Science.gov

Sample records for adenine thymine guanine

  1. Specific and nonspecific metal ion-nucleotide interactions at aqueous/solid interfaces functionalized with adenine, thymine, guanine, and cytosine oligomers.

    PubMed

    Holland, Joseph G; Malin, Jessica N; Jordan, David S; Morales, Esmeralda; Geiger, Franz M

    2011-03-01

    This article reports nonlinear optical measurements that quantify, for the first time directly and without labels, how many Mg(2+) cations are bound to DNA 21-mers covalently linked to fused silica/water interfaces maintained at pH 7 and 10 mM NaCl, and what the thermodynamics are of these interactions. The overall interaction of Mg(2+) with adenine, thymine, guanine, and cytosine is found to involve -10.0 ± 0.3, -11.2 ± 0.3, -14.0 ± 0.4, and -14.9 ± 0.4 kJ/mol, and nonspecific interactions with the phosphate and sugar backbone are found to contribute -21.0 ± 0.6 kJ/mol for each Mg(2+) ion bound. The specific and nonspecific contributions to the interaction energy of Mg(2+) with oligonucleotide single strands is found to be additive, which suggests that within the uncertainty of these surface-specific experiments, the Mg(2+) ions are evenly distributed over the oligomers and not isolated to the most strongly binding nucleobase. The nucleobases adenine and thymine are found to bind only three Mg(2+) ions per 21-mer oligonucleotide, while the bases cytosine and guanine are found to bind eleven Mg(2+) ions per 21-mer oligonucleotide.

  2. Thymine, adenine and lipoamino acid based gene delivery systems.

    PubMed

    Skwarczynski, Mariusz; Ziora, Zyta M; Coles, Daniel J; Lin, I-Chun; Toth, Istvan

    2010-05-14

    A novel class of thymine, adenine and lipoamino acid based non-viral carriers for gene delivery has been developed. Their ability to bind to DNA by hydrogen bonding was confirmed by NMR diffusion, isothermal titration calorimetry and transmission electron microscopy experiments.

  3. Modelling proton tunnelling in the adenine-thymine base pair.

    PubMed

    Godbeer, A D; Al-Khalili, J S; Stevenson, P D

    2015-05-21

    The energies of the canonical (standard, amino-keto) and tautomeric (non-standard, imino-enol) charge-neutral forms of the adenine-thymine base pair (A-T and A*-T*, respectively) are calculated using density functional theory. The reaction pathway is then computed using a transition state search to provide the asymmetric double-well potential minima along with the barrier height and shape, which are combined to create the potential energy surface using a polynomial fit. The influence of quantum tunnelling on proton transfer within a base pair H-bond (modelled as the DFT deduced double-well potential) is then investigated by solving the time-dependent master equation for the density matrix. The effect on a quantum system by its surrounding water molecules is explored via the inclusion of a dissipative Lindblad term in the master equation, in which the environment is modelled as a heat bath of harmonic oscillators. It is found that quantum tunnelling, due to transitions to higher energy eigenstates with significant amplitudes in the shallow (tautomeric) side of the potential, is unlikely to be a significant mechanism for the creation of adenine-thymine tautomers within DNA, with thermally assisted coupling of the environment only able to boost the tunnelling probability to a maximum of 2 × 10(-9). This is barely increased for different choices of the starting wave function or when the geometry of the potential energy surface is varied.

  4. Quantum-chemical study of interactions of trans-resveratrol with guanine-thymine dinucleotide and DNA-nucleobases.

    PubMed

    Mikulski, Damian; Szeląg, Małgorzata; Molski, Marcin

    2011-12-01

    Trans-resveratrol, a natural phytoalexin present in red wine and grapes, has gained considerable attention because of its antiproliferative, chemopreventive and proapoptotic activity against human cancer cells. The accurate quantum-chemical computations based on the density functional theory (DFT) and ab initio second-order Møller-Plesset perturbation method (MP2) have been performed for the first time to study interactions of trans-resveratrol with guanine-thymine dinucleotide and DNA-derived nitrogenous bases: adenine, guanine, cytosine and thymine in vacuum and water medium. This compound is found to show high affinity to nitrogenous bases and guanine-thymine dinucleotide. The electrostatic interactions from intermolecular hydrogen bonding increase the stability of complexes studied. In particular, significantly strong hydrogen bonds between 4'-H atom of trans-resveratrol and imidazole nitrogen as well as carbonyl oxygen atoms of nucleobases studied stabilize these systems. The stabilization energies computed reveal that the negatively charged trans-resveratrol-dinucleotide complex is more energetically stable in water medium than in vacuum. MP2 method gives more reliable and significantly high values of stabilization energy of trans-resveratrol-dinucleotide, trans-resveratrol-guanine and trans-resveratrol-thymine complexes than B3LYP exchange-correlation functional because it takes into account London dispersion energy. According to the results, in the presence of trans-resveratrol the 3'-5' phosphodiester bond in dinucleotide can be cleaved and the proton from 4'-OH group of trans-resveratrol migrates to the 3'-O atom of dinucleotide. It is concluded that trans-resveratrol is able to break the DNA strand. Hence, the findings obtained help understand antiproliferative and anticancer properties of this polyphenol.

  5. Fragmentation mechanisms of cytosine, adenine and guanine ionized bases.

    PubMed

    Sadr-Arani, Leila; Mignon, Pierre; Chermette, Henry; Abdoul-Carime, Hassan; Farizon, Bernadette; Farizon, Michel

    2015-05-01

    The different fragmentation channels of cytosine, adenine and guanine have been studied through DFT calculations. The electronic structure of bases, their cations, and the fragments obtained by breaking bonds provides a good understanding of the fragmentation process that can complete the experimental approach. The calculations allow assigning various fragments to the given peaks. The comparison between the energy required for the formation of fragments and the peak intensity in the mass spectrum is used. For cytosine and guanine the elimination of the HNCO molecule is a major route of dissociation, while for adenine multiple loss of HCN or HNC can be followed up to small fragments. For cytosine, this corresponds to the initial bond cleavage of N3-C4/N1-C2, which represents the main dissociation route. For guanine the release of HNCO is obtained through the N1-C2/C5-C6 bond cleavage (reverse order also possible) leading to the largest peak of the spectrum. The corresponding energies of 3.5 and 3.9 eV are typically in the range available in the experiments. The loss of NH3 or HCN is also possible but requires more energy. For adenine, fragmentation consists of multiple loss of the HCN molecule and the main route corresponding to HC8N9 loss is followed by the release of HC2N1. PMID:25869111

  6. The effect of pi-stacking, h-bonding, and electrostatic interactions on the ionization energies of nucleic acid bases: adenine-adenine, thymine-thymine and adenine-thymine dimers

    SciTech Connect

    Bravaya, Ksenia B.; Kostko, Oleg; Ahmed, Musahid; Krylov, Anna I.

    2009-09-02

    A combined theoretical and experimental study of the ionized dimers of thymine and adenine, TT, AA, and AT, is presented. Adiabatic and vertical ionization energies(IEs) for monomers and dimers as well as thresholds for the appearance of the protonated species are reported and analyzed. Non-covalent interactions stronglyaffect the observed IEs. The magnitude and the nature of the effect is different for different isomers of the dimers. The computations reveal that for TT, the largestchanges in vertical IEs (0.4 eV) occur in asymmetric h-bonded and symmetric pi- stacked isomers, whereas in the lowest-energy symmetric h-bonded dimer the shiftin IEs is much smaller (0.1 eV). The origin of the shift and the character of the ionized states is different in asymmetric h-bonded and symmetric stacked isomers. Inthe former, the initial hole is localized on one of the fragments, and the shift is due to the electrostatic stabilization of the positive charge of the ionized fragment by thedipole moment of the neutral fragment. In the latter, the hole is delocalized, and the change in IE is proportional to the overlap of the fragments' MOs. The shifts in AAare much smaller due to a less effcient overlap and a smaller dipole moment. The ionization of the h-bonded dimers results in barrierless (or nearly barrierless) protontransfer, whereas the pi-stacked dimers relax to structures with the hole stabilized by the delocalization or electrostatic interactions.

  7. Thymine and guanine base specificity of human myeloma proteins with anti-DNA activity.

    PubMed Central

    Zouali, M; Stollar, B D

    1986-01-01

    To further our understanding of the molecular basis of DNA-autoantibody interactions, we have characterized the specificities of three IgG human myeloma proteins that bind DNA. We measured their binding to synthetic single- and double-stranded homopolynucleotides, random and alternating copolymers, oligonucleotides, and nucleotides or nucleosides conjugated to non-nucleic acid carriers. All three antibodies bound single-stranded nucleic acids, including both polyribonucleotides and polydeoxyribonucleotides. They varied in relative affinities for polynucleotides of varying base composition. Polymers containing the purines guanine or hypoxanthine and/or the pyrimidine thymine were most reactive with all three proteins. A myeloma protein that reacted with poly(G), poly(I), or poly(dT) also bound to the corresponding nucleosides or nucleotides conjugated to bovine serum albumin. None of the antibodies reacted with base-paired double-helical polynucleotides (double-stranded RNA, RNA-DNA hybrid or double-stranded DNA). The results indicate that base specificity is prominent in their reactions and that the accessible epitopes in single-stranded polynucleotides become masked upon base pairing in double-stranded helices. These findings suggest a model in which positions N1 and O6 of guanine and hypoxanthine and N3 and O4 of thymine interact with amino acids of the antibody-combining site. PMID:3771789

  8. N-Sulfomethylation of guanine, adenine and cytosine with formaldehyde-bisulfite. A selective modification of guanine in DNA.

    PubMed

    Hayatsu, H; Yamashita, Y; Yui, S; Yamagata, Y; Tomita, K; Negishi, K

    1982-10-25

    When guanine-, adenine- and cytosine-nucleosides and nucleotides were treated with formaldehyde and then with bisulfite, stable N-sulfomethyl compounds were formed. N2-Sulfomethylguanine, N6-sulfomethyladenine, N4-sulfomthylcytosine and N6-sulfomethyl-9-beta-D-arabinofuranosyladenine were isolated as crystals and characterized. A guanine-specific sulfomethylation was brought about by treatment and denatured single-stranded DNA with formaldehyde and then with bisulfite at pH 7 and 4 degrees C. Since native double-stranded DNA was not modified by this treatment, this new method of modification is expected to be useful as a conformational probe for polynucleotides. PMID:7177848

  9. N-Sulfomethylation of guanine, adenine and cytosine with formaldehyde-bisulfite. A selective modification of guanine in DNA.

    PubMed Central

    Hayatsu, H; Yamashita, Y; Yui, S; Yamagata, Y; Tomita, K; Negishi, K

    1982-01-01

    When guanine-, adenine- and cytosine-nucleosides and nucleotides were treated with formaldehyde and then with bisulfite, stable N-sulfomethyl compounds were formed. N2-Sulfomethylguanine, N6-sulfomethyladenine, N4-sulfomthylcytosine and N6-sulfomethyl-9-beta-D-arabinofuranosyladenine were isolated as crystals and characterized. A guanine-specific sulfomethylation was brought about by treatment and denatured single-stranded DNA with formaldehyde and then with bisulfite at pH 7 and 4 degrees C. Since native double-stranded DNA was not modified by this treatment, this new method of modification is expected to be useful as a conformational probe for polynucleotides. PMID:7177848

  10. N-Sulfomethylation of guanine, adenine and cytosine with formaldehyde-bisulfite. A selective modification of guanine in DNA.

    PubMed

    Hayatsu, H; Yamashita, Y; Yui, S; Yamagata, Y; Tomita, K; Negishi, K

    1982-10-25

    When guanine-, adenine- and cytosine-nucleosides and nucleotides were treated with formaldehyde and then with bisulfite, stable N-sulfomethyl compounds were formed. N2-Sulfomethylguanine, N6-sulfomethyladenine, N4-sulfomthylcytosine and N6-sulfomethyl-9-beta-D-arabinofuranosyladenine were isolated as crystals and characterized. A guanine-specific sulfomethylation was brought about by treatment and denatured single-stranded DNA with formaldehyde and then with bisulfite at pH 7 and 4 degrees C. Since native double-stranded DNA was not modified by this treatment, this new method of modification is expected to be useful as a conformational probe for polynucleotides.

  11. External electric field promotes proton transfer in the radical cation of adenine-thymine

    NASA Astrophysics Data System (ADS)

    Zhang, Guiqing; Xie, Shijie

    2016-07-01

    According to pKa measurements, it has been predicted that proton transfer would not occur in the radical cation of adenine-thymine (A:T). However, recent theoretical calculations indicate that proton transfer takes place in the base pair in water below the room temperature. We have performed simulations of proton transfer in the cation of B-DNA stack composed of 10 A:T base pairs in water from 20 K to 300 K. Proton transfer occurs below the room temperature, meanwhile it could also be observed at the room temperature under the external electric field. Another case that interests us is that proton transfer bounces back after ˜300 fs from the appearance of proton transfer at low temperatures.

  12. Vacuum-ultraviolet circular dichroism reveals DNA duplex formation between short strands of adenine and thymine.

    PubMed

    Nielsen, Lisbeth Munksgaard; Hoffmann, Søren Vrønning; Brøndsted Nielsen, Steen

    2012-11-21

    Absorbance spectroscopy is used extensively to tell when two DNA single strands come together and form a double strand. Here we show that circular dichroism in the vacuum ultraviolet region provides an even stronger indication for duplex formation in the case of short strands of adenine and thymine (4 to 16 bases in each strand). Indeed, our results show that a strong positive CD band appears at 179 nm when double strands are formed. Melting experiments were done in aqueous solution with and without added Na(+) counter ions. With additional salt present a huge increase in the 179 nm CD band was observed when lowering the temperature. A 179 nm CD marker band for duplex formation can be used to measure the kinetics for the association of two single strands. Such experiments rely on large changes at one particular wavelength since it is too time-consuming to record a full-wavelength spectrum.

  13. Intriguing radical-radical interactions among double-electron oxidized adenine-thymine base pairs

    NASA Astrophysics Data System (ADS)

    Wang, Mei; Zhao, Jing; Zhang, Laibin; Su, Xiyu; Su, Hanlei; Bu, Yuxiang

    2015-01-01

    We present a theoretical investigation of the structural and electronic properties of double-electron oxidized adenine-thymine base pair as well as its deprotonated Watson-Crick derivatives. Double-electron oxidation can destabilize the AT unit, leading to a barrier-hindered metastable A+T+ state with a dissociation channel featuring negative dissociation energy. This unusual energetic phenomenon originates from the competition of electrostatic repulsion and attractively hydrogen-bonding interaction co-existing between Arad + and Trad +. The associated double-proton-transfer process is also explored, suggesting a possible two-step mechanism. Magnetic coupling interactions of various diradical structures are controlled by both intra- and inter-molecular interactions.

  14. Structure-wise discrimination of adenine and guanine by proteins on the basis of their nonbonded interactions.

    PubMed

    Usha, S; Selvaraj, S

    2015-01-01

    We have analyzed the nonbonded interactions of the structurally similar moieties, adenine and guanine forming complexes with proteins. The results comprise (a) the amino acid-ligand atom preferences, (b) solvent accessibility of ligand atoms before and after complex formation with proteins, and (c) preferred amino acid residue atoms involved in the interactions. We have observed that the amino acid preferences involved in the hydrogen bonding interactions vary for adenine and guanine. The structural variation between the purine atoms is clearly reflected by their burial tendency in the solvent environment. Correlation of the mean amino acid preference values show the variation that exists between adenine and guanine preferences of all the amino acid residues. All our observations provide evidence for the discriminating nature of the proteins in recognizing adenine and guanine. PMID:25245205

  15. Structure-wise discrimination of adenine and guanine by proteins on the basis of their nonbonded interactions.

    PubMed

    Usha, S; Selvaraj, S

    2015-01-01

    We have analyzed the nonbonded interactions of the structurally similar moieties, adenine and guanine forming complexes with proteins. The results comprise (a) the amino acid-ligand atom preferences, (b) solvent accessibility of ligand atoms before and after complex formation with proteins, and (c) preferred amino acid residue atoms involved in the interactions. We have observed that the amino acid preferences involved in the hydrogen bonding interactions vary for adenine and guanine. The structural variation between the purine atoms is clearly reflected by their burial tendency in the solvent environment. Correlation of the mean amino acid preference values show the variation that exists between adenine and guanine preferences of all the amino acid residues. All our observations provide evidence for the discriminating nature of the proteins in recognizing adenine and guanine.

  16. DNA Bases Thymine and Adenine in Bio-Organic Light Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Gomez, Eliot F.; Venkatraman, Vishak; Grote, James G.; Steckl, Andrew J.

    2014-11-01

    We report on the use of nucleic acid bases (NBs) in organic light emitting diodes (OLEDs). NBs are small molecules that are the basic building blocks of the larger DNA polymer. NBs readily thermally evaporate and integrate well into the vacuum deposited OLED fabrication. Adenine (A) and thymine (T) were deposited as electron-blocking/hole-transport layers (EBL/HTL) that resulted in increases in performance over the reference OLED containing the standard EBL material NPB. A-based OLEDs reached a peak current efficiency and luminance performance of 48 cd/A and 93,000 cd/m2, respectively, while T-based OLEDs had a maximum of 76 cd/A and 132,000 cd/m2. By comparison, the reference OLED yielded 37 cd/A and 113,000 cd/m2. The enhanced performance of T-based devices is attributed to a combination of energy levels and structured surface morphology that causes more efficient and controlled hole current transport to the emitting layer.

  17. DNA Bases Thymine and Adenine in Bio-Organic Light Emitting Diodes

    PubMed Central

    Gomez, Eliot F.; Venkatraman, Vishak; Grote, James G.; Steckl, Andrew J.

    2014-01-01

    We report on the use of nucleic acid bases (NBs) in organic light emitting diodes (OLEDs). NBs are small molecules that are the basic building blocks of the larger DNA polymer. NBs readily thermally evaporate and integrate well into the vacuum deposited OLED fabrication. Adenine (A) and thymine (T) were deposited as electron-blocking/hole-transport layers (EBL/HTL) that resulted in increases in performance over the reference OLED containing the standard EBL material NPB. A-based OLEDs reached a peak current efficiency and luminance performance of 48 cd/A and 93,000 cd/m2, respectively, while T-based OLEDs had a maximum of 76 cd/A and 132,000 cd/m2. By comparison, the reference OLED yielded 37 cd/A and 113,000 cd/m2. The enhanced performance of T-based devices is attributed to a combination of energy levels and structured surface morphology that causes more efficient and controlled hole current transport to the emitting layer. PMID:25417819

  18. Interaction of cyclic cytosine-, guanine-, thymine-, uracil- and mixed guanine-cytosine base tetrads with K+, Na+ and Li+ ions -- a density functional study.

    PubMed

    Meyer, Michael; Sühnel, Jürgen

    2003-02-01

    We have carried out B3LYP hybrid density functional studies of complexes formed by cyclic cytosine-, guanine-, thymine-, uracil- and mixed guanine cytosine-tetrads with Li+, Na+ and K+ ions to determine their structures and interaction energies. The conformations studied have been restricted to a hydrogen bond pattern closely related to the tetrads observed in experimental nucleic acid structures. A comparison of the alkali metal ion/tetrad complexes with the tetrads without cations indicates that alkali metal ions modulate the tetrad structures significantly and that even the hydrogen bond pattern may change. Guanine-tetrad cation complexes show the strongest interaction energy compared to other tetrads that occur less frequently in experimental structures. The most stable G-tetrad/metal ion structure adopts a nearly planar geometry that is especially suitable for tetraplex formation, which requires approximately parallel tetrad planes. In the cytosine-tetrad there is a very large central cavity suitable for cation recognition, but the complexes adopt a non-planar structure unsuitable for stacking, except possibly for ions with very large radii. Uracil and thymine tetrads show a significant different characteristics which may contribute to the differences between DNA and RNA PMID:12529150

  19. Major and minor groove conformations of DNA trimers modified on guanine or adenine by 4-aminobiphenyl: Adenine adducts favor the minor groove

    SciTech Connect

    Shapiro, R.; Ellis, S.; Hingerty, B.E.

    1995-01-01

    We have studied the conformational effects of 4-aminobiphenyl modification at C-8 of guanine or adenine on double-stranded DNA trimers. We used sequences with the modified purine at the central base pair and all 16 possible neighboring sequences at the outer pairs. Minimized potential energy calculations were carried out using the molecular mechanics program DUPLEX to survey the conformation space of these adducts, using a total of 1280 starting structures both in the modified guanine series and in the modified adenine series. Conformer families in which the bound 4-aminobiphenyl was located in the DNA major groove, and in the minor groove, were located for both adenine and guanine modification. In the modified guanine series, the major and minor groove families were roughly comparable in energy, and the sequence context determined which was more stable in a particular case. In the modified adenine series, however, the minor groove structure was more that 10 kcal/mol more stable than the major groove for all sequences. As a result, minor groove adducts provided most of the global minima in the adenine-modified series. This result may be relevant to a previous mutagenesis study [Lasko et al. (1988) J. Biol. Chem. 263, 15429-15435] in which the hot spot of most frequent occurrence was located at an adenine, in the sequence GAT. 25 refs., 9 figs., 4 tabs.

  20. Fragmentation of the adenine and guanine molecules induced by electron collisions

    NASA Astrophysics Data System (ADS)

    Minaev, B. F.; Shafranyosh, M. I.; Svida, Yu. Yu; Sukhoviya, M. I.; Shafranyosh, I. I.; Baryshnikov, G. V.; Minaeva, V. A.

    2014-05-01

    Secondary electron emission is the most important stage in the mechanism of radiation damage to DNA biopolymers induced by primary ionizing radiation. These secondary electrons ejected by the primary electron impacts can produce further ionizations, initiating an avalanche effect, leading to genome damage through the energy transfer from the primary objects to sensitive biomolecular targets, such as nitrogenous bases, saccharides, and other DNA and peptide components. In this work, the formation of positive and negative ions of purine bases of nucleic acids (adenine and guanine molecules) under the impact of slow electrons (from 0.1 till 200 eV) is studied by the crossed electron and molecular beams technique. The method used makes it possible to measure the molecular beam intensity and determine the total cross-sections for the formation of positive and negative ions of the studied molecules, their energy dependences, and absolute values. It is found that the maximum cross section for formation of the adenine and guanine positive ions is reached at about 90 eV energy of the electron beam and their absolute values are equal to 2.8 × 10-15 and 3.2 × 10-15 cm2, respectively. The total cross section for formation of the negative ions is 6.1 × 10-18 and 7.6 × 10-18 cm2 at the energy of 1.1 eV for adenine and guanine, respectively. The absolute cross-section values for the molecular ions are measured and the cross-sections of dissociative ionization are determined. Quantum chemical calculations are performed for the studied molecules, ions and fragments for interpretation of the crossed beams experiments.

  1. Fragmentation of the adenine and guanine molecules induced by electron collisions

    SciTech Connect

    Minaev, B. F. E-mail: boris@theochem.kth.se; Shafranyosh, M. I.; Svida, Yu. Yu; Sukhoviya, M. I.; Shafranyosh, I. I.; Baryshnikov, G. V.; Minaeva, V. A.

    2014-05-07

    Secondary electron emission is the most important stage in the mechanism of radiation damage to DNA biopolymers induced by primary ionizing radiation. These secondary electrons ejected by the primary electron impacts can produce further ionizations, initiating an avalanche effect, leading to genome damage through the energy transfer from the primary objects to sensitive biomolecular targets, such as nitrogenous bases, saccharides, and other DNA and peptide components. In this work, the formation of positive and negative ions of purine bases of nucleic acids (adenine and guanine molecules) under the impact of slow electrons (from 0.1 till 200 eV) is studied by the crossed electron and molecular beams technique. The method used makes it possible to measure the molecular beam intensity and determine the total cross-sections for the formation of positive and negative ions of the studied molecules, their energy dependences, and absolute values. It is found that the maximum cross section for formation of the adenine and guanine positive ions is reached at about 90 eV energy of the electron beam and their absolute values are equal to 2.8 × 10{sup −15} and 3.2 × 10{sup −15} cm{sup 2}, respectively. The total cross section for formation of the negative ions is 6.1 × 10{sup −18} and 7.6 × 10{sup −18} cm{sup 2} at the energy of 1.1 eV for adenine and guanine, respectively. The absolute cross-section values for the molecular ions are measured and the cross-sections of dissociative ionization are determined. Quantum chemical calculations are performed for the studied molecules, ions and fragments for interpretation of the crossed beams experiments.

  2. Simultaneous Determination of Adenine and Guanine Using Cadmium Selenide Quantum Dots-Graphene Oxide Nanocomposite Modified Electrode.

    PubMed

    Kalaivani, Arumugam; Narayanan, Sangilimuthu Sriman

    2015-06-01

    A novel electrochemical sensor was fabricated by immobilizing Cadmium Selenide Quantum Dots (CdSe QDs)-Graphene Oxide (GO) nanocomposite on a paraffin wax impregnated graphite electrode (PIGE) and was used for the simultaneous determination of adenine and guanine. The CdSe QDs-GO nanocomposite was prepared by ultrasonication and was characterized with spectroscopic and microscopic techniques. The nanocomposite modified electrode was characterized by cyclic voltammetry (CV). The modified electrode showed excellent electrocatalytic activity towards the oxidative determination of adenine and guanine with a good peak separation of 0.31 V. This may be due to the high surface area and fast electron transfer kinetics of the nanocomposite. The modified electrode exhibited wide linear ranges from 0.167 μM to 245 μM for Guanine and 0.083 μM to 291 μM for Adenine with detection limits of 0.055 μM Guanine and 0.028 μM of Adenine (S/N = 3) respectively. Further, the modified electrode was used for the quantitative determination of adenine and guanine in herring sperm DNA with satisfactory results. The modified electrode showed acceptable selectivity, reproducibility and stability under optimal conditions. PMID:26369099

  3. Modified Iterative Extended Hueckel. 2: Application to the interaction of Na(+), Na(+)(aq.), Mg(+)-2(aq.) with adenine and thymine

    NASA Technical Reports Server (NTRS)

    Aronowitz, S.; Macelroy, R.; Chang, S.

    1980-01-01

    Modified Iterative Extended Hueckel, which includes explicit effective internuclear and electronic interactions, is applied to the study of the energetics of Na(+),Mg(+), Na(+) (aqueous), and Mg(+2) (aqueous) ions approaching various possible binding sites on adenine and thymine. Results for the adenine + ion and thymine + ion are in good qualitative agreement with ab initio work on analogous systems. Energy differences between competing sites are in excellent agreement. Hydration appears to be a critical factor in determining favorable binding sites. That the adenine Nl and N3 sites cannot displace a water molecule from the hydrated cation indicates that they are not favorable binding sites in aqueous media. Of those sites investigated, 04 was the most favorable binding site on the thymine for the bare Na(+). However, the 02 site was the most favorable binding site for either hydrated cation.

  4. Adaptive ligand binding by the purine riboswitch in the recognition of guanine and adenine analogs

    PubMed Central

    Gilbert, Sunny D.; Reyes, Francis E.; Edwards, Andrea L.; Batey, Robert T.

    2009-01-01

    SUMMARY Purine riboswitches discriminate between guanine and adenine by at least 10,000-fold based on the identity of a single pyrimidine (Y74) that forms a Watson-Crick base pair with the ligand. To understand how this high degree of specificity for closely related compounds is achieved through simple pairing, we investigated their interaction with purine analogs with varying functional groups at the 2- and 6-positions that have the potential to alter interactions with Y74. Using a combination of crystallographic and calorimetric approaches, we find that binding these purines is often facilitated by either small structural changes in the RNA or tautomeric changes in the ligand. This work also reveals that, along with base pairing, conformational restriction of Y74 significantly contributes to nucleobase selectivity. These results reveal that compounds that exploit the inherent local flexibility within riboswitch binding pockets can alter their ligand specificity. PMID:19523903

  5. Structural basis for discriminative regulation of gene expression by adenine- and guanine-sensing mRNAs.

    PubMed

    Serganov, Alexander; Yuan, Yu-Ren; Pikovskaya, Olga; Polonskaia, Anna; Malinina, Lucy; Phan, Anh Tuân; Hobartner, Claudia; Micura, Ronald; Breaker, Ronald R; Patel, Dinshaw J

    2004-12-01

    Metabolite-sensing mRNAs, or "riboswitches," specifically interact with small ligands and direct expression of the genes involved in their metabolism. Riboswitches contain sensing "aptamer" modules, capable of ligand-induced structural changes, and downstream regions, harboring expression-controlling elements. We report the crystal structures of the add A-riboswitch and xpt G-riboswitch aptamer modules that distinguish between bound adenine and guanine with exquisite specificity and modulate expression of two different sets of genes. The riboswitches form tuning fork-like architectures, in which the prongs are held in parallel through hairpin loop interactions, and the internal bubble zippers up to form the purine binding pocket. The bound purines are held by hydrogen bonding interactions involving conserved nucleotides along their entire periphery. Recognition specificity is associated with Watson-Crick pairing of the encapsulated adenine and guanine ligands with uridine and cytosine, respectively. PMID:15610857

  6. Structural Basis for Discriminative Regulation of Gene Expression by Adenine- and Guanine-Sensing mRNAs

    PubMed Central

    Serganov, Alexander; Yuan, Yu-Ren; Pikovskaya, Olga; Polonskaia, Anna; Malinina, Lucy; Phan, Anh Tuân; Hobartner, Claudia; Micura, Ronald; Breaker, Ronald R.; Patel, Dinshaw J.

    2015-01-01

    Summary Metabolite-sensing mRNAs, or “riboswitches,” specifically interact with small ligands and direct expression of the genes involved in their metabolism. Ribo-switches contain sensing “aptamer” modules, capable of ligand-induced structural changes, and downstream regions, harboring expression-controlling elements. We report the crystal structures of the add A-riboswitch and xpt G-riboswitch aptamer modules that distinguish between bound adenine and guanine with exquisite specificity and modulate expression of two different sets of genes. The riboswitches form tuning fork-like architectures, in which the prongs are held in parallel through hairpin loop interactions, and the internal bubble zippers up to form the purine binding pocket. The bound purines are held by hydrogen bonding interactions involving conserved nucleotides along their entire periphery. Recognition specificity is associated with Watson-Crick pairing of the encapsulated adenine and guanine ligands with uri-dine and cytosine, respectively. PMID:15610857

  7. Synthesis of adenine, guanine, cytosine, and other nitrogen organic compounds by a Fischer-Tropsch-like process.

    NASA Technical Reports Server (NTRS)

    Yang, C. C.; Oro, J.

    1971-01-01

    Study of the formation of purines, pyrimidines, and other bases from CO, H2, and NH3 under conditions similar to those used in the Fischer-Tropsch process. It is found that industrial nickel/iron alloy catalyzes the synthesis of adenine, guanine, cytosine, and other nitrogenous compounds from mixtures of CO, H2, and NH3 at temperatures of about 600 C. Sufficient sample was accumulated to isolate as solid products adenine, guanine, and cytosine, which were identified by infrared spectrophotometry. In the absence of nickel/iron catalyst, at 650 C, or in the presence of this catalyst, at 450 C, no purines or pyrimidines were synthesized. These results confirm and extend some of the work reported by Kayatsu et al. (1968).

  8. Time-resolved probes based on guanine/thymine-rich DNA-sensitized luminescence of terbium(III).

    PubMed

    Zhang, Min; Le, Huynh-Nhu; Jiang, Xiao-Qin; Yin, Bin-Cheng; Ye, Bang-Ce

    2013-12-01

    In this study, we have developed a novel strategy to highly sensitize the luminescence of terbium(III) (Tb(3+)) using a designed guanine/thymine-rich DNA (5'-[G3T]5-3') as an antenna ligand, in which [G3T]5 improved the luminescence of Tb(3+) by 3 orders of magnitude due to energy transfer from nucleic acids to Tb(3+) (i.e., antenna effect). Furthermore, label-free probes for the luminescent detection of biothiols, Ag(+), and sequence-specific DNA in an inexpensive, simple, and mix-and-read format are presented based on the [G3T]5-sensitized luminescence of Tb(3+) (GTSLT). The long luminescence lifetime of the probes readily enables time-resolved luminescence (TRL) experiments. Hg(2+) can efficiently quench the luminescence of Tb(3+) sensitized by [G3T]5 (Tb(3+)/[G3T]5); however, biothiols are readily applicable to selectively grab Hg(2+) for restoration of the luminescence of Tb(3+)/[G3T]5 initially quenched by Hg(2+), which can be used for "turn on" detection of biothiols. With the use of cytosine (C)-rich oligonucleotide c[G3T]5 complementary to [G3T]5, the formed [G3T]5/c[G3T]5 duplex cannot sensitize the luminescence of Tb(3+). However, in the presence of Ag(+), Ag(+) can combine the C base of c[G3T]5 to form C-Ag(+)-C complexes, leading to the split of the [G3T]5/c[G3T]5 duplex and then release of [G3T]5. The released [G3T]5 acts as an antenna ligand for sensitizing the luminescence of Tb(3+). Therefore, the Tb(3+)/[G3T]5/c[G3T]5 probe can be applied to detect Ag(+) in a "turn on" format. Moreover, recognition of target DNA via hybridization to a molecular beacon (MB)-like probe (MB-[G3T]5) can unfold the MB-[G3T]5 to release the [G3T]5 for sensitizing the luminescence of Tb(3+), producing a detectable signal directly proportional to the amount of target DNA of interest. This allows the development of a fascinating label-free MB probe for DNA sensing based on the luminescence of Tb(3+). Results and methods reported here suggest that a guanine/thymine-rich DNA

  9. Time-resolved probes based on guanine/thymine-rich DNA-sensitized luminescence of terbium(III).

    PubMed

    Zhang, Min; Le, Huynh-Nhu; Jiang, Xiao-Qin; Yin, Bin-Cheng; Ye, Bang-Ce

    2013-12-01

    In this study, we have developed a novel strategy to highly sensitize the luminescence of terbium(III) (Tb(3+)) using a designed guanine/thymine-rich DNA (5'-[G3T]5-3') as an antenna ligand, in which [G3T]5 improved the luminescence of Tb(3+) by 3 orders of magnitude due to energy transfer from nucleic acids to Tb(3+) (i.e., antenna effect). Furthermore, label-free probes for the luminescent detection of biothiols, Ag(+), and sequence-specific DNA in an inexpensive, simple, and mix-and-read format are presented based on the [G3T]5-sensitized luminescence of Tb(3+) (GTSLT). The long luminescence lifetime of the probes readily enables time-resolved luminescence (TRL) experiments. Hg(2+) can efficiently quench the luminescence of Tb(3+) sensitized by [G3T]5 (Tb(3+)/[G3T]5); however, biothiols are readily applicable to selectively grab Hg(2+) for restoration of the luminescence of Tb(3+)/[G3T]5 initially quenched by Hg(2+), which can be used for "turn on" detection of biothiols. With the use of cytosine (C)-rich oligonucleotide c[G3T]5 complementary to [G3T]5, the formed [G3T]5/c[G3T]5 duplex cannot sensitize the luminescence of Tb(3+). However, in the presence of Ag(+), Ag(+) can combine the C base of c[G3T]5 to form C-Ag(+)-C complexes, leading to the split of the [G3T]5/c[G3T]5 duplex and then release of [G3T]5. The released [G3T]5 acts as an antenna ligand for sensitizing the luminescence of Tb(3+). Therefore, the Tb(3+)/[G3T]5/c[G3T]5 probe can be applied to detect Ag(+) in a "turn on" format. Moreover, recognition of target DNA via hybridization to a molecular beacon (MB)-like probe (MB-[G3T]5) can unfold the MB-[G3T]5 to release the [G3T]5 for sensitizing the luminescence of Tb(3+), producing a detectable signal directly proportional to the amount of target DNA of interest. This allows the development of a fascinating label-free MB probe for DNA sensing based on the luminescence of Tb(3+). Results and methods reported here suggest that a guanine/thymine-rich DNA

  10. DFT Studies of the Extent of Hole Delocalization in One-electron Oxidized Adenine and Guanine base Stacks

    PubMed Central

    Kumar, Anil

    2011-01-01

    This study investigates the extent of hole delocalization in one-electron oxidized adenine (A)- and guanine (G)-stacks and shows that new IR vibrational bands are predicted that are characteristic of hole delocalization within A-stacks. The geometries of A-stack (Ai; i = 2 – 8) and G-stack (GG and GGG) in their neutral and one-electron oxidized states were optimized with the bases in a B-DNA conformation using the M06-2X/6-31G* method. The highest occupied molecular orbital (HOMO) is localized on a single adenine in A-stacks and on a single guanine in GG and GGG stacks; located at the 5′-site of the stack. On one-electron oxidation (removal of an electron from the HOMO of the neutral A- and G-stacks) a “hole” is created. Mulliken charge analysis shows that these “holes” are delocalized over 2 – 3 adenine bases in the A-stack. The calculated spin density distribution of (Ai)•+ (i = 2 – 8), also, showed delocalization of the hole predominantly on two adenine bases with some delocalization on a neighboring base. For GG and GGG radical cations, the hole was found to be localized on a single G in the stack. The calculated HFCCs of GG and GGG are in good agreement with the experiment. Further, from the vibrational frequency analysis, it was found that IR spectra of neutral and the corresponding one-electron oxidized adenine stacks are quite different. The IR spectra of (A2)•+ has intense IR peaks between 900 – 1500 cm−1 which are not present in the neutral A2 stack. The presence of (A2)•+ in the adenine stack has a characteristic intense peak at ~1100 cm−1. Thus IR and Raman spectroscopy has potential for monitoring the extent of hole delocalization in A stacks. PMID:21417208

  11. Can an excess electron localize on a purine moiety in the adenine-thymine Watson-Crick base pair? A computational study

    NASA Astrophysics Data System (ADS)

    Mazurkiewicz, Kamil; Harańczyk, Maciej; Gutowski, Maciej; Rak, Janusz

    The electron affinity and the propensity to electron-induced proton transfer (PT) of hydrogen-bonded complexes between the Watson-Crick adenine-thymine pair (AT) and simple organic acid (HX), attached to adenine in the Hoogsteen-type configuration, were studied at the B3LYP/6-31+G** level. Although the carboxyl group is deprotonated at physiological pH, its neutral form, COOH, resembles the peptide bond or the amide fragment in the side chain of asparagine (Asn) or glutamine (Gln). Thus, these complexes mimic the interaction between the DNA environment (e.g., proteins) and nucleobase pairs incorporated in the biopolymer. Electron attachment is thermodynamically feasible and adiabatic electron affinities range from 0.41 to 1.28 eV, while the vertical detachment energies of the resulting anions span the range of 0.39-2.88 eV. Low-energy activation barriers separate the anionic minima: aHX(AT) from the more stable single-PT anionic geometry, aHX(AT)-SPT, and aHX(AT)-SPT from the double-PT anionic geometry, aHX(AT)-DPT. Interaction between the adenine of the Watson-Crick AT base pair with an acidic proton donor probably counterbalances the larger EA of isolated thymine, as SOMO is almost evenly delocalized over both types of nucleic bases in the aHX(AT) anions. Moreover, as a result of PT the excess electron localizes entirely on adenine. Thus, in DNA interacting with its physiological environment, damage induced by low-energy electrons could begin, contrary to the current view, with the formation of purine anions, which are not formed in isolated DNA because of the greater stability of anionic pyrimidines.0

  12. Acidity and complex formation studies of 3-(adenine-9-yl)-propionic and 3-(thymine-1-yl)-propionic acids in ethanol-water media

    NASA Astrophysics Data System (ADS)

    Hammud, Hassan H.; El Shazly, Shawky; Sonji, Ghassan; Sonji, Nada; Bouhadir, Kamal H.

    2015-05-01

    The ligands 3-(adenine-9-yl)propionic acid (AA) and 3-(thymine-1-yl)propionic acid (TA) were prepared by N9-alkylation of adenine and N1-alkylation of thymine with ethylacrylate in presence of a base catalyst, followed by acid hydrolysis of the formed ethyl esters to give the corresponding propionic acid derivatives. The products were characterized by spectral methods (FTIR, 1H NMR and 13C NMR), which confirm their structures. The dissociation constants of ligands, were potentiometrically determined in 0.3 M KCl at 20-50 °C temperature range. The work was extended to study complexation behavior of AA and TA with various biologically important divalent metal ions (Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Mn2+ and Pb2+) in 50% v/v water-ethanol medium at four different temperatures, keeping ionic strength constant (0.3 M KCl). The order of the stability constants of the formed complexes decreases in the sequence Cu2+ > Pb2+ > Zn2+ > Ni2+ > Co2+ > Mn2+ > Cd2+ for both ligands. The effect of temperature was also studied and the corresponding thermodynamic functions (ΔG, ΔH, ΔS) were derived and discussed. The formation of metal complexes has been found to be spontaneous, and the stability constants were dependant markedly on the basicity of the ligands.

  13. Can an Excess Electron Localise on a Purine Moiety in the Adenine-thymine Watson-Crick Base Pair? A Computational Study

    SciTech Connect

    Mazurkiewicz, Kamil; Haranczyk, Maciej; Gutowski, Maciej S.; Rak, Janusz

    2007-04-17

    The electron affinity and the propensity to electron-induced proton transfer (PT) of hydrogen-bonded complexes between the Watson–Crick adenine–thymine pair (AT) and simple organic acid (HX), attached to adenine in the Hoogsteen-type configuration, were studied at the B3LYP/6-31+G** level. Although the carboxyl group is deprotonated at physiological pH, its neutral form, COOH, resembles the peptide bond or the amide fragment in the side chain of asparagine (Asn) or glutamine (Gln). Thus, these complexes mimic the interaction between the DNA environment (e.g., proteins) and nucleobase pairs incorporated in the biopolymer. Electron attachment is thermodynamically feasible and adiabatic electron affinities range from 0.41 to 1.28 eV, while the vertical detachment energies of the resulting anions span the range of 0.39 –2.88 eV. Low-energy activation barriers separate the anionic minima: aHX(AT) from the more stable single-PT anionic geometry, aHX(AT)-SPT, and aHX(AT)-SPT from the double-PT anionic geometry, aHX(AT)-DPT. Interaction between the adenine of the Watson–Crick AT base pair with an acidic proton donor probably counterbalances the larger EA of isolated thymine, as SOMO is almost evenly delocalized over both types of nucleic bases in the aHX(AT) anions. Moreover, as a result of PT the excess electron localizes entirely on adenine. Thus, in DNA interacting with its physiological environment, damage induced by low-energy electrons could begin, contrary to the current view, with the formation of purine anions, which are not formed in isolated DNA because of the greater stability of anionic pyrimidines.

  14. DNA-directed aniline mustards with high selectivity for adenine or guanine bases: mutagenesis in a variety of Salmonella typhimurium strains differing in DNA-repair capability.

    PubMed

    Ferguson, L R; Denny, W A; Boritzki, T J

    1994-04-01

    Two closely-related aniline monomustards (1 and 2), linked to a DNA-targeting acridine chromophore by a linker chain of different length, show high selectivity for alkylation of polymer DNA. The shorter-chain derivative (2) alkylates mainly at guanine N7 sites, while the longer-chain analogue (1) reacts almost exclusively at adenine N1. The biological effects of these compounds have been studied in standard Ames Salmonella typhimurium strains in order to determine the mutagenic consequences of such well-defined DNA lesions, and the effect of DNA-repair systems on them. Both compounds caused detectable mutations in strains TA1537, TA98 or TA100 and some related strains. Mutation rates were greatly enhanced in strains carrying either a uvrB deletion or the plasmid pKM101. Frameshift mutagenesis by both compounds was completely eliminated by recA deletion, in both the presence or absence of the plasmid. The adenine-selective compound (1) appeared more sensitive to the DNA-repair defects than the guanine-selective derivative (2). Additionally, only the adenine-selective compound (1) caused statistically significant levels of detectable mutation in the repair-proficient strains TA102, TA4001 or TA4006. The bacterial mutagenesis evidence suggests that a bulky, major groove-residing adenine lesion may be more readily recognised by DNA-repair systems, and more likely to lead to a wider range of mutagenic events, than a similar guanine lesion.

  15. Are genes destiny? Have adenine, cytosine, guanine and thymine replaced Lachesis, Clotho and Atropos as the weavers of our fate?

    PubMed Central

    EISENBERG, LEON

    2005-01-01

    It is as futile to ask how much of the phenotype of an organism is due to nature and how much to its nurture as it is to determine how much of the area of a rectangle is due to its length and how much to its height. Phenotype and area are joint products. The spectacular success of genomics, unfortunately, threatens to re-awaken belief in genes as the principal determinants of human behavior. This paper develops the thesis that gene expression is modified by environmental inputs and that the impact of the environment on a given organism is modified by its genome. Genes set the boundaries of the possible; environments parse out the actual. PMID:16633494

  16. Adenine-DNA adducts derived from the highly tumorigenic dibenzo[a,l]pyrene are resistant to nucleotide excision repair while guanine adducts are not

    PubMed Central

    Kropachev, Konstantin; Kolbanovskiy, Marina; Liu, Zhi; Cai, Yuqin; Zhang, Lu; Schwaid, Adam G.; Kolbanovskiy, Alexander; Ding, Shuang; Amin, Shantu; Broyde, Suse; Geacintov, Nicholas E.

    2013-01-01

    The structural origins of differences in susceptibilities of various DNA lesions to nucleotide excision repair (NER) are poorly understood. Here we compared, in the same sequence context, the relative NER dual incision efficiencies elicited by two stereochemically distinct pairs of guanine (N2-dG) and adenine (N6-dA) DNA lesions, derived from enantiomeric genotoxic diol epoxides of the highly tumorigenic fjord region polycyclic aromatic hydrocarbon dibenzo[a,l]pyrene (DB[a,l]P). Remarkably, in cell-free HeLa cell extracts, the guanine adduct with R absolute chemistry at the N2-dG linkage site is ~ 35 times more susceptible to NER dual incisions than the stereochemically identical N6-dA adduct. For the guanine and adenine adducts with S stereochemistry, a similar, but somewhat smaller effect (factor of ~15) is observed. The striking resistance of the bulky N6-dA in contrast to the modest to good susceptibilities of the N2-dG adducts to NER are interpreted in terms of the balance between lesion-induced DNA-distorting and DNA-stabilizing van der Waals interactions in their structures, that are partly reflected in the overall thermal stabilities of the modified duplexes. Our results are consistent with the hypothesis that the high genotoxic activity of DB[a,l]P is related to the formation of NER-resistant and persistent DB[a,l]P-derived adenine adducts in cellular DNA. PMID:23570232

  17. Red-shifted hydrogen bonds and blue-shifted van der Waals contact in the standard Watson-Crick adenine-thymine base pair.

    PubMed

    Zhou, Pan-Pan; Qiu, Wen-Yuan

    2009-09-24

    Standard Watson-Crick adenine-thymine (AT) base pair has been investigated by using the B3LYP functional with 6-31G(d, p) basis set, at which level of theory the geometrical characteristics of the AT base pair are the best in agreement with the experiment. It exhibits simultaneously red-shifted N-H...O and N-H...N hydrogen bonds as well as a blue-shifted C-H...O contact. AIM analysis suggests that the blue-shifted C-H...O contact exists as van der Waals interaction, and the electron density rho that reflects the strength of a bond has been used to explain the red- and blue-shifted. By means of NBO analysis, we report a method to estimate the effect of hyperconjugation quantitatively, which combines the electron density in the X-H (X = N, C) sigma bonding orbital with that in the sigma* antibonding orbital. The effect of structural reorganization on the origins of the red- and blue-shifted has been considered by the partial optimization, its behavior on the X-H (X = N, C) bond is quite different. Rehybridization and repolarization models are employed, and they act as bond-shortening effects. The competition between the electrostatic attractions and Pauli/nucleus repulsions is present in the two typical red-shifted N-H...O and N-H...N hydrogen bonds as well as in the blue-shifted C-H...O van der Waals contact. Electrostatic attraction between H and Y atoms (Y = O, N) is an important reason for the red shift, while the nucleus-nucleus repulsion between H and O atoms may be a factor leading to the C-H bond contraction and its blue shift. The electric field effect induced by the acceptor O atom on the C-H bond is also discussed.

  18. Electrocatalytic activity of molybdenum disulfide nanosheets enhanced by self-doped polyaniline for highly sensitive and synergistic determination of adenine and guanine.

    PubMed

    Yang, Tao; Yang, Ruirui; Chen, Huaiyin; Nan, Fuxin; Ge, Tong; Jiao, Kui

    2015-02-01

    Recently, easy, green, and low-cost liquild exfoliation of bulk materials to obtain thin-layered nanostructure significantly emerged. In this work, thin-layered molybdenum disulfide (MoS2) nanosheets were fabricated through intercalation of self-doped polyaniline (SPAN) to layer space of bulk MoS2 by ultrasonic exfoliating method to effectively prevent reaggregation of MoS2 nanosheets. The obtained hybrid showed specific surface area, a large number of electroactive species, and open accessible space, accompanied by rich negative charged and special conjugated structure, which was applied to adopt positively charged guanine and adenine, based on their strong π-π* interactions and electrostatic adsorption. Also, the SPAN-MoS2 interface exhibited the synergistic effect and good electrocatalytic activity compared with the sole SPAN or MoS2 modified electrode.

  19. Studies on the energy metabolism of opossum (Didelphis virginiana) erythrocytes: V. Utilization of hypoxanthine for the synthesis of adenine and guanine nucleotides in vitro

    SciTech Connect

    Bethlenfalvay, N.C.; White, J.C.; Chadwick, E.; Lima, J.E. )

    1990-06-01

    High pressure liquid radiochromatography was used to test the ability of opossum erythrocytes to incorporate tracer amounts of (G-{sup 3}H) hypoxanthine (Hy) into ({sup 3}H) labelled triphosphates of adenine and guanine. In the presence of supraphysiologic (30 mM) phosphate which is optimal for PRPP synthesis, both ATP and GTP are extensively labelled. When physiologic (1 mM) medium phosphate is used, red cells incubated under an atmosphere of nitrogen accumulate ({sup 3}H) ATP in a linear fashion suggesting ongoing PRPP synthesis in red cells whose hemoglobin is deoxygenated. In contrast, a lesser increase of labelled ATP is observed in cells incubated under oxygen, suggesting that conditions for purine nucleotide formation from ambient Hy are more favorable in the venous circulation.

  20. Amplification of Adenine Phosphoribosyltransferase Suppresses the Conditionally Lethal Growth and Virulence Phenotype of Leishmania donovani Mutants Lacking Both Hypoxanthine-guanine and Xanthine Phosphoribosyltransferases*

    PubMed Central

    Boitz, Jan M.; Ullman, Buddy

    2010-01-01

    Leishmania donovani cannot synthesize purines de novo and obligatorily scavenge purines from the host. Previously, we described a conditional lethal Δhgprt/Δxprt mutant of L. donovani (Boitz, J. M., and Ullman, B. (2006) J. Biol. Chem. 281, 16084–16089) that establishes that L. donovani salvages purines primarily through hypoxanthine-guanine phosphoribosyltransferase (HGPRT) and xanthine phosphoribosyltransferase (XPRT). Unlike wild type L. donovani, the Δhgprt/Δxprt knock-out cannot grow on 6-oxypurines and displays an absolute requirement for adenine or adenosine and 2′-deoxycoformycin, an inhibitor of parasite adenine aminohydrolase activity. Here, we demonstrate that the ability of Δhgprt/Δxprt parasites to infect mice was profoundly compromised. Surprisingly, mutant parasites that survived the initial passage through mice partially regained their virulence properties, exhibiting a >10-fold increase in parasite burden in a subsequent mouse infection. To dissect the mechanism by which Δhgprt/Δxprt parasites persisted in vivo, suppressor strains that had regained their capacity to grow under restrictive conditions were cloned from cultured Δhgprt/Δxprt parasites. The ability of these suppressor clones to grow in and metabolize 6-oxypurines could be ascribed to a marked amplification and overexpression of the adenine phosphoribosyltransferase (APRT) gene. Moreover, transfection of Δhgprt/Δxprt cells with an APRT episome recapitulated the suppressor phenotype in vitro and enabled growth on 6-oxypurines. Biochemical studies further showed that hypoxanthine, unexpectedly, was an inefficient substrate for APRT, evidence that could account for the ability of the suppressors to metabolize hypoxanthine. Subsequent analysis implied that APRT amplification was also a potential contributory mechanism by which Δhgprt/Δxprt parasites displayed persistence and increased virulence in mice. PMID:20363738

  1. Netropsin . dG-dG-dA-dA-dT-dT-dC-dC complex. Antibiotic binding at adenine . thymine base pairs in the minor groove of the self-complementary octanucleotide duplex.

    PubMed

    Patel, D J

    1979-09-01

    The structure of the netropsin . dG-dG-dA-dA-dT-dT-dC-dC complex (one antibiotic molecule/self-complementary octanucleodide duplex) and its dynamics as a function of temperature have been monitored by the nuclear magnetic resonances of the Watson-Crick protons, the nonexchangeable base and sugar protons and the backbone phosphates. The antibiotic forms a complex with the nucleic acid duplex at the dA . dT-containing tetranucleotide segment dA-dA-dT-dT, with slow migration amongst potential binding sites at low temperature. The downfield shifts in the exchangeable protons of netropsin on complex formation demonstrate the contributions of hydrogen-bonding interactions between the antibiotic and the nucleic acid to the stability of the complex. Complex formation results in changes in the glycosidic torsion angles of both thymidine residues and one deoxyadenosine residue as monitored by chemical shift changes in the thymine C-6 and adenine C-8 protons. The close proximity of the pyrrole rings of the antibiotic and the base-pair edges in the minor groove is manifested in the downfield shifts (0.3--0.5 ppm) of the pyrrole C-3 protons of netropsin and one adenine C-2 proton and one thymine N-3 base-pair proton on complex formation. The internucleotide phosphates of the octanucleotide undergo 31P chemical shift changes on addition of netropsin and these may reflect, in part, contributions from electrostatic interactions between the charged ends of the antibiotic and the backbone phosphates of the nucleic acid.

  2. Studies on gene control regions X. The effect of specific adenine-thymine transversions on the lac repressor-lac operator interaction.

    PubMed Central

    Sista, H S; Loder, R T; Caruthers, M H

    1979-01-01

    Chemical and enzymatic methods were used to synthesize a transition (AT to GC) and a transversion (AT to TA) at a lac operator site known to interact with lac repressor through the thymine 5 methyl group. These operators also contained a poly(dA) . poly(dT) tail 8 to 12 base pairs in length at one end. Results suggest that the steric constraints of lac repressor relative to the position of the 5 methyl group are quite critical. For example a seven fold reduction in stability was observed for the transversion. Results also suggest that the operator spans at least 21 base pairs. Images PMID:379824

  3. A new microplatform based on titanium dioxide nanofibers/graphene oxide nanosheets nanocomposite modified screen printed carbon electrode for electrochemical determination of adenine in the presence of guanine.

    PubMed

    Arvand, Majid; Ghodsi, Navid; Zanjanchi, Mohammad Ali

    2016-03-15

    The current techniques for determining adenine have several shortcomings such as high cost, high time consumption, tedious pretreatment steps and the requirements for highly skilled personnel often restrict their use in routine analytical practice. This paper describes the development and utilization of a new nanocomposite consisting of titanium dioxide nanofibers (TNFs) and graphene oxide nanosheets (GONs) for screen printed carbon electrode (SPCE) modification. The synthesized GONs and TNFs were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). The modified electrode (TNFs/GONs/SPCE) was used for electrochemical characterization of adenine. The TNFs/GONs/SPCE exhibited an increase in peak current and the electron transfer kinetics and decrease in the overpotential for the oxidation reaction of adenine. Using differential pulse voltammetry (DPV), the prepared sensor showed good sensitivity for determining adenine in two ranges from 0.1-1 and 1-10 μM, with a detection limit (DL) of 1.71 nM. Electrochemical studies suggested that the TNFs/GONs/SPCE provided a synergistic augmentation on the voltammetric behavior of electrochemical oxidation of adenine, which was indicated by the improvement of anodic peak current and a decrease in anodic peak potential. The amount of adenine in pBudCE4.1 plasmid was determined via the proposed sensor and the result was in good compatibility with the sequence data of pBudCE4.1 plasmid.

  4. Thymine and other prebiotic molecules produced from the ultraviolet photo-irradiation of pyrimidine in simple astrophysical ice analogs.

    PubMed

    Materese, Christopher K; Nuevo, Michel; Bera, Partha P; Lee, Timothy J; Sandford, Scott A

    2013-10-01

    The informational subunits of RNA or DNA consist of substituted N-heterocyclic compounds that fall into two groups: those based on purine (C₅H₄N₄) (adenine and guanine) and those based on pyrimidine (C₄H₄N₂) (uracil, cytosine, and thymine). Although not yet detected in the interstellar medium, N-heterocycles, including the nucleobase uracil, have been reported in carbonaceous chondrites. Recent laboratory experiments and ab initio calculations have shown that the irradiation of pyrimidine in ices containing H₂O, NH₃, or both leads to the abiotic production of substituted pyrimidines, including the nucleobases uracil and cytosine. In this work, we studied the methylation and oxidation of pyrimidine in CH₃OH:pyrimidine, H₂O:CH₃OH:pyrimidine, CH₄:pyrimidine, and H₂O:CH₄:pyrimidine ices irradiated with UV photons under astrophysically relevant conditions. The nucleobase thymine was detected in the residues from some of the mixtures. Our results suggest that the abundance of abiotic thymine produced by ice photolysis and delivered to the early Earth may have been significantly lower than that of uracil. Insofar as the delivery of extraterrestrial molecules was important for early biological chemistry on early Earth, these results suggest that there was more uracil than thymine available for emergent life, a scenario consistent with the RNA world hypothesis. PMID:24143868

  5. Functional identification of the hypoxanthine/guanine transporters YjcD and YgfQ and the adenine transporters PurP and YicO of Escherichia coli K-12.

    PubMed

    Papakostas, Konstantinos; Botou, Maria; Frillingos, Stathis

    2013-12-27

    The evolutionarily broad family nucleobase-cation symporter-2 (NCS2) encompasses transporters that are conserved in binding site architecture but diverse in substrate selectivity. Putative purine transporters of this family fall into one of two homology clusters: COG2233, represented by well studied xanthine and/or uric acid permeases, and COG2252, consisting of transporters for adenine, guanine, and/or hypoxanthine that remain unknown with respect to structure-function relationships. We analyzed the COG2252 genes of Escherichia coli K-12 with homology modeling, functional overexpression, and mutagenesis and showed that they encode high affinity permeases for the uptake of adenine (PurP and YicO) or guanine and hypoxanthine (YjcD and YgfQ). The two pairs of paralogs differ clearly in their substrate and ligand preferences. Of 25 putative inhibitors tested, PurP and YicO recognize with low micromolar affinity N(6)-benzoyladenine, 2,6-diaminopurine, and purine, whereas YjcD and YgfQ recognize 1-methylguanine, 8-azaguanine, 6-thioguanine, and 6-mercaptopurine and do not recognize any of the PurP ligands. Furthermore, the permeases PurP and YjcD were subjected to site-directed mutagenesis at highly conserved sites of transmembrane segments 1, 3, 8, 9, and 10, which have been studied also in COG2233 homologs. Residues irreplaceable for uptake activity or crucial for substrate selectivity were found at positions occupied by similar role amino acids in the Escherichia coli xanthine- and uric acid-transporting homologs (XanQ and UacT, respectively) and predicted to be at or around the binding site. Our results support the contention that the distantly related transporters of COG2233 and COG2252 use topologically similar side chain determinants to dictate their function and the distinct purine selectivity profiles.

  6. Electron Detachment as a Probe of Intrinsic Nucleobase Dynamics in Dianion-Nucleobase Clusters: Photoelectron Spectroscopy of the Platinum II Cyanide Dianion Bound to Uracil, Thymine, Cytosine and Adenine

    SciTech Connect

    Sen, Ananya; Hou, Gao-Lei; Wang, Xue B.; Dessent, Caroline

    2015-08-05

    We report the first low-temperature photodetachment photoelectron spectra of isolated gas-phase complexes of the platinum II cyanide dianion bound to nucleobases. These systems are model systems for understanding platinum-complex photodynamic therapies, and knowledge of the intrinsic photodetachment properties is crucial for understanding their broader photophysical properties. Well-resolved, distinct peaks are observed in the spectra consistent with the complexes where the Pt(CN)42- moiety is largely intact. The adiabatic electron detachment energies for the dianion-nucleobase complexes are measured to be between 2.39-2.46 eV. The magnitudes of the repulsive Coulomb barriers of the complexes are estimated to be between 1.9 and 2.1 eV, values that are lower than for the bare Pt(CN)42- dianion as a result of charge solvation by the nucleobases. In addition to the resolved spectral features, broad featureless bands indicative of delayed electron detachment are observed in the 193 nm photodetachment spectra of the four nucleobase-dianion complexes, and also in the 266 nm spectra of the Pt(CN)42-∙thymine and Pt(CN)42-∙adenine complexes. The selective excitation of these features in the 266 nm spectra is attributed to one-photon excitation of [Pt(CN)42-∙T]* and [Pt(CN)42-∙A]* long-lived excited states that can effectively couple to the electron detachment continuum, producing strong electron detachment signals. We attribute the resonant electron detachment bands observed here for Pt(CN)42-∙T and Pt(CN)42-∙A but not for Pt(CN)42-∙U and Pt(CN)42-∙C to fundamental differences in the individual nucleobase photophysics following 266 nm excitation. This indicates that the Pt(CN)42- dianion in the Pt(CN)42-∙M clusters can be viewed as a “dynamic tag” which has the propensity to emit electrons when the attached nucleobase disaplys a long-lived excited state.

  7. DNA with adenine tracts contains poly(dA).poly(dT) conformational features in solution.

    PubMed

    Brahms, S; Brahms, J G

    1990-03-25

    The conformation of DNA's with adenine-thymine tracts exhibiting retardation in electrophoretic migration and considered as curved were investigated in solution by CD and RAMAN spectroscopy. The following curved multimers with adenine tracts but of different flanking sequences d(CA5TGCC)n, d(TCTCTA6TATATA5)n, d(GA4T4C)n yield CD spectroscopic features indicating a non-B structure of the dA.dT tract with similarities to polyd(A).polyd(T). We suggest that adenine-thymine bases in these multimers contain some of the distinctive conformational features of poly(A).polyd(T) probably with large propeller twist found by NMR (Behling and Kearns, 1987) and by X-ray diffraction on oligonucleotides containing a tract of adenines (Nelson et al. 1987, Coll et al; 1987; DiGabriele et al. 1989). Some elements of distinctive CD features of the contiguous adenines run are also observed in the straight multi-9-mer d(CA5GCC)n which lacks in-phase relation to the helical repeat. Despite the presence of the TpA step in the straight multimer d(GT4A4)n, the altered dA.dT conformation is not completely destroyed. Interruption of adenine tract by a guanine in d(CAAGAATGCC)n leads to a B-like conformation and to a normal electrophoretic mobility. The Raman spectra reveal a rearrangement of the sugar-phosphate backbone of dA.dT tract in the multimer d(CA5TGCC)n with respect to that of polydA.polydT. This is reflected in the presence of an unique Raman band associated to C2'-endo sugar with a predominant contribution of C1'-exo puckering which is exhibited by the multimer whereas two distinct Raman bands characterize poly(dA).poly(dT) backbone conformation.

  8. Local piezoresponse and polarization switching in nucleobase thymine microcrystals

    NASA Astrophysics Data System (ADS)

    Bdikin, Igor; Heredia, Alejandro; Neumayer, Sabine M.; Bystrov, Vladimir S.; Gracio, José; Rodriguez, Brian J.; Kholkin, Andrei L.

    2015-08-01

    Thymine (2-oxy-4-oxy-5 methyl pyrimidine) is one of the four nucleobases of deoxyribonucleic acid (DNA). In the DNA molecule, thymine binds to adenine via two hydrogen bonds, thus stabilizing the nucleic acid structure and is involved in pairing and replication. Here, we show that synthetic thymine microcrystals grown from the solution exhibit local piezoelectricity and apparent ferroelectricity, as evidenced by nanoscale electromechanical measurements via Piezoresponse Force Microscopy. Our experimental results demonstrate significant electromechanical activity and polarization switchability of thymine, thus opening a pathway for piezoelectric and ferroelectric-based applications of thymine and, perhaps, of other DNA nucleobase materials. The results are supported by molecular modeling of polarization switching under an external electric field.

  9. Is the DPT tautomerization of the long A·G Watson-Crick DNA base mispair a source of the adenine and guanine mutagenic tautomers? A QM and QTAIM response to the biologically important question.

    PubMed

    Brovarets', Ol'ha O; Zhurakivsky, Roman O; Hovorun, Dmytro M

    2014-03-01

    Herein, we first address the question posed in the title by establishing the tautomerization trajectory via the double proton transfer of the adenine·guanine (A·G) DNA base mispair formed by the canonical tautomers of the A and G bases into the A*·G* DNA base mispair, involving mutagenic tautomers, with the use of the quantum-mechanical calculations and quantum theory of atoms in molecules (QTAIM). It was detected that the A·G ↔ A*·G* tautomerization proceeds through the asynchronous concerted mechanism. It was revealed that the A·G base mispair is stabilized by the N6H···O6 (5.68) and N1H···N1 (6.51) hydrogen bonds (H-bonds) and the N2H···HC2 dihydrogen bond (DH-bond) (0.68 kcal·mol(-1) ), whereas the A*·G* base mispair-by the O6H···N6 (10.88), N1H···N1 (7.01) and C2H···N2 H-bonds (0.42 kcal·mol(-1) ). The N2H···HC2 DH-bond smoothly and without bifurcation transforms into the C2H···N2 H-bond at the IRC = -10.07 Bohr in the course of the A·G ↔ A*·G* tautomerization. Using the sweeps of the energies of the intermolecular H-bonds, it was observed that the N6H···O6 H-bond is anticooperative to the two others-N1H···N1 and N2H···HC2 in the A·G base mispair, while the latters are significantly cooperative, mutually strengthening each other. In opposite, all three O6H···N6, N1H···N1, and C2H···N2 H-bonds are cooperative in the A*·G* base mispair. All in all, we established the dynamical instability of the А*·G* base mispair with a short lifetime (4.83·10(-14) s), enabling it not to be deemed feasible source of the A* and G* mutagenic tautomers of the DNA bases. The small lifetime of the А*·G* base mispair is predetermined by the negative value of the Gibbs free energy for the A*·G* → A·G transition. Moreover, all of the six low-frequency intermolecular vibrations cannot develop during this lifetime that additionally confirms the aforementioned results. Thus, the A*·G* base mispair cannot be

  10. DNA-base guanine as hydrogen getter and charge-trapping layer embedded in oxide dielectrics for inorganic and organic field-effect transistors.

    PubMed

    Lee, Junyeong; Park, Ji Hoon; Lee, Young Tack; Jeon, Pyo Jin; Lee, Hee Sung; Nam, Seung Hee; Yi, Yeonjin; Lee, Younjoo; Im, Seongil

    2014-04-01

    DNA-base small molecules of guanine, cytosine, adenine, and thymine construct the DNA double helix structure with hydrogen bonding, and they possess such a variety of intrinsic benefits as natural plentitude, biodegradability, biofunctionality, low cost, and low toxicity. On the basis of these advantages, here, we report on unprecedented useful applications of guanine layer as hydrogen getter and charge trapping layer when it is embedded into a dielectric oxide of n-channel inorganic InGaZnO and p-channel organic heptazole field effect transistors (FETs). The embedded guanine layer much improved the gate stability of inorganic FETs gettering many hydrogen atoms in the gate dielectric layer of FET, and it also played as charge trapping layer to which the voltage pulse-driven charges might be injected from channel, resulting in a threshold voltage (Vth) shift of FETs. Such shift state is very ambient-stable and almost irrevocable even under a high electric-field at room temperature. So, Boolean logics are nicely demonstrated by using our FETs with the guanine-embedded dielectric. The original Vth is recovered only under high energy blue photons by opposite voltage pulse (charge-ejection), which indicates that our device is also applicable to nonvolatile photo memory.

  11. Crystal Structure of a Replicative DNA Polymerase Bound to the Oxidized Guanine Lesion Guanidinohydantoin

    SciTech Connect

    Aller, Pierre; Ye, Yu; Wallace, Susan S.; Burrows, Cynthia J.; Doubli, Sylvie

    2010-04-12

    The oxidation of guanine generates one of the most common DNA lesions, 8-oxo-7,8-dihydroguanine (8-oxoG). The further oxidation of 8-oxoG can produce either guanidinohydantoin (Gh) in duplex DNA or spiroiminodihydantoin (Sp) in nucleosides and ssDNA. Although Gh can be a strong block for replicative DNA polymerases such as RB69 DNA polymerase, this lesion is also mutagenic: DNA polymerases bypass Gh by preferentially incorporating a purine with a slight preference for adenine, which results in G {center_dot} C {yields} T {center_dot} A or G {center_dot} C {yields} C {center_dot} G transversions. The 2.15 {angstrom} crystal structure of the replicative RB69 DNA polymerase in complex with DNA containing Gh reveals that Gh is extrahelical and rotated toward the major groove. In this conformation Gh is no longer in position to serve as a templating base for the incorporation of an incoming nucleotide. This work also constitutes the first crystallographic structure of Gh, which is stabilized in the R configuration in the two polymerase/DNA complexes present in the crystal asymmetric unit. In contrast to 8-oxoG, Gh is found in a high syn conformation in the DNA duplex and therefore presents the same hydrogen bond donor and acceptor pattern as thymine, which explains the propensity of DNA polymerases to incorporate a purine opposite Gh when bypass occurs.

  12. Crystal Structure of Human Thymine DNA Glycosylase Bound to DNA Elucidates Sequence-Specific Mismatch Recognition

    SciTech Connect

    Maiti, A.; Morgan, M.T.; Pozharski, E.; Drohat, A.C.

    2009-05-19

    Cytosine methylation at CpG dinucleotides produces m{sup 5}CpG, an epigenetic modification that is important for transcriptional regulation and genomic stability in vertebrate cells. However, m{sup 5}C deamination yields mutagenic G{center_dot}T mispairs, which are implicated in genetic disease, cancer, and aging. Human thymine DNA glycosylase (hTDG) removes T from G{center_dot}T mispairs, producing an abasic (or AP) site, and follow-on base excision repair proteins restore the G{center_dot}C pair. hTDG is inactive against normal A{center_dot}T pairs, and is most effective for G{center_dot}T mispairs and other damage located in a CpG context. The molecular basis of these important catalytic properties has remained unknown. Here, we report a crystal structure of hTDG (catalytic domain, hTDG{sup cat}) in complex with abasic DNA, at 2.8 {angstrom} resolution. Surprisingly, the enzyme crystallized in a 2:1 complex with DNA, one subunit bound at the abasic site, as anticipated, and the other at an undamaged (nonspecific) site. Isothermal titration calorimetry and electrophoretic mobility-shift experiments indicate that hTDG and hTDG{sup cat} can bind abasic DNA with 1:1 or 2:1 stoichiometry. Kinetics experiments show that the 1:1 complex is sufficient for full catalytic (base excision) activity, suggesting that the 2:1 complex, if adopted in vivo, might be important for some other activity of hTDG, perhaps binding interactions with other proteins. Our structure reveals interactions that promote the stringent specificity for guanine versus adenine as the pairing partner of the target base and interactions that likely confer CpG sequence specificity. We find striking differences between hTDG and its prokaryotic ortholog (MUG), despite the relatively high (32%) sequence identity.

  13. Production of guanine from NH(4)CN polymerizations

    NASA Technical Reports Server (NTRS)

    Levy, M.; Miller, S. L.; Oro, J.

    1999-01-01

    The synthesis of adenine from the polymerization of concentrated ammonium cyanide solutions is well known. We show here that guanine is also produced by this reaction but at yields ranging from 10 to 40 times less than that of adenine. This synthesis is effective at both +80 and -20 degrees C. Since high concentrations of NH(4)CN are obtainable only by freezing, this prebiotic synthesis would be applicable to frozen regions of the primitive Earth, the Jovian satellite Europa and other icy satellites, and the parent body of the Murchison meteorite.

  14. Production of guanine from NH(4)CN polymerizations.

    PubMed

    Levy, M; Miller, S L; Oró, J

    1999-08-01

    The synthesis of adenine from the polymerization of concentrated ammonium cyanide solutions is well known. We show here that guanine is also produced by this reaction but at yields ranging from 10 to 40 times less than that of adenine. This synthesis is effective at both +80 and -20 degrees C. Since high concentrations of NH(4)CN are obtainable only by freezing, this prebiotic synthesis would be applicable to frozen regions of the primitive Earth, the Jovian satellite Europa and other icy satellites, and the parent body of the Murchison meteorite. PMID:10441668

  15. Search for interstellar adenine

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Sandip K.; Majumdar, Liton; Das, Ankan; Chakrabarti, Sonali

    2015-05-01

    It is long debated if pre-biotic molecules are indeed present in the interstellar medium. Despite substantial works pointing to their existence, pre-biotic molecules are yet to be discovered with a complete confidence. In this paper, our main aim is to study the chemical evolution of interstellar adenine under various circumstances. We prepare a large gas-grain chemical network by considering various pathways for the formation of adenine. Majumdar et al. (New Astron. 20:15, 2013) proposed that in the absence of adenine detection, one could try to trace two precursors of adenine, namely, HCCN and NH2CN. Recently Merz et al. (J. Phys. Chem. A 118:3637-3644, 2014), proposed another route for the formation of adenine in interstellar condition. They proposed two more precursor molecules. But it was not verified by any accurate gas-grain chemical model. Neither was it known if the production rate would be high or low. Our paper fills this important gap. We include this new pathways to find that the contribution through this pathways for the formation of Adenine is the most dominant one in the context of interstellar medium. We propose that observers may look for the two precursors (C3NH and HNCNH) in the interstellar media which are equally important for predicting abundances of adenine. We perform quantum chemical calculations to find out spectral properties of adenine and its two new precursor molecules in infrared, ultraviolet and sub-millimeter region. Our present study would be useful for predicting abundance of adenine.

  16. Theoretical study on absorption and emission spectra of adenine analogues.

    PubMed

    Liu, Hongxia; Song, Qixia; Yang, Yan; Li, Yan; Wang, Haijun

    2014-04-01

    Fluorescent nucleoside analogues have attracted much attention in studying the structure and dynamics of nucleic acids in recent years. In the present work, we use theoretical calculations to investigate the structural and optical properties of four adenine analogues (termed as A1, A2, A3, and A4), and also consider the effects of aqueous solution and base pairing. The results show that the fluorescent adenine analogues can pair with thymine to form stable H-bonded WC base pairs. The excited geometries of both adenine analogues and WC base pairs are similar to the ground geometries. The absorption and emission maxima of adenine analogues are greatly red shifted compared with nature adenine, the oscillator strengths of A1 and A2 are stronger than A3 and A4 in both absorption and emission spectra. The calculated low-energy peaks in the absorption spectra are in good agreement with the experimental data. In general, the aqueous solution and base pairing can slightly red-shift both the absorption and emission maxima, and can increase the oscillator strengths of absorption spectra, but significantly decrease the oscillator strengths of A3 in emission spectra.

  17. Structural basis for removal of adenine mispaired with 8-oxoguanine by MutY adenine DNA glycosylase.

    PubMed

    Fromme, J Christopher; Banerjee, Anirban; Huang, Susan J; Verdine, Gregory L

    2004-02-12

    The genomes of aerobic organisms suffer chronic oxidation of guanine to the genotoxic product 8-oxoguanine (oxoG). Replicative DNA polymerases misread oxoG residues and insert adenine instead of cytosine opposite the oxidized base. Both bases in the resulting A*oxoG mispair are mutagenic lesions, and both must undergo base-specific replacement to restore the original C*G pair. Doing so represents a formidable challenge to the DNA repair machinery, because adenine makes up roughly 25% of the bases in most genomes. The evolutionarily conserved enzyme adenine DNA glycosylase (called MutY in bacteria and hMYH in humans) initiates repair of A*oxoG to C*G by removing the inappropriately paired adenine base from the DNA backbone. A central issue concerning MutY function is the mechanism by which A*oxoG mispairs are targeted among the vast excess of A*T pairs. Here we report the use of disulphide crosslinking to obtain high-resolution crystal structures of MutY-DNA lesion-recognition complexes. These structures reveal the basis for recognizing both lesions in the A*oxoG pair and for catalysing removal of the adenine base. PMID:14961129

  18. High resolution dissociative electron attachment to gas phase adenine

    SciTech Connect

    Huber, D.; Beikircher, M.; Denifl, S.; Zappa, F.; Matejcik, S.; Bacher, A.; Grill, V.; Maerk, T. D.; Scheier, P.

    2006-08-28

    The dissociative electron attachment to the gas phase nucleobase adenine is studied using two different experiments. A double focusing sector field mass spectrometer is utilized for measurements requiring high mass resolution, high sensitivity, and relative ion yields for all the fragment anions and a hemispherical electron monochromator instrument for high electron energy resolution. The negative ion mass spectra are discussed at two different electron energies of 2 and 6 eV. In contrast to previous gas phase studies a number of new negative ions are discovered in the mass spectra. The ion efficiency curves for the negative ions of adenine are measured for the electron energy range from about 0 to 15 eV with an electron energy resolution of about 100 meV. The total anion yield derived via the summation of all measured fragment anions is compared with the total cross section for negative ion formation measured recently without mass spectrometry. For adenine the shape of the two cross section curves agrees well, taking into account the different electron energy resolutions; however, for thymine some peculiar differences are observed.

  19. Selective degradation of thymidine and thymine deoxynucleotides

    PubMed Central

    Burton, K.; Riley, W. T.

    1966-01-01

    1. Osmium tetroxide in dilute ammonia oxidizes various pyrimidine nucleosides at different rates. Thymidine is oxidized about 45 times as fast as deoxycytidine. The phosphate groups may be eliminated from oxidized thymine nucleotides by successive treatments with alkali and then with diphenylamine in aqueous formic acid. The reactions can be applied to the selective degradation of thymidine in oligodeoxynucleotides. PMID:5938667

  20. Interaction of sodium and potassium ions with sandwiched cytosine-, guanine-, thymine-, and uracil-base tetrads.

    PubMed

    Meyer, Michael; Hocquet, Alexandre; Sühnel, Jürgen

    2005-03-01

    Nucleic acid tetraplexes and lipophilic self-assembling G-quadruplexes contain stacked base tetrads with intercalated metal ions as basic building blocks. Thus far, quantum-chemical studies have been used to explore the geometric and energetic properties of base tetrads with and without metal ions. Recently, for the first time, work on a sandwiched G-tetrad complex has been studied. We report here results of a systematic B3LYP density functional study on sandwiched G-, C-, U-, and T-tetrads with Na+ and K+ at different symmetries that substantially extend the recent work. The results include detailed information on total energies as well as on metal ion tetrad and base-base interaction energies. The geometrical parameters of the sandwiched metal ion complexes are compared to both experimental structures and to calculated geometries of complexes of single tetrads with metal ions. A microsolvation model explains the ion selectivity preference of K+ over Na+ in a qualitative sense. PMID:15648098

  1. Camptothecins guanine interactions: mechanism of charge transfer reaction upon photoactivation

    NASA Astrophysics Data System (ADS)

    Steenkeste, K.; Guiot, E.; Tfibel, F.; Pernot, P.; Mérola, F.; Georges, P.; Fontaine-Aupart, M. P.

    2002-01-01

    The potent activity exhibited by the antitumoral camptothecin (CPT) and its analog irinotecan (CPT-11) is known to be related to a close contact between the drug and the nucleic acid base guanine. This specificity of interaction between these two chromophores was examined by following changes in the photophysical properties of the drug using steady-state as well as time-resolved absorption and fluorescence methods. The observed effects on absorption, fluorescence emission and singlet excited state lifetimes give evidence for the occurrence of a stacking complex formation restricted to the quinoline part of CPT or CPT-11 and the guanine base but also with the adenine base. The triplet excited state properties of the drugs have been also characterized in absence and in presence of guanosine monophosphate and reveal the occurrence of an electron transfer from the guanine base to the drug. Support for this conclusion was obtained from the studies of a set of biological targets of various oxido-reduction potentials, adenosine monophosphate, cytidine, cytosine, tryptophan, tyrosine and phenylalanine. This finding gives an interpretation of the CPT-induced guanine photolesions previously reported in the literature. These data taken together are discussed in connection with the drug activity. The stacking complex CPT/guanine is necessary but not sufficient to explain the role of the chirality and of the lactone structure in the function of the drug. A stereospecific interaction with the enzyme topoisomerase I seems necessary to stabilize the stacking complex. The first experiments using time-resolved fluorescence by two-photon excitation confirms that CPT does not bind to the isolated enzyme.

  2. The crystal structure of a parallel-stranded guanine tetraplex at 0.95 A resolution.

    PubMed

    Phillips, K; Dauter, Z; Murchie, A I; Lilley, D M; Luisi, B

    1997-10-17

    In both DNA and RNA, stretches of guanine bases can form stable four-stranded helices in the presence of sodium or potassium ions. Sequences with a propensity to form guanine tetraplexes have been found in chromosomal telomers, immunoglobulin switch regions, and recombination sites. We report the crystal structure at 0.95 A resolution of a parallel-stranded tetraplex formed by the hexanucleotide d(TG4T) in the presence of sodium ions. The four strands form a right-handed helix that is stabilized by hydrogen-bonding tetrads of co-planar guanine bases. Well-resolved sodium ions are found between and, at defined points, within tetrad planes and are coordinated with the guanine O6 groups. Nine calcium ions have been identified, each with a well-defined hepta-coordinate hydration shell. Hydrogen-bonding water patterns are observed within the tetraplex's helical grooves and clustered about the phosphate groups. Water molecules in the groove may form a hydrogen bond with the O4', and may affect the stacking behavior of guanine. Two distinct stacking arrangements are noted for the guanine tetrads. The thymine bases do not contribute to the four-stranded conformation, but instead stack to stabilize the crystal lattice. We present evidence that the sugar conformation is strained and propose that this originates from forces that optimize guanine base stacking. Discrete conformational disorder is observed at several places in the phosphodiester backbone, which results from a simple crankshaft rotation that requires no net change in the sugar conformation. PMID:9367755

  3. Vertical Ionization Energies of Adenine and 9-Methyl Adenine

    NASA Astrophysics Data System (ADS)

    Dolgounitcheva, O.; Zakrzewski, V. G.; Ortiz, J. V.

    2009-07-01

    Vertical ionization energies of 9-H adenine and 9-methyl adenine have been calculated with the following, ab initio, electron propagator methods: the outer valence Green's function (OVGF), partial third-order theory (P3), and the third-order algebraic diagrammatic construction, or ADC(3). Basis set effects have been systematically examined. All methods predict near degeneracy in the π2-n1 and π3-n2 pairs of cationic, adenine final states and larger splittings of the corresponding, cationic states of 9-methyl adenine. P3 results for adenine predict the following order of the first six final states: π1, n1, π2, n2, π3, n3. Coupled-cluster calculations on the first three cationic states of adenine confirm these predictions. OVGF and ADC(3) calculations reverse the order of the second and third states and of the fourth and fifth states. All results confirm previous interpretations of experiments in which the second and third spectral bands correspond to the aforementioned pairs of final states and disagree with a recent reassignment based on time-resolved photoelectron spectra. Lower ionization energies and larger splittings in the methylated molecule are interpreted in terms of phase relationships in the Dyson orbitals. ADC(3) results confirm the qualitative validity of the one-electron approximation for the first six final states of both molecules and disclose its inadequacies for higher ionization energies.

