Science.gov

Sample records for adenine phosphoribosyl transferase

  1. Hypoxanthine-guanine phosphoribosyl transferase deficiency.

    PubMed

    de Bruyn, C H

    1976-02-29

    In man congential lack of enzyme of the purine salvage system, hypoxanthineguanine phosphoribosyl transferase (HG-PRT E.C. 2.4.2.8), is mostly accompanied by a picture known as the Lesch-Nyhan snydrome. The degree of deficiency may vary from zero to a few percent of normal activity but a correlation between the severity of HG-PRT deficiency and the clinical picture has not been observed, no more than a correlation HG-PRT deficiency and neurological dysfunction. But individuals with undetectable HG-PRT activity but without the Lesch-Nyhan syndrome have been described. Patients with partial HG-PRT defiency have clinically distinctive findings. Sometimes mild neurological abnormalities are observed. Because of marked overproduction of ric acid severe gouty arthritis and renal dysfunction are often encountered in both complete and partial deficiency. There is considerable molecular heterogeneity in HG-PRT deficiency in man. Mutant ebnzymes may exhibit different kinetic and electrophoretic properties, indicating that hterwe might be a mutation on the structural gene coding for HG-PRT. Lack of HG-PRT disturbs purine interconversions profoundly. In addition to an important function of HG-PRT in the uptake of the purine hypoxantine and guanine into the cell, the effective uptake of inosine, guanosine and adenosine also seems to be dependent on HG-PRT...

  2. Anthranilate phosphoribosyl transferase (TrpD) generates phosphoribosylamine for thiamine synthesis from enamines and phosphoribosyl pyrophosphate.

    PubMed

    Lambrecht, Jennifer A; Downs, Diana M

    2013-01-18

    Anthranilate phosphoribosyl transferase (TrpD) has been well characterized for its role in the tryptophan biosynthetic pathway. Here, we characterized a new reaction catalyzed by TrpD that resulted in the formation of the purine/thiamine intermediate metabolite phosphoribosylamine (PRA). The data showed that 4- and 5-carbon enamines served as substrates for TrpD, and the reaction product was predicted to be a phosphoribosyl-enamine adduct. Isotopic labeling data indicated that the TrpD reaction product was hydrolyzed to PRA. Variants of TrpD that were proficient for tryptophan synthesis were unable to support PRA formation in vivo in Salmonella enterica. These protein variants had substitutions at residues that contributed to binding substrates anthranilate or phosphoribosyl pyrophosphate (PRPP). Taken together the data herein identified a new reaction catalyzed by a well-characterized biosynthetic enzyme, and both illustrated the robustness of the metabolic network and identified a role for an enamine that accumulates in the absence of reactive intermediate deaminase RidA.

  3. Plasma Hypoxanthine-Guanine Phosphoribosyl Transferase Activity in Bottlenose Dolphins Contributes to Avoiding Accumulation of Non-recyclable Purines

    PubMed Central

    López-Cruz, Roberto I.; Crocker, Daniel E.; Gaxiola-Robles, Ramón; Bernal, Jaime A.; Real-Valle, Roberto A.; Lugo-Lugo, Orlando; Zenteno-Savín, Tania

    2016-01-01

    Marine mammals are exposed to ischemia/reperfusion and hypoxia/reoxygenation during diving. During oxygen deprivation, adenosine triphosphate (ATP) breakdown implies purine metabolite accumulation, which in humans is associated with pathological conditions. Purine recycling in seals increases in response to prolonged fasting and ischemia. Concentrations of metabolites and activities of key enzymes in purine metabolism were examined in plasma and red blood cells from bottlenose dolphins (Tursiops truncatus) and humans. Hypoxanthine and inosine monophosphate concentrations were higher in plasma from dolphins than humans. Plasma hypoxanthine-guanine phosphoribosyl transferase (HGPRT) activity in dolphins suggests an elevated purine recycling rate, and a mechanism for avoiding accumulation of non-recyclable purines (xanthine and uric acid). Red blood cell concentrations of hypoxanthine, adenosine diphosphate, ATP and guanosine triphosphate were lower in dolphins than in humans; adenosine monophosphate and nicotinamide adenine dinucleotide concentrations were higher in dolphins. HGPRT activity in red blood cells was higher in humans than in dolphins. The lower concentrations of purine catabolism and recycling by-products in plasma from dolphins could be beneficial in providing substrates for recovery of ATP depleted during diving or vigorous swimming. These results suggest that purine salvage in dolphins could be a mechanism for delivering nucleotide precursors to tissues with high ATP and guanosine triphosphate requirements. PMID:27375492

  4. Plasma Hypoxanthine-Guanine Phosphoribosyl Transferase Activity in Bottlenose Dolphins Contributes to Avoiding Accumulation of Non-recyclable Purines.

    PubMed

    López-Cruz, Roberto I; Crocker, Daniel E; Gaxiola-Robles, Ramón; Bernal, Jaime A; Real-Valle, Roberto A; Lugo-Lugo, Orlando; Zenteno-Savín, Tania

    2016-01-01

    Marine mammals are exposed to ischemia/reperfusion and hypoxia/reoxygenation during diving. During oxygen deprivation, adenosine triphosphate (ATP) breakdown implies purine metabolite accumulation, which in humans is associated with pathological conditions. Purine recycling in seals increases in response to prolonged fasting and ischemia. Concentrations of metabolites and activities of key enzymes in purine metabolism were examined in plasma and red blood cells from bottlenose dolphins (Tursiops truncatus) and humans. Hypoxanthine and inosine monophosphate concentrations were higher in plasma from dolphins than humans. Plasma hypoxanthine-guanine phosphoribosyl transferase (HGPRT) activity in dolphins suggests an elevated purine recycling rate, and a mechanism for avoiding accumulation of non-recyclable purines (xanthine and uric acid). Red blood cell concentrations of hypoxanthine, adenosine diphosphate, ATP and guanosine triphosphate were lower in dolphins than in humans; adenosine monophosphate and nicotinamide adenine dinucleotide concentrations were higher in dolphins. HGPRT activity in red blood cells was higher in humans than in dolphins. The lower concentrations of purine catabolism and recycling by-products in plasma from dolphins could be beneficial in providing substrates for recovery of ATP depleted during diving or vigorous swimming. These results suggest that purine salvage in dolphins could be a mechanism for delivering nucleotide precursors to tissues with high ATP and guanosine triphosphate requirements.

  5. Plasma Hypoxanthine-Guanine Phosphoribosyl Transferase Activity in Bottlenose Dolphins Contributes to Avoiding Accumulation of Non-recyclable Purines.

    PubMed

    López-Cruz, Roberto I; Crocker, Daniel E; Gaxiola-Robles, Ramón; Bernal, Jaime A; Real-Valle, Roberto A; Lugo-Lugo, Orlando; Zenteno-Savín, Tania

    2016-01-01

    Marine mammals are exposed to ischemia/reperfusion and hypoxia/reoxygenation during diving. During oxygen deprivation, adenosine triphosphate (ATP) breakdown implies purine metabolite accumulation, which in humans is associated with pathological conditions. Purine recycling in seals increases in response to prolonged fasting and ischemia. Concentrations of metabolites and activities of key enzymes in purine metabolism were examined in plasma and red blood cells from bottlenose dolphins (Tursiops truncatus) and humans. Hypoxanthine and inosine monophosphate concentrations were higher in plasma from dolphins than humans. Plasma hypoxanthine-guanine phosphoribosyl transferase (HGPRT) activity in dolphins suggests an elevated purine recycling rate, and a mechanism for avoiding accumulation of non-recyclable purines (xanthine and uric acid). Red blood cell concentrations of hypoxanthine, adenosine diphosphate, ATP and guanosine triphosphate were lower in dolphins than in humans; adenosine monophosphate and nicotinamide adenine dinucleotide concentrations were higher in dolphins. HGPRT activity in red blood cells was higher in humans than in dolphins. The lower concentrations of purine catabolism and recycling by-products in plasma from dolphins could be beneficial in providing substrates for recovery of ATP depleted during diving or vigorous swimming. These results suggest that purine salvage in dolphins could be a mechanism for delivering nucleotide precursors to tissues with high ATP and guanosine triphosphate requirements. PMID:27375492

  6. Comprehensive X-Ray Structural Studies of the Quinolinate Phosphoribosyl Transferase (BNA6) From Saccharomyces Cerevisiae

    SciTech Connect

    di Luccio, E.; Wilson, D.K.

    2009-05-14

    Quinolinic acid phosphoribosyl transferase (QAPRTase, EC 2.4.2.19) is a 32 kDa enzyme encoded by the BNA6 gene in yeast and catalyzes the formation of nicotinate mononucleotide from quinolinate and 5-phosphoribosyl-1-pyrophosphate (PRPP). QAPRTase plays a key role in the tryptophan degradation pathway via kynurenine, leading to the de novo biosynthesis of NAD{sup +} and clearing the neurotoxin quinolinate. To improve our understanding of the specificity of the eukaryotic enzyme and the course of events associated with catalysis, we have determined the crystal structures of the apo and singly bound forms with the substrates quinolinate and PRPP. This reveals that the enzyme folds in a manner similar to that of various prokaryotic forms which are {approx}30% identical in sequence. In addition, the structure of the Michaelis complex is approximated by PRPP and the quinolinate analogue phthalate bound to the active site. These results allow insight into the kinetic mechanism of QAPRTase and provide an understanding of structural diversity in the active site of the Saccharomyces cerevisiae enzyme when compared to prokaryotic homologues.

  7. AMP-activated protein kinase regulates nicotinamide phosphoribosyl transferase expression in skeletal muscle

    PubMed Central

    Brandauer, Josef; Vienberg, Sara G; Andersen, Marianne A; Ringholm, Stine; Risis, Steve; Larsen, Per S; Kristensen, Jonas M; Frøsig, Christian; Leick, Lotte; Fentz, Joachim; Jørgensen, Sebastian; Kiens, Bente; Wojtaszewski, Jørgen F P; Richter, Erik A; Zierath, Juleen R; Goodyear, Laurie J; Pilegaard, Henriette; Treebak, Jonas T

    2013-01-01

    Deacetylases such as sirtuins (SIRTs) convert NAD to nicotinamide (NAM). Nicotinamide phosphoribosyl transferase (Nampt) is the rate-limiting enzyme in the NAD salvage pathway responsible for converting NAM to NAD to maintain cellular redox state. Activation of AMP-activated protein kinase (AMPK) increases SIRT activity by elevating NAD levels. As NAM directly inhibits SIRTs, increased Nampt activation or expression could be a metabolic stress response. Evidence suggests that AMPK regulates Nampt mRNA content, but whether repeated AMPK activation is necessary for increasing Nampt protein levels is unknown. To this end, we assessed whether exercise training- or 5-amino-1-β-d-ribofuranosyl-imidazole-4-carboxamide (AICAR)-mediated increases in skeletal muscle Nampt abundance are AMPK dependent. One-legged knee-extensor exercise training in humans increased Nampt protein by 16% (P < 0.05) in the trained, but not the untrained leg. Moreover, increases in Nampt mRNA following acute exercise or AICAR treatment (P < 0.05 for both) were maintained in mouse skeletal muscle lacking a functional AMPK α2 subunit. Nampt protein was reduced in skeletal muscle of sedentary AMPK α2 kinase dead (KD), but 6.5 weeks of endurance exercise training increased skeletal muscle Nampt protein to a similar extent in both wild-type (WT) (24%) and AMPK α2 KD (18%) mice. In contrast, 4 weeks of daily AICAR treatment increased Nampt protein in skeletal muscle in WT mice (27%), but this effect did not occur in AMPK α2 KD mice. In conclusion, functional α2-containing AMPK heterotrimers are required for elevation of skeletal muscle Nampt protein, but not mRNA induction. These findings suggest AMPK plays a post-translational role in the regulation of skeletal muscle Nampt protein abundance, and further indicate that the regulation of cellular energy charge and nutrient sensing is mechanistically related. PMID:23918774

  8. Orotate phosphoribosyl transferase MoPyr5 is involved in uridine 5'-phosphate synthesis and pathogenesis of Magnaporthe oryzae.

    PubMed

    Qi, Zhongqiang; Liu, Muxing; Dong, Yanhan; Yang, Jie; Zhang, Haifeng; Zheng, Xiaobo; Zhang, Zhengguang

    2016-04-01

    Orotate phosphoribosyl transferase (OPRTase) plays an important role in de novo and salvage pathways of nucleotide synthesis and is widely used as a screening marker in genetic transformation. However, the function of OPRTase in plant pathogens remains unclear. In this study, we characterized an ortholog of Saccharomyces cerevisiae Ura5, the OPRTase MoPyr5, from the rice blast fungus Magnaporthe oryzae. Targeted gene disruption revealed that MoPyr5 is required for mycelial growth, appressorial turgor pressure and penetration into plant tissues, invasive hyphal growth, and pathogenicity. Interestingly, the ∆Mopyr5 mutant is also involved in mycelial surface hydrophobicity. Exogenous uridine 5'-phosphate (UMP) restored vegetative growth and rescued the defect in pathogenicity on detached barley and rice leaf sheath. Collectively, our results show that MoPyr5 is an OPRTase for UMP biosynthesis in M. oryzae and indicate that UTP biosynthesis is closely linked with vegetative growth, cell wall integrity, and pathogenicity of fungus. Our results also suggest that UMP biosynthesis would be a good target for the development of novel fungicides against M. oryzae. PMID:26810198

  9. The use of primary rat hepatocytes to achieve metabolic activation of promutagens in the Chinese hamster ovary/hypoxantine-guanine phosphoribosyl transferase mutational assay

    SciTech Connect

    Bermudez, E.; Couch, D.B.; Tillery, D.

    1982-01-01

    A method is described in which primary rat hepatocytes have been cocultured with chinese hamster ovary (CHO) cells to provide metabolic activation of promutgens in the Chinese hamster ovary/hypoxanthine-guanine phosphoribosyl transferase (CHO/HGPRT) mutational assay. Single cell hepatocyte suspensions were prepared from male Fisher-344 rats using the in situ collagenase perfusion technique. Hepatocytes were allowed to attach for 1.5 hours in tissue culture dishes containing an approximately equal number of CHO cells in log growth. The cocultures were exposed to promutagens for up to 20 hours in serum-free medium. The survival and 6-thioguanine-resistant fraction of treated CHO cells were then determined as in the standard CHO/HGPRT assay. Aflatoxin B/sub 1/ (AFB/sub 1/) 7,12-dimethylbenz(a)anthracene (DMBA) and benzo(a)pyrene (B(a)P) were found to produce increases in the mutant fractions of treated CHO cells as a function of concentration. The time required for optimum expression of the mutant phenotype following exposure to DMBA and AFB/sub 1/ was approximately 8 days. Primary cell-mediated mutagenesis may be useful in elucidating methobolic pathways important in the production and detoxification of genotoxic products in vivo.

  10. The role of the C-terminal region on the oligomeric state and enzymatic activity of Trypanosoma cruzi hypoxanthine phosphoribosyl transferase.

    PubMed

    Valsecchi, Wanda M; Cousido-Siah, Alexandra; Defelipe, Lucas A; Mitschler, André; Podjarny, Alberto; Santos, Javier; Delfino, José M

    2016-06-01

    Hypoxanthine phosphoribosyl transferase from Trypanosoma cruzi (TcHPRT) is a critical enzyme for the survival of the parasite. This work demonstrates that the full-length form in solution adopts a stable and enzymatically active tetrameric form, exhibiting large inter-subunit surfaces. Although this protein irreversibly aggregates during unfolding, oligomerization is reversible and can be modulated by low concentrations of urea. When the C-terminal region, which is predicted as a disordered stretch, is excised by proteolysis, TcHPRT adopts a dimeric state, suggesting that the C-terminal region acts as a main guide for the quaternary arrangement. These results are in agreement with X-ray crystallographic data presented in this work. On the other hand, the C-terminal region exhibits a modulatory role on the enzyme, as attested by the enhanced activity observed for the dimeric form. Bisphosphonates act as substrate-mimetics, uncovering long-range communications among the active sites. All in all, this work contributes to establish new ways applicable to the design of novel inhibitors that could eventually result in new drugs against parasitic diseases. PMID:26969784

  11. Targeted cytosine deaminase-uracil phosphoribosyl transferase suicide gene therapy induces small cell lung cancer specific cytotoxicity and tumor growth delay

    PubMed Central

    Christensen, Camilla L.; Gjetting, Torben; Poulsen, Thomas T.; Cramer, Frederik; Roth, Jack A.; Poulsen, Hans S.

    2012-01-01

    Purpose Small cell lung cancer (SCLC) is a highly malignant cancer for which there is no curable treatment and novel therapies are therefore in high demand. In the present study we investigated the therapeutic effect of transcriptionally targeted suicide gene therapy for SCLC based on the yeast cytosine deaminase (YCD) gene alone or fused with the yeast uracil phosphoribosyl transferase (YUPRT) gene followed by administration of 5-fluorocytosine (5-FC) prodrug Experimental design The YCD gene or the YCD-YUPRT gene was placed under regulation of the SCLC-specific promoter Insulinoma-associated 1 (INSM1). Therapeutic effect was evaluated in vitro in SCLC cell lines and in vivo in SCLC xenografted nude mice using the non-viral nanoparticle, DOTAP:Cholesterol for transgene delivery. Results INSM1-YCD/5-FC and INSM1-YCD-YUPRT/5-FC therapy induced high cytotoxicity in a range of SCLC cell lines. The highest therapeutic effect was obtained from the YCD-YUPRT fusion gene strategy. No cytotoxicity was induced after treatment of cell lines of other origin than SCLC. In addition the INSM1-YCD-YUPRT/5-FC therapy was superior to an established suicide gene system consisting of the Herpes Simplex Virus Thymidine Kinase (HSVTK) gene and prodrug Ganciclovir (GCV). The superior effect was in part due to massive bystander cytotoxicity of YCD-YUPRT-produced toxins. Finally, INSM1-YCD-YUPRT/5-FC therapy induced significant tumor growth delay in SCLC xenografts compared to control treated xenografts. Conclusions The current study is the first to test cytosine deaminase-based suicide gene therapy for SCLC and the first to demonstrate an anti-tumor effect from the delivery of suicide gene therapeutics for SCLC in vivo. PMID:20371678

  12. Morin, a dietary bioflavonol suppresses monosodium urate crystal-induced inflammation in an animal model of acute gouty arthritis with reference to NLRP3 inflammasome, hypo-xanthine phospho-ribosyl transferase, and inflammatory mediators.

    PubMed

    Dhanasekar, Chitra; Rasool, Mahaboobkhan

    2016-09-01

    The anti-inflammatory effect of morin, a dietary bioflavanol was explored on monosodium urate (MSU) crystal-induced inflammation in rats, an experimental model for acute gouty arthritis. Morin treatment (30mg/kg b.wt) significantly attenuated the ankle swelling and the levels of lipid peroxidation, nitric oxide, serum pro-inflammatory cytokines (tumor necrosis factor (TNF) -α, interleukin (IL)-1β, and IL-6), monocyte chemoattractant protein (MCP)-1, vascular endothelial growth factor (VEGF), prostaglandin E2 (PGE2), and articular elastase along with an increased anti-oxidant status (catalase (CAT) and superoxide dismutase (SOD)) in the joint homogenate of MSU crystal-induced rats. Histological assessment revealed that morin limited the diffusion of joint space, synovial hyperplasia, and inflammatory cell infiltrations. The mRNA expression of NLRP3 (nucleotide oligomerization domain (NOD)-like receptor family, pyrin domain containing 3) inflammasome, caspase-1, pro-inflammatory cytokines, MCP-1, inflammatory enzymes (inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2)), and nuclear factor-kappa B (NF-κB) p65 was found downregulated and HPRT (hypo-xanthine phospho-ribosyl transferase) mRNA expression was upregulated in morin treated MSU crystal-induced rats. In addition, morin treatment reduced the protein expression of NF-κB p65, p-NF-κB p65, iNOS, COX-2, and TNF-α. The results clearly demonstrated that morin exert a potent anti-inflammatory effect on MSU crystal-induced inflammation in rats.

  13. Adenine Phosphoribosyltransferase in Plant Tissues: Some Effects of Kinetin on Enzymic Activity 1

    PubMed Central

    Nicholls, P. B.; Murray, A. W.

    1968-01-01

    Adenine phosphoribosyltransferase activity was measured in extracts of soybean (Glycine max var. Acme) callus and of senescing barley leaves (Hordeum distichon c.v. Prior). The enzyme from soybean callus had Michaelis constants for adenine and 5-phosphoribosyl pyrophosphate of 1.5 and 7.5 μm respectively and was inhibited by AMP and stimulated by ATP. The presence of kinetin was found to considerably increase the activity of adenine phosphoribosyltransferase in extracts of soybean callus and senescing barley leaves. PMID:16656820

  14. Cerulenin-mediated apoptosis is involved in adenine metabolic pathway

    SciTech Connect

    Chung, Kyung-Sook; Sun, Nam-Kyu; Lee, Seung-Hee; Lee, Hyun-Jee; Choi, Shin-Jung; Kim, Sun-Kyung; Song, Ju-Hyun; Jang, Young-Joo; Song, Kyung-Bin; Yoo, Hyang-Sook; Simon, Julian . E-mail: jsimon@fhcrc.org; Won, Misun . E-mail: misun@kribb.re.kr

    2006-10-27

    Cerulenin, a fatty acid synthase (FAS) inhibitor, induces apoptosis of variety of tumor cells. To elucidate mode of action by cerulenin, we employed the proteomics approach using Schizosaccharomyces pombe. The differential protein expression profile of S. pombe revealed that cerulenin modulated the expressions of proteins involved in stresses and metabolism, including both ade10 and adk1 proteins. The nutrient supplementation assay demonstrated that cerulenin affected enzymatic steps transferring a phosphoribosyl group. This result suggests that cerulenin accumulates AMP and p-ribosyl-s-amino-imidazole carboxamide (AICAR) and reduces other necessary nucleotides, which induces feedback inhibition of enzymes and the transcriptional regulation of related genes in de novo and salvage adenine metabolic pathway. Furthermore, the deregulation of adenine nucleotide synthesis may interfere ribonucleotide reductase and cause defects in cell cycle progression and chromosome segregation. In conclusion, cerulenin induces apoptosis through deregulation of adenine nucleotide biosynthesis resulting in nuclear division defects in S. pombe.

  15. Nicotinamide Adenine Dinucleotide Based Therapeutics, Update.

    PubMed

    Pankiewicz, K W; Petrelli, R; Singh, R; Felczak, K

    2015-01-01

    About 500 NAD (P)-dependent enzymes in the cell use NAD (P) as a cofactor or a substrate. This family of broadly diversified enzymes is crucial for maintaining homeostasis of all living organisms. The NAD binding domain of these enzymes is conserved and it was believed that NAD mimics would not be of therapeutic value due to lack of selectivity. Consequently, only mycophenolic acid which selectively binds at the cofactor pocket of NAD-dependent IMP-dehydrogenase (IMPDH) has been approved as an immunosuppressant. Recently, it became clear that the NAD (P)-binding domain was structurally much more diversified than anticipated and numerous highly potent and selective inhibitors of NAD (P) dependent enzymes have been reported. It is likely, that as in the case of protein kinases inhibitors, inhibitors of NAD (P)-dependent enzymes would find soon their way to the clinic. In this review, recent developments of selective inhibitors of NAD-dependent human IMPDH, as well as inhibitors of IMPDHs from parasites, and from bacterial sources are reported. Therapies against Cryptosporidium parvum and the development of new antibiotics that are on the horizon will be discussed. New inhibitors of bacterial NAD-ligases, NAD-kinases, NMN-adenylyl transferases, as well as phosphoribosyl transferases are also described. Although none of these compounds has yet to be approved, the progress in revealing and understanding crucial factors that might allow for designing more potent and efficient drug candidates is enormous and highly encouraging. PMID:26295463

  16. Search for interstellar adenine

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Sandip K.; Majumdar, Liton; Das, Ankan; Chakrabarti, Sonali

    2015-05-01

    It is long debated if pre-biotic molecules are indeed present in the interstellar medium. Despite substantial works pointing to their existence, pre-biotic molecules are yet to be discovered with a complete confidence. In this paper, our main aim is to study the chemical evolution of interstellar adenine under various circumstances. We prepare a large gas-grain chemical network by considering various pathways for the formation of adenine. Majumdar et al. (New Astron. 20:15, 2013) proposed that in the absence of adenine detection, one could try to trace two precursors of adenine, namely, HCCN and NH2CN. Recently Merz et al. (J. Phys. Chem. A 118:3637-3644, 2014), proposed another route for the formation of adenine in interstellar condition. They proposed two more precursor molecules. But it was not verified by any accurate gas-grain chemical model. Neither was it known if the production rate would be high or low. Our paper fills this important gap. We include this new pathways to find that the contribution through this pathways for the formation of Adenine is the most dominant one in the context of interstellar medium. We propose that observers may look for the two precursors (C3NH and HNCNH) in the interstellar media which are equally important for predicting abundances of adenine. We perform quantum chemical calculations to find out spectral properties of adenine and its two new precursor molecules in infrared, ultraviolet and sub-millimeter region. Our present study would be useful for predicting abundance of adenine.

  17. Relative photomutagenicity of furocoumarins and limettin in the hypoxanthine phosphoribosyl transferase assay in V79 cells.

    PubMed

    Raquet, Nicole; Schrenk, Dieter

    2009-09-01

    Furocoumarins are phototoxic and photomutagenic natural plant constituents found in many medicinal plants and food items. Because plants contain mixtures of several furocoumarins, there is a need for a comparative risk assessment of a large number of furocoumarins. Little is known about the photomutagenicity of the structurally related family of coumarins, which are also abundant in many plant species. In this study, we analyzed the photomutagenic potency of the linear furocoumarins 5-methoxypsoralen (5-MOP) and 8-methoxypsoralen (8-MOP), the angular furocoumarin angelicin, and the coumarin limettin. Above certain concentrations, all test compounds were more or less phototoxic in the presence of UVA doses between 50 and 200 mJ/cm(2), 5-MOP being the most phototoxic compound. At nonphototoxic concentrations, linear correlations were found between concentration and mutagenicity at a UVA dose of 125 mJ/cm(2) for all test compounds including limettin. For 5-MOP, strictly linear correlations were also found for the relationships of mutagenicity vs concentration at various UVA doses or vs UVA dose at given concentrations, respectively. These data indicate that the photomutagenicity of 5-MOP is proportional to the UVA dose x concentration product for noncytotoxic combinations of both factors. They also suggest that the slope of the concentration-photomutagenicity correlation at a given UVA dose may provide a basis for comparison between individual compounds. Applying this concept, in vitro photomutagenicity equivalency factors at 125 mJ/cm(2) were as follows: 1.0 (5-MOP, reference compound), 0.25 (8-MOP), and 0.02 (angelicin and limettin, respectively). These findings provide a new concept for the description of the relative photomutagenic potency of coumarins and furocoumarins and indicate that, in V79 cells, 8-MOP is less photomutagenic and limettin and angelicin are much less photomutagenic than 5-MOP.

  18. Vertical Ionization Energies of Adenine and 9-Methyl Adenine

    NASA Astrophysics Data System (ADS)

    Dolgounitcheva, O.; Zakrzewski, V. G.; Ortiz, J. V.

    2009-07-01

    Vertical ionization energies of 9-H adenine and 9-methyl adenine have been calculated with the following, ab initio, electron propagator methods: the outer valence Green's function (OVGF), partial third-order theory (P3), and the third-order algebraic diagrammatic construction, or ADC(3). Basis set effects have been systematically examined. All methods predict near degeneracy in the π2-n1 and π3-n2 pairs of cationic, adenine final states and larger splittings of the corresponding, cationic states of 9-methyl adenine. P3 results for adenine predict the following order of the first six final states: π1, n1, π2, n2, π3, n3. Coupled-cluster calculations on the first three cationic states of adenine confirm these predictions. OVGF and ADC(3) calculations reverse the order of the second and third states and of the fourth and fifth states. All results confirm previous interpretations of experiments in which the second and third spectral bands correspond to the aforementioned pairs of final states and disagree with a recent reassignment based on time-resolved photoelectron spectra. Lower ionization energies and larger splittings in the methylated molecule are interpreted in terms of phase relationships in the Dyson orbitals. ADC(3) results confirm the qualitative validity of the one-electron approximation for the first six final states of both molecules and disclose its inadequacies for higher ionization energies.

  19. Protein Modification by Adenine Propenal

    PubMed Central

    2015-01-01

    Base propenals are products of the reaction of DNA with oxidants such as peroxynitrite and bleomycin. The most reactive base propenal, adenine propenal, is mutagenic in Escherichia coli and reacts with DNA to form covalent adducts; however, the reaction of adenine propenal with protein has not yet been investigated. A survey of the reaction of adenine propenal with amino acids revealed that lysine and cysteine form adducts, whereas histidine and arginine do not. Nε-Oxopropenyllysine, a lysine–lysine cross-link, and S-oxopropenyl cysteine are the major products. Comprehensive profiling of the reaction of adenine propenal with human serum albumin and the DNA repair protein, XPA, revealed that the only stable adduct is Nε-oxopropenyllysine. The most reactive sites for modification in human albumin are K190 and K351. Three sites of modification of XPA are in the DNA-binding domain, and two sites are subject to regulatory acetylation. Modification by adenine propenal dramatically reduces XPA’s ability to bind to a DNA substrate. PMID:25211669

  20. The 1.25 Å resolution structure of phosphoribosyl-ATP pyrophosphohydrolase from Mycobacterium tuberculosis

    SciTech Connect

    Javid-Majd, Farah; Yang, Dong; Ioerger, Thomas R.; Sacchettini, James C.

    2008-06-01

    The crystal structure of M. tuberculosis phosphoribosyl-ATP pyrophosphohydrolase, the second enzyme in the histidine-biosynthetic pathway, is presented. The structural and inferred functional relationships between M. tuberculosis phosphoribosyl-ATP pyrophosphohydrolase and other members of the nucleoside-triphosphate pyrophosphatase-fold family are described. Phosphoribosyl-ATP pyrophosphohydrolase is the second enzyme in the histidine-biosynthetic pathway, irreversibly hydrolyzing phosphoribosyl-ATP to phosphoribosyl-AMP and pyrophosphate. It is encoded by the hisE gene, which is present as a separate gene in many bacteria and archaea but is fused to hisI in other bacteria, fungi and plants. Because of its essentiality for growth in vitro, HisE is a potential drug target for tuberculosis. The crystal structures of two native (uncomplexed) forms of HisE from Mycobacterium tuberculosis have been determined to resolutions of 1.25 and 1.79 Å. The structure of the apoenzyme reveals that the protein is composed of five α-helices with connecting loops and is a member of the α-helical nucleoside-triphosphate pyrophosphatase superfamily. The biological unit of the protein is a homodimer, with an active site on each subunit composed of residues exclusively from that subunit. A comparison with the Campylobacter jejuni dUTPase active site allowed the identification of putative metal- and substrate-binding sites in HisE, including four conserved glutamate and glutamine residues in the sequence that are consistent with a motif for pyrophosphohydrolase activity. However, significant differences between family members are observed in the loop region between α-helices H1 and H3. The crystal structure of M. tuberculosis HisE provides insights into possible mechanisms of substrate binding and the diversity of the nucleoside-triphosphate pyrophosphatase superfamily.

  1. Anti-proliferative activity of L-651,582 correlates with calcium-mediated regulation of nucleotide metabolism at phosphoribosyl pyrophosphate synthetase

    SciTech Connect

    Hupe, D.J.; Behrens, N.D.; Boltz, R. )

    1990-09-01

    L-651,582, 5-amino-(4-(4-chlorobenzoyl)-3,5-dichlorobenzyl)-1, 2,3-triazole-4-carboxamide, is an antiproliferative and antiparasitic agent which inhibits nucleotide metabolism in mammalian cells. The drug equivalently inhibited 3H-hypoxanthine, 14C-adenine, and 14C-formate incorporation into nucleotide pools in Madin-Darby bovine kidney (MDBK) cells, suggesting depletion of the supply of phosphoribosyl pyrophosphate, (PRPP), required for each of these independent pathways. Inhibition of nucleotide metabolism correlated with inhibition of proliferation for three cell types with differing sensitivities toward the drug. L-651,582 inhibited incorporation of 3H-hypoxanthine into nucleotide pools with either glucose, uridine, or ribose as carbon source suggesting a block at PRPP synthetase, rather than a block in a pathway supplying ribose-5-phosphate. PRPP synthetase was not inhibited directly by the compound, indicating regulation of the enzyme in intact cells. Drug treatment did not kill cells but reduced the fraction of cells in S and G2/M while increasing the population in G1. Inhibition of uptake of 45Ca was demonstrated at concentrations identical to those required for inhibition of nucleotide metabolism or proliferation. Inhibition of cellular PRPP biosynthesis rates were also observed using EGTA to lower calcium levels. These data suggest a previously unrecognized link between calcium entry, the regulation of nucleotide biosynthesis at PRPP synthetase, and the rate of proliferation of mammalian cells.

  2. The 1.25 Å resolution structure of phosphoribosyl-ATP pyrophosphohydrolase from Mycobacterium tuberculosis

    SciTech Connect

    Javid-Majd, Farah; Yang, Dong; Ioerger, Thomas R.; Sacchettini, James C.

    2008-06-23

    Phosphoribosyl-ATP pyrophosphohydrolase is the second enzyme in the histidine-biosynthetic pathway, irreversibly hydrolyzing phosphoribosyl-ATP to phosphoribosyl-AMP and pyrophosphate. It is encoded by the hisE gene, which is present as a separate gene in many bacteria and archaea but is fused to hisI in other bacteria, fungi and plants. Because of its essentiality for growth in vitro, HisE is a potential drug target for tuberculosis. The crystal structures of two native (uncomplexed) forms of HisE from Mycobacterium tuberculosis have been determined to resolutions of 1.25 and 1.79 {angstrom}. The structure of the apoenzyme reveals that the protein is composed of five -helices with connecting loops and is a member of the {alpha}-helical nucleoside-triphosphate pyrophosphatase superfamily. The biological unit of the protein is a homodimer, with an active site on each subunit composed of residues exclusively from that subunit. A comparison with the Campylobacter jejuni dUTPase active site allowed the identification of putative metal- and substrate-binding sites in HisE, including four conserved glutamate and glutamine residues in the sequence that are consistent with a motif for pyrophosphohydrolase activity. However, significant differences between family members are observed in the loop region between {alpha}-helices H1 and H3. The crystal structure of M. tuberculosis HisE provides insights into possible mechanisms of substrate binding and the diversity of the nucleoside-triphosphate pyrophosphatase superfamily.

  3. Crystallization and preliminary X-ray diffraction study of phosphoribosyl pyrophosphate synthetase from E. Coli

    SciTech Connect

    Timofeev, V. I. Abramchik, Yu. A. Zhukhlistova, N. E. Kuranova, I. P.

    2015-09-15

    Enzymes of the phosphoribosyl pyrophosphate synthetase family (PRPPS, EC 2.7.6.1) catalyze the formation of 5-phosphoribosyl pyrophosphate (5-PRPP) from adenosine triphosphate and ribose 5-phosphate. 5-Phosphoribosyl pyrophosphate is an important intermediate in the synthesis of purine, pyrimidine, and pyridine nucleotides, as well as of the amino acids histidine and tryptophan. The crystallization conditions for E. coli PRPPS were found by the vapor-diffusion technique and were optimized to apply the capillary counter-diffusion technique. The X-ray diffraction data set was collected from the crystals grown by the counter-diffusion technique using a synchrotron radiation source to 3.1-Å resolution. The crystals of PRPPS belong to sp. gr. P6{sub 3}22 and have the following unit-cell parameters: a = b = 104.44 Å, c = 124.98 Å, α = β = 90°, γ = 120°. The collected X-ray diffraction data set is suitable for the solution of the three-dimensional structure of PRPPS at 3.1-Å resolution.

  4. Crystallization and preliminary X-ray diffraction study of phosphoribosyl pyrophosphate synthetase from E. Coli

    NASA Astrophysics Data System (ADS)

    Timofeev, V. I.; Abramchik, Yu. A.; Zhukhlistova, N. E.; Kuranova, I. P.

    2015-09-01

    Enzymes of the phosphoribosyl pyrophosphate synthetase family (PRPPS, EC 2.7.6.1) catalyze the formation of 5-phosphoribosyl pyrophosphate (5-PRPP) from adenosine triphosphate and ribose 5-phosphate. 5-Phosphoribosyl pyrophosphate is an important intermediate in the synthesis of purine, pyrimidine, and pyridine nucleotides, as well as of the amino acids histidine and tryptophan. The crystallization conditions for E. coli PRPPS were found by the vapor-diffusion technique and were optimized to apply the capillary counter-diffusion technique. The X-ray diffraction data set was collected from the crystals grown by the counter-diffusion technique using a synchrotron radiation source to 3.1-Å resolution. The crystals of PRPPS belong to sp. gr. P6322 and have the following unit-cell parameters: a = b = 104.44 Å, c = 124.98 Å, α = β = 90°, γ = 120°. The collected X-ray diffraction data set is suitable for the solution of the three-dimensional structure of PRPPS at 3.1-Å resolution.

  5. Adenine phosphoribosyltransferase from Sulfolobus solfataricus is an enzyme with unusual kinetic properties and a crystal structure that suggests it evolved from a 6-oxopurine phosphoribosyltransferase.

    PubMed

    Jensen, Kaj Frank; Hansen, Michael Riis; Jensen, Kristine Steen; Christoffersen, Stig; Poulsen, Jens-Christian Navarro; Mølgaard, Anne; Kadziola, Anders

    2015-04-14

    The adenine phosphoribosyltransferase (APRTase) encoded by the open reading frame SSO2342 of Sulfolobus solfataricus P2 was subjected to crystallographic, kinetic, and ligand binding analyses. The enzyme forms dimers in solution and in the crystals, and binds one molecule of the reactants 5-phosphoribosyl-α-1-pyrophosphate (PRPP) and adenine or the product adenosine monophosphate (AMP) or the inhibitor adenosine diphosphate (ADP) in each active site. The individual subunit adopts an overall structure that resembles a 6-oxopurine phosphoribosyltransferase (PRTase) more than known APRTases implying that APRT functionality in Crenarchaeotae has its evolutionary origin in this family of PRTases. Only the N-terminal two-thirds of the polypeptide chain folds as a traditional type I PRTase with a five-stranded β-sheet surrounded by helices. The C-terminal third adopts an unusual three-helix bundle structure that together with the nucleobase-binding loop undergoes a conformational change upon binding of adenine and phosphate resulting in a slight contraction of the active site. The inhibitor ADP binds like the product AMP with both the α- and β-phosphates occupying the 5'-phosphoribosyl binding site. The enzyme shows activity over a wide pH range, and the kinetic and ligand binding properties depend on both pH and the presence/absence of phosphate in the buffers. A slow hydrolysis of PRPP to ribose 5-phosphate and pyrophosphate, catalyzed by the enzyme, may be facilitated by elements in the C-terminal three-helix bundle part of the protein. PMID:25790177

  6. Bound anionic states of adenine

    SciTech Connect

    Haranczyk, Maciej; Gutowski, Maciej S; Li, Xiang; Bowen, Kit H

    2007-03-20

    Anionic states of nucleic acid bases are involved in DNA damage by low-energy electrons and in charge transfer through DNA. Previous gas phase studies of free, unsolvated nucleic acid base parent anions probed only dipole-bound states, which are not present in condensed phase environments, but did not observe valence anionic states, which for purine bases, are thought to be adiabatically unbound. Contrary to this expectation, we have demonstrated that some thus far ignored tautomers of adenine, which result from enamine-imine transformations, support valence anionic states with electron vertical detachment energies as large as 2.2 eV, and at least one of these anionic tautomers is adiabatically bound. Moreover, we predict that the new anionic tautomers should also dominate in solutions and should be characterized by larger values of electron vertical detachment energy than the canonical valence anion. All of the new-found anionic tautomers might be formed in the course of dissociative electron attachment followed by a hydrogen atom attachment to a carbon atom, and they might affect the structure and properties of DNA and RNA exposed to low-energy electrons. The discovery of these valence anionic states of adenine was facilitated by the development of: (i) a new experimental method for preparing parent anions of nucleic acid bases for photoelectron experiments, and (ii) a new combinatorial/ quantum chemical approach for identification of the most stable tautomers of organic molecules. The computational portion of this work was supported by the: (i) Polish State Committee for Scientific Research (KBN) Grants: DS/8000-4-0140-7 (M.G.) and N204 127 31/2963 (M.H.), (ii) European Social Funds (EFS) ZPORR/2.22/II/2.6/ARP/U/2/05 (M.H.), and (iii) US DOE Office of Biological and Environmental Research, Low Dose Radiation Research Program (M.G.). M.H. holds the Foundation for Polish Science (FNP) award for young scientists. The calculations were performed at the Academic

  7. Photophysical deactivation pathways in adenine oligonucleotides.

    PubMed

    Spata, Vincent A; Matsika, Spiridoula

    2015-12-14

    In this work we study deactivation processes in adenine oligomers after absorption of UV radiation using Quantum Mechanics combined with Molecular Mechanics (QM/MM). Correlated electronic structure methods appropriate for describing the excited states are used to describe a π-stacked dimer of adenine bases incorporated into (dA)20(dT)20. The results of these calculations reveal three different types of excited state minima which play a role in deactivation processes. Within this set of minima there are minima where the excited state is localized on one adenine (monomer-like) as well as minima where the excited state is delocalized on two adenines, forming different types of excimers and bonded excimers of varying but inter-related character. The proximity of their energies reveals that the minima can decay into one another along a flat potential energy surface dependent on the interbase separation. Additionally, analysis of the emissive energies and other physical properties, including theoretical anisotropy calculations, and comparison with fluorescence experiments, provides evidence that excimers play an important role in long-lived signals in adenine oligonucleotides while the subpicosecond decay is attributed to monomer-like minima. The necessity for a close approach of the nucleobases reveals that the deactivation mechanism is tied to macro-molecular motion. PMID:26536353

  8. Effect of glutathione S-transferase M1 polymorphisms on biomarkers of exposure and effects.

    PubMed Central

    Srám, R J

    1998-01-01

    Genotypes responsible for interindividual differences in ability to activate or detoxify genotoxic agents are recognized as biomarkers of susceptibility. Among the most studied genotypes are human glutathione transferases. The relationship of genetic susceptibility to biomarkers of exposure and effects was studied especially in relation to the genetic polymorphism of glutathione S-transferase M1 (GSTM1). For this review papers reporting the effect of GSTM1 genotype on DNA adducts, protein adducts, urine mutagenicity, Comet assay parameters, chromosomal aberrations, sister chromatid exchanges (SCE), micronuclei, and hypoxanthine-guanine phosphoribosyl transferase mutations were assessed. Subjects in groups occupationally exposed to polycyclic aromatic hydrocarbons, benzidine, pesticides, and 1,3-butadiene were included. As environmentally exposed populations, autopsy donors, coal tar-treated patients, smokers, nonsmokers, mothers, postal workers, and firefighters were followed. From all biomarkers the effect of GSTM1 and N-acetyl transferase 2 was seen in coke oven workers on mutagenicity of urine and of glutathione S-transferase T1 on the chromosomal aberrations in subjects from 1,3-butadiene monomer production units. Effects of genotypes on DNA adducts were found from lung tissue of autopsy donors and from placentas of mothers living in an air-polluted region. The GSTM1 genotype affected mutagenicity of urine in smokers and subjects from polluted regions, protein adducts in smokers, SCE in smokers and nonsmokers, and Comet assay parameters in postal workers. A review of all studies on GSTM1 polymorphisms suggests that research probably has not reached the stage where results can be interpreted to formulate preventive measures. The relationship between genotypes and biomarkers of exposure and effects may provide an important guide to the risk assessment of human exposure to mutagens and carcinogens. PMID:9539016

  9. The catalase activity of diiron adenine deaminase.

    PubMed

    Kamat, Siddhesh S; Holmes-Hampton, Gregory P; Bagaria, Ashima; Kumaran, Desigan; Tichy, Shane E; Gheyi, Tarun; Zheng, Xiaojing; Bain, Kevin; Groshong, Chris; Emtage, Spencer; Sauder, J Michael; Burley, Stephen K; Swaminathan, Subramanyam; Lindahl, Paul A; Raushel, Frank M

    2011-12-01

    Adenine deaminase (ADE) from the amidohydrolase superfamily (AHS) of enzymes catalyzes the conversion of adenine to hypoxanthine and ammonia. Enzyme isolated from Escherichia coli was largely inactive toward the deamination of adenine. Molecular weight determinations by mass spectrometry provided evidence that multiple histidine and methionine residues were oxygenated. When iron was sequestered with a metal chelator and the growth medium supplemented with Mn(2+) before induction, the post-translational modifications disappeared. Enzyme expressed and purified under these conditions was substantially more active for adenine deamination. Apo-enzyme was prepared and reconstituted with two equivalents of FeSO(4). Inductively coupled plasma mass spectrometry and Mössbauer spectroscopy demonstrated that this protein contained two high-spin ferrous ions per monomer of ADE. In addition to the adenine deaminase activity, [Fe(II) /Fe(II) ]-ADE catalyzed the conversion of H(2)O(2) to O(2) and H(2)O. The values of k(cat) and k(cat)/K(m) for the catalase activity are 200 s(-1) and 2.4 × 10(4) M(-1) s(-1), respectively. [Fe(II)/Fe(II)]-ADE underwent more than 100 turnovers with H(2)O(2) before the enzyme was inactivated due to oxygenation of histidine residues critical for metal binding. The iron in the inactive enzyme was high-spin ferric with g(ave) = 4.3 EPR signal and no evidence of anti-ferromagnetic spin-coupling. A model is proposed for the disproportionation of H(2)O(2) by [Fe(II)/Fe(II)]-ADE that involves the cycling of the binuclear metal center between the di-ferric and di-ferrous oxidation states. Oxygenation of active site residues occurs via release of hydroxyl radicals. These findings represent the first report of redox reaction catalysis by any member of the AHS. PMID:21998098

  10. Adenine auxotrophy--be aware: some effects of adenine auxotrophy in Saccharomyces cerevisiae strain W303-1A.

    PubMed

    Kokina, Agnese; Kibilds, Juris; Liepins, Janis

    2014-08-01

    Adenine auxotrophy is a commonly used genetic marker in haploid yeast strains. Strain W303-1A, which carries the ade2-1 mutation, is widely used in physiological and genetic research. Yeast extract-based rich medium contains a low level of adenine, so that adenine is often depleted before glucose. This could affect the cell physiology of adenine auxotrophs grown in rich medium. The aim of our study was to assess the effects of adenine auxotrophy on cell morphology and stress physiology. Our results show that adenine depletion halts cell division, but that culture optical density continues to increase due to cell swelling. Accumulation of trehalose and a coincident 10-fold increase in desiccation stress tolerance is observed in adenine auxotrophs after adenine depletion, when compared to prototrophs. Under adenine starvation, long-term survival of W303-1A is lower than during carbon starvation, but higher than during leucine starvation. We observed drastic adenine-dependent changes in cell stress physiology, suggesting that results may be biased when adenine auxotrophs are grown in rich media without adenine supplementation.

  11. The catalase activity of diiron adenine deaminase

    SciTech Connect

    Kamat S. S.; Swaminathan S.; Holmes-Hampton, G. P.; Bagaria, A.; Kumaran, D.; Tichy, S. E.; Gheyi, T.; Zheng, X.; Bain, K.; Groshong, C.; Emtage, S.; Sauder, J. M.; Burley, S. K.; Lindahl, P. A.; Raushel, F. M.

    2011-12-01

    Adenine deaminase (ADE) from the amidohydrolase superfamily (AHS) of enzymes catalyzes the conversion of adenine to hypoxanthine and ammonia. Enzyme isolated from Escherichia coli was largely inactive toward the deamination of adenine. Molecular weight determinations by mass spectrometry provided evidence that multiple histidine and methionine residues were oxygenated. When iron was sequestered with a metal chelator and the growth medium supplemented with Mn{sup 2+} before induction, the post-translational modifications disappeared. Enzyme expressed and purified under these conditions was substantially more active for adenine deamination. Apo-enzyme was prepared and reconstituted with two equivalents of FeSO{sub 4}. Inductively coupled plasma mass spectrometry and Moessbauer spectroscopy demonstrated that this protein contained two high-spin ferrous ions per monomer of ADE. In addition to the adenine deaminase activity, [Fe{sup II}/Fe{sup II}]-ADE catalyzed the conversion of H{sub 2}O{sub 2} to O{sub 2} and H{sub 2}O. The values of k{sub cat} and k{sub cat}/K{sub m} for the catalase activity are 200 s{sup -1} and 2.4 x 10{sup 4} M{sup -1} s{sup -1}, respectively. [Fe{sup II}/Fe{sup II}]-ADE underwent more than 100 turnovers with H{sub 2}O{sub 2} before the enzyme was inactivated due to oxygenation of histidine residues critical for metal binding. The iron in the inactive enzyme was high-spin ferric with g{sub ave} = 4.3 EPR signal and no evidence of anti-ferromagnetic spin-coupling. A model is proposed for the disproportionation of H{sub 2}O{sub 2} by [Fe{sup II}/Fe{sup II}]-ADE that involves the cycling of the binuclear metal center between the di-ferric and di-ferrous oxidation states. Oxygenation of active site residues occurs via release of hydroxyl radicals. These findings represent the first report of redox reaction catalysis by any member of the AHS.

  12. Phosphoribosyl pyrophosphate synthetase activity affects growth and riboflavin production in Ashbya gossypii

    PubMed Central

    Jiménez, Alberto; Santos, María A; Revuelta, José L

    2008-01-01

    Background Phosphoribosyl pyrophosphate (PRPP) is a central compound for cellular metabolism and may be considered as a link between carbon and nitrogen metabolism. PRPP is directly involved in the de novo and salvage biosynthesis of GTP, which is the immediate precursor of riboflavin. The industrial production of this vitamin using the fungus Ashbya gossypii is an important biotechnological process that is strongly influenced by substrate availability. Results Here we describe the characterization and manipulation of two genes of A. gossypii encoding PRPP synthetase (AGR371C and AGL080C). We show that the AGR371C and AGL080C gene products participate in PRPP synthesis and exhibit inhibition by ADP. We also observed a major contribution of AGL080C to total PRPP synthetase activity, which was confirmed by an evident growth defect of the Δagl080c strain. Moreover, we report the overexpression of wild-type and mutant deregulated isoforms of Agr371cp and Agl080cp that significantly enhanced the production of riboflavin in the engineered A. gossypii strains. Conclusion It is shown that alterations in PRPP synthetase activity have pleiotropic effects on the fungal growth pattern and that an increase in PRPP synthetase enzymatic activity can be used to enhance riboflavin production in A. gossypii. PMID:18782443

  13. Glutathione transferases and neurodegenerative diseases.

    PubMed

    Mazzetti, Anna Paola; Fiorile, Maria Carmela; Primavera, Alessandra; Lo Bello, Mario

    2015-03-01

    There is substantial agreement that the unbalance between oxidant and antioxidant species may affect the onset and/or the course of a number of common diseases including Parkinson's and Alzheimer's diseases. Many studies suggest a crucial role for oxidative stress in the first phase of aging, or in the pathogenesis of various diseases including neurological ones. Particularly, the role exerted by glutathione and glutathione-related enzymes (Glutathione Transferases) in the nervous system appears more relevant, this latter tissue being much more vulnerable to toxins and oxidative stress than other tissues such as liver, kidney or muscle. The present review addresses the question by focusing on the results obtained by specimens from patients or by in vitro studies using cells or animal models related to Parkinson's and Alzheimer's diseases. In general, there is an association between glutathione depletion and Parkinson's or Alzheimer's disease. In addition, a significant decrease of glutathione transferase activity in selected areas of brain and in ventricular cerebrospinal fluid was found. For some glutathione transferase genes there is also a correlation between polymorphisms and onset/outcome of neurodegenerative diseases. Thus, there is a general agreement about the protective effect exerted by glutathione and glutathione transferases but no clear answer about the mechanisms underlying this crucial role in the insurgence of neurodegenerative diseases.

  14. Adenine nucleotide transporters in organelles: novel genes and functions.

    PubMed

    Traba, Javier; Satrústegui, Jorgina; del Arco, Araceli

    2011-04-01

    In eukaryotes, cellular energy in the form of ATP is produced in the cytosol via glycolysis or in the mitochondria via oxidative phosphorylation and, in photosynthetic organisms, in the chloroplast via photophosphorylation. Transport of adenine nucleotides among cell compartments is essential and is performed mainly by members of the mitochondrial carrier family, among which the ADP/ATP carriers are the best known. This work reviews the carriers that transport adenine nucleotides into the organelles of eukaryotic cells together with their possible functions. We focus on novel mechanisms of adenine nucleotide transport, including mitochondrial carriers found in organelles such as peroxisomes, plastids, or endoplasmic reticulum and also mitochondrial carriers found in the mitochondrial remnants of many eukaryotic parasites of interest. The extensive repertoire of adenine nucleotide carriers highlights an amazing variety of new possible functions of adenine nucleotide transport across eukaryotic organelles.

  15. Radiation and thermal stabilities of adenine nucleotides.

    PubMed

    Demidov, V V; Potaman, V N; Solyanina, I P; Trofimov, V I

    1995-03-01

    We have investigated in detail radiation and thermal stabilities and transformations of adenosine mono- and triphosphates in liquid and frozen solid aqueous solutions within a wide range of absorbed radiation dose (up to 75 kGy) and temperature (up to 160 degrees C). Dephosphorylation is the main pathway of high temperature hydrolysis of adenine nucleotides. Basic thermodynamic and kinetic parameters of this process have been determined. Radiolysis of investigated compounds at room temperature results in scission of N-glycosidic bond with a radiation yield about of 1 mol/100 eV. Solution freezing significantly enhances radiation stability of nucleotides as well as other biomolecules. This circumstance is essential in the discussion of panspermia concepts.

  16. Effect of treatment on erythrocyte phosphoribosyl pyrophosphate synthetase and glutathione reductase activity in patients with primary gout.

    PubMed Central

    Braven, J; Hardwell, T R; Hickling, P; Whittaker, M

    1986-01-01

    The activities of erythrocyte phosphoribosyl pyrophosphate (PRPP) synthetase and glutathione reductase (GTR) were studied in 26 patients with primary gout who were receiving no treatment or treatment with either allopurinol or azapropazone, and compared with the activity in a group of healthy controls. The activity of PRPP synthetase was significantly higher in the gout group and was not influenced by either drug. No significant difference in the activity of GTR was observed. The failure of either drug to suppress the increased activity of PRPP synthetase associated with gout is discussed. PMID:3024593

  17. What is adenine doing in photolyase?

    PubMed

    Acocella, Angela; Jones, Garth A; Zerbetto, Francesco

    2010-03-25

    The short answer to the title question is that it acts as an electrostatic bouncer that shoves the charge flow from flavin toward the DNA lesion that photolyase repairs. This explanation is provided by an explicit time-dependent quantum mechanical approach, which is used to investigate the electron transfer process that triggers the repair mechanism. The transfer occurs from the flavin photolyase cofactor to the cyclobutane ring of DNA, previously formed by light-induced cycloaddition of adjacent pyrimidine bases. The electron wave function dynamics accurately accounts for the previously proposed mechanism of transfer via the terminal methyl group of the flavin moiety present in the catalytic electron-donor cofactor, FADH(-), which also contains adenine. This latter moiety, which has often been assumed to be present mainly for structural reasons, instantaneously modifies the interaction between acceptor and donor by a variation of the electrostatic interactions so that the presence of its local atomic charges is necessary to trigger the transfer. In principle, knowledge of the details of the electron transfer dynamics and of the important role of polarization effects can be exploited to improve the efficiency of the repair mechanism in artificial systems.

  18. Ultraviolet Photostability of Adenine on Gold and Silicon Surfaces

    NASA Astrophysics Data System (ADS)

    Mateo-Martí, Eva; Pradier, Claire-Marie; Martín-Gago, Jose-Angel

    2009-08-01

    The adenine molecule is a DNA nucleobase, an essential component of genetic material. Because of the important role of DNA nucleobases in terrestrial biochemistry, we have studied the molecular adsorption, orientation, and chemical binding of adenine on metallic and semiconducting surfaces, such as gold and silicon, respectively, and their stability toward ultraviolet radiation by X-ray photoelectron spectroscopy (XPS) and reflection absorption infrared spectroscopy (RAIRS) techniques. We have exposed the adenine surface system to UV radiation (200-400 nm) under a high-vacuum environment (10-7 mbar) to study the photostability and photochemistry of adenine on different surfaces. After 10 or 24 hours of exposure under interplanetary space conditions, UV radiation induces desorption and partial dissociation of the molecule, which is dependant on the nature of the surface. The electronic excitations, induced in the material by UV absorption, play a major role in the photodestruction of the absorbed molecules on the solid surfaces.

  19. Adenine adlayers on Cu(111): XPS and NEXAFS study

    SciTech Connect

    Tsud, Nataliya; Bercha, Sofiia; Ševčíková, Klára; Matolín, Vladimír; Acres, Robert G.; Prince, Kevin C.

    2015-11-07

    The adsorption of adenine on Cu(111) was studied by photoelectron and near edge x-ray absorption fine structure spectroscopy. Disordered molecular films were deposited by means of physical vapor deposition on the substrate at room temperature. Adenine chemisorbs on the Cu(111) surface with strong rehybridization of the molecular orbitals and the Cu 3d states. Annealing at 150 °C caused the desorption of weakly bonded molecules accompanied by formation of a short-range ordered molecular adlayer. The interface is characterized by the formation of new states in the valence band at 1.5, 7, and 9 eV. The present work complements and refines existing knowledge of adenine interaction with this surface. The coverage is not the main parameter that defines the adenine geometry and adsorption properties on Cu(111). Excess thermal energy can further rearrange the molecular adlayer and, independent of the initial coverage, the flat lying stable molecular adlayer is formed.

  20. Functional specialization of one copy of glutamine phosphoribosyl pyrophosphate amidotransferase in ureide production from symbiotically fixed nitrogen in Phaseolus vulgaris.

    PubMed

    Coleto, Inmaculada; Trenas, Almudena T; Erban, Alexander; Kopka, Joachim; Pineda, Manuel; Alamillo, Josefa M

    2016-08-01

    Purines are essential molecules formed in a highly regulated pathway in all organisms. In tropical legumes, the nitrogen fixed in the nodules is used to generate ureides through the oxidation of de novo synthesized purines. Glutamine phosphoribosyl pyrophosphate amidotransferase (PRAT) catalyses the first committed step of de novo purine synthesis. In Phaseolus vulgaris there are three genes coding for PRAT. The three full-length sequences, which are intron-less genes, were cloned, and their expression levels were determined under conditions that affect the synthesis of purines. One of the three genes, PvPRAT3, is highly expressed in nodules and protein amount and enzymatic activity in these tissues correlate with nitrogen fixation activity. Inhibition of PvPRAT3 gene expression by RNAi-silencing and subsequent metabolomic analysis of the transformed roots shows that PvPRAT3 is essential for the synthesis of ureides in P. vulgaris nodules.

  1. A simple and sensitive method for estimating the concentration and synthesis of 5-phosphoribosyl 1-pyrophosphate in red blood cells.

    PubMed

    Tax, W J; Veerkamp, J H

    1977-07-15

    A method is presented for the determination of 5-phosphoribosyl 1-pyrophosphate (PRPP), which is based on the release of 14CO2 from [carboxyl-14C]-orotic acid by the consecutive action of orotate phosphoribosyltransferase and orotidine-5'-monophosphate decarboxylase. The assay is simpler and less time-consuming than most methods currently employed and is equally sensitive. The method proved to be suitable for measuring low concentrations of PRPP such as found in human erythrocytes and fibroblasts. An increased PRPP concentration was observed in erythrocytes from patients with partial or complete deficiency of hypoxanthine-guanine phospho-ribosyltransferase. frp, sp,e (but not all) gouty patients and from a patient with deficiency of purine nucleoside phosphorylase. PRPP synthetase activity was measured with a method similar to the assay for PRPP. In erythrocytes with an increased PRPP concentration, PRPP synthetase activity was found to be normal at both optimal and suboptimal substrate concentrations.

  2. Functional specialization of one copy of glutamine phosphoribosyl pyrophosphate amidotransferase in ureide production from symbiotically fixed nitrogen in Phaseolus vulgaris.

    PubMed

    Coleto, Inmaculada; Trenas, Almudena T; Erban, Alexander; Kopka, Joachim; Pineda, Manuel; Alamillo, Josefa M

    2016-08-01

    Purines are essential molecules formed in a highly regulated pathway in all organisms. In tropical legumes, the nitrogen fixed in the nodules is used to generate ureides through the oxidation of de novo synthesized purines. Glutamine phosphoribosyl pyrophosphate amidotransferase (PRAT) catalyses the first committed step of de novo purine synthesis. In Phaseolus vulgaris there are three genes coding for PRAT. The three full-length sequences, which are intron-less genes, were cloned, and their expression levels were determined under conditions that affect the synthesis of purines. One of the three genes, PvPRAT3, is highly expressed in nodules and protein amount and enzymatic activity in these tissues correlate with nitrogen fixation activity. Inhibition of PvPRAT3 gene expression by RNAi-silencing and subsequent metabolomic analysis of the transformed roots shows that PvPRAT3 is essential for the synthesis of ureides in P. vulgaris nodules. PMID:27004600

  3. A simple and sensitive method for estimating the concentration and synthesis of 5-phosphoribosyl 1-pyrophosphate in red blood cells.

    PubMed

    Tax, W J; Veerkamp, J H

    1977-07-15

    A method is presented for the determination of 5-phosphoribosyl 1-pyrophosphate (PRPP), which is based on the release of 14CO2 from [carboxyl-14C]-orotic acid by the consecutive action of orotate phosphoribosyltransferase and orotidine-5'-monophosphate decarboxylase. The assay is simpler and less time-consuming than most methods currently employed and is equally sensitive. The method proved to be suitable for measuring low concentrations of PRPP such as found in human erythrocytes and fibroblasts. An increased PRPP concentration was observed in erythrocytes from patients with partial or complete deficiency of hypoxanthine-guanine phospho-ribosyltransferase. frp, sp,e (but not all) gouty patients and from a patient with deficiency of purine nucleoside phosphorylase. PRPP synthetase activity was measured with a method similar to the assay for PRPP. In erythrocytes with an increased PRPP concentration, PRPP synthetase activity was found to be normal at both optimal and suboptimal substrate concentrations. PMID:195752

  4. Feruloyl-CoA:monolignol transferase

    DOEpatents

    Wilkerson, Curtis; Ralph, John; Withers, Saunia; Mansfield, Shawn D.

    2016-09-13

    The invention relates to nucleic acids encoding a feruloyl-CoA:monolignol transferase and the feruloyl-CoA:monolignol transferase enzyme that enables incorporation of monolignol ferulates, for example, including p-coumaryl ferulate, coniferyl ferulate, and sinapyl ferulate, into the lignin of plants.

  5. Glutathione transferases: a structural perspective.

    PubMed

    Oakley, Aaron

    2011-05-01

    The glutathione transferases (GSTs) are one of the most important families of detoxifying enzymes in nature. The classic activity of the GSTs is conjugation of compounds with electrophilic centers to the tripeptide glutathione (GSH), but many other activities are now associated with GSTs, including steroid and leukotriene biosynthesis, peroxide degradation, double-bond cis-trans isomerization, dehydroascorbate reduction, Michael addition, and noncatalytic "ligandin" activity (ligand binding and transport). Since the first GST structure was determined in 1991, there has been an explosion in structural data across GSTs of all three families: the cytosolic GSTs, the mitochondrial GSTs, and the membrane-associated proteins in eicosanoid and glutathione metabolism (MAPEG family). In this review, the major insights into GST structure and function will be discussed.

  6. Theoretical study on absorption and emission spectra of adenine analogues.

    PubMed

    Liu, Hongxia; Song, Qixia; Yang, Yan; Li, Yan; Wang, Haijun

    2014-04-01

    Fluorescent nucleoside analogues have attracted much attention in studying the structure and dynamics of nucleic acids in recent years. In the present work, we use theoretical calculations to investigate the structural and optical properties of four adenine analogues (termed as A1, A2, A3, and A4), and also consider the effects of aqueous solution and base pairing. The results show that the fluorescent adenine analogues can pair with thymine to form stable H-bonded WC base pairs. The excited geometries of both adenine analogues and WC base pairs are similar to the ground geometries. The absorption and emission maxima of adenine analogues are greatly red shifted compared with nature adenine, the oscillator strengths of A1 and A2 are stronger than A3 and A4 in both absorption and emission spectra. The calculated low-energy peaks in the absorption spectra are in good agreement with the experimental data. In general, the aqueous solution and base pairing can slightly red-shift both the absorption and emission maxima, and can increase the oscillator strengths of absorption spectra, but significantly decrease the oscillator strengths of A3 in emission spectra.

  7. DNA adenine hypomethylation leads to metabolic rewiring in Deinococcus radiodurans.

    PubMed

    Shaiwale, Nayana S; Basu, Bhakti; Deobagkar, Deepti D; Deobagkar, Dileep N; Apte, Shree K

    2015-08-01

    The protein encoded by DR_0643 gene from Deinococcus radiodurans was shown to be an active N-6 adenine-specific DNA methyltransferase (Dam). Deletion of corresponding protein reduced adenine methylation in the genome by 60% and resulted in slow-growth phenotype. Proteomic changes induced by DNA adenine hypomethylation were mapped by two-dimensional protein electrophoresis coupled with mass spectrometry. As compared to wild type D. radiodurans cells, at least 54 proteins were differentially expressed in Δdam mutant. Among these, 39 metabolic enzymes were differentially expressed in Δdam mutant. The most prominent change was DNA adenine hypomethylation induced de-repression of pyruvate dehydrogenase complex, E1 component (aceE) gene resulting in 10 fold increase in the abundance of corresponding protein. The observed differential expression profile of metabolic enzymes included increased abundance of enzymes involved in fatty acid and amino acid degradation to replenish acetyl Co-A and TCA cycle intermediates and diversion of phosphoenolpyruvate and pyruvate into amino acid biosynthesis, a metabolic rewiring attempt by Δdam mutant to restore energy generation via glycolysis-TCA cycle axis. This is the first report of DNA adenine hypomethylation mediated rewiring of metabolic pathways in prokaryotes.

  8. Possible prebiotic catalysts formed from adenine and aldehyde

    NASA Astrophysics Data System (ADS)

    Vergne, J.; Dumas, L.; Décout, J.-L.; Maurel, M.-C.

    2000-09-01

    Careful examination of the present metabolism and in vitro selection of various catalytic RNAs strongly support the "RNA World" hypothesis of the origin of life. However, in this scenario, the difficult prebiotic synthesis of ribose and consequently of nucleotides remain a major problem. In order to overcome this problem and obtain nucleoside analogs, we are investigating reactions of the nucleic acid base, adenine 1, with different aldehydes under presumably prebiotic conditions. In the reaction of adenine and pyruvaldehyde 2 in water, we report here the formation in high yield of two isomeric products. These compounds possessing alcohols functions as nucleosides result from condensation of two molecules of pyruvaldehyde on the 6-amino group of one adenine molecule. Their catalytic activities in the model hydrolysis of p-nitrophenylesters appeared interesting in the search of prebiotic catalysts.

  9. Structural basis for removal of adenine mispaired with 8-oxoguanine by MutY adenine DNA glycosylase.

    PubMed

    Fromme, J Christopher; Banerjee, Anirban; Huang, Susan J; Verdine, Gregory L

    2004-02-12

    The genomes of aerobic organisms suffer chronic oxidation of guanine to the genotoxic product 8-oxoguanine (oxoG). Replicative DNA polymerases misread oxoG residues and insert adenine instead of cytosine opposite the oxidized base. Both bases in the resulting A*oxoG mispair are mutagenic lesions, and both must undergo base-specific replacement to restore the original C*G pair. Doing so represents a formidable challenge to the DNA repair machinery, because adenine makes up roughly 25% of the bases in most genomes. The evolutionarily conserved enzyme adenine DNA glycosylase (called MutY in bacteria and hMYH in humans) initiates repair of A*oxoG to C*G by removing the inappropriately paired adenine base from the DNA backbone. A central issue concerning MutY function is the mechanism by which A*oxoG mispairs are targeted among the vast excess of A*T pairs. Here we report the use of disulphide crosslinking to obtain high-resolution crystal structures of MutY-DNA lesion-recognition complexes. These structures reveal the basis for recognizing both lesions in the A*oxoG pair and for catalysing removal of the adenine base. PMID:14961129

  10. Detection of electronically equivalent tautomers of adenine base: DFT study

    SciTech Connect

    Siddiqui, Shamoon Ahmad; Bouarissa, Nadir; Rasheed, Tabish; Al-Assiri, M.S.; Al-Hajry, A.

    2014-03-01

    Graphical abstract: - Highlights: • DFT calculations have been performed on adenine and its rare tautomer Cu{sup 2+} complexes. • Interaction of A-Cu{sup 2+} and rA-Cu{sup 2+} complexes with AlN modified fullerene (C{sub 60}) have been studied briefly. • It is found that AlN modified C{sub 60} could be used as a nanoscale sensor to detect these two A-Cu{sup 2+} and rA-Cu{sup 2+} complexes. - Abstract: In the present study, quantum chemical calculations were carried out to investigate the electronic structures and stabilities of adenine and its rare tautomer along with their Cu{sup 2+} complexes. Density Functional Theory (B3LYP method) was used in all calculations. The two Cu{sup 2+} complexes of adenine have almost similar energies and electronic structures; hence, their chemical differentiation is very difficult. For this purpose, interactions of these complexes with AlN modified fullerene (C{sub 60}) have been studied. Theoretical investigations reveal that AlN-doped C{sub 60} may serve as a potentially viable nanoscale sensor for detection of the two Cu{sup 2+} complexes of adenine.

  11. Thymine, adenine and lipoamino acid based gene delivery systems.

    PubMed

    Skwarczynski, Mariusz; Ziora, Zyta M; Coles, Daniel J; Lin, I-Chun; Toth, Istvan

    2010-05-14

    A novel class of thymine, adenine and lipoamino acid based non-viral carriers for gene delivery has been developed. Their ability to bind to DNA by hydrogen bonding was confirmed by NMR diffusion, isothermal titration calorimetry and transmission electron microscopy experiments.

  12. PolyAdenine cryogels for fast and effective RNA purification.

    PubMed

    Köse, Kazım; Erol, Kadir; Özgür, Erdoğan; Uzun, Lokman; Denizli, Adil

    2016-10-01

    Cryogels are used effectively for many diverse applications in a variety of fields. The isolation or purification of RNA, one of the potential utilizations for cryogels, is crucial due to their vital roles such as encoding, decoding, transcription and translation, and gene expression. RNA principally exists within every living thing, but their tendency to denaturation easily is still the most challenging issue. Herein, we aimed to develop adenine incorporated polymeric cryogels as an alternative sorbent for cost-friendly and fast RNA purification with high capacity. For this goal, we synthesized the polymerizable derivative of adenine called as adenine methacrylate (AdeM) through the substitution reaction between adenine and methacryloyl chloride. Then, 2-hydroxyethyl methacrylate (HEMA)-based cryogels were prepared in a partially frozen aqueous medium by copolymerization of monomers, AdeM, and HEMA. The cryogels were characterized by using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), surface area measurements, thermogravimetric analysis (TGA), and swelling tests. RNA adsorption experiments were performed via batch system while varying different conditions including pH, initial RNA concentration, temperature, and interaction time. We achieved high RNA adsorption capacity of cryogels, with the swelling ratio around 510%, as 11.86mg/g. The cryogels might be reused at least five times without significant decrease in adsorption capacity.

  13. PolyAdenine cryogels for fast and effective RNA purification.

    PubMed

    Köse, Kazım; Erol, Kadir; Özgür, Erdoğan; Uzun, Lokman; Denizli, Adil

    2016-10-01

    Cryogels are used effectively for many diverse applications in a variety of fields. The isolation or purification of RNA, one of the potential utilizations for cryogels, is crucial due to their vital roles such as encoding, decoding, transcription and translation, and gene expression. RNA principally exists within every living thing, but their tendency to denaturation easily is still the most challenging issue. Herein, we aimed to develop adenine incorporated polymeric cryogels as an alternative sorbent for cost-friendly and fast RNA purification with high capacity. For this goal, we synthesized the polymerizable derivative of adenine called as adenine methacrylate (AdeM) through the substitution reaction between adenine and methacryloyl chloride. Then, 2-hydroxyethyl methacrylate (HEMA)-based cryogels were prepared in a partially frozen aqueous medium by copolymerization of monomers, AdeM, and HEMA. The cryogels were characterized by using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), surface area measurements, thermogravimetric analysis (TGA), and swelling tests. RNA adsorption experiments were performed via batch system while varying different conditions including pH, initial RNA concentration, temperature, and interaction time. We achieved high RNA adsorption capacity of cryogels, with the swelling ratio around 510%, as 11.86mg/g. The cryogels might be reused at least five times without significant decrease in adsorption capacity. PMID:27434154

  14. Catalytic Mechanism and Three-Dimensional Structure of Adenine Deaminase

    SciTech Connect

    Kamat, S.S.; Swaminathan, S.; Bagaria, A.; Kumaran, D.; Holmes-Hampton, G. P.; Fan, H.; Sali, A.; Sauder, J. M.; Burley, S. K.; Lindahl, P. A.; Raushel, F. M.

    2011-03-22

    Adenine deaminase (ADE) catalyzes the conversion of adenine to hypoxanthine and ammonia. The enzyme isolated from Escherichia coli using standard expression conditions was low for the deamination of adenine (k{sub cat} = 2.0 s{sup -1}; k{sub cat}/K{sub m} = 2.5 x 10{sup 3} M{sup -1} s{sup -1}). However, when iron was sequestered with a metal chelator and the growth medium was supplemented with Mn{sup 2+} prior to induction, the purified enzyme was substantially more active for the deamination of adenine with kcat and kcat/Km values of 200 s{sup -1} and 5 x 10{sup 5} M{sup -1} s{sup -1}, respectively. The apoenzyme was prepared and reconstituted with Fe{sup 2+}, Zn{sup 2+}, or Mn{sup 2+}. In each case, two enzyme equivalents of metal were necessary for reconstitution of the deaminase activity. This work provides the first example of any member of the deaminase subfamily of the amidohydrolase superfamily to utilize a binuclear metal center for the catalysis of a deamination reaction. [Fe{sup II}/Fe{sup II}]-ADE was oxidized to [Fe{sup III}/Fe{sup III}]-ADE with ferricyanide with inactivation of the deaminase activity. Reducing [Fe{sup III}/Fe{sup III}]-ADE with dithionite restored the deaminase activity, and thus, the diferrous form of the enzyme is essential for catalytic activity. No evidence of spin coupling between metal ions was evident by electron paramagnetic resonance or Moessbauer spectroscopy. The three-dimensional structure of adenine deaminase from Agrobacterium tumefaciens (Atu4426) was determined by X-ray crystallography at 2.2 {angstrom} resolution, and adenine was modeled into the active site on the basis of homology to other members of the amidohydrolase superfamily. On the basis of the model of the adenine-ADE complex and subsequent mutagenesis experiments, the roles for each of the highly conserved residues were proposed. Solvent isotope effects, pH-rate profiles, and solvent viscosity were utilized to propose a chemical reaction mechanism and the

  15. Catalytic Mechanism and Three-Dimensional Structure of Adenine Deaminase

    SciTech Connect

    S Kamat; A Bagaria; D Kumaran; G Holmes-Hampton; H Fan; A Sali; J Sauder; S Burley; P Lindahl; et. al.

    2011-12-31

    Adenine deaminase (ADE) catalyzes the conversion of adenine to hypoxanthine and ammonia. The enzyme isolated from Escherichia coli using standard expression conditions was low for the deamination of adenine (k{sub cat} = 2.0 s{sup -1}; k{sub cat}/K{sub m} = 2.5 x 10{sup 3} M{sup -1} s{sup -1}). However, when iron was sequestered with a metal chelator and the growth medium was supplemented with Mn{sup 2+} prior to induction, the purified enzyme was substantially more active for the deamination of adenine with k{sub cat} and k{sub cat}/K{sub m} values of 200 s{sup -1} and 5 x 10{sup 5} M{sup -1} s{sup -1}, respectively. The apoenzyme was prepared and reconstituted with Fe{sup 2+}, Zn{sup 2+}, or Mn{sup 2+}. In each case, two enzyme equivalents of metal were necessary for reconstitution of the deaminase activity. This work provides the first example of any member of the deaminase subfamily of the amidohydrolase superfamily to utilize a binuclear metal center for the catalysis of a deamination reaction. [Fe{sup II}/Fe{sup II}]-ADE was oxidized to [Fe{sup III}/Fe{sup III}]-ADE with ferricyanide with inactivation of the deaminase activity. Reducing [Fe{sup III}/Fe{sup III}]-ADE with dithionite restored the deaminase activity, and thus, the diferrous form of the enzyme is essential for catalytic activity. No evidence of spin coupling between metal ions was evident by electron paramagnetic resonance or Moessbauer spectroscopy. The three-dimensional structure of adenine deaminase from Agrobacterium tumefaciens (Atu4426) was determined by X-ray crystallography at 2.2 {angstrom} resolution, and adenine was modeled into the active site on the basis of homology to other members of the amidohydrolase superfamily. On the basis of the model of the adenine-ADE complex and subsequent mutagenesis experiments, the roles for each of the highly conserved residues were proposed. Solvent isotope effects, pH-rate profiles, and solvent viscosity were utilized to propose a chemical reaction

  16. Substitutions in hamster CAD carbamoyl-phosphate synthetase alter allosteric response to 5-phosphoribosyl-alpha-pyrophosphate (PRPP) and UTP.

    PubMed

    Simmons, Christine Q; Simmons, Alan J; Haubner, Aaron; Ream, Amber; Davidson, Jeffrey N

    2004-03-15

    CPSase (carbamoyl-phosphate synthetase II), a component of CAD protein (multienzymic protein with CPSase, aspartate transcarbamylase and dihydro-orotase activities), catalyses the regulated steps in the de novo synthesis of pyrimidines. Unlike the orthologous Escherichia coli enzyme that is regulated by UMP, inosine monophosphate and ornithine, the mammalian CPSase is allosterically inhibited by UTP, and activated by PRPP (5-phosphoribosyl-a-pyrophosphate) and phosphorylation. Four residues (Thr974, Lys993, Lys954 and Thr977) are critical to the E. coli inosine monophosphate/UMP-binding pocket. In the present study, three of the corresponding residues in the hamster CPSase were altered to determine if they affect either PRPP activation or UTP inhibition. Substitution of the hamster residue, positionally equivalent to Thr974 in the E. coli enzyme, with alanine residue led to an enzyme with 5-fold lower activity and a near loss of PRPP activation. Whereas replacement of the tryptophan residue at position 993 had no effect, an Asp992-->Asn substitution yielded a much-activated enzyme that behaved as if PRPP was present. The substitution Lys954-->Glu had no effect on PRPP stimulation. Only modest decreases in UTP inhibitions were observed with each of the altered CPSases. The results also show that while PRPP and UTP can act simultaneously, PRPP activation is dominant. Apparently, UTP and PRPP have distinctly different associations within the mammalian enzyme. The findings of the present study may prove relevant to the neuropathology of Lesch-Nyhan syndrome PMID:14651476

  17. purU, a source of formate for purT-dependent phosphoribosyl-N-formylglycinamide synthesis.

    PubMed Central

    Nagy, P L; McCorkle, G M; Zalkin, H

    1993-01-01

    A gene designated purU has been identified and characterized. purU is adjacent to tyrT at min 27.7 on the Escherichia coli chromosome. The gene codes for a 280-amino-acid protein. The C-terminal segment of PurU from residues 84 to 280 exhibits 27% identity with 5'-phosphoribosylglycinamide (GAR) transformylase, the product of purN. Primer extension mapping and assays of lacZ in a promoter probe vector identified two promoters giving mono- and bi-cistronic purU mRNA. Neither mRNA was regulated by purines. Mutations in either of two pairs of genes are required to block synthesis of 5'-phosphoribosyl-N-formylglycinamide (FGAR) from GAR: purN purT (purT encodes an alternative formate-dependent GAR transformylase) or purN purU. On the basis of the growth of purU, purN, and purU purN mutants, it appears that PurU provides the major source of formate for the purT-dependent synthesis of FGAR. Images PMID:8226647

  18. Copper-Adenine Complex Catalyst for O2 Production from

    NASA Astrophysics Data System (ADS)

    Vergne, Jacques; Bruston, F.; Calvayrac, R.; Grajcar, L.; Baron, M.-H.; Maurel, M.-C.

