular vestibule. The structural widening of the extracellular vestibule is directly coupled to the opening of the ion channel pore by way of an iris-like expansion of the transmembrane helices. The structural delineation of the ATP-binding site and the ion channel pore, together with the conformational changes associated with ion channel gating, will stimulate development of new pharmacological agents.

  18. Unraveling the complexity of the interactions of DNA nucleotides with gold by single molecule force spectroscopy

    NASA Astrophysics Data System (ADS)

    Bano, Fouzia; Sluysmans, Damien; Wislez, Arnaud; Duwez, Anne-Sophie

    2015-11-01

    Addressing the effect of different environmental factors on the adsorption of DNA to solid supports is critical for the development of robust miniaturized devices for applications ranging from biosensors to next generation molecular technology. Most of the time, thiol-based chemistry is used to anchor DNA on gold - a substrate commonly used in nanotechnology - and little is known about the direct interaction between DNA and gold. So far there have been no systematic studies on the direct adsorption behavior of the deoxyribonucleotides (i.e., a nitrogenous base, a deoxyribose sugar, and a phosphate group) and on the factors that govern the DNA-gold bond strength. Here, using single molecule force spectroscopy, we investigated the interaction of the four individual nucleotides, adenine, guanine, cytosine, and thymine, with gold. Experiments were performed in three salinity conditions and two surface dwell times to reveal the factors that influence nucleotide-Au bond strength. Force data show that, at physiological ionic strength, adenine-Au interactions are stronger, asymmetrical and independent of surface dwell time as compared to cytosine-Au and guanine-Au interactions. We suggest that in these conditions only adenine is able to chemisorb on gold. A decrease of the ionic strength significantly increases the bond strength for all nucleotides. We show that moderate ionic strength along with longer surface dwell period suggest weak chemisorption also for cytosine and guanine.Addressing the effect of different environmental factors on the adsorption of DNA to solid supports is critical for the development of robust miniaturized devices for applications ranging from biosensors to next generation molecular technology. Most of the time, thiol-based chemistry is used to anchor DNA on gold - a substrate commonly used in nanotechnology - and little is known about the direct interaction between DNA and gold. So far there have been no systematic studies on the direct

  19. The Lipid Bilayer Modulates the Structure and Function of an ATP-binding Cassette Exporter.

    PubMed

    Zoghbi, Maria E; Cooper, Rebecca S; Altenberg, Guillermo A

    2016-02-26

    ATP-binding cassette exporters use the energy of ATP hydrolysis to transport substrates across membranes by switching between inward- and outward-facing conformations. Essentially all structural studies of these proteins have been performed with the proteins in detergent micelles, locked in specific conformations and/or at low temperature. Here, we used luminescence resonance energy transfer spectroscopy to study the prototypical ATP-binding cassette exporter MsbA reconstituted in nanodiscs at 37 °C while it performs ATP hydrolysis. We found major differences when comparing MsbA in these native-like conditions with double electron-electron resonance data and the crystal structure of MsbA in the open inward-facing conformation. The most striking differences include a significantly smaller separation between the nucleotide-binding domains and a larger fraction of molecules with associated nucleotide-binding domains in the nucleotide-free apo state. These studies stress the importance of studying membrane proteins in an environment that approaches physiological conditions.

  20. PA0148 from Pseudomonas aeruginosa Catalyzes the Deamination of Adenine

    SciTech Connect

    Goble, A.M.; Swaminathan, S.; Zhang, Z.; Sauder, J. M.; Burley, S. K.; Raushel, F. M.

    2011-08-02

    Four proteins from NCBI cog1816, previously annotated as adenosine deaminases, have been subjected to structural and functional characterization. Pa0148 (Pseudomonas aeruginosa PAO1), AAur1117 (Arthrobacter aurescens TC1), Sgx9403e, and Sgx9403g have been purified and their substrate profiles determined. Adenosine is not a substrate for any of these enzymes. All of these proteins will deaminate adenine to produce hypoxanthine with k{sub cat}/K{sub m} values that exceed 10{sup 5} M{sup -1} s{sup -1}. These enzymes will also accept 6-chloropurine, 6-methoxypurine, N-6-methyladenine, and 2,6-diaminopurine as alternate substrates. X-ray structures of Pa0148 and AAur1117 have been determined and reveal nearly identical distorted ({beta}/{alpha}){sub 8} barrels with a single zinc ion that is characteristic of members of the amidohydrolase superfamily. Structures of Pa0148 with adenine, 6-chloropurine, and hypoxanthine were also determined, thereby permitting identification of the residues responsible for coordinating the substrate and product.

  1. Pa0148 from Pseudomonas aeruginosa Catalyzes the Deamination of Adenine

    SciTech Connect

    A Goble; Z Zhang; J Sauder; S Burley; S Swaminathan; F Raushel

    2011-12-31

    Four proteins from NCBI cog1816, previously annotated as adenosine deaminases, have been subjected to structural and functional characterization. Pa0148 (Pseudomonas aeruginosa PAO1), AAur1117 (Arthrobacter aurescens TC1), Sgx9403e, and Sgx9403g have been purified and their substrate profiles determined. Adenosine is not a substrate for any of these enzymes. All of these proteins will deaminate adenine to produce hypoxanthine with k{sub cat}/K{sub m} values that exceed 10{sup 5} M{sup -1} s{sup -1}. These enzymes will also accept 6-chloropurine, 6-methoxypurine, N-6-methyladenine, and 2,6-diaminopurine as alternate substrates. X-ray structures of Pa0148 and AAur1117 have been determined and reveal nearly identical distorted ({beta}/{alpha}){sub 8} barrels with a single zinc ion that is characteristic of members of the amidohydrolase superfamily. Structures of Pa0148 with adenine, 6-chloropurine, and hypoxanthine were also determined, thereby permitting identification of the residues responsible for coordinating the substrate and product.

  2. A9145, a New Adenine-Containing Antifungal Antibiotic: Fermentation

    PubMed Central

    Boeck, L. D.; Clem, G. M.; Wilson, M. M.; Westhead, J. E.

    1973-01-01

    A9145 is a basic, water-soluble, antifungal antibiotic which is produced in a complex organic medium by Streptomyces griseolus. The metabolite has a molecular weight of 510, and contains adenine as well as sugar hydroxyl and amino groups. Although glucose, fructose, glucose polymers, and some long-chain fatty acid methyl esters supported biosynthesis, oils were superior, with cottonseed oil being preferred. Several ions and salts, especially Co2+, PO43−, and CaCO3, were stimulatory. Adenine, nucleosides, and some amino acids increased the accumulation of A9145 in shaken-flask fermentors. Enrichment of the culture medium with tyrosine afforded maximal enhancement of antibiotic production in both flask and tank fermentors. Control of the dissolved O2 level was also critical, the optimal concentration being 3 × 10−2 to 4.5 × 10−2 μmole of O2/ml. Optimization of various fermentation parameters increased antibiotic titers approximately 135-fold in shaken flask fermentors and 225-fold in stirred vessels. PMID:4208279

  3. A9145, a new adenine-containing antifungal antibiotic: fermentation.

    PubMed

    Boeck, L D; Clem, G M; Wilson, M M; Westhead, J E

    1973-01-01

    A9145 is a basic, water-soluble, antifungal antibiotic which is produced in a complex organic medium by Streptomyces griseolus. The metabolite has a molecular weight of 510, and contains adenine as well as sugar hydroxyl and amino groups. Although glucose, fructose, glucose polymers, and some long-chain fatty acid methyl esters supported biosynthesis, oils were superior, with cottonseed oil being preferred. Several ions and salts, especially Co(2+), PO(4) (3-), and CaCO(3), were stimulatory. Adenine, nucleosides, and some amino acids increased the accumulation of A9145 in shaken-flask fermentors. Enrichment of the culture medium with tyrosine afforded maximal enhancement of antibiotic production in both flask and tank fermentors. Control of the dissolved O(2) level was also critical, the optimal concentration being 3 x 10(-2) to 4.5 x 10(-2) mumole of O(2)/ml. Optimization of various fermentation parameters increased antibiotic titers approximately 135-fold in shaken flask fermentors and 225-fold in stirred vessels.

  4. On the deactivation mechanisms of adenine-thymine base pair.

    PubMed

    Gobbo, João Paulo; Saurí, Vicenta; Roca-Sanjuán, Daniel; Serrano-Andrés, Luis; Merchán, Manuela; Borin, Antonio Carlos

    2012-04-05

    In this contribution, the multiconfigurational second-order perturbation theory method based on a complete active space reference wave function (CASSCF/CASPT2) is applied to study all possible single and double proton/hydrogen transfers between the nucleobases in the adenine-thymine (AT) base pair, analyzing the role of excited states with different nature [localized (LE) and charge transfer (CT)], and considering concerted as well as step-wise mechanisms. According to the findings, once the lowest excited states, localized in adenine, are populated during UV irradiation of the Watson-Crick base pair, the proton transfer in the N-O bridge does not require high energy in order to populate a CT state. The latter state will immediately relax toward a crossing with the ground state, which will funnel the system to either the canonical structure or the imino-enol tautomer. The base pair is also capable of repairing itself easily since the imino-enol species is unstable to thermal conversion.

  5. Nonselective enrichment for yeast adenine mutants by flow cytometry

    NASA Technical Reports Server (NTRS)

    Bruschi, C. V.; Chuba, P. J.

    1988-01-01

    The expression of certain adenine biosynthetic mutations in the yeast Saccharomyces cerevisiae results in a red colony color. This phenomenon has historically provided an ideal genetic marker for the study of mutation, recombination, and aneuploidy in lower eukaryotes by classical genetic analysis. In this paper, it is reported that cells carrying ade1 and/or ade2 mutations exhibit primary fluorescence. Based on this observation, the nonselective enrichment of yeast cultures for viable adenine mutants by using the fluorescence-activated cell sorter has been achieved. The advantages of this approach over conventional genetic analysis of mutation, recombination, and mitotic chromosomal stability include speed and accuracy in acquiring data for large numbers of clones. By using appropriate strains, the cell sorter has been used for the isolation of both forward mutations and chromosomal loss events in S. cerevisiae. The resolving power of this system and its noninvasiveness can easily be extended to more complex organisms, including mammalian cells, in which analogous metabolic mutants are available.

  6. Nucleotide cleaving agents and method

    DOEpatents

    Que, Jr., Lawrence; Hanson, Richard S.; Schnaith, Leah M. T.

    2000-01-01

    The present invention provides a unique series of nucleotide cleaving agents and a method for cleaving a nucleotide sequence, whether single-stranded or double-stranded DNA or RNA, using and a cationic metal complex having at least one polydentate ligand to cleave the nucleotide sequence phosphate backbone to yield a hydroxyl end and a phosphate end.

  7. Flavin nucleotides in human lens: regional distribution in brunescent cataracts.

    PubMed

    Bhat, K S; Nayak, S

    1998-12-01

    The biochemical mechanism(s) underlying brunescent cataracts remain unclear. Oxidative stress due to reactive oxygen species may have a role in the pigmentation process in eye lens. We have analysed human cataractous lenses for flavins by high-performance liquid chromatography (HPLC), since flavins are light sensitive and act as endogenous sensitizers generating reactive oxygen species in the eye. The most significant observation in this study is that higher levels of flavin nucleotides occur in brown lens compared to yellow lens. The concentration of flavin nucleotides (flavin monouncleotide, FMN + flavin adenine dinucleotide, FAD) was highest in the nuclear region of the lens followed by the cortical and capsule-epithelial regions. However, the ratio of FAD/FMN was lowest in the nuclear region of the lens followed by other regions. On the other hand, riboflavin was not detected in any of the lens (cataractous) regions. These results suggest that the observed increase in flavin nucleotides in the ocular tissue could contribute towards deepening of lens pigmentation.

  8. IRE1α nucleotide sequence cleavage specificity in the unfolded protein response.

    PubMed

    Poothong, Juthakorn; Sopha, Pattarawut; Kaufman, Randal J; Tirasophon, Witoon

    2017-01-01

    Inositol-requiring enzyme 1 (IRE1) is a conserved sensor of the unfolded protein response that has protein kinase and endoribonuclease (RNase) enzymatic activities and thereby initiates HAC1/XBP1 splicing. Previous studies demonstrated that human IRE1α (hIRE1α) does not cleave Saccharomyces cerevisiae HAC1 mRNA. Using an in vitro cleavage assay, we show that adenine to cytosine nucleotide substitution at the +1 position in the 3' splice site of HAC1 RNA is required for specific cleavage by hIRE1α. A similar restricted nucleotide specificity in the RNA substrate was observed for XBP1 splicing in vivo. Together these findings underscore the essential role of cytosine nucleotide at +1 in the 3' splice site for determining cleavage specificity of hIRE1α.

  9. The Tomato Nucleotide-binding Leucine-rich Repeat Immune Receptor I-2 Couples DNA-binding to Nucleotide-binding Domain Nucleotide Exchange*

    PubMed Central

    Fenyk, Stepan; Dixon, Christopher H.; Gittens, William H.; Townsend, Philip D.; Sharples, Gary J.; Pålsson, Lars-Olof; Takken, Frank L. W.; Cann, Martin J.

    2016-01-01

    Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable plants to recognize and respond to pathogen attack. Previously, we demonstrated that the Rx1 NLR of potato is able to bind and bend DNA in vitro. DNA binding in situ requires its genuine activation following pathogen perception. However, it is unknown whether other NLR proteins are also able to bind DNA. Nor is it known how DNA binding relates to the ATPase activity intrinsic to NLR switch function required to immune activation. Here we investigate these issues using a recombinant protein corresponding to the N-terminal coiled-coil and nucleotide-binding domain regions of the I-2 NLR of tomato. Wild type I-2 protein bound nucleic acids with a preference of ssDNA ≈ dsDNA > ssRNA, which is distinct from Rx1. I-2 induced bending and melting of DNA. Notably, ATP enhanced DNA binding relative to ADP in the wild type protein, the null P-loop mutant K207R, and the autoactive mutant S233F. DNA binding was found to activate the intrinsic ATPase activity of I-2. Because DNA binding by I-2 was decreased in the presence of ADP when compared with ATP, a cyclic mechanism emerges; activated ATP-associated I-2 binds to DNA, which enhances ATP hydrolysis, releasing ADP-bound I-2 from the DNA. Thus DNA binding is a general property of at least a subset of NLR proteins, and NLR activation is directly linked to its activity at DNA. PMID:26601946

  10. Adenine attenuates the Ca(2+) contraction-signaling pathway via adenine receptor-mediated signaling in rat vascular smooth muscle cells.

    PubMed

    Fukuda, Toshihiko; Kuroda, Takahiro; Kono, Miki; Hyoguchi, Mai; Tajiri, Satoshi; Tanaka, Mitsuru; Mine, Yoshinori; Matsui, Toshiro

    2016-09-01

    Our previous study demonstrated that adenine (6-amino-6H-purine) relaxed contracted rat aorta rings in an endothelial-independent manner. Although adenine receptors (AdeRs) are expressed in diverse tissues, aortic AdeR expression has not been ascertained. Thus, the aims of this study were to clarify the expression of AdeR in rat vascular smooth muscle cells (VSMCs) and to investigate the adenine-induced vasorelaxation mechanism(s). VSMCs were isolated from 8-week-old male Wistar-Kyoto rats and used in this study. Phosphorylation of myosin light chain (p-MLC) was measured by western blot. AdeR mRNA was detected by RT-PCR. Intracellular Ca(2+) concentration ([Ca(2+)]i) was measured by using Fura-2/AM. Vasorelaxant adenine (10-100 μM) significantly reduced p-MLC by angiotensin II (Ang II, 10 μM) in VSMCs (P < 0.05). We confirmed the expression of aortic AdeR mRNA and the activation of PKA in VSMCs through stimulation of AdeR by adenine by ELISA. Intracellular Ca(2+) concentration ([Ca(2+)]i) measurement demonstrated that adenine inhibits Ang II- and m-3M3FBS (PLC agonist)-induced [Ca(2+)]i elevation. In AdeR-knockdown VSMCs, PKA activation and p-MLC reduction by adenine were completely abolished. These results firstly demonstrated that vasorelaxant adenine can suppress Ca(2+) contraction signaling pathways via aortic AdeR/PKA activation in VSMCs.

  11. Renoprotective effects of aliskiren on adenine-induced tubulointerstitial nephropathy: possible underlying mechanisms.

    PubMed

    Hussein, Abdelaziz M; Malek, Hala Abdel; Saad, Mohamed-Ahdy

    2016-08-01

    The present study investigated the possible renoprotective effect of direct renin inhibitor (aliskiren) on renal dysfunctions, as well as its underlying mechanisms in rat model of adenine-induced tubulointerstitial nephropathy. Forty male Sprague-Dawley rats were randomized into 4 groups; normal group, aliskiren group (normal rats received 10 mg/kg aliskiren), adenine group (animals received high-adenine diet for 4 weeks and saline for 12 weeks), and adenine + aliskiren group (animals received adenine for 4 weeks and aliskiren 10 mg/kg for 12 weeks). It was found that adenine caused significant decrease in body mass, Hb, HR, serum Ca(2+), eNOS and nrf2 expression, GSH, and catalase in kidney tissues with significant increase in arterial blood pressure (ABP), serum creatinine, BUN, plasma renin activity (PRA), K(+) and P, urinary albumin excretion (UAE), caspase-3, and MDA (lipid peroxidation marker) in kidney tissues compared to normal group (p < 0.05). Administration of aliskiren caused significant improvement in all studied parameters compared to adenine group (p < 0.05). We concluded that aliskiren has renoprotective effect against adenine-induced nephropathy. This might be due to inhibition of PRA, attenuation of oxidative stress, activation of Nrf2 and eNOS genes, and suppression of caspase-3.