  4. First prebiotic generation of a ribonucleotide from adenine, D-ribose and trimetaphosphate.

    PubMed

    Baccolini, Graziano; Boga, Carla; Micheletti, Gabriele

    2011-03-28

    Adenosine monophosphate isomers are obtained by self-assembling of adenine, D-ribose and trimetaphosphate in aqueous solution in good yields. This generation of a ribonucleotide from its three molecular components occurs in a one-pot reaction at room temperature for about 30-40 days and with high chemio-, regio-, and stereo-selectivity. Similar results are obtained with guanine. A mechanism is also proposed. PMID:21305098

  5. Mechanisms involved in the antinociception induced by spinal administration of inosine or guanine in mice.

    PubMed

    de Oliveira, Enderson D; Schallenberger, Cristhine; Böhmer, Ana Elisa; Hansel, Gisele; Fagundes, Aécio C; Milman, Michael; Silva, Marcos D P; Oses, Jean P; Porciúncula, Lisiane O; Portela, Luís V; Elisabetsky, Elaine; Souza, Diogo O; Schmidt, André P

    2016-02-01

    It is well known that adenine-based purines exert multiple effects on pain transmission. Recently, we have demonstrated that guanine-based purines may produce some antinociceptive effects against chemical and thermal pain in mice. The present study was designed to investigate the antinociceptive effects of intrathecal (i.t.) administration of inosine or guanine in mice. Additionally, investigation into the mechanisms of action of these purines, their general toxicity and measurements of CSF purine levels were performed. Animals received an i.t. injection of vehicle (30mN NaOH), inosine or guanine (up to 600nmol) and submitted to several pain models and behavioural paradigms. Guanine and inosine produced dose-dependent antinociceptive effects in the tail-flick, hot-plate, intraplantar (i.pl.) glutamate, i.pl. capsaicin and acetic acid pain models. Additionally, i.t. inosine inhibited the biting behaviour induced by spinal injection of capsaicin and i.t. guanine reduced the biting behaviour induced by spinal injection of glutamate or AMPA. Intrathecal administration of inosine (200nmol) induced an approximately 115-fold increase on CSF inosine levels. This study provides new evidence on the mechanism of action of extracellular guanine and inosine presenting antinociceptive effects following spinal administration. These effects seem to be related, at least partially, to the modulation of A1 adenosine receptors. PMID:26712379

  6. Misinsertion and bypass of thymine-thymine dimers by human DNA polymerase iota.

    PubMed

    Tissier, A; Frank, E G; McDonald, J P; Iwai, S; Hanaoka, F; Woodgate, R

    2000-10-01

    Human DNA polymerase iota (pol(iota)) is a recently discovered enzyme that exhibits extremely low fidelity on undamaged DNA templates. Here, we show that poliota is able to facilitate limited translesion replication of a thymine-thymine cyclobutane pyrimidine dimer (CPD). More importantly, however, the bypass event is highly erroneous. Gel kinetic assays reveal that pol(iota) misinserts T or G opposite the 3' T of the CPD approximately 1.5 times more frequently than the correct base, A. While pol(iota) is unable to extend the T.T mispair significantly, the G.T mispair is extended and the lesion completely bypassed, with the same efficiency as that of the correctly paired A. T base pair. By comparison, pol(iota) readily misinserts two bases opposite a 6-4 thymine-thymine pyrimidine-pyrimidone photoproduct (6-4PP), but complete lesion bypass is only a fraction of that observed with the CPD. Our data indicate, therefore, that poliota possesses the ability to insert nucleotides opposite UV photoproducts as well as to perform unassisted translesion replication that is likely to be highly mutagenic.

  7. Protein Modification by Adenine Propenal

    PubMed Central

    2015-01-01

    Base propenals are products of the reaction of DNA with oxidants such as peroxynitrite and bleomycin. The most reactive base propenal, adenine propenal, is mutagenic in Escherichia coli and reacts with DNA to form covalent adducts; however, the reaction of adenine propenal with protein has not yet been investigated. A survey of the reaction of adenine propenal with amino acids revealed that lysine and cysteine form adducts, whereas histidine and arginine do not. Nε-Oxopropenyllysine, a lysine–lysine cross-link, and S-oxopropenyl cysteine are the major products. Comprehensive profiling of the reaction of adenine propenal with human serum albumin and the DNA repair protein, XPA, revealed that the only stable adduct is Nε-oxopropenyllysine. The most reactive sites for modification in human albumin are K190 and K351. Three sites of modification of XPA are in the DNA-binding domain, and two sites are subject to regulatory acetylation. Modification by adenine propenal dramatically reduces XPA’s ability to bind to a DNA substrate. PMID:25211669

  8. The effect of microhydration on ionization energies of thymine

    SciTech Connect

    Khistyev, Kirill; Bravaya, Ksenia B.; Kamarchik, Eugene; Kostko, Oleg; Ahmed, Musahid; Krylov, Anna I.

    2011-01-03

    A combined theoretical and experimental study of the effect of microhydration on ionization energies (IEs) of thymine is presented. The experimental IEs are derived from photoionization efficiency curves recorded using tunable synchrotron VUV radiation. The onsets of the PIE curves are 8.85+-0.05, 8.60+-0.05, 8.55+-0.05, and 8.40+-0.05 eV for thymine, thymine mono-, di-, and tri-hydrates, respectively. The computed (EOM-IP-CCSD/cc-pVTZ) AIEs are 8.90, 8.51, 8.52, and 8.35 eV for thymine and the lowest isomers of thymine mono-, di-, and tri-hydrates. Due to large structural relaxation, the Franck-Condon factors for the 0<-- 0 transitions are very small shifting the apparent PIE onsets to higher energies. Microsolvation strongly affects IEs of thymine -- addition of each water molecule reduces the first vertical IE by 0.10-0.15 eV. The adiabatic IE decreases even more (up to 0.4 eV). The magnitude of the effect varies for different ionized states and for different isomers. For the ionized states that are localized on thymine the dominant contribution to the IE reduction is the electrostatic interaction between the delocalized positive charge on thymine and the dipole moment of the water molecule.

  9. Basics on Genes and Genetic Disorders

    MedlinePlus

    ... AHK-see-rye-bow-noo-klee-ik) acid (DNA). DNA contains four chemicals (adenine, thymine, cytosine, and guanine — ... in your body contains about 6 feet of DNA thread, for a total of about 3 billion ...

  10. ESR study of the thymine anion radical in a single crystal of thymine monohydrate.

    PubMed

    Kabiljo, Z; Sanković, K; Herak, J N

    1990-09-01

    ESR spectroscopy was used to study free radicals in an irradiated single crystal of thymine monohydrate at 77 K. At low microwave power (20 microW), a broad doublet is found to be super-imposed on the well known resonance patterns of the 5-yl and 7-yl radicals. The doublet spectrum has been analysed as a difference spectrum. Its spectroscopic properties and the observed transformation into the 5-yl, H-addition radical on warming the crystal are consistent with its anion nature, T(-).

  11. BII stability and base step flexibility of N6-adenine methylated GATC motifs.

    PubMed

    Karolak, Aleksandra; van der Vaart, Arjan

    2015-01-01

    The effect of N6-adenine methylation on the flexibility and shape of palindromic GATC sequences has been investigated by molecular dynamics simulations. Variations in DNA backbone geometry were observed, which were dependent on the degree of methylation and the identity of the bases. While the effect was small, more frequent BI to BII conversions were observed in the GA step of hemimethylated DNA. The increased BII population of the hemimethylated system positively correlated with increased stacking interactions between methylated adenine and guanine, while stacking interactions decreased at the TC step for the fully methylated strand. The flexibility of the AT and TC steps was marginally affected by methylation, in a fashion that was correlated with stacking interactions. The facilitated BI to BII conversion in hemimethylated strands might be of importance for SeqA selectivity and binding. PMID:26004863

  12. 21 CFR 73.1329 - Guanine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... eye, in amounts consistent with good manufacturing practice. (d) Labeling. The color additive and any... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1329 Guanine. (a) Identity. (1) The color additive guanine...

  13. 21 CFR 73.1329 - Guanine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... eye, in amounts consistent with good manufacturing practice. (d) Labeling. The color additive and any... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1329 Guanine. (a) Identity. (1) The color additive guanine...

  14. 21 CFR 73.1329 - Guanine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... eye, in amounts consistent with good manufacturing practice. (d) Labeling. The color additive and any... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1329 Guanine. (a) Identity. (1) The color additive guanine...

  15. 21 CFR 73.1329 - Guanine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... eye, in amounts consistent with good manufacturing practice. (d) Labeling. The color additive and any... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1329 Guanine. (a) Identity. (1) The color additive guanine...

  16. Electron accommodation dynamics in the DNA base thymine

    SciTech Connect

    King, Sarah B.; Yandell, Margaret A.; Kunin, Alice; Stephansen, Anne B.; Yokoi, Yuki; Takayanagi, Toshiyuki; Neumark, Daniel M.

    2015-07-14

    The dynamics of electron attachment to the DNA base thymine are investigated using femtosecond time-resolved photoelectron imaging of the gas phase iodide-thymine (I{sup −}T) complex. An ultraviolet pump pulse ejects an electron from the iodide and prepares an iodine-thymine temporary negative ion that is photodetached with a near-IR probe pulse. The resulting photoelectrons are analyzed with velocity-map imaging. At excitation energies ranging from −120 meV to +90 meV with respect to the vertical detachment energy (VDE) of 4.05 eV for I{sup −}T, both the dipole-bound and valence-bound negative ions of thymine are observed. A slightly longer rise time for the valence-bound state than the dipole-bound state suggests that some of the dipole-bound anions convert to valence-bound species. No evidence is seen for a dipole-bound anion of thymine at higher excitation energies, in the range of 0.6 eV above the I{sup −}T VDE, which suggests that if the dipole-bound anion acts as a “doorway” to the valence-bound anion, it only does so at excitation energies near the VDE of the complex.

  17. Identification of the major lesion from the reaction of an acridine-targeted aniline mustard with DNA as an adenine N1 adduct.

    PubMed

    Boritzki, T J; Palmer, B D; Coddington, J M; Denny, W A

    1994-01-01

    DNA adducts of two acridine-linked aniline half-mustards have been isolated and identified. The compound where the half-mustard is attached to the DNA-targeting acridine moiety by a short linker chain alkylates both double- and single-stranded DNA exclusively at guanine N7, as do the majority of known aromatic and aliphatic nitrogen mustards. The longer-chain analogue, also containing a more reactive half-mustard, shows a strikingly different pattern, alkylating double-stranded DNA to yield primarily (> 90%) the adenine N1 adduct, together with < 10% of the adenine N3 adduct and only trace amounts of the guanine N7 adduct. In the presence of MgCl2 (which is known not to inhibit the interaction of drugs at minor groove sites), the adenine N3 adduct is the major product. The latter compound is the first known aniline mustard (and apparently the first known alkylating agent of any type) to preferentially alkylate adenine at the N1 position in duplex DNA. These results are consistent with previous work [Prakash et al. (1990) Biochemistry 29, 9799-9807], which showed that the preferred site of DNA alkylation by the corresponding long-chain acridine-linked aniline bis-mustards in general was at major groove sites of adenines and identifies the major site of alkylation as adenine N1 and not N7. This selectivity for adenine N1 alkylation is suggested to result from a preference for the acridine mustard side chain of these compounds to project into the major groove following intercalation of the acridine, coupled with structural distortion of the DNA helix to make the N1 positions of adenines adjacent to the intercalation sites more accessible.

  18. Combined QM/MM investigation on the light-driven electron-induced repair of the (6-4) thymine dimer catalyzed by DNA photolyase.

    PubMed

    Faraji, Shirin; Groenhof, Gerrit; Dreuw, Andreas

    2013-09-01

    The (6-4) photolyases are blue-light-activated enzymes that selectively bind to DNA and initiate splitting of mutagenic thymine (6-4) thymine photoproducts (T(6-4)T-PP) via photoinduced electron transfer from flavin adenine dinucleotide anion (FADH(-)) to the lesion triggering repair. In the present work, the repair mechanism after the initial electron transfer and the effect of the protein/DNA environment are investigated theoretically by means of hybrid quantum mechanical/molecular mechanical (QM/MM) simulations using X-ray structure of the enzyme-DNA complex. By comparison of three previously proposed repair mechanisms, we found that the lowest activation free energy is required for the pathway in which the key step governing the repair photocycle is electron transfer coupled with the proton transfer from the protonated histidine, His365, to the N3' nitrogen of the pyrimidone thymine. The transfer simultaneously occurs with concerted intramolecular OH transfer without formation of an oxetane or isolated water molecule intermediate. In contrast to previously suggested mechanisms, this newly identified pathway requires neither a subsequent two-photon process nor electronic excitation of the photolesion.

  19. The role of N7 protonation of guanine in determining the structure, stability and function of RNA base pairs.

    PubMed

    Halder, Antarip; Bhattacharya, Sohini; Datta, Ayan; Bhattacharyya, Dhananjay; Mitra, Abhijit

    2015-10-21

    The roles of protonated nucleobases in stabilizing different structural motifs and in facilitating catalytic functions of RNA are well known. Among different polar sites of all the nucleobases, N7 of guanine has the highest protonation propensity at physiological pH. However, unlike other easily protonable sites such as N1 and N3 of adenine or N3 of cytosine, N7 protonation of guanine does not lead to the stabilization of base pairs involving its protonated Hoogsteen edge. It also does not facilitate its participation in any acid-base catalysis process. To explore the possible roles of N7 protonated guanine, we have studied its base pairing potentials involving WatsonCrick and sugar edges, which undergo major charge redistribution upon N7 protonation. We have carried out quantum chemical geometry optimization at the M05-2X/6-311G+(2d,2p) level, followed by interaction energy calculation at the MP2/aug-cc-pVDZ level, along with the analysis of the context of occurrence for selected base pairs involving the sugar edge or the WatsonCrick edge of guanine within a non-redundant set of 167 RNA crystal structures. Our results suggest that, four base pairs - G:C W:W trans, G:rC W:S cis, G:G W:H cis and G:G S:H trans may involve N7 protonated guanine. These base pairs deviate significantly from their respective experimental geometries upon QM optimization, but they retain their experimental geometries if guanine N7 protonation is considered during optimization. Our study also reveals the role of guanine N7 protonation (i) in stabilizing important RNA structural motifs, (ii) in providing a framework for designing pH driven molecular motors and (iii) in providing an alternative strategy to mimic the effect of post-transcriptional changes. PMID:26382322

  20. Bound anionic states of adenine

    SciTech Connect

    Haranczyk, Maciej; Gutowski, Maciej S; Li, Xiang; Bowen, Kit H

    2007-03-20

    Anionic states of nucleic acid bases are involved in DNA damage by low-energy electrons and in charge transfer through DNA. Previous gas phase studies of free, unsolvated nucleic acid base parent anions probed only dipole-bound states, which are not present in condensed phase environments, but did not observe valence anionic states, which for purine bases, are thought to be adiabatically unbound. Contrary to this expectation, we have demonstrated that some thus far ignored tautomers of adenine, which result from enamine-imine transformations, support valence anionic states with electron vertical detachment energies as large as 2.2 eV, and at least one of these anionic tautomers is adiabatically bound. Moreover, we predict that the new anionic tautomers should also dominate in solutions and should be characterized by larger values of electron vertical detachment energy than the canonical valence anion. All of the new-found anionic tautomers might be formed in the course of dissociative electron attachment followed by a hydrogen atom attachment to a carbon atom, and they might affect the structure and properties of DNA and RNA exposed to low-energy electrons. The discovery of these valence anionic states of adenine was facilitated by the development of: (i) a new experimental method for preparing parent anions of nucleic acid bases for photoelectron experiments, and (ii) a new combinatorial/ quantum chemical approach for identification of the most stable tautomers of organic molecules. The computational portion of this work was supported by the: (i) Polish State Committee for Scientific Research (KBN) Grants: DS/8000-4-0140-7 (M.G.) and N204 127 31/2963 (M.H.), (ii) European Social Funds (EFS) ZPORR/2.22/II/2.6/ARP/U/2/05 (M.H.), and (iii) US DOE Office of Biological and Environmental Research, Low Dose Radiation Research Program (M.G.). M.H. holds the Foundation for Polish Science (FNP) award for young scientists. The calculations were performed at the Academic

  1. Cloning and expression of the hypoxanthine-guanine phosphoribosyltransferase from Leishmania donovani.

    PubMed

    Allen, T E; Hwang, H Y; Jardim, A; Olafson, R; Ullman, B

    1995-07-01

    The gene encoding the hypoxanthine-guanine phosphoribosyltransferase (HGPRT) enzyme from Leishmania donovani has been cloned and sequenced. The hgprt open reading frame encoded a polypeptide of 211 amino acids that exhibited 3 regions of significant homology with other eukaryotic HGPRTs and a C-terminal tripeptide compatible with a glycosomal targeting signal. Northern blot analysis of L. donovani RNA revealed two hgprt transcripts, a 1.9-kb mRNA and a 1.7-kb transcript. The expression of the 1.7-kb hgprt mRNA and the activity of HGPRT enzyme were both augmented approx. 5-fold in parasites incubated in the absence of purines. Southern blots of genomic DNA indicated only a single hgprt locus within the L. donovani genome. Overexpression of L. donovani hgprt in E. coli complemented genetic deficiencies in hypoxanthine and guanine phosphoribosylating activities and yielded abundant quantities of enzymatically active HGPRT. The recombinant HGPRT was purified to homogeneity and recognized hypoxanthine, guanine and allopurinol, but not adenine or xanthine, as substrates. The hgprt clone and pure HGPRT protein provide essential reagents for validating HGPRT as a therapeutic target for the treatment of leishmaniasis and other diseases of parasitic origin. PMID:8577321

  2. Towards a test to predict 5-fluorouracil toxicity: Pharmacokinetic data for thymine and two sequential metabolites following oral thymine administration to healthy adult males.

    PubMed

    Duley, John A; Ni, Ming; Shannon, Catherine; Norris, Ross L; Sheffield, Lesley; Harris, Marion; van Kuilenburg, Andre B P; Mead, Scott; Cameron, Andrew; Helsby, Nuala; George, Rani; Charles, Bruce G

    2016-01-01

    The fluoropyrimidine drugs 5-fluorouracil and its oral prodrug capecitabine remain first line therapy for solid tumours of the neck, breast and colon. However, significant and unpredictable toxicity affects about 10-25% of patients depending upon the mode of 5-fluorouracil delivery. The pharmacokinetics of thymine (5-methyluracil) may provide an approach for screening for 5-fluorouracil toxicity, based on the rationale that thymine is a close structural analogue of 5-fluorouracil and is catabolized by the same enzymatic pathway. Oral thymine loading tests were performed on 12 healthy volunteers. Each subject was given a single oral dose of 250mg thymine in capsule form. Blood, urine and saliva samples were collected pre-dose and up to 5h post-dose. Concentrations of thymine, and its catabolites dihydrothymine and ß-ureidoisobutyrate were analysed by HPLC-tandem mass spectrometry in plasma, urine and saliva. The pharmacokinetic data of healthy volunteers were analysed assuming a non-compartmental model. Thymine peaked quickly (30-45min) in plasma to a maximum concentration of 170±185μg/L (mean±SD). Clearance was high (mean 57.9L/h/kg) exceeding normal human liver blood flow, suggesting low systemic bioavailability; urinary recovery of the thymine dose was low (<1%). Apparent formation rate-limited kinetics were observed for dihydrothymine, and the plasma concentration of dihydrothymine was consistently 10-fold higher than that of thymine. Plasma ß-ureidoisobutyrate concentrations, on the other hand, were similar to that of thymine. Genotyping confirmed that pathological mutations of the DPYD gene were absent. The urinary excretion ratio of thymine/dihydrothymine was informative of the maximum concentration. Saliva thymine was highly variable. These data are potentially useful as a basis for developing of a screening procedure to prospectively identify patients who are at risk of toxicity from fluoropyrimidine drugs.

  3. Radical-radical interactions among oxidized guanine bases including guanine radical cation and dehydrogenated guanine radicals.

    PubMed

    Zhao, Jing; Wang, Mei; Yang, Hongfang; Zhang, Meng; Liu, Ping; Bu, Yuxiang

    2013-09-19

    We present here a theoretical investigation of the structural and electronic properties of di-ionized GG base pairs (G(•+)G(•+),G(-H1)(•)G(•+), and G(-H1)(•)G(-H1)(•)) consisting of the guanine cation radical (G(•+)) and/or dehydrogenated guanine radical (G(-H1)(•)) using density functional theory calculations. Different coupling modes (Watson-Crick/WC, Hoogsteen/Hoog, and minor groove/min hydrogen bonding, and π-π stacking modes) are considered. We infer that a series of G(•+)G(•+) complexes can be formed by the high-energy radiation. On the basis of density functional theory and complete active space self-consistent (CASSCF) calculations, we reveal that in the H-bonded and N-N cross-linked modes, (G(•+)G(•+))WC, (G(-H1)(•)G(-H1)(•))WC, (G(-H1)(•)G(-H1)(•))minI, and (G(-H1)(•)G(-H1)(•))minIII have the triplet ground states; (G(•+)G(•+))HoogI, (G(-H1)(•)G(•+))WC, (G(-H1)(•)G(•+))HoogI, (G(-H1)(•)G(•+))minI, (G(-H1)(•)G(•+))minII, and (G(-H1)(•)G(-H1)(•))minII possess open-shell broken-symmetry diradical-characterized singlet ground states; and (G(•+)G(•+))HoogII, (G(•+)G(•+))minI, (G(•+)G(•+))minII, (G(•+)G(•+))minIII, (G(•+)G(•+))HoHo, (G(-H1)(•)G(•+))minIII, (G(-H1)(•)G(•+))HoHo, and (G(-H1)(•)G(-H1)(•))HoHo are the closed-shell systems. For these H-bonded diradical complexes, the magnetic interactions are weak, especially in the diradical G(•+)G(•+) series and G(-H1)(•)G(-H1)(•) series. The magnetic coupling interactions of the diradical systems are controlled by intermolecular interactions (H-bond, electrostatic repulsion, and radical coupling). The radical-radical interaction in the π-π stacked di-ionized GG base pairs ((G(•+)G(•+))ππ, (G(-H1)(•)G(•+))ππ, and (G(-H1)(•)G(-H1)(•))ππ) are also considered, and the magnetic coupling interactions in these π-π stacked base pairs are large. This is the first theoretical prediction that some di

  4. On the puzzling deactivation mechanism of thymine after light irradiation

    SciTech Connect

    Gonzalez, Leticia; Gonzalez-Vazquez, Jesus; Samoylova, Elena; Schultz, Thomas

    2008-12-08

    The possible deactivation mechanisms of thymine after UV light irradiation are reviewed in the light of theoretical calculations. Recent experiments reveal that three transient species with lifetimes in the fs, ps, and ns regime are present in thymine. The possibility of ground or excited state tautomerization is explored and discarded. The role of {pi}{sigma}* states, as well as of the proposed minimum of the {pi}{pi}* excited state surface are assessed. In view of the obtained calculations and results available from the literature, the measured time scales can be tentatively attributed to a model involving different conical intersections between the {pi}{pi}*, n{pi}*, and the electronic ground state, as well as deactivation via the triplet states. Time-resolved photoelectron experiments supported by theoretical calculations are proposed to appraise the validity of this model.

  5. DNA sequence-specific adenine alkylation by the novel antitumor drug tallimustine (FCE 24517), a benzoyl nitrogen mustard derivative of distamycin.

    PubMed Central

    Broggini, M; Coley, H M; Mongelli, N; Pesenti, E; Wyatt, M D; Hartley, J A; D'Incalci, M

    1995-01-01

    FCE 24517, a novel distamycin derivative possessing potent antitumor activity, is under initial clinical investigation in Europe. In spite of the presence of a benzoyl nitrogen mustard group this compound fails to alkylate the N7 position of guanine, the major site of alkylation by conventional nitrogen mustards. Characterisation of DNA-drug adducts revealed only a very low level of adenine adduct formation. Using a modified Maxam-Gilbert sequencing method the consensus sequence for FCE 24517-adenine adduct formation was found to be 5'-TTTTGA-3'. A single base modification in the hexamer completely abolishes the alkylation of adenine. Using a Taq polymerase stop assay alkylations were confirmed at the A present in the hexamer TTTTGA and, in addition, in one out of three TTTTAA sequences present in the plasmid utilized. The sequence specificity of alkylation by FCE 24517 is therefore the most striking yet observed for an alkylating agent of small molecular weight. Images PMID:7870593

  6. Anti-mycobacterial activity of thymine derivatives bearing boron clusters.

    PubMed

    Adamska, Anna; Rumijowska-Galewicz, Anna; Ruszczynska, Anna; Studzińska, Mirosława; Jabłońska, Agnieszka; Paradowska, Edyta; Bulska, Ewa; Munier-Lehmann, Hélene; Dziadek, Jarosław; Leśnikowski, Zbigniew J; Olejniczak, Agnieszka B

    2016-10-01

    A series of novel thymine derivatives bearing lipophilic, electron-neutral 1,2-dicarba-closo-dodecaborane, 1,12-dicarba-closo-dodecaborane or hydrophilic 7,8-dicarba-nido-undecaborate anions were synthesized. Synthesis was performed via copper(I)-catalysed Huisgen-Meldal-Sharpless 1,3-dipolar cycloaddition of N(1)-propargylthymine or N(1),N(3)-bispropargylthymine to 1-(3-azidopropyl)-1,2-dicarba-closo-dodecaborane. The obtained compounds were tested in vitro against Mycobacterium tuberculosis thymidylate kinase (TMPKmt) and as inhibitors of mycobacteria growth in culture using both saprophytic Mycobacterium smegmatis (M. smegmatis) and pathogenic Mycobacterium tuberculosis (M. tuberculosis) strains. The most potent TMPKmt inhibitor in the series contained two negatively charged 7,8-dicarba-nido-undecaborate modifications at positions 1 and 3 of thymine (9) and exhibited a Ki value of 1.5 μM. The most potent inhibitors of mycobacteria growth was compound 5 with one electron-neutral 1,2-dicarba-closo-dodecaborane modification at position 1 of thymine, and compound 8 with two modifications, at position 1 and 3. Both compounds completely inhibited M. smegmatis proliferation at a concentration of 100 μg/mL (0.25 mM and 0.15 mM, respectively). PMID:27236064

  7. Photophysical deactivation pathways in adenine oligonucleotides.

    PubMed

    Spata, Vincent A; Matsika, Spiridoula

    2015-12-14

    In this work we study deactivation processes in adenine oligomers after absorption of UV radiation using Quantum Mechanics combined with Molecular Mechanics (QM/MM). Correlated electronic structure methods appropriate for describing the excited states are used to describe a π-stacked dimer of adenine bases incorporated into (dA)20(dT)20. The results of these calculations reveal three different types of excited state minima which play a role in deactivation processes. Within this set of minima there are minima where the excited state is localized on one adenine (monomer-like) as well as minima where the excited state is delocalized on two adenines, forming different types of excimers and bonded excimers of varying but inter-related character. The proximity of their energies reveals that the minima can decay into one another along a flat potential energy surface dependent on the interbase separation. Additionally, analysis of the emissive energies and other physical properties, including theoretical anisotropy calculations, and comparison with fluorescence experiments, provides evidence that excimers play an important role in long-lived signals in adenine oligonucleotides while the subpicosecond decay is attributed to monomer-like minima. The necessity for a close approach of the nucleobases reveals that the deactivation mechanism is tied to macro-molecular motion. PMID:26536353

  8. [Hopping and superexchange mechanisms of charge transport to DNA].

    PubMed

    Lakhno, V D; Sultanov, V B

    2003-01-01

    A theory for charge transport in nucleobase sequences was constructed in which the hole migration proceeds via hopping between guanines. Each hop over the adenine-thymine (A-T) bridge connecting neighboring guanines occurs by means of the superexchange mechanism. The experimental data and theoretical results for various types of nucleobase sequences are compared.

  9. Four cocrystals of thymine with phenolic coformers: influence of the coformer on hydrogen bonding.

    PubMed

    Sridhar, Balasubramanian; Nanubolu, Jagadeesh Babu; Ravikumar, Krishnan

    2015-07-01

    Cocrystals are molecular solids composed of at least two types of neutral chemical species held together by noncovalent forces. Crystallization of thymine [systematic name: 5-methylpyrimidine-2,4(1H,3H)-dione] with four phenolic coformers resulted in cocrystal formation, viz. catechol (benzene-1,2-diol) giving thymine-catechol (1/1), C5H6N2O2·C6H6O2, (I), resorcinol (benzene-1,3-diol) giving thymine-resorcinol (2/1), 2C5H6N2O2·C6H6O2, (II), hydroquinone (benzene-1,4-diol) giving thymine-hydroquinone (2/1), 2C5H6N2O2·C6H6O2, (III), and pyrogallol (benzene-1,2,3-triol) giving thymine-pyrogallol (1/2), C5H6N2O2·2C6H6O3, (IV). The resorcinol molecule in (II) occupies a twofold axis, while the hydroquinone molecule in (III) is situated on a centre of inversion. Thymine-thymine base pairing is common across all four structures, albeit with different patterns. In (I)-(III), the base pair is propagated into an infinite one-dimensional ribbon, whereas it exists as a discrete dimeric unit in (IV). In (I)-(III), the two donor N atoms and one carbonyl acceptor O atom of thymine are involved in thymine-thymine base pairing and the remaining carbonyl O atom is hydrogen bonded to the coformer. In contrast, in (IV), just one donor N atom and one acceptor O atom are involved in base pairing, and the remaining donor N atom and acceptor O atom of thymine form hydrogen bonds to the coformer molecules. Thus, the utilization of the donor and acceptor atoms of thymine in the hydrogen bonding is influenced by the coformers. PMID:26146400

  10. 21 CFR 73.2329 - Guanine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2329 Guanine. (a) Identity and specifications. (1) The... coloring cosmetics generally, only those diluents listed under § 73.1001(a)(1); (ii) For coloring externally applied cosmetics, only those diluents listed in § 73.1001(b) and, in addition, nitrocellulose....

  11. 21 CFR 73.2329 - Guanine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2329 Guanine. (a) Identity and specifications. (1) The... coloring cosmetics generally, only those diluents listed under § 73.1001(a)(1); (ii) For coloring externally applied cosmetics, only those diluents listed in § 73.1001(b) and, in addition, nitrocellulose....

  12. 21 CFR 73.2329 - Guanine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2329 Guanine. (a) Identity and specifications. (1) The... coloring cosmetics generally, only those diluents listed under § 73.1001(a)(1); (ii) For coloring externally applied cosmetics, only those diluents listed in § 73.1001(b) and, in addition, nitrocellulose....

  13. 21 CFR 73.2329 - Guanine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2329 Guanine. (a) Identity and specifications. (1) The... coloring cosmetics generally, only those diluents listed under § 73.1001(a)(1); (ii) For coloring externally applied cosmetics, only those diluents listed in § 73.1001(b) and, in addition, nitrocellulose....

  14. 21 CFR 73.2329 - Guanine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2329 Guanine. (a) Identity and specifications. (1) The... coloring cosmetics generally, only those diluents listed under § 73.1001(a)(1); (ii) For coloring externally applied cosmetics, only those diluents listed in § 73.1001(b) and, in addition, nitrocellulose....

  15. Laser flash photolysis and magnetic-field-effect studies on interaction of thymine and thymidine with menadione: role of sugar in controlling reaction pattern

    NASA Astrophysics Data System (ADS)

    Bose, Adity; Dey, Debarati; Basu, Samita

    2008-04-01

    The magnetic field effect (MFE) in conjunction with laser flash photolysis has been used for the study of the interaction of one of the small drug like quinone molecules, 2-methyl, 1,4-naphthoquinone, commonly known as menadione (MQ), with one of the DNA bases, thymine (THN), and its corresponding nucleoside, thymidine (THDN), in acetonitrile (ACN) and sodium dodecylsulfate (SDS) micelles. It has been observed that THN undergoes electron transfer (ET) and hydrogen (H) abstraction with MQ, while THDN undergoes only H abstraction in both the media. However, our earlier studies showed that a purine base, adenine (ADN), and its nucleoside, 2'-deoxyadenosine (ADS), undergo ET in ACN and H abstraction in SDS. Here we have attempted to explain the differences in the reactions of these DNA bases with MQ. We also reveal the crucial role of a sugar unit in altering the behavior of purine and pyrimidine bases with respect to ET and H abstraction.

  16. Prebiotic synthesis of adenine and amino acids under Europa-like conditions

    NASA Technical Reports Server (NTRS)

    Levy, M.; Miller, S. L.; Brinton, K.; Bada, J. L.

    2000-01-01

    In order to simulate prebiotic synthetic processes on Europa and other ice-covered planets and satellites, we have investigated the prebiotic synthesis of organic compounds from dilute solutions of NH4CN frozen for 25 years at -20 and -78 degrees C. In addition, the aqueous products of spark discharge reactions from a reducing atmosphere were frozen for 5 years at -20 degrees C. We find that both adenine and guanine, as well as a simple set of amino acids dominated by glycine, are produced in substantial yields under these conditions. These results indicate that some of the key components necessary for the origin of life may have been available on Europa throughout its history and suggest that the circumstellar zone where life might arise may be wider than previously thought.

  17. Prebiotic Synthesis of Adenine and Amino Acids Under Europa-like Conditions

    NASA Technical Reports Server (NTRS)

    Levy, Matthew; Miller, Stanley L.; Brinton, Karen; Bada, Jeffrey L.

    2003-01-01

    In order to simulate prebiotic synthetic processes on Europa and other ice-covered planets and satellites. we have investigated the prebiotic synthesis of organic compounds from dilute solutions of NH4CN frozen for 25 year at -20 and -78 C. In addition the aqueous products of spark discharge reactions from a reducing atmosphere were frozen for 5 years at -20%. We find that both adenine and guanine, as well as a simple set of amino acids dominated by glycine, are produced in substantial yields under these conditions. These results indicate that some of the key components necessary for the origin of life may have been available on Europa throughout its history and suggest that the circumstellar zone where life might arise may be m der than previously thought.

  18. Synthesis of carbohydrate-scaffolded thymine glycoconjugates to organize multivalency

    PubMed Central

    Ciuk, Anna K

    2015-01-01

    Summary Multivalency effects are essential in carbohydrate recognition processes as occurring on the cell surface. Thus many synthetic multivalent glycoconjugates have been developed as important tools for glycobiological research. We are expanding this collection of molecules by the introduction of carbohydrate-scaffolded divalent glycothymine derivatives that can be intramolecularily dimerized by [2 + 2] photocycloaddition. Thus, thymine functions as a control element that allows to restrict the conformational flexibility of the scaffolded sugar ligands and thus to “organize” multivalency. With this work we add a parameter to multivalency studies additional to valency. PMID:26124869

  19. Thymine DNA glycosylase specifically recognizes 5-carboxylcytosine-modified DNA

    SciTech Connect

    Zhang, Liang; Lu, Xingyu; Lu, Junyan; Liang, Haihua; Dai, Qing; Xu, Guo-Liang; Luo, Cheng; Jiang, Hualiang; He, Chuan

    2012-04-24

    Human thymine DNA glycosylase (hTDG) efficiently excises 5-carboxylcytosine (5caC), a key oxidation product of 5-methylcytosine in genomic DNA, in a recently discovered cytosine demethylation pathway. We present here the crystal structures of the hTDG catalytic domain in complex with duplex DNA containing either 5caC or a fluorinated analog. These structures, together with biochemical and computational analyses, reveal that 5caC is specifically recognized in the active site of hTDG, supporting the role of TDG in mammalian 5-methylcytosine demethylation.

  20. The catalase activity of diiron adenine deaminase.

    PubMed

    Kamat, Siddhesh S; Holmes-Hampton, Gregory P; Bagaria, Ashima; Kumaran, Desigan; Tichy, Shane E; Gheyi, Tarun; Zheng, Xiaojing; Bain, Kevin; Groshong, Chris; Emtage, Spencer; Sauder, J Michael; Burley, Stephen K; Swaminathan, Subramanyam; Lindahl, Paul A; Raushel, Frank M

    2011-12-01

    Adenine deaminase (ADE) from the amidohydrolase superfamily (AHS) of enzymes catalyzes the conversion of adenine to hypoxanthine and ammonia. Enzyme isolated from Escherichia coli was largely inactive toward the deamination of adenine. Molecular weight determinations by mass spectrometry provided evidence that multiple histidine and methionine residues were oxygenated. When iron was sequestered with a metal chelator and the growth medium supplemented with Mn(2+) before induction, the post-translational modifications disappeared. Enzyme expressed and purified under these conditions was substantially more active for adenine deamination. Apo-enzyme was prepared and reconstituted with two equivalents of FeSO(4). Inductively coupled plasma mass spectrometry and Mössbauer spectroscopy demonstrated that this protein contained two high-spin ferrous ions per monomer of ADE. In addition to the adenine deaminase activity, [Fe(II) /Fe(II) ]-ADE catalyzed the conversion of H(2)O(2) to O(2) and H(2)O. The values of k(cat) and k(cat)/K(m) for the catalase activity are 200 s(-1) and 2.4 × 10(4) M(-1) s(-1), respectively. [Fe(II)/Fe(II)]-ADE underwent more than 100 turnovers with H(2)O(2) before the enzyme was inactivated due to oxygenation of histidine residues critical for metal binding. The iron in the inactive enzyme was high-spin ferric with g(ave) = 4.3 EPR signal and no evidence of anti-ferromagnetic spin-coupling. A model is proposed for the disproportionation of H(2)O(2) by [Fe(II)/Fe(II)]-ADE that involves the cycling of the binuclear metal center between the di-ferric and di-ferrous oxidation states. Oxygenation of active site residues occurs via release of hydroxyl radicals. These findings represent the first report of redox reaction catalysis by any member of the AHS. PMID:21998098

  1. Guanine-vacancy-bearing G-quadruplexes responsive to guanine derivatives.

    PubMed

    Li, Xin-min; Zheng, Ke-wei; Zhang, Jia-yu; Liu, Hong-he; He, Yi-de; Yuan, Bi-feng; Hao, Yu-hua; Tan, Zheng

    2015-11-24

    G-quadruplex structures formed by guanine-rich nucleic acids are implicated in essential physiological and pathological processes and nanodevices. G-quadruplexes are normally composed of four Gn (n ≥ 3) tracts assembled into a core of multiple stacked G-quartet layers. By dimethyl sulfate footprinting, circular dichroism spectroscopy, thermal melting, and photo-cross-linking, here we describe a unique type of intramolecular G-quadruplex that forms with one G2 and three G3 tracts and bears a guanine vacancy (G-vacancy) in one of the G-quartet layers. The G-vacancy can be filled up by a guanine base from GTP or GMP to complete an intact G-quartet by Hoogsteen hydrogen bonding, resulting in significant G-quadruplex stabilization that can effectively alter DNA replication in vitro at physiological concentration of GTP and Mg(2+). A bioinformatic survey shows motifs of such G-quadruplexes are evolutionally selected in genes with unique distribution pattern in both eukaryotic and prokaryotic organisms, implying such G-vacancy-bearing G-quadruplexes are present and play a role in gene regulation. Because guanine derivatives are natural metabolites in cells, the formation of such G-quadruplexes and guanine fill-in (G-fill-in) may grant an environment-responsive regulation in cellular processes. Our findings thus not only expand the sequence definition of G-quadruplex formation, but more importantly, reveal a structural and functional property not seen in the standard canonical G-quadruplexes.

  2. Adenine auxotrophy--be aware: some effects of adenine auxotrophy in Saccharomyces cerevisiae strain W303-1A.

    PubMed

    Kokina, Agnese; Kibilds, Juris; Liepins, Janis

    2014-08-01

    Adenine auxotrophy is a commonly used genetic marker in haploid yeast strains. Strain W303-1A, which carries the ade2-1 mutation, is widely used in physiological and genetic research. Yeast extract-based rich medium contains a low level of adenine, so that adenine is often depleted before glucose. This could affect the cell physiology of adenine auxotrophs grown in rich medium. The aim of our study was to assess the effects of adenine auxotrophy on cell morphology and stress physiology. Our results show that adenine depletion halts cell division, but that culture optical density continues to increase due to cell swelling. Accumulation of trehalose and a coincident 10-fold increase in desiccation stress tolerance is observed in adenine auxotrophs after adenine depletion, when compared to prototrophs. Under adenine starvation, long-term survival of W303-1A is lower than during carbon starvation, but higher than during leucine starvation. We observed drastic adenine-dependent changes in cell stress physiology, suggesting that results may be biased when adenine auxotrophs are grown in rich media without adenine supplementation.

  3. Activation of tumor suppressor p53 gene expression by magnetic thymine-imprinted chitosan nanoparticles.

    PubMed

    Lee, Mei-Hwa; Thomas, James L; Chen, Jian-Zhou; Jan, Jeng-Shiung; Lin, Hung-Yin

    2016-02-01

    Chitosan is a natural biodegradable polysaccharide that has been used to enhance gene delivery, owing to the ease with which chitosan nanoparticles enter the nucleus of cells. To study the effects of nuclear delivery of telomeric gene sequences, which contain thymine, we formed magnetic thymine-imprinted chitosan nanoparticles (TIPs) by the precipitation of chitosan, mixed with thymine and magnetic nanoparticles (to aid in separations). The mean size of the TIPS was 116 ± 18 nm; the dissociation constant for thymine was 21.8 mg mL(-1). We then treated human hepatocellular carcinoma (HepG2) with TIPs nanoparticles bearing bound thymine or a bound telomeric DNA sequence. The expression of the tumor suppressor p53 gene increased when TIPs were applied and decreased when telomere-bound TIPs were applied.

  4. New carbocyclic N(6)-substituted adenine and pyrimidine nucleoside analogues with a bicyclo[2.2.1]heptane fragment as sugar moiety; synthesis, antiviral, anticancer activity and X-ray crystallography.

    PubMed

    Tănase, Constantin I; Drăghici, Constantin; Cojocaru, Ana; Galochkina, Anastasia V; Orshanskaya, Jana R; Zarubaev, Vladimir V; Shova, Sergiu; Enache, Cristian; Maganu, Maria

    2015-10-01

    New nucleoside analogues with an optically active bicyclo[2.2.1]heptane skeleton as sugar moiety and 6-substituted adenine were synthesized by alkylation of 6-chloropurine intermediate. Thymine and uracil analogs were synthesized by building the pyrimidine ring on amine 1. X-ray crystallography confirmed an exo-coupling of the thymine to the ring and an L configuration of the nucleoside analogue. The library of compounds was tested for their inhibitory activity against influenza virus A∖California/07/09 (H1N1)pdm09 and coxsackievirus B4 in cell culture. Compounds 13a and 13d are the most promising for their antiviral activity against influenza, and compound 3c against coxsackievirus B4. Compounds 3b and 3g were tested for anticancer activity.

  5. Optoelectronic studies on heterocyclic bases of deoxyribonucleic acid for DNA photonics.

    PubMed

    El-Diasty, Fouad; Abdel-Wahab, Fathy

    2015-10-01

    The optoelectronics study of large molecules, particularly π-stacking molecules, such as DNA is really an extremely difficult task. We perform first electronic structure calculations on the heterocyclic bases of 2'-deoxyribonucleic acid based on Lorentz-Fresnel dispersion theory. In the UV-VIS range of spectrum, many of the optoelectronic parameters for DNA four bases namely adenine, guanine, cytosine and thymine are calculated and discussed. The results demonstrate that adenine has the highest hyperpolarizability, whereas thymine has the lowest hyperpolarizability. Cytosine has the lower average oscillator energy and the higher lattice energy. Thymine infers the most stable nucleic base with the lower phonon energy. Thymine also has the highest average oscillator energy and the lower lattice energy. Moreover, the four nucleic acid bases have large band gap energies less than 5 eV with a semiconducting behavior. Guanine shows the smallest band gap and the highest Fermi level energy, whereas adenine elucidates the highest band gap energy.

  6. The catalase activity of diiron adenine deaminase

    SciTech Connect

    Kamat S. S.; Swaminathan S.; Holmes-Hampton, G. P.; Bagaria, A.; Kumaran, D.; Tichy, S. E.; Gheyi, T.; Zheng, X.; Bain, K.; Groshong, C.; Emtage, S.; Sauder, J. M.; Burley, S. K.; Lindahl, P. A.; Raushel, F. M.

    2011-12-01

    Adenine deaminase (ADE) from the amidohydrolase superfamily (AHS) of enzymes catalyzes the conversion of adenine to hypoxanthine and ammonia. Enzyme isolated from Escherichia coli was largely inactive toward the deamination of adenine. Molecular weight determinations by mass spectrometry provided evidence that multiple histidine and methionine residues were oxygenated. When iron was sequestered with a metal chelator and the growth medium supplemented with Mn{sup 2+} before induction, the post-translational modifications disappeared. Enzyme expressed and purified under these conditions was substantially more active for adenine deamination. Apo-enzyme was prepared and reconstituted with two equivalents of FeSO{sub 4}. Inductively coupled plasma mass spectrometry and Moessbauer spectroscopy demonstrated that this protein contained two high-spin ferrous ions per monomer of ADE. In addition to the adenine deaminase activity, [Fe{sup II}/Fe{sup II}]-ADE catalyzed the conversion of H{sub 2}O{sub 2} to O{sub 2} and H{sub 2}O. The values of k{sub cat} and k{sub cat}/K{sub m} for the catalase activity are 200 s{sup -1} and 2.4 x 10{sup 4} M{sup -1} s{sup -1}, respectively. [Fe{sup II}/Fe{sup II}]-ADE underwent more than 100 turnovers with H{sub 2}O{sub 2} before the enzyme was inactivated due to oxygenation of histidine residues critical for metal binding. The iron in the inactive enzyme was high-spin ferric with g{sub ave} = 4.3 EPR signal and no evidence of anti-ferromagnetic spin-coupling. A model is proposed for the disproportionation of H{sub 2}O{sub 2} by [Fe{sup II}/Fe{sup II}]-ADE that involves the cycling of the binuclear metal center between the di-ferric and di-ferrous oxidation states. Oxygenation of active site residues occurs via release of hydroxyl radicals. These findings represent the first report of redox reaction catalysis by any member of the AHS.

  7. 2-Thiouracil deprived of thiocarbonyl function preferentially base pairs with guanine rather than adenine in RNA and DNA duplexes

    PubMed Central

    Sochacka, Elzbieta; Szczepanowski, Roman H.; Cypryk, Marek; Sobczak, Milena; Janicka, Magdalena; Kraszewska, Karina; Bartos, Paulina; Chwialkowska, Anna; Nawrot, Barbara

    2015-01-01

    2-Thiouracil-containing nucleosides are essential modified units of natural and synthetic nucleic acids. In particular, the 5-substituted-2-thiouridines (S2Us) present in tRNA play an important role in tuning the translation process through codon–anticodon interactions. The enhanced thermodynamic stability of S2U-containing RNA duplexes and the preferred S2U-A versus S2U-G base pairing are appreciated characteristics of S2U-modified molecular probes. Recently, we have demonstrated that 2-thiouridine (alone or within an RNA chain) is predominantly transformed under oxidative stress conditions to 4-pyrimidinone riboside (H2U) and not to uridine. Due to the important biological functions and various biotechnological applications for sulfur-containing nucleic acids, we compared the thermodynamic stabilities of duplexes containing desulfured products with those of 2-thiouracil-modified RNA and DNA duplexes. Differential scanning calorimetry experiments and theoretical calculations demonstrate that upon 2-thiouracil desulfuration to 4-pyrimidinone, the preferred base pairing of S2U with adenosine is lost, with preferred base pairing with guanosine observed instead. Therefore, biological processes and in vitro assays in which oxidative desulfuration of 2-thiouracil-containing components occurs may be altered. Moreover, we propose that the H2U-G base pair is a suitable model for investigation of the preferred recognition of 3′-G-ending versus A-ending codons by tRNA wobble nucleosides, which may adopt a 4-pyrimidinone-type structural motif. PMID:25690900

  8. Trichomonas vaginalis NTPDase and ecto-5'-nucleotidase hydrolyze guanine nucleotides and increase extracellular guanosine levels under serum restriction.

    PubMed

    Menezes, Camila Braz; Durgante, Juliano; de Oliveira, Rafael Rodrigues; Dos Santos, Victor Hugo Jacks Mendes; Rodrigues, Luiz Frederico; Garcia, Solange Cristina; Dos Santos, Odelta; Tasca, Tiana

    2016-05-01

    Trichomonas vaginalis is the aethiologic agent of trichomoniasis, the most common non-viral sexually transmitted disease in the world. The purinergic signaling pathway is mediated by extracellular nucleotides and nucleosides that are involved in many biological effects as neurotransmission, immunomodulation and inflammation. Extracellular nucleotides can be hydrolyzed by a family of enzymes known as ectonucleotidases including the ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases) family which hydrolyses nucleosides triphosphate and diphosphate as preferential substrates and ecto-5'-nucleotidase which catalyzes the conversion of monophosphates into nucleosides. In T. vaginalis the E-NTPDase and ecto-5'-nucleotidase activities upon adenine nucleotides have already been characterized in intact trophozoites but little is known concerning guanine nucleotides and nucleoside. These enzymes may exert a crucial role on nucleoside generation, providing the purine sources for the synthesis de novo of these essential nutrients, sustaining parasite growth and survival. In this study, we investigated the hydrolysis profile of guanine-related nucleotides and nucleoside in intact trophozoites from long-term-grown and fresh clinical isolates of T. vaginalis. Knowing that guanine nucleotides are also substrates for T. vaginalis ectoenzymes, we evaluated the profile of nucleotides consumption and guanosine uptake in trophozoites submitted to a serum limitation condition. Results show that guanine nucleotides (GTP, GDP, GMP) were substrates for T. vaginalis ectonucleotidases, with expected kinetic parameters for this enzyme family. Different T. vaginalis isolates (two from the ATCC and nine fresh clinical isolates) presented a heterogeneous hydrolysis profile. The serum culture condition increased E-NTPDase and ecto-5'-nucleotidase activities with high consumption of extracellular GTP generating enhanced GDP, GMP and guanosine levels as demonstrated by HPLC, with final

  9. Trichomonas vaginalis NTPDase and ecto-5'-nucleotidase hydrolyze guanine nucleotides and increase extracellular guanosine levels under serum restriction.

    PubMed

    Menezes, Camila Braz; Durgante, Juliano; de Oliveira, Rafael Rodrigues; Dos Santos, Victor Hugo Jacks Mendes; Rodrigues, Luiz Frederico; Garcia, Solange Cristina; Dos Santos, Odelta; Tasca, Tiana

    2016-05-01

    Trichomonas vaginalis is the aethiologic agent of trichomoniasis, the most common non-viral sexually transmitted disease in the world. The purinergic signaling pathway is mediated by extracellular nucleotides and nucleosides that are involved in many biological effects as neurotransmission, immunomodulation and inflammation. Extracellular nucleotides can be hydrolyzed by a family of enzymes known as ectonucleotidases including the ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases) family which hydrolyses nucleosides triphosphate and diphosphate as preferential substrates and ecto-5'-nucleotidase which catalyzes the conversion of monophosphates into nucleosides. In T. vaginalis the E-NTPDase and ecto-5'-nucleotidase activities upon adenine nucleotides have already been characterized in intact trophozoites but little is known concerning guanine nucleotides and nucleoside. These enzymes may exert a crucial role on nucleoside generation, providing the purine sources for the synthesis de novo of these essential nutrients, sustaining parasite growth and survival. In this study, we investigated the hydrolysis profile of guanine-related nucleotides and nucleoside in intact trophozoites from long-term-grown and fresh clinical isolates of T. vaginalis. Knowing that guanine nucleotides are also substrates for T. vaginalis ectoenzymes, we evaluated the profile of nucleotides consumption and guanosine uptake in trophozoites submitted to a serum limitation condition. Results show that guanine nucleotides (GTP, GDP, GMP) were substrates for T. vaginalis ectonucleotidases, with expected kinetic parameters for this enzyme family. Different T. vaginalis isolates (two from the ATCC and nine fresh clinical isolates) presented a heterogeneous hydrolysis profile. The serum culture condition increased E-NTPDase and ecto-5'-nucleotidase activities with high consumption of extracellular GTP generating enhanced GDP, GMP and guanosine levels as demonstrated by HPLC, with final

  10. Chlorophyll fluorescence control in microalgae by biogenic guanine crystals

    NASA Astrophysics Data System (ADS)

    Miyashita, Yuito; Iwasaka, Masakazu; Endo, Hirotoshi

    2015-05-01

    Magnetic fields were applied to water suspensions of guanine crystals to induce changes in light scattering as a possible way to control photosynthesis in microalgae. The effect of guanine microcrystals with and without an applied magnetic field on the photosynthesis of a unicellular microalgae (plant), Pleurochrysis. carterae (P. carterae), was investigated by examining chlorophyll fluorescence. The fluorescence intensity at 600-700 nm of the photosynthetic cells increased remarkably when the concentration ratio of guanine microcrystals was 10 times larger than that of the cells. This increase in fluorescence occurred reproducibly and was proportional to the amount of guanine microcrystals added. It is speculated that the guanine microcrystals enhance the intensity of the excitation light on the cells by concentrating the excitation light or prolonging the time of light exposure to the cells. Moreover, applying a 500-mT magnetic field allowed modulation of the fluorescence intensity, depending on the direction of the fluorescence light.

  11. The interaction of melanin with ionizing and UVC radiations: Characterization of thymine damage

    SciTech Connect

    Huselton, C.A.

    1988-01-01

    These studies were undertaken to determine whether melanin could protect DNA against the harmful effects of ionizing or UVC radiations. A simple, in vitro, model system was developed to evaluate eumelanin (Sigma melanin) as a radioprotector of solutions of 0.1 mM thymine or thymidine exposed to 570Gy of ionizing radiation. Sigma melanin was compared to several amino acids, other biomolecules or to other forms of melanin. To investigate the role of melanin as a passive screen of UVC radiation, melanotic (I{sub 3}), amelanotic (AMEL) cells (both derived from a Cloudman S91 melanoma) and non-melanotic (EMT6) cells were labelled with radioactive dTHd and exposed to 0, 1, 5 or 10KJ/m{sup 2} of UVC. The DNA was extracted; the bases hydrolyzed with concentrated HCl. Thymine bases were separated by reverse phase HPLC. No difference in dimer content was observed between I{sub 3} and AMEL cells, but EMT6 cells had nearly twice the amount of dimer. Overall thymine degradation was more pronounced in I{sub 3} cells than in the other two cell lines, due to the production of non-dimer thymine damage. This damage was identified as thymine glycol by HPLC and mass spectrometry. Melanin, upon exposure to UVC, appears to enhance thymine damage by producing oxidative damage.

  12. Guanine quadruplex structures localize to heterochromatin

    PubMed Central

    Hoffmann, Roland F.; Moshkin, Yuri M.; Mouton, Stijn; Grzeschik, Nicola A.; Kalicharan, Ruby D.; Kuipers, Jeroen; Wolters, Anouk H.G.; Nishida, Kazuki; Romashchenko, Aleksander V.; Postberg, Jan; Lipps, Hans; Berezikov, Eugene; Sibon, Ody C.M.; Giepmans, Ben N.G.; Lansdorp, Peter M.

    2016-01-01

    Increasing amounts of data support a role for guanine quadruplex (G4) DNA and RNA structures in various cellular processes. We stained different organisms with monoclonal antibody 1H6 specific for G4 DNA. Strikingly, immuno-electron microscopy showed exquisite specificity for heterochromatin. Polytene chromosomes from Drosophila salivary glands showed bands that co-localized with heterochromatin proteins HP1 and the SNF2 domain-containing protein SUUR. Staining was retained in SUUR knock-out mutants but lost upon overexpression of SUUR. Somatic cells in Macrostomum lignano were strongly labeled, but pluripotent stem cells labeled weakly. Similarly, germline stem cells in Drosophila ovaries were weakly labeled compared to most other cells. The unexpected presence of G4 structures in heterochromatin and the difference in G4 staining between somatic cells and stem cells with germline DNA in ciliates, flatworms, flies and mammals point to a conserved role for G4 structures in nuclear organization and cellular differentiation. PMID:26384414

  13. Structures of protonated thymine and uracil and their monohydrated gas-phase ions from ultraviolet action spectroscopy and theory.

    PubMed

    Pedersen, Sara Øvad; Byskov, Camilla Skinnerup; Turecek, Frantisek; Brøndsted Nielsen, Steen

    2014-06-19

    The strong UV chromophores thymine (Thy) and uracil (Ura) have identical heteroaromatic rings that only differ by one methyl substituent. While their photophysics has been elucidated in detail, the effect on the excited states of base protonation and single water molecules is less explored. Here we report gas-phase absorption spectra of ThyH(+) and UraH(+) and monohydrated ions and demonstrate that the substituent is not only responsible for spectral shifts but also influences the tautomer distribution, being different for bare and monohydrated ions. Spectra interpretation is aided by calculations of geometrical structures and transition energies. The lowest free-energy tautomer (denoted 178, enol-enol form) accounts for 230-280 nm (ThyH(+)) and 225-270 nm (UraH(+)) bands. ThyH(+) hardly absorbs above 300 nm, whereas a discernible band is measured for UraH(+) (275-320 nm), ascribed to the second lowest free-energy tautomer (138, enol-keto form) comprising a few percent of the UraH(+) population at room temperature. Band widths are similar to those measured of cold ions in support of very short excited-state lifetimes. Attachment of a single water increases the abundance of 138 relative to 178, 138 now clearly present for ThyH(+). 138 resembles more the tautomer present in aqueous solution than 178 does, and 138 may indeed be a relevant transition structure. The band of ThyH(+)(178) is unchanged, that of UraH(+)(178) is nearly unchanged, and that of UraH(+)(138) blue-shifts by about 10 nm. In stark contrast to protonated adenine, more than one solvating water molecule is required to re-establish the absorption of ThyH(+) and UraH(+) in aqueous solution.

  14. Adenine nucleotide transporters in organelles: novel genes and functions.

    PubMed

    Traba, Javier; Satrústegui, Jorgina; del Arco, Araceli

    2011-04-01

    In eukaryotes, cellular energy in the form of ATP is produced in the cytosol via glycolysis or in the mitochondria via oxidative phosphorylation and, in photosynthetic organisms, in the chloroplast via photophosphorylation. Transport of adenine nucleotides among cell compartments is essential and is performed mainly by members of the mitochondrial carrier family, among which the ADP/ATP carriers are the best known. This work reviews the carriers that transport adenine nucleotides into the organelles of eukaryotic cells together with their possible functions. We focus on novel mechanisms of adenine nucleotide transport, including mitochondrial carriers found in organelles such as peroxisomes, plastids, or endoplasmic reticulum and also mitochondrial carriers found in the mitochondrial remnants of many eukaryotic parasites of interest. The extensive repertoire of adenine nucleotide carriers highlights an amazing variety of new possible functions of adenine nucleotide transport across eukaryotic organelles.

  15. Radiation and thermal stabilities of adenine nucleotides.

    PubMed

    Demidov, V V; Potaman, V N; Solyanina, I P; Trofimov, V I

    1995-03-01

    We have investigated in detail radiation and thermal stabilities and transformations of adenosine mono- and triphosphates in liquid and frozen solid aqueous solutions within a wide range of absorbed radiation dose (up to 75 kGy) and temperature (up to 160 degrees C). Dephosphorylation is the main pathway of high temperature hydrolysis of adenine nucleotides. Basic thermodynamic and kinetic parameters of this process have been determined. Radiolysis of investigated compounds at room temperature results in scission of N-glycosidic bond with a radiation yield about of 1 mol/100 eV. Solution freezing significantly enhances radiation stability of nucleotides as well as other biomolecules. This circumstance is essential in the discussion of panspermia concepts.

  16. Experimental observation of guanine tautomers with VUV photoionization

    SciTech Connect

    Zhou, Jia; Kostko, Oleg; Nicolas, Christophe; Tang, Xiaonan; Belau, Leonid; de Vries, Mattanjah S.; Ahmed, Musahid

    2008-12-01

    Two methods of preparing guanine in the gas phase, thermal vaporization and laser desorption, have been investigated. The guanine generated by each method is entrained in a molecular beam, single photon ionized with tunable VUV synchrotron radiation, and analyzed using reflectron mass spectrometry. The recorded photoionization efficiency (PIE) curves show a dramatic difference for experiments performed via thermal vaporization compared to laser desorption. The calculated vertical and adiabatic ionization energies for the eight lowest lying tautomers of guanine suggest the experimental observations arise from different tautomers being populated in the two different experimental methods.

  17. Novel thymine-functionalized MIL-101 prepared by post-synthesis and enhanced removal of Hg(2+) from water.

    PubMed

    Luo, Xubiao; Shen, Tingting; Ding, Lin; Zhong, Weiping; Luo, Jianfeng; Luo, Shenglian

    2016-04-01

    A novel thymine-functionalized MIL-101 (MIL-101-Thymine) material was synthesized using a post-synthesis method to remove mercury at a high efficiency. MIL-101-Thymine was successfully prepared in this work and was confirmed by several characterization methods, such as (13)C nuclear magnetic resonance, X-ray diffraction, and infrared spectroscopy. The Hg(2+) adsorption agreed well with the Langmuir model, and the maximum adsorption capacity was 51.27mg/g. The adsorption rate fit with the pseudo-second-order kinetic model. Furthermore, MIL-101-Thymine exhibited excellent selectivity towards Hg(2+) over other cations, and the maximum value of the selective coefficient reached 947.34; this result is very likely due to the highly selective interactions of T-Hg(2+)-T in MIL-101-Thymine. The result of X-ray photoelectron spectroscopy also showed that Hg(2+) was coordinated with the N of thymine in MIL-101-Thymine. Moreover, the results of the thermogravimetric analysis and adsorption experiments showed that the Hg atom was two-coordinated with the thymine group. MIL-101-Thymine was used to remove trace Hg(2+) in real water samples, and satisfactory recoveries were obtained. PMID:26774986

  18. Guanine- Formation During the Thermal Polymerization of Amino Acids

    NASA Technical Reports Server (NTRS)

    Mc Caw, B. K.; Munoz, E. F.; Ponnamperuma, C.; Young, R. S.

    1964-01-01

    The action of heat on a mixture of amino acids was studied as a possible abiological pathway for the synthesis of purines and pyrimidines. Guanine was detected. This result is significant in the context of chemical evolution.

  19. INHIBITION OF A THYMINE-DEFICIENT MUTANT OF ESCHERICHIA COLI BY 5-SUBSTITUTED URACILS

    PubMed Central

    Shapira, Jacob; Lowden, Lois; Hale, Ralph

    1962-01-01

    Shapira, Jacob (Consolidated Veterans Administration Hospital, Little Rock, Ark.), Lois Lowden, and Ralph Hale. Inhibition of a thymine-deficient mutant of Escherichia coli by 5-substituted uracils. J. Bacteriol. 83:919–923. 1962.—Small inocula of well-washed cells of a thymine-requiring mutant of Escherichia coli were incubated in a thymine-containing glucose-salts medium with a variety of 5-substituted pyrimidines and pyrimidine ribosides. After a lag phase, the turbidity of the cultures increased appreciably which, in the case of 5-ethyluracil and 5-ethyluridine, was primarily due to an elongation of the cells. 5-Ethyluracil at low thymine concentrations increased the lag phase and decreased the rate and final amount of growth. At high thymine concentrations, it had less effect on the final turbidity of the cultures. The inhibition index for this compound was relatively constant, suggesting competitive inhibition. Several other pyrimidine analogues inhibited growth. The nucleosides of 5-bromouracil and 5-aminouracil were no more effective than the free bases. The ribosides of 5-ethyluracil and 5-butyluracil were appreciably more inhibitory than the free bases and were the most potent compounds tested. It is likely that the inhibition of growth is a reflection of the effect of these compounds on ribonucleic acid synthesis by the cells. PMID:13911280

  20. Internal Energies of Ion-Sputtered Neutral Tryptophan and Thymine Molecules Determined by Vacuum Ultraviolet Photoionization

    SciTech Connect

    Zhou, Jia; Takahashi, Lynelle; Wilson, Kevin R.; Leone, Stephen R.; Ahmed, Musahid

    2010-03-11

    Vacuum ultraviolet photoionization coupled to secondary neutral mass spectrometry (VUV-SNMS) of deposited tryptophan and thymine films are performed at the Chemical Dynamics Beamline. The resulting mass spectra show that while the intensity of the VUV-SNMS signal is lower than the corresponding secondary ion mass spectroscopy (SIMS) signal, the mass spectra are significantly simplified in VUV-SNMS. A detailed examination of tryptophan and thymine neutral molecules sputtered by 25 keV Bi3 + indicates that the ion-sputtered parent molecules have ~;;2.5 eV of internal energy. While this internal energy shifts the appearance energy of the photofragment ions for both tryptophan and thymine, it does not change the characteristic photoionizaton efficiency (PIE) curves of thymine versus photon energy. Further analysis of the mass spectral signals indicate that approximately 80 neutral thymine molecules and 400 tryptophan molecules are sputtered per incident Bi3 + ion. The simplified mass spectra and significant characteristic ion contributions to the VUV-SNMS spectra indicate the potential power of the technique for organic molecule surface analysis.

  1. The Formation and Biological Significance of N7-Guanine Adducts

    PubMed Central

    Boysen, Gunnar; Pachkowski, Brian F.; Nakamura, Jun; Swenberg, James A

    2009-01-01

    DNA alkylation or adduct formation occurs at nucleophilic sites in DNA, mainly the N7-position of guanine. Ever since identification of the first N7-guanine adduct, several hundred studies on DNA adducts have been reported. Major issues addressed include the relationships between N7-guanine adducts and exposure, mutagenesis, and other biological endpoints. It became quickly apparent that N7-guanine adducts are frequently formed, but may have minimal biological relevance, since they are chemically unstable and do not participate in Watson Crick base pairing. However, N7-guanine adducts have been shown to be excellent biomarkers for internal exposure to direct acting and metabolically activated carcinogens. Questions arise, however, regarding the biological significance for N7-guanine adducts that are readily formed, do not persist, and are not likely to be mutagenic. Thus, we set out to review the current literature to evaluate their formation and the mechanistic evidence for the involvement of N7-guanine adducts in mutagenesis or other biological processes. It was concluded that there is insufficient evidence that N7-guanine adducts can be used beyond confirmation of exposure to the target tissue and demonstration of the molecular dose. There is little to no evidence that N7-guanine adducts or their depurination product, apurinic sites, are the cause of mutations in cells and tissues, since increases in AP sites have not been shown unless toxicity is extant. However, more research is needed to define the extent of chemical depurination versus removal by DNA repair proteins. Interestingly, N7-guanine adducts are clearly present as endogenous background adducts and the endogenous background amounts appear to increase with age. Furthermore, the N7-guanine adducts have been shown to convert to ring opened lesions (FAPy), which are much more persistent and have higher mutagenic potency. Studies in humans are limited in sample size and differences between controls and

  2. Hypoxanthine-guanine phosphoribosyl transferase deficiency.

    PubMed

    de Bruyn, C H

    1976-02-29

    In man congential lack of enzyme of the purine salvage system, hypoxanthineguanine phosphoribosyl transferase (HG-PRT E.C. 2.4.2.8), is mostly accompanied by a picture known as the Lesch-Nyhan snydrome. The degree of deficiency may vary from zero to a few percent of normal activity but a correlation between the severity of HG-PRT deficiency and the clinical picture has not been observed, no more than a correlation HG-PRT deficiency and neurological dysfunction. But individuals with undetectable HG-PRT activity but without the Lesch-Nyhan syndrome have been described. Patients with partial HG-PRT defiency have clinically distinctive findings. Sometimes mild neurological abnormalities are observed. Because of marked overproduction of ric acid severe gouty arthritis and renal dysfunction are often encountered in both complete and partial deficiency. There is considerable molecular heterogeneity in HG-PRT deficiency in man. Mutant ebnzymes may exhibit different kinetic and electrophoretic properties, indicating that hterwe might be a mutation on the structural gene coding for HG-PRT. Lack of HG-PRT disturbs purine interconversions profoundly. In addition to an important function of HG-PRT in the uptake of the purine hypoxantine and guanine into the cell, the effective uptake of inosine, guanosine and adenosine also seems to be dependent on HG-PRT...

  3. Even-odd alternation in mass spectrum of thymine and uracil clusters: Evidence of intracluster photodimerization

    PubMed Central

    Kim, Nam Joon; Kang, Hyuk; Jeong, Gawoon; Kim, Yung Sam; Lee, Kang Taek; Kim, Seong Keun

    2001-01-01

    Multiphoton ionization of thymine and uracil clusters generated by a supersonic molecular beam gave rise to a remarkable alternation of mass spectral intensities between even- and odd-numbered clusters. Such alternation was observed in clusters of up to 30 molecules. Excitation to the two lowest electronically excited states seemed to be a strong prerequisite. In view of the well known photodimerization reaction of thymine and uracil in the bulk phase, it is proposed that such alternation in the mass spectral intensity resulted from formation of photodimer units within the cluster on intense UV irradiation. Several analogues of thymine with no known propensity for photodimerization in the bulk phase did not exhibit any sign of such alternation in the cluster mass spectrum. The intrinsic UV window for photodimerization, and hence photoinduced mammalian mutagenesis, was estimated to be approximately 210–280 nm, significantly narrower than the previously reported bulk values of 150–300 nm. PMID:11296267

  4. What is adenine doing in photolyase?

    PubMed

    Acocella, Angela; Jones, Garth A; Zerbetto, Francesco

    2010-03-25

    The short answer to the title question is that it acts as an electrostatic bouncer that shoves the charge flow from flavin toward the DNA lesion that photolyase repairs. This explanation is provided by an explicit time-dependent quantum mechanical approach, which is used to investigate the electron transfer process that triggers the repair mechanism. The transfer occurs from the flavin photolyase cofactor to the cyclobutane ring of DNA, previously formed by light-induced cycloaddition of adjacent pyrimidine bases. The electron wave function dynamics accurately accounts for the previously proposed mechanism of transfer via the terminal methyl group of the flavin moiety present in the catalytic electron-donor cofactor, FADH(-), which also contains adenine. This latter moiety, which has often been assumed to be present mainly for structural reasons, instantaneously modifies the interaction between acceptor and donor by a variation of the electrostatic interactions so that the presence of its local atomic charges is necessary to trigger the transfer. In principle, knowledge of the details of the electron transfer dynamics and of the important role of polarization effects can be exploited to improve the efficiency of the repair mechanism in artificial systems.

  5. Ultraviolet Photostability of Adenine on Gold and Silicon Surfaces

    NASA Astrophysics Data System (ADS)

    Mateo-Martí, Eva; Pradier, Claire-Marie; Martín-Gago, Jose-Angel

    2009-08-01

    The adenine molecule is a DNA nucleobase, an essential component of genetic material. Because of the important role of DNA nucleobases in terrestrial biochemistry, we have studied the molecular adsorption, orientation, and chemical binding of adenine on metallic and semiconducting surfaces, such as gold and silicon, respectively, and their stability toward ultraviolet radiation by X-ray photoelectron spectroscopy (XPS) and reflection absorption infrared spectroscopy (RAIRS) techniques. We have exposed the adenine surface system to UV radiation (200-400 nm) under a high-vacuum environment (10-7 mbar) to study the photostability and photochemistry of adenine on different surfaces. After 10 or 24 hours of exposure under interplanetary space conditions, UV radiation induces desorption and partial dissociation of the molecule, which is dependant on the nature of the surface. The electronic excitations, induced in the material by UV absorption, play a major role in the photodestruction of the absorbed molecules on the solid surfaces.

  6. Adenine adlayers on Cu(111): XPS and NEXAFS study

    SciTech Connect

    Tsud, Nataliya; Bercha, Sofiia; Ševčíková, Klára; Matolín, Vladimír; Acres, Robert G.; Prince, Kevin C.

    2015-11-07

    The adsorption of adenine on Cu(111) was studied by photoelectron and near edge x-ray absorption fine structure spectroscopy. Disordered molecular films were deposited by means of physical vapor deposition on the substrate at room temperature. Adenine chemisorbs on the Cu(111) surface with strong rehybridization of the molecular orbitals and the Cu 3d states. Annealing at 150 °C caused the desorption of weakly bonded molecules accompanied by formation of a short-range ordered molecular adlayer. The interface is characterized by the formation of new states in the valence band at 1.5, 7, and 9 eV. The present work complements and refines existing knowledge of adenine interaction with this surface. The coverage is not the main parameter that defines the adenine geometry and adsorption properties on Cu(111). Excess thermal energy can further rearrange the molecular adlayer and, independent of the initial coverage, the flat lying stable molecular adlayer is formed.

  7. Thymine ring saturation and fragmentation products: lesion bypass, misinsertion and implications for mutagenesis.

    PubMed

    Evans, J; Maccabee, M; Hatahet, Z; Courcelle, J; Bockrath, R; Ide, H; Wallace, S

    1993-05-01

    We have used thymine glycol and dihydrothymine as representative ring saturation products resulting from free-radical interaction with DNA pyrimidines, and urea glycosides and beta-ureidoisobutyric acid (UBA) as models for pyrimidine-ring fragmentation products. We have shown that thymine glycol and the ring-fragmentation products urea and beta-ureidoisobutyric acid, as well as abasic sites, are strong blocks to DNA polymerases in vitro. In contrast, dihydrothymine is not a block to any of the polymerases tested. For thymine glycol, termination sites were observed opposite the putative lesions, whereas for the ring-fragmentation products, the termination sites were primarily one base prior to the lesion. These and other data have suggested that thymine glycol codes for an A, and that a base is stably inserted opposite the damage, whereas when a base is inserted opposite the non-coding lesions, it is removed by the 3-->5 exonuclease activity of DNA polymerase I. Despite their efficiency as blocking lesions, thymine glycol, urea and UBA can be bypassed at low frequency in certain specific sequence contexts. When the model lesions were introduced individually into single-stranded biologically active DNA, we found that thymine glycol, urea, beta-ureidoisobutyric acid, and abasic sites were all lethal lesions having an activation efficiency of 1, whereas dihydrothymine was not. Thus the in vitro studies predicted the in vivo results. When the survival of biologically active single-stranded DNA was examined in UV-induced Escherichia coli cells where the block to replication was released, no increase in survival was observed for DNA containing urea or abasic sites, suggesting inefficient bypass of these lesions. In contrast, beta-ureidoisobutyric acid survival was slightly enhanced, and transfecting DNA containing thymine glycols was significantly reactivated. When mutation induction by unique lesions was measured using f1-K12 hybrid DNA containing an E. coli target gene

  8. Formation of aminyl radicals on electron attachment to AZT: Abstraction from the sugar phosphate backbone vs. one-electron oxidation of Guanine

    PubMed Central

    Adhikary, Amitava; Khanduri, Deepti; Pottiboyina, Venkata; Rice, Cory T.; Sevilla, Michael D.

    2010-01-01

    Employing electron spin resonance (ESR) spectroscopy, we have characterized the radicals formed in 3′-Azido-3′-deoxythymidine (3′-AZT) and in its 5′-analog 5′-azido-5′-deoxythymidine (5′-AZT) after electron attachment in γ-irradiated aqueous (H2O or D2O) glassy (7.5 M LiCl) systems. ESR spectral studies and theoretical calculations show that the predominant site of electron capture in 3′-AZT and in 5′-AZT is at the azide group and not at the thymine moiety. The azide group in AZT is therefore more electron affinic than the most electron affinic DNA base, thymine. Electron attachment to 3′-AZT and 5′-AZT results in an unstable azide anion radical intermediate (RN3•−) that is too short lived to be observed in our work even at 77 K. At 77 K we observe the neutral aminyl radical (RNH•) after loss of N2 from RN3•− followed by protonation of nitrene anion radical (RN•−) to give RNH•. The expected RN•− intermediate is not observed as protonation from water is complete at 77 K even in under highly basic conditions. Formation of RND• in D2O solutions confirms water as the source of the NH proton in the RNH•. Our assignments to these radicals are aided by DFT calculations for hyperfine coupling constants which closely match the experimental values. On annealing to higher temperatures (ca. 160–170 K), RNH• undergoes bimolecular hydrogen abstraction reactions from the thymine methyl group and the sugar moiety resulting in the formation of the thymine allyl radical (UCH2•) and two sugar radicals - C3′•, C5′•. RNH• also results in one-electron oxidation of the guanine base in 3′-AZG. This work provides a potential mechanism for the reported radiosensitization effects of AZT. PMID:20575557

  9. Ternary DNA chip based on a novel thymine spacer group chemistry.

    PubMed

    Yang, Yanli; Yildiz, Umit Hakan; Peh, Jaime; Liedberg, Bo

    2015-01-01

    A novel thymine-based surface chemistry suitable for label-free electrochemical DNA detection is described. It involves a simple two-step sequential process: immobilization of 9-mer thymine-terminated probe DNAs followed by backfilling with 9-mer thymine-based spacers (T9). As compared to commonly used organic spacer groups like 2-mercaptoethanol, 3-mercapto-1-propanol and 6-mercapto-1-hexanol, the 9-mer thymine-based spacers offer a 10-fold improvement in discriminating between complementary and non-complementary target hybridization, which is due mainly to facilitated transport of the redox probes through the probe-DNA/T9 layers. Electrochemical measurements, complemented with Surface Plasmon Resonance (SPR) and Quartz Crystal Microbalance (QCM-D) binding analyses, reveal that optimum selectivity between complementary and non-complementary hybridization is obtained for a sensing surface prepared using probe-DNA and backfiller T9 at equimolar concentration (1:1). At this particular ratio, the probe-DNAs are preferentially oriented and easily accessible to yield a sensing surface with favorable hybridization and electron transfer characteristics. Our findings suggest that oligonucleotide-based spacer groups offer an attractive alternative to short organic thiol spacers in the design of future DNA biochips. PMID:25465760

  10. Mechanisms for the formation of thymine under astrophysical conditions and implications for the origin of life.

    PubMed

    Bera, Partha P; Nuevo, Michel; Materese, Christopher K; Sandford, Scott A; Lee, Timothy J

    2016-04-14

    Nucleobases are the carriers of the genetic information in ribonucleic acid and deoxyribonucleic acid (DNA) for all life on Earth. Their presence in meteorites clearly indicates that compounds of biological importance can form via non-biological processes in extraterrestrial environments. Recent experimental studies have shown that the pyrimidine-based nucleobases uracil and cytosine can be easily formed from the ultraviolet irradiation of pyrimidine in H2O-rich ice mixtures that simulate astrophysical processes. In contrast, thymine, which is found only in DNA, is more difficult to form under the same experimental conditions, as its formation usually requires a higher photon dose. Earlier quantum chemical studies confirmed that the reaction pathways were favorable provided that several H2O molecules surrounded the reactants. However, the present quantum chemical study shows that the formation of thymine is limited because of the inefficiency of the methylation of pyrimidine and its oxidized derivatives in an H2O ice, as supported by the laboratory studies. Our results constrain the formation of thymine in astrophysical environments and thus the inventory of organic molecules delivered to the early Earth and have implications for the role of thymine and DNA in the origin of life.

  11. Mechanisms for the formation of thymine under astrophysical conditions and implications for the origin of life

    NASA Astrophysics Data System (ADS)

    Bera, Partha P.; Nuevo, Michel; Materese, Christopher K.; Sandford, Scott A.; Lee, Timothy J.

    2016-04-01

    Nucleobases are the carriers of the genetic information in ribonucleic acid and deoxyribonucleic acid (DNA) for all life on Earth. Their presence in meteorites clearly indicates that compounds of biological importance can form via non-biological processes in extraterrestrial environments. Recent experimental studies have shown that the pyrimidine-based nucleobases uracil and cytosine can be easily formed from the ultraviolet irradiation of pyrimidine in H2O-rich ice mixtures that simulate astrophysical processes. In contrast, thymine, which is found only in DNA, is more difficult to form under the same experimental conditions, as its formation usually requires a higher photon dose. Earlier quantum chemical studies confirmed that the reaction pathways were favorable provided that several H2O molecules surrounded the reactants. However, the present quantum chemical study shows that the formation of thymine is limited because of the inefficiency of the methylation of pyrimidine and its oxidized derivatives in an H2O ice, as supported by the laboratory studies. Our results constrain the formation of thymine in astrophysical environments and thus the inventory of organic molecules delivered to the early Earth and have implications for the role of thymine and DNA in the origin of life.

  12. Ionization-induced proton transfer in thymine-ammonia van der Waals clusters

    NASA Astrophysics Data System (ADS)

    Kim, Nam Joon; Kim, Hyung Min; Kim, Seong Keun

    2007-03-01

    Ion intensity distribution of thymine-ammonia clusters produced in a supersonic jet was investigated using the resonant 2-photon ionization technique. The mass spectrum of Thym(NH3)n (m = 1-7) exhibited an anomalously strong ion intensity for n = 1 in contrast to the nearly negligible ion signals for n > 1. We suggest that proton transfer from the thymine radical cation to an ammonia molecule following the ionization of the clusters is responsible for the observed anomaly. It is also proposed that charge migration occurring with the proton transfer leads to an ion core switch from the thymine radical cation to the newly formed ammonium ion. The subsequent evaporation of other ammonia molecules in the cluster ion as a consequence of the energy released from the reaction results in extensive loss of ion signals for n > 1, and at their expense, an anomalously large ion intensity for n = 1. This mechanism is supported by density functional theory calculations on the thymine-ammonia 1:1 complex ion performed along the reaction coordinate of the proton transfer. The formation of the ammonium ion in the cluster is also confirmed by the fragmentation feature of metastable Thym(NH3)1+ (m = 1-4) obtained using reflectron time-of-flight mass spectrometry.

  13. Preliminary studies on unusual polymorphs of thymine: Structural comparison with other nucleobases

    NASA Astrophysics Data System (ADS)

    Chennuru, Ramanaiah; Muthudoss, Prakash; Ramakrishnan, Srividya; Mohammad, Amjad Basha; Ravi Chandra Babu, R.; Mahapatra, Sudarshan; Nayak, Susanta K.

    2016-09-01

    Two polymorphs Form-R2 and Form-R4 of anhydrous thymine, one of the four nucleobases in the nucleic acid of DNA were obtained via sublimation crystallization and desolvation technique respectively. Form-R2 crystallizes in monoclinic C 2/c with a = 25.107(7) Å, b = 6.846(2) Å, c = 6.715(2) Å, β = 90.529(6)⁰ and V = 1154.1(5) Å3. The supramolecular assembly in Form-R2 is a sheet of hydrogen bonded network similar to that found in the crystal structures of other reported anhydrous form of thymine (Form-R1). Interestingly the thermal behavior is similar for these two forms with a minor difference in powder X-ray diffraction pattern. Further thymine Form-R2 closely matches with one of the predicted form of thymine using Polymorph module of Accelrys. Form-R4 is obtained by the dehydration of the mono hydrated form (Form-R3) and characterized by powder X-ray diffraction, FTIR spectroscopic techniques and thermal analysis.

  14. Characterizing the dark state in thymine and uracil by double resonant spectroscopy and quantum computation.

    PubMed

    Ligare, M; Siouri, F; Bludsky, O; Nachtigallová, D; de Vries, M S

    2015-10-01

    We report on gas phase double resonant spectroscopy of both the ground state and the dark excited state in isolated uracil and thymine. We also report lifetimes of the dark state for different excitation wavelengths. In combination with ab initio calculations the results suggest that the dark state is of triplet ((3)ππ*) character. PMID:26325364

  15. Mechanisms for the formation of thymine under astrophysical conditions and implications for the origin of life.

    PubMed

    Bera, Partha P; Nuevo, Michel; Materese, Christopher K; Sandford, Scott A; Lee, Timothy J

    2016-04-14

    Nucleobases are the carriers of the genetic information in ribonucleic acid and deoxyribonucleic acid (DNA) for all life on Earth. Their presence in meteorites clearly indicates that compounds of biological importance can form via non-biological processes in extraterrestrial environments. Recent experimental studies have shown that the pyrimidine-based nucleobases uracil and cytosine can be easily formed from the ultraviolet irradiation of pyrimidine in H2O-rich ice mixtures that simulate astrophysical processes. In contrast, thymine, which is found only in DNA, is more difficult to form under the same experimental conditions, as its formation usually requires a higher photon dose. Earlier quantum chemical studies confirmed that the reaction pathways were favorable provided that several H2O molecules surrounded the reactants. However, the present quantum chemical study shows that the formation of thymine is limited because of the inefficiency of the methylation of pyrimidine and its oxidized derivatives in an H2O ice, as supported by the laboratory studies. Our results constrain the formation of thymine in astrophysical environments and thus the inventory of organic molecules delivered to the early Earth and have implications for the role of thymine and DNA in the origin of life. PMID:27083722

  16. Impedimetric investigation of gold nanoparticles - guanine modified electrode

    NASA Astrophysics Data System (ADS)

    Vulcu, A.; Pruneanu, S.; Berghian-Grosan, C.; Olenic, L.; Muresan, L. M.; Barbu-Tudoran, L.

    2013-11-01

    In this paper we report the preparation of a modified electrode with gold nanoparticles and guanine. The colloidal suspension of gold nanoparticles was obtained by Turkevich method and was next analyzed by UV-Vis spectroscopy and Transmission Electron Microscopy (TEM). The gold electrode was modified by self-assembling the gold nanoparticles with guanine, the organic molecule playing also the role of linker. The electrochemical characteristics of the bare and modified electrode were investigated by Electrochemical Impedance Spectroscopy (EIS). A theoretical model was developed based on an electrical equivalent circuit which contain solution resistance (Rs), charge transfer resistance (Rct), Warburg impedance (ZW) and double layer capacitance (Cdl).