    The advent of oxygen-evolving photosynthesis is one of the central event in the development of life on earth. The early atmosphere has been midly reducing or neutral in overall redox balance and water photolysis by UV light can produce hydrogen peroxide. Before oxidation of water, intermediate stages are proposed in which H_2^O_2 was oxidized. The oxidation of H_2^O_2 to oxygen can be carried out by a modestly oxidizing species in which a metal-catalase like enzyme could extract electrons from H_2^O_2 producing the first oxygen-evolving complex. After what, modern photosynthesis with chlorophyll, to help transform H_2^O in O_2 was ready to come to light. In preliminary UV studies we were able to show that [Cu(adenine)2] system, containing copper coordinated to nitrogen activates H_2^O_2 disappearance. This was confirmed with the help of Raman and polarographic studies. Raman spectroscopy shows the formation of [Cu(adenine)2] complex in solution, quantifies H_2^O_2 consumption, polarography quantifies O_2 production. In both cases CuCl_2 addition entails H_2^O_2 disappearance. Without adenine, Cu_2^+ has only a weak catalytic effect. The molar activity of the [Cu(adenine)2] complex is much larger and concentration dependent. We emphasize that Cu(adenine)2 may have mimicked enzyme properties in the first stage of life evolution, in order to split H_2^O_2 into O_2 and H_2^O. Moreover, diluted copper and adenine, in small ephemeral prebiotic ponds , could have preserved biologically active entities from H_2^O_2 damage via dual properties: catalyzing H_2^O_2 disproportionation and also directly acting as a reductant complex. Finally, the present Mars surface is considered to be both reactive and embedded with oxydants. As it has been shown that the depth of diffusion for H_2^O_2 is less than 3 meters, it is important to study all the ways of H_2^O_2 consumption.

  19. Nicotinamide Mononucleotide Adenylyl Transferase 2: A Promising Diagnostic and Therapeutic Target for Colorectal Cancer

    PubMed Central

    Cui, Chunhui; Qi, Jia; Deng, Quanwen; Chen, Rihong; Zhai, Duanyang; Yu, Jinlong

    2016-01-01

    Colorectal cancer (CRC) is one of the most common cancers all over the world. It is essential to search for more effective diagnostic and therapeutic methods for CRC. Abnormal nicotinamide adenine dinucleotide (NAD) metabolism has been considered as a characteristic of cancer cells. In this study, nicotinamide mononucleotide adenylyl transferases (NMNATs) as well as p53-mediated cancer signaling pathways were investigated in patients with colorectal cancer. The CRC tissues and adjacent normal tissues were obtained from 95 untreated colorectal cancer patients and were stained for expression of nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2) and p53. The survival rate was analyzed by the Kaplan-Meier method and the log-rank test. The multivariate Cox proportional hazard regression analysis was conducted as well. Our data demonstrated that expression of NMNAT2 and p53 was significantly higher in CRC tissues, while NMNAT2 expression is in correlation with the invasive depth of tumors and TNM stage. Significant positive correlation was found between the expression of NMNAT2 and the expression of p53. However, NMNAT2 expression was not a statistically significant prognostic factor for overall survival. In conclusion, our results indicated that NMNAT2 might participate in tumorigenesis of CRC in a p53-dependent manner and NMNAT2 expression might be a potential therapeutic target for CRC. PMID:27218101

  20. Dynamics and reactivity in Thermus aquaticus N6-adenine methyltransferase.

    PubMed

    Aranda, Juan; Zinovjev, Kirill; Roca, Maite; Tuñón, Iñaki

    2014-11-19

    M.TaqI is a DNA methyltransferase from Thermus aquaticus that catalyzes the transfer of a methyl group from S-adenosyl-L-methionine to the N6 position of an adenine, a process described only in prokaryotes. We have used full atomistic classical molecular dynamics simulations to explore the protein-SAM-DNA ternary complex where the target adenine is flipped out into the active site. Key protein-DNA interactions established by the target adenine in the active site are described in detail. The relaxed structure was used for a combined quantum mechanics/molecular mechanics exploration of the reaction mechanism using the string method. According to our free energy calculations the reaction takes place through a stepwise mechanism where the methyl transfer precedes the abstraction of the proton from the exocyclic amino group. The methyl transfer is the rate-determining step, and the obtained free energy barrier is in good agreement with the value derived from the experimental rate constant. Two possible candidates to extract the leftover proton have been explored: a water molecule found in the active site and Asn105, a residue activated by the hydrogen bonds formed through the amide hydrogens. The barrier for the proton abstraction is smaller when Asn105 acts as a base. The reaction mechanisms can be different in other N6-DNA-methyltransferases, as determined from the exploration of the reaction mechanism in the Asn105Asp M.TaqI mutant. PMID:25347783

  1. High resolution dissociative electron attachment to gas phase adenine

    SciTech Connect

    Huber, D.; Beikircher, M.; Denifl, S.; Zappa, F.; Matejcik, S.; Bacher, A.; Grill, V.; Maerk, T. D.; Scheier, P.

    2006-08-28

    The dissociative electron attachment to the gas phase nucleobase adenine is studied using two different experiments. A double focusing sector field mass spectrometer is utilized for measurements requiring high mass resolution, high sensitivity, and relative ion yields for all the fragment anions and a hemispherical electron monochromator instrument for high electron energy resolution. The negative ion mass spectra are discussed at two different electron energies of 2 and 6 eV. In contrast to previous gas phase studies a number of new negative ions are discovered in the mass spectra. The ion efficiency curves for the negative ions of adenine are measured for the electron energy range from about 0 to 15 eV with an electron energy resolution of about 100 meV. The total anion yield derived via the summation of all measured fragment anions is compared with the total cross section for negative ion formation measured recently without mass spectrometry. For adenine the shape of the two cross section curves agrees well, taking into account the different electron energy resolutions; however, for thymine some peculiar differences are observed.

  2. Fragmentation mechanisms of cytosine, adenine and guanine ionized bases.

    PubMed

    Sadr-Arani, Leila; Mignon, Pierre; Chermette, Henry; Abdoul-Carime, Hassan; Farizon, Bernadette; Farizon, Michel

    2015-05-01

    The different fragmentation channels of cytosine, adenine and guanine have been studied through DFT calculations. The electronic structure of bases, their cations, and the fragments obtained by breaking bonds provides a good understanding of the fragmentation process that can complete the experimental approach. The calculations allow assigning various fragments to the given peaks. The comparison between the energy required for the formation of fragments and the peak intensity in the mass spectrum is used. For cytosine and guanine the elimination of the HNCO molecule is a major route of dissociation, while for adenine multiple loss of HCN or HNC can be followed up to small fragments. For cytosine, this corresponds to the initial bond cleavage of N3-C4/N1-C2, which represents the main dissociation route. For guanine the release of HNCO is obtained through the N1-C2/C5-C6 bond cleavage (reverse order also possible) leading to the largest peak of the spectrum. The corresponding energies of 3.5 and 3.9 eV are typically in the range available in the experiments. The loss of NH3 or HCN is also possible but requires more energy. For adenine, fragmentation consists of multiple loss of the HCN molecule and the main route corresponding to HC8N9 loss is followed by the release of HC2N1. PMID:25869111

  3. [Structure and functions of glutathione transferases].

    PubMed

    Fedets, O M

    2014-01-01

    Data about classification, nomenclature, structure, substrate specificity and role of many glutathione transferase's isoenzymes in cell functions have been summarised. The enzyme has been discovered more than 50 years ago. This family of proteins is updated continuously. It has very different composition and will have demand for system analysis for many years.

  4. Influence of hydrogen bonding on the geometry of the adenine fragment

    NASA Astrophysics Data System (ADS)

    Słowikowska, Joanna Maria; Woźniak, Krzysztof

    1996-01-01

    The crystal structures of two adenine derivatives, N(6),9-dimethyl-8-butyladenine (I) and its hydrate (1 : 1) (II), have been determined by single-crystal X-ray diffraction. The geometrical features of both structures are discussed. The influence of protonation, substitution and hydrogen bond formation on the geometry of the adenine fragment was studied, based on data retrieved from the Cambridge Structural Database. Total correlation analysis showed mutual correlation between the structural parameters in the adenine ring system; partial correlation calculations for the adenine nucleoside fragments suggest intercorrelation between the parameters of the hydrogen bonding involved in base pairing and the N(adenine)-C(sugar) bond through the adenine fragment; few such correlations were found for fragments without the sugar substituent.

  5. Examination of tyrosine/adenine stacking interactions in protein complexes.

    PubMed

    Copeland, Kari L; Pellock, Samuel J; Cox, James R; Cafiero, Mauricio L; Tschumper, Gregory S

    2013-11-14

    The π-stacking interactions between tyrosine amino acid side chains and adenine-bearing ligands are examined. Crystalline protein structures from the protein data bank (PDB) exhibiting face-to-face tyrosine/adenine arrangements were used to construct 20 unique 4-methylphenol/N9-methyladenine (p-cresol/9MeA) model systems. Full geometry optimization of the 20 crystal structures with the M06-2X density functional theory method identified 11 unique low-energy conformations. CCSD(T) complete basis set (CBS) limit interaction energies were estimated for all of the structures to determine the magnitude of the interaction between the two ring systems. CCSD(T) computations with double-ζ basis sets (e.g., 6-31G*(0.25) and aug-cc-pVDZ) indicate that the MP2 method overbinds by as much as 3.07 kcal mol(-1) for the crystal structures and 3.90 kcal mol(-1) for the optimized structures. In the 20 crystal structures, the estimated CCSD(T) CBS limit interaction energy ranges from -4.00 to -6.83 kcal mol(-1), with an average interaction energy of -5.47 kcal mol(-1), values remarkably similar to the corresponding data for phenylalanine/adenine stacking interactions. Geometry optimization significantly increases the interaction energies of the p-cresol/9MeA model systems. The average estimated CCSD(T) CBS limit interaction energy of the 11 optimized structures is 3.23 kcal mol(-1) larger than that for the 20 crystal structures.

  6. A comparison of adenine and some derivatives on pig isolated tracheal muscle.

    PubMed Central

    Bach-Dieterle, Y.; Holden, W. E.; Junod, A. F.

    1983-01-01

    We studied the muscle relaxation induced by adenine and several adenine derivatives in strips of tracheal smooth muscle from pigs; in addition their metabolism by the tissue was examined. Adenine relaxed tissue which was contracted by carbachol, histamine, or KCl. Adenine's potency was similar to that of adenosine and ATP (threshold about 4 X 10(-5)M). In tissues with carbachol-induced tone, the adenine effect differed from adenosine and ATP by being slower in onset and in 'washout' time. Furthermore, neither dipyridamole nor theophylline modified the response to adenine. The relationship was examined between pharmacological effects and the metabolism of [3H]-adenosine and [3H]-adenine. Both substrates were taken up by the tissue and converted to nucleotides, but relaxation correlated with nucleotide accumulation only in the case of [3H]-adenine. We conclude that the site and mechanism of adenine-induced relaxation is different from that of adenosine and ATP in porcine tracheal muscle. PMID:6571222

  7. Modelling proton tunnelling in the adenine-thymine base pair.

    PubMed

    Godbeer, A D; Al-Khalili, J S; Stevenson, P D

    2015-05-21

    The energies of the canonical (standard, amino-keto) and tautomeric (non-standard, imino-enol) charge-neutral forms of the adenine-thymine base pair (A-T and A*-T*, respectively) are calculated using density functional theory. The reaction pathway is then computed using a transition state search to provide the asymmetric double-well potential minima along with the barrier height and shape, which are combined to create the potential energy surface using a polynomial fit. The influence of quantum tunnelling on proton transfer within a base pair H-bond (modelled as the DFT deduced double-well potential) is then investigated by solving the time-dependent master equation for the density matrix. The effect on a quantum system by its surrounding water molecules is explored via the inclusion of a dissipative Lindblad term in the master equation, in which the environment is modelled as a heat bath of harmonic oscillators. It is found that quantum tunnelling, due to transitions to higher energy eigenstates with significant amplitudes in the shallow (tautomeric) side of the potential, is unlikely to be a significant mechanism for the creation of adenine-thymine tautomers within DNA, with thermally assisted coupling of the environment only able to boost the tunnelling probability to a maximum of 2 × 10(-9). This is barely increased for different choices of the starting wave function or when the geometry of the potential energy surface is varied.

  8. Mutants of Neurospora deficient in nicotinamide adenine dinucleotide (phosphate) glycohydrolase.

    PubMed Central

    Nelson, R E; Selitrennikoff, C P; Siegel, R W

    1975-01-01

    A new screening technique has been developed for the rapid identification of Neurospora crassa mutants that are deficient in nicotinamide adenine dinucleotide glycohydrolase (NADase) and nicotinamide adenine dinucleotide phosphate glycohydrolase (NADPase) activities. Using this procedure, five single-gene mutants were isolated whose singular difference from wild type appeared to be the absence of NAD(P)ase (EC 3.2.2.6). All five mutants were found to be genetically allelic and did not complement in heterocaryons. This gene, nada [NAD(P)ase], was localized in linkage group IV. One of the nada alleles was found to specify an enzyme that was critically temperature sensitive and had altered substrate affinity. Mutations at the nada locus did not affect the genetic program for the expression of NAD(P)ase during cell differentiation, nor did they have a general effect on NAD catabolism. Nada mutations did not have simultaneous effects on other glycohydrolase activities. Tests of dominance (in heterocaryons) and in vitro mixing experiments did not provide evidence that nada mutations alter activators or inhibitors of NAD(P)ase. Thus, the nada gene appears to specify only the structure of N. crassa NAD(P)ase. Images PMID:165174

  9. Nonselective enrichment for yeast adenine mutants by flow cytometry

    NASA Technical Reports Server (NTRS)

    Bruschi, C. V.; Chuba, P. J.

    1988-01-01

    The expression of certain adenine biosynthetic mutations in the yeast Saccharomyces cerevisiae results in a red colony color. This phenomenon has historically provided an ideal genetic marker for the study of mutation, recombination, and aneuploidy in lower eukaryotes by classical genetic analysis. In this paper, it is reported that cells carrying ade1 and/or ade2 mutations exhibit primary fluorescence. Based on this observation, the nonselective enrichment of yeast cultures for viable adenine mutants by using the fluorescence-activated cell sorter has been achieved. The advantages of this approach over conventional genetic analysis of mutation, recombination, and mitotic chromosomal stability include speed and accuracy in acquiring data for large numbers of clones. By using appropriate strains, the cell sorter has been used for the isolation of both forward mutations and chromosomal loss events in S. cerevisiae. The resolving power of this system and its noninvasiveness can easily be extended to more complex organisms, including mammalian cells, in which analogous metabolic mutants are available.

  10. Adenine nucleotides as allosteric effectors of pea seed glutamine synthetase.

    PubMed

    Knight, T J; Langston-Unkefer, P J

    1988-08-15

    The effects of adenine nucleotides on pea seed glutamine synthetase (EC 6.3.1.2) activity were examined as a part of our investigation of the regulation of this octameric plant enzyme. Saturation curves for glutamine synthetase activity versus ATP with ADP as the changing fixed inhibitor were not hyperbolic; greater apparent Vmax values were observed in the presence of added ADP than the Vmax observed in the absence of ADP. Hill plots of data with ADP present curved upward and crossed the plot with no added ADP. The stoichiometry of adenine nucleotide binding to glutamine synthetase was examined. Two molecules of [gamma-32P]ATP were bound per subunit in the presence of methionine sulfoximine. These ATP molecules were bound at an allosteric site and at the active site. One molecule of either [gamma-32P]ATP or [14C]ADP bound per subunit in the absence of methionine sulfoximine; this nucleotide was bound at an allosteric site. ADP and ATP compete for binding at the allosteric site, although ADP was preferred. ADP binding to the allosteric site proceeded in two kinetic phases. A Vmax value of 1.55 units/mg was measured for glutamine synthetase with one ADP tightly bound per enzyme subunit; a Vmax value of 0.8 unit/mg was measured for enzyme with no adenine nucleotide bound at the allosteric site. The enzyme activation caused by the binding of ADP to the allosteric sites was preceded by a lag phase, the length of which was dependent on the ADP concentration. Enzyme incubated in 10 mM ADP bound approximately 4 mol of ADP/mol of native enzyme before activation was observed; the activation was complete when 7-8 mol of ADP were bound per mol of the octameric, native enzyme. The Km for ATP (2 mM) was not changed by ADP binding to the allosteric sites. ADP was a simple competitive inhibitor (Ki = 0.05 mM) of ATP for glutamine synthetase with eight molecules of ADP tightly bound to the allosteric sites of the octamer. Binding of ATP to the allosteric sites led to marked

  11. Major and minor groove conformations of DNA trimers modified on guanine or adenine by 4-aminobiphenyl: Adenine adducts favor the minor groove

    SciTech Connect

    Shapiro, R.; Ellis, S.; Hingerty, B.E.

    1995-01-01

    We have studied the conformational effects of 4-aminobiphenyl modification at C-8 of guanine or adenine on double-stranded DNA trimers. We used sequences with the modified purine at the central base pair and all 16 possible neighboring sequences at the outer pairs. Minimized potential energy calculations were carried out using the molecular mechanics program DUPLEX to survey the conformation space of these adducts, using a total of 1280 starting structures both in the modified guanine series and in the modified adenine series. Conformer families in which the bound 4-aminobiphenyl was located in the DNA major groove, and in the minor groove, were located for both adenine and guanine modification. In the modified guanine series, the major and minor groove families were roughly comparable in energy, and the sequence context determined which was more stable in a particular case. In the modified adenine series, however, the minor groove structure was more that 10 kcal/mol more stable than the major groove for all sequences. As a result, minor groove adducts provided most of the global minima in the adenine-modified series. This result may be relevant to a previous mutagenesis study [Lasko et al. (1988) J. Biol. Chem. 263, 15429-15435] in which the hot spot of most frequent occurrence was located at an adenine, in the sequence GAT. 25 refs., 9 figs., 4 tabs.

  12. Interaction of sulfanilamide and sulfamethoxazole with bovine serum albumin and adenine: spectroscopic and molecular docking investigations.

    PubMed

    Rajendiran, N; Thulasidhasan, J

    2015-06-01

    Interaction between sulfanilamide (SAM) and sulfamethoxazole (SMO) with BSA and DNA base (adenine) was investigated by UV-visible, fluorescence, cyclic voltammetry and molecular docking studies. Stern-Volmer fluorescence quenching constant (Ka) suggests SMO is more quenched with BSA/adenine than that of SAM. The distance r between donor (BSA/adenine) and acceptor (SAM and SMO) was obtained according to fluorescence resonance energy transfer (FRET). The results showed that hydrophobic forces, electrostatic interactions, and hydrogen bonds played vital roles in the SAM and SMO with BSA/adenine binding interaction. During the interaction, sulfa drugs could insert into the hydrophobic pocket, where the non-radioactive energy transfer from BSA/adenine to sulfa drugs occurred with high possibility. Cyclic voltammetry results suggested that when the drug concentration is increased, the anodic electrode potential deceased. The docking method indicates aniline group is interacted with the BSA molecules. PMID:25754395

  13. Interaction of sulfanilamide and sulfamethoxazole with bovine serum albumin and adenine: Spectroscopic and molecular docking investigations

    NASA Astrophysics Data System (ADS)

    Rajendiran, N.; Thulasidhasan, J.

    2015-06-01

    Interaction between sulfanilamide (SAM) and sulfamethoxazole (SMO) with BSA and DNA base (adenine) was investigated by UV-visible, fluorescence, cyclic voltammetry and molecular docking studies. Stern-Volmer fluorescence quenching constant (Ka) suggests SMO is more quenched with BSA/adenine than that of SAM. The distance r between donor (BSA/adenine) and acceptor (SAM and SMO) was obtained according to fluorescence resonance energy transfer (FRET). The results showed that hydrophobic forces, electrostatic interactions, and hydrogen bonds played vital roles in the SAM and SMO with BSA/adenine binding interaction. During the interaction, sulfa drugs could insert into the hydrophobic pocket, where the non-radioactive energy transfer from BSA/adenine to sulfa drugs occurred with high possibility. Cyclic voltammetry results suggested that when the drug concentration is increased, the anodic electrode potential deceased. The docking method indicates aniline group is interacted with the BSA molecules.

  14. Differentiation Between Intracellular and Cell Surface Glycosyl Transferases: Galactosyl Transferase Activity in Intact Cells and in Cell Homogenate

    PubMed Central

    Deppert, Wolfgang; Werchau, Hermann; Walter, Gernot

    1974-01-01

    Intact BHK (baby hamster kidney) cells catalyze the hydrolysis of UDP-galactose to free galactose. The generation of galactose from UDP-galactose and its intracellular utilization impede the detection of possible galactosyl transferases on the cell surface of intact cells. Several independent procedures have been used to distinguish between intracellular and cell surface glycosyl transferases. With these procedures, no evidence was obtained for the presence of detectable amounts of galactosyl transferase activity on the surface of BHK cells. The data suggest that galactosyl transferases do not play a general role in the phenomena of cell adhesion and contact inhibition. PMID:4528509

  15. Association of poly(N-isopropylacrylamide) containing nucleobase multiple hydrogen bonding of adenine for DNA recognition

    NASA Astrophysics Data System (ADS)

    Yang, Hsiu-Wen; Chen, Jem-Kun; Cheng, Chih-Chia; Kuo, Shiao-Wei

    2013-04-01

    In this study we used the poly(N-isopropylacrylamide) (PNIPAAm) as a medium to generate PNIPAAm-adenine supramolecular complexes. A nucleobase-like hydrogen bonding (NLHB) between PNIPAAm and adenine was found that changed the morphology, crystalline structure, and temperature responsiveness of PNIPAAm microgels relatively to the adenine concentrations. With increasing the adenine concentration, the PNIPAAm-adenine supramolecular complexes gradually altered their morphologies from microgel particles to thin film structures and suppressed the thermodynamical coil-to-globule transition of PNIPAAm because of the NLHB existed between the PNIPAAm amide and ester groups and the adenine amide groups (Cdbnd O⋯Hsbnd N and Nsbnd H⋯Nsbnd R), verified by FTIR spectral analysis. NLHB was also diverse and extensive upon increasing the temperature; therefore, the thermoresponsive behavior of the complexes was altered with the NLBH intensity, evaluated by the inter-association equilibrium constant (Ka) above and below their LCST. Therefore, PNIPAAm can be as a medium to recognize adenine in various concentrations, which could potentially be applied in DNA recognition.

  16. Renoprotective effect of the xanthine oxidoreductase inhibitor topiroxostat on adenine-induced renal injury.

    PubMed

    Kamijo-Ikemori, Atsuko; Sugaya, Takeshi; Hibi, Chihiro; Nakamura, Takashi; Murase, Takayo; Oikawa, Tsuyoshi; Hoshino, Seiko; Hisamichi, Mikako; Hirata, Kazuaki; Kimura, Kenjiro; Shibagaki, Yugo

    2016-06-01

    The aim of the present study was to reveal the effect of a xanthine oxidoreductase (XOR) inhibitor, topiroxostat (Top), compared with another inhibitor, febuxostat (Feb), in an adenine-induced renal injury model. We used human liver-type fatty acid-binding protein (L-FABP) chromosomal transgenic mice, and urinary L-FABP, a biomarker of tubulointerstitial damage, was used to evaluate tubulointerstitial damage. Male transgenic mice (n = 24) were fed a 0.2% (wt/wt) adenine-containing diet. Two weeks after the start of this diet, renal dysfunction was confirmed, and the mice were divided into the following four groups: the adenine group was given only the diet containing adenine, and the Feb, high-dose Top (Top-H), and low-dose Top (Top-L) groups were given diets containing Feb (3 mg/kg), Top-H (3 mg/kg), and Top-L (1 mg/kg) in addition to adenine for another 2 wk. After withdrawal of the adenine diet, each medication was continued for 2 wk. Serum creatinine levels, the degree of macrophage infiltration, tubulointerstitial damage, renal fibrosis, urinary 15-F2t-isoprostane levels, and renal XOR activity were significantly attenuated in the kidneys of the Feb, Top-L, and Top-H groups compared with the adenine group. Serum creatinine levels in the Top-L and Top-H groups as well as renal XOR in the Top-H group were significantly lower than those in the Feb group. Urinary excretion of L-FABP in both the Top-H and Top-L groups was significantly lower than in the adenine and Feb groups. In conclusion, Top attenuated renal damage in an adenine-induced renal injury model. PMID:27029427

  17. Renoprotective effect of the xanthine oxidoreductase inhibitor topiroxostat on adenine-induced renal injury.

    PubMed

    Kamijo-Ikemori, Atsuko; Sugaya, Takeshi; Hibi, Chihiro; Nakamura, Takashi; Murase, Takayo; Oikawa, Tsuyoshi; Hoshino, Seiko; Hisamichi, Mikako; Hirata, Kazuaki; Kimura, Kenjiro; Shibagaki, Yugo

    2016-06-01

    The aim of the present study was to reveal the effect of a xanthine oxidoreductase (XOR) inhibitor, topiroxostat (Top), compared with another inhibitor, febuxostat (Feb), in an adenine-induced renal injury model. We used human liver-type fatty acid-binding protein (L-FABP) chromosomal transgenic mice, and urinary L-FABP, a biomarker of tubulointerstitial damage, was used to evaluate tubulointerstitial damage. Male transgenic mice (n = 24) were fed a 0.2% (wt/wt) adenine-containing diet. Two weeks after the start of this diet, renal dysfunction was confirmed, and the mice were divided into the following four groups: the adenine group was given only the diet containing adenine, and the Feb, high-dose Top (Top-H), and low-dose Top (Top-L) groups were given diets containing Feb (3 mg/kg), Top-H (3 mg/kg), and Top-L (1 mg/kg) in addition to adenine for another 2 wk. After withdrawal of the adenine diet, each medication was continued for 2 wk. Serum creatinine levels, the degree of macrophage infiltration, tubulointerstitial damage, renal fibrosis, urinary 15-F2t-isoprostane levels, and renal XOR activity were significantly attenuated in the kidneys of the Feb, Top-L, and Top-H groups compared with the adenine group. Serum creatinine levels in the Top-L and Top-H groups as well as renal XOR in the Top-H group were significantly lower than those in the Feb group. Urinary excretion of L-FABP in both the Top-H and Top-L groups was significantly lower than in the adenine and Feb groups. In conclusion, Top attenuated renal damage in an adenine-induced renal injury model.

  18. N6-methyl-adenine: an epigenetic signal for DNA-protein interactions.

    PubMed

    Wion, Didier; Casadesús, Josep

    2006-03-01

    N(6)-methyl-adenine is found in the genomes of bacteria, archaea, protists and fungi. Most bacterial DNA adenine methyltransferases are part of restriction-modification systems. Certain groups of Proteobacteria also harbour solitary DNA adenine methyltransferases that provide signals for DNA-protein interactions. In gamma-proteobacteria, Dam methylation regulates chromosome replication, nucleoid segregation, DNA repair, transposition of insertion elements and transcription of specific genes. In Salmonella, Haemophilus, Yersinia and Vibrio species and in pathogenic Escherichia coli, Dam methylation is required for virulence. In alpha-proteobacteria, CcrM methylation regulates the cell cycle in Caulobacter, Rhizobium and Agrobacterium, and has a role in Brucella abortus infection.

  19. Nomenclature for mammalian soluble glutathione transferases.

    PubMed

    Mannervik, Bengt; Board, Philip G; Hayes, John D; Listowsky, Irving; Pearson, William R

    2005-01-01

    The nomenclature for human soluble glutathione transferases (GSTs) is extended to include new members of the GST superfamily that have been discovered, sequenced, and shown to be expressed. The GST nomenclature is based on primary structure similarities and the division of GSTs into classes of more closely related sequences. The classes are designated by the names of the Greek letters: Alpha, Mu, Pi, etc., abbreviated in Roman capitals: A, M, P, and so on. (The Greek characters should not be used.) Class members are distinguished by Arabic numerals and the native dimeric protein structures are named according to their subunit composition (e.g., GST A1-2 is the enzyme composed of subunits 1 and 2 in the Alpha class). Soluble GSTs from other mammalian species can be classified in the same manner as the human enzymes, and this chapter presents the application of the nomenclature to the rat and mouse GSTs. PMID:16399376

  20. Nomenclature for mammalian soluble glutathione transferases.

    PubMed

    Mannervik, Bengt; Board, Philip G; Hayes, John D; Listowsky, Irving; Pearson, William R

    2005-01-01

    The nomenclature for human soluble glutathione transferases (GSTs) is extended to include new members of the GST superfamily that have been discovered, sequenced, and shown to be expressed. The GST nomenclature is based on primary structure similarities and the division of GSTs into classes of more closely related sequences. The classes are designated by the names of the Greek letters: Alpha, Mu, Pi, etc., abbreviated in Roman capitals: A, M, P, and so on. (The Greek characters should not be used.) Class members are distinguished by Arabic numerals and the native dimeric protein structures are named according to their subunit composition (e.g., GST A1-2 is the enzyme composed of subunits 1 and 2 in the Alpha class). Soluble GSTs from other mammalian species can be classified in the same manner as the human enzymes, and this chapter presents the application of the nomenclature to the rat and mouse GSTs.

  1. DNA methylation on N6-adenine in C. elegans

    PubMed Central

    Greer, Eric Lieberman; Blanco, Mario Andres; Gu, Lei; Sendinc, Erdem; Liu, Jianzhao; Aristizábal-Corrales, David; Hsu, Chih-Hung; Aravind, L.; He, Chuan; Shi, Yang

    2015-01-01

    Summary In mammalian cells, DNA methylation on the 5th position of cytosine (5mC) plays an important role as an epigenetic mark. However, DNA methylation was considered to be absent in C. elegans because of the lack of detectable 5mC as well as homologs of the cytosine DNA methyltransferases. Here, using multiple approaches, we demonstrate the presence of adenine N6-methylation (6mA) in C. elegans DNA. We further demonstrate that this modification increases trans-generationally in a paradigm of epigenetic inheritance. Importantly, we identify a DNA demethylase, NMAD-1, and a potential DNA methyltransferase, DAMT-1, which regulate 6mA levels and crosstalk between methylation of histone H3K4me2 and 6mA, and control the epigenetic inheritance of phenotypes associated with the loss of the H3K4me2 demethylase spr-5. Together, these data identify a DNA modification in C. elegans and raise the exciting possibility that 6mA may be a carrier of heritable epigenetic information in eukaryotes. PMID:25936839

  2. Spin-dependent electron transport in zinc- and manganese-doped adenine molecules

    SciTech Connect

    Simchi, Hamidreza; Esmaeilzadeh, Mahdi Mazidabadi, Hossein

    2014-01-28

    The spin-dependent electron transport properties of zinc- and manganese-doped adenine molecules connected to zigzag graphene leads are studied in the zero bias regime using the non-equilibrium Green's function method. The conductance of the adenine molecule increased and became spin-dependent when a zinc or manganese atom was doped into the molecules. The effects of a transverse electric field on the spin-polarization of the transmitted electrons were investigated and the spin-polarization was controlled by changing the transverse electric field. Under the presence of a transverse electric field, both the zinc- and manganese-doped adenine molecules acted as spin-filters. The maximum spin-polarization of the manganese-doped adenine molecule was greater than the molecule doped with zinc.

  3. Identification of a mitochondrial ATP synthase-adenine nucleotide translocator complex in Leishmania.

    PubMed

    Detke, Siegfried; Elsabrouty, Rania

    2008-01-01

    The ATP synthasome is a macromolecular complex consisting of ATP synthase, adenine nucleotide translocator and phosphate carrier. To determine if this complex is evolutionary old or young, we searched for its presence in Leishmania, a mitochondria containing protozoan which evolved from the main eukaryote line soon after eukaryotes split from prokaryotes. Sucrose gradient centrifugation showed that the distribution of ANT among the fractions coincided with the distribution of ATP synthase. In addition, ATP synthase co-precipitated with FLAG tagged and wild type adenine nucleotide translocator isolated with anti FLAG and anti adenine nucleotide translocator antibodies, respectively. These data indicate that the adenine nucleotide translocator interacted with the ATP synthase to form a stable structure referred to as the ATP synthasome. The presence of the ATP synthasome in Leishmania, an organism branching off the main line of eukaryotes early in the development of eukaryotes, as well as in higher eukaryotes suggests that the ATP synthasome is a phylogenetically ancient structure. PMID:17920025

  4. Nicotinamide adenine dinucleotide-dependent and nicotinamide adenine dinucleotide-independent lactate dehydrogenases in homofermentative and heterofermentative lactic acid bacteria.

    PubMed

    Doelle, H W

    1971-12-01

    Three homofermentative (Lactobacillus plantarum B38, L. plantarum B33, Pediococcus pentosaceus B30) and three heterofermentative (Leuconostoc mesenteroides 39, L. oenos B70, Lactobacillus brevis) lactic acid bacteria were examined for the presence or absence of nicotinamide adenine dinucleotide (NAD)-dependent and NAD-independent d- and l-lactate dehydrogenases. Two of the six strains investigated, P. pentosaceus and L. oenos, did not exhibit an NAD-independent enzyme activity capable of reducing dichlorophenol indophenol. The pH optima of the lactic dehydrogenases were determined. The NAD-dependent enzymes from homofermentative strains exhibited optima at pH 7.8 to 8.8, whereas values from 9.0 to 10.0 were noted for these enzymes from heterofermentative organisms. The optima for the NAD-independent enzymes were between 5.8 and 6.6. The apparent Michaelis-Menten constants determined for both NAD and the substrates demonstrated the existence of a greater affinity for d- than l-lactic acid. A comparison of the specific NAD-dependent and NAD-independent lactate dehydrogenase activities revealed a direct correlation of the d/l ratios of these activities with the type of lactic acid produced during the growth of the organism.

  5. Benchmark Thermochemistry for Biologically Relevant Adenine and Cytosine. A Combined Experimental and Theoretical Study.

    PubMed

    Emel'yanenko, Vladimir N; Zaitsau, Dzmitry H; Shoifet, Evgeni; Meurer, Florian; Verevkin, Sergey P; Schick, Christoph; Held, Christoph

    2015-09-17

    The thermochemical properties available in the literature for adenine and cytosine are in disarray. A new condensed phase standard (p° = 0.1 MPa) molar enthalpy of formation at T = 298.15 K was measured by using combustion calorimetry. New molar enthalpies of sublimation were derived from the temperature dependence of vapor pressure measured by transpiration and by the quarz-crystal microbalance technique. The heat capacities of crystalline adenine and cytosine were measured by temperature-modulated DSC. Thermodynamic data on adenine and cytosine available in the literature were collected, evaluated, and combined with our experimental results. Thus, the evaluated collection of data together with the new experimental results reported here has helped to resolve contradictions in the available enthalpies of formation. A set of reliable thermochemical data is recommended for adenine and cytosine for further thermochemical calculations. Quantum-chemical calculations of the gas phase molar enthalpies of formation of adenine and cytosine have been performed by using the G4 method and results were in excellent agreement with the recommended experimental data. The standard molar entropies of formation and the standard molar Gibbs functions of formation in crystal and gas state have been calculated. Experimental vapor-pressure data measured in this work were used to estimate pure-component PC-SAFT parameters. This allowed modeling solubility of adenine and cytosine in water over the temperature interval 278-310 K. PMID:26317826

  6. Benchmark Thermochemistry for Biologically Relevant Adenine and Cytosine. A Combined Experimental and Theoretical Study.

    PubMed

    Emel'yanenko, Vladimir N; Zaitsau, Dzmitry H; Shoifet, Evgeni; Meurer, Florian; Verevkin, Sergey P; Schick, Christoph; Held, Christoph

    2015-09-17

    The thermochemical properties available in the literature for adenine and cytosine are in disarray. A new condensed phase standard (p° = 0.1 MPa) molar enthalpy of formation at T = 298.15 K was measured by using combustion calorimetry. New molar enthalpies of sublimation were derived from the temperature dependence of vapor pressure measured by transpiration and by the quarz-crystal microbalance technique. The heat capacities of crystalline adenine and cytosine were measured by temperature-modulated DSC. Thermodynamic data on adenine and cytosine available in the literature were collected, evaluated, and combined with our experimental results. Thus, the evaluated collection of data together with the new experimental results reported here has helped to resolve contradictions in the available enthalpies of formation. A set of reliable thermochemical data is recommended for adenine and cytosine for further thermochemical calculations. Quantum-chemical calculations of the gas phase molar enthalpies of formation of adenine and cytosine have been performed by using the G4 method and results were in excellent agreement with the recommended experimental data. The standard molar entropies of formation and the standard molar Gibbs functions of formation in crystal and gas state have been calculated. Experimental vapor-pressure data measured in this work were used to estimate pure-component PC-SAFT parameters. This allowed modeling solubility of adenine and cytosine in water over the temperature interval 278-310 K.

  7. Glutathione transferase gene family from the housefly Musca domestica.

    PubMed

    Syvanen, M; Zhou, Z H; Wang, J Y

    1994-10-17

    Three new glutathione transferase (GST) genes from the housefly Musca domestica are described. These genes, identified as MdGST-2, -3, and -4, were from cDNA clones obtained from a cDNA bank in phage lambda. The bank was prepared using poly(A)+ RNA from a housefly that is highly resistant to organophosphate insecticides because of enhanced expression of multiple members of the glutathione transferase gene family. The DNA sequence of each is reported and has a complete open reading frame that specified an amino acid sequence similar to other dipteran glutathione transferases. Based on phylogenetic analysis, we can conclude that the insect glutathione transferase gene family falls into two groups, each of which evolves at a different rate, presumably due to differences in functional constraints. We show that MdGST-1 (and their homologues from Drosophila and Lucilia) evolve at a significantly slower rate than the other members of the gene family. Each housefly GST cDNA was inserted into a bacterial plasmid expression system and a glutathione transferase activity was expressed in Escherichia coli. The transcription pattern of each of these glutathione transferases was examined in a variety of different housefly strains that are known to differ in their resistance to organophosphate insecticides due to different patterns of glutathione transferase expression. We found that the level of transcription for two of our clones was positively correlated with the level of organophosphate resistance.

  8. Labeling of mitochondrial adenine nucleotides of bovine sperm

    SciTech Connect

    Cheetham, J.; Lardy, H.A.

    1986-05-01

    Incorporation of /sup 32/P/sub i/ into the adenine nucleotide pool of intact bovine spermatozoa utilizing endogenous substrates results in a specific activity (S.A.) ratio ATP/ADP of 0.3 to 0.5, suggesting compartmentation of nucleotide pools or a pathway for phosphorylation of AMP in addition to the myokinase reaction. Incubation of filipin-permeabilized cells with pyruvate, acetylcarnitine, or ..cap alpha..-ketoglutarate (..cap alpha..KG) resulted in ATP-ADP S.A. ratios of 0.5, 0.8, and 1.6, respectively, for mitochondrial nucleotides. However, when malate was included with pyruvate or acetylcarnitine, the ATP/ADP S.A. ratio increased by 400% to 2.0 for pyruvate/malate and by 290% to 2.8 for acetylcarnitine/malate, while the ATP/ADP ratio increased by less than 100% in both cases. These results may indicate that under conditions of limited flux through the citric acid cycle a pathway for phosphorylation of AMP from a precursor other than ATP exists or that ATP is compartmented within the mitochondrion. In the presence of uncoupler and oligomycin with ..cap alpha..KG, pyruvate/malate, or acetylcarnitine/malate, /sup 32/P/sub i/ is incorporated primarily into ATP, resulting in an ATP/ADP S.A. ratio of 4.0 for ..cap alpha..KG, 2.7 for pyruvate/malate, and 2.8 for acetylcarnitine/malate. These data are consistent with phosphorylation of ADP during substrate level phosphorylation in the citric acid cycle.

  9. Phenotype and Genotype Characterization of Adenine Phosphoribosyltransferase Deficiency

    PubMed Central

    Bollée, Guillaume; Dollinger, Cécile; Boutaud, Lucile; Guillemot, Delphine; Bensman, Albert; Harambat, Jérôme; Deteix, Patrice; Daudon, Michel; Knebelmann, Bertrand

    2010-01-01

    Adenine phosphoribosyltransferase (APRT) deficiency is a rare autosomal recessive disorder causing 2,8-dihydroxyadenine stones and renal failure secondary to intratubular crystalline precipitation. Little is known regarding the clinical presentation of APRT deficiency, especially in the white population. We retrospectively reviewed all 53 cases of APRT deficiency (from 43 families) identified at a single institution between 1978 and 2009. The median age at diagnosis was 36.3 years (range 0.5 to 78.0 years). In many patients, a several-year delay separated the onset of symptoms and diagnosis. Of the 40 patients from 33 families with full clinical data available, 14 (35%) had decreased renal function at diagnosis. Diagnosis occurred in six (15%) patients after reaching ESRD, with five diagnoses made at the time of disease recurrence in a renal allograft. Eight (20%) patients reached ESRD during a median follow-up of 74 months. Thirty-one families underwent APRT sequencing, which identified 54 (87%) mutant alleles on the 62 chromosomes analyzed. We identified 18 distinct mutations. A single T insertion in a splice donor site in intron 4 (IVS4 + 2insT), which produces a truncated protein, accounted for 40.3% of the mutations. We detected the IVS4 + 2insT mutation in two (0.98%) of 204 chromosomes of healthy newborns. This report, which is the largest published series of APRT deficiency to date, highlights the underdiagnosis and potential severity of this disease. Early diagnosis is crucial for initiation of effective treatment with allopurinol and for prevention of renal complications. PMID:20150536

  10. The Genetic Architecture of Murine Glutathione Transferases

    PubMed Central

    Lu, Lu; Pandey, Ashutosh K.; Houseal, M. Trevor; Mulligan, Megan K.

    2016-01-01

    Glutathione S-transferase (GST) genes play a protective role against oxidative stress and may influence disease risk and drug pharmacokinetics. In this study, massive multiscalar trait profiling across a large population of mice derived from a cross between C57BL/6J (B6) and DBA2/J (D2)—the BXD family—was combined with linkage and bioinformatic analyses to characterize mechanisms controlling GST expression and to identify downstream consequences of this variation. Similar to humans, mice show a wide range in expression of GST family members. Variation in the expression of Gsta4, Gstt2, Gstz1, Gsto1, and Mgst3 is modulated by local expression QTLs (eQTLs) in several tissues. Higher expression of Gsto1 in brain and liver of BXD strains is strongly associated (P < 0.01) with inheritance of the B6 parental allele whereas higher expression of Gsta4 and Mgst3 in brain and liver, and Gstt2 and Gstz1 in brain is strongly associated with inheritance of the D2 parental allele. Allele-specific assays confirmed that expression of Gsto1, Gsta4, and Mgst3 are modulated by sequence variants within or near each gene locus. We exploited this endogenous variation to identify coexpression networks and downstream targets in mouse and human. Through a combined systems genetics approach, we provide new insight into the biological role of naturally occurring variants in GST genes. PMID:26829228

  11. Towards in vivo regulon kinetics: PurR activation by 5-phosphoribosyl-α-1-pyrophosphate during purine depletion in Lactococcus lactis.

    PubMed

    Jendresen, Christian Bille; Dimitrov, Peter; Gautier, Laurent; Liu, Meng; Martinussen, Jan; Kilstrup, Mogens

    2014-07-01

    Short-term adaptation to changing environments relies on regulatory elements translating shifting metabolite concentrations into a specifically optimized transcriptome. So far the focus of analyses has been divided between regulatory elements identified in vivo and kinetic studies of small molecules interacting with the regulatory elements in vitro. Here we describe how in vivo regulon kinetics can describe a regulon through the effects of the metabolite controlling it, exemplified by temporal purine exhaustion in Lactococcus lactis. We deduced a causal relation between the pathway precursor 5-phosphoribosyl-α-1-pyrophosphate (PRPP) and individual mRNA levels, whereby unambiguous and homogeneous relations could be obtained for PurR regulated genes, thus linking a specific regulon to a specific metabolite. As PurR activates gene expression upon binding of PRPP, the pur mRNA curves reflect the in vivo kinetics of PurR PRPP binding and activation. The method singled out the xpt-pbuX operon as kinetically distinct, which was found to be caused by a guanine riboswitch whose regulation was overlaying the PurR regulation. Importantly, genes could be clustered according to regulatory mechanism and long-term consequences could be distinguished from transient changes--many of which would not be seen in a long-term adaptation to a new environment. The strategy outlined here can be adapted to analyse the individual effects of members from larger metabolomes in virtually any organism, for elucidating regulatory networks in vivo.

  12. Expression of phosphoribosyl pyrophosphate synthetase genes in U87 glioma cells with ERN1 knockdown: effect of hypoxia and endoplasmic reticulum stress.

    PubMed

    Minchenko, O H; Garmash, I A; Kovalevska, O V; Tsymbal, D O; Minchenko, D O

    2014-01-01

    Activation of pentose phosphate pathway is an important factor of enhanced cell proliferation and tumor growth. Phosphoribosyl pyrophosphate synthetase (PRPS) is a key enzyme of this pathway and plays a central role in the synthesis of purines and pyrimidines. Hypoxia as well as ERN1 (from endoplasmic reticulum to nuclei-1) mediated endoplasmic reticulum stress response-signalling pathway is linked to the proliferation because the blockade of ERN1 suppresses tumor growth, including glioma. We studied the expression of different PRPS genes in glioma cells with ERN1 knockdown under hypoxic condition. It was shown that hypoxia decreases the expression of PRPS1 and PRPS2 genes in both types of glioma cells, being more pronounced in cells without ERN1 function, but PRPSAP1 and PRPSAP2 gene expressions are suppressed by hypoxia only in glioma cells with blockade of ERN1. Moreover, the blockade of endoribonuclease activity of ERN1 does not affect the expression of PRPS1 and PRPS2 as well as PPRS-associated protein genes in U87 glioma cells. At the same time, the induction of endoplasmic reticulum stress by tunicamycin in glioma cells with suppressed activity of ERN1 endoribonuclease decreases the expression level of PRPS1 and PRPS2 genes only. Results of this investigation clearly demonstrated that the expression of different genes encoding subunits of PRPS enzyme is affected by hypoxia in U87 glioma cells, but the effect of hypoxia is modified by suppression of endoplasmic reticulum stress signaling enzyme ERN1. PMID:25816608

  13. Dissection of the PHO pathway in Schizosaccharomyces pombe using epistasis and the alternate repressor adenine.

    PubMed

    Estill, Molly; Kerwin-Iosue, Christine L; Wykoff, Dennis D

    2015-05-01

    In Saccharomyces cerevisiae, intracellular phosphate levels are maintained by the PHO pathway, activation of which is assayed by increased phosphatase activity. The PHO pathway of Schizosaccharomyces pombe upregulates phosphatase activity (encoded by pho1 (+)) during low extracellular phosphate levels, but the underlying mechanism is poorly understood. We utilized an alternate repressor of pho1 (+) expression (adenine supplementation) along with epistasis analysis to develop a model of how S. pombe PHO pathway components interact. Analyzing Pho1 activity in S. pombe PHO pathway deletion mutants during adenine starvation, we observed most mutants with a phosphatase defect in phosphate starvation also had a defect in adenine starvation. Pho7, a transcription factor in the PHO pathway, is necessary for an adenine starvation-mediated increase in Pho1 activity. Comparing adenine starvation to phosphate starvation, there are differences in the degree to which individual mutants regulate the two responses. Through epistasis studies, we identified two positive regulatory arms and one repressive arm of the PHO pathway. PKA activation is a positive regulator of Pho1 activity under both environmental conditions and is critical for transducing adenine concentrations in the cell. The synthesis of IP7 also appears critical for the induction of Pho1 activity during adenine starvation, but IP7 is not critical during phosphate starvation, which differs from S. cerevisiae. Finally, Csk1 is critical for repression of pho1 (+) expression during phosphate starvation. We believe all of these regulatory arms converge to increase transcription of pho1 (+) and some of the regulation acts through pho7 (+).

  14. Assignment of the Gene for Adenine Phosphoribosyltransferase to Human Chromosome 16 by Mouse-Human Somatic Cell Hybridization

    PubMed Central

    Tischfield, Jay A.; Ruddle, Frank H.

    1974-01-01

    A series of mouse-human hybrids was prepared from mouse cells deficient in adenine phosphoribosyltransferase (EC 2.4.2.7) and normal human cells. The hybrids were made in medium containing adenine and alanosine, an antimetabolite known to inhibit de novo adenylic acid biosynthesis. The mouse cells, unable to utilize exogenous adenine, were killed in this medium, but the hybrids proliferated as a consequence of their retaining the human aprt gene. The hybrids were then exposed to the adenine analogs 2,6-diaminopurine and 2-fluoroadenine to select for cells that had lost this gene. Before exposure to the adenine analogs, the expression of human adenine phosphoribosyltransferase by the hybrids was strongly associated only with the presence of human chromosome 16, and afterwards this was the only human chromosome consistently lost. This observation suggests that the human aprt gene can be assigned to chromosome 16. Images PMID:4129802

  15. Glutathione transferases in the bioactivation of azathioprine.

    PubMed

    Modén, Olof; Mannervik, Bengt

    2014-01-01

    The prodrug azathioprine is primarily used for maintaining remission in inflammatory bowel disease, but approximately 30% of the patients suffer adverse side effects. The prodrug is activated by glutathione conjugation and release of 6-mercaptopurine, a reaction most efficiently catalyzed by glutathione transferase (GST) A2-2. Among five genotypes of GST A2-2, the variant A2*E has threefold-fourfold higher catalytic efficiency with azathioprine, suggesting that the expression of A2*E could boost 6-mercaptopurine release and adverse side effects in treated patients. Structure-activity studies of the GST A2-2 variants and homologous alpha class GSTs were made to delineate the determinants of high catalytic efficiency compared to other alpha class GSTs. Engineered chimeras identified GST peptide segments of importance, and replacing the corresponding regions in low-activity GSTs by these short segments produced chimeras with higher azathioprine activity. By contrast, H-site mutagenesis led to decreased azathioprine activity when active-site positions 208 and 213 in these favored segments were mutagenized. Alternative substitutions indicated that hydrophobic residues were favored. A pertinent question is whether variant A2*E represents the highest azathioprine activity achievable within the GST structural framework. This issue was addressed by mutagenesis of H-site residues assumed to interact with the substrate based on molecular modeling. The mutants with notably enhanced activities had small or polar residues in the mutated positions. The most active mutant L107G/L108D/F222H displayed a 70-fold enhanced catalytic efficiency with azathioprine. The determination of its structure by X-ray crystallography showed an expanded H-site, suggesting improved accommodation of the transition state for catalysis.

  16. Determination of adenine based on the fluorescence recovery of the L-Tryptophan-Cu(2+) complex.

    PubMed

    Duan, Ruilin; Li, Chunyan; Liu, Shaopu; Liu, Zhongfang; Li, Yuanfang; Yuan, Yusheng; Hu, Xiaoli

    2016-01-01

    A simple and sensitive method for determination of adenine was developed based on fluorescence quenching and recovery of L-Tryptophan (L-Trp). The fluorescence of L-Trp could efficiently quenched by copper ion compared with other common metal ions. Upon addition of adenine (Ade) in L-Trp-Cu(II) system, the fluorescence was reoccurred. Under the optimum conditions, the recovery fluorescence intensity was linearly correlated with the concentration of adenine in the range from 0.34 to 25.0μmolL(-1), with a correlation coefficient (R(2)) of 0.9994. The detection limit (3σ/k) was 0.046μmolL(-1), indicating that this method could applied to detect trace adenine. In this study, amino acids including L-Trp, D-Trp, L-Tyr, D-Tyr, L-Phe, D-Phe were investigated and only L-Trp could well chelated copper ion. Additionally, the mechanism of quench and recovery also were discussed and the method was successfully applied to detect the adenine in DNA with satisfactory results.

  17. Determination of adenine based on the fluorescence recovery of the L-Tryptophan-Cu2+ complex

    NASA Astrophysics Data System (ADS)

    Duan, Ruilin; Li, Chunyan; Liu, Shaopu; Liu, Zhongfang; Li, Yuanfang; Yuan, Yusheng; Hu, Xiaoli

    2016-01-01

    A simple and sensitive method for determination of adenine was developed based on fluorescence quenching and recovery of L-Tryptophan (L-Trp). The fluorescence of L-Trp could efficiently quenched by copper ion compared with other common metal ions. Upon addition of adenine (Ade) in L-Trp-Cu(II) system, the fluorescence was reoccurred. Under the optimum conditions, the recovery fluorescence intensity was linearly correlated with the concentration of adenine in the range from 0.34 to 25.0 μmol L-1, with a correlation coefficient (R2) of 0.9994. The detection limit (3σ/k) was 0.046 μmol L-1, indicating that this method could applied to detect trace adenine. In this study, amino acids including L-Trp, D-Trp, L-Tyr, D-Tyr, L-Phe, D-Phe were investigated and only L-Trp could well chelated copper ion. Additionally, the mechanism of quench and recovery also were discussed and the method was successfully applied to detect the adenine in DNA with satisfactory results.

  18. Adenine: an important drug scaffold for the design of antiviral agents

    PubMed Central

    Wang, Changyuan; Song, Zhendong; Yu, Haiqing; Liu, Kexin; Ma, Xiaodong

    2015-01-01

    Adenine derivatives, in particular the scaffold bearing the acyclic nucleoside phosphonates (ANPS), possess significant antiviral and cytostatic activity. Till now, several effective adenine derivatives have been marketed for the treatment of HIV, HBV, CMV and other virus-infected diseases. These compounds are represented by tenofovir (PMPA), a medicine for both HIV and HBV, and adefovir as an anti-HBV agent. More than this, other analogs, such as GS9148, GS9131, and GS7340, are also well-known anti-viral agents that have been progressed to the clinical studies for their excellent activity. In general, the structures of these compounds include an adenine nucleobase linked to a phosphonate side chain. Considerable structural modifications on the scaffold itself and the peripheral sections were made. The structure-activity relationships (SARs) of this skeleton will provide valuable clues to identify more effective adenine derivatives as antiviral drugs. Here, we systematically summarized the SARs of the adenine derivatives, and gave important information for further optimizing this template. PMID:26579473

  19. Temperature-dependent self-assembly of adenine derivative on HOPG.

    PubMed

    Mu, Zhongcheng; Rubner, Oliver; Bamler, Markus; Blömker, Tobias; Kehr, Gerald; Erker, Gerhard; Heuer, Andreas; Fuchs, Harald; Chi, Lifeng

    2013-08-27

    Temperature-dependent self-assembly formed by the adsorption of the nucleobase adenine derivative on a graphite surface were investigated by in situ scanning tunneling microscopy (STM). The high-resolution STM images reveal two types of structures, α phase and β phase, which are mainly driven by either hydrogen bonding or aromatic π-π interactions between adenine bases, respectively, as well as the interactions of alkyl chains. α-Phase structures can be transformed into β-phase structures by increasing temperature. The reverse is true for decreasing temperature. This reflects structural stabilities resulting from the different interactions. Density functional theory (DFT) calculations were performed to characterize possible arrangements of adjacent adenine moieties systematically in terms of binding energies and structural properties. Via a systematic search algorithm, all possible network structures were determined on a microscopic level. In this way, it is possible to rationalize the structural parameters as found in the STM images.

  20. Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays.

    PubMed

    Jha, Shankar K; Ahmed, Zeeshan; Agio, Mario; Ekinci, Yasin; Löffler, Jörg F

    2012-02-01

    We report the ultrasensitive detection of adenine using deep-UV surface-enhanced resonance Raman scattering on aluminum nanostructures. Well-defined Al nanoparticle arrays fabricated over large areas using extreme-UV interference lithography exhibited sharp and tunable plasmon resonances in the UV and deep-UV wavelength ranges. Theoretical modeling based on the finite-difference time-domain method was used to understand the near-field and far-field optical properties of the nanoparticle arrays. Raman measurements were performed on adenine molecules coated uniformly on the Al nanoparticle arrays at a laser excitation wavelength of 257.2 nm. With this technique, less than 10 amol of label-free adenine molecules could be detected reproducibly in real time. Zeptomole (~30,000 molecules) detection sensitivity was readily achieved proving that deep-UV surface-enhanced resonance Raman scattering is an extremely sensitive tool for the detection of biomolecules.

  1. DNA with adenine tracts contains poly(dA).poly(dT) conformational features in solution.

    PubMed

    Brahms, S; Brahms, J G

    1990-03-25

    The conformation of DNA's with adenine-thymine tracts exhibiting retardation in electrophoretic migration and considered as curved were investigated in solution by CD and RAMAN spectroscopy. The following curved multimers with adenine tracts but of different flanking sequences d(CA5TGCC)n, d(TCTCTA6TATATA5)n, d(GA4T4C)n yield CD spectroscopic features indicating a non-B structure of the dA.dT tract with similarities to polyd(A).polyd(T). We suggest that adenine-thymine bases in these multimers contain some of the distinctive conformational features of poly(A).polyd(T) probably with large propeller twist found by NMR (Behling and Kearns, 1987) and by X-ray diffraction on oligonucleotides containing a tract of adenines (Nelson et al. 1987, Coll et al; 1987; DiGabriele et al. 1989). Some elements of distinctive CD features of the contiguous adenines run are also observed in the straight multi-9-mer d(CA5GCC)n which lacks in-phase relation to the helical repeat. Despite the presence of the TpA step in the straight multimer d(GT4A4)n, the altered dA.dT conformation is not completely destroyed. Interruption of adenine tract by a guanine in d(CAAGAATGCC)n leads to a B-like conformation and to a normal electrophoretic mobility. The Raman spectra reveal a rearrangement of the sugar-phosphate backbone of dA.dT tract in the multimer d(CA5TGCC)n with respect to that of polydA.polydT. This is reflected in the presence of an unique Raman band associated to C2'-endo sugar with a predominant contribution of C1'-exo puckering which is exhibited by the multimer whereas two distinct Raman bands characterize poly(dA).poly(dT) backbone conformation.

  2. Solution structure of a five-adenine bulge loop within a DNA duplex.

    PubMed

    Dornberger, U; Hillisch, A; Gollmick, F A; Fritzsche, H; Diekmann, S

    1999-09-28

    The three-dimensional solution structure of a DNA molecule of the sequence 5'-d(GCATCGAAAAAGCTACG)-3' paired with 5'-d(CGTAGCCGATGC)-3' containing a five-adenine bulge loop (dA(5)-bulge) between two double helical stems was determined by 2D (1)H and (31)P NMR, infrared, and Raman spectroscopy. The DNA in both stems adopt a classical B-form double helical structure with Watson-Crick base pairing and C2'-endo sugar conformation. In addition, the two dG/dC base pairs framing the dA(5)-bulge loop are formed and are stable at least up to 30 degrees C. The five adenine bases of the bulge loop are localized at intrahelical positions within the double helical stems. Stacking on the double helical stem is continued for the first four 5'-adenines in the bulge loop. The total rise (the height) of these four stacked adenines roughly equals the diameter of the double helical stem. The stacking interactions are broken between the last of these four 5'-adenines and the fifth loop adenine at the 3'-end. This 3'-adenine partially stacks on the other stem. The angle between the base planes of the two nonstacking adenines (A10 and A11) in the bulge loop reflects the kinking angle of the global DNA structure. The neighboring cytosines opposite the dA(5)-bulge (being parts of the bulge flanking base pairs) do not stack on one another. This disruption of stacking is characterized by a partial shearing of these bases, such that certain sequential NOEs for this base step are preserved. In the base step opposite the loop, an extraordinary hydrogen bond is observed between the phosphate backbone of the 5'-dC and the amino proton of the 3'-dC in about two-thirds of the conformers. This hydrogen bond probably contributes to stabilizing the global DNA structure. The dA(5)-bulge induces a local kink into the DNA molecule of about 73 degrees (+/-11 degrees ). This kinking angle and the mutual orientation of the two double helical stems agree well with results from fluorescence resonance energy

  3. Comparative study of spontaneous deamination of adenine and cytosine in unbuffered aqueous solution at room temperature

    NASA Astrophysics Data System (ADS)

    Wang, Shiliang; Hu, Anguang

    2016-06-01

    Adenine in unbuffered nanopure water at a concentration of 2 mM is completely deaminated (>99%) to hypoxanthine at room temperature in ca. 10 weeks, with an estimated half-life (t1/2) less than 10 days, about six orders of magnitude faster than previously reported. Cytosine is not deaminated under the same condition, even after 3 years. This is in contrast to previous observations that cytosine deaminates 20-40 times faster than adenine free base, in nucleoside, in nucleotide and in single-stranded DNA in buffered neutral aqueous solutions.

  4. Copper-catalyzed intramolecular cyclization of N-propargyl-adenine: synthesis of purine-fused tricyclics.

    PubMed

    Li, Ren-Long; Liang, Lei; Xie, Ming-Sheng; Qu, Gui-Rong; Niu, Hong-Ying; Guo, Hai-Ming

    2014-04-18

    A novel protocol to construct fluorescent purine-fused tricyclic products via intramolecular cyclization of N-propargyl-adenine has been developed. With CuBr as the catalyst, a series of purine-fused tricyclic products were obtained in good to excellent yields (19 examples, 75-89% yields). When R2 was a hydrogen atom in N-propargyl-adenines, the reactions only afforded the endocyclic double bond products. When R2 was an aryl group, the electron-donating groups favored the endocyclic double bond products, while the electron-withdrawing groups favored the exocyclic double bond products. PMID:24678722

  5. Measurement of liver adenine nucleotides and S-adenosyl amino acids by one-step high-performance liquid chromatography.

    PubMed

    Gourdeau, H; Lavoie, R; Grose, J H; Bélanger, L

    1986-10-01

    A reverse-phase isocratic HPLC method is described for direct simultaneous assay of ATP, ADP, AMP, S-adenosylmethionine, S-adenosylhomocysteine, S-adenosylethionine, and other adenine derivatives in liver microbiopsies. The procedure was tested in conditions which alter the hepatic content of adenine nucleotides and sulfur-adenosyl amino acids in humans, rats, and guinea pigs.

  6. Thioltransferase activity of bovine lens glutathione S-transferase.

    PubMed Central

    Dal Monte, M; Cecconi, I; Buono, F; Vilardo, P G; Del Corso, A; Mura, U

    1998-01-01

    A Mu-class glutathione S-transferase purified to electrophoretic homogeneity from bovine lens displayed thioltransferase activity, catalysing the transthiolation reaction between GSH and hydroxyethyldisulphide. The thiol-transfer reaction is composed of two steps, the formation of GSSG occurring through the generation of an intermediate mixed disulphide between GSH and the target disulphide. Unlike glutaredoxin, which is only able to catalyse the second step of the transthiolation process, glutathioneS-transferase catalyses both steps of the reaction. Data are presented showing that bovine lens glutathione S-transferase and rat liver glutaredoxin, which was used as a thioltransferase enzyme model, can operate in synergy to catalyse the GSH-dependent reduction of hydroxyethyldisulphide. PMID:9693102

  7. Chemical engineering of the peptidyl transferase center reveals an important role of the 2′-hydroxyl group of A2451

    PubMed Central

    Erlacher, Matthias D.; Lang, Kathrin; Shankaran, Nisha; Wotzel, Brigitte; Hüttenhofer, Alexander; Micura, Ronald; Mankin, Alexander S.; Polacek, Norbert

    2005-01-01

    The main enzymatic reaction of the large ribosomal subunit is peptide bond formation. Ribosome crystallography showed that A2451 of 23S rRNA makes the closest approach to the attacking amino group of aminoacyl-tRNA. Mutations of A2451 had relatively small effects on transpeptidation and failed to unequivocally identify the crucial functional group(s). Here, we employed an in vitro reconstitution system for chemical engineering the peptidyl transferase center by introducing non-natural nucleosides at position A2451. This allowed us to investigate the peptidyl transfer reaction performed by a ribosome that contained a modified nucleoside at the active site. The main finding is that ribosomes carrying a 2′-deoxyribose at A2451 showed a compromised peptidyl transferase activity. In variance, adenine base modifications and even the removal of the entire nucleobase at A2451 had only little impact on peptide bond formation, as long as the 2′-hydroxyl was present. This implicates a functional or structural role of the 2′-hydroxyl group at A2451 for transpeptidation. PMID:15767286

  8. Phosphorus-31 NMR visibility and characterization of rat liver mitochondrial matrix adenine nucleotides

    SciTech Connect

    Hutson, S.M.; Berkich, D.; Williams, G.D.; LaNoue, K.F.; Briggs, R.W. )

    1989-05-16

    Compartmentation and NMR visibility of mitochondrial adenine nucleotides were quantitated in isolated rat liver mitochondria respiring on succinate and glutamate in vitro at 8 and 25{degree}C. Intra- and extramitochondrial nucleotides were discriminated by adding the chelator trans-1,2-diaminocyclohexane-N,N,N{prime},N{prime}-tetraacetic acid (CDTA). T{sub 1} values of about 0.2-0.3 s for magnesium-bound matrix nucleotides were determined. Adenine nucleotide T{sub 1} values were influenced by the ionic environment; only magnesium-free ATP T{sub 1}'s were affected by temperature. Intra- and extramitochondrial adenine nucleotide ratios were varied in ATP-loaded mitochondria with added ATP and phosphate using the mitochondrial inhibitors oligomycin and carboxyatractyloside, and adenine nucleotides were quantitated by using NMR and enzymatic analysis. There was good agreement between matrix ATP concentrations (magnesium-bound ATP) calculated by using NMR and standard biochemical techniques. Although matrix ADP could be detected by NMR, it was difficult to quantitate accurately by NMR. The data indicate that mitochondrial ATP is NMR-visible in isolated mitochondria in vitro.

  9. Controlling two-phase self-assembly of an adenine derivative on HOPG via kinetic effects.

    PubMed

    Wang, Can; Jana, Pritam Kumar; Zhang, Haiming; Mu, Zhongcheng; Kehr, Gerald; Blömker, Tobias; Erker, Gerhard; Fuchs, Harald; Heuer, Andreas; Chi, Lifeng

    2014-08-21

    Large-area self-assembled structures of a nucleobase adenine derivative were successfully realized through vacuum deposition. STM images reveal two types of structures, which could be regulated by substrate temperature and the evaporation rate, indicating the relevance of kinetic effects. The results are supported by computer simulations.

  10. The effect of activated charcoal on adenine-induced chronic renal failure in rats.

    PubMed

    Ali, Badreldin H; Alza'abi, Mohamed; Ramkumar, Aishwarya; Al-Lawati, Intisar; Waly, Mostafa I; Beegam, Sumaya; Nemmar, Abderrahim; Brand, Susanne; Schupp, Nicole

    2014-03-01

    Activated charcoal (AC) is a sorbent that has been shown to remove urinary toxins like urea and indoxyl sulfate. Here, the influence of AC on kidney function of rats with experimental chronic renal failure (CRF) is investigated. CRF was induced in rats by feeding adenine (0.75%) for four weeks. As an intervention, AC was added to the feed at concentrations of 10%, 15% or 20%. Adenine treatment impaired kidney function: it lowered creatinine clearance and increased plasma concentrations of creatinine, urea, neutrophil gelatinase-associated lipocalin and vanin-1. Furthermore, it raised plasma concentrations of the uremic toxins indoxyl sulfate, phosphate and uric acid. Renal morphology was severely damaged and histopathological markers of inflammation and fibrosis were especially increased. In renal homogenates, antioxidant indices, including superoxide dismutase and catalase activity, total antioxidant capacity and reduced glutathione were adversely affected. Most of these changes were significantly ameliorated by dietary administration of AC at a concentration of 20%, while effects induced by lower doses of dietary AC on adenine nephrotoxicity were not statistically significant. The results suggest that charcoal is a useful sorbent agent in dietary adenine-induced CRF in rats and that its usability as a nephroprotective agent in human kidney disease should be studied.

  11. Effects of adenine arabinoside on lymphocytes infected with Epstein-Barr virus.

    PubMed Central

    Benz, W C; Siegel, P J; Baer, J

    1978-01-01

    Low concentrations of adenine arabinoside inhibited growth of two Epstein-Barr virus producer cell lines in culture, while not significantly affecting a nonproducer cell line and a B-cell-negative line. These observations were extended to include freshly infected cells. Mitogen-stimulated human umbilical cord blood lymphocytes were unaffected by the drug at concentration levels that inhibited [3H]thymidine incorporation into the DNA of Epstein-Barr virus-stimulated cells. DNA synthesis in Epstein-Barr virus-superinfected Raji cells was also adversely affected by adenine arabinoside. However, these same low concentrations of adenine arabinoside in the triphosphate form produced less effect on DNA synthesis in nuclear systems and DNA polymerase assays than on growth or DNA synthesis in whole cells. Therefore the effects reported here of low concentrations of the drug on whole cells may be only in part related to DNA polymerase inhibition. The work reported here suggests that adenine arabinoside has multiple sites of action in infected cells. PMID:212577

  12. Ameliorative Effect of Chrysin on Adenine-Induced Chronic Kidney Disease in Rats

    PubMed Central

    Ali, Badreldin H.; Adham, Sirin A.; Al Za’abi, Mohammed; Waly, Mostafa I.; Yasin, Javed; Nemmar, Abderrahim; Schupp, Nicole

    2015-01-01

    Chrysin (5, 7- dihydroxyflavone) is a flavonoid with several pharmacological properties that include antioxidant, anti-inflammatory and antiapoptotic activities. in this work, we investigated some effects of three graded oral doses of chrysin (10, 50 and 250 mg/kg) on kidney structure and function in rats with experimental chronic renal disease (CKD) induced by adenine (0.25% w/w in feed for 35 days), which is known to involve inflammation and oxidative stress. Using several indices in plasma, urine and kidney homogenates, adenine was found to impair kidney function as it lowered creatinine clearance and increased plasma concentrations of creatinine, urea, neutrophil gelatinase-associated lipocalin and N-Acetyl-beta-D-glucosaminidase activity. Furthermore, it raised plasma concentrations of the uremic toxin indoxyl sulfate, some inflammatory cytokines and urinary albumin concentration. Renal morphology was severely damaged and histopathological markers of inflammation and fibrosis were especially increased. In renal homogenates, antioxidant indices, including superoxide dismutase and catalase activities, total antioxidant capacity and reduced glutathione were all adversely affected. Most of these adenine – induced actions were moderately and dose -dependently mitigated by chrysin, especially at the highest dose. Chrysin did not cause any overt adverse effect on the treated rats. The results suggest that different doses of chrysin produce variable salutary effects against adenine-induced CKD in rats, and that, pending further pharmacological and toxicological studies, its usability as a possible ameliorative agent in human CKD should be considered. PMID:25909514

  13. Macrophage Trafficking as Key Mediator of Adenine-Induced Kidney Injury

    PubMed Central

    Braga, Tárcio Teodoro; Felizardo, Raphael José Ferreira; Andrade-Oliveira, Vinícius; Hiyane, Meire Ioshie; da Silva, João Santana; Câmara, Niels Olsen Saraiva

    2014-01-01

    Macrophages play a special role in the onset of several diseases, including acute and chronic kidney injuries. In this sense, tubule interstitial nephritis (TIN) represents an underestimated insult, which can be triggered by different stimuli and, in the absence of a proper regulation, can lead to fibrosis deposition. Based on this perception, we evaluated the participation of macrophage recruitment in the development of TIN. Initially, we provided adenine-enriched food to WT and searched for macrophage presence and action in the kidney. Also, a group of animals were depleted of macrophages with the clodronate liposome while receiving adenine-enriched diet. We collected blood and renal tissue from these animals and renal function, inflammation, and fibrosis were evaluated. We observed higher expression of chemokines in the kidneys of adenine-fed mice and a substantial protection when macrophages were depleted. Then, we specifically investigated the role of some key chemokines, CCR5 and CCL3, in this TIN experimental model. Interestingly, CCR5 KO and CCL3 KO animals showed less renal dysfunction and a decreased proinflammatory profile. Furthermore, in those animals, there was less profibrotic signaling. In conclusion, we can suggest that macrophage infiltration is important for the onset of renal injury in the adenine-induced TIN. PMID:25132730

  14. Structural and quantum chemical studies of 8-aryl-sulfanyl adenine class Hsp90 inhibitors.

    PubMed

    Immormino, Robert M; Kang, Yanlong; Chiosis, Gabriela; Gewirth, Daniel T

    2006-08-10

    Hsp90 chaperones play a critical role in modulating the activity of many cell signaling proteins and are an attractive target for anti-cancer therapeutics. We report here the structures of the water soluble 8-aryl-sulfanyl adenine class Hsp90 inhibitors, 1 (PU-H71) and 2 (PU-H64), in complex with the N-terminal domain of human Hsp90alpha. The conformation of 1 when bound to Hsp90 differs from previously reported 8-aryl adenine Hsp90 inhibitors including 3 (PU24FCl). While the binding mode for 3 places the 2'-halide of the 8-aryl group on top of the adenine ring, for 1 and 2, we show that the 2'-halide is rotated approximately 180 degrees away. This difference explains the opposing trends in Hsp90 inhibitory activity for the 2'-halo derivatives of the 3',4',5'-trimethoxy series where Cl > Br > I compared to the 4',5'-methylenedioxy series where I > Br > Cl. We also present quantum chemical calculations of 2 and its analogues that illuminate their basis for Hsp90 inhibition. The calculated conformation of 2 agreed well with the crystallographically observed conformations of 1 and 2. The predictive nature of the calculations has allowed the exploration of additional derivatives based on the 8-aryl adenine scaffold.

  15. SERS, XPS, and DFT Study of Adenine Adsorption on Silver and Gold Surfaces.

    PubMed

    Pagliai, Marco; Caporali, Stefano; Muniz-Miranda, Maurizio; Pratesi, Giovanni; Schettino, Vincenzo

    2012-01-19

    The adsorption of adenine on silver and gold surfaces has been investigated combining density functional theory calculations with surface-enhanced Raman scattering and angle-resolved X-ray photoelectron spectroscopy measurements, obtaining useful insight into the orientation and interaction of the nucleobase with the metal surfaces.

  16. Administration of α-Galactosylceramide Improves Adenine-Induced Renal Injury

    PubMed Central

    Aguiar, Cristhiane Favero; Naffah-de-Souza, Cristiane; Castoldi, Angela; Corrêa-Costa, Matheus; Braga, Tárcio T; Naka, Érika L; Amano, Mariane T; Abate, Débora T R S; Hiyane, Meire I; Cenedeze, Marcos A; Filho, Alvaro Pacheco e Silva; Câmara, Niels O S

    2015-01-01

    Natural killer T (NKT) cells are a subset of lymphocytes that reacts to glycolipids presented by CD1d. Invariant NKT cells (iNKT) correspond to >90% of the total population of NKTs and reacts to α-galactosylceramide (αGalCer). αGalCer promotes a complex mixture of Th1 and Th2 cytokines, as interferon (IFN)-γ and interleukin (IL)-4. NKT cells and IFN-γ are known to participate in some models of renal diseases, but further studies are still necessary to elucidate their mechanisms. The aim of our study was to analyze the participation of iNKT cells in an experimental model of tubule-interstitial nephritis. We used 8-wk-old C57BL/6j, Jα18KO and IFN-γKO mice. They were fed a 0.25% adenine diet for 10 d. Both adenine-fed wild-type (WT) and Jα18KO mice exhibited renal dysfunction, but adenine-fed Jα18KO mice presented higher expression of kidney injury molecule-1 (KIM-1), tumor necrosis factor (TNF)-α and type I collagen. To analyze the role of activated iNKT cells in our model, we administered αGalCer in WT mice during adenine ingestion. After αGalCer injection, we observed a significant reduction in serum creatinine, proinflammatory cytokines and renal fibrosis. However, this improvement in renal function was not observed in IFN-γKO mice after αGalCer treatment and adenine feeding, illustrating that this cytokine plays a role in our model. Our findings may suggest that IFN-γ production is one of the factors contributing to improved renal function after αGalCer administration. PMID:26101952

  17. ON THE INTERACTION OF ADENINE WITH IONIZING RADIATION: MECHANISTICAL STUDIES AND ASTROBIOLOGICAL IMPLICATIONS

    SciTech Connect

    Evans, Nicholas L.; Ullrich, Susanne; Bennett, Chris J.; Kaiser, Ralf I.

    2011-04-01

    The molecular inventory available on the prebiotic Earth was likely derived from both terrestrial and extraterrestrial sources. A complete description of which extraterrestrial molecules may have seeded early Earth is therefore necessary to fully understand the prebiotic evolution which led to life. Galactic cosmic rays (GCRs) are expected to cause both the formation and destruction of important biomolecules-including nucleic acid bases such as adenine-in the interstellar medium within the ices condensed on interstellar grains. The interstellar ultraviolet (UV) component is expected to photochemically degrade gas-phase adenine on a short timescale of only several years. However, the destruction rate is expected to be significantly reduced when adenine is shielded in dense molecular clouds or even within the ices of interstellar grains. Here, biomolecule destruction by the energetic charged particle component of the GCR becomes important as it is not fully attenuated. Presented here are results on the destruction rate of the nucleobase adenine in the solid state at 10 K by energetic electrons, as generated in the track of cosmic ray particles as they penetrate ices. When both UV and energetic charged particle destructive processes are taken into account, the half-life of adenine within dense interstellar clouds is found to be {approx}6 Myr, which is on the order of a star-forming molecular cloud. We also discuss chemical reaction pathways within the ices to explain the production of observed species, including the formation of nitriles (R-C{identical_to}N), epoxides (C-O-C), and carbonyl functions (R-C=O).

  18. Rational design of an organometallic glutathione transferase inhibitor

    SciTech Connect

    Ang, W.H.; Parker, L.J.; De Luca, A.; Juillerat-Jeanneret, L.; Morton, C.J.; LoBello, M.; Parker, M.W.; Dyson, P.J.

    2010-08-17

    A hybrid organic-inorganic (organometallic) inhibitor was designed to target glutathione transferases. The metal center is used to direct protein binding, while the organic moiety acts as the active-site inhibitor. The mechanism of inhibition was studied using a range of biophysical and biochemical methods.

  19. Homogentisate solanesyl transferase (HST) cDNA’s in maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize white seedling 3 (w3) has served as a model albino-seedling mutant since its discovery in 1923. We show that the w3 phenotype is caused by disruptions in homogentisate solanesyl transferase (HST), an enzyme that catalyzes the committed step in plastoquinone-9 (PQ9) biosynthesis. This reaction ...

  20. 21 CFR 862.1535 - Ornithine carbamyl transferase test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ornithine carbamyl transferase test system. 862.1535 Section 862.1535 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1535 Ornithine...

  1. Histamine N-methyl transferase: inhibition by drugs.

    PubMed Central

    Pacifici, G M; Donatelli, P; Giuliani, L

    1992-01-01

    1. Histamine N-methyl transferase activity was measured in samples of human liver, brain, kidney, lung and intestinal mucosa. The mean (+/- s.d.) rate (nmol min-1 mg-1 protein) of histamine N-methylation was 1.78 +/- 0.59 (liver, n = 60), 1.15 +/- 0.38 (renal cortex, n = 8), 0.79 +/- 0.14 (renal medulla, n = 8), 0.35 +/- 0.08 (lung, n = 20), 0.47 +/- 0.18 (human intestine, n = 30) and 0.29 +/- 0.14 (brain, n = 13). 2. Inhibition of histamine N-methyl transferase by 15 drugs was investigated in human liver. The IC50 for the various drugs ranged over three orders of magnitude; chloroquine was the most potent inhibitor. 3. The average IC50 values for chloroquine were 12.6, 22.0, 19.0, 21.6 microM in liver, renal cortex, brain and colon, respectively. These values are lower than the Michaelis-Menten constant for histamine N-methyltransferase in liver (43.8 microM) and kidney (45.5 microM). Chloroquine carried a mixed non-competitive inhibition of hepatic histamine N-methyl transferase. Some side-effects of chloroquine may be explained by inhibition of histamine N-methyl transferase. PMID:1457266

  2. Genetics Home Reference: succinyl-CoA:3-ketoacid CoA transferase deficiency

    MedlinePlus

    ... CoA:3-ketoacid CoA transferase deficiency succinyl-CoA:3-ketoacid CoA transferase deficiency Enable Javascript to view ... PDF Open All Close All Description Succinyl-CoA:3-ketoacid CoA transferase (SCOT) deficiency is an inherited ...

  3. Phosphorylation and inhibition of. gamma. -glutamyl transferase activity by cAMP-dependent protein kinase

    SciTech Connect

    Kolesnichenko, L.S.; Chernov, N.N.

    1986-10-20

    It was shown that preparations of bovine kidney ..gamma..-glutamyl transferase of differing degrees of purity are phosphorylated by cAMP-dependent protein kinase. This is accompanied by a decrease in both the transferase and hydrolase activities of the enzyme. Consequently, ..gamma..-glutamyl transferase may serve as the substrate and target of the regulation of cAMP-dependent protein kinase.