  12. Extracellular nucleotide and nucleoside signaling in vascular and blood disease

    PubMed Central

    Idzko, Marco; Ferrari, Davide; Riegel, Ann-Kathrin

    2014-01-01

    Nucleotides and nucleosides—such as adenosine triphosphate (ATP) and adenosine—are famous for their intracellular roles as building blocks for the genetic code or cellular energy currencies. In contrast, their function in the extracellular space is different. Here, they are primarily known as signaling molecules via activation of purinergic receptors, classified as P1 receptors for adenosine or P2 receptors for ATP. Because extracellular ATP is rapidly converted to adenosine by ectonucleotidase, nucleotide-phosphohydrolysis is important for controlling the balance between P2 and P1 signaling. Gene-targeted mice for P1, P2 receptors, or ectonucleotidase exhibit only very mild phenotypic manifestations at baseline. However, they demonstrate alterations in disease susceptibilities when exposed to a variety of vascular or blood diseases. Examples of phenotypic manifestations include vascular barrier dysfunction, graft-vs-host disease, platelet activation, ischemia, and reperfusion injury or sickle cell disease. Many of these studies highlight that purinergic signaling events can be targeted therapeutically. PMID:25001468

  13. Existence of a low-affinity ATP-binding site in the unphosphorylated Ca2(+)-ATPase of sarcoplasmic reticulum vesicles: evidence from binding of 2',3'-O-(2,4,6-trinitrocyclohexadienylidene)-[3H]AMP and -[3H]ATP.

    PubMed

    Suzuki, H; Kubota, T; Kubo, K; Kanazawa, T

    1990-07-31

    ATP-binding sites in the unphosphorylated Ca2(+)-ATPase of sarcoplasmic reticulum vesicles were titrated with 2',3'-O-(2,4,6-trinitrocyclohexadienylidene)-[3H]AMP (TNP-AMP) or -[3H]ATP (TNP-ATP) in the absence of Ca2+ at pH 7.0 and 0 degrees C by using a centrifugation procedure. In some measurements, the bound TNP-nucleotides were chased with ATP. The data were analyzed by best-fit computer programs as well as by Scatchard plots. The results showed the existence of 1 mol of TNP-AMP binding sites with high affinity (Kd = 7.62 nM) per mole of phosphorylatable sites. The affinity of these sites for ATP (Kd = 10.1 microM) agreed with that of catalytic sites for ATP in the absence of Ca2+. The results further showed the existence of 2 mol of TNP-ATP binding sites with uniform affinity (Kd = 156 nM) per mole of phosphorylatable sites. Half of the bound TNP-ATP was fully chased by low concentrations of ATP. The affinity of this class of the sites for ATP (Kd = 8.9 microM) again agreed with that of catalytic sites for ATP. The other half of the bound TNP-ATP was fully chased only by much higher concentrations of ATP. Thus, the affinity of this class of the sites for ATP (Kd = 791 microM) was much lower than that of catalytic sites for ATP. Similar measurements were performed with sarcoplasmic reticulum vesicles pretreated by N-(iodoacetyl)-N'-(5-sulfo-1-naphthyl)ethylenediamine. Although the affinities for TNP-ATP and for ATP were appreciably altered by this pretreatment, the results were essentially the same as those obtained with native vesicles.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Substrate-Dependence of Competitive Nucleotide Pyrophosphatase/Phosphodiesterase1 (NPP1) Inhibitors

    PubMed Central

    Lee, Sang-Yong; Sarkar, Soumya; Bhattarai, Sanjay; Namasivayam, Vigneshwaran; De Jonghe, Steven; Stephan, Holger; Herdewijn, Piet; El-Tayeb, Ali; Müller, Christa E.

    2017-01-01

    Nucleotide pyrophosphatase/phosphodiesterase type 1 (NPP1) is a membrane glycoprotein involved in the hydrolysis of extracellular nucleotides. Its major substrate is ATP which is converted to AMP and diphosphate. NPP1 was proposed as a new therapeutic target in brain cancer and immuno-oncology. Several NPP1 inhibitors have been reported to date, most of which were evaluated vs. the artificial substrate p-nitrophenyl 5′-thymidine monophosphate (p-Nph-5′-TMP). Recently, we observed large discrepancies in inhibitory potencies for a class of competitive NPP1 inhibitors when tested vs. the artificial substrate p-Nph-5′-TMP as compared to the natural substrate ATP. Therefore, the goal of the present study was to investigate whether inhibitors of human NPP1 generally display substrate-dependent inhibitory potency. Systematic evaluation of nucleotidic as well as non-nucleotidic NPP1 inhibitors revealed significant differences in determined Ki values for competitive, but not for non- and un-competitive inhibitors when tested vs. the frequently used artificial substrate p-Nph-5′-TMP as compared to ATP. Allosteric modulation of NPP1 by p-Nph-5′-TMP may explain these discrepancies. Results obtained using the AMP derivative p-nitrophenyl 5′-adenosine monophosphate (p-Nph-5′-AMP) as an alternative artificial substrate correlated much better with those employing the natural substrate ATP. PMID:28261095

  15. Actomyosin Interaction: Mechanical and Energetic Properties in Different Nucleotide Binding States

    PubMed Central

    Aprodu, Iuliana; Redaelli, Alberto; Soncini, Monica

    2008-01-01

    The mechanics of the actomyosin interaction is central in muscle contraction and intracellular trafficking. A better understanding of the events occurring in the actomyosin complex requires the examination of all nucleotide-dependent states and of the energetic features associated with the dynamics of the cross-bridge cycle. The aim of the present study is to estimate the interaction strength between myosin in nucleotide-free, ATP, ADP·Pi and ADP states and actin monomer. The molecular models of the complexes were constructed based on cryo-electron microscopy maps and the interaction properties were estimated by means of a molecular dynamics approach, which simulate the unbinding of the complex applying a virtual spring to the core of myosin protein. Our results suggest that during an ATP hydrolysis cycle the affinity of myosin for actin is modulated by the presence and nature of the nucleotide in the active site of the myosin motor domain. When performing unbinding simulations with a pulling rate of 0.001 nm/ps, the maximum pulling force applied to the myosin during the experiment is about 1nN. Under these conditions the interaction force between myosin and actin monomer decreases from 0.83 nN in the nucleotide-free state to 0.27 nN in the ATP state, and increases to 0.60 nN after ATP hydrolysis and Pi release from the complex (ADP state). PMID:19325727

  16. A novel route for ATP acquisition by the remnant mitochondria of Encephalitozoon cuniculi.

    PubMed

    Tsaousis, Anastasios D; Kunji, Edmund R S; Goldberg, Alina V; Lucocq, John M; Hirt, Robert P; Embley, T Martin

    2008-05-22

    Mitochondria use transport proteins of the eukaryotic mitochondrial carrier family (MCF) to mediate the exchange of diverse substrates, including ATP, with the host cell cytosol. According to classical endosymbiosis theory, insertion of a host-nuclear-encoded MCF transporter into the protomitochondrion was the key step that allowed the host cell to harvest ATP from the enslaved endosymbiont. Notably the genome of the microsporidian Encephalitozoon cuniculi has lost all of its genes for MCF proteins. This raises the question of how the recently discovered microsporidian remnant mitochondrion, called a mitosome, acquires ATP to support protein import and other predicted ATP-dependent activities. The E. cuniculi genome does contain four genes for an unrelated type of nucleotide transporter used by plastids and bacterial intracellular parasites, such as Rickettsia and Chlamydia, to import ATP from the cytosol of their eukaryotic host cells. The inference is that E. cuniculi also uses these proteins to steal ATP from its eukaryotic host to sustain its lifestyle as an obligate intracellular parasite. Here we show that, consistent with this hypothesis, all four E. cuniculi transporters can transport ATP, and three of them are expressed on the surface of the parasite when it is living inside host cells. The fourth transporter co-locates with mitochondrial Hsp70 to the E. cuniculi mitosome. Thus, uniquely among eukaryotes, the traditional relationship between mitochondrion and host has been subverted in E. cuniculi, by reductive evolution and analogous gene replacement. Instead of the mitosome providing the parasite cytosol with ATP, the parasite cytosol now seems to provide ATP for the organelle.

  17. Inflammation Promotes Airway Epithelial ATP Release via Calcium-Dependent Vesicular Pathways

    PubMed Central

    Okada, Seiko F.; Ribeiro, Carla M. P.; Sesma, Juliana I.; Seminario-Vidal, Lucia; Abdullah, Lubna H.; van Heusden, Catharina; Lazarowski, Eduardo R.

    2013-01-01

    ATP in airway surface liquid (ASL) controls mucociliary clearance functions via the activation of airway epithelial purinergic receptors. However, abnormally elevated ATP levels have been reported in inflamed airways, suggesting that excessive ATP in ASL contributes to airway inflammation. Despite these observations, little is known about the mechanisms of ATP accumulation in the ASL covering inflamed airways. In this study, links between cystic fibrosis (CF)–associated airway inflammation and airway epithelial ATP release were investigated. Primary human bronchial epithelial (HBE) cells isolated from CF lungs exhibited enhanced IL-8 secretion after 6 to 11 days, but not 28 to 35 days, in culture, compared with normal HBE cells. Hypotonic cell swelling–promoted ATP release was increased in 6- to 11-day-old CF HBE cells compared with non-CF HBE cells, but returned to normal values after 28 to 35 days in culture. The exposure of non-CF HBE cells to airway secretions isolated from CF lungs, namely, sterile supernatants of mucopurulent material (SMM), also caused enhanced IL-8 secretion and increased ATP release. The SMM-induced increase in ATP release was sensitive to Ca2+ chelation and vesicle trafficking/exocytosis inhibitors, but not to pannexin inhibition. Transcript levels of the vesicular nucleotide transporter, but not pannexin 1, were up-regulated after SMM exposure. SMM-treated cultures displayed increased basal mucin secretion, but mucin secretion was not enhanced in response to hypotonic challenge after the exposure of cells to either vehicle or SMM. We propose that CF airway inflammation up-regulates the capacity of airway epithelia to release ATP via Ca2+-dependent vesicular mechanisms not associated with mucin granule secretion. PMID:23763446

  18. Inflammation promotes airway epithelial ATP release via calcium-dependent vesicular pathways.

    PubMed

    Okada, Seiko F; Ribeiro, Carla M P; Sesma, Juliana I; Seminario-Vidal, Lucia; Abdullah, Lubna H; van Heusden, Catharina; Lazarowski, Eduardo R; Boucher, Richard C

    2013-11-01

    ATP in airway surface liquid (ASL) controls mucociliary clearance functions via the activation of airway epithelial purinergic receptors. However, abnormally elevated ATP levels have been reported in inflamed airways, suggesting that excessive ATP in ASL contributes to airway inflammation. Despite these observations, little is known about the mechanisms of ATP accumulation in the ASL covering inflamed airways. In this study, links between cystic fibrosis (CF)-associated airway inflammation and airway epithelial ATP release were investigated. Primary human bronchial epithelial (HBE) cells isolated from CF lungs exhibited enhanced IL-8 secretion after 6 to 11 days, but not 28 to 35 days, in culture, compared with normal HBE cells. Hypotonic cell swelling-promoted ATP release was increased in 6- to 11-day-old CF HBE cells compared with non-CF HBE cells, but returned to normal values after 28 to 35 days in culture. The exposure of non-CF HBE cells to airway secretions isolated from CF lungs, namely, sterile supernatants of mucopurulent material (SMM), also caused enhanced IL-8 secretion and increased ATP release. The SMM-induced increase in ATP release was sensitive to Ca(2+) chelation and vesicle trafficking/exocytosis inhibitors, but not to pannexin inhibition. Transcript levels of the vesicular nucleotide transporter, but not pannexin 1, were up-regulated after SMM exposure. SMM-treated cultures displayed increased basal mucin secretion, but mucin secretion was not enhanced in response to hypotonic challenge after the exposure of cells to either vehicle or SMM. We propose that CF airway inflammation up-regulates the capacity of airway epithelia to release ATP via Ca(2+)-dependent vesicular mechanisms not associated with mucin granule secretion.

  19. Major and minor groove conformations of DNA trimers modified on guanine or adenine by 4-aminobiphenyl: Adenine adducts favor the minor groove

    SciTech Connect

    Shapiro, R.; Ellis, S.; Hingerty, B.E.

    1995-01-01

    We have studied the conformational effects of 4-aminobiphenyl modification at C-8 of guanine or adenine on double-stranded DNA trimers. We used sequences with the modified purine at the central base pair and all 16 possible neighboring sequences at the outer pairs. Minimized potential energy calculations were carried out using the molecular mechanics program DUPLEX to survey the conformation space of these adducts, using a total of 1280 starting structures both in the modified guanine series and in the modified adenine series. Conformer families in which the bound 4-aminobiphenyl was located in the DNA major groove, and in the minor groove, were located for both adenine and guanine modification. In the modified guanine series, the major and minor groove families were roughly comparable in energy, and the sequence context determined which was more stable in a particular case. In the modified adenine series, however, the minor groove structure was more that 10 kcal/mol more stable than the major groove for all sequences. As a result, minor groove adducts provided most of the global minima in the adenine-modified series. This result may be relevant to a previous mutagenesis study [Lasko et al. (1988) J. Biol. Chem. 263, 15429-15435] in which the hot spot of most frequent occurrence was located at an adenine, in the sequence GAT. 25 refs., 9 figs., 4 tabs.

  20. Interaction of sulfanilamide and sulfamethoxazole with bovine serum albumin and adenine: Spectroscopic and molecular docking investigations

    NASA Astrophysics Data System (ADS)

    Rajendiran, N.; Thulasidhasan, J.

    2015-06-01

    Interaction between sulfanilamide (SAM) and sulfamethoxazole (SMO) with BSA and DNA base (adenine) was investigated by UV-visible, fluorescence, cyclic voltammetry and molecular docking studies. Stern-Volmer fluorescence quenching constant (Ka) suggests SMO is more quenched with BSA/adenine than that of SAM. The distance r between donor (BSA/adenine) and acceptor (SAM and SMO) was obtained according to fluorescence resonance energy transfer (FRET). The results showed that hydrophobic forces, electrostatic interactions, and hydrogen bonds played vital roles in the SAM and SMO with BSA/adenine binding interaction. During the interaction, sulfa drugs could insert into the hydrophobic pocket, where the non-radioactive energy transfer from BSA/adenine to sulfa drugs occurred with high possibility. Cyclic voltammetry results suggested that when the drug concentration is increased, the anodic electrode potential deceased. The docking method indicates aniline group is interacted with the BSA molecules.

  1. Electrochemical characterization of redox polymer modified electrode developed for monitoring of adenine.

    PubMed

    Kuralay, Filiz; Erdem, Arzum; Abacı, Serdar; Ozyörük, Haluk

    2013-05-01

    Electrochemical characterization of redox polymer for monitoring of adenine was described in this study using poly(vinylferrocenium) (PVF(+)) modified platinum (Pt) electrode. Scanning electron microscope (SEM) was used for the surface characterization. The electrochemical behaviors of polymer modified and adenine immobilized polymer modified electrodes were investigated by using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). In order to obtain more sensitive and improved electrochemical signals, analytical parameters such as the effects of polymeric film thickness, immobilization time of adenine, pH and adenine concentration were examined on the response of the polymer modified electrode. Alternating current (AC) impedance spectroscopy was used for the characterization of polymer modified and adenine immobilized polymer modified electrodes. The effect of possible interferents on the response of the electrode was examined.

  2. Interaction of sulfanilamide and sulfamethoxazole with bovine serum albumin and adenine: spectroscopic and molecular docking investigations.

    PubMed

    Rajendiran, N; Thulasidhasan, J

    2015-06-05

    Interaction between sulfanilamide (SAM) and sulfamethoxazole (SMO) with BSA and DNA base (adenine) was investigated by UV-visible, fluorescence, cyclic voltammetry and molecular docking studies. Stern-Volmer fluorescence quenching constant (Ka) suggests SMO is more quenched with BSA/adenine than that of SAM. The distance r between donor (BSA/adenine) and acceptor (SAM and SMO) was obtained according to fluorescence resonance energy transfer (FRET). The results showed that hydrophobic forces, electrostatic interactions, and hydrogen bonds played vital roles in the SAM and SMO with BSA/adenine binding interaction. During the interaction, sulfa drugs could insert into the hydrophobic pocket, where the non-radioactive energy transfer from BSA/adenine to sulfa drugs occurred with high possibility. Cyclic voltammetry results suggested that when the drug concentration is increased, the anodic electrode potential deceased. The docking method indicates aniline group is interacted with the BSA molecules.

  3. Design and Function of Supramolecular Recognition Systems Based on Guest-Targeting Probe-Modified Cyclodextrin Receptors for ATP.

    PubMed

    Fujita, Kyohhei; Fujiwara, Shoji; Yamada, Tatsuru; Tsuchido, Yuji; Hashimoto, Takeshi; Hayashita, Takashi

    2017-01-20

    In this study, we have developed a rational design strategy to obtain highly selective supramolecular recognition systems of cyclodextrins (CyDs) on the basis of the lock and key principle. We designed and synthesized dipicolylamine (dpa)-modified γ-CyD-Cu(2+) complexes possessing an azobenzene unit (Cu·1-γ-CyD) and examined how they recognized phosphoric acid derivatives in water. The results revealed that Cu·1-γ-CyD recognized ATP with high selectivity over other phosphoric acid derivatives. The significant blue shift in the UV-vis spectra and (1)H NMR analysis suggested that the selective ATP recognition was based on the multipoint interactions between the adenine moiety of ATP and both the CyD cavity and the azobenzene unit in addition to the recognition of phosphoric moieties by the Cu-dpa complex site. Our unique receptor made it capable of distinguishing ATP from AMP and ADP, revealing the discrimination of even a length of one phosphoric group. This study demonstrates that, compared to conventional recognition systems of CyDs, this multipoint recognition system confers a higher degree of selectivity for certain organic molecules, such as ATP, over their similar derivatives.

  4. Structural changes of the sarcoplasmic reticulum Ca(2+)-ATPase upon nucleotide binding studied by fourier transform infrared spectroscopy.