  17. DNA adenine hypomethylation leads to metabolic rewiring in Deinococcus radiodurans.

    PubMed

    Shaiwale, Nayana S; Basu, Bhakti; Deobagkar, Deepti D; Deobagkar, Dileep N; Apte, Shree K

    2015-08-01

    The protein encoded by DR_0643 gene from Deinococcus radiodurans was shown to be an active N-6 adenine-specific DNA methyltransferase (Dam). Deletion of corresponding protein reduced adenine methylation in the genome by 60% and resulted in slow-growth phenotype. Proteomic changes induced by DNA adenine hypomethylation were mapped by two-dimensional protein electrophoresis coupled with mass spectrometry. As compared to wild type D. radiodurans cells, at least 54 proteins were differentially expressed in Δdam mutant. Among these, 39 metabolic enzymes were differentially expressed in Δdam mutant. The most prominent change was DNA adenine hypomethylation induced de-repression of pyruvate dehydrogenase complex, E1 component (aceE) gene resulting in 10 fold increase in the abundance of corresponding protein. The observed differential expression profile of metabolic enzymes included increased abundance of enzymes involved in fatty acid and amino acid degradation to replenish acetyl Co-A and TCA cycle intermediates and diversion of phosphoenolpyruvate and pyruvate into amino acid biosynthesis, a metabolic rewiring attempt by Δdam mutant to restore energy generation via glycolysis-TCA cycle axis. This is the first report of DNA adenine hypomethylation mediated rewiring of metabolic pathways in prokaryotes.

  18. Molecular layer-by-layer self-assembly and mercury sensing characteristics of novel brush polymers bearing thymine moieties.

    PubMed

    Jung, Jungwoon; Kim, Jin Chul; Rho, Yecheol; Kim, Mihee; Kwon, Wonsang; Kim, Heesoo; Ree, Moonhor

    2011-07-01

    Two new brush polyoxyethylenes bearing thymine moieties at the bristle ends have been synthesized as model polymers in which the chemical loading of the thymine functional group into the polymer is maximized: poly(oxy(11-thyminoacetyloxyundecylthiomethyl)ethylene) (PECH(S)-T) and poly(oxy(11-thyminoacetyloxyundecylsulfonylmethyl)ethylene) (PECH(SO(2))-T). These brush polymers are thermally stable up to around 225 °C, and their glass transitions occur in the range 23-27 °C, but they have significantly different properties despite the similarity of their chemical structures. In particular, PECH(SO(2))-T films exhibit better performance in sensing mercury ions than PECH(S)-T films. These differences were found to originate in the differences between their morphological structures. The PECH(SO(2))-T film has a multi-bilayer structure without interdigitation, in which the layers stack along the out-of-plane of the film and provide a thymine-rich surface. In contrast, the PECH(S)-T film is amorphous with a relatively low population of thymine moieties at the surface. This study demonstrated that a thymine-rich surface is required for recyclable thymine-based polymers to provide highly improved sensitivity and selectivity as well as full reversibility in the sensing of mercury ions. A thymine-rich surface can be achieved with a brush polymer bearing thymine moieties that can self-assemble into a multi-bilayer structure. Because of the thymine-rich surface, the PECH(SO(2))-T thin films even in only 6 nm thickness demonstrate the detection of mercury ions in aqueous solutions with a detection limit of 10(-6) M. PMID:21650219

  19. Cerulenin-mediated apoptosis is involved in adenine metabolic pathway

    SciTech Connect

    Chung, Kyung-Sook; Sun, Nam-Kyu; Lee, Seung-Hee; Lee, Hyun-Jee; Choi, Shin-Jung; Kim, Sun-Kyung; Song, Ju-Hyun; Jang, Young-Joo; Song, Kyung-Bin; Yoo, Hyang-Sook; Simon, Julian . E-mail: jsimon@fhcrc.org; Won, Misun . E-mail: misun@kribb.re.kr

    2006-10-27

    Cerulenin, a fatty acid synthase (FAS) inhibitor, induces apoptosis of variety of tumor cells. To elucidate mode of action by cerulenin, we employed the proteomics approach using Schizosaccharomyces pombe. The differential protein expression profile of S. pombe revealed that cerulenin modulated the expressions of proteins involved in stresses and metabolism, including both ade10 and adk1 proteins. The nutrient supplementation assay demonstrated that cerulenin affected enzymatic steps transferring a phosphoribosyl group. This result suggests that cerulenin accumulates AMP and p-ribosyl-s-amino-imidazole carboxamide (AICAR) and reduces other necessary nucleotides, which induces feedback inhibition of enzymes and the transcriptional regulation of related genes in de novo and salvage adenine metabolic pathway. Furthermore, the deregulation of adenine nucleotide synthesis may interfere ribonucleotide reductase and cause defects in cell cycle progression and chromosome segregation. In conclusion, cerulenin induces apoptosis through deregulation of adenine nucleotide biosynthesis resulting in nuclear division defects in S. pombe.

  20. Possible prebiotic catalysts formed from adenine and aldehyde

    NASA Astrophysics Data System (ADS)

    Vergne, J.; Dumas, L.; Décout, J.-L.; Maurel, M.-C.

    2000-09-01

    Careful examination of the present metabolism and in vitro selection of various catalytic RNAs strongly support the "RNA World" hypothesis of the origin of life. However, in this scenario, the difficult prebiotic synthesis of ribose and consequently of nucleotides remain a major problem. In order to overcome this problem and obtain nucleoside analogs, we are investigating reactions of the nucleic acid base, adenine 1, with different aldehydes under presumably prebiotic conditions. In the reaction of adenine and pyruvaldehyde 2 in water, we report here the formation in high yield of two isomeric products. These compounds possessing alcohols functions as nucleosides result from condensation of two molecules of pyruvaldehyde on the 6-amino group of one adenine molecule. Their catalytic activities in the model hydrolysis of p-nitrophenylesters appeared interesting in the search of prebiotic catalysts.

  1. Ground state intermolecular proton transfer in the supersystems thymine-(H2O)n and thymine-(CH3OH)n, n = 1,2: a theoretical study.

    PubMed

    Delchev, Vassil B; Shterev, Ivan G

    2009-04-01

    Twelve binary and eight ternary supersystems between thymine and methanol, and water were investigated in the ground state at the B3LYP and MP2 levels of theory using B3LYP/6-311 + + G(d,p) basis functions. The thermodynamics of complex formations and the mechanisms of intermolecular proton transfers were clarified in order to find out the most stable H-boned system. It was established that the energy barriers of the water/methanol-assisted proton transfers are several times lower than those of the intramolecular proton transfers in the DNA/RNA bases. The X-ray powder spectra of thymine, and this precrystallized from water and methanol showed that water molecules are incorporated in the crystal lattice of thymine forming H-bridges between thymine molecules.

  2. Guanine base stacking in G-quadruplex nucleic acids.

    PubMed

    Lech, Christopher Jacques; Heddi, Brahim; Phan, Anh Tuân

    2013-02-01

    G-quadruplexes constitute a class of nucleic acid structures defined by stacked guanine tetrads (or G-tetrads) with guanine bases from neighboring tetrads stacking with one another within the G-tetrad core. Individual G-quadruplexes can also stack with one another at their G-tetrad interface leading to higher-order structures as observed in telomeric repeat-containing DNA and RNA. In this study, we investigate how guanine base stacking influences the stability of G-quadruplexes and their stacked higher-order structures. A structural survey of the Protein Data Bank is conducted to characterize experimentally observed guanine base stacking geometries within the core of G-quadruplexes and at the interface between stacked G-quadruplex structures. We couple this survey with a systematic computational examination of stacked G-tetrad energy landscapes using quantum mechanical computations. Energy calculations of stacked G-tetrads reveal large energy differences of up to 12 kcal/mol between experimentally observed geometries at the interface of stacked G-quadruplexes. Energy landscapes are also computed using an AMBER molecular mechanics description of stacking energy and are shown to agree quite well with quantum mechanical calculated landscapes. Molecular dynamics simulations provide a structural explanation for the experimentally observed preference of parallel G-quadruplexes to stack in a 5'-5' manner based on different accessible tetrad stacking modes at the stacking interfaces of 5'-5' and 3'-3' stacked G-quadruplexes. PMID:23268444

  3. Role of human hypoxanthine guanine phosphoribosyltransferase in activation of the antiviral agent T-705 (favipiravir).

    PubMed

    Naesens, Lieve; Guddat, Luke W; Keough, Dianne T; van Kuilenburg, André B P; Meijer, Judith; Vande Voorde, Johan; Balzarini, Jan

    2013-10-01

    6-Fluoro-3-hydroxy-2-pyrazinecarboxamide (T-705) is a novel antiviral compound with broad activity against influenza virus and diverse RNA viruses. Its active metabolite, T-705-ribose-5'-triphosphate (T-705-RTP), is recognized by influenza virus RNA polymerase as a substrate competing with GTP, giving inhibition of viral RNA synthesis and lethal virus mutagenesis. Which enzymes perform the activation of T-705 is unknown. We here demonstrate that human hypoxanthine guanine phosphoribosyltransferase (HGPRT) converts T-705 into its ribose-5'-monophosphate (RMP) prior to formation of T-705-RTP. The anti-influenza virus activity of T-705 and T-1105 (3-hydroxy-2-pyrazinecarboxamide; the analog lacking the 6-fluoro atom) was lost in HGPRT-deficient Madin-Darby canine kidney cells. This HGPRT dependency was confirmed in human embryonic kidney 293T cells undergoing HGPRT-specific gene knockdown followed by influenza virus ribonucleoprotein reconstitution. Knockdown for adenine phosphoribosyltransferase (APRT) or nicotinamide phosphoribosyltransferase did not change the antiviral activity of T-705 and T-1105. Enzymatic assays showed that T-705 and T-1105 are poor substrates for human HGPRT having Km(app) values of 6.4 and 4.1 mM, respectively. Formation of the RMP metabolites by APRT was negligible, and so was the formation of the ribosylated metabolites by human purine nucleoside phosphorylase. Phosphoribosylation and antiviral activity of the 2-pyrazinecarboxamide derivatives was shown to require the presence of the 3-hydroxyl but not the 6-fluoro substituent. The crystal structure of T-705-RMP in complex with human HGPRT showed how this compound binds in the active site. Since conversion of T-705 by HGPRT appears to be inefficient, T-705-RMP prodrugs may be designed to increase the antiviral potency of this new antiviral agent.

  4. Enhanced Molecular Recognition between Nucleobases and Guanine-5'-monophosphate-disodium (GMP) by Surfactant Aggregates in Aqueous Solution.

    PubMed

    Liu, Zhang; Wang, Dong; Cao, Meiwen; Han, Yuchun; Xu, Hai; Wang, Yilin

    2015-07-15

    Only specific base pairs on DNA can bind with each other through hydrogen bonds, which is called the Watson-Crick (W/C) pairing rule. However, without the constraint of DNA chains, the nucleobases in bulk aqueous solution usually do not follow the W/C pairing rule anymore because of the strong competitive effect of water and the multi-interaction edges of nucleobases. The present work applied surfactant aggregates noncovalently functionalized by nucleotide to enhance the recognition between nucleobases without DNA chains in aqueous solution, and it revealed the effects of their self-assembling ability and morphologies on the recognition. The cationic ammonium monomeric, dimeric, and trimeric surfactants DTAB, 12-3-12, and 12-3-12-3-12 were chosen. The surfactants with guanine-5'-monophosphate-disodium (GMP) form micelles, vesicles, and fingerprint-like and plate-like aggregates bearing the hydrogen-bonding sites of GMP, respectively. The binding parameters of these aggregates with adenine (A), uracil (U), guanine (G), and cytosine(C) indicate that the surfactants can promote W/C recognitions in aqueous solution when they form vesicles (GMP/DTAB) or plate-like aggregates (GMP/12-3-12) with proper molecular packing compactness, which not only provide hydrophobic environments but also shield non-W/C recognition edges. However, the GMP/12-3-12 micelles with loose molecular packing, the GMP/12-3-12 fingerprint-like aggregates where the hydrogen bond sites of GMP are occupied by itself, and the GMP/12-3-12-3-12 vesicles with too strong self-assembling ability cannot promote W/C recognition. This work provides insight into how to design self-assemblies with the performance of enhanced molecule recognition.

  5. 3-(3,4-Dihydroxyphenyl)adenine, a urinary DNA adduct formed in mice exposed to high concentrations of benzene.

    PubMed

    Mikeš, Petr; Sístek, Václav; Krouželka, Jan; Králík, Antonín; Frantík, Emil; Mráz, Jaroslav; Linhart, Igor

    2013-06-01

    Metabolism of benzene, an important environmental and industrial carcinogen, produces three electrophilic intermediates, namely, benzene oxide and 1,2- and 1,4-benzoquinone, capable of reacting with the DNA. Numerous DNA adducts formed by these metabolites in vitro have been reported in the literature, but only one of them was hitherto identified in vivo. In a search for urinary DNA adducts, specific LC-ESI-MS methods have been developed for the determination in urine of six nucleobase adducts, namely, 7-phenylguanine, 3-phenyladenine, 3-hydroxy-3,N(4) -benzethenocytosine, N(2) -(4-hydroxyphenyl)guanine, 7-(3,4-dihydroxyphenyl)guanine and 3-(3,4-dihydroxyphenyl)-adenine (DHPA), with detection limits of 200, 10, 260, 50, 400 and 200 pg ml(-1) , respectively. Mice were exposed to benzene vapors at concentrations of 900 and 1800 mg m(-3) , 6 h per day for 15 consecutive days. The only adduct detected in their urine was DHPA. It was found in eight out of 30 urine samples from the high-exposure group at concentrations of 352 ± 146 pg ml(-1) (mean ± SD; n = 8), whereas urines from the low-exposure group were negative. Assuming the DHPA concentration in the negative samples to be half of the detection limit, conversion of benzene to DHPA was estimated to 2.2 × 10(-6) % of the absorbed dose. Thus, despite the known high mutagenic and carcinogenic potential of benzene, only traces of a single DNA adduct in urine were detected. In conclusion, DHPA is an easily depurinating adduct, thus allowing indication of only high recent exposure to benzene, but not long-term damage to DNA in tissues.

  6. Thymine dimer repair in fibroblasts of patients with dysplastic naevus syndrome (DNS).

    PubMed

    Roth, M; Boyle, J M; Müller, H

    1988-02-15

    Dysplastic naevus syndrome (DNS) is frequently observed in association with familial melanoma and xeroderma pigmentosum (XP), but the role of UV-light in the development of DNS has not been elucidated. Previous work has shown that UV-induced unscheduled DNA synthesis is associated with the early loss of antigenicity observed in immunoassays using a monoclonal antibody specific for thymine-thymine dimers. We now show that the rate of loss of antigenicity, which reflects the relative amount of bound antibody, observed during the first 60 min following 10 Jm-2 UVC irradiation is significantly reduced (p = 0.02) in cultures of fibroblasts from 7 out of 8 DNS patients compared with the results from cells of a group of 30 healthy volunteers. This observation suggests an early event in excision repair is altered in the majority of DNS patients.

  7. Temperature dependence of the cross section for the fragmentation of thymine via dissociative electron attachment

    NASA Astrophysics Data System (ADS)

    Kopyra, Janina; Abdoul-Carime, Hassan

    2015-05-01

    Providing experimental values for absolute Dissociative Electron Attachment (DEA) cross sections for nucleobases at realistic biological conditions is a considerable challenge. In this work, we provide the temperature dependence of the cross section, σ, of the dehydrogenated thymine anion (T - H)- produced via DEA. Within the 393-443 K temperature range, it is observed that σ varies by one order of magnitude. By extrapolating to a temperature of 313 K, the relative DEA cross section for the production of the dehydrogenated thymine anion at an incident energy of 1 eV decreases by 2 orders of magnitude and the absolute value reaches approximately 6 × 10-19 cm2. These quantitative measurements provide a benchmark for theoretical prediction and also a contribution to a more accurate description of the effects of ionizing radiation on molecular medium.

  8. Temperature dependence of the cross section for the fragmentation of thymine via dissociative electron attachment

    SciTech Connect

    Kopyra, Janina; Abdoul-Carime, Hassan

    2015-05-07

    Providing experimental values for absolute Dissociative Electron Attachment (DEA) cross sections for nucleobases at realistic biological conditions is a considerable challenge. In this work, we provide the temperature dependence of the cross section, σ, of the dehydrogenated thymine anion (T − H){sup −} produced via DEA. Within the 393-443 K temperature range, it is observed that σ varies by one order of magnitude. By extrapolating to a temperature of 313 K, the relative DEA cross section for the production of the dehydrogenated thymine anion at an incident energy of 1 eV decreases by 2 orders of magnitude and the absolute value reaches approximately 6 × 10{sup −19} cm{sup 2}. These quantitative measurements provide a benchmark for theoretical prediction and also a contribution to a more accurate description of the effects of ionizing radiation on molecular medium.

  9. Functionalized gold nanoparticles/reduced graphene oxide nanocomposites for ultrasensitive electrochemical sensing of mercury ions based on thymine-mercury-thymine structure.

    PubMed

    Wang, Nan; Lin, Meng; Dai, Hongxiu; Ma, Houyi

    2016-05-15

    A sensitive, selective and reusable electrochemical biosensor for the determination of mercury ions (Hg(2+)) has been developed based on thymine (T) modified gold nanoparticles/reduced graphene oxide (AuNPs/rGO) nanocomposites. Graphene oxide (GO) was electrochemically reduced on a glassy carbon substrate. Subsequently, AuNPs were deposited onto the surface of rGO by cyclic voltammetry. For functionalization of the electrode, the carboxylic group of the thymine-1-acetic acid was covalently coupled with the amine group of the cysteamine which self-assembled onto AuNPs. The structural features of the T bases functionalized AuNPs/rGO electrode were confirmed by attenuated total reflection infrared (ATR-IR) spectroscopy and scanning electron microscopy (SEM) spectroscopy. Each step of the modification process was characterized by cyclic voltammetry (CV) and electrochemical impedence spectroscopy (EIS). The T bases modified AuNPs/rGO electrode was applied to detect various trace metal ions by differential pulse voltammetry (DPV). The proposed biosensor was found to be highly sensitive to Hg(2+) in the range of 10 ng/L-1.0 µg/L. The biosensor afforded excellent selectivity for Hg(2+) against other heavy metal ions such as Zn(2+), Cd(2+), Pb(2+), Cu(2+), Ni(2+), and Co(2+). Furthermore, the developed sensor exhibited a high reusability through a simple washing. In addition, the prepared biosensor was successfully applied to assay Hg(2+) in real environmental samples.

  10. Detection of electronically equivalent tautomers of adenine base: DFT study

    SciTech Connect

    Siddiqui, Shamoon Ahmad; Bouarissa, Nadir; Rasheed, Tabish; Al-Assiri, M.S.; Al-Hajry, A.

    2014-03-01

    Graphical abstract: - Highlights: • DFT calculations have been performed on adenine and its rare tautomer Cu{sup 2+} complexes. • Interaction of A-Cu{sup 2+} and rA-Cu{sup 2+} complexes with AlN modified fullerene (C{sub 60}) have been studied briefly. • It is found that AlN modified C{sub 60} could be used as a nanoscale sensor to detect these two A-Cu{sup 2+} and rA-Cu{sup 2+} complexes. - Abstract: In the present study, quantum chemical calculations were carried out to investigate the electronic structures and stabilities of adenine and its rare tautomer along with their Cu{sup 2+} complexes. Density Functional Theory (B3LYP method) was used in all calculations. The two Cu{sup 2+} complexes of adenine have almost similar energies and electronic structures; hence, their chemical differentiation is very difficult. For this purpose, interactions of these complexes with AlN modified fullerene (C{sub 60}) have been studied. Theoretical investigations reveal that AlN-doped C{sub 60} may serve as a potentially viable nanoscale sensor for detection of the two Cu{sup 2+} complexes of adenine.

  11. PolyAdenine cryogels for fast and effective RNA purification.

    PubMed

    Köse, Kazım; Erol, Kadir; Özgür, Erdoğan; Uzun, Lokman; Denizli, Adil

    2016-10-01

    Cryogels are used effectively for many diverse applications in a variety of fields. The isolation or purification of RNA, one of the potential utilizations for cryogels, is crucial due to their vital roles such as encoding, decoding, transcription and translation, and gene expression. RNA principally exists within every living thing, but their tendency to denaturation easily is still the most challenging issue. Herein, we aimed to develop adenine incorporated polymeric cryogels as an alternative sorbent for cost-friendly and fast RNA purification with high capacity. For this goal, we synthesized the polymerizable derivative of adenine called as adenine methacrylate (AdeM) through the substitution reaction between adenine and methacryloyl chloride. Then, 2-hydroxyethyl methacrylate (HEMA)-based cryogels were prepared in a partially frozen aqueous medium by copolymerization of monomers, AdeM, and HEMA. The cryogels were characterized by using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), surface area measurements, thermogravimetric analysis (TGA), and swelling tests. RNA adsorption experiments were performed via batch system while varying different conditions including pH, initial RNA concentration, temperature, and interaction time. We achieved high RNA adsorption capacity of cryogels, with the swelling ratio around 510%, as 11.86mg/g. The cryogels might be reused at least five times without significant decrease in adsorption capacity.

  12. PolyAdenine cryogels for fast and effective RNA purification.

    PubMed

    Köse, Kazım; Erol, Kadir; Özgür, Erdoğan; Uzun, Lokman; Denizli, Adil

    2016-10-01

    Cryogels are used effectively for many diverse applications in a variety of fields. The isolation or purification of RNA, one of the potential utilizations for cryogels, is crucial due to their vital roles such as encoding, decoding, transcription and translation, and gene expression. RNA principally exists within every living thing, but their tendency to denaturation easily is still the most challenging issue. Herein, we aimed to develop adenine incorporated polymeric cryogels as an alternative sorbent for cost-friendly and fast RNA purification with high capacity. For this goal, we synthesized the polymerizable derivative of adenine called as adenine methacrylate (AdeM) through the substitution reaction between adenine and methacryloyl chloride. Then, 2-hydroxyethyl methacrylate (HEMA)-based cryogels were prepared in a partially frozen aqueous medium by copolymerization of monomers, AdeM, and HEMA. The cryogels were characterized by using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), surface area measurements, thermogravimetric analysis (TGA), and swelling tests. RNA adsorption experiments were performed via batch system while varying different conditions including pH, initial RNA concentration, temperature, and interaction time. We achieved high RNA adsorption capacity of cryogels, with the swelling ratio around 510%, as 11.86mg/g. The cryogels might be reused at least five times without significant decrease in adsorption capacity. PMID:27434154

  13. Formation of cyclobutane thymine dimers photosensitized by pyridopsoralens: Quantitative and qualitative distribution within DNA

    SciTech Connect

    Moysan, A.; Viari, A.; Vigny, P. ); Voituriez, L.; Cadet J. ); Moustacchi, E.; Sage, E. )

    1991-07-23

    As after irradiation with 254-nm UV light, exposure of thymidine and three isomeric pyridopsoralen derivatives to UVA radiation, in the dry state, leads to the formation of the six diastereomers of cyclobutadithymidine as the predominant reaction. This unexpected photosensitized reaction, which also gives rise to both 5R* and 5S* diastereomers of 5,6-dihydro-5-({alpha}-thymidylyl)thymidine (or spore photoproduct), is selective since (2+2) dimerization of 2{prime}-deoxycytidine was not detected under the same experimental conditions. The cis-syn isomer of cyclobutadithymine was also found to be produced within isolated DNA following UVA irradiation in aqueous solutions containing 7-methylpyrido (3,4-c)psoralen. Quantitatively, this photoproduct represents about one-fifth of the overall yield of the furan-side pyridopsoralen (2+2) photocycloadducts the thymine. DNA sequencing methodology was used to demonstrate that pyridopsoralen-photosensitized DNA is a substrate for T4 endonuclease V and Escherichia coli photoreactivating enzyme, two enzymes acting specifically on cyclobutane pyrimidine dimers. The formation of cyclobutane thymine dimers concomitant to that of thymine-furocoumarin photoadducts and their eventual implication in the photobiological effects of the pyridopsoralens are discussed.

  14. 1D self-assembly of chemisorbed thymine on Cu(110) driven by dispersion forces

    NASA Astrophysics Data System (ADS)

    Temprano, I.; Thomas, G.; Haq, S.; Dyer, M. S.; Latter, E. G.; Darling, G. R.; Uvdal, P.; Raval, R.

    2015-03-01

    Adsorption of thymine on a defined Cu(110) surface was studied using reflection-absorption infrared spectroscopy (RAIRS), temperature programmed desorption (TPD), and scanning tunnelling microscopy (STM). In addition, density functional theory (DFT) calculations were undertaken in order to further understand the energetics of adsorption and self-assembly. The combination of RAIRS, TPD, and DFT results indicates that an upright, three-point-bonded adsorption configuration is adopted by the deprotonated thymine at room temperature. DFT calculations show that the upright configuration adopted by individual molecules arises as a direct result of strong O-Cu and N-Cu bonds between the molecule and the surface. STM data reveal that this upright thymine motif self-assembles into 1D chains, which are surprisingly oriented along the open-packed [001] direction of the metal surface and orthogonal to the alignment of the functional groups that are normally implicated in H-bonding interactions. DFT modelling of this system reveals that the molecular organisation is actually driven by dispersion interactions, which cause a slight tilt of the molecule and provide the major driving force for assembly into dimers and 1D chains. The relative orientations and distances of neighbouring molecules are amenable for π-π stacking, suggesting that this is an important contributor in the self-assembly process.

  15. Catalytic Mechanism and Three-Dimensional Structure of Adenine Deaminase

    SciTech Connect

    Kamat, S.S.; Swaminathan, S.; Bagaria, A.; Kumaran, D.; Holmes-Hampton, G. P.; Fan, H.; Sali, A.; Sauder, J. M.; Burley, S. K.; Lindahl, P. A.; Raushel, F. M.

    2011-03-22

    Adenine deaminase (ADE) catalyzes the conversion of adenine to hypoxanthine and ammonia. The enzyme isolated from Escherichia coli using standard expression conditions was low for the deamination of adenine (k{sub cat} = 2.0 s{sup -1}; k{sub cat}/K{sub m} = 2.5 x 10{sup 3} M{sup -1} s{sup -1}). However, when iron was sequestered with a metal chelator and the growth medium was supplemented with Mn{sup 2+} prior to induction, the purified enzyme was substantially more active for the deamination of adenine with kcat and kcat/Km values of 200 s{sup -1} and 5 x 10{sup 5} M{sup -1} s{sup -1}, respectively. The apoenzyme was prepared and reconstituted with Fe{sup 2+}, Zn{sup 2+}, or Mn{sup 2+}. In each case, two enzyme equivalents of metal were necessary for reconstitution of the deaminase activity. This work provides the first example of any member of the deaminase subfamily of the amidohydrolase superfamily to utilize a binuclear metal center for the catalysis of a deamination reaction. [Fe{sup II}/Fe{sup II}]-ADE was oxidized to [Fe{sup III}/Fe{sup III}]-ADE with ferricyanide with inactivation of the deaminase activity. Reducing [Fe{sup III}/Fe{sup III}]-ADE with dithionite restored the deaminase activity, and thus, the diferrous form of the enzyme is essential for catalytic activity. No evidence of spin coupling between metal ions was evident by electron paramagnetic resonance or Moessbauer spectroscopy. The three-dimensional structure of adenine deaminase from Agrobacterium tumefaciens (Atu4426) was determined by X-ray crystallography at 2.2 {angstrom} resolution, and adenine was modeled into the active site on the basis of homology to other members of the amidohydrolase superfamily. On the basis of the model of the adenine-ADE complex and subsequent mutagenesis experiments, the roles for each of the highly conserved residues were proposed. Solvent isotope effects, pH-rate profiles, and solvent viscosity were utilized to propose a chemical reaction mechanism and the

  16. Catalytic Mechanism and Three-Dimensional Structure of Adenine Deaminase

    SciTech Connect

    S Kamat; A Bagaria; D Kumaran; G Holmes-Hampton; H Fan; A Sali; J Sauder; S Burley; P Lindahl; et. al.

    2011-12-31

    Adenine deaminase (ADE) catalyzes the conversion of adenine to hypoxanthine and ammonia. The enzyme isolated from Escherichia coli using standard expression conditions was low for the deamination of adenine (k{sub cat} = 2.0 s{sup -1}; k{sub cat}/K{sub m} = 2.5 x 10{sup 3} M{sup -1} s{sup -1}). However, when iron was sequestered with a metal chelator and the growth medium was supplemented with Mn{sup 2+} prior to induction, the purified enzyme was substantially more active for the deamination of adenine with k{sub cat} and k{sub cat}/K{sub m} values of 200 s{sup -1} and 5 x 10{sup 5} M{sup -1} s{sup -1}, respectively. The apoenzyme was prepared and reconstituted with Fe{sup 2+}, Zn{sup 2+}, or Mn{sup 2+}. In each case, two enzyme equivalents of metal were necessary for reconstitution of the deaminase activity. This work provides the first example of any member of the deaminase subfamily of the amidohydrolase superfamily to utilize a binuclear metal center for the catalysis of a deamination reaction. [Fe{sup II}/Fe{sup II}]-ADE was oxidized to [Fe{sup III}/Fe{sup III}]-ADE with ferricyanide with inactivation of the deaminase activity. Reducing [Fe{sup III}/Fe{sup III}]-ADE with dithionite restored the deaminase activity, and thus, the diferrous form of the enzyme is essential for catalytic activity. No evidence of spin coupling between metal ions was evident by electron paramagnetic resonance or Moessbauer spectroscopy. The three-dimensional structure of adenine deaminase from Agrobacterium tumefaciens (Atu4426) was determined by X-ray crystallography at 2.2 {angstrom} resolution, and adenine was modeled into the active site on the basis of homology to other members of the amidohydrolase superfamily. On the basis of the model of the adenine-ADE complex and subsequent mutagenesis experiments, the roles for each of the highly conserved residues were proposed. Solvent isotope effects, pH-rate profiles, and solvent viscosity were utilized to propose a chemical reaction

  17. Effect of base pairing on the electrochemical oxidation of guanine.

    PubMed

    Costentin, Cyrille; Hajj, Viviane; Robert, Marc; Savéant, Jean-Michel; Tard, Cédric

    2010-07-28

    The effect of base pairing by cytosine on the electrochemical oxidation of guanine is examined by means of cyclic voltammetry on carefully purified reactants in a solvent, CHCl(3), which strongly favors the formation of an H-bonded pair. The thermodynamics and kinetics of the oxidation reaction are not strongly influenced by the formation of the pair. They are actually similar to those of the reaction in which 2,6-lutidine, an encumbered base that cannot form a pair with guanine, replaces cytosine. The reaction does not entail a concerted proton-electron mechanism, as attested by the absence of H/D isotope effect. It rather involves the rate-determining formation of the cation radical, followed by its deprotonation and dimerization of the resulting neutral radical in competition with its further oxidation.

  18. Impedimetric investigation of gold nanoparticles - guanine modified electrode

    SciTech Connect

    Vulcu, A.; Pruneanu, S.; Berghian-Grosan, C.; Olenic, L.; Muresan, L. M.; Barbu-Tudoran, L.

    2013-11-13

    In this paper we report the preparation of a modified electrode with gold nanoparticles and guanine. The colloidal suspension of gold nanoparticles was obtained by Turkevich method and was next analyzed by UV-Vis spectroscopy and Transmission Electron Microscopy (TEM). The gold electrode was modified by self-assembling the gold nanoparticles with guanine, the organic molecule playing also the role of linker. The electrochemical characteristics of the bare and modified electrode were investigated by Electrochemical Impedance Spectroscopy (EIS). A theoretical model was developed based on an electrical equivalent circuit which contain solution resistance (R{sub s}), charge transfer resistance (R{sub ct}), Warburg impedance (Z{sub W}) and double layer capacitance (C{sub dl})

  19. `Guanigma': the revised structure of biogenic anhydrous guanine

    NASA Astrophysics Data System (ADS)

    Hirsch, Anna; Gur, Dvir; Polishchuk, Iryna; Levy, Davide; Pokroy, Boaz; Cruz-Cabeza, Aurora J.; Addadi, Lia; Kronik, Leeor; Leiserowitz, Leslie

    Living organisms display a spectrum of colors, produced by pigmentation, structural coloration, or both. A relatively well-studied system, which produces colors via an array of alternating anhydrous guanine crystals and cytoplasm, is responsible for the metallic luster of many fish. The structure of biogenic anhydrous guanine was believed to be the same as that of the synthetic one - a monoclinic polymorph. Here we re-examine the structure of biogenic guanine, using experimental X-ray and electron diffraction (ED) data exposing troublesome inconsistencies - namely, a 'guanigma'. To address this, we sought alternative candidate polymorphs using symmetry and packing considerations, then used first principles calculations to determine whether the selected candidates could be energetically stable. We identified theoretically a different monoclinic polymorph, were able to synthesize it, and to confirm using X-ray diffraction that it is this polymorph that occurs in biogenic samples. However, the ED data were still not consistent with this polymorph, but rather with a theoretically generated orthorhombic polymorph. This apparent inconsistency was resolved by showing how the ED pattern could be affected by crystal structural faults composed of offset molecular layers.

  20. Copper-Adenine Complex Catalyst for O2 Production from

    NASA Astrophysics Data System (ADS)

    Vergne, Jacques; Bruston, F.; Calvayrac, R.; Grajcar, L.; Baron, M.-H.; Maurel, M.-C.

    The advent of oxygen-evolving photosynthesis is one of the central event in the development of life on earth. The early atmosphere has been midly reducing or neutral in overall redox balance and water photolysis by UV light can produce hydrogen peroxide. Before oxidation of water, intermediate stages are proposed in which H_2^O_2 was oxidized. The oxidation of H_2^O_2 to oxygen can be carried out by a modestly oxidizing species in which a metal-catalase like enzyme could extract electrons from H_2^O_2 producing the first oxygen-evolving complex. After what, modern photosynthesis with chlorophyll, to help transform H_2^O in O_2 was ready to come to light. In preliminary UV studies we were able to show that [Cu(adenine)2] system, containing copper coordinated to nitrogen activates H_2^O_2 disappearance. This was confirmed with the help of Raman and polarographic studies. Raman spectroscopy shows the formation of [Cu(adenine)2] complex in solution, quantifies H_2^O_2 consumption, polarography quantifies O_2 production. In both cases CuCl_2 addition entails H_2^O_2 disappearance. Without adenine, Cu_2^+ has only a weak catalytic effect. The molar activity of the [Cu(adenine)2] complex is much larger and concentration dependent. We emphasize that Cu(adenine)2 may have mimicked enzyme properties in the first stage of life evolution, in order to split H_2^O_2 into O_2 and H_2^O. Moreover, diluted copper and adenine, in small ephemeral prebiotic ponds , could have preserved biologically active entities from H_2^O_2 damage via dual properties: catalyzing H_2^O_2 disproportionation and also directly acting as a reductant complex. Finally, the present Mars surface is considered to be both reactive and embedded with oxydants. As it has been shown that the depth of diffusion for H_2^O_2 is less than 3 meters, it is important to study all the ways of H_2^O_2 consumption.

  1. Application of Markov chain to the pattern of mitochondrial deoxyribonucleic acid mutations

    NASA Astrophysics Data System (ADS)

    Vantika, Sandy; Pasaribu, Udjianna S.

    2014-03-01

    This research explains how Markov chain used to model the pattern of deoxyribonucleic acid mutations in mitochondrial (mitochondrial DNA). First, sign test was used to see a pattern of nucleotide bases that will appear at one position after the position of mutated nucleotide base. Results obtained from the sign test showed that for most cases, there exist a pattern of mutation except in the mutation cases of adenine to cytosine, adenine to thymine, and cytosine to guanine. Markov chain analysis results on data of mutations that occur in mitochondrial DNA indicate that one and two positions after the position of mutated nucleotide bases tend to be occupied by particular nucleotide bases. From this analysis, it can be said that the adenine, cytosine, guanine and thymine will mutate if the nucelotide base at one and/or two positions after them is cytosine.

  2. Plasma Hypoxanthine-Guanine Phosphoribosyl Transferase Activity in Bottlenose Dolphins Contributes to Avoiding Accumulation of Non-recyclable Purines

    PubMed Central

    López-Cruz, Roberto I.; Crocker, Daniel E.; Gaxiola-Robles, Ramón; Bernal, Jaime A.; Real-Valle, Roberto A.; Lugo-Lugo, Orlando; Zenteno-Savín, Tania

    2016-01-01

    Marine mammals are exposed to ischemia/reperfusion and hypoxia/reoxygenation during diving. During oxygen deprivation, adenosine triphosphate (ATP) breakdown implies purine metabolite accumulation, which in humans is associated with pathological conditions. Purine recycling in seals increases in response to prolonged fasting and ischemia. Concentrations of metabolites and activities of key enzymes in purine metabolism were examined in plasma and red blood cells from bottlenose dolphins (Tursiops truncatus) and humans. Hypoxanthine and inosine monophosphate concentrations were higher in plasma from dolphins than humans. Plasma hypoxanthine-guanine phosphoribosyl transferase (HGPRT) activity in dolphins suggests an elevated purine recycling rate, and a mechanism for avoiding accumulation of non-recyclable purines (xanthine and uric acid). Red blood cell concentrations of hypoxanthine, adenosine diphosphate, ATP and guanosine triphosphate were lower in dolphins than in humans; adenosine monophosphate and nicotinamide adenine dinucleotide concentrations were higher in dolphins. HGPRT activity in red blood cells was higher in humans than in dolphins. The lower concentrations of purine catabolism and recycling by-products in plasma from dolphins could be beneficial in providing substrates for recovery of ATP depleted during diving or vigorous swimming. These results suggest that purine salvage in dolphins could be a mechanism for delivering nucleotide precursors to tissues with high ATP and guanosine triphosphate requirements. PMID:27375492

  3. Plasma Hypoxanthine-Guanine Phosphoribosyl Transferase Activity in Bottlenose Dolphins Contributes to Avoiding Accumulation of Non-recyclable Purines.

    PubMed

    López-Cruz, Roberto I; Crocker, Daniel E; Gaxiola-Robles, Ramón; Bernal, Jaime A; Real-Valle, Roberto A; Lugo-Lugo, Orlando; Zenteno-Savín, Tania

    2016-01-01

    Marine mammals are exposed to ischemia/reperfusion and hypoxia/reoxygenation during diving. During oxygen deprivation, adenosine triphosphate (ATP) breakdown implies purine metabolite accumulation, which in humans is associated with pathological conditions. Purine recycling in seals increases in response to prolonged fasting and ischemia. Concentrations of metabolites and activities of key enzymes in purine metabolism were examined in plasma and red blood cells from bottlenose dolphins (Tursiops truncatus) and humans. Hypoxanthine and inosine monophosphate concentrations were higher in plasma from dolphins than humans. Plasma hypoxanthine-guanine phosphoribosyl transferase (HGPRT) activity in dolphins suggests an elevated purine recycling rate, and a mechanism for avoiding accumulation of non-recyclable purines (xanthine and uric acid). Red blood cell concentrations of hypoxanthine, adenosine diphosphate, ATP and guanosine triphosphate were lower in dolphins than in humans; adenosine monophosphate and nicotinamide adenine dinucleotide concentrations were higher in dolphins. HGPRT activity in red blood cells was higher in humans than in dolphins. The lower concentrations of purine catabolism and recycling by-products in plasma from dolphins could be beneficial in providing substrates for recovery of ATP depleted during diving or vigorous swimming. These results suggest that purine salvage in dolphins could be a mechanism for delivering nucleotide precursors to tissues with high ATP and guanosine triphosphate requirements.

  4. Plasma Hypoxanthine-Guanine Phosphoribosyl Transferase Activity in Bottlenose Dolphins Contributes to Avoiding Accumulation of Non-recyclable Purines.

    PubMed

    López-Cruz, Roberto I; Crocker, Daniel E; Gaxiola-Robles, Ramón; Bernal, Jaime A; Real-Valle, Roberto A; Lugo-Lugo, Orlando; Zenteno-Savín, Tania

    2016-01-01

    Marine mammals are exposed to ischemia/reperfusion and hypoxia/reoxygenation during diving. During oxygen deprivation, adenosine triphosphate (ATP) breakdown implies purine metabolite accumulation, which in humans is associated with pathological conditions. Purine recycling in seals increases in response to prolonged fasting and ischemia. Concentrations of metabolites and activities of key enzymes in purine metabolism were examined in plasma and red blood cells from bottlenose dolphins (Tursiops truncatus) and humans. Hypoxanthine and inosine monophosphate concentrations were higher in plasma from dolphins than humans. Plasma hypoxanthine-guanine phosphoribosyl transferase (HGPRT) activity in dolphins suggests an elevated purine recycling rate, and a mechanism for avoiding accumulation of non-recyclable purines (xanthine and uric acid). Red blood cell concentrations of hypoxanthine, adenosine diphosphate, ATP and guanosine triphosphate were lower in dolphins than in humans; adenosine monophosphate and nicotinamide adenine dinucleotide concentrations were higher in dolphins. HGPRT activity in red blood cells was higher in humans than in dolphins. The lower concentrations of purine catabolism and recycling by-products in plasma from dolphins could be beneficial in providing substrates for recovery of ATP depleted during diving or vigorous swimming. These results suggest that purine salvage in dolphins could be a mechanism for delivering nucleotide precursors to tissues with high ATP and guanosine triphosphate requirements. PMID:27375492

  5. Invertase-labeling gold-dendrimer for in situ amplified detection mercury(II) with glucometer readout and thymine-Hg(2+)-thymine coordination chemistry.

    PubMed

    Qiu, Zhenli; Shu, Jian; Jin, Guixiao; Xu, Mingdi; Wei, Qiaohua; Chen, Guonan; Tang, Dianping

    2016-03-15

    A simple, low-cost transducer with glucometer readout was designed for sensitive detection of mercury(II) (Hg(2+)), coupling with thymine-Hg(2+)-thymine (T-Hg(2+)-T) coordination chemistry and invertase-functionalized gold-dendrimer nanospheres for the signal amplification. Initially, nanogold-encapsulated poly(amidoamine) dendrimers (Au DENs) were synthesized by in-situ reduction of gold(III). Thereafter, the as-prepared Au DENs were utilized for the labeling of invertase and T-rich signal DNA probe. In the presence of target Hg(2+), the functionalized Au DENs were conjugated to capture DNA probe-modified electrode via T-Hg(2+)-T coordination chemistry. Accompanying the Au DENs, the labeled invertase could hydrolyze sucrose into glucose, which could be quantitatively monitored by an external personal glucometer (PGM). The PGM signal increased with the increasing target Hg(2+) in the sample. Under the optimal conditions, our designed sensing platform exhibited good PGM responses toward target Hg(2+), and allowed the detection of Hg(2+) at a concentration as low as 4.2 pM. This sensing system also displayed remarkable specificity relative to target Hg(2+) against other competing ions, and could be applied for reliable monitoring of spiked Hg(2+) into the environmental water samples with satisfactory results. With the advantages of cost-effectiveness, simplicity, portability, and convenience, our strategy provides a tremendous potential to be a promising candidate for point-of-use monitoring of non-glucose targets by the public. PMID:26496222

  6. Invertase-labeling gold-dendrimer for in situ amplified detection mercury(II) with glucometer readout and thymine-Hg(2+)-thymine coordination chemistry.

    PubMed

    Qiu, Zhenli; Shu, Jian; Jin, Guixiao; Xu, Mingdi; Wei, Qiaohua; Chen, Guonan; Tang, Dianping

    2016-03-15

    A simple, low-cost transducer with glucometer readout was designed for sensitive detection of mercury(II) (Hg(2+)), coupling with thymine-Hg(2+)-thymine (T-Hg(2+)-T) coordination chemistry and invertase-functionalized gold-dendrimer nanospheres for the signal amplification. Initially, nanogold-encapsulated poly(amidoamine) dendrimers (Au DENs) were synthesized by in-situ reduction of gold(III). Thereafter, the as-prepared Au DENs were utilized for the labeling of invertase and T-rich signal DNA probe. In the presence of target Hg(2+), the functionalized Au DENs were conjugated to capture DNA probe-modified electrode via T-Hg(2+)-T coordination chemistry. Accompanying the Au DENs, the labeled invertase could hydrolyze sucrose into glucose, which could be quantitatively monitored by an external personal glucometer (PGM). The PGM signal increased with the increasing target Hg(2+) in the sample. Under the optimal conditions, our designed sensing platform exhibited good PGM responses toward target Hg(2+), and allowed the detection of Hg(2+) at a concentration as low as 4.2 pM. This sensing system also displayed remarkable specificity relative to target Hg(2+) against other competing ions, and could be applied for reliable monitoring of spiked Hg(2+) into the environmental water samples with satisfactory results. With the advantages of cost-effectiveness, simplicity, portability, and convenience, our strategy provides a tremendous potential to be a promising candidate for point-of-use monitoring of non-glucose targets by the public.

  7. Dynamics and reactivity in Thermus aquaticus N6-adenine methyltransferase.

    PubMed

    Aranda, Juan; Zinovjev, Kirill; Roca, Maite; Tuñón, Iñaki

    2014-11-19

    M.TaqI is a DNA methyltransferase from Thermus aquaticus that catalyzes the transfer of a methyl group from S-adenosyl-L-methionine to the N6 position of an adenine, a process described only in prokaryotes. We have used full atomistic classical molecular dynamics simulations to explore the protein-SAM-DNA ternary complex where the target adenine is flipped out into the active site. Key protein-DNA interactions established by the target adenine in the active site are described in detail. The relaxed structure was used for a combined quantum mechanics/molecular mechanics exploration of the reaction mechanism using the string method. According to our free energy calculations the reaction takes place through a stepwise mechanism where the methyl transfer precedes the abstraction of the proton from the exocyclic amino group. The methyl transfer is the rate-determining step, and the obtained free energy barrier is in good agreement with the value derived from the experimental rate constant. Two possible candidates to extract the leftover proton have been explored: a water molecule found in the active site and Asn105, a residue activated by the hydrogen bonds formed through the amide hydrogens. The barrier for the proton abstraction is smaller when Asn105 acts as a base. The reaction mechanisms can be different in other N6-DNA-methyltransferases, as determined from the exploration of the reaction mechanism in the Asn105Asp M.TaqI mutant. PMID:25347783

  8. A highly sensitive and stable glucose biosensor using thymine-based polycations into laponite hydrogel films.

    PubMed

    Paz Zanini, Veronica I; Gavilán, Maximiliano; López de Mishima, Beatriz A; Martino, Débora M; Borsarelli, Claudio D

    2016-04-01

    A series of glucose bioelectrodes were prepared by glucose oxidase (GOx) immobilization into laponite hydrogel films containing DNA bioinspired polycations made of vinylbenzyl thymine (VBT) and vinylbenzyl triethylammonium chloride (VBA) with general formulae (VBT)m(VBA)n](n+)≈25 with m=0, 1 and n=2, 4, 8, deposited onto glassy carbon electrode. The bioelectrodes were characterized by chronoamperometry, cyclic voltammetry and electrochemical impedance spectroscopy. Results indicated that the electrochemical properties of the laponite hydrogel films were largely improved by the incorporation of thymine-based polycations, being proportional to the positive charge density of the polycation molecule. After incorporation of glucose oxidase, the sensitivity of the bioelectrode to glucose increased with the positive charge density of the polycation. Additionally, the presence of the vinylbenzyl thymine moiety played a role in the long-term stability and reproducibility of the bioelectrode signal. As a consequence, the [(VBT)(VBA)8](8+)≈25 was the most appropriate polycation for bioelectrode preparation and glucose sensing, with a specific sensitivity of se=176 mA mmol(-1)Lcm(-2)U(-1), almost two-order of magnitude larger than other laponite immobilized GOx bioelectrodes reported elsewhere. These features were confirmed by testing the bioelectrode for a selective determination of glucose in powder milk and blood serum samples without interference of either ascorbic or uric acids under the experimental conditions. The present study demonstrates the suitability of DNA bioinspired water-soluble polycations [(VBT)m(VBA)n](n+)≈25 for enzyme immobilization like GOx into laponite hydrogels, and the preparation of highly sensitive and stable bioelectrodes on glassy carbon surface. PMID:26838454

  9. The Mechanisms of Generation, Recognition, and Erasure of DNA 5-Methylcytosine and Thymine Oxidations*

    PubMed Central

    Hashimoto, Hideharu; Zhang, Xing; Vertino, Paula M.; Cheng, Xiaodong

    2015-01-01

    One of the most fundamental questions in the control of gene expression in mammals is how the patterns of epigenetic modifications of DNA are generated, recognized, and erased. This includes covalent cytosine methylation of DNA and its associated oxidation states. An array of AdoMet-dependent methyltransferases, Fe(II)- and α-ketoglutarate-dependent dioxygenases, base excision glycosylases, and sequence-specific transcription factors is responsible for changing, maintaining, and interpreting the modification status of specific regions of chromatin. This review focuses on recent developments in characterizing the functional and structural links between the modification status of two DNA bases 5-methylcytosine and thymine (5-methyluracil). PMID:26152719

  10. Synthesis of the C8'-epimeric thymine pyranosyl amino acid core of amipurimycin.

    PubMed

    Markad, Pramod R; Kumbhar, Navanath; Dhavale, Dilip D

    2016-01-01

    The C8'-epimeric pyranosyl amino acid core 2 of amipurimycin was synthesized from D-glucose derived alcohol 3 in 13 steps and 14% overall yield. Thus, the Sharpless asymmetric epoxidation of allyl alcohol 7 followed by trimethyl borate mediated regio-selective oxirane ring opening with azide, afforded azido diol 10. The acid-catalyzed 1,2-acetonide ring opening in 10 concomitantly led to the formation of the pyranose ring skeleton to give 2,7-dioxabicyclo[3.2.1]octane 12. Functional group manipulation in 12 gave 21 that on stereoselective β-glycosylation afforded the pyranosyl thymine nucleoside 2 - a core of amipurimycin. PMID:27559421

  11. Synthesis of 1-(β-D-Galactopyranosyl)Thymine-6'-O-Triphosphate - A Potential Probe to Generate Reactive Dialdehyde for DNA-Enzyme Cross-Linking.

    PubMed

    Kore, Anilkumar R; Yang, Bo; Srinivasan, Balasubramanian

    2015-01-01

    Concise, facile, and efficient synthesis of 1-(β-D-galactopyranosyl)thymine-6'-O-triphosphate, a potential probe that can generate reactive dialdehyde for DNA-enzyme cross-linking applications, was described starting from O,O'-bis(trimethylsilyl)thymine. Stannic chloride promoted glycosylation of 1,2,3,4,6-penta-O-acetyl-α-D-galactopyranose with O,O'-bis(trimethylsilyl)thymine, resulting in the formation of 1-(2,3,4,6-O-tetraacetyl-β-D-galactopyranosyl)thymine in 91% yield. Acetyl deprotection using methanolic ammonia afforded 1-(β-D-galactopyranosyl)thymine in 98% yield. The modified one-pot methodology was used to convert 1-(β-D-galactopyranosyl)thymine into 1-(β-D-galactopyranosyl)thymine-6'-O-triphosphate in 72% yield, which involves the formation of 1-(β-D-galactopyranosyl)thymine dichlorophosphoridate using POCl3 as the reagent at the monophosphorylation step followed by reaction with tributylammonium pyrophosphate and hydrolysis of resulting cyclic intermediate.

  12. Coherent anti-Stokes Raman scattering enhancement of thymine adsorbed on graphene oxide

    PubMed Central

    2014-01-01

    Coherent anti-Stokes Raman scattering (CARS) of carbon nanostructures, namely, highly oriented pyrolytic graphite, graphene nanoplatelets, graphene oxide, and multiwall carbon nanotubes as well CARS spectra of thymine (Thy) molecules adsorbed on graphene oxide were studied. The spectra of the samples were compared with spontaneous Raman scattering (RS) spectra. The CARS spectra of Thy adsorbed on graphene oxide are characterized by shifts of the main bands in comparison with RS. The CARS spectra of the initial nanocarbons are definitely different: for all investigated materials, there is a redistribution of D- and G-mode intensities, significant shift of their frequencies (more than 20 cm-1), and appearance of new modes about 1,400 and 1,500 cm-1. The D band in CARS spectra is less changed than the G band; there is an absence of 2D-mode at 2,600 cm-1 for graphene and appearance of intensive modes of the second order between 2,400 and 3,000 cm-1. Multiphonon processes in graphene under many photon excitations seem to be responsible for the features of the CARS spectra. We found an enhancement of the CARS signal from thymine adsorbed on graphene oxide with maximum enhancement factor about 105. The probable mechanism of CARS enhancement is discussed. PMID:24948887

  13. Adenine versus guanine DNA adducts of aristolochic acids: role of the carcinogen–purine linkage in the differential global genomic repair propensity

    PubMed Central

    Kathuria, Preetleen; Sharma, Purshotam; Wetmore, Stacey D.

    2015-01-01

    Computational modeling is employed to provide a plausible structural explanation for the experimentally-observed differential global genome repair (GGR) propensity of the ALII-N2-dG and ALII-N6-dA DNA adducts of aristolochic acid II. Our modeling studies suggest that an intrinsic twist at the carcinogen–purine linkage of ALII-N2-dG induces lesion site structural perturbations and conformational heterogeneity of damaged DNA. These structural characteristics correlate with the relative repair propensities of AA-adducts, where GGR recognition occurs for ALII-N2-dG, but is evaded for intrinsically planar ALII-N6-dA that minimally distorts DNA and restricts the conformational flexibility of the damaged duplex. The present analysis on the ALII adduct model systems will inspire future experimental studies on these adducts, and thereby may extend the list of structural factors that directly correlate with the propensity for GGR recognition. PMID:26175048

  14. An Adenine-DNA Adduct Derived from Nitroreduction of 6-Nitrochrysene is more Resistant to Nucleotide Excision Repair than Guanine-DNA Adducts

    PubMed Central

    Krzeminski, Jacek; Kropachev, Konstantin; Reeves, Dara; Kolbanovskiy, Aleksandr; Kolbanovskiy, Marina; Chen, Kun-Ming; Sharma, Arun K.; Geacintov, Nicholas; Amin, Shantu; El-Bayoumy, Karam

    2013-01-01

    Previous studies in rats, mice and in vitro systems showed that 6-NC can be metabolically activated by two major pathways: 1) the formation of N-hydroxy-6-aminochrysene by nitroreduction to yield three major adducts: N-(dG-8-yl)-6-AC, 5-(dG-N2-yl)-6-AC and N-(dA-8-yl)-6-AC, and 2) the formation of trans-1,2-dihydroxy-1,2-dihydro-6-hydroxylaminochrysene (1,2-DHD-6-NHOH-C) by a combination of nitroreduction and ring oxidation pathways to yield: N-(dG-8-yl)-1,2-DHD-6-AC, 5-(dG-N2-yl)-1,2-DHD-6-AC and N-(dA-8-yl)-1,2-DHD-6-AC. These DNA lesions are likely to cause mutations if they are not removed by cellular defense mechanisms before DNA replication occurs. Here we compared for the first time, in HeLa cell extracts in vitro, the relative nucleotide excision repair (NER) efficiencies of DNA lesions derived from simple nitroreduction and from a combination of nitroreduction and ring oxidation pathways. We show that the N-(dG-8-yl)-1,2-DHD-6-AC adduct is more resistant to NER than the N-(dG-8-yl)-6-AC adduct by a factor of ~2. Furthermore, the N-(dA-8-yl)-6-AC is much more resistant to repair since its NER efficiency is ~ 8-fold lower than that of the N-(dG-8-yl)-6-AC adduct. On the basis of our previous study and the present investigation, lesions derived from 6-NC and benzo[a]pyrene can be ranked from the most to the least resistant lesion as follows: N-(dA-8-yl)-6-AC > N-(dG-8-yl)-1,2-DHD-6-AC > 5-(dG-N2-yl)-6-AC ~ N-(dG-8-yl)-6-AC ~ (+)-7R,8S,9S,10S-benzo[a]pyrene diol epoxide-derived trans-anti-benzo[a]pyrene-N2-dG adduct. The slow repair of the various lesions derived from 6-NC and thus their potential persistence in mammalian tissue, could in part account for the powerful carcinogenicity of 6-NC as compared to B[a]P in the rat mammary gland. PMID:24112095

  15. Influence of hydrogen bonding on the geometry of the adenine fragment

    NASA Astrophysics Data System (ADS)

    Słowikowska, Joanna Maria; Woźniak, Krzysztof

    1996-01-01

    The crystal structures of two adenine derivatives, N(6),9-dimethyl-8-butyladenine (I) and its hydrate (1 : 1) (II), have been determined by single-crystal X-ray diffraction. The geometrical features of both structures are discussed. The influence of protonation, substitution and hydrogen bond formation on the geometry of the adenine fragment was studied, based on data retrieved from the Cambridge Structural Database. Total correlation analysis showed mutual correlation between the structural parameters in the adenine ring system; partial correlation calculations for the adenine nucleoside fragments suggest intercorrelation between the parameters of the hydrogen bonding involved in base pairing and the N(adenine)-C(sugar) bond through the adenine fragment; few such correlations were found for fragments without the sugar substituent.

  16. Examination of tyrosine/adenine stacking interactions in protein complexes.

    PubMed

    Copeland, Kari L; Pellock, Samuel J; Cox, James R; Cafiero, Mauricio L; Tschumper, Gregory S

    2013-11-14

    The π-stacking interactions between tyrosine amino acid side chains and adenine-bearing ligands are examined. Crystalline protein structures from the protein data bank (PDB) exhibiting face-to-face tyrosine/adenine arrangements were used to construct 20 unique 4-methylphenol/N9-methyladenine (p-cresol/9MeA) model systems. Full geometry optimization of the 20 crystal structures with the M06-2X density functional theory method identified 11 unique low-energy conformations. CCSD(T) complete basis set (CBS) limit interaction energies were estimated for all of the structures to determine the magnitude of the interaction between the two ring systems. CCSD(T) computations with double-ζ basis sets (e.g., 6-31G*(0.25) and aug-cc-pVDZ) indicate that the MP2 method overbinds by as much as 3.07 kcal mol(-1) for the crystal structures and 3.90 kcal mol(-1) for the optimized structures. In the 20 crystal structures, the estimated CCSD(T) CBS limit interaction energy ranges from -4.00 to -6.83 kcal mol(-1), with an average interaction energy of -5.47 kcal mol(-1), values remarkably similar to the corresponding data for phenylalanine/adenine stacking interactions. Geometry optimization significantly increases the interaction energies of the p-cresol/9MeA model systems. The average estimated CCSD(T) CBS limit interaction energy of the 11 optimized structures is 3.23 kcal mol(-1) larger than that for the 20 crystal structures.

  17. A comparison of adenine and some derivatives on pig isolated tracheal muscle.

    PubMed Central

    Bach-Dieterle, Y.; Holden, W. E.; Junod, A. F.

    1983-01-01

    We studied the muscle relaxation induced by adenine and several adenine derivatives in strips of tracheal smooth muscle from pigs; in addition their metabolism by the tissue was examined. Adenine relaxed tissue which was contracted by carbachol, histamine, or KCl. Adenine's potency was similar to that of adenosine and ATP (threshold about 4 X 10(-5)M). In tissues with carbachol-induced tone, the adenine effect differed from adenosine and ATP by being slower in onset and in 'washout' time. Furthermore, neither dipyridamole nor theophylline modified the response to adenine. The relationship was examined between pharmacological effects and the metabolism of [3H]-adenosine and [3H]-adenine. Both substrates were taken up by the tissue and converted to nucleotides, but relaxation correlated with nucleotide accumulation only in the case of [3H]-adenine. We conclude that the site and mechanism of adenine-induced relaxation is different from that of adenosine and ATP in porcine tracheal muscle. PMID:6571222

  18. Mobility enhancement of organic field-effect transistor based on guanine trap-neutralizing layer

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Zheng, Yifan; Yu, Junsheng; Taylor, André D.; Katz, Howard E.

    2016-10-01

    We introduced a nucleic acid component guanine as a trap-neutralizing layer between silicon dioxide gate dielectric and a pentacene semiconducting layer to obtain increased field-effect mobility in organic field-effect transistors (OFETs). A tripling of the field-effect mobility, from 0.13 to 0.42 cm2/V s, was achieved by introducing a 2 nm guanine layer. By characterizing the surface morphology of pentacene films grown on guanine, we found that the effect of guanine layer on the topography of pentacene film was not responsible for the mobility enhancement of the OFETs. The increased field-effect mobility was mainly attributed to the hydrogen bonding capacity of otherwise unassociated guanine molecules, which enabled them to neutralize trapping sites on the silicon dioxide surface.

  19. Mutants of Neurospora deficient in nicotinamide adenine dinucleotide (phosphate) glycohydrolase.

    PubMed Central

    Nelson, R E; Selitrennikoff, C P; Siegel, R W

    1975-01-01

    A new screening technique has been developed for the rapid identification of Neurospora crassa mutants that are deficient in nicotinamide adenine dinucleotide glycohydrolase (NADase) and nicotinamide adenine dinucleotide phosphate glycohydrolase (NADPase) activities. Using this procedure, five single-gene mutants were isolated whose singular difference from wild type appeared to be the absence of NAD(P)ase (EC 3.2.2.6). All five mutants were found to be genetically allelic and did not complement in heterocaryons. This gene, nada [NAD(P)ase], was localized in linkage group IV. One of the nada alleles was found to specify an enzyme that was critically temperature sensitive and had altered substrate affinity. Mutations at the nada locus did not affect the genetic program for the expression of NAD(P)ase during cell differentiation, nor did they have a general effect on NAD catabolism. Nada mutations did not have simultaneous effects on other glycohydrolase activities. Tests of dominance (in heterocaryons) and in vitro mixing experiments did not provide evidence that nada mutations alter activators or inhibitors of NAD(P)ase. Thus, the nada gene appears to specify only the structure of N. crassa NAD(P)ase. Images PMID:165174

  20. Nonselective enrichment for yeast adenine mutants by flow cytometry

    NASA Technical Reports Server (NTRS)

    Bruschi, C. V.; Chuba, P. J.

    1988-01-01

    The expression of certain adenine biosynthetic mutations in the yeast Saccharomyces cerevisiae results in a red colony color. This phenomenon has historically provided an ideal genetic marker for the study of mutation, recombination, and aneuploidy in lower eukaryotes by classical genetic analysis. In this paper, it is reported that cells carrying ade1 and/or ade2 mutations exhibit primary fluorescence. Based on this observation, the nonselective enrichment of yeast cultures for viable adenine mutants by using the fluorescence-activated cell sorter has been achieved. The advantages of this approach over conventional genetic analysis of mutation, recombination, and mitotic chromosomal stability include speed and accuracy in acquiring data for large numbers of clones. By using appropriate strains, the cell sorter has been used for the isolation of both forward mutations and chromosomal loss events in S. cerevisiae. The resolving power of this system and its noninvasiveness can easily be extended to more complex organisms, including mammalian cells, in which analogous metabolic mutants are available.

  1. Structural basis of error-prone replication and stalling at a thymine base by human DNA polymerase

    SciTech Connect

    Kirouac, Kevin N.; Ling, Hong

    2009-06-30

    Human DNA polymerase iota (pol iota) is a unique member of Y-family polymerases, which preferentially misincorporates nucleotides opposite thymines (T) and halts replication at T bases. The structural basis of the high error rates remains elusive. We present three crystal structures of pol complexed with DNA containing a thymine base, paired with correct or incorrect incoming nucleotides. A narrowed active site supports a pyrimidine to pyrimidine mismatch and excludes Watson-Crick base pairing by pol. The template thymine remains in an anti conformation irrespective of incoming nucleotides. Incoming ddATP adopts a syn conformation with reduced base stacking, whereas incorrect dGTP and dTTP maintain anti conformations with normal base stacking. Further stabilization of dGTP by H-bonding with Gln59 of the finger domain explains the preferential T to G mismatch. A template 'U-turn' is stabilized by pol and the methyl group of the thymine template, revealing the structural basis of T stalling. Our structural and domain-swapping experiments indicate that the finger domain is responsible for pol's high error rates on pyrimidines and determines the incorporation specificity.

  2. Double threading through DNA: NMR structural study of a bis-naphthalene macrocycle bound to a thymine–thymine mismatch

    PubMed Central

    Jourdan, Muriel; Granzhan, Anton; Guillot, Regis; Dumy, Pascal; Teulade-Fichou, Marie-Paule

    2012-01-01

    The macrocyclic bis-naphthalene macrocycle (2,7-BisNP), belonging to the cyclobisintercalator family of DNA ligands, recognizes T–T mismatch sites in duplex DNA with high affinity and selectivity, as evidenced by thermal denaturation experiments and NMR titrations. The binding of this macrocycle to an 11-mer DNA oligonucleotide containing a T–T mismatch was studied using NMR spectroscopy and NMR-restrained molecular modeling. The ligand forms a single type of complex with the DNA, in which one of the naphthalene rings of the ligand occupies the place of one of the mismatched thymines, which is flipped out of the duplex. The second naphthalene unit of the ligand intercalates at the A-T base pair flanking the mismatch site, leading to encapsulation of its thymine residue via double stacking. The polyammonium linking chains of the macrocycle are located in the minor and the major grooves of the oligonucleotide and participate in the stabilization of the complex by formation of hydrogen bonds with the encapsulated thymine base and the mismatched thymine remaining inside the helix. The study highlights the uniqueness of this cyclobisintercalation binding mode and its importance for recognition of DNA lesion sites by small molecules. PMID:22362757

  3. Synthesis of the C8’-epimeric thymine pyranosyl amino acid core of amipurimycin

    PubMed Central

    Markad, Pramod R; Kumbhar, Navanath

    2016-01-01

    Summary The C8’-epimeric pyranosyl amino acid core 2 of amipurimycin was synthesized from D-glucose derived alcohol 3 in 13 steps and 14% overall yield. Thus, the Sharpless asymmetric epoxidation of allyl alcohol 7 followed by trimethyl borate mediated regio-selective oxirane ring opening with azide, afforded azido diol 10. The acid-catalyzed 1,2-acetonide ring opening in 10 concomitantly led to the formation of the pyranose ring skeleton to give 2,7-dioxabicyclo[3.2.1]octane 12. Functional group manipulation in 12 gave 21 that on stereoselective β-glycosylation afforded the pyranosyl thymine nucleoside 2 – a core of amipurimycin. PMID:27559421

  4. Thymine DNA Glycosylase Is a Positive Regulator of Wnt Signaling in Colorectal Cancer*

    PubMed Central

    Xu, Xuehe; Yu, Tianxin; Shi, Jiandang; Chen, Xi; Zhang, Wen; Lin, Ting; Liu, Zhihong; Wang, Yadong; Zeng, Zheng; Wang, Chi; Li, Mingsong; Liu, Chunming

    2014-01-01

    Wnt signaling plays an important role in colorectal cancer (CRC). Although the mechanisms of β-catenin degradation have been well studied, the mechanism by which β-catenin activates transcription is still not fully understood. While screening a panel of DNA demethylases, we found that thymine DNA glycosylase (TDG) up-regulated Wnt signaling. TDG interacts with the transcription factor TCF4 and coactivator CREB-binding protein/p300 in the Wnt pathway. Knocking down TDG by shRNAs inhibited the proliferation of CRC cells in vitro and in vivo. In CRC patients, TDG levels were significantly higher in tumor tissues than in the adjacent normal tissues. These results suggest that TDG warrants consideration as a potential biomarker for CRC and as a target for CRC treatment. PMID:24532795

  5. Electronic structure of uracil-like nucleobases adsorbed on Si(001): uracil, thymine and 5-fluorouracil

    NASA Astrophysics Data System (ADS)

    Molteni, Elena; Onida, Giovanni; Cappellini, Giancarlo

    2016-04-01

    We study the electronic properties of the Si(001):Uracil, Si(001):Thymine, and Si(001):5-Fluorouracil systems, focusing on the Si dimer-bridging configuration with adsorption governed by carbonyl groups. While the overall structural and electronic properties are similar, with small differences due to chemical substitutions, much larger effects on the surface band dispersion and bandgap show up as a function of the molecular orientation with respect to the surface. An off-normal orientation of the molecular planes is favored, showing larger bandgap and lower total energy than the upright position. We also analyze the localization of gap-edge occupied and unoccupied surface states. Supplementary material in the form of one pdf file available from the Journal web page at http://dx.doi.org/10.1140/epjb/e2016-70011-1

  6. Ab initio study of guanine damage by hydroxyl radical.

    PubMed

    Chaban, Galina M; Wang, Dunyou; Huo, Winifred M

    2015-01-15

    Multiconfigurational ab initio methods are used in this study to examine two initial reactions that take place during the OH radical attack of the DNA base guanine: a ring opening reaction and a hydrogen transfer reaction. The same reactions are also studied in the presence of a single water molecule. The ring opening reaction has a moderate barrier height of ∼20-25 kcal/mol that is relatively insensitive to the presence of water. The barrier of the H-transfer reaction, on the other hand, is lowered from ∼50 to ∼22 kcal/mol when one water molecule is added, thus becoming comparable to the barrier height of the ring opening reaction. PMID:25517252

  7. Guanine modification of inhibitory oligonucleotides potentiates their suppressive function.

    PubMed

    Römmler, Franziska; Jurk, Marion; Uhlmann, Eugen; Hammel, Monika; Waldhuber, Anna; Pfeiffer, Lavinia; Wagner, Hermann; Vollmer, Jörg; Miethke, Thomas

    2013-09-15

    Inhibitory TLR7 and/or TLR9 oligonucleotides (inhibitory oligonucleotide [INH-ODN]) are characterized by a phosphorothioate backbone and a CC(T)XXX₃₋₅GGG motif, respectively. INH-ODN 2088 is a prototypic member of this class of INH-ODN and acts as a TLR7 and TLR9 antagonist. It contains a G quadruple that leads to higher order structures by the formation of G tetrads. These structures are unfavorable for the prediction of their pharmacological and immunological behavior. We show in this study that modification of Gs within the G quadruple by 7-deaza-guanine or 7-deaza-2'-O-methyl-guanine avoids higher order structures and improves their inhibitory potential. Whereas TLR9-induced TNF-α secretion of bone marrow-derived macrophages and conventional dendritic cells was equally inhibited by INH-ODN 2088 and G-modified INH-ODNs such as INH-ODN 24888, TLR7-induced TNF-α release and TLR7- and TLR9-induced IL-12p40 release were significantly more impaired by G-modified INH-ODNs. Similarly, the IL-6 release of B cells from wild-type and autoimmune MRL/Mp-lpr/lpr mice was more efficiently impaired by G-modified INH-ODNs. Surprisingly, INH-ODN 2088 stimulated B cells to proliferate when used in higher doses. Finally, in vivo, in wild-type and autoimmune MRL/Mp-lpr/lpr mice, G-modified INH-ODN 24888 was significantly more efficient than unmodified INH-ODN 2088. In summary, G modification allows the development of INH-ODNs with superior inhibitory potency for inflammatory diseases with high medical need such as systemic lupus erythematosus. PMID:23966630

  8. Adenine nucleotides as allosteric effectors of pea seed glutamine synthetase.

    PubMed

    Knight, T J; Langston-Unkefer, P J

    1988-08-15

    The effects of adenine nucleotides on pea seed glutamine synthetase (EC 6.3.1.2) activity were examined as a part of our investigation of the regulation of this octameric plant enzyme. Saturation curves for glutamine synthetase activity versus ATP with ADP as the changing fixed inhibitor were not hyperbolic; greater apparent Vmax values were observed in the presence of added ADP than the Vmax observed in the absence of ADP. Hill plots of data with ADP present curved upward and crossed the plot with no added ADP. The stoichiometry of adenine nucleotide binding to glutamine synthetase was examined. Two molecules of [gamma-32P]ATP were bound per subunit in the presence of methionine sulfoximine. These ATP molecules were bound at an allosteric site and at the active site. One molecule of either [gamma-32P]ATP or [14C]ADP bound per subunit in the absence of methionine sulfoximine; this nucleotide was bound at an allosteric site. ADP and ATP compete for binding at the allosteric site, although ADP was preferred. ADP binding to the allosteric site proceeded in two kinetic phases. A Vmax value of 1.55 units/mg was measured for glutamine synthetase with one ADP tightly bound per enzyme subunit; a Vmax value of 0.8 unit/mg was measured for enzyme with no adenine nucleotide bound at the allosteric site. The enzyme activation caused by the binding of ADP to the allosteric sites was preceded by a lag phase, the length of which was dependent on the ADP concentration. Enzyme incubated in 10 mM ADP bound approximately 4 mol of ADP/mol of native enzyme before activation was observed; the activation was complete when 7-8 mol of ADP were bound per mol of the octameric, native enzyme. The Km for ATP (2 mM) was not changed by ADP binding to the allosteric sites. ADP was a simple competitive inhibitor (Ki = 0.05 mM) of ATP for glutamine synthetase with eight molecules of ADP tightly bound to the allosteric sites of the octamer. Binding of ATP to the allosteric sites led to marked

  9. Characterization of lysine-guanine cross-links upon one-electron oxidation of a guanine-containing oligonucleotide in the presence of a trilysine peptide.

    PubMed

    Perrier, Sandrine; Hau, Jörg; Gasparutto, Didier; Cadet, Jean; Favier, Alain; Ravanat, Jean-Luc

    2006-05-01

    Formation of DNA-protein cross-links involving the initial formation of a guanine radical cation was investigated. For this purpose, riboflavin-mediated photosensitization of a TGT oligonucleotide in aerated aqueous solution in the presence of the KKK tripeptide was performed. We have shown that the nucleophilic addition of the epsilon-amino group of the central lysine residue of KKK to the C8 atom of either the guanine radical cation or its deprotonated form gives rise to the efficient formation of a Nepsilon-(guanin-8-yl)-lysine cross-link. Interestingly, the time course of formation of the above-mentioned cross-link was found to be not linear with the time of irradiation, and its formation rapidly reached a plateau. This is explained by secondary decomposition of the initially generated cross-link which could be further oxidized more efficiently than starting TGT oligonucleotide. One-electron oxidation of the initially generated cross-link was found to produce mainly two diastereomeric cross-links exhibiting a spiroimino-trilysine-dihydantoin structure as inferred from enzymatic digestion, CD, UV, NMR and mass spectrometry measurements. In addition, other minor cross-links, for which formation was favored at acidic pH, were assigned as lysine-guanine adducts in which the modified guanine base exhibits a guanidino-trilysine-iminohydantoin structure. A proposed mechanism for the formation of the different detected oligonucleotide-peptide cross-links is given. The high yield of formation of the detected cross-links strongly suggests that a DNA-protein cross-link involving a lysine residue linked to the C8 position of guanine could be generated in cellular systems if a lysine is located in the close vicinity of a guanine radical cation.

  10. Interaction of sulfanilamide and sulfamethoxazole with bovine serum albumin and adenine: spectroscopic and molecular docking investigations.

    PubMed

    Rajendiran, N; Thulasidhasan, J

    2015-06-01

    Interaction between sulfanilamide (SAM) and sulfamethoxazole (SMO) with BSA and DNA base (adenine) was investigated by UV-visible, fluorescence, cyclic voltammetry and molecular docking studies. Stern-Volmer fluorescence quenching constant (Ka) suggests SMO is more quenched with BSA/adenine than that of SAM. The distance r between donor (BSA/adenine) and acceptor (SAM and SMO) was obtained according to fluorescence resonance energy transfer (FRET). The results showed that hydrophobic forces, electrostatic interactions, and hydrogen bonds played vital roles in the SAM and SMO with BSA/adenine binding interaction. During the interaction, sulfa drugs could insert into the hydrophobic pocket, where the non-radioactive energy transfer from BSA/adenine to sulfa drugs occurred with high possibility. Cyclic voltammetry results suggested that when the drug concentration is increased, the anodic electrode potential deceased. The docking method indicates aniline group is interacted with the BSA molecules. PMID:25754395

  11. Interaction of sulfanilamide and sulfamethoxazole with bovine serum albumin and adenine: Spectroscopic and molecular docking investigations

    NASA Astrophysics Data System (ADS)

    Rajendiran, N.; Thulasidhasan, J.

    2015-06-01

    Interaction between sulfanilamide (SAM) and sulfamethoxazole (SMO) with BSA and DNA base (adenine) was investigated by UV-visible, fluorescence, cyclic voltammetry and molecular docking studies. Stern-Volmer fluorescence quenching constant (Ka) suggests SMO is more quenched with BSA/adenine than that of SAM. The distance r between donor (BSA/adenine) and acceptor (SAM and SMO) was obtained according to fluorescence resonance energy transfer (FRET). The results showed that hydrophobic forces, electrostatic interactions, and hydrogen bonds played vital roles in the SAM and SMO with BSA/adenine binding interaction. During the interaction, sulfa drugs could insert into the hydrophobic pocket, where the non-radioactive energy transfer from BSA/adenine to sulfa drugs occurred with high possibility. Cyclic voltammetry results suggested that when the drug concentration is increased, the anodic electrode potential deceased. The docking method indicates aniline group is interacted with the BSA molecules.

  12. Direct Isolation of Purines and Pyrimidines from Nucleic Acids Using Sublimation

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Schubert, Michael; Bada, Jeffrey L.

    2003-01-01

    A sublimation technique was developed to isolate purines and pyrimidines directly from lambda-deoxyribonucleic acid (lambda-DNA) and Escherichia coli cells. The sublimation of adenine, cytosine, guanine, and thymine from lambda-DNA was tested under reduced pressure (approx. 0.5 Torr) at temperatures of >150 C. With the exception of guanine, approximately 60 -75% of each base was sublimed directly from the lambda-DNA and recovered on a coldfinger of the sublimation apparatus after heating to 450 C. Several nucleobases including adenine, cytosine, thymine, and uracil were also recovered from E. coli bacteria after heating the cells to the same temperature, although some thermal decomposition of the bases also occurred. These results demonstrate the feasibility of using sublimation to isolate purines and pyrimidines from native E. coli DNA and RNA without any chemical treatment of the cells.

  13. Das DNA-Puzzle

    NASA Astrophysics Data System (ADS)

    Kirchner, Stefan

    Im Jahre 1953 wurde von James Watson und Francis Crick erstmalig der strukturelle Aufbau der sogenannten DNA (Desoxyribonukleinsäure) beschrieben, welche das Erbgut jedes Lebewesens enthält. Der wesentliche Teil des Erbguts wird dabei durch eine sehr lange Folge der vier Basen Adenin (A), Cytosin (C), Guanin (G) und Thymin (T) codiert. Seit einigen Jahren ist es möglich, die Folge der vier Basen zu einer gegebenen DNA zu bestimmen. Biologen bezeichnen diesen Vorgang als Sequenzierung.

  14. Association of poly(N-isopropylacrylamide) containing nucleobase multiple hydrogen bonding of adenine for DNA recognition

    NASA Astrophysics Data System (ADS)

    Yang, Hsiu-Wen; Chen, Jem-Kun; Cheng, Chih-Chia; Kuo, Shiao-Wei

    2013-04-01

    In this study we used the poly(N-isopropylacrylamide) (PNIPAAm) as a medium to generate PNIPAAm-adenine supramolecular complexes. A nucleobase-like hydrogen bonding (NLHB) between PNIPAAm and adenine was found that changed the morphology, crystalline structure, and temperature responsiveness of PNIPAAm microgels relatively to the adenine concentrations. With increasing the adenine concentration, the PNIPAAm-adenine supramolecular complexes gradually altered their morphologies from microgel particles to thin film structures and suppressed the thermodynamical coil-to-globule transition of PNIPAAm because of the NLHB existed between the PNIPAAm amide and ester groups and the adenine amide groups (Cdbnd O⋯Hsbnd N and Nsbnd H⋯Nsbnd R), verified by FTIR spectral analysis. NLHB was also diverse and extensive upon increasing the temperature; therefore, the thermoresponsive behavior of the complexes was altered with the NLBH intensity, evaluated by the inter-association equilibrium constant (Ka) above and below their LCST. Therefore, PNIPAAm can be as a medium to recognize adenine in various concentrations, which could potentially be applied in DNA recognition.

  15. Renoprotective effect of the xanthine oxidoreductase inhibitor topiroxostat on adenine-induced renal injury.

    PubMed

    Kamijo-Ikemori, Atsuko; Sugaya, Takeshi; Hibi, Chihiro; Nakamura, Takashi; Murase, Takayo; Oikawa, Tsuyoshi; Hoshino, Seiko; Hisamichi, Mikako; Hirata, Kazuaki; Kimura, Kenjiro; Shibagaki, Yugo

    2016-06-01

    The aim of the present study was to reveal the effect of a xanthine oxidoreductase (XOR) inhibitor, topiroxostat (Top), compared with another inhibitor, febuxostat (Feb), in an adenine-induced renal injury model. We used human liver-type fatty acid-binding protein (L-FABP) chromosomal transgenic mice, and urinary L-FABP, a biomarker of tubulointerstitial damage, was used to evaluate tubulointerstitial damage. Male transgenic mice (n = 24) were fed a 0.2% (wt/wt) adenine-containing diet. Two weeks after the start of this diet, renal dysfunction was confirmed, and the mice were divided into the following four groups: the adenine group was given only the diet containing adenine, and the Feb, high-dose Top (Top-H), and low-dose Top (Top-L) groups were given diets containing Feb (3 mg/kg), Top-H (3 mg/kg), and Top-L (1 mg/kg) in addition to adenine for another 2 wk. After withdrawal of the adenine diet, each medication was continued for 2 wk. Serum creatinine levels, the degree of macrophage infiltration, tubulointerstitial damage, renal fibrosis, urinary 15-F2t-isoprostane levels, and renal XOR activity were significantly attenuated in the kidneys of the Feb, Top-L, and Top-H groups compared with the adenine group. Serum creatinine levels in the Top-L and Top-H groups as well as renal XOR in the Top-H group were significantly lower than those in the Feb group. Urinary excretion of L-FABP in both the Top-H and Top-L groups was significantly lower than in the adenine and Feb groups. In conclusion, Top attenuated renal damage in an adenine-induced renal injury model. PMID:27029427

  16. Renoprotective effect of the xanthine oxidoreductase inhibitor topiroxostat on adenine-induced renal injury.

    PubMed

    Kamijo-Ikemori, Atsuko; Sugaya, Takeshi; Hibi, Chihiro; Nakamura, Takashi; Murase, Takayo; Oikawa, Tsuyoshi; Hoshino, Seiko; Hisamichi, Mikako; Hirata, Kazuaki; Kimura, Kenjiro; Shibagaki, Yugo

    2016-06-01

    The aim of the present study was to reveal the effect of a xanthine oxidoreductase (XOR) inhibitor, topiroxostat (Top), compared with another inhibitor, febuxostat (Feb), in an adenine-induced renal injury model. We used human liver-type fatty acid-binding protein (L-FABP) chromosomal transgenic mice, and urinary L-FABP, a biomarker of tubulointerstitial damage, was used to evaluate tubulointerstitial damage. Male transgenic mice (n = 24) were fed a 0.2% (wt/wt) adenine-containing diet. Two weeks after the start of this diet, renal dysfunction was confirmed, and the mice were divided into the following four groups: the adenine group was given only the diet containing adenine, and the Feb, high-dose Top (Top-H), and low-dose Top (Top-L) groups were given diets containing Feb (3 mg/kg), Top-H (3 mg/kg), and Top-L (1 mg/kg) in addition to adenine for another 2 wk. After withdrawal of the adenine diet, each medication was continued for 2 wk. Serum creatinine levels, the degree of macrophage infiltration, tubulointerstitial damage, renal fibrosis, urinary 15-F2t-isoprostane levels, and renal XOR activity were significantly attenuated in the kidneys of the Feb, Top-L, and Top-H groups compared with the adenine group. Serum creatinine levels in the Top-L and Top-H groups as well as renal XOR in the Top-H group were significantly lower than those in the Feb group. Urinary excretion of L-FABP in both the Top-H and Top-L groups was significantly lower than in the adenine and Feb groups. In conclusion, Top attenuated renal damage in an adenine-induced renal injury model.

  17. Potential derived point charge model study of electrostatic interaction energies in some complexes of water with uracil, thymine, and cytosine.

    PubMed

    Ray, N K; Bolis, G; Shibata, M; Rein, R

    1984-01-01

    Potential derived (PD) point charges and segmental multipole moments are calculated for water, uracil, thymine, and cytosine using STO-3G quality wave functions. The PD point charges are used to estimate the electrostatic interaction energies for a series of complexes of water with these nucleic acid bases. It is shown here that the results obtained using simple PD charge model is very similar to those obtained from more elaborate segmental multipole moment analysis.