  4. BII stability and base step flexibility of N6-adenine methylated GATC motifs.

    PubMed

    Karolak, Aleksandra; van der Vaart, Arjan

    2015-01-01

    The effect of N6-adenine methylation on the flexibility and shape of palindromic GATC sequences has been investigated by molecular dynamics simulations. Variations in DNA backbone geometry were observed, which were dependent on the degree of methylation and the identity of the bases. While the effect was small, more frequent BI to BII conversions were observed in the GA step of hemimethylated DNA. The increased BII population of the hemimethylated system positively correlated with increased stacking interactions between methylated adenine and guanine, while stacking interactions decreased at the TC step for the fully methylated strand. The flexibility of the AT and TC steps was marginally affected by methylation, in a fashion that was correlated with stacking interactions. The facilitated BI to BII conversion in hemimethylated strands might be of importance for SeqA selectivity and binding. PMID:26004863

  5. Role of vacuum ultraviolet (VUV) radiation in abiogenic synthesis of adenine nucleotides

    NASA Astrophysics Data System (ADS)

    Kuzicheva, E. A.; Simakov, M. B.; Mal'Ko, I. L.; Dodonova, N. Ya.; Gontareva, N. B.

    With the use of high performance liquid chromatography the products of abiogenic synthesis of adenine nucleotides in solid films were indentified and estimated quantitatively. The main products of photosynthesis appeared to be adenosine and deoxyadenosine monophosphates. Maximal yield of these products in case of adenosine has been 0.36 for 5'AMP, 0.41% for 2'(3')AMP, 0.20 for 2'3'cAMP in case of deoxyadenosine 0.13% for 5'dAMP, 0.15% for 3'dAMP, 0.24% for 3'5'cdAMP. The destruction of initial adenosine and deoxyadenosine by the end of the experiment was 10 and 15%, respectively. By the increasing of irradiation dose, 5'AMP and 5'dAMP synthesized in the cource of VUV photolysis were destructed up to adenine, its yield being 15% in both cases.

  6. Theoretical Study of Tautomerization Reactions for the Ground and First Excited Electronic States of Adenine

    NASA Technical Reports Server (NTRS)

    Salter, Latasha M.; Chaban, Galina M.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Geometrical structures and energetic properties for different tautomers of adenine are calculated in this study, using multi-configurational wave functions. Both the ground and the lowest singlet excited state potential energy surfaces are studied. Four tautomeric forms are considered, and their energetic order is found to be different on the ground and the excited state potential energy surfaces. Minimum energy reaction paths are obtained for hydrogen atom transfer (tautomerization) reactions in the ground and the lowest excited electronic states. It is found that the barrier heights and the shapes of the reaction paths are different for the ground and the excited electronic states, suggesting that the probability of such tautomerization reaction is higher on the excited state potential energy surface. This tautomerization process should become possible in the presence of water or other polar solvent molecules and should play an important role in the photochemistry of adenine.

  7. Oxidation of Reduced Nicotinamide Adenine Dinucleotide Phosphate by Isolated Corn Mitochondria 1

    PubMed Central

    Koeppe, D. E.; Miller, Raymond J.

    1972-01-01

    Isolated corn (Zea mays L.) mitochondria were found to oxidize reduced nicotinamide adenine dinucleotide phosphate in a KCl reaction medium. This oxidation was dependent on the presence of calcium or phosphate or both. Strontium and manganese substituted for calcium, but magnesium or barium did not. The oxidation of NADPH produced contraction of mitochondria swollen in KCl. Further evidence that the oxidation of NADPH was coupled was observed in respiratory control and adenosine diphosphate-oxygen ratios that were comparable to those reported for reduced nicotinamide adenine dinucleotide. The pathways of electron flow from NADH and NADPH were compared through the addition of electron transport inhibitors. The only difference between the two dinucleotides was that amytal was found to inhibit almost totally the state 3 oxidation of NADPH, but had little effect on the state 3 oxidation of NADH. The hypothetical pathways for electron flow from NADPH are discussed, as are the possible sites of calcium and phosphate stimulation. PMID:16657960

  8. First prebiotic generation of a ribonucleotide from adenine, D-ribose and trimetaphosphate.

    PubMed

    Baccolini, Graziano; Boga, Carla; Micheletti, Gabriele

    2011-03-28

    Adenosine monophosphate isomers are obtained by self-assembling of adenine, D-ribose and trimetaphosphate in aqueous solution in good yields. This generation of a ribonucleotide from its three molecular components occurs in a one-pot reaction at room temperature for about 30-40 days and with high chemio-, regio-, and stereo-selectivity. Similar results are obtained with guanine. A mechanism is also proposed. PMID:21305098

  9. Protection of Chinese herbs against adenine-induced chronic renal failure in rats.

    PubMed

    Tong, Yanqing; Han, Bing; Guo, Hongyang; Liu, Yanru

    2010-01-01

    The aim of the study is to evaluate the efficacy of Chinese herbs (Angelica sinensis, Ligusticum wallichii, Salvia miltiorrhiza, Rhizoma dioscoreae, Rhodiola crenilata, Astragalus membranaceus and Angelica sinensis) on adenine-induced chronic renal failure in rats. 30 age-matched male Wistar rats were divided into three groups. Rats in group A (n = 10), B (n = 10) and C (n = 10) were fed a standard laboratory chow and allowed tap water ad libitum. In group B and C, renal failure was induced by the administration of a diet containing 0.75% adenine for 28 days which began at day 0. Rats in group C were given Chinese herbs (40 ml/kg with drug concentration 1.75 g/ml) beginning at day 0. Urine albumin, blood urea nitrogen (BUN) and creatinine were determined at days 0, 14 and 28. At day 28, the animals were killed and their kidneys removed for light microscope evaluation. Body weight in Group B decreased more significantly than that in Group C (p = 0.032) at day 28. The rats in group B demonstrated more severe proteinuria and higher Serum creatinine and BUN levels than group C at day 14 and day 28 (P < 0.05, 0.01). All rats given adenine developed marked structural renal damage involving the tubule and interstitium. The values were much less severe in group C than those in group B. In adenine-induced chronic renal failure rats, the protective effects of these Chinese herbs were of a significant nature. Our results do support the notion that these Chinese herbs are useful in deferring the advance of chronic renal failure. We recommend Chinese herbs as a beneficial treatment for pre-end stage chronic renal failure.

  10. Selective self-assembly of adenine-silver nanoparticles forms rings resembling the size of cells

    PubMed Central

    Choi, Sungmoon; Park, Soonyoung; Yang, Seon-Ah; Jeong, Yujin; Yu, Junhua

    2015-01-01

    Self-assembly has played critical roles in the construction of functional nanomaterials. However, the structure of the macroscale multicomponent materials built by the self-assembly of nanoscale building blocks is hard to predict due to multiple intermolecular interactions of great complexity. Evaporation of solvents is usually an important approach to induce kinetically stable assemblies of building blocks with a large-scale specific arrangement. During such a deweting process, we tried to monitor the possible interactions between silver nanoparticles and nucleobases at a larger scale by epifluorescence microscopy, thanks to the doping of silver nanoparticles with luminescent silver nanodots. ssDNA oligomer-stabilized silver nanoparticles and adenine self-assemble to form ring-like compartments similar to the size of modern cells. However, the silver ions only dismantle the self-assembly of adenine. The rings are thermodynamically stable as the drying process only enrich the nanoparticles-nucleobase mixture to a concentration that activates the self-assembly. The permeable membrane-like edge of the ring is composed of adenine filaments glued together by silver nanoparticles. Interestingly, chemicals are partially confined and accumulated inside the ring, suggesting that this might be used as a microreactor to speed up chemical reactions during a dewetting process. PMID:26643504

  11. Ethanol-induced activation of adenine nucleotide turnover. Evidence for a role of acetate

    SciTech Connect

    Puig, J.G.; Fox, I.H.

    1984-09-01

    Consumption of alcohol causes hyperuricemia by decreasing urate excretion and increasing its production. Our previous studies indicate that ethanol administration increases uric acid production by increasing ATP degradation to uric acid precursors. To test the hypothesis that ethanol-induced increased urate production results from acetate metabolism and enhanced adenosine triphosphate turnover, we gave intravenous sodium acetate, sodium chloride and ethanol (0.1 mmol/kg per min for 1 h) to five normal subjects. Acetate plasma levels increased from 0.04 +/- 0.01 mM (mean +/- SE) to peak values of 0.35 +/- 0.07 mM and to 0.08 +/- 0.01 mM during acetate and ethanol infusions, respectively. Urinary oxypurines increased to 223 +/- 13% and 316 +/- 44% of the base-line values during acetate and ethanol infusions, respectively. Urinary radioactivity from the adenine nucleotide pool labeled with (8-14C) adenine increased to 171 +/- 27% and to 128 +/- 8% of the base-line values after acetate and ethanol infusions. These data indicate that both ethanol and acetate increase purine nucleotide degradation by enhancing the turnover of the adenine nucleotide pool. They support the hypothesis that acetate metabolism contributes to the increased production of urate associated with ethanol intake.

  12. Stability Constants of Mixed Ligand Complexes of Nickel(II) with Adenine and Some Amino Acids

    PubMed Central

    Türkel, Naciye

    2015-01-01

    Nickel is one of the essential trace elements found in biological systems. It is mostly found in nickel-based enzymes as an essential cofactor. It forms coordination complexes with amino acids within enzymes. Nickel is also present in nucleic acids, though its function in DNA or RNA is still not clearly understood. In this study, complex formation tendencies of Ni(II) with adenine and certain L-amino acids such as aspartic acid, glutamic acid, asparagine, leucine, phenylalanine, and tryptophan were investigated in an aqueous medium. Potentiometric equilibrium measurements showed that both binary and ternary complexes of Ni(II) form with adenine and the above-mentioned L-amino acids. Ternary complexes of Ni(II)-adenine-L-amino acids are formed by stepwise mechanisms. Relative stabilities of the ternary complexes are compared with those of the corresponding binary complexes in terms of Δlog10⁡K, log10⁡X, and % RS values. It was shown that the most stable ternary complex is Ni(II):Ade:L-Asn while the weakest one is Ni(II):Ade:L-Phe in aqueous solution used in this research. In addition, results of this research clearly show that various binary and ternary type Ni(II) complexes are formed in different concentrations as a function of pH in aqueous solution. PMID:26843852

  13. Chemical evolution: The mechanism of the formation of adenine under prebiotic conditions

    PubMed Central

    Roy, Debjani; Najafian, Katayoun; von Ragué Schleyer, Paul

    2007-01-01

    Fundamental building blocks of life have been detected extraterrestrially, even in interstellar space, and are known to form nonenzymatically. Thus, the HCN pentamer, adenine (a base present in DNA and RNA), was first isolated in abiogenic experiments from an aqueous solution of ammonia and HCN in 1960. Although many variations of the reaction conditions giving adenine have been reported since then, the mechanistic details remain unexplored. Our predictions are based on extensive computations of sequences of reaction steps along several possible mechanistic routes. H2O- or NH3-catalyzed pathways are more favorable than uncatalyzed neutral or anionic alternatives, and they may well have been the major source of adenine on primitive earth. Our report provides a more detailed understanding of some of the chemical processes involved in chemical evolution, and a partial answer to the fundamental question of molecular biogenesis. Our investigation should trigger similar explorations of the detailed mechanisms of the abiotic formation of the remaining nucleic acid bases and other biologically relevant molecules. PMID:17951429

  14. Identification and characterization of a novel plastidic adenine nucleotide uniporter from Solanum tuberosum.

    PubMed

    Leroch, Michaela; Kirchberger, Simon; Haferkamp, Ilka; Wahl, Markus; Neuhaus, H Ekkehard; Tjaden, Joachim

    2005-05-01

    Homologs of BT1 (the Brittle1 protein) are found to be phylogenetically related to the mitochondrial carrier family and appear to occur in both mono- and dicotyledonous plants. Whereas BT1 from cereals is probably involved in the transport of ADP-glucose, which is essential for starch metabolism in endosperm plastids, BT1 from a noncereal plant, Solanum tuberosum (StBT1), catalyzes an adenine nucleotide uniport when functionally integrated into the bacterial cytoplasmic membrane. Import studies into intact Escherichia coli cells harboring StBT1 revealed a narrow substrate spectrum with similar affinities for AMP, ADP, and ATP of about 300-400 mum. Transiently expressed StBT1-green fluorescent protein fusion protein in tobacco leaf protoplasts showed a plastidic localization of the StBT1. In vitro synthesized radioactively labeled StBT1 was targeted to the envelope membranes of isolated spinach chloroplasts. Furthermore, we showed by real time reverse transcription-PCR a ubiquitous expression pattern of the StBT1 in autotrophic and heterotrophic potato tissues. We therefore propose that StBT1 is a plastidic adenine nucleotide uniporter used to provide the cytosol and other compartments with adenine nucleotides exclusively synthesized inside plastids.

  15. Selective self-assembly of adenine-silver nanoparticles forms rings resembling the size of cells.

    PubMed

    Choi, Sungmoon; Park, Soonyoung; Yang, Seon-Ah; Jeong, Yujin; Yu, Junhua

    2015-12-08

    Self-assembly has played critical roles in the construction of functional nanomaterials. However, the structure of the macroscale multicomponent materials built by the self-assembly of nanoscale building blocks is hard to predict due to multiple intermolecular interactions of great complexity. Evaporation of solvents is usually an important approach to induce kinetically stable assemblies of building blocks with a large-scale specific arrangement. During such a deweting process, we tried to monitor the possible interactions between silver nanoparticles and nucleobases at a larger scale by epifluorescence microscopy, thanks to the doping of silver nanoparticles with luminescent silver nanodots. ssDNA oligomer-stabilized silver nanoparticles and adenine self-assemble to form ring-like compartments similar to the size of modern cells. However, the silver ions only dismantle the self-assembly of adenine. The rings are thermodynamically stable as the drying process only enrich the nanoparticles-nucleobase mixture to a concentration that activates the self-assembly. The permeable membrane-like edge of the ring is composed of adenine filaments glued together by silver nanoparticles. Interestingly, chemicals are partially confined and accumulated inside the ring, suggesting that this might be used as a microreactor to speed up chemical reactions during a dewetting process.

  16. Adenine Synthesis in a Model Prebiotic Reaction: Connecting Origin of Life Chemistry with Biology

    PubMed Central

    2011-01-01

    Many high school laboratory experiments demonstrate concepts related to biological evolution, but few exist that allow students to investigate life’s chemical origins. This series of laboratory experiments has been developed to allow students to explore and appreciate the deep connection that exists between prebiotic chemistry, chemical evolution, and contemporary biological systems. In the first experiment of the series, students synthesize adenine, one of the purine nucleobases of DNA and RNA, from plausibly prebiotic precursor molecules. Students compare their product to authentic standards using thin-layer chromatography. The second and third experiments of the series allow students to extract DNA from a familiar organism, the strawberry, and hydrolyze it, releasing adenine, which they can then compare to the previously chemically-synthesized adenine. A fourth, optional experiment is included where the technique of thin-layer chromatography is introduced and chromatographic skills are developed for use in the other three experiments that comprise this series. Concepts relating to organic and analytical chemistry, as well as biochemistry and DNA structure, are incorporated throughout, allowing this series of laboratory experiments to be easily inserted into existing laboratory courses and to reinforce concepts already included in any high school chemistry or biology curriculum. PMID:22075932

  17. Monitoring potential molecular interactions of adenine with other amino acids using Raman spectroscopy and DFT modeling.

    PubMed

    Singh, Shweta; Donfack, P; Srivastava, Sunil K; Singh, Dheeraj K; Materny, A; Asthana, B P; Mishra, P C

    2015-01-01

    We report on the modes of inter-molecular interaction between adenine (Ade) and the amino acids: glycine (Gly), lysine (Lys) and arginine (Arg) using Raman spectroscopy of binary mixtures of adenine and each of the three amino acids at varying molar ratios in the spectral region 1550-550 cm(-1). We focused our attention on certain specific changes in the Raman bands of adenine arising due to its interaction with the amino acids. While the changes are less apparent in the Ade/Gly system, in the Ade/Lys or Ade/Arg systems, significant changes are observed, particularly in the Ade Raman bands that involve the amino group moiety and the N7 and N1 atoms of the purine ring. The ν(N1-C6), ν(N1-C2), δ(C8-H) and δ(N7-C8-N9) vibrations at 1486, 1332, 1253 and 948 cm(-1) show spectral changes on varying the Ade to amino acid molar ratio, the extent of variation being different for the three amino acids. This observation suggests a specific interaction mode between Ade and Lys or Arg, which is due to the hydrogen bonding. The measured spectral changes provide a clear indication that the interaction of Ade depends strongly on the structures of the amino acids, especially their side chains. Density functional theory (DFT) calculations were carried out to elucidate the most probable interaction modes of Ade with the different amino acids.

  18. Structure-wise discrimination of adenine and guanine by proteins on the basis of their nonbonded interactions.

    PubMed

    Usha, S; Selvaraj, S

    2015-01-01

    We have analyzed the nonbonded interactions of the structurally similar moieties, adenine and guanine forming complexes with proteins. The results comprise (a) the amino acid-ligand atom preferences, (b) solvent accessibility of ligand atoms before and after complex formation with proteins, and (c) preferred amino acid residue atoms involved in the interactions. We have observed that the amino acid preferences involved in the hydrogen bonding interactions vary for adenine and guanine. The structural variation between the purine atoms is clearly reflected by their burial tendency in the solvent environment. Correlation of the mean amino acid preference values show the variation that exists between adenine and guanine preferences of all the amino acid residues. All our observations provide evidence for the discriminating nature of the proteins in recognizing adenine and guanine. PMID:25245205

  19. Structure-wise discrimination of adenine and guanine by proteins on the basis of their nonbonded interactions.

    PubMed

    Usha, S; Selvaraj, S

    2015-01-01

    We have analyzed the nonbonded interactions of the structurally similar moieties, adenine and guanine forming complexes with proteins. The results comprise (a) the amino acid-ligand atom preferences, (b) solvent accessibility of ligand atoms before and after complex formation with proteins, and (c) preferred amino acid residue atoms involved in the interactions. We have observed that the amino acid preferences involved in the hydrogen bonding interactions vary for adenine and guanine. The structural variation between the purine atoms is clearly reflected by their burial tendency in the solvent environment. Correlation of the mean amino acid preference values show the variation that exists between adenine and guanine preferences of all the amino acid residues. All our observations provide evidence for the discriminating nature of the proteins in recognizing adenine and guanine.

  20. Proton mobilities in crambin and glutathione S-transferase

    NASA Astrophysics Data System (ADS)

    Wanderlingh, U. N.; Corsaro, C.; Hayward, R. L.; Bée, M.; Middendorf, H. D.

    2003-08-01

    Using a neutron backscattering spectrometer, the temperature dependence of mean-square atomic displacements derived from window-integrated quasielastic spectra was measured for two D 2O-hydrated proteins: crambin and glutathione S-transferase. Analyses show that the anharmonic dynamics observed around and above 200 K is consistent with a description in terms of proton/deuteron jumps within asymmetric double-minimum potentials. Also determined were activation energies along with estimates of effective masses and average oscillator energies.

  1. Adenine photodimerization in deoxyadenylate sequences: elucidation of the mechanism through structural studies of a major d(ApA) photoproduct.

    PubMed Central

    Kumar, S; Joshi, P C; Sharma, N D; Bose, S N; Jeremy, R; Davies, H; Takeda, N; McCloskey, J A

    1991-01-01

    The mechanism of the photodimerization of adjacent adenine bases on the same strand of DNA has been elucidated by determining the structure of one of the two major photoproducts that are formed by UV irradiation of the deoxydinucleoside monophosphate d(ApA). The photoproduct, denoted d(ApA)*, corresponds to a species of adenine photodimer first described by Pörschke (Pörschke, D. (1973) J.Am.Chem.Soc. 95, 8440-8446). From a detailed examination of its chemical and spectroscopic properties, including comparisons with the model compound N-cyano-N1-(1-methylimidazol-5-yl)formamidine, it is deduced that d(ApA)* contains a deoxyadenosine unit covalently linked through its C(8) position to C(4) of an imidazole N(1) deoxyribonucleoside moiety bearing an N-cyanoformamidino substituent at C(5). On treatment with acid, d(ApA)* is degraded with high specificity to 8-(5-amino-imidazol-4-yl)adenine whose identity has been confirmed by independent chemical synthesis. It is concluded that the primary event in adenine photodimerization entails photoaddition of the N(7)-C(8) double bond of the 5'-adenine across the C(6) and C(5) positions of the 3'-adenine. The azetidine species thus generated acts as a common precursor to both types of d(ApA) photoproduct which are formed from it by competing modes of azetidine ring fission. PMID:2057348

  2. Movement and Metabolism of Kinetin-14C and of Adenine-14C in Coleus Petiole Segments of Increasing Age 1

    PubMed Central

    Veen, Henk; Jacobs, William P.

    1969-01-01

    To see if polar movement was typical of growth-regulators other than auxins, the movement of adenine-8-14C and of kinetin-8-14C was studied in segments cut from petioles of increasing age. No polarity was found. In time-course experiments lasting 24 hr, kinetin showed a progressive increase of radioactivity in receiver blocks, while adenine showed a maximum at 8 hr with a decline thereafter. More kinetin moved through older segments than through younger ones. There was no difference in net loss as far as the position of the donor block is concerned. However, the loss of radioactivity from adenine donor blocks was much higher than the loss of radioactivity from kinetin donor blocks. The radioactivity in receiver blocks after 24 hr treatment with kinetin-14C was still with kinetin, judging by location on chromatograms. By the same criterion, adenine and a smaller amount of some other compound were in receiver blocks after a 6 hr transport with adenine-14C in the donors. By contrast, more zones of radioactivity were extracted from petiole segments to which kinetin or adenine had been added. For both purine derivatives the original compound represented no more than 20% of the total radioactivity extracted from the tissue after a transport period of 24 hr. PMID:16657203

  3. Undetectable levels of N6-methyl adenine in mouse DNA: Cloning and analysis of PRED28, a gene coding for a putative mammalian DNA adenine methyltransferase.

    PubMed

    Ratel, David; Ravanat, Jean-Luc; Charles, Marie-Pierre; Platet, Nadine; Breuillaud, Lionel; Lunardi, Joël; Berger, François; Wion, Didier

    2006-05-29

    Three methylated bases, 5-methylcytosine, N4-methylcytosine and N6-methyladenine (m6A), can be found in DNA. However, to date, only 5-methylcytosine has been detected in mammalian genomes. To reinvestigate the presence of m6A in mammalian DNA, we used a highly sensitive method capable of detecting one N6-methyldeoxyadenosine per million nucleosides. Our results suggest that the total mouse genome contains, if any, less than 10(3) m6A. Experiments were next performed on PRED28, a putative mammalian N6-DNA methyltransferase. The murine PRED28 encodes two alternatively spliced RNA. However, although recombinant PRED28 proteins are found in the nucleus, no evidence for an adenine-methyltransferase activity was detected. PMID:16684535

  4. Fragmentation of the adenine and guanine molecules induced by electron collisions

    NASA Astrophysics Data System (ADS)

    Minaev, B. F.; Shafranyosh, M. I.; Svida, Yu. Yu; Sukhoviya, M. I.; Shafranyosh, I. I.; Baryshnikov, G. V.; Minaeva, V. A.

    2014-05-01

    Secondary electron emission is the most important stage in the mechanism of radiation damage to DNA biopolymers induced by primary ionizing radiation. These secondary electrons ejected by the primary electron impacts can produce further ionizations, initiating an avalanche effect, leading to genome damage through the energy transfer from the primary objects to sensitive biomolecular targets, such as nitrogenous bases, saccharides, and other DNA and peptide components. In this work, the formation of positive and negative ions of purine bases of nucleic acids (adenine and guanine molecules) under the impact of slow electrons (from 0.1 till 200 eV) is studied by the crossed electron and molecular beams technique. The method used makes it possible to measure the molecular beam intensity and determine the total cross-sections for the formation of positive and negative ions of the studied molecules, their energy dependences, and absolute values. It is found that the maximum cross section for formation of the adenine and guanine positive ions is reached at about 90 eV energy of the electron beam and their absolute values are equal to 2.8 × 10-15 and 3.2 × 10-15 cm2, respectively. The total cross section for formation of the negative ions is 6.1 × 10-18 and 7.6 × 10-18 cm2 at the energy of 1.1 eV for adenine and guanine, respectively. The absolute cross-section values for the molecular ions are measured and the cross-sections of dissociative ionization are determined. Quantum chemical calculations are performed for the studied molecules, ions and fragments for interpretation of the crossed beams experiments.

  5. Fragmentation of the adenine and guanine molecules induced by electron collisions

    SciTech Connect

    Minaev, B. F. E-mail: boris@theochem.kth.se; Shafranyosh, M. I.; Svida, Yu. Yu; Sukhoviya, M. I.; Shafranyosh, I. I.; Baryshnikov, G. V.; Minaeva, V. A.

    2014-05-07

    Secondary electron emission is the most important stage in the mechanism of radiation damage to DNA biopolymers induced by primary ionizing radiation. These secondary electrons ejected by the primary electron impacts can produce further ionizations, initiating an avalanche effect, leading to genome damage through the energy transfer from the primary objects to sensitive biomolecular targets, such as nitrogenous bases, saccharides, and other DNA and peptide components. In this work, the formation of positive and negative ions of purine bases of nucleic acids (adenine and guanine molecules) under the impact of slow electrons (from 0.1 till 200 eV) is studied by the crossed electron and molecular beams technique. The method used makes it possible to measure the molecular beam intensity and determine the total cross-sections for the formation of positive and negative ions of the studied molecules, their energy dependences, and absolute values. It is found that the maximum cross section for formation of the adenine and guanine positive ions is reached at about 90 eV energy of the electron beam and their absolute values are equal to 2.8 × 10{sup −15} and 3.2 × 10{sup −15} cm{sup 2}, respectively. The total cross section for formation of the negative ions is 6.1 × 10{sup −18} and 7.6 × 10{sup −18} cm{sup 2} at the energy of 1.1 eV for adenine and guanine, respectively. The absolute cross-section values for the molecular ions are measured and the cross-sections of dissociative ionization are determined. Quantum chemical calculations are performed for the studied molecules, ions and fragments for interpretation of the crossed beams experiments.

  6. NF-κB activation mediates crystal translocation and interstitial inflammation in adenine overload nephropathy.

    PubMed

    Okabe, Cristiene; Borges, Raquel Lerner; de Almeida, Danilo Candido; Fanelli, Camilla; Barlette, Grasiela Pedreira; Machado, Flavia Gomes; Arias, Simone Costa Alarcon; Malheiros, Denise Maria Avancini Costa; Camara, Niels Olsen Saraiva; Zatz, Roberto; Fujihara, Clarice Kazue

    2013-07-15

    Adenine overload promotes intratubular crystal precipitation and interstitial nephritis. We showed recently that these abnormalities are strongly attenuated in mice knockout for Toll-like receptors-2, -4, MyD88, ASC, or caspase-1. We now investigated whether NF-κB activation also plays a pathogenic role in this model. Adult male Munich-Wistar rats were distributed among three groups: C (n = 17), receiving standard chow; ADE (n = 17), given adenine in the chow at 0.7% for 1 wk and 0.5% for 2 wk; and ADE + pyrrolidine dithiocarbamate (PDTC; n = 14), receiving adenine as above and the NF-κB inhibitor PDTC (120 mg·kg⁻¹·day⁻¹ in the drinking water). After 3 wk, widespread crystal deposition was seen in tubular lumina and in the renal interstitium, along with granuloma formation, collagen accumulation, intense tubulointerstitial proliferation, and increased interstitial expression of inflammatory mediators. Part of the crystals were segregated from tubular lumina by a newly formed cell layer and, at more advanced stages, appeared to be extruded to the interstitium. p65 nuclear translocation and IKK-α increased abundance indicated activation of the NF-κB system. PDTC treatment prevented p65 migration and normalized IKK-α, limited crystal shift to the interstitium, and strongly attenuated interstitial fibrosis/inflammation. These findings indicate that the complex inflammatory phenomena associated with this model depend, at least in part, on NF-κB activation, and suggest that the NF-κB system may become a therapeutic target in the treatment of chronic kidney disease.

  7. The effect of pi-stacking, h-bonding, and electrostatic interactions on the ionization energies of nucleic acid bases: adenine-adenine, thymine-thymine and adenine-thymine dimers

    SciTech Connect

    Bravaya, Ksenia B.; Kostko, Oleg; Ahmed, Musahid; Krylov, Anna I.

    2009-09-02

    A combined theoretical and experimental study of the ionized dimers of thymine and adenine, TT, AA, and AT, is presented. Adiabatic and vertical ionization energies(IEs) for monomers and dimers as well as thresholds for the appearance of the protonated species are reported and analyzed. Non-covalent interactions stronglyaffect the observed IEs. The magnitude and the nature of the effect is different for different isomers of the dimers. The computations reveal that for TT, the largestchanges in vertical IEs (0.4 eV) occur in asymmetric h-bonded and symmetric pi- stacked isomers, whereas in the lowest-energy symmetric h-bonded dimer the shiftin IEs is much smaller (0.1 eV). The origin of the shift and the character of the ionized states is different in asymmetric h-bonded and symmetric stacked isomers. Inthe former, the initial hole is localized on one of the fragments, and the shift is due to the electrostatic stabilization of the positive charge of the ionized fragment by thedipole moment of the neutral fragment. In the latter, the hole is delocalized, and the change in IE is proportional to the overlap of the fragments' MOs. The shifts in AAare much smaller due to a less effcient overlap and a smaller dipole moment. The ionization of the h-bonded dimers results in barrierless (or nearly barrierless) protontransfer, whereas the pi-stacked dimers relax to structures with the hole stabilized by the delocalization or electrostatic interactions.

  8. The structure, stability, H-bonding pattern, and electrostatic potential of adenine tetrads

    NASA Astrophysics Data System (ADS)

    Gu, Jiande; Leszczynski, Jerzy

    2001-03-01

    Two conformations of the adenine tetrad were investigated at the HF and B3LYP/6-311G(d,p) levels of theory. Both conformations are predicted to be stable only in the nonplanar form. They adopt the bowl type structure. Since the planar form offers better geometry for stacking with the adjacent G-tetrad, both planar forms are expected to be important in the formation of the tetraplexes. Based on electrostatic potential map the positive electrostatic potential in the central area of both conformations is expected to reinforce the stacking between the A-tetrads and the G-tetrads in the tetraplexes.

  9. Strong coupling between adenine nucleobases in DNA single strands revealed by circular dichroism using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Kadhane, Umesh; Holm, Anne I. S.; Hoffmann, Søren Vrønning; Nielsen, Steen Brøndsted

    2008-02-01

    Circular dichroism (CD) experiments on DNA single strands (dAn) at the ASTRID synchrotron radiation facility reveal that eight adenine (A) bases electronically couple upon 190nm excitation. After n=8 , the CD signal increases linearly with n with a slope equal to the sum of the coupling terms. Nearest neighbor interactions account for only 24% of the CD signal whereas electronic communication is limited to nearest neighbors for two other exciton bands observed at 218 and 251nm (i.e., dimer excited states). Electronic coupling between bases in DNA is important for nonradiative deexcitation of electronically excited states since the hazardous energy is spread over a larger spatial region.

  10. Synthesis, spectroscopic, structural and thermal characterizations of vanadyl(IV) adenine complex prospective as antidiabetic drug agent

    NASA Astrophysics Data System (ADS)

    El-Megharbel, Samy M.; Hamza, Reham Z.; Refat, Moamen S.

    2015-01-01

    The vanadyl(IV) adenine complex; [VO(Adn)2]ṡSO4; was synthesized and characterized. The molar conductivity of this complex was measured in DMSO solution that showed an electrolyte nature. Spectroscopic investigation of the green solid complex studied here indicate that the adenine acts as a bidentate ligand, coordinated to vanadyl(IV) ions through the nitrogen atoms N7 and nitrogen atom of amino group. Thus, from the results presented the vanadyl(IV) complex has square pyramid geometry. Further characterizations using thermal analyses and scanning electron techniques was useful. The aim of this paper was to introduce a new drug model for the diabetic complications by synthesized a novel mononuclear vanadyl(IV) adenine complex to mimic insulin action and reducing blood sugar level. The antidiabetic ability of this complex was investigated in STZ-induced diabetic mice. The results suggested that VO(IV)/adenine complex has antidiabetic activity, it improved the lipid profile, it improved liver and kidney functions, also it ameliorated insulin hormone and blood glucose levels. The vanadyl(IV) complex possesses an antioxidant activity and this was clear through studying SOD, CAT, MDA, GSH and methionine synthase. The current results support the therapeutic potentiality of vanadyl(IV)/adenine complex for the management and treatment of diabetes.

  11. Simultaneous Determination of Adenine and Guanine Using Cadmium Selenide Quantum Dots-Graphene Oxide Nanocomposite Modified Electrode.

    PubMed

    Kalaivani, Arumugam; Narayanan, Sangilimuthu Sriman

    2015-06-01

    A novel electrochemical sensor was fabricated by immobilizing Cadmium Selenide Quantum Dots (CdSe QDs)-Graphene Oxide (GO) nanocomposite on a paraffin wax impregnated graphite electrode (PIGE) and was used for the simultaneous determination of adenine and guanine. The CdSe QDs-GO nanocomposite was prepared by ultrasonication and was characterized with spectroscopic and microscopic techniques. The nanocomposite modified electrode was characterized by cyclic voltammetry (CV). The modified electrode showed excellent electrocatalytic activity towards the oxidative determination of adenine and guanine with a good peak separation of 0.31 V. This may be due to the high surface area and fast electron transfer kinetics of the nanocomposite. The modified electrode exhibited wide linear ranges from 0.167 μM to 245 μM for Guanine and 0.083 μM to 291 μM for Adenine with detection limits of 0.055 μM Guanine and 0.028 μM of Adenine (S/N = 3) respectively. Further, the modified electrode was used for the quantitative determination of adenine and guanine in herring sperm DNA with satisfactory results. The modified electrode showed acceptable selectivity, reproducibility and stability under optimal conditions. PMID:26369099

  12. The isolation and characterisation of a new type of dimeric adenine photoproduct in UV-irradiated deoxyadenylates.

    PubMed Central

    Kumar, S; Sharma, N D; Davies, R J; Phillipson, D W; McCloskey, J A

    1987-01-01

    A new type of dimeric adenine photoproduct has been isolated from d(ApA) irradiated at 254 nm in neutral aqueous solution. It is formed in comparable amounts to another, quite distinct, adenine photoproduct first described by Pörschke (J. Am. Chem. Soc. (1973), 95, 8440-8446). Results from high resolution mass spectrometry and 1H NMR indicate that the new photoproduct comprises a mixture of two stereoisomers whose formation involves covalent coupling of the adenine bases in d(ApA) and concomitant incorporation of the elements of one molecule of water. The photoproduct is degraded specifically by acid to 4,6-diamino-5-guanidinopyrimidine (DGPY) whose identity has been confirmed by independent chemical synthesis. Formation of the new photoproduct in UV-irradiated d(pA)2 and poly(dA), but not poly(rA), has been demonstrated by assaying their acid hydrolysates for the presence of DGPY. The properties of the photoproduct are consistent with it being generated by the hydrolytic fission of an azetidine photoadduct in which the N(7) and C(8) atoms of the 5'-adenine in d(ApA) are linked respectively to the C(6) and C(5) positions of the 3'-adenine. PMID:3822822

  13. Metabolic fate of 14C-labelled nicotinamide and adenine in germinating propagules of the mangrove Bruguiera gymnorrhiza.

    PubMed

    Yin, Yuling; Watanabe, Shin; Ashihara, Hiroshi

    2012-01-01

    We studied the metabolic fate of [carbonyl-14C]nicotinamide and [8-(14)C]adenine in segments taken from young and developing leaves, stem, hypocotyls, and roots of a shoot-root type emerging propagule of the mangrove plant Bruguiera gymnorrhiza. Thin-layer chromatography was used together with a bioimaging analyser system. During 4 h of incubation, incorporation of radioactivity from [carbonyl-14C]nicotinamide into NAD and trigonelline was found in all parts of the propagules; the highest incorporation rates into NAD and trigonelline were found in newly emerged stem and young leaves, respectively. Radioactivity from [8-(14)C]adenine was distributed mainly in the salvage products (adenine nucleotides and RNA), and incorporation was less in catabolites (allantoin, allantoic acid, and CO2). Adenine salvage activity was higher in young leaves and stem than in hypocotyls and roots. Over a short time, the effect of 500 mM NaCl on nicotinamide and adenine metabolism indicated that NaCl inhibits both salvage and degradation activities in roots. PMID:22888538

  14. 21 CFR 862.1315 - Galactose-1-phosphate uridyl transferase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1315 Galactose-1-phosphate uridyl transferase test system. (a)...

  15. 21 CFR 862.1315 - Galactose-1-phosphate uridyl transferase test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1315 Galactose-1-phosphate uridyl transferase test system. (a)...

  16. 21 CFR 862.1315 - Galactose-1-phosphate uridyl transferase test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1315 Galactose-1-phosphate uridyl transferase test system. (a)...

  17. Bacteriophage adenine methyltransferase: a life cycle regulator? Modelled using Vibrio harveyi myovirus like.

    PubMed

    Bochow, S; Elliman, J; Owens, L

    2012-11-01

    The adenine methyltransferase (DAM) gene methylates GATC sequences that have been demonstrated in various bacteria to be a powerful gene regulator functioning as an epigenetic switch, particularly with virulence gene regulation. However, overproduction of DAM can lead to mutations, giving rise to variability that may be important for adaptation to environmental change. While most bacterial hosts carry a DAM gene, not all bacteriophage carry this gene. Currently, there is no literature regarding the role DAM plays in life cycle regulation of bacteriophage. Vibrio campbellii strain 642 carries the bacteriophage Vibrio harveyi myovirus like (VHML) that has been proven to increase virulence. The complete genome sequence of VHML bacteriophage revealed a putative adenine methyltransferase gene. Using VHML, a new model of phage life cycle regulation, where DAM plays a central role between the lysogenic and lytic states, will be hypothesized. In short, DAM methylates the rha antirepressor gene and once methylation is removed, homologous CI repressor protein becomes repressed and non-functional leading to the switching to the lytic cycle. Greater understanding of life cycle regulation at the genetic level can, in the future, lead to the genesis of chimeric bacteriophage with greater control over their life cycle for their safe use as probiotics within the aquaculture industry. PMID:22681538

  18. 3D Magnetically Ordered Open Supramolecular Architectures Based on Ferrimagnetic Cu/Adenine/Hydroxide Heptameric Wheels.

    PubMed

    Pérez-Aguirre, Rubén; Beobide, Garikoitz; Castillo, Oscar; de Pedro, Imanol; Luque, Antonio; Pérez-Yáñez, Sonia; Rodríguez Fernández, Jesús; Román, Pascual

    2016-08-01

    The present work provides two new examples of supramolecular metal-organic frameworks consisting of three-dimensional extended noncovalent assemblies of wheel-shaped heptanuclear [Cu7(μ-H2O)6(μ3-OH)6(μ-adeninato-κN3:κN9)6](2+) entities. The heptanuclear entity consists of a central [Cu(OH)6](4-) core connected to six additional copper(II) metal centers in a radial and planar arrangement through the hydroxides. It generates a wheel-shaped entity in which water molecules and μ-κN3:κN9 adeninato ligands bridge the peripheral copper atoms. The magnetic characterization indicates the central copper(II) center is anti-ferromagnetically coupled to external copper(II) centers, which are ferromagnetically coupled among them leading to an S = 5/2 ground state. The packing of these entities is sustained by π-π stacking interactions between the adenine nucleobases and by hydrogen bonds established among the hydroxide ligands, sulfate anions, and adenine nucleobases. The sum of both types of supramolecular interactions creates a rigid synthon that in combination with the rigidity of the heptameric entity generates an open supramolecular structure (40-50% of available space) in which additional sulfate and triethylammonium ions are located altogether with solvent molecules. These compounds represent an interesting example of materials combining both porosity and magnetic relevant features.

  19. Differentiation alters the unstable expression of adenine phosphoribosyltransferase in mouse teratocarcinoma cells.

    PubMed

    Turker, M S; Tischfield, J A; Rabinovitch, P; Stambrook, P J; Trill, J J; Smith, A C; Ogburn, C E; Martin, G M

    1986-01-01

    Three multipotent mouse teratocarcinoma stem lines, all exhibiting unstable expression for the purine salvage enzyme adenine phosphoribosyltransferase (APRT) were used for the isolation of differentiated cell lines from neoplasms developed in syngeneic mice. Two of the stem cell lines (DAP1B and DAP1C) exhibited homozygous deficiencies for APRT expression while the third stem cell line (E140) exhibited a heterozygous deficiency (Turker, M.S., Smith, A.C., and Martin, G.M.; Somat. Cell Mol. Genet.; 10:55-69; 1984). A total of 16 morphologically differentiated cell lines were established from these neoplasms; most were no longer tumorigenic. Differentiated cell lines derived from the E140-induced tumors segregated homozygous deficient mutants in a single step, consistent with their retention of the heterozygous deficient state. Differentiated homozygous deficient cell lines gave rise to phenotypic revertants at very high frequencies (10(-1) to 10(-2)). The majority of these putative revertants, however, yielded cell-free extracts with little or no detectable APRT activity. These putative revertants were capable of adenine salvage and were therefore termed APRT pseudorevertants. Since the APRT pseudorevertant phenotype was only observed in the differentiated progeny of the APRT deficient stem cell lines, we conclude that this change in the nature of the revertant phenotype was a consequence of cellular differentiation.

  20. Effect of Electronic Excitation on Hydrogen Atom Transfer (Tautomerization) Reactions for the DNA Base Adenine

    NASA Technical Reports Server (NTRS)

    Chaban, Galina M.; Salter, Latasha M.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Geometrical structures and energetic properties for four different tautomers of adenine are calculated in this study, using multi-configurational wave functions. Both the ground and the lowest single excited state potential energy surface are studied. The energetic order of the tautomers on the ground state potential surface is 9H less than 7H less than 3H less than 1H, while on the excited state surface this order is found to be different: 3H less than 1H less than 9H less than 7H. Minimum energy reaction paths are obtained for hydrogen atom transfer (9 yields 3 tautomerization) reactions in the ground and the lowest excited electronic state. It is found that the barrier heights and the shapes of the reaction paths are different for the ground and the excited electronic state, suggesting that the probability of such tautomerization reaction is higher on the excited state potential energy surface. The barrier for this reaction in the excited state may become very low in the presence of water or other polar solvent molecules, and therefore such tautomerization reaction may play an important role in the solution phase photochemistry of adenine.

  1. Vertical Singlet Excitations on Adenine Dimer: A Time Dependent Density Functional Study

    NASA Astrophysics Data System (ADS)

    Crespo-Hernández, Carlos E.; Marai, Christopher N. J.

    2007-12-01

    The condense phase, excited state dynamics of the adenylyl(3'→5')adenine (ApA) dinucleotide has been previously studied using transient absorption spectroscopy with femtosecond time resolution (Crespo-Hernández et al. Chem. Rev. 104, 1977-2019 (2004)). An ultrafast and a long-lived component were observed with time constants of <1 ps and 60±16 ps, respectively. Comparison of the time constants measured for the dinucleotide with that for the adenine nucleotide suggested that the fast component observed in ApA could be assigned to monomer dynamics. The long-lived component observed in ApA was assigned to an excimer state that originates from a fraction of base stacked conformations present at the time of excitation. In this contribution, supermolecule calculations using the time dependent implementation of density functional theory is used to provide more insights on the origin of the initial Franck-Condon excitations. Monomer-like, localized excitations are observed for conformations having negligible base stacking interactions, whereas delocalized excitations are predicted for conformations with significant vertical base-base overlap.

  2. Development of bright fluorescent quadracyclic adenine analogues: TDDFT-calculation supported rational design

    PubMed Central

    Foller Larsen, Anders; Dumat, Blaise; Wranne, Moa S.; Lawson, Christopher P.; Preus, Søren; Bood, Mattias; Gradén, Henrik; Marcus Wilhelmsson, L.; Grøtli, Morten

    2015-01-01

    Fluorescent base analogues (FBAs) comprise a family of increasingly important molecules for the investigation of nucleic acid structure and dynamics. We recently reported the quantum chemical calculation supported development of four microenvironment sensitive analogues of the quadracyclic adenine (qA) scaffold, the qANs, with highly promising absorptive and fluorescence properties that were very well predicted by TDDFT calculations. Herein, we report on the efficient synthesis, experimental and theoretical characterization of nine novel quadracyclic adenine derivatives. The brightest derivative, 2-CNqA, displays a 13-fold increased brightness (εΦF = 4500) compared with the parent compound qA and has the additional benefit of being a virtually microenvironment-insensitive fluorophore, making it a suitable candidate for nucleic acid incorporation and use in quantitative FRET and anisotropy experiments. TDDFT calculations, conducted on the nine novel qAs a posteriori, successfully describe the relative fluorescence quantum yield and brightness of all qA derivatives. This observation suggests that the TDDFT-based rational design strategy may be employed for the development of bright fluorophores built up from a common scaffold to reduce the otherwise costly and time-consuming screening process usually required to obtain useful and bright FBAs. PMID:26227585

  3. Development of bright fluorescent quadracyclic adenine analogues: TDDFT-calculation supported rational design

    NASA Astrophysics Data System (ADS)

    Foller Larsen, Anders; Dumat, Blaise; Wranne, Moa S.; Lawson, Christopher P.; Preus, Søren; Bood, Mattias; Gradén, Henrik; Marcus Wilhelmsson, L.; Grøtli, Morten

    2015-07-01

    Fluorescent base analogues (FBAs) comprise a family of increasingly important molecules for the investigation of nucleic acid structure and dynamics. We recently reported the quantum chemical calculation supported development of four microenvironment sensitive analogues of the quadracyclic adenine (qA) scaffold, the qANs, with highly promising absorptive and fluorescence properties that were very well predicted by TDDFT calculations. Herein, we report on the efficient synthesis, experimental and theoretical characterization of nine novel quadracyclic adenine derivatives. The brightest derivative, 2-CNqA, displays a 13-fold increased brightness (ɛΦF = 4500) compared with the parent compound qA and has the additional benefit of being a virtually microenvironment-insensitive fluorophore, making it a suitable candidate for nucleic acid incorporation and use in quantitative FRET and anisotropy experiments. TDDFT calculations, conducted on the nine novel qAs a posteriori, successfully describe the relative fluorescence quantum yield and brightness of all qA derivatives. This observation suggests that the TDDFT-based rational design strategy may be employed for the development of bright fluorophores built up from a common scaffold to reduce the otherwise costly and time-consuming screening process usually required to obtain useful and bright FBAs.

  4. Probing ultrafast dynamics in adenine with mid-UV four-wave mixing spectroscopies.

    PubMed

    West, Brantley A; Womick, Jordan M; Moran, Andrew M

    2011-08-11

    Heterodyne-detected transient grating (TG) and two-dimensional photon echo (2DPE) spectroscopies are extended to the mid-UV spectral range in this investigation of photoinduced relaxation processes of adenine in aqueous solution. These experiments are the first to combine a new method for generating 25 fs laser pulses (at 263 nm) with the passive phase stability afforded by diffractive optics-based interferometry. We establish a set of conditions (e.g., laser power density, solute concentration) appropriate for the study of dynamics involving the neutral solute. Undesired solute photoionization is shown to take hold at higher peak powers of the laser pulses. Signatures of internal conversion and vibrational cooling dynamics are examined using TG measurements with signal-to-noise ratios as high as 350 at short delay times. In addition, 2DPE line shapes reveal correlations between excitation and emission frequencies in adenine, which reflect electronic and nuclear relaxation processes associated with particular tautomers. Overall, this study demonstrates the feasibility of techniques that will hold many advantages for the study of biomolecules whose lowest-energy electronic resonances are found in the mid-UV (e.g., DNA bases, amino acids).

  5. Microwave-assisted stereospecific synthesis of novel tetrahydropyran adenine isonucleosides and crystal structures determination

    NASA Astrophysics Data System (ADS)

    Silva, Fábio P. L.; Cirqueira, Marilia L.; Martins, Felipe T.; Vasconcellos, Mário L. A. A.

    2013-11-01

    We describe in this article stereospecific syntheses for new isonucleosides analogs of adenine 5-7 from tosyl derivatives 2-4 accessing by microwave irradiations (50-80%). The adenine reacts entirely at the N(9) position. Compounds 2-4 were prepared in two steps from the corresponding alcohols 1, 8 and 9 (81-92%). These tetrahydropyrans alcohols 1, 8 and 9 are achiral (Meso compounds) and were prepared in two steps with complete control of 2,4,6-cis relative configuration by Prins cyclization reaction (60-63%) preceded by the Barbier reaction between allyl bromide with benzaldehyde, 4-fluorobenzaldehyde and 2-naphthaldehyde respectively under Lewis acid conditions (96-98%). The configurations and preferential conformations of 5-7 were determined by crystal structure of 6. These novel isonucleosides 5-7 present in silico potentiality to act as GPCR ligand, kinase inhibitor and enzyme inhibitor, evaluated by Molinspiration program, consistent with the expected antiviral and anticancer bioactivities.

  6. Ultraviolet photolysis of adenine: Dissociation via the {sup 1}{pi}{sigma}{sup *} state

    SciTech Connect

    Nix, Michael G. D.; Devine, Adam L.; Cronin, Brid; Ashfold, Michael N. R.

    2007-03-28

    High resolution total kinetic energy release (TKER) spectra of the H atom fragments resulting from photodissociation of jet-cooled adenine molecules at 17 wavelengths in the range 280>{lambda}{sub phot}>214 nm are reported. TKER spectra obtained at {lambda}{sub phot}>233 nm display broad, isotropic profiles that peak at low TKER ({approx}1800 cm{sup -1}) and are largely insensitive to the choice of excitation wavelength. The bulk of these products is attributed to unintended multiphoton dissociation processes. TKER spectra recorded at {lambda}{sub phot}{<=}233 nm display additional fast structure, which is attributed to N{sub 9}-H bond fission on the {sup 1}{pi}{sigma}{sup *} potential energy surface (PES). Analysis of the kinetic energies and recoil anisotropies of the H atoms responsible for the fast structure suggests excitation to two {sup 1}{pi}{pi}{sup *} excited states (the {sup 1}L{sub a} and {sup 1}B{sub b} states) at {lambda}{sub phot}{approx}230 nm, both of which dissociate to yield H atoms together with ground state adeninyl fragments by radiationless transfer through conical intersections with the {sup 1}{pi}{sigma}{sup *} PES. Parallels with the photochemistry exhibited by other, smaller heteroaromatics (pyrrole, imidazole, phenol, etc.) are highlighted, as are inconsistencies between the present conclusions and those reached in two other recent studies of excited state adenine molecules.

  7. Flavin adenine dinucleotide content of quinone reductase 2: analysis and optimization for structure-function studies.

    PubMed

    Leung, Kevin Ka Ki; Litchfield, David W; Shilton, Brian H

    2012-01-01

    Quinone reductase 2 (NQO2) is a broadly expressed enzyme implicated in responses to a number of compounds, including protein kinase inhibitors, resveratrol, and antimalarial drugs. NQO2 includes a flavin adenine dinucleotide (FAD) cofactor, but X-ray crystallographic analysis of human NQO2 expressed in Escherichia coli showed that electron density for the isoalloxazine ring of FAD was weak and there was no electron density for the adenine mononucleotide moiety. Reversed-phase high-performance liquid chromatography (HPLC) of the NQO2 preparation indicated that FAD was not present and only 38% of the protomers contained flavin mononucleotide (FMN), explaining the weak electron density for FAD in the crystallographic analysis. A method for purifying NQO2 and reconstituting with FAD such that the final content approaches 100% occupancy with FAD is presented here. The enzyme prepared in this manner has a high specific activity, and there is strong electron density for the FAD cofactor in the crystal structure. Analysis of NQO2 crystal structures present in the Protein Data Bank indicates that many may have sub-stoichiometric cofactor content and/or contain FMN rather than FAD. This method of purification and reconstitution will help to optimize structural and functional studies of NQO2 and possibly other flavoproteins.

  8. 3D Magnetically Ordered Open Supramolecular Architectures Based on Ferrimagnetic Cu/Adenine/Hydroxide Heptameric Wheels.

    PubMed

    Pérez-Aguirre, Rubén; Beobide, Garikoitz; Castillo, Oscar; de Pedro, Imanol; Luque, Antonio; Pérez-Yáñez, Sonia; Rodríguez Fernández, Jesús; Román, Pascual

    2016-08-01

    The present work provides two new examples of supramolecular metal-organic frameworks consisting of three-dimensional extended noncovalent assemblies of wheel-shaped heptanuclear [Cu7(μ-H2O)6(μ3-OH)6(μ-adeninato-κN3:κN9)6](2+) entities. The heptanuclear entity consists of a central [Cu(OH)6](4-) core connected to six additional copper(II) metal centers in a radial and planar arrangement through the hydroxides. It generates a wheel-shaped entity in which water molecules and μ-κN3:κN9 adeninato ligands bridge the peripheral copper atoms. The magnetic characterization indicates the central copper(II) center is anti-ferromagnetically coupled to external copper(II) centers, which are ferromagnetically coupled among them leading to an S = 5/2 ground state. The packing of these entities is sustained by π-π stacking interactions between the adenine nucleobases and by hydrogen bonds established among the hydroxide ligands, sulfate anions, and adenine nucleobases. The sum of both types of supramolecular interactions creates a rigid synthon that in combination with the rigidity of the heptameric entity generates an open supramolecular structure (40-50% of available space) in which additional sulfate and triethylammonium ions are located altogether with solvent molecules. These compounds represent an interesting example of materials combining both porosity and magnetic relevant features. PMID:27409976

  9. Electrochemical evaluation of glutathione S-transferase kinetic parameters.

    PubMed

    Enache, Teodor Adrian; Oliveira-Brett, Ana Maria

    2015-02-01

    Glutathione S-transferases (GSTs), are a family of enzymes belonging to the phase II metabolism that catalyse the formation of thioether conjugates between the endogenous tripeptide glutathione and xenobiotic compounds. The voltammetric behaviour of glutathione (GSH), 1-chloro-2,4-dinitrobenzene (CDNB) and glutathione S-transferase (GST), as well as the catalytic conjugation reaction of GSH to CDNB by GST was investigated at room temperature, T=298.15K (25°C), at pH6.5, for low concentration of substrates and enzyme, using differential pulse (DP) voltammetry at a glassy carbon electrode. Only GSH can be oxidized; a sensitivity of 0.14nA/μM and a LOD of 6.4μM were obtained. The GST kinetic parameter electrochemical evaluation, in relation to its substrates, GSH and CDNB, using reciprocal Michaelis-Menten and Lineweaver-Burk double reciprocal plots, was determined. A value of KM~100μM was obtained for either GSH or CDNB, and Vmax varied between 40 and 60μmol/min per mg of GST.

  10. A van der Waals density functional study of adenine on graphene: Single molecular adsorption and overlayer binding

    SciTech Connect

    Berland, Kristian; Cooper, Valentino R; Langreth, David C.; Schroder, Prof. Elsebeth; Chakarova-Kack, Svetla

    2011-01-01

    The adsorption of an adenine molecule on graphene is studied using a first-principles van der Waals functional (vdW-DF) [Dion et al., Phys. Rev. Lett. 92, 246401 (2004)]. The cohesive energy of an ordered adenine overlayer is also estimated. For the adsorption of a single molecule, we determine the optimal binding configuration and adsorption energy by translating and rotating the molecule. The adsorption energy for a single molecule of adenine is found to be 711 meV, which is close to the calculated adsorption energy of the similar-sized naphthalene. Based on the single molecular binding configuration, we estimate the cohesive energy of a two-dimensional ordered overlayer. We find a significantly stronger binding energy for the ordered overlayer than for single-molecule adsorption.

  11. DFT Studies of the Extent of Hole Delocalization in One-electron Oxidized Adenine and Guanine base Stacks

    PubMed Central

    Kumar, Anil

    2011-01-01

    This study investigates the extent of hole delocalization in one-electron oxidized adenine (A)- and guanine (G)-stacks and shows that new IR vibrational bands are predicted that are characteristic of hole delocalization within A-stacks. The geometries of A-stack (Ai; i = 2 – 8) and G-stack (GG and GGG) in their neutral and one-electron oxidized states were optimized with the bases in a B-DNA conformation using the M06-2X/6-31G* method. The highest occupied molecular orbital (HOMO) is localized on a single adenine in A-stacks and on a single guanine in GG and GGG stacks; located at the 5′-site of the stack. On one-electron oxidation (removal of an electron from the HOMO of the neutral A- and G-stacks) a “hole” is created. Mulliken charge analysis shows that these “holes” are delocalized over 2 – 3 adenine bases in the A-stack. The calculated spin density distribution of (Ai)•+ (i = 2 – 8), also, showed delocalization of the hole predominantly on two adenine bases with some delocalization on a neighboring base. For GG and GGG radical cations, the hole was found to be localized on a single G in the stack. The calculated HFCCs of GG and GGG are in good agreement with the experiment. Further, from the vibrational frequency analysis, it was found that IR spectra of neutral and the corresponding one-electron oxidized adenine stacks are quite different. The IR spectra of (A2)•+ has intense IR peaks between 900 – 1500 cm−1 which are not present in the neutral A2 stack. The presence of (A2)•+ in the adenine stack has a characteristic intense peak at ~1100 cm−1. Thus IR and Raman spectroscopy has potential for monitoring the extent of hole delocalization in A stacks. PMID:21417208

  12. Nicotinic Acid Adenine Dinucleotide Phosphate Analogs Substituted on the Nicotinic Acid and Adenine Ribosides. Effects on Receptor-Mediated Ca2+ release

    PubMed Central

    Trabbic, Christopher J.; Zhang, Fan; Walseth, Timothy F.; Slama, James T.

    2015-01-01

    Nicotinic acid adenine dinucleotide phosphate (NAADP) is a Ca2+ releasing intracellular second messenger in both mammals and echinoderms. We report that large functionalized substituents introduced at the nicotinic acid 5-position are recognized by the sea urchin receptor, albeit with a 20–500 fold loss in agonist potency. 5-(3-Azidopropyl)-NAADP was shown to release Ca2+ with an EC50 of 31 µM and to compete with NAADP for receptor binding with an IC50 of 56 nM. Attachment of charged groups to the nicotinic acid of NAADP is associated with loss of activity, suggesting that the nicotinate riboside moiety is recognized as a neutral zwitterion. Substituents (Br- and N3-) can be introduced at the 8-adenosyl position of NAADP while preserving high potency and agonist efficacy and an NAADP derivative substituted at both the 5-position of the nicotinic acid and at the 8-adenosyl position was also recognized although the agonist potency was significantly reduced. PMID:25826221

  13. Development of a new model for the induction of chronic kidney disease via intraperitoneal adenine administration, and the effect of treatment with gum acacia thereon

    PubMed Central

    Al Za’abi, Mohammed; Al Busaidi, Mahfouda; Yasin, Javid; Schupp, Nicole; Nemmar, Abderrahim; Ali, Badreldin H

    2015-01-01

    Oral adenine (0.75% w/w in feed), is an established model for human chronic kidney disease (CKD). Gum acacia (GA) has been shown to be a nephroprotective agent in this model. Here we aimed at developing a new adenine-induced CKD model in rats via a systemic route (intraperitoneal, i.p.) and to test it with GA to obviate the possibility of a physical interaction between GA and adenine in the gut. Adenine was injected i.p. (50 or 100 mg/Kg for four weeks), and GA was given concomitantly in drinking water at a concentration of 15%, w/v. Several plasma and urinary biomarkers of oxidative stress were measured and the renal damage was assessed histopathologically. Adenine, at the two given i.p. doses, significantly reduced body weight, and increased relative kidney weight, water intake and urine output. It dose-dependently increased plasma and urinary inflammatory and oxidative stress biomarkers, and caused morphological and histological damage resembling that which has been reported with oral adenine. Concomitant treatment with GA significantly mitigated almost all the above measured indices. Administration of adenine i.p. induced CKD signs very similar to those induced by oral adenine. Therefore, this new model is quicker, more practical and accurate than the original (oral) model. GA ameliorates the CKD effects caused by adenine given i.p. suggesting that the antioxidant and anti-inflammatory properties possessed by oral GA are the main mechanism for its salutary action in adenine-induced CKD, an action that is independent of its possible interaction with adenine in the gut. PMID:25755826

  14. Development of a new model for the induction of chronic kidney disease via intraperitoneal adenine administration, and the effect of treatment with gum acacia thereon.

    PubMed

    Al Za'abi, Mohammed; Al Busaidi, Mahfouda; Yasin, Javid; Schupp, Nicole; Nemmar, Abderrahim; Ali, Badreldin H

    2015-01-01

    Oral adenine (0.75% w/w in feed), is an established model for human chronic kidney disease (CKD). Gum acacia (GA) has been shown to be a nephroprotective agent in this model. Here we aimed at developing a new adenine-induced CKD model in rats via a systemic route (intraperitoneal, i.p.) and to test it with GA to obviate the possibility of a physical interaction between GA and adenine in the gut. Adenine was injected i.p. (50 or 100 mg/Kg for four weeks), and GA was given concomitantly in drinking water at a concentration of 15%, w/v. Several plasma and urinary biomarkers of oxidative stress were measured and the renal damage was assessed histopathologically. Adenine, at the two given i.p. doses, significantly reduced body weight, and increased relative kidney weight, water intake and urine output. It dose-dependently increased plasma and urinary inflammatory and oxidative stress biomarkers, and caused morphological and histological damage resembling that which has been reported with oral adenine. Concomitant treatment with GA significantly mitigated almost all the above measured indices. Administration of adenine i.p. induced CKD signs very similar to those induced by oral adenine. Therefore, this new model is quicker, more practical and accurate than the original (oral) model. GA ameliorates the CKD effects caused by adenine given i.p. suggesting that the antioxidant and anti-inflammatory properties possessed by oral GA are the main mechanism for its salutary action in adenine-induced CKD, an action that is independent of its possible interaction with adenine in the gut.

  15. REVERSAL BY ADENINE OF THE ETHIONINE-INDUCED LIPID ACCUMULATION IN THE ENDOPLASMIC RETICULUM OF THE RAT LIVER

    PubMed Central

    Baglio, Corrado M.; Farber, Emmanuel

    1965-01-01

    Within 3.5 to 4 hours after thionine administration, numerous small osmiophilic bodies, liposomes, appear in the endoplasmic reticulum of the liver cells. By fusion, the liposomes lead to the formation of larger collections of fat, giant liposomes. Adenine administration to ethionine-treated rats removes the liposomes from the hepatocytes and causes the transitory appearance of osmiophilic droplets in the sinusoidal space of Disse. The characteristic disaggregation of hepatic polysomes seen in the liver after ethionine administration is corrected by the injection of adenine. PMID:5885431

  16. Nicotinic acid adenine dinucleotide phosphate-mediated calcium signalling in effector T cells regulates autoimmunity of the central nervous system

    PubMed Central

    Cordiglieri, Chiara; Odoardi, Francesca; Zhang, Bo; Nebel, Merle; Kawakami, Naoto; Klinkert, Wolfgang E. F.; Lodygin, Dimtri; Lühder, Fred; Breunig, Esther; Schild, Detlev; Ulaganathan, Vijay Kumar; Dornmair, Klaus; Dammermann, Werner; Potter, Barry V. L.; Guse, Andreas H.

    2010-01-01

    Nicotinic acid adenine dinucleotide phosphate represents a newly identified second messenger in T cells involved in antigen receptor-mediated calcium signalling. Its function in vivo is, however, unknown due to the lack of biocompatible inhibitors. Using a recently developed inhibitor, we explored the role of nicotinic acid adenine dinucleotide phosphate in autoreactive effector T cells during experimental autoimmune encephalomyelitis, the animal model for multiple sclerosis. We provide in vitro and in vivo evidence that calcium signalling controlled by nicotinic acid adenine dinucleotide phosphate is relevant for the pathogenic potential of autoimmune effector T cells. Live two photon imaging and molecular analyses revealed that nicotinic acid adenine dinucleotide phosphate signalling regulates T cell motility and re-activation upon arrival in the nervous tissues. Treatment with the nicotinic acid adenine dinucleotide phosphate inhibitor significantly reduced both the number of stable arrests of effector T cells and their invasive capacity. The levels of pro-inflammatory cytokines interferon-gamma and interleukin-17 were strongly diminished. Consecutively, the clinical symptoms of experimental autoimmune encephalomyelitis were ameliorated. In vitro, antigen-triggered T cell proliferation and cytokine production were evenly suppressed. These inhibitory effects were reversible: after wash-out of the nicotinic acid adenine dinucleotide phosphate antagonist, the effector T cells fully regained their functions. The nicotinic acid derivative BZ194 induced this transient state of non-responsiveness specifically in post-activated effector T cells. Naïve and long-lived memory T cells, which express lower levels of the putative nicotinic acid adenine dinucleotide phosphate receptor, type 1 ryanodine receptor, were not targeted. T cell priming and recall responses in vivo were not reduced. These data indicate that the nicotinic acid adenine dinucleotide phosphate

  17. Progesterone-adenine hybrids as bivalent inhibitors of P-glycoprotein-mediated multidrug efflux: design, synthesis, characterization and biological evaluation.

    PubMed

    Zeinyeh, Waël; Mahiout, Zahia; Radix, Sylvie; Lomberget, Thierry; Dumoulin, Axel; Barret, Roland; Grenot, Catherine; Rocheblave, Luc; Matera, Eva-Laure; Dumontet, Charles; Walchshofer, Nadia

    2012-10-01

    Bivalent ligands were designed on the basis of the described close proximity of the ATP-site and the putative steroid-binding site of P-glycoprotein (ABCB1). The syntheses of 19 progesterone-adenine hybrids are described. Their abilities to inhibit P-glycoprotein-mediated daunorubicin efflux in K562/R7 human leukemic cells overexpressing P-glycoprotein were evaluated versus progesterone. The hybrid with a hexamethylene linker chain showed the best inhibitory potency. The efficiency of these progesterone-adenine hybrids depends on two main factors: (i) the nature of the linker and (ii) its attachment point on the steroid skeleton.

  18. Elevation of alanine amino transferase and aspartate amino transferase produced by pyoverdin, a photolabile pigment of Pseudomonas fluorescens.

    PubMed

    Eraso, A J; Albesa, I

    1998-01-01

    The effect of three forms pyoverdin on mouse liver was studied. Significant increases of alanine amino transferase (ALT) and aspartate amino transferase (AST) were obtained in mice after ingestion of water with forms A and C. The effect on liver was more evident with A than with C. Pyoverdin was purified by means of salt saturation, solvent extractions and ion-exchange chromatography. Fluorescent peaks obtained in the presence of light were different from those eluted under dark conditions. The relative amounts of pyoverdin A, B and C varied when dark purification procedure was employed. Form A decreased while C increased in the absence of light. Optimum conditions for C were in the dark without iron. When C was exposed to light, it changed to form A. Fast Atom Bombardment (FAB) mass spectrometry of pyoverdin form C gave a form at M+ = 1324 m.u., which is 9 m.u. less than pyoverdin purified in the presence of light. The results suggest that light can influence pyoverdin stability and toxicity. PMID:9888631

  19. Modeling the high-energy electronic state manifold of adenine: Calibration for nonlinear electronic spectroscopy

    SciTech Connect

    Nenov, Artur Giussani, Angelo; Segarra-Martí, Javier; Jaiswal, Vishal K.; Rivalta, Ivan; Cerullo, Giulio; Mukamel, Shaul; Garavelli, Marco E-mail: marco.garavelli@ens-lyon.fr

    2015-06-07

    Pump-probe electronic spectroscopy using femtosecond laser pulses has evolved into a standard tool for tracking ultrafast excited state dynamics. Its two-dimensional (2D) counterpart is becoming an increasingly available and promising technique for resolving many of the limitations of pump-probe caused by spectral congestion. The ability to simulate pump-probe and 2D spectra from ab initio computations would allow one to link mechanistic observables like molecular motions and the making/breaking of chemical bonds to experimental observables like excited state lifetimes and quantum yields. From a theoretical standpoint, the characterization of the electronic transitions in the visible (Vis)/ultraviolet (UV), which are excited via the interaction of a molecular system with the incoming pump/probe pulses, translates into the determination of a computationally challenging number of excited states (going over 100) even for small/medium sized systems. A protocol is therefore required to evaluate the fluctuations of spectral properties like transition energies and dipole moments as a function of the computational parameters and to estimate the effect of these fluctuations on the transient spectral appearance. In the present contribution such a protocol is presented within the framework of complete and restricted active space self-consistent field theory and its second-order perturbation theory extensions. The electronic excited states of adenine have been carefully characterized through a previously presented computational recipe [Nenov et al., Comput. Theor. Chem. 1040–1041, 295-303 (2014)]. A wise reduction of the level of theory has then been performed in order to obtain a computationally less demanding approach that is still able to reproduce the characteristic features of the reference data. Foreseeing the potentiality of 2D electronic spectroscopy to track polynucleotide ground and excited state dynamics, and in particular its expected ability to provide

  20. Modeling the high-energy electronic state manifold of adenine: Calibration for nonlinear electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Nenov, Artur; Giussani, Angelo; Segarra-Martí, Javier; Jaiswal, Vishal K.; Rivalta, Ivan; Cerullo, Giulio; Mukamel, Shaul; Garavelli, Marco

    2015-06-01

    Pump-probe electronic spectroscopy using femtosecond laser pulses has evolved into a standard tool for tracking ultrafast excited state dynamics. Its two-dimensional (2D) counterpart is becoming an increasingly available and promising technique for resolving many of the limitations of pump-probe caused by spectral congestion. The ability to simulate pump-probe and 2D spectra from ab initio computations would allow one to link mechanistic observables like molecular motions and the making/breaking of chemical bonds to experimental observables like excited state lifetimes and quantum yields. From a theoretical standpoint, the characterization of the electronic transitions in the visible (Vis)/ultraviolet (UV), which are excited via the interaction of a molecular system with the incoming pump/probe pulses, translates into the determination of a computationally challenging number of excited states (going over 100) even for small/medium sized systems. A protocol is therefore required to evaluate the fluctuations of spectral properties like transition energies and dipole moments as a function of the computational parameters and to estimate the effect of these fluctuations on the transient spectral appearance. In the present contribution such a protocol is presented within the framework of complete and restricted active space self-consistent field theory and its second-order perturbation theory extensions. The electronic excited states of adenine have been carefully characterized through a previously presented computational recipe [Nenov et al., Comput. Theor. Chem. 1040-1041, 295-303 (2014)]. A wise reduction of the level of theory has then been performed in order to obtain a computationally less demanding approach that is still able to reproduce the characteristic features of the reference data. Foreseeing the potentiality of 2D electronic spectroscopy to track polynucleotide ground and excited state dynamics, and in particular its expected ability to provide

  1. Hydroxyl radical reactions with adenine: reactant complexes, transition states, and product complexes.

    PubMed

    Cheng, Qianyi; Gu, Jiande; Compaan, Katherine R; Schaefer, Henry F

    2010-10-18

    In order to address problems such as aging, cell death, and cancer, it is important to understand the mechanisms behind reactions causing DNA damage. One specific reaction implicated in DNA oxidative damage is hydroxyl free-radical attack on adenine (A) and other nucleic acid bases. The adenine reaction has been studied experimentally, but there are few theoretical results. In the present study, adenine dehydrogenation at various sites, and the potential-energy surfaces for these reactions, are investigated theoretically. Four reactant complexes [A···OH]* have been found, with binding energies relative to A+OH* of 32.8, 11.4, 10.7, and 10.1 kcal mol(-1). These four reactant complexes lead to six transition states, which in turn lie +4.3, -5.4, (-3.7 and +0.8), and (-2.3 and +0.8) kcal mol(-1) below A+OH*, respectively. Thus the lowest lying [A···OH]* complex faces the highest local barrier to formation of the product (A-H)*+H(2)O. Between the transition states and the products lie six product complexes. Adopting the same order as the reactant complexes, the product complexes [(A-H)···H(2)O]* lie at -10.9, -22.4, (-24.2 and -18.7), and (-20.5 and -17.5) kcal mol(-1), respectively, again relative to separated A+OH*. All six A+OH* → (A-H)*+H(2)O pathways are exothermic, by -0.3, -14.7, (-17.4 and -7.8), and (-13.7 and -7.8) kcal mol(-1), respectively. The transition state for dehydrogenation at N(6) lies at the lowest energy (-5.4 kcal mol(-1) relative to A+OH*), and thus reaction is likely to occur at this site. This theoretical prediction dovetails with the observed high reactivity of OH radicals with the NH(2) group of aromatic amines. However, the high barrier (37.1 kcal mol(-1)) for reaction at the C(8) site makes C(8) dehydrogenation unlikely. This last result is consistent with experimental observation of the imidazole ring opening upon OH radical addition to C(8). In addition, TD-DFT computed electronic transitions of the N(6) product around 420 nm

  2. Chronic kidney disease induced by adenine: a suitable model of growth retardation in uremia.

    PubMed

    Claramunt, Débora; Gil-Peña, Helena; Fuente, Rocío; García-López, Enrique; Loredo, Vanessa; Hernández-Frías, Olaya; Ordoñez, Flor A; Rodríguez-Suárez, Julián; Santos, Fernando

    2015-07-01

    Growth retardation is a major manifestation of chronic kidney disease (CKD) in pediatric patients. The involvement of the various pathogenic factors is difficult to evaluate in clinical studies. Here, we present an experimental model of adenine-induced CKD for the study of growth failure. Three groups (n = 10) of weaning female rats were studied: normal diet (control), 0.5% adenine diet (AD), and normal diet pair fed with AD (PF). After 21 days, serum urea nitrogen, creatinine, parathyroid hormone (PTH), weight and length gains, femur osseous front advance as an index of longitudinal growth rate, growth plate histomorphometry, chondrocyte proliferative activity, bone structure, aorta calcifications, and kidney histology were analyzed. Results are means ± SE. AD rats developed renal failure (serum urea nitrogen: 70 ± 6 mg/dl and creatinine: 0.6 ± 0.1 mg/dl) and secondary hyperparathyroidism (PTH: 480 ± 31 pg/ml). Growth retardation of AD rats was demonstrated by lower weight (AD rats: 63.3 ± 4.8 g, control rats: 112.6 ± 4.7 g, and PF rats: 60.0 ± 3.8 g) and length (AD rats: 7.2 ± 0.2 cm, control rats: 11.1 ± 0.3 cm, and PF rats: 8.1 ± 0.3 cm) gains as well as lower osseous front advances (AD rats: 141 ± 13 μm/day, control rats: 293 ± 16 μm/day, and PF rats: 251 ± 10 μm/day). The processes of chondrocyte maturation and proliferation were impaired in AD rats, as shown by lower growth plate terminal chondrocyte height (21.7 ± 2.3 vs. 26.2 ± 1.9 and 23.9 ± 1.3 μm in control and PF rats) and proliferative activity index (AD rats: 30 ± 2%, control rats: 38 ± 2%, and PF rats: 42 ± 3%). The bone primary spongiosa structure of AD rats was markedly disorganized. In conclusion, adenine-induced CKD in young rats is associated with growth retardation and disturbed endochondral ossification. This animal protocol may be a useful new experimental model to study growth in CKD.

  3. Geranylgeranyl transferase type II inhibition prevents myeloma bone disease.

    PubMed

    Lawson, Michelle A; Coulton, Les; Ebetino, Frank H; Vanderkerken, Karin; Croucher, Peter I

    2008-12-12

    Geranylgeranyl transferase II (GGTase II) is an enzyme that plays a key role in the isoprenylation of proteins. 3-PEHPC, a novel GGTase II inhibitor, blocks bone resorption and induces myeloma cell apoptosis in vitro. Its effect on bone resorption and tumor growth in vivo is unknown. We investigated the effect of 3-PEHPC on tumor burden and bone disease in the 5T2MM model of multiple myeloma in vivo. 3-PEHPC significantly reduced osteoclast numbers and osteoclast surface. 3-PEHPC prevented the bone loss and the development of osteolytic bone lesions induced by 5T2MM myeloma cells. Treatment with 3-PEHPC also significantly reduced myeloma burden in bone. The magnitude of response was similar to that seen with the bisphosphonate, risedronate. These data show that targeting GGTase II with 3-PEHPC can prevent osteolytic bone disease and reduce tumor burden in vivo, and represents a novel approach to treating tumors that grow in bone.

  4. Pleiotropic Functions of Glutathione S-Transferase P

    PubMed Central

    Zhang, Jie; Grek, Christina; Ye, Zhi-Wei; Manevich, Yefim; Tew, Kenneth D.; Townsend, Danyelle M.

    2016-01-01

    Glutathione S-transferase P (GSTP) is one member of the GST superfamily that is prevalently expressed in mammals. Known to possess catalytic activity through deprotonating glutathione allowing formation of thioether bonds with electrophilic substrates, more recent discoveries have broadened our understanding of the biological roles of this protein. In addition to catalytic detoxification, other properties so far ascribed to GSTP include chaperone functions, regulation of nitric oxide pathways, regulation of a variety of kinase signaling pathways, and participation in the forward reaction of protein S-glutathionylation. The expression of GSTP has been linked with cancer and other human pathologies and more recently even with drug addiction. With respect to human health, polymorphic variants of GSTP may determine individual susceptibility to oxidative stress and/or be critical in the design and development of drugs that have used redox pathways as a discovery platform. PMID:24974181

  5. Glutathione analogue sorbents selectively bind glutathione S-transferase isoenzymes.

    PubMed

    Castro, V M; Kelley, M K; Engqvist-Goldstein, A; Kauvar, L M

    1993-06-01

    Novel affinity sorbents for glutathione S-transferases (GSTs) were created by binding glutathione (GSH) analogues to Sepharose 6B. The GSH molecule was modified at the glycine moiety and at the group attached to the sulphur of cysteine. When tested by affinity chromatography in a flow-through microplate format, several of these sorbents selectively bound GST isoenzymes. gamma E-C(Hx)-phi G (glutathione with a hexyl moiety bound to cysteine and phenylglycine substituted for glycine) specifically bound rat GST 7-7, the Pi-class isoenzyme, from liver, kidney and small intestine. gamma E-C(Bz)-beta A (benzyl bound to cysteine and beta-alanine substituted for glycine) was highly selective for rat subunits 3 and 4, which are Mu-class isoenzymes. By allowing purification of the isoenzymes under mild conditions that preserve activity, the novel sorbents should be useful in characterizing the biological roles of GSTs in both normal animal and cancer tissues.

  6. Glutathione S-transferase class {pi} polymorphism in baboons

    SciTech Connect

    Aivaliotis, M.J.; Cantu, T.; Gilligan, R.

    1995-02-01

    Glutathione S-transferase (GST) comprises a family of isozymes with broad substrate specificities. One or more GST isozymes are present in most animal tissues and function in several detoxification pathways through the conjugation of reduced glutathione with various electrophiles, thereby reducing their potential toxicity. Four soluble GST isozymes encoded by genes on different chromosomes have been identified in humans. The acidic class pi GST, GSTP (previously designated GST-3), is widely distributed in adult tissues and appears to be the only GST isozyme present in leukocytes and placenta. Previously reported electrophoretic analyses of erythrocyte and leukocyte extracts revealed single bands of activity, which differed slightly in mobility between the two cell types, or under other conditions, a two-banded pattern. To our knowledge, no genetically determined polymorphisms have previously been reported in GSTP from any species. We now report a polymorphism of GSTP in baboon leukocytes, and present family data that verifies autosomal codominant inheritance. 14 refs., 2 figs., 1 tab.

  7. Pleiotropic functions of glutathione S-transferase P.

    PubMed

    Zhang, Jie; Grek, Christina; Ye, Zhi-Wei; Manevich, Yefim; Tew, Kenneth D; Townsend, Danyelle M

    2014-01-01

    Glutathione S-transferase P (GSTP) is one member of the GST superfamily that is prevalently expressed in mammals. Known to possess catalytic activity through deprotonating glutathione allowing formation of thioether bonds with electrophilic substrates, more recent discoveries have broadened our understanding of the biological roles of this protein. In addition to catalytic detoxification, other properties so far ascribed to GSTP include chaperone functions, regulation of nitric oxide pathways, regulation of a variety of kinase signaling pathways, and participation in the forward reaction of protein S-glutathionylation. The expression of GSTP has been linked with cancer and other human pathologies and more recently even with drug addiction. With respect to human health, polymorphic variants of GSTP may determine individual susceptibility to oxidative stress and/or be critical in the design and development of drugs that have used redox pathways as a discovery platform.

  8. External electric field promotes proton transfer in the radical cation of adenine-thymine

    NASA Astrophysics Data System (ADS)

    Zhang, Guiqing; Xie, Shijie

    2016-07-01

    According to pKa measurements, it has been predicted that proton transfer would not occur in the radical cation of adenine-thymine (A:T). However, recent theoretical calculations indicate that proton transfer takes place in the base pair in water below the room temperature. We have performed simulations of proton transfer in the cation of B-DNA stack composed of 10 A:T base pairs in water from 20 K to 300 K. Proton transfer occurs below the room temperature, meanwhile it could also be observed at the room temperature under the external electric field. Another case that interests us is that proton transfer bounces back after ˜300 fs from the appearance of proton transfer at low temperatures.