    PubMed Central

    von Germar, F; Barth, A; Mäntele, W

    2000-01-01

    Changes in the vibrational spectrum of the sarcoplasmic reticulum Ca(2+)-ATPase upon nucleotide binding were recorded in H(2)O and (2)H(2)O at -7 degrees C and pH 7.0. The reaction cycle was triggered by the photochemical release of nucleotides (ATP, ADP, and AMP-PNP) from a biologically inactive precursor (caged ATP, P(3)-1-(2-nitrophenyl) adenosine 5'-triphosphate, and related caged compounds). Infrared absorbance changes due to ATP release and two steps of the Ca(2+)-ATPase reaction cycle, ATP binding and phosphorylation, were followed in real time. Under the conditions used in our experiments, the rate of ATP binding was limited by the rate of ATP release (k(app) congruent with 3 s(-1) in H(2)O and k(app) congruent with 7 s(-1) in (2)H(2)O). Bands in the amide I and II regions of the infrared spectrum show that the conformation of the Ca(2+)-ATPase changes upon nucleotide binding. The observation of bands in the amide I region can be assigned to perturbations of alpha-helical and beta-sheet structures. According to similar band profiles in the nucleotide binding spectra, ATP, AMP-PNP, and ADP induce similar conformational changes. However, subtle differences between ATP and AMP-PNP are observed; these are most likely due to the protonation state of the gamma-phosphate group. Differences between the ATP and ADP binding spectra indicate the significance of the gamma-phosphate group in the interactions between the Ca(2+)-ATPase and the nucleotide. Nucleotide binding affects Asp or Glu residues, and bands characteristic of their protonated side chains are observed at 1716 cm(-1) (H(2)O) and 1706 cm(-1) ((2)H(2)O) and seem to depend on the charge of the phosphate groups. Bands at 1516 cm(-1) (H(2)O) and 1514 cm(-1) ((2)H(2)O) are tentatively assigned to a protonated Tyr residue affected by nucleotide binding. Possible changes in Arg, Trp, and Lys absorption and in the nucleoside are discussed. The spectra are compared with those of nucleotide binding to arginine

  5. Gender differences in adenine-induced chronic kidney disease and cardiovascular complications in rats.

    PubMed

    Diwan, Vishal; Small, David; Kauter, Kate; Gobe, Glenda C; Brown, Lindsay

    2014-12-01

    Gender contributes to differences in incidence and progression of chronic kidney disease (CKD) and associated cardiovascular disease. To induce kidney damage in male and female Wistar rats (n = 12/group), a 0.25% adenine diet for 16 wk was used. Kidney function (blood urea nitrogen, plasma creatinine, proteinuria) and structure (glomerular damage, tubulointerstitial atrophy, fibrosis, inflammation); cardiovascular function (blood pressure, ventricular stiffness, vascular responses, echocardiography) and structure (cardiac fibrosis); plasma testosterone and estrogen concentrations; and protein expression for oxidative stress [heme oxygenase-1, inflammation (TNF-α), fibrosis (transforming growth factor-β), ERK1/2, and estrogen receptor-α (ER-α)] were compared in males and females. Adenine-fed females had less decline in kidney function than adenine-fed males, although kidney atrophy, inflammation, and fibrosis were similar. Plasma estrogen concentrations increased and plasma testosterone concentrations decreased in adenine-fed males, with smaller changes in females. CKD-associated molecular changes in kidneys were more pronounced in males than females except for expression of ER-α in the kidney, which was completely suppressed in adenine-fed males but unchanged in adenine-fed females. Both genders showed increased blood pressure, ventricular stiffness, and cardiac fibrosis with the adenine diet. Cardiovascular changes with adenine were similar in males and females, except males developed concentric, and females eccentric cardiac hypertrophy. In hearts from adenine-fed male and female rats, expression of ER-α and activation of the ERK1/2 pathway were increased, in part explaining changes in cardiac hypertrophy. In summary, adenine-induced kidney damage may be increased in males due to the suppression of ER-α.

  6. Allosteric communication between the nucleotide binding domains of caseinolytic peptidase B.

    PubMed

    Fernández-Higuero, José Ángel; Acebrón, Sergio P; Taneva, Stefka G; Del Castillo, Urko; Moro, Fernando; Muga, Arturo

    2011-07-22

    ClpB is a hexameric chaperone that solubilizes and reactivates protein aggregates in cooperation with the Hsp70/DnaK chaperone system. Each of the identical protein monomers contains two nucleotide binding domains (NBD), whose ATPase activity must be coupled to exert on the substrate the mechanical work required for its reactivation. However, how communication between these sites occurs is at present poorly understood. We have studied herein the affinity of each of the NBDs for nucleotides in WT ClpB and protein variants in which one or both sites are mutated to selectively impair nucleotide binding or hydrolysis. Our data show that the affinity of NBD2 for nucleotides (K(d) = 3-7 μm) is significantly higher than that of NBD1. Interestingly, the affinity of NBD1 depends on nucleotide binding to NBD2. Binding of ATP, but not ADP, to NBD2 increases the affinity of NBD1 (the K(d) decreases from ≈160-300 to 50-60 μm) for the corresponding nucleotide. Moreover, filling of the NBD2 ring with ATP allows the cooperative binding of this nucleotide and substrates to the NBD1 ring. Data also suggest that a minimum of four subunits cooperate to bind and reactivate two different aggregated protein substrates.

  7. Ultraviolet absorption and luminescence of matrix-isolated adenine

    SciTech Connect

    Polewski, K.; Sutherland, J.; Zinger, D.; Trunk, J.

    2011-10-01

    We have investigated the absorption, the fluorescence and phosphorescence emission and the fluorescence lifetimes of adenine in low-temperature argon and nitrogen matrices at 15 K. Compared to other environments the absorption spectrum shows higher intensity at the shortest wavelengths, and a weak apparent absorption peak is observed at 280 nm. The resolved fluorescence excitation spectrum has five peaks at positions corresponding to those observed in the absorption spectrum. The position of the fluorescence maximum depends on the excitation wavelength. Excitation below 220 nm displays a fluorescence maximum at 305 nm, while for excitations at higher wavelengths the maximum occurs at 335 nm. The results suggest that multiple-emission excited electronic states are populated in low-temperature gas matrices. Excitation at 265 nm produces a phosphorescence spectrum with a well-resolved vibrational structure and a maximum at 415 nm. The fluorescence decays corresponding to excitation at increasing energy of each resolved band could be fit with a double exponential, with the shorter and longer lifetimes ranging from 1.7 to 3.3 ns and from 12 to 23 ns, respectively. Only for the excitation at 180 nm one exponential is required, with the calculated lifetimes of 3.3 ns. The presented results provide an experimental evidence of the existence of multiple site-selected excited electronic states, and may help elucidate the possible deexcitation pathways of adenine. The additional application of synchrotron radiation proved to result in a significant enhancement of the resolution and spectral range of the phenomena under investigation.

  8. Flavin Adenine Dinucleotide Structural Motifs: From Solution to Gas Phase

    PubMed Central

    2015-01-01

    Flavin adenine dinucleotide (FAD) is involved in important metabolic reactions where the biological function is intrinsically related to changes in conformation. In the present work, FAD conformational changes were studied in solution and in gas phase by measuring the fluorescence decay time and ion-neutral collision cross sections (CCS, in a trapped ion mobility spectrometer, TIMS) as a function of the solvent conditions (i.e., organic content) and gas-phase collisional partner (i.e., N2 doped with organic molecules). Changes in the fluorescence decay suggest that FAD can exist in four conformations in solution, where the abundance of the extended conformations increases with the organic content. TIMS-MS experiments showed that FAD can exist in the gas phase as deprotonated (M = C27H31N9O15P2) and protonated forms (M = C27H33N9O15P2) and that multiple conformations (up to 12) can be observed as a function of the starting solution for the [M + H]+ and [M + Na]+molecular ions. In addition, changes in the relative abundances of the gas-phase structures were observed from a “stack” to a “close” conformation when organic molecules were introduced in the TIMS cell as collision partners. Candidate structures optimized at the DFT/B3LYP/6-31G(d,p) were proposed for each IMS band, and results showed that the most abundant IMS band corresponds to the most stable candidate structure. Solution and gas-phase experiments suggest that the driving force that stabilizes the different conformations is based on the interaction of the adenine and isoalloxazine rings that can be tailored by the “solvation” effect created with the organic molecules. PMID:25222439

  9. Efficient coupling of ATP hydrolysis to translocation by RecQ helicase.

    PubMed

    Rad, Behzad; Kowalczykowski, Stephen C

    2012-01-31

    Helicases are ubiquitous enzymes that unwind double-stranded DNA (dsDNA) to reveal single-stranded DNA (ssDNA) during essential processes such as replication, transcription, or repair. The Escherichia coli RecQ protein is a 3' to 5' helicase, which functions in the processes of homologous recombination and replication fork restart. Here, we analyzed the relationship between ATP hydrolysis by RecQ and its translocation on ssDNA. We monitored a single round of RecQ translocation on ssDNA by measuring the rates of inorganic phosphate release during translocation, and the dissociation of RecQ from ssDNA. We find that RecQ translocates with a rate of 16( ± 4) nucleotides/s and moves on average only 36( ± 2) nucleotides before dissociating. Fitting to an n-step kinetic model suggests that the helicase displays a nonuniform translocation mechanism in which it moves approximately five nucleotides rapidly before undergoing a rate-limiting kinetic slow step. Unexpectedly, RecQ requires a length of 34( ± 3) nucleotides to bind and translocate on ssDNA. This large site size suggests that several monomers are required to bind DNA prior to translocation. Energetically, the RecQ helicase couples the hydrolysis of one ATP molecule to the translocation of more than one nucleotide (1.6 ± 0.3). Thus, our data show that RecQ translocates on ssDNA by efficiently coupling the hydrolysis of one ATP molecule into structural alterations that result in movement of approximately two nucleotides, presumably by an inchworm mechanism. These attributes are consistent with the function of RecQ in recombination and replication.

  10. The power stroke driven by ATP binding in CFTR as studied by molecular dynamics simulations.

    PubMed

    Furukawa-Hagiya, Tomoka; Furuta, Tadaomi; Chiba, Shuntaro; Sohma, Yoshiro; Sakurai, Minoru

    2013-01-10

    Cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel belonging to the ATP binding cassette (ABC) protein superfamily. Currently, it remains unclear how ATP binding causes the opening of the channel gate at the molecular level. To clarify this mechanism, we first constructed an atomic model of the inward-facing CFTR using the X-ray structures of other ABC proteins. Molecular dynamics (MD) simulations were then performed to explore the structure and dynamics of the inward-facing CFTR in a membrane environment. In the MgATP-bound state, two nucleotide-binding domains (NBDs) formed a head-to-tail type of dimer, in which the ATP molecules were sandwiched between the Walker A and signature motifs. Alternatively, one of the final MD structures in the apo state was similar to that of a "closed-apo" conformation found in the X-ray analysis of ATP-free MsbA. Principal component analysis for the MD trajectory indicated that NBD dimerization causes significant structural and dynamical changes in the transmembrane domains (TMDs), which is likely indicative of the formation of a chloride ion access path. This study suggests that the free energy gain from ATP binding acts as a driving force not only for NBD dimerization but also for NBD-TMD concerted motions.

  11. Vibrational signatures of Watson-Crick base pairing in adenine-thymine mimics.

    PubMed

    Nosenko, Yevgeniy; Kunitski, Maksim; Stark, Tina; Göbel, Michael; Tarakeshwar, Pilarisetty; Brutschy, Bernhard

    2013-07-21

    The vibrational fingerprints of hydrogen-bonding associated with the adenine-thymine (A-T) Watson-Crick (WC) base pair have been identified in an infrared study of the A-T mimics 4-aminopyrimidine-1-methylthymine (4APM-1MT) and 4-aminopyrimidine-6-methyl-4-pyrimidinone (4APM-M4PMN) in the gas-phase. The IR vibrational spectra were measured via a double resonance scheme utilizing femtosecond multiphoton ionization. The changes in the molecular structure, anharmonic vibrational parameters, and the assignment of the observed vibrational spectra in the NH/CH stretch region were investigated by carrying out high-level theoretical calculations of the anharmonic spectra. The experimental observations and theoretical calculations indicate that the hydrogen bonds associated with WC base-pairing are relatively stronger than those associated with reverse WC (rWC) base pairing. This is manifested in a more pronounced red-shift of the H-bonded vibrational modes associated with the WC as compared with the rWC base-pairing. An analysis of the factors contributing to the anharmonicity of the vibrational modes associated with H-bonding reveals that the magnitude of the off-diagonal anharmonic coupling of the H-bonded -NH2 stretch and the -NH2 bend is much smaller in WC base-pairing than in the corresponding rWC base-pairing. The chemical and biological implications of these results, especially in the context of using vibrational spectroscopy as a tool for identifying the signatures of nucleotide base vibrations is addressed.

  12. ATP binding and hydrolysis steps of the uni-site catalysis by the mitochondrial F(1)-ATPase are affected by inorganic phosphate.

    PubMed

    Milgrom, Yakov M

    2010-10-01

    The effect of inorganic phosphate (P(i)) on uni-site ATP binding and hydrolysis by the nucleotide-depleted F(1)-ATPase from beef heart mitochondria (ndMF(1)) has been investigated. It is shown for the first time that P(i) decreases the apparent rate constant of uni-site ATP binding by ndMF(1) 3-fold with the K(d) of 0.38+/-0.14mM. During uni-site ATP hydrolysis, P(i) also shifts equilibrium between bound ATP and ADP+P(i) in the direction of ATP synthesis with the K(d) of 0.17+/-0.03mM. However, 10mM P(i) does not significantly affect ATP binding during multi-site catalysis.

  13. Nucleotide Catabolism on the Surface of Aortic Valve Xenografts; Effects of Different Decellularization Strategies.

    PubMed

    Kutryb-Zajac, Barbara; Yuen, Ada H Y; Khalpey, Zain; Zukowska, Paulina; Slominska, Ewa M; Taylor, Patricia M; Goldstein, Steven; Heacox, Albert E; Lavitrano, Marialuisa; Chester, Adrian H; Yacoub, Magdi H; Smolenski, Ryszard T

    2016-04-01

    Extracellular nucleotide metabolism controls thrombosis and inflammation and may affect degeneration and calcification of aortic valve prostheses. We evaluated the effect of different decellularization strategies on enzyme activities involved in extracellular nucleotide metabolism. Porcine valves were tested intact or decellularized either by detergent treatment or hypotonic lysis and nuclease digestion. The rates of ATP hydrolysis, AMP hydrolysis, and adenosine deamination were estimated by incubation of aorta or valve leaflet sections with substrates followed by HPLC analysis. We demonstrated relatively high activities of ecto-enzymes on porcine valve as compared to the aortic wall. Hypotonic lysis/nuclease digestion preserved >80 % of ATP and AMP hydrolytic activity but reduced adenosine deamination to <10 %. Detergent decellularization completely removed (<5 %) all these activities. These results demonstrate high intensity of extracellular nucleotide metabolism on valve surface and indicate that various valve decellularization techniques differently affect ecto-enzyme activities that could be important in the development of improved valve prostheses.

  14. Mutations in the NB-ARC Domain of I-2 That Impair ATP Hydrolysis Cause Autoactivation1[OA

    PubMed Central

    Tameling, Wladimir I.L.; Vossen, Jack H.; Albrecht, Mario; Lengauer, Thomas; Berden, Jan A.; Haring, Michel A.; Cornelissen, Ben J.C.; Takken, Frank L.W.

    2006-01-01

    Resistance (R) proteins in plants confer specificity to the innate immune system. Most R proteins have a centrally located NB-ARC (nucleotide-binding adaptor shared by APAF-1, R proteins, and CED-4) domain. For two tomato (Lycopersicon esculentum) R proteins, I-2 and Mi-1, we have previously shown that this domain acts as an ATPase module that can hydrolyze ATP in vitro. To investigate the role of nucleotide binding and hydrolysis for the function of I-2 in planta, specific mutations were introduced in conserved motifs of the NB-ARC domain. Two mutations resulted in autoactivating proteins that induce a pathogen-independent hypersensitive response upon expression in planta. These mutant forms of I-2 were found to be impaired in ATP hydrolysis, but not in ATP binding, suggesting that the ATP- rather than the ADP-bound state of I-2 is the active form that triggers defense signaling. In addition, upon ADP binding, the protein displayed an increased affinity for ADP suggestive of a change of conformation. Based on these data, we propose that the NB-ARC domain of I-2, and likely of related R proteins, functions as a molecular switch whose state (on/off) depends on the nucleotide bound (ATP/ADP). PMID:16489136

  15. Reversible transport by the ATP-binding cassette multidrug export pump LmrA: ATP synthesis at the expense of downhill ethidium uptake.

    PubMed

    Balakrishnan, Lekshmy; Venter, Henrietta; Shilling, Richard A; van Veen, Hendrik W

    2004-03-19

    The ATP dependence of ATP-binding cassette (ABC) transporters has led to the widespread acceptance that these systems are unidirectional. Interestingly, in the presence of an inwardly directed ethidium concentration gradient in ATP-depleted cells of Lactococcus lactis, the ABC multidrug transporter LmrA mediated the reverse transport (or uptake) of ethidium with an apparent K(t) of 2.0 microm. This uptake reaction was competitively inhibited by the LmrA substrate vinblastine and was significantly reduced by an E314A substitution in the membrane domain of the transporter. Similar to efflux, LmrA-mediated ethidium uptake was inhibited by the E512Q replacement in the Walker B region of the nucleotide-binding domain of the protein, which strongly reduced its drug-stimulated ATPase activity, consistent with published observations for other ABC transporters. The notion that ethidium uptake is coupled to the catalytic cycle in LmrA was further corroborated by studies in LmrA-containing cells and proteoliposomes in which reverse transport of ethidium was associated with the net synthesis of ATP. Taken together, these data demonstrate that the conformational changes required for drug transport by LmrA are (i) not too far from equilibrium under ATP-depleted conditions to be reversed by appropriate changes in ligand concentrations and (ii) not necessarily coupled to ATP hydrolysis, but associated with a reversible catalytic cycle. These findings and their thermodynamic implications shed new light on the mechanism of energy coupling in ABC transporters and have implications for the development of new modulators that could enable reverse transport-associated drug delivery in cells through their ability to uncouple ATP binding/hydrolysis from multidrug efflux.