  18. Mass Spectrometry and Theoretical Studies on N-C Bond Cleavages in the N-Sulfonylamidino Thymine Derivatives

    NASA Astrophysics Data System (ADS)

    Kobetić, Renata; Kazazić, Snježana; Kovačević, Borislav; Glasovac, Zoran; Krstulović, Luka; Bajić, Miroslav; Žinić, Biserka

    2015-05-01

    The reactivity of new biologically active thymine derivatives substituted with 2-(arylsulfonamidino)ethyl group at N1 and N3 position was investigated in the gas phase using CID experiments (ESI-MS/MS) and by density functional theory (DFT) calculations. Both derivatives show similar chemistry in the negative mode with a retro-Michael addition (Path A-) being the most abundant reaction channel, which correlate well with the fluoride induced retro-Michael addition observed in solution. The difference in the fragmentation of N-3 substituted thymine 5 and N-1 substituted thymine 1 in the positive mode relates to the preferred cleavage of the sulfonyl group ( m/z 155, Path B) in N-3 isomer and the formation of the acryl sulfonamidine 3 ( m/z 309) via Path A in N-1 isomer. Mechanistic studies of the cleavage reaction conducted by DFT calculations give the trend of the calculated activation energies that agree well with the experimental observations. A mechanism of the retro-Michael reaction was interpreted as a McLafferty type of fragmentation, which includes Hβ proton shift to one of the neighboring oxygen atoms in a 1,5-fashion inducing N1(N3)-Cα bond scission. This mechanism was found to be kinetically favorable over other tested mechanisms. Significant difference in the observed fragmentation pattern of N-1 and N-3 isomers proves the ESI-MS/MS technique as an excellent method for tracking the fate of similar sulfonamidine drugs. Also, the observed N-1 and/or N-3 thymine alkylation with in situ formed reactive acryl sulfonamidine 3 as a Michael acceptor may open interesting possibilities for the preparation of other N-3 substituted pyrimidines.

  19. Guanine nucleotides stimulate hydrolysis of phosphatidyl inositol bis phosphate in human myelin membranes

    SciTech Connect

    Boulias, C.; Moscarello, M.A. )

    1989-07-14

    Phosphodiesterase activity was stimulated in myelin membranes in the presence of guanine nucleotide analogues. This activity was reduced in myelin membranes which had been adenosine diphosphate ribosylated in the presence of cholera toxin which ADP-ribosylated three proteins of Mr 46,000, 43,000 and 18,500. Aluminum fluoride treatment of myelin had the same stimulatory effects on phosphodiesterase activity as did the guanine nucleotides.

  20. Fluorescence resonance energy transfer in the studies of guanine quadruplexes.

    PubMed

    Juskowiak, Bernard; Takenaka, Shigeori

    2006-01-01

    A guanine (G)-quadruplex DNA motif has recently emerged as a biologically important structure that is believed to interfere with telomere maintenance by telomerase. G-quadruplexes exhibit four-stranded structures containing one or more nucleic acid strands with central channel able to accommodate metal cations. Coordination of certain metal cations stabilizes G-quadruplex as with some promising small organic molecules that promote the formation and/or stabilization of G-quadruplex. Among many techniques employed to explore properties of G-quadruplexes, the fluorescence resonance energy transfer (FRET) technique has been recognized as a powerful tool to study G-quadruplex formation. This review summarizes the current developments in the uses of FRET technique for the fundamental structural investigations and its practical applications. Applications include FRET-based selection of efficient quadruplex-binding ligands, design of a nanomolecular machine, and a molecular aptamer beacon for protein recognition. We also describe a technique for detection of potassium ions in aqueous solution with the use of quadruplex-based sensor (potassium-sensing oligonucleotide).

  1. Fluorescence enhancement of DNA-silver nanoclusters from guanine proximity

    SciTech Connect

    Yeh, Hsin-chih; Sharma, Jaswinder; Yoo, Hyojong; Martinez, Jennifer S

    2010-01-01

    Oligonucleotide-templated, silver nanoclusters (DNA/Ag NCs) are a versatile set of fluorophores and have already been used for live cell imaging, detection of specific metal ions, and single-nucleotide variation identification. Compared to commonly used organic dyes, these fluorescent nanoclusters have much better photostability and are often a few times brighter. Owing to their small size, simple preparation, and biocompatibility (i.e. made of nontoxic metals), DNA/Ag NCs should find more applications in biological imaging and chemical detection in the years to come. While clearly promising as new fluorophores, DNA/Ag NCs possess a unique and poorly understood dynamic process not shared by organic dyes or photoluminescent nanocrystals - the conversion among different NC species due to silver oxidation/reduction or NC regrouping. While this environmental sensitivity can be viewed as a drawback, in the appropriate context, it can be used as a sensor or reporter. Often reversible, conversions among different NC species have been found to depend upon a number of factors, including time, temperature, oxygen and salt content. In this communication, we report significant fluorescence enhancement of DNA/Ag NCs via interactions with guanine-rich DNA sequences. Moreover, we demonstrated this property can be used for sensitive detection of specific target DNA from a human oncogene (i.e. Braf gene).

  2. Kinetics and binding of the thymine-DNA mismatch glycosylase, Mig-Mth, with mismatch-containing DNA substrates.

    PubMed

    Begley, Thomas J; Haas, Brian J; Morales, Juan C; Kool, Eric T; Cunningham, Richard P

    2003-01-01

    We have examined the removal of thymine residues from T-G mismatches in DNA by the thymine-DNA mismatch glycosylase from Methanobacterium thermoautrophicum (Mig-Mth), within the context of the base excision repair (BER) pathway, to investigate why this glycosylase has such low activity in vitro. Using single-turnover kinetics and steady-state kinetics, we calculated the catalytic and product dissociation rate constants for Mig-Mth, and determined that Mig-Mth is inhibited by product apyrimidinic (AP) sites in DNA. Electrophoretic mobility shift assays (EMSA) provide evidence that the specificity of product binding is dependent upon the base opposite the AP site. The binding of Mig-Mth to DNA containing the non-cleavable substrate analogue difluorotoluene (F) was also analyzed to determine the effect of the opposite base on Mig-Mth binding specificity for substrate-like duplex DNA. The results of these experiments support the idea that opposite strand interactions play roles in determining substrate specificity. Endonuclease IV, which cleaves AP sites in the next step of the BER pathway, was used to analyze the effect of product removal on the overall rate of thymine hydrolysis by Mig-Mth. Our results support the hypothesis that endonuclease IV increases the apparent activity of Mig-Mth significantly under steady-state conditions by preventing reassociation of enzyme to product. PMID:12509271

  3. N6-methyl-adenine: an epigenetic signal for DNA-protein interactions.

    PubMed

    Wion, Didier; Casadesús, Josep

    2006-03-01

    N(6)-methyl-adenine is found in the genomes of bacteria, archaea, protists and fungi. Most bacterial DNA adenine methyltransferases are part of restriction-modification systems. Certain groups of Proteobacteria also harbour solitary DNA adenine methyltransferases that provide signals for DNA-protein interactions. In gamma-proteobacteria, Dam methylation regulates chromosome replication, nucleoid segregation, DNA repair, transposition of insertion elements and transcription of specific genes. In Salmonella, Haemophilus, Yersinia and Vibrio species and in pathogenic Escherichia coli, Dam methylation is required for virulence. In alpha-proteobacteria, CcrM methylation regulates the cell cycle in Caulobacter, Rhizobium and Agrobacterium, and has a role in Brucella abortus infection.

  4. Adenine Phosphoribosyltransferase in Plant Tissues: Some Effects of Kinetin on Enzymic Activity 1

    PubMed Central

    Nicholls, P. B.; Murray, A. W.

    1968-01-01

    Adenine phosphoribosyltransferase activity was measured in extracts of soybean (Glycine max var. Acme) callus and of senescing barley leaves (Hordeum distichon c.v. Prior). The enzyme from soybean callus had Michaelis constants for adenine and 5-phosphoribosyl pyrophosphate of 1.5 and 7.5 μm respectively and was inhibited by AMP and stimulated by ATP. The presence of kinetin was found to considerably increase the activity of adenine phosphoribosyltransferase in extracts of soybean callus and senescing barley leaves. PMID:16656820

  5. Study of the thymine molecule: equilibrium structure from joint analysis of gas-phase electron diffraction and microwave data and assignment of vibrational spectra using results of ab initio calculations.

    PubMed

    Vogt, Natalja; Khaikin, Leonid S; Grikina, Olga E; Rykov, Anatolii N; Vogt, Jürgen

    2008-08-21

    Thymine is one of the nucleobases which forms the nucleic acid (NA) base pair with adenine in DNA. The study of molecular structure and dynamics of nucleobases can help to understand and explain some processes in biological systems and therefore it is of interest. Because the scattered intensities on the C, N, and O atoms as well as some bond lengths in thymine are close to each other the structural problem cannot been solved by the gas phase electron diffraction (GED) method alone. Therefore the rotational constants from microvawe (MW) studies and differences in the groups of N-C, C=O, N-H, and C-H bond lengths from MP2 (full)/cc-pVQZ calculations were used as supplementary data. The analysis of GED data was based on the C(s) molecular symmetry according to results of the structure optimizations at the MP2 (full) level using 6-311G (d,p), cc-pVTZ, and cc-pVQZ basis sets confirmed by vibrational frequency calculations with 6-311G (d,p) and cc-pVTZ basis sets. Mean-square amplitudes as well as harmonic and anharmonic vibrational corrections to the internuclear distances (r(e)-r(a)) and to the rotational constants (B(e)(k)-B(0)(k), where k = A, B, C) were calculated from the quadratic (MP2 (full)/cc-pVTZ) and cubic (MP2 (full)/6-311G (d,p)) force constants (the latter were used only for anharmonic corrections). The harmonic force field was scaled using published IR and Raman spectra of the parent and N1,N3-dideuterated species, which were for the first time completely assigned in the present work. The main equilibrium structural parameters of the thymine molecule determined from GED data supplemented by MW rotational constants and results of MP2 calculations are the following (bond lengths in Angstroms and bond angles in degrees with 3sigma in parentheses): r(e) (C5=C6) = 1.344 (16), r(e) (C5-C9) = 1.487 (8), r(e) (N1-C6) = 1.372 (3), r(e) (N1-C2) = 1.377 (3), r(e) (C2-N3) = 1.378 (3), r(e) (N3-C4) = 1.395 (3), r(e) (C2=O7) = 1.210 (1), r(e) (C4=O8) = 1.215 (1

  6. MitoRCA-seq reveals unbalanced cytocine to thymine transition in Polg mutant mice

    PubMed Central

    Ni, Ting; Wei, Gang; Shen, Ting; Han, Miao; Lian, Yaru; Fu, Haihui; Luo, Yan; Yang, Yanqin; Liu, Jie; Wakabayashi, Yoshi; Li, Zheng; Finkel, Toren; Xu, Hong; Zhu, Jun

    2015-01-01

    Mutations in mitochondrial DNA (mtDNA) can lead to a wide range of human diseases. We have developed a deep sequencing strategy, mitoRCA-seq, to detect low-frequency mtDNA point mutations starting with as little as 1 ng of total DNA. It employs rolling circle amplification, which enriches the full-length circular mtDNA by either custom mtDNA-specific primers or a commercial kit, and minimizes the contamination of nuclear encoded mitochondrial DNA (Numts). By analyzing the mutation profiles of wild-type and Polg (mitochondrial DNA polymerase γ) mutant mice, we found that mice with the proofreading deficient mtDNA polymerase have a significantly higher mutation load by expanding the number of mutation sites and to a lesser extent by elevating the mutation frequency at existing sites even before the premature aging phenotypes appear. Strikingly, cytocine (C) to thymine (T) transitions are found to be overrepresented in the mtDNA of Polg mutated mice. The C → T transition, compared to other types of mutations, tends to increase the hydrophobicity of the underlying amino acids, and may contribute to the impaired protein function of the Polg mutant mice. Taken together, our findings may provide clues to further investigate the molecular mechanism underlying premature aging phenotype in Polg mutant mice. PMID:26212336

  7. A Nuclear Family A DNA Polymerase from Entamoeba histolytica Bypasses Thymine Glycol

    PubMed Central

    Pastor-Palacios, Guillermo; Azuara-Liceaga, Elisa; Brieba, Luis G.

    2010-01-01

    Background Eukaryotic family A DNA polymerases are involved in mitochondrial DNA replication or translesion DNA synthesis. Here, we present evidence that the sole family A DNA polymerase from the parasite protozoan E. histolytica (EhDNApolA) localizes to the nucleus and that its biochemical properties indicate that this DNA polymerase may be involved in translesion DNA synthesis. Methodology and Results EhDNApolA is the sole family A DNA polymerase in E. histolytica. An in silico analysis places family A DNA polymerases from the genus Entamoeba in a separate branch of a family A DNA polymerases phylogenetic tree. Biochemical studies of a purified recombinant EhDNApolA demonstrated that this polymerase is active in primer elongation, is poorly processive, displays moderate strand displacement, and does not contain 3′–5′ exonuclease or editing activity. Importantly, EhDNApolA bypasses thymine glycol lesions with high fidelity, and confocal microscopy demonstrates that this polymerase is translocated into the nucleus. These data suggest a putative role of EhDNApolA in translesion DNA synthesis in E. histolytica. Conclusion This is the first report of the biochemical characterization of a DNA polymerase from E. histolytica. EhDNApolA is a family A DNA polymerase that is grouped into a new subfamily of DNA polymerases with translesion DNA synthesis capabilities similar to DNA polymerases from subfamily ν. PMID:20706627

  8. Time-resolved infrared spectroscopy of the lowest triplet state of thymine and thymidine

    NASA Astrophysics Data System (ADS)

    Hare, Patrick M.; Middleton, Chris T.; Mertel, Kristin I.; Herbert, John M.; Kohler, Bern

    2008-05-01

    Vibrational spectra of the lowest energy triplet states of thymine and its 2'-deoxyribonucleoside, thymidine, are reported for the first time. Time-resolved infrared (TRIR) difference spectra were recorded over seven decades of time from 300 fs to 3 μs using femtosecond and nanosecond pump-probe techniques. The carbonyl stretch bands in the triplet state are seen at 1603 and ˜1700 cm -1 in room-temperature acetonitrile- d3 solution. These bands and additional ones observed between 1300 and 1450 cm -1 are quenched by dissolved oxygen on a nanosecond time scale. Density-functional calculations accurately predict the difference spectrum between triplet and singlet IR absorption cross sections, confirming the peak assignments and elucidating the nature of the vibrational modes. In the triplet state, the C4 dbnd O carbonyl exhibits substantial single-bond character, explaining the large (˜70 cm -1) red shift in this vibration, relative to the singlet ground state. Femtosecond TRIR measurements unambiguously demonstrate that the triplet state is fully formed within the first 10 ps after excitation, ruling out a relaxed 1nπ ∗ state as the triplet precursor.

  9. MitoRCA-seq reveals unbalanced cytocine to thymine transition in Polg mutant mice.

    PubMed

    Ni, Ting; Wei, Gang; Shen, Ting; Han, Miao; Lian, Yaru; Fu, Haihui; Luo, Yan; Yang, Yanqin; Liu, Jie; Wakabayashi, Yoshi; Li, Zheng; Finkel, Toren; Xu, Hong; Zhu, Jun

    2015-07-27

    Mutations in mitochondrial DNA (mtDNA) can lead to a wide range of human diseases. We have developed a deep sequencing strategy, mitoRCA-seq, to detect low-frequency mtDNA point mutations starting with as little as 1 ng of total DNA. It employs rolling circle amplification, which enriches the full-length circular mtDNA by either custom mtDNA-specific primers or a commercial kit, and minimizes the contamination of nuclear encoded mitochondrial DNA (Numts). By analyzing the mutation profiles of wild-type and Polg (mitochondrial DNA polymerase γ) mutant mice, we found that mice with the proofreading deficient mtDNA polymerase have a significantly higher mutation load by expanding the number of mutation sites and to a lesser extent by elevating the mutation frequency at existing sites even before the premature aging phenotypes appear. Strikingly, cytocine (C) to thymine (T) transitions are found to be overrepresented in the mtDNA of Polg mutated mice. The C → T transition, compared to other types of mutations, tends to increase the hydrophobicity of the underlying amino acids, and may contribute to the impaired protein function of the Polg mutant mice. Taken together, our findings may provide clues to further investigate the molecular mechanism underlying premature aging phenotype in Polg mutant mice.

  10. Theoretical and Experimental Photoelectron Spectroscopy Characterization of the Ground State of Thymine Cation.

    PubMed

    Majdi, Youssef; Hochlaf, Majdi; Pan, Yi; Lau, Kai-Chung; Poisson, Lionel; Garcia, Gustavo A; Nahon, Laurent; Al-Mogren, Muneerah Mogren; Schwell, Martin

    2015-06-11

    We report on the vibronic structure of the ground state X̃(2)A″ of the thymine cation, which has been measured using a threshold photoelectron photoion coincidence technique and vacuum ultraviolet synchrotron radiation. The threshold photoelectron spectrum, recorded over ∼0.7 eV above the ionization potential (i.e., covering the whole ground state of the cation) shows rich vibrational structure that has been assigned with the help of calculated anharmonic modes of the ground electronic cation state at the PBE0/aug-cc-pVDZ level of theory. The adiabatic ionization energy has been experimentally determined as AIE = 8.913 ± 0.005 eV, in very good agreement with previous high resolution results. The corresponding theoretical value of AIE = 8.917 eV has been calculated in this work with the explicitly correlated method/basis set (R)CCSD(T)-F12/cc-pVTZ-F12, which validates the theoretical approach and benchmarks its accuracy for future studies of medium-sized biological molecules.

  11. Electron impact fragmentation of thymine: partial ionization cross sections for positive fragments

    NASA Astrophysics Data System (ADS)

    van der Burgt, Peter J. M.; Mahon, Francis; Barrett, Gerard; Gradziel, Marcin L.

    2014-06-01

    We have measured mass spectra for positive ions for low-energy electron impact on thymine using a reflectron time-of-flight mass spectrometer. Using computer controlled data acquisition, mass spectra have been acquired for electron impact energies up to 100 eV in steps of 0.5 eV. Ion yield curves for most of the fragment ions have been determined by fitting groups of adjacent peaks in the mass spectra with sequences of normalized Gaussians. The ion yield curves have been normalized by comparing the sum of the ion yields to the average of calculated total ionization cross sections. Appearance energies have been determined. The nearly equal appearance energies of 83 u and 55 u observed in the present work strongly indicate that near threshold the 55 u ion is formed directly by the breakage of two bonds in the ring, rather than from a successive loss of HNCO and CO from the parent ion. Likewise 54 u is not formed by CO loss from 82 u. The appearance energies are in a number of cases consistent with the loss of one or more hydrogen atoms from a heavier fragment, but 70 u is not formed by hydrogen loss from 71 u.

  12. DNA methylation on N6-adenine in C. elegans

    PubMed Central

    Greer, Eric Lieberman; Blanco, Mario Andres; Gu, Lei; Sendinc, Erdem; Liu, Jianzhao; Aristizábal-Corrales, David; Hsu, Chih-Hung; Aravind, L.; He, Chuan; Shi, Yang

    2015-01-01

    Summary In mammalian cells, DNA methylation on the 5th position of cytosine (5mC) plays an important role as an epigenetic mark. However, DNA methylation was considered to be absent in C. elegans because of the lack of detectable 5mC as well as homologs of the cytosine DNA methyltransferases. Here, using multiple approaches, we demonstrate the presence of adenine N6-methylation (6mA) in C. elegans DNA. We further demonstrate that this modification increases trans-generationally in a paradigm of epigenetic inheritance. Importantly, we identify a DNA demethylase, NMAD-1, and a potential DNA methyltransferase, DAMT-1, which regulate 6mA levels and crosstalk between methylation of histone H3K4me2 and 6mA, and control the epigenetic inheritance of phenotypes associated with the loss of the H3K4me2 demethylase spr-5. Together, these data identify a DNA modification in C. elegans and raise the exciting possibility that 6mA may be a carrier of heritable epigenetic information in eukaryotes. PMID:25936839

  13. Spin-dependent electron transport in zinc- and manganese-doped adenine molecules

    SciTech Connect

    Simchi, Hamidreza; Esmaeilzadeh, Mahdi Mazidabadi, Hossein

    2014-01-28

    The spin-dependent electron transport properties of zinc- and manganese-doped adenine molecules connected to zigzag graphene leads are studied in the zero bias regime using the non-equilibrium Green's function method. The conductance of the adenine molecule increased and became spin-dependent when a zinc or manganese atom was doped into the molecules. The effects of a transverse electric field on the spin-polarization of the transmitted electrons were investigated and the spin-polarization was controlled by changing the transverse electric field. Under the presence of a transverse electric field, both the zinc- and manganese-doped adenine molecules acted as spin-filters. The maximum spin-polarization of the manganese-doped adenine molecule was greater than the molecule doped with zinc.

  14. Identification of a mitochondrial ATP synthase-adenine nucleotide translocator complex in Leishmania.

    PubMed

    Detke, Siegfried; Elsabrouty, Rania

    2008-01-01

    The ATP synthasome is a macromolecular complex consisting of ATP synthase, adenine nucleotide translocator and phosphate carrier. To determine if this complex is evolutionary old or young, we searched for its presence in Leishmania, a mitochondria containing protozoan which evolved from the main eukaryote line soon after eukaryotes split from prokaryotes. Sucrose gradient centrifugation showed that the distribution of ANT among the fractions coincided with the distribution of ATP synthase. In addition, ATP synthase co-precipitated with FLAG tagged and wild type adenine nucleotide translocator isolated with anti FLAG and anti adenine nucleotide translocator antibodies, respectively. These data indicate that the adenine nucleotide translocator interacted with the ATP synthase to form a stable structure referred to as the ATP synthasome. The presence of the ATP synthasome in Leishmania, an organism branching off the main line of eukaryotes early in the development of eukaryotes, as well as in higher eukaryotes suggests that the ATP synthasome is a phylogenetically ancient structure. PMID:17920025

  15. Hydroxyl ion addition to one-electron oxidized thymine: Unimolecular interconversion of C5 to C6 OH-adducts

    PubMed Central

    Adhikary, Amitava; Kumar, Anil; Heizer, Alicia N.; Palmer, Brian J.; Pottiboyina, Venkata; Liang, Yong; Wnuk, Stanislaw F.; Sevilla, Michael D.

    2013-01-01

    In this work, addition of OH− to one-electron oxidized thymidine (dThd) and thymine nucleotides in basic aqueous glasses is investigated. At pHs ca. 9–10 where the thymine base is largely deprotonated at N3, one-electron oxidation of the thymine base by Cl2•− at ca. 155 K results in formation of a neutral thyminyl radical, T(−H)•. Assignment to T(−H)• is confirmed by employing 15N substituted 5'-TMP. At pH ≥ ca. 11.5, formation of the 5-hydroxythymin-6-yl radical, T(5OH)•, is identified as a metastable intermediate produced by OH− addition to T(−H)• at C5 at ca. 155 K. Upon further annealing to ca. 170 K, T(5OH)• readily converts to the 6-hydroxythymin-5-yl radical, T(6OH)•. One-electron oxidation of N3-methyl-thymidine (N3-Me-dThd) by Cl2•− at ca. 155 K produces the cation radical (N3-Me-dThd•+) for which we find a pH dependent competition between deprotonation from the methyl group at C5 and addition of OH− to C5. At pH 7 the 5-methyl deprotonated species is found; however, at pH ca. 9, N3-Me-dThd•+ produces T(5OH)• that on annealing up to 180 K forms T(6OH)•. Through use of deuterium substitution at C5' and on the thymine base, i.e., specifically employing [5',5”-D,D]-5'-dThd, [5',5”-D,D]-5'-TMP, [CD3]-dThd and [CD3,6D]-dThd, we find unequivocal evidence for T(5OH)• formation and its conversion to T(6OH)•. The addition of OH− to the C5 position in T(−H)• and N3-Me-dThd•+ is governed by spin and charge localization. DFT calculations predict that the conversion of the “reducing” T(5OH)• to the “oxidizing” T(6OH)• occurs by a unimolecular OH group transfer from C5 to C6 in the thymine base. The T(5OH)• to T(6OH)• conversion is found to occur more readily for deprotonated dThd and its nucleotides than for N3-Me-dThd. In agreement, calculations predict that the deprotonated thymine base has a lower energy barrier (ca. 6 kcal/mol) for OH transfer than its corresponding N3-protonated thymine

  16. RasGRP Ras guanine nucleotide exchange factors in cancer

    PubMed Central

    Ksionda, Olga; Limnander, Andre

    2014-01-01

    Summary RasGRP proteins are activators of Ras and other related small GTPases by the virtue of functioning as guanine nucleotide exchange factors (GEFs). In vertebrates, four RasGRP family members have been described. RasGRP-1 through −4 share many structural domains but there are also subtle differences between each of the different family members. Whereas SOS RasGEFs are ubiquitously expressed, RasGRP proteins are expressed in distinct patterns, such as in different cells of the hematopoietic system and in the brain. Most studies have concentrated on the role of RasGRP proteins in the development and function of immune cell types because of the predominant RasGRP expression profiles in these cells and the immune phenotypes of mice deficient for Rasgrp genes. However, more recent studies demonstrate that RasGRPs also play an important role in tumorigenesis. Examples are skin- and hematological-cancers but also solid malignancies such as melanoma or prostate cancer. These novel studies bring up many new and unanswered questions related to the molecular mechanism of RasGRP-driven oncogenesis, such as new receptor systems that RasGRP appears to respond to as well as regulatory mechanism for RasGRP expression that appear to be perturbed in these cancers. Here we will review some of the known aspects of RasGRP biology in lymphocytes and will discuss the exciting new notion that RasGRP Ras exchange factors play a role in oncogenesis downstream of various growth factor receptors. PMID:24744772

  17. Nicotinamide adenine dinucleotide-dependent and nicotinamide adenine dinucleotide-independent lactate dehydrogenases in homofermentative and heterofermentative lactic acid bacteria.

    PubMed

    Doelle, H W

    1971-12-01

    Three homofermentative (Lactobacillus plantarum B38, L. plantarum B33, Pediococcus pentosaceus B30) and three heterofermentative (Leuconostoc mesenteroides 39, L. oenos B70, Lactobacillus brevis) lactic acid bacteria were examined for the presence or absence of nicotinamide adenine dinucleotide (NAD)-dependent and NAD-independent d- and l-lactate dehydrogenases. Two of the six strains investigated, P. pentosaceus and L. oenos, did not exhibit an NAD-independent enzyme activity capable of reducing dichlorophenol indophenol. The pH optima of the lactic dehydrogenases were determined. The NAD-dependent enzymes from homofermentative strains exhibited optima at pH 7.8 to 8.8, whereas values from 9.0 to 10.0 were noted for these enzymes from heterofermentative organisms. The optima for the NAD-independent enzymes were between 5.8 and 6.6. The apparent Michaelis-Menten constants determined for both NAD and the substrates demonstrated the existence of a greater affinity for d- than l-lactic acid. A comparison of the specific NAD-dependent and NAD-independent lactate dehydrogenase activities revealed a direct correlation of the d/l ratios of these activities with the type of lactic acid produced during the growth of the organism.

  18. Novel riboswitch ligand analogs as selective inhibitors of guanine-related metabolic pathways.

    PubMed

    Mulhbacher, Jérôme; Brouillette, Eric; Allard, Marianne; Fortier, Louis-Charles; Malouin, François; Lafontaine, Daniel A

    2010-04-01

    Riboswitches are regulatory elements modulating gene expression in response to specific metabolite binding. It has been recently reported that riboswitch agonists may exhibit antimicrobial properties by binding to the riboswitch domain. Guanine riboswitches are involved in the regulation of transport and biosynthesis of purine metabolites, which are critical for the nucleotides cellular pool. Upon guanine binding, these riboswitches stabilize a 5'-untranslated mRNA structure that causes transcription attenuation of the downstream open reading frame. In principle, any agonistic compound targeting a guanine riboswitch could cause gene repression even when the cell is starved for guanine. Antibiotics binding to riboswitches provide novel antimicrobial compounds that can be rationally designed from riboswitch crystal structures. Using this, we have identified a pyrimidine compound (PC1) binding guanine riboswitches that shows bactericidal activity against a subgroup of bacterial species including well-known nosocomial pathogens. This selective bacterial killing is only achieved when guaA, a gene coding for a GMP synthetase, is under the control of the riboswitch. Among the bacterial strains tested, several clinical strains exhibiting multiple drug resistance were inhibited suggesting that PC1 targets a different metabolic pathway. As a proof of principle, we have used a mouse model to show a direct correlation between the administration of PC1 and the reduction of Staphylococcus aureus infection in mammary glands. This work establishes the possibility of using existing structural knowledge to design novel guanine riboswitch-targeting antibiotics as powerful and selective antimicrobial compounds. Particularly, the finding of this new guanine riboswitch target is crucial as community-acquired bacterial infections have recently started to emerge. PMID:20421948

  19. Experimental and first-principles study of guanine adsorption on ZnO clusters.

    PubMed

    Chandraboss, V L; Karthikeyan, B; Senthilvelan, S

    2014-11-14

    Theoretical investigation of guanine, DNA base adsorption on the ZnO model clusters, viz., Zn2O2, Zn3O3, Zn4O4 ring (R) and Zn4O4 wurtzite (W) in terms of geometry, binding site, binding energy (EB), energy gap (Eg), electronic and spectral properties were studied by a density functional theory (DFT) method. The guanine adsorption on the ZnO (G-ZnO) clusters is modeled by the B3LYP/LanL2DZ method. The calculated binding energy (EB) and energy gap (Eg) of the guanine molecule are highly dependent on the nature of the cluster size and vary with the size of the clusters. Physisorption proceeded via formation of the NZn bond between guanine and the active Zn(2+) site on ZnO. The HOMO-LUMO energies show that charge transfer occurs in the G-ZnO clusters, from ZnO to guanine to better understand the interaction. The Mulliken charges are computed. The electronic properties of ZnO and G-ZnO clusters were compared with different basis sets (B3LYP/6-31G, B3LYP/6-311G, MP2/6-31G and MP2/LanL2DZ). Experimental information like microscopic and spectroscopic evidence is also included for understanding the guanine-ZnO interactions. The G-ZnO composite was prepared by a precipitation method and characterized by SEM with EDX, FT-IR and FT-RAMAN analysis. The interaction of guanine with ZnO nanoparticles was observed by UV-vis spectroscopy. The experimental results are compared with the DFT results in the light of these new insights. PMID:25266048

  20. Benchmark Thermochemistry for Biologically Relevant Adenine and Cytosine. A Combined Experimental and Theoretical Study.

    PubMed

    Emel'yanenko, Vladimir N; Zaitsau, Dzmitry H; Shoifet, Evgeni; Meurer, Florian; Verevkin, Sergey P; Schick, Christoph; Held, Christoph

    2015-09-17

    The thermochemical properties available in the literature for adenine and cytosine are in disarray. A new condensed phase standard (p° = 0.1 MPa) molar enthalpy of formation at T = 298.15 K was measured by using combustion calorimetry. New molar enthalpies of sublimation were derived from the temperature dependence of vapor pressure measured by transpiration and by the quarz-crystal microbalance technique. The heat capacities of crystalline adenine and cytosine were measured by temperature-modulated DSC. Thermodynamic data on adenine and cytosine available in the literature were collected, evaluated, and combined with our experimental results. Thus, the evaluated collection of data together with the new experimental results reported here has helped to resolve contradictions in the available enthalpies of formation. A set of reliable thermochemical data is recommended for adenine and cytosine for further thermochemical calculations. Quantum-chemical calculations of the gas phase molar enthalpies of formation of adenine and cytosine have been performed by using the G4 method and results were in excellent agreement with the recommended experimental data. The standard molar entropies of formation and the standard molar Gibbs functions of formation in crystal and gas state have been calculated. Experimental vapor-pressure data measured in this work were used to estimate pure-component PC-SAFT parameters. This allowed modeling solubility of adenine and cytosine in water over the temperature interval 278-310 K. PMID:26317826

  1. Benchmark Thermochemistry for Biologically Relevant Adenine and Cytosine. A Combined Experimental and Theoretical Study.

    PubMed

    Emel'yanenko, Vladimir N; Zaitsau, Dzmitry H; Shoifet, Evgeni; Meurer, Florian; Verevkin, Sergey P; Schick, Christoph; Held, Christoph

    2015-09-17

    The thermochemical properties available in the literature for adenine and cytosine are in disarray. A new condensed phase standard (p° = 0.1 MPa) molar enthalpy of formation at T = 298.15 K was measured by using combustion calorimetry. New molar enthalpies of sublimation were derived from the temperature dependence of vapor pressure measured by transpiration and by the quarz-crystal microbalance technique. The heat capacities of crystalline adenine and cytosine were measured by temperature-modulated DSC. Thermodynamic data on adenine and cytosine available in the literature were collected, evaluated, and combined with our experimental results. Thus, the evaluated collection of data together with the new experimental results reported here has helped to resolve contradictions in the available enthalpies of formation. A set of reliable thermochemical data is recommended for adenine and cytosine for further thermochemical calculations. Quantum-chemical calculations of the gas phase molar enthalpies of formation of adenine and cytosine have been performed by using the G4 method and results were in excellent agreement with the recommended experimental data. The standard molar entropies of formation and the standard molar Gibbs functions of formation in crystal and gas state have been calculated. Experimental vapor-pressure data measured in this work were used to estimate pure-component PC-SAFT parameters. This allowed modeling solubility of adenine and cytosine in water over the temperature interval 278-310 K.

  2. Labeling of mitochondrial adenine nucleotides of bovine sperm

    SciTech Connect

    Cheetham, J.; Lardy, H.A.

    1986-05-01

    Incorporation of /sup 32/P/sub i/ into the adenine nucleotide pool of intact bovine spermatozoa utilizing endogenous substrates results in a specific activity (S.A.) ratio ATP/ADP of 0.3 to 0.5, suggesting compartmentation of nucleotide pools or a pathway for phosphorylation of AMP in addition to the myokinase reaction. Incubation of filipin-permeabilized cells with pyruvate, acetylcarnitine, or ..cap alpha..-ketoglutarate (..cap alpha..KG) resulted in ATP-ADP S.A. ratios of 0.5, 0.8, and 1.6, respectively, for mitochondrial nucleotides. However, when malate was included with pyruvate or acetylcarnitine, the ATP/ADP S.A. ratio increased by 400% to 2.0 for pyruvate/malate and by 290% to 2.8 for acetylcarnitine/malate, while the ATP/ADP ratio increased by less than 100% in both cases. These results may indicate that under conditions of limited flux through the citric acid cycle a pathway for phosphorylation of AMP from a precursor other than ATP exists or that ATP is compartmented within the mitochondrion. In the presence of uncoupler and oligomycin with ..cap alpha..KG, pyruvate/malate, or acetylcarnitine/malate, /sup 32/P/sub i/ is incorporated primarily into ATP, resulting in an ATP/ADP S.A. ratio of 4.0 for ..cap alpha..KG, 2.7 for pyruvate/malate, and 2.8 for acetylcarnitine/malate. These data are consistent with phosphorylation of ADP during substrate level phosphorylation in the citric acid cycle.

  3. Phenotype and Genotype Characterization of Adenine Phosphoribosyltransferase Deficiency

    PubMed Central

    Bollée, Guillaume; Dollinger, Cécile; Boutaud, Lucile; Guillemot, Delphine; Bensman, Albert; Harambat, Jérôme; Deteix, Patrice; Daudon, Michel; Knebelmann, Bertrand

    2010-01-01

    Adenine phosphoribosyltransferase (APRT) deficiency is a rare autosomal recessive disorder causing 2,8-dihydroxyadenine stones and renal failure secondary to intratubular crystalline precipitation. Little is known regarding the clinical presentation of APRT deficiency, especially in the white population. We retrospectively reviewed all 53 cases of APRT deficiency (from 43 families) identified at a single institution between 1978 and 2009. The median age at diagnosis was 36.3 years (range 0.5 to 78.0 years). In many patients, a several-year delay separated the onset of symptoms and diagnosis. Of the 40 patients from 33 families with full clinical data available, 14 (35%) had decreased renal function at diagnosis. Diagnosis occurred in six (15%) patients after reaching ESRD, with five diagnoses made at the time of disease recurrence in a renal allograft. Eight (20%) patients reached ESRD during a median follow-up of 74 months. Thirty-one families underwent APRT sequencing, which identified 54 (87%) mutant alleles on the 62 chromosomes analyzed. We identified 18 distinct mutations. A single T insertion in a splice donor site in intron 4 (IVS4 + 2insT), which produces a truncated protein, accounted for 40.3% of the mutations. We detected the IVS4 + 2insT mutation in two (0.98%) of 204 chromosomes of healthy newborns. This report, which is the largest published series of APRT deficiency to date, highlights the underdiagnosis and potential severity of this disease. Early diagnosis is crucial for initiation of effective treatment with allopurinol and for prevention of renal complications. PMID:20150536

  4. Mechanism for repair of thymine dimers by photoexcitation of proximal 8-oxo-7,8-dihydroguanine.

    PubMed

    Anusiewicz, Iwona; Świerszcz, Iwona; Skurski, Piotr; Simons, Jack

    2013-02-14

    A wide range of experimental data from earlier studies by other workers are combined with recent data from the Burrows group to interpret that group's thymine dimer (T = T) repair rate data for 8-oxo-7,8-dihydroguanine (OG)-containing DNA duplexes. The focus of this effort is to explain (i) how and why the repair rates vary as the sequence location and distance of the OG relative to the T═T is changed and (ii) why the spatial extent over which repair is observed is limited to OG-T═T distances of ~6 Å. It is proposed that, if the OG and T═T are within ~5-6 Å, a Coulomb potential moves the energy of the OG(+)···T═T(-) ion-pair state below the photoexcited OG*···T═T state, even in the absence of full solvent relaxation, thus enhancing forward electron transfer from OG* to T═T by allowing it to occur as a radiationless internal conversion process rather than by overcoming a solvation-related barrier. The rate of this forward electron transfer is estimated to be ~10% of the decay rate of the photoexcited OG*. For OG-to-T═T distances beyond 5-6 Å, electron transfer is still exothermic, but it must occur through solvent reorganization, overcoming an energy barrier, which presumably renders this rate too slow to be detected in the experiments under study here. Once an electron has been injected into the T═T, as many other workers have shown, the reaction proceeds through two low-energy barriers first connecting T═T(-) to an intermediate in which the C(5)-C(5') bond of the cyclobutane unit is cleaved, and onward to where the cyclobutane unit is fully broken and two intact thymine sites are established. Our ab initio data show that the energy landscape for these bond cleavages is altered very little by the presence of the proximal OG(+) cation, which therefore allows us to use data from the earlier studies to conclude that it takes ~100 ps for complete bond cleavage to occur. The experimentally determined overall T═T repair quantum yield of 1

  5. On the Formation and Properties of Interstrand DNA-DNA Cross-links Forged by Reaction of an Abasic Site With the Opposing Guanine Residue of 5′-CAp Sequences in Duplex DNA

    PubMed Central

    Johnson, Kevin M.; Price, Nathan E.; Wang, Jin; Fekry, Mostafa I.; Dutta, Sanjay; Seiner, Derrick R.; Wang, Yinsheng; Gates, Kent S.

    2014-01-01

    We recently reported that the aldehyde residue of an abasic (Ap) site in duplex DNA can generate an interstrand cross-link via reaction with a guanine residue on the opposing strand. This finding is intriguing because the highly deleterious nature of interstrand cross-links suggests that even small amounts of Ap-derived cross-links could make a significant contribution to the biological consequences stemming from the generation of Ap sites in cellular DNA. Incubation of 21-bp duplexes containing a central 5′-CAp sequence under conditions of reductive amination (NaCNBH3, pH 5.2) generated much higher yields of cross-linked DNA than reported previously. At pH 7, in the absence of reducing agents, these Ap-containing duplexes also produced cross-linked duplexes that were readily detected on denaturing polyacrylamide gels. Cross-link formation was not highly sensitive to reaction conditions and, once formed, the cross-link was stable to a variety of work-up conditions. Results of multiple experiments including MALDI-TOF mass spectrometry, gel mobility, methoxyamine capping of the Ap aldehyde, inosine-for-guanine replacement, hydroxyl radical footprinting, and LCMS/MS were consistent with a cross-linking mechanism involving reversible reaction of the Ap aldehyde residue with the N2-amino group of the opposing guanine residue in 5′-CAp sequences to generate hemiaminal, imine, or cyclic hemiaminal cross-links (7-10) that were irreversibly converted under conditions of reductive amination (NaCNBH3/pH 5.2) to a stable amine linkage. Further support for the importance of the exocyclic N2-amino group in this reaction was provided by an experiment showing that installation of a 2-aminopurine-thymine base pair at the cross-linking site produced high yields (15-30%) of a cross-linked duplex at neutral pH, in the absence of NaCNBH3. PMID:23215239

  6. Ability of melanins to protect against the radiolysis of thymine and thymidine.

    PubMed

    Hill, H Z; Huselton, C; Pilas, B; Hill, G J

    1987-01-01

    Individuals with black skin rarely get skin cancer, and melanomas, tumors arising from pigmented cells, are generally resistant to radiation therapy. The role of melanin in these two phenomena has not been defined, but oxygen-radical species have been implicated in both effects. These studies were undertaken to determine the ability of various melanins to compete for ionizing radiation-produced radicals which destroy nucleic acid bases. The ability of Sigma eumelanin (S-eumelanin) to protect against the radiolysis of thymidine in buffered solutions was compared to the protective ability of seven amino acids, including melanin precursors; bovine serum albumin, as a model protein; ficoll, as a model polysaccharide; and DNA. Both proteins and polysaccharides are known to scavenge hydroxyl radicals in cells. The concentration of thymidine after exposure to gamma radiation was determined by High Performance Liquid Chromatography (HPLC) analysis after removal of insoluble melanin by acid precipitation. S-eumelanin was more effective at competing with thymidine for free radicals than bovine serum albumin, Ficoll, or DNA, but less effective than certain of the small molecules. Several of the above compounds were also examined for ability to protect against thymine radiolysis. In addition, melanins from other sources were compared to S-eumelanin. Of these, enzymatically synthesized phaeomelanin was the most effective. The results indicate that melanins can compete for base- and nucleoside-damaging free radicals more effectively than other cellular macromolecules. Of the small molecules, the phenolic compounds had the greatest scavenging ability. In vivo, melanins are found in melanosomes bound to protein. Therefore, the relevance of these findings to the photo- and radiobiology of melanins in vivo has yet to be determined. PMID:3507668

  7. Highly sensitive and selective fluorescent assay for guanine based on the Cu2 +/eosin Y system

    NASA Astrophysics Data System (ADS)

    Shi, Huimin; Cui, Yi; Gong, Yijun; Feng, Suling

    2016-05-01

    A fluorescent probe has been developed for the determination of guanine based on the quenched fluorescence signal of Cu2 +/eosin Y. Cu2 + interacted with eosin Y, resulting in fluorescence quenching. Subsequently, with the addition of guanine to the Cu2 +/eosin Y system, guanine reacted with Cu2 + to form 1:1 chelate cation, which further combined with eosin Y to form a 1:1 ternary ion-association complex by electrostatic attraction and hydrophobic interaction, resulting in significant decrease of the fluorescence. Hence, a fluorescent system was constructed for rapid, sensitive and selective detection of guanine with a detection limit as low as 1.5 nmol L- 1 and a linear range of 3.3-116 nmol L- 1. The method has been applied satisfactorily to the determination of guanine in DNA and urine samples with the recoveries from 98.7% to 105%. This study significantly expands the realm of application of ternary ion-association complex in fluorescence probe.

  8. Theoretical Study of the Photophysics of 8-Vinylguanine, an Isomorphic Fluorescent Analogue of Guanine.

    PubMed

    Kochman, Michał A; Pola, Martina; Miller, R J Dwayne

    2016-08-11

    Paving the way for the application of the algebraic-diagrammatic construction scheme of second-order (ADC(2)) to systems based on the guanine chromophore, we demonstrate the this excited-state electronic structure method provides a realistic description of the photochemistry of 9H-guanine, in close agreement with the benchmark provided by the CASPT2 method. We then proceed to apply the ADC(2) method to the photochemistry of 8-vinylguanine (8vG), a minimally modified analogue of guanine which, unlike the naturally occurring nucleobase, displays intense fluorescence, indicative of a much longer-lived excited electronic state. The emissive electronic state of 8vG is identified as an ππ*-type intramolecular charge transfer (ICT) state, in which a charge of roughly -0.2 e is transferred from the guanine moiety onto the vinyl substituent. The main radiationless deactivation pathway competing with fluorescence is predicted to involve the molecule leaving the minimum on the ICT ππ* state, and reaching a region of the S1 adiabatic state where it resembles the La ππ* state of unmodified 9H-guanine. The topology of the La ππ* region of the S1 state favors subsequent internal conversion at a crossing seam with the ground electronic state. The sensitivity of this process to environment polarity may explain the experimentally observed fluorescence quenching of 8vG upon incorporation in single- and double-stranded DNA. PMID:27427772

  9. Regulation of IMP dehydrogenase gene expression by its end products, guanine nucleotides.

    PubMed Central

    Glesne, D A; Collart, F R; Huberman, E

    1991-01-01

    To study the regulation of IMP dehydrogenase (IMPDH), the rate-limiting enzyme of guanine nucleotide biosynthesis, we examined the effects of nucleosides, nucleotides, nucleotide analogs, or the IMPDH inhibitor mycophenolic acid (MPA) on the steady-state levels of IMPDH mRNA. The results indicated that IMPDH gene expression is regulated inversely by the intracellular level of guanine ribonucleotides. We have shown that treatment with guanosine increased the level of cellular guanine ribonucleotides and subsequently reduced IMPDH steady-state mRNA levels in a time- and dose-dependent manner. Conversely, MPA treatment diminished the level of guanine ribonucleotides and increased IMPDH mRNA levels. Both of these effects on the steady-state level of IMPDH mRNA could be negated by cotreatment with guanosine and MPA. The down regulation of IMPDH gene expression by guanosine or its up regulation by MPA was not due to major changes in transcriptional initiation and elongation or mRNA stability in the cytoplasm but rather was due to alterations in the levels of the IMPDH mRNA in the nucleus. These results suggest that IMPDH gene expression is regulated by a posttranscriptional, nuclear event in response to fluctuations in the intracellular level of guanine ribonucleotides. Images PMID:1717828

  10. Hypoxanthine-guanine phosophoribosyltransferase (HPRT) deficiency: Lesch-Nyhan syndrome

    PubMed Central

    Torres, Rosa J; Puig, Juan G

    2007-01-01

    Deficiency of hypoxanthine-guanine phosphoribosyltransferase (HPRT) activity is an inborn error of purine metabolism associated with uric acid overproduction and a continuum spectrum of neurological manifestations depending on the degree of the enzymatic deficiency. The prevalence is estimated at 1/380,000 live births in Canada, and 1/235,000 live births in Spain. Uric acid overproduction is present inall HPRT-deficient patients and is associated with lithiasis and gout. Neurological manifestations include severe action dystonia, choreoathetosis, ballismus, cognitive and attention deficit, and self-injurious behaviour. The most severe forms are known as Lesch-Nyhan syndrome (patients are normal at birth and diagnosis can be accomplished when psychomotor delay becomes apparent). Partial HPRT-deficient patients present these symptoms with a different intensity, and in the least severe forms symptoms may be unapparent. Megaloblastic anaemia is also associated with the disease. Inheritance of HPRT deficiency is X-linked recessive, thus males are generally affected and heterozygous female are carriers (usually asymptomatic). Human HPRT is encoded by a single structural gene on the long arm of the X chromosome at Xq26. To date, more than 300 disease-associated mutations in the HPRT1 gene have been identified. The diagnosis is based on clinical and biochemical findings (hyperuricemia and hyperuricosuria associated with psychomotor delay), and enzymatic (HPRT activity determination in haemolysate, intact erythrocytes or fibroblasts) and molecular tests. Molecular diagnosis allows faster and more accurate carrier and prenatal diagnosis. Prenatal diagnosis can be performed with amniotic cells obtained by amniocentesis at about 15–18 weeks' gestation, or chorionic villus cells obtained at about 10–12 weeks' gestation. Uric acid overproduction can be managed by allopurinol treatment. Doses must be carefully adjusted to avoid xanthine lithiasis. The lack of precise

  11. Dissection of the PHO pathway in Schizosaccharomyces pombe using epistasis and the alternate repressor adenine.

    PubMed

    Estill, Molly; Kerwin-Iosue, Christine L; Wykoff, Dennis D

    2015-05-01

    In Saccharomyces cerevisiae, intracellular phosphate levels are maintained by the PHO pathway, activation of which is assayed by increased phosphatase activity. The PHO pathway of Schizosaccharomyces pombe upregulates phosphatase activity (encoded by pho1 (+)) during low extracellular phosphate levels, but the underlying mechanism is poorly understood. We utilized an alternate repressor of pho1 (+) expression (adenine supplementation) along with epistasis analysis to develop a model of how S. pombe PHO pathway components interact. Analyzing Pho1 activity in S. pombe PHO pathway deletion mutants during adenine starvation, we observed most mutants with a phosphatase defect in phosphate starvation also had a defect in adenine starvation. Pho7, a transcription factor in the PHO pathway, is necessary for an adenine starvation-mediated increase in Pho1 activity. Comparing adenine starvation to phosphate starvation, there are differences in the degree to which individual mutants regulate the two responses. Through epistasis studies, we identified two positive regulatory arms and one repressive arm of the PHO pathway. PKA activation is a positive regulator of Pho1 activity under both environmental conditions and is critical for transducing adenine concentrations in the cell. The synthesis of IP7 also appears critical for the induction of Pho1 activity during adenine starvation, but IP7 is not critical during phosphate starvation, which differs from S. cerevisiae. Finally, Csk1 is critical for repression of pho1 (+) expression during phosphate starvation. We believe all of these regulatory arms converge to increase transcription of pho1 (+) and some of the regulation acts through pho7 (+).

  12. Telomere structure and stability: covalency in hydrogen bonds, not resonance assistance, causes cooperativity in guanine quartets.

    PubMed

    Fonseca Guerra, Célia; Zijlstra, Hester; Paragi, Gábor; Bickelhaupt, F Matthias

    2011-11-01

    We show that the cooperative reinforcement between hydrogen bonds in guanine quartets is not caused by resonance-assisted hydrogen bonding (RAHB). This follows from extensive computational analyses of guanine quartets (G(4)) and xanthine quartets (X(4)) based on dispersion-corrected density functional theory (DFT-D). Our investigations cover the situation of quartets in the gas phase, in aqueous solution as well as in telomere-like stacks. A new mechanism for cooperativity between hydrogen bonds in guanine quartets emerges from our quantitative Kohn-Sham molecular orbital (MO) and corresponding energy decomposition analyses (EDA). Our analyses reveal that the intriguing cooperativity originates from the charge separation that goes with donor-acceptor orbital interactions in the σ-electron system, and not from the strengthening caused by resonance in the π-electron system. The cooperativity mechanism proposed here is argued to apply, beyond the present model systems, also to other hydrogen bonds that show cooperativity effects.

  13. Effect of intense magnetic fields on the convection of biogenic guanine crystals in aqueous solution

    NASA Astrophysics Data System (ADS)

    Iwasaka, M.; Mizukawa, Y.

    2015-05-01

    In this study, the basic magneto-optic properties of biogenic microcrystals in aqueous media were investigated. Microcrystals, mica plates, silica, and microcrystals from a diatom cell and biogenic guanine crystals from goldfish showed light scattering inhibition when the crystals were observed in water under a 5 T magnetic field and dark-field illumination. In particular, in 50% ethanol/water medium, convection of the biogenic guanine particle aggregates was reversibly inhibited when the microcrystal suspension was exposed to a 5 T magnetic field. Microscopic observation comparing the biogenic guanine crystals in water with 95% ethanol or 99% acetone revealed that light flickering on the surface of the crystals was affected by the surface interaction of the crystal with the surrounding medium. By considering both the magnetic orientation of the microcrystals and the possible interactions of crystals with the surrounding medium, a magnetically controllable fluidic tracer was suggested.

  14. Enzymatic synthesis of DNA strands containing α-L-LNA (α-L-configured locked nucleic acid) thymine nucleotides.

    PubMed

    Højland, Torben; Veedu, Rakesh N; Vester, Birte; Wengel, Jesper

    2012-01-01

    We describe the first enzymatic incorporation of an α-L-LNA nucleotide into an oligonucleotide. It was found that the 5'-triphosphate of α-L-LNA is a substrate for the DNA polymerases KOD, 9°N(m), Phusion and HIV RT. Three dispersed α-L-LNA thymine nucleotides can be incorporated into DNA strands by all four polymerases, but they were unable to perform consecutive incorporations of α-L-LNA nucleotides. In addition it was found that primer extension can be achieved using templates containing one α-L-LNA nucleotide. PMID:22679529

  15. Assignment of the Gene for Adenine Phosphoribosyltransferase to Human Chromosome 16 by Mouse-Human Somatic Cell Hybridization

    PubMed Central

    Tischfield, Jay A.; Ruddle, Frank H.

    1974-01-01

    A series of mouse-human hybrids was prepared from mouse cells deficient in adenine phosphoribosyltransferase (EC 2.4.2.7) and normal human cells. The hybrids were made in medium containing adenine and alanosine, an antimetabolite known to inhibit de novo adenylic acid biosynthesis. The mouse cells, unable to utilize exogenous adenine, were killed in this medium, but the hybrids proliferated as a consequence of their retaining the human aprt gene. The hybrids were then exposed to the adenine analogs 2,6-diaminopurine and 2-fluoroadenine to select for cells that had lost this gene. Before exposure to the adenine analogs, the expression of human adenine phosphoribosyltransferase by the hybrids was strongly associated only with the presence of human chromosome 16, and afterwards this was the only human chromosome consistently lost. This observation suggests that the human aprt gene can be assigned to chromosome 16. Images PMID:4129802

  16. Mechanisms of oxidation of guanine in DNA by carbonate radical anion, a decomposition product of nitrosoperoxycarbonate.

    PubMed

    Lee, Young Ae; Yun, Byeong Hwa; Kim, Seog K; Margolin, Yelena; Dedon, Peter C; Geacintov, Nicholas E; Shafirovich, Vladimir

    2007-01-01

    Peroxynitrite is produced during inflammation and combines rapidly with carbon dioxide to yield the unstable nitrosoperoxycarbonate, which decomposes (in part) to CO(3) (.-) and (.)NO(2) radicals. The CO(3) (.-) radicals oxidize guanine bases in DNA through a one-electron transfer reaction process that ultimately results in the formation of stable guanine oxidation products. Here we have explored these mechanisms, starting with a spectroscopic study of the kinetics of electron transfer from 20-22mer double-stranded oligonucleotides to CO(3) (.-) radicals, together with the effects of base sequence on the formation of the end-products in runs of one, two, or three contiguous guanines. The distributions of these alkali-labile lesions were determined by gel electrophoresis methods. The cascade of events was initiated through the use of 308 nm XeCl excimer laser pulses to generate CO(3) (.-) radicals by an established method based on the photodissociation of persulfate to sulfate radicals and the oxidation of bicarbonate. Although the Saito model (Saito et al., J. Am. Chem. Soc. 1995, 117, 6406-6407) predicts relative ease of one-electron oxidations in DNA, following the trend 5'-GGG > 5'-GG > 5'-G, we found that the rate constants for CO(3) (.-)-mediated oxidation of guanines in these sequence contexts (k(5)) showed only small variation within a narrow range [(1.5-3.0)x10(7) M(-1) s(-1)]. In contrast, the distributions of the end-products are dependent on the base sequence context and are higher at the 5'-G in 5'-GG sequences and at the first two 5'-guanines in the 5'-GGG sequences. These effects are attributed to a combination of initial hole distributions among the contiguous guanines and the subsequent differences in chemical reaction yields at each guanine. The lack of dependence of k(5) on sequence context indicates that the one-electron oxidation of guanine in DNA by CO(3) (.-) radicals occurs by an inner-sphere mechanism. PMID:17335089

  17. Determination of adenine based on the fluorescence recovery of the L-Tryptophan-Cu(2+) complex.

    PubMed

    Duan, Ruilin; Li, Chunyan; Liu, Shaopu; Liu, Zhongfang; Li, Yuanfang; Yuan, Yusheng; Hu, Xiaoli

    2016-01-01

    A simple and sensitive method for determination of adenine was developed based on fluorescence quenching and recovery of L-Tryptophan (L-Trp). The fluorescence of L-Trp could efficiently quenched by copper ion compared with other common metal ions. Upon addition of adenine (Ade) in L-Trp-Cu(II) system, the fluorescence was reoccurred. Under the optimum conditions, the recovery fluorescence intensity was linearly correlated with the concentration of adenine in the range from 0.34 to 25.0μmolL(-1), with a correlation coefficient (R(2)) of 0.9994. The detection limit (3σ/k) was 0.046μmolL(-1), indicating that this method could applied to detect trace adenine. In this study, amino acids including L-Trp, D-Trp, L-Tyr, D-Tyr, L-Phe, D-Phe were investigated and only L-Trp could well chelated copper ion. Additionally, the mechanism of quench and recovery also were discussed and the method was successfully applied to detect the adenine in DNA with satisfactory results.

  18. Determination of adenine based on the fluorescence recovery of the L-Tryptophan-Cu2+ complex

    NASA Astrophysics Data System (ADS)

    Duan, Ruilin; Li, Chunyan; Liu, Shaopu; Liu, Zhongfang; Li, Yuanfang; Yuan, Yusheng; Hu, Xiaoli

    2016-01-01

    A simple and sensitive method for determination of adenine was developed based on fluorescence quenching and recovery of L-Tryptophan (L-Trp). The fluorescence of L-Trp could efficiently quenched by copper ion compared with other common metal ions. Upon addition of adenine (Ade) in L-Trp-Cu(II) system, the fluorescence was reoccurred. Under the optimum conditions, the recovery fluorescence intensity was linearly correlated with the concentration of adenine in the range from 0.34 to 25.0 μmol L-1, with a correlation coefficient (R2) of 0.9994. The detection limit (3σ/k) was 0.046 μmol L-1, indicating that this method could applied to detect trace adenine. In this study, amino acids including L-Trp, D-Trp, L-Tyr, D-Tyr, L-Phe, D-Phe were investigated and only L-Trp could well chelated copper ion. Additionally, the mechanism of quench and recovery also were discussed and the method was successfully applied to detect the adenine in DNA with satisfactory results.

  19. Adenine: an important drug scaffold for the design of antiviral agents

    PubMed Central

    Wang, Changyuan; Song, Zhendong; Yu, Haiqing; Liu, Kexin; Ma, Xiaodong

    2015-01-01

    Adenine derivatives, in particular the scaffold bearing the acyclic nucleoside phosphonates (ANPS), possess significant antiviral and cytostatic activity. Till now, several effective adenine derivatives have been marketed for the treatment of HIV, HBV, CMV and other virus-infected diseases. These compounds are represented by tenofovir (PMPA), a medicine for both HIV and HBV, and adefovir as an anti-HBV agent. More than this, other analogs, such as GS9148, GS9131, and GS7340, are also well-known anti-viral agents that have been progressed to the clinical studies for their excellent activity. In general, the structures of these compounds include an adenine nucleobase linked to a phosphonate side chain. Considerable structural modifications on the scaffold itself and the peripheral sections were made. The structure-activity relationships (SARs) of this skeleton will provide valuable clues to identify more effective adenine derivatives as antiviral drugs. Here, we systematically summarized the SARs of the adenine derivatives, and gave important information for further optimizing this template. PMID:26579473

  20. Transcription profiling of guanine nucleotide binding proteins during developmental regulation, and pesticide response in Solenopsis invicta (Hymenoptera: Formicidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Guanine nucleotide binding proteins (GNBP or G-protein) are glycoproteins anchored on the cytoplasmic cell membrane, and are mediators for many cellular processes. Complete cDNA of guanine nucleotide-binding protein gene ß-subunit (SiGNBP) was cloned and sequenced from S. invicta workers. To detect ...

  1. Thiyl radical reaction with thymine: absolute rate constant for hydrogen abstraction and comparison to benzylic C-H bonds.

    PubMed

    Nauser, Thomas; Schöneich, Christian

    2003-09-01

    Free radical damage of DNA is a well-known process affecting biological tissue under conditions of oxidative stress. Thiols can repair DNA-derived radicals. However, the product thiyl radicals may also cause biological damage. To obtain quantitative information on the potential reactivity with DNA components, we measured the rate constant for hydrogen abstraction by cysteamine thiyl radicals from thymine C5-CH(3), k = (1.2 +/- 0.8) x 10(4) M(-1) s(-1), and thymidine-5'-monophosphate, k = (0.9 +/- 0.6) x 10(4) M(-1) s(-1). Hence, the hydrogen abstraction from C5-CH(3) occurs with rate constants similar to the hydrogen abstraction from the carbohydrate moieties. Especially at low oxygen concentration such as that found in skeletal muscle, such hydrogen abstraction processes by thiyl radicals may well compete against other dioxygen-dependent reactions. The rate constants for hydrogen abstraction at thymine C5-CH(3) were compared to those with benzylic substrates, toluenesulfonic acid, and benzyl alcohol.

  2. Hg(2+) detection using a phosphorothioate RNA probe adsorbed on graphene oxide and a comparison with thymine-rich DNA.

    PubMed

    Huang, Po-Jung Jimmy; van Ballegooie, Courtney; Liu, Juewen

    2016-06-01

    Mercury is a highly toxic heavy metal and many DNA-based biosensors have been recently developed for Hg(2+) detection in water. Among them, thymine-rich DNA is the most commonly used for designing Hg(2+) sensors. However, the thymine-Hg(2+) interaction is strongly affected by the buffer conditions. We recently reported a molecular beacon containing phosphorothioate (PS)-modified RNA linkages that can be cleaved by Hg(2+). In this work, the fluorescence quenching and DNA adsorption properties of nano-sized graphene oxide (NGO) were used to develop a new sensor using the PS-RNA chemistry. Three DNA probes, containing one, three and five PS-RNA linkages, respectively, were tested. Finally, a fluorophore-labeled poly-A DNA with five PS-RNA linkages was selected and adsorbed by NGO. In the presence of Hg(2+), the fluorophore was released from NGO due to the cleavage reaction, resulting in a fluorescence enhancement. This sensor is highly selective for Hg(2+) with a detection limit of 8.5 nM Hg(2+). For comparison, a fluorophore-labeled poly-T DNA was also tested, which responded to Hg(2+) more slowly and was inhibited by high NaCl concentrations, while the PS-RNA probe was more tolerant to different buffer conditions. This work indicates a new method for interfacing DNA with NGO for Hg(2+) detection. PMID:26580137

  3. Hg(2+) detection using a phosphorothioate RNA probe adsorbed on graphene oxide and a comparison with thymine-rich DNA.

    PubMed

    Huang, Po-Jung Jimmy; van Ballegooie, Courtney; Liu, Juewen

    2016-06-01

    Mercury is a highly toxic heavy metal and many DNA-based biosensors have been recently developed for Hg(2+) detection in water. Among them, thymine-rich DNA is the most commonly used for designing Hg(2+) sensors. However, the thymine-Hg(2+) interaction is strongly affected by the buffer conditions. We recently reported a molecular beacon containing phosphorothioate (PS)-modified RNA linkages that can be cleaved by Hg(2+). In this work, the fluorescence quenching and DNA adsorption properties of nano-sized graphene oxide (NGO) were used to develop a new sensor using the PS-RNA chemistry. Three DNA probes, containing one, three and five PS-RNA linkages, respectively, were tested. Finally, a fluorophore-labeled poly-A DNA with five PS-RNA linkages was selected and adsorbed by NGO. In the presence of Hg(2+), the fluorophore was released from NGO due to the cleavage reaction, resulting in a fluorescence enhancement. This sensor is highly selective for Hg(2+) with a detection limit of 8.5 nM Hg(2+). For comparison, a fluorophore-labeled poly-T DNA was also tested, which responded to Hg(2+) more slowly and was inhibited by high NaCl concentrations, while the PS-RNA probe was more tolerant to different buffer conditions. This work indicates a new method for interfacing DNA with NGO for Hg(2+) detection.

  4. Temperature-dependent self-assembly of adenine derivative on HOPG.

    PubMed

    Mu, Zhongcheng; Rubner, Oliver; Bamler, Markus; Blömker, Tobias; Kehr, Gerald; Erker, Gerhard; Heuer, Andreas; Fuchs, Harald; Chi, Lifeng

    2013-08-27

    Temperature-dependent self-assembly formed by the adsorption of the nucleobase adenine derivative on a graphite surface were investigated by in situ scanning tunneling microscopy (STM). The high-resolution STM images reveal two types of structures, α phase and β phase, which are mainly driven by either hydrogen bonding or aromatic π-π interactions between adenine bases, respectively, as well as the interactions of alkyl chains. α-Phase structures can be transformed into β-phase structures by increasing temperature. The reverse is true for decreasing temperature. This reflects structural stabilities resulting from the different interactions. Density functional theory (DFT) calculations were performed to characterize possible arrangements of adjacent adenine moieties systematically in terms of binding energies and structural properties. Via a systematic search algorithm, all possible network structures were determined on a microscopic level. In this way, it is possible to rationalize the structural parameters as found in the STM images.

  5. Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays.

    PubMed

    Jha, Shankar K; Ahmed, Zeeshan; Agio, Mario; Ekinci, Yasin; Löffler, Jörg F

    2012-02-01

    We report the ultrasensitive detection of adenine using deep-UV surface-enhanced resonance Raman scattering on aluminum nanostructures. Well-defined Al nanoparticle arrays fabricated over large areas using extreme-UV interference lithography exhibited sharp and tunable plasmon resonances in the UV and deep-UV wavelength ranges. Theoretical modeling based on the finite-difference time-domain method was used to understand the near-field and far-field optical properties of the nanoparticle arrays. Raman measurements were performed on adenine molecules coated uniformly on the Al nanoparticle arrays at a laser excitation wavelength of 257.2 nm. With this technique, less than 10 amol of label-free adenine molecules could be detected reproducibly in real time. Zeptomole (~30,000 molecules) detection sensitivity was readily achieved proving that deep-UV surface-enhanced resonance Raman scattering is an extremely sensitive tool for the detection of biomolecules.

  6. Solution structure of a five-adenine bulge loop within a DNA duplex.

    PubMed

    Dornberger, U; Hillisch, A; Gollmick, F A; Fritzsche, H; Diekmann, S

    1999-09-28

    The three-dimensional solution structure of a DNA molecule of the sequence 5'-d(GCATCGAAAAAGCTACG)-3' paired with 5'-d(CGTAGCCGATGC)-3' containing a five-adenine bulge loop (dA(5)-bulge) between two double helical stems was determined by 2D (1)H and (31)P NMR, infrared, and Raman spectroscopy. The DNA in both stems adopt a classical B-form double helical structure with Watson-Crick base pairing and C2'-endo sugar conformation. In addition, the two dG/dC base pairs framing the dA(5)-bulge loop are formed and are stable at least up to 30 degrees C. The five adenine bases of the bulge loop are localized at intrahelical positions within the double helical stems. Stacking on the double helical stem is continued for the first four 5'-adenines in the bulge loop. The total rise (the height) of these four stacked adenines roughly equals the diameter of the double helical stem. The stacking interactions are broken between the last of these four 5'-adenines and the fifth loop adenine at the 3'-end. This 3'-adenine partially stacks on the other stem. The angle between the base planes of the two nonstacking adenines (A10 and A11) in the bulge loop reflects the kinking angle of the global DNA structure. The neighboring cytosines opposite the dA(5)-bulge (being parts of the bulge flanking base pairs) do not stack on one another. This disruption of stacking is characterized by a partial shearing of these bases, such that certain sequential NOEs for this base step are preserved. In the base step opposite the loop, an extraordinary hydrogen bond is observed between the phosphate backbone of the 5'-dC and the amino proton of the 3'-dC in about two-thirds of the conformers. This hydrogen bond probably contributes to stabilizing the global DNA structure. The dA(5)-bulge induces a local kink into the DNA molecule of about 73 degrees (+/-11 degrees ). This kinking angle and the mutual orientation of the two double helical stems agree well with results from fluorescence resonance energy

  7. Comparative study of spontaneous deamination of adenine and cytosine in unbuffered aqueous solution at room temperature

    NASA Astrophysics Data System (ADS)

    Wang, Shiliang; Hu, Anguang

    2016-06-01

    Adenine in unbuffered nanopure water at a concentration of 2 mM is completely deaminated (>99%) to hypoxanthine at room temperature in ca. 10 weeks, with an estimated half-life (t1/2) less than 10 days, about six orders of magnitude faster than previously reported. Cytosine is not deaminated under the same condition, even after 3 years. This is in contrast to previous observations that cytosine deaminates 20-40 times faster than adenine free base, in nucleoside, in nucleotide and in single-stranded DNA in buffered neutral aqueous solutions.

  8. Copper-catalyzed intramolecular cyclization of N-propargyl-adenine: synthesis of purine-fused tricyclics.

    PubMed

    Li, Ren-Long; Liang, Lei; Xie, Ming-Sheng; Qu, Gui-Rong; Niu, Hong-Ying; Guo, Hai-Ming

    2014-04-18

    A novel protocol to construct fluorescent purine-fused tricyclic products via intramolecular cyclization of N-propargyl-adenine has been developed. With CuBr as the catalyst, a series of purine-fused tricyclic products were obtained in good to excellent yields (19 examples, 75-89% yields). When R2 was a hydrogen atom in N-propargyl-adenines, the reactions only afforded the endocyclic double bond products. When R2 was an aryl group, the electron-donating groups favored the endocyclic double bond products, while the electron-withdrawing groups favored the exocyclic double bond products. PMID:24678722

  9. Theoretical and Experimental Study of Valence-Shell Ionization Spectra of Guanine

    NASA Astrophysics Data System (ADS)

    Zaytseva, Irina L.; Trofimov, Alexander B.; Schirmer, Jochen; Plekan, Oksana; Feyer, Vitaliy; Richter, Robert; Coreno, Marcello; Prince, Kevin C.

    2009-10-01

    The full valence-shell ionization spectra of the four most stable guanine tautomers were studied theoretically. The third-order algebraic-diagrammatic construction (ADC(3)) method for the one-particle Green's function was used to calculate the energies and relative intensities of the vertical ionization transitions. For low-lying transitions, the influence of planar and nonplanar guanine configurations on the ionization energies, as well as the convergence of the results with respect to basis set was studied at the level of the outer-valence Green's function (OVGF) approximation scheme. The results of the calculations were used to interpret recent synchrotron radiation valence-shell photoionization spectra of guanine in the gas phase under thermal equilibrium conditions. The photoelectron spectrum was modeled by summing individual tautomer spectra weighted by Boltzmann population ratios (BPR) of tautomers from our previous high-level ab initio thermochemical calculations. The theoretical spectra are in good agreement with the experimental results, providing assignments of most observed structures and offering insight into tautomerism of guanine in the gas phase. The first six molecular orbitals give rise to single-hole states with a binding energy of about 7-12 eV. At higher binding energy the spectral features are mainly due to satellite states.

  10. Exploring the Use of a Guanine-Rich Catalytic DNA for Sulfoxide Preparation.

    PubMed

    Dellafiore, María A; Montserrat, Javier M; Iribarren, Adolfo M

    2015-01-01

    A guanine-rich DNA oligonucleotide complexed with hemin was used to catalyze controlled oxygen transfer reactions to different sulfides for sulfoxide preparation in the presence of H2O2. Comparable activities were obtained when using fully modified L-DNA. In addition, oligonucleotide immobilization led to an active catalyst which could be successfully recovered and reused without loss of activity.

  11. Exploring the Use of a Guanine-Rich Catalytic DNA for Sulfoxide Preparation

    PubMed Central

    Dellafiore, María A.; Montserrat, Javier M.; Iribarren, Adolfo M.

    2015-01-01

    A guanine-rich DNA oligonucleotide complexed with hemin was used to catalyze controlled oxygen transfer reactions to different sulfides for sulfoxide preparation in the presence of H2O2. Comparable activities were obtained when using fully modified L-DNA. In addition, oligonucleotide immobilization led to an active catalyst which could be successfully recovered and reused without loss of activity. PMID:26066510

  12. 1-ethynylpyrene-modified guanine and cytosine as optical labels for DNA hybridization.

    PubMed

    Wagner, Clemens; Rist, Manuela; Mayer-Enthart, Elke; Wagenknecht, Hans-Achim

    2005-06-01

    1-ethynylpyrene shows remarkable absorption changes upon DNA hybridization when it is covalently attached to the 8-position of guanine. An absorption band at approximately 420 nm is only present in the duplex, exhibits thermal melting behaviour and provides the basis for a molecular beacon together with 1-ethynylpyrene-modified cytosine.

  13. Human Sos1: A guanine nucleotide exchange factor for ras that binds to GRB2

    SciTech Connect

    Chardin, P. ); Camonis, J.; Gale, N.W.; Aelst, L. Van; Wigler, M.H.; Bar-Sagi, D. ); Schlessinger, J. )

    1993-05-28

    A human complementary DNA was isolated that encodes a widely expressed protein, hSos1, that is closely related to Sos, the product of the Drosophila son of sevenless gene. The hSos1 protein contains a region of significant sequence similarity to CDC25, a guanine nucleotide exchange factor for Ras from yeast. A fragment of hSos1 encoding the CDC25-related domain complemented loss of CDC25 function in yeast. This hSos1 domain specifically stimulated guanine nucleotide exchange on mammalian Ras proteins in vitro. Mammalian cells overexpressing full-length hSos1 had increased guanine nucleotide exchange activity. Thus hSos1 is a guanine nucleotide exchange factor for Ras. The hSos1 interacted with growth factor receptor-bound protein 2 (GRB2) in vivo and in vitro. This interaction was mediated by the carboxyl-terminal domain of hSos1 and the Src homology 3 (SH3) domains of GRB2. These results suggest that the coupling of receptor tyrosine kinases to Ras signaling is mediated by a molecular complex consisting of GRB2 and hSos1. 42 refs., 5 figs.

  14. Guanine-nucleotide-dependent inhibition of adenylate cyclase of rabbit heart by glucagon.

    PubMed

    Kiss, Z; Tkachuk, V A

    1984-07-16

    The present study demonstrates an inhibitory effect of glucagon on the adenylate cyclase system of rabbit heart. Inhibition was maximal (22-40%) at 0.1-0.01 microM glucagon and required the presence of 0.01-0.1 mM GTP or guanosine 5'-[beta, gamma-imido]triphosphate (GuoPP[NH]P). Reduced or no inhibitor effect of glucagon was observed: (a) after limited proteolysis of plasma membrane proteins by trypsin, (b) in the presence of 1 mM Mn2+, (c) in the absence of Na+, and (d) during the first 10 min of incubation if GuoPP[NH]P was the activating ligand. With GTP as the activating ligand, inhibition of cyclase by glucagon occurred without delay. These data are consistent with a mediation of glucagon inhibition by a guanine-nucleotide-binding protein. In the presence of ethanol (0.2 M) or benzyl alcohol (0.05 M), agents which are known to increase the fluidity of biological membranes, glucagon increased the enzyme activity in a guanine-nucleotide-dependent manner. Activation of cyclase in the presence of alcohols was maximal (30-60%) at 0.1-1.0 microM glucagon and 0.01 mM guanine nucleotides. Data suggest that glucagon receptors can interact with both the activatory and inhibitory guanine-nucleotide-binding proteins and the physical state of membranes may play a role in determining which interaction will be preferential.

  15. Guanine-containing copper(II) complexes: synthesis, X-ray structures and magnetic properties.

    PubMed

    Mastropietro, Teresa F; Armentano, Donatella; Grisolia, Ettore; Zanchini, Claudia; Lloret, Francesc; Julve, Miguel; De Munno, Giovanni

    2008-01-28

    Three new compounds of formula {[Cu(gua)(H(2)O)(3)](BF(4))(SiF(6))(1/2)}(n) (1), {[Cu(gua)(H(2)O)(3)](CF(3)SO(3))(2).H(2)O}(n) (2) and [Cu(gua)(2)(H(2)O)(HCOO)]ClO(4).H(2)O.1/2HCOOH] (3) [gua = 2-amino-1H-purin-6(9H)-one] showing the unprecedented coordination of neutral guanine, have been synthesised and structurally characterized. The structures of the compounds 1 and 2 contain uniform copper(II) chains of formula [Cu(gua)(H(2)O)(3)](n)(2n+), where the copper atoms are bridged by guanine ligands coordinated via N(3) and N(7). The electroneutrality is achieved by uncoordinated tetrafluoroborate and hexafluorosilicate (1) and triflate (2). Each copper atom in 1 and 2 is five-coordinated in a distorted square pyramidal environment: two water molecules in trans positions and the N(3) and N(7a) nitrogen atoms of two guanine ligands build the basal plane whereas a water molecule fills the axial position. The values of the copper-copper separation across the bridging guanine ligand are 7.183(1) (1) and 7.123(1) A (2). is an ionic salt whose structure is made up of mononuclear [Cu(gua)(2)(H(2)O)(HCOO)](+) cations and perchlorate anions plus water and formic acid as crystallization molecules. The two guanine ligands in the cation are coordinated to the copper centre through the N(9) atom. The copper atom in 3 is four-coordinated with two monodentate guanine molecules in the trans position, a water molecule and a monodenate formate ligand building a quasi square planar surrounding. Magnetic susceptibility measurements for 1 and 2 in the temperature range 1.9-300 K show the occurrence of significant intrachain antiferromagnetic interactions between the copper(ii) ions across the guanine bridge [J = -9.6(1) (1) and -10.3(1) cm(-1) (2) with H = -J summation operator(i)S(i).S(i+1)].

  16. Hydrogen-bonded proton transfer in the protonated guanine-cytosine (GC+H)+ base pair.

    PubMed

    Lin, Yuexia; Wang, Hongyan; Gao, Simin; Schaefer, Henry F

    2011-10-13

    The single proton transfer at the different sites of the Watson-Crick (WC) guanine-cytosine (GC) DNA base pair are studied here using density functional methods. The conventional protonated structures, transition state (TS) and proton-transferred product (PT) structures of every relevant species are optimized. Each transition state and proton-transferred product structure has been compared with the corresponding conventional protonated structure to demonstrate the process of proton transfer and the change of geometrical structures. The relative energies of the protonated tautomers and the proton-transfer energy profiles in gas and solvent are analyzed. The proton-transferred product structure G(+H(+))-H(+)C(N3)(-H(+))(PT) has the lowest relative energy for which only two hydrogen bonds exist. Almost all 14 isomers of the protonated GC base pair involve hydrogen-bonded proton transfer following the three pathways, with the exception of structure G-H(+)C(O2). When the positive charge is primarily "located" on the guanine moiety (H(+)G-C, G-H(+)C(C4), and G-H(+)C(C6)), the H(1) proton transfers from the N(1) site of guanine to the N(3) site of cytosine. The structures G-H(+)C(C5) and G-H(+)C(C4) involve H(4a) proton transfer from the N(4) of cytosine to the O(6) site of guanine. H(2a) proton transfer from the N(2) site of guanine to the O(2) site of cytosine is found only for the structure G-H(+)C(C4). The structures to which a proton is added on the six-centered sites adjoining the hydrogen bonds are more prone to proton transfer in the gas phase, whereas a proton added on the minor groove and the sites adjoining the hydrogen bonds is favorable to the proton transfer in energy in the aqueous phase.

  17. Effects of guanine bases at the central loop on stabilization of the quadruplex DNAs and their interactions with Meso-tetrakis(N-methylpyridium-4-yl)porphyrin.

    PubMed

    Jeon, Sun Hee; Moon, Jihye; Lee, Myung Won; Kim, Seog K

    2015-10-01

    The thermal stability of the G-quadruplex formed from the thrombin-binding aptamer, 5'G2T2G2TGTG2T2G2, in which the guanine (G) base at the central loop was replaced with an adenine (A) or inosine (I) base, was examined to determine the role of the central G base in stabilizing the quadruplex. Replacement of the central G base by the I base resulted in a slight decrease in thermal stability. On the other hand, the stability of the G-quadruplex decreased to a significant extent when it was replaced with the A base. The optimized structure of the G-quadruplex, which was obtained by a molecular dynamic simulation, showed that the carbonyl group of the C5 position of the central G base could form hydrogen bonds with the G1 amine group at the C7 position on the upper G-quartet. This formation of a hydrogen bond contributes to the stability of the G-quadruplex. The spectral property of meso-tetrakis(N-methylpyridium-4yl)porphyrin (TMPyP) associated with the G-quadruplex was characterized by a moderate red shift and hypochromism in the absorption spectrum, a positive CD signal, and two emission maxima in the fluorescence emission spectrum, suggesting that TMPyP binds at the exterior of the G-quadruplex. Spectral properties were slightly altered when the G base at the central loop was replaced with A or I, while the fluorescence decay times of TMPyP associated with the G-quadruplex were identical. Observed spectral properties removes the possibility of intercalation binding mode for TMPyP. TMPyP binds at the exterior of the quadruplex. Whether it stacks on the central loop or binds at the side of the quadruplex is unclear at this stage. PMID:26057195

  18. Measurement of liver adenine nucleotides and S-adenosyl amino acids by one-step high-performance liquid chromatography.

    PubMed

    Gourdeau, H; Lavoie, R; Grose, J H; Bélanger, L

    1986-10-01

    A reverse-phase isocratic HPLC method is described for direct simultaneous assay of ATP, ADP, AMP, S-adenosylmethionine, S-adenosylhomocysteine, S-adenosylethionine, and other adenine derivatives in liver microbiopsies. The procedure was tested in conditions which alter the hepatic content of adenine nucleotides and sulfur-adenosyl amino acids in humans, rats, and guinea pigs.

  19. Damage to DNA thymine residues in CHO cells by hydrogen peroxide and copper, ascorbate and copper, hypochlorite, or other oxidants: Protection by low MW polyethylene glycol

    SciTech Connect

    Schellenberg, K.A.; Shaeffer, J. )

    1991-03-11

    Polyethylene glycol (PEG) MW 200-600, has been shown to protect animals against oxidant and radiation damage. In order to study the mechanism the authors examined the effect of PEG on damage to thymine residues in the DNA of living Chinese hamster ovary (CHO) cells. After growing to confluence in the presence of (methyl{sup 3}H)thymidine, the cells were treated, usually for 1 hr, with various combinations of H{sub 2}O{sub 2}, Cu{sup ++}, Fe{sup ++}, Ocl{sup {minus}}, ascorbate UV or X-irradiation, and PEG MW 300. The oxidants H{sub 2}O{sub 2}/Cu{sup ++}, and OCL{sup {minus}} released {sup 3}H into the medium from DNA thymine, and also formed thymine glycol residues in the DNA that were assayed by alkaline borohydride. The presence of 10% PEG during treatment significantly reduced the release of {sup 3}H into the medium but did not prevent formation of thymine glycol residues bound to the DNA. PEG at 10% had no effect on the cloning efficiency of CHO cells.

  20. The direct observation of a psoralen-thymine UVA induced solid-state cycloaddition reaction product by single-crystal x-ray diffractometry.

    PubMed

    Pfluger, C E; Ostrander, R L

    1989-04-01

    Single-crystal x-ray diffraction methods have been used to directly observe and simultaneously determine the molecular structure of the UVA induced cis-syn photocycloaddition product in a partially photolyzed single crystal of a psoralen(pyrone ring side)-DNA(thymine) interaction model compound, 1'-(8-oxypsoralen)-8'(thym-1"yl)3',6'-dioxaoctane. PMID:2727077

  1. Phosphorus-31 NMR visibility and characterization of rat liver mitochondrial matrix adenine nucleotides

    SciTech Connect

    Hutson, S.M.; Berkich, D.; Williams, G.D.; LaNoue, K.F.; Briggs, R.W. )

    1989-05-16

    Compartmentation and NMR visibility of mitochondrial adenine nucleotides were quantitated in isolated rat liver mitochondria respiring on succinate and glutamate in vitro at 8 and 25{degree}C. Intra- and extramitochondrial nucleotides were discriminated by adding the chelator trans-1,2-diaminocyclohexane-N,N,N{prime},N{prime}-tetraacetic acid (CDTA). T{sub 1} values of about 0.2-0.3 s for magnesium-bound matrix nucleotides were determined. Adenine nucleotide T{sub 1} values were influenced by the ionic environment; only magnesium-free ATP T{sub 1}'s were affected by temperature. Intra- and extramitochondrial adenine nucleotide ratios were varied in ATP-loaded mitochondria with added ATP and phosphate using the mitochondrial inhibitors oligomycin and carboxyatractyloside, and adenine nucleotides were quantitated by using NMR and enzymatic analysis. There was good agreement between matrix ATP concentrations (magnesium-bound ATP) calculated by using NMR and standard biochemical techniques. Although matrix ADP could be detected by NMR, it was difficult to quantitate accurately by NMR. The data indicate that mitochondrial ATP is NMR-visible in isolated mitochondria in vitro.