  9. Two-dimensional infrared spectroscopy of azido-nicotinamide adenine dinucleotide in water

    NASA Astrophysics Data System (ADS)

    Dutta, Samrat; Rock, William; Cook, Richard J.; Kohen, Amnon; Cheatum, Christopher M.

    2011-08-01

    Mid-IR active analogs of enzyme cofactors have the potential to be important spectroscopic reporters of enzyme active site dynamics. Azido-nicotinamide adenine dinucleotide (NAD+), which has been recently synthesized in our laboratory, is a mid-IR active analog of NAD+, a ubiquitous redox cofactor in biology. In this study, we measure the frequency-frequency time correlation function for the antisymmetric stretching vibration of the azido group of azido-NAD+ in water. Our results are consistent with previous studies of pseudohalides in water. We conclude that azido-NAD+ is sensitive to local environmental fluctuations, which, in water, are dominated by hydrogen-bond dynamics of the water molecules around the probe. Our results demonstrate the potential of azido-NAD+ as a vibrational probe and illustrate the potential of substituted NAD+-analogs as reporters of local structural dynamics that could be used for studies of protein dynamics in NAD-dependent enzymes.

  10. Surface enhanced Raman scattering investigation of protein-bound flavin adenine dinucleotide structure

    NASA Astrophysics Data System (ADS)

    Maskevich, S. A.; Strekal, N. D.; Artsukevich, I. M.; Kivach, L. N.; Chernikevich, I. P.

    1995-04-01

    The SERS spectra of alcohol oxidase from Pichia pastoris adsorbed on a silver electrode were obtained. The similarities and differences of these spectra with the SERS spectrum of free flavin adenine dinucleiotide were considered. The dependence of relative intensity of 1258 cm -1 band from the electrode potential in the protein SERS spectra differed from that of free flavin. From the data on this band being sensitive to the protein-flavin interaction a suggestion was made about incomplete dissociation of flavin from the protein. This conclusion is confirmed both by the fluorescence data and the SERS data on alcohol oxidase purified from Candida boidinii. The results of the SERS investigation of the interaction between the substrate, ethanol and the cofactor, FAD, as well as between protein-bound cofactor with the substrate are presented. The problem of retaining the protein enzyme activity is discussed.

  11. Prebiotic synthesis of adenine and amino acids under Europa-like conditions

    NASA Technical Reports Server (NTRS)

    Levy, M.; Miller, S. L.; Brinton, K.; Bada, J. L.

    2000-01-01

    In order to simulate prebiotic synthetic processes on Europa and other ice-covered planets and satellites, we have investigated the prebiotic synthesis of organic compounds from dilute solutions of NH4CN frozen for 25 years at -20 and -78 degrees C. In addition, the aqueous products of spark discharge reactions from a reducing atmosphere were frozen for 5 years at -20 degrees C. We find that both adenine and guanine, as well as a simple set of amino acids dominated by glycine, are produced in substantial yields under these conditions. These results indicate that some of the key components necessary for the origin of life may have been available on Europa throughout its history and suggest that the circumstellar zone where life might arise may be wider than previously thought.

  12. Vacuum-ultraviolet circular dichroism reveals DNA duplex formation between short strands of adenine and thymine.

    PubMed

    Nielsen, Lisbeth Munksgaard; Hoffmann, Søren Vrønning; Brøndsted Nielsen, Steen

    2012-11-21

    Absorbance spectroscopy is used extensively to tell when two DNA single strands come together and form a double strand. Here we show that circular dichroism in the vacuum ultraviolet region provides an even stronger indication for duplex formation in the case of short strands of adenine and thymine (4 to 16 bases in each strand). Indeed, our results show that a strong positive CD band appears at 179 nm when double strands are formed. Melting experiments were done in aqueous solution with and without added Na(+) counter ions. With additional salt present a huge increase in the 179 nm CD band was observed when lowering the temperature. A 179 nm CD marker band for duplex formation can be used to measure the kinetics for the association of two single strands. Such experiments rely on large changes at one particular wavelength since it is too time-consuming to record a full-wavelength spectrum.

  13. Metal-adeninate vertices for the construction of an exceptionally porous metal-organic framework.

    PubMed

    An, Jihyun; Farha, Omar K; Hupp, Joseph T; Pohl, Ehmke; Yeh, Joanne I; Rosi, Nathaniel L

    2012-01-03

    Metal-organic frameworks comprising metal-carboxylate cluster vertices and long, branched organic linkers are the most porous materials known, and therefore have attracted tremendous attention for many applications, including gas storage, separations, catalysis and drug delivery. To increase metal-organic framework porosity, the size and complexity of linkers has increased. Here we present a promising alternative strategy for constructing mesoporous metal-organic frameworks that addresses the size of the vertex rather than the length of the organic linker. This approach uses large metal-biomolecule clusters, in particular zinc-adeninate building units, as vertices to construct bio-MOF-100, an exclusively mesoporous metal-organic framework. Bio-MOF-100 exhibits a high surface area (4,300 m(2) g(-1)), one of the lowest crystal densities (0.302 g cm(-3)) and the largest metal-organic framework pore volume reported to date (4.3 cm(3) g(-1)).

  14. The isolation and characterization of the Escherichia coli DNA adenine methylase (dam) gene.

    PubMed Central

    Brooks, J E; Blumenthal, R M; Gingeras, T R

    1983-01-01

    The E. coli dam (DNA adenine methylase) enzyme is known to methylate the sequence GATC. A general method for cloning sequence-specific DNA methylase genes was used to isolate the dam gene on a 1.14 kb fragment, inserted in the plasmid vector pBR322. Subsequent restriction mapping and subcloning experiments established a set of approximate boundaries of the gene. The nucleotide sequence of the dam gene was determined, and analysis of that sequence revealed a unique open reading frame which corresponded in length to that necessary to code for a protein the size of dam. Amino acid composition derived from this sequence corresponds closely to the amino acid composition of the purified dam protein. Enzymatic and DNA:DNA hybridization methods were used to investigate the possible presence of dam genes in a variety of prokaryotic organisms. PMID:6300769

  15. Synthesis and enzymatic incorporation of α-L-threofuranosyl adenine triphosphate (tATP).

    PubMed

    Zhang, Su; Chaput, John C

    2013-03-01

    Threose nucleic acid (TNA) is an artificial genetic polymer in which the natural ribose sugar found in RNA has been replaced with an unnatural threose sugar. TNA can be synthesized enzymatically using Therminator DNA polymerase to copy DNA templates into TNA. Here, we expand the substrate repertoire of Therminator DNA polymerase to include threofuranosyl adenine 3'-triphsophate (tATP). We chemically synthesized tATP by two different methods from the 2'-O-acetyl derivative. Enzyme-mediated polymerization reveals that tATP functions as an efficient substrate for Therminator DNA polymerase, indicating that tATP can replace the diaminopurine analogue (tDTP) in TNA transcription reactions. PMID:23352269

  16. Adaptive ligand binding by the purine riboswitch in the recognition of guanine and adenine analogs

    PubMed Central

    Gilbert, Sunny D.; Reyes, Francis E.; Edwards, Andrea L.; Batey, Robert T.

    2009-01-01

    SUMMARY Purine riboswitches discriminate between guanine and adenine by at least 10,000-fold based on the identity of a single pyrimidine (Y74) that forms a Watson-Crick base pair with the ligand. To understand how this high degree of specificity for closely related compounds is achieved through simple pairing, we investigated their interaction with purine analogs with varying functional groups at the 2- and 6-positions that have the potential to alter interactions with Y74. Using a combination of crystallographic and calorimetric approaches, we find that binding these purines is often facilitated by either small structural changes in the RNA or tautomeric changes in the ligand. This work also reveals that, along with base pairing, conformational restriction of Y74 significantly contributes to nucleobase selectivity. These results reveal that compounds that exploit the inherent local flexibility within riboswitch binding pockets can alter their ligand specificity. PMID:19523903

  17. Prebiotic Synthesis of Adenine and Amino Acids Under Europa-like Conditions

    NASA Technical Reports Server (NTRS)

    Levy, Matthew; Miller, Stanley L.; Brinton, Karen; Bada, Jeffrey L.

    2003-01-01

    In order to simulate prebiotic synthetic processes on Europa and other ice-covered planets and satellites. we have investigated the prebiotic synthesis of organic compounds from dilute solutions of NH4CN frozen for 25 year at -20 and -78 C. In addition the aqueous products of spark discharge reactions from a reducing atmosphere were frozen for 5 years at -20%. We find that both adenine and guanine, as well as a simple set of amino acids dominated by glycine, are produced in substantial yields under these conditions. These results indicate that some of the key components necessary for the origin of life may have been available on Europa throughout its history and suggest that the circumstellar zone where life might arise may be m der than previously thought.

  18. [Absolute bioavailability of the adenine derivative VMA-99-82 possessing antiviral activity].

    PubMed

    Smirnova, L A; Suchkov, E A; Riabukha, A F; Kuznetsov, K A; Ozerov, A A

    2013-01-01

    Investigation of the main pharmacokinetic parameters of adenine derivative VMA-99-82 in rats showed large values of the half-life (T1/2 = 11.03 h) and the mean retention time of drug molecules in the organism (MRT = 9.53 h). A high rate of the drug concentration decrease in the plasma determines a small value of the area under the pharmacokinetic curve (AUC = 74.96 mg h/ml). The total distribution volume (V(d) = 10.61 l/kg) is 15.8 times greater than the volume of extracellular fluid in the body of rat, which is indicative of a high ability of VMA-99-82 to be distributed and accumulated in the organs and tissues. The absolute bioavailability of VMA-99-82 is 66%. PMID:24605425

  19. Animal models of pediatric chronic kidney disease. Is adenine intake an appropriate model?

    PubMed

    Claramunt, Débora; Gil-Peña, Helena; Fuente, Rocío; Hernández-Frías, Olaya; Santos, Fernando

    2015-01-01

    Pediatric chronic kidney disease (CKD) has peculiar features. In particular, growth impairment is a major clinical manifestation of CKD that debuts in pediatric age because it presents in a large proportion of infants and children with CKD and has a profound impact on the self-esteem and social integration of the stunted patients. Several factors associated with CKD may lead to growth retardation by interfering with the normal physiology of growth plate, the organ where longitudinal growth rate takes place. The study of growth plate is hardly possible in humans and justifies the use of animal models. Young rats made uremic by 5/6 nephrectomy have been widely used as a model to investigate growth retardation in CKD. This article examines the characteristics of this model and analyzes the utilization of CKD induced by high adenine diet as an alternative research protocol.

  20. Conducting polymer and its composite materials based electrochemical sensor for Nicotinamide Adenine Dinucleotide (NADH).

    PubMed

    Omar, Fatin Saiha; Duraisamy, Navaneethan; Ramesh, K; Ramesh, S

    2016-05-15

    Nicotinamide Adenine Dinucleotide (NADH) is an important coenzyme in the human body that participates in many metabolic reactions. The impact of abnormal concentrations of NADH significantly causes different diseases in human body. Electrochemical detection of NADH using bare electrode is a challenging task especially in the presence of main electroactive interferences such as ascorbic acid (AA), uric acid (UA) and dopamine (DA). Modified electrodes have been widely explored to overcome the problems of poor sensitivity and selectivity occurred from bare electrodes. This review gives an overview on the progress of using conducting polymers, polyelectrolyte and its composites (co-polymer, carbonaceous, metal, metal oxide and clay) based modified electrodes for the sensing of NADH. In addition, developments on the fabrication of numerous conducting polymer composites based modified electrodes are clearly described.

  1. Intriguing radical-radical interactions among double-electron oxidized adenine-thymine base pairs

    NASA Astrophysics Data System (ADS)

    Wang, Mei; Zhao, Jing; Zhang, Laibin; Su, Xiyu; Su, Hanlei; Bu, Yuxiang

    2015-01-01

    We present a theoretical investigation of the structural and electronic properties of double-electron oxidized adenine-thymine base pair as well as its deprotonated Watson-Crick derivatives. Double-electron oxidation can destabilize the AT unit, leading to a barrier-hindered metastable A+T+ state with a dissociation channel featuring negative dissociation energy. This unusual energetic phenomenon originates from the competition of electrostatic repulsion and attractively hydrogen-bonding interaction co-existing between Arad + and Trad +. The associated double-proton-transfer process is also explored, suggesting a possible two-step mechanism. Magnetic coupling interactions of various diradical structures are controlled by both intra- and inter-molecular interactions.

  2. Production and characterization of reduced NAADP (nicotinic acid-adenine dinucleotide phosphate).

    PubMed Central

    Billington, Richard A; Thuring, Jan W; Conway, Stuart J; Packman, Len; Holmes, Andrew B; Genazzani, Armando A

    2004-01-01

    The pyridine nucleotide NAADP (nicotinic acid-adenine dinucleotide phosphate) has been shown to act as a Ca2+-releasing intracellular messenger in a wide variety of systems from invertebrates to mammals and has been implicated in a number of cellular processes. NAADP is structurally very similar to its precursor, the endogenous coenzyme NADP and while much is known about the reduced form of NADP, NADPH, it is not known whether NAADP can also exist in a reduced state. Here we report that NAADP can be reduced to NAADPH by endogenous cellular enzymes and that NAADPH is functionally inert at the NAADP receptor. These data suggest that NAADPH could represent a mechanism for rapidly inactivating NAADP in cells. PMID:14606955

  3. Sites of Adsorption of Adenine, Uracil, and Their Corresponding Derivatives on Sodium Montmorillonite

    NASA Astrophysics Data System (ADS)

    Perezgasga, L.; Serrato-Díaz, A.; Negrón-Mendoza, A.; Gal'N, L. De Pablo; Mosqueira, F. G.

    2005-04-01

    Clay minerals are considered important to chemical evolution processes due to their properties, ancient origin, and wide distribution. To extend the knowledge of their role in the prebiotic epoch, the adsorption sites of adenine, adenosine, AMP, ADP, ATP, Poly A, uracil, uridine, UMP, UDP, UTP and Poly U on sodium montmorillonite are investigated. X-ray diffraction, ultraviolet and infrared spectroscopy studies indicate that these molecules distribute into the interlamellar channel and the edge of the clay crystals. Monomers are adsorbed predominantly in the interlamellar channel, whereas polymers adsorb along the crystal edges. Such behavior is discussed mainly in terms of bulk pH, pKa of the adsorbate, and Van der Waals interactions.

  4. Isotope effect studies of the chemical mechanism of nicotinamide adenine dinucleotide malic enzyme from Crassula

    SciTech Connect

    Grissom, C.B.; Willeford, O.; Wedding, R.T.

    1987-05-05

    The /sup 13/C primary kinetic isotope effect on the decarboxylation of malate by nicotinamide adenine dinucleotide malic enzyme from Crassula argentea is 1.0199 +/- 0.0006 with proteo L-malate-2-H and 1.0162 +/- 0.0003 with malate-2-d. The primary deuterium isotope effect is 1.45 +/- 0.10 on V/K and 1.93 +/- 0.13 on V/sub max/. This indicates a stepwise conversion of malate to pyruvate and CO/sub 2/ with hydride transfer preceding decarboxylation, thereby suggesting a discrete oxaloacetate intermediate. This is in agreement with the stepwise nature of the chemical mechanism of other malic enzymes despite the Crassula enzyme's inability to reduce or decarboxylate oxaloacetate. Differences in morphology and allosteric regulation between enzymes suggest specialization of the Crassula malic enzyme for the physiology of crassulacean and acid metabolism while maintaining the catalytic events founds in malic enzymes from animal sources.

  5. Affinity chromatography of nicotinamide-adenine dinucleotide-linked dehydrogenases on immobilized derivatives of the dinucleotide.

    PubMed

    Barry, S; O'Carra, P

    1973-12-01

    1. Three established methods for immobilization of ligands through primary amino groups promoted little or no attachment of NAD(+) through the 6-amino group of the adenine residue. Two of these methods (coupling to CNBr-activated agarose and to carbodi-imide-activated carboxylated agarose derivatives) resulted instead in attachment predominantly through the ribosyl residues. Other immobilized derivatives were prepared by azolinkage of NAD(+) (probably through the 8 position of the adenine residue) to a number of different spacer-arm-agarose derivatives. 2. The effectiveness of these derivatives in the affinity chromatography of a variety of NAD-linked dehydrogenases was investigated, applying rigorous criteria to distinguish general or non-specific adsorption effects from truly NAD-specific affinity (bio-affinity). The ribosyl-attached NAD(+) derivatives displayed negligible bio-affinity for any of the NAD-linked dehydrogenases tested. The most effective azo-linked derivative displayed strong bio-affinity for glycer-aldehyde 3-phosphate dehydrogenase, weaker bio-affinity for lactate dehydrogenase and none at all for malate dehydrogenase, although these three enzymes have very similar affinities for soluble NAD(+). Alcohol dehydrogenase and xanthine dehydrogenase were subject to such strong non-specific interactions with the hydrocarbon spacer-arm assembly that any specific affinity was completely eclipsed. 3. It is concluded that, in practice, the general effectiveness of a general ligand may be considerably distorted and attenuated by the nature of the immobilization linkage. However, this attenuation can result in an increase in specific effectiveness, allowing dehydrogenases to be separated from one another in a manner unlikely to be feasible if the general effectiveness of the ligand remained intact. 4. The bio-affinity of the various derivatives for lactate dehydrogenase is correlated with the known structure of the NAD(+)-binding site of this enzyme. Problems

  6. Similarities between UDP-Glucose and Adenine Nucleotide Release in Yeast

    PubMed Central

    Esther, Charles R.; Sesma, Juliana I.; Dohlman, Henrik G.; Ault, Addison D.; Clas, Marién L.; Lazarowski, Eduardo R.; Boucher, Richard C.

    2008-01-01

    Extracellular UDP-glucose is a natural purinergic receptor agonist, but its mechanisms of cellular release remain unclear. We studied these mechanisms in Saccharomyces cerevisiae, a simple model organism that releases ATP, another purinergic agonist. Similar to ATP, UDP-glucose was released by S. cerevisiae at a rate that was linear over time. However, unlike ATP release, UDP-glucose release was not dependent on glucose stimulation. This discrepancy was resolved by demonstrating the apparent glucose stimulation of ATP release reflected glucose-dependent changes in the intracellular pattern of adenine nucleotides, with AMP release dominating in the absence of glucose. Indeed, total adenine nucleotide release, like UDP-glucose release, did not vary with glucose concentration over the short term. The genetic basis of UDP-glucose release was explored through analysis of deletion mutants, aided by development of a novel bioassay for UDP-glucose based on signaling through heterologously expressed human P2Y14 receptors. Using this assay, an elevated rate of UDP-glucose release was demonstrated in mutants lacking the putative Golgi nucleotide sugar transporter YMD8. An increased rate of UDP-glucose release in ymd8Δ was reduced by deletion of the YEA4 UDP-N-acetylglucosamine or the HUT1 UDP-galactose transporters, and overexpression of YEA4 or HUT1 increased the rate of UDP-glucose release. These findings suggest an exocytotic release mechanism similar to that of ATP, a conclusion supported by decreased rates of ATP, AMP, and UDP-glucose release in response to the secretory inhibitor Brefeldin A. These studies demonstrate the involvement of the secretory pathway in nucleotide and nucleotide sugar efflux in yeast and offer a powerful model system for further investigation. PMID:18693752

  7. Acceleration of adventitious shoots by interaction between exogenous hormone and adenine sulphate in Althaea officinalis L.

    PubMed

    Naz, Ruphi; Anis, M

    2012-11-01

    In the current study attempts were made to investigate the effects of three different phases of callus induction followed by adventitious regeneration from leaf segments (central and lateral vein). Callus induction was observed in Murashige and Skoog's (MS) medium supplemented with 15.0 μM 2,4-dichloro phenoxy acetic acid (2,4-D). Adventitious shoot buds formation was achieved on MS medium supplemented with 7.5 μM 2,4-D and 20.0 μM AdS in liquid medium as it induced 19.2 ± 0.58 buds in central vein explants. Addition of different growth regulators (cytokinins-6-benzyladenine, kinetin and 2-isopentenyl adenine alone or in combination with auxins-indole-3-acetic acid, indole-3-butyric acid and α-naphthalene acetic acid, improved the shoot regeneration efficiency, in which 5.0 μM 6-benzyl adenine along with 0.25 μM α-naphthalene acetic acid was shown to be the most effective medium for maximum shoot regeneration (81.3 %) with 24.6 number of shoots and 4.4 ± 0.08 cm shoot length per explant. Leaf culture of central veins led to better shoot formation capacity in comparison to lateral vein. Rooting was readily achieved on the differentiated shoots on 1/2 MS medium augmented with 20.0 μM indole-3-butyric acid. The plants were successfully hardened off in sterile soilrite followed by their establishment in garden soil with 80 % survival rate.

  8. Regulation of Salmonella enterica pathogenicity island 1 by DNA adenine methylation.

    PubMed

    López-Garrido, Javier; Casadesús, Josep

    2010-03-01

    DNA adenine methylase (Dam(-)) mutants of Salmonella enterica are attenuated in the mouse model and present multiple virulence-related defects. Impaired interaction of Salmonella Dam(-) mutants with the intestinal epithelium has been tentatively correlated with reduced secretion of pathogenicity island 1 (SPI-1) effectors. In this study, we show that S. enterica Dam(-) mutants contain lowered levels of the SPI-1 transcriptional regulators HilA, HilC, HilD, and InvF. Epistasis analysis indicates that Dam-dependent regulation of SPI-1 requires HilD, while HilA, HilC, and InvF are dispensable. A transcriptional hilDlac fusion is expressed at similar levels in Dam(+) and Dam(-) hosts. However, lower levels of hilD mRNA are found in a Dam(-) background, thus providing unsuspected evidence that Dam methylation might exert post-transcriptional regulation of hilD expression. This hypothesis is supported by the following lines of evidence: (i) lowered levels of hilD mRNA are found in Salmonella Dam(-) mutants when hilD is transcribed from a heterologous promoter; (ii) increased hilD mRNA turnover is observed in Dam(-) mutants; (iii) lack of the Hfq RNA chaperone enhances hilD mRNA instability in Dam(-) mutants; and (iv) lack of the RNA degradosome components polynucleotide phosphorylase and ribonuclease E suppresses hilD mRNA instability in a Dam(-) background. Our report of Dam-dependent control of hilD mRNA stability suggests that DNA adenine methylation plays hitherto unknown roles in post-transcriptional control of gene expression.

  9. Herpes simplex type 1 defective interfering particles do not affect the antiviral activity of acyclovir, foscarnet and adenine arabinoside.

    PubMed

    Harmenberg, J G; Svensson, L T

    1988-03-01

    The concentration of defective interfering particles (DI-particles) of herpes simplex type 1 virus was analysed by electron microscopy and plaque titration. Fifteen consecutive passages of undiluted virus in green monkey kidney cells were followed. No relationship was found between the concentration of DI-particles and the activity of antiviral substances such as acyclovir, foscarnet and adenine arabinoside.

  10. Adenine nucleotide-dependent and redox-independent control of mitochondrial malate dehydrogenase activity in Arabidopsis thaliana.

    PubMed

    Yoshida, Keisuke; Hisabori, Toru

    2016-06-01

    Mitochondrial metabolism is important for sustaining cellular growth and maintenance; however, the regulatory mechanisms underlying individual processes in plant mitochondria remain largely uncharacterized. Previous redox-proteomics studies have suggested that mitochondrial malate dehydrogenase (mMDH), a key enzyme in the tricarboxylic acid (TCA) cycle and redox shuttling, is under thiol-based redox regulation as a target candidate of thioredoxin (Trx). In addition, the adenine nucleotide status may be another factor controlling mitochondrial metabolism, as respiratory ATP production in mitochondria is believed to be influenced by several environmental stimuli. Using biochemical and reverse-genetic approaches, we addressed the redox- and adenine nucleotide-dependent regulation of mMDH in Arabidopsis thaliana. Recombinant mMDH protein formed intramolecular disulfide bonds under oxidative conditions, but these bonds did not have a considerable effect on mMDH activity. Mitochondria-localized o-type Trx (Trx-o) did not facilitate re-reduction of oxidized mMDH. Determination of the in vivo redox state revealed that mMDH was stably present in the reduced form even in Trx-o-deficient plants. Accordingly, we concluded that mMDH is not in the class of redox-regulated enzymes. By contrast, mMDH activity was lowered by adenine nucleotides (AMP, ADP, and ATP). Each adenine nucleotide suppressed mMDH activity with different potencies and ATP exerted the largest inhibitory effect with a significantly lower K(I). Correspondingly, mMDH activity was inhibited by the increase in ATP/ADP ratio within the physiological range. These results suggest that mMDH activity is finely controlled in response to variations in mitochondrial adenine nucleotide balance. PMID:26946085

  11. Adenine nucleotide-dependent and redox-independent control of mitochondrial malate dehydrogenase activity in Arabidopsis thaliana.

    PubMed

    Yoshida, Keisuke; Hisabori, Toru

    2016-06-01

    Mitochondrial metabolism is important for sustaining cellular growth and maintenance; however, the regulatory mechanisms underlying individual processes in plant mitochondria remain largely uncharacterized. Previous redox-proteomics studies have suggested that mitochondrial malate dehydrogenase (mMDH), a key enzyme in the tricarboxylic acid (TCA) cycle and redox shuttling, is under thiol-based redox regulation as a target candidate of thioredoxin (Trx). In addition, the adenine nucleotide status may be another factor controlling mitochondrial metabolism, as respiratory ATP production in mitochondria is believed to be influenced by several environmental stimuli. Using biochemical and reverse-genetic approaches, we addressed the redox- and adenine nucleotide-dependent regulation of mMDH in Arabidopsis thaliana. Recombinant mMDH protein formed intramolecular disulfide bonds under oxidative conditions, but these bonds did not have a considerable effect on mMDH activity. Mitochondria-localized o-type Trx (Trx-o) did not facilitate re-reduction of oxidized mMDH. Determination of the in vivo redox state revealed that mMDH was stably present in the reduced form even in Trx-o-deficient plants. Accordingly, we concluded that mMDH is not in the class of redox-regulated enzymes. By contrast, mMDH activity was lowered by adenine nucleotides (AMP, ADP, and ATP). Each adenine nucleotide suppressed mMDH activity with different potencies and ATP exerted the largest inhibitory effect with a significantly lower K(I). Correspondingly, mMDH activity was inhibited by the increase in ATP/ADP ratio within the physiological range. These results suggest that mMDH activity is finely controlled in response to variations in mitochondrial adenine nucleotide balance.

  12. 40 CFR 158.230 - Experimental use permit data requirements for toxicology.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., thymidine kinase (tk) gene locus, maximizing assay conditions for small colony expression or detection; ii... phosphoribosyl transferase (hgprt) gene locus, accompanied by an appropriate in vitro test for clastogenicity; or iii. CHO cells strains AS52, xanthine-guanine phosphoribosyl transferase (xprt) gene locus. 11....

  13. 40 CFR 158.230 - Experimental use permit data requirements for toxicology.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., thymidine kinase (tk) gene locus, maximizing assay conditions for small colony expression or detection; ii... phosphoribosyl transferase (hgprt) gene locus, accompanied by an appropriate in vitro test for clastogenicity; or iii. CHO cells strains AS52, xanthine-guanine phosphoribosyl transferase (xprt) gene locus. 11....

  14. 40 CFR 158.230 - Experimental use permit data requirements for toxicology.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., thymidine kinase (tk) gene locus, maximizing assay conditions for small colony expression or detection; ii... phosphoribosyl transferase (hgprt) gene locus, accompanied by an appropriate in vitro test for clastogenicity; or iii. CHO cells strains AS52, xanthine-guanine phosphoribosyl transferase (xprt) gene locus. 11....

  15. Characterization of the genes encoding beta-ketoadipate: succinyl-coenzyme A transferase in Pseudomonas putida.

    PubMed Central

    Parales, R E; Harwood, C S

    1992-01-01

    beta-Ketoadipate:succinyl-coenzyme A transferase (beta-ketoadipate:succinyl-CoA transferase) (EC 2.8.3.6) carries out the penultimate step in the conversion of benzoate and 4-hydroxybenzoate to tricarboxylic acid cycle intermediates in bacteria utilizing the beta-ketoadipate pathway. This report describes the characterization of a DNA fragment from Pseudomonas putida that encodes this enzyme. The fragment complemented mutants defective in the synthesis of the CoA transferase, and two proteins of sizes appropriate to encode the two nonidentical subunits of the enzyme were produced in Escherichia coli when the fragment was placed under the control of a phage T7 promoter. DNA sequence analysis revealed two open reading frames, designated pcaI and pcaJ, that were separated by 8 bp, suggesting that they may comprise an operon. A comparison of the deduced amino acid sequence of the P. putida CoA transferase genes with the sequences of two other bacterial CoA transferases and that of succinyl-CoA:3-ketoacid CoA transferase from pig heart suggests that the homodimeric structure of the mammalian enzyme may have resulted from a gene fusion of the bacterial alpha and beta subunit genes during evolution. Conserved functional groups important to the catalytic activity of CoA transferases were also identified. Images PMID:1624453

  16. Insight into G-quadruplex-hemin DNAzyme/RNAzyme: adjacent adenine as the intramolecular species for remarkable enhancement of enzymatic activity.

    PubMed

    Li, Wang; Li, Yong; Liu, Zhuoliang; Lin, Bin; Yi, Haibo; Xu, Feng; Nie, Zhou; Yao, Shouzhuo

    2016-09-01

    G-quadruplex (G4) with stacked G-tetrads structure is able to bind hemin (iron (III)-protoporphyrin IX) to form a unique type of DNAzyme/RNAzyme with peroxidase-mimicking activity, which has been widely employed in multidisciplinary fields. However, its further applications are hampered by its relatively weak activity compared with protein enzymes. Herein, we report a unique intramolecular enhancement effect of the adjacent adenine (EnEAA) at 3' end of G4 core sequences that significantly improves the activity of G4 DNAzymes. Through detailed investigations of the EnEAA, the added 3' adenine was proved to accelerate the compound I formation in catalytic cycle and thus improve the G4 DNAzyme activity. EnEAA was found to be highly dependent on the unprotonated state of the N1 of adenine, substantiating that adenine might function as a general acid-base catalyst. Further adenine analogs analysis supported that both N1 and exocyclic 6-amino groups in adenine played key role in the catalysis. Moreover, we proved that EnEAA was generally applicable for various parallel G-quadruplex structures and even G4 RNAzyme. Our studies implied that adenine might act analogously as the distal histidine in protein peroxidases, which shed light on the fundamental understanding and rational design of G4 DNAzyme/RNAzyme catalysts with enhanced functions. PMID:27422869

  17. Insight into G-quadruplex-hemin DNAzyme/RNAzyme: adjacent adenine as the intramolecular species for remarkable enhancement of enzymatic activity

    PubMed Central

    Li, Wang; Li, Yong; Liu, Zhuoliang; Lin, Bin; Yi, Haibo; Xu, Feng; Nie, Zhou; Yao, Shouzhuo

    2016-01-01

    G-quadruplex (G4) with stacked G-tetrads structure is able to bind hemin (iron (III)-protoporphyrin IX) to form a unique type of DNAzyme/RNAzyme with peroxidase-mimicking activity, which has been widely employed in multidisciplinary fields. However, its further applications are hampered by its relatively weak activity compared with protein enzymes. Herein, we report a unique intramolecular enhancement effect of the adjacent adenine (EnEAA) at 3′ end of G4 core sequences that significantly improves the activity of G4 DNAzymes. Through detailed investigations of the EnEAA, the added 3′ adenine was proved to accelerate the compound I formation in catalytic cycle and thus improve the G4 DNAzyme activity. EnEAA was found to be highly dependent on the unprotonated state of the N1 of adenine, substantiating that adenine might function as a general acid–base catalyst. Further adenine analogs analysis supported that both N1 and exocyclic 6-amino groups in adenine played key role in the catalysis. Moreover, we proved that EnEAA was generally applicable for various parallel G-quadruplex structures and even G4 RNAzyme. Our studies implied that adenine might act analogously as the distal histidine in protein peroxidases, which shed light on the fundamental understanding and rational design of G4 DNAzyme/RNAzyme catalysts with enhanced functions. PMID:27422869

  18. Inactivation of Anopheles gambiae Glutathione Transferase ε2 by Epiphyllocoumarin

    PubMed Central

    Marimo, Patience; Hayeshi, Rose; Mukanganyama, Stanley

    2016-01-01

    Glutathione transferases (GSTs) are part of a major family of detoxifying enzymes that can catalyze the reductive dehydrochlorination of dichlorodiphenyltrichloroethane (DDT). The delta and epsilon classes of insect GSTs have been implicated in conferring resistance to this insecticide. In this study, the inactivation of Anopheles gambiae GSTε2 by epiphyllocoumarin (Tral 1) was investigated. Recombinant AgGSTε2 was expressed in Escherichia coli cells containing a pET3a-AGSTε2 plasmid and purified by affinity chromatography. Tral 1 was shown to inactivate GSTε2 both in a time-dependent manner and in a concentration-dependent manner. The half-life of GSTε2 in the presence of 25 μM ethacrynic acid (ETA) was 22 minutes and with Tral 1 was 30 minutes, indicating that Tral 1 was not as efficient as ETA as an inactivator. The inactivation parameters kinact and KI were found to be 0.020 ± 0.001 min−1 and 7.5 ± 2.1 μM, respectively, after 90 minutes of incubation. Inactivation of GSTε2 by Tral 1 implies that Tral 1 covalently binds to this enzyme in vitro and would be expected to exhibit time-dependent effects on the enzyme in vivo. Tral 1, therefore, would produce irreversible effects when used together with dichlorodiphenyltrichloroethane (DDT) in malaria control programmes where resistance is mediated by GSTs. PMID:26925266

  19. Crystal structure of E. coli lipoprotein diacylglyceryl transferase

    PubMed Central

    Mao, Guotao; Zhao, Yan; Kang, Xusheng; Li, Zhijie; Zhang, Yan; Wang, Xianping; Sun, Fei; Sankaran, Krishnan; Zhang, Xuejun C.

    2016-01-01

    Lipoprotein biogenesis is essential for bacterial survival. Phosphatidylglycerol:prolipoprotein diacylglyceryl transferase (Lgt) is an integral membrane enzyme that catalyses the first reaction of the three-step post-translational lipid modification. Deletion of the lgt gene is lethal to most Gram-negative bacteria. Here we present the crystal structures of Escherichia coli Lgt in complex with phosphatidylglycerol and the inhibitor palmitic acid at 1.9 and 1.6 Å resolution, respectively. The structures reveal the presence of two binding sites and support the previously reported structure–function relationships of Lgt. Complementation results of lgt-knockout cells with different mutant Lgt variants revealed critical residues, including Arg143 and Arg239, that are essential for diacylglyceryl transfer. Using a GFP-based in vitro assay, we correlated the activities of Lgt with structural observations. Together, the structural and biochemical data support a mechanism whereby substrate and product, lipid-modified lipobox-containing peptide, enter and leave the enzyme laterally relative to the lipid bilayer. PMID:26729647

  20. Benzene oxide is a substrate for glutathione S-transferases.

    PubMed

    Zarth, Adam T; Murphy, Sharon E; Hecht, Stephen S

    2015-12-01

    Benzene is a known human carcinogen which must be activated to benzene oxide (BO) to exert its carcinogenic potential. BO can be detoxified in vivo by reaction with glutathione and excretion in the urine as S-phenylmercapturic acid. This process may be catalyzed by glutathione S-transferases (GSTs), but kinetic data for this reaction have not been published. Therefore, we incubated GSTA1, GSTT1, GSTM1, and GSTP1 with glutathione and BO and quantified the formation of S-phenylglutathione. Kinetic parameters were determined for GSTT1 and GSTP1. At 37 °C, the putative Km and Vmax values for GSTT1 were 420 μM and 450 fmol/s, respectively, while those for GSTP1 were 3600 μM and 3100 fmol/s. GSTA1 and GSTM1 did not exhibit sufficient activity for determination of kinetic parameters. We conclude that GSTT1 is a critical enzyme in the detoxification of BO and that GSTP1 may also play an important role, while GSTA1 and GSTM1 seem to be less important.

  1. Mannosyl transferase activity in homogenates of adult Schistosoma mansoni.

    PubMed

    Rumjanek, F D; Smithers, S R

    1978-08-01

    Homogenates of adult Schistosoma mansoni contain enzymes which are capable of transferring [14C]mannose from GDP[U-14C]mannose to a lipid acceptor which migrates as a single peak on a silica gel thin-layer plate. This lipid may belong to the class of polyprenol monophosphates which are intermediate elements in the glycosylation of nascent proteins. The schistosome mannosyl transferase activity is associated with membranous particles and is dependent on the presence of Mn2+. However, other divalent metals such as Mg2+ or Ca2+ can, in decreasing order of efficiency, replace Mn2+. When UDP[U-14C]glucose was incubated with the homogenates in the same conditions, relatively little label was transferred to the lipid acceptor. Live worms incubated in a medium containing GDP[U-14C]mannose seem to incorporate the label preferentially on the tegument and on adjacent subtegumental structures. By adding foetal calf serum to the medium, incorporation of the label can be stimulated.

  2. Glutathione S-transferase, incense burning and asthma in children.

    PubMed

    Wang, I-J; Tsai, C-H; Chen, C-H; Tung, K-Y; Lee, Y L

    2011-06-01

    Incense burning is a popular practice in many family homes and temples. However, little is known about the effects of indoor incense burning and genetic polymorphisms on asthma. This study evaluated the effects of indoor incense burning and glutathione S-transferase (GST) genetic polymorphisms on asthma and wheeze. In 2007, 3,764 seventh-grade schoolchildren (mean±sd age 12.42±0.65 yrs) were evaluated using a standard questionnaire for information about respiratory symptoms and environmental exposures. Multiple logistic regressions were performed to assess the association between GST polymorphisms and incense burning frequency on asthma and wheeze, after adjusting for potential confounders. The frequency of incense burning at home was associated with increased risk of current asthma (p=0.05), medication use (p=0.03) and exercise wheeze (p=0.001). GST1 (GSTT1) null genotypes were associated with current asthma (OR 1.43, 95% CI 1.00-2.04) and medication use (OR 1.46, 95% CI 1.01-2.22). GSTT1 showed a significant interactive effect with incense burning on current asthma, current wheeze and nocturnal wheeze. The frequency of incense burning was associated with increased risk of current asthma, medication use, lifetime wheeze, nocturnal wheeze and exercise wheeze in an exposure-response manner among children with GSTT1 null genotype (p<0.05). Incense burning is a risk factor for asthma and wheezing, especially in GSTT1 genetically susceptible children.

  3. Glucuronyl transferase deficiency and mild hereditary spherocytosis: effect of splenectomy.

    PubMed

    Eber, S W; Ullrich, D; Speer, C P; Armbrust, R; Schröter, W

    1988-08-01

    In a 6-year-old girl an association of hereditary spherocytosis and a defect in hepatic bilirubin metabolism has been found. The patient suffered from mild compensated haemolytic anaemia and excessive hyperbilirubinaemia (maximum concentration 581 mumol/l), the serum activity of liver enzymes was slightly increased. Examination of the erythrocyte membrane proteins revealed a deficiency of the major membrane skeletal protein, spectrin (about 75% of normal) which is probably the basic genetic defect of hereditary spherocytosis. Examination of the patient's family revealed a recessive mode of inheritance. The concentration of bilirubin conjugates in the patient's serum was decreased due to a reduced UDP-glucuronyl transferase activity found in homogenates of liver tissue. Histological liver examination showed an intrahepatic cholestasis, which is a secondary and reversible alteration resulting from severe hyperbilirubinaemia. After splenectomy, normalization of the increased haemolysis and hepatic dysfunction was observed. The excessive hyperbilirubinaemia can be explained by the association of an increased bilirubin load due to haemolytic anaemia and the diminished hepatic conjugation of bilirubin.

  4. Rigid Adenine Nucleoside Derivatives as Novel Modulators of the Human Sodium Symporters for Dopamine and Norepinephrine.

    PubMed

    Janowsky, Aaron; Tosh, Dilip K; Eshleman, Amy J; Jacobson, Kenneth A

    2016-04-01

    Thirty-two congeneric rigid adenine nucleoside derivatives containing a North (N)-methanocarba ribose substitution and a 2-arylethynyl group either enhanced (up to 760% of control) or inhibited [(125)I] methyl (1R,2S,3S)-3-(4-iodophenyl)-8-methyl-8-azabicyclo[3.2.1]octane-2-carboxylate (RTI-55) binding at the human dopamine (DA) transporter (DAT) and inhibited DA uptake. Several nucleosides also enhanced [(3)H]mazindol [(±)-5-(4-chlorophenyl)-3,5-dihydro-2H-imidazo[2,1-a]isoindol-5-ol] binding to the DAT. The combination of binding enhancement and functional inhibition suggests possible allosteric interaction with the tropanes. The structure-activity relationship of this novel class of DAT ligands was explored: small N(6)-substition (methyl or ethyl) was favored, while the N1 of the adenine ring was essential. Effective terminal aryl groups include thien-2-yl (compounds 9 and 16), with EC50 values of 35.1 and 9.1 nM, respectively, in [(125)I]RTI-55 binding enhancement, and 3,4-difluorophenyl as in the most potent DA uptake inhibitor (compound 6) with an IC50 value of 92 nM (3-fold more potent than cocaine), but not nitrogen heterocycles. Several compounds inhibited or enhanced binding at the norepinephrine transporter (NET) and serotonin transporter (SERT) and inhibited function in the micromolar range; truncation at the 4'-position in compound 23 allowed for weak inhibition of the SERT. We have not yet eliminated adenosine receptor affinity from this class of DAT modulators, but we identified modifications that remove DAT inhibition as an off-target effect of potent adenosine receptor agonists. Thus, we have identified a new class of allosteric DAT ligands, rigidified adenosine derivatives, and explored their initial structural requirements. They display a very atypical pharmacological profile, i.e., either enhancement by increasing affinity or inhibition of radioligand binding at the DAT, and in some cases the NET and SERT, and inhibition of neurotransmitter

  5. Poly-adenine-based programmable engineering of gold nanoparticles for highly regulated spherical DNAzymes

    NASA Astrophysics Data System (ADS)

    Zhu, Dan; Pei, Hao; Chao, Jie; Su, Shao; Aldalbahi, Ali; Rahaman, Mostafizur; Wang, Lihua; Wang, Lianhui; Huang, Wei; Fan, Chunhai; Zuo, Xiaolei

    2015-11-01

    Enzyme complexes are assembled at the two-dimensional lipid membrane or prearranged on three-dimensional scaffolding proteins to regulate their catalytic activity in cells. Inspired by nature, we have developed gold nanoparticle-based spherical DNAzymes (SNAzymes) with programmably engineered activities by exploiting poly-adenine (polyA)-Au interactions. In a SNAzyme, AuNPs serve as the metal core, which is decorated with a functional shell of DNAzymes. Conventional thiolated DNAzyme-based assembly leads to disordered structures with suppressed activity. In contrast, by using an anchoring block of polyA tails, we find that the activity of SNAzymes can be programmably regulated. By using a polyA30 tail, SNAzymes demonstrated remarkably enhanced binding affinity compared to the thiolated DNAzyme-based assembly (~75-fold) or individual DNAzymes in the solution phase (~10-fold). More significantly, this increased affinity is directly translated to the sensitivity improvement in the SNAzyme-based lead sensor. Hence, this design of SNAzymes may provide new opportunities for developing biosensors and bioimaging probes for theranostic applications.Enzyme complexes are assembled at the two-dimensional lipid membrane or prearranged on three-dimensional scaffolding proteins to regulate their catalytic activity in cells. Inspired by nature, we have developed gold nanoparticle-based spherical DNAzymes (SNAzymes) with programmably engineered activities by exploiting poly-adenine (polyA)-Au interactions. In a SNAzyme, AuNPs serve as the metal core, which is decorated with a functional shell of DNAzymes. Conventional thiolated DNAzyme-based assembly leads to disordered structures with suppressed activity. In contrast, by using an anchoring block of polyA tails, we find that the activity of SNAzymes can be programmably regulated. By using a polyA30 tail, SNAzymes demonstrated remarkably enhanced binding affinity compared to the thiolated DNAzyme-based assembly (~75-fold) or

  6. Rigid Adenine Nucleoside Derivatives as Novel Modulators of the Human Sodium Symporters for Dopamine and Norepinephrine

    PubMed Central

    Tosh, Dilip K.; Eshleman, Amy J.; Jacobson, Kenneth A.

    2016-01-01

    Thirty-two congeneric rigid adenine nucleoside derivatives containing a North (N)-methanocarba ribose substitution and a 2-arylethynyl group either enhanced (up to 760% of control) or inhibited [125I] methyl (1R,2S,3S)-3-(4-iodophenyl)-8-methyl-8-azabicyclo[3.2.1]octane-2-carboxylate (RTI-55) binding at the human dopamine (DA) transporter (DAT) and inhibited DA uptake. Several nucleosides also enhanced [3H]mazindol [(±)-5-(4-chlorophenyl)-3,5-dihydro-2H-imidazo[2,1-a]isoindol-5-ol] binding to the DAT. The combination of binding enhancement and functional inhibition suggests possible allosteric interaction with the tropanes. The structure-activity relationship of this novel class of DAT ligands was explored: small N6-substition (methyl or ethyl) was favored, while the N1 of the adenine ring was essential. Effective terminal aryl groups include thien-2-yl (compounds 9 and 16), with EC50 values of 35.1 and 9.1 nM, respectively, in [125I]RTI-55 binding enhancement, and 3,4-difluorophenyl as in the most potent DA uptake inhibitor (compound 6) with an IC50 value of 92 nM (3-fold more potent than cocaine), but not nitrogen heterocycles. Several compounds inhibited or enhanced binding at the norepinephrine transporter (NET) and serotonin transporter (SERT) and inhibited function in the micromolar range; truncation at the 4′-position in compound 23 allowed for weak inhibition of the SERT. We have not yet eliminated adenosine receptor affinity from this class of DAT modulators, but we identified modifications that remove DAT inhibition as an off-target effect of potent adenosine receptor agonists. Thus, we have identified a new class of allosteric DAT ligands, rigidified adenosine derivatives, and explored their initial structural requirements. They display a very atypical pharmacological profile, i.e., either enhancement by increasing affinity or inhibition of radioligand binding at the DAT, and in some cases the NET and SERT, and inhibition of neurotransmitter uptake

  7. Efficacy of Adenine in the Treatment of Leukopenia and Neutropenia Associated with an Overdose of Antipsychotics or Discontinuation of Lithium Carbonate Administration: Three Case Studies

    PubMed Central

    Tomita, Takashi; Goto, Hidekazu; Sumiya, Kenji; Yoshida, Tadashi; Tanaka, Katsuya; Kohda, Yukinao

    2016-01-01

    Because adenine is effective for managing cases of radiation-induced and drug-induced leukopenia, it may be effective in cases of antipsychotic-induced leukopenia and neutropenia. Here, we report our experience with patients with leukopenia and neutropenia caused by an antipsychotic overdose or discontinuation of lithium carbonate, in whom adenine administration ameliorated the white blood cell and neutrophil counts. The progress of patients suggests that adenine is effective in cases of leukopenia and neutropenia associated with lithium carbonate discontinuation and an antipsychotic overdose. PMID:27776394

  8. A DNA adenine methylase mutant of Shigella flexneri shows no significant attenuation of virulence.

    PubMed

    Honma, Yasuko; Fernández, Reinaldo E; Maurelli, Anthony T

    2004-04-01

    Mutants of Salmonella defective in DNA adenine methylase (dam) have been reported to be attenuated for virulence and to provide protective immunity when used as vaccine strains. To determine whether these observations could be extended to Shigella, a dam mutant of Shigella flexneri 2a was characterized and examined for the role of dam in pathogenesis. The Shigella dam mutant showed some unique characteristics; however, it retained virulence in vivo as well as in vitro. The mutant invaded cultured L2 monolayer cells as efficiently as the wild-type parent, but its intracellular growth was suppressed up to 7 h post-invasion. Furthermore, the invading dam mutant formed smaller plaques in cell monolayers compared to the parent strain. However, the mutant produced keratoconjunctivitis in the Sereny test in guinea pigs only slightly more slowly than the wild-type. While the effect of the dam mutation on virulence was modest, the rate of spontaneous mutation in the dam mutant was 1000-fold greater compared with the wild-type. The virulence and high mutability displayed by the dam mutant of Sh. flexneri suggest that a general anti-bacterial pathogen vaccine strategy based on mutations in dam needs to be re-evaluated.

  9. Electron impact fragmentation of adenine: partial ionization cross sections for positive fragments

    NASA Astrophysics Data System (ADS)

    van der Burgt, Peter J. M.; Finnegan, Sinead; Eden, Samuel

    2015-07-01

    Using computer-controlled data acquisition we have measured mass spectra of positive ions for electron impact on adenine, with electron energies up to 100 eV. Ion yield curves for 50 ions have been obtained and normalized by comparing their sum to the average of calculated total ionization cross sections. Appearance energies have been determined for 37 ions; for 20 ions for the first time. All appearance energies are consistent with the fragmentation pathways identified in the literature. Second onset energies have been determined for 12 fragment ions (for 11 ions for the first time), indicating the occurrence of more than one fragmentation process e.g. for 39 u (C2HN+) and 70 u (C2H4N3+). Matching ion yield shapes (118-120 u, 107-108 u, 91-92 u, and 54-56 u) provide new evidence supporting closely related fragmentation pathways and are attributed to hydrogen rearrangement immediately preceding the fragmentation. We present the first measurement of the ion yield curve of the doubly charged parent ion (67.5 u), with an appearance energy of 23.5 ± 1.0 eV. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey Solov'yov, Nigel Mason, Gustavo García, Eugene Surdutovich.

  10. PsANT, the adenine nucleotide translocase of Puccinia striiformis, promotes cell death and fungal growth

    PubMed Central

    Tang, Chunlei; Wei, Jinping; Han, Qingmei; Liu, Rui; Duan, Xiaoyuan; Fu, Yanping; Huang, Xueling; Wang, Xiaojie; Kang, Zhensheng

    2015-01-01

    Adenine nucleotide translocase (ANT) is a constitutive mitochondrial component that is involved in ADP/ATP exchange and mitochondrion-mediated apoptosis in yeast and mammals. However, little is known about the function of ANT in pathogenic fungi. In this study, we identified an ANT gene of Puccinia striiformis f. sp. tritici (Pst), designated PsANT. The PsANT protein contains three typical conserved mitochondrion-carrier-protein (mito-carr) domains and shares more than 70% identity with its orthologs from other fungi, suggesting that ANT is conserved in fungi. Immuno-cytochemical localization confirmed the mitochondrial localization of PsANT in normal Pst hyphal cells or collapsed cells. Over-expression of PsANT indicated that PsANT promotes cell death in tobacco, wheat and fission yeast cells. Further study showed that the three mito-carr domains are all needed to induce cell death. qRT-PCR analyses revealed an in-planta induced expression of PsANT during infection. Knockdown of PsANT using a host-induced gene silencing system (HIGS) attenuated the growth and development of virulent Pst at the early infection stage but not enough to alter its pathogenicity. These results provide new insight into the function of PsANT in fungal cell death and growth and might be useful in the search for and design of novel disease control strategies. PMID:26058921

  11. Decrease in nicotinamide adenine dinucleotide dehydrogenase is related to skin pigmentation.

    PubMed

    Nakama, Mitsuo; Murakami, Yuhko; Tanaka, Hiroshi; Nakata, Satoru

    2012-03-01

    Skin pigmentation is caused by various physical and chemical factors. It might also be influenced by changes in the physiological function of skin with aging. Nicotinamide adenine dinucleotide (NADH) dehydrogenase is an enzyme related to the mitochondrial electron transport system and plays a key role in cellular energy production. It has been reported that the functional decrease in this system causes Parkinson's disease. Another study reports that the amount of NADH dehydrogenase in heart and skeletal muscle decreases with aging. A similar decrease in the skin would probably affect its physiological function. However, no reports have examined the age-related change in levels of NADH dehydrogenase in human skin. In this study, we investigated this change and its effect on skin pigmentation using cultured human epidermal keratinocytes. The mRNA expression of NDUFA1, NDUFB7, and NDUFS2, subunits of NADH dehydrogenase, and its activity were significantly decreased in late passage keratinocytes compared to early passage cells. Conversely, the mRNA expression of melanocyte-stimulating cytokines, interleukin-1 alpha and endothelin 1, was increased in late passage cells. On the other hand, the inhibition of NADH dehydrogenase upregulated the mRNA expression of melanocyte-stimulating cytokines. Moreover, the level of NDUFB7 mRNA was lower in pigmented than in nonpigmented regions of skin in vivo. These results suggest the decrease in NADH dehydrogenase with aging to be involved in skin pigmentation.

  12. Magnitude of malate-aspartate reduced nicotinamide adenine dinucleotide shuttle activity in intact respiring tumor cells.

    PubMed

    Greenhouse, W V; Lehninger, A L

    1977-11-01

    Measurements of respiration, CO2 and lactate production, and changes in the levels of various key metabolites of the glycolytic sequence and tricarboxylic acid cycle were made on five lines of rodent ascites tumor cells (two strains of Ehrlich ascites tumor cells, Krebs II carcinoma, AS-30D carcinoma, and L1210 cells) incubated aerobically in the presence of uniformly labeled D-[14C]glucose. From these data, as well as earlier evidence demonstrating that the reduced nicotinamide adenine dinucleotide (NADH) shuttle in these cells requires a transaminase step and is thus identified as the malate-aspartate shuttle (W.V.V. Greenhouse and A.L. Lehninger, Cancer Res., 36: 1392-1396, 1976), metabolic flux diagrams were constructed for the five cell lines. These diagrams show the relative rates of glycolysis, the tricarboxylic acid cycle, electron transport, and the malate-aspartate shuttle in these tumors. Large amounts of cytosolic NADH were oxidized by the mitochondrial respiratory chain via the NADH shuttle, comprising anywhere from about 20 to 80% of the total flow of reducing equivalents to oxygen in these tumors. Calculations of the sources of energy for adenosine triphosphate synthesis indicated that on the average about one-third of the respiratory adenosine triphosphate is generated by electron flow originating from cytosolic NADH via the malate-aspartate shuttle.

  13. Content of Adenine Nucleotides and Orthophosphate in Exporting and Importing Mature Maize Leaves 1

    PubMed Central

    Eschrich, Walter; Fromm, Joerg

    1985-01-01

    Events of reactivation by re-illumination were studied in predarkened detached mature maize leaves, which were arranged as distal sources and proximal sinks; the latter were kept in CO2-free atmosphere and were either illuminated or darkened. Adenine nucleotide (AdN) content and orthophosphate (Pi) concentrations were measured 10 minutes, 30 minutes, and 2, 7, and 14 hours after the onset of re-illumination. For comparison, mature leaves attached to the plant were analyzed. The sum of AdN increased up to 7 hours of re-illumination, then dark sinks and their sources showed decreasing amounts of AdN, while the increase continued up to 14 hours in sources and illuminated sinks. In leaves attached to the plant, no further increase in AdN level followed the 7-hour mark. The amount of individual AdN (ATP, ADP, AMP) differed considerably in sources and sinks of the detached leaves. Although both the source supplying the illuminated sink and the source supplying the dark sink were treated the same, they showed striking differences in AdN contents. Such relations were also observed, when ATP/ADP ratios and Pi concentrations were compared. The influence a sink can exert on its source suggests a participation of the physiological events in the sink on the regulation of AdN and Pi metabolism in the source. PMID:16664246

  14. Adenine methylation in eukaryotes: Apprehending the complex evolutionary history and functional potential of an epigenetic modification

    PubMed Central

    Iyer, Lakshminarayan M.; Zhang, Dapeng

    2015-01-01

    While N6‐methyladenosine (m6A) is a well‐known epigenetic modification in bacterial DNA, it remained largely unstudied in eukaryotes. Recent studies have brought to fore its potential epigenetic role across diverse eukaryotes with biological consequences, which are distinct and possibly even opposite to the well‐studied 5‐methylcytosine mark. Adenine methyltransferases appear to have been independently acquired by eukaryotes on at least 13 occasions from prokaryotic restriction‐modification and counter‐restriction systems. On at least four to five instances, these methyltransferases were recruited as RNA methylases. Thus, m6A marks in eukaryotic DNA and RNA might be more widespread and diversified than previously believed. Several m6A‐binding protein domains from prokaryotes were also acquired by eukaryotes, facilitating prediction of potential readers for these marks. Further, multiple lineages of the AlkB family of dioxygenases have been recruited as m6A demethylases. Although members of the TET/JBP family of dioxygenases have also been suggested to be m6A demethylases, this proposal needs more careful evaluation. Also watch the Video Abstract. PMID:26660621

  15. Structural Basis for Avoidance of Promutagenic DNA Repair by MutY Adenine DNA Glycosylase*

    PubMed Central

    Wang, Lan; Lee, Seung-Joo; Verdine, Gregory L.

    2015-01-01

    The highly mutagenic A:oxoG (8-oxoguanine) base pair in DNA most frequently arises by aberrant replication of the primary oxidative lesion C:oxoG. This lesion is particularly insidious because neither of its constituent nucleobases faithfully transmit genetic information from the original C:G base pair. Repair of A:oxoG is initiated by adenine DNA glycosylase, which catalyzes hydrolytic cleavage of the aberrant A nucleobase from the DNA backbone. These enzymes, MutY in bacteria and MUTYH in humans, scrupulously avoid processing of C:oxoG because cleavage of the C residue in C:oxoG would actually promote mutagenic conversion to A:oxoG. Here we analyze the structural basis for rejection of C:oxoG by MutY, using a synthetic crystallography approach to capture the enzyme in the process of inspecting the C:oxoG anti-substrate, with which it ordinarily binds only fleetingly. We find that MutY uses two distinct strategies to avoid presentation of C to the enzyme active site. Firstly, MutY possesses an exo-site that serves as a decoy for C, and secondly, repulsive forces with a key active site residue prevent stable insertion of C into the nucleobase recognition pocket within the enzyme active site. PMID:25995449

  16. Mutations in adenine-binding pockets enhance catalytic properties of NAD(P)H-dependent enzymes.

    PubMed

    Cahn, J K B; Baumschlager, A; Brinkmann-Chen, S; Arnold, F H

    2016-01-01

    NAD(P)H-dependent enzymes are ubiquitous in metabolism and cellular processes and are also of great interest for pharmaceutical and industrial applications. Here, we present a structure-guided enzyme engineering strategy for improving catalytic properties of NAD(P)H-dependent enzymes toward native or native-like reactions using mutations to the enzyme's adenine-binding pocket, distal to the site of catalysis. Screening single-site saturation mutagenesis libraries identified mutations that increased catalytic efficiency up to 10-fold in 7 out of 10 enzymes. The enzymes improved in this study represent three different cofactor-binding folds (Rossmann, DHQS-like, and FAD/NAD binding) and utilize both NADH and NADPH. Structural and biochemical analyses show that the improved activities are accompanied by minimal changes in other properties (cooperativity, thermostability, pH optimum, uncoupling), and initial tests on two enzymes (ScADH6 and EcFucO) show improved functionality in Escherichia coli. PMID:26512129

  17. Preclinical evidence of mitochondrial nicotinamide adenine dinucleotide as an effective alarm parameter under hypoxia

    NASA Astrophysics Data System (ADS)

    Shi, Hua; Sun, Nannan; Mayevsky, Avraham; Zhang, Zhihong; Luo, Qingming

    2014-01-01

    Early detection of tissue hypoxia in the intensive care unit is essential for effective treatment. Reduced nicotinamide adenine dinucleotide (NADH) has been suggested to be the most sensitive indicator of tissue oxygenation at the mitochondrial level. However, no experimental evidence comparing the kinetics of changes in NADH and other physiological parameters has been provided. The aim of this study is to obtain the missing data in a systematic and reliable manner. We constructed four acute hypoxia models, including hypoxic hypoxia, hypemic hypoxia, circulatory hypoxia, and histogenous hypoxia, and measured NADH fluorescence, tissue reflectance, cerebral blood flow, respiration, and electrocardiography simultaneously from the induction of hypoxia until death. We found that NADH was not always the first onset parameter responding to hypoxia. The order of responses was mainly affected by the cause of hypoxia. However, NADH reached its alarm level earlier than the other monitored parameters, ranging from several seconds to >10 min. As such, we suggest that the NADH can be used as a hypoxia indicator, although the exact level that should be used must be further investigated. When the NADH alarm is detected, the body still has a chance to recover if appropriate and timely treatment is provided.

  18. DNA Bases Thymine and Adenine in Bio-Organic Light Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Gomez, Eliot F.; Venkatraman, Vishak; Grote, James G.; Steckl, Andrew J.

    2014-11-01

    We report on the use of nucleic acid bases (NBs) in organic light emitting diodes (OLEDs). NBs are small molecules that are the basic building blocks of the larger DNA polymer. NBs readily thermally evaporate and integrate well into the vacuum deposited OLED fabrication. Adenine (A) and thymine (T) were deposited as electron-blocking/hole-transport layers (EBL/HTL) that resulted in increases in performance over the reference OLED containing the standard EBL material NPB. A-based OLEDs reached a peak current efficiency and luminance performance of 48 cd/A and 93,000 cd/m2, respectively, while T-based OLEDs had a maximum of 76 cd/A and 132,000 cd/m2. By comparison, the reference OLED yielded 37 cd/A and 113,000 cd/m2. The enhanced performance of T-based devices is attributed to a combination of energy levels and structured surface morphology that causes more efficient and controlled hole current transport to the emitting layer.

  19. Studies of yeast cell oxygenation and energetics by laser fluorometry of reduced nicotinamide adenine dinucleotide

    NASA Astrophysics Data System (ADS)

    Pan, Fu-shih; Chen, Stephen; Mintzer, Robert A.; Chen, Chin-Tu; Schumacker, Paul

    1991-03-01

    It is of fundamental importance for biological scientists to assess cellular energetics. Under aerobic conditions, the tricarboxylic acid cycle (TCA cycle) is coupled with the mitochondrial electron cascade pathway to provide the cell with energy. The nicotinamide adenine dinucleotide-conjugated pair (NAD and NADH) is the coenzyme in numerous important biomedical reactions which include several important dehydrogenase reactions in the TCA cycle. Based on Le Chatelier's principle, NADH will accumulate when this energy production mechanism is impaired. The relative amounts of NAD and NADH in a cell are defined as the redox state of the cell (Williamson et.al. 1967) which provides a valuable index of cellular energetics. The sum of the amounts of NAD and NADH in a cell may be assumed to be constant during a finite time; therefore, a reliable means of measuring the NADH concentration would provide us with a useful indicator of tissue viability. Traditionally, the quantities of NADH and NAD may be measured by chemical assay methods. We can avoid these tediois analyses by exploiting the significant difference between the ultraviolet absorption spectra of this redox pair. However, because of the opacity of biological samples and the interference of other biochemicals that also absorb ultraviolet radiation, measurement of NADH and NAD+ concentrations in vivo by absorption spectroscopy is not feasible.

  20. Poly-adenine-based programmable engineering of gold nanoparticles for highly regulated spherical DNAzymes.

    PubMed

    Zhu, Dan; Pei, Hao; Chao, Jie; Su, Shao; Aldalbahi, Ali; Rahaman, Mostafizur; Wang, Lihua; Wang, Lianhui; Huang, Wei; Fan, Chunhai; Zuo, Xiaolei

    2015-11-28

    Enzyme complexes are assembled at the two-dimensional lipid membrane or prearranged on three-dimensional scaffolding proteins to regulate their catalytic activity in cells. Inspired by nature, we have developed gold nanoparticle-based spherical DNAzymes (SNAzymes) with programmably engineered activities by exploiting poly-adenine (polyA)-Au interactions. In a SNAzyme, AuNPs serve as the metal core, which is decorated with a functional shell of DNAzymes. Conventional thiolated DNAzyme-based assembly leads to disordered structures with suppressed activity. In contrast, by using an anchoring block of polyA tails, we find that the activity of SNAzymes can be programmably regulated. By using a polyA30 tail, SNAzymes demonstrated remarkably enhanced binding affinity compared to the thiolated DNAzyme-based assembly (∼75-fold) or individual DNAzymes in the solution phase (∼10-fold). More significantly, this increased affinity is directly translated to the sensitivity improvement in the SNAzyme-based lead sensor. Hence, this design of SNAzymes may provide new opportunities for developing biosensors and bioimaging probes for theranostic applications.

  1. Nicotinamide adenine dinucleotide fluorescence spectroscopy and imaging of isolated cardiac myocytes.

    PubMed Central

    Eng, J; Lynch, R M; Balaban, R S

    1989-01-01

    Nicotinamide adenine dinucleotide (NADH) plays a critical role in oxidative phosphorylation as the primary source of reducing equivalents to the respiratory chain. Using a modified fluorescence microscope, we have obtained spectra and images of the blue autofluorescence from single rat cardiac myocytes. The optical setup permitted rapid acquisition of fluorescence emission spectra (390-595 nm) or intensified digital video images of individual myocytes. The spectra showed a broad fluorescence centered at 447 +/- 0.2 nm, consistent with mitochondrial NADH. Addition of cyanide resulted in a 100 +/- 10% increase in fluorescence, while the uncoupler FCCP resulted in a 82 +/- 4% decrease. These two transitions were consistent with mitochondrial NADH and implied that the myocytes were 44 +/- 6% reduced under the resting control conditions. Intracellular fluorescent structures were observed that correlated with the distribution of a mitochondrial selective fluorescent probe (DASPMI), the mitochondrial distribution seen in published electron micrographs, and a metabolic digital subtraction image of the cyanide fluorescence transition. These data are consistent with the notion that the blue autofluorescence of rat cardiac myocytes originates from mitochondrial NADH. Images FIGURE 9 FIGURE 10 FIGURE 2 FIGURE 3 FIGURE 8 FIGURE 11 PMID:2720061

  2. Comparison of glycogen and adenine nucleotides as indicators of metabolis stress in mummichogs

    SciTech Connect

    Vetter, R.D.; Hwang, H.M.; Hodson, R.E.

    1986-01-01

    Adenine nucleotide and glycogen concentrations were measured concurrently in white muscle of mummichogs Fundulus heteroclitus after the fish were exposed to stressors that either caused an increase in energy use (metabolic loading) or damaged metabolic function (toxic inhibition). When fish were exposed 4 h to 1% unbleached kraft mill effluent in the presence of 6 mg/L dissolved oxygen, glycogen and AMP concentrations significantly decreased below control values, whereas ATP, ADP, and total adenylate (TA) concentrations as well as the adenylate energy charge (AEC = (ATP + 1/2ADP)/TA) were unchanged. When dissolved oxygen was below 1 mg/L, the effluent caused significant decreases in glycogen, ATP, and TA, but not in ADP, AMP, or the AEC. The combined effect of effluent and hypoxia caused more significant drops in ATP or TA pool. When fish were exposed to 60..mu..g/L DDT for 4 h, none of the measured energy variables changed even though this concentration was lethal after several days. At a concentration of 100 ..mu..g/L DDT, all variables except ADP decreased significantly from control values, which may have reflected energy depletion of the muscle in response to nerve spasms rather than a direct toxic effect on the muscle itself.

  3. Enzyme activities and adenine nucleotide content in aorta, heart muscle and skeletal muscle from uraemic rats.

    PubMed Central

    Krog, M.; Ejerblad, S.; Agren, A.

    1986-01-01

    A prominent feature of arterial and myocardial lesions in uraemia is necrosis of the smooth muscle cells. In this study the possibility of detecting metabolic disturbances before necroses appear was investigated. The investigation was made on rats with moderate uraemia (mean serum creatinine 165 mumol/l) of 12 weeks duration. Enzyme activities and concentrations of adenine nucleotides were measured in aorta, heart and skeletal muscles. Histological examination disclosed no changes in these organs. Hexokinase, an important glycolytic enzyme, showed decreased activity in the skeletal muscle and aorta, whereas the hexosemonophosphate shunt enzyme glucose-6-phosphate dehydrogenase remained unchanged. The aspartate aminotransferase was increased in the skeletal muscle. Fat metabolism was not disturbed as reflected by unchanged activity of hydroxyacyl-CoA-dehydrogenase. Adenylatekinase which is important for the energy supply showed markedly increased activities in all tissues examined from the uraemic rats. Decreased ATP levels were found in the heart muscle and the aorta of the uraemic animals, whereas the total pool of adenosine phosphates remained unchanged in all tissues. The animal model described offers a useful means of detecting early changes in uraemia and should be useful for studying the effects of different treatments of uraemic complications. PMID:3718844

  4. DNA Adenine Methylase Mutants of Salmonella Typhimurium and a Novel Dam-Regulated Locus

    PubMed Central

    Torreblanca, J.; Casadesus, J.

    1996-01-01

    Mutants of Salmonella typhimurium lacking DNA adenine methylase were isolated; they include insertion and deletion alleles. The dam locus maps at 75 min between cysG and aroB, similar to the Escherichia coli dam gene. Dam(-) mutants of S. typhimurium resemble those of E. coli in the following phenotypes: (1) increased spontaneous mutations, (2) moderate SOS induction, (3) enhancement of duplication segregation, (4) inviability of dam recA and dam recB mutants, and (5) suppression of the inviability of the dam recA and dam recB combinations by mutations that eliminate mismatch repair. However, differences between S. typhimurium and E. coli dam mutants are also found: (1) S. typhimurium dam mutants do not show increased UV sensitivity, suggesting that methyl-directed mismatch repair does not participate in the repair of UV-induced DNA damage in Salmonella. (2) S. typhimurium dam recJ mutants are viable, suggesting that the Salmonella RecJ function does not participate in the repair of DNA strand breaks formed in the absence of Dam methylation. We also describe a genetic screen for detecting novel genes regulated by Dam methylation and a locus repressed by Dam methylation in the S. typhimurium virulence (or ``cryptic'') plasmid. PMID:8878670

  5. High-mobility Group Box-1 Protein Promotes Granulomatous Nephritis in Adenine-induced nephropathy

    PubMed Central

    Oyama, Yoko; Hashiguchi, Teruto; Taniguchi, Noboru; Tancharoen, Salunya; Uchimura, Tomonori; Biswas, Kamal K.; Kawahara, Ko-ichi; Nitanda, Takao; Umekita, Yoshihisa; Lotz, Martin; Maruyama, Ikuro

    2011-01-01

    Granulomatous nephritis can be triggered by diverse factors and results in kidney failure. However, despite accumulating data about granulomatous inflammation, pathogenetic mechanisms in nephritis remain unclear. The DNA-binding high-mobility group box-1 protein (HMGB1) initiates and propagates inflammation when released by activated macrophages, functions as an “alarm cytokine” signaling tissue damage. In this study, we demonstrated elevated HMGB1 expression in renal granulomas in rats with crystal-induced granulomatous nephritis caused by feeding an adenine-rich diet. HMGB1 levels were also raised in urine and serum, as well as monocyte chemoattractant protein-1 (MCP-1), a mediator of granulomatous inflammation. Injection of HMGB1 worsened renal function and upregulated MCP-1 in rats with crystal-induced granulomatous nephritis. HMGB1 also induced MCP-1 secretion through mitogen-activated protein kinase (MAPK) and phosphoinositide-3-kinase (PI3K) pathways in rat renal tubular epithelial cells in vitro. Hmgb1+/− mice with crystal-induced nephritis displayed reduced MCP-1 expression in the kidneys and in urine and the number of macrophages in the kidneys was significantly decreased. We conclude that HMGB1 is a new mediator involved in crystal-induced nephritis that amplifies granulomatous inflammation in a cycle where MCP-1 attracts activated macrophages, resulting in excessive and sustained HMGB1 release. HMGB1 could be a novel target for inhibiting chronic granulomatous diseases. PMID:20231821

  6. Nicotinamide adenine dinucleotide: An essential factor in preserving hearing in cisplatin-induced ototoxicity.

    PubMed

    Kim, Hyung-Jin; Oh, Gi-Su; Shen, AiHua; Lee, Su-Bin; Khadka, Dipendra; Pandit, Arpana; Shim, Hyeok; Yang, Sei-Hoon; Cho, Eun-Young; Song, Jeho; Kwak, Tae Hwan; Choe, Seong-Kyu; Park, Raekil; So, Hong-Seob

    2015-08-01

    Ototoxicity is an important issue in patients receiving cisplatin chemotherapy. Numerous studies have demonstrated that several mechanisms, including oxidative stress, DNA damage, and inflammatory responses, are closely associated with cisplatin-induced ototoxicity. Although much attention has been directed at identifying ways to protect the inner ear from cisplatin-induced damage, the precise underlying mechanisms have not yet been elucidated. The cofactor nicotinamide adenine dinucleotide (NAD(+)) has emerged as an important regulator of cellular energy metabolism and homeostasis. NAD(+) acts as a cofactor for various enzymes including sirtuins (SIRTs) and poly(ADP-ribose) polymerases (PARPs), and therefore, maintaining adequate NAD(+) levels has therapeutic benefits because of its effect on NAD(+)-dependent enzymes. Recent studies demonstrated that disturbance in intracellular NAD(+) levels is critically involved in cisplatin-induced cochlear damage associated with oxidative stress, DNA damage, and inflammatory responses. In this review, we describe the importance of NAD(+) in cisplatin-induced ototoxicity and discuss potential strategies for the prevention or treatment of cisplatin-induced ototoxicity with a particular focus on NAD(+)-dependent cellular pathways. PMID:25891352

  7. Partial purification of a 6-methyladenine mRNA methyltransferase which modifies internal adenine residues.

    PubMed Central

    Tuck, M T

    1992-01-01

    Two forms of a 6-methyladenine mRNA methyltransferase have been partially purified using a T7 transcript coding for mouse dihydrofolate reductase as an RNA substrate. Both enzyme forms modify internal adenine residues within the RNA substrate. The enzymes were purified 357- and 37-fold respectively from nuclear salt extracts prepared from HeLa cells using DEAE-cellulose and phosphocellulose chromatography. The activity of the first form of the enzyme eluted from DEAE-cellulose (major form) was at least 3-fold greater than that of the second (minor form). H.p.l.c. analysis of the hydrolysed, methylated mRNA substrates demonstrated that both forms of the enzyme produced only 6-methyladenine. The two forms of the enzyme differed in their RNA substrate specificity as well as in the dependence for a 5' cap structure. The 6-methyladenine mRNA methyltransferase activity was found to be elevated in HeLa nuclei as compared with nuclear extracts from rat kidney and brain. Enzymic activity could not be detected in nuclei from either normal rat liver or regenerating rat liver. In the case of the HeLa cell, activity could only be detected in nuclear extracts, with a small amount in the ribosomal fraction. Other HeLa subcellular fractions were void of activity. PMID:1445268

  8. Kinetic properties of nicotinic acid adenine dinucleotide phosphate-induced Ca2+ release.

    PubMed

    Genazzani, A A; Mezna, M; Summerhill, R J; Galione, A; Michelangeli, F

    1997-03-21

    Three endogenous molecules have now been shown to release Ca2+ in the sea urchin egg: inositol trisphosphate (InsP3), cyclic adenosine 5'-diphosphate ribose (cADPR), and nicotinic acid adenine dinucleotide phosphate (NAADP), a derivative of NADP. While the mechanism through which the first two molecules are able to release Ca2+ is established and well characterized with InsP3 and cADPR-activating InsP3 and ryanodine receptors, respectively, the newly described NAADP has been shown to release Ca2+ via an entirely different mechanism. The most striking feature of this novel Ca2+ release mechanism is its inactivation, since subthreshold concentrations of NAADP are able to fully and irreversibly desensitize the channel. In the present study we have investigated the fast kinetics of activation and inactivation of NAADP-induced Ca2+ release. NAADP was found to release Ca2+ in a biphasic manner, and such release was preceded by a pronounced latent period, which was inversely dependent on concentration. Moreover, the kinetic features of NAADP-induced Ca2+ release were not altered by pretreatment with low concentrations of NAADP, although the extent of Ca2+ release was greatly affected. Our data suggest that the inactivation of NAADP-induced Ca2+ release is an all-or-none phenomenon, and while some receptors have been fully inactivated, those that remain sensitive to NAADP do so without any change in kinetic features. PMID:9065423

  9. DNA Bases Thymine and Adenine in Bio-Organic Light Emitting Diodes

    PubMed Central

    Gomez, Eliot F.; Venkatraman, Vishak; Grote, James G.; Steckl, Andrew J.

    2014-01-01

    We report on the use of nucleic acid bases (NBs) in organic light emitting diodes (OLEDs). NBs are small molecules that are the basic building blocks of the larger DNA polymer. NBs readily thermally evaporate and integrate well into the vacuum deposited OLED fabrication. Adenine (A) and thymine (T) were deposited as electron-blocking/hole-transport layers (EBL/HTL) that resulted in increases in performance over the reference OLED containing the standard EBL material NPB. A-based OLEDs reached a peak current efficiency and luminance performance of 48 cd/A and 93,000 cd/m2, respectively, while T-based OLEDs had a maximum of 76 cd/A and 132,000 cd/m2. By comparison, the reference OLED yielded 37 cd/A and 113,000 cd/m2. The enhanced performance of T-based devices is attributed to a combination of energy levels and structured surface morphology that causes more efficient and controlled hole current transport to the emitting layer. PMID:25417819

  10. Structural Basis for Avoidance of Promutagenic DNA Repair by MutY Adenine DNA Glycosylase.

    PubMed

    Wang, Lan; Lee, Seung-Joo; Verdine, Gregory L

    2015-07-10

    The highly mutagenic A:oxoG (8-oxoguanine) base pair in DNA most frequently arises by aberrant replication of the primary oxidative lesion C:oxoG. This lesion is particularly insidious because neither of its constituent nucleobases faithfully transmit genetic information from the original C:G base pair. Repair of A:oxoG is initiated by adenine DNA glycosylase, which catalyzes hydrolytic cleavage of the aberrant A nucleobase from the DNA backbone. These enzymes, MutY in bacteria and MUTYH in humans, scrupulously avoid processing of C:oxoG because cleavage of the C residue in C:oxoG would actually promote mutagenic conversion to A:oxoG. Here we analyze the structural basis for rejection of C:oxoG by MutY, using a synthetic crystallography approach to capture the enzyme in the process of inspecting the C:oxoG anti-substrate, with which it ordinarily binds only fleetingly. We find that MutY uses two distinct strategies to avoid presentation of C to the enzyme active site. Firstly, MutY possesses an exo-site that serves as a decoy for C, and secondly, repulsive forces with a key active site residue prevent stable insertion of C into the nucleobase recognition pocket within the enzyme active site. PMID:25995449

  11. Wolbachia Prophage DNA Adenine Methyltransferase Genes in Different Drosophila-Wolbachia Associations

    PubMed Central

    Saridaki, Aggeliki; Sapountzis, Panagiotis; Harris, Harriet L.; Batista, Philip D.; Biliske, Jennifer A.; Pavlikaki, Harris; Oehler, Stefan; Savakis, Charalambos; Braig, Henk R.; Bourtzis, Kostas

    2011-01-01

    Wolbachia is an obligatory intracellular bacterium which often manipulates the reproduction of its insect and isopod hosts. In contrast, Wolbachia is an essential symbiont in filarial nematodes. Lately, Wolbachia has been implicated in genomic imprinting of host DNA through cytosine methylation. The importance of DNA methylation in cell fate and biology calls for in depth studing of putative methylation-related genes. We present a molecular and phylogenetic analysis of a putative DNA adenine methyltransferase encoded by a prophage in the Wolbachia genome. Two slightly different copies of the gene, met1 and met2, exhibit a different distribution over various Wolbachia strains. The met2 gene is present in the majority of strains, in wAu, however, it contains a frameshift caused by a 2 bp deletion. Phylogenetic analysis of the met2 DNA sequences suggests a long association of the gene with the Wolbachia host strains. In addition, our analysis provides evidence for previously unnoticed multiple infections, the detection of which is critical for the molecular elucidation of modification and/or rescue mechanism of cytoplasmic incompatibility. PMID:21573076

  12. Structural basis for discriminative regulation of gene expression by adenine- and guanine-sensing mRNAs.

    PubMed

    Serganov, Alexander; Yuan, Yu-Ren; Pikovskaya, Olga; Polonskaia, Anna; Malinina, Lucy; Phan, Anh Tuân; Hobartner, Claudia; Micura, Ronald; Breaker, Ronald R; Patel, Dinshaw J

    2004-12-01

    Metabolite-sensing mRNAs, or "riboswitches," specifically interact with small ligands and direct expression of the genes involved in their metabolism. Riboswitches contain sensing "aptamer" modules, capable of ligand-induced structural changes, and downstream regions, harboring expression-controlling elements. We report the crystal structures of the add A-riboswitch and xpt G-riboswitch aptamer modules that distinguish between bound adenine and guanine with exquisite specificity and modulate expression of two different sets of genes. The riboswitches form tuning fork-like architectures, in which the prongs are held in parallel through hairpin loop interactions, and the internal bubble zippers up to form the purine binding pocket. The bound purines are held by hydrogen bonding interactions involving conserved nucleotides along their entire periphery. Recognition specificity is associated with Watson-Crick pairing of the encapsulated adenine and guanine ligands with uridine and cytosine, respectively. PMID:15610857

  13. Structural Basis for Discriminative Regulation of Gene Expression by Adenine- and Guanine-Sensing mRNAs

    PubMed Central

    Serganov, Alexander; Yuan, Yu-Ren; Pikovskaya, Olga; Polonskaia, Anna; Malinina, Lucy; Phan, Anh Tuân; Hobartner, Claudia; Micura, Ronald; Breaker, Ronald R.; Patel, Dinshaw J.