  16. Anesthetic Propofol Overdose Causes Vascular Hyperpermeability by Reducing Endothelial Glycocalyx and ATP Production

    PubMed Central

    Lin, Ming-Chung; Lin, Chiou-Feng; Li, Chien-Feng; Sun, Ding-Ping; Wang, Li-Yun; Hsing, Chung-Hsi

    2015-01-01

    Prolonged treatment with a large dose of propofol may cause diffuse cellular cytotoxicity; however, the detailed underlying mechanism remains unclear, particularly in vascular endothelial cells. Previous studies showed that a propofol overdose induces endothelial injury and vascular barrier dysfunction. Regarding the important role of endothelial glycocalyx on the maintenance of vascular barrier integrity, we therefore hypothesized that a propofol overdose-induced endothelial barrier dysfunction is caused by impaired endothelial glycocalyx. In vivo, we intraperitoneally injected ICR mice with overdosed propofol, and the results showed that a propofol overdose significantly induced systemic vascular hyperpermeability and reduced the expression of endothelial glycocalyx, syndecan-1, syndecan-4, perlecan mRNA and heparan sulfate (HS) in the vessels of multiple organs. In vitro, a propofol overdose reduced the expression of syndecan-1, syndecan-4, perlecan, glypican-1 mRNA and HS and induced significant decreases in the nicotinamide adenine dinucleotide (NAD+)/NADH ratio and ATP concentrations in human microvascular endothelial cells (HMEC-1). Oligomycin treatment also induced significant decreases in the NAD+/NADH ratio, in ATP concentrations and in syndecan-4, perlecan and glypican-1 mRNA expression in HMEC-1 cells. These results demonstrate that a propofol overdose induces a partially ATP-dependent reduction of endothelial glycocalyx expression and consequently leads to vascular hyperpermeability due to the loss of endothelial barrier functions. PMID:26023717

  17. ATP binding and hydrolysis by Saccharomyces cerevisiae Msh2-Msh3 are differentially modulated by mismatch and double-strand break repair DNA substrates.

    PubMed

    Kumar, Charanya; Eichmiller, Robin; Wang, Bangchen; Williams, Gregory M; Bianco, Piero R; Surtees, Jennifer A

    2014-06-01

    In Saccharomyces cerevisiae, Msh2-Msh3-mediated mismatch repair (MMR) recognizes and targets insertion/deletion loops for repair. Msh2-Msh3 is also required for 3' non-homologous tail removal (3'NHTR) in double-strand break repair. In both pathways, Msh2-Msh3 binds double-strand/single-strand junctions and initiates repair in an ATP-dependent manner. However, we recently demonstrated that the two pathways have distinct requirements with respect to Msh2-Msh3 activities. We identified a set of aromatic residues in the nucleotide binding pocket (FLY motif) of Msh3 that, when mutated, disrupted MMR, but left 3'NHTR largely intact. One of these mutations, msh3Y942A, was predicted to disrupt the nucleotide sandwich and allow altered positioning of ATP within the pocket. To develop a mechanistic understanding of the differential requirements for ATP binding and/or hydrolysis in the two pathways, we characterized Msh2-Msh3 and Msh2-msh3Y942A ATP binding and hydrolysis activities in the presence of MMR and 3'NHTR DNA substrates. We observed distinct, substrate-dependent ATP hydrolysis and nucleotide turnover by Msh2-Msh3, indicating that the MMR and 3'NHTR DNA substrates differentially modify the ATP binding/hydrolysis activities of Msh2-Msh3. Msh2-msh3Y942A retained the ability to bind DNA and ATP but exhibited altered ATP hydrolysis and nucleotide turnover. We propose that both ATP and structure-specific repair substrates cooperate to direct Msh2-Msh3-mediated repair and suggest an explanation for the msh3Y942A separation-of-function phenotype.

  18. Structural Dynamics of the Heterodimeric ABC Transporter TM287/288 Induced by ATP and Substrate Binding.

    PubMed

    Furuta, Tadaomi; Sato, Yukiko; Sakurai, Minoru

    2016-12-06

    TM287/288 is a heterodimeric ATP-binding cassette (ABC) transporter, which harnesses the energy of ATP binding and hydrolysis at the nucleotide-binding domains (NBDs) to transport a wide variety of molecules through the transmembrane domains (TMDs) by alternating inward- and outward-facing conformations. Here, we conducted multiple 100 ns molecular dynamics simulations of TM287/288 in different ATP- and substrate-bound states to elucidate the effects of ATP and substrate binding. As a result, the binding of two ATP molecules to the NBDs induced the formation of the consensus ATP-binding pocket (ABP2) or the NBD dimerization, whereas these processes did not occur in the presence of a single ATP molecule or when the protein was in its apo state. Moreover, binding of the substrate to the TMDs enhanced the formation of ABP2 through allosteric TMD-NBD communication. Furthermore, in the apo state, α-helical subdomains of the NBDs approached each other, acquiring a conformation with core half-pockets exposed to the solvent, appropriate for ATP binding. We propose a "core-exposed" model for this novel conformation found in the apo state of ABC transporters. These findings provide important insights into the structural dynamics of ABC transporters.

  19. Cryo-EM structure of a group II chaperonin in the prehydrolysis ATP-bound state leading to lid closure.

    PubMed

    Zhang, Junjie; Ma, Boxue; DiMaio, Frank; Douglas, Nicholai R; Joachimiak, Lukasz A; Baker, David; Frydman, Judith; Levitt, Michael; Chiu, Wah

    2011-05-11

    Chaperonins are large ATP-driven molecular machines that mediate cellular protein folding. Group II chaperonins use their "built-in lid" to close their central folding chamber. Here we report the structure of an archaeal group II chaperonin in its prehydrolysis ATP-bound state at subnanometer resolution using single particle cryo-electron microscopy (cryo-EM). Structural comparison of Mm-cpn in ATP-free, ATP-bound, and ATP-hydrolysis states reveals that ATP binding alone causes the chaperonin to close slightly with a ∼45° counterclockwise rotation of the apical domain. The subsequent ATP hydrolysis drives each subunit to rock toward the folding chamber and to close the lid completely. These motions are attributable to the local interactions of specific active site residues with the nucleotide, the tight couplings between the apical and intermediate domains within the subunit, and the aligned interactions between two subunits across the rings. This mechanism of structural changes in response to ATP is entirely different from those found in group I chaperonins.

  20. Nucleotide specificity of the RNA editing reaction in pea chloroplasts.

    PubMed

    Nakajima, Yuki; Mulligan, R Michael

    2005-12-01

    A sensitive in vitro editing assay for the pea chloroplast petB editing site has been developed and utilized to study the mechanism of C-to-U editing in chloroplast extracts. The in vitro editing assay was characterized by several criteria including: linearity with extract amount; linearity over time; dependence on assay components; and specificity of editing site conversion. The increase in the extent C-to-U conversion of the petB editing site was nearly linear with the amount chloroplast protein extract added, although the reaction appeared to decline in rate after approximately 30 min. The assay was tested for the importance of various assay components, and the omission of protease inhibitor and ATP was shown to dramatically reduce the extent of the editing reaction. Sequence analysis of cDNA clones obtained after an in vitro editing reaction demonstrated that 12 of 17 (71%) clones were edited, and that no other nucleotide changes in these cDNAs were detected. Thus, the fidelity and specificity of the in vitro editing system appears to be excellent, and this system should be suitable to study both mechanism of the editing reaction and editing site selection. The in vitro editing reaction was strongly stimulated by the addition of ATP, and all four NTPs and dNTPs stimulated the editing reaction except for rGTP, which had no effect. Thus, the nucleotide specificity of the editing reaction is broad, and is similar in this respect to the mitochondrial editing system. Most enzyme or processes specifically utilize ATP or GTP for phosphorylation and the ability to substitute other NTPs and dNTPs is unusual. RNA helicases have a similar broad nucleotide specificity and this may reflect the involvement of an RNA helicase in plant organelle editing.

  1. Cytosolic nucleotides block and regulate the Arabidopsis vacuolar anion channel AtALMT9.

    PubMed

    Zhang, Jingbo; Martinoia, Enrico; De Angeli, Alexis

    2014-09-12

    The aluminum-activated malate transporters (ALMTs) form a membrane protein family exhibiting different physiological roles in plants, varying from conferring tolerance to environmental Al(3+) to the regulation of stomatal movement. The regulation of the anion channels of the ALMT family is largely unknown. Identifying intracellular modulators of the activity of anion channels is fundamental to understanding their physiological functions. In this study we investigated the role of cytosolic nucleotides in regulating the activity of the vacuolar anion channel AtALMT9. We found that cytosolic nucleotides modulate the transport activity of AtALMT9. This modulation was based on a direct block of the pore of the channel at negative membrane potentials (open channel block) by the nucleotide and not by a phosphorylation mechanism. The block by nucleotides of AtALMT9-mediated currents was voltage dependent. The blocking efficiency of intracellular nucleotides increased with the number of phosphate groups and ATP was the most effective cellular blocker. Interestingly, the ATP block induced a marked modification of the current-voltage characteristic of AtALMT9. In addition, increased concentrations of vacuolar anions were able to shift the ATP block threshold to a more negative membrane potential. The block of AtALMT9-mediated anion currents by ATP at negative membrane potentials acts as a gate of the channel and vacuolar anion tune this gating mechanism. Our results suggest that anion transport across the vacuolar membrane in plant cells is controlled by cytosolic nucleotides and the energetic status of the cell.

  2. Different Characteristics and Nucleotide Binding Properties of Inosine Monophosphate Dehydrogenase (IMPDH) Isoforms

    PubMed Central

    Thomas, Elaine C.; Gunter, Jennifer H.; Webster, Julie A.; Schieber, Nicole L.; Oorschot, Viola; Parton, Robert G.; Whitehead, Jonathan P.

    2012-01-01

    We recently reported that Inosine Monophosphate Dehydrogenase (IMPDH), a rate-limiting enzyme in de novo guanine nucleotide biosynthesis, clustered into macrostructures in response to decreased nucleotide levels and that there were differences between the IMPDH isoforms, IMPDH1 and IMPDH2. We hypothesised that the Bateman domains, which are present in both isoforms and serve as energy-sensing/allosteric modules in unrelated proteins, would contribute to isoform-specific differences and that mutations situated in and around this domain in IMPDH1 which give rise to retinitis pigmentosa (RP) would compromise regulation. We employed immuno-electron microscopy to investigate the ultrastructure of IMPDH macrostructures and live-cell imaging to follow clustering of an IMPDH2-GFP chimera in real-time. Using a series of IMPDH1/IMPDH2 chimera we demonstrated that the propensity to cluster was conferred by the N-terminal 244 amino acids, which includes the Bateman domain. A protease protection assay suggested isoform-specific purine nucleotide binding characteristics, with ATP protecting IMPDH1 and AMP protecting IMPDH2, via a mechanism involving conformational changes upon nucleotide binding to the Bateman domain without affecting IMPDH catalytic activity. ATP binding to IMPDH1 was confirmed in a nucleotide binding assay. The RP-causing mutation, R224P, abolished ATP binding and nucleotide protection and this correlated with an altered propensity to cluster. Collectively these data demonstrate that (i) the isoforms are differentially regulated by AMP and ATP by a mechanism involving the Bateman domain, (ii) communication occurs between the Bateman and catalytic domains and (iii) the RP-causing mutations compromise such regulation. These findings support the idea that the IMPDH isoforms are subject to distinct regulation and that regulatory defects contribute to human disease. PMID:23236438

  3. Template polymerization of nucleotide analogues

    NASA Technical Reports Server (NTRS)

    Orgel, L. E.

    1991-01-01

    Recent work on the template-directed reactions of the natural D-nucleotides has made it clear that l-nucleotides and nucleotide-like derivatives of other sugars would strongly inhibit the formation of long oligonucleotides. Consequently, attention is focusing on molecules simpler than nucleotides that might have acted as monomers of an information transfer system. We have begun a general exploration of the template directed reactions of diverse peptide analogues. I will present work by Dr. Taifeng Wu on oxidative oligomerization of phosphorothioates and of Dr. Mary Tohidi on the cyclic polymerization of nucleoside and related cyclic pyrophosphates.

  4. Studies on yeast nucleoside triphosphate-nucleoside diphosphate transphosphorylase (nucleoside diphosphokinase). IV. Steady-state kinetic properties with thymidine nucleotides (including 3'-azido-3'-deoxythymidine analogues).

    PubMed

    Kuby, S A; Fleming, G; Alber, T; Richardson, D; Takenaka, H; Hamada, M

    1991-01-01

    A study of the steady-state kinetics of the crystalline brewer's yeast (Saccharomyces carlsbergensis) nucleoside diphosphokinase, with the magnesium complexes of the adenine and thymidine nucleotides as reactants, has led to a postulated kinetic mechanism which proceeds through a substituted enzyme. This agrees with the earlier conclusions of Garces and Cleland [Biochemistry 1969; 8:633-640] who characterized a reaction between the magnesium complexes of the adenine and uridine nucleotides. An advantage of using thymidine nucleotides as reactants is that they permit accurate, rapid and continuous assays of the enzymatic activity in coupled-enzymatic tests. Through measurements of the initial velocities and product inhibition studies, the Michaelis constants, maximum velocities, and inhibition constants could be evaluated for the individual substrates. Competitive substrate inhibition was encountered at relatively high substrate concentrations, which also permitted an evaluation of their ability to act as 'dead-end' inhibitors. The Michaelis constants for the 3'-azido-3'-deoxythymidine (AzT) analogues were also evaluated and, although these values were only somewhat higher than those of their natural substrates, the Km's for the adenine nucleotides as paired substrates were lower and the Vmax's were drastically reduced. The pharmacological implications of these observations are touched upon and extrapolated to the cases where therapeutic doses of AzT may be employed.

  5. Zwitterionic character of nucleotides: possible significance in the evolution of nucleic acids.

    PubMed Central

    Sundaralingam, M; Prusiner, P

    1978-01-01

    X-ray crystallography has shown that the free acids of adenosine 5'- and 3'-monophosphates and of cytidine 5'- and 3'-monophosphates exist as zwiterions in the solid state with protonation of the adenine base at the N(1) site and of the cytosine base at the corresponding site N(3) and the phosphate group negatively charged. In this paper, evidence is presented for the zwitterionic character of the free acids of the monomeric nucleotides guanosine 5'-monophosphate and inosine 5'-monophosphate with protonation of the base at the N(7) site of the imidazole moiety. PMID:724518

  6. Extracellular Adenosine Triphosphate Associated with Amphibian Erythrocytes: Inhibition of ATP Release by Anion Channel Blockers.

    DTIC Science & Technology

    1986-01-01

    amphibian sympathetic ganglion to inhibit the M current (8). ATP may affect - . dorsal root terminals in the toad spinal cord (343), and function...Perfusion Twenty-five frogs (Rana pipiens and Rana temporaria) were •de individually sacrificed by decapitation and pithing the spinal cord . During...various nucleosides and nucleotides on the isolated toad spinal cord . Gen. Pharmacol. 9:239-247, 1978. 344. Phillis, J.W. and Wu, P.H. The role of

  7. Adenilate pool and thylakoid ATP-synthase content in pea leaves under clinorotation.

    PubMed

    Onoiko, E B; Podorvanov, V V; Zolotareva, E K

    2001-07-01

    It is known that plant resistance to stress factors is connected with energy metabolism. The energy stored in the process of photophosphorylation in the form of ATP is used then to support respiration, transpiration, organic compound synthesis, growth and development as well as to restore cell structure after its damage under extremal environmental factors. Transformation of light energy into chemical energy of ATP is catalyzed by thylakoid membrane enzymatic complex of ATPsynthase-CF1CF0. Its activity and amount in the thylakoid membrane depends on plant growth conditions. The aim of this work was investigation of clinorotation effect on light-induced dynamics of adenyl nucleotides (AMP, ADP and ATP) and estimation of CF1CF0 content in thylakoids of pea leaves grown under slow clinorotation and vertical control.

  8. Coordinating Role of His216 in MgATP Binding and Cleavage in Pyruvate Carboxylase

    PubMed Central

    2015-01-01

    His216 is a well-conserved residue in pyruvate carboxylases and, on the basis of structures of the enzyme, appears to have a role in the binding of MgATP, forming an interaction with the 3′-hydroxyl group of the ribose ring. Mutation of this residue to asparagine results in a 9-fold increase in the Km for MgATP in its steady-state cleavage in the absence of pyruvate and a 3-fold increase in the Km for MgADP in its steady-state phosphorylation by carbamoyl phosphate. However, from single-turnover experiments of MgATP cleavage, the Kd of the enzyme·MgATP complex is essentially the same in the wild-type enzyme and H216N. Direct stopped-flow measurements of nucleotide binding and release using the fluorescent analogue FTP support these observations. However, the first-order rate constant for MgATP cleavage in the single-turnover experiments in H216N is only 0.75% of that for the wild-type enzyme, and thus, the MgATP cleavage step is rate-limiting in the steady state for H216N but not for the wild-type enzyme. Close examination of the structure of the enzyme suggested that His216 may also interact with Glu218, which in turn interacts with Glu305 to form a proton relay system involved in the deprotonation of bicarbonate. Single-turnover MgATP cleavage experiments with mutations of these two residues resulted in kinetic parameters similar to those observed in H216N. We suggest that the primary role of His216 is to coordinate the binding of MgATP and the deprotonation of bicarbonate in the reaction to form the putative carboxyphosphate intermediate by participation in a proton relay system involving Glu218 and Glu305. PMID:24460480

  9. P2Y nucleotide receptors: Promise of therapeutic applications

    PubMed Central

    Jacobson, Kenneth A.; Boeynaems, Jean-Marie

    2010-01-01

    Extracellular nucleotides, such as ATP and UTP, have distinct signaling roles through a class of G protein-coupled receptors, termed P2Y. However, the receptor ligands are typically charged molecules of low bioavailability and stability in vivo. Recent progress in the development of selective agonists and antagonists for P2Y receptors and study of knockout mice have led to new drug concepts based on these receptors. The rapidly accelerating progress in this field has already resulted in drug candidates for cystic fibrosis, dry eye disease, and thrombosis. On the horizon are novel treatments of cardiovascular diseases, inflammatory diseases, and neurodegeneration. PMID:20594935

  10. Single-molecule FRET reveals nucleotide-driven conformational changes in molecular machines and their link to RNA unwinding and DNA supercoiling.

    PubMed

    Klostermeier, Dagmar

    2011-04-01

    Many complex cellular processes in the cell are catalysed at the expense of ATP hydrolysis. The enzymes involved bind and hydrolyse ATP and couple ATP hydrolysis to the catalysed process via cycles of nucleotide-driven conformational changes. In this review, I illustrate how smFRET (single-molecule fluorescence resonance energy transfer) can define the underlying conformational changes that drive ATP-dependent molecular machines. The first example is a DEAD-box helicase that alternates between two different conformations in its catalytic cycle during RNA unwinding, and the second is DNA gyrase, a topoisomerase that undergoes a set of concerted conformational changes during negative supercoiling of DNA.