  2. Controlling two-phase self-assembly of an adenine derivative on HOPG via kinetic effects.

    PubMed

    Wang, Can; Jana, Pritam Kumar; Zhang, Haiming; Mu, Zhongcheng; Kehr, Gerald; Blömker, Tobias; Erker, Gerhard; Fuchs, Harald; Heuer, Andreas; Chi, Lifeng

    2014-08-21

    Large-area self-assembled structures of a nucleobase adenine derivative were successfully realized through vacuum deposition. STM images reveal two types of structures, which could be regulated by substrate temperature and the evaporation rate, indicating the relevance of kinetic effects. The results are supported by computer simulations.

  3. The effect of activated charcoal on adenine-induced chronic renal failure in rats.

    PubMed

    Ali, Badreldin H; Alza'abi, Mohamed; Ramkumar, Aishwarya; Al-Lawati, Intisar; Waly, Mostafa I; Beegam, Sumaya; Nemmar, Abderrahim; Brand, Susanne; Schupp, Nicole

    2014-03-01

    Activated charcoal (AC) is a sorbent that has been shown to remove urinary toxins like urea and indoxyl sulfate. Here, the influence of AC on kidney function of rats with experimental chronic renal failure (CRF) is investigated. CRF was induced in rats by feeding adenine (0.75%) for four weeks. As an intervention, AC was added to the feed at concentrations of 10%, 15% or 20%. Adenine treatment impaired kidney function: it lowered creatinine clearance and increased plasma concentrations of creatinine, urea, neutrophil gelatinase-associated lipocalin and vanin-1. Furthermore, it raised plasma concentrations of the uremic toxins indoxyl sulfate, phosphate and uric acid. Renal morphology was severely damaged and histopathological markers of inflammation and fibrosis were especially increased. In renal homogenates, antioxidant indices, including superoxide dismutase and catalase activity, total antioxidant capacity and reduced glutathione were adversely affected. Most of these changes were significantly ameliorated by dietary administration of AC at a concentration of 20%, while effects induced by lower doses of dietary AC on adenine nephrotoxicity were not statistically significant. The results suggest that charcoal is a useful sorbent agent in dietary adenine-induced CRF in rats and that its usability as a nephroprotective agent in human kidney disease should be studied.

  4. Effects of adenine arabinoside on lymphocytes infected with Epstein-Barr virus.

    PubMed Central

    Benz, W C; Siegel, P J; Baer, J

    1978-01-01

    Low concentrations of adenine arabinoside inhibited growth of two Epstein-Barr virus producer cell lines in culture, while not significantly affecting a nonproducer cell line and a B-cell-negative line. These observations were extended to include freshly infected cells. Mitogen-stimulated human umbilical cord blood lymphocytes were unaffected by the drug at concentration levels that inhibited [3H]thymidine incorporation into the DNA of Epstein-Barr virus-stimulated cells. DNA synthesis in Epstein-Barr virus-superinfected Raji cells was also adversely affected by adenine arabinoside. However, these same low concentrations of adenine arabinoside in the triphosphate form produced less effect on DNA synthesis in nuclear systems and DNA polymerase assays than on growth or DNA synthesis in whole cells. Therefore the effects reported here of low concentrations of the drug on whole cells may be only in part related to DNA polymerase inhibition. The work reported here suggests that adenine arabinoside has multiple sites of action in infected cells. PMID:212577

  5. Ameliorative Effect of Chrysin on Adenine-Induced Chronic Kidney Disease in Rats

    PubMed Central

    Ali, Badreldin H.; Adham, Sirin A.; Al Za’abi, Mohammed; Waly, Mostafa I.; Yasin, Javed; Nemmar, Abderrahim; Schupp, Nicole

    2015-01-01

    Chrysin (5, 7- dihydroxyflavone) is a flavonoid with several pharmacological properties that include antioxidant, anti-inflammatory and antiapoptotic activities. in this work, we investigated some effects of three graded oral doses of chrysin (10, 50 and 250 mg/kg) on kidney structure and function in rats with experimental chronic renal disease (CKD) induced by adenine (0.25% w/w in feed for 35 days), which is known to involve inflammation and oxidative stress. Using several indices in plasma, urine and kidney homogenates, adenine was found to impair kidney function as it lowered creatinine clearance and increased plasma concentrations of creatinine, urea, neutrophil gelatinase-associated lipocalin and N-Acetyl-beta-D-glucosaminidase activity. Furthermore, it raised plasma concentrations of the uremic toxin indoxyl sulfate, some inflammatory cytokines and urinary albumin concentration. Renal morphology was severely damaged and histopathological markers of inflammation and fibrosis were especially increased. In renal homogenates, antioxidant indices, including superoxide dismutase and catalase activities, total antioxidant capacity and reduced glutathione were all adversely affected. Most of these adenine – induced actions were moderately and dose -dependently mitigated by chrysin, especially at the highest dose. Chrysin did not cause any overt adverse effect on the treated rats. The results suggest that different doses of chrysin produce variable salutary effects against adenine-induced CKD in rats, and that, pending further pharmacological and toxicological studies, its usability as a possible ameliorative agent in human CKD should be considered. PMID:25909514

  6. Macrophage Trafficking as Key Mediator of Adenine-Induced Kidney Injury

    PubMed Central

    Braga, Tárcio Teodoro; Felizardo, Raphael José Ferreira; Andrade-Oliveira, Vinícius; Hiyane, Meire Ioshie; da Silva, João Santana; Câmara, Niels Olsen Saraiva

    2014-01-01

    Macrophages play a special role in the onset of several diseases, including acute and chronic kidney injuries. In this sense, tubule interstitial nephritis (TIN) represents an underestimated insult, which can be triggered by different stimuli and, in the absence of a proper regulation, can lead to fibrosis deposition. Based on this perception, we evaluated the participation of macrophage recruitment in the development of TIN. Initially, we provided adenine-enriched food to WT and searched for macrophage presence and action in the kidney. Also, a group of animals were depleted of macrophages with the clodronate liposome while receiving adenine-enriched diet. We collected blood and renal tissue from these animals and renal function, inflammation, and fibrosis were evaluated. We observed higher expression of chemokines in the kidneys of adenine-fed mice and a substantial protection when macrophages were depleted. Then, we specifically investigated the role of some key chemokines, CCR5 and CCL3, in this TIN experimental model. Interestingly, CCR5 KO and CCL3 KO animals showed less renal dysfunction and a decreased proinflammatory profile. Furthermore, in those animals, there was less profibrotic signaling. In conclusion, we can suggest that macrophage infiltration is important for the onset of renal injury in the adenine-induced TIN. PMID:25132730

  7. Structural and quantum chemical studies of 8-aryl-sulfanyl adenine class Hsp90 inhibitors.

    PubMed

    Immormino, Robert M; Kang, Yanlong; Chiosis, Gabriela; Gewirth, Daniel T

    2006-08-10

    Hsp90 chaperones play a critical role in modulating the activity of many cell signaling proteins and are an attractive target for anti-cancer therapeutics. We report here the structures of the water soluble 8-aryl-sulfanyl adenine class Hsp90 inhibitors, 1 (PU-H71) and 2 (PU-H64), in complex with the N-terminal domain of human Hsp90alpha. The conformation of 1 when bound to Hsp90 differs from previously reported 8-aryl adenine Hsp90 inhibitors including 3 (PU24FCl). While the binding mode for 3 places the 2'-halide of the 8-aryl group on top of the adenine ring, for 1 and 2, we show that the 2'-halide is rotated approximately 180 degrees away. This difference explains the opposing trends in Hsp90 inhibitory activity for the 2'-halo derivatives of the 3',4',5'-trimethoxy series where Cl > Br > I compared to the 4',5'-methylenedioxy series where I > Br > Cl. We also present quantum chemical calculations of 2 and its analogues that illuminate their basis for Hsp90 inhibition. The calculated conformation of 2 agreed well with the crystallographically observed conformations of 1 and 2. The predictive nature of the calculations has allowed the exploration of additional derivatives based on the 8-aryl adenine scaffold.

  8. SERS, XPS, and DFT Study of Adenine Adsorption on Silver and Gold Surfaces.

    PubMed

    Pagliai, Marco; Caporali, Stefano; Muniz-Miranda, Maurizio; Pratesi, Giovanni; Schettino, Vincenzo

    2012-01-19

    The adsorption of adenine on silver and gold surfaces has been investigated combining density functional theory calculations with surface-enhanced Raman scattering and angle-resolved X-ray photoelectron spectroscopy measurements, obtaining useful insight into the orientation and interaction of the nucleobase with the metal surfaces.

  9. Rapid magnetic wiper featuring biogenic guanine particles: Magnetic non-contact switching of opto-fluidic mirrors featuring biogenic guanine crystals

    NASA Astrophysics Data System (ADS)

    Iwasaka, M.; Mizukawa, Y.; Miyashita, Y.

    2014-01-01

    In the present study, we prepared a diamagnetic fluid with magnetically controlled visual transparency. Light scattering control by the magnetic orientation of organic and diamagnetic microcrystals was applied for developing a functional diamagnetic fluid, by controlling its turbidity and transparency. The light scattering fluid was prepared by guanine crystal particles suspension (GPS), which were collected from the scales of goldfish, in an aqueous solution. It is revealed that GPS can control light scattering with magnetic fields. The method we developed can be utilized for controlling the visibility of light-reflective objects by using magnetic fields on a millitesla scale.

  10. A Crystallographic Study of the Role of Sequence Context in Thymine Glycol Bypass by a Replicative DNA Polymerase Serendipitously Sheds Light on the Exonuclease Complex

    SciTech Connect

    Aller, Pierre; Duclos, Stéphanie; Wallace, Susan S.; Doublié, Sylvie

    2012-06-27

    Thymine glycol (Tg) is the most common oxidation product of thymine and is known to be a strong block to replicative DNA polymerases. A previously solved structure of the bacteriophage RB69 DNA polymerase (RB69 gp43) in complex with Tg in the sequence context 5'-G-Tg-G shed light on how Tg blocks primer elongation: The protruding methyl group of the oxidized thymine displaces the adjacent 5'-G, which can no longer serve as a template for primer elongation [Aller, P., Rould, M. A., Hogg, M, Wallace, S. S. and Doublie S. (2007). A structural rationale for stalling of a replicative DNA polymerase at the most common oxidative thymine lesion, thymine glycol. Proc. Natl. Acad. Sci. USA, 104, 814-818.]. Several studies showed that in the sequence context 5'-C-Tg-purine, Tg is more likely to be bypassed by Klenow fragment, an A-family DNA polymerase. We set out to investigate the role of sequence context in Tg bypass in a B-family polymerase and to solve the crystal structures of the bacteriophage RB69 DNA polymerase in complex with Tg-containing DNA in the three remaining sequence contexts: 5'-A-Tg-G, 5'-T-Tg-G, and 5'-C-Tg-G. A combination of several factors - including the associated exonuclease activity, the nature of the 3' and 5' bases surrounding Tg, and the cis-trans interconversion of Tg - influences Tg bypass. We also visualized for the first time the structure of a well-ordered exonuclease complex, allowing us to identify and confirm the role of key residues (Phe123, Met256, and Tyr257) in strand separation and in the stabilization of the primer strand in the exonuclease site.

  11. Administration of α-Galactosylceramide Improves Adenine-Induced Renal Injury

    PubMed Central

    Aguiar, Cristhiane Favero; Naffah-de-Souza, Cristiane; Castoldi, Angela; Corrêa-Costa, Matheus; Braga, Tárcio T; Naka, Érika L; Amano, Mariane T; Abate, Débora T R S; Hiyane, Meire I; Cenedeze, Marcos A; Filho, Alvaro Pacheco e Silva; Câmara, Niels O S

    2015-01-01

    Natural killer T (NKT) cells are a subset of lymphocytes that reacts to glycolipids presented by CD1d. Invariant NKT cells (iNKT) correspond to >90% of the total population of NKTs and reacts to α-galactosylceramide (αGalCer). αGalCer promotes a complex mixture of Th1 and Th2 cytokines, as interferon (IFN)-γ and interleukin (IL)-4. NKT cells and IFN-γ are known to participate in some models of renal diseases, but further studies are still necessary to elucidate their mechanisms. The aim of our study was to analyze the participation of iNKT cells in an experimental model of tubule-interstitial nephritis. We used 8-wk-old C57BL/6j, Jα18KO and IFN-γKO mice. They were fed a 0.25% adenine diet for 10 d. Both adenine-fed wild-type (WT) and Jα18KO mice exhibited renal dysfunction, but adenine-fed Jα18KO mice presented higher expression of kidney injury molecule-1 (KIM-1), tumor necrosis factor (TNF)-α and type I collagen. To analyze the role of activated iNKT cells in our model, we administered αGalCer in WT mice during adenine ingestion. After αGalCer injection, we observed a significant reduction in serum creatinine, proinflammatory cytokines and renal fibrosis. However, this improvement in renal function was not observed in IFN-γKO mice after αGalCer treatment and adenine feeding, illustrating that this cytokine plays a role in our model. Our findings may suggest that IFN-γ production is one of the factors contributing to improved renal function after αGalCer administration. PMID:26101952

  12. ON THE INTERACTION OF ADENINE WITH IONIZING RADIATION: MECHANISTICAL STUDIES AND ASTROBIOLOGICAL IMPLICATIONS

    SciTech Connect

    Evans, Nicholas L.; Ullrich, Susanne; Bennett, Chris J.; Kaiser, Ralf I.

    2011-04-01

    The molecular inventory available on the prebiotic Earth was likely derived from both terrestrial and extraterrestrial sources. A complete description of which extraterrestrial molecules may have seeded early Earth is therefore necessary to fully understand the prebiotic evolution which led to life. Galactic cosmic rays (GCRs) are expected to cause both the formation and destruction of important biomolecules-including nucleic acid bases such as adenine-in the interstellar medium within the ices condensed on interstellar grains. The interstellar ultraviolet (UV) component is expected to photochemically degrade gas-phase adenine on a short timescale of only several years. However, the destruction rate is expected to be significantly reduced when adenine is shielded in dense molecular clouds or even within the ices of interstellar grains. Here, biomolecule destruction by the energetic charged particle component of the GCR becomes important as it is not fully attenuated. Presented here are results on the destruction rate of the nucleobase adenine in the solid state at 10 K by energetic electrons, as generated in the track of cosmic ray particles as they penetrate ices. When both UV and energetic charged particle destructive processes are taken into account, the half-life of adenine within dense interstellar clouds is found to be {approx}6 Myr, which is on the order of a star-forming molecular cloud. We also discuss chemical reaction pathways within the ices to explain the production of observed species, including the formation of nitriles (R-C{identical_to}N), epoxides (C-O-C), and carbonyl functions (R-C=O).

  13. NMR solution structure of an N2-guanine DNA adduct derived from the potent tumorigen dibenzo[a,l]pyrene: Intercalation from the minor groove with ruptured Watson-Crick base pairing

    PubMed Central

    Tang, Yijin; Liu, Zhi; Ding, Shuang; Lin, Chin H.; Cai, Yuqin; Rodriguez, Fabian A.; Sayer, Jane M.; Jerina, Donald M.; Amin, Shantu; Broyde, Suse; Geacintov, Nicholas E.

    2012-01-01

    The most potent tumorigen identified among the polycyclic aromatic hydrocarbons (PAH) is the non-planar fjord region dibenzo[a,l]pyrene (DB[a,l]P). It is metabolically activated in vivo through the widely-studied diol epoxide (DE) pathway to form covalent adducts with DNA bases, predominantly guanine and adenine. The (+)-11S,12R,13R,14S DE enantiomer forms adducts via its C14-position with the exocyclic amino group of guanine. Here, we present the first NMR solution structure of a DB[a,l]P-derived adduct, the 14R (+)-trans-anti-DB[a,l]P–N2-dG (DB[a,l]P-dG) lesion in double-stranded DNA. In contrast to the stereochemically identical benzo[a]pyrene-derived N2-dG adduct (B[a]P-dG) in which the B[a]P rings reside in the B-DNA minor groove on the 3’-side of the modifed deoxyguanosine, in the DB[a,l]P-derived adduct the DB[a,l]P rings intercalate into the duplex on the 3’-side of the modified base from the sterically crowded minor groove. Watson-Crick base pairing of the modified guanine with the partner cytosine is broken, but these bases retain some stacking with the bulky DB[a,l]P ring system. This new theme in PAH DE - DNA adduct conformation differs from: (1) the classical intercalation motif where Watson-Crick base-pairing is intact at the lesion site, and (2) the base-displaced intercalation motif in which the damaged base and its partner are extruded from the helix . The structural considerations that lead to the intercalated conformation of the DB[a,l]P-dG lesion in contrast to the minor groove alignment of the B[a]P-dG adduct, and the implications of the DB[a,l]P-dG conformational motif for the recognition of such DNA lesions by the human nucleotide excision repair apparatus, are discussed. PMID:23121427

  14. Guanine nucleotide binding to the Bateman domain mediates the allosteric inhibition of eukaryotic IMP dehydrogenases

    PubMed Central

    Buey, Rubén M.; Ledesma-Amaro, Rodrigo; Velázquez-Campoy, Adrián; Balsera, Mónica; Chagoyen, Mónica; de Pereda, José M.; Revuelta, José L.

    2015-01-01

    Inosine-5′-monophosphate dehydrogenase (IMPDH) plays key roles in purine nucleotide metabolism and cell proliferation. Although IMPDH is a widely studied therapeutic target, there is limited information about its physiological regulation. Using Ashbya gossypii as a model, we describe the molecular mechanism and the structural basis for the allosteric regulation of IMPDH by guanine nucleotides. We report that GTP and GDP bind to the regulatory Bateman domain, inducing octamers with compromised catalytic activity. Our data suggest that eukaryotic and prokaryotic IMPDHs might have developed different regulatory mechanisms, with GTP/GDP inhibiting only eukaryotic IMPDHs. Interestingly, mutations associated with human retinopathies map into the guanine nucleotide-binding sites including a previously undescribed non-canonical site and disrupt allosteric inhibition. Together, our results shed light on the mechanisms of the allosteric regulation of enzymes mediated by Bateman domains and provide a molecular basis for certain retinopathies, opening the door to new therapeutic approaches. PMID:26558346

  15. Guanine nanowire based amplification strategy: Enzyme-free biosensing of nucleic acids and proteins.

    PubMed

    Gao, Zhong Feng; Huang, Yan Li; Ren, Wang; Luo, Hong Qun; Li, Nian Bing

    2016-04-15

    Sensitive and specific detection of nucleic acids and proteins plays a vital role in food, forensic screening, clinical and environmental monitoring. There remains a great challenge in the development of signal amplification method for biomolecules detection. Herein, we describe a novel signal amplification strategy based on the formation of guanine nanowire for quantitative detection of nucleic acids and proteins (thrombin) at room temperature. In the presence of analytes and magnesium ions, the guanine nanowire could be formed within 10 min. Compared to the widely used single G-quadruplex biocatalytic label unit, the detection limits are improved by two orders of magnitude in our assay. The proposed enzyme-free method avoids fussy chemical label-ling process, complex programming task, and sophisticated equipment, which might provide an ideal candidate for the fabrication of selective and sensitive biosensing platform.

  16. Guanine nucleotide binding to the Bateman domain mediates the allosteric inhibition of eukaryotic IMP dehydrogenases

    NASA Astrophysics Data System (ADS)

    Buey, Rubén M.; Ledesma-Amaro, Rodrigo; Velázquez-Campoy, Adrián; Balsera, Mónica; Chagoyen, Mónica; de Pereda, José M.; Revuelta, José L.

    2015-11-01

    Inosine-5'-monophosphate dehydrogenase (IMPDH) plays key roles in purine nucleotide metabolism and cell proliferation. Although IMPDH is a widely studied therapeutic target, there is limited information about its physiological regulation. Using Ashbya gossypii as a model, we describe the molecular mechanism and the structural basis for the allosteric regulation of IMPDH by guanine nucleotides. We report that GTP and GDP bind to the regulatory Bateman domain, inducing octamers with compromised catalytic activity. Our data suggest that eukaryotic and prokaryotic IMPDHs might have developed different regulatory mechanisms, with GTP/GDP inhibiting only eukaryotic IMPDHs. Interestingly, mutations associated with human retinopathies map into the guanine nucleotide-binding sites including a previously undescribed non-canonical site and disrupt allosteric inhibition. Together, our results shed light on the mechanisms of the allosteric regulation of enzymes mediated by Bateman domains and provide a molecular basis for certain retinopathies, opening the door to new therapeutic approaches.

  17. Absence of hypoxanthine:guanine phosphoribosyltransferase activity in murine Dunn osteosarcoma

    SciTech Connect

    Abelson, H.T.; Gorka, C.

    1983-09-01

    The transplantable murine Dunn osteosarcoma has no detectable hypoxanthine:guanine phosphoribosyltransferase (EC 2.4.2.8) activity. This was established from the tumors directly and from tissue culture cell lines derived from the tumor using a variety of assays: e.g., no (3H)hypoxanthine uptake into tumor or tissue culture cells, no conversion of (3H)hypoxanthine to (3H)IMP by cell extracts from tumors or tissue culture cells, no growth of tissue culture cells in hypoxanthine:aminopterin:thymidine medium, and normal growth of these cells in 10 microM 6-mercaptopurine. Ten human osteosarcomas have been assayed, and two have no apparent hypoxanthine:guanine phosphoribosyltransferase enzyme activity. After high-dose methotrexate treatment in vivo, murine tumors could be selectively killed and normal tissues could be spared by using a rescue regimen of hypoxanthine-thymidine-allopurinol.

  18. Mechanistic study of the deamination reaction of guanine: a computational study.

    PubMed

    Uddin, Kabir M; Almatarneh, Mansour H; Shaw, Dawn M; Poirier, Raymond A

    2011-03-17

    The mechanism for the deamination of guanine with H(2)O, OH(-), H(2)O/OH(-) and for GuaH(+) with H(2)O has been investigated using ab initio calculations. Optimized geometries of the reactants, transition states, intermediates, and products were determined at RHF/6-31G(d), MP2/6-31G(d), B3LYP/6-31G(d), and B3LYP/6-31+G(d) levels of theory. Energies were also determined at G3MP2, G3MP2B3, G4MP2, and CBS-QB3 levels of theory. Intrinsic reaction coordinate (IRC) calculations were performed to characterize the transition states on the potential energy surface. Thermodynamic properties (ΔE, ΔH, and ΔG), activation energies, enthalpies, and Gibbs free energies of activation were also calculated for each reaction investigated. All pathways yield an initial tetrahedral intermediate and an intermediate in the last step that dissociates to products via a 1,3-proton shift. At the G3MP2 level of theory, deamination with OH(-) was found to have an activation energy barrier of 155 kJ mol(-1) compared to 187 kJ mol(-1) for the reaction with H(2)O and 243 kJ mol(-1) for GuaH(+) with H(2)O. The lowest overall activation energy, 144 kJ mol(-1) at the G3MP2 level, was obtained for the deamination of guanine with H(2)O/OH(-). Due to a lack of experimental results for guanine deamination, a comparison is made with those of cytosine, whose deamination reaction parallels that of guanine.

  19. ESI-MS Characterization of a Novel Pyrrole-Inosine Nucleoside that Interacts with Guanine Bases

    PubMed Central

    Pierce, Sarah E.; Sherman, Courtney L.; Jayawickramarajah, Janarthanan; Lawrence, Candace M.; Sessler, Jonathan L.; Brodbelt, Jennifer S.

    2008-01-01

    Based on binding studies undertaken by electrospray ionization-mass spectrometry, a synthetic pyrrole-inosine nucleoside, 1, capable of forming an extended three-point Hoogsteen-type hydrogen-bonding interaction with guanine, is shown to form specific complexes with two different quadruplex DNA structures [dTG4T]4 and d(T2G4)4 as well as guanine rich duplex DNA. The binding interactions of two other analogs were evaluated in order to unravel the structural features that contribute to specific DNA recognition. The importance of the Hoogsteen interactions was confirmed through the absence of specific binding when the pyrrole NH hydrogen-bonding site was blocked or removed. While 2, with a large blocking group, was not found to interact with virtually any form of DNA, 3, with the pyrrole functionality missing, was found to interact non-specifically with several types of DNA. The specific binding of 1 to guanine rich DNA emphasizes the necessity of careful ligand design for specific sequence recognition. PMID:18790136

  20. Binding of calcium ions to Ras promotes Ras guanine nucleotide exchange under emulated physiological conditions.

    PubMed

    Liao, Jun-Ming; Mo, Zhong-Ying; Wu, Ling-Jia; Chen, Jie; Liang, Yi

    2008-11-01

    Both Ras protein and calcium play significant roles in various cellular processes via complex signaling transduction networks. However, it is not well understood whether and how Ca(2+) can directly regulate Ras function. Here we demonstrate by isothermal titration calorimetry that Ca(2+) directly binds to the H-Ras.GDP.Mg(2+) complex with moderate affinity at the first binding site followed by two weak binding events. The results from limited proteinase degradation show that Ca(2+) protects the fragments of H-Ras from being further degraded by trypsin and by proteinase K. HPLC studies together with fluorescence spectroscopic measurements indicate that binding of Ca(2+) to the H-Ras.GDP.Mg(2+) complex remarkably promotes guanine nucleotide exchange on H-Ras under emulated physiological Ca(2+) concentration conditions. Addition of high concentrations of either of two macromolecular crowding agents, Ficoll 70 and dextran 70, dramatically enhances H-Ras guanine nucleotide exchange extent in the presence of Ca(2+) at emulated physiological concentrations, and the nucleotide exchange extent increases significantly with the concentrations of crowding agents. Together, these results indicate that binding of calcium ions to H-Ras remarkably promotes H-Ras guanine nucleotide exchange under emulated physiological conditions. We thus propose that Ca(2+) may activate Ras signaling pathway by interaction with Ras, providing clues to understand the role of calcium in regulating Ras function in physiological environments.

  1. Non-covalent functionalization of hexagonal boron nitride nanosheets with guanine.

    PubMed

    Anota, E Chigo; Tlapale, Y; Villanueva, M Salazar; Márquez, J A Rivera

    2015-08-01

    Density functional theory (DFT) calculations were performed to analyze changes in the structural and electronic properties generated by the interaction of a single nucleobase group (guanine) with the surface of boron nitride nanosheets with hexagonal symmetry (hBNNs). Nanosheets in two contexts were tested: pristine sheets and with point defects (doped with carbon atoms). The criterion of energy minimum was used to find the ground state of the nine possible isomers generated by the hBNNs-guanine interaction. The phenomenon of physisorption is known to occur at values less than 1.0 eV; the adsorption energy results revealed that the preferential geometry was a parallel arrangement between the two partners, with van der Waals-type bonds generated for the hBNNs doped with two carbon atoms. This was the only energetically stable configuration, thus revealing a vibrational mode rather than imaginaries. Furthermore, the hBNNs/C-guanine system has a low value for work function, and therefore could be used in health applications such drug transport and delivery. The increased polarity values suggest that these nanosheets could be solubilized in common solvents used in experimental processes. PMID:26227065

  2. Rates of Chemical Cleavage of DNA and RNA Oligomers Containing Guanine Oxidation Products

    PubMed Central

    2016-01-01

    The nucleobase guanine in DNA (dG) and RNA (rG) has the lowest standard reduction potential of the bases, rendering it a major site of oxidative damage in these polymers. Mapping the sites at which oxidation occurs in an oligomer via chemical reagents utilizes hot piperidine for cleaving oxidized DNA and aniline (pH 4.5) for cleaving oxidized RNA. In the present studies, a series of time-dependent cleavages of DNA and RNA strands containing various guanine lesions were examined to determine the strand scission rate constants. The guanine base lesions 8-oxo-7,8-dihydroguanine (OG), spiroiminodihydantoin (Sp), 5-guanidinohydantoin (Gh), 2,2,4-triamino-2H-oxazol-5-one (Z), and 5-carboxamido-5-formamido-2-iminohydantoin (2Ih) were evaluated in piperidine-treated DNA and aniline-treated RNA. These data identified wide variability in the chemical lability of the lesions studied in both DNA and RNA. Further, the rate constants for cleaving lesions in RNA were generally found to be significantly smaller than for lesions in DNA. The OG nucleotides were poorly cleaved in DNA and RNA; Sp nucleotides were slowly cleaved in DNA and did not cleave significantly in RNA; Gh and Z nucleotides cleaved in both DNA and RNA at intermediate rates; and 2Ih oligonucleotides cleaved relatively quickly in both DNA and RNA. The data are compared and contrasted with respect to future experimental design. PMID:25853314

  3. N7-(carboxymethyl)guanine-Lithium Crystalline Complex: A Bioinspired Solid Electrolyte

    PubMed Central

    Dutta, Dipak; Nagapradeep, N.; Zhu, Haijin; Forsyth, Maria; Verma, Sandeep; Bhattacharyya, Aninda J.

    2016-01-01

    Electrochemical device with components having direct significance to biological life processes is a potent futuristic strategy for the realization of all-round green and sustainable development. We present here synthesis design, structural analysis and ion transport of a novel solid organic electrolyte (G7Li), a compound reminiscent of ion channels, derived from regioisomeric N7-guanine-carboxylate conjugate and Li-ions. G7Li, with it’s in-built supply of Li+-ions, exhibited remarkably high lithium-ion transference number (= 0.75) and tunable room temperature ionic conductivity spanning three decades (≈10−7 to 10−3 Ω−1 cm−1) as a function of moisture content. The ionic conductivity show a distinct reversible transition around 80–100 °C, from a dual Li+ and H+ (<100 °C) to a pure Li+ conductor (>100 °C). Systematic studies reveal a transition from water-assisted Li-ion transport to Li hopping-like mechanism involving guanine-Li coordination. While as-synthesized G7Li has potential in humidity sensors, the anhydrous G7Li is attractive for rechargeable batteries. PMID:27091631

  4. Covalent Bonding of Pyrrolobenzodiazepines (PBDs) to Terminal Guanine Residues within Duplex and Hairpin DNA Fragments

    PubMed Central

    Mantaj, Julia; Jackson, Paul J. M.; Karu, Kersti; Rahman, Khondaker M.; Thurston, David E.

    2016-01-01

    Pyrrolobenzodiazepines (PBDs) are covalent-binding DNA-interactive agents with growing importance as payloads in Antibody Drug Conjugates (ADCs). Until now, PBDs were thought to covalently bond to C2-NH2 groups of guanines in the DNA-minor groove across a three-base-pair recognition sequence. Using HPLC/MS methodology with designed hairpin and duplex oligonucleotides, we have now demonstrated that the PBD Dimer SJG-136 and the C8-conjugated PBD Monomer GWL-78 can covalently bond to a terminal guanine of DNA, with the PBD skeleton spanning only two base pairs. Control experiments with the non-C8-conjugated anthramycin along with molecular dynamics simulations suggest that the C8-substituent of a PBD Monomer, or one-half of a PBD Dimer, may provide stability for the adduct. This observation highlights the importance of PBD C8-substituents, and also suggests that PBDs may bind to terminal guanines within stretches of DNA in cells, thus representing a potentially novel mechanism of action at the end of DNA strand breaks. PMID:27055050

  5. Singlet Oxygen Attack on Guanine: Reactivity and Structural Signature within the B-DNA Helix.

    PubMed

    Dumont, Elise; Grüber, Raymond; Bignon, Emmanuelle; Morell, Christophe; Aranda, Juan; Ravanat, Jean-Luc; Tuñón, Iñaki

    2016-08-22

    Oxidatively generated DNA lesions are numerous and versatile, and have been the subject of intensive research since the discovery of 8-oxoguanine in 1984. Even for this prototypical lesion, the precise mechanism of formation remains elusive due to the inherent difficulties in characterizing high-energy intermediates. We have probed the stability of the guanine endoperoxide in B-DNA as a key intermediate and determined a unique activation free energy of around 6 kcal mol(-1) for the formation of the first C-O covalent bond upon the attack of singlet molecular oxygen ((1) O2 ) on the central guanine of a solvated 13 base-pair poly(dG-dC), described by means of quantum mechanics/molecular mechanics (QM/MM) simulations. The B-helix remains stable upon oxidation in spite of the bulky character of the guanine endoperoxide. Our modeling study has revealed the nature of the versatile (1) O2 attack in terms of free energy and shows a sensitivity to electrostatics and solvation as it involves a charge-separated intermediate. PMID:27440482

  6. N7-(carboxymethyl)guanine-Lithium Crystalline Complex: A Bioinspired Solid Electrolyte

    NASA Astrophysics Data System (ADS)

    Dutta, Dipak; Nagapradeep, N.; Zhu, Haijin; Forsyth, Maria; Verma, Sandeep; Bhattacharyya, Aninda J.

    2016-04-01

    Electrochemical device with components having direct significance to biological life processes is a potent futuristic strategy for the realization of all-round green and sustainable development. We present here synthesis design, structural analysis and ion transport of a novel solid organic electrolyte (G7Li), a compound reminiscent of ion channels, derived from regioisomeric N7-guanine-carboxylate conjugate and Li-ions. G7Li, with it’s in-built supply of Li+-ions, exhibited remarkably high lithium-ion transference number (= 0.75) and tunable room temperature ionic conductivity spanning three decades (≈10‑7 to 10‑3 Ω‑1 cm‑1) as a function of moisture content. The ionic conductivity show a distinct reversible transition around 80–100 °C, from a dual Li+ and H+ (<100 °C) to a pure Li+ conductor (>100 °C). Systematic studies reveal a transition from water-assisted Li-ion transport to Li hopping-like mechanism involving guanine-Li coordination. While as-synthesized G7Li has potential in humidity sensors, the anhydrous G7Li is attractive for rechargeable batteries.

  7. Electron microscopic visualization of complementary labeled DNA with platinum-containing guanine derivative.

    PubMed

    Loukanov, Alexandre; Filipov, Chavdar; Mladenova, Polina; Toshev, Svetlin; Emin, Saim

    2016-04-01

    The object of the present report is to provide a method for a visualization of DNA in TEM by complementary labeling of cytosine with guanine derivative, which contains platinum as contrast-enhanced heavy element. The stretched single-chain DNA was obtained by modifying double-stranded DNA. The labeling method comprises the following steps: (i) stretching and adsorption of DNA on the support film of an electron microscope grid (the hydrophobic carbon film holding negative charged DNA); (ii) complementary labeling of the cytosine bases from the stretched single-stranded DNA pieces on the support film with platinum containing guanine derivative to form base-specific hydrogen bond; and (iii) producing a magnified image of the base-specific labeled DNA. Stretched single-stranded DNA on a support film is obtained by a rapid elongation of DNA pieces on the surface between air and aqueous buffer solution. The attached platinum-containing guanine derivative serves as a high-dense marker and it can be discriminated from the surrounding background of support carbon film and visualized by use of conventional TEM observation at 100 kV accelerated voltage. This method allows examination of specific nucleic macromolecules through atom-by-atom analysis and it is promising way toward future DNA-sequencing or molecular diagnostics of nucleic acids by electron microscopic observation. PMID:26805035

  8. Activation of G Proteins by Guanine Nucleotide Exchange Factors Relies on GTPase Activity.

    PubMed

    Stanley, Rob J; Thomas, Geraint M H

    2016-01-01

    G proteins are an important family of signalling molecules controlled by guanine nucleotide exchange and GTPase activity in what is commonly called an 'activation/inactivation cycle'. The molecular mechanism by which guanine nucleotide exchange factors (GEFs) catalyse the activation of monomeric G proteins is well-established, however the complete reversibility of this mechanism is often overlooked. Here, we use a theoretical approach to prove that GEFs are unable to positively control G protein systems at steady-state in the absence of GTPase activity. Instead, positive regulation of G proteins must be seen as a product of the competition between guanine nucleotide exchange and GTPase activity--emphasising a central role for GTPase activity beyond merely signal termination. We conclude that a more accurate description of the regulation of G proteins via these processes is as a 'balance/imbalance' mechanism. This result has implications for the understanding of intracellular signalling processes, and for experimental strategies that rely on modulating G protein systems. PMID:26986850

  9. N7-(carboxymethyl)guanine-Lithium Crystalline Complex: A Bioinspired Solid Electrolyte.

    PubMed

    Dutta, Dipak; Nagapradeep, N; Zhu, Haijin; Forsyth, Maria; Verma, Sandeep; Bhattacharyya, Aninda J

    2016-01-01

    Electrochemical device with components having direct significance to biological life processes is a potent futuristic strategy for the realization of all-round green and sustainable development. We present here synthesis design, structural analysis and ion transport of a novel solid organic electrolyte (G7Li), a compound reminiscent of ion channels, derived from regioisomeric N7-guanine-carboxylate conjugate and Li-ions. G7Li, with it's in-built supply of Li(+)-ions, exhibited remarkably high lithium-ion transference number (= 0.75) and tunable room temperature ionic conductivity spanning three decades (≈10(-7) to 10(-3) Ω(-1) cm(-1)) as a function of moisture content. The ionic conductivity show a distinct reversible transition around 80-100 °C, from a dual Li(+) and H(+) (<100 °C) to a pure Li(+) conductor (>100 °C). Systematic studies reveal a transition from water-assisted Li-ion transport to Li hopping-like mechanism involving guanine-Li coordination. While as-synthesized G7Li has potential in humidity sensors, the anhydrous G7Li is attractive for rechargeable batteries. PMID:27091631

  10. Aquifex aeolicus tRNA (N2,N2-Guanine)-dimethyltransferase (Trm1) Catalyzes Transfer of Methyl Groups Not Only to Guanine 26 but Also to Guanine 27 in tRNA*

    PubMed Central

    Awai, Takako; Kimura, Satoshi; Tomikawa, Chie; Ochi, Anna; Ihsanawati; Bessho, Yoshitaka; Yokoyama, Shigeyuki; Ohno, Satoshi; Nishikawa, Kazuya; Yokogawa, Takashi; Suzuki, Tsutomu; Hori, Hiroyuki

    2009-01-01

    Transfer RNA (N2,N2-guanine)-dimethyltransferase (Trm1) catalyzes N2,N2-dimethylguanine formation at position 26 (m22G26) in tRNA. In the reaction, N2-guanine at position 26 (m2G26) is generated as an intermediate. The trm1 genes are found only in archaea and eukaryotes, although it has been reported that Aquifex aeolicus, a hyper-thermophilic eubacterium, has a putative trm1 gene. To confirm whether A. aeolicus Trm1 has tRNA methyltransferase activity, we purified recombinant Trm1 protein. In vitro methyl transfer assay revealed that the protein has a strong tRNA methyltransferase activity. We confirmed that this gene product is expressed in living A. aeolicus cells and that the enzymatic activity exists in cell extract. By preparing 22 tRNA transcripts and testing their methyl group acceptance activities, it was demonstrated that this Trm1 protein has a novel tRNA specificity. Mass spectrometry analysis revealed that it catalyzes methyl transfers not only to G26 but also to G27 in substrate tRNA. Furthermore, it was confirmed that native tRNACys has an m22G26m2G27 or m22G26m22G27 sequence, demonstrating that these modifications occur in living cells. Kinetic studies reveal that the m2G26 formation is faster than the m2G27 formation and that disruption of the G27-C43 base pair accelerates velocity of the G27 modification. Moreover, we prepared an additional 22 mutant tRNA transcripts and clarified that the recognition sites exist in the T-arm structure. This long distance recognition results in multisite recognition by the enzyme. PMID:19491098

  11. Aquifex aeolicus tRNA (N2,N2-guanine)-dimethyltransferase (Trm1) catalyzes transfer of methyl groups not only to guanine 26 but also to guanine 27 in tRNA.

    PubMed

    Awai, Takako; Kimura, Satoshi; Tomikawa, Chie; Ochi, Anna; Ihsanawati; Bessho, Yoshitaka; Yokoyama, Shigeyuki; Ohno, Satoshi; Nishikawa, Kazuya; Yokogawa, Takashi; Suzuki, Tsutomu; Hori, Hiroyuki

    2009-07-31

    Transfer RNA (N2,N2-guanine)-dimethyltransferase (Trm1) catalyzes N2,N2-dimethylguanine formation at position 26 (m(2)(2)G26) in tRNA. In the reaction, N2-guanine at position 26 (m(2)G26) is generated as an intermediate. The trm1 genes are found only in archaea and eukaryotes, although it has been reported that Aquifex aeolicus, a hyper-thermophilic eubacterium, has a putative trm1 gene. To confirm whether A. aeolicus Trm1 has tRNA methyltransferase activity, we purified recombinant Trm1 protein. In vitro methyl transfer assay revealed that the protein has a strong tRNA methyltransferase activity. We confirmed that this gene product is expressed in living A. aeolicus cells and that the enzymatic activity exists in cell extract. By preparing 22 tRNA transcripts and testing their methyl group acceptance activities, it was demonstrated that this Trm1 protein has a novel tRNA specificity. Mass spectrometry analysis revealed that it catalyzes methyl transfers not only to G26 but also to G27 in substrate tRNA. Furthermore, it was confirmed that native tRNA(Cys) has an m(2)(2)G26m(2)G27 or m(2)(2)G26m(2)(2)G27 sequence, demonstrating that these modifications occur in living cells. Kinetic studies reveal that the m2G26 formation is faster than the m(2)G27 formation and that disruption of the G27-C43 base pair accelerates velocity of the G27 modification. Moreover, we prepared an additional 22 mutant tRNA transcripts and clarified that the recognition sites exist in the T-arm structure. This long distance recognition results in multisite recognition by the enzyme.

  12. Rapid and sensitive detection of potassium ion based on K(+)-induced G-quadruplex and guanine chemiluminescence.

    PubMed

    Dong, Jingjing; Zhao, Hengzhi; Zhou, Fulin; Li, Baoxin

    2016-03-01

    A simple and rapid method for detection of potassium ion (K(+)) based on a guanine chemiluminescence (CL) system is presented. In this system, one guanine-rich DNA molecule is used as the recognition element. K(+) can cause the guanine-rich DNA to form a G-quadruplex conformation, resulting in remarkable quenching of the guanine CL intensity of guanine-rich DNA. The CL intensity of this CL system decreased with increasing K(+) concentration, revealing a linear relationship in K(+) concentration range from 3 × 10(-5) to 1 × 10(-3) M. A complete detection process can be accomplished in about 5 min. Other common cations (such as Na(+), NH4 (+), Mg(2+), Ca(2+), Zn(2+), and Pb(2+)) did not notably interfere with K(+) detection. The mechanism of this strategy is also discussed. The sensing strategy is low cost and simple without the requirement of complex labeling of probe DNA. The scheme is applicable to the detection of other guanine-rich aptamer-binding chemicals or biomolecules. PMID:26781100

  13. Strikingly different effects of hydrogen bonding on the photodynamics of individual nucleobases in DNA: comparison of guanine and cytosine.

    PubMed

    Zelený, Tomáš; Ruckenbauer, Matthias; Aquino, Adelia J A; Müller, Thomas; Lankaš, Filip; Dršata, Tomáš; Hase, William L; Nachtigallova, Dana; Lischka, Hans

    2012-08-22

    Ab initio surface hopping dynamics calculations were performed to study the photophysical behavior of cytosine and guanine embedded in DNA using a quantum mechanical/molecular mechanics (QM/MM) approach. It was found that the decay rates of photo excited cytosine and guanine were affected in a completely different way by the hydrogen bonding to the DNA environment. In case of cytosine, the geometrical restrictions exerted by the hydrogen bonds did not influence the relaxation time of cytosine significantly due to the generally small cytosine ring puckering required to access the crossing region between excited and ground state. On the contrary, the presence of hydrogen bonds significantly altered the photodynamics of guanine. The analysis of the dynamics indicates that the major contribution to the lifetime changes comes from the interstrand hydrogen bonds. These bonds considerably restricted the out-of-plane motions of the NH(2) group of guanine which are necessary for the ultrafast decay to the ground state. As a result, only a negligible amount of trajectories decayed into the ground state for guanine embedded in DNA within the simulation time of 0.5 ps, while for comparison, the isolated guanine relaxed to the ground state with a lifetime of about 0.22 ps. These examples show that, in addition to phenomena related to electronic interactions between nucleobases, there also exist relatively simple mechanisms in DNA by which the lifetime of a nucleobase is significantly enhanced as compared to the gas phase. PMID:22845192

  14. Role of vacuum ultraviolet (VUV) radiation in abiogenic synthesis of adenine nucleotides

    NASA Astrophysics Data System (ADS)

    Kuzicheva, E. A.; Simakov, M. B.; Mal'Ko, I. L.; Dodonova, N. Ya.; Gontareva, N. B.

    With the use of high performance liquid chromatography the products of abiogenic synthesis of adenine nucleotides in solid films were indentified and estimated quantitatively. The main products of photosynthesis appeared to be adenosine and deoxyadenosine monophosphates. Maximal yield of these products in case of adenosine has been 0.36 for 5'AMP, 0.41% for 2'(3')AMP, 0.20 for 2'3'cAMP in case of deoxyadenosine 0.13% for 5'dAMP, 0.15% for 3'dAMP, 0.24% for 3'5'cdAMP. The destruction of initial adenosine and deoxyadenosine by the end of the experiment was 10 and 15%, respectively. By the increasing of irradiation dose, 5'AMP and 5'dAMP synthesized in the cource of VUV photolysis were destructed up to adenine, its yield being 15% in both cases.

  15. Theoretical Study of Tautomerization Reactions for the Ground and First Excited Electronic States of Adenine

    NASA Technical Reports Server (NTRS)

    Salter, Latasha M.; Chaban, Galina M.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Geometrical structures and energetic properties for different tautomers of adenine are calculated in this study, using multi-configurational wave functions. Both the ground and the lowest singlet excited state potential energy surfaces are studied. Four tautomeric forms are considered, and their energetic order is found to be different on the ground and the excited state potential energy surfaces. Minimum energy reaction paths are obtained for hydrogen atom transfer (tautomerization) reactions in the ground and the lowest excited electronic states. It is found that the barrier heights and the shapes of the reaction paths are different for the ground and the excited electronic states, suggesting that the probability of such tautomerization reaction is higher on the excited state potential energy surface. This tautomerization process should become possible in the presence of water or other polar solvent molecules and should play an important role in the photochemistry of adenine.

  16. Oxidation of Reduced Nicotinamide Adenine Dinucleotide Phosphate by Isolated Corn Mitochondria 1

    PubMed Central

    Koeppe, D. E.; Miller, Raymond J.

    1972-01-01

    Isolated corn (Zea mays L.) mitochondria were found to oxidize reduced nicotinamide adenine dinucleotide phosphate in a KCl reaction medium. This oxidation was dependent on the presence of calcium or phosphate or both. Strontium and manganese substituted for calcium, but magnesium or barium did not. The oxidation of NADPH produced contraction of mitochondria swollen in KCl. Further evidence that the oxidation of NADPH was coupled was observed in respiratory control and adenosine diphosphate-oxygen ratios that were comparable to those reported for reduced nicotinamide adenine dinucleotide. The pathways of electron flow from NADH and NADPH were compared through the addition of electron transport inhibitors. The only difference between the two dinucleotides was that amytal was found to inhibit almost totally the state 3 oxidation of NADPH, but had little effect on the state 3 oxidation of NADH. The hypothetical pathways for electron flow from NADPH are discussed, as are the possible sites of calcium and phosphate stimulation. PMID:16657960

  17. Protection of Chinese herbs against adenine-induced chronic renal failure in rats.

    PubMed

    Tong, Yanqing; Han, Bing; Guo, Hongyang; Liu, Yanru

    2010-01-01

    The aim of the study is to evaluate the efficacy of Chinese herbs (Angelica sinensis, Ligusticum wallichii, Salvia miltiorrhiza, Rhizoma dioscoreae, Rhodiola crenilata, Astragalus membranaceus and Angelica sinensis) on adenine-induced chronic renal failure in rats. 30 age-matched male Wistar rats were divided into three groups. Rats in group A (n = 10), B (n = 10) and C (n = 10) were fed a standard laboratory chow and allowed tap water ad libitum. In group B and C, renal failure was induced by the administration of a diet containing 0.75% adenine for 28 days which began at day 0. Rats in group C were given Chinese herbs (40 ml/kg with drug concentration 1.75 g/ml) beginning at day 0. Urine albumin, blood urea nitrogen (BUN) and creatinine were determined at days 0, 14 and 28. At day 28, the animals were killed and their kidneys removed for light microscope evaluation. Body weight in Group B decreased more significantly than that in Group C (p = 0.032) at day 28. The rats in group B demonstrated more severe proteinuria and higher Serum creatinine and BUN levels than group C at day 14 and day 28 (P < 0.05, 0.01). All rats given adenine developed marked structural renal damage involving the tubule and interstitium. The values were much less severe in group C than those in group B. In adenine-induced chronic renal failure rats, the protective effects of these Chinese herbs were of a significant nature. Our results do support the notion that these Chinese herbs are useful in deferring the advance of chronic renal failure. We recommend Chinese herbs as a beneficial treatment for pre-end stage chronic renal failure.

  18. Selective self-assembly of adenine-silver nanoparticles forms rings resembling the size of cells

    PubMed Central

    Choi, Sungmoon; Park, Soonyoung; Yang, Seon-Ah; Jeong, Yujin; Yu, Junhua

    2015-01-01

    Self-assembly has played critical roles in the construction of functional nanomaterials. However, the structure of the macroscale multicomponent materials built by the self-assembly of nanoscale building blocks is hard to predict due to multiple intermolecular interactions of great complexity. Evaporation of solvents is usually an important approach to induce kinetically stable assemblies of building blocks with a large-scale specific arrangement. During such a deweting process, we tried to monitor the possible interactions between silver nanoparticles and nucleobases at a larger scale by epifluorescence microscopy, thanks to the doping of silver nanoparticles with luminescent silver nanodots. ssDNA oligomer-stabilized silver nanoparticles and adenine self-assemble to form ring-like compartments similar to the size of modern cells. However, the silver ions only dismantle the self-assembly of adenine. The rings are thermodynamically stable as the drying process only enrich the nanoparticles-nucleobase mixture to a concentration that activates the self-assembly. The permeable membrane-like edge of the ring is composed of adenine filaments glued together by silver nanoparticles. Interestingly, chemicals are partially confined and accumulated inside the ring, suggesting that this might be used as a microreactor to speed up chemical reactions during a dewetting process. PMID:26643504

  19. Ethanol-induced activation of adenine nucleotide turnover. Evidence for a role of acetate

    SciTech Connect

    Puig, J.G.; Fox, I.H.

    1984-09-01

    Consumption of alcohol causes hyperuricemia by decreasing urate excretion and increasing its production. Our previous studies indicate that ethanol administration increases uric acid production by increasing ATP degradation to uric acid precursors. To test the hypothesis that ethanol-induced increased urate production results from acetate metabolism and enhanced adenosine triphosphate turnover, we gave intravenous sodium acetate, sodium chloride and ethanol (0.1 mmol/kg per min for 1 h) to five normal subjects. Acetate plasma levels increased from 0.04 +/- 0.01 mM (mean +/- SE) to peak values of 0.35 +/- 0.07 mM and to 0.08 +/- 0.01 mM during acetate and ethanol infusions, respectively. Urinary oxypurines increased to 223 +/- 13% and 316 +/- 44% of the base-line values during acetate and ethanol infusions, respectively. Urinary radioactivity from the adenine nucleotide pool labeled with (8-14C) adenine increased to 171 +/- 27% and to 128 +/- 8% of the base-line values after acetate and ethanol infusions. These data indicate that both ethanol and acetate increase purine nucleotide degradation by enhancing the turnover of the adenine nucleotide pool. They support the hypothesis that acetate metabolism contributes to the increased production of urate associated with ethanol intake.

  20. Stability Constants of Mixed Ligand Complexes of Nickel(II) with Adenine and Some Amino Acids

    PubMed Central

    Türkel, Naciye

    2015-01-01

    Nickel is one of the essential trace elements found in biological systems. It is mostly found in nickel-based enzymes as an essential cofactor. It forms coordination complexes with amino acids within enzymes. Nickel is also present in nucleic acids, though its function in DNA or RNA is still not clearly understood. In this study, complex formation tendencies of Ni(II) with adenine and certain L-amino acids such as aspartic acid, glutamic acid, asparagine, leucine, phenylalanine, and tryptophan were investigated in an aqueous medium. Potentiometric equilibrium measurements showed that both binary and ternary complexes of Ni(II) form with adenine and the above-mentioned L-amino acids. Ternary complexes of Ni(II)-adenine-L-amino acids are formed by stepwise mechanisms. Relative stabilities of the ternary complexes are compared with those of the corresponding binary complexes in terms of Δlog10⁡K, log10⁡X, and % RS values. It was shown that the most stable ternary complex is Ni(II):Ade:L-Asn while the weakest one is Ni(II):Ade:L-Phe in aqueous solution used in this research. In addition, results of this research clearly show that various binary and ternary type Ni(II) complexes are formed in different concentrations as a function of pH in aqueous solution. PMID:26843852

  1. Chemical evolution: The mechanism of the formation of adenine under prebiotic conditions

    PubMed Central

    Roy, Debjani; Najafian, Katayoun; von Ragué Schleyer, Paul

    2007-01-01

    Fundamental building blocks of life have been detected extraterrestrially, even in interstellar space, and are known to form nonenzymatically. Thus, the HCN pentamer, adenine (a base present in DNA and RNA), was first isolated in abiogenic experiments from an aqueous solution of ammonia and HCN in 1960. Although many variations of the reaction conditions giving adenine have been reported since then, the mechanistic details remain unexplored. Our predictions are based on extensive computations of sequences of reaction steps along several possible mechanistic routes. H2O- or NH3-catalyzed pathways are more favorable than uncatalyzed neutral or anionic alternatives, and they may well have been the major source of adenine on primitive earth. Our report provides a more detailed understanding of some of the chemical processes involved in chemical evolution, and a partial answer to the fundamental question of molecular biogenesis. Our investigation should trigger similar explorations of the detailed mechanisms of the abiotic formation of the remaining nucleic acid bases and other biologically relevant molecules. PMID:17951429

  2. Identification and characterization of a novel plastidic adenine nucleotide uniporter from Solanum tuberosum.

    PubMed

    Leroch, Michaela; Kirchberger, Simon; Haferkamp, Ilka; Wahl, Markus; Neuhaus, H Ekkehard; Tjaden, Joachim

    2005-05-01

    Homologs of BT1 (the Brittle1 protein) are found to be phylogenetically related to the mitochondrial carrier family and appear to occur in both mono- and dicotyledonous plants. Whereas BT1 from cereals is probably involved in the transport of ADP-glucose, which is essential for starch metabolism in endosperm plastids, BT1 from a noncereal plant, Solanum tuberosum (StBT1), catalyzes an adenine nucleotide uniport when functionally integrated into the bacterial cytoplasmic membrane. Import studies into intact Escherichia coli cells harboring StBT1 revealed a narrow substrate spectrum with similar affinities for AMP, ADP, and ATP of about 300-400 mum. Transiently expressed StBT1-green fluorescent protein fusion protein in tobacco leaf protoplasts showed a plastidic localization of the StBT1. In vitro synthesized radioactively labeled StBT1 was targeted to the envelope membranes of isolated spinach chloroplasts. Furthermore, we showed by real time reverse transcription-PCR a ubiquitous expression pattern of the StBT1 in autotrophic and heterotrophic potato tissues. We therefore propose that StBT1 is a plastidic adenine nucleotide uniporter used to provide the cytosol and other compartments with adenine nucleotides exclusively synthesized inside plastids.

  3. Selective self-assembly of adenine-silver nanoparticles forms rings resembling the size of cells.

    PubMed

    Choi, Sungmoon; Park, Soonyoung; Yang, Seon-Ah; Jeong, Yujin; Yu, Junhua

    2015-12-08

    Self-assembly has played critical roles in the construction of functional nanomaterials. However, the structure of the macroscale multicomponent materials built by the self-assembly of nanoscale building blocks is hard to predict due to multiple intermolecular interactions of great complexity. Evaporation of solvents is usually an important approach to induce kinetically stable assemblies of building blocks with a large-scale specific arrangement. During such a deweting process, we tried to monitor the possible interactions between silver nanoparticles and nucleobases at a larger scale by epifluorescence microscopy, thanks to the doping of silver nanoparticles with luminescent silver nanodots. ssDNA oligomer-stabilized silver nanoparticles and adenine self-assemble to form ring-like compartments similar to the size of modern cells. However, the silver ions only dismantle the self-assembly of adenine. The rings are thermodynamically stable as the drying process only enrich the nanoparticles-nucleobase mixture to a concentration that activates the self-assembly. The permeable membrane-like edge of the ring is composed of adenine filaments glued together by silver nanoparticles. Interestingly, chemicals are partially confined and accumulated inside the ring, suggesting that this might be used as a microreactor to speed up chemical reactions during a dewetting process.

  4. Adenine Synthesis in a Model Prebiotic Reaction: Connecting Origin of Life Chemistry with Biology

    PubMed Central

    2011-01-01

    Many high school laboratory experiments demonstrate concepts related to biological evolution, but few exist that allow students to investigate life’s chemical origins. This series of laboratory experiments has been developed to allow students to explore and appreciate the deep connection that exists between prebiotic chemistry, chemical evolution, and contemporary biological systems. In the first experiment of the series, students synthesize adenine, one of the purine nucleobases of DNA and RNA, from plausibly prebiotic precursor molecules. Students compare their product to authentic standards using thin-layer chromatography. The second and third experiments of the series allow students to extract DNA from a familiar organism, the strawberry, and hydrolyze it, releasing adenine, which they can then compare to the previously chemically-synthesized adenine. A fourth, optional experiment is included where the technique of thin-layer chromatography is introduced and chromatographic skills are developed for use in the other three experiments that comprise this series. Concepts relating to organic and analytical chemistry, as well as biochemistry and DNA structure, are incorporated throughout, allowing this series of laboratory experiments to be easily inserted into existing laboratory courses and to reinforce concepts already included in any high school chemistry or biology curriculum. PMID:22075932

  5. Monitoring potential molecular interactions of adenine with other amino acids using Raman spectroscopy and DFT modeling.

    PubMed

    Singh, Shweta; Donfack, P; Srivastava, Sunil K; Singh, Dheeraj K; Materny, A; Asthana, B P; Mishra, P C

    2015-01-01

    We report on the modes of inter-molecular interaction between adenine (Ade) and the amino acids: glycine (Gly), lysine (Lys) and arginine (Arg) using Raman spectroscopy of binary mixtures of adenine and each of the three amino acids at varying molar ratios in the spectral region 1550-550 cm(-1). We focused our attention on certain specific changes in the Raman bands of adenine arising due to its interaction with the amino acids. While the changes are less apparent in the Ade/Gly system, in the Ade/Lys or Ade/Arg systems, significant changes are observed, particularly in the Ade Raman bands that involve the amino group moiety and the N7 and N1 atoms of the purine ring. The ν(N1-C6), ν(N1-C2), δ(C8-H) and δ(N7-C8-N9) vibrations at 1486, 1332, 1253 and 948 cm(-1) show spectral changes on varying the Ade to amino acid molar ratio, the extent of variation being different for the three amino acids. This observation suggests a specific interaction mode between Ade and Lys or Arg, which is due to the hydrogen bonding. The measured spectral changes provide a clear indication that the interaction of Ade depends strongly on the structures of the amino acids, especially their side chains. Density functional theory (DFT) calculations were carried out to elucidate the most probable interaction modes of Ade with the different amino acids.

  6. Rapid and ultrasensitive detection of microRNA by target-assisted isothermal exponential amplification coupled with poly (thymine)-templated fluorescent copper nanoparticles.

    PubMed

    Park, Kwan Woo; Batule, Bhagwan S; Kang, Kyoung Suk; Park, Ki Soo; Park, Hyun Gyu

    2016-10-21

    We devised a novel method for rapid and ultrasensitive detection of target microRNA (miRNA) by employing target-assisted isothermal exponential amplification (TAIEA) combined with poly (thymine)-templated fluorescent copper nanoparticles (CuNPs) as signaling probes. The target miRNA hybridizes to the unimolecular template DNA and works as a primer for the extension reaction to form double-stranded product, which consequently generates two nicking endonuclease recognition sites. By simultaneous nicking and displacement reactions, exponential amplification generates many poly (thymine) strands as final products, which are employed for the synthesis of fluorescent CuNPs. Based on the fluorescent signal from CuNPs, target miRNA is detected as low as 0.27 fM around 1 h of total analysis time. The diagnostic capability of this system has been successfully demonstrated by reliably detecting target miRNA from different cell lysates, showing its great potential towards real clinical applications.

  7. Zn(2+)-cyclen-based complex enable a selective detection of single-stranded thymine-rich DNA in aqueous buffer.

    PubMed

    Zhu, Zece; Wang, Sheng; Wei, Danqing; Yang, Chuluo

    2016-11-15

    It is a big challenge to develop fluorescent probes for selective detection of DNA with specific sequences in aqueous buffers. We report a new tetraphenylethene-based Zn(2+)-cyclen complex (TPECyZn), and a chemo-sensing ensemble of the Zn complex with phenol red. TPECyZn showed significant fluorescence enhancement upon binding to thymine-rich DNA in HEPES buffers. But its selectivity was not high enough to eliminate the interference from some random DNA. By constructing the chemo-sensing ensemble of TPECyZn with phenol red, the background fluorescence was eliminated due to the energy transfer from TPECyZn to phenol red. Moreover, this chemo-sensing ensemble revealed high selectivity in detecting thymine-rich single-stranded DNA over other DNA in aqueous buffer. It can detect poly deoxythymidylic acid sequence as short as 2 nt. This detection in aqueous media makes this probe feasible in real application. PMID:27288711

  8. Rapid and ultrasensitive detection of microRNA by target-assisted isothermal exponential amplification coupled with poly (thymine)-templated fluorescent copper nanoparticles

    NASA Astrophysics Data System (ADS)

    Park, Kwan Woo; Batule, Bhagwan S.; Kang, Kyoung Suk; Park, Ki Soo; Park, Hyun Gyu

    2016-10-01

    We devised a novel method for rapid and ultrasensitive detection of target microRNA (miRNA) by employing target-assisted isothermal exponential amplification (TAIEA) combined with poly (thymine)-templated fluorescent copper nanoparticles (CuNPs) as signaling probes. The target miRNA hybridizes to the unimolecular template DNA and works as a primer for the extension reaction to form double-stranded product, which consequently generates two nicking endonuclease recognition sites. By simultaneous nicking and displacement reactions, exponential amplification generates many poly (thymine) strands as final products, which are employed for the synthesis of fluorescent CuNPs. Based on the fluorescent signal from CuNPs, target miRNA is detected as low as 0.27 fM around 1 h of total analysis time. The diagnostic capability of this system has been successfully demonstrated by reliably detecting target miRNA from different cell lysates, showing its great potential towards real clinical applications.

  9. Adenine photodimerization in deoxyadenylate sequences: elucidation of the mechanism through structural studies of a major d(ApA) photoproduct.

    PubMed Central

    Kumar, S; Joshi, P C; Sharma, N D; Bose, S N; Jeremy, R; Davies, H; Takeda, N; McCloskey, J A

    1991-01-01

    The mechanism of the photodimerization of adjacent adenine bases on the same strand of DNA has been elucidated by determining the structure of one of the two major photoproducts that are formed by UV irradiation of the deoxydinucleoside monophosphate d(ApA). The photoproduct, denoted d(ApA)*, corresponds to a species of adenine photodimer first described by Pörschke (Pörschke, D. (1973) J.Am.Chem.Soc. 95, 8440-8446). From a detailed examination of its chemical and spectroscopic properties, including comparisons with the model compound N-cyano-N1-(1-methylimidazol-5-yl)formamidine, it is deduced that d(ApA)* contains a deoxyadenosine unit covalently linked through its C(8) position to C(4) of an imidazole N(1) deoxyribonucleoside moiety bearing an N-cyanoformamidino substituent at C(5). On treatment with acid, d(ApA)* is degraded with high specificity to 8-(5-amino-imidazol-4-yl)adenine whose identity has been confirmed by independent chemical synthesis. It is concluded that the primary event in adenine photodimerization entails photoaddition of the N(7)-C(8) double bond of the 5'-adenine across the C(6) and C(5) positions of the 3'-adenine. The azetidine species thus generated acts as a common precursor to both types of d(ApA) photoproduct which are formed from it by competing modes of azetidine ring fission. PMID:2057348

  10. Movement and Metabolism of Kinetin-14C and of Adenine-14C in Coleus Petiole Segments of Increasing Age 1

    PubMed Central

    Veen, Henk; Jacobs, William P.

    1969-01-01

    To see if polar movement was typical of growth-regulators other than auxins, the movement of adenine-8-14C and of kinetin-8-14C was studied in segments cut from petioles of increasing age. No polarity was found. In time-course experiments lasting 24 hr, kinetin showed a progressive increase of radioactivity in receiver blocks, while adenine showed a maximum at 8 hr with a decline thereafter. More kinetin moved through older segments than through younger ones. There was no difference in net loss as far as the position of the donor block is concerned. However, the loss of radioactivity from adenine donor blocks was much higher than the loss of radioactivity from kinetin donor blocks. The radioactivity in receiver blocks after 24 hr treatment with kinetin-14C was still with kinetin, judging by location on chromatograms. By the same criterion, adenine and a smaller amount of some other compound were in receiver blocks after a 6 hr transport with adenine-14C in the donors. By contrast, more zones of radioactivity were extracted from petiole segments to which kinetin or adenine had been added. For both purine derivatives the original compound represented no more than 20% of the total radioactivity extracted from the tissue after a transport period of 24 hr. PMID:16657203

  11. Solvent effects on the ultrafast nonradiative deactivation mechanisms of thymine in aqueous solution: Excited-state QM/MM molecular dynamics simulations

    SciTech Connect

    Nakayama, Akira Arai, Gaku; Yamazaki, Shohei; Taketsugu, Tetsuya

    2013-12-07

    On-the-fly excited-state quantum mechanics/molecular mechanics molecular dynamics (QM/MM-MD) simulations of thymine in aqueous solution are performed to investigate the role of solvent water molecules on the nonradiative deactivation process. The complete active space second-order perturbation theory (CASPT2) method is employed for a thymine molecule as the QM part in order to provide a reliable description of the excited-state potential energies. It is found that, in addition to the previously reported deactivation pathway involving the twisting of the C-C double bond in the pyrimidine ring, another efficient deactivation pathway leading to conical intersections that accompanies the out-of-plane displacement of the carbonyl group is observed in aqueous solution. Decay through this pathway is not observed in the gas phase simulations, and our analysis indicates that the hydrogen bonds with solvent water molecules play a key role in stabilizing the potential energies of thymine in this additional decay pathway.

  12. Probing the Vibrational Spectroscopy of the Deprotonated Thymine Radical by Photodetachment and State-Selective Autodetachment Photoelectron Spectroscopy via Dipole-Bound States

    NASA Astrophysics Data System (ADS)

    Huang, Dao-Ling; Zhu, Guo-Zhu; Wang, Lai-Sheng

    2016-06-01

    Deprotonated thymine can exist in two different forms, depending on which of its two N sites is deprotonated: N1[T-H]^- or N3[T-H]^-. Here we report a photodetachment study of the N1[T-H]^- isomer cooled in a cryogenic ion trap and the observation of an excited dipole-bound state. Eighteen vibrational levels of the dipole-bound state are observed, and its vibrational ground state is found to be 238 ± 5 wn below the detachment threshold of N1[T-H]^-. The electron affinity of the deprotonated thymine radical (N1[T-H]^.) is measured accruately to be 26 322 ± 5 wn (3.2635 ± 0.0006 eV). By tuning the detachment laser to the sixteen vibrational levels of the dipole-bound state that are above the detachment threshold, highly non-Franck-Condon resonant-enhanced photoelectron spectra are obtained due to state- and mode-selective vibrational autodetachment. Much richer vibrational information is obtained for the deprotonated thymine radical from the photodetachment and resonant-enhanced photoelectron spectroscopy. Eleven fundamental vibrational frequencies in the low-frequency regime are obtained for the N1[T-H]^. radical, including the two lowest-frequency internal rotational modes of the methyl group at 70 ± 8 wn and 92 ± 5 wn. D. L. Huang, H. T. Liu, C. G. Ning, G. Z. Zhu and L. S. Wang, Chem. Sci., 6, 3129-3138 (2015)

  13. Formation of a thermally stable bilayer of coadsorbed intact and deprotonated thymine exploiting the surface corrugation of rutile TiO2(110).

    PubMed

    Duncan, D A; Pfisterer, J H K; Deimel, P S; Acres, R G; Fritton, M; Feulner, P; Barth, J V; Allegretti, F

    2016-07-27

    The adsorption of thymine, a pyrimidine based nucleobase, was studied on the (110) termination of rutile titanium dioxide in order to understand the thermal stability and gross structural parameters of the interaction between a strongly polar adsorbate and a highly corrugated transition metal oxide surface. Near-edge X-ray absorption fine structure (NEXAFS), X-ray photoelectron spectroscopy (XPS), temperature programmed XPS and temperature programmed desorption indicated the growth of a room temperature stable bilayer, which could only be removed by annealing to 450 K. The remaining first layer was remarkably robust, surviving annealing up to 550 K before undergoing N-H bond scission. The comparison to XPS of a sub-monolayer exposure of 1-methyluracil shows that the origin of the room temperature stable bilayer is not intermolecular interactions. This discovery, alongside the deprotonation of one of the first layer's pyrimidinic nitrogen atoms at room temperature, suggests that the thymine molecules in the first layer bind to the undercoordinated surface Ti atoms, and the second layer thymine molecules coordinate with the bridging oxygen atoms which protrude above the Ti surface plane on the (110) surface. The NEXAFS results indicate an almost upright orientation of the molecules in both layers, with a 30 ± 10° tilt away from the surface normal.

  14. A facile label-free aptasensor for detecting ATP based on fluorescence enhancement of poly(thymine)-templated copper nanoparticles.

    PubMed

    Zhou, Sai-Sai; Zhang, Lin; Cai, Qi-Yong; Dong, Zhen-Zhen; Geng, Xin; Ge, Jia; Li, Zhao-Hui

    2016-09-01

    A label-free fluorescence assay has been developed for sensitive and selective detection of adenosine triphosphate (ATP) by using poly(thymine) (poly T)-templated copper nanoparticles (CuNPs) as fluorescent indicator. In our design, ATP aptamer was split into two fragments, both of which were elongated with poly T strands that can be utilized as efficient template for the formation of copper nanoparticles through the reduction of copper ions by sodium ascorbate. In the presence of ATP, the two split aptamers could be dragged to form aptamer-ATP aptamer complex, which drew the poly T strands close to each other and induced a remarkable fluorescence enhancement of poly T-templated CuNPs. Thus, an elevated fluorescence enhancement of poly T-templated CuNPs was obtained with the increase in ATP concentration. Under optimized conditions, a good linear range for ATP detection was realized from 100 nM to 100 μM with a detection limit of 10.29 nM. In addition, the application of this biosensing system in complex biological matrix was demonstrated with satisfactory results. This assay provided a simple, label-free, cost-effective, and sensitive platform for the detection of ATP. PMID:27457102

  15. Vibrationally resolved photoelectron spectroscopy of electronic excited states of DNA bases: application to the ã state of thymine cation.

    PubMed

    Hochlaf, Majdi; Pan, Yi; Lau, Kai-Chung; Majdi, Youssef; Poisson, Lionel; Garcia, Gustavo A; Nahon, Laurent; Al Mogren, Muneerah Mogren; Schwell, Martin

    2015-02-19

    For fully understanding the light-molecule interaction dynamics at short time scales, recent theoretical and experimental studies proved the importance of accurate characterizations not only of the ground (D0) but also of the electronic excited states (e.g., D1) of molecules. While ground state investigations are currently straightforward, those of electronic excited states are not. Here, we characterized the à electronic state of ionic thymine (T(+)) DNA base using explicitly correlated coupled cluster ab initio methods and state-of-the-art synchrotron-based electron/ion coincidence techniques. The experimental spectrum is composed of rich and long vibrational progressions corresponding to the population of the low frequency modes of T(+)(Ã). This work challenges previous numerous works carried out on DNA bases using common synchrotron and VUV-based photoelectron spectroscopies. We provide hence a powerful theoretical and experimental framework to study the electronic structure of ionized DNA bases that could be generalized to other medium-sized biologically relevant systems.

  16. Ab initio Study of the Structural, Tautomeric, Pairing and Electronic Properties of Seleno-Derivatives of Thymine

    SciTech Connect

    Vazquez-Mayagoitia, Alvaro; Fuentes-Cabrera, Miguel A; Sumpter, Bobby G; Luque, Javier; Huertas, Oscar; Orozco, Modesto; Felice, Rosa; Brancolini, Giorgia; Migliore, Agostino

    2009-01-01

    The structural, tautomeric, hydrogen-bonding, stacking and electronic properties of a seleno-derivative of thymine (T), denoted here as 4SeT and created by replacing O4 in T with Se, are investigated by means of ab initio computational techniques. The structural properties of T and 4SeT are very similar and the geometrical differences are mainly limited to the adjacent environment of the C-Se bond. The canonical keto form is the most stable tautomer, in gas phase and in aqueous solution, for both T and 4SeT. It is argued that the competition between two opposite trends, i.e. a decrease in the base-pairing ability and an increase of the stacking interaction upon incorporation of 4SeT into a duplex, likely explains the similar experimental melting points of a seleno-derivative duplex (Se-DNA) and its native counterpart. Interestingly, the underlying electronic structure shows that replacement of O4 with Se promotes a reduction in the HOMO-LUMO gap and an increase in inter-plane coupling, which suggests that Se-DNA could be potentially useful for nanodevice applications. This finding is further supported by the fact that transfer integrals between 4SeT---A stacked base pairs are larger than those determined for similarly stacked natural T---A pairs.

  17. A study of the hydration of deoxydinucleoside monophosphates containing thymine, uracil and its 5-halogen derivatives: Monte Carlo simulation.

    PubMed

    Alderfer, J L; Danilov, V I; Poltev, V I; Slyusarchuk, O N

    1999-04-01

    An extensive Monte Carlo simulation of hydration of various conformations of the dinucleoside monophosphates (DNP), containing thymine, uracil and its 5-halogen derivatives has been performed. An anti-anti conformation is the most energetically stable one for each of the DNPs. In the majority of cases the energy preference is determined by water-water interaction. For other dimers conformational energy is the most important factor, or both the factors are of nearly equal importance. The introduction of the methyl group into the 5-position of uracil ring most noticeably influences the conformational energy and leads to the decrease of its stabilizing contribution to the total interaction energy. The introduction of halogen atoms increases the relative content of anti-syn and syn-anti conformations of DNPs as compared to the parent ones due to the formation of an energetically more favorable water structure around these conformations. A correlation is observed between the Monte Carlo results for the halogenated DNPs and their experimental photoproduct distribution. The data obtained demonstrates a sequence dependence in the photochemistry of the halogenated dinucleoside monophosphates.

  18. A facile label-free aptasensor for detecting ATP based on fluorescence enhancement of poly(thymine)-templated copper nanoparticles.

    PubMed

    Zhou, Sai-Sai; Zhang, Lin; Cai, Qi-Yong; Dong, Zhen-Zhen; Geng, Xin; Ge, Jia; Li, Zhao-Hui

    2016-09-01

    A label-free fluorescence assay has been developed for sensitive and selective detection of adenosine triphosphate (ATP) by using poly(thymine) (poly T)-templated copper nanoparticles (CuNPs) as fluorescent indicator. In our design, ATP aptamer was split into two fragments, both of which were elongated with poly T strands that can be utilized as efficient template for the formation of copper nanoparticles through the reduction of copper ions by sodium ascorbate. In the presence of ATP, the two split aptamers could be dragged to form aptamer-ATP aptamer complex, which drew the poly T strands close to each other and induced a remarkable fluorescence enhancement of poly T-templated CuNPs. Thus, an elevated fluorescence enhancement of poly T-templated CuNPs was obtained with the increase in ATP concentration. Under optimized conditions, a good linear range for ATP detection was realized from 100 nM to 100 μM with a detection limit of 10.29 nM. In addition, the application of this biosensing system in complex biological matrix was demonstrated with satisfactory results. This assay provided a simple, label-free, cost-effective, and sensitive platform for the detection of ATP.

  19. Strand-biased cytosine deamination at the replication fork causes cytosine to thymine mutations in Escherichia coli

    PubMed Central

    Bhagwat, Ashok S.; Hao, Weilong; Townes, Jesse P.; Lee, Heewook; Tang, Haixu; Foster, Patricia L.

    2016-01-01

    The rate of cytosine deamination is much higher in single-stranded DNA (ssDNA) than in double-stranded DNA, and copying the resulting uracils causes C to T mutations. To study this phenomenon, the catalytic domain of APOBEC3G (A3G-CTD), an ssDNA-specific cytosine deaminase, was expressed in an Escherichia coli strain defective in uracil repair (ung mutant), and the mutations that accumulated over thousands of generations were determined by whole-genome sequencing. C:G to T:A transitions dominated, with significantly more cytosines mutated to thymine in the lagging-strand template (LGST) than in the leading-strand template (LDST). This strand bias was present in both repair-defective and repair-proficient cells and was strongest and highly significant in cells expressing A3G-CTD. These results show that the LGST is accessible to cellular cytosine deaminating agents, explains the well-known GC skew in microbial genomes, and suggests the APOBEC3 family of mutators may target the LGST in the human genome. PMID:26839411

  20. Undetectable levels of N6-methyl adenine in mouse DNA: Cloning and analysis of PRED28, a gene coding for a putative mammalian DNA adenine methyltransferase.

    PubMed

    Ratel, David; Ravanat, Jean-Luc; Charles, Marie-Pierre; Platet, Nadine; Breuillaud, Lionel; Lunardi, Joël; Berger, François; Wion, Didier

    2006-05-29

    Three methylated bases, 5-methylcytosine, N4-methylcytosine and N6-methyladenine (m6A), can be found in DNA. However, to date, only 5-methylcytosine has been detected in mammalian genomes. To reinvestigate the presence of m6A in mammalian DNA, we used a highly sensitive method capable of detecting one N6-methyldeoxyadenosine per million nucleosides. Our results suggest that the total mouse genome contains, if any, less than 10(3) m6A. Experiments were next performed on PRED28, a putative mammalian N6-DNA methyltransferase. The murine PRED28 encodes two alternatively spliced RNA. However, although recombinant PRED28 proteins are found in the nucleus, no evidence for an adenine-methyltransferase activity was detected. PMID:16684535

  1. Effects of acyclovir and its metabolites on hypoxanthine-guanine phosphoribosyltransferase.

    PubMed

    Tuttle, J V; Krenitsky, T A; Elion, G B

    1983-10-15

    Acyclovir [9-(2-hydroxyethoxymethyl)guanine], a clinically useful anti-herpesvirus agent, was a weak inhibitor (Ki = 190 microM) of hypoxanthine-guanine phosphoribosyltransferase (HGPRTase) from human erythrocytes. Nevertheless, this acyclic nucleoside analog was a more effective inhibitor than were its natural counterparts, guanosine (Ki = 1400 microM) and deoxyguanosine (Ki = 570 microM). The two oxidized metabolites of acyclovir, 9-carboxymethoxymethylguanine (Ki = 720 microM) and 8-hydroxy-9-(2-hydroxyethoxymethyl)guanine (Ki greater than 2000 microM), were less inhibitory than was the parent drug. None of the phosphorylated metabolites of acyclovir was as potent an inhibitor of HGPRTase as was GMP (Ki = 4 microM). However, the Ki value for acyclovir monophosphate was similar to that of dGMP (12 microM). The Ki values for acyclovir diphosphate (8.3 microM) and triphosphate (30 microM) were less than those for dGDP (110 microM) and dGTP (140 microM). The levels of these phosphate esters of acyclovir in cultured monkey kidney (Vero) and human embryo fibroblast (WI38) cells exposed to therapeutic levels of the drug were well below the observed Ki values. However, in herpesvirus-infected WI38 cells the levels of the phosphate esters of acyclovir were high enough potentially to inhibit the enzyme. Although inhibition of this enzyme by the phosphorylated metabolites of acyclovir may occur in these infected cells, concentrations of the drug very much higher than the EC50 concentration were required to achieve inhibitory levels. It is, therefore, unlikely that this inhibition contributes significantly to the antiviral activity.

  2. In vitro antiviral activity of mycophenolic acid and its reversal by guanine-type compounds.

    PubMed

    Cline, J C; Nelson, J D; Gerzon, K; Williams, R H; Delong, D C

    1969-07-01

    With the agar diffusion test and BS-C-1 cells, mycophenolic acid was found to give a straight-line dose-response activity in inhibiting the cytopathic effects of vaccinia, herpes simplex, and measles viruses. Plaque tests have shown 100% reduction of virus plaques by mycophenolic acid over drug ranges of 10 to 50 mug/ml and virus input as high as 6,000 plaque-forming units (PFU) per flask. Back titration studies with measles virus inhibited by mycophenolic acid have indicated that extracellular virus titers were reduced by approximately 3 logs(10) and total virus was reduced by 1 log(10). The agar diffusion test system lends itself readily to drug reversal studies. Mycophenolic acid incorporated into agar at 10 mug/ml gave 100% protection to virus-infected cells. Filter paper discs impregnated with selected chemical agents at concentrations of 1,000 mug/ml (20 mug per filter paper disc) were placed on the agar surface. Reversal of the antiviral activity of mycophenolic acid was indicated by virus breakthrough in those cells in close proximity to the filter paper disc. Chemicals showing the best reversal of the antiviral activity of mycophenolic acid were guanine, guanosine, guanylic acid, deoxyguanylic acid, and 2,6-diaminopurine. The reversal of antiviral activity was confirmed by titrations of virus produced with various amounts of both mycophenolic acid and guanine present and by isotope tracer methods with uptakes of labeled uridine, guanine, leucine, and thymidine in treated and nontreated, infected and noninfected cells as parameters. All antiviral effects of mycophenolic acid at 10 mug/ml could be reversed to the range shown by untreated controls by the addition of 10 mug/ml of those chemicals exhibiting reversal activity.

  3. Topoisomerase IB of Deinococcus radiodurans resolves guanine quadruplex DNA structures in vitro.

    PubMed

    Kota, Swathi; Misra, Hari S

    2015-12-01

    Deinococcus radiodurans genome contains a large number of guanine repeats interrupted by a few non-guanine bases, termed G motifs. Some of these G motifs were shown forming guanine quadruplex (G4) DNA structure in vitro. How is the formation and relaxation of G4 DNA regulated in the genome of D. radiodurans is not known and is worth investigating. Here, we showed that the topoisomerase Ib of D. radiodurans (DraTopoIB) could change the electrophoretic mobility of fast migrating intramolecular recF-G4 DNA into the slow migrating species. DraTopoIB also reduced the positive ellipticity in circular diachroism (CD) spectra of intramolecular recF-G4 DNA structures stabilized by K+. On the contrary, when DraTopoIB is incubated with G-motifs annealed without K+, it showed neither any change in electrophoretic mobility nor was ellipticity of the CD spectra affected. DNA synthesis by Taq DNA polymerase through G4 DNA structure was attenuated in the presence of G4 DNA binding drugs, which was abrogated by DraTopoIB. This implies that DraTopoIB could destabilize the G4 DNA structure, which is required for G4 drugs binding and stabilization. Camptothecin treatment inhibited DraTopoIB activity on intramolecular G4 DNA structures. These results suggested that DraTopoIB can relax intramolecular G4 DNA structure in vitro and it may be one such protein that could resolve G4 DNA under normal growth conditions in D. radiodurans.

  4. Effect of 10-T magnetic fields on structural colors in guanine crystals of fish scales

    NASA Astrophysics Data System (ADS)

    Iwasaka, M.; Miyashita, Y.; Kudo, M.; Kurita, S.; Owada, N.

    2012-04-01

    This work reports the magnetically modulated structural colors in the chromatophore of goldfish scales under static magnetic fields up to 10 T. A fiber optic system for spectroscopy measurements and a CCD microscope were set in the horizontal bore of a 10-T superconducting magnet. One leaf of a fish scale was set in a glass chamber, exposed to visible light from its side direction, and then static magnetic fields were applied perpendicular to the surface of the scale. In addition, an optical fiber for spectroscopy was directed perpendicular to the surface. During the magnetic field sweep-up, the aggregate of guanine thin plates partially showed a rapid light quenching under 0.26 to 2 T; however, most of the thin plates continued to scatter the side-light and showed changing iridescence, which was displayed individually by each guanine plate. For example, an aggregate in the chromatophore exhibited a dynamic change in structural color from white-green to dark blue when the magnetic fields changed from 2 to 10 T. The spectrum profile, which was obtained by the fiber optic system, confirmed the image color changes under magnetic field exposure. Also, a linearly polarized light transmission was measured on fish scales by utilizing an optical polarizer and analyzer. The transmitted polarized light intensities increased in the range of 500-550 nm compared to the intensity at 700 nm during the magnetic field sweep-up. These results indicate that the multi-lamella structure of nano-mirror plates in guanine hexagonal micro-plates exhibit diamagnetically modulated structure changes, and its light interference is affected by strong magnetic fields.