    2015-01-01

    Summary Metabolite-sensing mRNAs, or “riboswitches,” specifically interact with small ligands and direct expression of the genes involved in their metabolism. Ribo-switches contain sensing “aptamer” modules, capable of ligand-induced structural changes, and downstream regions, harboring expression-controlling elements. We report the crystal structures of the add A-riboswitch and xpt G-riboswitch aptamer modules that distinguish between bound adenine and guanine with exquisite specificity and modulate expression of two different sets of genes. The riboswitches form tuning fork-like architectures, in which the prongs are held in parallel through hairpin loop interactions, and the internal bubble zippers up to form the purine binding pocket. The bound purines are held by hydrogen bonding interactions involving conserved nucleotides along their entire periphery. Recognition specificity is associated with Watson-Crick pairing of the encapsulated adenine and guanine ligands with uri-dine and cytosine, respectively. PMID:15610857

  14. Synthesis of adenine, guanine, cytosine, and other nitrogen organic compounds by a Fischer-Tropsch-like process.

    NASA Technical Reports Server (NTRS)

    Yang, C. C.; Oro, J.

    1971-01-01

    Study of the formation of purines, pyrimidines, and other bases from CO, H2, and NH3 under conditions similar to those used in the Fischer-Tropsch process. It is found that industrial nickel/iron alloy catalyzes the synthesis of adenine, guanine, cytosine, and other nitrogenous compounds from mixtures of CO, H2, and NH3 at temperatures of about 600 C. Sufficient sample was accumulated to isolate as solid products adenine, guanine, and cytosine, which were identified by infrared spectrophotometry. In the absence of nickel/iron catalyst, at 650 C, or in the presence of this catalyst, at 450 C, no purines or pyrimidines were synthesized. These results confirm and extend some of the work reported by Kayatsu et al. (1968).

  15. Dietary adenine controls adult lifespan via adenosine nucleotide biosynthesis and AMPK, and regulates the longevity benefit of caloric restriction

    PubMed Central

    Stenesen, Drew; Suh, Jae Myoung; Seo, Jin; Yu, Kweon; Lee, Kyu-Sun; Kim, Jong-Seok; Min, Kyung-Jin; Graff, Jonathan M.

    2012-01-01

    SUMMARY A common thread among conserved lifespan regulators lies within intertwined roles in metabolism and energy homeostasis. We show that heterozygous mutations of adenosine monophosphate (AMP) biosynthetic enzymes extend Drosophila lifespan. The lifespan benefit of these mutations depends upon increased AMP to adenosine triphosphate (ATP) and adenosine diphosphate (ADP) to ATP ratios and adenosine monophosphate-activated protein kinase (AMPK). Transgenic expression of AMPK in adult fat body or adult muscle, key metabolic tissues, extended lifespan, while AMPK RNAi reduced lifespan. Supplementing adenine, a substrate for AMP biosynthesis, to the diet of long-lived AMP biosynthesis mutants reversed lifespan extension. Remarkably, this simple change in diet also blocked the pro-longevity effects of dietary restriction. These data establish AMP biosynthesis, adenosine nucleotide ratios, and AMPK as determinants of adult lifespan, provide a mechanistic link between cellular anabolism and energy sensing pathways, and indicate that dietary adenine manipulations might alter metabolism to influence animal lifespan. PMID:23312286

  16. The determination of tRNALeu recognition nucleotides for Escherichia coli L/F transferase.

    PubMed

    Fung, Angela Wai Shan; Leung, Charles Chung Yun; Fahlman, Richard Peter

    2014-08-01

    Escherichia coli leucyl/phenylalanyl-tRNA protein transferase catalyzes the tRNA-dependent post-translational addition of amino acids onto the N-terminus of a protein polypeptide substrate. Based on biochemical and structural studies, the current tRNA recognition model by L/F transferase involves the identity of the 3' aminoacyl adenosine and the sequence-independent docking of the D-stem of an aminoacyl-tRNA to the positively charged cluster on L/F transferase. However, this model does not explain the isoacceptor preference observed 40 yr ago. Using in vitro-transcribed tRNA and quantitative MALDI-ToF MS enzyme activity assays, we have confirmed that, indeed, there is a strong preference for the most abundant leucyl-tRNA, tRNA(Leu) (anticodon 5'-CAG-3') isoacceptor for L/F transferase activity. We further investigate the molecular mechanism for this preference using hybrid tRNA constructs. We identified two independent sequence elements in the acceptor stem of tRNA(Leu) (CAG)-a G₃:C₇₀ base pair and a set of 4 nt (C₇₂, A₄:U₆₉, C₆₈)-that are important for the optimal binding and catalysis by L/F transferase. This maps a more specific, sequence-dependent tRNA recognition model of L/F transferase than previously proposed.

  17. The determination of tRNALeu recognition nucleotides for Escherichia coli L/F transferase

    PubMed Central

    Fung, Angela Wai Shan; Leung, Charles Chung Yun; Fahlman, Richard Peter

    2014-01-01

    Escherichia coli leucyl/phenylalanyl-tRNA protein transferase catalyzes the tRNA-dependent post-translational addition of amino acids onto the N-terminus of a protein polypeptide substrate. Based on biochemical and structural studies, the current tRNA recognition model by L/F transferase involves the identity of the 3′ aminoacyl adenosine and the sequence-independent docking of the D-stem of an aminoacyl-tRNA to the positively charged cluster on L/F transferase. However, this model does not explain the isoacceptor preference observed 40 yr ago. Using in vitro-transcribed tRNA and quantitative MALDI-ToF MS enzyme activity assays, we have confirmed that, indeed, there is a strong preference for the most abundant leucyl-tRNA, tRNALeu (anticodon 5′-CAG-3′) isoacceptor for L/F transferase activity. We further investigate the molecular mechanism for this preference using hybrid tRNA constructs. We identified two independent sequence elements in the acceptor stem of tRNALeu (CAG)—a G3:C70 base pair and a set of 4 nt (C72, A4:U69, C68)—that are important for the optimal binding and catalysis by L/F transferase. This maps a more specific, sequence-dependent tRNA recognition model of L/F transferase than previously proposed. PMID:24935875

  18. Reduced nicotinamide adenine dinucleotide-activated phosphoenolpyruvate carboxylase in Pseudomonas MA: potential regulation between carbon assimilation and energy production.

    PubMed Central

    Newaz, S S; Hersh, L B

    1975-01-01

    Comparison of enzyme activities in crude extracts of methylamine-grown Pseudomonas MA (ATCC 23319) to those in succinate-grown cells indicates the involvement of an acetyl coenzyme A-independent phosphoenolpyruvate carboxylase in one-carbon metabolism. The purified phosphoenolpyruvate carboxylase is activated specifically by reduced nicotinamide adenine dinucleotide (KA = 0.2 mM). The regulatory properties of this enzyme suggests that phosphoenolpyruvate serves as a focal point for both carbon assimilation and energy metabolism. PMID:171253

  19. RESPIRATORY PATHWAYS IN THE MYCOPLASMA. II. PATHWAY OF ELECTRON TRANSPORT DURING OXIDATION OF REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE BY MYCOPLASMA HOMINIS.

    PubMed

    VANDEMARK, P J; SMITH, P F

    1964-07-01

    VanDemark, P. J. (University of South Dakota, Vermillion), and P. F. Smith. Respiratory pathways in the Mycoplasma. II. Pathway of electron transport during oxidation of reduced nicotinamide adenine dinucleotide by Mycoplasma hominis. J. Bacteriol. 88:122-129. 1964.-Unlike the flavin-terminated respiratory pathway of the fermentative Mycoplasma, the respiratory chain of the nonfermentative M. hominis strain 07 appears to be more complex, involving quinones and cytochromes in addition to flavins. In addition to reduction by reduced nicotine adenine dinucleotide (NADH) and reduced nicotine adenine dinucleotide phosphate, nonpyridine nucleotide-linked reduction of the respiratory chain of this organism occurred with succinate, lactate, and short-chained acyl coenzyme A derivatives as electron donors. Enzymes catalyzing the oxidation of NADH included an NADH oxidase, a diaphorase, a quinone reductase, and a cytochrome c reductase. The oxidation of NADH was sensitive to a variety of inhibitors, including 10(-4)m Atabrine, 10(-3)m sodium amytal, 10(-5)mp-chloromercuribenzoate, 10(-4)m antimycin A, and 10(-4)m potassium cyanide. The oxidase was resolved by the addition of 5% trichloroacetic acid and reactivated by the addition of flavin adenine dinucleotide but not flavin mononucleotide. The M. hominis sonic extract contained an NADH-coenzyme Q reductase. The oxidation of NADH was stimulated by the addition of either menadione or vitamin K(2) (C(35)). The oxidase was inactivated by extraction with ether or irradiation at 360 mmu. The ether-inactivated enzyme was partially reactivated by the addition of "lipid" extract of the enzyme and coenzyme Q(6). Difference spectra of the cell extracts revealed the presence of "b" and "a" type cytochromes. These cell extracts were found to contain a cyanide-and azide-sensitive cytochrome oxidase and catalase. PMID:14197876

  20. Selection of antisense oligodeoxynucleotides against glutathione S-transferase Mu.

    PubMed Central

    't Hoen, Peter A C; Out, Ruud; Commandeur, Jan N M; Vermeulen, Nico P E; van Batenburg, F H D; Manoharan, Muthiah; van Berkel, Theo J C; Biessen, Erik A L; Bijsterbosch, Martin K

    2002-01-01

    The aim of the present study was to identify functional antisense oligodeoxynucleotides (ODNs) against the rat glutathione S-transferase Mu (GSTM) isoforms, GSTM1 and GSTM2. These antisense ODNs would enable the study of the physiological consequences of GSTM deficiency. Because it has been suggested that the effectiveness of antisense ODNs is dependent on the secondary mRNA structures of their target sites, we made mRNA secondary structure predictions with two software packages, Mfold and STAR. The two programs produced only marginally similar structures, which can probably be attributed to differences in the algorithms used. The effectiveness of a set of 18 antisense ODNs was evaluated with a cell-free transcription/translation assay, and their activity was correlated with the predicted secondary RNA structures. Four phosphodiester ODNs specific for GSTM1, two ODNs specific for GSTM2, and four ODNs targeted at both GSTM isoforms were found to be potent, sequence-specific, and RNase H-dependent inhibitors of protein expression. The IC50 value of the most potent ODN was approximately 100 nM. Antisense ODNs targeted against regions that were predicted by STAR to be predominantly single stranded were more potent than antisense ODNs against double-stranded regions. Such a correlation was not found for the Mfold prediction. Our data suggest that simulation of the local folding of RNA facilitates the discovery of potent antisense sequences. In conclusion, we selected several promising antisense sequences, which, when synthesized as biologically stable oligonucleotides, can be applied for study of the physiological impact of reduced GSTM expression. PMID:12515389

  1. Glutathione transferase classes alpha, pi, and mu: GSH activation mechanism.

    PubMed

    Dourado, Daniel F A R; Fernandes, Pedro Alexandrino; Ramos, Maria João

    2010-10-14

    Since the early 1960s, glutathione transferases (GSTs) have been described as detoxification enzymes. In fact, GSTs are the most important enzymes involved in the metabolism of electrophilic xenobiotic/endobiotic compounds. These enzymes are able to catalyze the nucleophilic addition of glutathione (GSH) sulfur thiolate to a wide range of electrophilic substrates, building up a less toxic and more soluble compound. Cytosolic classes alpha, pi, and mu are the most extensively studied GSTs. However, many of the catalytic events are still poorly understood. In the present work, we have resorted to density functional theory (DFT) and to potential of mean force (PMF) calculations to determine the GSH activation mechanism of GSTP1-1 and GSTM1-1 isoenzymes. For the GSTP1-1 enzyme, we have demonstrated that a water molecule, after an initial conformational rearrangement of GSH, can assist a proton transfer between the GSH cysteine thiol (GSH-SH) and the GSH glutamate alpha carboxylate (GSH-COO(-)) groups. The energy barrier associated with the proton transfer is 11.36 kcal·mol(-1). The GSTM1-1 enzyme shows a completely different behavior from the previous isoenzyme. In this case, two water molecules, positioned between the GSH-SH and the ξ N atom of His107, working like a bridge, are able to promote the proton transfer between these two active groups with an energy barrier of 7.98 kcal·mol(-1). All our results are consistent with all the enzymes kinetics and mutagenesis experimental studies.

  2. Identification of the major lesion from the reaction of an acridine-targeted aniline mustard with DNA as an adenine N1 adduct.

    PubMed

    Boritzki, T J; Palmer, B D; Coddington, J M; Denny, W A

    1994-01-01

    DNA adducts of two acridine-linked aniline half-mustards have been isolated and identified. The compound where the half-mustard is attached to the DNA-targeting acridine moiety by a short linker chain alkylates both double- and single-stranded DNA exclusively at guanine N7, as do the majority of known aromatic and aliphatic nitrogen mustards. The longer-chain analogue, also containing a more reactive half-mustard, shows a strikingly different pattern, alkylating double-stranded DNA to yield primarily (> 90%) the adenine N1 adduct, together with < 10% of the adenine N3 adduct and only trace amounts of the guanine N7 adduct. In the presence of MgCl2 (which is known not to inhibit the interaction of drugs at minor groove sites), the adenine N3 adduct is the major product. The latter compound is the first known aniline mustard (and apparently the first known alkylating agent of any type) to preferentially alkylate adenine at the N1 position in duplex DNA. These results are consistent with previous work [Prakash et al. (1990) Biochemistry 29, 9799-9807], which showed that the preferred site of DNA alkylation by the corresponding long-chain acridine-linked aniline bis-mustards in general was at major groove sites of adenines and identifies the major site of alkylation as adenine N1 and not N7. This selectivity for adenine N1 alkylation is suggested to result from a preference for the acridine mustard side chain of these compounds to project into the major groove following intercalation of the acridine, coupled with structural distortion of the DNA helix to make the N1 positions of adenines adjacent to the intercalation sites more accessible.

  3. A new microplatform based on titanium dioxide nanofibers/graphene oxide nanosheets nanocomposite modified screen printed carbon electrode for electrochemical determination of adenine in the presence of guanine.

    PubMed

    Arvand, Majid; Ghodsi, Navid; Zanjanchi, Mohammad Ali

    2016-03-15

    The current techniques for determining adenine have several shortcomings such as high cost, high time consumption, tedious pretreatment steps and the requirements for highly skilled personnel often restrict their use in routine analytical practice. This paper describes the development and utilization of a new nanocomposite consisting of titanium dioxide nanofibers (TNFs) and graphene oxide nanosheets (GONs) for screen printed carbon electrode (SPCE) modification. The synthesized GONs and TNFs were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). The modified electrode (TNFs/GONs/SPCE) was used for electrochemical characterization of adenine. The TNFs/GONs/SPCE exhibited an increase in peak current and the electron transfer kinetics and decrease in the overpotential for the oxidation reaction of adenine. Using differential pulse voltammetry (DPV), the prepared sensor showed good sensitivity for determining adenine in two ranges from 0.1-1 and 1-10 μM, with a detection limit (DL) of 1.71 nM. Electrochemical studies suggested that the TNFs/GONs/SPCE provided a synergistic augmentation on the voltammetric behavior of electrochemical oxidation of adenine, which was indicated by the improvement of anodic peak current and a decrease in anodic peak potential. The amount of adenine in pBudCE4.1 plasmid was determined via the proposed sensor and the result was in good compatibility with the sequence data of pBudCE4.1 plasmid.

  4. Acetate:succinate CoA-transferase in the hydrogenosomes of Trichomonas vaginalis: identification and characterization.

    PubMed

    van Grinsven, Koen W A; Rosnowsky, Silke; van Weelden, Susanne W H; Pütz, Simone; van der Giezen, Mark; Martin, William; van Hellemond, Jaap J; Tielens, Aloysius G M; Henze, Katrin

    2008-01-18

    Acetate:succinate CoA-transferases (ASCT) are acetate-producing enzymes in hydrogenosomes, anaerobically functioning mitochondria and in the aerobically functioning mitochondria of trypanosomatids. Although acetate is produced in the hydrogenosomes of a number of anaerobic microbial eukaryotes such as Trichomonas vaginalis, no acetate producing enzyme has ever been identified in these organelles. Acetate production is the last unidentified enzymatic reaction of hydrogenosomal carbohydrate metabolism. We identified a gene encoding an enzyme for acetate production in the genome of the hydrogenosome-containing protozoan parasite T. vaginalis. This gene shows high similarity to Saccharomyces cerevisiae acetyl-CoA hydrolase and Clostridium kluyveri succinyl-CoA:CoA-transferase. Here we demonstrate that this protein is expressed and is present in the hydrogenosomes where it functions as the T. vaginalis acetate:succinate CoA-transferase (TvASCT). Heterologous expression of TvASCT in CHO cells resulted in the expression of an active ASCT. Furthermore, homologous overexpression of the TvASCT gene in T. vaginalis resulted in an equivalent increase in ASCT activity. It was shown that the CoA transferase activity is succinate-dependent. These results demonstrate that this acetyl-CoA hydrolase/transferase homolog functions as the hydrogenosomal ASCT of T. vaginalis. This is the first hydrogenosomal acetate-producing enzyme to be identified. Interestingly, TvASCT does not share any similarity with the mitochondrial ASCT from Trypanosoma brucei, the only other eukaryotic succinate-dependent acetyl-CoA-transferase identified so far. The trichomonad enzyme clearly belongs to a distinct class of acetate:succinate CoA-transferases. Apparently, two completely different enzymes for succinate-dependent acetate production have evolved independently in ATP-generating organelles. PMID:18024431

  5. Electrochemical oxidation of dihydronicotinamide adenine dinucleotide at nitrogen-doped carbon nanotube electrodes.

    PubMed

    Goran, Jacob M; Favela, Carlos A; Stevenson, Keith J

    2013-10-01

    Nitrogen-doped carbon nanotubes (N-CNTs) substantially lower the overpotential necessary for dihydronicotinamide adenine dinucleotide (NADH) oxidation compared to nondoped CNTs or traditional carbon electrodes such as glassy carbon (GC). We observe a 370 mV shift in the peak potential (Ep) from GC to CNTs and another 170 mV shift from CNTs to 7.4 atom % N-CNTs in a sodium phosphate buffer solution (pH 7.0) with 2.0 mM NADH (scan rate 10 mV/s). The sensitivity of 7.4 atom % N-CNTs to NADH was measured at 0.30 ± 0.04 A M(-1) cm(-2), with a limit of detection at 1.1 ± 0.3 μM and a linear range of 70 ± 10 μM poised at a low potential of -0.32 V (vs Hg/Hg2SO4). NADH fouling, known to occur to the electrode surface during NADH oxidation, was investigated by measuring both the change in Ep and the resulting loss of electrode sensitivity. NADH degradation, known to occur in phosphate buffer, was characterized by absorbance at 340 nm and correlated with the loss of NADH electroactivity. N-CNTs are further demonstrated to be an effective platform for dehydrogenase-based biosensing by allowing glucose dehydrogenase to spontaneously adsorb onto the N-CNT surface and measuring the resulting electrode's sensitivity to glucose. The glucose biosensor had a sensitivity of 0.032 ± 0.003 A M(-1) cm(-2), a limit of detection at 6 ± 1 μM, and a linear range of 440 ± 50 μM.

  6. The two-photon excitation cross section of 6MAP, a fluorescent adenine analogue.

    PubMed

    Stanley, Robert J; Hou, Zhanjia; Yang, Aiping; Hawkins, Mary E

    2005-03-01

    6MAP is a fluorescent analogue of adenine that undergoes Watson-Crick base pairing and base stacking in double-stranded DNA. The one-photon absorption spectrum of 6MAP is characterized by a maximum around 330 nm with moderate quantum yield fluorescence centered at about 420 nm. To take advantage of this probe for confocal and single-molecule microscopy, it would be advantageous to be able to excite the analogue via two photons. We report the first determination of the two-photon excitation cross section and spectrum for 6MAP from 614 to 700 nm. The power dependence of the fluorescence indicates that emission results from the absorption of two photons. The one-photon and two-photon emission line shapes are identical within experimental error. A study of the concentration dependence of the fluorescence yield for one-photon excitation shows no measurable quenching up to about 5 microM. The maximum in the two-photon excitation spectrum gives a two-photon cross section, delta(TPE), of 3.4 +/- 0.1 Goeppert-Mayer (G.M.) at 659 nm, which correlates well with the one-photon absorption maximum. This compares quite favorably with cross sections of various naturally fluorescent biological molecules such as flavins and nicotiamide. In addition, we have also obtained the two-photon-induced fluorescence emission spectrum of quinine sulfate. It is approximately the same as that for one-photon excitation, suggesting that two-photon excitation of quinine sulfate may be used for calibration purposes.

  7. The two-photon excitation cross section of 6MAP, a fluorescent adenine analogue.

    PubMed

    Stanley, Robert J; Hou, Zhanjia; Yang, Aiping; Hawkins, Mary E

    2005-03-01

    6MAP is a fluorescent analogue of adenine that undergoes Watson-Crick base pairing and base stacking in double-stranded DNA. The one-photon absorption spectrum of 6MAP is characterized by a maximum around 330 nm with moderate quantum yield fluorescence centered at about 420 nm. To take advantage of this probe for confocal and single-molecule microscopy, it would be advantageous to be able to excite the analogue via two photons. We report the first determination of the two-photon excitation cross section and spectrum for 6MAP from 614 to 700 nm. The power dependence of the fluorescence indicates that emission results from the absorption of two photons. The one-photon and two-photon emission line shapes are identical within experimental error. A study of the concentration dependence of the fluorescence yield for one-photon excitation shows no measurable quenching up to about 5 microM. The maximum in the two-photon excitation spectrum gives a two-photon cross section, delta(TPE), of 3.4 +/- 0.1 Goeppert-Mayer (G.M.) at 659 nm, which correlates well with the one-photon absorption maximum. This compares quite favorably with cross sections of various naturally fluorescent biological molecules such as flavins and nicotiamide. In addition, we have also obtained the two-photon-induced fluorescence emission spectrum of quinine sulfate. It is approximately the same as that for one-photon excitation, suggesting that two-photon excitation of quinine sulfate may be used for calibration purposes. PMID:16851408

  8. Inhibition of the adenine nucleotide translocator by N-acetyl perfluorooctane sulfonamides in vitro

    SciTech Connect

    O'Brien, Timothy M. Oliveira, Paulo J.; Wallace, Kendall B.

    2008-03-01

    N-alkyl perfluorooctane sulfonamides have been widely used as surfactants on fabrics and papers, fire retardants, and anti-corrosion agents, among many other commercial applications. The global distribution and environmental persistence of these compounds has generated considerable interest regarding potential toxic effects. We have previously reported that perfluorooctanesulfonamidoacetate (FOSAA) and N-ethylperfluorooctanesulfonamidoacetate (N-EtFOSAA) induce the mitochondrial permeability transition (MPT) in vitro. In this study we tested the hypothesis that FOSAA and N-EtFOSAA interact with the adenine nucleotide translocator (ANT) resulting in a functional inhibition of the translocator and induction of the MPT. Respiration and membrane potential of freshly isolated liver mitochondria from Sprague-Dawley rats were measured using an oxygen electrode and a tetraphenylphosphonium-selective (TPP{sup +}) electrode, respectively. Mitochondrial swelling was measured spectrophotometrically. The ANT ligands bongkregkic acid (BKA) and carboxyatractyloside (cATR) inhibited uncoupling of mitochondrial respiration caused by 10 {mu}M N-EtFOSAA, 40 {mu}M FOSAA, and the positive control 8 {mu}M oleic acid. ADP-stimulated respiration and depolarization of mitochondrial membrane potential were inhibited by cATR, FOSAA, N-EtFOSAA, and oleic acid, but not by FCCP. BKA inhibited calcium-dependent mitochondrial swelling induced by FOSAA, N-EtFOSAA, and oleic acid. Seventy-five micromolar ADP also inhibited swelling induced by the test compounds, but cATR induced swelling was not inhibited by ADP. Results of this investigation indicate that N-acetyl perfluorooctane sulfonamides interact directly with the ANT to inhibit ADP translocation and induce the MPT, one or both of which may account for the metabolic dysfunction observed in vivo.

  9. Sodium thiosulfate protects brain in rat model of adenine induced vascular calcification.

    PubMed

    Subhash, N; Sriram, R; Kurian, Gino A

    2015-11-01

    Vascular bed calcification is a common feature of ends stage renal disease that may lead to a complication in cardiovascular and cerebrovascular beds, which is a promoting cause of myocardial infarction, stroke, dementia and aneurysms. Sodium thiosulfate (STS) due to its multiple properties such as antioxidant and calcium chelation has been reported to prevent vascular calcification in uremic rats, without mentioning its impact on cerebral function. Moreover, the previous studies have not explored the effect of STS on the mitochondrial dysfunction, one of the main pathophysiological features associated with the disease and the main site for STS metabolism. The present study addresses this limitation by using a rat model where 0.75% adenine was administered to induce vascular calcification and 400 mg/kg b wt. of STS was given as preventive and curative agent. The blood and urine chemistries along with histopathology of aorta confirms the renal protective effect of STS in two modes of administration. The brain oxidative stress assessment was made through TBARS level, catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities, found to be in the near normal level. STS administration not only reduced the mitochondrial oxidative stress (measured by TBARS, SOD, GPx and CAT) but also preserved the mitochondrial respiratory enzyme activities (NADH dehydrogenase, Succinate dehydrogenase and Malate dehydrogenase) and its physiology (measured by P/O ratio and RCR). In fact, the protective effect of STS was prominent, when it was administered as a curative agent, where low H2S and high thiosulfate level was observed along with low cystathionine β synthase activity, confirms thiosulfate mediated renal protection. In conclusion, STS when given after induction of calcification is protective to the brain by preserving its mitochondria, compared to the treatment given concomitantly. PMID:26363090

  10. Mitochondrial permeability transition as induced by cross-linking of the adenine nucleotide translocase.

    PubMed

    Zazueta, C; Reyes-Vivas, H; Zafra, G; Sánchez, C A; Vera, G; Chávez, E

    1998-04-01

    Mitochondrial permeability transition is caused by the opening of a transmembrane pore whose chemical nature has not been well established yet. The present work was aimed to further contribute to the knowledge of the membrane entity comprised in the formation of the non-specific channel. The increased permeability was established by analyzing the inability of rat kidney mitochondria to take up and accumulate Ca2+, as well as their failure to build up a transmembrane potential, after the cross-linking of membrane proteins by copper plus ortho-phenanthroline. To identify the cross-linked proteins, polyacrylamide gel electrophoresis was performed. The results are representative of at least three separate experiments. It is indicated that 30 microM Cu2+ induced the release of 4.3 nmol Ca2+ per mg protein. However, in the presence of 100 microM ortho-phenanthroline only 2 microM Cu2+ was required to attain the total release of the accumulated Ca2+; it should be noted that such a reaction is not inhibited by cyclosporin. The increased permeability corresponds to cross-linking of membrane proteins in which approximately 4 nmol thiol groups per mg protein appear to be involved. Such a linking process is inhibited by carboxyatractyloside. By using the fluorescent probe eosin-5-maleimide the label was found in a cross-linking 60 kDa dimer of two 30 kDa monomers. From the data presented it is concluded that copper-o-phenanthroline induces the intermolecular cross-linking of the adenine nucleotide translocase which in turn is converted to non-specific pore. PMID:9675885

  11. Sodium thiosulfate protects brain in rat model of adenine induced vascular calcification.

    PubMed

    Subhash, N; Sriram, R; Kurian, Gino A

    2015-11-01

    Vascular bed calcification is a common feature of ends stage renal disease that may lead to a complication in cardiovascular and cerebrovascular beds, which is a promoting cause of myocardial infarction, stroke, dementia and aneurysms. Sodium thiosulfate (STS) due to its multiple properties such as antioxidant and calcium chelation has been reported to prevent vascular calcification in uremic rats, without mentioning its impact on cerebral function. Moreover, the previous studies have not explored the effect of STS on the mitochondrial dysfunction, one of the main pathophysiological features associated with the disease and the main site for STS metabolism. The present study addresses this limitation by using a rat model where 0.75% adenine was administered to induce vascular calcification and 400 mg/kg b wt. of STS was given as preventive and curative agent. The blood and urine chemistries along with histopathology of aorta confirms the renal protective effect of STS in two modes of administration. The brain oxidative stress assessment was made through TBARS level, catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities, found to be in the near normal level. STS administration not only reduced the mitochondrial oxidative stress (measured by TBARS, SOD, GPx and CAT) but also preserved the mitochondrial respiratory enzyme activities (NADH dehydrogenase, Succinate dehydrogenase and Malate dehydrogenase) and its physiology (measured by P/O ratio and RCR). In fact, the protective effect of STS was prominent, when it was administered as a curative agent, where low H2S and high thiosulfate level was observed along with low cystathionine β synthase activity, confirms thiosulfate mediated renal protection. In conclusion, STS when given after induction of calcification is protective to the brain by preserving its mitochondria, compared to the treatment given concomitantly.

  12. Adenine Nucleotide Translocase 4 Is Expressed Within Embryonic Ovaries and Dispensable During Oogenesis

    PubMed Central

    Lim, Chae Ho; Brower, Jeffrey V.; Resnick, James L.; Oh, S. Paul

    2015-01-01

    Adenine nucleotide translocase (Ant) facilitates the exchange of adenosine triphosphate across the mitochondrial inner membrane and plays a critical role for bioenergetics in eukaryotes. Mice have 3 Ant paralogs, Ant1 (Slc25a4), Ant2 (Slc25a5), and Ant4 (Slc25a31), which are expressed in a tissue-dependent manner. We previously identified that Ant4 was expressed exclusively in testicular germ cells in adult mice and essential for spermatogenesis and subsequently male fertility. Further investigation into the process of spermatogenesis revealed that Ant4 was particularly highly expressed during meiotic prophase I and indispensable for normal progression of leptotene spermatocytes to the stages thereafter. In contrast, the expression and roles of Ant4 in female germ cells have not previously been elucidated. Here, we demonstrate that the Ant4 gene is expressed during embryonic ovarian development during which meiotic prophase I occurs. We confirmed embryonic ovary-specific Ant4 expression using a bacterial artificial chromosome transgene. In contrast to male, however, Ant4 null female mice were fertile although the litter size was slightly decreased. They showed apparently normal ovarian development which was morphologically indistinguishable from the control animals. These data indicate that Ant4 is a meiosis-specific gene expressed during both male and female gametogenesis however indispensable only during spermatogenesis and not oogenesis. The differential effects of Ant4 depletion within the processes of male and female gametogenesis may be explained by meiosis-specific inactivation of the X-linked Ant2 gene in male, a somatic paralog of the Ant4 gene. PMID:25031318

  13. Development and Evaluation of Solid Lipid Nanoparticles of N-6-Furfuryl Adenine for Prevention of Photoaging.

    PubMed

    Goindi, Shishu; Guleria, Ankita; Aggarwal, Nidhi

    2015-10-01

    N-6-furfuryl adenine (N6FA) also known as "kinetin" is a biologically active natural phytochemical. It belongs to the category of cytokinins, the natural plant growth hormones that promote cell division and play role in cell differentiation. Overall, N6FA aids in increasing the plant's life span. Human cells also contain.small quantities of N6FA. Scientists are trying to understand its function in humans. N6FA is being investigated for its properties such as antiplatelet, antioxidant, antiproliferative and anti-aging effects on human cells. The aim of the present investigation was to prepare solid lipid nanoparticle (SLN) based topical formulations of N6FA and to evaluate its efficacy against ultraviolet (UV) radiation induced skin photodamage. SLNs were prepared by hot microemulsion technique and optimized for the type and concentration of lipid and surfactant(s). The optimized SLN formulation was characterized in terms of particle size, drug entrapment efficiency, zeta potential and pH; evaluated for stability, spreadability, ex-vivo skin permeation and photoprotective effects against UV induced skin damage. The cumulative amount of drug permeated through mice skin using SLNs was 3 folds higher than from conventional cream base. The results of biochemical and histopathological investigations of skin treated with N6FA loaded SLNs clearly demonstrated the efficacy of optimized formulation in preventing photodamage (lesions, ulcers and changes in skin integrity) due to chronic UV exposure. The effects were comparable with widely used marketed formulation, Garnier wrinkle lift anti-aging cream. Results suggested that N6FA incorporated into SLNs may provide therapeutic as well as cosmeceutical benefits. PMID:26502637

  14. Synthesis and in vivo evaluation of prodrugs of 9-[2-(phosphonomethoxy)ethoxy]adenine.

    PubMed

    Serafinowska, H T; Ashton, R J; Bailey, S; Harnden, M R; Jackson, S M; Sutton, D

    1995-04-14

    A number of esters and amides of the anti-HIV nucleotide analogue 9-[2-(phosphonomethoxy)-ethoxy]adenine (1) have been synthesized as potential prodrugs and evaluated for oral bioavailability in mice. Dialkyl esters 17-20 were prepared via a Mitsunobu coupling of alcohols 8-11 with 9-hydroxypurine 12 whereas (acyloxy)alkyl esters 25-33 and bis-[(alkoxycarbonyl)methyl] and bis(amidomethyl) esters 34-39 were obtained by reaction of 1 with a suitable alkylating agent. Phosphonodichloridate chemistry was employed for the preparation of dialkyl and diaryl esters 42-65, and bis(phosphonoamidates) 66 and 67. Following oral administration to mice, most of the dialkyl esters 17-20 were well-absorbed and then converted to the corresponding monoesters, but minimal further metabolism to 1 occurred. Bis[(pivaloyloxy)methyl] ester 25 displayed an oral bioavailability of 30% that was 15-fold higher than the bioavailability observed after dosing of 1. Methyl substitution at the alpha carbon of the bis[(pivaloyloxy)methyl] ester 25 (33) increased the oral bioavailability of 1 to 74%. Some of the diaryl esters also showed improved absorption properties in comparison with that of 1. In particular, the crystalline hydrochloride salt of diphenyl ester 55 was well-absorbed and efficiently converted to the parent compound with an oral bioavailability of 50%. On the basis of these results as well as the physicochemical properties of the prodrugs and their stability in mouse duodenal contents, the hydrochloride salt of diphenyl ester 55 was identified as the preferred prodrug of 1. PMID:7731022

  15. Modulation by adenine nucleotides of epileptiform activity in the CA3 region of rat hippocampal slices

    PubMed Central

    Ross, F M; Brodie, M J; Stone, T W

    1998-01-01

    Hippocampal slices (450 μm) generate epileptiform bursts of an interictal nature when perfused with a zero magnesium medium containing 4-aminopyridine (50 μM). The effect of adenine nucleotides on this activity was investigated.ATP and adenosine depressed this epileptiform activity in a concentration-dependent manner, with both purines being equipotent at concentrations above 10 μM.Adenosine deaminase 0.2 u ml−1, a concentration that annuls the effect of adenosine (50 μM), did not significantly alter the depression of activity caused by ATP (50 μM).8-Cyclopentyl-1, 3-dimethylxanthine (CPT), an A1 receptor antagonist, enhanced the discharge rate significantly and inhibited the depressant effect of both ATP and adenosine such that the net effect of ATP or adenosine plus CPT was excitatory.Several ATP analogues were also tested: α, β-methyleneATP (α, β-meATP), 2-methylthioATP (2-meSATP) and uridine triphosphate (UTP). Only α, β-meATP (10 μM) produced an increase in the frequency of spontaneous activity which suggests a lack of involvement of P2Y or P2U receptors.Suramin and pyridoxalphosphate-6-azophenyl-2′, 4′-disulphonic acid (PPADS), P2 receptor antagonists, failed to inhibit the depression produced by ATP (50 μM). The excitatory effect of α, β-meATP (10 μM) was inhibited by suramin (50 μM) and PPADS (5 μM).ATP therefore depresses epileptiform activity in this model in a manner which is not consistent with the activation of known P1 or P2 receptors, suggesting the involvement of a xanthine-sensitive nucleotide receptor. The results are also indicative of an excitatory P2X receptor existing in the hippocampal CA3 region. PMID:9484856

  16. The adenine nucleotide translocase type 1 (ANT1): a new factor in mitochondrial disease.

    PubMed

    Sharer, J Daniel

    2005-09-01

    Mitochondrial disorders of oxidative phosphorylation (OXPHOS) comprise a growing list of potentially lethal diseases caused by mutations in either mitochondrial (mtDNA) or nuclear DNA (nDNA). Two such conditions, autosomal dominant progressive external ophthalmoplegia (adPEO) and Senger's Syndrome, are associated with dysfunction of the heart and muscle-specific isoform of the adenine nucleotide translocase (ANT1), a nDNA gene product that facilitates transport of ATP and ADP across the inner mitochondrial membrane. AdPEO is a mtDNA deletion disorder broadly characterized by pathology involving the eyes, skeletal muscle, and central nervous system. In addition to ANT1, mutations in at least two other nuclear genes, twinkle and POLG, have been shown to cause mtDNA destabilization associated with adPEO. Senger's syndrome is an autosomal recessive condition characterized by congenital heart defects, abnormalities of skeletal muscle mitochondria, cataracts, and elevated circulatory levels of lactic acid. This syndrome is associated with severe depletion of ANT1, which may be the result of an as yet unidentified ANT1-specific transcriptional or translational processing error. ANT1 has also been associated with a third condition, autosomal dominant facioscapulohumeral muscular dystrophy (FSHD), an adult onset disorder characterized by variable muscle weakness in the face, feet, shoulders, and hips. FSHD patients possess specific DNA deletions on chromosome 4, which appear to cause derepression of several nearby genes, including ANT1. Early development of FSHD may involve mitochondrial dysfunction and increased oxidative stress, possibly associated with overexpression of ANT1. PMID:16203679

  17. An alternative membrane transport pathway for phosphate and adenine nucleotides in mitochondria and its possible function.

    PubMed

    Reynafarje, B; Lehninger, A L

    1978-10-01

    This paper describes the properties and a possible biological role of a transport process across the inner membrane of rat liver mitochondria resulting in the exchange of ATP(4-) (out) for ADP(3-) (in) + 0.5 phosphate(2-) (in). This transmembrane exchange reaction, designated as the ATP-ADP-phosphate exchange, is specific for the ligands shown, electroneutral, insensitive to N-ethylmaleimide or mersalyl, inhibited by atractyloside, and appears to occur only in the direction as written. It is thus distinct from the well-known phosphate-hydroxide and phosphate-dicarboxylate exchange systems, which are inhibited by mersalyl, and from the ATP-ADP exchanger, which does not transport phosphate. During ATP hydrolysis by mitochondria, half of the phosphate formed from ATP passes from the matrix to the medium by the mersalyl-insensitive ATP-ADP-phosphate exchange and the other half by the well-known mersalyl-sensitive phosphate-hydroxide exchange. These and other considerations have led to a hypothesis for the pathway and stoichiometry of ATP-dependent reverse electron transport, characterized by a requirement of 1.33 molecules of ATP per pair of electrons reversed and by the utilization of a different membrane transport pathway for phosphate and adenine nucleotides than is taken in forward electron flow and oxidative phosphorylation. The possible occurrence of independent pathways for ATP-forming forward electron flow and ATP-consuming reverse electron flow is consonant with the fact that the opposing degradative and synthetic pathways in the central routes of cell metabolism generally have different pathways that are independently regulated.

  18. Characterization of glutathione-S-transferases in zebrafish (Danio rerio).

    PubMed

    Glisic, Branka; Mihaljevic, Ivan; Popovic, Marta; Zaja, Roko; Loncar, Jovica; Fent, Karl; Kovacevic, Radmila; Smital, Tvrtko

    2015-01-01

    Glutathione-S-transferases (GSTs) are one of the key enzymes that mediate phase II of cellular detoxification. The aim of our study was a comprehensive characterization of GSTs in zebrafish (Danio rerio) as an important vertebrate model species frequently used in environmental research. A detailed phylogenetic analysis of GST superfamily revealed 27 zebrafish gst genes. Further insights into the orthology relationships between human and zebrafish GSTs/Gsts were obtained by the conserved synteny analysis. Expression of gst genes in six tissues (liver, kidney, gills, intestine, brain and gonads) of adult male and female zebrafish was determined using qRT-PCR. Functional characterization was performed on 9 cytosolic Gst enzymes after overexpression in E. coli and subsequent protein purification. Enzyme kinetics was measured for GSH and a series of model substrates. Our data revealed ubiquitously high expression of gstp, gstm (except in liver), gstr1, mgst3a and mgst3b, high expression of gsto2 in gills and ovaries, gsta in intestine and testes, gstt1a in liver, and gstz1 in liver, kidney and brain. All zebrafish Gsts catalyzed the conjugation of GSH to model GST substrates 1-chloro-2,4-dinitrobenzene (CDNB) and monochlorobimane (MCB), apart from Gsto2 and Gstz1 that catalyzed GSH conjugation to dehydroascorbate (DHA) and dichloroacetic acid (DCA), respectively. Affinity toward CDNB varied from 0.28 mM (Gstp2) to 3.69 mM (Gstm3), while affinity toward MCB was in the range of 5 μM (Gstt1a) to 250 μM (Gstp1). Affinity toward GSH varied from 0.27 mM (Gstz1) to 4.45 mM (Gstt1a). Turnover number for CDNB varied from 5.25s(-1) (Gstt1a) to 112s(-1) (Gstp2). Only Gst Pi enzymes utilized ethacrynic acid (ETA). We suggest that Gstp1, Gstp2, Gstt1a, Gstz1, Gstr1, Mgst3a and Mgst3b have important role in the biotransformation of xenobiotics, while Gst Alpha, Mu, Pi, Zeta and Rho classes are involved in the crucial physiological processes. In summary, this study provides the

  19. Unusual metal ion catalysis in an acyl-transferase ribozyme.

    PubMed

    Suga, H; Cowan, J A; Szostak, J W

    1998-07-14

    Most studies of the roles of catalytic metal ions in ribozymes have focused on inner-sphere coordination of the divalent metal ions to the substrate or ribozyme. However, divalent metal ions are strongly hydrated in water, and some proteinenzymes, such as Escherichia coli RNase H and exonuclease III, are known to use metal cofactors in their fully hydrated form [Duffy, T. H., and Nowak, T. (1985) Biochemistry 24, 1152-1160; Jou, R., and Cowan, J. A. (1991) J. Am. Chem. Soc. 113, 6685-6686]. It is therefore important to consider the possibility of outer-sphere coordination of catalytic metal ions in ribozymes. We have used an exchange-inert metal complex, cobalt hexaammine, to show that the catalytic metal ion in an acyl-transferase ribozyme acts through outer-sphere coordination. Our studies provide an example of a fully hydrated Mg2+ ion that plays an essential role in ribozyme catalysis. Kinetic studies of wild-type and mutant ribozymes suggest that a pair of tandem G:U wobble base pairs adjacent to the reactive center constitute the metal-binding site. This result is consistent with recent crystallographic studies [Cate, J. H., and Doudna, J. A. (1996) Structure 4, 1221-1229; Cate, J. H., Gooding, A. R., Podell, E., Zhou, K., Golden, B. L., Kundrot, C. E., Cech, T. R., and Doudna, J. A. (1996) Science 273, 1678-1685; Cate, J. H., Hanna, R. L., and Doudna, J. A. (1997) Nat. Struct. Biol. 4, 553-558] showing that tandem wobble base pairs are good binding sites for metal hexaammines. We propose a model in which the catalytic metal ion is bound in the major groove of the tandem wobble base pairs, is precisely positioned by the ribozyme within the active site, and stabilizes the developing oxyanion in the transition state. Our results may have significant implications for understanding the mechanism of protein synthesis [Noller, H. F., Hoffarth, V., and Zimniak, L. (1992) Science 256, 1416-1419].

  20. Peptidyl transferase inhibition by the nascent leader peptide of an inducible cat gene.

    PubMed Central

    Gu, Z; Rogers, E J; Lovett, P S

    1993-01-01

    The site of ribosome stalling in the leader of cat transcripts is critical to induction of downstream translation. Site-specific stalling requires translation of the first five leader codons and the presence of chloramphenicol, a sequence-independent inhibitor of ribosome elongation. We demonstrate in this report that a synthetic peptide (the 5-mer) corresponding to the N-terminal five codons of the cat-86 leader inhibits peptidyl transferase in vitro. The N-terminal 2-, 3-, and 4-mers and the reverse 5-mer (reverse amino acid sequence of the 5-mer) are virtually without effect on peptidyl transferase. A missense mutation in the cat-86 leader that abolishes induction in vivo corresponds to an amino acid replacement in the 5-mer that completely relieves peptidyl transferase inhibition. In contrast, a missense mutation that does not interfere with in vivo induction corresponds to an amino acid replacement in the 5-mer that does not significantly alter peptidyl transferase inhibition. Our results suggest that peptidyl transferase inhibition by the nascent cat-86 5-mer peptide may be the primary determinant of the site of ribosome stalling in the leader. A model based on this concept can explain the site specificity of ribosome stalling as well as the response of induction to very low levels of the antibiotic inducer. Images PMID:7690023

  1. Structure of succinyl-CoA:3-ketoacid CoA transferase from Drosophila melanogaster

    PubMed Central

    Zhang, Min; Xu, Han-Yang; Wang, Yi-Cui; Shi, Zhu-Bing; Zhang, Nan-Nan

    2013-01-01

    Succinyl-CoA:3-ketoacid CoA transferase (SCOT) plays a crucial role in ketone-body metabolism. SCOT from Drosophila melanogaster (DmSCOT) was purified and crystallized. The crystal structure of DmSCOT was determined at 2.64 Å resolution and belonged to space group P212121, with unit-cell parameters a = 76.638, b = 101.921, c = 122.457 Å, α = β = γ = 90°. Sequence alignment and structural analysis identified DmSCOT as a class I CoA transferase. Compared with Acetobacter aceti succinyl-CoA:acetate CoA transferase, DmSCOT has a different substrate-binding pocket, which may explain the difference in their substrate specificities. PMID:24100554

  2. Alkaline Phosphatase, Soluble Extracellular Adenine Nucleotides, and Adenosine Production after Infant Cardiopulmonary Bypass

    PubMed Central

    Davidson, Jesse A.; Urban, Tracy; Tong, Suhong; Twite, Mark; Woodruff, Alan

    2016-01-01

    Rationale Decreased alkaline phosphatase activity after infant cardiac surgery is associated with increased post-operative cardiovascular support requirements. In adults undergoing coronary artery bypass grafting, alkaline phosphatase infusion may reduce inflammation. Mechanisms underlying these effects have not been explored but may include decreased conversion of extracellular adenine nucleotides to adenosine. Objectives 1) Evaluate the association between alkaline phosphatase activity and serum conversion of adenosine monophosphate to adenosine after infant cardiac surgery; 2) assess if inhibition/supplementation of serum alkaline phosphatase modulates this conversion. Methods and Research Pre/post-bypass serum samples were obtained from 75 infants <4 months of age. Serum conversion of 13C5-adenosine monophosphate to 13C5-adenosine was assessed with/without selective inhibition of alkaline phosphatase and CD73. Low and high concentration 13C5-adenosine monophosphate (simulating normal/stress concentrations) were used. Effects of alkaline phosphatase supplementation on adenosine monophosphate clearance were also assessed. Changes in serum alkaline phosphatase activity were strongly correlated with changes in 13C5-adenosine production with or without CD73 inhibition (r = 0.83; p<0.0001). Serum with low alkaline phosphatase activity (≤80 U/L) generated significantly less 13C5-adenosine, particularly in the presence of high concentration 13C5-adenosine monophosphate (10.4μmol/L vs 12.9μmol/L; p = 0.0004). Inhibition of alkaline phosphatase led to a marked decrease in 13C5-adenosine production (11.9μmol/L vs 2.7μmol/L; p<0.0001). Supplementation with physiologic dose human tissue non-specific alkaline phosphatase or high dose bovine intestinal alkaline phosphatase doubled 13C5-adenosine monophosphate conversion to 13C5-adenosine (p<0.0001). Conclusions Alkaline phosphatase represents the primary serum ectonucleotidase after infant cardiac surgery and low post

  3. Multiple Decay Mechanisms and 2D-UV Spectroscopic Fingerprints of Singlet Excited Solvated Adenine-Uracil Monophosphate.

    PubMed

    Li, Quansong; Giussani, Angelo; Segarra-Martí, Javier; Nenov, Artur; Rivalta, Ivan; Voityuk, Alexander A; Mukamel, Shaul; Roca-Sanjuán, Daniel; Garavelli, Marco; Blancafort, Lluís

    2016-05-23

    The decay channels of singlet excited adenine uracil monophosphate (ApU) in water are studied with CASPT2//CASSCF:MM potential energy calculations and simulation of the 2D-UV spectroscopic fingerprints with the aim of elucidating the role of the different electronic states of the stacked conformer in the excited state dynamics. The adenine (1) La state can decay without a barrier to a conical intersection with the ground state. In contrast, the adenine (1) Lb and uracil S(U) states have minima that are separated from the intersections by sizeable barriers. Depending on the backbone conformation, the CT state can undergo inter-base hydrogen transfer and decay to the ground state through a conical intersection, or it can yield a long-lived minimum stabilized by a hydrogen bond between the two ribose rings. This suggests that the (1) Lb , S(U) and CT states of the stacked conformer may all contribute to the experimental lifetimes of 18 and 240 ps. We have also simulated the time evolution of the 2D-UV spectra and provide the specific fingerprint of each species in a recommended probe window between 25 000 and 38 000 cm(-1) in which decongested, clearly distinguishable spectra can be obtained. This is expected to allow the mechanistic scenarios to be discerned in the near future with the help of the corresponding experiments. Our results reveal the complexity of the photophysics of the relatively small ApU system, and the potential of 2D-UV spectroscopy to disentangle the photophysics of multichromophoric systems. PMID:27113273

  4. High-spin ferric ions in Saccharomyces cerevisiae vacuoles are reduced to the ferrous state during adenine-precursor detoxification.

    PubMed

    Park, Jinkyu; McCormick, Sean P; Cockrell, Allison L; Chakrabarti, Mrinmoy; Lindahl, Paul A

    2014-06-24

    The majority of Fe in Fe-replete yeast cells is located in vacuoles. These acidic organelles store Fe for use under Fe-deficient conditions and they sequester it from other parts of the cell to avoid Fe-associated toxicity. Vacuolar Fe is predominantly in the form of one or more magnetically isolated nonheme high-spin (NHHS) Fe(III) complexes with polyphosphate-related ligands. Some Fe(III) oxyhydroxide nanoparticles may also be present in these organelles, perhaps in equilibrium with the NHHS Fe(III). Little is known regarding the chemical properties of vacuolar Fe. When grown on adenine-deficient medium (A↓), ADE2Δ strains of yeast such as W303 produce a toxic intermediate in the adenine biosynthetic pathway. This intermediate is conjugated with glutathione and shuttled into the vacuole for detoxification. The iron content of A↓ W303 cells was determined by Mössbauer and EPR spectroscopies. As they transitioned from exponential growth to stationary state, A↓ cells (supplemented with 40 μM Fe(III) citrate) accumulated two major NHHS Fe(II) species as the vacuolar NHHS Fe(III) species declined. This is evidence that vacuoles in A↓ cells are more reducing than those in adenine-sufficient cells. A↓ cells suffered less oxidative stress despite the abundance of NHHS Fe(II) complexes; such species typically promote Fenton chemistry. Most Fe in cells grown for 5 days with extra yeast-nitrogen-base, amino acids and bases in minimal medium was HS Fe(III) with insignificant amounts of nanoparticles. The vacuoles of these cells might be more acidic than normal and can accommodate high concentrations of HS Fe(III) species. Glucose levels and rapamycin (affecting the TOR system) affected cellular Fe content. This study illustrates the sensitivity of cellular Fe to changes in metabolism, redox state and pH. Such effects broaden our understanding of how Fe and overall cellular metabolism are integrated. PMID:24919141

  5. Multiple Decay Mechanisms and 2D-UV Spectroscopic Fingerprints of Singlet Excited Solvated Adenine-Uracil Monophosphate.

    PubMed

    Li, Quansong; Giussani, Angelo; Segarra-Martí, Javier; Nenov, Artur; Rivalta, Ivan; Voityuk, Alexander A; Mukamel, Shaul; Roca-Sanjuán, Daniel; Garavelli, Marco; Blancafort, Lluís

    2016-05-23

    The decay channels of singlet excited adenine uracil monophosphate (ApU) in water are studied with CASPT2//CASSCF:MM potential energy calculations and simulation of the 2D-UV spectroscopic fingerprints with the aim of elucidating the role of the different electronic states of the stacked conformer in the excited state dynamics. The adenine (1) La state can decay without a barrier to a conical intersection with the ground state. In contrast, the adenine (1) Lb and uracil S(U) states have minima that are separated from the intersections by sizeable barriers. Depending on the backbone conformation, the CT state can undergo inter-base hydrogen transfer and decay to the ground state through a conical intersection, or it can yield a long-lived minimum stabilized by a hydrogen bond between the two ribose rings. This suggests that the (1) Lb , S(U) and CT states of the stacked conformer may all contribute to the experimental lifetimes of 18 and 240 ps. We have also simulated the time evolution of the 2D-UV spectra and provide the specific fingerprint of each species in a recommended probe window between 25 000 and 38 000 cm(-1) in which decongested, clearly distinguishable spectra can be obtained. This is expected to allow the mechanistic scenarios to be discerned in the near future with the help of the corresponding experiments. Our results reveal the complexity of the photophysics of the relatively small ApU system, and the potential of 2D-UV spectroscopy to disentangle the photophysics of multichromophoric systems.

  6. Quantitative Subtractively Normalized Interfacial Fourier Transform Infrared Reflection Spectroscopy Study of the Adsorption of Adenine on Au(111) Electrodes.

    PubMed

    Prieto, Francisco; Su, Zhangfei; Leitch, J Jay; Rueda, Manuela; Lipkowski, Jacek

    2016-04-26

    Quantitative subtractively normalized interfacial Fourier transform infrared reflection spectroscopy (SNIFTIRS) was used to determine the molecular orientation and identify the metal-molecular interactions responsible for the adsorption of adenine from the bulk electrolyte solution onto the surface of the Au(111) electrode. The recorded p-polarized IR spectra of the adsorbed species were subtracted from the collected s-polarized IR spectra to remove the IR contributions of the vibrational bands of the desorbed molecules that are located within the thin layer cavity of the spectroelectrochemical cell. The intense IR band around 1640 cm(-1), which is assigned to the pyrimidine ring stretching vibrations of the C5-C6 and C6-N10 bonds, and the IR band at 1380 cm(-1), which results from a combination of the ring stretching vibration of the C5-C7 bond and the in-plane CH bending vibration, were selected for the quantitative analysis measurements. The transition dipoles of these bands were evaluated by DFT calculations. Their orientations differed by 85 ± 5°. The tilt angles of adsorbed adenine molecules were calculated from the intensity of these two vibrations at different potentials. The results indicate that the molecular plane is tilted at an angle of 40° with respect to the surface normal of the electrode and rotates by 16° around its normal axis with increasing electrode potential. This orientation results from the chemical interaction between the N10 and gold atoms coupled with the π-π parallel stacking interactions between the adjacent adsorbed molecules. Furthermore, the changes in the molecular plane rotation with the electric field suggests that the N1 atom of adenine must also participate in the interaction between the molecule and metal.

  7. High-NaCl diet impairs dynamic renal blood flow autoregulation in rats with adenine-induced chronic renal failure.

    PubMed

    Saeed, Aso; DiBona, Gerald F; Grimberg, Elisabeth; Nguy, Lisa; Mikkelsen, Minne Line Nedergaard; Marcussen, Niels; Guron, Gregor

    2014-03-15

    This study examined the effects of 2 wk of high-NaCl diet on kidney function and dynamic renal blood flow autoregulation (RBFA) in rats with adenine-induced chronic renal failure (ACRF). Male Sprague-Dawley rats received either chow containing adenine or were pair-fed an identical diet without adenine (controls). After 10 wk, rats were randomized to either remain on the same diet (0.6% NaCl) or to be switched to high 4% NaCl chow. Two weeks after randomization, renal clearance experiments were performed under isoflurane anesthesia and dynamic RBFA, baroreflex sensitivity (BRS), systolic arterial pressure variability (SAPV), and heart rate variability were assessed by spectral analytical techniques. Rats with ACRF showed marked reductions in glomerular filtration rate and renal blood flow (RBF), whereas mean arterial pressure and SAPV were significantly elevated. In addition, spontaneous BRS was reduced by ∼50% in ACRF animals. High-NaCl diet significantly increased transfer function fractional gain values between arterial pressure and RBF in the frequency range of the myogenic response (0.06-0.09 Hz) only in ACRF animals (0.3 ± 4.0 vs. -4.4 ± 3.8 dB; P < 0.05). Similarly, a high-NaCl diet significantly increased SAPV in the low-frequency range only in ACRF animals. To conclude, a 2-wk period of a high-NaCl diet in ACRF rats significantly impaired dynamic RBFA in the frequency range of the myogenic response and increased SAPV in the low-frequency range. These abnormalities may increase the susceptibility to hypertensive end-organ injury and progressive renal failure by facilitating pressure transmission to the microvasculature.

  8. Photoaffinity Labeling of High Affinity Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP)-Binding Proteins in Sea Urchin Egg*♦

    PubMed Central

    Walseth, Timothy F.; Lin-Moshier, Yaping; Jain, Pooja; Ruas, Margarida; Parrington, John; Galione, Antony; Marchant, Jonathan S.; Slama, James T.

    2012-01-01

    Nicotinic acid adenine dinucleotide phosphate (NAADP) is a messenger that regulates calcium release from intracellular acidic stores. Recent studies have identified two-pore channels (TPCs) as endolysosomal channels that are regulated by NAADP; however, the nature of the NAADP receptor binding site is unknown. To further study NAADP binding sites, we have synthesized and characterized [32P-5-azido]nicotinic acid adenine dinucleotide phosphate ([32P-5N3]NAADP) as a photoaffinity probe. Photolysis of sea urchin egg homogenates preincubated with [32P-5N3]NAADP resulted in specific labeling of 45-, 40-, and 30-kDa proteins, which was prevented by inclusion of nanomolar concentrations of unlabeled NAADP or 5N3-NAADP, but not by micromolar concentrations of structurally related nucleotides such as NAD, nicotinic acid adenine dinucleotide, nicotinamide mononucleotide, nicotinic acid, or nicotinamide. [32P-5N3]NAADP binding was saturable and displayed high affinity (Kd ∼10 nm) in both binding and photolabeling experiments. [32P-5N3]NAADP photolabeling was irreversible in a high K+ buffer, a hallmark feature of NAADP binding in the egg system. The proteins photolabeled by [32P-5N3]NAADP have molecular masses smaller than the sea urchin TPCs, and antibodies to TPCs do not detect any immunoreactivity that comigrates with either the 45-kDa or the 40-kDa photolabeled proteins. Interestingly, antibodies to TPC1 and TPC3 were able to immunoprecipitate a small fraction of the 45- and 40-kDa photolabeled proteins, suggesting that these proteins associate with TPCs. These data suggest that high affinity NAADP binding sites are distinct from TPCs. PMID:22117077

  9. N-Sulfomethylation of guanine, adenine and cytosine with formaldehyde-bisulfite. A selective modification of guanine in DNA.

    PubMed

    Hayatsu, H; Yamashita, Y; Yui, S; Yamagata, Y; Tomita, K; Negishi, K

    1982-10-25

    When guanine-, adenine- and cytosine-nucleosides and nucleotides were treated with formaldehyde and then with bisulfite, stable N-sulfomethyl compounds were formed. N2-Sulfomethylguanine, N6-sulfomethyladenine, N4-sulfomthylcytosine and N6-sulfomethyl-9-beta-D-arabinofuranosyladenine were isolated as crystals and characterized. A guanine-specific sulfomethylation was brought about by treatment and denatured single-stranded DNA with formaldehyde and then with bisulfite at pH 7 and 4 degrees C. Since native double-stranded DNA was not modified by this treatment, this new method of modification is expected to be useful as a conformational probe for polynucleotides. PMID:7177848

  10. N-Sulfomethylation of guanine, adenine and cytosine with formaldehyde-bisulfite. A selective modification of guanine in DNA.

    PubMed Central

    Hayatsu, H; Yamashita, Y; Yui, S; Yamagata, Y; Tomita, K; Negishi, K

    1982-01-01

    When guanine-, adenine- and cytosine-nucleosides and nucleotides were treated with formaldehyde and then with bisulfite, stable N-sulfomethyl compounds were formed. N2-Sulfomethylguanine, N6-sulfomethyladenine, N4-sulfomthylcytosine and N6-sulfomethyl-9-beta-D-arabinofuranosyladenine were isolated as crystals and characterized. A guanine-specific sulfomethylation was brought about by treatment and denatured single-stranded DNA with formaldehyde and then with bisulfite at pH 7 and 4 degrees C. Since native double-stranded DNA was not modified by this treatment, this new method of modification is expected to be useful as a conformational probe for polynucleotides. PMID:7177848

  11. N-Sulfomethylation of guanine, adenine and cytosine with formaldehyde-bisulfite. A selective modification of guanine in DNA.

    PubMed

    Hayatsu, H; Yamashita, Y; Yui, S; Yamagata, Y; Tomita, K; Negishi, K

    1982-10-25

    When guanine-, adenine- and cytosine-nucleosides and nucleotides were treated with formaldehyde and then with bisulfite, stable N-sulfomethyl compounds were formed. N2-Sulfomethylguanine, N6-sulfomethyladenine, N4-sulfomthylcytosine and N6-sulfomethyl-9-beta-D-arabinofuranosyladenine were isolated as crystals and characterized. A guanine-specific sulfomethylation was brought about by treatment and denatured single-stranded DNA with formaldehyde and then with bisulfite at pH 7 and 4 degrees C. Since native double-stranded DNA was not modified by this treatment, this new method of modification is expected to be useful as a conformational probe for polynucleotides.

  12. An ab initio Study of Decay Mechanism of Adenine: the Facile Path of the Amino NH Bond Cleavage

    NASA Astrophysics Data System (ADS)

    Conti, Irene; Garavelli, Marco; Orlandi, Giorgio

    2007-12-01

    A comprehensive study of the radiationless decay processes of the lowest excited singlet states in the isolated 9H-Adenine has been performed at the CASPT2//CASSCF level. The minimum energy paths of the La, Lb and nπ* singlet states along different skeletal distortions have been computed and the Conical Intersections (CIs) involving these states have been determined. The fast deactivation path of La along a skeletal deformation, which leads to a S0/La CI, as previously discussed, is confirmed. Moreover, low-lying CIs between S0 and πσ* singlet states have been characterized, where σ* is the antibonding orbital localized on a N-H bond of the amino (πσNH2*) or of the azine group (πσN9H*). We have found that the repulsive πσNH2* state associated with an amino N-H bond can be populated through a barrierless way. Therefore, the decay path shows a bifurcation leading to two possible ways of radiationless deactivation: on one hand a non-photochemical decay through the S0/La or S0/nπ* CIs and on the other hand a photochemical process via the possible access to the S0/πσNH2* CI that produces N-H cleavage. In this way, we can explain the H atom loss found upon UV excitation. We have considered also the decay of higher energy bright states. We have found that these states can decay also by converting to the repulsive πσN9H* state associated with the azine NH bond. This new channel suggests an increase of H-atom photoproduction yield by excitating Adenine with lower wavelength radiations. The study of the decay processes of an Adenine molecule in the double strand d(A)10ṡd(T)10 in water solvent is currently underway: Adenine is treated by the Quantum Mechanical (QM) approach and the remaining molecules are described at the Molecular Mechanics (MM) level. We use the COBRAMM program that is a tunable QM/MM approach to complex molecular architectures developed by our research group.

  13. Kinetics and Thermodynamics of the Reaction between the (•)OH Radical and Adenine: A Theoretical Investigation.

    PubMed

    Milhøj, Birgitte O; Sauer, Stephan P A

    2015-06-18

    The accessibility of all possible reaction paths for the reaction between the nucleobase adenine and the (•)OH radical is investigated through quantum chemical calculations of barrier heights and rate constants at the ωB97X-D/6-311++G(2df,2pd) level with Eckart tunneling corrections. First the computational method is validated by considering the hydrogen abstraction from the heterocyclic N9 nitrogen in adenine as a test system. Geometries for all molecules in the reaction are optimized with four different DFT exchange-correlation functionals (B3LYP, BHandHLYP, M06-2X, and ωB97X-D), in combination with Pople and Dunning basis sets, all of which have been employed in similar investigations in the literature. Improved energies are obtained through single point calculations with CCSD(T) and the same basis sets, and reaction rate constants are calculated for all methods both without tunneling corrections and with the Wigner, Bell, and Eckart corrections. In comparison to CCSD(T)//BHandHLYP/aug-cc-pVTZ reference results, the ωB97X-D/6-311++G(2df,2pd) method combined with Eckart tunneling corrections provides a sensible compromise between accuracy and time. Using this method, all subreactions of the reaction between adenine and the (•)OH radical are investigated. The total rate constants for hydrogen abstraction and addition for adenine are predicted with this method to be 1.06 × 10(-12) and 1.10 × 10(-12) cm(3) molecules(-1) s(-1), respectively. Abstractions of H61 and H62 contribute the most, while only addition to the C8 carbon is found to be of any significance, in contrast to previous claims that addition is the dominant reaction pathway. The overall rate constant for the complete reaction is found to be 2.17 × 10(-12) cm(3) molecules(-1) s(-1), which agrees exceptionally well with experimental results.

  14. Regioselective Palmitoylation of 9-(2,3-Dihydroxy- propyl)adenine Catalyzed by a Glycopolymer-enzyme Conjugate.

    PubMed

    Brabcová, Jana; Blažek, Jiří; Krečmerová, Marcela; Vondrášek, Jiří; Palomo, Jose M; Zarevúcka, Marie

    2016-05-16

    The enzymatic regioselective monopalmitoylation of racemic 9-(2,3-dihydroxypropyl)- adenine (DHPA), an approved antiviral agent, has been performed by an immobilized form of Candida antarctica B lipase (CAL-B) using a 4:1 DMF/hexane mixture as the reaction medium. To improve the chemical yield of the desired monopalmitoylation reaction, solid-phase chemical modifications of the lipase were evaluated. The reaction yield was successfully increased obtaining 100% product after a second treatment of the product solution with fresh immobilised chemically glycosylated-CAL-B.

  15. Activity Detection of GalNAc Transferases by Protein-Based Fluorescence Sensors In Vivo.

    PubMed

    Song, Lina; Bachert, Collin; Linstedt, Adam D

    2016-01-01

    Mucin-type O-glycosylation occurring in the Golgi apparatus is an important protein posttranslational modification initiated by up to 20 GalNAc-transferase isozymes with largely distinct substrate specificities. Regulation of this enzyme family affects a vast array of proteins transiting the secretory pathway and misregulation causes human diseases. Here we describe the use of protein-based fluorescence sensors that traffic in the secretory pathway to monitor GalNAc-transferase activity in living cells. The sensors can either be "pan" or isozyme specific.

  16. Activity Detection of GalNAc Transferases by Protein-Based Fluorescence Sensors In Vivo.

    PubMed

    Song, Lina; Bachert, Collin; Linstedt, Adam D

    2016-01-01

    Mucin-type O-glycosylation occurring in the Golgi apparatus is an important protein posttranslational modification initiated by up to 20 GalNAc-transferase isozymes with largely distinct substrate specificities. Regulation of this enzyme family affects a vast array of proteins transiting the secretory pathway and misregulation causes human diseases. Here we describe the use of protein-based fluorescence sensors that traffic in the secretory pathway to monitor GalNAc-transferase activity in living cells. The sensors can either be "pan" or isozyme specific. PMID:27632006

  17. Reactivity of nitrogen atoms in adenine and (Ade)2Cu complexes towards ribose and 2-furanmethanol: Formation of adenosine and kinetin.

    PubMed

    Nashalian, Ossanna; Yaylayan, Varoujan A

    2017-01-15

    To explore the interaction of nucleosides and nucleobases in the context of the Maillard reaction and to identify the selectivity of purine nitrogen atoms towards various electrophiles, model systems composed of adenine or adenosine, glycine, ribose and/or 2-furanmethanol (with and without copper) were studied in aqueous solutions heated at 110°C for 2h and subsequently analyzed by ESI/qTOF/MS/MS in addition to isotope labelling techniques. The results indicated that ribose selectively formed mono-ribosylated N(6) adenine, but in the presence of (Ade)2Cu complex the reaction mixture generated mono-, di- and tri-substituted sugar complexes and their hydrolysis products of mono-ribosylated N(6) and N(9) adenine adducts and di-ribosylated N(6,9) adenine. Furthermore, the reaction of 2-furanmethanol with adenine in the presence of ribose generated kinetin and its isomer, while its reaction with adenosine generated kinetin riboside, as confirmed by comparing the MS/MS profiles of these adducts to those of commercial standards. PMID:27542499

  18. Purification and Biochemical Characterization of Glutathione S-Transferase from Down Syndrome and Normal Children Erythrocytes: A Comparative Study

    ERIC Educational Resources Information Center

    Hamed, Ragaa R.; Maharem, Tahany M.; Abdel-Meguid, Nagwa; Sabry, Gilane M.; Abdalla, Abdel-Monem; Guneidy, Rasha A.

    2011-01-01

    Down syndrome (DS) is the phenotypic manifestation of trisomy 21. Our study was concerned with the characterization and purification of glutathione S-transferase enzyme (GST) from normal and Down syndrome (DS) erythrocytes to illustrate the difference in the role of this enzyme in the cell. Glutathione S-transferase and glutathione (GSH) was…

  19. Characterization of a DNA Adenine Methyltransferase Gene of Borrelia hermsii and Its Dispensability for Murine Infection and Persistence.

    PubMed

    James, Allison E; Rogovskyy, Artem S; Crowley, Michael A; Bankhead, Troy

    2016-01-01

    DNA methyltransferases have been implicated in the regulation of virulence genes in a number of pathogens. Relapsing fever Borrelia species harbor a conserved, putative DNA methyltransferase gene on their chromosome, while no such ortholog can be found in the annotated genome of the Lyme disease agent, Borrelia burgdorferi. In the relapsing fever species Borrelia hermsii, the locus bh0463A encodes this putative DNA adenine methyltransferase (dam). To verify the function of the BH0463A protein product as a Dam, the gene was cloned into a Dam-deficient strain of Escherichia coli. Restriction fragment analysis subsequently demonstrated that complementation of this E. coli mutant with bh0463A restored adenine methylation, verifying bh0463A as a Dam. The requirement of bh0463A for B. hermsii viability, infectivity, and persistence was then investigated by genetically disrupting the gene. The dam- mutant was capable of infecting immunocompetent mice, and the mean level of spirochetemia in immunocompetent mice was not significantly different from wild type B. hermsii. Collectively, the data indicate that dam is dispensable for B. hermsii viability, infectivity, and persistence. PMID:27195796

  20. Characterization of a DNA Adenine Methyltransferase Gene of Borrelia hermsii and Its Dispensability for Murine Infection and Persistence

    PubMed Central

    James, Allison E.; Rogovskyy, Artem S.; Crowley, Michael A.; Bankhead, Troy

    2016-01-01

    DNA methyltransferases have been implicated in the regulation of virulence genes in a number of pathogens. Relapsing fever Borrelia species harbor a conserved, putative DNA methyltransferase gene on their chromosome, while no such ortholog can be found in the annotated genome of the Lyme disease agent, Borrelia burgdorferi. In the relapsing fever species Borrelia hermsii, the locus bh0463A encodes this putative DNA adenine methyltransferase (dam). To verify the function of the BH0463A protein product as a Dam, the gene was cloned into a Dam-deficient strain of Escherichia coli. Restriction fragment analysis subsequently demonstrated that complementation of this E. coli mutant with bh0463A restored adenine methylation, verifying bh0463A as a Dam. The requirement of bh0463A for B. hermsii viability, infectivity, and persistence was then investigated by genetically disrupting the gene. The dam- mutant was capable of infecting immunocompetent mice, and the mean level of spirochetemia in immunocompetent mice was not significantly different from wild type B. hermsii. Collectively, the data indicate that dam is dispensable for B. hermsii viability, infectivity, and persistence. PMID:27195796

  1. BF0801, a novel adenine derivative, inhibits platelet activation via phosphodiesterase inhibition and P2Y12 antagonism.

    PubMed

    Zhang, Si; Hu, Liang; Du, Hongguang; Guo, Yan; Zhang, Yan; Niu, Haixia; Jin, Jianguo; Zhang, Jian; Liu, Junling; Zhang, Xiaohui; Kunapuli, Satya P; Ding, Zhongren

    2010-10-01

    Though antiplatelet drugs are proven beneficial to patients with coronary heart disease and stroke, more effective and safer antiplatelet drugs are still needed. In this study we report the antiplatelet effects and mechanism of BF0801, a novel adenine derivative. BF0801 dramatically inhibited platelet aggregation and ATP release induced by ADP, 2MeSADP, AYPGKF, SFLLRN or convulxin without affecting shape change in vitro . It also potentiated the inhibitory effects of adenosine-based P2Y12 antagonist AR-C69931MX or phosphodiesterase (PDE) inhibitor IBMX on platelet aggregation. The cAMP levels in both resting and forskolin-stimulated platelets were increased by BF0801 suggesting its PDE inhibitor activity, which is further confirmed by the concentration-dependent suppression of BF0801 on the native and recombinant PDE. Similar to AR-C69931MX, BF0801 drastically inhibited 2MeSADP- induced adenylyl cyclase inhibition in platelets indicating its P2Y12 antagonism activity, which is substantiated by the inhibition of BF0801 on the interaction between ADP and P2Y12 receptor expressed in CHO-K1 cells measured by atomic force microscopy. Moreover, we confirmed the antiplatelet effects of BF0801 using platelets from rats intravenously given BF0801. In summary, for the first time we developed a novel adenine derivative bearing dual activities of PDE inhibition and P2Y12 antagonism, which may have therapeutic advantage as a potential antithrombotic drug. PMID:20806121

  2. Modified Iterative Extended Hueckel. 2: Application to the interaction of Na(+), Na(+)(aq.), Mg(+)-2(aq.) with adenine and thymine

    NASA Technical Reports Server (NTRS)

    Aronowitz, S.; Macelroy, R.; Chang, S.

    1980-01-01

    Modified Iterative Extended Hueckel, which includes explicit effective internuclear and electronic interactions, is applied to the study of the energetics of Na(+),Mg(+), Na(+) (aqueous), and Mg(+2) (aqueous) ions approaching various possible binding sites on adenine and thymine. Results for the adenine + ion and thymine + ion are in good qualitative agreement with ab initio work on analogous systems. Energy differences between competing sites are in excellent agreement. Hydration appears to be a critical factor in determining favorable binding sites. That the adenine Nl and N3 sites cannot displace a water molecule from the hydrated cation indicates that they are not favorable binding sites in aqueous media. Of those sites investigated, 04 was the most favorable binding site on the thymine for the bare Na(+). However, the 02 site was the most favorable binding site for either hydrated cation.

  3. DNA sequence-specific adenine alkylation by the novel antitumor drug tallimustine (FCE 24517), a benzoyl nitrogen mustard derivative of distamycin.

    PubMed Central

    Broggini, M; Coley, H M; Mongelli, N; Pesenti, E; Wyatt, M D; Hartley, J A; D'Incalci, M

    1995-01-01

    FCE 24517, a novel distamycin derivative possessing potent antitumor activity, is under initial clinical investigation in Europe. In spite of the presence of a benzoyl nitrogen mustard group this compound fails to alkylate the N7 position of guanine, the major site of alkylation by conventional nitrogen mustards. Characterisation of DNA-drug adducts revealed only a very low level of adenine adduct formation. Using a modified Maxam-Gilbert sequencing method the consensus sequence for FCE 24517-adenine adduct formation was found to be 5'-TTTTGA-3'. A single base modification in the hexamer completely abolishes the alkylation of adenine. Using a Taq polymerase stop assay alkylations were confirmed at the A present in the hexamer TTTTGA and, in addition, in one out of three TTTTAA sequences present in the plasmid utilized. The sequence specificity of alkylation by FCE 24517 is therefore the most striking yet observed for an alkylating agent of small molecular weight. Images PMID:7870593

  4. Preliminary X-ray crystallographic analysis of glutathione transferase zeta 1 (GSTZ1a-1a)

    SciTech Connect

    Boone, Christopher D.; Zhong, Guo; Smeltz, Marci; James, Margaret O. McKenna, Robert

    2014-01-21

    Crystals of glutathione transferase zeta 1 were grown and shown to diffract X-rays to 3.1 Å resolution. They belonged to space group P1, with unit-cell parameters a = 42.0, b = 49.6, c = 54.6 Å, α = 82.9, β = 69.9, γ = 73.4°.

  5. A tyrosine-reactive irreversible inhibitor for glutathione S-transferase Pi (GSTP1).

    PubMed

    Crawford, L A; Weerapana, E

    2016-05-24

    Glutathione S-transferase Pi (GSTP1) mediates cellular defense against reactive electrophiles. Here, we report LAS17, a dichlorotriazine-containing compound that irreversibly inhibits GSTP1 and is selective for GSTP1 within cellular proteomes. Mass spectrometry and mutational studies identified Y108 as the site of modification, providing a unique mode of GSTP1 inhibition. PMID:27113843

  6. Maize white seedling 3 results from disruption of homogentisate solanesyl transferase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize white seedling 3 (w3) has served as a model albino-seedling mutant since its discovery in 1923. We show here that the w3 phenotype is caused by disruptions in homogentisate solanesyl transferase (HST), an enzyme that catalyzes the committed step in plastoquinone-9 (PQ9) biosynthesis. This re...

  7. Glutathione S-transferase class mu in French alcoholic cirrhotic patients.

    PubMed

    Groppi, A; Coutelle, C; Fleury, B; Iron, A; Begueret, J; Couzigou, P

    1991-09-01

    The lack of glutathione S-transferase mu (GST mu) was examined in 45 healthy French Caucasians and 45 alcoholic cirrhotic French Caucasians: microsamples of blood were taken and DNA amplified by the polymerase chain reaction. We have concluded that there is no relationship between this genotype and the development of alcoholic cirrhosis in these heavy consumers of ethanol.

  8. 21 CFR 573.130 - Aminoglycoside 3′-phospho- transferase II.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... genetically modified cotton, oilseed rape, and tomatoes in accordance with the following prescribed conditions... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aminoglycoside 3â²-phospho- transferase II. 573.130 Section 573.130 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND...

  9. 21 CFR 573.130 - Aminoglycoside 3′-phospho- transferase II.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... genetically modified cotton, oilseed rape, and tomatoes in accordance with the following prescribed conditions... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Aminoglycoside 3â²-phospho- transferase II. 573.130 Section 573.130 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND...

  10. 21 CFR 573.130 - Aminoglycoside 3′-phospho- transferase II.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... genetically modified cotton, oilseed rape, and tomatoes in accordance with the following prescribed conditions... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Aminoglycoside 3â²-phospho- transferase II. 573.130 Section 573.130 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND...

  11. 21 CFR 573.130 - Aminoglycoside 3′-phospho- transferase II.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... genetically modified cotton, oilseed rape, and tomatoes in accordance with the following prescribed conditions... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Aminoglycoside 3â²-phospho- transferase II. 573.130 Section 573.130 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND...

  12. 21 CFR 573.130 - Aminoglycoside 3′-phospho- transferase II.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... genetically modified cotton, oilseed rape, and tomatoes in accordance with the following prescribed conditions... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Aminoglycoside 3â²-phospho- transferase II. 573.130 Section 573.130 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND...