  11. ATP Released by Electrical Stimuli Elicits Calcium Transients and Gene Expression in Skeletal Muscle*

    PubMed Central

    Buvinic, Sonja; Almarza, Gonzalo; Bustamante, Mario; Casas, Mariana; López, Javiera; Riquelme, Manuel; Sáez, Juan Carlos; Huidobro-Toro, Juan Pablo; Jaimovich, Enrique

    2009-01-01

    ATP released from cells is known to activate plasma membrane P2X (ionotropic) or P2Y (metabotropic) receptors. In skeletal muscle cells, depolarizing stimuli induce both a fast calcium signal associated with contraction and a slow signal that regulates gene expression. Here we show that nucleotides released to the extracellular medium by electrical stimulation are partly involved in the fast component and are largely responsible for the slow signals. In rat skeletal myotubes, a tetanic stimulus (45 Hz, 400 1-ms pulses) rapidly increased extracellular levels of ATP, ADP, and AMP after 15 s to 3 min. Exogenous ATP induced an increase in intracellular free Ca2+ concentration, with an EC50 value of 7.8 ± 3.1 μm. Exogenous ADP, UTP, and UDP also promoted calcium transients. Both fast and slow calcium signals evoked by tetanic stimulation were inhibited by either 100 μm suramin or 2 units/ml apyrase. Apyrase also reduced fast and slow calcium signals evoked by tetanus (45 Hz, 400 0.3-ms pulses) in isolated mouse adult skeletal fibers. A likely candidate for the ATP release pathway is the pannexin-1 hemichannel; its blockers inhibited both calcium transients and ATP release. The dihydropyridine receptor co-precipitated with both the P2Y2 receptor and pannexin-1. As reported previously for electrical stimulation, 500 μm ATP significantly increased mRNA expression for both c-fos and interleukin 6. Our results suggest that nucleotides released during skeletal muscle activity through pannexin-1 hemichannels act through P2X and P2Y receptors to modulate both Ca2+ homeostasis and muscle physiology. PMID:19822518

  12. Nucleotide-dependent interaction of Saccharomyces cerevisiae Hsp90 with the cochaperone proteins Sti1, Cpr6, and Sba1.

    PubMed

    Johnson, Jill L; Halas, Agnieszka; Flom, Gary

    2007-01-01

    The ATP-dependent molecular chaperone Hsp90 and partner cochaperone proteins are required for the folding and activity of diverse cellular client proteins, including steroid hormone receptors and multiple oncogenic kinases. Hsp90 undergoes nucleotide-dependent conformational changes, but little is known about how these changes are coupled to client protein activation. In order to clarify how nucleotides affect Hsp90 interactions with cochaperone proteins, we monitored assembly of wild-type and mutant Hsp90 with Sti1, Sba1, and Cpr6 in Saccharomyces cerevisiae cell extracts. Wild-type Hsp90 bound Sti1 in a nucleotide-independent manner, while Sba1 and Cpr6 specifically and independently interacted with Hsp90 in the presence of the nonhydrolyzable analog of ATP, AMP-PNP. Alterations in Hsp90 residues that contribute to ATP binding or hydrolysis prevented or altered Sba1 and Cpr6 interaction; additional alterations affected the specificity of Cpr6 interaction. Some mutant forms of Hsp90 also displayed reduced Sti1 interaction in the presence of a nucleotide. These studies indicate that cycling of Hsp90 between the nucleotide-free, open conformation and the ATP-bound, closed conformation is influenced by residues both within and outside the N-terminal ATPase domain and that these conformational changes have dramatic effects on interaction with cochaperone proteins.

  13. Slow deactivation channels in UV-photoexcited adenine DNA.

    PubMed

    Chen, Xuebo; Fang, Weihai; Wang, Haobin

    2014-03-07

    The molecular mechanism for removing the excess energy in DNA bases is responsible for the high photostability of DNA and is thus the subject of intense theoretical/computational investigation. To understand why the excited state decay of the stacked bases is significantly longer than that of the monomers, we carried out electronic structure calculations on an adenine monomer and an aqueous (dA)5 oligonucleotide employing the CASPT2//CASSCF and CASPT2//CASSCF/AMBER levels of theory. The newly-found bright excited state pair Sstack1((1)ππ*) and Sstack2((1)ππ*) of d(A)5, originated from base stacking, is of intra-base charge transfer nature and occurs in different stacked bases with charge transfer along opposite directions. Two slow deactivation channels of d(A)5 were proposed as a result of the sizable barriers along the relaxation paths starting from the FC point of the Sstack1((1)ππ*) state. The SN1P((1)nπ*) state of d(A)5 serves as an intermediate state in one relaxation channel, to which a nonadiabatic decay from the Sstack1((1)ππ*) state occurs in an energy degeneracy region. A relatively high barrier in this state is found and attributed to the steric hindrance of the DNA environment due to the large NH2 group twisting, which gives a weak and red-shifted fluorescence. Another direct relaxation channel, induced by the C2-H2 bond twisting motion, is found to go through a conical intersection between the Sstack1((1)ππ*) and the ground state. The barrier found here enables fluorescence from the Sstack1((1)ππ*) state and may explain the bright state emission observed in the fluorescence upconversion measurements. The inter-molecular SCT((1)ππ*) state may be involved in the slow relaxation process of the photoexcited adenine oligomers through efficient internal conversion to the intra-base Sstack1((1)ππ*) state.

  14. How the CCA-Adding Enzyme Selects Adenine over Cytosine at Position 76 of tRNA

    SciTech Connect

    Pan, Baocheng; Xiong, Yong; Steitz, Thomas A.

    2010-11-22

    CCA-adding enzymes [ATP(CTP):tRNA nucleotidyltransferases] add CCA onto the 3{prime} end of transfer RNA (tRNA) precursors without using a nucleic acid template. Although the mechanism by which cytosine (C) is selected at position 75 of tRNA has been established, the mechanism by which adenine (A) is selected at position 76 remains elusive. Here, we report five cocrystal structures of the enzyme complexed with both a tRNA mimic and nucleoside triphosphates under catalytically active conditions. These structures suggest that adenosine 5{prime}-monophosphate is incorporated onto the A76 position of the tRNA via a carboxylate-assisted, one-metal-ion mechanism with aspartate 110 functioning as a general base. The discrimination against incorporation of cytidine 5{prime}-triphosphate (CTP) at position 76 arises from improper placement of the {alpha} phosphate of the incoming CTP, which results from the interaction of C with arginine 224 and prevents the nucleophilic attack by the 3{prime} hydroxyl group of cytidine75.

  15. How the CCA-Adding Enzyme Selects Adenine over Cytosine at Position 76 of tRNA

    SciTech Connect

    B Pan; Y Xiong; T Steitz

    2011-12-31

    CCA-adding enzymes [ATP(CTP):tRNA nucleotidyltransferases] add CCA onto the 3' end of transfer RNA (tRNA) precursors without using a nucleic acid template. Although the mechanism by which cytosine (C) is selected at position 75 of tRNA has been established, the mechanism by which adenine (A) is selected at position 76 remains elusive. Here, we report five cocrystal structures of the enzyme complexed with both a tRNA mimic and nucleoside triphosphates under catalytically active conditions. These structures suggest that adenosine 5'-monophosphate is incorporated onto the A76 position of the tRNA via a carboxylate-assisted, one-metal-ion mechanism with aspartate 110 functioning as a general base. The discrimination against incorporation of cytidine 5'-triphosphate (CTP) at position 76 arises from improper placement of the {alpha} phosphate of the incoming CTP, which results from the interaction of C with arginine 224 and prevents the nucleophilic attack by the 3' hydroxyl group of cytidine75.

  16. Cooperation and Competition between Adenylate Kinase, Nucleoside Diphosphokinase, Electron Transport, and ATP Synthase in Plant Mitochondria Studied by 31P-Nuclear Magnetic Resonance.

    PubMed Central

    Roberts, JKM.; Aubert, S.; Gout, E.; Bligny, R.; Douce, R.

    1997-01-01

    Nucleotide metabolism in potato (Solanum tuberosum) mitochondria was studied using 31P-nuclear magnetic resonance spectroscopy and the O2 electrode. Immediately following the addition of ADP, ATP synthesis exceeded the rate of oxidative phosphorylation, fueled by succinate oxidation, due to mitochondrial adenylate kinase (AK) activity two to four times the maximum activity of ATP synthase. Only when the AK reaction approached equilibrium was oxidative phosphorylation the primary mechanism for net ATP synthesis. A pool of sequestered ATP in mitochondria enabled AK and ATP synthase to convert AMP to ATP in the presence of exogenous inorganic phosphate. During this conversion, AK activity can indirectly influence rates of oxidation of both succinate and NADH via changes in mitochondrial ATP. Mitochondrial nucleoside diphosphokinase, in cooperation with ATP synthase, was found to facilitate phosphorylation of nucleoside diphosphates other than ADP at rates similar to the maximum rate of oxidative phosphorylation. These results demonstrate that plant mitochondria contain all of the machinery necessary to rapidly regenerate nucleoside triphosphates from AMP and nucleoside diphosphates made during cellular biosynthesis and that AK activity can affect both the amount of ADP available to ATP synthase and the level of ATP regulating electron transport. PMID:12223600

  17. Regulation of Ca2+ release from mitochondria by the oxidation-reduction state of pyridine nucleotides.

    PubMed

    Lehninger, A L; Vercesi, A; Bababunmi, E A

    1978-04-01

    Mitochondria from normal rat liver and heart, and also Ehrlich tumor cells, respiring on succinate as energy source in the presence of rotenone (to prevent net electron flow to oxygen from the endogenous pyridine nucleotides), rapidly take up Ca(2+) and retain it so long as the pyridine nucleotides are kept in the reduced state. When acetoacetate is added to bring the pyridine nucleotides into a more oxidized state, Ca(2+) is released to the medium. A subsequent addition of a reductant of the pyridine nucleotides such as beta-hydroxybutyrate, glutamate, or isocitrate causes reuptake of the released Ca(2+). Successive cycles of Ca(2+) release and uptake can be induced by shifting the redox state of the pyridine nucleotides to more oxidized and more reduced states, respectively. Similar observations were made when succinate oxidation was replaced as energy source by ascorbate oxidation or by the hydrolysis of ATP. These and other observations form the basis of a hypothesis for feedback regulation of Ca(2+)-dependent substrate- or energy-mobilizing enzymatic reactions by the uptake or release of mitochondrial Ca(2+), mediated by the cytosolic phosphate potential and the ATP-dependent reduction of mitochondrial pyridine nucleotides by reversal of electron transport.

  18. Regulation of Ca2+ release from mitochondria by the oxidation-reduction state of pyridine nucleotides

    PubMed Central

    Lehninger, Albert L.; Vercesi, Anibal; Bababunmi, Enitan A.

    1978-01-01

    Mitochondria from normal rat liver and heart, and also Ehrlich tumor cells, respiring on succinate as energy source in the presence of rotenone (to prevent net electron flow to oxygen from the endogenous pyridine nucleotides), rapidly take up Ca2+ and retain it so long as the pyridine nucleotides are kept in the reduced state. When acetoacetate is added to bring the pyridine nucleotides into a more oxidized state, Ca2+ is released to the medium. A subsequent addition of a reductant of the pyridine nucleotides such as β-hydroxybutyrate, glutamate, or isocitrate causes reuptake of the released Ca2+. Successive cycles of Ca2+ release and uptake can be induced by shifting the redox state of the pyridine nucleotides to more oxidized and more reduced states, respectively. Similar observations were made when succinate oxidation was replaced as energy source by ascorbate oxidation or by the hydrolysis of ATP. These and other observations form the basis of a hypothesis for feedback regulation of Ca2+-dependent substrate- or energy-mobilizing enzymatic reactions by the uptake or release of mitochondrial Ca2+, mediated by the cytosolic phosphate potential and the ATP-dependent reduction of mitochondrial pyridine nucleotides by reversal of electron transport. Images PMID:25436

  19. Structural studies on MtRecA-nucleotide complexes: insights into DNA and nucleotide binding and the structural signature of NTP recognition.

    PubMed

    Datta, S; Ganesh, N; Chandra, Nagasuma R; Muniyappa, K; Vijayan, M

    2003-02-15

    RecA protein plays a crucial role in homologous recombination and repair of DNA. Central to all activities of RecA is its binding to Mg(+2)-ATP. The active form of the protein is a helical nucleoprotein filament containing the nucleotide cofactor and single-stranded DNA. The stability and structure of the helical nucleoprotein filament formed by RecA are modulated by nucleotide cofactors. Here we report crystal structures of a MtRecA-ADP complex, complexes with ATPgammaS in the presence and absence of magnesium as well as a complex with dATP and Mg+2. Comparison with the recently solved crystal structures of the apo form as well as a complex with ADP-AlF4 confirms an expansion of the P-loop region in MtRecA, compared to its homologue in Escherichia coli, correlating with the reduced affinity of MtRecA for ATP. The ligand bound structures reveal subtle variations in nucleotide conformations among different nucleotides that serve in maintaining the network of interactions crucial for nucleotide binding. The nucleotide binding site itself, however, remains relatively unchanged. The analysis also reveals that ATPgammaS rather than ADP-AlF4 is structurally a better mimic of ATP. From among the complexed structures, a definition for the two DNA-binding loops L1 and L2 has clearly emerged for the first time and provides a basis to understand DNA binding by RecA. The structural information obtained from these complexes correlates well with the extensive biochemical data on mutants available in the literature, contributing to an understanding of the role of individual residues in the nucleotide binding pocket, at the molecular level. Modeling studies on the mutants again point to the relative rigidity of the nucleotide binding site. Comparison with other NTP binding proteins reveals many commonalties in modes of binding by diverse members in the structural family, contributing to our understanding of the structural signature of NTP recognition.

  20. Design of laser pulses for selective vibrational excitation of the N6-H bond of adenine and adenine-thymine base pair using optimal control theory.

    PubMed

    Sharma, Sitansh; Sharma, Purshotam; Singh, Harjinder; Balint-Kurti, Gabriel G

    2009-06-01

    Time dependent quantum dynamics and optimal control theory are used for selective vibrational excitation of the N6-H (amino N-H) bond in free adenine and in the adenine-thymine (A-T) base pair. For the N6-H bond in free adenine we have used a one dimensional model while for the hydrogen bond, N6-H(A)...O4(T), present in the A-T base pair, a two mathematical dimensional model is employed. The conjugate gradient method is used for the optimization of the field dependent cost functional. Optimal laser fields are obtained for selective population transfer in both the model systems, which give virtually 100% excitation probability to preselected vibrational levels. The effect of the optimized laser field on the other hydrogen bond, N1(A)...H-N3(T), present in A-T base pair is also investigated.

  1. Glioactive ATP controls BDNF recycling in cortical astrocytes

    PubMed Central

    Vignoli, Beatrice; Canossa, Marco

    2017-01-01

    ABSTRACT We have recently reported that long-term memory retention requires synaptic glia for proBDNF uptake and recycling. Through the recycling course, glial cells release endocytic BDNF, a mechanism that is activated in response to glutamate via AMPA and mGluRI/II receptors. Cortical astrocytes express receptors for many different transmitters suggesting for a complex signaling controlling endocytic BDNF secretion. Here, we demonstrated that the extracellular nucleotide ATP, activating P2X and P2Y receptors, regulates endocytic BDNF secretion in cultured astrocytes. Our data indicate that distinct glioactive molecules can participate in BDNF glial recycling and suggest that cortical astrocytes contributing to neuronal plasticity can be influenced by neurotransmitters in tune with synaptic needs. PMID:28289489

  2. The chloroplast ATP synthase: structural changes during catalysis.

    PubMed

    Richter, M L; Gao, F

    1996-10-01

    This article summarizes some of the evidence for the existence of light-driven structural changes in the epsilon and gamma subunits of the chloroplast ATP synthase. Formation of a transmembrane proton gradient results in: (1) a changed in the position of the epsilon subunit such that it becomes exposed to polyclonal antibodies and to reagents which selectively modify epsilon Lys109; (2) enhanced solvent accessibility of several sulfhydryl residues on the gamma subunit; and (3) release/exchange of tightly bound ADP from the enzyme. Theses and related experimental observations can, at least partially, be explained in terms of two different bound conformational states of the epsilon subunit. Evidence for structural changes in the enzyme which are driven by light or nucleotide binding is discussed with special reference to the popular rotational model for catalysis.

  3. Serine Metabolism Supports the Methionine Cycle and DNA/RNA Methylation through De Novo ATP Synthesis in Cancer Cells

    PubMed Central

    Maddocks, Oliver D.K.; Labuschagne, Christiaan F.; Adams, Peter D.; Vousden, Karen H.

    2016-01-01

    Summary Crosstalk between cellular metabolism and the epigenome regulates epigenetic and metabolic homeostasis and normal cell behavior. Changes in cancer cell metabolism can directly impact epigenetic regulation and promote transformation. Here we analyzed the contribution of methionine and serine metabolism to methylation of DNA and RNA. Serine can contribute to this pathway by providing one-carbon units to regenerate methionine from homocysteine. While we observed this contribution under methionine-depleted conditions, unexpectedly, we found that serine supported the methionine cycle in the presence and absence of methionine through de novo ATP synthesis. Serine starvation increased the methionine/S-adenosyl methionine ratio, decreasing the transfer of methyl groups to DNA and RNA. While serine starvation dramatically decreased ATP levels, this was accompanied by lower AMP and did not activate AMPK. This work highlights the difference between ATP turnover and new ATP synthesis and defines a vital function of nucleotide synthesis beyond making nucleic acids. PMID:26774282

  4. DNA methylation on N6-adenine in C. elegans

    PubMed Central

    Greer, Eric Lieberman; Blanco, Mario Andres; Gu, Lei; Sendinc, Erdem; Liu, Jianzhao; Aristizábal-Corrales, David; Hsu, Chih-Hung; Aravind, L.; He, Chuan; Shi, Yang

    2015-01-01

    Summary In mammalian cells, DNA methylation on the 5th position of cytosine (5mC) plays an important role as an epigenetic mark. However, DNA methylation was considered to be absent in C. elegans because of the lack of detectable 5mC as well as homologs of the cytosine DNA methyltransferases. Here, using multiple approaches, we demonstrate the presence of adenine N6-methylation (6mA) in C. elegans DNA. We further demonstrate that this modification increases trans-generationally in a paradigm of epigenetic inheritance. Importantly, we identify a DNA demethylase, NMAD-1, and a potential DNA methyltransferase, DAMT-1, which regulate 6mA levels and crosstalk between methylation of histone H3K4me2 and 6mA, and control the epigenetic inheritance of phenotypes associated with the loss of the H3K4me2 demethylase spr-5. Together, these data identify a DNA modification in C. elegans and raise the exciting possibility that 6mA may be a carrier of heritable epigenetic information in eukaryotes. PMID:25936839

  5. Radiolysis of aqueous adenine (vitamin B4) and 8-hydroxyadenine

    NASA Astrophysics Data System (ADS)

    Hartmann, J.; Quint, R. M.; Getoff, N.