  5. Fluorescent Sensing of Guanine and Guanosine Monophosphate with Conjugated Receptors Incorporating Aniline and Naphthyridine Moieties.

    PubMed

    Lu, Shao-Hung; Phang, Riping; Fang, Jim-Min

    2016-04-15

    Ethyne-linked naphthyridine-aniline conjugated molecules are selective sensors of decylguanine in dichloromethane and guanosine monophosphate in water (Kass = 16,000 M(-1)). The 2-acetamido-1,8-naphthyridine moiety binds with guanine in a DAA-ADD triply hydrogen-bonded motif. The aniline moiety enhances an electron-donating effect, and the substituent is tuned to attain extra hydrogen bonds, π-π stacking, and electrostatic interactions. The proposed binding modes are supported by a Job plot, ESI-MS, (1)H NMR, UV-vis, and fluorescence spectral analyses.

  6. Insights into the biological functions of Dock family guanine nucleotide exchange factors

    PubMed Central

    Laurin, Mélanie; Côté, Jean-François

    2014-01-01

    Rho GTPases play key regulatory roles in many aspects of embryonic development, regulating processes such as differentiation, proliferation, morphogenesis, and migration. Two families of guanine nucleotide exchange factors (GEFs) found in metazoans, Dbl and Dock, are responsible for the spatiotemporal activation of Rac and Cdc42 proteins and their downstream signaling pathways. This review focuses on the emerging roles of the mammalian DOCK family in development and disease. We also discuss, when possible, how recent discoveries concerning the biological functions of these GEFs might be exploited for the development of novel therapeutic strategies. PMID:24637113

  7. Silver (I) as DNA glue: Ag+-mediated guanine pairing revealed by removing Watson-Crick constraints

    NASA Astrophysics Data System (ADS)

    Swasey, Steven M.; Leal, Leonardo Espinosa; Lopez-Acevedo, Olga; Pavlovich, James; Gwinn, Elisabeth G.

    2015-05-01

    Metal ion interactions with DNA have far-reaching implications in biochemistry and DNA nanotechnology. Ag+ is uniquely interesting because it binds exclusively to the bases rather than the backbone of DNA, without the toxicity of Hg2+. In contrast to prior studies of Ag+ incorporation into double-stranded DNA, we remove the constraints of Watson-Crick pairing by focusing on homo-base DNA oligomers of the canonical bases. High resolution electro-spray ionization mass spectrometry reveals an unanticipated Ag+-mediated pairing of guanine homo-base strands, with higher stability than canonical guanine-cytosine pairing. By exploring unrestricted binding geometries, quantum chemical calculations find that Ag+ bridges between non-canonical sites on guanine bases. Circular dichroism spectroscopy shows that the Ag+-mediated structuring of guanine homobase strands persists to at least 90 °C under conditions for which canonical guanine-cytosine duplexes melt below 20 °C. These findings are promising for DNA nanotechnology and metal-ion based biomedical science.

  8. Silver (I) as DNA glue: Ag+-mediated guanine pairing revealed by removing Watson-Crick constraints

    PubMed Central

    Swasey, Steven M.; Leal, Leonardo Espinosa; Lopez-Acevedo, Olga; Pavlovich, James; Gwinn, Elisabeth G.

    2015-01-01

    Metal ion interactions with DNA have far-reaching implications in biochemistry and DNA nanotechnology. Ag+ is uniquely interesting because it binds exclusively to the bases rather than the backbone of DNA, without the toxicity of Hg2+. In contrast to prior studies of Ag+ incorporation into double-stranded DNA, we remove the constraints of Watson-Crick pairing by focusing on homo-base DNA oligomers of the canonical bases. High resolution electro-spray ionization mass spectrometry reveals an unanticipated Ag+-mediated pairing of guanine homo-base strands, with higher stability than canonical guanine-cytosine pairing. By exploring unrestricted binding geometries, quantum chemical calculations find that Ag+ bridges between non-canonical sites on guanine bases. Circular dichroism spectroscopy shows that the Ag+-mediated structuring of guanine homobase strands persists to at least 90 °C under conditions for which canonical guanine-cytosine duplexes melt below 20 °C. These findings are promising for DNA nanotechnology and metal-ion based biomedical science. PMID:25973536

  9. Silver (I) as DNA glue: Ag(+)-mediated guanine pairing revealed by removing Watson-Crick constraints.

    PubMed

    Swasey, Steven M; Leal, Leonardo Espinosa; Lopez-Acevedo, Olga; Pavlovich, James; Gwinn, Elisabeth G

    2015-01-01

    Metal ion interactions with DNA have far-reaching implications in biochemistry and DNA nanotechnology. Ag(+) is uniquely interesting because it binds exclusively to the bases rather than the backbone of DNA, without the toxicity of Hg(2+). In contrast to prior studies of Ag(+) incorporation into double-stranded DNA, we remove the constraints of Watson-Crick pairing by focusing on homo-base DNA oligomers of the canonical bases. High resolution electro-spray ionization mass spectrometry reveals an unanticipated Ag(+)-mediated pairing of guanine homo-base strands, with higher stability than canonical guanine-cytosine pairing. By exploring unrestricted binding geometries, quantum chemical calculations find that Ag(+) bridges between non-canonical sites on guanine bases. Circular dichroism spectroscopy shows that the Ag(+)-mediated structuring of guanine homobase strands persists to at least 90 °C under conditions for which canonical guanine-cytosine duplexes melt below 20 °C. These findings are promising for DNA nanotechnology and metal-ion based biomedical science. PMID:25973536

  10. NF-κB activation mediates crystal translocation and interstitial inflammation in adenine overload nephropathy.

    PubMed

    Okabe, Cristiene; Borges, Raquel Lerner; de Almeida, Danilo Candido; Fanelli, Camilla; Barlette, Grasiela Pedreira; Machado, Flavia Gomes; Arias, Simone Costa Alarcon; Malheiros, Denise Maria Avancini Costa; Camara, Niels Olsen Saraiva; Zatz, Roberto; Fujihara, Clarice Kazue

    2013-07-15

    Adenine overload promotes intratubular crystal precipitation and interstitial nephritis. We showed recently that these abnormalities are strongly attenuated in mice knockout for Toll-like receptors-2, -4, MyD88, ASC, or caspase-1. We now investigated whether NF-κB activation also plays a pathogenic role in this model. Adult male Munich-Wistar rats were distributed among three groups: C (n = 17), receiving standard chow; ADE (n = 17), given adenine in the chow at 0.7% for 1 wk and 0.5% for 2 wk; and ADE + pyrrolidine dithiocarbamate (PDTC; n = 14), receiving adenine as above and the NF-κB inhibitor PDTC (120 mg·kg⁻¹·day⁻¹ in the drinking water). After 3 wk, widespread crystal deposition was seen in tubular lumina and in the renal interstitium, along with granuloma formation, collagen accumulation, intense tubulointerstitial proliferation, and increased interstitial expression of inflammatory mediators. Part of the crystals were segregated from tubular lumina by a newly formed cell layer and, at more advanced stages, appeared to be extruded to the interstitium. p65 nuclear translocation and IKK-α increased abundance indicated activation of the NF-κB system. PDTC treatment prevented p65 migration and normalized IKK-α, limited crystal shift to the interstitium, and strongly attenuated interstitial fibrosis/inflammation. These findings indicate that the complex inflammatory phenomena associated with this model depend, at least in part, on NF-κB activation, and suggest that the NF-κB system may become a therapeutic target in the treatment of chronic kidney disease.

  11. Biological activity of analogs of guanine and guanosine against American Trypanosoma and Leishmania spp.

    PubMed Central

    Avila, J L; Rojas, T; Avila, A; Polegre, M A; Robins, R K

    1987-01-01

    The growth inhibitory effects of six guanine and guanosine analogs, 3-deazaguanine (compound 1); 3-deazaguanosine (compound 2); 6-aminoallopurinol (compound 3); 9-beta-xylofuranosyl guanine (compound 4); a ribosylated derivative of compound 3, 6-aminopyrazolo(3,4-d)pyrimidin-4-one (compound 5); and 5-aminoformycin B (compound 6), were tested against some pathogenic members of the family of American Trypanosomatidae. Compounds 1 and 2 were highly active against Trypanosoma cruzi, Trypanosoma rangeli, and American Leishmania spp. in in vitro culture forms. Both compounds also showed antiprotozoal activity in T. cruzi-infected mice, with the optimal dose being about 30 mg/kg of body weight per day given as 10 consecutive doses. Compound 3 was the most active compound in vitro, inhibiting all of the American Trypanosomatidae culture forms tested. It was also highly inhibitory in mice that were acutely infected with T. cruzi, with the optimal dose being about 10 mg/kg of body weight per day. Ribosylation of compound 3 resulted in a derivative that showed decreased inhibitory activity on Trypanosomatidae multiplication. Compound 6 was highly inhibitory of in vitro multiplication of American Leishmania and T. rangeli but had no effect on T. cruzi epimastigotes and on mice that were acutely infected with T. cruzi. Compound 4 showed only a slight effect on T. cruzi epimastigotes. PMID:3107463

  12. Rho Family Guanine Nucleotide Exchange Factor Brx Couples Extracellular Signals to the Glucocorticoid Signaling System*

    PubMed Central

    Kino, Tomoshige; Souvatzoglou, Emanuel; Charmandari, Evangelia; Ichijo, Takamasa; Driggers, Paul; Mayers, Chantal; Alatsatianos, Anton; Manoli, Irini; Westphal, Heiner; Chrousos, George P.; Segars, James H.

    2014-01-01

    Glucocorticoids regulate many crucial biologic functions through their cytoplasmic/nuclear glucocorticoid receptors (GR). Excess, deficiency, or alteration in tissue sensitivity to glucocorticoids has been associated with major causes of human morbidity and mortality. Brx, a cytoplasmic Rho family guanine nucleotide exchange factor, binds to and influences the activity of several nuclear hormone receptors. We examined the functional and molecular interactions between GR and Brx. The glucocorticoid sensitivity of lymphocytes obtained from mice haplo-insufficient for Brx was significantly decreased. Conversely, GR-mediated transcriptional activity of a glucocorticoid response element (GRE)-mediated glucocorticoid-responsive promoter was enhanced by Brx in a guanine nucleotide exchange factor domain-dependent fashion. Brx interacted with GR, forming a ternary complex with RhoA. In a chromatin immunoprecipitation assay, Brx and RhoA were co-precipitated with GREs only in the presence of ligand-activated GR. Extracellularly administered lyso-phosphatidic acid, which activates its signaling cascade through a specific membrane GTP-binding protein (G-protein)-coupled receptor in a G-protein α13-, Brx-, and RhoA-dependent fashion, enhanced GR transcriptional activity, whereas depletion of endogenous Brx attenuated this effect. These findings suggest that glucocorticoid signaling and, hence, the tissue sensitivity to glucocorticoids, may be coupled to extracellular signals via Brx and small G-proteins. Nuclear Brx might act as a local GRE-GR-transcripto-some activator by mediating the effect of small G-proteins on glucocorticoid-regulated genes. PMID:16469733

  13. The emerging role of guanine nucleotide exchange factors in ALS and other neurodegenerative diseases

    PubMed Central

    Droppelmann, Cristian A.; Campos-Melo, Danae; Volkening, Kathryn; Strong, Michael J.

    2014-01-01

    Small GTPases participate in a broad range of cellular processes such as proliferation, differentiation, and migration. The exchange of GDP for GTP resulting in the activation of these GTPases is catalyzed by a group of enzymes called guanine nucleotide exchange factors (GEFs), of which two classes: Dbl-related exchange factors and the more recently described dedicator of cytokinesis proteins family exchange factors. Increasingly, deregulation of normal GEF activity or function has been associated with a broad range of disease states, including neurodegeneration and neurodevelopmental disorders. In this review, we examine this evidence with special emphasis on the novel role of Rho guanine nucleotide exchange factor (RGNEF/p190RhoGEF) in the pathogenesis of amyotrophic lateral sclerosis. RGNEF is the first neurodegeneration-linked GEF that regulates not only RhoA GTPase activation but also functions as an RNA binding protein that directly acts with low molecular weight neurofilament mRNA 3′ untranslated region to regulate its stability. This dual role for RGNEF, coupled with the increasing understanding of the key role for GEFs in modulating the GTPase function in cell survival suggests a prominent role for GEFs in mediating a critical balance between cytotoxicity and neuroprotection which, when disturbed, contributes to neuronal loss. PMID:25309324

  14. Reactions of the OOH radical with guanine: Mechanisms of formation of 8-oxoguanine and other products

    NASA Astrophysics Data System (ADS)

    Kumar, Nagendra; Shukla, P. K.; Mishra, P. C.

    2010-09-01

    The mutagenic product 8-oxoguanine (8-oxoGua) is formed due to intermediacy of peroxyl (OOR) radicals in lipid peroxidation and protein oxidation-induced DNA damage. The mechanisms of these reactions are not yet understood properly. Therefore, in the present study, the mechanisms of formation of 8-oxoGua and other related products due to the reaction of the guanine base of DNA with the hydroperoxyl radical (OOH) were investigated theoretically employing the B3LYP and BHandHLYP hybrid functionals of density functional theory and the polarizable continuum model for solvation. It is found that the reaction of the OOH radical with guanine can occur following seven different mechanisms leading to the formation of various products including 8-oxoGua, its radicals, 5-hydroxy-8-oxoguanine and CO 2. The mechanism that yields 8-oxoGua as an intermediate and 5-hydroxy-8-oxoGua as the final product was found to be energetically most favorable.

  15. Formation of guanine ribonucleotidyl-(3'-5')-adenosine in a flavinogenic strain of Eremothecium ashbyii.

    PubMed

    Mitsuda, H; Nishikawa, Y; Nakajima, K

    1976-01-01

    The addition of caffeine caused the accumulation of a new nucleotide compound simultaneously with the rigid inhibition of ribofalvin production in non-growing cells of Eremothecium ashbyii. In the present study we tried to identify the structure of the nucleotide compound using non-growing cells of the mold. 1) It became possible to obtain a large amount of mycelia by masscultivation in a reagent tank. 2) A new nucleotide compound, referred to as compound A in the paper, was extracted with perchloric acid solution and purified by the following subsequent procedures: 1) Dowex 1 x 2 (HCOO-) column, 2) charcoal treatment, 3) DEAE-Sephadex A25 (CI-) column, 4) Dowex 1 x 2 (C1-) column, and 5) DEAE-Sephadex A25 (HCO3-) column. 3) The structure of the new nucleotide compound was proved to be guanine ribonucleotidyl-(3'-5')-adenosine (GpA) from the results of the following analyses: 1) alkaline degradation, 2) UV-spectra, IR-spectra and NMR-spectra, and 3) enzymatic treatments with RNase T2 and phosphodiesterase. 4) The roles of caffeine and guanine ribonucleotidyl-(3'-5')-adenosine in connection with flavinogenesis of this mold were discussed. PMID:182940

  16. Chromosomal localization of genes encoding guanine nucleotide-binding protein subunits in mouse and human.

    PubMed

    Blatt, C; Eversole-Cire, P; Cohn, V H; Zollman, S; Fournier, R E; Mohandas, L T; Nesbitt, M; Lugo, T; Jones, D T; Reed, R R

    1988-10-01

    A variety of genes have been identified that specify the synthesis of the components of guanine nucleotide-binding proteins (G proteins). Eight different guanine nucleotide-binding alpha-subunit proteins, two different beta subunits, and one gamma subunit have been described. Hybridization of cDNA clones with DNA from human-mouse somatic cell hybrids was used to assign many of these genes to human chromosomes. The retinal-specific transducin subunit genes GNAT1 and GNAT2 were on chromosomes 3 and 1; GNAI1, GNAI2, and GNAI3 were assigned to chromosomes 7, 3, and 1, respectively; GNAZ and GNAS were found on chromosomes 22 and 20. The beta subunits were also assigned--GNB1 to chromosome 1 and GNB2 to chromosome 7. Restriction fragment length polymorphisms were used to map the homologues of some of these genes in the mouse. GNAT1 and GNAI2 were found to map adjacent to each other on mouse chromosome 9 and GNAT2 was mapped on chromosome 17. The mouse GNB1 gene was assigned to chromosome 19. These mapping assignments will be useful in defining the extent of the G alpha gene family and may help in attempts to correlate specific genetic diseases with genes corresponding to G proteins. PMID:2902634

  17. The structure, stability, H-bonding pattern, and electrostatic potential of adenine tetrads

    NASA Astrophysics Data System (ADS)

    Gu, Jiande; Leszczynski, Jerzy

    2001-03-01

    Two conformations of the adenine tetrad were investigated at the HF and B3LYP/6-311G(d,p) levels of theory. Both conformations are predicted to be stable only in the nonplanar form. They adopt the bowl type structure. Since the planar form offers better geometry for stacking with the adjacent G-tetrad, both planar forms are expected to be important in the formation of the tetraplexes. Based on electrostatic potential map the positive electrostatic potential in the central area of both conformations is expected to reinforce the stacking between the A-tetrads and the G-tetrads in the tetraplexes.

  18. Strong coupling between adenine nucleobases in DNA single strands revealed by circular dichroism using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Kadhane, Umesh; Holm, Anne I. S.; Hoffmann, Søren Vrønning; Nielsen, Steen Brøndsted

    2008-02-01

    Circular dichroism (CD) experiments on DNA single strands (dAn) at the ASTRID synchrotron radiation facility reveal that eight adenine (A) bases electronically couple upon 190nm excitation. After n=8 , the CD signal increases linearly with n with a slope equal to the sum of the coupling terms. Nearest neighbor interactions account for only 24% of the CD signal whereas electronic communication is limited to nearest neighbors for two other exciton bands observed at 218 and 251nm (i.e., dimer excited states). Electronic coupling between bases in DNA is important for nonradiative deexcitation of electronically excited states since the hazardous energy is spread over a larger spatial region.

  19. Further studies of infectious DNA extracted from mycobacteriophages.

    PubMed

    Sellers, M I; Tokunaga, T

    1966-02-01

    Results of the previous investigation in which it was found that DNA extracted from D29 mycobacteriophage was infectious for Mycobacterium smegmatis 607, have been extended. DNA extracted from mycobacteriophage D4 and D32 produced plaques when plated on their respective hosts; D28 DNA, extracted in the same manner and tested under similar conditions, failed to show infectivity. Species barriers were not crossed by mycobacteriophage DNA; bacteria resistant to intact phage were not infected with the phage DNA. The efficiency of plating of the DNA is very much lower than that of intact phage; infection of a given host was not accomplished by DNA when titration for plaque formation by the intact phage was less than 10(9) PFU. The base composition of DNA extracted from the four mycobacteriophages and the three propagating hosts was very similar. The bases were paired, adenine with thymine and guanine with cytosine. A relatively higher per cent of guanine-cytosine than of adenine-thymine, was found. The buoyant density of each DNA in CsCl was linearly related to its guanine-cytosine content whereas with the exception of D28 DNA, thermal denaturation temperatures failed to show this relationship. However, the thermal transition profiles were characteristic of double stranded DNA. Additional evidence that D29 DNA forms complexes with basic proteins was obtained. Binding between calf thymus histone and between RNAase and D29 DNA readily occurs with a resultant loss in DNA infectivity. Trypsin and D29 DNA are only weakly reactive.

  20. Characterization of poly(N-isopropylacrylamide)-nucleobase supramolecular complexes featuring bio-multiple hydrogen bonds.

    PubMed

    Yang, Hsiu-Wen; Lee, Ai-Wei; Huang, Chi-Hsien; Chen, Jem-Kun

    2014-11-01

    In this study we employed poly(N-isopropylacrylamide) (PNIPAAm) as a matrix that we hybridized with five different nucleobase units (adenine, thymine, uracil, guanine, cytosine) to generate PNIPAAm-nucleobase supramolecular complexes (PNSCs) stabilized through bio-multiple hydrogen bonds (BMHBs). These nucleobase units interacted with PNIPAAm through BMHBs of various strengths, leading to competition between the BMHBs and the intramolecular hydrogen bonds (HBs) of PNIPAAm. The changes in morphology, crystalline structure, and thermoresponsive behavior of PNIPAAm were related to the strength of its BMHBs with the nucleobases. The strengths of the BMHBs followed the order guanine > adenine > thymine > cytosine > uracil, as verified through analyses of Fourier transform infrared spectra, lower critical solution temperatures, and inter-association equilibrium constants. The PNSCs also exhibited remarkable improvements in conductivity upon the formation of BMHBs, which facilitated proton transport. The neat PNIPAAm film was an insulator, but it transformed into a semiconductor after hybridizing with the nucleobases. In particular, the resistivity of the PNIPAAm-guanine supramolecular complex decreased to 1.35 × 10(5) ohm cm. The resistivity of the PNIPAAm-cytosine supramolecular complex increased significantly from 5.83 × 10(6) to 3 × 10(8) ohm cm upon increasing the temperature from 40 to 50 °C, suggesting that this material might have applicability in thermo-sensing. The ability to significantly improve the conductivity of hydrogels through such a simple approach involving BMHBs might facilitate their use as novel materials in bioelectronics. PMID:25196131

  1. Tautomeric equilibrium of uracil and thymine in model protein-nucleic acid contacts. Spectroscopic and quantum chemical approach.

    PubMed

    Samijlenko, Svitlana P; Yurenko, Yevgen P; Stepanyugin, Andriy V; Hovorun, Dmytro M

    2010-01-28

    This work deals with tautomeric transformations of uracil (Ura) and thymine (Thy) in their model complexes with the deprotonated carboxylic group. Essential changes in the UV spectra of the bases upon their interaction with NaAc, vanishing signals of both imino protons in (1)H NMR spectra, and a perceptible decrease in intensity of both IR bands, related to the stretching vibrations nu(C=O) of the carbonyl groups, imply involvement of enolic tautomers. Results of quantum chemical calculations of the double complexes of the Ura(Thy) tautomers with CH(3)COO(-) at the MP2/6-311++G(2df,pd)//B3LYP/6-311++G(d,p) level of theory proved to be incompatible with the spectral features: despite the fact that the complexes of the enolic tautomers are much closer in energy to the diketo ones as compared to isolated tautomers, the energy gap between them is such that in tautomeric equilibrium dominate diketo forms. Calculations of triple complexes of the type CH(3)COO(-):Ura(Thy) tautomer:Na(+), taking into account the effect of the Na(+) coordination with tautomers, show that three triple complexes formed by enolic tautomers appeared more stable than those formed by diketo ones. This makes the UV and (1)H NMR data understandable, but the high residual intensity of the nu(C=O) bands in the IR spectra remains unclear. At that ion, Na(+) itself was not able to disturb the tautomeric equilibrium in the coordination complexes of the type Ura(Thy) tautomer:Na(+). To evaluate the DMSO effect, the CPCM solvation model was applied to triple complexes of the Ura tautomers. It appeared that in the solution there is coexistence between the diketo and enolic tautomers in a ratio of 53%:47%. This makes possible reconciliation of our experimental data. The biological significance of high-energy tautomers of nucleotide bases is discussed.

  2. Nonhomologous end joining of complex DNA double-strand breaks with proximal thymine glycol and interplay with base excision repair.

    PubMed

    Almohaini, Mohammed; Chalasani, Sri Lakshmi; Bafail, Duaa; Akopiants, Konstantin; Zhou, Tong; Yannone, Steven M; Ramsden, Dale A; Hartman, Matthew C T; Povirk, Lawrence F

    2016-05-01

    DNA double-strand breaks induced by ionizing radiation are often accompanied by ancillary oxidative base damage that may prevent or delay their repair. In order to better define the features that make some DSBs repair-resistant, XLF-dependent nonhomologous end joining of blunt-ended DSB substrates having the oxidatively modified nonplanar base thymine glycol at the first (Tg1), second (Tg2), third (Tg3) or fifth (Tg5) positions from one 3' terminus, was examined in human whole-cell extracts. Tg at the third position had little effect on end-joining even when present on both ends of the break. However, Tg as the terminal or penultimate base was a major barrier to end joining (>10-fold reduction in ligated products) and an absolute barrier when present at both ends. Dideoxy trapping of base excision repair intermediates indicated that Tg was excised from Tg1, Tg2 and Tg3 largely if not exclusively after DSB ligation. However, Tg was rapidly excised from the Tg5 substrate, resulting in a reduced level of DSB ligation, as well as slow concomitant resection of the opposite strand. Ligase reactions containing only purified Ku, XRCC4, ligase IV and XLF showed that ligation of Tg3 and Tg5 was efficient and only partially XLF-dependent, whereas ligation of Tg1 and Tg2 was inefficient and only detectable in the presence of XLF. Overall, the results suggest that promoting ligation of DSBs with proximal base damage may be an important function of XLF, but that Tg can still be a major impediment to repair, being relatively resistant to both trimming and ligation. Moreover, it appears that base excision repair of Tg can sometimes interfere with repair of DSBs that would otherwise be readily rejoined. PMID:27049455

  3. Thymine-based molecular beacon for sensing adenosine based on the inhibition of S-adenosylhomocysteine hydrolase activity.

    PubMed

    Nieh, Chih-Chun; Tseng, Wei-Lung

    2014-11-15

    This study presents a thymine (T)-based molecular beacon (MB) used for probing S-adenosylhomocysteine hydrolase (SAHH)-catalyzed hydrolysis of S-adenosylhomocysteine (SAH) and for sensing adenosine based on the inhibition of SAHH activity. The designed MB (T8-MB-T8) contained a 15-mer loop and a stem that consisted of a pair of 8-mer T bases, a fluorophore unit at the 5'-end, and a quencher unit at the 3'-end. In the presence of Hg(2+), a change in the conformation of T8-MB-T8 placed the fluorophore unit and the quencher in proximity to each other and caused collisional quenching of fluorescence between them. The Hg(2+)-induced fluorescence quenching of T8-MB-T8 occurred because the Hg(2+) induced T-T mismatches to form stable T-Hg(2+)-T coordination in the MB stem. SAHH catalyzed the hydrolysis of SAH to produce homocysteine. The generated homocysteine enabled the Hg(2+) to be removed from a hairpin-shaped T8-MB-T8 through the formation of a strong Hg(2+)-S bond, leading to the restoration of its fluorescence. The T8-MB-T8 · Hg(2+) probe showed a limit of detection for SAHH of 4 units L(-1) (approximately 0.24 nM) and was reusable for detecting the SAHH/SAH system. Because adenosine was an effective SAHH activity inhibitor, the T8-MB-T8 · Hg(2+) probe combining the SAHH and SAH systems was used for sensitive and selective detection of adenosine in urine without the interference of other adenosine analogs.

  4. Basis set dependence using DFT/B3LYP calculations to model the Raman spectrum of thymine.

    PubMed

    Bielecki, Jakub; Lipiec, Ewelina

    2016-02-01

    Raman spectroscopy (including surface enhanced Raman spectroscopy (SERS) and tip enhanced Raman spectroscopy (TERS)) is a highly promising experimental method for investigations of biomolecule damage induced by ionizing radiation. However, proper interpretation of changes in experimental spectra for complex systems is often difficult or impossible, thus Raman spectra calculations based on density functional theory (DFT) provide an invaluable tool as an additional layer of understanding of underlying processes. There are many works that address the problem of basis set dependence for energy and bond length consideration, nevertheless there is still lack of consistent research on basis set influence on Raman spectra intensities for biomolecules. This study fills this gap by investigating of the influence of basis set choice for the interpretation of Raman spectra of the thymine molecule calculated using the DFT/B3LYP framework and comparing these results with experimental spectra. Among 19 selected Pople's basis sets, the best agreement was achieved using 6-31[Formula: see text](d,p), 6-31[Formula: see text](d,p) and 6-11[Formula: see text]G(d,p) sets. Adding diffuse functions or polarized functions for small basis set or use of a medium or large basis set without diffuse or polarized functions is not sufficient to reproduce Raman intensities correctly. The introduction of the diffuse functions ([Formula: see text]) on hydrogen atoms is not necessary for gas phase calculations. This work serves as a benchmark for further research on the interaction of ionizing radiation with DNA molecules by means of ab initio calculations and Raman spectroscopy. Moreover, this work provides a set of new scaling factors for Raman spectra calculation in the framework of DFT/B3LYP method.

  5. Effects of microinjected photoreactivating enzyme on thymine dimer removal and DNA repair synthesis in normal human and xeroderma pigmentosum fibroblasts.

    PubMed

    Roza, L; Vermeulen, W; Bergen Henegouwen, J B; Eker, A P; Jaspers, N G; Lohman, P H; Hoeijmakers, J H

    1990-03-15

    UV-induced thymine dimers (10 J/m2 of UV-C) were assayed in normal human and xeroderma pigmentosum (XP) fibroblasts with a monoclonal antibody against these dimers and quantitative fluorescence microscopy. In repair-proficient cells dimer-specific immunofluorescence gradually decreased with time, reaching about 25% of the initial fluorescence after 27 h. Rapid disappearance of dimers was observed in cells which had been microinjected with yeast photoreactivating enzyme prior to UV irradiation. This photoreactivation (PHR) was light dependent and (virtually) complete within 15 min of PHR illumination. In general, PHR of dimers strongly reduces UV-induced unscheduled DNA synthesis (UDS). However, when PHR was applied immediately after UV irradiation, UDS remained unchanged initially; the decrease set in only after 30 min. When PHR was performed 2 h after UV exposure, UDS dropped without delay. An explanation for this difference is preferential removal of some type(s) of nondimer lesions, e.g., (6-4) photoproducts, which is responsible for the PHR-resistant UDS immediately following UV irradiation. After the rapid removal of these photoproducts, the bulk of UDS is due to dimer repair. From the rapid effect of dimer removal by PHR on UDS it can be deduced that the excision of dimers up to the repair synthesis step takes considerably less than 30 min. Also in XP fibroblasts of various complementation groups the effect of PHR was investigated. The immunochemical dimer assay showed rapid PHR-dependent removal comparable to that in normal cells. However, the decrease of (residual) UDS due to PHR was absent (in XP-D) or much delayed (in XP-A and -E) compared to normal cells. This supports the idea that in these XP cells preferential repair of nondimer lesions does occur, but at a much lower rate.

  6. A high level of thymine replacement by 5-hydroxymethyluracil in nuclear DNA of the primitive dinoflagellate Prorocentrum micans E.

    PubMed

    Herzog, M; Soyer, M O; Daney de Marcillac, G

    1982-06-01

    The nuclei of dinoflagellate protists display several distinctive features which make it difficult to assign these organisms as either eukaryotes or prokaryotes. We investigated some physical properties of purified nuclear DNA from the primitive species Prorocentrum micans. Nuclear DNA was separated on a CsCl gradient, into two components, which banded with relative densities of 1.7240 g/cm3 for the main peak and 1.7301 g/cm3 for the heavy shoulder. Thermal denaturation of nuclear DNA displayed a broad profile with a Tm of 71 degrees C. A large discrepancy was thus revealed between the apparent (G + C) content as determined from density (65.4%) and that from Tm (41.7%) while the actual (G + C) content determined by 32P nucleotide chromatography was shown to be 57.1%. The abnormal behaviour of this DNA was due to the presence of an unusual nucleotide which was identified as 5-hydroxymethyluridylate (HOMedUMP) from its chromatographic and U.V. spectral characteristics. It amounted to 13.4% of the total nucleotides and replaced an average of 62.8% of the expected thymidylate (dTMP). Composition analysis of different fractions of the CsCl gradient revealed that the unusual pyrimidine, 5-hydroxymethyluracil, was not uniformly interspersed with thymine in the DNA; the substitution rate increased with the relative density of the DNA. A minor component was also found, tentatively identified as 5-methylcytidylate (MedCMP) from its chromatographic properties, which amounted to less than 0.5 mol percent.

  7. Single-Molecule Analysis of Thymine Dimer-Containing G-Quadruplexes Formed from the Human Telomere Sequence

    PubMed Central

    2015-01-01

    The human telomere plays crucial roles in maintaining genome stability. In the presence of suitable cations, the repetitive 5′-TTAGGG-3′ human telomere sequence can fold into G-quadruplexes that adopt the hybrid, basket, or propeller fold. The telomere sequence is hypersensitive to UV-induced thymine dimer (T=T) formation, yet it does not cause telomere shortening. In this work, the potential structural disruption and thermodynamic stability of the T=T-containing natural telomere sequences were studied to understand why this damage is tolerated in telomeres. First, established methods, such as thermal melting measurements, electrophoretic mobility shift assays, and circular dichroism spectroscopy, were utilized to determine the effects of the damage on these structures. Second, a single-molecule ion channel recording technique using α-hemolysin (α-HL) was employed to examine further the structural differences between the damaged sequences. It was observed that the damage caused slightly lower thermal stabilities and subtle changes in the circular dichroism spectra for hybrid and basket folds. The α-HL experiments determined that T=Ts disrupt double-chain reversal loop formation but are tolerated in edgewise and diagonal loops. The largest change was observed for the T=T-containing natural telomere sequence when the propeller fold (all double-chain reversal loops) was studied. On the basis of the α-HL experiments, it was determined that a triplexlike structure exists under conditions that favor a propeller structure. The biological significance of these observations is discussed. PMID:25407781

  8. Synthesis, spectroscopic, structural and thermal characterizations of vanadyl(IV) adenine complex prospective as antidiabetic drug agent

    NASA Astrophysics Data System (ADS)

    El-Megharbel, Samy M.; Hamza, Reham Z.; Refat, Moamen S.

    2015-01-01

    The vanadyl(IV) adenine complex; [VO(Adn)2]ṡSO4; was synthesized and characterized. The molar conductivity of this complex was measured in DMSO solution that showed an electrolyte nature. Spectroscopic investigation of the green solid complex studied here indicate that the adenine acts as a bidentate ligand, coordinated to vanadyl(IV) ions through the nitrogen atoms N7 and nitrogen atom of amino group. Thus, from the results presented the vanadyl(IV) complex has square pyramid geometry. Further characterizations using thermal analyses and scanning electron techniques was useful. The aim of this paper was to introduce a new drug model for the diabetic complications by synthesized a novel mononuclear vanadyl(IV) adenine complex to mimic insulin action and reducing blood sugar level. The antidiabetic ability of this complex was investigated in STZ-induced diabetic mice. The results suggested that VO(IV)/adenine complex has antidiabetic activity, it improved the lipid profile, it improved liver and kidney functions, also it ameliorated insulin hormone and blood glucose levels. The vanadyl(IV) complex possesses an antioxidant activity and this was clear through studying SOD, CAT, MDA, GSH and methionine synthase. The current results support the therapeutic potentiality of vanadyl(IV)/adenine complex for the management and treatment of diabetes.

  9. The isolation and characterisation of a new type of dimeric adenine photoproduct in UV-irradiated deoxyadenylates.

    PubMed Central

    Kumar, S; Sharma, N D; Davies, R J; Phillipson, D W; McCloskey, J A

    1987-01-01

    A new type of dimeric adenine photoproduct has been isolated from d(ApA) irradiated at 254 nm in neutral aqueous solution. It is formed in comparable amounts to another, quite distinct, adenine photoproduct first described by Pörschke (J. Am. Chem. Soc. (1973), 95, 8440-8446). Results from high resolution mass spectrometry and 1H NMR indicate that the new photoproduct comprises a mixture of two stereoisomers whose formation involves covalent coupling of the adenine bases in d(ApA) and concomitant incorporation of the elements of one molecule of water. The photoproduct is degraded specifically by acid to 4,6-diamino-5-guanidinopyrimidine (DGPY) whose identity has been confirmed by independent chemical synthesis. Formation of the new photoproduct in UV-irradiated d(pA)2 and poly(dA), but not poly(rA), has been demonstrated by assaying their acid hydrolysates for the presence of DGPY. The properties of the photoproduct are consistent with it being generated by the hydrolytic fission of an azetidine photoadduct in which the N(7) and C(8) atoms of the 5'-adenine in d(ApA) are linked respectively to the C(6) and C(5) positions of the 3'-adenine. PMID:3822822

  10. Metabolic fate of 14C-labelled nicotinamide and adenine in germinating propagules of the mangrove Bruguiera gymnorrhiza.

    PubMed

    Yin, Yuling; Watanabe, Shin; Ashihara, Hiroshi

    2012-01-01

    We studied the metabolic fate of [carbonyl-14C]nicotinamide and [8-(14)C]adenine in segments taken from young and developing leaves, stem, hypocotyls, and roots of a shoot-root type emerging propagule of the mangrove plant Bruguiera gymnorrhiza. Thin-layer chromatography was used together with a bioimaging analyser system. During 4 h of incubation, incorporation of radioactivity from [carbonyl-14C]nicotinamide into NAD and trigonelline was found in all parts of the propagules; the highest incorporation rates into NAD and trigonelline were found in newly emerged stem and young leaves, respectively. Radioactivity from [8-(14)C]adenine was distributed mainly in the salvage products (adenine nucleotides and RNA), and incorporation was less in catabolites (allantoin, allantoic acid, and CO2). Adenine salvage activity was higher in young leaves and stem than in hypocotyls and roots. Over a short time, the effect of 500 mM NaCl on nicotinamide and adenine metabolism indicated that NaCl inhibits both salvage and degradation activities in roots. PMID:22888538

  11. Intermediates in the Guanine Nucleotide Exchange Reaction of Rab8 Protein Catalyzed by Guanine Nucleotide Exchange Factors Rabin8 and GRAB*

    PubMed Central

    Guo, Zhong; Hou, Xiaomin; Goody, Roger S.; Itzen, Aymelt

    2013-01-01

    Small G-proteins of the Ras superfamily control the temporal and spatial coordination of intracellular signaling networks by acting as molecular on/off switches. Guanine nucleotide exchange factors (GEFs) regulate the activation of these G-proteins through catalytic replacement of GDP by GTP. During nucleotide exchange, three distinct substrate·enzyme complexes occur: a ternary complex with GDP at the start of the reaction (G-protein·GEF·GDP), an intermediary nucleotide-free binary complex (G-protein·GEF), and a ternary GTP complex after productive G-protein activation (G-protein·GEF·GTP). Here, we show structural snapshots of the full nucleotide exchange reaction sequence together with the G-protein substrates and products using Rabin8/GRAB (GEF) and Rab8 (G-protein) as a model system. Together with a thorough enzymatic characterization, our data provide a detailed view into the mechanism of Rabin8/GRAB-mediated nucleotide exchange. PMID:24072714

  12. DNA dynamics in aqueous solution: opening the double helix

    NASA Technical Reports Server (NTRS)

    Pohorille, A.; Ross, W. S.; Tinoco, I. Jr; MacElroy, R. D. (Principal Investigator)

    1990-01-01

    The opening of a DNA base pair is a simple reaction that is a prerequisite for replication, transcription, and other vital biological functions. Understanding the molecular mechanisms of biological reactions is crucial for predicting and, ultimately, controlling them. Realistic computer simulations of the reactions can provide the needed understanding. To model even the simplest reaction in aqueous solution requires hundreds of hours of supercomputing time. We have used molecular dynamics techniques to simulate fraying of the ends of a six base pair double strand of DNA, [TCGCGA]2, where the four bases of DNA are denoted by T (thymine), C (cytosine), G (guanine), and A (adenine), and to estimate the free energy barrier to this process. The calculations, in which the DNA was surrounded by 2,594 water molecules, required 50 hours of CRAY-2 CPU time for every simulated 100 picoseconds. A free energy barrier to fraying, which is mainly characterized by the movement of adenine away from thymine into aqueous environment, was estimated to be 4 kcal/mol. Another fraying pathway, which leads to stacking between terminal adenine and thymine, was also observed. These detailed pictures of the motions and energetics of DNA base pair opening in water are a first step toward understanding how DNA will interact with any molecule.

  13. Bacteriophage adenine methyltransferase: a life cycle regulator? Modelled using Vibrio harveyi myovirus like.

    PubMed

    Bochow, S; Elliman, J; Owens, L

    2012-11-01

    The adenine methyltransferase (DAM) gene methylates GATC sequences that have been demonstrated in various bacteria to be a powerful gene regulator functioning as an epigenetic switch, particularly with virulence gene regulation. However, overproduction of DAM can lead to mutations, giving rise to variability that may be important for adaptation to environmental change. While most bacterial hosts carry a DAM gene, not all bacteriophage carry this gene. Currently, there is no literature regarding the role DAM plays in life cycle regulation of bacteriophage. Vibrio campbellii strain 642 carries the bacteriophage Vibrio harveyi myovirus like (VHML) that has been proven to increase virulence. The complete genome sequence of VHML bacteriophage revealed a putative adenine methyltransferase gene. Using VHML, a new model of phage life cycle regulation, where DAM plays a central role between the lysogenic and lytic states, will be hypothesized. In short, DAM methylates the rha antirepressor gene and once methylation is removed, homologous CI repressor protein becomes repressed and non-functional leading to the switching to the lytic cycle. Greater understanding of life cycle regulation at the genetic level can, in the future, lead to the genesis of chimeric bacteriophage with greater control over their life cycle for their safe use as probiotics within the aquaculture industry. PMID:22681538

  14. 3D Magnetically Ordered Open Supramolecular Architectures Based on Ferrimagnetic Cu/Adenine/Hydroxide Heptameric Wheels.

    PubMed

    Pérez-Aguirre, Rubén; Beobide, Garikoitz; Castillo, Oscar; de Pedro, Imanol; Luque, Antonio; Pérez-Yáñez, Sonia; Rodríguez Fernández, Jesús; Román, Pascual

    2016-08-01

    The present work provides two new examples of supramolecular metal-organic frameworks consisting of three-dimensional extended noncovalent assemblies of wheel-shaped heptanuclear [Cu7(μ-H2O)6(μ3-OH)6(μ-adeninato-κN3:κN9)6](2+) entities. The heptanuclear entity consists of a central [Cu(OH)6](4-) core connected to six additional copper(II) metal centers in a radial and planar arrangement through the hydroxides. It generates a wheel-shaped entity in which water molecules and μ-κN3:κN9 adeninato ligands bridge the peripheral copper atoms. The magnetic characterization indicates the central copper(II) center is anti-ferromagnetically coupled to external copper(II) centers, which are ferromagnetically coupled among them leading to an S = 5/2 ground state. The packing of these entities is sustained by π-π stacking interactions between the adenine nucleobases and by hydrogen bonds established among the hydroxide ligands, sulfate anions, and adenine nucleobases. The sum of both types of supramolecular interactions creates a rigid synthon that in combination with the rigidity of the heptameric entity generates an open supramolecular structure (40-50% of available space) in which additional sulfate and triethylammonium ions are located altogether with solvent molecules. These compounds represent an interesting example of materials combining both porosity and magnetic relevant features.

  15. Differentiation alters the unstable expression of adenine phosphoribosyltransferase in mouse teratocarcinoma cells.

    PubMed

    Turker, M S; Tischfield, J A; Rabinovitch, P; Stambrook, P J; Trill, J J; Smith, A C; Ogburn, C E; Martin, G M

    1986-01-01

    Three multipotent mouse teratocarcinoma stem lines, all exhibiting unstable expression for the purine salvage enzyme adenine phosphoribosyltransferase (APRT) were used for the isolation of differentiated cell lines from neoplasms developed in syngeneic mice. Two of the stem cell lines (DAP1B and DAP1C) exhibited homozygous deficiencies for APRT expression while the third stem cell line (E140) exhibited a heterozygous deficiency (Turker, M.S., Smith, A.C., and Martin, G.M.; Somat. Cell Mol. Genet.; 10:55-69; 1984). A total of 16 morphologically differentiated cell lines were established from these neoplasms; most were no longer tumorigenic. Differentiated cell lines derived from the E140-induced tumors segregated homozygous deficient mutants in a single step, consistent with their retention of the heterozygous deficient state. Differentiated homozygous deficient cell lines gave rise to phenotypic revertants at very high frequencies (10(-1) to 10(-2)). The majority of these putative revertants, however, yielded cell-free extracts with little or no detectable APRT activity. These putative revertants were capable of adenine salvage and were therefore termed APRT pseudorevertants. Since the APRT pseudorevertant phenotype was only observed in the differentiated progeny of the APRT deficient stem cell lines, we conclude that this change in the nature of the revertant phenotype was a consequence of cellular differentiation.

  16. Effect of Electronic Excitation on Hydrogen Atom Transfer (Tautomerization) Reactions for the DNA Base Adenine

    NASA Technical Reports Server (NTRS)

    Chaban, Galina M.; Salter, Latasha M.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Geometrical structures and energetic properties for four different tautomers of adenine are calculated in this study, using multi-configurational wave functions. Both the ground and the lowest single excited state potential energy surface are studied. The energetic order of the tautomers on the ground state potential surface is 9H less than 7H less than 3H less than 1H, while on the excited state surface this order is found to be different: 3H less than 1H less than 9H less than 7H. Minimum energy reaction paths are obtained for hydrogen atom transfer (9 yields 3 tautomerization) reactions in the ground and the lowest excited electronic state. It is found that the barrier heights and the shapes of the reaction paths are different for the ground and the excited electronic state, suggesting that the probability of such tautomerization reaction is higher on the excited state potential energy surface. The barrier for this reaction in the excited state may become very low in the presence of water or other polar solvent molecules, and therefore such tautomerization reaction may play an important role in the solution phase photochemistry of adenine.

  17. Vertical Singlet Excitations on Adenine Dimer: A Time Dependent Density Functional Study

    NASA Astrophysics Data System (ADS)

    Crespo-Hernández, Carlos E.; Marai, Christopher N. J.

    2007-12-01

    The condense phase, excited state dynamics of the adenylyl(3'→5')adenine (ApA) dinucleotide has been previously studied using transient absorption spectroscopy with femtosecond time resolution (Crespo-Hernández et al. Chem. Rev. 104, 1977-2019 (2004)). An ultrafast and a long-lived component were observed with time constants of <1 ps and 60±16 ps, respectively. Comparison of the time constants measured for the dinucleotide with that for the adenine nucleotide suggested that the fast component observed in ApA could be assigned to monomer dynamics. The long-lived component observed in ApA was assigned to an excimer state that originates from a fraction of base stacked conformations present at the time of excitation. In this contribution, supermolecule calculations using the time dependent implementation of density functional theory is used to provide more insights on the origin of the initial Franck-Condon excitations. Monomer-like, localized excitations are observed for conformations having negligible base stacking interactions, whereas delocalized excitations are predicted for conformations with significant vertical base-base overlap.

  18. Development of bright fluorescent quadracyclic adenine analogues: TDDFT-calculation supported rational design

    PubMed Central

    Foller Larsen, Anders; Dumat, Blaise; Wranne, Moa S.; Lawson, Christopher P.; Preus, Søren; Bood, Mattias; Gradén, Henrik; Marcus Wilhelmsson, L.; Grøtli, Morten

    2015-01-01

    Fluorescent base analogues (FBAs) comprise a family of increasingly important molecules for the investigation of nucleic acid structure and dynamics. We recently reported the quantum chemical calculation supported development of four microenvironment sensitive analogues of the quadracyclic adenine (qA) scaffold, the qANs, with highly promising absorptive and fluorescence properties that were very well predicted by TDDFT calculations. Herein, we report on the efficient synthesis, experimental and theoretical characterization of nine novel quadracyclic adenine derivatives. The brightest derivative, 2-CNqA, displays a 13-fold increased brightness (εΦF = 4500) compared with the parent compound qA and has the additional benefit of being a virtually microenvironment-insensitive fluorophore, making it a suitable candidate for nucleic acid incorporation and use in quantitative FRET and anisotropy experiments. TDDFT calculations, conducted on the nine novel qAs a posteriori, successfully describe the relative fluorescence quantum yield and brightness of all qA derivatives. This observation suggests that the TDDFT-based rational design strategy may be employed for the development of bright fluorophores built up from a common scaffold to reduce the otherwise costly and time-consuming screening process usually required to obtain useful and bright FBAs. PMID:26227585

  19. Development of bright fluorescent quadracyclic adenine analogues: TDDFT-calculation supported rational design

    NASA Astrophysics Data System (ADS)

    Foller Larsen, Anders; Dumat, Blaise; Wranne, Moa S.; Lawson, Christopher P.; Preus, Søren; Bood, Mattias; Gradén, Henrik; Marcus Wilhelmsson, L.; Grøtli, Morten

    2015-07-01

    Fluorescent base analogues (FBAs) comprise a family of increasingly important molecules for the investigation of nucleic acid structure and dynamics. We recently reported the quantum chemical calculation supported development of four microenvironment sensitive analogues of the quadracyclic adenine (qA) scaffold, the qANs, with highly promising absorptive and fluorescence properties that were very well predicted by TDDFT calculations. Herein, we report on the efficient synthesis, experimental and theoretical characterization of nine novel quadracyclic adenine derivatives. The brightest derivative, 2-CNqA, displays a 13-fold increased brightness (ɛΦF = 4500) compared with the parent compound qA and has the additional benefit of being a virtually microenvironment-insensitive fluorophore, making it a suitable candidate for nucleic acid incorporation and use in quantitative FRET and anisotropy experiments. TDDFT calculations, conducted on the nine novel qAs a posteriori, successfully describe the relative fluorescence quantum yield and brightness of all qA derivatives. This observation suggests that the TDDFT-based rational design strategy may be employed for the development of bright fluorophores built up from a common scaffold to reduce the otherwise costly and time-consuming screening process usually required to obtain useful and bright FBAs.

  20. Probing ultrafast dynamics in adenine with mid-UV four-wave mixing spectroscopies.

    PubMed

    West, Brantley A; Womick, Jordan M; Moran, Andrew M

    2011-08-11

    Heterodyne-detected transient grating (TG) and two-dimensional photon echo (2DPE) spectroscopies are extended to the mid-UV spectral range in this investigation of photoinduced relaxation processes of adenine in aqueous solution. These experiments are the first to combine a new method for generating 25 fs laser pulses (at 263 nm) with the passive phase stability afforded by diffractive optics-based interferometry. We establish a set of conditions (e.g., laser power density, solute concentration) appropriate for the study of dynamics involving the neutral solute. Undesired solute photoionization is shown to take hold at higher peak powers of the laser pulses. Signatures of internal conversion and vibrational cooling dynamics are examined using TG measurements with signal-to-noise ratios as high as 350 at short delay times. In addition, 2DPE line shapes reveal correlations between excitation and emission frequencies in adenine, which reflect electronic and nuclear relaxation processes associated with particular tautomers. Overall, this study demonstrates the feasibility of techniques that will hold many advantages for the study of biomolecules whose lowest-energy electronic resonances are found in the mid-UV (e.g., DNA bases, amino acids).

  1. Microwave-assisted stereospecific synthesis of novel tetrahydropyran adenine isonucleosides and crystal structures determination

    NASA Astrophysics Data System (ADS)

    Silva, Fábio P. L.; Cirqueira, Marilia L.; Martins, Felipe T.; Vasconcellos, Mário L. A. A.

    2013-11-01

    We describe in this article stereospecific syntheses for new isonucleosides analogs of adenine 5-7 from tosyl derivatives 2-4 accessing by microwave irradiations (50-80%). The adenine reacts entirely at the N(9) position. Compounds 2-4 were prepared in two steps from the corresponding alcohols 1, 8 and 9 (81-92%). These tetrahydropyrans alcohols 1, 8 and 9 are achiral (Meso compounds) and were prepared in two steps with complete control of 2,4,6-cis relative configuration by Prins cyclization reaction (60-63%) preceded by the Barbier reaction between allyl bromide with benzaldehyde, 4-fluorobenzaldehyde and 2-naphthaldehyde respectively under Lewis acid conditions (96-98%). The configurations and preferential conformations of 5-7 were determined by crystal structure of 6. These novel isonucleosides 5-7 present in silico potentiality to act as GPCR ligand, kinase inhibitor and enzyme inhibitor, evaluated by Molinspiration program, consistent with the expected antiviral and anticancer bioactivities.

  2. Ultraviolet photolysis of adenine: Dissociation via the {sup 1}{pi}{sigma}{sup *} state

    SciTech Connect

    Nix, Michael G. D.; Devine, Adam L.; Cronin, Brid; Ashfold, Michael N. R.

    2007-03-28

    High resolution total kinetic energy release (TKER) spectra of the H atom fragments resulting from photodissociation of jet-cooled adenine molecules at 17 wavelengths in the range 280>{lambda}{sub phot}>214 nm are reported. TKER spectra obtained at {lambda}{sub phot}>233 nm display broad, isotropic profiles that peak at low TKER ({approx}1800 cm{sup -1}) and are largely insensitive to the choice of excitation wavelength. The bulk of these products is attributed to unintended multiphoton dissociation processes. TKER spectra recorded at {lambda}{sub phot}{<=}233 nm display additional fast structure, which is attributed to N{sub 9}-H bond fission on the {sup 1}{pi}{sigma}{sup *} potential energy surface (PES). Analysis of the kinetic energies and recoil anisotropies of the H atoms responsible for the fast structure suggests excitation to two {sup 1}{pi}{pi}{sup *} excited states (the {sup 1}L{sub a} and {sup 1}B{sub b} states) at {lambda}{sub phot}{approx}230 nm, both of which dissociate to yield H atoms together with ground state adeninyl fragments by radiationless transfer through conical intersections with the {sup 1}{pi}{sigma}{sup *} PES. Parallels with the photochemistry exhibited by other, smaller heteroaromatics (pyrrole, imidazole, phenol, etc.) are highlighted, as are inconsistencies between the present conclusions and those reached in two other recent studies of excited state adenine molecules.

  3. Flavin adenine dinucleotide content of quinone reductase 2: analysis and optimization for structure-function studies.

    PubMed

    Leung, Kevin Ka Ki; Litchfield, David W; Shilton, Brian H

    2012-01-01

    Quinone reductase 2 (NQO2) is a broadly expressed enzyme implicated in responses to a number of compounds, including protein kinase inhibitors, resveratrol, and antimalarial drugs. NQO2 includes a flavin adenine dinucleotide (FAD) cofactor, but X-ray crystallographic analysis of human NQO2 expressed in Escherichia coli showed that electron density for the isoalloxazine ring of FAD was weak and there was no electron density for the adenine mononucleotide moiety. Reversed-phase high-performance liquid chromatography (HPLC) of the NQO2 preparation indicated that FAD was not present and only 38% of the protomers contained flavin mononucleotide (FMN), explaining the weak electron density for FAD in the crystallographic analysis. A method for purifying NQO2 and reconstituting with FAD such that the final content approaches 100% occupancy with FAD is presented here. The enzyme prepared in this manner has a high specific activity, and there is strong electron density for the FAD cofactor in the crystal structure. Analysis of NQO2 crystal structures present in the Protein Data Bank indicates that many may have sub-stoichiometric cofactor content and/or contain FMN rather than FAD. This method of purification and reconstitution will help to optimize structural and functional studies of NQO2 and possibly other flavoproteins.

  4. 3D Magnetically Ordered Open Supramolecular Architectures Based on Ferrimagnetic Cu/Adenine/Hydroxide Heptameric Wheels.

    PubMed

    Pérez-Aguirre, Rubén; Beobide, Garikoitz; Castillo, Oscar; de Pedro, Imanol; Luque, Antonio; Pérez-Yáñez, Sonia; Rodríguez Fernández, Jesús; Román, Pascual

    2016-08-01

    The present work provides two new examples of supramolecular metal-organic frameworks consisting of three-dimensional extended noncovalent assemblies of wheel-shaped heptanuclear [Cu7(μ-H2O)6(μ3-OH)6(μ-adeninato-κN3:κN9)6](2+) entities. The heptanuclear entity consists of a central [Cu(OH)6](4-) core connected to six additional copper(II) metal centers in a radial and planar arrangement through the hydroxides. It generates a wheel-shaped entity in which water molecules and μ-κN3:κN9 adeninato ligands bridge the peripheral copper atoms. The magnetic characterization indicates the central copper(II) center is anti-ferromagnetically coupled to external copper(II) centers, which are ferromagnetically coupled among them leading to an S = 5/2 ground state. The packing of these entities is sustained by π-π stacking interactions between the adenine nucleobases and by hydrogen bonds established among the hydroxide ligands, sulfate anions, and adenine nucleobases. The sum of both types of supramolecular interactions creates a rigid synthon that in combination with the rigidity of the heptameric entity generates an open supramolecular structure (40-50% of available space) in which additional sulfate and triethylammonium ions are located altogether with solvent molecules. These compounds represent an interesting example of materials combining both porosity and magnetic relevant features. PMID:27409976

  5. Synthesis of chemically modified DNA.

    PubMed

    Shivalingam, Arun; Brown, Tom

    2016-06-15

    Naturally occurring DNA is encoded by the four nucleobases adenine, cytosine, guanine and thymine. Yet minor chemical modifications to these bases, such as methylation, can significantly alter DNA function, and more drastic changes, such as replacement with unnatural base pairs, could expand its function. In order to realize the full potential of DNA in therapeutic and synthetic biology applications, our ability to 'write' long modified DNA in a controlled manner must be improved. This review highlights methods currently used for the synthesis of moderately long chemically modified nucleic acids (up to 1000 bp), their limitations and areas for future expansion. PMID:27284032

  6. Shell-isolated nanoparticle-enhanced Raman spectroscopy study of the adsorption behaviour of DNA bases on Au(111) electrode surfaces.

    PubMed

    Wen, Bao-Ying; Jin, Xi; Li, Yue; Wang, Ya-Hao; Li, Chao-Yu; Liang, Miao-Miao; Panneerselvam, Rajapandiyan; Xu, Qing-Chi; Wu, De-Yin; Yang, Zhi-Lin; Li, Jian-Feng; Tian, Zhong-Qun

    2016-06-21

    For the first time, we used the electrochemical shell-isolated nanoparticle-enhanced Raman spectroscopy (EC-SHINERS) technique to in situ characterize the adsorption behaviour of four DNA bases (adenine, guanine, thymine, and cytosine) on atomically flat Au(111) electrode surfaces. The spectroscopic results of the various molecules reveal similar features, such as the adsorption-induced reconstruction of the Au(111) surface and the drastic Raman intensity reduction of the ring breathing modes after the lifting reconstruction. As a preliminary study of the photo-induced charge transfer (PICT) mechanism, the in situ spectroscopic results obtained on single crystal surfaces are excellently illustrated with electrochemical data.

  7. Ground- and excited-state properties of DNA base molecules from plane-wave calculations using ultrasoft pseudopotentials.

    PubMed

    Preuss, M; Schmidt, W G; Seino, K; Furthmüller, J; Bechstedt, F

    2004-01-15

    We present equilibrium geometries, vibrational modes, dipole moments, ionization energies, electron affinities, and optical absorption spectra of the DNA base molecules adenine, thymine, guanine, and cytosine calculated from first principles. The comparison of our results with experimental data and results obtained by using quantum chemistry methods show that in specific cases gradient-corrected density-functional theory (DFT-GGA) calculations using ultrasoft pseudopotentials and a plane-wave basis may be a numerically efficient and accurate alternative to methods employing localized orbitals for the expansion of the electron wave functions.

  8. Would Dissociative Recombination of DNA+ be a Possible Pathway of DNA Damage?

    NASA Astrophysics Data System (ADS)

    Kwon, H. C.; Chen, Z. P.; Strom, R. A.; Andrianarijaona, V. M.

    2015-05-01

    It is known that dissociative recombination (DR) is one of the very efficient processes of destruction of molecular cations into neutral particles. During the past few years, the focus of DR has been expanded from small inorganic molecules to macromolecular cation. We are probing the possibility of the DR of DNA+ after ionization of DNA, for example due to ionizing radiation. Therefore we are investigating the existence of autoionization states within nucleotide bases (Guanine, Adenine, Cytosine, and Thymine). Our results from computational analysis using the modern electronic structure program ORCA will be presented. Authors wish to give special thanks to Pacific Union College Student Senate for their financial support.

  9. A van der Waals density functional study of adenine on graphene: Single molecular adsorption and overlayer binding

    SciTech Connect

    Berland, Kristian; Cooper, Valentino R; Langreth, David C.; Schroder, Prof. Elsebeth; Chakarova-Kack, Svetla

    2011-01-01

    The adsorption of an adenine molecule on graphene is studied using a first-principles van der Waals functional (vdW-DF) [Dion et al., Phys. Rev. Lett. 92, 246401 (2004)]. The cohesive energy of an ordered adenine overlayer is also estimated. For the adsorption of a single molecule, we determine the optimal binding configuration and adsorption energy by translating and rotating the molecule. The adsorption energy for a single molecule of adenine is found to be 711 meV, which is close to the calculated adsorption energy of the similar-sized naphthalene. Based on the single molecular binding configuration, we estimate the cohesive energy of a two-dimensional ordered overlayer. We find a significantly stronger binding energy for the ordered overlayer than for single-molecule adsorption.

  10. Hydroxyl Radical (OH•) Reaction with Guanine in an Aqueous Environment: A DFT Study

    PubMed Central

    Kumar, Anil; Pottiboyina, Venkata; Sevilla, Michael D.

    2011-01-01

    The reaction of hydroxyl radical (OH•) with DNA accounts for about half of radiation-induced DNA damage in living systems. Previous literature reports point out that the reaction of OH• with DNA proceeds mainly through the addition of OH• to the C=C bond of the DNA bases. However, recently it has been reported that the principal reaction of OH• with dGuo (deoxyguanosine) is the direct hydrogen atom abstraction from its exocyclic amine group rather than addition of OH• to the C=C bond. In the present work, these two reaction pathways of OH• attack on guanine (G) in the presence of water molecules (aqueous environment) are investigated using the density functional theory (DFT) B3LYP method with 6-31G* and 6-31++G** basis sets. The calculations show that the initial addition of the OH• at C4=C5 double bond of guanine is barrier free and the adduct radical (G-OH•) has only a small activation barrier of ca. 1 – 6 kcal/mol leading to the formation of a metastable ion-pair intermediate (G•+---OH−). The formation of ion-pair is a result of the highly oxidizing nature of the OH• in aqueous media. The resulting ion-pair (G•+---OH−) deprotonates to form H2O and neutral G radicals favoring G(N1-H)• with an activation barrier of ca. 5 kcal/mol. The overall process from the G(C4)-OH• (adduct) to G(N1-H)• and water is found to be exothermic in nature by more than 13 kcal/mol. (G-OH•), (G•+---OH−), and G(N1-H)• were further characterized by the CAM-B3LYP calculations of their UV-visible spectra and good agreement between theory and experiment is achieved. Our calculations for the direct hydrogen abstraction pathway from N1 and N2 sites of guanine by the OH• show that this is also a competitive route to produce G(N2-H)•, G(N1-H)• and H2O. PMID:22050033

  11. Hydroxyl radical (OH•) reaction with guanine in an aqueous environment: a DFT study.

    PubMed

    Kumar, Anil; Pottiboyina, Venkata; Sevilla, Michael D

    2011-12-22

    The reaction of hydroxyl radical (OH(•)) with DNA accounts for about half of radiation-induced DNA damage in living systems. Previous literature reports point out that the reaction of OH(•) with DNA proceeds mainly through the addition of OH(•) to the C═C bonds of the DNA bases. However, recently it has been reported that the principal reaction of OH(•) with dGuo (deoxyguanosine) is the direct hydrogen atom abstraction from its exocyclic amine group rather than addition of OH(•) to the C═C bonds. In the present work, these two reaction pathways of OH(•) attack on guanine (G) in the presence of water molecules (aqueous environment) are investigated using the density functional theory (DFT) B3LYP method with 6-31G* and 6-31++G** basis sets. The calculations show that the initial addition of the OH(•) at C(4)═C(5) double bond of guanine is barrier free and the adduct radical (G-OH(•)) has only a small activation barrier of ca. 1-6 kcal/mol leading to the formation of a metastable ion-pair intermediate (G(•+)---OH(-)). The formation of ion-pair is a result of the highly oxidizing nature of the OH(•) in aqueous media. The resulting ion-pair (G(•+)---OH(-)) deprotonates to form H(2)O and neutral G radicals favoring G(N(1)-H)(•) with an activation barrier of ca. 5 kcal/mol. The overall process from the G(C(4))-OH(•) (adduct) to G(N(1)-H)(•) and water is found to be exothermic in nature by more than 13 kcal/mol. (G-OH(•)), (G(•+)---OH(-)), and G(N(1)-H)(•) were further characterized by the CAM-B3LYP calculations of their UV-vis spectra and good agreement between theory and experiment is achieved. Our calculations for the direct hydrogen abstraction pathway from N(1) and N(2) sites of guanine by the OH(•) show that this is also a competitive route to produce G(N(2)-H)(•), G(N(1)-H)(•) and H(2)O.

  12. The guanine cation radical: investigation of deprotonation states by ESR and DFT.

    PubMed

    Adhikary, Amitava; Kumar, Anil; Becker, David; Sevilla, Michael D

    2006-11-30

    This work reports ESR studies that identify the favored site of deprotonation of the guanine cation radical (G*+) in an aqueous medium at 77 K. Using ESR and UV-visible spectroscopy, one-electron oxidized guanine is investigated in frozen aqueous D2O solutions of 2'-deoxyguanosine (dGuo) at low temperatures at various pHs at which the guanine cation radical, G*+ (pH 3-5), singly deprotonated species, G(-H)* (pH 7-9), and doubly deprotonated species, G(-2H)*- (pH > 11), are found. C-8-deuteration of dGuo to give 8-D-dGuo removes the major proton hyperfine coupling at C-8. This isolates the anisotropic nitrogen couplings for each of the three species and aids our analyses. These anisotropic nitrogen couplings were assigned to specific nitrogen sites by use of 15N-substituted derivatives at N1, N2, and N3 atoms in dGuo. Both ESR and UV-visible spectra are reported for each of the species: G*+, G(-H)*, and G(-2H)*-. The experimental anisotropic ESR hyperfine couplings are compared to those obtained from DFT calculations for the various tautomers of G(-H)*. Using the B3LYP/6-31G(d) method, the geometries and energies of G*+ and its singly deprotonated state in its two tautomeric forms, G(N1-H)* and G(N2-H)*, were investigated. In a nonhydrated state, G(N2-H)* is found to be more stable than G(N1-H)*, but on hydration with seven water molecules G(N1-H)* is found to be more stable than G(N2-H)*. The theoretically calculated hyperfine coupling constants (HFCCs) of G*+, G(N1-H)*, and G(-2H)*- match the experimentally observed HFCCs best on hydration with seven or more waters. For G(-2H)*-, the hyperfine coupling constant (HFCC) at the exocyclic nitrogen atom (N2) is especially sensitive to the number of hydrating water molecules; good agreement with experiment is not obtained until nine or 10 waters of hydration are included.

  13. The Guanine Cation Radical: Investigation of Deprotonation States by ESR and DFT

    PubMed Central

    Adhikary, Amitava; Kumar, Anil; Becker, David; Sevilla, Michael D.

    2008-01-01

    This work reports ESR studies that identify the favored site of deprotonation of the guanine cation radical (G•+) in an aqueous medium at 77 K. Using ESR and UV-visible spectroscopy, one-electron oxidized guanine is investigated in frozen aqueous D2O solutions of 2′-deoxyguanosine (dGuo) at low temperatures at various pHs at which the guanine cation, G•+ (pH 3–5), singly deprotonated species, G(-H)• (pH 7–9) and doubly deprotonated species, G(-2H)•− (pH>11) are found. C-8-deuteration of dGuo to give 8-D-dGuo removes the major proton hyperfine coupling at C-8. This isolates the anisotropic nitrogen couplings for each of the three species and aids our analyses. These anisotropic nitrogen couplings were assigned to specific nitrogen sites by use of 15N substituted derivatives at N1, N2 N3 atoms in dGuo. Both ESR and UV-visible spectra are reported for each of the species: G•+, G(-H)•, and G(-2H)•−. The experimental anisotropic ESR hyperfine couplings are compared to those obtained from DFT calculations for the various tautomers of G(-H)•. Using the B3LYP/6–31G(d) method, the geometries and energies of G•+ and its singly deprotonated state in its two tautomeric forms, G(N1-H)• and G(N2-H)•, were investigated. In a non-hydrated state G(N2-H)• is found to be more stable than G(N1-H)• but on hydration with 7 water molecules G(N1-H)• is found to be more stable than G(N2-H)•. The theoretically calculated hyperfine coupling constants (HFCC) of G•+, G(N1-H)• and G(-2H)•− match the experimentally observed HFCCs best on hydration with 7 or more waters. For G(-2H)•−, the hyperfine coupling constant (HFCC) at the exocyclic nitrogen atom (N2) is especially sensitive to the number of hydrating water molecules; good agreement with experiment is not obtained until 9 or 10 waters of hydration are included. PMID:17125389

  14. Nicotinic Acid Adenine Dinucleotide Phosphate Analogs Substituted on the Nicotinic Acid and Adenine Ribosides. Effects on Receptor-Mediated Ca2+ release

    PubMed Central

    Trabbic, Christopher J.; Zhang, Fan; Walseth, Timothy F.; Slama, James T.

    2015-01-01

    Nicotinic acid adenine dinucleotide phosphate (NAADP) is a Ca2+ releasing intracellular second messenger in both mammals and echinoderms. We report that large functionalized substituents introduced at the nicotinic acid 5-position are recognized by the sea urchin receptor, albeit with a 20–500 fold loss in agonist potency. 5-(3-Azidopropyl)-NAADP was shown to release Ca2+ with an EC50 of 31 µM and to compete with NAADP for receptor binding with an IC50 of 56 nM. Attachment of charged groups to the nicotinic acid of NAADP is associated with loss of activity, suggesting that the nicotinate riboside moiety is recognized as a neutral zwitterion. Substituents (Br- and N3-) can be introduced at the 8-adenosyl position of NAADP while preserving high potency and agonist efficacy and an NAADP derivative substituted at both the 5-position of the nicotinic acid and at the 8-adenosyl position was also recognized although the agonist potency was significantly reduced. PMID:25826221

  15. Development of a new model for the induction of chronic kidney disease via intraperitoneal adenine administration, and the effect of treatment with gum acacia thereon

    PubMed Central

    Al Za’abi, Mohammed; Al Busaidi, Mahfouda; Yasin, Javid; Schupp, Nicole; Nemmar, Abderrahim; Ali, Badreldin H

    2015-01-01

    Oral adenine (0.75% w/w in feed), is an established model for human chronic kidney disease (CKD). Gum acacia (GA) has been shown to be a nephroprotective agent in this model. Here we aimed at developing a new adenine-induced CKD model in rats via a systemic route (intraperitoneal, i.p.) and to test it with GA to obviate the possibility of a physical interaction between GA and adenine in the gut. Adenine was injected i.p. (50 or 100 mg/Kg for four weeks), and GA was given concomitantly in drinking water at a concentration of 15%, w/v. Several plasma and urinary biomarkers of oxidative stress were measured and the renal damage was assessed histopathologically. Adenine, at the two given i.p. doses, significantly reduced body weight, and increased relative kidney weight, water intake and urine output. It dose-dependently increased plasma and urinary inflammatory and oxidative stress biomarkers, and caused morphological and histological damage resembling that which has been reported with oral adenine. Concomitant treatment with GA significantly mitigated almost all the above measured indices. Administration of adenine i.p. induced CKD signs very similar to those induced by oral adenine. Therefore, this new model is quicker, more practical and accurate than the original (oral) model. GA ameliorates the CKD effects caused by adenine given i.p. suggesting that the antioxidant and anti-inflammatory properties possessed by oral GA are the main mechanism for its salutary action in adenine-induced CKD, an action that is independent of its possible interaction with adenine in the gut. PMID:25755826

  16. Development of a new model for the induction of chronic kidney disease via intraperitoneal adenine administration, and the effect of treatment with gum acacia thereon.

    PubMed

    Al Za'abi, Mohammed; Al Busaidi, Mahfouda; Yasin, Javid; Schupp, Nicole; Nemmar, Abderrahim; Ali, Badreldin H

    2015-01-01

    Oral adenine (0.75% w/w in feed), is an established model for human chronic kidney disease (CKD). Gum acacia (GA) has been shown to be a nephroprotective agent in this model. Here we aimed at developing a new adenine-induced CKD model in rats via a systemic route (intraperitoneal, i.p.) and to test it with GA to obviate the possibility of a physical interaction between GA and adenine in the gut. Adenine was injected i.p. (50 or 100 mg/Kg for four weeks), and GA was given concomitantly in drinking water at a concentration of 15%, w/v. Several plasma and urinary biomarkers of oxidative stress were measured and the renal damage was assessed histopathologically. Adenine, at the two given i.p. doses, significantly reduced body weight, and increased relative kidney weight, water intake and urine output. It dose-dependently increased plasma and urinary inflammatory and oxidative stress biomarkers, and caused morphological and histological damage resembling that which has been reported with oral adenine. Concomitant treatment with GA significantly mitigated almost all the above measured indices. Administration of adenine i.p. induced CKD signs very similar to those induced by oral adenine. Therefore, this new model is quicker, more practical and accurate than the original (oral) model. GA ameliorates the CKD effects caused by adenine given i.p. suggesting that the antioxidant and anti-inflammatory properties possessed by oral GA are the main mechanism for its salutary action in adenine-induced CKD, an action that is independent of its possible interaction with adenine in the gut.

  17. REVERSAL BY ADENINE OF THE ETHIONINE-INDUCED LIPID ACCUMULATION IN THE ENDOPLASMIC RETICULUM OF THE RAT LIVER

    PubMed Central

    Baglio, Corrado M.; Farber, Emmanuel

    1965-01-01

    Within 3.5 to 4 hours after thionine administration, numerous small osmiophilic bodies, liposomes, appear in the endoplasmic reticulum of the liver cells. By fusion, the liposomes lead to the formation of larger collections of fat, giant liposomes. Adenine administration to ethionine-treated rats removes the liposomes from the hepatocytes and causes the transitory appearance of osmiophilic droplets in the sinusoidal space of Disse. The characteristic disaggregation of hepatic polysomes seen in the liver after ethionine administration is corrected by the injection of adenine. PMID:5885431

  18. Nicotinic acid adenine dinucleotide phosphate-mediated calcium signalling in effector T cells regulates autoimmunity of the central nervous system

    PubMed Central

    Cordiglieri, Chiara; Odoardi, Francesca; Zhang, Bo; Nebel, Merle; Kawakami, Naoto; Klinkert, Wolfgang E. F.; Lodygin, Dimtri; Lühder, Fred; Breunig, Esther; Schild, Detlev; Ulaganathan, Vijay Kumar; Dornmair, Klaus; Dammermann, Werner; Potter, Barry V. L.; Guse, Andreas H.

    2010-01-01

    Nicotinic acid adenine dinucleotide phosphate represents a newly identified second messenger in T cells involved in antigen receptor-mediated calcium signalling. Its function in vivo is, however, unknown due to the lack of biocompatible inhibitors. Using a recently developed inhibitor, we explored the role of nicotinic acid adenine dinucleotide phosphate in autoreactive effector T cells during experimental autoimmune encephalomyelitis, the animal model for multiple sclerosis. We provide in vitro and in vivo evidence that calcium signalling controlled by nicotinic acid adenine dinucleotide phosphate is relevant for the pathogenic potential of autoimmune effector T cells. Live two photon imaging and molecular analyses revealed that nicotinic acid adenine dinucleotide phosphate signalling regulates T cell motility and re-activation upon arrival in the nervous tissues. Treatment with the nicotinic acid adenine dinucleotide phosphate inhibitor significantly reduced both the number of stable arrests of effector T cells and their invasive capacity. The levels of pro-inflammatory cytokines interferon-gamma and interleukin-17 were strongly diminished. Consecutively, the clinical symptoms of experimental autoimmune encephalomyelitis were ameliorated. In vitro, antigen-triggered T cell proliferation and cytokine production were evenly suppressed. These inhibitory effects were reversible: after wash-out of the nicotinic acid adenine dinucleotide phosphate antagonist, the effector T cells fully regained their functions. The nicotinic acid derivative BZ194 induced this transient state of non-responsiveness specifically in post-activated effector T cells. Naïve and long-lived memory T cells, which express lower levels of the putative nicotinic acid adenine dinucleotide phosphate receptor, type 1 ryanodine receptor, were not targeted. T cell priming and recall responses in vivo were not reduced. These data indicate that the nicotinic acid adenine dinucleotide phosphate

  19. Progesterone-adenine hybrids as bivalent inhibitors of P-glycoprotein-mediated multidrug efflux: design, synthesis, characterization and biological evaluation.

    PubMed

    Zeinyeh, Waël; Mahiout, Zahia; Radix, Sylvie; Lomberget, Thierry; Dumoulin, Axel; Barret, Roland; Grenot, Catherine; Rocheblave, Luc; Matera, Eva-Laure; Dumontet, Charles; Walchshofer, Nadia

    2012-10-01

    Bivalent ligands were designed on the basis of the described close proximity of the ATP-site and the putative steroid-binding site of P-glycoprotein (ABCB1). The syntheses of 19 progesterone-adenine hybrids are described. Their abilities to inhibit P-glycoprotein-mediated daunorubicin efflux in K562/R7 human leukemic cells overexpressing P-glycoprotein were evaluated versus progesterone. The hybrid with a hexamethylene linker chain showed the best inhibitory potency. The efficiency of these progesterone-adenine hybrids depends on two main factors: (i) the nature of the linker and (ii) its attachment point on the steroid skeleton.

  20. Solution structures of oligonucleotides containing either a guanine or a cytosine in front of a gap of one nucleotide

    NASA Astrophysics Data System (ADS)

    Boulard, Y.; Faibis, V.; Fazakerley, G. V.

    1999-10-01

    We report NMR and molecular modelling studies on two DNA duplexes containing a gap of one nucleotides. The difference between the two oligonucleotides lies in the central base face to the gap, a guanine or a cytosine. For the gapG, we observed in solution a B-form conformation where the guanine stacks in the helix. For the gapC, we reveal the existence of two species, one majority where the cytosine is inside the helix and a second for which the cytosine is extrahelical. Nous présentons une étude par RMN et modélisation moléculaire sur deux duplexes d'ADN contenant une lacune de un nucléotide. La différence entre les deux oligonucléotides réside dans la base centrale en face de la lacune, une guanine ou une cytosine. Pour le duplex appelé gapG, nous observons en solution une hélice de type B dans laquelle la guanine est empilée à l'intérieur de l'hélice. Dans le cas du duplex gapC, nous montrons l'existence de deux formes, l'une où la cytosine est à l'intérieur de l'hélice; la seconde où la cytosine est extra hélicale.

  1. Collision-induced dissociation (CID) of guanine radical cation in the gas phase: an experimental and computational study.

    PubMed

    Cheng, Ping; Li, Yanni; Li, Shuqi; Zhang, Mingtao; Zhou, Zhen

    2010-05-14

    Gas-phase guanine (G) radical cations were generated by electrospraying a solution of guanosine (L) and Cu(NO(3))(2). Collision-induced dissociation (CID) for guanine radical cations yielded five competing dissociation channels, corresponding to the elimination neutral molecules of NH(3), HCN, H(2)NC[triple bond]N (HN=C=NH), HNCO and the neutral radical N=C=NH, respectively. The primary product ions were further characterized by their relevant fragmentions. Ab initio and density functional theory (DFT) calculations were employed to explain the experimental observations. Ten stable radical cation isomers were optimized and the potential energy surfaces (PESs) for the isomerization processes were explored in detail. Starting with the most stable isomer, the primary dissociation channels of guanine radical cations were theoretically investigated. DFT calculations show that the energy barriers for the eliminations of NH(3), HCN, H(2)NC[triple bond]N (HN=C=NH), HNCO and N=C=NH are 397 kJ mol(-1), 479 kJ mol(-1), 294 kJ mol(-1) (298 kJ mol(-1)), 306 kJ mol(-1), and 275 kJ mol(-1), respectively. The results are consistent with the energy-resolved CID of guanine radical cation, in which the eliminations of NH(3) and HCN are less abundant than the other channels. PMID:20428546

  2. Antiviral activity and its mechanism of guanine 7-N-oxide on DNA and RNA viruses derived from salmonid.

    PubMed

    Hasobe, M; Saneyoshi, M; Isono, K

    1985-11-01

    Guanine 7-N-oxide produced by Streptomyces sp. was found to inhibit in vitro the replication of herpes virus (Oncorhynchus masou virus, OMV), rhabdo virus (infectious hematopoietic necrosis virus, IHNV) and a bi-segmented double-strand virus (infectious pancreatic necrosis virus, IPNV) derived from salmonids with IC50 values of about 10 micrograms/ml, 20 micrograms/ml and 32 micrograms/ml, respectively. The agent was not toxic for the host cells (chinook salmon embryo, CHSE-214) at the IC50 concentrations. Labeling of IHNV viral RNA and host cellular DNA and RNA with [3H]uridine and [3H]thymidine during drug treatment showed that guanine 7-N-oxide did not reduce the incorporation of these precusors into RNA and DNA. The anti-IHNV activity of guanine 7-N-oxide was enhanced synergistically by neplanocin A, an inhibitor of RNA methylation. The mechanism of action of guanine 7-N-oxide is discussed, in regard to maturation of viral messenger RNA including capping. PMID:3841124

  3. Acyclic Immucillin Phosphonates. Second-Generation Inhibitors of Plasmodium falciparum Hypoxanthine- Guanine-Xanthine Phosphoribosyltransferase

    SciTech Connect

    Hazelton, Keith Z.; Ho, Meng-Chaio; Cassera, Maria B.; Clinch, Keith; Crump, Douglas R.; Rosario Jr., Irving; Merino, Emilio F.; Almo, Steve C.; Tyler, Peter C.; Schramm, Vern L.

    2012-06-22

    We found that Plasmodium falciparum is the primary cause of deaths from malaria. It is a purine auxotroph and relies on hypoxanthine salvage from the host purine pool. Purine starvation as an antimalarial target has been validated by inhibition of purine nucleoside phosphorylase. Hypoxanthine depletion kills Plasmodium falciparum in cell culture and in Aotus monkey infections. Hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT) from P. falciparum is required for hypoxanthine salvage by forming inosine 5'-monophosphate, a branchpoint for all purine nucleotide synthesis in the parasite. We present a class of HGXPRT inhibitors, the acyclic immucillin phosphonates (AIPs), and cell permeable AIP prodrugs. The AIPs are simple, potent, selective, and biologically stable inhibitors. The AIP prodrugs block proliferation of cultured parasites by inhibiting the incorporation of hypoxanthine into the parasite nucleotide pool and validates HGXPRT as a target in malaria.

  4. Zizimin and Dock guanine nucleotide exchange factors in cell function and disease.

    PubMed

    Pakes, Nicholl K; Veltman, Douwe M; Williams, Robin S B

    2013-01-01

    Zizimin proteins belong to the Dock (Dedicator of Cytokinesis) superfamily of Guanine nucleotide Exchange Factor (GEF) proteins. This family of proteins plays a role in the regulation of Rho family small GTPases. Together the Rho family of small GTPases and the Dock/Zizimin proteins play a vital role in a number of cell processes including cell migration, apoptosis, cell division and cell adhesion. Our recent studies of Zizimin proteins, using a simple biomedical model, the eukaryotic social amoeba Dictyostelium discoideum, have helped to elucidate the cellular role of these proteins. In this article, we discuss the domain structure of Zizimin proteins from an evolutionary viewpoint. We also compare what is currently known about the mammalian Zizimin proteins to that of related Dock proteins. Understanding the cellular functions of these proteins will provide a better insight into their role in cell signaling, and may help in treating disease pathology associated with mutations in Dock/Zizimin proteins. PMID:23247359

  5. Solubilization and characterization of guanine nucleotide-sensitive muscarinic agonist binding sites from rat myocardium.

    PubMed Central

    Berrie, C. P.; Birdsall, N. J.; Hulme, E. C.; Keen, M.; Stockton, J. M.