  13. Development of isoform-specific sensors of polypeptide GalNAc-transferase activity.

    PubMed

    Song, Lina; Bachert, Collin; Schjoldager, Katrine T; Clausen, Henrik; Linstedt, Adam D

    2014-10-31

    Humans express up to 20 isoforms of GalNAc-transferase (herein T1-T20) that localize to the Golgi apparatus and initiate O-glycosylation. Regulation of this enzyme family affects a vast array of proteins transiting the secretory pathway and diseases arise upon misregulation of specific isoforms. Surprisingly, molecular probes to monitor GalNAc-transferase activity are lacking and there exist no effective global or isoform-specific inhibitors. Here we describe the development of T2- and T3-isoform specific fluorescence sensors that traffic in the secretory pathway. Each sensor yielded little signal when glycosylated but was strongly activated in the absence of its glycosylation. Specificity of each sensor was assessed in HEK cells with either the T2 or T3 enzymes deleted. Although the sensors are based on specific substrates of the T2 and T3 enzymes, elements in or near the enzyme recognition sequence influenced their activity and required modification, which we carried out based on previous in vitro work. Significantly, the modified T2 and T3 sensors were activated only in cells lacking their corresponding isozymes. Thus, we have developed T2- and T3-specific sensors that will be valuable in both the study of GalNAc-transferase regulation and in high-throughput screening for potential therapeutic regulators of specific GalNAc-transferases.

  14. 21 CFR 862.1315 - Galactose-1-phosphate uridyl transferase test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Galactose-1-phosphate uridyl transferase test system. 862.1315 Section 862.1315 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... hereditary disease galactosemia (disorder of galactose metabolism) in infants. (b) Classification. Class II....

  15. DNA BINDING POTENTIAL OF BROMODICHLOROMETHANE MEDIATED BY GLUTATHIONE S-TRANSFERASE THETA 1-1

    EPA Science Inventory


    DNA BINDING POTENTIAL OF BROMODICHLOROMETHANE MEDIATED BY GLUTATHIONE S-TRANSFERASE THETA 1-1. R A Pegram1 and M K Ross2. 2Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC; 1Pharmacokinetics Branch, NHEERL, ORD, United States Environmental Protection Ag...

  16. 21 CFR 862.1315 - Galactose-1-phosphate uridyl transferase test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Galactose-1-phosphate uridyl transferase test system. 862.1315 Section 862.1315 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1315...

  17. A practical fluorogenic substrate for high-throughput screening of glutathione S-transferase inhibitors.

    PubMed

    Fujikawa, Yuuta; Morisaki, Fumika; Ogura, Asami; Morohashi, Kana; Enya, Sora; Niwa, Ryusuke; Goto, Shinji; Kojima, Hirotatsu; Okabe, Takayoshi; Nagano, Tetsuo; Inoue, Hideshi

    2015-07-21

    We report a new fluorogenic substrate for glutathione S-transferase (GST), 3,4-DNADCF, enabling the assay with a low level of nonenzymatic background reaction. Inhibitors against Noppera-bo/GSTe14 from Drosophila melanogaster were identified by high throughput screening using 3,4-DNADCF, demonstrating the utility of this substrate.

  18. A tyrosine-reactive irreversible inhibitor for glutathione S-transferase Pi (GSTP1).

    PubMed

    Crawford, L A; Weerapana, E

    2016-05-24

    Glutathione S-transferase Pi (GSTP1) mediates cellular defense against reactive electrophiles. Here, we report LAS17, a dichlorotriazine-containing compound that irreversibly inhibits GSTP1 and is selective for GSTP1 within cellular proteomes. Mass spectrometry and mutational studies identified Y108 as the site of modification, providing a unique mode of GSTP1 inhibition.

  19. GLUTATHIONE S-TRANSFERASE THETA 1-1-DEPENDENT METABOLISM OF THE DISINFECTION BYPRODUCT BROMODICHLOROMETHANE

    EPA Science Inventory

    ABSTRACT
    Bromodichloromethane (BDCM), a prevalent drinking water disinfection by-product, was previously shown to be mutagenic in Salmonella expressing glutathione S-transferase (GST) theta 1-1 (GST T1-1). In the present study, in vitro experiments were performed to study the...

  20. 21 CFR 862.1100 - Aspartate amino transferase (AST/SGOT) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Aspartate amino transferase (AST/SGOT) test system. 862.1100 Section 862.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  1. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Alanine amino transferase (ALT/SGPT) test system. 862.1030 Section 862.1030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  2. 21 CFR 862.1100 - Aspartate amino transferase (AST/SGOT) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Aspartate amino transferase (AST/SGOT) test system. 862.1100 Section 862.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  3. 21 CFR 862.1100 - Aspartate amino transferase (AST/SGOT) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Aspartate amino transferase (AST/SGOT) test system. 862.1100 Section 862.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  4. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Alanine amino transferase (ALT/SGPT) test system. 862.1030 Section 862.1030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  5. 21 CFR 862.1100 - Aspartate amino transferase (AST/SGOT) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Aspartate amino transferase (AST/SGOT) test system. 862.1100 Section 862.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  6. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Alanine amino transferase (ALT/SGPT) test system. 862.1030 Section 862.1030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  7. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Alanine amino transferase (ALT/SGPT) test system. 862.1030 Section 862.1030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  8. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Alanine amino transferase (ALT/SGPT) test system. 862.1030 Section 862.1030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  9. 21 CFR 862.1100 - Aspartate amino transferase (AST/SGOT) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Aspartate amino transferase (AST/SGOT) test system. 862.1100 Section 862.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  10. Erythro-9-(2-hydroxy-3-nonyl) Adenine alone and in combination with 9-beta-D-arabinofuranosyladenine in treatment of systemic herpesvirus infections in mice.

    PubMed Central

    Shannon, W M; Arnett, G; Schabel, F M; North, T W; Cohen, S S

    1980-01-01

    Although the antiviral activity of erythro-9-(2-hydroxy-3-nonyl)adenine, a potent adenosine deaminase inhibitor, against herpes simplex virus type 1 in cell culture was readily confirmed, the compound was found to be totally ineffective in the treatment of experimentally induced systemic herpes simplex virus type 1 infections in Swiss mice. Data were obtained, however, which clearly indicated that the antiviral potency of 9-beta-D-arabinofuranosyladenine in vivo could be enhanced by the co-administration of low, nontoxic doses of erythro-9-(2-hydroxy-3-nonyl)adenine. PMID:6255863

  11. Purification and Characterization of the Staphylococcus aureus Bacillithiol Transferase BstA

    PubMed Central

    Perera, Varahenage R.; Newton, Gerald L.; Parnell, Jonathan M.; Komives, Elizabeth A.; Pogliano, Kit

    2016-01-01

    Background Gram-positive bacteria in the phylum Firmicutes synthesize the low molecular weight thiol bacillithiol rather than glutathione or mycothiol. The bacillithiol transferase YfiT from Bacillus subtilis was identified as a new member of the recently discovered DinB/YfiT-like Superfamily. Based on structural similarity using the Superfamily program, we have determined 30 of 31 Staphylococcus aureus strains encode a single bacillithiol transferase from the DinB/YfiT-like Superfamily, while the remaining strain encodes two proteins. Methods We have cloned, purified, and confirmed the activity of a recombinant bacillithiol transferase (henceforth called BstA) encoded by the S. aureus Newman ORF NWMN_2591. Moreover, we have studied the saturation kinetics and substrate specificity of this enzyme using in vitro biochemical assays. Results BstA was found to be active with the co-substrate bacillithiol, but not with other low molecular weight thiols tested. BstA catalyzed bacillithiol conjugation to the model substrates monochlorobimane, 1-chloro-2,4-dinitrobenzene, and the antibiotic cerulenin. Several other molecules, including the antibiotic rifamycin S, were found to react directly with bacillithiol, but the addition of BstA did not enhance the rate of reaction. Furthermore, cells growing in nutrient rich medium exhibited low BstA activity. Conclusions BstA is a bacillithiol transferase from Staphylococcus aureus that catalyzes the detoxification of cerulenin. Additionally, we have determined that bacillithiol itself might be capable of directly detoxifying electrophilic molecules. General Significance BstA is an active bacillithiol transferase from Staphylococcus aureus Newman and is the first DinB/YfiT-like Superfamily member identified from this organism. Interestingly, BstA is highly divergent from Bacillus subtilis YfiT. PMID:24821014

  12. Effects of increased heart work on glycolysis and adenine nucleotides in the perfused heart of normal and diabetic rats

    PubMed Central

    Opie, L. H.; Mansford, K. R. L.; Owen, Patricia

    1971-01-01

    1. In the isolated perfused rat heart, the contractile activity and the oxygen uptake were varied by altering the aortic perfusion pressure, or by the atrial perfusion technique (`working heart'). 2. The maximum increase in the contractile activity brought about an eightfold increase in the oxygen uptake. The rate of glycolytic flux rose, while tissue contents of hexose monophosphates, citrate, ATP and creatine phosphate decreased, and contents of ADP and AMP rose. 3. The changes in tissue contents of adenine nucleotides during increased heart work were time-dependent. The ATP content fell temporarily (30s and 2min) after the start of left-atrial perfusion; at 5 and 10min values were normal; and at 30 and 60min values were decreased. ADP and AMP values were increased in the first 15min, but were at control values 30 or 60min after the onset of increased heart work. 4. During increased heart work changes in the tissue contents of adenine nucleotide and of citrate appeared to play a role in altered regulation of glycolysis at the level of phosphofructokinase activity. 5. In recirculation experiments increased heart work for 30min was associated with increased entry of [14C]glucose (11.1mm) and glycogen into glycolysis and a comparable increase in formation of products of glycolysis (lactate, pyruvate and 14CO2). There was no major accumulation of intermediates. Glycogen was not a major fuel for respiration. 6. Increased glycolytic flux in Langendorff perfused and working hearts was obtained by the addition of insulin to the perfusion medium. The concomitant increases in the tissue values of hexose phosphates and of citrate contrasted with the decreased values of hexose monophosphates and of citrate during increased glycolytic flux obtained by increased heart work. 7. Decreased glycolytic flux in Langendorff perfused hearts was obtained by using acute alloxan-diabetic and chronic streptozotocin-diabetic rats; in the latter condition there were decreased tissue

  13. Functional Dissection of the Bipartite Active Site of the Class I Coenzyme A (CoA)-Transferase Succinyl-CoA:Acetate CoA-Transferase.

    PubMed

    Murphy, Jesse R; Mullins, Elwood A; Kappock, T Joseph

    2016-01-01

    Coenzyme A (CoA)-transferases catalyze the reversible transfer of CoA from acyl-CoA thioesters to free carboxylates. Class I CoA-transferases produce acylglutamyl anhydride intermediates that undergo attack by CoA thiolate on either the internal or external carbonyl carbon atoms, forming distinct tetrahedral intermediates <3 Å apart. In this study, crystal structures of succinyl-CoA:acetate CoA-transferase (AarC) from Acetobacter aceti are used to examine how the Asn347 carboxamide stabilizes the internal oxyanion intermediate. A structure of the active mutant AarC-N347A bound to CoA revealed both solvent replacement of the missing contact and displacement of the adjacent Glu294, indicating that Asn347 both polarizes and orients the essential glutamate. AarC was crystallized with the nonhydrolyzable acetyl-CoA (AcCoA) analog dethiaacetyl-CoA (1a) in an attempt to trap a closed enzyme complex containing a stable analog of the external oxyanion intermediate. One active site contained an acetylglutamyl anhydride adduct and truncated 1a, an unexpected result hinting at an unprecedented cleavage of the ketone moiety in 1a. Solution studies confirmed that 1a decomposition is accompanied by production of near-stoichiometric acetate, in a process that seems to depend on microbial contamination but not AarC. A crystal structure of AarC bound to the postulated 1a truncation product (2a) showed complete closure of one active site per dimer but no acetylglutamyl anhydride, even with acetate added. These findings suggest that an activated acetyl donor forms during 1a decomposition; a working hypothesis involving ketone oxidation is offered. The ability of 2a to induce full active site closure furthermore suggests that it subverts a system used to impede inappropriate active site closure on unacylated CoA.

  14. Functional dissection of the bipartite active site of the class I coenzyme A (CoA)-transferase succinyl-CoA:acetate CoA-transferase

    NASA Astrophysics Data System (ADS)

    Murphy, Jesse; Mullins, Elwood; Kappock, T.

    2016-05-01

    Coenzyme A (CoA)-transferases catalyze the reversible transfer of CoA from acyl-CoA thioesters to free carboxylates. Class I CoA-transferases produce acylglutamyl anhydride intermediates that undergo attack by CoA thiolate on either the internal or external carbonyl carbon atoms, forming distinct tetrahedral intermediates less than 3 Å apart. In this study, crystal structures of succinyl-CoA:acetate CoA-transferase (AarC) from Acetobacter aceti are used to examine how the Asn347 carboxamide stabilizes the internal oxyanion intermediate. A structure of the active mutant AarC-N347A bound to CoA revealed both solvent replacement of the missing contact and displacement of the adjacent Glu294, indicating that Asn347 both polarizes and orients the essential glutamate. AarC was crystallized with the nonhydrolyzable acetyl-CoA (AcCoA) analogue dethiaacetyl-CoA (1a) in an attempt to trap a closed enzyme complex containing a stable analogue of the external oxyanion intermediate. One active site contained an acetylglutamyl anhydride adduct and truncated 1a, an unexpected result hinting at an unprecedented cleavage of the ketone moiety in 1a. Solution studies confirmed that 1a decomposition is accompanied by production of near-stoichiometric acetate, in a process that seems to depend on microbial contamination but not AarC. A crystal structure of AarC bound to the postulated 1a truncation product (2a) showed complete closure of one active site per dimer but no acetylglutamyl anhydride, even with acetate added. These findings suggest that an activated acetyl donor forms during 1a decomposition; a working hypothesis involving ketone oxidation is offered. The ability of 2a to induce full active site closure furthermore suggests that it subverts a system used to impede inappropriate active site closure on unacylated CoA.

  15. Functional Dissection of the Bipartite Active Site of the Class I Coenzyme A (CoA)-Transferase Succinyl-CoA:Acetate CoA-Transferase

    PubMed Central

    Murphy, Jesse R.; Mullins, Elwood A.; Kappock, T. Joseph

    2016-01-01

    Coenzyme A (CoA)-transferases catalyze the reversible transfer of CoA from acyl-CoA thioesters to free carboxylates. Class I CoA-transferases produce acylglutamyl anhydride intermediates that undergo attack by CoA thiolate on either the internal or external carbonyl carbon atoms, forming distinct tetrahedral intermediates <3 Å apart. In this study, crystal structures of succinyl-CoA:acetate CoA-transferase (AarC) from Acetobacter aceti are used to examine how the Asn347 carboxamide stabilizes the internal oxyanion intermediate. A structure of the active mutant AarC-N347A bound to CoA revealed both solvent replacement of the missing contact and displacement of the adjacent Glu294, indicating that Asn347 both polarizes and orients the essential glutamate. AarC was crystallized with the nonhydrolyzable acetyl-CoA (AcCoA) analog dethiaacetyl-CoA (1a) in an attempt to trap a closed enzyme complex containing a stable analog of the external oxyanion intermediate. One active site contained an acetylglutamyl anhydride adduct and truncated 1a, an unexpected result hinting at an unprecedented cleavage of the ketone moiety in 1a. Solution studies confirmed that 1a decomposition is accompanied by production of near-stoichiometric acetate, in a process that seems to depend on microbial contamination but not AarC. A crystal structure of AarC bound to the postulated 1a truncation product (2a) showed complete closure of one active site per dimer but no acetylglutamyl anhydride, even with acetate added. These findings suggest that an activated acetyl donor forms during 1a decomposition; a working hypothesis involving ketone oxidation is offered. The ability of 2a to induce full active site closure furthermore suggests that it subverts a system used to impede inappropriate active site closure on unacylated CoA. PMID:27242998

  16. Effects of 2(3)-tert-butyl-4-hydroxyanisole pretreatment on cefpiramide binding to mouse glutathione S-transferases.

    PubMed

    Nishiya, H; Haga, T; Nozue, N; Komatsu, T; Baba, M; Ueda, Y; Ono, Y; Kunii, O

    1989-01-01

    Binding of cefpiramide (CPM) and other beta-lactam antimicrobial agents to 2(3)-tert-butyl-4-hydroxyanisole (BHA)-induced liver glutathione (GSH) S-transferases (EC 2.5.1.18) from CD-1 mice was studied. A marked induction of hepatic GSH S-transferase from mice fed BHA was observed. Gel chromatography of liver cytosol from mice fed BHA showed an increased binding of CPM, cefotetan and cefazolin to BHA-induced GSH S-transferases. The extent of their binding to GSH S-transferase seemed to be correlated with the extent of their excretion into the bile. Binding of CPM to the GSH S-transferase fraction was inhibited by both indocyanine green, which is known to bind liver GSH S-transferases intensively, and by cefoperazon, which is mainly excreted into the bile. This study suggests that GSH S-transferases are the main binding proteins of CPM in the liver cytosol fraction and play an important role as carrier proteins of CPM and some antimicrobial agents in mouse liver.

  17. GalNAc-transferase specificity prediction based on feature selection method.

    PubMed

    Lu, Lin; Niu, Bing; Zhao, Jun; Liu, Liang; Lu, Wen-Cong; Liu, Xiao-Jun; Li, Yi-Xue; Cai, Yu-Dong

    2009-02-01

    GalNAc-transferase can catalyze the biosynthesis of O-linked oligosaccharides. The specificity of GalNAc-transferase is composed of nine amino acid residues denoted by R4, R3, R2, R1, R0, R1', R2', R3', R4'. To predict whether the reducing monosaccharide will be covalently linked to the central residue R0(Ser or Thr), a new method based on feature selection has been proposed in our work. 277 nonapeptides from reference [Chou KC. A sequence-coupled vector-projection model for predicting the specificity of GalNAc-transferase. Protein Sci 1995;4:1365-83] are chosen for training set. Each nonapeptide is represented by hundreds of amino acid properties collected by Amino Acid Index database (http://www.genome.jp/aaindex) and transformed into a numeric vector with 4554 features. The Maximum Relevance Minimum Redundancy (mRMR) method combining with Incremental Feature Selection (IFS) and Feature Forward Selection (FFS) are then applied for feature selection. Nearest Neighbor Algorithm (NNA) is used to build prediction models. The optimal model contains 54 features and its correct rate tested by Jackknife cross-validation test reaches 91.34%. Final feature analysis indicates that amino acid residues at position R3' play the most important role in the recognition of GalNAc-transferase specificity, which were confirmed by the experiments [Elhammer AP, Poorman RA, Brown E, Maggiora LL, Hoogerheide JG, Kezdy FJ. The specificity of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase as inferred from a database of in vivo substrates and from the in vitro glycosylation of proteins and peptides. J Biol Chem 1993;268:10029-38; O'Connell BC, Hagen FK, Tabak LA. The influence of flanking sequence on the O-glycosylation of threonine in vitro. J Biol Chem 1992;267:25010-8; Yoshida A, Suzuki M, Ikenaga H, Takeuchi M. Discovery of the shortest sequence motif for high level mucin-type O-glycosylation. J Biol Chem 1997;272:16884-8]. Our method can be used as a tool for predicting O

  18. Reduction of nicotinamide adenine dinucleotide by pyruvate:lipoate oxidoreductase in anaerobic, dark-grown Rhodospirillum rubrum mutant C.

    PubMed Central

    Gorrell, T E; Uffen, R L

    1978-01-01

    Cell extracts from fermentatively grown Rhodospirillum rubrum reduced about 80 nmol of nicotinamide adenine dinucleotide (NAD) per mg of protein per min under anaerobic conditions with sodium pyruvate. The reaction was specific for pyruvate and NAD; NAD phosphate was not reduced. Results indicated that pyruvate-linked NAD reduction occurred via pyruvate:lipoate oxidoreductase. The reaction required catalytic amounts of both coenzyme A and thiamine pyrophosphate. Addition of sodium arsenite inhibited enzyme activity by 90%. Pyruvate:lipoate oxidoreductase was the only system detected in anaerobic, dark-grown R. rubrum cell extracts which operated to produce reduced NAD. The low activity of the enzyme system suggested that it was not quantitatively important in ATP formation. PMID:207677

  19. Adenine phosphoribosyltransferase (APRT) deficiency: a new genetic mutation with early recurrent renal stone disease in kidney transplantation

    PubMed Central

    Micheli, Vanna; Massarino, Fabio; Jacomelli, Gabriella; Bertelli, Matteo; Corradi, Maria Rita; Guerrini, Andrea; Cucchiara, Antonino; Ravetti, Jean Louis; Negretti, Laura; Cannella, Giuseppe

    2010-01-01

    Adenine phosphoribosyltransferase (APRT) deficiency, a rare inborn error inherited as an autosomic recessive trait, presents with 2,8-dihydroxyadenine (2,8-DHA) crystal nephropathy. We describe clinical, biochemical and molecular findings in a renal transplant recipient with renal failure, 2,8-DHA stones and no measurable erythrocyte APRT activity. Homozygous C > G substitution at −3 in the splicing site of exon 2 (IVS2 −3 c > g) was found in the APRT gene. The patient’s asymptomatic brother was heterozygous for such mutation, and his APRT activity was 23% of controls. A splicing alteration leading to incorrect gene transcription and virtually absent APRT activity is seemingly associated with the newly identified mutation. PMID:25984046

  20. Adenine phosphoribosyltransferase (APRT) deficiency: a new genetic mutation with early recurrent renal stone disease in kidney transplantation.

    PubMed

    Micheli, Vanna; Massarino, Fabio; Jacomelli, Gabriella; Bertelli, Matteo; Corradi, Maria Rita; Guerrini, Andrea; Cucchiara, Antonino; Ravetti, Jean Louis; Negretti, Laura; Cannella, Giuseppe

    2010-10-01

    Adenine phosphoribosyltransferase (APRT) deficiency, a rare inborn error inherited as an autosomic recessive trait, presents with 2,8-dihydroxyadenine (2,8-DHA) crystal nephropathy. We describe clinical, biochemical and molecular findings in a renal transplant recipient with renal failure, 2,8-DHA stones and no measurable erythrocyte APRT activity. Homozygous C > G substitution at -3 in the splicing site of exon 2 (IVS2 -3 c > g) was found in the APRT gene. The patient's asymptomatic brother was heterozygous for such mutation, and his APRT activity was 23% of controls. A splicing alteration leading to incorrect gene transcription and virtually absent APRT activity is seemingly associated with the newly identified mutation.

  1. Determination of Plaque Inhibitory Activity of Adenine Arabinoside (9-β-d-Arabinofuranosyladenine) for Herpesviruses Using an Adenosine Deaminase Inhibitor

    PubMed Central

    Bryson, Yvonne; Connor, James D.; Sweetman, Lawrence; Carey, Sharen; Stuckey, Margaret A.; Buchanan, Robert

    1974-01-01

    The in vitro susceptibility of type 1 and type 2 strains of Herpesvirus hominis to 9-β-d-arabinofuranosyladenine (adenine arabinoside, ara-A) was measured in a system where deamination was inhibited. Under these conditions, it was possible to measure the activity of low concentrations of ara-A. It was determined that plaque inhibitory concentration for type 1 viruses was less than 3 μg/ml for all strains tested. The plaque inhibitory concentration for 7 of 10 type 2 strains was also less than 3 μg/ml. The method used identified and controlled the interaction between antiviral agent (ara-A) and the indicator system, human skin fibroblastic cells. Otherwise, metabolism of ara-A resulted in rapid enzymatic degradation and loss of antiviral activity. PMID:15828177

  2. ISOLATION, SYNTHESIS AND BIOLOGICAL ACTIVITY OF APHROCALLISTIN, AN ADENINE SUBSTITUTED BROMOTYRAMINE METABOLITE FROM THE HEXACTINELLIDA SPONGE APHROCALLISTES BEATRIX

    PubMed Central

    Wright, Amy E.; Roth, Gregory P.; Hoffman, Jennifer K.; Divlianska, Daniela B.; Pechter, Diana; Sennett, Susan H.; Guzmán, Esther A.; Linley, Patricia; McCarthy, Peter J.; Pitts, Tara P.; Pomponi, Shirley A.; Reed, John K.

    2010-01-01

    A new adenine substituted bromotyrosine derived metabolite designated as aphrocallistin (1) has been isolated from the deep-water Hexactinellida sponge Aphrocallistes beatrix beatrix Gray, 1858 (Order Hexactinosida, Family Aphrocallistidae). Its structure was elucidated on the basis of spectral data and confirmed through a convergent, modular total synthetic route that is amenable towards future analog preparation. Aphrocallistin inhibits the growth of a panel of human tumor cell lines with IC50 values ranging from 7.5 to >100 μM and has been shown to induce G1 cell cycle arrest in the PANC-1 pancreatic carcinoma cell line. Aphrocallistin has been fully characterized in the NCI cancer cell line panel and has undergone in vitro ADME pharmacological profiling. PMID:19459694

  3. Hydrogen peroxide formation photoinduced by near-UV radiation in aqueous solutions of adenine derivatives at 77 K

    NASA Astrophysics Data System (ADS)

    Lozinova, T. A.; Lobanov, A. V.; Lander, A. V.

    2015-08-01

    An estimate of the content of free radicals in aqueous solutions of adenosine (Ado), adenosine-5'-diphosphate (ADP) and guanosine-5'-monophosphate (GMP) irradiated with near-UV radiation at 77 K is obtained by interpreting EPR spectra. It is established that in the presence of NaCl (0.1 M), the total number of peroxyl radicals O{2/-·} and HO{2/·} in samples of the studied compounds was 15-45% of the total quantity of produced free radicals and was affected by the conditions of exposure. The estimates are compared with the results from hydrogen peroxide (H2O2) determination in the same samples after thawing. Although the number of peroxyl radicals in the samples of adenine derivatives (A) and GMP are comparable, the formation of H2O2 is observed only in the case of A derivatives, but not in GMP. Possible reasons for these differences are discussed.

  4. Changes in the adenine nucleotide content of beef-heart mitochondrial F1 ATPase during ATP synthesis in dimethyl sulfoxide.

    PubMed

    Beharry, S; Bragg, P D

    1992-01-31

    Beef-heart mitochondrial F1 ATPase can be induced to synthesize ATP from ADP and inorganic phosphate in 30% Me2SO. We have analyzed the adenine nucleotide content of the F1 ATPase during the time-course of ATP synthesis, in the absence of added medium nucleotide, and in the absence and presence of 10 mM inorganic phosphate. The enzyme used in these investigations was either pretreated or not pretreated with ATP to produce F1 with a defined nucleotide content and catalytic or noncatalytic nucleotide-binding site occupancy. We show that the mechanism of ATP synthesis in Me2SO involves (i) an initial rapid loss of bound nucleotide(s), this process being strongly influenced by inorganic phosphate; (ii) a rebinding of lost nucleotide; and (iii) synthesis of ATP from bound ADP and inorganic phosphate.

  5. Biochemical characterization of a flavin adenine dinucleotide-dependent monooxygenase, ornithine hydroxylase from Pseudomonas aeruginosa, suggests a novel reaction mechanism.

    PubMed

    Meneely, Kathleen M; Lamb, Audrey L

    2007-10-23

    Pyoverdin is the hydroxamate siderophore produced by the opportunistic pathogen Pseudomonas aeruginosa under the iron-limiting conditions of the human host. This siderophore includes derivatives of ornithine in the peptide backbone that serve as iron chelators. PvdA is the ornithine hydroxylase, which performs the first enzymatic step in preparation of these derivatives. PvdA requires both flavin adenine dinucleotide (FAD) and nicotinamide adenine dinucleotide phosphate (NADPH) for activity; it was found to be a soluble monomer most active at pH 8.0. The enzyme demonstrated Michaelis-Menten kinetics in an NADPH oxidation assay, but a hydroxylation assay indicated substrate inhibition at high ornithine concentration. PvdA is highly specific for both substrate and coenzyme, and lysine was shown to be a nonsubstrate effector and mixed inhibitor of the enzyme with respect to ornithine. Chloride is a mixed inhibitor of PvdA with respect to ornithine but a competitive inhibitor with respect to NADPH, and a bulky mercurial compound (p-chloromercuribenzoate) is a mixed inhibitor with respect to ornithine. Steady-state experiments indicate that PvdA/FAD forms a ternary complex with NADPH and ornithine for catalysis. PvdA in the absence of ornithine shows slow substrate-independent flavin reduction by NADPH. Biochemical comparison of PvdA to p-hydroxybenzoate hydroxylase (PHBH, from Pseudomonas fluorescens) and flavin-containing monooxygenases (FMOs, from Schizosaccharomyces pombe and hog liver microsomes) leads to the hypothesis that PvdA catalysis proceeds by a novel reaction mechanism. PMID:17900176

  6. The effect of dimethylsulfoxide on adenine nucleotide binding and ATP synthesis by beef-heart mitochondrial F1 ATPase.

    PubMed

    Beharry, S; Bragg, P D

    1991-04-01

    Dimethylsulfoxide (Me2SO; 30%, v/v) promotes the formation of ATP from ADP and phosphate catalyzed by soluble mitochondrial F1 ATPase. The effects of this solvent on the adenine nucleotide binding properties of beef-heart mitochondrial F1 ATPase were examined. The ATP analog adenylyl-5'-imidodiphosphate bound to F1 at 1.9 and 1.0 sites in aqueous and Me2SO systems, respectively, with a KD value of 2.2 microM. Lower affinity sites were present also. Binding of ATP or adenylyl-5'-imidodiphosphate at levels near equimolar with the enzyme occurred to a greater extent in the absence of Me2SO. Addition of ATP to the nucleotide-loaded enzyme resulted in exchange of about one-half of the bound ATP. This occurred only in an entirely aqueous medium. ATP bound in Me2SO medium was not released by exogenous ATP. Comparison of the effect of different concentrations of Me2SO on ADP binding to F1 and ATP synthesis by the enzyme showed that binding of ADP was diminished by concentrations of Me2SO lower than those required to support ATP synthesis. However, one site could still be filled by ADP at concentrations of Me2SO optimal for ATP synthesis. This site is probably a noncatalytic site, since the nucleotide bound there was not converted to ATP in 30% Me2SO. The ATP synthesized by F1 in Me2SO originated from endogenous bound ADP. We conclude that 30% Me2SO affects the adenine nucleotide binding properties of the enzyme. The role of this in the promotion of the formation of ATP from ADP and phosphate is discussed.

  7. Dynamics of dipole- and valence bound anions in iodide-adenine binary complexes: A time-resolved photoelectron imaging and quantum mechanical investigation.

    PubMed

    Stephansen, Anne B; King, Sarah B; Yokoi, Yuki; Minoshima, Yusuke; Li, Wei-Li; Kunin, Alice; Takayanagi, Toshiyuki; Neumark, Daniel M

    2015-09-14

    Dipole bound (DB) and valence bound (VB) anions of binary iodide-adenine complexes have been studied using one-color and time-resolved photoelectron imaging at excitation energies near the vertical detachment energy. The experiments are complemented by quantum chemical calculations. One-color spectra show evidence for two adenine tautomers, the canonical, biologically relevant A9 tautomer and the A3 tautomer. In the UV-pump/IR-probe time-resolved experiments, transient adenine anions can be formed by electron transfer from the iodide. These experiments show signals from both DB and VB states of adenine anions formed on femto- and picosecond time scales, respectively. Analysis of the spectra and comparison with calculations suggest that while both the A9 and A3 tautomers contribute to the DB signal, only the DB state of the A3 tautomer undergoes a transition to the VB anion. The VB anion of A9 is higher in energy than both the DB anion and the neutral, and the VB anion is therefore not accessible through the DB state. Experimental evidence of the metastable A9 VB anion is instead observed as a shape resonance in the one-color photoelectron spectra, as a result of UV absorption by A9 and subsequent electron transfer from iodide into the empty π-orbital. In contrast, the iodide-A3 complex constitutes an excellent example of how DB states can act as doorway state for VB anion formation when the VB state is energetically available.

  8. Endogenously elevated bilirubin modulates kidney function and protects from circulating oxidative stress in a rat model of adenine-induced kidney failure

    PubMed Central

    Boon, Ai-Ching; Lam, Alfred K.; Gopalan, Vinod; Benzie, Iris F.; Briskey, David; Coombes, Jeff S.; Fassett, Robert G.; Bulmer, Andrew C.

    2015-01-01

    Mildly elevated bilirubin is associated with a reduction in the presence and progression of chronic kidney disease and related mortality, which may be attributed to bilirubin’s antioxidant properties. This study investigated whether endogenously elevated bilirubin would protect against adenine-induced kidney damage in male hyperbilirubinaemic Gunn rats and littermate controls. Animals were orally administered adenine or methylcellulose solvent (vehicle) daily for 10 days and were then monitored for 28 days. Serum and urine were assessed throughout the protocol for parameters of kidney function and antioxidant/oxidative stress status and kidneys were harvested for histological examination upon completion of the study. Adenine-treated animals experienced weight-loss, polyuria and polydipsia; however, these effects were significantly attenuated in adenine-treated Gunn rats. No difference in the presence of dihydroadenine crystals, lymphocytic infiltration and fibrosis were noted in Gunn rat kidneys versus controls. However, plasma protein carbonyl and F2-isoprostane concentrations were significantly decreased in Gunn rats versus controls, with no change in urinary 8-oxo-7,8-dihydro-2′-deoxyguanosine or kidney tissue F2-isoprostane concentrations. These data indicated that endogenously elevated bilirubin specifically protects from systemic oxidative stress in the vascular compartment. These data may help to clarify the protective relationship between bilirubin, kidney function and cardiovascular mortality in clinical investigations. PMID:26498893

  9. Influence of the incorporation of (S)-9-(3,4-dihydroxybutyl)adenine on the enzymatic stability and base-pairing properties of oligodeoxynucleotides.

    PubMed Central

    Augustyns, K; Van Aerschot, A; Van Schepdael, A; Urbanke, C; Herdewijn, P

    1991-01-01

    (S)-9-(3,4-dihydroxybutyl)adenine was used at several positions as nucleoside substitute in the synthesis of dimers and 13-mers. Therefore we used the phosporamidite and the H-phosphonate chemistry. The nuclease susceptibilities and the base-pairing properties of these oligomers have been evaluated. PMID:2041735

  10. Dynamics of dipole- and valence bound anions in iodide-adenine binary complexes: A time-resolved photoelectron imaging and quantum mechanical investigation

    SciTech Connect

    Stephansen, Anne B.; King, Sarah B.; Li, Wei-Li; Kunin, Alice; Yokoi, Yuki; Minoshima, Yusuke; Takayanagi, Toshiyuki; Neumark, Daniel M.

    2015-09-14

    Dipole bound (DB) and valence bound (VB) anions of binary iodide-adenine complexes have been studied using one-color and time-resolved photoelectron imaging at excitation energies near the vertical detachment energy. The experiments are complemented by quantum chemical calculations. One-color spectra show evidence for two adenine tautomers, the canonical, biologically relevant A9 tautomer and the A3 tautomer. In the UV-pump/IR-probe time-resolved experiments, transient adenine anions can be formed by electron transfer from the iodide. These experiments show signals from both DB and VB states of adenine anions formed on femto- and picosecond time scales, respectively. Analysis of the spectra and comparison with calculations suggest that while both the A9 and A3 tautomers contribute to the DB signal, only the DB state of the A3 tautomer undergoes a transition to the VB anion. The VB anion of A9 is higher in energy than both the DB anion and the neutral, and the VB anion is therefore not accessible through the DB state. Experimental evidence of the metastable A9 VB anion is instead observed as a shape resonance in the one-color photoelectron spectra, as a result of UV absorption by A9 and subsequent electron transfer from iodide into the empty π-orbital. In contrast, the iodide-A3 complex constitutes an excellent example of how DB states can act as doorway state for VB anion formation when the VB state is energetically available.

  11. Effects of low-molecular-weight-chitosan on the adenine-induced chronic renal failure rats in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Zhi, Xuan; Han, Baoqin; Sui, Xianxian; Hu, Rui; Liu, Wanshun

    2015-02-01

    The effects of low-molecular-weight-chitosan (LMWC) on chronic renal failure (CRF) rats induced by adenine were investigated in vivo and in vitro. Chitosan were hydrolyzed using chitosanase at pH 6-7 and 37° for 24 h to obtain LMWC. In vitro, the effect of LMWC on the proliferation of renal tubular epithelial cells (RTEC) showed that it had no cytotoxic effect and could promote cell growth. For the in vivo experiment, chronic renal failure rats induced by adenine were randomly divided into control group, Niaoduqing group, and high-, medium- and low-dose LMWC groups. For each group, we detected serum creatinine (SCR), blood urea nitrogen (BUN), and total superoxide dismutase (T-SOD), glutathione oxidase (GSH-Px) activities of renal tissue, and obtained the ratio of kidney weight/body weight, pathological changes of kidney. The levels of serum SCR, BUN were higher in the adenine-induced rats than those in the control group, indicating that the rat chronic renal failure model worked successfully. The results after treatment showed that LMWC could reduce the SCR and BUN levels and enhance the activities/levels of T-SOD and GSH-PX in kidney compared to control group. Histopathological examination revealed that adenine-induced renal alterations were restored by LMWC at three tested dosages, especially at the low dosage of 100 mg kg-1 d-1.

  12. DNA-directed aniline mustards with high selectivity for adenine or guanine bases: mutagenesis in a variety of Salmonella typhimurium strains differing in DNA-repair capability.

    PubMed

    Ferguson, L R; Denny, W A; Boritzki, T J

    1994-04-01

    Two closely-related aniline monomustards (1 and 2), linked to a DNA-targeting acridine chromophore by a linker chain of different length, show high selectivity for alkylation of polymer DNA. The shorter-chain derivative (2) alkylates mainly at guanine N7 sites, while the longer-chain analogue (1) reacts almost exclusively at adenine N1. The biological effects of these compounds have been studied in standard Ames Salmonella typhimurium strains in order to determine the mutagenic consequences of such well-defined DNA lesions, and the effect of DNA-repair systems on them. Both compounds caused detectable mutations in strains TA1537, TA98 or TA100 and some related strains. Mutation rates were greatly enhanced in strains carrying either a uvrB deletion or the plasmid pKM101. Frameshift mutagenesis by both compounds was completely eliminated by recA deletion, in both the presence or absence of the plasmid. The adenine-selective compound (1) appeared more sensitive to the DNA-repair defects than the guanine-selective derivative (2). Additionally, only the adenine-selective compound (1) caused statistically significant levels of detectable mutation in the repair-proficient strains TA102, TA4001 or TA4006. The bacterial mutagenesis evidence suggests that a bulky, major groove-residing adenine lesion may be more readily recognised by DNA-repair systems, and more likely to lead to a wider range of mutagenic events, than a similar guanine lesion.

  13. Rhodanine-3-acetic acid derivatives as inhibitors of fungal protein mannosyl transferase 1 (PMT1).

    PubMed

    Orchard, Michael G; Neuss, Judi C; Galley, Carl M S; Carr, Andrew; Porter, David W; Smith, Phillip; Scopes, David I C; Haydon, David; Vousden, Katherine; Stubberfield, Colin R; Young, Kate; Page, Martin

    2004-08-01

    The first inhibitors of fungal protein: mannosyl transferase 1 (PMT1) are described. They are based upon rhodanine-3-acetic acid and several compounds have been identified, for example, 5-[[3-(1-phenylethoxy)-4-(2-phenylethoxy)phenyl]methylene]-4-oxo-2-thioxo-3-thiazolidineacetic acid (5a), which inhibit Candida albicans PMT1 with IC(50)s in the range 0.2-0.5 microM. Members of the series are effective in inducing changes in morphology of C. albicans in vitro that have previously been associated with loss of the transferase activity. These compounds could serve as useful tools for studying the effects of protein O-mannosylation and its relevance in the search for novel antifungal agents. PMID:15225710

  14. Design, synthesis, and characterization of peptide-based rab geranylgeranyl transferase inhibitors.

    PubMed

    Tan, Kui-Thong; Guiu-Rozas, Ester; Bon, Robin S; Guo, Zhong; Delon, Christine; Wetzel, Stefan; Arndt, Sabine; Alexandrov, Kirill; Waldmann, Herbert; Goody, Roger S; Wu, Yao-Wen; Blankenfeldt, Wulf

    2009-12-24

    Rab geranylgeranyl transferase (RabGGTase) catalyzes the attachment of geranylgeranyl isoprenoids to Rab guanine triphosphatases, which are key regulators in vesicular transport. Because geranylgeranylation is required for proper function and overexpression of Rabs has been observed in various cancers, RabGGTase may be a target for novel therapeutics. The development of selective inhibitors is, however, difficult because two related enzymes involved in other cellular processes exist in eukaryotes and because RabGGTase recognizes protein substrates indirectly, resulting in relaxed specificity. We report the synthesis of a peptidic library based on the farnesyl transferase inhibitor pepticinnamin E. Of 469 compounds investigated, several were identified as selective for RabGGTase with low micromolar IC(50) values. The compounds were not generally cytotoxic and inhibited Rab isoprenylation in COS-7 cells. Crystal structure analysis revealed that selective inhibitors interact with a tunnel unique to RabGGTase, implying that this structural motif is an attractive target for improved RabGGTase inhibitors.

  15. New members of the glutathione transferase family discovered in red and brown algae.

    PubMed

    Hervé, Cécile; de Franco, Pierre-Olivier; Groisillier, Agnès; Tonon, Thierry; Boyen, Catherine

    2008-06-15

    The GSTs (glutathione transferases) are involved in the detoxification of a wide variety of hydrophobic substrates. These enzymes have been found in virtually all types of organisms, including plants, animals, nematodes and bacteria. In the present study, we report the molecular and biochemical characterization of algal GSTs. Phylogenetic analysis showed that most of them were distinct from previously described GST classes, but were most closely related to the Sigma class. Profiling of GST genes from the red alga Chondrus crispus and brown alga Laminaria digitata was undertaken after different chemical treatments and showed that they displayed contrasting patterns of transcription. Recombinant algal GST from both species showed transferase activities against the common substrates aryl halides, but also on the alpha,beta-unsaturated carbonyl 4-hydroxynonenal. Also, they exhibit significant peroxidation towards organic hydroperoxides, including oxygenated derivatives of polyunsaturated fatty acids. Among a range of compounds tested, Cibacron Blue was the most efficient inhibitor of algal GSTs identified.

  16. Three-dimensional structure of a Bombyx mori Omega-class glutathione transferase.

    PubMed

    Yamamoto, Kohji; Suzuki, Mamoru; Higashiura, Akifumi; Nakagawa, Atsushi

    2013-09-01

    Glutathione transferases (GSTs) are major phase II detoxification enzymes that play central roles in the defense against various environmental toxicants as well as oxidative stress. Here we report the crystal structure of an Omega-class glutathione transferase of Bombyx mori, bmGSTO, to gain insight into its catalytic mechanism. The structure of bmGSTO complexed with glutathione determined at a resolution of 2.5Å reveals that it exists as a dimer and is structurally similar to Omega-class GSTs with respect to its secondary and tertiary structures. Analysis of a complex between bmGSTO and glutathione showed that bound glutathione was localized to the glutathione-binding site (G-site). Site-directed mutagenesis of bmGSTO mutants indicated that amino acid residues Leu62, Lys65, Lys77, Val78, Glu91 and Ser92 in the G-site contribute to catalytic activity.

  17. Structural characterization of the catalytic site of a Nilaparvata lugens delta-class glutathione transferase.

    PubMed

    Yamamoto, Kohji; Higashiura, Akifumi; Hossain, Md Tofazzal; Yamada, Naotaka; Shiotsuki, Takahiro; Nakagawa, Atsushi

    2015-01-15

    Glutathione transferases (GSTs) are a major class of detoxification enzymes that play a central role in the defense against environmental toxicants and oxidative stress. Here, we studied the crystal structure of a delta-class glutathione transferase from Nilaparvata lugens, nlGSTD, to gain insights into its catalytic mechanism. The structure of nlGSTD in complex with glutathione, determined at a resolution of 1.7Å, revealed that it exists as a dimer and its secondary and tertiary structures are similar to those of other delta-class GSTs. Analysis of a complex between nlGSTD and glutathione showed that the bound glutathione was localized to the glutathione-binding site. Site-directed mutagenesis of nlGSTD mutants indicated that amino acid residues Ser11, His52, Glu66, and Phe119 contribute to catalytic activity.

  18. Identification of a diazinon-metabolizing glutathione S-transferase in the silkworm, Bombyx mori

    PubMed Central

    Yamamoto, Kohji; Yamada, Naotaka

    2016-01-01

    The glutathione S-transferase superfamily play key roles in the metabolism of numerous xenobiotics. We report herein the identification and characterization of a novel glutathione S-transferase in the silkworm, Bombyx mori. The enzyme (bmGSTu2) conjugates glutathione to 1-chloro-2,4-dinitrobenzene, as well as metabolizing diazinon, one of the organophosphate insecticides. Quantitative reverse transcription–polymerase chain reaction analysis of transcripts demonstrated that bmGSTu2 expression was induced 1.7-fold in a resistant strain of B. mori. Mutagenesis of putative amino acid residues in the glutathione-binding site revealed that Ile54, Glu66, Ser67, and Asn68 are crucial for enzymatic function. These results provide insights into the catalysis of glutathione conjugation in silkworm by bmGSTu2 and into the detoxification of organophosphate insecticides. PMID:27440377

  19. Identification of a diazinon-metabolizing glutathione S-transferase in the silkworm, Bombyx mori.

    PubMed

    Yamamoto, Kohji; Yamada, Naotaka

    2016-01-01

    The glutathione S-transferase superfamily play key roles in the metabolism of numerous xenobiotics. We report herein the identification and characterization of a novel glutathione S-transferase in the silkworm, Bombyx mori. The enzyme (bmGSTu2) conjugates glutathione to 1-chloro-2,4-dinitrobenzene, as well as metabolizing diazinon, one of the organophosphate insecticides. Quantitative reverse transcription-polymerase chain reaction analysis of transcripts demonstrated that bmGSTu2 expression was induced 1.7-fold in a resistant strain of B. mori. Mutagenesis of putative amino acid residues in the glutathione-binding site revealed that Ile54, Glu66, Ser67, and Asn68 are crucial for enzymatic function. These results provide insights into the catalysis of glutathione conjugation in silkworm by bmGSTu2 and into the detoxification of organophosphate insecticides. PMID:27440377

  20. One pathway can incorporate either adenine or dimethylbenzimidazole as an alpha-axial ligand of B12 cofactors in Salmonella enterica.

    PubMed

    Anderson, Peter J; Lango, Jozsef; Carkeet, Colleen; Britten, Audrey; Kräutler, Bernhard; Hammock, Bruce D; Roth, John R

    2008-02-01

    Corrinoid (vitamin B12-like) cofactors contain various alpha-axial ligands, including 5,6-dimethylbenzimidazole (DMB) or adenine. The bacterium Salmonella enterica produces the corrin ring only under anaerobic conditions, but it can form "complete" corrinoids aerobically by importing an "incomplete" corrinoid, such as cobinamide (Cbi), and adding appropriate alpha- and beta-axial ligands. Under aerobic conditions, S. enterica performs the corrinoid-dependent degradation of ethanolamine if given vitamin B12, but it can make B12 from exogenous Cbi only if DMB is also provided. Mutants isolated for their ability to degrade ethanolamine without added DMB converted Cbi to pseudo-B12 cofactors (having adenine as an alpha-axial ligand). The mutations cause an increase in the level of free adenine and install adenine (instead of DMB) as an alpha-ligand. When DMB is provided to these mutants, synthesis of pseudo-B12 cofactors ceases and B12 cofactors are produced, suggesting that DMB regulates production or incorporation of free adenine as an alpha-ligand. Wild-type cells make pseudo-B12 cofactors during aerobic growth on propanediol plus Cbi and can use pseudo-vitamin B12 for all of their corrinoid-dependent enzymes. Synthesis of coenzyme pseudo-B12 cofactors requires the same enzymes (CobT, CobU, CobS, and CobC) that install DMB in the formation of coenzyme B12. Models are described for the mechanism and control of alpha-axial ligand installation.

  1. Exocyclic carbons adjacent to the N6 of adenine are targets for oxidation by the Escherichia coli adaptive response protein AlkB.

    PubMed

    Li, Deyu; Delaney, James C; Page, Charlotte M; Yang, Xuedong; Chen, Alvin S; Wong, Cintyu; Drennan, Catherine L; Essigmann, John M

    2012-05-30

    The DNA and RNA repair protein AlkB removes alkyl groups from nucleic acids by a unique iron- and α-ketoglutarate-dependent oxidation strategy. When alkylated adenines are used as AlkB targets, earlier work suggests that the initial target of oxidation can be the alkyl carbon adjacent to N1. Such may be the case with ethano-adenine (EA), a DNA adduct formed by an important anticancer drug, BCNU, whereby an initial oxidation would occur at the carbon adjacent to N1. In a previous study, several intermediates were observed suggesting a pathway involving adduct restructuring to a form that would not hinder replication, which would match biological data showing that AlkB almost completely reverses EA toxicity in vivo. The present study uses more sensitive spectroscopic methodology to reveal the complete conversion of EA to adenine; the nature of observed additional putative intermediates indicates that AlkB conducts a second oxidation event in order to release the two-carbon unit completely. The second oxidation event occurs at the exocyclic carbon adjacent to the N(6) atom of adenine. The observation of oxidation of a carbon at N(6) in EA prompted us to evaluate N(6)-methyladenine (m6A), an important epigenetic signal for DNA replication and many other cellular processes, as an AlkB substrate in DNA. Here we show that m6A is indeed a substrate for AlkB and that it is converted to adenine via its 6-hydroxymethyl derivative. The observation that AlkB can demethylate m6A in vitro suggests a role for AlkB in regulation of important cellular functions in vivo. PMID:22512456

  2. One Pathway Can Incorporate either Adenine or Dimethylbenzimidazole as an α-Axial Ligand of B12 Cofactors in Salmonella enterica▿

    PubMed Central

    Anderson, Peter J.; Lango, Jozsef; Carkeet, Colleen; Britten, Audrey; Kräutler, Bernhard; Hammock, Bruce D.; Roth, John R.

    2008-01-01

    Corrinoid (vitamin B12-like) cofactors contain various α-axial ligands, including 5,6-dimethylbenzimidazole (DMB) or adenine. The bacterium Salmonella enterica produces the corrin ring only under anaerobic conditions, but it can form “complete” corrinoids aerobically by importing an “incomplete” corrinoid, such as cobinamide (Cbi), and adding appropriate α- and β-axial ligands. Under aerobic conditions, S. enterica performs the corrinoid-dependent degradation of ethanolamine if given vitamin B12, but it can make B12 from exogenous Cbi only if DMB is also provided. Mutants isolated for their ability to degrade ethanolamine without added DMB converted Cbi to pseudo-B12 cofactors (having adenine as an α-axial ligand). The mutations cause an increase in the level of free adenine and install adenine (instead of DMB) as an α-ligand. When DMB is provided to these mutants, synthesis of pseudo-B12 cofactors ceases and B12 cofactors are produced, suggesting that DMB regulates production or incorporation of free adenine as an α-ligand. Wild-type cells make pseudo-B12 cofactors during aerobic growth on propanediol plus Cbi and can use pseudo-vitamin B12 for all of their corrinoid-dependent enzymes. Synthesis of coenzyme pseudo-B12 cofactors requires the same enzymes (CobT, CobU, CobS, and CobC) that install DMB in the formation of coenzyme B12. Models are described for the mechanism and control of α-axial ligand installation. PMID:17981976

  3. A comparison of erythrocyte glutathione S-transferase activity from human foetuses and adults.

    PubMed Central

    Strange, R C; Johnston, J D; Coghill, D R; Hume, R

    1980-01-01

    Glutathione S-transferase activity was measured in partially purified haemolysates of erythrocytes from human foetuses and adults. Enzyme activity was present in erythrocytes obtained between 12 and 40 weeks of gestation. The catalytic properties of the enzyme from foetal cells were similar to those of the enzyme from adult erythrocytes, indicating that probably only one form of the erythrocytes enzyme exists throughout foetal and adult life. PMID:7396875

  4. Structural insight into the active site of a Bombyx mori unclassified glutathione transferase.

    PubMed

    Hossain, Md Tofazzal; Yamamoto, Kohji

    2015-01-01

    Glutathione transferases (GSTs) are major detoxification enzymes that play central roles in the defense against various environmental toxicants as well as oxidative stress. Here, we identify amino acid residues of an unclassified GST from Bombyx mori, bmGSTu-interacting glutathione (GSH). Site-directed mutagenesis of bmGSTu mutants indicated that amino acid residues Asp103, Ser162, and Ser166 contribute to catalytic activity.

  5. Anti-peptidyl transferase leader peptides of attenuation-regulated chloramphenicol-resistance genes.

    PubMed Central

    Gu, Z; Harrod, R; Rogers, E J; Lovett, P S

    1994-01-01

    The chloramphenicol (Cm)-inducible cmlA gene of Tn1696 specifies nonenzymatic resistance to Cm and is regulated by attenuation. The first eight codons of the leader specify a peptide that inhibits peptidyl transferase in vitro. Functionally similar, but less inhibitory, peptides are encoded by the leaders of Cm-inducible cat genes. However, the cat and cmlA coding sequences are unrelated and specify proteins of unrelated function. The inhibition of peptidyl transferase by the leader peptides is additive with that of Cm. Erythromycin competes with the inhibitory action of the peptides, and erythromycin and the peptides footprint to overlapping sites at the peptidyl transferase center of 23S rRNA. It is proposed that translation of the cmlA and cat leaders transiently pauses upon synthesis of the inhibitor peptides. The predicted site of pausing is identical to the leader site where long-term occupancy by a ribosome (ribosome stalling) will activate downstream gene expression. We therefore propose the inducer, Cm, converts a peptide-paused ribosome to the stalled state. We discuss the idea that cooperativity between leader peptide and inducer is necessary for ribosome stalling and may link the activation of a specific drug-resistance gene with a particular antibiotic. Images PMID:7515506

  6. Characterization of affinity-purified isoforms of Acinetobacter calcoaceticus Y1 glutathione transferases.

    PubMed

    Chee, Chin-Soon; Tan, Irene Kit-Ping; Alias, Zazali

    2014-01-01

    Glutathione transferases (GST) were purified from locally isolated bacteria, Acinetobacter calcoaceticus Y1, by glutathione-affinity chromatography and anion exchange, and their substrate specificities were investigated. SDS-polyacrylamide gel electrophoresis revealed that the purified GST resolved into a single band with a molecular weight (MW) of 23 kDa. 2-dimensional (2-D) gel electrophoresis showed the presence of two isoforms, GST1 (pI 4.5) and GST2 (pI 6.2) with identical MW. GST1 was reactive towards ethacrynic acid, hydrogen peroxide, 1-chloro-2,4-dinitrobenzene, and trans,trans-hepta-2,4-dienal while GST2 was active towards all substrates except hydrogen peroxide. This demonstrated that GST1 possessed peroxidase activity which was absent in GST2. This study also showed that only GST2 was able to conjugate GSH to isoproturon, a herbicide. GST1 and GST2 were suggested to be similar to F0KLY9 (putative glutathione S-transferase) and F0KKB0 (glutathione S-transferase III) of Acinetobacter calcoaceticus strain PHEA-2, respectively.

  7. Role of glutathione, glutathione transferase, and glutaredoxin in regulation of redox-dependent processes.

    PubMed

    Kalinina, E V; Chernov, N N; Novichkova, M D

    2014-12-01

    Over the last decade fundamentally new features have been revealed for the participation of glutathione and glutathione-dependent enzymes (glutathione transferase and glutaredoxin) in cell proliferation, apoptosis, protein folding, and cell signaling. Reduced glutathione (GSH) plays an important role in maintaining cellular redox status by participating in thiol-disulfide exchange, which regulates a number of cell functions including gene expression and the activity of individual enzymes and enzyme systems. Maintaining optimum GSH/GSSG ratio is essential to cell viability. Decrease in the ratio can serve as an indicator of damage to the cell redox status and of changes in redox-dependent gene regulation. Disturbance of intracellular GSH balance is observed in a number of pathologies including cancer. Consequences of inappropriate GSH/GSSG ratio include significant changes in the mechanism of cellular redox-dependent signaling controlled both nonenzymatically and enzymatically with the participation of isoforms of glutathione transferase and glutaredoxin. This review summarizes recent data on the role of glutathione, glutathione transferase, and glutaredoxin in the regulation of cellular redox-dependent processes.

  8. Crystallographic trapping of the glutamyl-CoA thioester intermediate of family I CoA transferases

    SciTech Connect

    Rangarajan,E.; Li, Y.; Ajamian, E.; Iannuzzi, P.; Kernaghan, S.; Fraser, M.; Cygler, M.; Matte, A.

    2005-01-01

    Coenzyme A transferases are involved in a broad range of biochemical processes in both prokaryotes and eukaryotes, and exhibit a diverse range of substrate specificities. The YdiF protein from Escherichia coli O157:H7 is an acyl-CoA transferase of unknown physiological function, and belongs to a large sequence family of CoA transferases, present in bacteria to humans, which utilize oxoacids as acceptors. In vitro measurements showed that YdiF displays enzymatic activity with short-chain acyl-CoAs. The crystal structures of YdiF and its complex with CoA, the first co-crystal structure for any Family I CoA transferase, have been determined and refined at 1.9 and 2.0 Angstrom resolution, respectively. YdiF is organized into tetramers, with each monomer having an open {alpha}/{beta} structure characteristic of Family I CoA transferases. Co-crystallization of YdiF with a variety of CoA thioesters in the absence of acceptor carboxylic acid resulted in trapping a covalent {gamma}-glutamyl-CoA thioester intermediate. The CoA binds within a well defined pocket at the N- and C-terminal domain interface, but makes contact only with the C-terminal domain. The structure of the YdiF complex provides a basis for understanding the different catalytic steps in the reaction of Family I CoA transferases.

  9. Probing the leucyl/phenylalanyl tRNA protein transferase active site with tRNA substrate analogues.

    PubMed

    Fung, Angela Wai Shan; Ebhardt, H Alexander; Krishnakumar, Kollappillil S; Moore, Jack; Xu, Zhizhong; Strazewski, Peter; Fahlman, Richard P

    2014-07-01

    Aminoacyl-tRNA protein transferases post-translationally conjugate an amino acid from an aminoacyl-tRNA onto the N-terminus of a target polypeptide. The eubacterial aminoacyl-tRNA protein transferase, L/F transferase, utilizes both leucyl-tRNA(Leu) and phenylalanyl-tRNA(Phe) as substrates. X-ray crystal structures with substrate analogues, the minimal substrate phenylalanyl adenosine (rA-Phe) and inhibitor puromycin, have been used to characterize tRNA recognition by L/F transferase. However analyses of these two X-ray crystal structures reveal significant differences in binding. Through structural analyses, mutagenesis, and enzymatic activity assays, we rationalize and demonstrate that the substrate analogues bind to L/F transferase with similar binding affinities using a series of different interactions by the various chemical groups of the analogues. Our data also demonstrates that enlarging the hydrophobic pocket of L/F transferase selectively enhances puromycin inhibition and may aid in the development of improved inhibitors for this class of enzymes.

  10. Genetics Home Reference: Lesch-Nyhan syndrome

    MedlinePlus

    ... HA. Hypoxanthine-guanine phosphoribosyl transferase regulates early developmental programming of dopamine neurons: implications for Lesch-Nyhan disease pathogenesis. Hum Mol Genet. 2009 Jul 1;18(13):2317-27. doi: 10.1093/hmg/ ...

  11. Immunolabeling of Gamma-glutamyl transferase 5 in Normal Human Tissues Reveals Expression and Localization Differs from Gamma-glutamyl transferase 1

    PubMed Central

    Hanigan, Marie H.; Gillies, Elizabeth M.; Wickham, Stephanie; Wakeham, Nancy; Wirsig-Wiechmann, Celeste R.

    2014-01-01

    Gamma-glutamyl transferase (GGT5) was discovered due to its ability to convert leukotriene C4 (LTC4, a glutathione S-conjugate) to LTD4 and may have an important role in the immune system. However, it was not known which cells express the enzyme in humans. We have developed a sensitive and specific antibody that can be used to detect human GGT5 on western blots and in fixed tissue sections. We localized GGT5 expression in normal human tissues. We observed GGT5 expressed by macrophages present in many tissues, including tissue-fixed macrophages such as Kupffer cells in the liver and dust cells in the lung. GGT5 was expressed in some of the same tissues that have been shown to express gamma-glutamyl transferase (GGT1), the only other enzymatically active protein in this family. But, the two enzymes were often expressed by different cell types within the tissue. For example, GGT5 was expressed by the interstitial cells of the kidney; whereas, GGT1 is expressed on the apical surface of the renal proximal tubules. Other tissues with GGT5-positive cells included: adrenal gland, salivary gland, pituitary, thymus, spleen, liver, bone marrow, small intestine, stomach, testis, prostate and placenta. GGT5 and GGT1 are cell surface enzymes. The different pattern of expression results in their access to different extracellular fluids and therefore different substrates. GGT5 has access to substrates in blood and intercellular fluids, while GGT1 has access primarily to fluids in ducts and glands throughout the body. These data provide new insights into the different functions of these two related enzymes. PMID:25377544

  12. Rats with adenine-induced chronic renal failure develop low-renin, salt-sensitive hypertension and increased aortic stiffness.

    PubMed

    Nguy, Lisa; Johansson, Maria E; Grimberg, Elisabeth; Lundgren, Jaana; Teerlink, Tom; Carlström, Mattias; Lundberg, Jon O; Nilsson, Holger; Guron, Gregor

    2013-05-01

    Rats with adenine-induced chronic renal failure (A-CRF) develop metabolic and cardiovascular abnormalities resembling those in patients with chronic kidney disease. The aim of this study was to investigate the mechanisms of hypertension in this model and to assess aortic stiffness in vivo. Male Sprague-Dawley rats were equipped with radiotelemetry probes for arterial pressure recordings and received either chow containing adenine or normal control diet. At 7 to 11 wk after study start, blood pressure responses to high NaCl (4%) diet and different pharmacological interventions were analyzed. Aortic pulse wave velocity was measured under isoflurane anesthesia. Baseline 24-h mean arterial pressure (MAP) was 101 ± 10 and 119 ± 9 mmHg in controls and A-CRF animals, respectively (P < 0.01). After 5 days of a high-NaCl diet, MAP had increased by 24 ± 6 mmHg in A-CRF animals vs. 2 ± 1 mmHg in controls (P < 0.001). Candesartan (10 mg/kg by gavage) produced a more pronounced reduction of MAP in controls vs. A-CRF animals (-12 ± 3 vs. -5 ± 5 mmHg, P < 0.05). Aortic pulse wave velocity was elevated in A-CRF rats (5.10 ± 0.51 vs. 4.58 ± 0.17 m/s, P < 0.05). Plasma levels of creatinine were markedly elevated in A-CRF animals (259 ± 46 vs. 31 ± 2 μM, P < 0.001), whereas plasma renin activity was suppressed (0.6 ± 0.5 vs. 12.3 ± 7.3 μg·l(-1)·h(-1), P < 0.001). In conclusion, hypertension in A-CRF animals is characterized by low plasma renin activity and is aggravated by high-NaCl diet, suggesting a pathogenic role for sodium retention and hypervolemia probably secondary to renal insufficiency. Additionally, aortic stiffness was elevated in A-CRF animals as indicated by increased aortic pulse wave velocity.

  13. Three CoA Transferases Involved in the Production of Short Chain Fatty Acids in Porphyromonas gingivalis

    PubMed Central

    Sato, Mitsunari; Yoshida, Yasuo; Nagano, Keiji; Hasegawa, Yoshiaki; Takebe, Jun; Yoshimura, Fuminobu

    2016-01-01

    Butyryl-CoA:acetate CoA transferase, which produces butyrate and acetyl-CoA from butyryl-CoA and acetate, is responsible for the final step of butyrate production in bacteria. This study demonstrates that in the periodontopathogenic bacterium Porphyromonas gingivalis this reaction is not catalyzed by PGN_1171, previously annotated as butyryl-CoA:acetate CoA transferase, but by three distinct CoA transferases, PGN_0725, PGN_1341, and PGN_1888. Gas chromatography/mass spectrometry (GC-MS) and spectrophotometric analyses were performed using crude enzyme extracts from deletion mutant strains and purified recombinant proteins. The experiments revealed that, in the presence of acetate, PGN_0725 preferentially utilized butyryl-CoA rather than propionyl-CoA. By contrast, this preference was reversed in PGN_1888. The only butyryl-CoA:acetate CoA transferase activity was observed in PGN_1341. Double reciprocal plots revealed that all the reactions catalyzed by these enzymes follow a ternary-complex mechanism, in contrast to previously characterized CoA transferases. GC-MS analysis to determine the concentrations of short chain fatty acids (SCFAs) in culture supernatants of P. gingivalis wild type and mutant strains revealed that PGN_0725 and PGN_1888 play a major role in the production of butyrate and propionate, respectively. Interestingly, a triple deletion mutant lacking PGN_0725, PGN_1341, and PGN_1888 produced low levels of SCFAs, suggesting that the microorganism contains CoA transferase(s) in addition to these three enzymes. Growth rates of the mutant strains were mostly slower than that of the wild type, indicating that many carbon compounds produced in the SCFA synthesis appear to be important for the biological activity of this microorganism. PMID:27486457

  14. Three CoA Transferases Involved in the Production of Short Chain Fatty Acids in Porphyromonas gingivalis.

    PubMed

    Sato, Mitsunari; Yoshida, Yasuo; Nagano, Keiji; Hasegawa, Yoshiaki; Takebe, Jun; Yoshimura, Fuminobu

    2016-01-01

    Butyryl-CoA:acetate CoA transferase, which produces butyrate and acetyl-CoA from butyryl-CoA and acetate, is responsible for the final step of butyrate production in bacteria. This study demonstrates that in the periodontopathogenic bacterium Porphyromonas gingivalis this reaction is not catalyzed by PGN_1171, previously annotated as butyryl-CoA:acetate CoA transferase, but by three distinct CoA transferases, PGN_0725, PGN_1341, and PGN_1888. Gas chromatography/mass spectrometry (GC-MS) and spectrophotometric analyses were performed using crude enzyme extracts from deletion mutant strains and purified recombinant proteins. The experiments revealed that, in the presence of acetate, PGN_0725 preferentially utilized butyryl-CoA rather than propionyl-CoA. By contrast, this preference was reversed in PGN_1888. The only butyryl-CoA:acetate CoA transferase activity was observed in PGN_1341. Double reciprocal plots revealed that all the reactions catalyzed by these enzymes follow a ternary-complex mechanism, in contrast to previously characterized CoA transferases. GC-MS analysis to determine the concentrations of short chain fatty acids (SCFAs) in culture supernatants of P. gingivalis wild type and mutant strains revealed that PGN_0725 and PGN_1888 play a major role in the production of butyrate and propionate, respectively. Interestingly, a triple deletion mutant lacking PGN_0725, PGN_1341, and PGN_1888 produced low levels of SCFAs, suggesting that the microorganism contains CoA transferase(s) in addition to these three enzymes. Growth rates of the mutant strains were mostly slower than that of the wild type, indicating that many carbon compounds produced in the SCFA synthesis appear to be important for the biological activity of this microorganism. PMID:27486457

  15. The first step in polyethylene glycol degradation by sphingomonads proceeds via a flavoprotein alcohol dehydrogenase containing flavin adenine dinucleotide.

    PubMed

    Sugimoto, M; Tanabe, M; Hataya, M; Enokibara, S; Duine, J A; Kawai, F

    2001-11-01

    Several Sphingomonas spp. utilize polyethylene glycols (PEGs) as a sole carbon and energy source, oxidative PEG degradation being initiated by a dye-linked dehydrogenase (PEG-DH) that oxidizes the terminal alcohol groups of the polymer chain. Purification and characterization of PEG-DH from Sphingomonas terrae revealed that the enzyme is membrane bound. The gene encoding this enzyme (pegA) was cloned, sequenced, and expressed in Escherichia coli. The purified recombinant enzyme was vulnerable to aggregation and inactivation, but this could be prevented by addition of detergent. It is as a homodimeric protein with a subunit molecular mass of 58.8 kDa, each subunit containing 1 noncovalently bound flavin adenine dinucleotide but not Fe or Zn. PEG-DH recognizes a broad variety of primary aliphatic and aromatic alcohols as substrates. Comparison with known sequences revealed that PEG-DH belongs to the group of glucose-methanol-choline (GMC) flavoprotein oxidoreductases and that it is a novel type of flavoprotein alcohol dehydrogenase related (percent identical amino acids) to other, so far uncharacterized bacterial, membrane-bound, dye-linked dehydrogenases: alcohol dehydrogenase from Pseudomonas oleovorans (46%); choline dehydrogenase from E. coli (40%); L-sorbose dehydrogenase from Gluconobacter oxydans (38%); and 4-nitrobenzyl alcohol dehydrogenase from a Pseudomonas species (35%). PMID:11673442

  16. Application of nicotin amide-adenine dinucleotide analogs for clinical enzymology: alcohol dehydrogenase activity in liver injury.

    PubMed

    Fujisawa, K; Kimura, A; Minato, S; Tamaoki, H; Mizushima, H

    1976-06-01

    The activities of alcohol dehydrogease(ADH) in serum and in the subcellular fractions of rat liver were determined with n-amyl alcohol or ethanol as substrate and thionicotinamide-adenine dinucleotide as coenzyme. It was found that the enzyme's activity ratio on the amyl alcohol and ethanol(A/E value) of serum and on the particulate fractions of the liver were different, but the A/E value of the soluble fraction was similar to that of serum. The A/E value of the particulate fractions were higher than that of the soluble fraction. From the results of experimental liver damage in the rat, it seems that estimation of the A/E value of ADH activity in serum is a useful parameter for the diagnosis of active liver injury. Since the A/E values of patients' sera differed from those of the normal subjects, the estimation of the A/E value of serum may give diagnostic information on liver injury, especially in chronic liver injury. PMID:179739

  17. Amidate prodrugs of 9-[2-(phosphonomethoxy)ethyl]adenine as inhibitors of adenylate cyclase toxin from Bordetella pertussis.

    PubMed

    Šmídková, Markéta; Dvoráková, Alexandra; Tloust'ová, Eva; Česnek, Michal; Janeba, Zlatko; Mertlíková-Kaiserová, Helena

    2014-01-01

    Adenylate cyclase toxin (ACT) is the key virulence factor of Bordetella pertussis that facilitates its invasion into the mammalian body. 9-[2-(Phosphonomethoxy)ethyl]adenine diphosphate (PMEApp), the active metabolite of the antiviral drug bis(POM)PMEA (adefovir dipivoxil), has been shown to inhibit ACT. The objective of this study was to evaluate six novel amidate prodrugs of PMEA, both phenyloxy phosphonamidates and phosphonodiamidates, for their ability to inhibit ACT activity in the J774A.1 macrophage cell line. The two phenyloxy phosphonamidate prodrugs exhibited greater inhibitory activity (50% inhibitory concentration [IC50] = 22 and 46 nM) than the phosphonodiamidates (IC50 = 84 to 3,960 nM). The inhibitory activity of the prodrugs correlated with their lipophilicity and the degree of their hydrolysis into free PMEA in J774A.1 cells. Although the prodrugs did not inhibit ACT as effectively as bis(POM)PMEA (IC50 = 6 nM), they were significantly less cytotoxic. Moreover, they all reduced apoptotic effects of ACT and prevented an ACT-induced elevation of intracellular [Ca(2+)]i. The amidate prodrugs were less susceptible to degradation in Caco-2 cells compared to bis(POM)PMEA, while they exerted good transepithelial permeability in this assay. As a consequence, a large amount of intact amidate prodrug is expected to be available to target macrophages in vivo. This feature makes nontoxic amidate prodrugs attractive candidates for further investigation as novel antimicrobial agents.

  18. Development of an enzymatic chromatography strip with nicotinamide adenine dinucleotide-tetrazolium coupling reactions for quantitative l-lactate analysis.

    PubMed

    Kan, Shu-Chen; Chang, Wei-Feng; Lan, Min-Chi; Lin, Chia-Chi; Lai, Wei-Shiang; Shieh, Chwen-Jen; Hsiung, Kuang-Pin; Liu, Yung-Chuan

    2015-02-15

    In this study, a dry assay of l-lactate via the enzymatic chromatographic test (ECT) was developed. An l-lactate dehydrogenase plus a nicotinamide adenine dinucleotide (NADH) regeneration reaction were applied simultaneously. Various tetrazolium salts were screened to reveal visible color intensities capable of determining the lactate concentrations in the sample. The optimal analysis conditions were as follows. The diaphorase (0.5 μl, 2(-6)U/μl) was immobilized in the test line of the ECT strip. Nitrotetrazolium blue chloride (5 μl, 12 mM), l-lactate dehydrogenase (1 μl, 0.25U/μl), and NAD(+) (2μl, 1.5×10(-5)M) were added into the mobile phase (100 μl) composed of 0.1% (w/w) Tween 20 in 10mM phosphate buffer (pH 9.0), and the process was left to run for 10 min. This detection had a linear range of 0.039 to 5mM with a detection limit of 0.047 mM. This quantitative analysis process for l-lactate was easy to operate with good stability and was proper for the point-of-care testing applications. PMID:25454507

  19. Electron-transfer studies with a new flavin adenine dinucleotide dependent glucose dehydrogenase and osmium polymers of different redox potentials.

    PubMed

    Zafar, Muhammad Nadeem; Wang, Xiaoju; Sygmund, Christoph; Ludwig, Roland; Leech, Dónal; Gorton, Lo

    2012-01-01

    A new extracellular flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenase from Glomerella cingulata (GcGDH) was electrochemically studied as a recognition element in glucose biosensors. The redox enzyme was recombinantly produced in Pichia pastoris and homogeneously purified, and its glucose-oxidizing properties on spectrographic graphite electrodes were investigated. Six different Os polymers, the redox potentials of which ranged in a broad potential window between +15 and +489 mV versus the normal hydrogen electrode (NHE), were used to immobilize and "wire" GcGDH to the spectrographic graphite electrode's surface. The GcGDH/Os polymer modified electrodes were evaluated by chronoamperometry using flow injection analysis. The current response was investigated using a stepwisely increased applied potential. It was observed that the ratio of GcGDH/Os polymer and the overall loading of the enzyme electrode significantly affect the performance of the enzyme electrode for glucose oxidation. The best-suited Os polymer [Os(4,4'-dimethyl-2,2'-bipyridine)(2)(PVI)Cl](+) had a potential of +309 mV versus NHE, and the optimum GcGDH/Os polymer ratio was 1:2 yielding a maximum current density of 493 μA·cm(-2) at a 30 mM glucose concentration.

  20. Conformations of an adenine bulge in a DNA octamer and its influence on DNA structure from molecular dynamics simulations.

    PubMed Central

    Feig, M; Zacharias, M; Pettitt, B M

    2001-01-01

    Molecular dynamics simulations have been applied to the DNA octamer d(GCGCA-GAAC). d(GTTCGCGC), which has an adenine bulge at the center to determine the pathway for interconversion between the stacked and extended forms. These forms are known to be important in the molecular recognition of bulges. From a total of ~35 ns of simulation time with the most recent CHARMM27 force field a variety of distinct conformations and subconformations are found. Stacked and fully looped-out forms are in excellent agreement with experimental data from NMR and x-ray crystallography. Furthermore, in a number of conformations the bulge base associates with the minor groove to varying degrees. Transitions between many of the conformations are observed in the simulations and used to propose a complete transition pathway between the stacked and fully extended conformations. The effect on the surrounding DNA sequence is investigated and biological implications of the accessible conformational space and the suggested transition pathway are discussed, in particular for the interaction of the MS2 replicase operator RNA with its coat protein. PMID:11423420

  1. Relaxation of isolated taenia coli of guinea-pig by enantiomers of 2-azido analogues of adenosine and adenine nucleotides.

    PubMed Central

    Cusack, N. J.; Planker, M.

    1979-01-01

    1 2-Azido photoaffinity analogues of adenosine 5'triphosphate (ATP), adenosine 5'-diphosphate (ADP), adenosine 5'-monophosphate (AMP), and adenosine have been synthesized and tested on guinea-pig taenia coli. 2 2-Azido-ATP and 2-azido-ADP were approximately 20 times more potent than ATP as relaxants of taenia coli, and required prolonged washout times before recovery of the muscle. 3 2-Azido-AMP and 2-azidoadenosine were 2 to 12 times more potent than ATP, but took much longer (up to 100 s) to reach maximal relaxation. This behaviour is different from that of AMP and adenosine which were much less potent than ATP. 4 L-Enantiomers of adenosine and adenine nucleotides were also tested. L-ATP and L-ADP were 3 to 6 times less potent than ATP and ADP, and L-AMP and L-adenosine were inactive. 2-Azido-L-ATP and 2-azido-L-ADP were approximately 120 times less potent than 2-Azido-ATP and 6 times less potent than ATP as relaxants of taenia coli. 2-Azido-L-AMP and 2-azidio-L-adenosine were almost inactive. 5 2-Azido derivatives are photolysed by u.v. irradiation to reactive intermediates. 2-Azido-ATP and 2-azidoadenosine might be suitable photoaffinity ligands for labelling putative P2 and P1 purine receptors respectively. 2-Azido-L-ATP and 2-azido-L-adenosine could be useful controls for nonspecific labelling. PMID:497519

  2. Electron-transfer studies with a new flavin adenine dinucleotide dependent glucose dehydrogenase and osmium polymers of different redox potentials.

    PubMed

    Zafar, Muhammad Nadeem; Wang, Xiaoju; Sygmund, Christoph; Ludwig, Roland; Leech, Dónal; Gorton, Lo

    2012-01-01

    A new extracellular flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenase from Glomerella cingulata (GcGDH) was electrochemically studied as a recognition element in glucose biosensors. The redox enzyme was recombinantly produced in Pichia pastoris and homogeneously purified, and its glucose-oxidizing properties on spectrographic graphite electrodes were investigated. Six different Os polymers, the redox potentials of which ranged in a broad potential window between +15 and +489 mV versus the normal hydrogen electrode (NHE), were used to immobilize and "wire" GcGDH to the spectrographic graphite electrode's surface. The GcGDH/Os polymer modified electrodes were evaluated by chronoamperometry using flow injection analysis. The current response was investigated using a stepwisely increased applied potential. It was observed that the ratio of GcGDH/Os polymer and the overall loading of the enzyme electrode significantly affect the performance of the enzyme electrode for glucose oxidation. The best-suited Os polymer [Os(4,4'-dimethyl-2,2'-bipyridine)(2)(PVI)Cl](+) had a potential of +309 mV versus NHE, and the optimum GcGDH/Os polymer ratio was 1:2 yielding a maximum current density of 493 μA·cm(-2) at a 30 mM glucose concentration. PMID:22091984

  3. Redox State of Flavin Adenine Dinucleotide Drives Substrate Binding and Product Release in Escherichia coli Succinate Dehydrogenase

    PubMed Central

    Cheng, Victor W.T.; Piragasam, Ramanaguru Siva; Rothery, Richard A.; Maklashina, Elena; Cecchini, Gary; Weiner, Joel H.

    2016-01-01

    The Complex II family of enzymes, comprising the respiratory succinate dehydrogenases and fumarate reductases, catalyze reversible interconversion of succinate and fumarate. In contrast to the covalent flavin adenine dinucleotide (FAD) cofactor assembled in these enzymes, the soluble fumarate reductases (e.g. that from Shewanella frigidimarina) that assemble a noncovalent FAD cannot catalyze succinate oxidation but retain the ability to reduce fumarate. In this study, an SdhA-H45A variant that eliminates the site of the 8α-N3-histidyl covalent linkage between the protein and the FAD was examined. The variants SdhA-R286A/K/Y and -H242A/Y, that target residues thought to be important for substrate binding and catalysis were also studied. The variants SdhA-H45A and -R286A/K/Y resulted in assembly of a noncovalent FAD cofactor, which led to a significant decrease (−87 mV or more) in its reduction potential. The variant enzymes were studied by electron paramagnetic resonance spectroscopy following stand-alone reduction and potentiometric titrations. The “free” and “occupied” states of the active site were linked to the reduced and oxidized states of the FAD, respectively. Our data allows for a proposed model of succinate oxidation that is consistent with tunnel diode effects observed in the succinate dehydrogenase enzyme and a preference for fumarate reduction catalysis in fumarate reductase homologues that assemble a noncovalent FAD. PMID:25569225

  4. Molecular beacon based bioassay for highly sensitive and selective detection of nicotinamide adenine dinucleotide and the activity of alanine aminotransferase.