    2007-05-01

    The radiolysis of adenine (vitamin B4) was studied in aqueous solution (pH˜7.4) saturated either with argon (operating radicals: 44% e -aq, 46% OH, 10% H) or with air (46% OH, 54% O 2rad - ) and with N 2O (90% OH, 10% H), respectively. The obtained initial Gi-values are: 0.88, 1.16 and 1.45. As main radiolytic product was determined 8-hydroxyadenine (8-HOA), whose yield depends on the OH concentration in the reacting media. Hence, under the same experimental conditions the Gi-values are in media saturated with argon: 0.1, in air: 0.15 and in N 2O: 0.29. In aerated solution also a mixture of aldehydes as well as of carboxylic acids were formed, but they were not identified. 8-HOA is of some biological interest; therefore, its radiolysis was also investigated under the same conditions. The determined Gi(-8HOA)-values were in airfree solution negligible, in aerated solutions: 3.1 and in the presence of N 2O: 4.0. For explanation of the product formation some probable reaction mechanisms were given.

  6. Pyrazinoic acid decreases the proton motive force, respiratory ATP synthesis activity, and cellular ATP levels.

    PubMed

    Lu, Ping; Haagsma, Anna C; Pham, Hoang; Maaskant, Janneke J; Mol, Selena; Lill, Holger; Bald, Dirk

    2011-11-01

    Pyrazinoic acid, the active form of the first-line antituberculosis drug pyrazinamide, decreased the proton motive force and respiratory ATP synthesis rates in subcellular mycobacterial membrane assays. Pyrazinoic acid also significantly lowered cellular ATP levels in Mycobacterium bovis BCG. These results indicate that the predominant mechanism of killing by this drug may operate by depletion of cellular ATP reserves.

  7. Spin-dependent electron transport in zinc- and manganese-doped adenine molecules

    SciTech Connect

    Simchi, Hamidreza; Esmaeilzadeh, Mahdi Mazidabadi, Hossein

    2014-01-28

    The spin-dependent electron transport properties of zinc- and manganese-doped adenine molecules connected to zigzag graphene leads are studied in the zero bias regime using the non-equilibrium Green's function method. The conductance of the adenine molecule increased and became spin-dependent when a zinc or manganese atom was doped into the molecules. The effects of a transverse electric field on the spin-polarization of the transmitted electrons were investigated and the spin-polarization was controlled by changing the transverse electric field. Under the presence of a transverse electric field, both the zinc- and manganese-doped adenine molecules acted as spin-filters. The maximum spin-polarization of the manganese-doped adenine molecule was greater than the molecule doped with zinc.

  8. Identification of ATP-binding regions in the RyR1 Ca²⁺ release channel.

    PubMed

    Popova, Olga B; Baker, Mariah R; Tran, Tina P; Le, Tri; Serysheva, Irina I

    2012-01-01

    ATP is an important modulator of gating in type 1 ryanodine receptor (RyR1), also known as a Ca²⁺ release channel in skeletal muscle cells. The activating effect of ATP on this channel is achieved by directly binding to one or more sites on the RyR1 protein. However, the number and location of these sites have yet to be determined. To identify the ATP-binding regions within RyR1 we used 2N₃ATP-2',3'-Biotin-LC-Hydrazone (BioATP-HDZ), a photo-reactive ATP analog to covalently label the channel. We found that BioATP-HDZ binds RyR1 specifically with an IC₅₀ = 0.6±0.2 mM, comparable with the reported EC50 for activation of RyR1 with ATP. Controlled proteolysis of labeled RyR1 followed by sequence analysis revealed three fragments with apparent molecular masses of 95, 45 and 70 kDa that were crosslinked by BioATP-HDZ and identified as RyR1 sequences. Our analysis identified four glycine-rich consensus motifs that can potentially constitute ATP-binding sites and are located within the N-terminal 95-kDa fragment. These putative nucleotide-binding sequences include amino acids 699-704, 701-706, 1081-1084 and 1195-1200, which are conserved among the three RyR isoforms. Located next to the N-terminal disease hotspot region in RyR1, these sequences may communicate the effects of ATP-binding to channel function by tuning conformational motions within the neighboring cytoplasmic regulatory domains. Two other labeled fragments lack ATP-binding consensus motifs and may form non-canonical ATP-binding sites. Based on domain topology in the 3D structure of RyR1 it is also conceivable that the identified ATP-binding regions, despite their wide separation in the primary sequence, may actually constitute the same non-contiguous ATP-binding pocket within the channel tetramer.

  9. Synthesis and Characterization of Oligodeoxyribonucleotides Modified with 2′-Amino-α-L-LNA Adenine Monomers: High-affinity Targeting of Single-Stranded DNA

    PubMed Central

    Andersen, Nicolai K.; Anderson, Brooke A.; Wengel, Jesper

    2014-01-01

    Development of conformationally restricted nucleotide building blocks continues to attract considerable interest due to their successful use within antisense, antigene and other gene-targeting strategies. Locked nucleic acid (LNA) and its diastereomer α-L-LNA are two interesting examples hereof. Oligonucleotides modified with these units display greatly increased affinity toward nucleic acid targets, improved binding specificity and enhanced enzymatic stability relative to unmodified strands. Here, we present the synthesis and biophysical characterization of oligodeoxyribonucleotides (ONs) modified with 2′-amino-α-L-LNA adenine monomers W–Z. The synthesis of target phosphoramidites 1–4 initiates from pentafuranose 5, which upon Vorbrüggen glycosylation, O2′-deacylation, O2′-activation and C2′-azide introduction yields nucleoside 8. A one-pot tandem Staudinger/intramolecular nucleophilic substitution converts 8 into 2′-amino-α-L-LNA adenine intermediate 9, which after a series of non-trivial protecting group manipulations affords key intermediate 15. Subsequent chemoselective N2′-functionalization and O3′-phosphitylation gives targets 1–4 in ~1–3% overall yield over eleven steps from 5. ONs modified with pyrene-functionalized 2′-amino-α-L-LNA adenine monomers X-Z display greatly increased affinity toward DNA targets (ΔTm/modification up to +14 °C). Results from absorption and fluorescence spectroscopy suggest that the duplex stabilization is a result of pyrene intercalation. These characteristics render N2′-pyrene-functionalized 2′-amino-α-L-LNA of considerable interest for DNA-targeting applications. PMID:24304240

  10. Interplay of Mg2+, ADP, and ATP in the cytosol and mitochondria: unravelling the role of Mg2+ in cell respiration.

    PubMed

    Gout, Elisabeth; Rébeillé, Fabrice; Douce, Roland; Bligny, Richard

    2014-10-28

    In animal and plant cells, the ATP/ADP ratio and/or energy charge are generally considered key parameters regulating metabolism and respiration. The major alternative issue of whether the cytosolic and mitochondrial concentrations of ADP and ATP directly mediate cell respiration remains unclear, however. In addition, because only free nucleotides are exchanged by the mitochondrial ADP/ATP carrier, whereas MgADP is the substrate of ATP synthase (EC 3.6.3.14), the cytosolic and mitochondrial Mg(2+) concentrations must be considered as well. Here we developed in vivo/in vitro techniques using (31)P-NMR spectroscopy to simultaneously measure these key components in subcellular compartments. We show that heterotrophic sycamore (Acer pseudoplatanus L.) cells incubated in various nutrient media contain low, stable cytosolic ADP and Mg(2+) concentrations, unlike ATP. ADP is mainly free in the cytosol, but complexed by Mg(2+) in the mitochondrial matrix, where [Mg(2+)] is tenfold higher. In contrast, owing to a much higher affinity for Mg(2+), ATP is mostly complexed by Mg(2+) in both compartments. Mg(2+) starvation used to alter cytosolic and mitochondrial [Mg(2+)] reversibly increases free nucleotide concentration in the cytosol and matrix, enhances ADP at the expense of ATP, decreases coupled respiration, and stops cell growth. We conclude that the cytosolic ADP concentration, and not ATP, ATP/ADP ratio, or energy charge, controls the respiration of plant cells. The Mg(2+) concentration, remarkably constant and low in the cytosol and tenfold higher in the matrix, mediates ADP/ATP exchange between the cytosol and matrix, [MgADP]-dependent mitochondrial ATP synthase activity, and cytosolic free ADP homeostasis.

  11. ATP-triggered anticancer drug delivery

    NASA Astrophysics Data System (ADS)

    Mo, Ran; Jiang, Tianyue; Disanto, Rocco; Tai, Wanyi; Gu, Zhen

    2014-03-01

    Stimuli-triggered drug delivery systems have been increasingly used to promote physiological specificity and on-demand therapeutic efficacy of anticancer drugs. Here we utilize adenosine-5'-triphosphate (ATP) as a trigger for the controlled release of anticancer drugs. We demonstrate that polymeric nanocarriers functionalized with an ATP-binding aptamer-incorporated DNA motif can selectively release the intercalating doxorubicin via a conformational switch when in an ATP-rich environment. The half-maximal inhibitory concentration of ATP-responsive nanovehicles is 0.24 μM in MDA-MB-231 cells, a 3.6-fold increase in the cytotoxicity compared with that of non-ATP-responsive nanovehicles. Equipped with an outer shell crosslinked by hyaluronic acid, a specific tumour-targeting ligand, the ATP-responsive nanocarriers present an improvement in the chemotherapeutic inhibition of tumour growth using xenograft MDA-MB-231 tumour-bearing mice. This ATP-triggered drug release system provides a more sophisticated drug delivery system, which can differentiate ATP levels to facilitate the selective release of drugs.

  12. ATP synthase: two motors, two fuels.

    PubMed

    Oster, G; Wang, H

    1999-04-15

    FoF1 ATPase is the universal protein responsible for ATP synthesis. The enzyme comprises two reversible rotary motors: Fo is either an ion 'turbine' or an ion pump, and F1 is either a hydrolysis motor or an ATP synthesizer. Recent biophysical and biochemical studies have helped to elucidate the operating principles for both motors.

  13. ATP-induced helicase slippage reveals highly coordinated subunits

    NASA Astrophysics Data System (ADS)

    Wang, Michelle D.

    2012-02-01

    Helicases are vital enzymes that carry out strand separation of duplex nucleic acids during replication, repair and recombination. T7 helicase, a model hexameric motor, has been observed to use dTTP, but not ATP, to unwind dsDNA as it translocates along ssDNA. Whether and how different subunits of the helicase coordinate their chemo-mechanical activities and DNA binding during translocation is still under debate. Here we address this question using a single-molecule approach to monitor helicase unwinding. We found that T7 helicase does in fact unwind dsDNA in the presence of ATP and that the unwinding rate is even faster than that with dTTP. However, unwinding was repeatedly interrupted by sudden slippage events, ultimately preventing unwinding over a substantial distance. This behaviour was greatly reduced with the supplement of a small amount of dTTP. These findings presented an opportunity to use nucleotide mixtures to investigate helicase subunit coordination. Our results support a model where nearly all subunits coordinate their chemo-mechanical activities and DNA binding. Such subunit coordination may be general to many ring-shaped helicases and reveals a potential mechanism for regulation of DNA unwinding during replication.

  14. Protonation mechanism and location of rate-determining steps for the Ascaris suum nicotinamide adenine dinucleotide-malic enzyme reaction from isotope effects and pH studies

    SciTech Connect

    Kiick, D.M.; Harris, B.G.; Cook, P.F.

    1986-01-14

    The pH dependence of the kinetic parameters and the primary deuterium isotope effects with nicotinamide adenine dinucleotide (NAD) and also thionicotinamide adenine dinucleotide (thio-NAD) as the nucleotide substrates were determined in order to obtain information about the chemical mechanism and location of rate-determining steps for the Ascaris suum NAD-malic enzyme reaction. The maximum velocity with thio-NAD as the nucleotide is pH-independent from pH 4.2 to 9.6, while with NAD, V decreases below a pK of 4.8. V/K for both nucleotides decreases below a pK of 5.6 and above a pK of 8.9. Both the tartronate pKi and V/Kmalate decrease below a pK of 4.8 and above a pK of 8.9. Oxalate is competitive vs. malate above pH 7 and noncompetitive below pH 7 with NAD as the nucleotide. The oxalate Kis increases from a constant value above a pK of 4.9 to another constant value above a pK of 6.7. The oxalate Kii also increases above a pK of 4.9, and this inhibition is enhanced by NADH. In the presence of thio-NAD the inhibition by oxalate is competitive vs. malate below pH 7. For thio-NAD, both DV and D(V/K) are pH-independent and equal to 1.7. With NAD as the nucleotide, DV decreases to 1.0 below a pK of 4.9, while D(V/KNAD) and D(V/Kmalate) are pH-independent. Above pH 7 the isotope effects on V and the V/K values for NAD and malate are equal to 1.45, the pH-independent value of DV above pH 7. Results indicate that substrates bind to only the correctly protonated form of the enzyme. Two enzyme groups are necessary for binding of substrates and catalysis. Both NAD and malate are released from the Michaelis complex at equal rates which are equal to the rate of NADH release from E-NADH above pH 7. Below pH 7 NADH release becomes more rate-determining as the pH decreases until at pH 4.0 it completely limits the overall rate of the reaction.

  15. Neutrophil gelatinase-associated lipocalin in a triphasic rat model of adenine-induced kidney injury.

    PubMed

    Gil, Amnon; Brod, Vera; Awad, Hoda; Heyman, Samuel N; Abassi, Zaid; Frajewicki, Victor

    2016-10-01

    The aim of this study is to investigate whether NGAL, given its advantages over traditional biomarkers, can be used to describe the dynamic characteristics of the renal tubulointerstitial insult caused by adenine. Subsequently, it will be possible to assess NGAL as a biomarker of any acute kidney injury, on top of chronic interstitial disease, if NGAL levels are stable through the chronic phase of our adenine model. Study group rats were fed an adenine diet, and control group rats were fed a regular diet only. Blood and urine samples for urea, creatinine and NGAL were drawn from each rat at the beginning of the study and after 1, 3, 4, 5, 6, 7 and 8 weeks. Kidney slices from these rats were stained with Hematoxylin-eosin (HE) and β-actin stainings. Serum urea, creatinine and NGAL levels and urinary NGAL/creatinine ratio in the study group were higher than baseline and than in the control group; these differences were statistically significant in some of the intervals. Tubulointerstitial changes and adenine crystals were evident in the study group rats. In the rats fed adenine, serum urea, creatinine and NGAL levels and urinary NGAL/creatinine ratio followed a triphasic pattern of kidney injury: an acute phase while on the adenine diet, a partial recovery phase after switching to the regular diet and a chronic kidney disease phase after stabilization of renal function. NGAL can serve a biomarker for acute kidney injury and possibly for chronic kidney disease in the tubulointerstitial rat model.

  16. Improved growth and stress tolerance in the Arabidopsis oxt1 mutant triggered by altered adenine metabolism.

    PubMed

    Sukrong, Suchada; Yun, Kil-Young; Stadler, Patrizia; Kumar, Charan; Facciuolo, Tony; Moffatt, Barbara A; Falcone, Deane L

    2012-11-01

    Plants perceive and respond to environmental stresses with complex mechanisms that are often associated with the activation of antioxidant defenses. A genetic screen aimed at isolating oxidative stress-tolerant lines of Arabidopsis thaliana has identified oxt1, a line that exhibits improved tolerance to oxidative stress and elevated temperature but displays no apparent deleterious growth effects under non-stress conditions. Oxt1 harbors a mutation that arises from the altered expression of a gene encoding adenine phosphoribosyltransferase (APT1), an enzyme that converts adenine to adenosine monophosphate (AMP), indicating a link between purine metabolism, whole-plant growth responses, and stress acclimation. The oxt1 mutation results in decreased APT1 expression that leads to reduced enzymatic activity. Correspondingly, oxt1 plants possess elevated levels of adenine. Decreased APT enzyme activity directly correlates with stress resistance in transgenic lines that ectopically express APT1. The metabolic alteration in oxt1 plants also alters the expression of several antioxidant defense genes and the response of these genes to oxidative challenge. Finally, it is shown that manipulation of adenine levels can induce stress tolerance to wild-type plants. Collectively, these results show that alterations in cellular adenine levels can trigger stress tolerance and improve growth, leading to increases in plant biomass. The results also suggest that adenine might play a part in the signals that modulate responses to abiotic stress and plant growth.

  17. Benchmark Thermochemistry for Biologically Relevant Adenine and Cytosine. A Combined Experimental and Theoretical Study.

    PubMed

    Emel'yanenko, Vladimir N; Zaitsau, Dzmitry H; Shoifet, Evgeni; Meurer, Florian; Verevkin, Sergey P; Schick, Christoph; Held, Christoph

    2015-09-17

    The thermochemical properties available in the literature for adenine and cytosine are in disarray. A new condensed phase standard (p° = 0.1 MPa) molar enthalpy of formation at T = 298.15 K was measured by using combustion calorimetry. New molar enthalpies of sublimation were derived from the temperature dependence of vapor pressure measured by transpiration and by the quarz-crystal microbalance technique. The heat capacities of crystalline adenine and cytosine were measured by temperature-modulated DSC. Thermodynamic data on adenine and cytosine available in the literature were collected, evaluated, and combined with our experimental results. Thus, the evaluated collection of data together with the new experimental results reported here has helped to resolve contradictions in the available enthalpies of formation. A set of reliable thermochemical data is recommended for adenine and cytosine for further thermochemical calculations. Quantum-chemical calculations of the gas phase molar enthalpies of formation of adenine and cytosine have been performed by using the G4 method and results were in excellent agreement with the recommended experimental data. The standard molar entropies of formation and the standard molar Gibbs functions of formation in crystal and gas state have been calculated. Experimental vapor-pressure data measured in this work were used to estimate pure-component PC-SAFT parameters. This allowed modeling solubility of adenine and cytosine in water over the temperature interval 278-310 K.