    1984-01-01

    Muscarinic receptors from rat myocardial membranes may be solubilized by digitonin in good yield at low temperatures in the presence of Mg2+. Under these conditions, up to 60% of the soluble receptors show high affinity binding for the potent agonist [3H]-oxotremorine-M (KA = 10(9)M-1), which is inhibited by 5'-guanylylimidodiphosphate. The muscarinic binding site labelled with [3H]-oxotremorine-M has a higher sedimentation coefficient (13.4 s) than sites labelled with a 3H antagonist in the presence of guanylylimidodiphosphate (11.6 s) and probably represents a complex between the ligand binding subunit of the receptor and a guanine nucleotide binding protein. PMID:6478115

  6. Theoretical study of valence orbital response to guanine tautomerization in coordinate and momentum spaces

    NASA Astrophysics Data System (ADS)

    Yang, Zejin; Duffy, Patrick; Zhu, Quan; Takahashi, Masahiko; Wang, Feng

    2015-10-01

    The binding energy spectra and electron momentum spectra of eight stable guanine tautomers are calculated in the complete valence space. The present results show that the canonical keto (C=O) guanine N(9)H tautomer (GU1) possesses the largest dipole moment, molecular electronic spatial extent, molecular hardness value, and the minimum first vertical ionization potential (VIP). Valence orbital profile investigations find that several orbitals remain almost unchanged during tautomerization, such as frontier highest occupied molecular orbital 39a and 18a. Several orbitals with interchanged order and inverse direction in charge spatial orientations are also detected. Outer valence orbitals (with smaller VIPs) show more complex orbital shapes in the momentum space than those of inner ones (larger VIPs) due mainly to the relatively strong inter-orbital interaction and delocalized electronic distributions. Proton rotation along C-O(H) and C-N(H) axes within hexagonal ring causes smaller influence to orbital profiles than those of proton migration within pentagonal and/or hexagonal rings. Orbital variation trends between enol (GU3-GU5) and keto (GU1, GU2, GU6-GU8) tautomers are observed, including the signature orbitals of enol form, the variation tendency of total orbital intensity, and the variation order of the maximum orbital intensity. In the outer valence momentum space (outside 26a), orbital composed by pz electrons show single peak with a gradual increasing peak site from 0.5 a.u. of inner valence orbital to 1.0 a.u. of outer valence orbital, whereas orbitals composed by px,y electrons form double peaks with respective sites at about 0.5 and 1.5 a.u., only three px,y-orbitals present single peaks (33a,34a,36a). The general variation trends in the complete valence space for all the valence orbitals on their intensities, peak sites, and orbital components are concluded.

  7. Activation of immobilized, biotinylated choleragen AI protein by a 19-kilodalton guanine nucleotide-binding protein.

    PubMed

    Noda, M; Tsai, S C; Adamik, R; Bobak, D A; Moss, J; Vaughan, M

    1989-09-19

    Cholera toxin catalyzes the ADP-ribosylation that results in activation of the stimulatory guanine nucleotide-binding protein of the adenylyl cyclase system, known as Gs. The toxin also ADP-ribosylates other proteins and simple guanidino compounds and auto-ADP-ribosylates its AI protein (CTA1). All of the ADP-ribosyltransferase activities of CTAI are enhanced by 19-21-kDa guanine nucleotide-binding proteins known as ADP-ribosylation factors, or ARFs. CTAI contains a single cysteine located near the carboxy terminus. CTAI was immobilized through this cysteine by reaction with iodoacetyl-N-biotinyl-hexylenediamine and binding of the resulting biotinylated protein to avidin-agarose. Immobilized CTAI catalyzed the ARF-stimulated ADP-ribosylation of agmatine. The reaction was enhanced by detergents and phospholipid, but the fold stimulation by purified sARF-II from bovine brain was considerably less than that observed with free CTA. ADP-ribosylation of Gsa by immobilized CTAI, which was somewhat enhanced by sARF-II, was much less than predicted on the basis of the NAD:agmatine ADP-ribosyltransferase activity. Immobilized CTAI catalyzed its own auto-ADP-ribosylation as well as the ADP-ribosylation of the immobilized avidin and CTA2, with relatively little stimulation by sARF-II. ADP-ribosylation of CTA2 by free CTAI is minimal. These observations are consistent with the conclusion that the cysteine near the carboxy terminus of the toxin is not critical for ADP-ribosyltransferase activity or for its regulation by sARF-II. Biotinylation and immobilization of the toxin through this cysteine may, however, limit accessibility to Gsa or SARF-II, or perhaps otherwise reduce interaction with these proteins whether as substrates or activator.

  8. Circular dichroism anisotrophy of DNA with different modifications at N7 of guanine.

    PubMed

    Zavriev, S K; Minchenkova, L E; Vorlícková, M; Kolchinsky, A M; Volkenstein, M V; Ivanov, V I

    1979-09-27

    The complexex DNA-Ag1+, DNA-Cu1+, protonated DNA and DNA methylated at N7 of guanine were oriented by pumping the solutions through a multicapillary cell in the direction of a light beam. The CD components along the DNA axis, delta epsilon parallel, and normal to it, 2 delta epsilon perpendicular, were calculated from the CD spectra of the oriented samples by the method of Chung and Holzwarth, (1975) J. Mol. Biol. 92, 449--466. It was shown that in most cases, except that of the protonated DNA, the degree of orientation was only slightly less than that for pure DNA. This demonstrated the absence of aggregation and of appreciable denaturation. In all cases the modifications of DNA give rise to a negative component 2 delta epsilon perpendicular, whose magnitude increased as the extent of modification increased. From both the CD spectra of non-oriented samples and the absorption spectra, an inference is drawn that Ag1+ and Cu1+ are attached to the same site as CH3 groups i.e., to the N7 atom of guanine. Proton transfer along the H-bond from the N1 atom of G to the N3 atom of the complementary cytosine is suggested to be a result of the modifications, although the case of H+-DNA may differ from the others. Based on the CD spectra for the anisotropic components, delta epsilon parallel and 2 delta epsilon perpendicular, it is proposed that ligand binding is accompanied by winding of the DNA helix.

  9. Guanine Holes Are Prominent Targets for Mutation in Cancer and Inherited Disease

    PubMed Central

    Bacolla, Albino; Temiz, Nuri A.; Yi, Ming; Ivanic, Joseph; Cer, Regina Z.; Donohue, Duncan E.; Ball, Edward V.; Mudunuri, Uma S.; Wang, Guliang; Jain, Aklank; Volfovsky, Natalia; Luke, Brian T.; Stephens, Robert M.; Cooper, David N.; Collins, Jack R.; Vasquez, Karen M.

    2013-01-01

    Single base substitutions constitute the most frequent type of human gene mutation and are a leading cause of cancer and inherited disease. These alterations occur non-randomly in DNA, being strongly influenced by the local nucleotide sequence context. However, the molecular mechanisms underlying such sequence context-dependent mutagenesis are not fully understood. Using bioinformatics, computational and molecular modeling analyses, we have determined the frequencies of mutation at G•C bp in the context of all 64 5′-NGNN-3′ motifs that contain the mutation at the second position. Twenty-four datasets were employed, comprising >530,000 somatic single base substitutions from 21 cancer genomes, >77,000 germline single-base substitutions causing or associated with human inherited disease and 16.7 million benign germline single-nucleotide variants. In several cancer types, the number of mutated motifs correlated both with the free energies of base stacking and the energies required for abstracting an electron from the target guanines (ionization potentials). Similar correlations were also evident for the pathological missense and nonsense germline mutations, but only when the target guanines were located on the non-transcribed DNA strand. Likewise, pathogenic splicing mutations predominantly affected positions in which a purine was located on the non-transcribed DNA strand. Novel candidate driver mutations and tissue-specific mutational patterns were also identified in the cancer datasets. We conclude that electron transfer reactions within the DNA molecule contribute to sequence context-dependent mutagenesis, involving both somatic driver and passenger mutations in cancer, as well as germline alterations causing or associated with inherited disease. PMID:24086153

  10. A pyrimidine-guanine sequence-specific ribonuclease from Rana catesbeiana (bullfrog) oocytes.

    PubMed Central

    Liao, Y D

    1992-01-01

    A pyrimidine-guanine sequence-specific ribonuclease (RC-RNase) was purified from Rana catesbeiana (bullfrog) oocytes by sequential phosphocellulose, Sephadex G75, heparin Sepharose CL 6B and CM-Sepharose CL 6B column chromatography. The purified enzyme with molecular weight of 13,000 daltons gave a single band on SDS-polyacrylamide gel. One CNBr-cleaved fragment has a sequence of NVLSTTRFQLNT/TRTSITPR, which is identical to residues 59-79 of a sialic acid binding lectin from R. catesbeiana eggs, and is 71% homologous to residues 60-80 of an RNase from R. catesbeaina liver. The RC-RNase preferentially cleaved RNA at pyrimidine residues with a 3' flanking guanine under various conditions. The sequence specificity of RC-RNase was further confirmed with dinucleotide as substrates, which were analyzed by thin layer chromatography after enzyme digestion. The values of kcat/km for pCpG, pUpG and pUpU were 2.66 x 10(7) M-1s-1, 2.50 x 10(7) M-1s-1 and 2.44 x 10(6) M-1s-1 respectively, however, those for other phosphorylated dinucleotides were less than 2% of pCpG and pUpG. As compared to single strand RNA, double strand RNA was relatively resistant to RC-RNase. Besides poly (A) and poly (G), most of synthetic homo- and heteropolynucleotides were also susceptible to RC-RNase. The RC-RNase was stable in the acidic (pH 2) and alkaline (pH 12) condition, but could be inactivated by heating to 80 degrees C for 15 min. No divalent cation was required for its activity. Furthermore, the enzyme activity could be enhanced by 2 M urea, and inhibited to 50% by 0.12 M NaCl or 0.02% SDS. Images PMID:1373237

  11. Guanine nucleotide regulatory protein co-purifies with the D/sub 2/-dopamine receptor

    SciTech Connect

    Senogles, S.E.; Caron, M.G.

    1986-05-01

    The D/sub 2/-dopamine receptor from bovine anterior pituitary was purified approx.1000 fold by affinity chromatography on CMOS-Sepharose. Reconstitution of the affinity-purified receptor into phospholipid vesicles revealed the presence of high and low affinity agonist sites as detected by N-n-propylnorapomorphine (NPA) competition experiments with /sup 3/H-spiperone. High affinity agonist binding could be converted to the low affinity form by guanine nucleotides, indicating the presence of an endogenous guanine nucleotide binding protein (N protein) in the affinity-purified D/sub 2/ receptor preparations. Furthermore, this preparation contained an agonist-sensitive GTPase activity which was stimulated 2-3 fold over basal by 10 ..mu..M NPA. /sup 35/S-GTP..gamma..S binding to these preparations revealed a stoichiometry of 0.4-0.7 mole N protein/mole receptor, suggesting the N protein may be specifically coupled with the purified D/sub 2/-dopamine receptor and not present as a contaminant. Pertussis toxin treatment of the affinity purified receptor preparations prevented high affinity agonist binding, as well as agonist stimulation of the GTPase activity, presumably by inactivating the associated N protein. Pertussis toxin lead to the ADP-ribosylation of a protein of 39-40K on SDS-PAGE. These findings indicate that an endogenous N protein, N/sub i/ or N/sub o/, co-purifies with the D/sub 2/-dopamine receptor which may reflect a precoupling of this receptor with an N protein within the membranes.

  12. Multiplexed DNA detection with a composite molecular beacon based on guanine-quenching.

    PubMed

    Xiang, Dong-Shan; Zhai, Kun; Wang, Lian-Zhi

    2013-09-21

    We developed a multiplexed DNA detection method with a composite molecular beacon (MB) probe based on guanine-quenching by synchronous fluorescence analysis. It is demonstrated by two types of tumor-suppressor genes namely exon segments of p16 (T1) and p53 (T2) genes. The composite MB probe includes two loops and two stems, and two fluorophores of 6-carboxyfluorescein group (FAM) and tetramethyl-6-carboxyrhodamine (TAMRA) are connected to the two ends of molecular beacon. Every stem portion of MB include four continuous nucleotides with guanine (G) base as quencher, every loop portion is a probe sequence that is complementary to a corresponding target sequence. In the absence of target DNA, the composite MBs are in the stem-closed form, the fluorescence of FAM and TAMRA are quenched by G bases. At this time, the fluorescence signals of FAM and TAMRA are all very low. In the presence of target DNA, the MBs hybridize with the target DNA and form double-strands, FAM and TAMRA are separated from G bases, and the fluorescence of FAM and TAMRA recovers simultaneously. Thus, the simultaneous detection of two targets of DNA can be realized by measuring fluorescence signals of FAM and TAMRA, respectively. Under the optimum conditions, the fluorescence intensities of FAM and TAMRA all exhibit good linear dependence on their target DNA concentration in the range from 5 × 10(-11) to 5.5 × 10(-9) M. The detection limit of T1 is 4 × 10(-11) M (3σ), and that of T2 is 3 × 10(-11) M. This composite MB can be applied to detect the real sample, and can be applied to detect two aleatoric sequences of DNA. Compared with previously reported methods of detecting multiplexed target DNA with MBs, the proposed method has some advantages including easy synthesis of composite MB probes, low detection cost and shorter analytical time.

  13. Silver- and gold-mediated nucleobase bonding.

    PubMed

    Acioli, Paulo H; Srinivas, Sudha

    2014-08-01

    We report the results of a density functional theory investigation of the bonding of nucleobases mediated by silver and gold atoms in the gas phase. Our calculations use the Becke exchange and Perdew-Wang correlation functional (BPW91) combined with the Stuttgart effective core potentials to represent the valence electrons of gold, silver, and platinum, and the all-electron DGTZVP basis set for C, H, N, and O. This combination was chosen based on tests on the metal atoms and tautomers of adenine, cytosine, and guanine. To establish a benchmark to understand the metal-mediated bonding, we calculated the binding energy of each of the base pairs in their canonical forms. Our calculations show rather strong bonds between the Watson-Crick base pairs when compared with typical values for N-H-N and N-H-O hydrogen bonds. The neutral metal atoms tend to bond near the nitrogen atoms. The effect of the metal atoms on the bonding of nucleobases differs depending on whether or not the metal atoms bond to one of the hydrogen-bonding sites. When the silver or gold atoms bond to a non-hydrogen-bonding site, the effect is a slight enhancement of the cytosine-guanine bonding, but there is almost no effect on the adenine-thymine pairing. The metal atoms can block one of the hydrogen-bonding sites, thus preventing the normal cytosine-guanine and adenine-thymine pairings. We also find that both silver and gold can bond to consecutive guanines in a similar fashion to platinum, albeit with a significantly lower binding energy.

  14. Modeling the high-energy electronic state manifold of adenine: Calibration for nonlinear electronic spectroscopy

    SciTech Connect

    Nenov, Artur Giussani, Angelo; Segarra-Martí, Javier; Jaiswal, Vishal K.; Rivalta, Ivan; Cerullo, Giulio; Mukamel, Shaul; Garavelli, Marco E-mail: marco.garavelli@ens-lyon.fr

    2015-06-07

    Pump-probe electronic spectroscopy using femtosecond laser pulses has evolved into a standard tool for tracking ultrafast excited state dynamics. Its two-dimensional (2D) counterpart is becoming an increasingly available and promising technique for resolving many of the limitations of pump-probe caused by spectral congestion. The ability to simulate pump-probe and 2D spectra from ab initio computations would allow one to link mechanistic observables like molecular motions and the making/breaking of chemical bonds to experimental observables like excited state lifetimes and quantum yields. From a theoretical standpoint, the characterization of the electronic transitions in the visible (Vis)/ultraviolet (UV), which are excited via the interaction of a molecular system with the incoming pump/probe pulses, translates into the determination of a computationally challenging number of excited states (going over 100) even for small/medium sized systems. A protocol is therefore required to evaluate the fluctuations of spectral properties like transition energies and dipole moments as a function of the computational parameters and to estimate the effect of these fluctuations on the transient spectral appearance. In the present contribution such a protocol is presented within the framework of complete and restricted active space self-consistent field theory and its second-order perturbation theory extensions. The electronic excited states of adenine have been carefully characterized through a previously presented computational recipe [Nenov et al., Comput. Theor. Chem. 1040–1041, 295-303 (2014)]. A wise reduction of the level of theory has then been performed in order to obtain a computationally less demanding approach that is still able to reproduce the characteristic features of the reference data. Foreseeing the potentiality of 2D electronic spectroscopy to track polynucleotide ground and excited state dynamics, and in particular its expected ability to provide

  15. Modeling the high-energy electronic state manifold of adenine: Calibration for nonlinear electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Nenov, Artur; Giussani, Angelo; Segarra-Martí, Javier; Jaiswal, Vishal K.; Rivalta, Ivan; Cerullo, Giulio; Mukamel, Shaul; Garavelli, Marco

    2015-06-01

    Pump-probe electronic spectroscopy using femtosecond laser pulses has evolved into a standard tool for tracking ultrafast excited state dynamics. Its two-dimensional (2D) counterpart is becoming an increasingly available and promising technique for resolving many of the limitations of pump-probe caused by spectral congestion. The ability to simulate pump-probe and 2D spectra from ab initio computations would allow one to link mechanistic observables like molecular motions and the making/breaking of chemical bonds to experimental observables like excited state lifetimes and quantum yields. From a theoretical standpoint, the characterization of the electronic transitions in the visible (Vis)/ultraviolet (UV), which are excited via the interaction of a molecular system with the incoming pump/probe pulses, translates into the determination of a computationally challenging number of excited states (going over 100) even for small/medium sized systems. A protocol is therefore required to evaluate the fluctuations of spectral properties like transition energies and dipole moments as a function of the computational parameters and to estimate the effect of these fluctuations on the transient spectral appearance. In the present contribution such a protocol is presented within the framework of complete and restricted active space self-consistent field theory and its second-order perturbation theory extensions. The electronic excited states of adenine have been carefully characterized through a previously presented computational recipe [Nenov et al., Comput. Theor. Chem. 1040-1041, 295-303 (2014)]. A wise reduction of the level of theory has then been performed in order to obtain a computationally less demanding approach that is still able to reproduce the characteristic features of the reference data. Foreseeing the potentiality of 2D electronic spectroscopy to track polynucleotide ground and excited state dynamics, and in particular its expected ability to provide

  16. Hydroxyl radical reactions with adenine: reactant complexes, transition states, and product complexes.

    PubMed

    Cheng, Qianyi; Gu, Jiande; Compaan, Katherine R; Schaefer, Henry F

    2010-10-18

    In order to address problems such as aging, cell death, and cancer, it is important to understand the mechanisms behind reactions causing DNA damage. One specific reaction implicated in DNA oxidative damage is hydroxyl free-radical attack on adenine (A) and other nucleic acid bases. The adenine reaction has been studied experimentally, but there are few theoretical results. In the present study, adenine dehydrogenation at various sites, and the potential-energy surfaces for these reactions, are investigated theoretically. Four reactant complexes [A···OH]* have been found, with binding energies relative to A+OH* of 32.8, 11.4, 10.7, and 10.1 kcal mol(-1). These four reactant complexes lead to six transition states, which in turn lie +4.3, -5.4, (-3.7 and +0.8), and (-2.3 and +0.8) kcal mol(-1) below A+OH*, respectively. Thus the lowest lying [A···OH]* complex faces the highest local barrier to formation of the product (A-H)*+H(2)O. Between the transition states and the products lie six product complexes. Adopting the same order as the reactant complexes, the product complexes [(A-H)···H(2)O]* lie at -10.9, -22.4, (-24.2 and -18.7), and (-20.5 and -17.5) kcal mol(-1), respectively, again relative to separated A+OH*. All six A+OH* → (A-H)*+H(2)O pathways are exothermic, by -0.3, -14.7, (-17.4 and -7.8), and (-13.7 and -7.8) kcal mol(-1), respectively. The transition state for dehydrogenation at N(6) lies at the lowest energy (-5.4 kcal mol(-1) relative to A+OH*), and thus reaction is likely to occur at this site. This theoretical prediction dovetails with the observed high reactivity of OH radicals with the NH(2) group of aromatic amines. However, the high barrier (37.1 kcal mol(-1)) for reaction at the C(8) site makes C(8) dehydrogenation unlikely. This last result is consistent with experimental observation of the imidazole ring opening upon OH radical addition to C(8). In addition, TD-DFT computed electronic transitions of the N(6) product around 420 nm

  17. Chronic kidney disease induced by adenine: a suitable model of growth retardation in uremia.

    PubMed

    Claramunt, Débora; Gil-Peña, Helena; Fuente, Rocío; García-López, Enrique; Loredo, Vanessa; Hernández-Frías, Olaya; Ordoñez, Flor A; Rodríguez-Suárez, Julián; Santos, Fernando

    2015-07-01

    Growth retardation is a major manifestation of chronic kidney disease (CKD) in pediatric patients. The involvement of the various pathogenic factors is difficult to evaluate in clinical studies. Here, we present an experimental model of adenine-induced CKD for the study of growth failure. Three groups (n = 10) of weaning female rats were studied: normal diet (control), 0.5% adenine diet (AD), and normal diet pair fed with AD (PF). After 21 days, serum urea nitrogen, creatinine, parathyroid hormone (PTH), weight and length gains, femur osseous front advance as an index of longitudinal growth rate, growth plate histomorphometry, chondrocyte proliferative activity, bone structure, aorta calcifications, and kidney histology were analyzed. Results are means ± SE. AD rats developed renal failure (serum urea nitrogen: 70 ± 6 mg/dl and creatinine: 0.6 ± 0.1 mg/dl) and secondary hyperparathyroidism (PTH: 480 ± 31 pg/ml). Growth retardation of AD rats was demonstrated by lower weight (AD rats: 63.3 ± 4.8 g, control rats: 112.6 ± 4.7 g, and PF rats: 60.0 ± 3.8 g) and length (AD rats: 7.2 ± 0.2 cm, control rats: 11.1 ± 0.3 cm, and PF rats: 8.1 ± 0.3 cm) gains as well as lower osseous front advances (AD rats: 141 ± 13 μm/day, control rats: 293 ± 16 μm/day, and PF rats: 251 ± 10 μm/day). The processes of chondrocyte maturation and proliferation were impaired in AD rats, as shown by lower growth plate terminal chondrocyte height (21.7 ± 2.3 vs. 26.2 ± 1.9 and 23.9 ± 1.3 μm in control and PF rats) and proliferative activity index (AD rats: 30 ± 2%, control rats: 38 ± 2%, and PF rats: 42 ± 3%). The bone primary spongiosa structure of AD rats was markedly disorganized. In conclusion, adenine-induced CKD in young rats is associated with growth retardation and disturbed endochondral ossification. This animal protocol may be a useful new experimental model to study growth in CKD.

  18. Different effects of guanine nucleotides (GDP and GTP) on protein-mediated mitochondrial proton leak.

    PubMed

    Woyda-Ploszczyca, Andrzej M; Jarmuszkiewicz, Wieslawa

    2014-01-01

    In this study, we compared the influence of GDP and GTP on isolated mitochondria respiring under conditions favoring oxidative phosphorylation (OXPHOS) and under conditions excluding this process, i.e., in the presence of carboxyatractyloside, an adenine nucleotide translocase inhibitor, and/or oligomycin, an FOF1-ATP synthase inhibitor. Using mitochondria isolated from rat kidney and human endothelial cells, we found that the action of GDP and GTP can differ diametrically depending on the conditions. Namely, under conditions favoring OXPHOS, both in the absence and presence of linoleic acid, an activator of uncoupling proteins (UCPs), the addition of 1 mM GDP resulted in the state 4 (non-phosphorylating respiration)-state 3 (phosphorylating respiration) transition, which is characteristic of ADP oxidative phosphorylation. In contrast, the addition of 1 mM GTP resulted in a decrease in the respiratory rate and an increase in the membrane potential, which is characteristic of UCP inhibition. The stimulatory effect of GDP, but not GTP, was also observed in inside-out submitochondrial particles prepared from rat kidney mitochondria. However, the effects of GDP and GTP were more similar in the presence of OXPHOS inhibitors. The importance of these observations in connection with the action of UCPs, adenine nucleotide translocase (or other carboxyatractyloside-sensitive carriers), carboxyatractyloside- and purine nucleotide-insensitive carriers, as well as nucleoside-diphosphate kinase (NDPK) are considered. Because the measurements favoring oxidative phosphorylation better reflect in vivo conditions, our study strongly supports the idea that GDP cannot be considered a significant physiological inhibitor of UCP. Moreover, it appears that, under native conditions, GTP functions as a more efficient UCP inhibitor than GDP and ATP.

  19. Rapid and ultrasensitive detection of microRNA by target-assisted isothermal exponential amplification coupled with poly (thymine)-templated fluorescent copper nanoparticles.

    PubMed

    Park, Kwan Woo; Batule, Bhagwan S; Kang, Kyoung Suk; Park, Ki Soo; Park, Hyun Gyu

    2016-10-21

    We devised a novel method for rapid and ultrasensitive detection of target microRNA (miRNA) by employing target-assisted isothermal exponential amplification (TAIEA) combined with poly (thymine)-templated fluorescent copper nanoparticles (CuNPs) as signaling probes. The target miRNA hybridizes to the unimolecular template DNA and works as a primer for the extension reaction to form double-stranded product, which consequently generates two nicking endonuclease recognition sites. By simultaneous nicking and displacement reactions, exponential amplification generates many poly (thymine) strands as final products, which are employed for the synthesis of fluorescent CuNPs. Based on the fluorescent signal from CuNPs, target miRNA is detected as low as 0.27 fM around 1 h of total analysis time. The diagnostic capability of this system has been successfully demonstrated by reliably detecting target miRNA from different cell lysates, showing its great potential towards real clinical applications. PMID:27622680

  20. The structure of metallo-DNA with consecutive thymine–HgII–thymine base pairs explains positive entropy for the metallo base pair formation

    PubMed Central

    Yamaguchi, Hiroshi; Šebera, Jakub; Kondo, Jiro; Oda, Shuji; Komuro, Tomoyuki; Kawamura, Takuya; Dairaku, Takenori; Kondo, Yoshinori; Okamoto, Itaru; Ono, Akira; Burda, Jaroslav V.; Kojima, Chojiro; Sychrovský, Vladimír; Tanaka, Yoshiyuki

    2014-01-01

    We have determined the three-dimensional (3D) structure of DNA duplex that includes tandem HgII-mediated T–T base pairs (thymine–HgII–thymine, T–HgII–T) with NMR spectroscopy in solution. This is the first 3D structure of metallo-DNA (covalently metallated DNA) composed exclusively of ‘NATURAL’ bases. The T–HgII–T base pairs whose chemical structure was determined with the 15N NMR spectroscopy were well accommodated in a B-form double helix, mimicking normal Watson–Crick base pairs. The Hg atoms aligned along DNA helical axis were shielded from the bulk water. The complete dehydration of Hg atoms inside DNA explained the positive reaction entropy (ΔS) for the T–HgII–T base pair formation. The positive ΔS value arises owing to the HgII dehydration, which was approved with the 3D structure. The 3D structure explained extraordinary affinity of thymine towards HgII and revealed arrangement of T–HgII–T base pairs in metallo-DNA. PMID:24371287

  1. Cyclic mismatch binding ligand CMBL4 binds to the 5'-T-3'/5'-GG-3' site by inducing the flipping out of thymine base.

    PubMed

    Mukherjee, Sanjukta; Dohno, Chikara; Asano, Kaori; Nakatani, Kazuhiko

    2016-09-01

    A newly designed cyclic bis-naphthyridine carbamate dimer CMBL4: with a limited conformational flexibility was synthesized and characterized. Absorption spectra revealed that two naphthyridines in CMBL4: were stacked on each other in aqueous solutions. The most efficient binding of CMBL4: to DNA was observed for the sequence 5'-T-3'/5'-GG-3' (T/GG) with the formation of a 1:1 complex, which is one of possible structural elements involved in the higher order structures of (TGG)n repeat DNA triggering the genome microdeletion. Surface plasmon resonance assay also showed the binding of CMBL4: with TGG repeat DNA. Potassium permanganate oxidation studies of CMBL4: -bound duplex containing the T/GG site showed that the CMBL4: -binding accelerated the oxidation of thymine at that site, which suggests the flipping out of the thymine base from a π-stack. Preferential binding was observed for CMBL4: compared with its acyclic variants, which suggests the marked significance of the macrocyclic structure for the recognition of the T/GG site. PMID:27466390

  2. Cyclic mismatch binding ligand CMBL4 binds to the 5'-T-3'/5'-GG-3' site by inducing the flipping out of thymine base.

    PubMed

    Mukherjee, Sanjukta; Dohno, Chikara; Asano, Kaori; Nakatani, Kazuhiko

    2016-09-01

    A newly designed cyclic bis-naphthyridine carbamate dimer CMBL4: with a limited conformational flexibility was synthesized and characterized. Absorption spectra revealed that two naphthyridines in CMBL4: were stacked on each other in aqueous solutions. The most efficient binding of CMBL4: to DNA was observed for the sequence 5'-T-3'/5'-GG-3' (T/GG) with the formation of a 1:1 complex, which is one of possible structural elements involved in the higher order structures of (TGG)n repeat DNA triggering the genome microdeletion. Surface plasmon resonance assay also showed the binding of CMBL4: with TGG repeat DNA. Potassium permanganate oxidation studies of CMBL4: -bound duplex containing the T/GG site showed that the CMBL4: -binding accelerated the oxidation of thymine at that site, which suggests the flipping out of the thymine base from a π-stack. Preferential binding was observed for CMBL4: compared with its acyclic variants, which suggests the marked significance of the macrocyclic structure for the recognition of the T/GG site.

  3. Two-dimensional infrared spectroscopy of azido-nicotinamide adenine dinucleotide in water

    NASA Astrophysics Data System (ADS)

    Dutta, Samrat; Rock, William; Cook, Richard J.; Kohen, Amnon; Cheatum, Christopher M.

    2011-08-01

    Mid-IR active analogs of enzyme cofactors have the potential to be important spectroscopic reporters of enzyme active site dynamics. Azido-nicotinamide adenine dinucleotide (NAD+), which has been recently synthesized in our laboratory, is a mid-IR active analog of NAD+, a ubiquitous redox cofactor in biology. In this study, we measure the frequency-frequency time correlation function for the antisymmetric stretching vibration of the azido group of azido-NAD+ in water. Our results are consistent with previous studies of pseudohalides in water. We conclude that azido-NAD+ is sensitive to local environmental fluctuations, which, in water, are dominated by hydrogen-bond dynamics of the water molecules around the probe. Our results demonstrate the potential of azido-NAD+ as a vibrational probe and illustrate the potential of substituted NAD+-analogs as reporters of local structural dynamics that could be used for studies of protein dynamics in NAD-dependent enzymes.

  4. Surface enhanced Raman scattering investigation of protein-bound flavin adenine dinucleotide structure

    NASA Astrophysics Data System (ADS)

    Maskevich, S. A.; Strekal, N. D.; Artsukevich, I. M.; Kivach, L. N.; Chernikevich, I. P.

    1995-04-01

    The SERS spectra of alcohol oxidase from Pichia pastoris adsorbed on a silver electrode were obtained. The similarities and differences of these spectra with the SERS spectrum of free flavin adenine dinucleiotide were considered. The dependence of relative intensity of 1258 cm -1 band from the electrode potential in the protein SERS spectra differed from that of free flavin. From the data on this band being sensitive to the protein-flavin interaction a suggestion was made about incomplete dissociation of flavin from the protein. This conclusion is confirmed both by the fluorescence data and the SERS data on alcohol oxidase purified from Candida boidinii. The results of the SERS investigation of the interaction between the substrate, ethanol and the cofactor, FAD, as well as between protein-bound cofactor with the substrate are presented. The problem of retaining the protein enzyme activity is discussed.

  5. Metal-adeninate vertices for the construction of an exceptionally porous metal-organic framework.

    PubMed

    An, Jihyun; Farha, Omar K; Hupp, Joseph T; Pohl, Ehmke; Yeh, Joanne I; Rosi, Nathaniel L

    2012-01-03

    Metal-organic frameworks comprising metal-carboxylate cluster vertices and long, branched organic linkers are the most porous materials known, and therefore have attracted tremendous attention for many applications, including gas storage, separations, catalysis and drug delivery. To increase metal-organic framework porosity, the size and complexity of linkers has increased. Here we present a promising alternative strategy for constructing mesoporous metal-organic frameworks that addresses the size of the vertex rather than the length of the organic linker. This approach uses large metal-biomolecule clusters, in particular zinc-adeninate building units, as vertices to construct bio-MOF-100, an exclusively mesoporous metal-organic framework. Bio-MOF-100 exhibits a high surface area (4,300 m(2) g(-1)), one of the lowest crystal densities (0.302 g cm(-3)) and the largest metal-organic framework pore volume reported to date (4.3 cm(3) g(-1)).

  6. The isolation and characterization of the Escherichia coli DNA adenine methylase (dam) gene.

    PubMed Central

    Brooks, J E; Blumenthal, R M; Gingeras, T R

    1983-01-01

    The E. coli dam (DNA adenine methylase) enzyme is known to methylate the sequence GATC. A general method for cloning sequence-specific DNA methylase genes was used to isolate the dam gene on a 1.14 kb fragment, inserted in the plasmid vector pBR322. Subsequent restriction mapping and subcloning experiments established a set of approximate boundaries of the gene. The nucleotide sequence of the dam gene was determined, and analysis of that sequence revealed a unique open reading frame which corresponded in length to that necessary to code for a protein the size of dam. Amino acid composition derived from this sequence corresponds closely to the amino acid composition of the purified dam protein. Enzymatic and DNA:DNA hybridization methods were used to investigate the possible presence of dam genes in a variety of prokaryotic organisms. PMID:6300769

  7. Synthesis and enzymatic incorporation of α-L-threofuranosyl adenine triphosphate (tATP).

    PubMed

    Zhang, Su; Chaput, John C

    2013-03-01

    Threose nucleic acid (TNA) is an artificial genetic polymer in which the natural ribose sugar found in RNA has been replaced with an unnatural threose sugar. TNA can be synthesized enzymatically using Therminator DNA polymerase to copy DNA templates into TNA. Here, we expand the substrate repertoire of Therminator DNA polymerase to include threofuranosyl adenine 3'-triphsophate (tATP). We chemically synthesized tATP by two different methods from the 2'-O-acetyl derivative. Enzyme-mediated polymerization reveals that tATP functions as an efficient substrate for Therminator DNA polymerase, indicating that tATP can replace the diaminopurine analogue (tDTP) in TNA transcription reactions. PMID:23352269

  8. [Absolute bioavailability of the adenine derivative VMA-99-82 possessing antiviral activity].

    PubMed

    Smirnova, L A; Suchkov, E A; Riabukha, A F; Kuznetsov, K A; Ozerov, A A

    2013-01-01

    Investigation of the main pharmacokinetic parameters of adenine derivative VMA-99-82 in rats showed large values of the half-life (T1/2 = 11.03 h) and the mean retention time of drug molecules in the organism (MRT = 9.53 h). A high rate of the drug concentration decrease in the plasma determines a small value of the area under the pharmacokinetic curve (AUC = 74.96 mg h/ml). The total distribution volume (V(d) = 10.61 l/kg) is 15.8 times greater than the volume of extracellular fluid in the body of rat, which is indicative of a high ability of VMA-99-82 to be distributed and accumulated in the organs and tissues. The absolute bioavailability of VMA-99-82 is 66%. PMID:24605425

  9. Animal models of pediatric chronic kidney disease. Is adenine intake an appropriate model?

    PubMed

    Claramunt, Débora; Gil-Peña, Helena; Fuente, Rocío; Hernández-Frías, Olaya; Santos, Fernando

    2015-01-01

    Pediatric chronic kidney disease (CKD) has peculiar features. In particular, growth impairment is a major clinical manifestation of CKD that debuts in pediatric age because it presents in a large proportion of infants and children with CKD and has a profound impact on the self-esteem and social integration of the stunted patients. Several factors associated with CKD may lead to growth retardation by interfering with the normal physiology of growth plate, the organ where longitudinal growth rate takes place. The study of growth plate is hardly possible in humans and justifies the use of animal models. Young rats made uremic by 5/6 nephrectomy have been widely used as a model to investigate growth retardation in CKD. This article examines the characteristics of this model and analyzes the utilization of CKD induced by high adenine diet as an alternative research protocol.

  10. Conducting polymer and its composite materials based electrochemical sensor for Nicotinamide Adenine Dinucleotide (NADH).

    PubMed

    Omar, Fatin Saiha; Duraisamy, Navaneethan; Ramesh, K; Ramesh, S

    2016-05-15

    Nicotinamide Adenine Dinucleotide (NADH) is an important coenzyme in the human body that participates in many metabolic reactions. The impact of abnormal concentrations of NADH significantly causes different diseases in human body. Electrochemical detection of NADH using bare electrode is a challenging task especially in the presence of main electroactive interferences such as ascorbic acid (AA), uric acid (UA) and dopamine (DA). Modified electrodes have been widely explored to overcome the problems of poor sensitivity and selectivity occurred from bare electrodes. This review gives an overview on the progress of using conducting polymers, polyelectrolyte and its composites (co-polymer, carbonaceous, metal, metal oxide and clay) based modified electrodes for the sensing of NADH. In addition, developments on the fabrication of numerous conducting polymer composites based modified electrodes are clearly described.

  11. Production and characterization of reduced NAADP (nicotinic acid-adenine dinucleotide phosphate).

    PubMed Central

    Billington, Richard A; Thuring, Jan W; Conway, Stuart J; Packman, Len; Holmes, Andrew B; Genazzani, Armando A

    2004-01-01

    The pyridine nucleotide NAADP (nicotinic acid-adenine dinucleotide phosphate) has been shown to act as a Ca2+-releasing intracellular messenger in a wide variety of systems from invertebrates to mammals and has been implicated in a number of cellular processes. NAADP is structurally very similar to its precursor, the endogenous coenzyme NADP and while much is known about the reduced form of NADP, NADPH, it is not known whether NAADP can also exist in a reduced state. Here we report that NAADP can be reduced to NAADPH by endogenous cellular enzymes and that NAADPH is functionally inert at the NAADP receptor. These data suggest that NAADPH could represent a mechanism for rapidly inactivating NAADP in cells. PMID:14606955

  12. Sites of Adsorption of Adenine, Uracil, and Their Corresponding Derivatives on Sodium Montmorillonite

    NASA Astrophysics Data System (ADS)

    Perezgasga, L.; Serrato-Díaz, A.; Negrón-Mendoza, A.; Gal'N, L. De Pablo; Mosqueira, F. G.

    2005-04-01

    Clay minerals are considered important to chemical evolution processes due to their properties, ancient origin, and wide distribution. To extend the knowledge of their role in the prebiotic epoch, the adsorption sites of adenine, adenosine, AMP, ADP, ATP, Poly A, uracil, uridine, UMP, UDP, UTP and Poly U on sodium montmorillonite are investigated. X-ray diffraction, ultraviolet and infrared spectroscopy studies indicate that these molecules distribute into the interlamellar channel and the edge of the clay crystals. Monomers are adsorbed predominantly in the interlamellar channel, whereas polymers adsorb along the crystal edges. Such behavior is discussed mainly in terms of bulk pH, pKa of the adsorbate, and Van der Waals interactions.

  13. Isotope effect studies of the chemical mechanism of nicotinamide adenine dinucleotide malic enzyme from Crassula

    SciTech Connect

    Grissom, C.B.; Willeford, O.; Wedding, R.T.

    1987-05-05

    The /sup 13/C primary kinetic isotope effect on the decarboxylation of malate by nicotinamide adenine dinucleotide malic enzyme from Crassula argentea is 1.0199 +/- 0.0006 with proteo L-malate-2-H and 1.0162 +/- 0.0003 with malate-2-d. The primary deuterium isotope effect is 1.45 +/- 0.10 on V/K and 1.93 +/- 0.13 on V/sub max/. This indicates a stepwise conversion of malate to pyruvate and CO/sub 2/ with hydride transfer preceding decarboxylation, thereby suggesting a discrete oxaloacetate intermediate. This is in agreement with the stepwise nature of the chemical mechanism of other malic enzymes despite the Crassula enzyme's inability to reduce or decarboxylate oxaloacetate. Differences in morphology and allosteric regulation between enzymes suggest specialization of the Crassula malic enzyme for the physiology of crassulacean and acid metabolism while maintaining the catalytic events founds in malic enzymes from animal sources.

  14. Affinity chromatography of nicotinamide-adenine dinucleotide-linked dehydrogenases on immobilized derivatives of the dinucleotide.

    PubMed

    Barry, S; O'Carra, P

    1973-12-01

    1. Three established methods for immobilization of ligands through primary amino groups promoted little or no attachment of NAD(+) through the 6-amino group of the adenine residue. Two of these methods (coupling to CNBr-activated agarose and to carbodi-imide-activated carboxylated agarose derivatives) resulted instead in attachment predominantly through the ribosyl residues. Other immobilized derivatives were prepared by azolinkage of NAD(+) (probably through the 8 position of the adenine residue) to a number of different spacer-arm-agarose derivatives. 2. The effectiveness of these derivatives in the affinity chromatography of a variety of NAD-linked dehydrogenases was investigated, applying rigorous criteria to distinguish general or non-specific adsorption effects from truly NAD-specific affinity (bio-affinity). The ribosyl-attached NAD(+) derivatives displayed negligible bio-affinity for any of the NAD-linked dehydrogenases tested. The most effective azo-linked derivative displayed strong bio-affinity for glycer-aldehyde 3-phosphate dehydrogenase, weaker bio-affinity for lactate dehydrogenase and none at all for malate dehydrogenase, although these three enzymes have very similar affinities for soluble NAD(+). Alcohol dehydrogenase and xanthine dehydrogenase were subject to such strong non-specific interactions with the hydrocarbon spacer-arm assembly that any specific affinity was completely eclipsed. 3. It is concluded that, in practice, the general effectiveness of a general ligand may be considerably distorted and attenuated by the nature of the immobilization linkage. However, this attenuation can result in an increase in specific effectiveness, allowing dehydrogenases to be separated from one another in a manner unlikely to be feasible if the general effectiveness of the ligand remained intact. 4. The bio-affinity of the various derivatives for lactate dehydrogenase is correlated with the known structure of the NAD(+)-binding site of this enzyme. Problems

  15. Similarities between UDP-Glucose and Adenine Nucleotide Release in Yeast

    PubMed Central

    Esther, Charles R.; Sesma, Juliana I.; Dohlman, Henrik G.; Ault, Addison D.; Clas, Marién L.; Lazarowski, Eduardo R.; Boucher, Richard C.

    2008-01-01

    Extracellular UDP-glucose is a natural purinergic receptor agonist, but its mechanisms of cellular release remain unclear. We studied these mechanisms in Saccharomyces cerevisiae, a simple model organism that releases ATP, another purinergic agonist. Similar to ATP, UDP-glucose was released by S. cerevisiae at a rate that was linear over time. However, unlike ATP release, UDP-glucose release was not dependent on glucose stimulation. This discrepancy was resolved by demonstrating the apparent glucose stimulation of ATP release reflected glucose-dependent changes in the intracellular pattern of adenine nucleotides, with AMP release dominating in the absence of glucose. Indeed, total adenine nucleotide release, like UDP-glucose release, did not vary with glucose concentration over the short term. The genetic basis of UDP-glucose release was explored through analysis of deletion mutants, aided by development of a novel bioassay for UDP-glucose based on signaling through heterologously expressed human P2Y14 receptors. Using this assay, an elevated rate of UDP-glucose release was demonstrated in mutants lacking the putative Golgi nucleotide sugar transporter YMD8. An increased rate of UDP-glucose release in ymd8Δ was reduced by deletion of the YEA4 UDP-N-acetylglucosamine or the HUT1 UDP-galactose transporters, and overexpression of YEA4 or HUT1 increased the rate of UDP-glucose release. These findings suggest an exocytotic release mechanism similar to that of ATP, a conclusion supported by decreased rates of ATP, AMP, and UDP-glucose release in response to the secretory inhibitor Brefeldin A. These studies demonstrate the involvement of the secretory pathway in nucleotide and nucleotide sugar efflux in yeast and offer a powerful model system for further investigation. PMID:18693752

  16. Acceleration of adventitious shoots by interaction between exogenous hormone and adenine sulphate in Althaea officinalis L.

    PubMed

    Naz, Ruphi; Anis, M

    2012-11-01

    In the current study attempts were made to investigate the effects of three different phases of callus induction followed by adventitious regeneration from leaf segments (central and lateral vein). Callus induction was observed in Murashige and Skoog's (MS) medium supplemented with 15.0 μM 2,4-dichloro phenoxy acetic acid (2,4-D). Adventitious shoot buds formation was achieved on MS medium supplemented with 7.5 μM 2,4-D and 20.0 μM AdS in liquid medium as it induced 19.2 ± 0.58 buds in central vein explants. Addition of different growth regulators (cytokinins-6-benzyladenine, kinetin and 2-isopentenyl adenine alone or in combination with auxins-indole-3-acetic acid, indole-3-butyric acid and α-naphthalene acetic acid, improved the shoot regeneration efficiency, in which 5.0 μM 6-benzyl adenine along with 0.25 μM α-naphthalene acetic acid was shown to be the most effective medium for maximum shoot regeneration (81.3 %) with 24.6 number of shoots and 4.4 ± 0.08 cm shoot length per explant. Leaf culture of central veins led to better shoot formation capacity in comparison to lateral vein. Rooting was readily achieved on the differentiated shoots on 1/2 MS medium augmented with 20.0 μM indole-3-butyric acid. The plants were successfully hardened off in sterile soilrite followed by their establishment in garden soil with 80 % survival rate.

  17. Regulation of Salmonella enterica pathogenicity island 1 by DNA adenine methylation.

    PubMed

    López-Garrido, Javier; Casadesús, Josep

    2010-03-01

    DNA adenine methylase (Dam(-)) mutants of Salmonella enterica are attenuated in the mouse model and present multiple virulence-related defects. Impaired interaction of Salmonella Dam(-) mutants with the intestinal epithelium has been tentatively correlated with reduced secretion of pathogenicity island 1 (SPI-1) effectors. In this study, we show that S. enterica Dam(-) mutants contain lowered levels of the SPI-1 transcriptional regulators HilA, HilC, HilD, and InvF. Epistasis analysis indicates that Dam-dependent regulation of SPI-1 requires HilD, while HilA, HilC, and InvF are dispensable. A transcriptional hilDlac fusion is expressed at similar levels in Dam(+) and Dam(-) hosts. However, lower levels of hilD mRNA are found in a Dam(-) background, thus providing unsuspected evidence that Dam methylation might exert post-transcriptional regulation of hilD expression. This hypothesis is supported by the following lines of evidence: (i) lowered levels of hilD mRNA are found in Salmonella Dam(-) mutants when hilD is transcribed from a heterologous promoter; (ii) increased hilD mRNA turnover is observed in Dam(-) mutants; (iii) lack of the Hfq RNA chaperone enhances hilD mRNA instability in Dam(-) mutants; and (iv) lack of the RNA degradosome components polynucleotide phosphorylase and ribonuclease E suppresses hilD mRNA instability in a Dam(-) background. Our report of Dam-dependent control of hilD mRNA stability suggests that DNA adenine methylation plays hitherto unknown roles in post-transcriptional control of gene expression.

  18. Herpes simplex type 1 defective interfering particles do not affect the antiviral activity of acyclovir, foscarnet and adenine arabinoside.

    PubMed

    Harmenberg, J G; Svensson, L T

    1988-03-01

    The concentration of defective interfering particles (DI-particles) of herpes simplex type 1 virus was analysed by electron microscopy and plaque titration. Fifteen consecutive passages of undiluted virus in green monkey kidney cells were followed. No relationship was found between the concentration of DI-particles and the activity of antiviral substances such as acyclovir, foscarnet and adenine arabinoside.

  19. Adenine nucleotide-dependent and redox-independent control of mitochondrial malate dehydrogenase activity in Arabidopsis thaliana.

    PubMed

    Yoshida, Keisuke; Hisabori, Toru

    2016-06-01

    Mitochondrial metabolism is important for sustaining cellular growth and maintenance; however, the regulatory mechanisms underlying individual processes in plant mitochondria remain largely uncharacterized. Previous redox-proteomics studies have suggested that mitochondrial malate dehydrogenase (mMDH), a key enzyme in the tricarboxylic acid (TCA) cycle and redox shuttling, is under thiol-based redox regulation as a target candidate of thioredoxin (Trx). In addition, the adenine nucleotide status may be another factor controlling mitochondrial metabolism, as respiratory ATP production in mitochondria is believed to be influenced by several environmental stimuli. Using biochemical and reverse-genetic approaches, we addressed the redox- and adenine nucleotide-dependent regulation of mMDH in Arabidopsis thaliana. Recombinant mMDH protein formed intramolecular disulfide bonds under oxidative conditions, but these bonds did not have a considerable effect on mMDH activity. Mitochondria-localized o-type Trx (Trx-o) did not facilitate re-reduction of oxidized mMDH. Determination of the in vivo redox state revealed that mMDH was stably present in the reduced form even in Trx-o-deficient plants. Accordingly, we concluded that mMDH is not in the class of redox-regulated enzymes. By contrast, mMDH activity was lowered by adenine nucleotides (AMP, ADP, and ATP). Each adenine nucleotide suppressed mMDH activity with different potencies and ATP exerted the largest inhibitory effect with a significantly lower K(I). Correspondingly, mMDH activity was inhibited by the increase in ATP/ADP ratio within the physiological range. These results suggest that mMDH activity is finely controlled in response to variations in mitochondrial adenine nucleotide balance. PMID:26946085

  20. Adenine nucleotide-dependent and redox-independent control of mitochondrial malate dehydrogenase activity in Arabidopsis thaliana.

    PubMed

    Yoshida, Keisuke; Hisabori, Toru

    2016-06-01

    Mitochondrial metabolism is important for sustaining cellular growth and maintenance; however, the regulatory mechanisms underlying individual processes in plant mitochondria remain largely uncharacterized. Previous redox-proteomics studies have suggested that mitochondrial malate dehydrogenase (mMDH), a key enzyme in the tricarboxylic acid (TCA) cycle and redox shuttling, is under thiol-based redox regulation as a target candidate of thioredoxin (Trx). In addition, the adenine nucleotide status may be another factor controlling mitochondrial metabolism, as respiratory ATP production in mitochondria is believed to be influenced by several environmental stimuli. Using biochemical and reverse-genetic approaches, we addressed the redox- and adenine nucleotide-dependent regulation of mMDH in Arabidopsis thaliana. Recombinant mMDH protein formed intramolecular disulfide bonds under oxidative conditions, but these bonds did not have a considerable effect on mMDH activity. Mitochondria-localized o-type Trx (Trx-o) did not facilitate re-reduction of oxidized mMDH. Determination of the in vivo redox state revealed that mMDH was stably present in the reduced form even in Trx-o-deficient plants. Accordingly, we concluded that mMDH is not in the class of redox-regulated enzymes. By contrast, mMDH activity was lowered by adenine nucleotides (AMP, ADP, and ATP). Each adenine nucleotide suppressed mMDH activity with different potencies and ATP exerted the largest inhibitory effect with a significantly lower K(I). Correspondingly, mMDH activity was inhibited by the increase in ATP/ADP ratio within the physiological range. These results suggest that mMDH activity is finely controlled in response to variations in mitochondrial adenine nucleotide balance.

  1. Highly Sensitive Bacteria Quantification Using Immunomagnetic Separation and Electrochemical Detection of Guanine-Labeled Secondary Beads

    PubMed Central

    Jayamohan, Harikrishnan; Gale, Bruce K.; Minson, Bj; Lambert, Christopher J.; Gordon, Neil; Sant, Himanshu J.

    2015-01-01

    In this paper, we report the ultra-sensitive indirect electrochemical detection of E. coli O157:H7 using antibody functionalized primary (magnetic) beads for capture and polyguanine (polyG) oligonucleotide functionalized secondary (polystyrene) beads as an electrochemical tag. Vacuum filtration in combination with E. coli O157:H7 specific antibody modified magnetic beads were used for extraction of E. coli O157:H7 from 100 mL samples. The magnetic bead conjugated E. coli O157:H7 cells were then attached to polyG functionalized secondary beads to form a sandwich complex (magnetic bead/E. coli/ secondary bead). While the use of magnetic beads for immuno-based capture is well characterized, the use of oligonucleotide functionalized secondary beads helps combine amplification and potential multiplexing into the system. The antibody functionalized secondary beads can be easily modified with a different antibody to detect other pathogens from the same sample and enable potential multiplexing. The polyGs on the secondary beads enable signal amplification up to 108 guanine tags per secondary bead (7.5 × 106 biotin-FITC per secondary bead, 20 guanines per oligonucleotide) bound to the target (E. coli). A single-stranded DNA probe functionalized reduced graphene oxide modified glassy carbon electrode was used to bind the polyGs on the secondary beads. Fluorescent imaging was performed to confirm the hybridization of the complex to the electrode surface. Differential pulse voltammetry (DPV) was used to quantify the amount of polyG involved in the hybridization event with tris(2,2′-bipyridine)ruthenium(II) ( Ru(bpy)32+) as the mediator. The amount of polyG signal can be correlated to the amount of E. coli O157:H7 in the sample. The method was able to detect concentrations of E. coli O157:H7 down to 3 CFU/100 mL, which is 67 times lower than the most sensitive technique reported in literature. The signal to noise ratio for this work was 3. We also demonstrate the use of the

  2. Unraveling the complexity of the interactions of DNA nucleotides with gold by single molecule force spectroscopy.

    PubMed

    Bano, Fouzia; Sluysmans, Damien; Wislez, Arnaud; Duwez, Anne-Sophie

    2015-12-14

    Addressing the effect of different environmental factors on the adsorption of DNA to solid supports is critical for the development of robust miniaturized devices for applications ranging from biosensors to next generation molecular technology. Most of the time, thiol-based chemistry is used to anchor DNA on gold - a substrate commonly used in nanotechnology - and little is known about the direct interaction between DNA and gold. So far there have been no systematic studies on the direct adsorption behavior of the deoxyribonucleotides (i.e., a nitrogenous base, a deoxyribose sugar, and a phosphate group) and on the factors that govern the DNA-gold bond strength. Here, using single molecule force spectroscopy, we investigated the interaction of the four individual nucleotides, adenine, guanine, cytosine, and thymine, with gold. Experiments were performed in three salinity conditions and two surface dwell times to reveal the factors that influence nucleotide-Au bond strength. Force data show that, at physiological ionic strength, adenine-Au interactions are stronger, asymmetrical and independent of surface dwell time as compared to cytosine-Au and guanine-Au interactions. We suggest that in these conditions only adenine is able to chemisorb on gold. A decrease of the ionic strength significantly increases the bond strength for all nucleotides. We show that moderate ionic strength along with longer surface dwell period suggest weak chemisorption also for cytosine and guanine.

  3. Effects of Hypoxanthine Substitution in Peptide Nucleic Acids Targeting KRAS2 Oncogenic mRNA Molecules: Theory and Experiment

    PubMed Central

    Sanders, Jeffrey M.; Wampole, Matthew E.; Chen, Chang-Po; Sethi, Dalip; Singh, Amrita; Dupradeau, François-Yves; Wang, Fan; Gray, Brian D.; Thakur, Mathew L.; Wickstrom, Eric

    2013-01-01

    Genetic disorders can arise from single base substitutions in a single gene. A single base substitution for wild type guanine in the twelfth codon of KRAS2 mRNA occurs frequently to initiate lung, pancreatic, and colon cancer. We have observed single base mismatch specificity in radioimaging of mutant KRAS2 mRNA in tumors in mice by in vivo hybridization with radiolabeled peptide nucleic acid (PNA) dodecamers. We hypothesized that multi-mutant specificity could be achieved with a PNA dodecamer incorporating hypoxanthine, which can form Watson-Crick basepairs with adenine, cytosine, thymine, and uracil. Using molecular dynamics simulations and free energy calculations, we show that hypoxanthine substitutions in PNAs are tolerated in KRAS2 RNA-PNA duplexes where wild type guanine is replaced by mutant uracil or adenine in RNA. To validate our predictions, we synthesized PNA dodecamers with hypoxanthine, and then measured the thermal stability of RNA-PNA duplexes. Circular dichroism thermal melting results showed that hypoxanthine-containing PNAs are more stable in duplexes where hypoxanthine-adenine and hypoxanthine-uracil base pairs are formed than single mismatch duplexes or duplexes containing hypoxanthine-guanine opposition. PMID:23972113

  4. Insight into G-quadruplex-hemin DNAzyme/RNAzyme: adjacent adenine as the intramolecular species for remarkable enhancement of enzymatic activity.

    PubMed

    Li, Wang; Li, Yong; Liu, Zhuoliang; Lin, Bin; Yi, Haibo; Xu, Feng; Nie, Zhou; Yao, Shouzhuo

    2016-09-01

    G-quadruplex (G4) with stacked G-tetrads structure is able to bind hemin (iron (III)-protoporphyrin IX) to form a unique type of DNAzyme/RNAzyme with peroxidase-mimicking activity, which has been widely employed in multidisciplinary fields. However, its further applications are hampered by its relatively weak activity compared with protein enzymes. Herein, we report a unique intramolecular enhancement effect of the adjacent adenine (EnEAA) at 3' end of G4 core sequences that significantly improves the activity of G4 DNAzymes. Through detailed investigations of the EnEAA, the added 3' adenine was proved to accelerate the compound I formation in catalytic cycle and thus improve the G4 DNAzyme activity. EnEAA was found to be highly dependent on the unprotonated state of the N1 of adenine, substantiating that adenine might function as a general acid-base catalyst. Further adenine analogs analysis supported that both N1 and exocyclic 6-amino groups in adenine played key role in the catalysis. Moreover, we proved that EnEAA was generally applicable for various parallel G-quadruplex structures and even G4 RNAzyme. Our studies implied that adenine might act analogously as the distal histidine in protein peroxidases, which shed light on the fundamental understanding and rational design of G4 DNAzyme/RNAzyme catalysts with enhanced functions. PMID:27422869

  5. Insight into G-quadruplex-hemin DNAzyme/RNAzyme: adjacent adenine as the intramolecular species for remarkable enhancement of enzymatic activity

    PubMed Central

    Li, Wang; Li, Yong; Liu, Zhuoliang; Lin, Bin; Yi, Haibo; Xu, Feng; Nie, Zhou; Yao, Shouzhuo

    2016-01-01

    G-quadruplex (G4) with stacked G-tetrads structure is able to bind hemin (iron (III)-protoporphyrin IX) to form a unique type of DNAzyme/RNAzyme with peroxidase-mimicking activity, which has been widely employed in multidisciplinary fields. However, its further applications are hampered by its relatively weak activity compared with protein enzymes. Herein, we report a unique intramolecular enhancement effect of the adjacent adenine (EnEAA) at 3′ end of G4 core sequences that significantly improves the activity of G4 DNAzymes. Through detailed investigations of the EnEAA, the added 3′ adenine was proved to accelerate the compound I formation in catalytic cycle and thus improve the G4 DNAzyme activity. EnEAA was found to be highly dependent on the unprotonated state of the N1 of adenine, substantiating that adenine might function as a general acid–base catalyst. Further adenine analogs analysis supported that both N1 and exocyclic 6-amino groups in adenine played key role in the catalysis. Moreover, we proved that EnEAA was generally applicable for various parallel G-quadruplex structures and even G4 RNAzyme. Our studies implied that adenine might act analogously as the distal histidine in protein peroxidases, which shed light on the fundamental understanding and rational design of G4 DNAzyme/RNAzyme catalysts with enhanced functions. PMID:27422869

  6. β-Cyclodextrin-grafted on multiwalled carbon nanotubes as versatile nanoplatform for entrapment of guanine-based drugs.

    PubMed

    Iannazzo, Daniela; Mazzaglia, Antonino; Scala, Angela; Pistone, Alessandro; Galvagno, Signorino; Lanza, Maurizio; Riccucci, Cristina; Ingo, Gabriel Maria; Colao, Ivana; Sciortino, Maria Teresa; Valle, Francesco; Piperno, Anna; Grassi, Giovanni

    2014-11-01

    The design of β-cyclodextrin/multiwalled carbon nanotubes hybrid (β-CD-MWCNT) as nanoplatform for the entrapment and delivery of guanine based drugs is described here. The functionalized carbon nanomaterials have been characterized by XPS spectroscopy, electron microscopy (FEG-SEM and TEM), AFM, TGA, and FT-IR to achieve insights on structure, morphology and chemical composition. The drug binding abilities of nanocarrier towards the guanine (G) and Acyclovir (Acy) were proved by UV-vis and DSC experiments. Host-guest equilibrium association constants and drug loading have been evaluated for G/β-CD-MWCNT and Acy/β-CD-MWCNT complexes. The release studies showed a sustained delivery of Acy without initial burst effect confirming a strong interaction of drug with the nanoplatform sites. The preliminary antiviral data indicated that the Acyclovir loaded into the β-CD-MWCNT platform interferes with HSV-1 replication and the antireplicative effect was higher than the free drug.

  7. Crystal structures of Apo and GMP bound hypoxanthine-guanine phosphoribosyltransferase from Legionella pneumophila and the implications in gouty arthritis.

    PubMed

    Zhang, Nannan; Gong, Xiaojian; Lu, Min; Chen, Xiaofang; Qin, Ximing; Ge, Honghua

    2016-06-01

    Hypoxanthine-guanine phosphoribosyltransferase (HGPRT) (EC 2.4.2.8) reversibly catalyzes the transfer of the 5-phophoribosyl group from 5-phosphoribosyl-alpha-1-pyrophosphate (PRPP) to hypoxanthine or guanine to form inosine monophosphate (IMP) or guanosine monophosphate (GMP) in the purine salvage pathway. To investigate the catalytic mechanism of this enzyme in the intracellular pathogen Legionella pneumophila, we determined the crystal structures of the L. pneumophila HGPRT (LpHGPRT) both in its apo-form and in complex with GMP. The structures reveal that LpHGPRT comprises a core domain and a hood domain which are packed together to create a cavity for GMP-binding and the enzymatic catalysis. The binding of GMP induces conformational changes of the stable loop II. This new binding site is closely related to the Gout arthritis-linked human HGPRT mutation site (Ser103Arg). Finally, these structures of LpHGPRT provide insights into the catalytic mechanism of HGPRT.

  8. Guanine deaminase functions as dihydropterin deaminase in the biosynthesis of aurodrosopterin, a minor red eye pigment of Drosophila.

    PubMed

    Kim, Jaekwang; Park, Sang Ick; Ahn, Chiyoung; Kim, Heuijong; Yim, Jeongbin

    2009-08-28

    Dihydropterin deaminase, which catalyzes the conversion of 7,8-dihydropterin to 7,8-dihydrolumazine, was purified 5850-fold to apparent homogeneity from Drosophila melanogaster. Its molecular mass was estimated to be 48 kDa by gel filtration and SDS-PAGE, indicating that it is a monomer under native conditions. The pI value, temperature, and optimal pH of the enzyme were 5.5, 40 degrees C, and 7.5, respectively. Interestingly the enzyme had much higher activity for guanine than for 7,8-dihydropterin. The specificity constant (k(cat)/K(m)) for guanine (8.6 x 10(6) m(-1).s(-1)) was 860-fold higher than that for 7,8-dihydropterin (1.0 x 10(4) m(-1).s(-1)). The structural gene of the enzyme was identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis as CG18143, located at region 82A1 on chromosome 3R. The cloned and expressed CG18143 exhibited both 7,8-dihydropterin and guanine deaminase activities. Flies with mutations in CG18143, SUPor-P/Df(3R)A321R1 transheterozygotes, had severely decreased activities in both deaminases compared with the wild type. Among several red eye pigments, the level of aurodrosopterin was specifically decreased in the mutant, and the amount of xanthine and uric acid also decreased considerably to 76 and 59% of the amounts in the wild type, respectively. In conclusion, dihydropterin deaminase encoded by CG18143 plays a role in the biosynthesis of aurodrosopterin by providing one of its precursors, 7,8-dihydrolumazine, from 7,8-dihydropterin. Dihydropterin deaminase also functions as guanine deaminase, an important enzyme for purine metabolism. PMID:19567870

  9. The Guanine Nucleotide Exchange Factor ARNO mediates the activation of ARF and phospholipase D by insulin

    PubMed Central

    Li, Hai-Sheng; Shome, Kuntala; Rojas, Raúl; Rizzo, Mark A; Vasudevan, Chandrasekaran; Fluharty, Eric; Santy, Lorraine C; Casanova, James E; Romero, Guillermo

    2003-01-01

    Background Phospholipase D (PLD) is involved in many signaling pathways. In most systems, the activity of PLD is primarily regulated by the members of the ADP-Ribosylation Factor (ARF) family of GTPases, but the mechanism of activation of PLD and ARF by extracellular signals has not been fully established. Here we tested the hypothesis that ARF-guanine nucleotide exchange factors (ARF-GEFs) of the cytohesin/ARNO family mediate the activation of ARF and PLD by insulin. Results Wild type ARNO transiently transfected in HIRcB cells was translocated to the plasma membrane in an insulin-dependent manner and promoted the translocation of ARF to the membranes. ARNO mutants: ΔCC-ARNO and CC-ARNO were partially translocated to the membranes while ΔPH-ARNO and PH-ARNO could not be translocated to the membranes. Sec7 domain mutants of ARNO did not facilitate the ARF translocation. Overexpression of wild type ARNO significantly increased insulin-stimulated PLD activity, and mutations in the Sec7 and PH domains, or deletion of the PH or CC domains inhibited the effects of insulin. Conclusions Small ARF-GEFs of the cytohesin/ARNO family mediate the activation of ARF and PLD by the insulin receptor. PMID:12969509

  10. In vitro guanine nucleotide exchange activity of DHR-2/DOCKER/CZH2 domains.

    PubMed

    Côté, Jean-François; Vuori, Kristiina

    2006-01-01

    Rho family GTPases regulate a large variety of biological processes, including the reorganization of the actin cytoskeleton. Like other members of the Ras superfamily of small GTP-binding proteins, Rho GTPases cycle between a GDP-bound (inactive) and a GTP-bound (active) state, and, when active, the GTPases relay extracellular signals to a large number of downstream effectors. Guanine nucleotide exchange factors (GEFs) promote the exchange of GDP for GTP on Rho GTPases, thereby activating them. Most Rho-GEFs mediate their effects through their signature domain known as the Dbl Homology-Pleckstrin Homology (DH-PH) module. Recently, we and others identified a family of evolutionarily conserved, DOCK180-related proteins that also display GEF activity toward Rho GTPases. The DOCK180-family of proteins lacks the canonical DH-PH module. Instead, they rely on a novel domain, termed DHR-2, DOCKER, or CZH2, to exchange GDP for GTP on Rho targets. In this chapter, the experimental approach that we used to uncover the exchange activity of the DHR-2 domain of DOCK180-related proteins will be described.

  11. Mechanism of cholera toxin activation by a guanine nucleotide-dependent 19 kDa protein.

    PubMed

    Noda, M; Tsai, S C; Adamik, R; Moss, J; Vaughan, M

    1990-05-16

    Cholera toxin causes the devastating diarrheal syndrome characteristic of cholera by catalyzing the ADP-ribosylation of Gs alpha, a GTP-binding regulatory protein, resulting in activation of adenylyl cyclase. ADP-ribosylation of Gs alpha is enhanced by 19 kDa guanine nucleotide-binding proteins known as ADP-ribosylation factors or ARFs. We investigated the effects of agents known to alter toxin-catalyzed activation of adenylyl cyclase on the stimulation of toxin- and toxin subunit-catalyzed ADP-ribosylation of Gs alpha and other substrates by an ADP-ribosylation factor purified from a soluble fraction of bovine brain (sARF II). In the presence of GTP, sARF II enhanced activity of both the toxin catalytic unit and a reduced and alkylated fragment ('A1'), as a result of an increase in substrate affinity with no significant effects on Vmax. Activation of toxin was independent of Gs alpha and was stimulated 4-fold by sodium dodecyl sulfate, but abolished by Triton X-100. sARF II therefore serves as a direct allosteric activator of the A1 protein and may thus amplify the pathological effects of cholera toxin.

  12. Self-catalyzed site-specific depurination of guanine residues within gene sequences.

    PubMed

    Amosova, Olga; Coulter, Richard; Fresco, Jacques R

    2006-03-21

    A self-catalyzed, site-specific guanine-depurination activity has been found to occur in short gene sequences with a potential to form a stem-loop structure. The critical features of that catalytic intermediate are a 5'-G-T-G-G-3' loop and an adjacent 5'-T.A-3' base pair of a short duplex stem stable enough to fix the loop structure required for depurination of its 5'-G residue. That residue is uniquely depurinated with a rate some 5 orders of magnitude faster than that of random "spontaneous" depurination. In contrast, all other purine residues in the sequence depurinate at the spontaneous background rate. The reaction requires no divalent cations or other cofactors and occurs under essentially physiological conditions. Such stem-loops can form in duplex DNA under superhelical stress, and their critical sequence features have been found at numerous sites in the human genome. Self-catalyzed stem-loop-mediated depurination leading to flexible apurinic sites may therefore serve some important biological role, e.g., in nucleosome positioning, genetic recombination, or chromosome superfolding.

  13. Crystal structures and inhibition of Trypanosoma brucei hypoxanthine–guanine phosphoribosyltransferase

    PubMed Central

    Terán, David; Hocková, Dana; Česnek, Michal; Zíková, Alena; Naesens, Lieve; Keough, Dianne T.; Guddat, Luke W.

    2016-01-01

    Human African Trypanosomiasis (HAT) is a life-threatening infectious disease caused by the protozoan parasite, Trypanosoma brucei (Tbr). Due to the debilitating side effects of the current therapeutics and the emergence of resistance to these drugs, new medications for this disease need to be developed. One potential new drug target is 6-oxopurine phosphoribosyltransferase (PRT), an enzyme central to the purine salvage pathway and whose activity is critical for the production of the nucleotides (GMP and IMP) required for DNA/RNA synthesis within this protozoan parasite. Here, the first crystal structures of this enzyme have been determined, these in complex with GMP and IMP and with three acyclic nucleoside phosphonate (ANP) inhibitors. The Ki values for GMP and IMP are 30.5 μM and 77 μM, respectively. Two of the ANPs have Ki values considerably lower than for the nucleotides, 2.3 μM (with guanine as base) and 15.8 μM (with hypoxanthine as base). The crystal structures show that when two of the ANPs bind, they induce an unusual conformation change to the loop where the reaction product, pyrophosphate, is expected to bind. This and other structural differences between the Tbr and human enzymes suggest selective inhibitors for the Tbr enzyme can be designed. PMID:27786284

  14. Synthesis and biological properties of caffeic acid-PNA dimers containing guanine.

    PubMed

    Gaglione, Maria; Malgieri, Gaetano; Pacifico, Severina; Severino, Valeria; D'Abrosca, Brigida; Russo, Luigi; Fiorentino, Antonio; Messere, Anna

    2013-01-01

    Caffeic acid (CA; 3,4-dihydroxycinnamic acid) is endowed with high antioxidant activity. CA derivatives (such as amides) have gained a lot of attention due to their antioxidative, antitumor and antimicrobial properties as well as stable characteristics. Caffeoyl-peptide derivatives showed different antioxidant activity depending on the type and the sequence of amino acid used. For these reasons, we decided to combine CA with Peptide Nucleic Acid (PNA) to test whether the new PNA-CA amide derivatives would result in an improvement or gain of CA's biological (i.e., antioxidant, cytotoxic, cytoprotective) properties. We performed the synthesis and characterization of seven dimer conjugates with various combinations of nucleic acid bases and focused NMR studies on the model compound ga-CA dimer. We demonstrate that PNA dimers containing guanine conjugated to CA exhibited different biological activities depending on composition and sequence of the nucleobases. The dimer ag-CA protected HepG2, SK-B-NE(2), and C6 cells from a cytotoxic dose of hydrogen peroxide (H₂O₂). PMID:23912270

  15. Mutation at a distance caused by homopolymeric guanine repeats in Saccharomyces cerevisiae.

    PubMed

    McDonald, Michael J; Yu, Yen-Hsin; Guo, Jheng-Fen; Chong, Shin Yen; Kao, Cheng-Fu; Leu, Jun-Yi

    2016-05-01

    Mutation provides the raw material from which natural selection shapes adaptations. The rate at which new mutations arise is therefore a key factor that determines the tempo and mode of evolution. However, an accurate assessment of the mutation rate of a given organism is difficult because mutation rate varies on a fine scale within a genome. A central challenge of evolutionary genetics is to determine the underlying causes of this variation. In earlier work, we had shown that repeat sequences not only are prone to a high rate of expansion and contraction but also can cause an increase in mutation rate (on the order of kilobases) of the sequence surrounding the repeat. We perform experiments that show that simple guanine repeats 13 bp (base pairs) in length or longer (G 13+ ) increase the substitution rate 4- to 18-fold in the downstream DNA sequence, and this correlates with DNA replication timing (R = 0.89). We show that G 13+ mutagenicity results from the interplay of both error-prone translesion synthesis and homologous recombination repair pathways. The mutagenic repeats that we study have the potential to be exploited for the artificial elevation of mutation rate in systems biology and synthetic biology applications.

  16. Structure of the Rho-specific guanine nucleotide-exchange factor Xpln

    PubMed Central

    Murayama, Kazutaka; Kato-Murayama, Miyuki; Akasaka, Ryogo; Terada, Takaho; Yokoyama, Shigeyuki; Shirouzu, Mikako

    2012-01-01

    Xpln is a guanine nucleotide-exchange factor (GEF) for Rho GTPases. A Dbl homology (DH) domain followed by a pleckstrin homology (PH) domain is a widely adopted GEF-domain architecture. The Xpln structure solely comprises these two domains. Xpln activates RhoA and RhoB, but not RhoC, although their GTPase sequences are highly conserved. The molecular mechanism of the selectivity of Xpln for Rho GTPases is still unclear. In this study, the crystal structure of the tandemly arranged DH-PH domains of mouse Xpln, with a single molecule in the asymmetric unit, was determined at 1.79 Å resolution by the multiwavelength anomalous dispersion method. The DH-PH domains of Xpln share high structural similarity with those from neuroepithelial cell-transforming gene 1 protein, PDZ-RhoGEF, leukaemia-associated RhoGEF and intersectins 1 and 2. The crystal structure indicated that the α4–α5 loop in the DH domain is flexible and that the DH and PH domains interact with each other intramolecularly, thus suggesting that PH-domain rearrangement occurs upon RhoA binding. PMID:23192023

  17. Rho guanine exchange factors in blood vessels: fine-tuners of angiogenesis and vascular function.

    PubMed

    Kather, Jakob Nikolas; Kroll, Jens

    2013-05-15

    The angiogenic cascade is a multi-step process essential for embryogenesis and other physiological and pathological processes. Rho family GTPases are binary molecular switches and serve as master regulators of various basic cellular processes. Rho GTPases are known to exert important functions in angiogenesis and vascular physiology. These functions demand a tight and context-specific control of cellular processes requiring superordinate control by a multitude of guanine nucleotide exchange factors (GEFs). GEFs display various features enabling them to fine-tune the actions of Rho GTPases in the vasculature: (1) GEFs regulate specific steps of the angiogenic cascade; (2) GEFs show a spatio-temporally specific expression pattern; (3) GEFs differentially regulate endothelial function depending on their subcellular location; (4) GEFs mediate crosstalk between complex signaling cascades and (5) GEFs themselves are regulated by another layer of interacting proteins. The aim of this review is to provide an overview about the role of GEFs in regulating angiogenesis and vascular function and to point out current limitations as well as clinical perspectives.

  18. Mutation at a distance caused by homopolymeric guanine repeats in Saccharomyces cerevisiae.

    PubMed

    McDonald, Michael J; Yu, Yen-Hsin; Guo, Jheng-Fen; Chong, Shin Yen; Kao, Cheng-Fu; Leu, Jun-Yi

    2016-05-01

    Mutation provides the raw material from which natural selection shapes adaptations. The rate at which new mutations arise is therefore a key factor that determines the tempo and mode of evolution. However, an accurate assessment of the mutation rate of a given organism is difficult because mutation rate varies on a fine scale within a genome. A central challenge of evolutionary genetics is to determine the underlying causes of this variation. In earlier work, we had shown that repeat sequences not only are prone to a high rate of expansion and contraction but also can cause an increase in mutation rate (on the order of kilobases) of the sequence surrounding the repeat. We perform experiments that show that simple guanine repeats 13 bp (base pairs) in length or longer (G 13+ ) increase the substitution rate 4- to 18-fold in the downstream DNA sequence, and this correlates with DNA replication timing (R = 0.89). We show that G 13+ mutagenicity results from the interplay of both error-prone translesion synthesis and homologous recombination repair pathways. The mutagenic repeats that we study have the potential to be exploited for the artificial elevation of mutation rate in systems biology and synthetic biology applications. PMID:27386516

  19. Rho guanine nucleotide exchange factors: regulators of Rho GTPase activity in development and disease

    PubMed Central

    Cook, Danielle R.; Rossman, Kent L.; Der, Channing J.

    2016-01-01

    The aberrant activity of Ras homologous (Rho) family small GTPases (20 human members) has been implicated in cancer and other human diseases. However, in contrast to the direct mutational activation of Ras found in cancer and developmental disorders, Rho GTPases are activated most commonly by indirect mechanisms in disease. One prevalent mechanism involves aberrant Rho activation via the deregulated expression and/or activity of Rho family guanine nucleotide exchange factors (RhoGEFs). RhoGEFs promote formation of the active GTP-bound state of Rho GTPases. The largest family of RhoGEFs is comprised of the Dbl family RhoGEFs with 70 human members. The multitude of RhoGEFs that activate a single Rho GTPase reflect the very specific role of each RhoGEF in controlling distinct signaling mechanisms involved in Rho activation. In this review, we summarize the role of Dbl RhoGEFs in development and disease, with a focus on Ect2, Tiam1, Vav and P-Rex1/2. PMID:24037532

  20. Electron correlation effects and density analysis of the first-order hyperpolarizability of neutral guanine tautomers.

    PubMed

    Alparone, Andrea

    2013-08-01

    Dipole moments (μ), charge distributions, and static electronic first-order hyperpolarizabilities (β(μ)) of the two lowest-energy keto tautomers of guanine (7H and 9H) were determined in the gas phase using Hartree-Fock, Møller-Plesset perturbation theory (MP2 and MP4), and DFT (PBE1PBE, B97-1, B3LYP, CAM-B3LYP) methods with Dunning's correlation-consistent aug-cc-pVDZ and d-aug-cc-pVDZ basis sets. The most stable isomer 7H exhibits a μ value smaller than that of the 9H form by a factor of ca. 3.5. The β μ value of the 9H tautomer is strongly dependent on the computational method employed, as it dramatically influences the β(μ) (9H)/β(μ) (7H) ratio, which at the highest correlated MP4/aug-cc-pVDZ level is predicted to be ca. 5. The Coulomb-attenuating hybrid exchange-correlation CAM-B3LYP method is superior to the conventional PBE1PBE, B3LYP, and B97-1 functionals in predicting the β(μ) values. Differences between the largest diagonal hyperpolarizability components were clarified through hyperpolarizability density analyses. Dipole moment and first-order hyperpolarizability are molecular properties that are potentially useful for distinguishing the 7H from the 9H tautomer.

  1. The Guanine-Nucleotide Exchange Factor SGEF Plays a Crucial Role in the Formation of Atherosclerosis

    PubMed Central

    Kroon, Jeffrey; Welch, Christopher; Bakker, Erik N.; Matlung, Hanke L.; van den Berg, Timo K.; Sharek, Lisa; Doerschuk, Claire; Hahn, Klaus; Burridge, Keith

    2013-01-01

    The passage of leukocytes across the endothelium and into arterial walls is a critical step in the development of atherosclerosis. Previously, we showed in vitro that the RhoG guanine nucleotide exchange factor SGEF (Arhgef26) contributes to the formation of ICAM-1-induced endothelial docking structures that facilitate leukocyte transendothelial migration. To further explore the in vivo role of this protein during inflammation, we generated SGEF-deficient mice. When crossed with ApoE null mice and fed a Western diet, mice lacking SGEF showed a significant decrease in the formation of atherosclerosis in multiple aortic areas. A fluorescent biosensor revealed local activation of RhoG around bead-clustered ICAM-1 in mouse aortic endothelial cells. Notably, this activation was decreased in cells from SGEF-deficient aortas compared to wild type. In addition, scanning electron microscopy of intimal surfaces of SGEF−/− mouse aortas revealed reduced docking structures around beads that were coated with ICAM-1 antibody. Similarly, under conditions of flow, these beads adhered less stably to the luminal surface of carotid arteries from SGEF−/− mice. Taken together, these results show for the first time that a Rho-GEF, namely SGEF, contributes to the formation of atherosclerosis by promoting endothelial docking structures and thereby retention of leukocytes at athero-prone sites of inflammation experiencing high shear flow. SGEF may therefore provide a novel therapeutic target for inhibiting the development of atherosclerosis. PMID:23372835

  2. Proximal tubular epithelial cells possess a novel 42-kilodalton guanine nucleotide-binding regulatory protein.

    PubMed Central

    Zhou, J; Sims, C; Chang, C H; Berti-Mattera, L; Hopfer, U; Douglas, J

    1990-01-01

    The proximal tubule of the kidney represents an important location where adenylate cyclase regulates salt and water transport; yet a detailed characterization of the distribution and classification of guanine nucleotide-binding protein (G protein) and adenylate cyclase is lacking. We used purified brush border (20-fold) and basolateral membranes (14-fold) to characterize parathyroid hormone- and G protein-regulated adenylate cyclase and G-protein distribution. Adenylate cyclase was predominantly localized to basolateral membranes, while the 46-kDa alpha subunit of the stimulatory G protein (Gs) was 2-fold higher in brush border membranes than in basolateral membranes. The alpha subunit of the inhibitory G protein (Gi; 41 kDa) was equally distributed on immunoblotting but was 2-fold higher in brush border membranes than in basolateral membranes on radiolabeling with pertussis toxin. A 42-kDa cholera toxin substrate that cross-reacted with antisera to the common alpha subunit of G proteins and to Gs on immunoblotting and that was not immunoprecipitated with two Gi antisera was the most abundant alpha subunit and comprised approximately 1% of the total membrane proteins. These observations suggest that G proteins are important regulators of proximal tubular transport independent of adenylate cyclase. Images PMID:2120702

  3. Mutation at a distance caused by homopolymeric guanine repeats in Saccharomyces cerevisiae

    PubMed Central

    McDonald, Michael J.; Yu, Yen-Hsin; Guo, Jheng-Fen; Chong, Shin Yen; Kao, Cheng-Fu; Leu, Jun-Yi

    2016-01-01

    Mutation provides the raw material from which natural selection shapes adaptations. The rate at which new mutations arise is therefore a key factor that determines the tempo and mode of evolution. However, an accurate assessment of the mutation rate of a given organism is difficult because mutation rate varies on a fine scale within a genome. A central challenge of evolutionary genetics is to determine the underlying causes of this variation. In earlier work, we had shown that repeat sequences not only are prone to a high rate of expansion and contraction but also can cause an increase in mutation rate (on the order of kilobases) of the sequence surrounding the repeat. We perform experiments that show that simple guanine repeats 13 bp (base pairs) in length or longer (G13+) increase the substitution rate 4- to 18-fold in the downstream DNA sequence, and this correlates with DNA replication timing (R = 0.89). We show that G13+ mutagenicity results from the interplay of both error-prone translesion synthesis and homologous recombination repair pathways. The mutagenic repeats that we study have the potential to be exploited for the artificial elevation of mutation rate in systems biology and synthetic biology applications. PMID:27386516

  4. QuadBase2: web server for multiplexed guanine quadruplex mining and visualization

    PubMed Central

    Dhapola, Parashar; Chowdhury, Shantanu

    2016-01-01

    DNA guanine quadruplexes or G4s are non-canonical DNA secondary structures which affect genomic processes like replication, transcription and recombination. G4s are computationally identified by specific nucleotide motifs which are also called putative G4 (PG4) motifs. Despite the general relevance of these structures, there is currently no tool available that can allow batch queries and genome-wide analysis of these motifs in a user-friendly interface. QuadBase2 (quadbase.igib.res.in) presents a completely reinvented web server version of previously published QuadBase database. QuadBase2 enables users to mine PG4 motifs in up to 178 eukaryotes through the EuQuad module. This module interfaces with Ensembl Compara database, to allow users mine PG4 motifs in the orthologues of genes of interest across eukaryotes. PG4 motifs can be mined across genes and their promoter sequences in 1719 prokaryotes through ProQuad module. This module includes a feature that allows genome-wide mining of PG4 motifs and their visualization as circular histograms. TetraplexFinder, the module for mining PG4 motifs in user-provided sequences is now capable of handling up to 20 MB of data. QuadBase2 is a comprehensive PG4 motif mining tool that further expands the configurations and algorithms for mining PG4 motifs in a user-friendly way. PMID:27185890

  5. Guanine nucleotide exchange factor H1 can be a new biomarker of melanoma

    PubMed Central

    Shi, Jie; Guo, Bingyu; Zhang, Yu; Hui, Qiang; Chang, Peng; Tao, Kai

    2016-01-01

    Guanine nucleotide exchange factor H1 (GEF-H1), which couples microtubule dynamics to RhoA activation, is a microtubule-regulated exchange factor. Studies have shown that GEF-H1 can be involved in various cancer pathways; however, the clinical significance of GEF-H1 expression and functions in melanoma has not been established. In this study, we investigated the relationship between clinical outcomes and GEF-H1 functions in melanoma. A total of 60 cases of different grades of melanoma samples were used to detect the expression of GEF-H1. Results showed that both messenger RNA and protein levels of GEF-H1 were significantly higher in high-grade melanomas. Furthermore, patients with high GEF-H1 expression had a shorter overall survival (22 months) than patients with low level of GEF-H1 expression (33.38 months). We also found that GEF-H1 can promote the proliferation and metastasis of melanoma cells. In summary, these results suggested that GEF-H1 may be a valuable biomarker for assessing the degree and prognosis of melanoma following surgery. PMID:27462139

  6. Arf6 guanine-nucleotide exchange factor cytohesin-2 regulates myelination in nerves.

    PubMed

    Torii, Tomohiro; Ohno, Nobuhiko; Miyamoto, Yuki; Kawahara, Kazuko; Saitoh, Yurika; Nakamura, Kazuaki; Takashima, Shou; Sakagami, Hiroyuki; Tanoue, Akito; Yamauchi, Junji

    2015-05-01

    In postnatal development of the peripheral nervous system (PNS), Schwann cells differentiate to insulate neuronal axons with myelin sheaths, increasing the nerve conduction velocity. To produce the mature myelin sheath with its multiple layers, Schwann cells undergo dynamic morphological changes. While extracellular molecules such as growth factors and cell adhesion ligands are known to regulate the myelination process, the intracellular molecular mechanism underlying myelination remains unclear. In this study, we have produced Schwann cell-specific conditional knockout mice for cytohesin-2, a guanine-nucleotide exchange factor (GEF) specifically activating Arf6. Arf6, a member of the Ras-like protein family, participates in various cellular functions including cell morphological changes. Cytohesin-2 knockout mice exhibit decreased Arf6 activity and reduced myelin thickness in the sciatic nerves, with decreased expression levels of myelin protein zero (MPZ), the major myelin marker protein. These results are consistent with those of experiments in which Schwann cell-neuronal cultures were treated with pan-cytohesin inhibitor SecinH3. On the other hand, the numbers of Ki67-positive cells in knockout mice and controls are comparable, indicating that cytohesin-2 does not have a positive effect on cell numbers. Thus, signaling through cytohesin-2 is required for myelination by Schwann cells, and cytohesin-2 is added to the list of molecules known to underlie PNS myelination.