    PubMed

    Tang, Zhiwen; Liu, Pei; Ma, Changbei; Yang, Xiaohai; Wang, Kemin; Tan, Weihong; Lv, Xiaoyuan

    2011-04-01

    We have developed a new approach to detect nicotinamide adenine dinucleotide (NAD(+)) with high specificity and sensitivity using molecular beacons (MBs) and employed it in the investigation of NAD(+) related biological processes, such as calorie restriction and alanine aminotransferase (ALT) activation. The E. coli DNA ligase would catalyze the ligation of two short oligonucleotides that complement with an MB only in the presence of NAD(+), resulting in the opening of the MB and the restoration of fluorescent signal. Thanks to the high sensitivity of the MB probe and the fidelity of E. coli DNA ligase toward its substrates, this approach can detect 0.3 nM NAD(+) with high selectivity against other NAD(+) analogs. This novel assay can also provide a convenient and robust way to analyze NAD(+) in biological samples such as cell lysate. As NAD(+) plays an essential role in many biochemical processes, this method can be used to investigate NAD(+) related life processes. For instance, the effect of calorie restriction on the intracellular NAD(+) level in MCF7 cells has been studied using this new assay. Moreover, this approach was also successfully used to analyze the activity of ALT. Therefore, this novel NAD(+) assay holds wide applicability as an analytical tool in biochemical and biomedical research.

  5. Electrochemical detection of nicotinamide adenine dinucleotide based on molecular beacon-like DNA and E. coli DNA ligase.

    PubMed

    He, Xiaoxiao; Ni, Xiaoqi; Wang, Yonghong; Wang, Kemin; Jian, Lixin

    2011-01-15

    An electrochemical method for nicotinamide adenine dinucleotide (NAD(+)) detection with high sensitivity and selectivity has been developed by using molecular beacon (MB)-like DNA and Escherichia coli DNA ligase. In this method, MB-like DNA labeled with 5'-SH and 3'-biotin was self-assembled onto a gold electrode in its duplex form by means of facile gold-thiol chemistry, which resulted in blockage of electronic transmission. It was eT OFF state. In the presence of NAD(+), E. coli DNA ligase was activated, and the two nucleotide fragments which were complementary to the loop of the MB-like DNA could be ligated by the NAD(+)-dependent E. coli DNA ligase. Hybridization of the ligated DNA with the MB-like DNA induced a large conformational change in this surface-confined DNA structure, which in turn pushed the biotin away from the electrode surface and made the electrons exchange freely with the electrode. Then the generated electrochemical signals can be measured by differential pulse voltammetry (DPV). Under optimized conditions, a linear response to logarithmic concentration of NAD(+) range from 3 nM to 5 μM and a detection limit of 1.8 nM were obtained. Furthermore, the proposed strategy had sufficient selectivity to discriminate NAD(+) from its analogues.

  6. Genetic mapping of human heart-skeletal muscle adenine nucleotide translocator and its relationship to the facioscapulohumeral muscular dystrophy locus

    SciTech Connect

    Haraguchi, Y.; Chung, A.B.; Torroni, A.; Stepien, G.; Shoffner, J.M.; Costigan, D.A.; Polak, M.; Wasmuth, J.J.; Altherr, M.R.; Winokur, S.T.

    1993-05-01

    The mitochondrial heart-skeletal muscle adenine nucleotide translocator (ANT1) was regionally mapped to 4q35-qter using somatic cell hybrids containing deleted chromosome 4. The regional location was further refined through family studies using ANT1 intron and promoter nucleotide polymorphisms recognized by the restriction endonucleases MboII, NdeI, and HaeIII. Two alleles were found, each at a frequency of 0.5. The ANT1 locus was found to be closely linked to D4S139, D4S171, and the dominant skeletal muscle disease locus facioscapulohumeral muscular dystrophy (FSHD). A crossover that separated D4S171 and ANT1 from D4S139 was found. Since previous studies have established the chromosome 4 map order as centromere-D4S171-D4S139-FSHD, it was concluded that ANT1 is located on the side of D4S139, that is opposite from FSHD. This conclusion was confirmed by sequencing the exons and analyzing the transcripts of ANT1 from several FSHD patients and finding no evidence of aberration. 35 refs., 5 figs., 1 tab.

  7. Unique kinetics of nicotinic acid-adenine dinucleotide phosphate (NAADP) binding enhance the sensitivity of NAADP receptors for their ligand.

    PubMed Central

    Patel, S; Churchill, G C; Galione, A

    2000-01-01

    Nicotinic acid-adenine dinucleotide phosphate (NAADP) is a novel and potent Ca(2+)-mobilizing agent in sea urchin eggs and other cell types. Little is known, however, concerning the properties of the putative intracellular NAADP receptor. In the present study we have characterized NAADP binding sites in sea urchin egg homogenates. [(32)P]NAADP bound to a single class of high-affinity sites that were reversibly inhibited by NaCl but insensitive to pH and Ca(2+). Binding of [(32)P]NAADP was lost in preparations that did not mobilize Ca(2+) in response to NAADP, indicating that [(32)P]NAADP probably binds to a receptor mediating Ca(2+) mobilization. Addition of excess unlabelled NAADP, at various times after initiation of [(32)P]NAADP binding, did not result in displacement of bound [(32)P]NAADP. These data show that NAADP becomes irreversibly bound to its receptor immediately upon association. Accordingly, incubation of homogenates with low concentrations of NAADP resulted in maximal labelling of NAADP binding sites. This unique property renders NAADP receptors exquisitely sensitive to their ligand, thereby allowing detection of minute changes in NAADP levels. PMID:11104679

  8. Probing Adenine Rings and Backbone Linkages Using Base Specific Isotope-Edited Raman Spectroscopy: Application to Group II Intron Ribozyme Domain V†

    PubMed Central

    Chen, Yuanyuan; Eldho, Nadukkudy V.

    2010-01-01

    Raman difference spectroscopy is used to probe the properties of a 36-nt RNA molecule, “D5”, which lies at the heart of the catalytic apparatus in group II introns. For D5 that has all its adenine residues labeled with 13C and 15N, and utilizing Raman difference spectroscopy, we identify the conformational sensitive -C-O-P-O-C- stretching modes of the unlabeled bonds adjacent to adenine bases, as well as the adenine ring modes themselves. The phosphodiester modes can be assigned to individual adenine residues based on earlier NMR data. The effect of Mg2+ binding was explored by analyzing the Raman difference spectra for [D5 + Mg2+] minus [D5 no Mg2+], for D5 unlabeled, or D5 labeled with 13C/15N-enriched adenine. In both sets of data we assign differential features to G ring modes perturbed by Mg2+ binding at the N7 position. In the A labeled spectra we attribute a Raman differential near 1450 cm−1 and changes of intensity at 1296 cm−1 to Mg binding at the N7 position of adenine bases. The A and G bases involved in Mg2+ binding again can be identified using earlier NMR results. For the unlabeled D5, a change in the C-O-P-O-C stretch profile at 811 cm−1 upon magnesium binding is due to a “tightening up” (in the sense of a more rigid molecule with less dynamic interchange among competing ribose conformers) of the D5 structure. For adenine labeled D5, small changes in the adenine backbone bond signatures in the 810 – 830 cm−1 region suggest small conformational changes occur in the tetraloop and bulge regions upon binding of Mg2+. The PO2− stretching vibration, near 1100 cm−1, from the non-bridging phosphate groups, probes the effect of Mg2+-hydrate inner-sphere interactions that cause an up-shift. In turn, the up-shift is modulated by the presence of monovalent cations since in the presence of Na+ and Li+ the up-shift is (23±2 cm−1) while in the presence of K+ and Cs+ it is (13±3 cm−1), a finding that correlates with the differences in

  9. Theoretical Investigation on the Substituent Effect of Halogen Atoms at the C8 Position of Adenine: Relative Stability, Vibrational Frequencies, and Raman Spectra of Tautomers.

    PubMed

    Chen, Yan-Li; Wu, De-Yin; Tian, Zhong-Qun

    2016-06-16

    We have theoretically investigated the substituent effect of adenine at the C8 position with a substituent X = H, F, Cl, and Br by using the density functional theory (DFT) at the B3LYP/6-311+G(d, p) level. The aim is to study the substituent effect of halogen atoms on the relative stability, vibrational frequencies, and solvation effect of tautomers. Our calculated results show that for substituted adenine molecules the N9H8X tautomer to be the most stable structure in gas phase at the present theoretical level. Here N9H8X denotes the hydrogen atom binds to the N9 position of imidazole ring and X denotes H, F, Cl, and Br atoms. The influence of the induced attraction of the fluorine substituent is significantly larger than chlorine and bromine ones. The halogen substituent effect has a significant influence on changes of vibrational frequencies and Raman intensities. PMID:27243104

  10. Theoretical Investigation on the Substituent Effect of Halogen Atoms at the C8 Position of Adenine: Relative Stability, Vibrational Frequencies, and Raman Spectra of Tautomers.

    PubMed

    Chen, Yan-Li; Wu, De-Yin; Tian, Zhong-Qun

    2016-06-16

    We have theoretically investigated the substituent effect of adenine at the C8 position with a substituent X = H, F, Cl, and Br by using the density functional theory (DFT) at the B3LYP/6-311+G(d, p) level. The aim is to study the substituent effect of halogen atoms on the relative stability, vibrational frequencies, and solvation effect of tautomers. Our calculated results show that for substituted adenine molecules the N9H8X tautomer to be the most stable structure in gas phase at the present theoretical level. Here N9H8X denotes the hydrogen atom binds to the N9 position of imidazole ring and X denotes H, F, Cl, and Br atoms. The influence of the induced attraction of the fluorine substituent is significantly larger than chlorine and bromine ones. The halogen substituent effect has a significant influence on changes of vibrational frequencies and Raman intensities.

  11. New Method for Double-Resonance Spectroscopy in a Cold Quadrupole Ion Trap and Its Application to UV-UV Hole-Burning Spectroscopy of Protonated Adenine Dimer.

    PubMed

    Kang, Hyuk; Féraud, Géraldine; Dedonder-Lardeux, Claude; Jouvet, Christophe

    2014-08-01

    A novel method for double-resonance spectroscopy in a cold quadrupole ion trap is presented, which utilizes dipolar resonant excitation of fragment ions in the quadrupole ion trap. Photofragments by a burn laser are removed by applying an auxiliary RF to the trap, and a probe laser detects the depletion of photofragments by the burn laser. By scanning the wavelength of the burn laser, conformation-specific UV spectrum of a cold ion is obtained. This simple and powerful method is applicable to any type of double-resonance spectroscopy in a cold quadrupole ion trap and was applied to UV-UV hole-burning spectroscopy of protonated adenine dimer. It was found that protonated adenine dimer has multiple conformers/tautomers, each with multiple excited states with drastically different excited state dynamics.

  12. The DinB Superfamily Includes Novel Mycothiol, Bacillithiol and Glutathione S-transferases

    PubMed Central

    Newton, Gerald L.; Leung, Stephan S.; Wakabayashi, Judy I.; Rawat, Mamta; Fahey, Robert C.

    2011-01-01

    The superfamily of glutathione S-transferases has been the subject of extensive study but Actinobacteria produce mycothiol (MSH) in place of glutathione and no mycothiol S-transferase (MST) has been identified. Using mycothiol and monochlorobimane as substrates a MST activity was detected in extracts of Mycobacterium smegmatis and purified sufficiently to allow identification of MSMEG_0887, a member the DUF664 family of the DinB superfamily, as the MST. The identity of the M. smegmatis and homologous Mycobacterium tuberculosis (Rv0443) enzymes was confirmed by cloning and the expressed proteins were found to be active with MSH but not bacillithiol (BSH) or glutathione (GSH). Bacillus subtilis YfiT is another member of the DinB superfamily but this bacterium produces BSH. The YfiT protein was shown to have S-transferase activity with monochlorobimane when assayed with BSH but not with MSH or GSH. Enterococcus faecalis EF_3021 shares some homology with MSMEG_0887 but this organism produces GSH but not MSH or BSH. Cloned and expressed EF_0321 was active with monochlorobimane and GSH but not with MSH or BSH. MDMPI_2 is another member of the DinB superfamily and has been previously shown to have mycothiol-dependent maleylpyruvate isomerase activity. Three of the eight families of the DinB superfamily include proteins shown to catalyze thiol-dependent metabolic or detoxification activities. Since more than two-thirds of the sequences assigned to the DinB superfamily are members of these families it seems likely that such activity is dominant in the DinB superfamily. PMID:22059487

  13. Inherited glutathione-S-transferase deficiency is a risk factor for pulmonary asbestosis.

    PubMed

    Smith, C M; Kelsey, K T; Wiencke, J K; Leyden, K; Levin, S; Christiani, D C

    1994-09-01

    Pulmonary diseases attributable to asbestos exposure constitute a significant public health burden, yet few studies have investigated potential genetic determinants of susceptibility to asbestos-related diseases. The glutathione-S-transferases are a family of conjugating enzymes that both catalyze the detoxification of a variety of potentially cytotoxic electrophilic agents and act in the generation of sulfadipeptide leukotriene inflammatory mediators. The gene encoding glutathione-S-transferase class mu (GSTM-1) is polymorphic; approximately 50% of Caucasian individuals have a homozygous deletion of this gene and do not produce functional enzyme. Glutathione-S-transferase mu (GST-mu) deficiency has been previously reported to be associated with smoking-induced lung cancer. We conducted a cross-sectional study to examine the prevalence of the homozygous deletion for the GSTM-1 gene in members of the carpentry trade occupationally exposed to asbestos. Members of the United Brotherhood of Carpenters and Joiners of America attending their 1991 National Union conference were invited to participate. Each participant was offered a chest X-ray and was asked to complete a comprehensive questionnaire and have their blood drawn. All radiographs were assessed for the presence of pneumoconiosis in a blinded fashion by a National Institute for Occupational Safety and Health-certified International Labor Office "B" reader. Individual GSTM-1 status was determined using polymerase chain reaction methods. Six hundred fifty-eight workers were studied. Of these, 80 (12.2%) had X-ray abnormalities associated with asbestos exposure. Individuals genetically deficient in GST-mu were significantly more likely to have radiographic evidence of nonmalignant asbestos-related disease than those who were not deficient (chi 2 = 5.0; P < 0.03).(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Stimulation of the thiol-dependent ADP-ribosyltransferase and NAD glycohydrolase activities of Bordetella pertussis toxin by adenine nucleotides, phospholipids, and detergents.

    PubMed

    Moss, J; Stanley, S J; Watkins, P A; Burns, D L; Manclark, C R; Kaslow, H R; Hewlett, E L

    1986-05-01

    Pertussis toxin catalyzed ADP-ribosylation of the guanyl nucleotide binding protein transducin was stimulated by adenine nucleotide and either phospholipids or detergents. To determine the sites of action of these agents, their effects were examined on the transducin-independent NAD glycohydrolase activity. Toxin-catalyzed NAD hydrolysis was increased synergistically by ATP and detergents or phospholipids; the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) was more effective than the nonionic detergent Triton X-100 greater than lysophosphatidylcholine greater than phosphatidylcholine. The A0.5 for ATP in the presence of CHAPS was 2.6 microM; significantly higher concentrations of ATP were required for maximal activation in the presence of cholate or lysophosphatidylcholine. In CHAPS, NAD hydrolysis was enhanced by ATP greater than ADP greater than AMP greater than adenosine; ATP was more effective than MgATP or the nonhydrolyzable analogue adenyl-5'-yl imidodiphosphate. GTP and guanyl-5'-yl imidodiphosphate were less active than the corresponding adenine nucleotides. Activity in the presence of CHAPS and ATP was almost completely dependent on dithiothreitol; the A0.5 for dithiothreitol was significantly decreased by CHAPS alone and, to a greater extent, by CHAPS and ATP. To determine the site of action of ATP, CHAPS, and dithiothreitol, the enzymatic (S1) and binding components (B oligomer) were resolved by chromatography. The purified S1 subunit catalyzed the dithiothreitol-dependent hydrolysis of NAD; activity was enhanced by CHAPS but not ATP. The studies are consistent with the conclusion that adenine nucleotides, dithiothreitol, and CHAPS act on the toxin itself rather than on the substrate; adenine nucleotides appear to be involved in the activation of toxin but not the isolated catalytic unit.

  15. In vitro studies of release of adenine nucleotides and adenosine from rat vascular endothelium in response to alpha 1-adrenoceptor stimulation.

    PubMed Central

    Shinozuka, K; Hashimoto, M; Masumura, S; Bjur, R A; Westfall, D P; Hattori, K

    1994-01-01

    1. Noradrenaline-induced release of endogenous adenine nucleotides (ATP, ADP, AMP) and adenosine from both rat caudal artery and thoracic aorta was characterized, using high-performance liquid chromatography with fluorescence detection. 2. Noradrenaline, in a concentration-dependent manner, increased the overflow of ATP and its metabolites from the caudal artery. The noradrenaline-induced release of adenine nucleotides and adenosine from the caudal artery was abolished by bunazosin, an alpha 1-adrenoceptor antagonist, but not by idazoxan, an alpha 2-adrenoceptor antagonist. Clonidine, an alpha 2-adrenoceptor agonist, contracted caudal artery smooth muscle but did not induce release of adenine nucleotides or adenosine. 3. Noradrenaline also significantly increased the overflow of ATP and its metabolites from the thoracic aorta in the rat; however, the amount of adenine nucleotides and adenosine released from the aorta was considerably less than that released from the caudal artery. 4. Noradrenaline significantly increased the overflow of ATP and its metabolites from cultured endothelial cells from the thoracic aorta and caudal artery. The amount released from the cultured endothelial cells from the thoracic aorta and caudal artery. The amount released from the cultured endothelial cells from the aorta was also much less than that from cultured endothelial cells from the caudal artery. In cultured smooth muscle cells from the caudal artery, a significant release of ATP or its metabolites was not observed. 5. These results suggest that there are vascular endothelial cells that are able to release ATP by an alpha 1-adrenoceptor-mediated mechanism, but that these cells are not homogeneously distributed in the vasculature. PMID:7889273

  16. Can an excess electron localize on a purine moiety in the adenine-thymine Watson-Crick base pair? A computational study

    NASA Astrophysics Data System (ADS)

    Mazurkiewicz, Kamil; Harańczyk, Maciej; Gutowski, Maciej; Rak, Janusz

    The electron affinity and the propensity to electron-induced proton transfer (PT) of hydrogen-bonded complexes between the Watson-Crick adenine-thymine pair (AT) and simple organic acid (HX), attached to adenine in the Hoogsteen-type configuration, were studied at the B3LYP/6-31+G** level. Although the carboxyl group is deprotonated at physiological pH, its neutral form, COOH, resembles the peptide bond or the amide fragment in the side chain of asparagine (Asn) or glutamine (Gln). Thus, these complexes mimic the interaction between the DNA environment (e.g., proteins) and nucleobase pairs incorporated in the biopolymer. Electron attachment is thermodynamically feasible and adiabatic electron affinities range from 0.41 to 1.28 eV, while the vertical detachment energies of the resulting anions span the range of 0.39-2.88 eV. Low-energy activation barriers separate the anionic minima: aHX(AT) from the more stable single-PT anionic geometry, aHX(AT)-SPT, and aHX(AT)-SPT from the double-PT anionic geometry, aHX(AT)-DPT. Interaction between the adenine of the Watson-Crick AT base pair with an acidic proton donor probably counterbalances the larger EA of isolated thymine, as SOMO is almost evenly delocalized over both types of nucleic bases in the aHX(AT) anions. Moreover, as a result of PT the excess electron localizes entirely on adenine. Thus, in DNA interacting with its physiological environment, damage induced by low-energy electrons could begin, contrary to the current view, with the formation of purine anions, which are not formed in isolated DNA because of the greater stability of anionic pyrimidines.0

  17. Bisubstrate UDP-peptide conjugates as human O-GlcNAc transferase inhibitors.

    PubMed

    Borodkin, Vladimir S; Schimpl, Marianne; Gundogdu, Mehmet; Rafie, Karim; Dorfmueller, Helge C; Robinson, David A; van Aalten, Daan M F

    2014-02-01

    Inhibitors of OGT (O-GlcNAc transferase) are valuable tools to study the cell biology of protein O-GlcNAcylation. We report OGT bisubstrate-linked inhibitors (goblins) in which the acceptor serine in the peptide VTPVSTA is covalently linked to UDP, eliminating the GlcNAc pyranoside ring. Goblin1 co-crystallizes with OGT, revealing an ordered C₃ linker and retained substrate-binding modes, and binds the enzyme with micromolar affinity, inhibiting glycosyltransfer on to protein and peptide substrates.

  18. Bisubstrate UDP–peptide conjugates as human O-GlcNAc transferase inhibitors

    PubMed Central

    Borodkin, Vladimir S.; Schimpl, Marianne; Gundogdu, Mehmet; Rafie, Karim; Dorfmueller, Helge C.; Robinson, David A.; vanAalten, Daan M. F.

    2013-01-01

    Inhibitors of OGT (O-GlcNAc transferase) are valuable tools to study the cell biology of protein O-GlcNAcylation. We report OGT bisubstrate-linked inhibitors (goblins) in which the acceptor serine in the peptide VTPVSTA is covalently linked to UDP, eliminating the GlcNAc pyranoside ring. Goblin1 co-crystallizes with OGT, revealing an ordered C3 linker and retained substrate-binding modes, and binds the enzyme with micromolar affinity, inhibiting glycosyltransfer on to protein and peptide substrates. PMID:24256146

  19. Genetic Variations in Human Glutathione Transferase Enzymes: Significance for Pharmacology and Toxicology

    PubMed Central

    Josephy, P. David

    2010-01-01

    Glutathione transferase enzymes (GSTs) catalyze reactions in which electrophiles are conjugated to the tripeptide thiol glutathione. While many GST-catalyzed transformations result in the detoxication of xenobiotics, a few substrates, such as dihaloalkanes, undergo bioactivation to reactive intermediates. Many molecular epidemiological studies have tested associations between polymorphisms (especially, deletions) of human GST genes and disease susceptibility or response to therapy. This review presents a discussion of the biochemistry of GSTs, the sources—both genetic and environmental—of interindividual variation in GST activities, and their implications for pharmaco- and toxicogenetics; particular attention is paid to the Theta class GSTs. PMID:20981235

  20. Glutathion S-transferase activity and DDT-susceptibility of Malaysian mosquitos.

    PubMed

    Lee, H L; Chong, W L

    1995-03-01

    Comparative DDT-susceptibility status and glutathion s-transferase (GST) activity of Malaysian Anopheles maculatus, Culex quinquefasciatus and Aedes aegypti was investigated to ascertain the role of this enzyme in DDT resistance. The standardised WHO dose-mortality bioassay tests were used to determine DDT susceptibility in these mosquitos, whilst GST microassay (Brogdon and Barber, 1990) was conducted to measure the activity of this enzyme in mosquito homogenate. It appeared that DDT susceptibility status of Malaysian mosquitos was not correlated with GST activity.

  1. Fucosylation of xyloglucan: localization of the transferase in dictyosomes of pea stem cells. [Pisum sativum

    SciTech Connect

    Camirand, A.; Brummell, D.; MacLachlan, G.

    1987-07-01

    Microsomal membranes from elongating regions of etiolated Pisum sativum stems were separated by rate-zonal centrifugation on Renografin gradients. The transfer of labeled fucose and xylose from GDP-(/sup 14/C) fucose and UDP-(/sup 14/C)xylose to xyloglucan occurred mainly in dictyosome-enriched fractions. No transferase activity was detected in secretory vesicle fractions. Pulse-chase experiments using pea stem slices incubated with (/sup 3/H)fucose suggest that xyloglucan chains are fucosylated and their structure completed within the dictyosomes, before being transported to the cell wall by secretory vesicles.

  2. Glutathione-binding site of a bombyx mori theta-class glutathione transferase.

    PubMed

    Hossain, M D Tofazzal; Yamada, Naotaka; Yamamoto, Kohji

    2014-01-01

    The glutathione transferase (GST) superfamily plays key roles in the detoxification of various xenobiotics. Here, we report the isolation and characterization of a silkworm protein belonging to a previously reported theta-class GST family. The enzyme (bmGSTT) catalyzes the reaction of glutathione with 1-chloro-2,4-dinitrobenzene, 1,2-epoxy-3-(4-nitrophenoxy)-propane, and 4-nitrophenethyl bromide. Mutagenesis of highly conserved residues in the catalytic site revealed that Glu66 and Ser67 are important for enzymatic function. These results provide insights into the catalysis of glutathione conjugation in silkworm by bmGSTT and into the metabolism of exogenous chemical agents.

  3. The Phosphopantetheinyl Transferases: Catalysis of a Posttranslational Modification Crucial for Life

    PubMed Central

    Beld, Joris; Sonnenschein, Eva C.; Vickery, Christopher R.; Noel, Joseph P.; Burkart, Michael D.

    2014-01-01

    Although holo-acyl carrier protein synthase, AcpS, a phosphopantetheinyl transferase (PPTase), was characterized in the 1960s, it was not until the publication of the landmark paper by Lambalot et al. in 1996 that PPTases garnered wide-spread attention being classified as a distinct enzyme superfamily. In the past two decades an increasing number of papers has been published on PPTases ranging from identification, characterization, structure determination, mutagenesis, inhibition, and engineering in synthetic biology. In this review, we comprehensively discuss all current knowledge on this class of enzymes that post-translationally install a 4′-phosphopantetheine arm on various carrier proteins. PMID:24292120

  4. Adenine-DNA adducts derived from the highly tumorigenic dibenzo[a,l]pyrene are resistant to nucleotide excision repair while guanine adducts are not

    PubMed Central

    Kropachev, Konstantin; Kolbanovskiy, Marina; Liu, Zhi; Cai, Yuqin; Zhang, Lu; Schwaid, Adam G.; Kolbanovskiy, Alexander; Ding, Shuang; Amin, Shantu; Broyde, Suse; Geacintov, Nicholas E.

    2013-01-01

    The structural origins of differences in susceptibilities of various DNA lesions to nucleotide excision repair (NER) are poorly understood. Here we compared, in the same sequence context, the relative NER dual incision efficiencies elicited by two stereochemically distinct pairs of guanine (N2-dG) and adenine (N6-dA) DNA lesions, derived from enantiomeric genotoxic diol epoxides of the highly tumorigenic fjord region polycyclic aromatic hydrocarbon dibenzo[a,l]pyrene (DB[a,l]P). Remarkably, in cell-free HeLa cell extracts, the guanine adduct with R absolute chemistry at the N2-dG linkage site is ~ 35 times more susceptible to NER dual incisions than the stereochemically identical N6-dA adduct. For the guanine and adenine adducts with S stereochemistry, a similar, but somewhat smaller effect (factor of ~15) is observed. The striking resistance of the bulky N6-dA in contrast to the modest to good susceptibilities of the N2-dG adducts to NER are interpreted in terms of the balance between lesion-induced DNA-distorting and DNA-stabilizing van der Waals interactions in their structures, that are partly reflected in the overall thermal stabilities of the modified duplexes. Our results are consistent with the hypothesis that the high genotoxic activity of DB[a,l]P is related to the formation of NER-resistant and persistent DB[a,l]P-derived adenine adducts in cellular DNA. PMID:23570232

  5. New Insights into the Design of Inhibitors of Human S-Adenosylmethionine Decarboxylase: Studies of Adenine C[superscript 8] Substitution in Structural Analogues of S-Adenosylmethionine

    SciTech Connect

    McCloskey, Diane E.; Bale, Shridhar; Secrist, III, John A.; Tiwari, Anita; Moss, III, Thomas H.; Valiyaveettil, Jacob; Brooks, Wesley H.; Guida, Wayne C.; Pegg, Anthony E.; Ealick, Steven E.

    2009-04-02

    S-Adenosylmethionine decarboxylase (AdoMetDC) is a critical enzyme in the polyamine biosynthetic pathway and depends on a pyruvoyl group for the decarboxylation process. The crystal structures of the enzyme with various inhibitors at the active site have shown that the adenine base of the ligands adopts an unusual syn conformation when bound to the enzyme. To determine whether compounds that favor the syn conformation in solution would be more potent AdoMetDC inhibitors, several series of AdoMet substrate analogues with a variety of substituents at the 8-position of adenine were synthesized and analyzed for their ability to inhibit hAdoMetDC. The biochemical analysis indicated that an 8-methyl substituent resulted in more potent inhibitors, yet most other 8-substitutions provided no benefit over the parent compound. To understand these results, we used computational modeling and X-ray crystallography to study C{sup 8}-substituted adenine analogues bound in the active site.

  6. The synthesis of branched-chain 3'-C-cyanomethyl-2',3'-dideoxy sugar nucleosides of adenine as potential inhibitors of the human immunodeficiency virus.

    PubMed Central

    Halmos, T; Montserret, R; Antonakis, K

    1989-01-01

    Condensation of the 3'-ketonucleoside 4 with diethyl cyanomethylphosphonate by a Wittig reaction afforded, after reduction of the unsaturated branched chain sugar nucleoside 5 with sodium borohydride, a mixture of 9-(2',5'-di-O-t-butyldimethylsilyl-3'-C-cyanomethyl-3'-deoxy-beta-D-ribo - and xylofuranosyl) adenines 6 and 7, which were separated after selective removal of the 5'-O-tBDMS group. Acetylation gave the monoacetylated ribo- and the triacetylated xylo compounds 10 and 11. Desilylation using tetrabutylammonium fluoride afforded the partially protected ribo isomer 12. The same treatment of 11 was accompanied by a N----O transacetylation giving the fully protected xylo compound 13a, from which the 2'-O-acetyl group was selectively removed using hydroxylaminium acetate. Treatment of 12 and 13b with phenoxythiocarbonyl chloride followed by deoxygenation with tributyltin hydride in the presence of azobisisobutyronitrile, and deacetylation in methanol saturated with ammonia afforded 9-(3'-C-cyanomethyl-2',3'-dideoxy-beta-D-erythro-pentofuranosyl) adenine 2 and 9-(3'-C-cyanomethyl-2'3'-dideoxy-beta-D-threo-pentofuranosyl) adenine 3. PMID:2798123

  7. Proton-impact ionization cross sections of adenine measured at 0.5 and 2.0 MeV by electron spectroscopy

    NASA Astrophysics Data System (ADS)

    Iriki, Y.; Kikuchi, Y.; Imai, M.; Itoh, A.

    2011-11-01

    Double-differential ionization cross sections (DDCSs) of vapor-phase adenine molecules (C5H5N5) by 0.5- and 2.0-MeV proton impact have been measured by the electron spectroscopy method. Electrons ejected from adenine were analyzed by a 45∘ parallel-plate electrostatic spectrometer over an energy range of 1.0-1000 eV at emission angles from 15∘ to 165∘. Single-differential cross sections (SDCSs) and total ionization cross sections (TICSs) were also deduced. It was found from the Platzman plot, defined as SDCSs divided by the classical Rutherford knock-on cross sections per target electron, that the SDCSs at higher electron energies are proportional to the total number of valence electrons (50) of adenine, while those at low-energy electrons are highly enhanced due to dipole and higher-order interactions. The present results of TICS are in fairly good agreement with recent classical trajectory Monte Carlo calculations, and moreover, a simple analytical formula gives nearly equivalent cross sections in magnitude at the incident proton energies investigated.

  8. Urea induced unfolding dynamics of flavin adenine dinucleotide (FAD): spectroscopic and molecular dynamics simulation studies from femto-second to nanosecond regime.

    PubMed

    Sengupta, Abhigyan; Singh, Reman K; Gavvala, Krishna; Koninti, Raj Kumar; Mukherjee, Arnab; Hazra, Partha

    2014-02-20

    Here, we investigate the effect of urea in the unfolding dynamics of flavin adenine dinucleotide (FAD), an important enzymatic cofactor, through steady state, time-resolved fluorescence spectroscopic and molecular dynamics (MD) simulation studies. Steady state results indicate the possibility of urea induced unfolding of FAD, inferred from increasing emission intensity of FAD with urea. The TCSPC and up-conversion results suggest that the stack-unstack dynamics of FAD severely gets affected in the presence of urea and leads to an increase in the unstack conformation population from 15% in pure water to 40% in 12 M urea. Molecular dynamics simulation was employed to understand the nature of the interaction between FAD and urea at the molecular level. Results depict that urea molecules replace many of the water molecules around adenine and isoalloxazine rings of FAD. However, the major driving force for the stability of this unstack conformations arises from the favorable stacking interaction of a significant fraction of the urea molecules with adenine and isoalloxazine rings of FAD, which overcomes the intramolecular stacking interaction between themselves observed in pure water.

  9. Approach to the unfolding and folding dynamics of add A-riboswitch upon adenine dissociation using a coarse-grained elastic network model

    NASA Astrophysics Data System (ADS)

    Li, Chunhua; Lv, Dashuai; Zhang, Lei; Yang, Feng; Wang, Cunxin; Su, Jiguo; Zhang, Yang

    2016-07-01

    Riboswitches are noncoding mRNA segments that can regulate the gene expression via altering their structures in response to specific metabolite binding. We proposed a coarse-grained Gaussian network model (GNM) to examine the unfolding and folding dynamics of adenosine deaminase (add) A-riboswitch upon the adenine dissociation, in which the RNA is modeled by a nucleotide chain with interaction networks formed by connecting adjoining atomic contacts. It was shown that the adenine binding is critical to the folding of the add A-riboswitch while the removal of the ligand can result in drastic increase of the thermodynamic fluctuations especially in the junction regions between helix domains. Under the assumption that the native contacts with the highest thermodynamic fluctuations break first, the iterative GNM simulations showed that the unfolding process of the adenine-free add A-riboswitch starts with the denature of the terminal helix stem, followed by the loops and junctions involving ligand binding pocket, and then the central helix domains. Despite the simplified coarse-grained modeling, the unfolding dynamics and pathways are shown in close agreement with the results from atomic-level MD simulations and the NMR and single-molecule force spectroscopy experiments. Overall, the study demonstrates a new avenue to investigate the binding and folding dynamics of add A-riboswitch molecule which can be readily extended for other RNA molecules.

  10. Proton-impact ionization cross sections of adenine measured at 0.5 and 2.0 MeV by electron spectroscopy

    SciTech Connect

    Iriki, Y.; Kikuchi, Y.; Imai, M.; Itoh, A.

    2011-11-15

    Double-differential ionization cross sections (DDCSs) of vapor-phase adenine molecules (C{sub 5}H{sub 5}N{sub 5}) by 0.5- and 2.0-MeV proton impact have been measured by the electron spectroscopy method. Electrons ejected from adenine were analyzed by a 45 Degree-Sign parallel-plate electrostatic spectrometer over an energy range of 1.0-1000 eV at emission angles from 15 Degree-Sign to 165 Degree-Sign . Single-differential cross sections (SDCSs) and total ionization cross sections (TICSs) were also deduced. It was found from the Platzman plot, defined as SDCSs divided by the classical Rutherford knock-on cross sections per target electron, that the SDCSs at higher electron energies are proportional to the total number of valence electrons (50) of adenine, while those at low-energy electrons are highly enhanced due to dipole and higher-order interactions. The present results of TICS are in fairly good agreement with recent classical trajectory Monte Carlo calculations, and moreover, a simple analytical formula gives nearly equivalent cross sections in magnitude at the incident proton energies investigated.

  11. New Insights into the Design of Inhibitors of Human S-Adenosylmethionine Decarboxylase: Studies of Adenine C8 Substitution in Structural Analogues of S-Adenosylmethionine†

    PubMed Central

    2009-01-01

    S-Adenosylmethionine decarboxylase (AdoMetDC) is a critical enzyme in the polyamine biosynthetic pathway and depends on a pyruvoyl group for the decarboxylation process. The crystal structures of the enzyme with various inhibitors at the active site have shown that the adenine base of the ligands adopts an unusual syn conformation when bound to the enzyme. To determine whether compounds that favor the syn conformation in solution would be more potent AdoMetDC inhibitors, several series of AdoMet substrate analogues with a variety of substituents at the 8-position of adenine were synthesized and analyzed for their ability to inhibit hAdoMetDC. The biochemical analysis indicated that an 8-methyl substituent resulted in more potent inhibitors, yet most other 8-substitutions provided no benefit over the parent compound. To understand these results, we used computational modeling and X-ray crystallography to study C8-substituted adenine analogues bound in the active site. PMID:19209891

  12. Adenine derivatives as phosphate-activating groups for the regioselective formation of 3',5'-linked oligoadenylates on montmorillonite: possible phosphate-activating groups for the prebiotic synthesis of RNA

    NASA Technical Reports Server (NTRS)

    Prabahar, K. J.; Ferris, J. P.

    1997-01-01

    Methyladenine and adenine N-phosphoryl derivatives of adenosine 5'-monophosphate (5'-AMP) and uridine 5'-monophosphate (5'-UMP) are synthesized, and their structures are elucidated. The oligomerization reactions of the adenine derivatives of 5'-phosphoramidates of adenosine on montmorillonite are investigated. 1-Methyladenine and 3-methyladenine derivatives on montmorillonite yielded oligoadenylates as long as undecamer, and the 2-methyladenine and adenine derivatives on montmorillonite yielded oligomers up to hexamers and pentamers, respectively. The 1-methyladenine derivative yielded linear, cyclic, and A5'ppA-derived oligonucleotides with a regioselectivity for the 3',5'-phosphodiester linkages averaging 84%. The effect of pKa and amine structure of phosphate-activating groups on the montmorillonite-catalyzed oligomerization of the 5'-phosphoramidate of adenosine are discussed. The binding and reaction of methyladenine and adenine N-phosphoryl derivatives of adenosine are described.

  13. Standard role for a conserved aspartate or more direct involvement in deglycosylation? An ONIOM and MD investigation of adenine-DNA glycosylase.

    PubMed

    Kellie, Jennifer L; Wilson, Katie A; Wetmore, Stacey D

    2013-12-01

    8-Oxoguanine (OG) is one of the most frequently occurring forms of DNA damage and is particularly deleterious since it forms a stable Hoogsteen base pair with adenine (A). The repair of an OG:A mispair is initiated by adenine-DNA glycosylase (MutY), which hydrolyzes the sugar-nucleobase bond of the adenine residue before the lesion is processed by other proteins. MutY has been proposed to use a two-part chemical step involving protonation of the adenine nucleobase, followed by SN1 hydrolysis of the glycosidic bond. However, differences between a recent (fluorine recognition complex, denoted as the FLRC) crystal structure and the structure on which most mechanistic conclusions have been based to date (namely, the lesion recognition complex or LRC) raise questions regarding the mechanism used by MutY and the discrete role of various active-site residues. The present work uses both molecular dynamics (MD) and quantum mechanical (ONIOM) models to compare the active-site conformational dynamics in the two crystal structures, which suggests that only the understudied FLRC leads to a catalytically competent reactant. Indeed, all previous computational studies on MutY have been initiated from the LRC structure. Subsequently, for the first time, various mechanisms are examined with detailed ONIOM(M06-2X:PM6) reaction potential energy surfaces (PES) based on the FLRC structure, which significantly extends the mechanistic picture. Specifically, our work reveals that the reaction proceeds through a different route than the commonly accepted mechanism and the catalytic function of various active-site residues (Geobacillus stearothermophilus numbering). Specifically, contrary to proposals based on the LRC, E43 is determined to solely be involved in the initial adenine protonation step and not the deglycosylation reaction as the general base. Additionally, a novel catalytic role is proposed for Y126, whereby this residue plays a significant role in stabilizing the highly charged

  14. Effect of Base Stacking on the Acid-Base Properties of the Adenine Cation Radical [A•+] in Solution: ESR and DFT Studies

    PubMed Central

    Adhikary, Amitava; Kumar, Anil; Khanduri, Deepti

    2015-01-01

    In this study, the acid–base properties of the adenine cation radical are investigated by means of experiment and theory. Adenine cation radical (A•+) is produced by one-electron oxidation of dAdo and of the stacked DNA-oligomer (dA)6 by Cl2•− in aqueous glass (7.5 M LiCl in H2O and in D2O) and investigated by ESR spectroscopy. Theoretical calculations and deuterium substitution at C8–H and N6–H in dAdo aid in our assignments of structure. We find the pKa value of A•+ in this system to be ca. 8 at 150 K in seeming contradiction to the accepted value of ≤ 1 at ambient temperature. However, upon thermal annealing to ≥160 K, complete deprotonation of A•+ occurs in dAdo in these glassy systems even at pH ca. 3. A•+ found in (dA)6 at 150 K also deprotonates on thermal annealing. The stability of A•+ at 150 K in these systems is attributed to charge delocalization between stacked bases. Theoretical calculations at various levels (DFT B3LYP/6-31G*, MPWB95, and HF-MP2) predict binding energies for the adenine stacked dimer cation radical of 12 to 16 kcal/mol. Further DFT B3LYP/6-31G* calculations predict that, in aqueous solution, monomeric A•+ should deprotonate spontaneously (a predicted pKa of ca. −0.3 for A•+). However, the charge resonance stabilized dimer AA•+ is predicted to result in a significant barrier to deprotonation and a calculated pKa of ca. 7 for the AA•+ dimer which is 7 pH units higher than the monomer. These theoretical and experimental results suggest that A•+ isolated in solution and A•+ in adenine stacks have highly differing acid–base properties resulting from the stabilization induced by hole delocalization within adenine stacks. PMID:18611019

  15. Glutathione Transferases Superfamily: Cold-Inducible Expression of Distinct GST Genes in Brassica oleracea

    PubMed Central

    Vijayakumar, Harshavardhanan; Thamilarasan, Senthil Kumar; Shanmugam, Ashokraj; Natarajan, Sathishkumar; Jung, Hee-Jeong; Park, Jong-In; Kim, HyeRan; Chung, Mi-Young; Nou, Ill-Sup

    2016-01-01

    Plants, as sessile organisms, can suffer serious growth and developmental consequences under cold stress conditions. Glutathione transferases (GSTs, EC 2.5.1.18) are ubiquitous and multifunctional conjugating proteins, which play a major role in stress responses by preventing oxidative damage by reactive oxygen species (ROS). Currently, understanding of their function(s) during different biochemical and signaling pathways under cold stress condition remain unclear. In this study, using combined computational strategy, we identified 65 Brassica oleracea glutathione transferases (BoGST) and characterized them based on evolutionary analysis into 11 classes. Inter-species and intra-species duplication was evident between BoGSTs and Arabidopsis GSTs. Based on localization analyses, we propose possible pathways in which GST genes are involved during cold stress. Further, expression analysis of the predicted putative functions for GST genes were investigated in two cold contrasting genotypes (cold tolerance and susceptible) under cold condition, most of these genes were highly expressed at 6 h and 1 h in the cold tolerant (CT) and cold susceptible (CS) lines, respectively. Overall, BoGSTU19, BoGSTU24, BoGSTF10 are candidate genes highly expressed in B. oleracea. Further investigation of GST superfamily in B. oleracea will aid in understanding complex mechanism underlying cold tolerance in plants. PMID:27472324

  16. Binding properties of ferrocene-glutathione conjugates as inhibitors and sensors for glutathione S-transferases.

    PubMed

    Martos-Maldonado, Manuel C; Casas-Solvas, Juan M; Téllez-Sanz, Ramiro; Mesa-Valle, Concepción; Quesada-Soriano, Indalecio; García-Maroto, Federico; Vargas-Berenguel, Antonio; García-Fuentes, Luís

    2012-02-01

    The binding properties of two electroactive glutathione-ferrocene conjugates that consist in glutathione attached to one or both of the cyclopentadienyl rings of ferrocene (GSFc and GSFcSG), to Schistosoma japonica glutathione S-transferase (SjGST) were studied by spectroscopy fluorescence, isothermal titration calorimetry (ITC) and differential pulse voltammetry (DPV). Such ferrocene conjugates resulted to be competitive inhibitors of glutathione S-transferase with an increased binding affinity relative to the natural substrate glutathione (GSH). We found that the conjugate having two glutathione units (GSFcSG) exhibits an affinity for SjGST approximately two orders of magnitude higher than GSH. Furthermore, it shows negative cooperativity with the affinity for the second binding site two orders of magnitude lower than that for the first one. We propose that the reason for such negative cooperativity is steric since, i) the obtained thermodynamic parameters do not indicate profound conformational changes upon GSFcSG binding and ii) docking studies have shown that, when bound, part of the first bound ligand invades the second site due to its large size. In addition, voltammetric measurements show a strong decrease of the peak current upon binding of ferrocene-glutathione conjugates to SjGST and provide very similar K values than those obtained by ITC. Moreover, the sensing ability, expressed by the sensitivity parameter shows that GSFcSG is much more sensitive than GSFc, for the detection of SjGST.

  17. Riboswitch control of induction of aminoglycoside resistance acetyl and adenyl-transferases

    PubMed Central

    He, Weizhi; Zhang, Xuhui; Zhang, Jun; Jia, Xu; Zhang, Jing; Sun, Wenxia; Jiang, Hengyi; Chen, Dongrong; Murchie, Alastair IH

    2013-01-01

    The acquisition of antibiotic resistance by human pathogens poses a significant threat to public health. The mechanisms that control the proliferation and expression of antibiotic resistance genes are not yet completely understood. The aminoglycosides are a historically important class of antibiotics that were introduced in the 1940s. Aminoglycoside resistance is conferred most commonly through enzymatic modification of the drug or enzymatic modification of the target rRNA through methylation or through the overexpression of efflux pumps. In our recent paper, we reported that expression of the aminoglycoside resistance genes encoding the aminoglycoside acetyl transferase (AAC) and aminoglycoside adenyl transferase (AAD) enzymes was controlled by an aminoglycoside-sensing riboswitch RNA. This riboswitch is embedded in the leader RNA of the aac/aad genes and is associated with the integron cassette system. The leader RNA can sense and bind specific aminoglycosides such that the binding causes a structural transition in the leader RNA, which leads to the induction of aminoglycoside antibiotic resistance. Specific aminoglycosides induce reporter gene expression mediated by the leader RNA. Aminoglycoside RNA binding was measured directly and, aminoglycoside-induced changes in RNA structure monitored by chemical probing. UV cross-linking and mutational analysis identified potential aminoglycoside binding sites on the RNA. PMID:23880830

  18. Structural plasticity of Cid1 provides a basis for its distributive RNA terminal uridylyl transferase activity.

    PubMed

    Yates, Luke A; Durrant, Benjamin P; Fleurdépine, Sophie; Harlos, Karl; Norbury, Chris J; Gilbert, Robert J C

    2015-03-11

    Terminal uridylyl transferases (TUTs) are responsible for the post-transcriptional addition of uridyl residues to RNA 3' ends, leading in some cases to altered stability. The Schizosaccharomyces pombe TUT Cid1 is a model enzyme that has been characterized structurally at moderate resolution and provides insights into the larger and more complex mammalian TUTs, ZCCHC6 and ZCCHC11. Here, we report a higher resolution (1.74 Å) crystal structure of Cid1 that provides detailed evidence for uracil selection via the dynamic flipping of a single histidine residue. We also describe a novel closed conformation of the enzyme that may represent an intermediate stage in a proposed product ejection mechanism. The structural insights gained, combined with normal mode analysis and biochemical studies, demonstrate that the plasticity of Cid1, particularly about a hinge region (N164-N165), is essential for catalytic activity, and provide an explanation for its distributive uridylyl transferase activity. We propose a model clarifying observed differences between the in vitro apparently processive activity and in vivo distributive monouridylylation activity of Cid1. We suggest that modulating the flexibility of such enzymes-for example by the binding of protein co-factors-may allow them alternatively to add single or multiple uridyl residues to the 3' termini of RNA molecules. PMID:25712096

  19. Identification of Glutathione S-Transferase Pi as a Protein Involved in Parkinson Disease Progression

    PubMed Central

    Shi, Min; Bradner, Joshua; Bammler, Theo K.; Eaton, David L.; Zhang, JianPeng; Ye, ZuCheng; Wilson, Angela M.; Montine, Thomas J.; Pan, Catherine; Zhang, Jing

    2009-01-01

    Parkinson disease (PD) typically affects the cortical regions during the later stages of disease, with neuronal loss, gliosis, and formation of diffuse cortical Lewy bodies in a significant portion of patients with dementia. To identify novel proteins involved in PD progression, we prepared synaptosomal fractions from the frontal cortices of pathologically verified PD patients at different stages along with age-matched controls. Protein expression profiles were compared using a robust quantitative proteomic technique. Approximately 100 proteins displayed significant differences in their relative abundances between PD patients at various stages and controls; three of these proteins were validated using independent techniques. One of the confirmed proteins, glutathione S-transferase Pi, was further investigated in cellular models of PD, demonstrating that its level was intimately associated with several critical cellular processes that are directly related to neurodegeneration in PD. These results have, for the first time, suggested that the levels of glutathione S-transferase Pi may play an important role in modulating the progression of PD. PMID:19498008

  20. Glucose-induced expression of MIP-1 genes requires O-GlcNAc transferase in monocytes

    SciTech Connect

    Chikanishi, Toshihiro; Fujiki, Ryoji; Hashiba, Waka; Sekine, Hiroki; Yokoyama, Atsushi; Kato, Shigeaki

    2010-04-16

    O-glycosylation has emerged as an important modification of nuclear proteins, and it appears to be involved in gene regulation. Recently, we have shown that one of the histone methyl transferases (MLL5) is activated through O-glycosylation by O-GlcNAc transferase (OGT). Addition of this monosaccharide is essential for forming a functional complex. However, in spite of the abundance of OGT in the nucleus, the impact of nuclear O-glycosylation by OGT remains largely unclear. To address this issue, the present study was undertaken to test the impact of nuclear O-glycosylation in a monocytic cell line, THP-1. Using a cytokine array, MIP-1{alpha} and -1{beta} genes were found to be regulated by nuclear O-glycosylation. Biochemical purification of the OGT interactants from THP-1 revealed that OGT is an associating partner for distinct co-regulatory complexes. OGT recruitment and protein O-glycosylation were observed at the MIP-1{alpha} gene promoter; however, the known OGT partner (HCF-1) was absent when the MIP-1{alpha} gene promoter was not activated. From these findings, we suggest that OGT could be a co-regulatory subunit shared by functionally distinct complexes supporting epigenetic regulation.

  1. STT3, a highly conserved protein required for yeast oligosaccharyl transferase activity in vivo.

    PubMed Central

    Zufferey, R; Knauer, R; Burda, P; Stagljar, I; te Heesen, S; Lehle, L; Aebi, M

    1995-01-01

    N-linked glycosylation is a ubiquitous protein modification, and is essential for viability in eukaryotic cells. A lipid-linked core-oligosaccharide is assembled at the membrane of the endoplasmic reticulum and transferred to selected asparagine residues of nascent polypeptide chains by the oligosaccharyl transferase (OTase) complex. Based on the synthetic lethal phenotype of double mutations affecting the assembly of the lipid-linked core-oligosaccharide and the OTase activity, we have performed a novel screen for mutants in Saccharomyces cerevisiae with altered N-linked glycosylation. Besides novel mutants deficient in the assembly of the lipid-linked oligosaccharide (alg mutants), we identified the STT3 locus as being required for OTase activity in vivo. The essential STT3 protein is approximately 60% identical in amino acid sequence to its human homologue. A mutation in the STT3 locus affects substrate specificity of the OTase complex in vivo and in vitro. In stt3-3 cells very little glycosyl transfer occurs from incomplete lipid-linked oligosaccharide, whereas the transfer of full-length Glc3Man9GlcNAc2 is hardly affected as compared with wild-type cells. Depletion of the STT3 protein results in loss of transferase activity in vivo and a deficiency in the assembly of OTase complex. Images PMID:7588624

  2. Miners compensated for pneumoconiosis and glutathione s-transferases M1 and T1 genotypes.

    PubMed

    Zimmermann, Anna; Ebbinghaus, Rainer; Prager, Hans-Martin; Blaszkewicz, Meinolf; Hengstler, Jan G; Golka, Klaus

    2012-01-01

    Chronic inhalation of quartz-containing dust produces reversible inflammatory changes in lungs resulting in irreversible fibrotic changes termed pneumoconiosis. Due to the inflammatory process in the lungs, highly reactive substances are released that may be detoxified by glutathione S-transferases. Therefore, 90 hard coal miners with pneumoconiosis as a recognized occupational disease (in Germany: Berufskrankheit BK 4101) were genotyped for glutathione S-transferases M1 (GSTM1) and T1 (GSTT1) according to standard methods. Furthermore, occupational exposure and smoking habits were assessed by questionnaire. Changes in a chest x-ray were classified according to ILO classification 2000. Of the investigated hard coal miners 43% were GSTM1 negative whereas 57% were GSTM1 positive. The arithmetic mean of the age at time of investigation was 74.2 yr (range: 42-87 yr). Seventy-four percent of the hard coal miners reported being ever smokers, while 26% denied smoking. All hard coal miners provided pneumoconiosis-related changes in the chest x-ray. The observed frequency of GSTM1 negative hard coal miners was not different from frequencies reported for general Caucasian populations and in agreement with findings reported for Chinese coal miners. In contrast, in a former study, 16 of 19 German hard coal miners (84%) with urinary bladder cancer displayed a GSTM1 negative genotype. The outcome of this study provides evidence that severely occupationally exposed Caucasian hard coal miners do not present an elevated level of GSTM1 negative individuals. PMID:22686319

  3. Characterisation of the Candida albicans Phosphopantetheinyl Transferase Ppt2 as a Potential Antifungal Drug Target

    PubMed Central

    Dobb, Katharine S.; Kaye, Sarah J.; Beckmann, Nicola; Thain, John L.; Stateva, Lubomira; Birch, Mike; Oliver, Jason D.

    2015-01-01

    Antifungal drugs acting via new mechanisms of action are urgently needed to combat the increasing numbers of severe fungal infections caused by pathogens such as Candida albicans. The phosphopantetheinyl transferase of Aspergillus fumigatus, encoded by the essential gene pptB, has previously been identified as a potential antifungal target. This study investigated the function of its orthologue in C. albicans, PPT2/C1_09480W by placing one allele under the control of the regulatable MET3 promoter, and deleting the remaining allele. The phenotypes of this conditional null mutant showed that, as in A. fumigatus, the gene PPT2 is essential for growth in C. albicans, thus fulfilling one aspect of an efficient antifungal target. The catalytic activity of Ppt2 as a phosphopantetheinyl transferase and the acyl carrier protein Acp1 as a substrate were demonstrated in a fluorescence transfer assay, using recombinant Ppt2 and Acp1 produced and purified from E.coli. A fluorescence polarisation assay amenable to high-throughput screening was also developed. Therefore we have identified Ppt2 as a broad-spectrum novel antifungal target and developed tools to identify inhibitors as potentially new antifungal compounds. PMID:26606674

  4. Structural and thermodynamic properties of kappa class glutathione transferase from Camelus dromedarius.

    PubMed

    Malik, Ajamaluddin; Fouad, Dalia; Labrou, Nikolaos E; Al-Senaidy, Abdulrahman M; Ismael, Mohamed A; Saeed, Hesham M; Ataya, Farid S

    2016-07-01

    The Arabian camel, Camelus dromedarius is naturally adapted to extreme desert climate and has evolved protective mechanisms to limit oxidative stress. The mitochondrial kappa class glutathione transferase enzyme is a member of GST supergene family that represents an important enzyme group in cellular Phase II detoxification machinery and is involved in the protection against oxidative stress and xenobiotics. In the present study, C. dromedarius kappa class glutathione transferase (CdGSTK1-1) was cloned, expressed in E. coli BL21, purified and its structural, thermodynamic and unfolding pathway was investigated. The results showed that CdGSTK1-1 has unique trimeric structure, exhibits low thermostability and a complex equilibrium unfolding profile. It unfolds through three folding states with formation of thinly populated intermediate species. The melting points (Tm) of the first unfolding transition was 40.3±0.2°C and Tm of the second unfolding transition was 49.1±0.1°C. The van't Hoff enthalpy of the first and second transition were 298.7±13.2 and 616.5±2.4kJ/mol, respectively. Moreover, intrinsic fluorescence and near-UV CD studies indicates that substrate binding does not leads to major conformational changes in CdGSTK1-1. PMID:27044344

  5. Structural plasticity of Cid1 provides a basis for its distributive RNA terminal uridylyl transferase activity

    PubMed Central

    Yates, Luke A.; Durrant, Benjamin P.; Fleurdépine, Sophie; Harlos, Karl; Norbury, Chris J.; Gilbert, Robert J.C.

    2015-01-01

    Terminal uridylyl transferases (TUTs) are responsible for the post-transcriptional addition of uridyl residues to RNA 3′ ends, leading in some cases to altered stability. The Schizosaccharomyces pombe TUT Cid1 is a model enzyme that has been characterized structurally at moderate resolution and provides insights into the larger and more complex mammalian TUTs, ZCCHC6 and ZCCHC11. Here, we report a higher resolution (1.74 Å) crystal structure of Cid1 that provides detailed evidence for uracil selection via the dynamic flipping of a single histidine residue. We also describe a novel closed conformation of the enzyme that may represent an intermediate stage in a proposed product ejection mechanism. The structural insights gained, combined with normal mode analysis and biochemical studies, demonstrate that the plasticity of Cid1, particularly about a hinge region (N164–N165), is essential for catalytic activity, and provide an explanation for its distributive uridylyl transferase activity. We propose a model clarifying observed differences between the in vitro apparently processive activity and in vivo distributive monouridylylation activity of Cid1. We suggest that modulating the flexibility of such enzymes—for example by the binding of protein co-factors—may allow them alternatively to add single or multiple uridyl residues to the 3′ termini of RNA molecules. PMID:25712096

  6. Functional Diversification of Fungal Glutathione Transferases from the Ure2p Class

    PubMed Central

    Thuillier, Anne; Ngadin, Andrew A.; Thion, Cécile; Billard, Patrick; Jacquot, Jean-Pierre; Gelhaye, Eric; Morel, Mélanie

    2011-01-01

    The glutathione-S-transferase (GST) proteins represent an extended family involved in detoxification processes. They are divided into various classes with high diversity in various organisms. The Ure2p class is especially expanded in saprophytic fungi compared to other fungi. This class is subdivided into two subclasses named Ure2pA and Ure2pB, which have rapidly diversified among fungal phyla. We have focused our analysis on Basidiomycetes and used Phanerochaete chrysosporium as a model to correlate the sequence diversity with the functional diversity of these glutathione transferases. The results show that among the nine isoforms found in P. chrysosporium, two belonging to Ure2pA subclass are exclusively expressed at the transcriptional level in presence of polycyclic aromatic compounds. Moreover, we have highlighted differential catalytic activities and substrate specificities between Ure2pA and Ure2pB isoforms. This diversity of sequence and function suggests that fungal Ure2p sequences have evolved rapidly in response to environmental constraints. PMID:22164343

  7. SecM-Stalled Ribosomes Adopt an Altered Geometry at the Peptidyl Transferase Center

    PubMed Central

    Bhushan, Shashi; Hoffmann, Thomas; Seidelt, Birgit; Frauenfeld, Jens; Mielke, Thorsten; Berninghausen, Otto; Wilson, Daniel N.; Beckmann, Roland

    2011-01-01

    As nascent polypeptide chains are synthesized, they pass through a tunnel in the large ribosomal subunit. Interaction between specific nascent chains and the ribosomal tunnel is used to induce translational stalling for the regulation of gene expression. One well-characterized example is the Escherichia coli SecM (secretion monitor) gene product, which induces stalling to up-regulate translation initiation of the downstream secA gene, which is needed for protein export. Although many of the key components of SecM and the ribosomal tunnel have been identified, understanding of the mechanism by which the peptidyl transferase center of the ribosome is inactivated has been lacking. Here we present a cryo-electron microscopy reconstruction of a SecM-stalled ribosome nascent chain complex at 5.6 Å. While no cascade of rRNA conformational changes is evident, this structure reveals the direct interaction between critical residues of SecM and the ribosomal tunnel. Moreover, a shift in the position of the tRNA–nascent peptide linkage of the SecM-tRNA provides a rationale for peptidyl transferase center silencing, conditional on the simultaneous presence of a Pro-tRNAPro in the ribosomal A-site. These results suggest a distinct allosteric mechanism of regulating translational elongation by the SecM stalling peptide. PMID:21267063

  8. Lectin domains of polypeptide GalNAc transferases exhibit glycopeptide binding specificity.

    PubMed

    Pedersen, Johannes W; Bennett, Eric P; Schjoldager, Katrine T-B G; Meldal, Morten; Holmér, Andreas P; Blixt, Ola; Cló, Emiliano; Levery, Steven B; Clausen, Henrik; Wandall, Hans H

    2011-09-16

    UDP-GalNAc:polypeptide α-N-acetylgalactosaminyltransferases (GalNAc-Ts) constitute a family of up to 20 transferases that initiate mucin-type O-glycosylation. The transferases are structurally composed of catalytic and lectin domains. Two modes have been identified for the selection of glycosylation sites by GalNAc-Ts: confined sequence recognition by the catalytic domain alone, and concerted recognition of acceptor sites and adjacent GalNAc-glycosylated sites by the catalytic and lectin domains, respectively. Thus far, only the catalytic domain has been shown to have peptide sequence specificity, whereas the primary function of the lectin domain is to increase affinity to previously glycosylated substrates. Whether the lectin domain also has peptide sequence selectivity has remained unclear. Using a glycopeptide array with a library of synthetic and recombinant glycopeptides based on sequences of mucins MUC1, MUC2, MUC4, MUC5AC, MUC6, and MUC7 as well as a random glycopeptide bead library, we examined the binding properties of four different lectin domains. The lectin domains of GalNAc-T1, -T2, -T3, and -T4 bound different subsets of small glycopeptides. These results indicate an additional level of complexity in the initiation step of O-glycosylation by GalNAc-Ts.

  9. Nucleoside Diphosphate Sugar-Starch Glucosyl Transferase Activity of wx Starch Granules 1

    PubMed Central

    Nelson, Oliver E.; Chourey, Prem S.; Chang, Ming Tu

    1978-01-01

    Starch granule preparations from the endosperm tissue of all waxy maize (Zea mays L.) mutants tested have low and approximately equal capability to incorporate glucose from adenosine diphosphate glucose into starch. As the substrate concentration is reduced, however, the activity of waxy preparations relative to nonmutant increases until, at the lowest substrate concentration utilized (0.1 μM), the activity of the waxy preparations is nearly equal to that of the nonmutant preparation. The apparent Km (adenosine diphosphate glucose) for starch granule preparations from wx-C/wx-C/wx-C endosperms was 7.1 × 10−5 M, which is compared to 3 × 10−3 M for preparations from nonwaxy endosperms. Starch granule preparations from three other waxy mutants of independent mutational origin have levels of enzymic activity approximately equal to wx-C at a given substrate concentration giving rise to similar apparent Km estimates. We conclude that there is in maize endosperm starch granules a second starch granule-bound glycosyl transferase, whose presence is revealed when mutation eliminates activity of the more active glucosyl transferase catalyzing the same reaction. PMID:16660522

  10. Context-specific inhibition of translation by ribosomal antibiotics targeting the peptidyl transferase center

    PubMed Central

    Marks, James; Kannan, Krishna; Roncase, Emily J.; Klepacki, Dorota; Kefi, Amira; Orelle, Cédric; Vázquez-Laslop, Nora; Mankin, Alexander S.

    2016-01-01

    The first broad-spectrum antibiotic chloramphenicol and one of the newest clinically important antibacterials, linezolid, inhibit protein synthesis by targeting the peptidyl transferase center of the bacterial ribosome. Because antibiotic binding should prevent the placement of aminoacyl-tRNA in the catalytic site, it is commonly assumed that these drugs are universal inhibitors of peptidyl transfer and should readily block the formation of every peptide bond. However, our in vitro experiments showed that chloramphenicol and linezolid stall ribosomes at specific mRNA locations. Treatment of bacterial cells with high concentrations of these antibiotics leads to preferential arrest of translation at defined sites, resulting in redistribution of the ribosomes on mRNA. Antibiotic-mediated inhibition of protein synthesis is most efficient when the nascent peptide in the ribosome carries an alanine residue and, to a lesser extent, serine or threonine in its penultimate position. In contrast, the inhibitory action of the drugs is counteracted by glycine when it is either at the nascent-chain C terminus or at the incoming aminoacyl-tRNA. The context-specific action of chloramphenicol illuminates the operation of the mechanism of inducible resistance that relies on programmed drug-induced translation arrest. In addition, our findings expose the functional interplay between the nascent chain and the peptidyl transferase center. PMID:27791002

  11. High yield production of myristoylated Arf6 small GTPase by recombinant N-myristoyl transferase

    PubMed Central

    Padovani, Dominique; Zeghouf, Mahel; Traverso, José A.; Giglione, Carmela; Cherfils, Jacqueline

    2013-01-01

    Small GTP-binding proteins of the Arf family (Arf GTPases) interact with multiple cellular partners and with membranes to regulate intracellular traffic and organelle structure. Understanding the underlying molecular mechanisms requires in vitro biochemical assays to test for regulations and functions. Such assays should use proteins in their cellular form, which carry a myristoyl lipid attached in N-terminus. N-myristoylation of recombinant Arf GTPases can be achieved by co-expression in E. coli with a eukaryotic N-myristoyl transferase. However, purifying myristoylated Arf GTPases is difficult and has a poor overall yield. Here we show that human Arf6 can be N-myristoylated in vitro by recombinant N-myristoyl transferases from different eukaryotic species. The catalytic efficiency depended strongly on the guanine nucleotide state and was highest for Arf6-GTP. Large-scale production of highly pure N-myristoylated Arf6 could be achieved, which was fully functional for liposome-binding and EFA6-stimulated nucleotide exchange assays. This establishes in vitro myristoylation as a novel and simple method that could be used to produce other myristoylated Arf and Arf-like GTPases for biochemical assays. PMID:23319116

  12. Predicted binding of certain antifilarial compounds with glutathione-S-transferase of human Filariids

    PubMed Central

    Saeed, Mohd; Baig, Mohd Hassan; Bajpai, Preeti; Srivastava, Ashwini Kumar; Ahmad, Khurshid; Mustafa, Huma

    2013-01-01

    Glutathione-S-transferase is a major phase-II detoxification enzyme in parasitic helminthes. Previous research highlights the importance of GSTs in the establishment of chronic infections in cytotoxic microenvironments. Filarial nematodes depend on these detoxification enzymes for their survival in the host. GST plays an important role in filariasis and other diseases. GST from W.bancrofti and B.malayi are very much different from human GST. This structural difference makes GST potential chemotherapeutic targets for antifilarial treatment. In this study we have checked the efficacy of some well known antifilarial compounds against GST from B.malayi and W.bancrofti. The structure of BmGST was modeled using modeller9v10 and was submitted to PMDB. Molecular docking study reveals arbindazole to be the most potent compounds against GST from both the filarial parasites. Role of some residues playing important role in the binding of compounds within the active site of GST has also been revealed in the present study. The BmGST and WbGST structural information and docking studies could aid in screening new antifilarials or selective inhibitors for chemotherapy against filariasis. Abbreviations GST - Glutathione-S-transferase, Bm - Brugia malayi, Wb - Wuchereria bancrofti. PMID:23516334

  13. Conductimetric assays for the hydrolase and transferase activities of phospholipase D enzymes.

    PubMed

    Mezna, M; Lawrence, A J

    1994-05-01

    Measurement of solution electrical conductance (conductimetry) is a simple direct assay method for the protogenic, hydrolytic reactions catalyzed by all phospholipase enzymes. The technique is especially suitable for assay of phospholipase D (PLD) enzymes where cleavage of zwitterionic substrates reinforces the pH dependent conductance change and allows the method to be used over a much wider pH range than the equivalent titrimetric assay. The ability to detect zwitterion cleavage enables the method to assay reactions in which phospholipase D transfers neutral, or anionic, alcohol species to the zwitterionic substrates phosphatidyl choline and phosphatidyl ethanolamine. The method can follow the sequential attack by different phospholipases and provides a simple technique for investigating the effect of substrate structure on susceptibility to various phospholipase enzymes. The results confirm that PLD from Streptomyces chromofuscus can attack lysophospholipids, but cannot transfer primary alcohols to the phosphatidyl residue, while the PLD from savoy cabbage is an efficient transferase, but cannot attack lysophospholipids. The data suggest that the bacterial PLD fails to act as a transferase because it hydrolyzes the transphosphatidylation products. Some phosphatidyl alcohols are more highly susceptible to PLA2 attack than the parent phosphatidyl choline derivatives.

  14. Corneal aldehyde dehydrogenase and glutathione S-transferase activity after excimer laser keratectomy in guinea pigs

    PubMed Central

    Bilgihan, K.; Bilgihan, A.; Turkozkan, N.

    1998-01-01

    BACKGROUND—The free radical balance of the eye may be changed by excimer laser keratectomy. Previous studies have demonstrated that excimer laser keratectomy increases the corneal temperature, decreases the superoxide dismutase activity of the aqueous, and induces lipid peroxidation in the superficial corneal stroma. Aldehyde dehydrogenase (ALDH) and glutathione S-transferase (GST) are known to play an important role in corneal metabolism, particularly in detoxification of aldehydes, which are generated from free radical reactions.
METHODS—In three groups of guinea pigs mechanical corneal de-epithelialisation was performed in group I, superficial corneal photoablation in group II, and deep corneal photoablation in group III, and the corneal ALDH and GST activities measured after 48 hours.
RESULTS—The mean ALDH and GST activities of group I and II showed no differences compared with the controls (p>0.05). The corneal ALDH activities were found to be significantly decreased (p<0.05) and GST activities increased (p<0.05) in group III.
CONCLUSION—These results suggest that excimer laser treatment of high myopia may change the ALDH and GST activities, metabolism, and free radical balance of the cornea.

 Keywords: excimer laser keratectomy; aldehyde dehydrogenase; glutathione S-transferase PMID:9602629

  15. Catalytic and structural diversity of the fluazifop-inducible glutathione transferases from Phaseolus vulgaris.

    PubMed

    Chronopoulou, Evangelia; Madesis, Panagiotis; Asimakopoulou, Basiliki; Platis, Dimitrios; Tsaftaris, Athanasios; Labrou, Nikolaos E

    2012-06-01

    Plant glutathione transferases (GSTs) comprise a large family of inducible enzymes that play important roles in stress tolerance and herbicide detoxification. Treatment of Phaseolus vulgaris leaves with the aryloxyphenoxypropionic herbicide fluazifop-p-butyl resulted in induction of GST activities. Three inducible GST isoenzymes were identified and separated by affinity chromatography. Their full-length cDNAs with complete open reading frame were isolated using RACE-RT and information from N-terminal amino acid sequences. Analysis of the cDNA clones showed that the deduced amino acid sequences share high homology with GSTs that belong to phi and tau classes. The three isoenzymes were expressed in E. coli and their substrate specificity was determined towards 20 different substrates. The results showed that the fluazifop-inducible glutathione transferases from P. vulgaris (PvGSTs) catalyze a broad range of reactions and exhibit quite varied substrate specificity. Molecular modeling and structural analysis was used to identify key structural characteristics and to provide insights into the substrate specificity and the catalytic mechanism of these enzymes. These results provide new insights into catalytic and structural diversity of GSTs and the detoxifying mechanism used by P. vulgaris.

  16. Substrate profiling of glutathione S-transferase with engineered enzymes and matched glutathione analogues.

    PubMed

    Feng, Shan; Zhang, Lei; Adilijiang, Gulishana; Liu, Jieyuan; Luo, Minkui; Deng, Haiteng

    2014-07-01

    The identification of specific substrates of glutathione S-transferases (GSTs) is important for understanding drug metabolism. A method termed bioorthogonal identification of GST substrates (BIGS) was developed, in which a reduced glutathione (GSH) analogue was developed for recognition by a rationally engineered GST to label the substrates of the corresponding native GST. A K44G-W40A-R41A mutant (GST-KWR) of the mu-class glutathione S-transferases GSTM1 was shown to be active with a clickable GSH analogue (GSH-R1) as the cosubstrate. The GSH-R1 conjugation products can react with an azido-based biotin probe for ready enrichment and MS identification. Proof-of-principle studies were carried to detect the products of GSH-R1 conjugation to 1-chloro-2,4-dinitrobenzene (CDNB) and dopamine quinone. The BIGS technology was then used to identify GSTM1 substrates in the Chinese herbal medicine Ganmaocongji.

  17. Evolutionary divergence of Ure2pA glutathione transferases in wood degrading fungi.

    PubMed

    Roret, Thomas; Thuillier, Anne; Favier, Frédérique; Gelhaye, Eric; Didierjean, Claude; Morel-Rouhier, Mélanie

    2015-10-01

    The intracellular systems of detoxification are crucial for the survival of wood degrading fungi. Within these systems, glutathione transferases could play a major role since this family of enzymes is specifically extended in lignolytic fungi. In particular the Ure2p class represents one third of the total GST number in Phanerochaete chrysosporium. These proteins have been phylogenetically split into two subclasses called Ure2pA and Ure2pB. Ure2pB can be classified as Nu GSTs because of shared structural and functional features with previously characterized bacterial isoforms. Ure2pA can rather be qualified as Nu-like GSTs since they exhibit a number of differences. Ure2pA possess a classical transferase activity, a more divergent catalytic site and a higher structural flexibility for some of them, compared to Nu GSTs. The characterization of four members of this Ure2pA subclass (PcUre2pA4, PcUre2pA5, PcUre2pA6 and PcUre2pA8) revealed specific functional and structural features, suggesting that these enzymes have rapidly evolved and differentiated, probably to adapt to the complex chemical environment associated with wood decomposition.

  18. Selective inhibitors of glutathione transferase P1 with trioxane structure as anticancer agents.

    PubMed

    Bräutigam, Maria; Teusch, Nicole; Schenk, Tobias; Sheikh, Miriam; Aricioglu, Rocky Z; Borowski, Swantje H; Neudörfl, Jörg-Martin; Baumann, Ulrich; Griesbeck, Axel G; Pietsch, Markus

    2015-04-01

    The response to chemotherapy in cancer patients is frequently compromised by drug resistance. Although chemoresistance is a multifactorial phenomenon, many studies have demonstrated that altered drug metabolism through the expression of phase II conjugating enzymes, including glutathione transferases (GSTs), in tumor cells can be directly correlated with resistance against a wide range of marketed anticancer drugs. In particular, overexpression of glutathione transferase P1 (GSTP1) appears to be a factor for poor prognosis during cancer therapy. Former and ongoing clinical trials have confirmed GSTP1 inhibition as a principle for antitumor therapy. A new series of 1,2,4-trioxane GSTP1 inhibitors were designed via a type II photooxygenation route of allylic alcohols followed by acid-catalyzed peroxyacetalization with aldehydes. A set of novel inhibitors exhibit low micromolar to high nanomolar inhibition of GSTP1, revealing preliminary SAR for further lead optimization. Importantly, high selectivity over another two human GST classes (GSTA1 and GSTM2) has been achieved. The trioxane GSTP1 inhibitors may therefore serve as a basis for the development of novel drug candidates in overcoming chemoresistance.

  19. Structural plasticity of Cid1 provides a basis for its distributive RNA terminal uridylyl transferase activity.

    PubMed

    Yates, Luke A; Durrant, Benjamin P; Fleurdépine, Sophie; Harlos, Karl; Norbury, Chris J; Gilbert, Robert J C

    2015-03-11

    Terminal uridylyl transferases (TUTs) are responsible for the post-transcriptional addition of uridyl residues to RNA 3' ends, leading in some cases to altered stability. The Schizosaccharomyces pombe TUT Cid1 is a model enzyme that has been characterized structurally at moderate resolution and provides insights into the larger and more complex mammalian TUTs, ZCCHC6 and ZCCHC11. Here, we report a higher resolution (1.74 Å) crystal structure of Cid1 that provides detailed evidence for uracil selection via the dynamic flipping of a single histidine residue. We also describe a novel closed conformation of the enzyme that may represent an intermediate stage in a proposed product ejection mechanism. The structural insights gained, combined with normal mode analysis and biochemical studies, demonstrate that the plasticity of Cid1, particularly about a hinge region (N164-N165), is essential for catalytic activity, and provide an explanation for its distributive uridylyl transferase activity. We propose a model clarifying observed differences between the in vitro apparently processive activity and in vivo distributive monouridylylation activity of Cid1. We suggest that modulating the flexibility of such enzymes-for example by the binding of protein co-factors-may allow them alternatively to add single or multiple uridyl residues to the 3' termini of RNA molecules.

  20. Structure of Human O-GlcNAc Transferase and its Complex with a Peptide Substrate

    SciTech Connect

    M Lazarus; Y Nam; J Jiang; P Sliz; S Walker

    2011-12-31

    The essential mammalian enzyme O-linked {beta}-N-acetylglucosamine transferase (O-GlcNAc transferase, here OGT) couples metabolic status to the regulation of a wide variety of cellular signalling pathways by acting as a nutrient sensor. OGT catalyses the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine (UDP-GlcNAc) to serines and threonines of cytoplasmic, nuclear and mitochondrial proteins, including numerous transcription factors, tumour suppressors, kinases, phosphatases and histone-modifying proteins. Aberrant glycosylation by OGT has been linked to insulin resistance, diabetic complications, cancer and neurodegenerative diseases including Alzheimer's. Despite the importance of OGT, the details of how it recognizes and glycosylates its protein substrates are largely unknown. We report here two crystal structures of human OGT, as a binary complex with UDP (2.8 {angstrom} resolution) and as a ternary complex with UDP and a peptide substrate (1.95 {angstrom}). The structures provide clues to the enzyme mechanism, show how OGT recognizes target peptide sequences, and reveal the fold of the unique domain between the two halves of the catalytic region. This information will accelerate the rational design of biological experiments to investigate OGT's functions; it will also help the design of inhibitors for use as cellular probes and help to assess its potential as a therapeutic target.

  1. Glutathione Transferases Superfamily: Cold-Inducible Expression of Distinct GST Genes in Brassica oleracea.

    PubMed

    Vijayakumar, Harshavardhanan; Thamilarasan, Senthil Kumar; Shanmugam, Ashokraj; Natarajan, Sathishkumar; Jung, Hee-Jeong; Park, Jong-In; Kim, HyeRan; Chung, Mi-Young; Nou, Ill-Sup

    2016-01-01

    Plants, as sessile organisms, can suffer serious growth and developmental consequences under cold stress conditions. Glutathione transferases (GSTs, EC 2.5.1.18) are ubiquitous and multifunctional conjugating proteins, which play a major role in stress responses by preventing oxidative damage by reactive oxygen species (ROS). Currently, understanding of their function(s) during different biochemical and signaling pathways under cold stress condition remain unclear. In this study, using combined computational strategy, we identified 65 Brassica oleracea glutathione transferases (BoGST) and characterized them based on evolutionary analysis into 11 classes. Inter-species and intra-species duplication was evident between BoGSTs and Arabidopsis GSTs. Based on localization analyses, we propose possible pathways in which GST genes are involved during cold stress. Further, expression analysis of the predicted putative functions for GST genes were investigated in two cold contrasting genotypes (cold tolerance and susceptible) under cold condition, most of these genes were highly expressed at 6 h and 1 h in the cold tolerant (CT) and cold susceptible (CS) lines, respectively. Overall, BoGSTU19, BoGSTU24, BoGSTF10 are candidate genes highly expressed in B. oleracea. Further investigation of GST superfamily in B. oleracea will aid in understanding complex mechanism underlying cold tolerance in plants. PMID:27472324

  2. Purification and partial characterization of glutathione transferase from the teleost Monopterus albus.

    PubMed

    Huang, Qing; Liang, Li; Wei, Tao; Zhang, Daming; Zeng, Qing-Yin

    2008-01-01

    Glutathione transferases (GSTs) catalyze the transfer of glutathione to a variety of xenobiotic and toxic endogenous compounds. GSTs are phase II biotransformation enzymes and are proposed as biomarkers of environmental pollution. In this study, a cytosolic glutathione transferase (maGST) was purified from liver of the freshwater fish Monopterus albus by affinity chromatography. The maGST appeared to be a homodimer composed of two subunits each with a molecular weight of 26 kDa. This maGST showed high activity towards the substrates 1-chloro-2,4-dinitrobenzene (CDNB) and 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl). Kinetic analysis with CDNB as substrate revealed a K(m) of 0.28 mM and V(max) of 15.68 micromol/min per mg of protein. It had maximum activity in the pH range 7.0-7.5, a broad optimum T(m) range of 30 degrees C-55 degrees C, and a high thermal stability with 77% of its initial activity at 45 degrees C. This high thermal stability of maGST could be related to the physiological adaptation of M. albus to high temperatures in tropical and subtropical environments.

  3. Miners compensated for pneumoconiosis and glutathione s-transferases M1 and T1 genotypes.

    PubMed

    Zimmermann, Anna; Ebbinghaus, Rainer; Prager, Hans-Martin; Blaszkewicz, Meinolf; Hengstler, Jan G; Golka, Klaus

    2012-01-01

    Chronic inhalation of quartz-containing dust produces reversible inflammatory changes in lungs resulting in irreversible fibrotic changes termed pneumoconiosis. Due to the inflammatory process in the lungs, highly reactive substances are released that may be detoxified by glutathione S-transferases. Therefore, 90 hard coal miners with pneumoconiosis as a recognized occupational disease (in Germany: Berufskrankheit BK 4101) were genotyped for glutathione S-transferases M1 (GSTM1) and T1 (GSTT1) according to standard methods. Furthermore, occupational exposure and smoking habits were assessed by questionnaire. Changes in a chest x-ray were classified according to ILO classification 2000. Of the investigated hard coal miners 43% were GSTM1 negative whereas 57% were GSTM1 positive. The arithmetic mean of the age at time of investigation was 74.2 yr (range: 42-87 yr). Seventy-four percent of the hard coal miners reported being ever smokers, while 26% denied smoking. All hard coal miners provided pneumoconiosis-related changes in the chest x-ray. The observed frequency of GSTM1 negative hard coal miners was not different from frequencies reported for general Caucasian populations and in agreement with findings reported for Chinese coal miners. In contrast, in a former study, 16 of 19 German hard coal miners (84%) with urinary bladder cancer displayed a GSTM1 negative genotype. The outcome of this study provides evidence that severely occupationally exposed Caucasian hard coal miners do not present an elevated level of GSTM1 negative individuals.