  18. Urothelial ATP exocytosis: regulation of bladder compliance in the urine storage phase

    PubMed Central

    Nakagomi, Hiroshi; Yoshiyama, Mitsuharu; Mochizuki, Tsutomu; Miyamoto, Tatsuya; Komatsu, Ryohei; Imura, Yoshio; Morizawa, Yosuke; Hiasa, Miki; Miyaji, Takaaki; Kira, Satoru; Araki, Isao; Fujishita, Kayoko; Shibata, Keisuke; Shigetomi, Eiji; Shinozaki, Youichi; Ichikawa, Reiko; Uneyama, Hisayuki; Iwatsuki, Ken; Nomura, Masatoshi; de Groat, William C.; Moriyama, Yoshinori; Takeda, Masayuki; Koizumi, Schuichi

    2016-01-01

    The bladder urothelium is more than just a barrier. When the bladder is distended, the urothelium functions as a sensor to initiate the voiding reflex, during which it releases ATP via multiple mechanisms. However, the mechanisms underlying this ATP release in response to the various stretch stimuli caused by bladder filling remain largely unknown. Therefore, the aim of this study was to elucidate these mechanisms. By comparing vesicular nucleotide transporter (VNUT)-deficient and wild-type male mice, we showed that ATP has a crucial role in urine storage through exocytosis via a VNUT-dependent mechanism. VNUT was abundantly expressed in the bladder urothelium, and when the urothelium was weakly stimulated (i.e. in the early filling stages), it released ATP by exocytosis. VNUT-deficient mice showed reduced bladder compliance from the early storage phase and displayed frequent urination in inappropriate places without a change in voiding function. We conclude that urothelial, VNUT-dependent ATP exocytosis is involved in urine storage mechanisms that promote the relaxation of the bladder during the early stages of filling. PMID:27412485

  19. Nucleotide-dependent protein folding in the type II chaperonin from the mesophilic archaeon Methanococcus maripaludis.

    PubMed Central

    Kusmierczyk, Andrew R; Martin, Jörg

    2003-01-01

    We report the characterization of the first chaperonin (Mm-cpn) from a mesophilic archaeon, Methanococcus maripaludis. The single gene was cloned from genomic DNA and expressed in Escherichia coli to produce a recombinant protein of 543 amino acids. In contrast with other known archaeal chaperonins, Mm-cpn is fully functional in all respects under physiological conditions of 37 degrees C. The complex has Mg(2+)-dependent ATPase activity and can prevent the aggregation of citrate synthase. It promotes a high-yield refolding of guanidinium-chloride-denatured rhodanese in a nucleotide-dependent manner. ATP binding is sufficient to effect folding, but ATP hydrolysis is not essential. PMID:12628000

  20. Labeled nucleotide phosphate (NP) probes

    DOEpatents

    Korlach, Jonas; Webb, Watt W.; Levene, Michael; Turner, Stephen; Craighead, Harold G.; Foquet, Mathieu

    2009-02-03

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid, i.e. the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence is deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site. A plurality of labelled types of nucleotide analogs are provided proximate to the active site, with each distinguishable type of nucleotide analog being complementary to a different nucleotide in the target nucleic acid sequence. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target nucleic acid at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labelled nucleotide analogs, polymerizing the growing nucleic acid strand, and identifying the added nucleotide analog are repeated so that the nucleic acid strand is further extended and the sequence of the target nucleic acid is determined.

  1. Dependence of the E. coli promoter strength and physical parameters upon the nucleotide sequence

    PubMed Central

    Berezhnoy, Andrey Y.; Shckorbatov, Yuriy G.

    2005-01-01

    The energy of interaction between complementary nucleotides in promoter sequences of E. coli was calculated and visualized. The graphic method for presentation of energy properties of promoter sequences was elaborated on. Data obtained indicated that energy distribution through the length of promoter sequence results in picture with minima at −35, −8 and +7 regions corresponding to areas with elevated AT (adenine-thymine) content. The most important difference from the random sequences area is related to −8. Four promoter groups and their energy properties were revealed. The promoters with minimal and maximal energy of interaction between complementary nucleotides have low strengths, the strongest promoters correspond to promoter clusters characterized by intermediate energy values. PMID:16252339

  2. Differential release of β-NAD+ and ATP upon activation of enteric motor neurons in primate and murine colons

    PubMed Central

    DURNIN, LEONIE; SANDERS, KENTON M.; MUTAFOVA-YAMBOLIEVA, VIOLETA N.

    2012-01-01

    Background The purinergic component of enteric inhibitory neurotransmission is important for normal motility in the gastrointestinal (GI) tract. Controversies exist about the purine(s) responsible for inhibitory responses in GI muscles: adenosine 5′-triphosphate (ATP) has been assumed to be the purinergic neurotransmitter released from enteric inhibitory motor neurons, however recent studies demonstrate that β-nicotinamide adenine dinucleotide (β-NAD+) and ADP-ribose mimic the inhibitory neurotransmitter better than ATP in primate and murine colons. The study was designed to clarify the sources of purines in colons of Cynomolgus monkeys and C57BL/6 mice. Methods HPLC with fluorescence detection was used to analyze purines released by stimulation of nicotinic acetylcholine receptors (nAChR) and serotonergic 5-HT3 receptors (5-HT3R), known to be present on cell bodies and dendrites of neurons within the myenteric plexus. Key Results nAChR or 5-HT3R agonists increased overflow of ATP and β-NAD+ from tunica muscularis of monkey and murine colon. The agonists did not release purines from circular muscles of monkey colon lacking myenteric ganglia. Agonist-evoked overflow of β-NAD+, but not ATP, was inhibited by tetrodotoxin (0.5 μM) or ω-conotoxin GVIA (50 nM), suggesting that β-NAD+ release requires nerve action potentials and junctional mechanisms known to be critical for neurotransmission. ATP was likely released from nerve cell bodies in myenteric ganglia and not from nerve terminals of motor neurons. Conclusions & Inferences These results support the conclusion that ATP is not a motor neurotransmitter in the colon and are consistent with the hypothesis that β-NAD+, or its metabolites, serve as the purinergic inhibitory neurotransmitter. PMID:23279315

  3. Exercise sensitizes skeletal muscle to extracellular ATP for IL-6 expression in mice.

    PubMed

    Fernández-Verdejo, R; Casas, M; Galgani, J E; Jaimovich, E; Buvinic, S

    2014-04-01

    Active skeletal muscle synthesizes and releases interleukin-6 (IL-6), which plays important roles in the organism's adaptation to exercise. Autocrine/paracrine ATP signaling has been shown to modulate IL-6 expression. The aim of this study was to determine whether a period of physical activity modifies the ATP-induced IL-6 expression. BalbC mice were either subject to 5 weeks voluntary wheel running (VA) or kept sedentary (SED). Flexor digitorum brevis muscles were dissected, stimulated with different ATP concentrations (0-100 μM) and IL-6 mRNA levels were measured using qPCR. ATP evoked a concentration-dependent rise in IL-6 mRNA in both SED and VA mice. VA mice however, had significantly higher ATP sensitivity (pD2 pharmacological values: VA=5.58±0.02 vs. SED=4.95±0.04, p<0.05). Interestingly, in VA mice we observed a positive correlation between the level of physical activity and the IL-6 mRNA increase following fiber stimulation with 10 μM ATP. In addition, there were lower P2Y2- and higher P2Y14-receptor mRNA levels in skeletal muscles of VA compared to SED mice, showing plasticity of nucleotide receptors with exercise. These results suggest that exercise increases skeletal muscle ATP sensitivity, a response dependent on the level of physical activity performed. This could have an important role in the mechanisms controlling skeletal muscle adaptation to exercise and training.

  4. Cystic fibrosis transmembrane conductance regulator: a chloride channel gated by ATP binding and hydrolysis.

    PubMed

    Bompadre, Silvia G; Hwang, Tzyh-Chang

    2007-08-25

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel that belongs to the ATP-binding cassette (ABC) transporter superfamily. Defective function of CFTR is responsible for cystic fibrosis (CF), the most common lethal autosomal recessive disorder in Caucasian populations. The disease is manifested in defective chloride transport across the epithelial cells in various tissues. To date, more than 1400 different mutations have been identified as CF-associated. CFTR is regulated by phosphorylation in its regulatory (R) domain, and gated by ATP binding and hydrolysis at its two nucleotide-binding domains (NBD1 and NBD2). Recent studies reveal that the NBDs of CFTR may dimerize as observed in other ABC proteins. Upon dimerization of CFTR's two NBDs, in a head-to-tail configuration, the two ATP-binding pockets (ABP1 and ABP2) are formed by the canonical Walker A and B motifs from one NBD and the signature sequence from the partner NBD. Mutations of the amino acids that interact with ATP reveal that the two ABPs play distinct roles in controlling ATP-dependent gating of CFTR. It was proposed that binding of ATP to the ABP2, which is formed by the Walker A and B in NBD2 and the signature sequence in NBD1, is critical for catalyzing channel opening. While binding of ATP to the ABP1 alone may not increase the opening rate, it does contribute to the stabilization of the open channel conformation. Several disease-associated mutations of the CFTR channel are characterized by gating defects. Understanding how CFTR's two NBDs work together to gate the channel could provide considerable mechanistic information for future pharmacological studies, which could pave the way for tailored drug design for therapeutical interventions in CF.

  5. Identification of widespread adenosine nucleotide binding in Mycobacterium tuberculosis

    SciTech Connect

    Ansong, Charles; Ortega, Corrie; Payne, Samuel H.; Haft, Daniel H.; Chauvigne-Hines, Lacie M.; Lewis, Michael P.; Ollodart, Anja R.; Purvine, Samuel O.; Shukla, Anil K.; Fortuin, Suereta; Smith, Richard D.; Adkins, Joshua N.; Grundner, Christoph; Wright, Aaron T.

    2013-01-24

    The annotation of protein function is almost completely performed by in silico approaches. However, computational prediction of protein function is frequently incomplete and error prone. In Mycobacterium tuberculosis (Mtb), ~25% of all genes have no predicted function and are annotated as hypothetical proteins. This lack of functional information severely limits our understanding of Mtb pathogenicity. Current tools for experimental functional annotation are limited and often do not scale to entire protein families. Here, we report a generally applicable chemical biology platform to functionally annotate bacterial proteins by combining activity-based protein profiling (ABPP) and quantitative LC-MS-based proteomics. As an example of this approach for high-throughput protein functional validation and discovery, we experimentally annotate the families of ATP-binding proteins in Mtb. Our data experimentally validate prior in silico predictions of >250 ATPases and adenosine nucleotide-binding proteins, and reveal 73 hypothetical proteins as novel ATP-binding proteins. We identify adenosine cofactor interactions with many hypothetical proteins containing a diversity of unrelated sequences, providing a new and expanded view of adenosine nucleotide binding in Mtb. Furthermore, many of these hypothetical proteins are both unique to Mycobacteria and essential for infection, suggesting specialized functions in mycobacterial physiology and pathogenicity. Thus, we provide a generally applicable approach for high throughput protein function discovery and validation, and highlight several ways in which application of activity-based proteomics data can improve the quality of functional annotations to facilitate novel biological insights.

  6. Extracellular nucleotides inhibit growth of human oesophageal cancer cells via P2Y2-receptors

    PubMed Central

    Maaser, K; Höpfner, M; Kap, H; Sutter, A P; Barthel, B; von Lampe, B; Zeitz, M; Scherübl, H

    2002-01-01

    Extracellular ATP is known to inhibit growth of various tumours by activating specific purinergic receptors (P2-receptors). Since the therapy of advanced oesophageal cancer is unsatisfying, new therapeutic approaches are mandatory. Here, we investigated the functional expression and potential antiproliferative effects of P2-purinergic receptors in human oesophageal cancer cells. Prolonged incubation of primary cell cultures of human oesophageal cancers as well as of the squamous oesophageal cancer cell line Kyse-140 with ATP or its stable analogue ATPγS dose-dependently inhibited cell proliferation. This was due to both an induction of apoptosis and cell cycle arrest. The expression of P2-receptors was examined by RT-PCR, immunocytochemistry, and [Ca2+]i-imaging. Application of various extracellular nucleotides dose-dependently increased [Ca2+]i. The rank order of potency was ATP=UTP>ATPγS>ADP=UDP. 2-methylthio-ATP and α,β-methylene-ATP had no effects on [Ca2+]i. Complete cross-desensitization between ATP and UTP was observed. Moreover, the phospholipase C inhibitor U73122 dose-dependently reduced the ATP triggered [Ca2+]i signal. The pharmacological features strongly suggest the functional expression of G-protein coupled P2Y2-receptors in oesophageal squamous cancer cells. P2Y2-receptors are involved in the antiproliferative actions of extracellular nucleotides. Thus, P2Y2-receptors are promising target proteins for innovative approaches in oesophageal cancer therapy. British Journal of Cancer (2002) 86, 636–644. DOI: 10.1038/sj/bjc/6600100 www.bjcancer.com © 2002 Cancer Research UK PMID:11870549

  7. Phenotype and Genotype Characterization of Adenine Phosphoribosyltransferase Deficiency

    PubMed Central

    Bollée, Guillaume; Dollinger, Cécile; Boutaud, Lucile; Guillemot, Delphine; Bensman, Albert; Harambat, Jérôme; Deteix, Patrice; Daudon, Michel; Knebelmann, Bertrand

    2010-01-01

    Adenine phosphoribosyltransferase (APRT) deficiency is a rare autosomal recessive disorder causing 2,8-dihydroxyadenine stones and renal failure secondary to intratubular crystalline precipitation. Little is known regarding the clinical presentation of APRT deficiency, especially in the white population. We retrospectively reviewed all 53 cases of APRT deficiency (from 43 families) identified at a single institution between 1978 and 2009. The median age at diagnosis was 36.3 years (range 0.5 to 78.0 years). In many patients, a several-year delay separated the onset of symptoms and diagnosis. Of the 40 patients from 33 families with full clinical data available, 14 (35%) had decreased renal function at diagnosis. Diagnosis occurred in six (15%) patients after reaching ESRD, with five diagnoses made at the time of disease recurrence in a renal allograft. Eight (20%) patients reached ESRD during a median follow-up of 74 months. Thirty-one families underwent APRT sequencing, which identified 54 (87%) mutant alleles on the 62 chromosomes analyzed. We identified 18 distinct mutations. A single T insertion in a splice donor site in intron 4 (IVS4 + 2insT), which produces a truncated protein, accounted for 40.3% of the mutations. We detected the IVS4 + 2insT mutation in two (0.98%) of 204 chromosomes of healthy newborns. This report, which is the largest published series of APRT deficiency to date, highlights the underdiagnosis and potential severity of this disease. Early diagnosis is crucial for initiation of effective treatment with allopurinol and for prevention of renal complications. PMID:20150536

  8. Nucleotide and bivalent cation specificity of the insulin-granule proton translocase.

    PubMed Central

    Hutton, J C; Peshavaria, M

    1983-01-01

    1. The nucleotide and bivalent cation specificity of the proton translocase activity of insulin secretory granules was investigated by assessing the inhibitor-sensitive rates of nucleotide hydrolysis by these organelles in relation to their chemiosmotic properties. 2. The relative rates of nucleotide hydrolysis by freeze/thawed granule preparations were: Mg2+ATP (100%) greater than Mg2+GTP (55%) greater than Mg2+UTP (48%) greater than Mg2+ITP (44%) greater than Mg2+CTP (23%) greater than Mg2+TTP (20%), and by intact granules were: Mg2+ATP (100%) greater than Mg2+ITP (74%) greater than Mg2+GTP (60%) greater than Mg2+CTP (35%). Mg2+ATP, Mg2+GTP and Mg2+ITP hydrolyses were inhibited by tributyltin and stimulated, in intact granules, by the protonophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone; Mg2+CTP hydrolysis was not markedly affected by these compounds. Correspondingly, only Mg2+ATP, Mg2+GTP and Mg2+ITP produced large changes in the delta psi and delta mu H+ across the granule membrane. 3. The relative rates of maximal ATPase activity stimulated by bivalent cations in freeze/thawed granule preparations were: Mg2+ (100%) greater than Mn2+ (82%) greater than Ca2+ (40%) greater than Co2+ (36%) greater than Zn2+ (0%), and in intact granules were: Mg2+ (100%) greater than Mn2+ (85%) greater than Co2+ (61%) greater than Ca2+ (42%). Tributyltin and carbonyl cyanide p-trifluoromethoxyphenylhydrazone affected Mg2+-, Mn2+- and Co2+-activated, but not Ca2+-activated, ATP hydrolysis. Correspondingly, only Mg2+, Mn2+ and Co2+ supported the generation of a delta psi and delta mu H+ across granule membranes in the presence of ATP. 4. The results were consistent with a single proton translocase that had its catalytic site exposed on the external face of the granule membrane. The indicated specificity (Mg2+ATP = Mn2+ATP greater than Co2+ATP greater than Mg2+GTP greater than Mg2+ITP) was similar to that of enzymes described in membrane fractions prepared from

  9. Selective nucleotide-release from dense-core granules in insulin-secreting cells.

    PubMed

    Obermüller, Stefanie; Lindqvist, Anders; Karanauskaite, Jovita; Galvanovskis, Juris; Rorsman, Patrik; Barg, Sebastian

    2005-09-15

    Secretory granules of insulin-secreting cells are used to store and release peptide hormones as well as low-molecular-weight compounds such as nucleotides. Here we have compared the rate of exocytosis with the time courses of nucleotide and peptide release by a combination of capacitance measurements, electrophysiological detection of ATP release and single-granule imaging. We demonstrate that the release of nucleotides and peptides is delayed by approximately 0.1 and approximately 2 seconds with respect to membrane fusion, respectively. We further show that in up to 70% of the cases exocytosis does not result in significant release of the peptide cargo, likely because of a mechanism that leads to premature closure of the fusion pore. Release of nucleotides and protons occurred regardless of whether peptides were secreted or not. These observations suggest that insulin-secreting cells are able to use the same secretory vesicles to release small molecules either alone or together with the peptide hormone.