  7. The Guanine-Based Purinergic System: The Tale of An Orphan Neuromodulation

    PubMed Central

    Garozzo, Roberta; Frinchi, Monica; Fernandez-Dueñas, Víctor; Di Iorio, Patrizia; Ciccarelli, Renata; Caciagli, Francesco; Condorelli, Daniele F.; Ciruela, Francisco; Belluardo, Natale

    2016-01-01

    Guanine-based purines (GBPs) have been recently proposed to be not only metabolic agents but also extracellular signaling molecules that regulate important functions in the central nervous system. In such way, GBPs-mediated neuroprotection, behavioral responses and neuronal plasticity have been broadly described in the literature. However, while a number of these functions (i.e., GBPs neurothophic effects) have been well-established, the molecular mechanisms behind these GBPs-dependent effects are still unknown. Furthermore, no plasma membrane receptors for GBPs have been described so far, thus GBPs are still considered orphan neuromodulators. Interestingly, an intricate and controversial functional interplay between GBPs effects and adenosine receptors activity has been recently described, thus triggering the hypothesis that GBPs mechanism of action might somehow involve adenosine receptors. Here, we review recent data describing the GBPs role in the brain. We focus on the involvement of GBPs regulating neuronal plasticity, and on the new hypothesis based on putative GBPs receptors. Overall, we expect to shed some light on the GBPs world since although these molecules might represent excellent candidates for certain neurological diseases management, the lack of putative GBPs receptors precludes any high throughput screening intent for the search of effective GBPs-based drugs. PMID:27378923

  8. bis-Molybdopterin Guanine Dinucleotide Is Required for Persistence of Mycobacterium tuberculosis in Guinea Pigs

    PubMed Central

    Williams, Monique J.; Shanley, Crystal A.; Zilavy, Andrew; Peixoto, Blas; Manca, Claudia; Kaplan, Gilla; Orme, Ian M.; Mizrahi, Valerie

    2014-01-01

    Mycobacterium tuberculosis is able to synthesize molybdopterin cofactor (MoCo), which is utilized by numerous enzymes that catalyze redox reactions in carbon, nitrogen, and sulfur metabolism. In bacteria, MoCo is further modified through the activity of a guanylyltransferase, MobA, which converts MoCo to bis-molybdopterin guanine dinucleotide (bis-MGD), a form of the cofactor that is required by the dimethylsulfoxide (DMSO) reductase family of enzymes, which includes the nitrate reductase NarGHI. In this study, the functionality of the mobA homolog in M. tuberculosis was confirmed by demonstrating the loss of assimilatory and respiratory nitrate reductase activity in a mobA deletion mutant. This mutant displayed no survival defects in human monocytes or mouse lungs but failed to persist in the lungs of guinea pigs. These results implicate one or more bis-MGD-dependent enzymes in the persistence of M. tuberculosis in guinea pig lungs and underscore the applicability of this animal model for assessing the role of molybdoenzymes in this pathogen. PMID:25404027

  9. bis-Molybdopterin guanine dinucleotide is required for persistence of Mycobacterium tuberculosis in guinea pigs.

    PubMed

    Williams, Monique J; Shanley, Crystal A; Zilavy, Andrew; Peixoto, Blas; Manca, Claudia; Kaplan, Gilla; Orme, Ian M; Mizrahi, Valerie; Kana, Bavesh D

    2015-02-01

    Mycobacterium tuberculosis is able to synthesize molybdopterin cofactor (MoCo), which is utilized by numerous enzymes that catalyze redox reactions in carbon, nitrogen, and sulfur metabolism. In bacteria, MoCo is further modified through the activity of a guanylyltransferase, MobA, which converts MoCo to bis-molybdopterin guanine dinucleotide (bis-MGD), a form of the cofactor that is required by the dimethylsulfoxide (DMSO) reductase family of enzymes, which includes the nitrate reductase NarGHI. In this study, the functionality of the mobA homolog in M. tuberculosis was confirmed by demonstrating the loss of assimilatory and respiratory nitrate reductase activity in a mobA deletion mutant. This mutant displayed no survival defects in human monocytes or mouse lungs but failed to persist in the lungs of guinea pigs. These results implicate one or more bis-MGD-dependent enzymes in the persistence of M. tuberculosis in guinea pig lungs and underscore the applicability of this animal model for assessing the role of molybdoenzymes in this pathogen.

  10. How not to do kinetics: examples involving GTPases and guanine nucleotide exchange factors.

    PubMed

    Goody, Roger S

    2014-01-01

    Guanine nucleotide exchange factors (GEFs) are crucial regulators of the action of GTPases in signal transduction and cellular regulation. Although their basic mechanism of action has been apparent for almost 20 years, there are still misconceptions concerning their properties, and these are confounded by superficial or incorrect interpretation of experimental results in individual cases. Here, an example is described in which an incorrect mechanism was derived because of an inadequate analysis of kinetic results. In a second example, a case is discussed where certain GTP analogs were erroneously described as being able to function as low molecular mass GEFs. In both cases, a lack of distinction between rates, rate constants, and apparent rate constants, together with a disregard of relative signal amplitudes, led to the misinterpretations. In a final example, it is shown how the lack of an appropriate kinetic investigation led to the false conclusion that a secreted protein from Legionella pneumophila can act not only as a GEF towards eukaryotic Rab1 but also as a factor that is able to actively dissociate the stable complex between Rab1 and GDP dissociation inhibitor. PMID:24112651

  11. Rigid Adenine Nucleoside Derivatives as Novel Modulators of the Human Sodium Symporters for Dopamine and Norepinephrine.

    PubMed

    Janowsky, Aaron; Tosh, Dilip K; Eshleman, Amy J; Jacobson, Kenneth A

    2016-04-01

    Thirty-two congeneric rigid adenine nucleoside derivatives containing a North (N)-methanocarba ribose substitution and a 2-arylethynyl group either enhanced (up to 760% of control) or inhibited [(125)I] methyl (1R,2S,3S)-3-(4-iodophenyl)-8-methyl-8-azabicyclo[3.2.1]octane-2-carboxylate (RTI-55) binding at the human dopamine (DA) transporter (DAT) and inhibited DA uptake. Several nucleosides also enhanced [(3)H]mazindol [(±)-5-(4-chlorophenyl)-3,5-dihydro-2H-imidazo[2,1-a]isoindol-5-ol] binding to the DAT. The combination of binding enhancement and functional inhibition suggests possible allosteric interaction with the tropanes. The structure-activity relationship of this novel class of DAT ligands was explored: small N(6)-substition (methyl or ethyl) was favored, while the N1 of the adenine ring was essential. Effective terminal aryl groups include thien-2-yl (compounds 9 and 16), with EC50 values of 35.1 and 9.1 nM, respectively, in [(125)I]RTI-55 binding enhancement, and 3,4-difluorophenyl as in the most potent DA uptake inhibitor (compound 6) with an IC50 value of 92 nM (3-fold more potent than cocaine), but not nitrogen heterocycles. Several compounds inhibited or enhanced binding at the norepinephrine transporter (NET) and serotonin transporter (SERT) and inhibited function in the micromolar range; truncation at the 4'-position in compound 23 allowed for weak inhibition of the SERT. We have not yet eliminated adenosine receptor affinity from this class of DAT modulators, but we identified modifications that remove DAT inhibition as an off-target effect of potent adenosine receptor agonists. Thus, we have identified a new class of allosteric DAT ligands, rigidified adenosine derivatives, and explored their initial structural requirements. They display a very atypical pharmacological profile, i.e., either enhancement by increasing affinity or inhibition of radioligand binding at the DAT, and in some cases the NET and SERT, and inhibition of neurotransmitter

  12. Poly-adenine-based programmable engineering of gold nanoparticles for highly regulated spherical DNAzymes

    NASA Astrophysics Data System (ADS)

    Zhu, Dan; Pei, Hao; Chao, Jie; Su, Shao; Aldalbahi, Ali; Rahaman, Mostafizur; Wang, Lihua; Wang, Lianhui; Huang, Wei; Fan, Chunhai; Zuo, Xiaolei

    2015-11-01

    Enzyme complexes are assembled at the two-dimensional lipid membrane or prearranged on three-dimensional scaffolding proteins to regulate their catalytic activity in cells. Inspired by nature, we have developed gold nanoparticle-based spherical DNAzymes (SNAzymes) with programmably engineered activities by exploiting poly-adenine (polyA)-Au interactions. In a SNAzyme, AuNPs serve as the metal core, which is decorated with a functional shell of DNAzymes. Conventional thiolated DNAzyme-based assembly leads to disordered structures with suppressed activity. In contrast, by using an anchoring block of polyA tails, we find that the activity of SNAzymes can be programmably regulated. By using a polyA30 tail, SNAzymes demonstrated remarkably enhanced binding affinity compared to the thiolated DNAzyme-based assembly (~75-fold) or individual DNAzymes in the solution phase (~10-fold). More significantly, this increased affinity is directly translated to the sensitivity improvement in the SNAzyme-based lead sensor. Hence, this design of SNAzymes may provide new opportunities for developing biosensors and bioimaging probes for theranostic applications.Enzyme complexes are assembled at the two-dimensional lipid membrane or prearranged on three-dimensional scaffolding proteins to regulate their catalytic activity in cells. Inspired by nature, we have developed gold nanoparticle-based spherical DNAzymes (SNAzymes) with programmably engineered activities by exploiting poly-adenine (polyA)-Au interactions. In a SNAzyme, AuNPs serve as the metal core, which is decorated with a functional shell of DNAzymes. Conventional thiolated DNAzyme-based assembly leads to disordered structures with suppressed activity. In contrast, by using an anchoring block of polyA tails, we find that the activity of SNAzymes can be programmably regulated. By using a polyA30 tail, SNAzymes demonstrated remarkably enhanced binding affinity compared to the thiolated DNAzyme-based assembly (~75-fold) or

  13. Rigid Adenine Nucleoside Derivatives as Novel Modulators of the Human Sodium Symporters for Dopamine and Norepinephrine

    PubMed Central

    Tosh, Dilip K.; Eshleman, Amy J.; Jacobson, Kenneth A.

    2016-01-01

    Thirty-two congeneric rigid adenine nucleoside derivatives containing a North (N)-methanocarba ribose substitution and a 2-arylethynyl group either enhanced (up to 760% of control) or inhibited [125I] methyl (1R,2S,3S)-3-(4-iodophenyl)-8-methyl-8-azabicyclo[3.2.1]octane-2-carboxylate (RTI-55) binding at the human dopamine (DA) transporter (DAT) and inhibited DA uptake. Several nucleosides also enhanced [3H]mazindol [(±)-5-(4-chlorophenyl)-3,5-dihydro-2H-imidazo[2,1-a]isoindol-5-ol] binding to the DAT. The combination of binding enhancement and functional inhibition suggests possible allosteric interaction with the tropanes. The structure-activity relationship of this novel class of DAT ligands was explored: small N6-substition (methyl or ethyl) was favored, while the N1 of the adenine ring was essential. Effective terminal aryl groups include thien-2-yl (compounds 9 and 16), with EC50 values of 35.1 and 9.1 nM, respectively, in [125I]RTI-55 binding enhancement, and 3,4-difluorophenyl as in the most potent DA uptake inhibitor (compound 6) with an IC50 value of 92 nM (3-fold more potent than cocaine), but not nitrogen heterocycles. Several compounds inhibited or enhanced binding at the norepinephrine transporter (NET) and serotonin transporter (SERT) and inhibited function in the micromolar range; truncation at the 4′-position in compound 23 allowed for weak inhibition of the SERT. We have not yet eliminated adenosine receptor affinity from this class of DAT modulators, but we identified modifications that remove DAT inhibition as an off-target effect of potent adenosine receptor agonists. Thus, we have identified a new class of allosteric DAT ligands, rigidified adenosine derivatives, and explored their initial structural requirements. They display a very atypical pharmacological profile, i.e., either enhancement by increasing affinity or inhibition of radioligand binding at the DAT, and in some cases the NET and SERT, and inhibition of neurotransmitter uptake

  14. Efficacy of Adenine in the Treatment of Leukopenia and Neutropenia Associated with an Overdose of Antipsychotics or Discontinuation of Lithium Carbonate Administration: Three Case Studies

    PubMed Central

    Tomita, Takashi; Goto, Hidekazu; Sumiya, Kenji; Yoshida, Tadashi; Tanaka, Katsuya; Kohda, Yukinao

    2016-01-01

    Because adenine is effective for managing cases of radiation-induced and drug-induced leukopenia, it may be effective in cases of antipsychotic-induced leukopenia and neutropenia. Here, we report our experience with patients with leukopenia and neutropenia caused by an antipsychotic overdose or discontinuation of lithium carbonate, in whom adenine administration ameliorated the white blood cell and neutrophil counts. The progress of patients suggests that adenine is effective in cases of leukopenia and neutropenia associated with lithium carbonate discontinuation and an antipsychotic overdose. PMID:27776394

  15. A benchmark study of molecular structure by experimental and theoretical methods: Equilibrium structure of thymine from microwave rotational constants and coupled-cluster computations

    NASA Astrophysics Data System (ADS)

    Vogt, Natalja; Demaison, Jean; Ksenafontov, Denis N.; Rudolph, Heinz Dieter

    2014-11-01

    Accurate equilibrium, re, structures of thymine have been determined using two different, and to some extent complementary techniques. The composite ab initio Born-Oppenheimer, re(best ab initio), structural parameters are obtained from the all-electron CCSD(T) and MP2 geometry optimizations using Gaussian basis sets up to quadruple-zeta quality. The semi-experimental mixed estimation method, where internal coordinates are fitted concurrently to equilibrium rotational constants and geometry parameters obtained from a high level of electronic structure theory. The equilibrium rotational constants are derived from experimental effective ground-state rotational constants and rovibrational corrections based on a quantum-chemical cubic force field. Equilibrium molecular structures accurate to 0.002 Å and 0.2° have been determined. This work is one of a few accurate equilibrium structure determinations for large molecules. The poor behavior of Kraitchman's equations is discussed.

  16. A DNA adenine methylase mutant of Shigella flexneri shows no significant attenuation of virulence.

    PubMed

    Honma, Yasuko; Fernández, Reinaldo E; Maurelli, Anthony T

    2004-04-01

    Mutants of Salmonella defective in DNA adenine methylase (dam) have been reported to be attenuated for virulence and to provide protective immunity when used as vaccine strains. To determine whether these observations could be extended to Shigella, a dam mutant of Shigella flexneri 2a was characterized and examined for the role of dam in pathogenesis. The Shigella dam mutant showed some unique characteristics; however, it retained virulence in vivo as well as in vitro. The mutant invaded cultured L2 monolayer cells as efficiently as the wild-type parent, but its intracellular growth was suppressed up to 7 h post-invasion. Furthermore, the invading dam mutant formed smaller plaques in cell monolayers compared to the parent strain. However, the mutant produced keratoconjunctivitis in the Sereny test in guinea pigs only slightly more slowly than the wild-type. While the effect of the dam mutation on virulence was modest, the rate of spontaneous mutation in the dam mutant was 1000-fold greater compared with the wild-type. The virulence and high mutability displayed by the dam mutant of Sh. flexneri suggest that a general anti-bacterial pathogen vaccine strategy based on mutations in dam needs to be re-evaluated.

  17. Electron impact fragmentation of adenine: partial ionization cross sections for positive fragments

    NASA Astrophysics Data System (ADS)

    van der Burgt, Peter J. M.; Finnegan, Sinead; Eden, Samuel

    2015-07-01

    Using computer-controlled data acquisition we have measured mass spectra of positive ions for electron impact on adenine, with electron energies up to 100 eV. Ion yield curves for 50 ions have been obtained and normalized by comparing their sum to the average of calculated total ionization cross sections. Appearance energies have been determined for 37 ions; for 20 ions for the first time. All appearance energies are consistent with the fragmentation pathways identified in the literature. Second onset energies have been determined for 12 fragment ions (for 11 ions for the first time), indicating the occurrence of more than one fragmentation process e.g. for 39 u (C2HN+) and 70 u (C2H4N3+). Matching ion yield shapes (118-120 u, 107-108 u, 91-92 u, and 54-56 u) provide new evidence supporting closely related fragmentation pathways and are attributed to hydrogen rearrangement immediately preceding the fragmentation. We present the first measurement of the ion yield curve of the doubly charged parent ion (67.5 u), with an appearance energy of 23.5 ± 1.0 eV. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey Solov'yov, Nigel Mason, Gustavo García, Eugene Surdutovich.

  18. PsANT, the adenine nucleotide translocase of Puccinia striiformis, promotes cell death and fungal growth

    PubMed Central

    Tang, Chunlei; Wei, Jinping; Han, Qingmei; Liu, Rui; Duan, Xiaoyuan; Fu, Yanping; Huang, Xueling; Wang, Xiaojie; Kang, Zhensheng

    2015-01-01

    Adenine nucleotide translocase (ANT) is a constitutive mitochondrial component that is involved in ADP/ATP exchange and mitochondrion-mediated apoptosis in yeast and mammals. However, little is known about the function of ANT in pathogenic fungi. In this study, we identified an ANT gene of Puccinia striiformis f. sp. tritici (Pst), designated PsANT. The PsANT protein contains three typical conserved mitochondrion-carrier-protein (mito-carr) domains and shares more than 70% identity with its orthologs from other fungi, suggesting that ANT is conserved in fungi. Immuno-cytochemical localization confirmed the mitochondrial localization of PsANT in normal Pst hyphal cells or collapsed cells. Over-expression of PsANT indicated that PsANT promotes cell death in tobacco, wheat and fission yeast cells. Further study showed that the three mito-carr domains are all needed to induce cell death. qRT-PCR analyses revealed an in-planta induced expression of PsANT during infection. Knockdown of PsANT using a host-induced gene silencing system (HIGS) attenuated the growth and development of virulent Pst at the early infection stage but not enough to alter its pathogenicity. These results provide new insight into the function of PsANT in fungal cell death and growth and might be useful in the search for and design of novel disease control strategies. PMID:26058921

  19. Decrease in nicotinamide adenine dinucleotide dehydrogenase is related to skin pigmentation.

    PubMed

    Nakama, Mitsuo; Murakami, Yuhko; Tanaka, Hiroshi; Nakata, Satoru

    2012-03-01

    Skin pigmentation is caused by various physical and chemical factors. It might also be influenced by changes in the physiological function of skin with aging. Nicotinamide adenine dinucleotide (NADH) dehydrogenase is an enzyme related to the mitochondrial electron transport system and plays a key role in cellular energy production. It has been reported that the functional decrease in this system causes Parkinson's disease. Another study reports that the amount of NADH dehydrogenase in heart and skeletal muscle decreases with aging. A similar decrease in the skin would probably affect its physiological function. However, no reports have examined the age-related change in levels of NADH dehydrogenase in human skin. In this study, we investigated this change and its effect on skin pigmentation using cultured human epidermal keratinocytes. The mRNA expression of NDUFA1, NDUFB7, and NDUFS2, subunits of NADH dehydrogenase, and its activity were significantly decreased in late passage keratinocytes compared to early passage cells. Conversely, the mRNA expression of melanocyte-stimulating cytokines, interleukin-1 alpha and endothelin 1, was increased in late passage cells. On the other hand, the inhibition of NADH dehydrogenase upregulated the mRNA expression of melanocyte-stimulating cytokines. Moreover, the level of NDUFB7 mRNA was lower in pigmented than in nonpigmented regions of skin in vivo. These results suggest the decrease in NADH dehydrogenase with aging to be involved in skin pigmentation.

  20. Magnitude of malate-aspartate reduced nicotinamide adenine dinucleotide shuttle activity in intact respiring tumor cells.

    PubMed

    Greenhouse, W V; Lehninger, A L

    1977-11-01

    Measurements of respiration, CO2 and lactate production, and changes in the levels of various key metabolites of the glycolytic sequence and tricarboxylic acid cycle were made on five lines of rodent ascites tumor cells (two strains of Ehrlich ascites tumor cells, Krebs II carcinoma, AS-30D carcinoma, and L1210 cells) incubated aerobically in the presence of uniformly labeled D-[14C]glucose. From these data, as well as earlier evidence demonstrating that the reduced nicotinamide adenine dinucleotide (NADH) shuttle in these cells requires a transaminase step and is thus identified as the malate-aspartate shuttle (W.V.V. Greenhouse and A.L. Lehninger, Cancer Res., 36: 1392-1396, 1976), metabolic flux diagrams were constructed for the five cell lines. These diagrams show the relative rates of glycolysis, the tricarboxylic acid cycle, electron transport, and the malate-aspartate shuttle in these tumors. Large amounts of cytosolic NADH were oxidized by the mitochondrial respiratory chain via the NADH shuttle, comprising anywhere from about 20 to 80% of the total flow of reducing equivalents to oxygen in these tumors. Calculations of the sources of energy for adenosine triphosphate synthesis indicated that on the average about one-third of the respiratory adenosine triphosphate is generated by electron flow originating from cytosolic NADH via the malate-aspartate shuttle.

  1. Content of Adenine Nucleotides and Orthophosphate in Exporting and Importing Mature Maize Leaves 1

    PubMed Central

    Eschrich, Walter; Fromm, Joerg

    1985-01-01

    Events of reactivation by re-illumination were studied in predarkened detached mature maize leaves, which were arranged as distal sources and proximal sinks; the latter were kept in CO2-free atmosphere and were either illuminated or darkened. Adenine nucleotide (AdN) content and orthophosphate (Pi) concentrations were measured 10 minutes, 30 minutes, and 2, 7, and 14 hours after the onset of re-illumination. For comparison, mature leaves attached to the plant were analyzed. The sum of AdN increased up to 7 hours of re-illumination, then dark sinks and their sources showed decreasing amounts of AdN, while the increase continued up to 14 hours in sources and illuminated sinks. In leaves attached to the plant, no further increase in AdN level followed the 7-hour mark. The amount of individual AdN (ATP, ADP, AMP) differed considerably in sources and sinks of the detached leaves. Although both the source supplying the illuminated sink and the source supplying the dark sink were treated the same, they showed striking differences in AdN contents. Such relations were also observed, when ATP/ADP ratios and Pi concentrations were compared. The influence a sink can exert on its source suggests a participation of the physiological events in the sink on the regulation of AdN and Pi metabolism in the source. PMID:16664246

  2. Adenine methylation in eukaryotes: Apprehending the complex evolutionary history and functional potential of an epigenetic modification

    PubMed Central

    Iyer, Lakshminarayan M.; Zhang, Dapeng

    2015-01-01

    While N6‐methyladenosine (m6A) is a well‐known epigenetic modification in bacterial DNA, it remained largely unstudied in eukaryotes. Recent studies have brought to fore its potential epigenetic role across diverse eukaryotes with biological consequences, which are distinct and possibly even opposite to the well‐studied 5‐methylcytosine mark. Adenine methyltransferases appear to have been independently acquired by eukaryotes on at least 13 occasions from prokaryotic restriction‐modification and counter‐restriction systems. On at least four to five instances, these methyltransferases were recruited as RNA methylases. Thus, m6A marks in eukaryotic DNA and RNA might be more widespread and diversified than previously believed. Several m6A‐binding protein domains from prokaryotes were also acquired by eukaryotes, facilitating prediction of potential readers for these marks. Further, multiple lineages of the AlkB family of dioxygenases have been recruited as m6A demethylases. Although members of the TET/JBP family of dioxygenases have also been suggested to be m6A demethylases, this proposal needs more careful evaluation. Also watch the Video Abstract. PMID:26660621

  3. Structural Basis for Avoidance of Promutagenic DNA Repair by MutY Adenine DNA Glycosylase*

    PubMed Central

    Wang, Lan; Lee, Seung-Joo; Verdine, Gregory L.

    2015-01-01

    The highly mutagenic A:oxoG (8-oxoguanine) base pair in DNA most frequently arises by aberrant replication of the primary oxidative lesion C:oxoG. This lesion is particularly insidious because neither of its constituent nucleobases faithfully transmit genetic information from the original C:G base pair. Repair of A:oxoG is initiated by adenine DNA glycosylase, which catalyzes hydrolytic cleavage of the aberrant A nucleobase from the DNA backbone. These enzymes, MutY in bacteria and MUTYH in humans, scrupulously avoid processing of C:oxoG because cleavage of the C residue in C:oxoG would actually promote mutagenic conversion to A:oxoG. Here we analyze the structural basis for rejection of C:oxoG by MutY, using a synthetic crystallography approach to capture the enzyme in the process of inspecting the C:oxoG anti-substrate, with which it ordinarily binds only fleetingly. We find that MutY uses two distinct strategies to avoid presentation of C to the enzyme active site. Firstly, MutY possesses an exo-site that serves as a decoy for C, and secondly, repulsive forces with a key active site residue prevent stable insertion of C into the nucleobase recognition pocket within the enzyme active site. PMID:25995449

  4. Mutations in adenine-binding pockets enhance catalytic properties of NAD(P)H-dependent enzymes.

    PubMed

    Cahn, J K B; Baumschlager, A; Brinkmann-Chen, S; Arnold, F H

    2016-01-01

    NAD(P)H-dependent enzymes are ubiquitous in metabolism and cellular processes and are also of great interest for pharmaceutical and industrial applications. Here, we present a structure-guided enzyme engineering strategy for improving catalytic properties of NAD(P)H-dependent enzymes toward native or native-like reactions using mutations to the enzyme's adenine-binding pocket, distal to the site of catalysis. Screening single-site saturation mutagenesis libraries identified mutations that increased catalytic efficiency up to 10-fold in 7 out of 10 enzymes. The enzymes improved in this study represent three different cofactor-binding folds (Rossmann, DHQS-like, and FAD/NAD binding) and utilize both NADH and NADPH. Structural and biochemical analyses show that the improved activities are accompanied by minimal changes in other properties (cooperativity, thermostability, pH optimum, uncoupling), and initial tests on two enzymes (ScADH6 and EcFucO) show improved functionality in Escherichia coli. PMID:26512129

  5. Preclinical evidence of mitochondrial nicotinamide adenine dinucleotide as an effective alarm parameter under hypoxia

    NASA Astrophysics Data System (ADS)

    Shi, Hua; Sun, Nannan; Mayevsky, Avraham; Zhang, Zhihong; Luo, Qingming

    2014-01-01

    Early detection of tissue hypoxia in the intensive care unit is essential for effective treatment. Reduced nicotinamide adenine dinucleotide (NADH) has been suggested to be the most sensitive indicator of tissue oxygenation at the mitochondrial level. However, no experimental evidence comparing the kinetics of changes in NADH and other physiological parameters has been provided. The aim of this study is to obtain the missing data in a systematic and reliable manner. We constructed four acute hypoxia models, including hypoxic hypoxia, hypemic hypoxia, circulatory hypoxia, and histogenous hypoxia, and measured NADH fluorescence, tissue reflectance, cerebral blood flow, respiration, and electrocardiography simultaneously from the induction of hypoxia until death. We found that NADH was not always the first onset parameter responding to hypoxia. The order of responses was mainly affected by the cause of hypoxia. However, NADH reached its alarm level earlier than the other monitored parameters, ranging from several seconds to >10 min. As such, we suggest that the NADH can be used as a hypoxia indicator, although the exact level that should be used must be further investigated. When the NADH alarm is detected, the body still has a chance to recover if appropriate and timely treatment is provided.

  6. Studies of yeast cell oxygenation and energetics by laser fluorometry of reduced nicotinamide adenine dinucleotide

    NASA Astrophysics Data System (ADS)

    Pan, Fu-shih; Chen, Stephen; Mintzer, Robert A.; Chen, Chin-Tu; Schumacker, Paul

    1991-03-01

    It is of fundamental importance for biological scientists to assess cellular energetics. Under aerobic conditions, the tricarboxylic acid cycle (TCA cycle) is coupled with the mitochondrial electron cascade pathway to provide the cell with energy. The nicotinamide adenine dinucleotide-conjugated pair (NAD and NADH) is the coenzyme in numerous important biomedical reactions which include several important dehydrogenase reactions in the TCA cycle. Based on Le Chatelier's principle, NADH will accumulate when this energy production mechanism is impaired. The relative amounts of NAD and NADH in a cell are defined as the redox state of the cell (Williamson et.al. 1967) which provides a valuable index of cellular energetics. The sum of the amounts of NAD and NADH in a cell may be assumed to be constant during a finite time; therefore, a reliable means of measuring the NADH concentration would provide us with a useful indicator of tissue viability. Traditionally, the quantities of NADH and NAD may be measured by chemical assay methods. We can avoid these tediois analyses by exploiting the significant difference between the ultraviolet absorption spectra of this redox pair. However, because of the opacity of biological samples and the interference of other biochemicals that also absorb ultraviolet radiation, measurement of NADH and NAD+ concentrations in vivo by absorption spectroscopy is not feasible.

  7. Poly-adenine-based programmable engineering of gold nanoparticles for highly regulated spherical DNAzymes.

    PubMed

    Zhu, Dan; Pei, Hao; Chao, Jie; Su, Shao; Aldalbahi, Ali; Rahaman, Mostafizur; Wang, Lihua; Wang, Lianhui; Huang, Wei; Fan, Chunhai; Zuo, Xiaolei

    2015-11-28

    Enzyme complexes are assembled at the two-dimensional lipid membrane or prearranged on three-dimensional scaffolding proteins to regulate their catalytic activity in cells. Inspired by nature, we have developed gold nanoparticle-based spherical DNAzymes (SNAzymes) with programmably engineered activities by exploiting poly-adenine (polyA)-Au interactions. In a SNAzyme, AuNPs serve as the metal core, which is decorated with a functional shell of DNAzymes. Conventional thiolated DNAzyme-based assembly leads to disordered structures with suppressed activity. In contrast, by using an anchoring block of polyA tails, we find that the activity of SNAzymes can be programmably regulated. By using a polyA30 tail, SNAzymes demonstrated remarkably enhanced binding affinity compared to the thiolated DNAzyme-based assembly (∼75-fold) or individual DNAzymes in the solution phase (∼10-fold). More significantly, this increased affinity is directly translated to the sensitivity improvement in the SNAzyme-based lead sensor. Hence, this design of SNAzymes may provide new opportunities for developing biosensors and bioimaging probes for theranostic applications.

  8. Nicotinamide adenine dinucleotide fluorescence spectroscopy and imaging of isolated cardiac myocytes.

    PubMed Central

    Eng, J; Lynch, R M; Balaban, R S

    1989-01-01

    Nicotinamide adenine dinucleotide (NADH) plays a critical role in oxidative phosphorylation as the primary source of reducing equivalents to the respiratory chain. Using a modified fluorescence microscope, we have obtained spectra and images of the blue autofluorescence from single rat cardiac myocytes. The optical setup permitted rapid acquisition of fluorescence emission spectra (390-595 nm) or intensified digital video images of individual myocytes. The spectra showed a broad fluorescence centered at 447 +/- 0.2 nm, consistent with mitochondrial NADH. Addition of cyanide resulted in a 100 +/- 10% increase in fluorescence, while the uncoupler FCCP resulted in a 82 +/- 4% decrease. These two transitions were consistent with mitochondrial NADH and implied that the myocytes were 44 +/- 6% reduced under the resting control conditions. Intracellular fluorescent structures were observed that correlated with the distribution of a mitochondrial selective fluorescent probe (DASPMI), the mitochondrial distribution seen in published electron micrographs, and a metabolic digital subtraction image of the cyanide fluorescence transition. These data are consistent with the notion that the blue autofluorescence of rat cardiac myocytes originates from mitochondrial NADH. Images FIGURE 9 FIGURE 10 FIGURE 2 FIGURE 3 FIGURE 8 FIGURE 11 PMID:2720061

  9. Comparison of glycogen and adenine nucleotides as indicators of metabolis stress in mummichogs

    SciTech Connect

    Vetter, R.D.; Hwang, H.M.; Hodson, R.E.

    1986-01-01

    Adenine nucleotide and glycogen concentrations were measured concurrently in white muscle of mummichogs Fundulus heteroclitus after the fish were exposed to stressors that either caused an increase in energy use (metabolic loading) or damaged metabolic function (toxic inhibition). When fish were exposed 4 h to 1% unbleached kraft mill effluent in the presence of 6 mg/L dissolved oxygen, glycogen and AMP concentrations significantly decreased below control values, whereas ATP, ADP, and total adenylate (TA) concentrations as well as the adenylate energy charge (AEC = (ATP + 1/2ADP)/TA) were unchanged. When dissolved oxygen was below 1 mg/L, the effluent caused significant decreases in glycogen, ATP, and TA, but not in ADP, AMP, or the AEC. The combined effect of effluent and hypoxia caused more significant drops in ATP or TA pool. When fish were exposed to 60..mu..g/L DDT for 4 h, none of the measured energy variables changed even though this concentration was lethal after several days. At a concentration of 100 ..mu..g/L DDT, all variables except ADP decreased significantly from control values, which may have reflected energy depletion of the muscle in response to nerve spasms rather than a direct toxic effect on the muscle itself.

  10. Enzyme activities and adenine nucleotide content in aorta, heart muscle and skeletal muscle from uraemic rats.

    PubMed Central

    Krog, M.; Ejerblad, S.; Agren, A.

    1986-01-01

    A prominent feature of arterial and myocardial lesions in uraemia is necrosis of the smooth muscle cells. In this study the possibility of detecting metabolic disturbances before necroses appear was investigated. The investigation was made on rats with moderate uraemia (mean serum creatinine 165 mumol/l) of 12 weeks duration. Enzyme activities and concentrations of adenine nucleotides were measured in aorta, heart and skeletal muscles. Histological examination disclosed no changes in these organs. Hexokinase, an important glycolytic enzyme, showed decreased activity in the skeletal muscle and aorta, whereas the hexosemonophosphate shunt enzyme glucose-6-phosphate dehydrogenase remained unchanged. The aspartate aminotransferase was increased in the skeletal muscle. Fat metabolism was not disturbed as reflected by unchanged activity of hydroxyacyl-CoA-dehydrogenase. Adenylatekinase which is important for the energy supply showed markedly increased activities in all tissues examined from the uraemic rats. Decreased ATP levels were found in the heart muscle and the aorta of the uraemic animals, whereas the total pool of adenosine phosphates remained unchanged in all tissues. The animal model described offers a useful means of detecting early changes in uraemia and should be useful for studying the effects of different treatments of uraemic complications. PMID:3718844

  11. DNA Adenine Methylase Mutants of Salmonella Typhimurium and a Novel Dam-Regulated Locus

    PubMed Central

    Torreblanca, J.; Casadesus, J.

    1996-01-01

    Mutants of Salmonella typhimurium lacking DNA adenine methylase were isolated; they include insertion and deletion alleles. The dam locus maps at 75 min between cysG and aroB, similar to the Escherichia coli dam gene. Dam(-) mutants of S. typhimurium resemble those of E. coli in the following phenotypes: (1) increased spontaneous mutations, (2) moderate SOS induction, (3) enhancement of duplication segregation, (4) inviability of dam recA and dam recB mutants, and (5) suppression of the inviability of the dam recA and dam recB combinations by mutations that eliminate mismatch repair. However, differences between S. typhimurium and E. coli dam mutants are also found: (1) S. typhimurium dam mutants do not show increased UV sensitivity, suggesting that methyl-directed mismatch repair does not participate in the repair of UV-induced DNA damage in Salmonella. (2) S. typhimurium dam recJ mutants are viable, suggesting that the Salmonella RecJ function does not participate in the repair of DNA strand breaks formed in the absence of Dam methylation. We also describe a genetic screen for detecting novel genes regulated by Dam methylation and a locus repressed by Dam methylation in the S. typhimurium virulence (or ``cryptic'') plasmid. PMID:8878670

  12. High-mobility Group Box-1 Protein Promotes Granulomatous Nephritis in Adenine-induced nephropathy

    PubMed Central

    Oyama, Yoko; Hashiguchi, Teruto; Taniguchi, Noboru; Tancharoen, Salunya; Uchimura, Tomonori; Biswas, Kamal K.; Kawahara, Ko-ichi; Nitanda, Takao; Umekita, Yoshihisa; Lotz, Martin; Maruyama, Ikuro

    2011-01-01

    Granulomatous nephritis can be triggered by diverse factors and results in kidney failure. However, despite accumulating data about granulomatous inflammation, pathogenetic mechanisms in nephritis remain unclear. The DNA-binding high-mobility group box-1 protein (HMGB1) initiates and propagates inflammation when released by activated macrophages, functions as an “alarm cytokine” signaling tissue damage. In this study, we demonstrated elevated HMGB1 expression in renal granulomas in rats with crystal-induced granulomatous nephritis caused by feeding an adenine-rich diet. HMGB1 levels were also raised in urine and serum, as well as monocyte chemoattractant protein-1 (MCP-1), a mediator of granulomatous inflammation. Injection of HMGB1 worsened renal function and upregulated MCP-1 in rats with crystal-induced granulomatous nephritis. HMGB1 also induced MCP-1 secretion through mitogen-activated protein kinase (MAPK) and phosphoinositide-3-kinase (PI3K) pathways in rat renal tubular epithelial cells in vitro. Hmgb1+/− mice with crystal-induced nephritis displayed reduced MCP-1 expression in the kidneys and in urine and the number of macrophages in the kidneys was significantly decreased. We conclude that HMGB1 is a new mediator involved in crystal-induced nephritis that amplifies granulomatous inflammation in a cycle where MCP-1 attracts activated macrophages, resulting in excessive and sustained HMGB1 release. HMGB1 could be a novel target for inhibiting chronic granulomatous diseases. PMID:20231821

  13. Nicotinamide adenine dinucleotide: An essential factor in preserving hearing in cisplatin-induced ototoxicity.

    PubMed

    Kim, Hyung-Jin; Oh, Gi-Su; Shen, AiHua; Lee, Su-Bin; Khadka, Dipendra; Pandit, Arpana; Shim, Hyeok; Yang, Sei-Hoon; Cho, Eun-Young; Song, Jeho; Kwak, Tae Hwan; Choe, Seong-Kyu; Park, Raekil; So, Hong-Seob

    2015-08-01

    Ototoxicity is an important issue in patients receiving cisplatin chemotherapy. Numerous studies have demonstrated that several mechanisms, including oxidative stress, DNA damage, and inflammatory responses, are closely associated with cisplatin-induced ototoxicity. Although much attention has been directed at identifying ways to protect the inner ear from cisplatin-induced damage, the precise underlying mechanisms have not yet been elucidated. The cofactor nicotinamide adenine dinucleotide (NAD(+)) has emerged as an important regulator of cellular energy metabolism and homeostasis. NAD(+) acts as a cofactor for various enzymes including sirtuins (SIRTs) and poly(ADP-ribose) polymerases (PARPs), and therefore, maintaining adequate NAD(+) levels has therapeutic benefits because of its effect on NAD(+)-dependent enzymes. Recent studies demonstrated that disturbance in intracellular NAD(+) levels is critically involved in cisplatin-induced cochlear damage associated with oxidative stress, DNA damage, and inflammatory responses. In this review, we describe the importance of NAD(+) in cisplatin-induced ototoxicity and discuss potential strategies for the prevention or treatment of cisplatin-induced ototoxicity with a particular focus on NAD(+)-dependent cellular pathways. PMID:25891352

  14. Partial purification of a 6-methyladenine mRNA methyltransferase which modifies internal adenine residues.

    PubMed Central

    Tuck, M T

    1992-01-01

    Two forms of a 6-methyladenine mRNA methyltransferase have been partially purified using a T7 transcript coding for mouse dihydrofolate reductase as an RNA substrate. Both enzyme forms modify internal adenine residues within the RNA substrate. The enzymes were purified 357- and 37-fold respectively from nuclear salt extracts prepared from HeLa cells using DEAE-cellulose and phosphocellulose chromatography. The activity of the first form of the enzyme eluted from DEAE-cellulose (major form) was at least 3-fold greater than that of the second (minor form). H.p.l.c. analysis of the hydrolysed, methylated mRNA substrates demonstrated that both forms of the enzyme produced only 6-methyladenine. The two forms of the enzyme differed in their RNA substrate specificity as well as in the dependence for a 5' cap structure. The 6-methyladenine mRNA methyltransferase activity was found to be elevated in HeLa nuclei as compared with nuclear extracts from rat kidney and brain. Enzymic activity could not be detected in nuclei from either normal rat liver or regenerating rat liver. In the case of the HeLa cell, activity could only be detected in nuclear extracts, with a small amount in the ribosomal fraction. Other HeLa subcellular fractions were void of activity. PMID:1445268

  15. Kinetic properties of nicotinic acid adenine dinucleotide phosphate-induced Ca2+ release.

    PubMed

    Genazzani, A A; Mezna, M; Summerhill, R J; Galione, A; Michelangeli, F

    1997-03-21

    Three endogenous molecules have now been shown to release Ca2+ in the sea urchin egg: inositol trisphosphate (InsP3), cyclic adenosine 5'-diphosphate ribose (cADPR), and nicotinic acid adenine dinucleotide phosphate (NAADP), a derivative of NADP. While the mechanism through which the first two molecules are able to release Ca2+ is established and well characterized with InsP3 and cADPR-activating InsP3 and ryanodine receptors, respectively, the newly described NAADP has been shown to release Ca2+ via an entirely different mechanism. The most striking feature of this novel Ca2+ release mechanism is its inactivation, since subthreshold concentrations of NAADP are able to fully and irreversibly desensitize the channel. In the present study we have investigated the fast kinetics of activation and inactivation of NAADP-induced Ca2+ release. NAADP was found to release Ca2+ in a biphasic manner, and such release was preceded by a pronounced latent period, which was inversely dependent on concentration. Moreover, the kinetic features of NAADP-induced Ca2+ release were not altered by pretreatment with low concentrations of NAADP, although the extent of Ca2+ release was greatly affected. Our data suggest that the inactivation of NAADP-induced Ca2+ release is an all-or-none phenomenon, and while some receptors have been fully inactivated, those that remain sensitive to NAADP do so without any change in kinetic features. PMID:9065423

  16. Structural Basis for Avoidance of Promutagenic DNA Repair by MutY Adenine DNA Glycosylase.

    PubMed

    Wang, Lan; Lee, Seung-Joo; Verdine, Gregory L

    2015-07-10

    The highly mutagenic A:oxoG (8-oxoguanine) base pair in DNA most frequently arises by aberrant replication of the primary oxidative lesion C:oxoG. This lesion is particularly insidious because neither of its constituent nucleobases faithfully transmit genetic information from the original C:G base pair. Repair of A:oxoG is initiated by adenine DNA glycosylase, which catalyzes hydrolytic cleavage of the aberrant A nucleobase from the DNA backbone. These enzymes, MutY in bacteria and MUTYH in humans, scrupulously avoid processing of C:oxoG because cleavage of the C residue in C:oxoG would actually promote mutagenic conversion to A:oxoG. Here we analyze the structural basis for rejection of C:oxoG by MutY, using a synthetic crystallography approach to capture the enzyme in the process of inspecting the C:oxoG anti-substrate, with which it ordinarily binds only fleetingly. We find that MutY uses two distinct strategies to avoid presentation of C to the enzyme active site. Firstly, MutY possesses an exo-site that serves as a decoy for C, and secondly, repulsive forces with a key active site residue prevent stable insertion of C into the nucleobase recognition pocket within the enzyme active site. PMID:25995449

  17. Wolbachia Prophage DNA Adenine Methyltransferase Genes in Different Drosophila-Wolbachia Associations

    PubMed Central

    Saridaki, Aggeliki; Sapountzis, Panagiotis; Harris, Harriet L.; Batista, Philip D.; Biliske, Jennifer A.; Pavlikaki, Harris; Oehler, Stefan; Savakis, Charalambos; Braig, Henk R.; Bourtzis, Kostas

    2011-01-01

    Wolbachia is an obligatory intracellular bacterium which often manipulates the reproduction of its insect and isopod hosts. In contrast, Wolbachia is an essential symbiont in filarial nematodes. Lately, Wolbachia has been implicated in genomic imprinting of host DNA through cytosine methylation. The importance of DNA methylation in cell fate and biology calls for in depth studing of putative methylation-related genes. We present a molecular and phylogenetic analysis of a putative DNA adenine methyltransferase encoded by a prophage in the Wolbachia genome. Two slightly different copies of the gene, met1 and met2, exhibit a different distribution over various Wolbachia strains. The met2 gene is present in the majority of strains, in wAu, however, it contains a frameshift caused by a 2 bp deletion. Phylogenetic analysis of the met2 DNA sequences suggests a long association of the gene with the Wolbachia host strains. In addition, our analysis provides evidence for previously unnoticed multiple infections, the detection of which is critical for the molecular elucidation of modification and/or rescue mechanism of cytoplasmic incompatibility. PMID:21573076

  18. Dietary adenine controls adult lifespan via adenosine nucleotide biosynthesis and AMPK, and regulates the longevity benefit of caloric restriction

    PubMed Central

    Stenesen, Drew; Suh, Jae Myoung; Seo, Jin; Yu, Kweon; Lee, Kyu-Sun; Kim, Jong-Seok; Min, Kyung-Jin; Graff, Jonathan M.

    2012-01-01

    SUMMARY A common thread among conserved lifespan regulators lies within intertwined roles in metabolism and energy homeostasis. We show that heterozygous mutations of adenosine monophosphate (AMP) biosynthetic enzymes extend Drosophila lifespan. The lifespan benefit of these mutations depends upon increased AMP to adenosine triphosphate (ATP) and adenosine diphosphate (ADP) to ATP ratios and adenosine monophosphate-activated protein kinase (AMPK). Transgenic expression of AMPK in adult fat body or adult muscle, key metabolic tissues, extended lifespan, while AMPK RNAi reduced lifespan. Supplementing adenine, a substrate for AMP biosynthesis, to the diet of long-lived AMP biosynthesis mutants reversed lifespan extension. Remarkably, this simple change in diet also blocked the pro-longevity effects of dietary restriction. These data establish AMP biosynthesis, adenosine nucleotide ratios, and AMPK as determinants of adult lifespan, provide a mechanistic link between cellular anabolism and energy sensing pathways, and indicate that dietary adenine manipulations might alter metabolism to influence animal lifespan. PMID:23312286

  19. Reduced nicotinamide adenine dinucleotide-activated phosphoenolpyruvate carboxylase in Pseudomonas MA: potential regulation between carbon assimilation and energy production.

    PubMed Central

    Newaz, S S; Hersh, L B

    1975-01-01

    Comparison of enzyme activities in crude extracts of methylamine-grown Pseudomonas MA (ATCC 23319) to those in succinate-grown cells indicates the involvement of an acetyl coenzyme A-independent phosphoenolpyruvate carboxylase in one-carbon metabolism. The purified phosphoenolpyruvate carboxylase is activated specifically by reduced nicotinamide adenine dinucleotide (KA = 0.2 mM). The regulatory properties of this enzyme suggests that phosphoenolpyruvate serves as a focal point for both carbon assimilation and energy metabolism. PMID:171253

  20. RESPIRATORY PATHWAYS IN THE MYCOPLASMA. II. PATHWAY OF ELECTRON TRANSPORT DURING OXIDATION OF REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE BY MYCOPLASMA HOMINIS.

    PubMed

    VANDEMARK, P J; SMITH, P F

    1964-07-01

    VanDemark, P. J. (University of South Dakota, Vermillion), and P. F. Smith. Respiratory pathways in the Mycoplasma. II. Pathway of electron transport during oxidation of reduced nicotinamide adenine dinucleotide by Mycoplasma hominis. J. Bacteriol. 88:122-129. 1964.-Unlike the flavin-terminated respiratory pathway of the fermentative Mycoplasma, the respiratory chain of the nonfermentative M. hominis strain 07 appears to be more complex, involving quinones and cytochromes in addition to flavins. In addition to reduction by reduced nicotine adenine dinucleotide (NADH) and reduced nicotine adenine dinucleotide phosphate, nonpyridine nucleotide-linked reduction of the respiratory chain of this organism occurred with succinate, lactate, and short-chained acyl coenzyme A derivatives as electron donors. Enzymes catalyzing the oxidation of NADH included an NADH oxidase, a diaphorase, a quinone reductase, and a cytochrome c reductase. The oxidation of NADH was sensitive to a variety of inhibitors, including 10(-4)m Atabrine, 10(-3)m sodium amytal, 10(-5)mp-chloromercuribenzoate, 10(-4)m antimycin A, and 10(-4)m potassium cyanide. The oxidase was resolved by the addition of 5% trichloroacetic acid and reactivated by the addition of flavin adenine dinucleotide but not flavin mononucleotide. The M. hominis sonic extract contained an NADH-coenzyme Q reductase. The oxidation of NADH was stimulated by the addition of either menadione or vitamin K(2) (C(35)). The oxidase was inactivated by extraction with ether or irradiation at 360 mmu. The ether-inactivated enzyme was partially reactivated by the addition of "lipid" extract of the enzyme and coenzyme Q(6). Difference spectra of the cell extracts revealed the presence of "b" and "a" type cytochromes. These cell extracts were found to contain a cyanide-and azide-sensitive cytochrome oxidase and catalase. PMID:14197876

  1. Quantitative analysis of the interaction between l-methionine derivative and oligonucleotides.

    PubMed

    Mota, Élia; Sousa, Fani; Queiroz, João A; Cruz, Carla

    2015-04-01

    This study explores the use of l-methionine derivative as a potential affinity ligand for nucleic acids purification. The l-methionine derivative is synthesized by activation of the carboxylic acid group with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide follow by immobilization on amine sensor surface, previously activated and treated with ethylenediamine. Their affinity towards oligonucleotides has been determined by surface plasmon resonance biosensor. The highest affinity is found for cytosine and thymine, followed by adenine, whereas the lowest affinity is found for guanine. For hetero-oligonucleotides the affinity order is CCCTTT > CCCAAA ≈ AAATTT > GGGTTT, showing that nucleotides with cytosine have the highest affinity, and the presence of guanine reduces the affinity, corroborating with the results obtained with homo-oligonucleotides.

  2. Guanine-Centric Self-Assembly of Nucleotides in Water: An Important Consideration in Prebiotic Chemistry

    PubMed Central

    Cassidy, Lauren M.; Burcar, Bradley T.; Stevens, Wyatt; Moriarty, Elizabeth M.

    2014-01-01

    Abstract Investigations of plausible prebiotic chemistry on early Earth must consider not only chemical reactions to form more complex products such as proto-biopolymers but also reversible, molecular self-assembly that would influence the availability, organization, and sequestration of reactant molecules. The self-assembly of guanosine compounds into higher-order structures and lyotropic liquid crystalline “gel” phases through formation of hydrogen-bonded guanine tetrads (G-tetrads) is one such consideration that is particularly relevant to an RNA-world scenario. G-tetrad-based gelation has been well studied for individual guanosine compounds and was recently observed in mixtures of guanosine with 5′-guanosine monophosphate (GMP) as well. The present work investigates the self-assembly of GMP in the presence of the other RNA nucleotides. Effects of the total concentration and relative proportion of the nucleotides in the mixtures, the form (disodium salt vs. free acid) of the nucleotides, temperature, pH, and salt concentration were determined by visual observations and circular dichroism (CD) spectroscopy. The results show that formation of cholesteric G-tetrad phases is influenced by interactions with other nucleotides, likely through association (e.g., intercalation) of the nucleotides with the G-tetrad structures. These interactions affect the structure and stability of the G-tetrad gel phase, as well as the formation of alternate self-assembled GMP structures such as a continuous, hydrogen-bonded GMP helix or dimers and aggregates of GMP. These interactions and multiple equilibria are influenced by the presence of cations, especially in the presence of K+. This work could have important implications for the emergence of an RNA or proto-RNA world, which would require mixtures of nucleotides at sufficiently high, local concentrations for abiotic polymerization to occur. Key Words: RNA world—Prebiotic chemistry—RNA polymerization

  3. Catching Functional Modes and Structural Communication in Dbl Family Rho Guanine Nucleotide Exchange Factors.

    PubMed

    Raimondi, Francesco; Felline, Angelo; Fanelli, Francesca

    2015-09-28

    Computational approaches such as Principal Component Analysis (PCA) and Elastic Network Model-Normal Mode Analysis (ENM-NMA) are proving to be of great value in investigating relevant biological problems linked to slow motions with no demand in computer power. In this study, these approaches have been coupled to the graph theory-based Protein Structure Network (PSN) analysis to dissect functional dynamics and structural communication in the Dbl family of Rho Guanine Nucleotide Exchange Factors (RhoGEFs). They are multidomain proteins whose common structural feature is a DH-PH tandem domain deputed to the GEF activity that makes them play a central role in cell and cancer biology. While their common GEF action is accomplished by the DH domain, their regulatory mechanisms are highly variegate and depend on the PH and the additional domains as well as on interacting proteins. Major evolutionary-driven deformations as inferred from PCA concern the α6 helix of DH that dictates the orientation of the PH domain. Such deformations seem to depend on the mechanisms adopted by the GEF to prevent Rho binding, i.e. functional specialization linked to autoinhibition. In line with PCA, ENM-NMA indicates α6 and the linked PH domain as the portions of the tandem domain holding almost the totality of intrinsic and functional dynamics, with the α6/β1 junction acting as a hinge point for the collective motions of PH. In contrast, the DH domain holds a static scaffolding and hub behavior, with structural communication playing a central role in the regulatory actions by other domains/proteins. Possible allosteric communication pathways involving essentially DH were indeed found in those RhoGEFs acting as effectors of small or heterotrimeric RasGTPases. The employed methodology is suitable for deciphering structure/dynamics relationships in large sets of homologous or analogous proteins.

  4. Guanine nucleotide-binding protein regulation of melatonin receptors in lizard brain

    SciTech Connect

    Rivkees, S.A.; Carlson, L.L.; Reppert, S.M. )

    1989-05-01

    Melatonin receptors were identified and characterized in crude membrane preparations from lizard brain by using {sup 125}I-labeled melatonin ({sup 125}I-Mel), a potent melatonin agonist. {sup 125}I-Mel binding sites were saturable; Scatchard analysis revealed high-affinity and lower affinity binding sites, with apparent K{sub d} of 2.3 {plus minus} 1.0 {times} 10{sup {minus}11} M and 2.06 {plus minus} 0.43 {times} 10{sup {minus}10} M, respectively. Binding was reversible and inhibited by melatonin and closely related analogs but not by serotonin or norepinephrine. Treatment of crude membranes with the nonhydrolyzable GTP analog guanosine 5{prime}-({gamma}-thio)triphosphate (GTP({gamma}S)), significantly reduced the number of high-affinity receptors and increased the dissociation rate of {sup 125}I-Mel from its receptor. Furthermore, GTP({gamma}S) treatment of ligand-receptor complexes solubilized by Triton X-100 also led to a rapid dissociation of {sup 125}I-Mel from solubilized ligand-receptor complexes. Gel filtration chromatography of solubilized ligand-receptor complexes revealed two major peaks of radioactivity corresponding to M{sub r} > 400,000 and M{sub r} ca. 110,000. This elution profile was markedly altered by pretreatment with GTP({gamma}S) before solubilization; only the M{sub r} 110,000 peak was present in GTP({gamma}S)-pretreated membranes. The results strongly suggest that {sup 125}I-mel binding sites in lizard brain are melatonin receptors, with agonist-promoted guanine nucleotide-binding protein (G protein) coupling and that the apparent molecular size of receptors uncoupled from G proteins is about 110,000.

  5. Transduction proteins of olfactory receptor cells: identification of guanine nucleotide binding proteins and protein kinase C

    SciTech Connect

    Anholt, R.R.H.; Mumby, S.M.; Stoffers, D.A.; Girard, P.R.; Kuo, J.F.; Snyder, S.H.

    1987-02-10

    The authors have analyzed guanine nucleotide binding proteins (G-proteins) in the olfactory epithelium of Rana catesbeiana using subunit-specific antisera. The olfactory epithelium contained the ..cap alpha.. subunits of three G-proteins, migrating on polyacrylamide gels in SDS with apparent molecular weights of 45,000, 42,000, and 40,000, corresponding to G/sub s/, G/sub i/, and G/sub o/, respectively. A single ..beta.. subunit with an apparent molecular weight of 36,000 was detected. An antiserum against the ..cap alpha.. subunit of retinal transducin failed to detect immunoreactive proteins in olfactory cilia detached from the epithelium. The olfactory cilia appeared to be enriched in immunoreactive G/sub s..cap alpha../ relative to G/sub ichemically bond/ and G/sub ochemically bond/ when compared to membranes prepared from the olfactory epithelium after detachment of the cilia. Bound antibody was detected by autoradiography after incubation with (/sup 125/I)protein. Immunohistochemical studies using an antiserum against the ..beta.. subunit of G-proteins revealed intense staining of the ciliary surface of the olfactory epithelium and of the axon bundles in the lamina propria. In contrast, an antiserum against a common sequence of the ..cap alpha.. subunits preferentially stained the cell membranes of the olfactory receptor cells and the acinar cells of Bowman's glands and the deep submucosal glands. In addition to G-proteins, they have identified protein kinase C in olfactory cilia via a protein kinase C specific antiserum and via phorbol ester binding. However, in contrast to the G-proteins, protein kinase C occurred also in cilia isolated from respiratory epithelium.

  6. Cloning and characterization of Ras-GRF2, a novel guanine nucleotide exchange factor for Ras.

    PubMed

    Fam, N P; Fan, W T; Wang, Z; Zhang, L J; Chen, H; Moran, M F

    1997-03-01

    Conversion of Ras proteins into an activated GTP-bound state able to bind effector proteins is catalyzed by specific guanine nucleotide exchange factors in response to a large number of extracellular stimuli. Here we report the isolation of mouse cDNAs encoding Ras-GRF2, a multidomain 135-kDa protein containing a COOH-terminal Cdc25-related domain that stimulates release of GDP from Ras but not other GTPases in vitro. Ras-GRF2 bound specifically to immobilized Ras lacking bound nucleotides, suggesting stabilization of the nucleotide-free form of Ras as a mechanism of catalyzing nucleotide exchange. The NH2-terminal region of Ras-GRF2 is predicted to contain features common to various signaling proteins including two pleckstrin homology domains and a Dbl homology region. Ras-GRF2 also contains an IQ motif which was required for its apparent constitutive association with calmodulin in epithelial cells ectopically expressing Ras-GRF2. Transient expression of Ras-GRF2 in kidney epithelial cells stimulated GTP binding by Ras and potentiated calcium ionophore-induced activation of mitogen-activated protein kinase (ERK1) dependent upon the IQ motif. Calcium influx caused Ras-GRF2 subcellular localization to change from cytosolic to peripheral, suggesting a possible mechanism for controlling Ras-GRF2 interactions with Ras at the plasma membrane. Epithelial cells overexpressing Ras-GRF2 are morphologically transformed and grow in a disorganized manner with minimal intercellular contacts. Northern analysis indicated a 9-kb GRF2 transcript in brain and lung, where p135 Ras-GRF2 is known to be expressed, and RNAs of 12 kb and 2.2 kb were detected in several tissues. Thus, Ras-GRF2 proteins with different domain structures may be widely expressed and couple diverse extracellular signals to Ras activation.

  7. Deciphering the photochemical mechanisms describing the UV-induced processes occurring in solvated guanine monophosphate

    NASA Astrophysics Data System (ADS)

    Altavilla, Salvatore; Segarra-Martí, Javier; Nenov, Artur; Conti, Irene; Rivalta, Ivan; Garavelli, Marco

    2015-04-01

    The photophysics and photochemistry of water-solvated guanine monophosphate (GMP) are here characterized by means of a multireference quantum-chemical/molecular mechanics theoretical approach (CASPT2//CASSCF/AMBER) in order to elucidate the main photo-processes occurring upon UV-light irradiation. The effect of the solvent and of the phosphate group on the energetics and structural features of this system are evaluated for the first time employing high-level ab initio methods and thoroughly compared to those in vacuo previously reported in the literature and to the experimental evidence to assess to which extent they influence the photoinduced mechanisms. Solvated electronic excitation energies of solvated GMP at the Franck-Condon (FC) region show a red shift for the ππ* La and Lb states, whereas the energy of the oxygen lone-pair nπ* state is blue-shifted. The main photoinduced decay route is promoted through a ring-puckering motion along the bright lowest-lying La state towards a conical intersection (CI) with the ground state, involving a very shallow stationary point along the minimum energy pathway in contrast to the barrierless profile found in gas-phase, the point being placed at the end of the minimum energy path (MEP) thus endorsing its ultrafast deactivation in accordance with time-resolved transient and photoelectron spectroscopy experiments. The role of the nπ* state in the solvated system is severely diminished as the crossings with the initially populated La state and also with the Lb state are placed too high energetically to partake prominently in the deactivation photo-process. The proposed mechanism present in solvated and in vacuo DNA/RNA chromophores validates the intrinsic photostability mechanism through CI-mediated non-radiative processes accompanying the bright excited-state population towards the ground state and subsequent relaxation back to the FC region.

  8. Pre-thymic somatic mutation leads to high mutant frequency at hypoxanthine-guanine phosphoribosyltransferase gene

    SciTech Connect

    Jett, J.

    1994-12-01

    While characterizing the background mutation spectrum of the Hypoxathine-guanine phosphoribosyltransferase (HPRT) gene in a healthy population, an outlier with a high mutant frequency of thioguanine resistant lymphocytes was found. When studied at the age of 46, this individual had been smoking 60 cigarettes per day for 38 years. His mutant frequency was calculated at 3.6 and 4.2x10{sup {minus}4} for two sampling periods eight months apart. Sequencing analysis of the HPRT gene in his mutant thioguanine resistant T lymphocytes was done to find whether the cells had a high rate of mutation, or if the mutation was due to a single occurrence of mutation and, if so, when in the T lymphocyte development the mutation occurred. By T-cell receptor analysis it has been found that out of 35 thioguanine resistant clones there was no dominant gamma T cell receptor gene rearrangement. During my appointment in the Science & Engineering Research Semester, I found that 34 of those clones have the same base substitution of G{yields}T at cDNA position 197. Due to the consistent mutant frequency from both sampling periods and the varying T cell receptors, the high mutant frequency cannot be due to recent proliferation of a mature mutant T lymphocyte. From the TCR and DNA sequence analysis we conclude that the G{yields}T mutation must have occurred in a T lymphocyte precursor before thymic differentiation so that the thioguanine resistant clones share the same base substitution but not the same gamma T cell receptor gene.

  9. The selective phosphorylation of a guanine nucleotide-binding regulatory protein

    SciTech Connect

    Carlson, K.E.

    1989-01-01

    Receptor-activated signal transduction pathways regulate the responsiveness of cells to external stimuli. These transduction pathways themselves are subject to regulation, most commonly by phosphorylation. Guanine nucleotide-binding regulatory proteins (G Proteins), as requisite signal transducing elements for many plasma membrane receptors, are considered likely targets for regulation by phosphorylation. Protein kinase C (PKC) has been shown to phosphorylate the {alpha} subunit of G{sub i} and other G proteins in solution. However, the occurrence of the phosphorylation of G{sub 1} within intact cells in response to activation of PKC has not been rigorously demonstrated. In this thesis, the extent to which the {alpha} subunits of G{sub i} undergo phosphorylation within human platelets in response to activation of PKC was examined by means of radiolabeling and immunoprecipitation. Incubation of platelets with phorbol-12-myristate-13-acetate (PMA), a potent activator of PKC, promoted the phosphorylation of several proteins within saponin-permeabilized and intact platelets incubated with ({gamma}{sup 32}P)ATP and ({sup 32}P)H{sub 3}PO{sub 4}, respectively. None of the phosphoproteins, however, were precipitated by either of two antisera containing antibodies differing in specificities for epitopes within G{sub i{alpha}}-despite precipitation of a substantial fraction of the subunit itself. In contrast, other antisera, containing antibodies specific for the recently describe G{sub z{alpha}}, or antibodies for both G{sub z{alpha}} and G{sub i{alpha}}, precipitated a 40-kDa phosphoprotein.

  10. Activation of JNK by Epac is independent of its activity as a Rap guanine nucleotide exchanger.

    PubMed

    Hochbaum, Daniel; Tanos, Tamara; Ribeiro-Neto, Fernando; Altschuler, Daniel; Coso, Omar A

    2003-09-01

    Guanine nucleotide exchange factors (GEFs) and their associated GTP-binding proteins (G-proteins) are key regulatory elements in the signal transduction machinery that relays information from the extracellular environment into specific intracellular responses. Among them, the MAPK cascades represent ubiquitous downstream effector pathways. We have previously described that, analogous to the Ras-dependent activation of the Erk-1/2 pathway, members of the Rho family of small G-proteins activate the JNK cascade when GTP is loaded by their corresponding GEFs. Searching for novel regulators of JNK activity we have identified Epac (exchange protein activated by cAMP) as a strong activator of JNK-1. Epac is a member of a growing family of GEFs that specifically display exchange activity on the Rap subfamily of Ras small G-proteins. We report here that while Epac activates the JNK severalfold, a constitutively active (G12V) mutant of Rap1b does not, suggesting that Rap-GTP is not sufficient to transduce Epac-dependent JNK activation. Moreover, Epac signaling to the JNKs was not blocked by inactivation of endogenous Rap, suggesting that Rap activation is not necessary for this response. Consistent with these observations, domain deletion mutant analysis shows that the catalytic GEF domain is dispensable for Epac-mediated activation of JNK. These studies identified a region overlapping the Ras exchange motif domain as critical for JNK activation. Consistent with this, an isolated Ras exchange motif domain from Epac is sufficient to activate JNK. We conclude that Epac signals to the JNK cascade through a new mechanism that does not involve its canonical catalytic action, i.e. Rap-specific GDP/GTP exchange. This represents not only a novel way to activate the JNKs but also a yet undescribed mechanism of downstream signaling by Epac.

  11. Electrochemical oxidation of dihydronicotinamide adenine dinucleotide at nitrogen-doped carbon nanotube electrodes.

    PubMed

    Goran, Jacob M; Favela, Carlos A; Stevenson, Keith J

    2013-10-01

    Nitrogen-doped carbon nanotubes (N-CNTs) substantially lower the overpotential necessary for dihydronicotinamide adenine dinucleotide (NADH) oxidation compared to nondoped CNTs or traditional carbon electrodes such as glassy carbon (GC). We observe a 370 mV shift in the peak potential (Ep) from GC to CNTs and another 170 mV shift from CNTs to 7.4 atom % N-CNTs in a sodium phosphate buffer solution (pH 7.0) with 2.0 mM NADH (scan rate 10 mV/s). The sensitivity of 7.4 atom % N-CNTs to NADH was measured at 0.30 ± 0.04 A M(-1) cm(-2), with a limit of detection at 1.1 ± 0.3 μM and a linear range of 70 ± 10 μM poised at a low potential of -0.32 V (vs Hg/Hg2SO4). NADH fouling, known to occur to the electrode surface during NADH oxidation, was investigated by measuring both the change in Ep and the resulting loss of electrode sensitivity. NADH degradation, known to occur in phosphate buffer, was characterized by absorbance at 340 nm and correlated with the loss of NADH electroactivity. N-CNTs are further demonstrated to be an effective platform for dehydrogenase-based biosensing by allowing glucose dehydrogenase to spontaneously adsorb onto the N-CNT surface and measuring the resulting electrode's sensitivity to glucose. The glucose biosensor had a sensitivity of 0.032 ± 0.003 A M(-1) cm(-2), a limit of detection at 6 ± 1 μM, and a linear range of 440 ± 50 μM.

  12. The two-photon excitation cross section of 6MAP, a fluorescent adenine analogue.

    PubMed

    Stanley, Robert J; Hou, Zhanjia; Yang, Aiping; Hawkins, Mary E

    2005-03-01

    6MAP is a fluorescent analogue of adenine that undergoes Watson-Crick base pairing and base stacking in double-stranded DNA. The one-photon absorption spectrum of 6MAP is characterized by a maximum around 330 nm with moderate quantum yield fluorescence centered at about 420 nm. To take advantage of this probe for confocal and single-molecule microscopy, it would be advantageous to be able to excite the analogue via two photons. We report the first determination of the two-photon excitation cross section and spectrum for 6MAP from 614 to 700 nm. The power dependence of the fluorescence indicates that emission results from the absorption of two photons. The one-photon and two-photon emission line shapes are identical within experimental error. A study of the concentration dependence of the fluorescence yield for one-photon excitation shows no measurable quenching up to about 5 microM. The maximum in the two-photon excitation spectrum gives a two-photon cross section, delta(TPE), of 3.4 +/- 0.1 Goeppert-Mayer (G.M.) at 659 nm, which correlates well with the one-photon absorption maximum. This compares quite favorably with cross sections of various naturally fluorescent biological molecules such as flavins and nicotiamide. In addition, we have also obtained the two-photon-induced fluorescence emission spectrum of quinine sulfate. It is approximately the same as that for one-photon excitation, suggesting that two-photon excitation of quinine sulfate may be used for calibration purposes.

  13. The two-photon excitation cross section of 6MAP, a fluorescent adenine analogue.

    PubMed

    Stanley, Robert J; Hou, Zhanjia; Yang, Aiping; Hawkins, Mary E

    2005-03-01

    6MAP is a fluorescent analogue of adenine that undergoes Watson-Crick base pairing and base stacking in double-stranded DNA. The one-photon absorption spectrum of 6MAP is characterized by a maximum around 330 nm with moderate quantum yield fluorescence centered at about 420 nm. To take advantage of this probe for confocal and single-molecule microscopy, it would be advantageous to be able to excite the analogue via two photons. We report the first determination of the two-photon excitation cross section and spectrum for 6MAP from 614 to 700 nm. The power dependence of the fluorescence indicates that emission results from the absorption of two photons. The one-photon and two-photon emission line shapes are identical within experimental error. A study of the concentration dependence of the fluorescence yield for one-photon excitation shows no measurable quenching up to about 5 microM. The maximum in the two-photon excitation spectrum gives a two-photon cross section, delta(TPE), of 3.4 +/- 0.1 Goeppert-Mayer (G.M.) at 659 nm, which correlates well with the one-photon absorption maximum. This compares quite favorably with cross sections of various naturally fluorescent biological molecules such as flavins and nicotiamide. In addition, we have also obtained the two-photon-induced fluorescence emission spectrum of quinine sulfate. It is approximately the same as that for one-photon excitation, suggesting that two-photon excitation of quinine sulfate may be used for calibration purposes. PMID:16851408

  14. Inhibition of the adenine nucleotide translocator by N-acetyl perfluorooctane sulfonamides in vitro

    SciTech Connect

    O'Brien, Timothy M. Oliveira, Paulo J.; Wallace, Kendall B.

    2008-03-01

    N-alkyl perfluorooctane sulfonamides have been widely used as surfactants on fabrics and papers, fire retardants, and anti-corrosion agents, among many other commercial applications. The global distribution and environmental persistence of these compounds has generated considerable interest regarding potential toxic effects. We have previously reported that perfluorooctanesulfonamidoacetate (FOSAA) and N-ethylperfluorooctanesulfonamidoacetate (N-EtFOSAA) induce the mitochondrial permeability transition (MPT) in vitro. In this study we tested the hypothesis that FOSAA and N-EtFOSAA interact with the adenine nucleotide translocator (ANT) resulting in a functional inhibition of the translocator and induction of the MPT. Respiration and membrane potential of freshly isolated liver mitochondria from Sprague-Dawley rats were measured using an oxygen electrode and a tetraphenylphosphonium-selective (TPP{sup +}) electrode, respectively. Mitochondrial swelling was measured spectrophotometrically. The ANT ligands bongkregkic acid (BKA) and carboxyatractyloside (cATR) inhibited uncoupling of mitochondrial respiration caused by 10 {mu}M N-EtFOSAA, 40 {mu}M FOSAA, and the positive control 8 {mu}M oleic acid. ADP-stimulated respiration and depolarization of mitochondrial membrane potential were inhibited by cATR, FOSAA, N-EtFOSAA, and oleic acid, but not by FCCP. BKA inhibited calcium-dependent mitochondrial swelling induced by FOSAA, N-EtFOSAA, and oleic acid. Seventy-five micromolar ADP also inhibited swelling induced by the test compounds, but cATR induced swelling was not inhibited by ADP. Results of this investigation indicate that N-acetyl perfluorooctane sulfonamides interact directly with the ANT to inhibit ADP translocation and induce the MPT, one or both of which may account for the metabolic dysfunction observed in vivo.

  15. Sodium thiosulfate protects brain in rat model of adenine induced vascular calcification.

    PubMed

    Subhash, N; Sriram, R; Kurian, Gino A

    2015-11-01

    Vascular bed calcification is a common feature of ends stage renal disease that may lead to a complication in cardiovascular and cerebrovascular beds, which is a promoting cause of myocardial infarction, stroke, dementia and aneurysms. Sodium thiosulfate (STS) due to its multiple properties such as antioxidant and calcium chelation has been reported to prevent vascular calcification in uremic rats, without mentioning its impact on cerebral function. Moreover, the previous studies have not explored the effect of STS on the mitochondrial dysfunction, one of the main pathophysiological features associated with the disease and the main site for STS metabolism. The present study addresses this limitation by using a rat model where 0.75% adenine was administered to induce vascular calcification and 400 mg/kg b wt. of STS was given as preventive and curative agent. The blood and urine chemistries along with histopathology of aorta confirms the renal protective effect of STS in two modes of administration. The brain oxidative stress assessment was made through TBARS level, catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities, found to be in the near normal level. STS administration not only reduced the mitochondrial oxidative stress (measured by TBARS, SOD, GPx and CAT) but also preserved the mitochondrial respiratory enzyme activities (NADH dehydrogenase, Succinate dehydrogenase and Malate dehydrogenase) and its physiology (measured by P/O ratio and RCR). In fact, the protective effect of STS was prominent, when it was administered as a curative agent, where low H2S and high thiosulfate level was observed along with low cystathionine β synthase activity, confirms thiosulfate mediated renal protection. In conclusion, STS when given after induction of calcification is protective to the brain by preserving its mitochondria, compared to the treatment given concomitantly. PMID:26363090

  16. Mitochondrial permeability transition as induced by cross-linking of the adenine nucleotide translocase.

    PubMed

    Zazueta, C; Reyes-Vivas, H; Zafra, G; Sánchez, C A; Vera, G; Chávez, E

    1998-04-01

    Mitochondrial permeability transition is caused by the opening of a transmembrane pore whose chemical nature has not been well established yet. The present work was aimed to further contribute to the knowledge of the membrane entity comprised in the formation of the non-specific channel. The increased permeability was established by analyzing the inability of rat kidney mitochondria to take up and accumulate Ca2+, as well as their failure to build up a transmembrane potential, after the cross-linking of membrane proteins by copper plus ortho-phenanthroline. To identify the cross-linked proteins, polyacrylamide gel electrophoresis was performed. The results are representative of at least three separate experiments. It is indicated that 30 microM Cu2+ induced the release of 4.3 nmol Ca2+ per mg protein. However, in the presence of 100 microM ortho-phenanthroline only 2 microM Cu2+ was required to attain the total release of the accumulated Ca2+; it should be noted that such a reaction is not inhibited by cyclosporin. The increased permeability corresponds to cross-linking of membrane proteins in which approximately 4 nmol thiol groups per mg protein appear to be involved. Such a linking process is inhibited by carboxyatractyloside. By using the fluorescent probe eosin-5-maleimide the label was found in a cross-linking 60 kDa dimer of two 30 kDa monomers. From the data presented it is concluded that copper-o-phenanthroline induces the intermolecular cross-linking of the adenine nucleotide translocase which in turn is converted to non-specific pore. PMID:9675885

  17. Sodium thiosulfate protects brain in rat model of adenine induced vascular calcification.

    PubMed

    Subhash, N; Sriram, R; Kurian, Gino A

    2015-11-01

    Vascular bed calcification is a common feature of ends stage renal disease that may lead to a complication in cardiovascular and cerebrovascular beds, which is a promoting cause of myocardial infarction, stroke, dementia and aneurysms. Sodium thiosulfate (STS) due to its multiple properties such as antioxidant and calcium chelation has been reported to prevent vascular calcification in uremic rats, without mentioning its impact on cerebral function. Moreover, the previous studies have not explored the effect of STS on the mitochondrial dysfunction, one of the main pathophysiological features associated with the disease and the main site for STS metabolism. The present study addresses this limitation by using a rat model where 0.75% adenine was administered to induce vascular calcification and 400 mg/kg b wt. of STS was given as preventive and curative agent. The blood and urine chemistries along with histopathology of aorta confirms the renal protective effect of STS in two modes of administration. The brain oxidative stress assessment was made through TBARS level, catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities, found to be in the near normal level. STS administration not only reduced the mitochondrial oxidative stress (measured by TBARS, SOD, GPx and CAT) but also preserved the mitochondrial respiratory enzyme activities (NADH dehydrogenase, Succinate dehydrogenase and Malate dehydrogenase) and its physiology (measured by P/O ratio and RCR). In fact, the protective effect of STS was prominent, when it was administered as a curative agent, where low H2S and high thiosulfate level was observed along with low cystathionine β synthase activity, confirms thiosulfate mediated renal protection. In conclusion, STS when given after induction of calcification is protective to the brain by preserving its mitochondria, compared to the treatment given concomitantly.

  18. Adenine Nucleotide Translocase 4 Is Expressed Within Embryonic Ovaries and Dispensable During Oogenesis

    PubMed Central

    Lim, Chae Ho; Brower, Jeffrey V.; Resnick, James L.; Oh, S. Paul

    2015-01-01

    Adenine nucleotide translocase (Ant) facilitates the exchange of adenosine triphosphate across the mitochondrial inner membrane and plays a critical role for bioenergetics in eukaryotes. Mice have 3 Ant paralogs, Ant1 (Slc25a4), Ant2 (Slc25a5), and Ant4 (Slc25a31), which are expressed in a tissue-dependent manner. We previously identified that Ant4 was expressed exclusively in testicular germ cells in adult mice and essential for spermatogenesis and subsequently male fertility. Further investigation into the process of spermatogenesis revealed that Ant4 was particularly highly expressed during meiotic prophase I and indispensable for normal progression of leptotene spermatocytes to the stages thereafter. In contrast, the expression and roles of Ant4 in female germ cells have not previously been elucidated. Here, we demonstrate that the Ant4 gene is expressed during embryonic ovarian development during which meiotic prophase I occurs. We confirmed embryonic ovary-specific Ant4 expression using a bacterial artificial chromosome transgene. In contrast to male, however, Ant4 null female mice were fertile although the litter size was slightly decreased. They showed apparently normal ovarian development which was morphologically indistinguishable from the control animals. These data indicate that Ant4 is a meiosis-specific gene expressed during both male and female gametogenesis however indispensable only during spermatogenesis and not oogenesis. The differential effects of Ant4 depletion within the processes of male and female gametogenesis may be explained by meiosis-specific inactivation of the X-linked Ant2 gene in male, a somatic paralog of the Ant4 gene. PMID:25031318

  19. Development and Evaluation of Solid Lipid Nanoparticles of N-6-Furfuryl Adenine for Prevention of Photoaging.

    PubMed

    Goindi, Shishu; Guleria, Ankita; Aggarwal, Nidhi

    2015-10-01

    N-6-furfuryl adenine (N6FA) also known as "kinetin" is a biologically active natural phytochemical. It belongs to the category of cytokinins, the natural plant growth hormones that promote cell division and play role in cell differentiation. Overall, N6FA aids in increasing the plant's life span. Human cells also contain.small quantities of N6FA. Scientists are trying to understand its function in humans. N6FA is being investigated for its properties such as antiplatelet, antioxidant, antiproliferative and anti-aging effects on human cells. The aim of the present investigation was to prepare solid lipid nanoparticle (SLN) based topical formulations of N6FA and to evaluate its efficacy against ultraviolet (UV) radiation induced skin photodamage. SLNs were prepared by hot microemulsion technique and optimized for the type and concentration of lipid and surfactant(s). The optimized SLN formulation was characterized in terms of particle size, drug entrapment efficiency, zeta potential and pH; evaluated for stability, spreadability, ex-vivo skin permeation and photoprotective effects against UV induced skin damage. The cumulative amount of drug permeated through mice skin using SLNs was 3 folds higher than from conventional cream base. The results of biochemical and histopathological investigations of skin treated with N6FA loaded SLNs clearly demonstrated the efficacy of optimized formulation in preventing photodamage (lesions, ulcers and changes in skin integrity) due to chronic UV exposure. The effects were comparable with widely used marketed formulation, Garnier wrinkle lift anti-aging cream. Results suggested that N6FA incorporated into SLNs may provide therapeutic as well as cosmeceutical benefits. PMID:26502637

  20. Synthesis and in vivo evaluation of prodrugs of 9-[2-(phosphonomethoxy)ethoxy]adenine.

    PubMed

    Serafinowska, H T; Ashton, R J; Bailey, S; Harnden, M R; Jackson, S M; Sutton, D

    1995-04-14

    A number of esters and amides of the anti-HIV nucleotide analogue 9-[2-(phosphonomethoxy)-ethoxy]adenine (1) have been synthesized as potential prodrugs and evaluated for oral bioavailability in mice. Dialkyl esters 17-20 were prepared via a Mitsunobu coupling of alcohols 8-11 with 9-hydroxypurine 12 whereas (acyloxy)alkyl esters 25-33 and bis-[(alkoxycarbonyl)methyl] and bis(amidomethyl) esters 34-39 were obtained by reaction of 1 with a suitable alkylating agent. Phosphonodichloridate chemistry was employed for the preparation of dialkyl and diaryl esters 42-65, and bis(phosphonoamidates) 66 and 67. Following oral administration to mice, most of the dialkyl esters 17-20 were well-absorbed and then converted to the corresponding monoesters, but minimal further metabolism to 1 occurred. Bis[(pivaloyloxy)methyl] ester 25 displayed an oral bioavailability of 30% that was 15-fold higher than the bioavailability observed after dosing of 1. Methyl substitution at the alpha carbon of the bis[(pivaloyloxy)methyl] ester 25 (33) increased the oral bioavailability of 1 to 74%. Some of the diaryl esters also showed improved absorption properties in comparison with that of 1. In particular, the crystalline hydrochloride salt of diphenyl ester 55 was well-absorbed and efficiently converted to the parent compound with an oral bioavailability of 50%. On the basis of these results as well as the physicochemical properties of the prodrugs and their stability in mouse duodenal contents, the hydrochloride salt of diphenyl ester 55 was identified as the preferred prodrug of 1. PMID:7731022