  4. Indication for joint replacement and glutathione s-transferases M1 and T1 genotypes.

    PubMed

    Klein, Torsten; Selinski, Silvia; Blaszkewicz, Meinolf; Hengstler, Jan G; Golka, Klaus

    2012-01-01

    In most patients with osteoarthritis (OA), therapy-resistant pain is the indication for hip or knee replacement. Glutathione S-transferases, particularly glutathione S-transferase M1 (GSTM1), are involved in metabolism of highly reactive metabolites that may be generated by inflammatory processes. In total, 148 patients with indication for hip or knee replacement and 129 patients of the same hospital without indication for joint replacement were genotyped for GSTM1 and GSTT1 and interviewed by a newly developed questionnaire for occupational and nonoccupational risk factors of hip and/or knee osteoarthritis. Mean age was 70.9 yr in OA cases and 67.4 yr in controls. The frequency of GSTM1 negative in the OA case group was (45%) in the lower range compared to values in Caucasian general population (approximately 50%), whereas the frequency in the controls was normal (51%). The frequency of GSTT1 negative genotype in OA cases and controls was normal. The normal distribution of the GSTM1 negative genotype in patients with indication for hip or knee replacement indicates that the role GSTM1 in these patients is different from that in other aseptic inflammatory diseases such as ozone-related inflammatory reactions of the respiratory tract.

  5. Structural Determinants Allowing Transferase Activity in SENSITIVE TO FREEZING 2, Classified as a Family I Glycosyl Hydrolase*

    PubMed Central

    Roston, Rebecca L.; Wang, Kun; Kuhn, Leslie A.; Benning, Christoph

    2014-01-01

    SENSITIVE TO FREEZING 2 (SFR2) is classified as a family I glycosyl hydrolase but has recently been shown to have galactosyltransferase activity in Arabidopsis thaliana. Natural occurrences of apparent glycosyl hydrolases acting as transferases are interesting from a biocatalysis standpoint, and knowledge about the interconversion can assist in engineering SFR2 in crop plants to resist freezing. To understand how SFR2 evolved into a transferase, the relationship between its structure and function are investigated by activity assay, molecular modeling, and site-directed mutagenesis. SFR2 has no detectable hydrolase activity, although its catalytic site is highly conserved with that of family 1 glycosyl hydrolases. Three regions disparate from glycosyl hydrolases are identified as required for transferase activity as follows: a loop insertion, the C-terminal peptide, and a hydrophobic patch adjacent to the catalytic site. Rationales for the effects of these regions on the SFR2 mechanism are discussed. PMID:25100720

  6. Cellular properties of human erythrocytes preserved in saline-adenine-glucose-mannitol in the presence of L-carnitine.

    PubMed

    Arduini, Arduino; Minetti, Giampaolo; Ciana, Annarita; Seppi, Claudio; Brovelli, Augusta; Profumo, Antonella; Vercellati, Cristina; Zappa, Manuela; Zanella, Alberto; Dottori, Secondo; Bonomini, Mario

    2007-01-01

    L-Carnitine (LC) in the preservation medium during storage of red blood cells (RBC) can improve the mean 24-hr percent recovery in vivo and increase RBC life-span after reinfusion. The purpose of the study was to investigate the differences in the biochemical properties of RBCs stored in the presence or absence of LC, and the cell-age related responses to storage conditions and to LC. RBC concentrates in saline-adenine-glucose-mannitol (SAG-M) were stored in the presence or absence of 5 mM LC at 4 degrees C for up to 8 weeks. RBC subpopulations of different densities were prepared by centrifugation on Stractan density gradient. Cells were sampled at 0, 3, 6, and 8 weeks, and hematological and cellular properties analyzed (MCV, MCHC, 4.1a/4.1b ratio as a cell age parameter, intracellular Na(+) and K(+)). After 6 weeks, MCV of RBC stored in the presence of LC was lower than that of controls (6 weeks MCV: controls 95.4 +/- 1.8 fl; LC 91.5 +/- 2.0 fl; n = 6; P < 0.005). This was due to swelling of control cells, and affected mainly older RBCs. LC appeared to reduce or retard cell swelling. Among the osmotically active substances whose changes during storage could contribute to cell swelling, only intracellular Na(+) and K(+) differed between stored control RBCs and LC-treated cells. LC reduces the swelling of older cells during storage at 4 degrees C in SAG-M, possibly by acting on the permeability of cell membrane to monovalent cations. PMID:16947328

  7. Electrochemical behavior of flavin adenine dinucleotide adsorbed onto carbon nanotube and nitrogen-doped carbon nanotube electrodes.

    PubMed

    Goran, Jacob M; Stevenson, Keith J

    2013-11-01

    Flavin adenine dinucleotide (FAD) is a cofactor for many enzymes, but also an informative redox active surface probe for electrode materials such as carbon nanotubes (CNTs) and nitrogen-doped CNTs (N-CNTs). FAD spontaneously adsorbs onto the surface of CNTs and N-CNTs, displaying Langmuir adsorption characteristics. The Langmuir adsorption model provides a means of calculating the electroactive surface area (ESA), the equilibrium constant for the adsorption and desorption processes (K), and the Gibbs free energy of adsorption (ΔG°). Traditional ESA measurements based on the diffusional flux of a redox active molecule to the electrode surface underestimate the ESA of porous materials because pores are not penetrated. Techniques such as gas adsortion (BET) overestimate the ESA because it includes both electroactive and inactive areas. The ESA determined by extrapolation of the Langmuir adsorption model with the electroactive surface probe FAD will penetrate pores and only include electroactive areas. The redox activity of adsorbed FAD also displays a strong dependency on pH, which provides a means of determining the pKa of the surface confined species. The pKa of FAD decreases as the nitrogen content in the CNTs increases, suggesting a decreased hydrophobicity of the N-CNT surface. FAD desorption at N-CNTs slowly transforms the main FAD surface redox reaction with E1/2 at -0.84 V into two new, reversible, surface confined redox reactions with E1/2 at -0.65 and -0.76 V (vs Hg/Hg2SO4), respectively (1.0 M sodium phosphate buffer pH = 6.75). This is the first time these redox reactions have been observed. The new surface confined redox reactions were not observed during FAD desorption from nondoped CNTs.

  8. Eliciting the mitochondrial unfolded protein response by nicotinamide adenine dinucleotide repletion reverses fatty liver disease in mice

    PubMed Central

    Gariani, Karim; Menzies, Keir J.; Ryu, Dongryeol; Wegner, Casey J.; Wang, Xu; Ropelle, Eduardo R.; Moullan, Norman; Zhang, Hongbo; Perino, Alessia; Lemos, Vera; Kim, Bohkyung; Park, Young‐Ki; Piersigilli, Alessandra; Pham, Tho X.; Yang, Yue; Ku, Chai Siah; Koo, Sung I.; Fomitchova, Anna; Cantó, Carlos; Schoonjans, Kristina; Sauve, Anthony A.

    2015-01-01

    With no approved pharmacological treatment, nonalcoholic fatty liver disease (NAFLD) is now the most common cause of chronic liver disease in Western countries and its worldwide prevalence continues to increase along with the growing obesity epidemic. Here, we show that a high‐fat high‐sucrose (HFHS) diet, eliciting chronic hepatosteatosis resembling human fatty liver, lowers hepatic nicotinamide adenine dinucleotide (NAD+) levels driving reductions in hepatic mitochondrial content, function, and adenosine triphosphate (ATP) levels, in conjunction with robust increases in hepatic weight, lipid content, and peroxidation in C57BL/6J mice. To assess the effect of NAD+ repletion on the development of steatosis in mice, nicotinamide riboside, a precursor of NAD+ biosynthesis, was added to the HFHS diet, either as a preventive strategy or as a therapeutic intervention. We demonstrate that NR prevents and reverts NAFLD by inducing a sirtuin (SIRT)1‐ and SIRT3‐dependent mitochondrial unfolded protein response, triggering an adaptive mitohormetic pathway to increase hepatic β‐oxidation and mitochondrial complex content and activity. The cell‐autonomous beneficial component of NR treatment was revealed in liver‐specific Sirt1 knockout mice (Sirt1hep−/−), whereas apolipoprotein E‐deficient mice (Apoe −/−) challenged with a high‐fat high‐cholesterol diet affirmed the use of NR in other independent models of NAFLD. Conclusion: Our data warrant the future evaluation of NAD+ boosting strategies to manage the development or progression of NAFLD. (Hepatology 2016;63:1190–1204) PMID:26404765

  9. Protection from inactivation of the adenine nucleotide translocator during hypoglycaemia-induced apoptosis by mitochondrial phospholipid hydroperoxide glutathione peroxidase.

    PubMed Central

    Imai, Hirotaka; Koumura, Tomoko; Nakajima, Ryo; Nomura, Kazuhiro; Nakagawa, Yasuhito

    2003-01-01

    We demonstrated that mitochondrial phospholipid hydroperoxide glutathione peroxidase (PHGPx) first suppressed the dissociation of cytochrome c (cyt c) from cardiolipin (CL) in mitochondrial inner membranes and then apoptosis caused by the hypoglycaemia by the prevention of peroxidation of CL [Nomura, Imai, Koumura, Arai and Nakagawa (1999) J. Biol. Chem. 274, 29294-29302; Nomura, Imai, Koumura, Kobayashi and Nakagawa (2000) Biochem. J. 351, 183-193]. The present study shows the involvement of peroxidation of CL in the inactivation of adenine nucleotide translocator (ANT) and the opening of permeability transition pores by using the system of ANT-reconstituted liposome and isolated mitochondria. ANT activity appeared in dioleoyl phosphatidylcholine proteoliposome containing 10% (mol/mol) CL or phosphatidylglycerol (PG), but not other classes of phospholipids. ANT activity was competitively inhibited by the addition of cardiolipin hydroperoxide (CLOOH) in reconstituted liposomes containing CL. However, phosphatidylcholine hydroperoxide failed to inactivate the activity of ANT. The activity of ANT in reconstituted liposomes, including CLOOH, recovered when CLOOH in reconstituted liposome was reduced to hydroxycardiolipin by incubation with PHGPx. The activity of ANT was determined in rat basophil leukaemia RBL2H3 cells after their exposure to 2-deoxyglucose. ANT activity decreased to 50% of the control level by 4 h in response to apoptosis. In parallel, cyt c and apoptosis-inducing factor (AIF) were released from mitochondria. Suppression of the accumulation of CLOOH by overexpression of PHGPx in mitochondria effectively prevented the inactivation of ANT, the opening of permeability transition pores and the release of cyt c and AIF from mitochondria in hypoglycaemia-induced apoptotic cells. These findings suggest that mitochondrial PHGPx might be involved in the modulation of the activity of ANT and the opening of pores for the release of cyt c via the modulation of

  10. 3-(3,4-Dihydroxyphenyl)adenine, a urinary DNA adduct formed in mice exposed to high concentrations of benzene.

    PubMed

    Mikeš, Petr; Sístek, Václav; Krouželka, Jan; Králík, Antonín; Frantík, Emil; Mráz, Jaroslav; Linhart, Igor

    2013-06-01

    Metabolism of benzene, an important environmental and industrial carcinogen, produces three electrophilic intermediates, namely, benzene oxide and 1,2- and 1,4-benzoquinone, capable of reacting with the DNA. Numerous DNA adducts formed by these metabolites in vitro have been reported in the literature, but only one of them was hitherto identified in vivo. In a search for urinary DNA adducts, specific LC-ESI-MS methods have been developed for the determination in urine of six nucleobase adducts, namely, 7-phenylguanine, 3-phenyladenine, 3-hydroxy-3,N(4) -benzethenocytosine, N(2) -(4-hydroxyphenyl)guanine, 7-(3,4-dihydroxyphenyl)guanine and 3-(3,4-dihydroxyphenyl)-adenine (DHPA), with detection limits of 200, 10, 260, 50, 400 and 200 pg ml(-1) , respectively. Mice were exposed to benzene vapors at concentrations of 900 and 1800 mg m(-3) , 6 h per day for 15 consecutive days. The only adduct detected in their urine was DHPA. It was found in eight out of 30 urine samples from the high-exposure group at concentrations of 352 ± 146 pg ml(-1) (mean ± SD; n = 8), whereas urines from the low-exposure group were negative. Assuming the DHPA concentration in the negative samples to be half of the detection limit, conversion of benzene to DHPA was estimated to 2.2 × 10(-6) % of the absorbed dose. Thus, despite the known high mutagenic and carcinogenic potential of benzene, only traces of a single DNA adduct in urine were detected. In conclusion, DHPA is an easily depurinating adduct, thus allowing indication of only high recent exposure to benzene, but not long-term damage to DNA in tissues.

  11. Changes in the expression of the human adenine nucleotide translocase isoforms condition cellular metabolic/proliferative status

    PubMed Central

    Mampel, Teresa; Viñas, Octavi

    2016-01-01

    Human cells express four mitochondrial adenine nucleotide translocase (hANT) isoforms that are tissue-specific and developmentally regulated. hANT1 is mainly expressed in terminally differentiated muscle cells; hANT2 is growth-regulated and is upregulated in highly glycolytic and proliferative cells; and hANT3 is considered to be ubiquitous and non-specifically regulated. Here, we studied how the expression of hANT isoforms is regulated by proliferation and in response to metabolic stimuli, and examined the metabolic consequences of their silencing and overexpression. In HeLa and HepG2 cells, expression of hANT3 was upregulated by shifting metabolism towards oxidation or by slowed growth associated with contact inhibition or growth-factor deprivation, indicating that hANT3 expression is highly regulated. Under these conditions, changes in hANT2 mRNA expression were not observed in either HeLa or HepG2 cells, whereas in SGBS preadipocytes (which, unlike HeLa and HepG2 cells, are growth-arrest-sensitive cells), hANT2 mRNA levels decreased. Additionally, overexpression of hANT2 promoted cell growth and glycolysis, whereas silencing of hANT3 decreased cellular ATP levels, limited cell growth and induced a stress-like response. Thus, cancer cells require both hANT2 and hANT3, depending on their proliferation status: hANT2 when proliferation rates are high, and hANT3 when proliferation slows. PMID:26842067

  12. EPR and potentiometric studies of copper(II) binding to nicotinamide adenine dinucleotide (NAD+) in water solution.

    PubMed

    Hoffmann, Stanisław K; Goslar, Janina; Lijewski, Stefan; Basiński, Kamil; Gąsowska, Anna; Łomozik, Lechosław

    2012-06-01

    Coordination of Cu(II) by nicotinamide adenine dinucleotide (NAD(+)) molecule has been studied in water solutions of various pH by potentiometry and electron paramagnetic resonance (EPR) and electron spin echo (ESE) spectroscopy. Potentiometric results indicate Cu(II) coordination by protonated NAD(+) at low pH and by deprotonated NAD(+) at high pH. At medium pH value (around pH=7) NAD(+) is not able to coordinate Cu(II) ions effectively and mainly the Cu(H(2)O)(6) complexes exist in the studied solution. This has been confirmed by EPR results. Electronic structure of Cu(II)-NAD complex and coordination sites is determined from EPR and ESE measurements in frozen solutions (at 77K and 6K). EPR spectra exclude coordination with nitrogen atoms. Detailed analysis of EPR parameters (g(||)=2.420, g(perpendicular)==2.080, A(||)=-131×10(-4)cm(-1) and A(perpendicular)=8×10(-4)cm(-1)) performed in terms of molecular orbital (MO) theory shows that Cu(II)NAD complex has elongated axial octahedral symmetry with a relatively strong delocalization of unpaired electron density on in-plane and axial ligands. The distortion of octahedron is analyzed using A(||) vs. g(||) diagram for various CuO(x) complexes. Electron spin echo decay modulation excludes the coordination by oxygen atoms of phosphate groups. We postulate a coordination of Cu(II) by two hydroxyl oxygen atoms of two ribose moieties of the NAD molecules and four solvated water molecules both at low and high pH values with larger elongation of the octahedron at higher pH.

  13. Real-time measurements of nicotinamide adenine dinucleotide in live human trabecular meshwork cells: effects of acute oxidative stress.

    PubMed

    Masihzadeh, Omid; Ammar, David A; Lei, Tim C; Gibson, Emily A; Kahook, Malik Y

    2011-09-01

    The trabecular meshwork (TM) region of the eye is exposed to a constant low-level of oxidative insult. The cumulative damage may be the reason behind age-dependent risk for developing primary open angle glaucoma. Chronic and acute effects of hydrogen peroxide (H(2)O(2)) on TM endothelial cells include changes in viability, protein synthesis, and cellular adhesion. However, little if anything is known about the immediate effect of H(2)O(2) on the biochemistry of the TM cells and the initial response to oxidative stress. In this report, we have used two-photon excitation autofluorescence (2PAF) to monitor changes to TM cell nicotinamide adenine dinucleotide (NADPH). 2PAF allows non-destructive, real-time analysis of concentration of intracellular NADPH. Coupled to reduced glutathione, NADPH, is a major component in the anti-oxidant defense of TM cells. Cultured human TM cells were monitored for over 30 min in control and H(2)O(2)-containing solutions. Peroxide caused both a dose- and time-dependent decrease in NADPH signal. NADPH fluorescence in control and in 4 mM H(2)O(2) solutions showed little attenuation of NADPH signal (4% and 9% respectively). TM cell NADPH fluorescence showed a linear decrease with exposure to 20 mM H(2)O(2) (-29%) and 100 mM H(2)O(2) (37%) after a 30 min exposure. Exposure of TM cells to 500 mM H(2)O(2) caused an exponential decrease in NADPH fluorescence to a final attenuation of 46% of starting intensity. Analysis of individual TM cells indicates that cells with higher initial NADPH fluorescence are more refractive to the apparent loss of viability caused by H(2)O(2) than weakly fluorescing TM cells. We conclude that 2PAF of intracellular NADPH is a valuable tool for studying TM cell metabolism in response to oxidative insult. PMID:21354135

  14. ß-nicotinamide adenine dinucleotide is an enteric inhibitory neurotransmitter in human and non-human primate colons

    PubMed Central

    Hwang, Sung Jin; Durnin, Leonie; Dwyer, Laura; Rhee, Poong-Lyul; Ward, Sean M.; Koh, Sang Don; Sanders, Kenton M.; Mutafova-Yambolieva, Violeta N.

    2010-01-01

    Background & Aims An important component of enteric inhibitory neurotransmission is mediated by a purine neurotransmitter, such as adenosine 5’-triphosphate (ATP), binding to P2Y1 receptors and activating small conductance K+ channels. In murine colon ß-nicotinamide adenine dinucleotide (ß-NAD) is released with ATP and mimics the pharmacology of inhibitory neurotransmission better than ATP. Here ß-NAD and ATP were compared as possible inhibitory neurotransmitters in human and monkey colons. Methods A small-volume superfusion assay and HPLC with fluorescence detection were used to evaluate spontaneous and nerve-evoked overflow of ß-NAD, ATP and metabolites. Postjunctional responses to nerve stimulation, ß-NAD and ATP were compared using intracellular membrane potential and force measurements. Effects of ß-NAD on smooth muscle cells (SMCs) were recorded by patch clamp. P2Y receptor transcripts and proteins were assayed by RT-PCR. Results In contrast to ATP, overflow of ß-NAD evoked by electrical field stimulation correlated with stimulation frequency and was diminished by neurotoxins, tetrodotoxin and ω-conotoxin GVIA. Inhibitory junction potentials and responses to exogenous ß-NAD, but not ATP, were blocked by P2Y receptor antagonists suramin, PPADS, MRS2179 and MRS2500. ß-NAD activated non-selective cation currents in SMCs, but failed to activate outward currents. Conclusions ß-NAD meets the criteria for a neurotransmitter better than ATP in human and monkey colons and therefore may contribute to neural regulation of colonic motility. SMCs are unlikely targets for inhibitory purine neurotransmitters because dominant responses of SMCs were activation of net inward, rather than outward, current. PMID:20875415

  15. Morphological features, distribution and compartmental organization of the nicotinamide adenine dinucleotide phosphate reduced-diaphorase interneurons in the human striatum.

    PubMed

    Bernácer, Javier; Prensa, Lucía; Giménez-Amaya, José Manuel

    2005-08-29

    Striatal nicotinamide adenine dinucleotide phosphate reduced-diaphorase (NADPH-d)-positive (+) cells are one of the major classes of striatal interneurons. The present study analyzes their somatodendritic morphology, distribution pattern, and compartmental organization in the caudate nucleus (CN) and putamen (Put) of nine normal human brains. The following striatal territories are examined: 1) the precommissural head of the CN; 2) the postcommissural head of the CN; 3) the body of the CN; 4) the gyrus of the CN; 5) the tail of the CN; 6) the precommissural Put; and 7) the postcommissural Put. Three morphologically distinct types of NADPH-d+ neurons were found in each of these territories. The two most common NADPH-d+ neurons displayed an ovoid or triangular perikaryon from which several thick primary dendrites emerged, although much less numerous, bipolar-shaped NADPH-d+ cells were also observed. The highest density of NADPH-d+ neurons was found in the gyrus of the CN, followed by the body of the CN, tail of the CN, postcommissural head of the CN, postcommissural Put, precommissural head of the CN, and precommissural Put. The matrix was the striatal compartment with the densest NADPH-d+ neuronal population. Some of these cells also occurred in the center and peripheral regions of the striosomes located in the head of the CN and in the Put. In the body and gyrus of the CN, the striosomes were largely devoid of these striatal interneurons. Knowledge of the density and distribution of these interneurons should advance our understanding of the organization of the normal human striatum and help to evaluate the effects of neurodegenerative processes on cell density.

  16. Real-time measurements of nicotinamide adenine dinucleotide in live human trabecular meshwork cells: Effects of acute oxidative stress✩

    PubMed Central

    Masihzadeh, Omid; Ammar, David A.; Lei, Tim C.; Gibson, Emily A.; Kahook, Malik Y.

    2016-01-01

    The trabecular meshwork (TM) region of the eye is exposed to a constant low-level of oxidative insult. The cumulative damage may be the reason behind age-dependent risk for developing primary open angle glaucoma. Chronic and acute effects of hydrogen peroxide (H2O2) on TM endothelial cells include changes in viability, protein synthesis, and cellular adhesion. However, little if anything is known about the immediate effect of H2O2 on the biochemistry of the TM cells and the initial response to oxidative stress. In this report, we have used two-photon excitation autofluorescence (2PAF) to monitor changes to TM cell nicotinamide adenine dinucleotide (NADPH). 2PAF allows non-destructive, real-time analysis of concentration of intracellular NADPH. Coupled to reduced glutathione, NADPH, is a major component in the anti-oxidant defense of TM cells. Cultured human TM cells were monitored for over 30 min in control and H2O2-containing solutions. Peroxide caused both a dose- and time-dependent decrease in NADPH signal. NADPH fluorescence in control and in 4 mM H2O2 solutions showed little attenuation of NADPH signal (4% and 9% respectively). TM cell NADPH fluorescence showed a linear decrease with exposure to 20 mM H2O2 (−29%) and 100 mM H2O2 (37%) after a 30 min exposure. Exposure of TM cells to 500 mM H2O2 caused an exponential decrease in NADPH fluorescence to a final attenuation of 46% of starting intensity. Analysis of individual TM cells indicates that cells with higher initial NADPH fluorescence are more refractive to the apparent loss of viability caused by H2O2 than weakly fluorescing TM cells. We conclude that 2PAF of intracellular NADPH is a valuable tool for studying TM cell metabolism in response to oxidative insult. PMID:21354135

  17. Evidence for the Degradation of Nicotinamide Adenine Dinucleotide Phosphate-Dependent Glutamate Dehydrogenase of Candida utilis During Rapid Enzyme Inactivation

    PubMed Central

    Hemmings, Brian A.

    1978-01-01

    The nicotinamide adenine dinucleotide phosphate-dependent glutamate dehydrogenase (NADP-GDH) from the food yeast Candida utilis was found to be rapidly inactivated when cultures were starved of a carbon source. The addition of glutamate or alanine to the starvation medium stimulated the rate of inactivation. Loss of enzyme activity was irreversible since the reappearance of enzyme activity, following the addition of glucose to carbon-starved cultures, was blocked by cycloheximide. A specific rabbit antibody was prepared against the NADP-GDH from C. utilis and used to quantitate the enzyme during inactivation promoted by carbon starvation. The amount of precipitable antigenic material paralleled the rapid decrease of enzyme activity observed after transition of cells from NH4+-glucose to glutamate medium. No additional small-molecular-weight protein was precipitated by the antibody as a result of the inactivation, suggesting that the enzyme is considerably altered during the primary steps of the inactivation process. Analysis by immunoprecipitation of the reappearance of enzyme activity after enzyme inactivation showed that increase of NADP-GDH activity was almost totally due to de novo synthesis, ruling out the possibility that enzyme activity modulation is achieved by reversible covalent modification. Enzyme degradation was also measured during steady-state growth and other changes in nitrogen and carbon status of the culture media. In all instances so far estimated, the enzyme was found to be very stable and not normally subject to high rates of degradation. Therefore, the possibility that inactivation was caused by a change in the ratio of synthesis to degradation can be excluded. Images PMID:24041

  18. A functional role for nicotinic acid adenine dinucleotide phosphate in oxytocin-mediated contraction of uterine smooth muscle from rat.

    PubMed

    Aley, Parvinder K; Noh, Hyun J; Gao, Xin; Tica, Andrei A; Brailoiu, Eugen; Churchill, Grant C

    2010-06-01

    Conventionally, G protein-coupled receptors are thought to increase calcium via inositol 1,4,5-trisphosphate (InsP(3)). More recent evidence shows that an alternative second messenger, nicotinic acid adenine dinucleotide phosphate (NAADP), also has a role to play, causing researchers to question established calcium releasing pathways. With the recent development, by our group, of cell-permeant NAADP (NAADP-aceteoxymethyl ester) and a selective NAADP receptor antagonist (Ned-19; 1-(3-((4-(2-fluorophenyl)piperazin-1-yl)methyl)-4-methoxyphenyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-3-carboxylic acid),the ability to investigate this signaling pathway has improved. Therefore, we investigated a role for NAADP in oxytocin-mediated responses in the rat uterus. Oxytocin- and NAADP-mediated effects were investigated by using contractile measurements of whole uterine strips from rat in organ baths. Responses were correlated to calcium release in cultured rat uterine smooth muscle cells measured by fluorescence microscopy. Inhibition of both oxytocin-induced contraction and calcium release by the traditional NAADP-signaling disrupter bafilomycin and the NAADP receptor antagonist Ned-19 clearly demonstrated a role for NAADP in oxytocin-induced signaling. A cell-permeant form of NAADP was able to produce both uterine contractions and calcium release. This response was unaffected by depletion of sarcoplasmic reticulum stores with thapsigargin, but was abolished by both bafilomycin and Ned-19. Crucially, oxytocin stimulated an increase in NAADP in rat uterine tissue. The present study demonstrates directly that NAADP signaling plays a role in rat uterine contractions. Moreover, investigation of this signaling pathway highlights yet another component of oxytocin-mediated signaling, stressing the need to consider the action of new components as they are discovered, even in signaling pathways that are thought to be well established.

  19. Interaction of reduced nicotinamide adenine dinucleotide with an antifreeze protein from Dendroides canadensis: mechanistic implication of antifreeze activity enhancement

    PubMed Central

    Wen, Xin; Wang, Sen; Amornwittawat, Natapol; Houghton, Eric A.; Sacco, Michael A.

    2016-01-01

    Antifreeze proteins (AFPs) found in many organisms can noncolligatively lower the freezing point of water without altering the melting point. The difference between the depressed freezing point and the melting point, termed thermal hysteresis (TH), is usually a measure of the antifreeze activity of AFPs. Certain low molecular mass molecules and proteins can further enhance the antifreeze activity of AFPs. Interaction between an enhancer and arginine is known to play an important role in enhancing the antifreeze activity of an AFP from the beetle Dendroides canadensis (DAFP-1). Here, we examined the enhancement effects of several prevalent phosphate-containing coenzymes on the antifreeze activity of DAFP-1. β-Nicotinamide adenine dinucleotide (reduced) (NADH) is identified as the most efficient enhancer of DAFP-1, which increases the antifreeze activity of DAFP-1 by around 10 times. Examination of the enhancement abilities of a series of NADH analogs and various molecular fragments of NADH reveals that the modifications of nicotinamide generate a series of highly efficient enhancers, though none as effective as NADH itself, and the whole molecular structure of NADH is necessary for its highly efficient enhancement effect. We also demonstrated a 1:1 binding between DAFP-1 and NADH. The binding was characterized by high-performance liquid chromatography (HPLC) using the gel filtration method of Hummel and Dreyer. The data analysis suggests binding between DAFP-1 and NADH with a dissociation constant in the micromolar range. Interactions between DAFP-1 and NADH are discussed along with molecular mechanisms of enhancer action. PMID:22038809

  20. Mice Deficient in Glutathione Transferase Zeta/Maleylacetoacetate Isomerase Exhibit a Range of Pathological Changes and Elevated Expression of Alpha, Mu, and Pi Class Glutathione Transferases

    PubMed Central

    Lim, Cindy E.L.; Matthaei, Klaus I.; Blackburn, Anneke C.; Davis, Richard P.; Dahlstrom, Jane E.; Koina, Mark E.; Anders, M.W.; Board, Philip G.

    2004-01-01

    Glutathione transferase zeta (GSTZ1-1) is the major enzyme that catalyzes the metabolism of α-halo acids such as dichloroacetic acid, a carcinogenic contaminant of chlorinated water. GSTZ1-1 is identical with maleylacetoacetate isomerase, which catalyzes the penultimate step in the catabolic pathways for phenylalanine and tyrosine. In this study we have deleted the Gstz1 gene in BALB/c mice and characterized their phenotype. Gstz1−/− mice do not have demonstrable activity with maleylacetone and α-halo acid substrates, and other GSTs do not compensate for the loss of this enzyme. When fed a standard diet, the GSTZ1-1-deficient mice showed enlarged liver and kidneys as well as splenic atrophy. Light and electron microscopic examination revealed multifocal hepatitis and ultrastructural changes in the kidney. The addition of 3% (w/v) phenylalanine to the drinking water was lethal for young mice (<28 days old) and caused liver necrosis, macrovesicular steatosis, splenic atrophy, and a significant loss of circulating leukocytes in older surviving mice. GSTZ1-1-deficient mice showed constitutive induction of alpha, mu, and pi class GSTs as well as NAD(P)H:quinone oxidoreductase 1. The overall response is consistent with the chronic accumulation of a toxic metabolite(s). We detected the accumulation of succinylacetone in the serum of deficient mice but cannot exclude the possibility that maleylacetoacetate and maleylacetone may also accumulate. PMID:15277241

  1. Hydration properties of natural and synthetic DNA sequences with methylated adenine or cytosine bases in the R.DpnI target and BDNF promoter studied by molecular dynamics simulations.

    PubMed

    Shanak, Siba; Helms, Volkhard

    2014-12-14

    Adenine and cytosine methylation are two important epigenetic modifications of DNA sequences at the levels of the genome and transcriptome. To characterize the differential roles of methylating adenine or cytosine with respect to their hydration properties, we performed conventional MD simulations and free energy perturbation calculations for two particular DNA sequences, namely the brain-derived neurotrophic factor (BDNF) promoter and the R.DpnI-bound DNA that are known to undergo methylation of C5-methyl cytosine and N6-methyl adenine, respectively. We found that a single methylated cytosine has a clearly favorable hydration free energy over cytosine since the attached methyl group has a slightly polar character. In contrast, capping the strongly polar N6 of adenine with a methyl group gives a slightly unfavorable contribution to its free energy of solvation. Performing the same demethylation in the context of a DNA double-strand gave quite similar results for the more solvent-accessible cytosine but much more unfavorable results for the rather buried adenine. Interestingly, the same demethylation reactions are far more unfavorable when performed in the context of the opposite (BDNF or R.DpnI target) sequence. This suggests a natural preference for methylation in a specific sequence context. In addition, free energy calculations for demethylating adenine or cytosine in the context of B-DNA vs. Z-DNA suggest that the conformational B-Z transition of DNA transition is rather a property of cytosine methylated sequences but is not preferable for the adenine-methylated sequences investigated here.

  2. Hydration properties of natural and synthetic DNA sequences with methylated adenine or cytosine bases in the R.DpnI target and BDNF promoter studied by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Shanak, Siba; Helms, Volkhard

    2014-12-01

    Adenine and cytosine methylation are two important epigenetic modifications of DNA sequences at the levels of the genome and transcriptome. To characterize the differential roles of methylating adenine or cytosine with respect to their hydration properties, we performed conventional MD simulations and free energy perturbation calculations for two particular DNA sequences, namely the brain-derived neurotrophic factor (BDNF) promoter and the R.DpnI-bound DNA that are known to undergo methylation of C5-methyl cytosine and N6-methyl adenine, respectively. We found that a single methylated cytosine has a clearly favorable hydration free energy over cytosine since the attached methyl group has a slightly polar character. In contrast, capping the strongly polar N6 of adenine with a methyl group gives a slightly unfavorable contribution to its free energy of solvation. Performing the same demethylation in the context of a DNA double-strand gave quite similar results for the more solvent-accessible cytosine but much more unfavorable results for the rather buried adenine. Interestingly, the same demethylation reactions are far more unfavorable when performed in the context of the opposite (BDNF or R.DpnI target) sequence. This suggests a natural preference for methylation in a specific sequence context. In addition, free energy calculations for demethylating adenine or cytosine in the context of B-DNA vs. Z-DNA suggest that the conformational B-Z transition of DNA transition is rather a property of cytosine methylated sequences but is not preferable for the adenine-methylated sequences investigated here.

  3. Crystallization and preliminary X-ray analysis of glutathione transferases from cyanobacteria

    SciTech Connect

    Feil, Susanne C.; Tang, Julian; Hansen, Guido; Gorman, Michael A.; Wiktelius, Eric; Stenberg, Gun; Parker, Michael W.

    2009-05-08

    Glutathione S-transferases (GSTs) are a group of multifunctional enzymes that are found in animals, plants and microorganisms. Their primary function is to remove toxins derived from exogenous sources or the products of metabolism from the cell. Mammalian GSTs have been extensively studied, in contrast to bacterial GSTs which have received relatively scant attention. A new class of GSTs called Chi has recently been identified in cyanobacteria. Chi GSTs exhibit a high glutathionylation activity towards isothiocyanates, compounds that are normally found in plants. Here, the crystallization of two GSTs are presented: TeGST produced by Thermosynechococcus elongates BP-1 and SeGST from Synechococcus elongates PCC 6301. Both enzymes formed crystals that diffracted to high resolution and appeared to be suitable for further X-ray diffraction studies. The structures of these GSTs may shed further light on the evolution of GST catalytic activity and in particular why these enzymes possess catalytic activity towards plant antimicrobial compounds.

  4. Phi Class of Glutathione S-transferase Gene Superfamily Widely Exists in Nonplant Taxonomic Groups

    PubMed Central

    Munyampundu, Jean-Pierre; Xu, You-Ping; Cai, Xin-Zhong

    2016-01-01

    Glutathione S-transferases (GSTs) constitute a superfamily of enzymes involved in detoxification of noxious compounds and protection against oxidative damage. GST class Phi (GSTF), one of the important classes of plant GSTs, has long been considered as plant specific but was recently found in basidiomycete fungi. However, the range of nonplant taxonomic groups containing GSTFs remains unknown. In this study, the distribution and phylogenetic relationships of nonplant GSTFs were investigated. We identified GSTFs in ascomycete fungi, myxobacteria, and protists Naegleria gruberi and Aureococcus anophagefferens. GSTF occurrence in these bacteria and protists correlated with their genome sizes and habitats. While this link was missing across ascomycetes, the distribution and abundance of GSTFs among ascomycete genomes could be associated with their lifestyles to some extent. Sequence comparison, gene structure, and phylogenetic analyses indicated divergence among nonplant GSTFs, suggesting polyphyletic origins during evolution. Furthermore, in silico prediction of functional partners suggested functional diversification among nonplant GSTFs. PMID:26884677

  5. Review: Human guanidinoacetate n-methyl transferase (GAMT) deficiency: A treatable inborn error of metabolism.

    PubMed

    Iqbal, Furhan

    2015-11-01

    The creatine biosynthetic pathway is essential for cellular phosphate associated energy production and storage, particularly in tissues having higher metabolic demands. Guanidinoacetate N-Methyl transferase (GAMT) is an important enzyme in creatine endogenous biosynthetic pathway, with highest expression in liver and kidney. GAMT deficiency is an inherited autosomal recessive trait that was the first among creatine deficiency syndrome to be reported in 1994 having characteristic features of no comprehensible speech development, severe mental retardation, muscular hypotonia, involuntary movements and seizures that partly cannot be treated with anti-epileptic drugs. Due to problematic endogenous creatine biosynthesis, systemic depletion of creatine/phosphocreatine and accumulation of guanidinoacetate takes place that are the diagnostic features of this disease. Dietary creatine supplementation alone or along with arginine restriction has been reported to be beneficial for all treated patients, although to various extent. However, none of the GAMT deficient patient has been reported to return to complete normal developmental level. PMID:26639513

  6. Irreversible Inhibition of Glutathione S-Transferase by Phenethyl Isothiocyanate (PEITC), a Dietary Cancer Chemopreventive Phytochemical

    PubMed Central

    Kumari, Vandana; Dyba, Marzena A.; Holland, Ryan J.; Liang, Yu-He; Singh, Shivendra V.

    2016-01-01

    Dietary isothiocyanates abundant as glucosinolate precursors in many edible cruciferous vegetables are effective for prevention of cancer in chemically-induced and transgenic rodent models. Some of these agents, including phenethyl isothiocyanate (PEITC), have already advanced to clinical investigations. The primary route of isothiocyanate metabolism is its conjugation with glutathione (GSH), a reaction catalyzed by glutathione S-transferase (GST). The pi class GST of subunit type 1 (hGSTP1) is much more effective than the alpha class GST of subunit type 1 (hGSTA1) in catalyzing the conjugation. Here, we report the crystal structures of hGSTP1 and hGSTA1 each in complex with the GSH adduct of PEITC. We find that PEITC also covalently modifies the cysteine side chains of GST, which irreversibly inhibits enzymatic activity. PMID:27684484

  7. Structural basis for the interaction of antibiotics with peptidyl transferase center in eubacteria

    SciTech Connect

    Schlunzen, Frank; Zarivach, Raz; Harms, Jörg; Bashan, Anat; Tocilj, Ante; Albrecht, Renate; Yonath, Ada; Franceschi, Francois

    2009-10-07

    Ribosomes, the site of protein synthesis, are a major target for natural and synthetic antibiotics. Detailed knowledge of antibiotic binding sites is central to understanding the mechanisms of drug action. Conversely, drugs are excellent tools for studying the ribosome function. To elucidate the structural basis of ribosome-antibiotic interactions, we determined the high-resolution X-ray structures of the 50S ribosomal subunit of the eubacterium Deinococcus radiodurans, complexed with the clinically relevant antibiotics chloramphenicol, clindamycin and the three macrolides erythromycin, clarithromycin and roxithromycin. We found that antibiotic binding sites are composed exclusively of segments of 23S ribosomal RNA at the peptidyl transferase cavity and do not involve any interaction of the drugs with ribosomal proteins. Here we report the details of antibiotic interactions with the components of their binding sites. Our results also show the importance of putative Mg{sup +2} ions for the binding of some drugs. This structural analysis should facilitate rational drug design.

  8. O-GlcNAc transferase inhibitors: current tools and future challenges.

    PubMed

    Trapannone, Riccardo; Rafie, Karim; van Aalten, Daan M F

    2016-02-01

    The O-linked N-acetylglucosamine (O-GlcNAc) post-translational modification (O-GlcNAcylation) is the dynamic and reversible attachment of N-acetylglucosamine to serine and threonine residues of nucleocytoplasmic target proteins. It is abundant in metazoa, involving hundreds of proteins linked to a plethora of biological functions with implications in human diseases. The process is catalysed by two enzymes: O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) that add and remove sugar moieties respectively. OGT knockout is embryonic lethal in a range of animal models, hampering the study of the biological role of O-GlcNAc and the dissection of catalytic compared with non-catalytic roles of OGT. Therefore, selective and potent chemical tools are necessary to inhibit OGT activity in the context of biological systems. The present review focuses on the available OGT inhibitors and summarizes advantages, limitations and future challenges.

  9. Diversification of Fungal Specific Class A Glutathione Transferases in Saprotrophic Fungi

    PubMed Central

    Favier, Frédérique; Harvengt, Luc; Didierjean, Claude; Jacquot, Jean-Pierre; Morel-Rouhier, Mélanie; Gelhaye, Eric

    2013-01-01

    Glutathione transferases (GSTs) form a superfamily of multifunctional proteins with essential roles in cellular detoxification processes and endogenous metabolism. The distribution of fungal-specific class A GSTs was investigated in saprotrophic fungi revealing a recent diversification within this class. Biochemical characterization of eight GSTFuA isoforms from Phanerochaete chrysosporium and Coprinus cinereus demonstrated functional diversity in saprotrophic fungi. The three-dimensional structures of three P. chrysosporium isoforms feature structural differences explaining the functional diversity of these enzymes. Competition experiments between fluorescent probes, and various molecules, showed that these GSTs function as ligandins with various small aromatic compounds, derived from lignin degradation or not, at a L-site overlapping the glutathione binding pocket. By combining genomic data with structural and biochemical determinations, we propose that this class of GST has evolved in response to environmental constraints induced by wood chemistry. PMID:24278272

  10. Molybdenum and tungsten oxygen transferases--and functional diversity within a common active site motif.

    PubMed

    Pushie, M Jake; Cotelesage, Julien J; George, Graham N

    2014-01-01

    Molybdenum and tungsten are the only second and third-row transition elements with a known function in living organisms. The molybdenum and tungsten enzymes show common structural features, with the metal being bound by a pyranopterin-dithiolene cofactor called molybdopterin. They catalyze a variety of oxygen transferase reactions coupled with two-electron redox chemistry in which the metal cycles between the +6 and +4 oxidation states usually with water, either product or substrate, providing the oxygen. The functional roles filled by the molybdenum and tungsten enzymes are diverse; for example, they play essential roles in microbial respiration, in the uptake of nitrogen in green plants, and in human health. Together, the enzymes form a superfamily which is among the most prevalent known, being found in all kingdoms of life. This review discusses what is known of the active site structures and the mechanisms, together with some recent insights into the evolution of these important enzyme systems.

  11. Rab geranylgeranyl transferase β subunit is essential for male fertility and tip growth in Arabidopsis.

    PubMed

    Gutkowska, Malgorzata; Wnuk, Marta; Nowakowska, Julita; Lichocka, Malgorzata; Stronkowski, Michal M; Swiezewska, Ewa

    2015-01-01

    Rab proteins, key players in vesicular transport in all eukaryotic cells, are post-translationally modified by lipid moieties. Two geranylgeranyl groups are attached to the Rab protein by the heterodimeric enzyme Rab geranylgeranyl transferase (RGT) αβ. Partial impairment in this enzyme activity in Arabidopsis, by disruption of the AtRGTB1 gene, is known to influence plant stature and disturb gravitropic and light responses. Here it is shown that mutations in each of the RGTB genes cause a tip growth defect, visible as root hair and pollen tube deformations. Moreover, FM 1-43 styryl dye endocytosis and recycling are affected in the mutant root hairs. Finally, it is demonstrated that the double mutant, with both AtRGTB genes disrupted, is non-viable due to absolute male sterility. Doubly mutated pollen is shrunken, has an abnormal exine structure, and shows strong disorganization of internal membranes, particularly of the endoplasmic reticulum system.

  12. Pharmacogenetics of azathioprine in inflammatory bowel disease: a role for glutathione-S-transferase?

    PubMed

    Stocco, Gabriele; Pelin, Marco; Franca, Raffaella; De Iudicibus, Sara; Cuzzoni, Eva; Favretto, Diego; Martelossi, Stefano; Ventura, Alessandro; Decorti, Giuliana

    2014-04-01

    Azathioprine is a purine antimetabolite drug commonly used to treat inflammatory bowel disease (IBD). In vivo it is active after reaction with reduced glutathione (GSH) and conversion to mercaptopurine. Although this reaction may occur spontaneously, the presence of isoforms M and A of the enzyme glutathione-S-transferase (GST) may increase its speed. Indeed, in pediatric patients with IBD, deletion of GST-M1, which determines reduced enzymatic activity, was recently associated with reduced sensitivity to azathioprine and reduced production of azathioprine active metabolites. In addition to increase the activation of azathioprine to mercaptopurine, GSTs may contribute to azathioprine effects even by modulating GSH consumption, oxidative stress and apoptosis. Therefore, genetic polymorphisms in genes for GSTs may be useful to predict response to azathioprine even if more in vitro and clinical validation studies are needed.

  13. Atypical features of a Ure2p glutathione transferase from Phanerochaete chrysosporium.

    PubMed

    Thuillier, Anne; Roret, Thomas; Favier, Frédérique; Gelhaye, Eric; Jacquot, Jean-Pierre; Didierjean, Claude; Morel-Rouhier, Mélanie

    2013-07-11

    Glutathione transferases (GSTs) are known to transfer glutathione onto small hydrophobic molecules in detoxification reactions. The GST Ure2pB1 from Phanerochaete chrysosporium exhibits atypical features, i.e. the presence of two glutathione binding sites and a high affinity towards oxidized glutathione. Moreover, PcUre2pB1 is able to efficiently deglutathionylate GS-phenacylacetophenone. Catalysis is not mediated by the cysteines of the protein but rather by the one of glutathione and an asparagine residue plays a key role in glutathione stabilization. Interestingly PcUre2pB1 interacts in vitro with a GST of the omega class. These properties are discussed in the physiological context of wood degrading fungi.

  14. Structures of aminoarabinose transferase ArnT suggest a molecular basis for lipid A glycosylation.

    PubMed

    Petrou, Vasileios I; Herrera, Carmen M; Schultz, Kathryn M; Clarke, Oliver B; Vendome, Jérémie; Tomasek, David; Banerjee, Surajit; Rajashankar, Kanagalaghatta R; Belcher Dufrisne, Meagan; Kloss, Brian; Kloppmann, Edda; Rost, Burkhard; Klug, Candice S; Trent, M Stephen; Shapiro, Lawrence; Mancia, Filippo

    2016-02-01

    Polymyxins are antibiotics used in the last line of defense to combat multidrug-resistant infections by Gram-negative bacteria. Polymyxin resistance arises through charge modification of the bacterial outer membrane with the attachment of the cationic sugar 4-amino-4-deoxy-l-arabinose to lipid A, a reaction catalyzed by the integral membrane lipid-to-lipid glycosyltransferase 4-amino-4-deoxy-L-arabinose transferase (ArnT). Here, we report crystal structures of ArnT from Cupriavidus metallidurans, alone and in complex with the lipid carrier undecaprenyl phosphate, at 2.8 and 3.2 angstrom resolution, respectively. The structures show cavities for both lipidic substrates, which converge at the active site. A structural rearrangement occurs on undecaprenyl phosphate binding, which stabilizes the active site and likely allows lipid A binding. Functional mutagenesis experiments based on these structures suggest a mechanistic model for ArnT family enzymes.

  15. Phi Class of Glutathione S-transferase Gene Superfamily Widely Exists in Nonplant Taxonomic Groups.

    PubMed

    Munyampundu, Jean-Pierre; Xu, You-Ping; Cai, Xin-Zhong

    2016-01-01

    Glutathione S-transferases (GSTs) constitute a superfamily of enzymes involved in detoxification of noxious compounds and protection against oxidative damage. GST class Phi (GSTF), one of the important classes of plant GSTs, has long been considered as plant specific but was recently found in basidiomycete fungi. However, the range of nonplant taxonomic groups containing GSTFs remains unknown. In this study, the distribution and phylogenetic relationships of nonplant GSTFs were investigated. We identified GSTFs in ascomycete fungi, myxobacteria, and protists Naegleria gruberi and Aureococcus anophagefferens. GSTF occurrence in these bacteria and protists correlated with their genome sizes and habitats. While this link was missing across ascomycetes, the distribution and abundance of GSTFs among ascomycete genomes could be associated with their lifestyles to some extent. Sequence comparison, gene structure, and phylogenetic analyses indicated divergence among nonplant GSTFs, suggesting polyphyletic origins during evolution. Furthermore, in silico prediction of functional partners suggested functional diversification among nonplant GSTFs.

  16. Functional Identification of Proteus mirabilis eptC Gene Encoding a Core Lipopolysaccharide Phosphoethanolamine Transferase

    PubMed Central

    Aquilini, Eleonora; Merino, Susana; Knirel, Yuriy A.; Regué, Miguel; Tomás, Juan M.

    2014-01-01

    By comparison of the Proteus mirabilis HI4320 genome with known lipopolysaccharide (LPS) phosphoethanolamine transferases, three putative candidates (PMI3040, PMI3576, and PMI3104) were identified. One of them, eptC (PMI3104) was able to modify the LPS of two defined non-polar core LPS mutants of Klebsiella pneumoniae that we use as surrogate substrates. Mass spectrometry and nuclear magnetic resonance showed that eptC directs the incorporation of phosphoethanolamine to the O-6 of l-glycero-d-mano-heptose II. The eptC gene is found in all the P. mirabilis strains analyzed in this study. Putative eptC homologues were found for only two additional genera of the Enterobacteriaceae family, Photobacterium and Providencia. The data obtained in this work supports the role of the eptC (PMI3104) product in the transfer of PEtN to the O-6 of l,d-HepII in P. mirabilis strains. PMID:24756091

  17. Probing functions of the ribosomal peptidyl transferase center by nucleotide analog interference.

    PubMed

    Erlacher, Matthias D; Polacek, Norbert

    2012-01-01

    The ribosome is a huge ribonucleoprotein complex in charge of protein synthesis in every living cell. The catalytic center of this dynamic molecular machine is entirely built up of 23S ribosomal RNA and therefore the ribosome can be referred to as the largest natural ribozyme known so far. The in vitro reconstitution approach of large ribosomal subunits described herein allows nucleotide analog interference studies to be performed. The approach is based on the site-specific introduction of nonnatural nucleotide analogs into the peptidyl transferase center, the active site located on the interface side of the large ribosomal subunit. This method combined with standard tests of ribosomal functions broadens the biochemical repertoire to investigate the mechanism of diverse aspects of translation considerably and adds another layer of molecular information on top of structural and mutational studies of the ribosome. PMID:22315072

  18. Detection and quantification of flavivirus NS5 methyl-transferase activities.

    PubMed

    Lim, Siew Pheng; Bodenreider, Christophe; Shi, Pei-Yong

    2013-01-01

    Flavivirus NS5 is the most conserved protein amongst the flavivirus proteins and is an essential enzyme for viral mRNA capping and replication. It encodes a methyl-transferase (MTase) domain at its N-terminal region which carries out sequential N7 and 2'-O methylation, resulting in the formation of the cap1 structure on its viral RNA genome. Two key methods have been established to measure these activities in vitro: thin-layer chromatography (TLC) and scintillation proximity assays (SPA). TLC offers the advantage of direct visualization of the amounts and types of cap structures formed whilst the SPA assay is more sensitive and quantitative. It is also amenable to high-throughput compound screening. The drawback of both assays is the need for radioisotope usage. We further describe the adaptation of a nonradioactive immune-competitive fluorescence polarization assay for detection of dengue virus MTase activity. PMID:23821274

  19. Crystal structure of Glycine max glutathione transferase in complex with glutathione: investigation of the mechanism operating by the Tau class glutathione transferases.

    PubMed

    Axarli, Irene; Dhavala, Prathusha; Papageorgiou, Anastassios C; Labrou, Nikolaos E

    2009-08-13

    Cytosolic GSTs (glutathione transferases) are a multifunctional group of enzymes widely distributed in Nature and involved in cellular detoxification processes. The three-dimensional structure of GmGSTU4-4 (Glycine max GST Tau 4-4) complexed with GSH was determined by the molecular replacement method at 2.7 A (1 A=0.1 nm) resolution. The bound GSH is located in a region formed by the beginning of alpha-helices H1, H2 and H3 in the N-terminal domain of the enzyme. Significant differences in the G-site (GSH-binding site) as compared with the structure determined in complex with Nb-GSH [S-(p-nitrobenzyl)-glutathione] were found. These differences were identified in the hydrogen-bonding and electrostatic interaction pattern and, consequently, GSH was found bound in two different conformations. In one subunit, the enzyme forms a complex with the ionized form of GSH, whereas in the other subunit it can form a complex with the non-ionized form. However, only the ionized form of GSH may form a productive and catalytically competent complex. Furthermore, a comparison of the GSH-bound structure with the Nb-GSH-bound structure shows a significant movement of the upper part of alpha-helix H4 and the C-terminal. This indicates an intrasubunit modulation between the G-site and the H-site (electrophile-binding site), suggesting that the enzyme recognizes the xenobiotic substrates by an induced-fit mechanism. The reorganization of Arg111 and Tyr107 upon xenobiotic substrate binding appears to govern the intrasubunit structural communication between the G- and H-site and the binding of GSH. The structural observations were further verified by steady-state kinetic analysis and site-directed mutagenesis studies.

  20. Crystal structures of Acetobacter aceti succinyl-coenzyme A (CoA):acetate CoA-transferase reveal specificity determinants and illustrate the mechanism used by class I CoA-transferases.

    PubMed

    Mullins, Elwood A; Kappock, T Joseph

    2012-10-23

    Coenzyme A (CoA)-transferases catalyze transthioesterification reactions involving acyl-CoA substrates, using an active-site carboxylate to form covalent acyl anhydride and CoA thioester adducts. Mechanistic studies of class I CoA-transferases suggested that acyl-CoA binding energy is used to accelerate rate-limiting acyl transfers by compressing the substrate thioester tightly against the catalytic glutamate [White, H., and Jencks, W. P. (1976) J. Biol. Chem. 251, 1688-1699]. The class I CoA-transferase succinyl-CoA:acetate CoA-transferase is an acetic acid resistance factor (AarC) with a role in a variant citric acid cycle in Acetobacter aceti. In an effort to identify residues involved in substrate recognition, X-ray crystal structures of a C-terminally His(6)-tagged form (AarCH6) were determined for several wild-type and mutant complexes, including freeze-trapped acetylglutamyl anhydride and glutamyl-CoA thioester adducts. The latter shows the acetate product bound to an auxiliary site that is required for efficient carboxylate substrate recognition. A mutant in which the catalytic glutamate was changed to an alanine crystallized in a closed complex containing dethiaacetyl-CoA, which adopts an unusual curled conformation. A model of the acetyl-CoA Michaelis complex demonstrates the compression anticipated four decades ago by Jencks and reveals that the nucleophilic glutamate is held at a near-ideal angle for attack as the thioester oxygen is forced into an oxyanion hole composed of Gly388 NH and CoA N2″. CoA is nearly immobile along its entire length during all stages of the enzyme reaction. Spatial and sequence conservation of key residues indicates that this mechanism is general among class I CoA-transferases.

  1. Coenzyme A transferase from Clostridium acetobutylicum ATCC 824 and its role in the uptake of acids

    SciTech Connect

    Wiesenborn, D.P.; Rudolph, F.B.; Papoutsakis, E.T. )

    1989-02-01

    Coenzyme A (CoA) transferase from Clostridium acetobutylicum ATCC 824 was purified 81-fold to homogeneity. This enzyme was stable in the presence of 0.5 M ammonium sulfate and 20% (vol/vol) glycerol, whereas activity was rapidly lost in the absence of these stabilizers. The kinetic binding mechanism was Ping Pong Bi Bi, and the K{sub m} values at pH 7.5 and 30{degree}C for acetate, propionate, and butyrate were, respectively, 1,200, 1,000, and 660 mM, while the K{sub m} value for acetoacetyl-CoA ranged from about 7 to 56{mu}M, depending on the acid substrate. The K{sub m} values for butyrate and acetate were high relative to the intracellular concentrations of these species; consequently, in vivo enzyme activity is expected to be sensitive to changes in those concentrations. In addition to the carboxylic acids listed above, this CoA transferase was able to convert valerate, isobutyrate, and crotonate; however, the conversion of formate, n-caproate, and isovalerate was not detected. The acetate and butyrate conversion reactions in vitro were inhibited by physiological levels of acetone and butanol, and this may be another factor in the in vivo regulation of enzyme activity. The optimum pH of acetate conversion was broad, with at least 80% of maximal activity from pH 5.9 to greater than 7.8. The purified enzyme was a heterotetramer with subunit molecular weights of about 23,000 and 25,000.

  2. RMF inactivates ribosomes by covering the peptidyl transferase centre and entrance of peptide exit tunnel.

    PubMed

    Yoshida, Hideji; Yamamoto, Hiroshi; Uchiumi, Toshio; Wada, Akira

    2004-04-01

    In gram-negative bacteria such as Escherichia coli, protein synthesis is suppressed by the formation of 100S ribosomes under stress conditions. The 100S ribosome, a dimer of 70S ribosomes, is formed by ribosome modulation factor (RMF) binding to the 70S ribosomes. During the stationary phase, most of the 70S ribosomes turn to 100S ribosomes, which have lost translational activity. This 100S formation is called the hibernation process in the ribosome cycle of the stationary phase. If stationary phase cells are transferred to fresh medium, the 100S ribosomes immediately go back to active 70S ribosomes, showing that inactive 100S <--> active 70S interconversion is a major system regulating translation activity in stationary phase cells. To elucidate the mechanisms of translational inactivation, the binding sites of RMF on 23S rRNA in 100S ribosome of E. coli were examined by a chemical probing method using dimethyl sulphate (DMS). As the results, the nine bases in 23S rRNA were protected from DMS modifications and the modification of one base was enhanced. Interestingly A2451 is included among the protected bases, which is thought to be directly involved in peptidyl transferase activity. We conclude that RMF inactivates ribosomes by covering the peptidyl transferase (PTase) centre and the entrance of peptide exit tunnel. It is surprising that the cell itself produces a protein that seems to inhibit protein synthesis in a similar manner to antibiotics and that it can reversibly bind to and release from the ribosome in response to environmental conditions.

  3. pH-dependent conformational flexibility within the ribosomal peptidyl transferase center.

    PubMed Central

    Muth, G W; Chen, L; Kosek, A B; Strobel, S A

    2001-01-01

    A universally conserved adenosine, A2451, within the ribosomal peptidyl transferase center has been proposed to act as a general acid-base catalyst during peptide bond formation. Evidence in support of this proposal came from pH-dependent dimethylsulfate (DMS) modification within Escherichia coli ribosomes. A2451 displayed reactivity consistent with an apparent acidity constant (pKa) near neutrality, though pH-dependent structural flexibility could not be rigorously excluded as an explanation for the enhanced reactivity at high pH. Here we present three independent lines of evidence in support of the alternative interpretation. First, A2451 in ribosomes from the archaebacteria Haloarcula marismortui displays an inverted pH profile that is inconsistent with proton-mediated base protection. Second, in ribosomes from the yeast Saccharomyces cerevisiae, C2452 rather than A2451 is modified in a pH-dependent manner. Third, within E. coli ribosomes, the position of A2451 modification (N1 or N3 imino group) was analyzed by testing for a Dimroth rearrangement of the N1-methylated base. The data are more consistent with DMS modification of the A2451 N1, a functional group that, according to the 50S ribosomal crystal structure, is solvent inaccessible without structural rearrangement. It therefore appears that pH-dependent DMS modification of A2451 does not provide evidence either for or against a general acid-base mechanism of protein synthesis. Instead the data suggest that there is pH-dependent conformational flexibility within the peptidyl transferase center, the exact nature and physiological relevance of which is not known. PMID:11680845

  4. Glutathione S-transferase isoenzymes in human tumours and tumour derived cell lines.

    PubMed Central

    Lewis, A. D.; Forrester, L. M.; Hayes, J. D.; Wareing, C. J.; Carmichael, J.; Harris, A. L.; Mooghen, M.; Wolf, C. R.

    1989-01-01

    An increasing body of evidence indicates that glutathione S-transferases play a role in the intrinsic and acquired resistance of tumours to anticancer drugs. In view of the wide use of tumour cell lines to understand the factors which confer either sensitivity or resistance to chemotherapeutic agents we have determined glutathione S-transferase (GST) activity and isozyme composition in nine human cell lines. These data have been compared with the values obtained in solid tumours. In most cases overall GST activity was higher in the tumours than in the cell lines. This was most pronounced for the breast tumour samples relative to MCF7 cell line. The pi class GST subunit was present at similar concentration in the cell lines and the tumours, and in most cases was the most abundant subunit present. The alpha and mu class GST were expressed in most of the cell lines but at much lower concentration than the pi class subunit. Also considerable variability particularly in the expression of the mu subunits was observed. This was also the case for the expression of these subunits in the solid tumour samples. The levels of these GSTs (when expressed) in the solid tumours was invariably higher than that observed in the cell lines. There are therefore several similarities but also some significant differences in GST expression in solid tumours and cell lines. Whether the differences are because expression is lost during the generation of the cell lines or whether it reflects the individuality of human tumours remains to be clearly established. Images Figure 2 Figure 4 PMID:2789940

  5. Glutathione-S-transferase GST M1 "null" genotype and the risk of alcoholic liver disease.

    PubMed

    Savolainen, V T; Pjarinen, J; Perola, M; Penttilä, A; Karhunen, P J

    1996-11-01

    The present study was conducted to investigate possible association between the occurrence of glutathione-S-transferase GST M1 "null" genotype and alcoholic liver disease (ALD). The"null" genotype indicating absent activity of class mu glutathione transferase was assessed in 33 abstainers, 43 moderate alcohol consumers, and 313 heavy alcohol consumers by polymerase chain reaction. The genotypes were compared with occurrence of alcoholic fatty liver, alcoholic hepatitis, and alcoholic liver fibrosis. The "null" genotype was found among 44.7% of patients in the series, with no significant differences between different consumption groups: controls, 36.4%; moderate consumers, 39.5%; and heavy consumers, 46.3%. Occurrence of GST M1 "null" genotype was not associated with occurrence ALD among moderate alcohol consumers. Frequency of the "null" genotype was, however, statistically nearly significantly [p = 0.07, odds ratio (OR) = 1.75] lower among heavy consumers with normal liver histology than in alcoholics with ALD. Furthermore, when compared with heavy consumers without ALD, the "null" genotype was nearly significantly more frequent among heavy consumers with at least slight liver fibrosis (p = 0.05, OR = 1.8) and statistically significantly more frequent among among alcoholics with advanced liver fibrosis (p < 0.025, OR = 2.3). Results of the present Finnish association study suggest that homozygous deletion of the GST M1 gene may indicate increased susceptibility to develop irreversible liver damage in response to the toxic effects of ethanol. Significant association was found between the occurrence of the "null" genotype and the occurrence of alcoholic liver cirrhosis.

  6. A glutathione transferase from Agrobacterium tumefaciens reveals a novel class of bacterial GST superfamily.

    PubMed

    Skopelitou, Katholiki; Dhavala, Prathusha; Papageorgiou, Anastassios C; Labrou, Nikolaos E

    2012-01-01

    In the present work, we report a novel class of glutathione transferases (GSTs) originated from the pathogenic soil bacterium Agrobacterium tumefaciens C58, with structural and catalytic properties not observed previously in prokaryotic and eukaryotic GST isoenzymes. A GST-like sequence from A. tumefaciens C58 (Atu3701) with low similarity to other characterized GST family of enzymes was identified. Phylogenetic analysis showed that it belongs to a distinct GST class not previously described and restricted only in soil bacteria, called the Eta class (H). This enzyme (designated as AtuGSTH1-1) was cloned and expressed in E. coli and its structural and catalytic properties were investigated. Functional analysis showed that AtuGSTH1-1 exhibits significant transferase activity against the common substrates aryl halides, as well as very high peroxidase activity towards organic hydroperoxides. The crystal structure of AtuGSTH1-1 was determined at 1.4 Å resolution in complex with S-(p-nitrobenzyl)-glutathione (Nb-GSH). Although AtuGSTH1-1 adopts the canonical GST fold, sequence and structural characteristics distinct from previously characterized GSTs were identified. The absence of the classic catalytic essential residues (Tyr, Ser, Cys) distinguishes AtuGSTH1-1 from all other cytosolic GSTs of known structure and function. Site-directed mutagenesis showed that instead of the classic catalytic residues, an Arg residue (Arg34), an electron-sharing network, and a bridge of a network of water molecules may form the basis of the catalytic mechanism. Comparative sequence analysis, structural information, and site-directed mutagenesis in combination with kinetic analysis showed that Phe22, Ser25, and Arg187 are additional important residues for the enzyme's catalytic efficiency and specificity.

  7. Design, synthesis, and evaluation of latent alkylating agents activated by glutathione S-transferase.

    PubMed

    Satyam, A; Hocker, M D; Kane-Maguire, K A; Morgan, A S; Villar, H O; Lyttle, M H

    1996-04-12

    In search of compounds with improved specificity for targeting the important cancer-associated P1-1 glutathione S-transferase (GST) isozyme, new analogs 4 and 5 of the previously reported glutathione S-transferase (GST)-activated latent alkylating agent gamma-glutamyl-alpha-amino-beta-[[[2-[[bis[bis(2-chloroethyl)amino]ph osp horyl]oxy]ethyl]sulfonyl]propionyl]-(R)-(-)-phenylglycine (3) have been designed, synthesized, and evaluated. One of the diastereomers of 4 exhibited good selectivity for GST P1-1. The tetrabromo analog 5 of the tetrachloro compound 3 maintained its specificity and was found to be more readily activated by GSTs than 3. The GST activation concept was further broadened through design, synthesis, and evaluation of a novel latent urethane mustard 8 and its diethyl ester 9. Interestingly, 8 showed very good specificity for P1-1 GST. Cell culture studies were carried out on 4, 5, 8, and 9 using cell lines engineered to have varying levels of GST P1-1 isozyme. New analogs 4 and 5 exhibited increased toxicity to cell lines with overexpressed GST P1-1 isozyme. The urethane mustard 8 and its diethyl ester 9 were found to be not as toxic. However, they too exhibited more toxicity to a cell line engineered to have elevated P1-1 levels, which was in agreement with the observed in vitro specificity of 8 for P1-1 GST isozyme. Mechanistic studies on alkaline as well as enzyme-catalyzed decomposition of latent mustard 3 provided experimental proof for the hypothesis that 3 breaks down into an active phosphoramidate mustard and a reactive vinyl sulfone. The alkylating nature of the decomposition products was further demonstrated by trapping those transient species as relatively stable diethyldithiocarbamic acid adducts. These results substantially extend previous efforts to develop drugs targeting GST and provide a paradigm for development of other latent drugs. PMID:8648613

  8. P2Y13 receptors mediate presynaptic inhibition of acetylcholine release induced by adenine nucleotides at the mouse neuromuscular junction.

    PubMed

    Guarracino, Juan F; Cinalli, Alejandro R; Fernández, Verónica; Roquel, Liliana I; Losavio, Adriana S

    2016-06-21

    It is known that adenosine 5'-triphosphate (ATP) is released along with the neurotransmitter acetylcholine (ACh) from motor nerve terminals. At mammalian neuromuscular junctions (NMJs), we have previously demonstrated that ATP is able to decrease ACh secretion by activation of P2Y receptors coupled to pertussis toxin-sensitive Gi/o protein. In this group, the receptor subtypes activated by adenine nucleotides are P2Y12 and P2Y13. Here, we investigated, by means of pharmacological and immunohistochemical assays, the P2Y receptor subtype that mediates the modulation of spontaneous and evoked ACh release in mouse phrenic nerve-diaphragm preparations. First, we confirmed that the preferential agonist for P2Y12-13 receptors, 2-methylthioadenosine 5'-diphosphate trisodium salt hydrate (2-MeSADP), reduced MEPP frequency without affecting MEPP amplitude as well as the amplitude and quantal content of end-plate potentials (EPPs). The effect on spontaneous secretion disappeared after the application of the selective P2Y12-13 antagonists AR-C69931MX or 2-methylthioadenosine 5'-monophosphate triethylammonium salt hydrate (2-MeSAMP). 2-MeSADP was more potent than ADP and ATP in reducing MEPP frequency. Then we demonstrated that the selective P2Y13 antagonist MRS-2211 completely prevented the inhibitory effect of 2-MeSADP on MEPP frequency and EPP amplitude, whereas the P2Y12 antagonist MRS-2395 failed to do this. The preferential agonist for P2Y13 receptors inosine 5'-diphosphate sodium salt (IDP) reduced spontaneous and evoked ACh secretion and MRS-2211 abolished IDP-mediated modulation. Immunohistochemical studies confirmed the presence of P2Y13 but not P2Y12 receptors at the end-plate region. Disappearance of P2Y13 receptors after denervation suggests the presynaptic localization of the receptors. We conclude that, at motor nerve terminals, the Gi/o protein-coupled P2Y receptors implicated in presynaptic inhibition of spontaneous and evoked ACh release are of the subtype P2Y

  9. P2Y13 receptors mediate presynaptic inhibition of acetylcholine release induced by adenine nucleotides at the mouse neuromuscular junction.

    PubMed

    Guarracino, Juan F; Cinalli, Alejandro R; Fernández, Verónica; Roquel, Liliana I; Losavio, Adriana S

    2016-06-21

    It is known that adenosine 5'-triphosphate (ATP) is released along with the neurotransmitter acetylcholine (ACh) from motor nerve terminals. At mammalian neuromuscular junctions (NMJs), we have previously demonstrated that ATP is able to decrease ACh secretion by activation of P2Y receptors coupled to pertussis toxin-sensitive Gi/o protein. In this group, the receptor subtypes activated by adenine nucleotides are P2Y12 and P2Y13. Here, we investigated, by means of pharmacological and immunohistochemical assays, the P2Y receptor subtype that mediates the modulation of spontaneous and evoked ACh release in mouse phrenic nerve-diaphragm preparations. First, we confirmed that the preferential agonist for P2Y12-13 receptors, 2-methylthioadenosine 5'-diphosphate trisodium salt hydrate (2-MeSADP), reduced MEPP frequency without affecting MEPP amplitude as well as the amplitude and quantal content of end-plate potentials (EPPs). The effect on spontaneous secretion disappeared after the application of the selective P2Y12-13 antagonists AR-C69931MX or 2-methylthioadenosine 5'-monophosphate triethylammonium salt hydrate (2-MeSAMP). 2-MeSADP was more potent than ADP and ATP in reducing MEPP frequency. Then we demonstrated that the selective P2Y13 antagonist MRS-2211 completely prevented the inhibitory effect of 2-MeSADP on MEPP frequency and EPP amplitude, whereas the P2Y12 antagonist MRS-2395 failed to do this. The preferential agonist for P2Y13 receptors inosine 5'-diphosphate sodium salt (IDP) reduced spontaneous and evoked ACh secretion and MRS-2211 abolished IDP-mediated modulation. Immunohistochemical studies confirmed the presence of P2Y13 but not P2Y12 receptors at the end-plate region. Disappearance of P2Y13 receptors after denervation suggests the presynaptic localization of the receptors. We conclude that, at motor nerve terminals, the Gi/o protein-coupled P2Y receptors implicated in presynaptic inhibition of spontaneous and evoked ACh release are of the subtype P2Y

  10. Dimethyl adenosine transferase (KsgA) deficiency in Salmonella Enteritidis confers susceptibility to high osmolarity and virulence attenuation in chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    : Dimethyladenosine transferase (KsgA) performs diverse roles in bacteria including ribosomal maturation, DNA mismatch repair, and synthesis of KsgA is responsive to antibiotics and cold temperature. We previously showed that ksgA mutation in Salmonella Enteritidis results in impaired invasiveness i...

  11. Polymerase θ is a robust terminal transferase that oscillates between three different mechanisms during end-joining

    PubMed Central

    Kent, Tatiana; Mateos-Gomez, Pedro A; Sfeir, Agnel; Pomerantz, Richard T

    2016-01-01

    DNA polymerase θ (Polθ) promotes insertion mutations during alternative end-joining (alt-EJ) by an unknown mechanism. Here, we discover that mammalian Polθ transfers nucleotides to the 3’ terminus of DNA during alt-EJ in vitro and in vivo by oscillating between three different modes of terminal transferase activity: non-templated extension, templated extension in cis, and templated extension in trans. This switching mechanism requires manganese as a co-factor for Polθ template-independent activity and allows for random combinations of templated and non-templated nucleotide insertions. We further find that Polθ terminal transferase activity is most efficient on DNA containing 3’ overhangs, is facilitated by an insertion loop and conserved residues that hold the 3’ primer terminus, and is surprisingly more proficient than terminal deoxynucleotidyl transferase. In summary, this report identifies an unprecedented switching mechanism used by Polθ to generate genetic diversity during alt-EJ and characterizes Polθ as among the most proficient terminal transferases known. DOI: http://dx.doi.org/10.7554/eLife.13740.001 PMID:27311885

  12. COMPARATIVE EXPRESSION OF TWO ALPHA CLASS GLUTATHIONE S-TRANSFERASES IN HUMAN ADULT AND PRENATAL LIVER TISSUES. (R827441)

    EPA Science Inventory

    Abstract

    The ability of the fetus to detoxify transplacental drugs and chemicals can be a critical determinant of teratogenesis and developmental toxicity. Developmentally regulated expression of alpha class glutathione S-transferases (GSTs) is of particular int...

  13. Function and phylogeny of bacterial butyryl-CoA:acetate transferases and their diversity in the proximal colon of swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studying the host-associated butyrate-producing bacterial community is important because butyrate is essential for colonic homeostasis and gut health. Previous research has identified the butyryl-coA:acetate transferase (2.3.8.3) as a the main gene for butyrate production in intestinal ecosystems; h...

  14. CT-GalNAc transferase overexpression in adult mice is associated with extrasynaptic utrophin in skeletal muscle fibres.

    PubMed

    Durko, Margaret; Allen, Carol; Nalbantoglu, Josephine; Karpati, George

    2010-09-01

    Duchenne muscular dystrophy is a genetic muscle disease characterized by the absence of sub-sarcolemmal dystrophin that results in muscle fibre necrosis, progressive muscle wasting and is fatal. Numerous experimental studies with dystrophin-deficient mdx mice, an animal model for the disease, have demonstrated that extrasynaptic upregulation of utrophin, an analogue of dystrophin, can prevent muscle fibre deterioration and reduce or negate the dystrophic phenotype. A different approach for ectopic expression of utrophin relies on augmentation of CT-GalNAc transferase in muscle fibre. We investigated whether CT-GalNAc transferase overexpression in adult mice influence appearance of utrophin in the extrasynaptic sarcolemma. After electrotransfer of plasmid DNA carrying an expression cassette of CT-GalNAc transferase into tibialis anterior muscle of wild type and dystrophic mice, muscle sections were examined by immunofluorescence. CT-GalNAc transgene expression augmented sarcolemmal carbohydrate glycosylation and was accompanied by extrasynaptic utrophin. A 6-week time course study showed that the highest efficiency of utrophin overexpression in a plasmid harboured muscle fibres was 32.2% in CD-1 and 52% in mdx mice, 2 and 4 weeks after CT-GalNAc gene transfer, respectively. The study provides evidence that postnatal CT-GalNAc transferase overexpression stimulates utrophin upregulation that is inherently beneficial for muscle structure and strength restoration. Thus CT-GalNAc may provide an important therapeutic molecule for treatment of dystrophin deficiency in Duchenne muscular dystrophy.

  15. BIOTRANSFORMATION AND GENOTOXICITY OF THE DRINKING WATER DISINFECTION BYPRODUCT BROMODICHLOROMETHANE: DNA BINDING MEDIATED BY GLUTATHIONE TRANSFERASE THETA 1-1

    EPA Science Inventory

    The drinking water disinfection byproduct bromodichloromethane (CHBrCl2) was
    previously shown to be mutagenic in Salmonella typhimurium that overexpress rat glutathione
    transferase theta 1-1 (GSTT1-1). Several experimental approaches were undertaken in this study
    to inve...

  16. The glutathione-S-transferase Mu 1 null genotype modulates ozone-induced airway inflammation in humans*

    EPA Science Inventory

    Background: The Glutathione-S-Transferase Mu 1 null genotype has been reported to be a risk factor for acute respiratory disease associated with increases in ambient air ozone. Ozone is known to cause an immediate decrease in lung function and increased airway inflammation. Howev...

  17. Characterization of the hydrophobic substrate-binding site of the bacterial beta class glutathione transferase from Proteus mirabilis.

    PubMed

    Federici, Luca; Masulli, Michele; Di Ilio, Carmine; Allocati, Nerino

    2010-09-01

    Since their discovery, bacterial glutathione (GSH)transferases have been characterized in terms of their ability to catalyse a variety of different reactions on a large set of toxic molecules of xenobiotic or endobiotic origin. Furthermore the contribution of different residues in the GSH-binding site to GSH activation has been extensively investigated. Little is known, however, about the contribution to catalysis and overall stability of single residues shaping the hydrophobic co-substrate binding site (H-site). Here we tackle this problem by site-directed mutagenesis of residues facing the H-site in the bacterial beta class GSH transferase from Proteus mirabilis. We investigate the behaviour of these mutants under a variety of conditions and analyse their activity against several co-substrates, representative of the different reactions catalyzed by bacterial GSH transferases. Our work shows that mutations at the H-site can be used to modulate activity at the level of the different catalytic mechanisms operating on the chosen substrates, each mutation showing a different fingerprint. This work paves the way for future studies aimed at improving the catalytic properties of beta class GSH transferases against selected substrates for bioremediation purposes.

  18. LIGNIFICATION IN TRANSGENICS DEFICIENT IN P-COUMARATE 3-HYDROXYLASE (C3H) AND THE ASSOCIATED HYDROXYCINNAMOYL TRANSFERASE (HCT)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects on lignification of downregulating most of the genes for enzymes on the monolignol biosynthetic pathway have been reasonably well studied in angiosperms. The exception to this is the crucial hydroxylase, cinnamate 3-hydroxylase (C3H), and its associated hydroxycinnamyl transferase (HCT),...

  19. Molecular mimicry between cockroach and helminth glutathione S-transferases promotes cross-reactivity and cross-sensitization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The extensive similarities between helminth proteins and allergens are thought to contribute to helminth-driven allergic sensitization. We investigated the molecular and structural similarities between Bla g 5, a major glutathione-S transferase (GST) allergen of cockroaches, and the GST of Wucherer...

  20. Pleiotropic effects of the yeast Sal1 and Aac2 carriers on mitochondrial function via an activity distinct from adenine nucleotide transport

    PubMed Central

    Kucejova, Blanka; Li, Li; Wang, Xiaowen; Giannattasio, Sergio; Chen, Xin Jie

    2009-01-01

    In Saccharomyces cerevisiae, SAL1 encodes a Ca2+-binding mitochondrial carrier. Disruption of SAL1 is synthetically lethal with the loss of a specific function associated with the Aac2 isoform of the ATP/ADP translocase. This novel activity of Aac2 is defined as the V function (for Viability of aac2 sal1 double mutant), which is independent of the ATP/ADP exchange activity required for respiratory growth (the R function). We found that co-inactivation of SAL1 and AAC2 leads to defects in mitochondrial translation and mitochondrial DNA (mtDNA) maintenance. Additionally, sal1Δ exacerbates the respiratory deficiency and mtDNA instability of ggc1Δ, shy1Δ and mtg1Δ mutants, which are known to reduce mitochondrial protein synthesis or protein complex assembly. The V function is complemented by the human Short Ca2+-binding Mitochondrial Carrier (SCaMC) protein, SCaMC-2, a putative ATP-Mg/Pi exchangers on the inner membrane. However, mitochondria lacking both Sal1p and Aac2p are not depleted of adenine nucleotides. The Aac2R252I and Aac2R253I variants mutated at the R252-254 triplet critical for nucleotide transport retain the V function. Likewise, Sal1p remains functionally active when the R479I and R481I mutations were introduced into the structurally equivalent R479-T480-R481 motif. Finally, we found that the naturally occurring V-R+ Aac1 isoform of adenine nucleotide translocase partially gains the V function at the expense of the R function by introducing the mutations P89L and A96V. Thus, our data support the view that the V function is independent of adenine nucleotide transport associated with Sal1p and Aac2p and this evolutionarily conserved activity affects multiple processes in mitochondria. PMID:18431598