  10. On the excitatory effects of ATP and its role as a neurotransmitter in coeliac neurons of the guinea-pig.

    PubMed Central

    Silinsky, E M; Gerzanich, V

    1993-01-01

    1. The effects of ATP on neurons from guinea-pig coeliac ganglia were studied to evaluate the possibility that this nucleotide acts as an excitatory neurotransmitter substance. 2. In experiments with intracellular microelectrodes, ATP (> or = 10 nM) depolarized coeliac neurons from the resting potential and produced an increase in the membrane conductance. These excitatory effects of ATP were observed in isolated coeliac ganglia, in acutely dissociated neurons or in cultured neurons. ATP also produced membrane conductance increases in neurons clamped at the resting potential using a single electrode voltage clamp. 3. When studied in the whole-cell configuration of the patch clamp (intracellular Cs+ to block K+ currents; -50 mV holding potential), ATP evoked inward currents in a manner more potent and efficacious than acetylcholine (ACh). 4. Whole-cell currents induced by ATP were inwardly rectifying and reversed at -13 mV in normal Na+ solutions. Changes in extracellular Na+ concentration altered the reversal potential in a manner predicted by the Goldman-Hodgkin-Katz bi-ionic equation with a ratio of Na+ to Cs+ permeability (PNa/PCs) = 0.6. 5. Single channel currents were evoked by ATP in excised (outside-out) patches. Current-voltage relationships for single channel currents exhibited inward rectification. The mean single channel conductance was 22 pS at -50 mV. 6. Antagonists of ATP-gated channels (suramin, Reactive Blue 2) reduced the effects of ATP but not ACh. 7. Antagonists at nicotinic receptors/ion channels (hexamethonium or tubocurarine) reduced the effects of ACh but not ATP. 8. Excitatory synaptic currents were observed in cultures of coeliac neurons. Synaptic currents possessed similar current-voltage relationships to currents produced by ATP, were increased in frequency by K+ depolarization in a Ca(2+)-dependent manner, and were selectively antagonized by ATP antagonists. 9. Local K+ depolarization of the ends of neurites evoked single channel

  11. A functional role of the C-terminal 42 amino acids of SUR2A and SUR2B in the physiology and pharmacology of cardiovascular ATP-sensitive K(+) channels.

    PubMed

    Yamada, Mitsuhiko; Kurachi, Yoshihisa

    2005-07-01

    The ATP-sensitive K(+) (K(ATP)) channel is composed of four pore-forming Kir6.2 subunits and four sulfonylurea receptors (SUR). Intracellular ATP inhibits K(ATP) channels through Kir6.2. SUR is an ABC protein bearing transmembrane domains and two nucleotide-binding domains (NBD1 and NBD2). SUR increases the open probability of K(ATP) channels by interacting with ATP and ADP through NBDs and with K(+) channel openers such as nicorandil through its transmembrane domain. Because NBDs and the drug receptor allosterically interact with each other, nucleotides and drugs probably activate K(ATP) channels by causing the same conformational change of SUR. SUR2A and SUR2B have the identical drug receptor and NBDs and differ only in the C-terminal 42 amino acids (C42). Nonetheless, nicorandil ~100 times more potently activates SUR2B/Kir6.2 than SUR2A/Kir6.2 channels. Based on our allosteric model, we have analyzed the interaction between NBDs and the drug receptor in SUR2A and SUR2B and found that both nucleotide-bound NBD1 and NBD2 more strongly induce the conformational change in SUR2B than SUR2A. Therefore, C42 modulates the function of not only NBD2 which is close to C42 in a primary structure but NBD1 which is more than 630 amino acid N-terminal to C42. This raises the possibility that in the presence of nucleotides, NBD1 and NBD2 dimerize to induce the conformational change and that the dimerization enables C42 to gain access to both NBDs. Modulation of the nucleotide-NBD1 and -NBD2 interactions by C42 would determine the stability of the nucleotide-dependent dimer and thus, the physiological and pharmacological properties of K(ATP) channels.

  12. The Tomato R Gene Products I-2 and Mi-1 Are Functional ATP Binding Proteins with ATPase Activity

    PubMed Central

    Tameling, Wladimir I. L.; Elzinga, Sandra D. J.; Darmin, Patricia S.; Vossen, Jack H.; Takken, Frank L. W.; Haring, Michel A.; Cornelissen, Ben J. C.

    2002-01-01

    Most plant disease resistance (R) genes known today encode proteins with a central nucleotide binding site (NBS) and a C-terminal Leu-rich repeat (LRR) domain. The NBS contains three ATP/GTP binding motifs known as the kinase-1a or P-loop, kinase-2, and kinase-3a motifs. In this article, we show that the NBS of R proteins forms a functional nucleotide binding pocket. The N-terminal halves of two tomato R proteins, I-2 conferring resistance to Fusarium oxysporum and Mi-1 conferring resistance to root-knot nematodes and potato aphids, were produced as glutathione S-transferase fusions in Escherichia coli. In a filter binding assay, purified I-2 was found to bind ATP rather than other nucleoside triphosphates. ATP binding appeared to be fully dependent on the presence of a divalent cation. A mutant I-2 protein containing a mutation in the P-loop showed a strongly reduced ATP binding capacity. Thin layer chromatography revealed that both I-2 and Mi-1 exerted ATPase activity. Based on the strong conservation of NBS domains in R proteins of the NBS-LRR class, we propose that they all are capable of binding and hydrolyzing ATP. PMID:12417711

  13. Highly Dynamic Interactions Maintain Kinetic Stability of the ClpXP Protease During the ATP-Fueled Mechanical Cycle.

    PubMed

    Amor, Alvaro J; Schmitz, Karl R; Sello, Jason K; Baker, Tania A; Sauer, Robert T

    2016-06-17

    The ClpXP protease assembles in a reaction in which an ATP-bound ring hexamer of ClpX binds to one or both heptameric rings of the ClpP peptidase. Contacts between ClpX IGF-loops and clefts on a ClpP ring stabilize the complex. How ClpXP stability is maintained during the ATP-hydrolysis cycle that powers mechanical unfolding and translocation of protein substrates is poorly understood. Here, we use a real-time kinetic assay to monitor the effects of nucleotides on the assembly and disassembly of ClpXP. When ATP is present, complexes containing single-chain ClpX assemble via an intermediate and remain intact until transferred into buffers containing ADP or no nucleotides. ATP binding to high-affinity subunits of the ClpX hexamer prevents rapid dissociation, but additional subunits must be occupied to promote assembly. Small-molecule acyldepsipeptides, which compete with the IGF loops of ClpX for ClpP-cleft binding, cause exceptionally rapid dissociation of otherwise stable ClpXP complexes, suggesting that the IGF-loop interactions with ClpP must be highly dynamic. Our results indicate that the ClpX hexamer spends almost no time in an ATP-free state during the ATPase cycle, allowing highly processive degradation of protein substrates.

  14. Intramolecular interaction of SUR2 subtypes for intracellular ADP-Induced differential control of K(ATP) channels.

    PubMed

    Matsushita, Kenji; Kinoshita, Kengo; Matsuoka, Tetsuro; Fujita, Akikazu; Fujikado, Takashi; Tano, Yasuo; Nakamura, Haruki; Kurachi, Yoshihisa

    2002-03-22

    ATP-sensitive K+ (K(ATP)) channels are composed of sulfonylurea receptors (SURs) and inwardly rectifying Kir6.2-channels. The C-terminal 42 amino acid residues (C42) of SURs are responsible for ADP-induced differential activation of K(ATP) channels in SUR-subtypes. By examining ADP-effect on K(ATP) channels containing various chimeras of SUR2A and SUR2B, we identified a segment of 7 residues at central portion of C42 critical for this phenomenon. A 3-D structure model of the region containing the second nucleotide-binding domain (NBD2) of SUR and C42 was developed based on the structure of HisP, a nucleotide-binding protein forming the bacterial Histidine transporter complex. In the model, the polar and charged residues in the critical segment located within a distance that allows their electrostatic interaction with Arg1344 at the Walker-A loop of NBD2. Therefore, the interaction might be involved in the control of ADP-induced differential activation of SUR2-subtype K(ATP) channels.

  15. Effects of solution crowding on actin polymerization reveal the energetic basis for nucleotide-dependent filament stability

    PubMed Central

    Frederick, Kendra B.; Sept, David; De La Cruz, Enrique M.

    2008-01-01

    Actin polymerization is a fundamental cellular process involved in cell structure maintenance, force generation, and motility. Phosphate release from filament subunits following ATP hydrolysis destabilizes the filament lattice and increases the critical concentration (Cc) for assembly. The structural differences between ATP- and ADP-actin are still debated, as well as the energetic factors that underlie nucleotide-dependent filament stability, particularly under crowded intracellular conditions. Here, we investigate the effect of crowding agents on ATP- and ADP-actin polymerization, and find that ATP-actin polymerization is largely unaffected by solution crowding, while crowding agents lower the Cc of ADP-actin in a concentration-dependent manner. The stabilities of ATP- and ADP-actin filaments are comparable in the presence of physiological amounts (~30% w/v) and types (sorbitol) of low molecular weight crowding agents. Crowding agents act to stabilize ADP-F-actin by slowing subunit dissociation. These observations suggest that nucleotide hydrolysis and phosphate release per se do not introduce intrinsic differences in the in vivo filament stability. Rather, the preferential disassembly of ADP-actin filaments in cells is driven through interactions with regulatory proteins. Interpretation of the experimental data according to osmotic stress theory implicates water as an allosteric regulator of actin activity and hydration as the molecular basis for nucleotide-dependent filament stability. PMID:18374941

  16. Human erythrocyte dematin and protein 4.2 (pallidin) are ATP binding proteins.

    PubMed

    Azim, A C; Marfatia, S M; Korsgren, C; Dotimas, E; Cohen, C M; Chishti, A H

    1996-03-05

    Dematin and protein 4.2 are peripheral membrane proteins associated with the cytoplasmic surface of the human erythrocyte plasma membrane. Isoforms of dematin and protein 4.2 exist in many nonerythroid cells. In solution, dematin is a trimeric protein containing two subunits of 48 kDa and one subunit of 52 kDa. Recent determination of the primary structure of the 52 kDa subunit of dematin showed that it contains an additional 22-amino acid sequence in the headpiece domain. An alignment of the 22-amino acid insertion sequence revealed that the 52 kDa subunit of dematin shares a novel 11-amino acid motif with protein 4.2. In this communication, we report that the conserved 11-amino acid motif in dematin52 and protein 4.2 contains a nucleotide binding P-loop. Direct binding of ATP is demonstrated to the glutathione S-transferase fusion proteins containing corresponding segments of dematin52 and protein 4.2 as well as to purified protein 4.2. The binding of ATP to the recombinant domains of dematin52 and protein 4.2 is specific, saturable, and of high affinity. The nucleotide specificity of the P-loop is restricted to ATP since no detectable binding was observed with GTP. These results show that the 11-amino acid motif provides an ATP binding site in dematin52 and protein 4.2. Although the functional significance of ATP binding is not yet clear, our findings open new perspectives for the function of dematin and protein 4.2 in vivo.

  17. Dissection of the PHO pathway in Schizosaccharomyces pombe using epistasis and the alternate repressor adenine.

    PubMed

    Estill, Molly; Kerwin-Iosue, Christine L; Wykoff, Dennis D

    2015-05-01

    In Saccharomyces cerevisiae, intracellular phosphate levels are maintained by the PHO pathway, activation of which is assayed by increased phosphatase activity. The PHO pathway of Schizosaccharomyces pombe upregulates phosphatase activity (encoded by pho1 (+)) during low extracellular phosphate levels, but the underlying mechanism is poorly understood. We utilized an alternate repressor of pho1 (+) expression (adenine supplementation) along with epistasis analysis to develop a model of how S. pombe PHO pathway components interact. Analyzing Pho1 activity in S. pombe PHO pathway deletion mutants during adenine starvation, we observed most mutants with a phosphatase defect in phosphate starvation also had a defect in adenine starvation. Pho7, a transcription factor in the PHO pathway, is necessary for an adenine starvation-mediated increase in Pho1 activity. Comparing adenine starvation to phosphate starvation, there are differences in the degree to which individual mutants regulate the two responses. Through epistasis studies, we identified two positive regulatory arms and one repressive arm of the PHO pathway. PKA activation is a positive regulator of Pho1 activity under both environmental conditions and is critical for transducing adenine concentrations in the cell. The synthesis of IP7 also appears critical for the induction of Pho1 activity during adenine starvation, but IP7 is not critical during phosphate starvation, which differs from S. cerevisiae. Finally, Csk1 is critical for repression of pho1 (+) expression during phosphate starvation. We believe all of these regulatory arms converge to increase transcription of pho1 (+) and some of the regulation acts through pho7 (+).

  18. Obligate coupling of CFTR pore opening to tight nucleotide-binding domain dimerization

    PubMed Central

    Mihályi, Csaba; Töröcsik, Beáta; Csanády, László

    2016-01-01

    In CFTR, the chloride channel mutated in cystic fibrosis (CF) patients, ATP-binding-induced dimerization of two cytosolic nucleotide binding domains (NBDs) opens the pore, and dimer disruption following ATP hydrolysis closes it. Spontaneous openings without ATP are rare in wild-type CFTR, but in certain CF mutants constitute the only gating mechanism, stimulated by ivacaftor, a clinically approved CFTR potentiator. The molecular motions underlying spontaneous gating are unclear. Here we correlate energetic coupling between residues across the dimer interface with spontaneous pore opening/closure in single CFTR channels. We show that spontaneous openings are also strictly coupled to NBD dimerization, which may therefore occur even without ATP. Coordinated NBD/pore movements are therefore intrinsic to CFTR: ATP alters the stability, but not the fundamental structural architecture, of open- and closed-pore conformations. This explains correlated effects of phosphorylation, mutations, and drugs on ATP-driven and spontaneous activity, providing insights for understanding CF mutation and drug mechanisms. DOI: http://dx.doi.org/10.7554/eLife.18164.001 PMID:27328319

  19. Mechanisms of ATP Dependent Chromatin Remodeling

    PubMed Central

    Gangaraju, Vamsi K.; Bartholomew, Blaine

    2007-01-01

    The inter-relationship between DNA repair and ATP dependent chromatin remodeling has begun to become very apparent with recent discoveries. ATP dependent remodeling complexes mobilize nucleosomes along DNA, promote the exchange of histones, or completely displace nucleosomes from DNA. These remodeling complexes are often categorized based on the domain organization of their catalytic subunit. The biochemical properties and structural information of several of these remodeling complexes are reviewed. The different models for how these complexes are able to mobilize nucleosomes and alter nucleosome structure are presented incorporating several recent findings. Finally the role of histone tails and their respective modifications in ATP-dependent remodeling are discussed. PMID:17306844

  20. Pharmacological identification of P2X1, P2X4 and P2X7 nucleotide receptors in the smooth muscles of human umbilical cord and chorionic blood vessels.

    PubMed

    Valdecantos, P; Briones, R; Moya, P; Germain, A; Huidobro-Toro, J P

    2003-01-01

    To ascertain the role of extracellular adenosine 5'-triphosphate (ATP) receptors in human placenta circulation, we identified and pharmacologically characterized the P2X receptor population in its superficial vessels. Total RNA was extracted from segments of chorionic and umbilical arteries and veins of terminal placentae delivered by vaginal or Caesarian births. Polymerase chain reaction (PCR), followed by sequencing of the products, identified the presence of P2X 1, 4, 5, 6, and 7mRNAs in smooth muscle from chorionic and umbilical arteries and veins. Umbilical vessels proximal to the fetus expressed the same population of P2X subtypes, except for the P2X(5), but additionally expressed the P2X(2). Rings of chorionic vessels contracted upon addition of nucleotides and analogs with the following relative rank order of potencies in arteries and veins: alpha,beta-methyleneATP>beta,gamma-methyleneATP>PNP>ATP=diBzATP>2-MeSATP>ADP>AMP; in umbilical vessels alpha,beta-methyleneATP was at least 100-fold more potent than ATP. Nucleotide potency was less than that of PGF(2alpha) or endothelin-2, but had the same magnitude as serotonin. ATP-desensitized receptors evidenced cross desensitization to alpha,beta-methyleneATP, 2-MeSATP and diBzATP, effect not observed when desensitization was elicited by alpha,beta-methyleneATP, confirming the presence of various P2X receptor subtypes in the smooth muscles of these vessels. The vasocontractile efficacy of alpha,beta-methyleneATP was unaltered by endothelium removal, while that of ATP was significantly attenuated and those elicited by 2-MeSATP were blunted, indicating the presence of additional endothelial nucleotide receptors. These results suggest that P2X receptors participate in the humoral regulation of placental blood flow.

  1. Metal-Dependent Regulation of ATP7A and ATP7B in Fibroblast Cultures

    PubMed Central

    Lenartowicz, Malgorzata; Moos, Torben; Ogórek, Mateusz; Jensen, Thomas G.; Møller, Lisbeth B.

    2016-01-01

    Deficiency of one of the copper transporters ATP7A and ATP7B leads to the rare X-linked disorder Menkes Disease (MD) or the rare autosomal disorder Wilson disease (WD), respectively. In order to investigate whether the ATP7A and the ATP7B genes may be transcriptionally regulated, we measured the expression level of the two genes at various concentrations of iron, copper, and insulin. Treating fibroblasts from controls or from individuals with MD or WD for 3 and 10 days with iron chelators revealed that iron deficiency led to increased transcript levels of both ATP7A and ATP7B. Copper deficiency obtained by treatment with the copper chelator led to a downregulation of ATP7A in the control fibroblasts, but surprisingly not in the WD fibroblasts. In contrast, the addition of copper led to an increased expression of ATP7A, but a decreased expression of ATP7B. Thus, whereas similar regulation patterns for the two genes were observed in response to iron deficiency, different responses were observed after changes in the access to copper. Mosaic fibroblast cultures from female carriers of MD treated with copper or copper chelator for 6–8 weeks led to clonal selection. Cells that express the normal ATP7A allele had a selective growth advantage at high copper concentrations, whereas more surprisingly, cells that express the mutant