Sample records for adenine-induced chronic renal

  1. Effect of atracylodes rhizome polysaccharide in rats with adenine-induced chronic renal failure.

    PubMed

    Yang, C; Liu, C; Zhou, Q; Xie, Y C; Qiu, X M; Feng, X

    2015-01-01

    The aim of the study was to elucidate the therapeutic effects of Atracylodes rhizome polysaccharide on adenine-induced chronic renal failure in rats. Fifty male Sprague Dawley rats were selected and randomly divided in to 5 groups (n=10 rats per group): The normal control group, the chronic renal failure pathological control group, the dexamethasone treatment group and two Atracylodes rhizome polysaccharide treatment groups, treated with two different concentrations of the polysaccharide, the Atracylodes rhizome polysaccharide high group and the Atracylodes rhizome polysaccharide low group. All the rats, except those in the normal control group were fed adenine-enriched diets, containing 10 g adenine per kg food for 3 weeks. After being fed with adenine, the dexamethasone treatment group, Atracylodes rhizome polysaccharide high group and Atracylodes rhizome polysaccharide low group rats were administered the drug orally for 2 weeks. On day 35, the kidney coefficient of the rats and the serum levels of creatinine, blood urea nitrogen, total protein and hemalbumin were determined. Subsequent to experimentation on a model of chronic renal failure in rats, the preparation was proven to be able to reduce serum levels of creatinine, blood urea nitrogen and hemalbumin levels (P<0.05) and improve renal function. Atracylodes rhizome polysaccharide had reversed the majority of the indices of chronic renal failure in rats.

  2. Quercetin Attenuates Vascular Calcification through Suppressed Oxidative Stress in Adenine-Induced Chronic Renal Failure Rats.

    PubMed

    Chang, Xue-Ying; Cui, Lei; Wang, Xing-Zhi; Zhang, Lei; Zhu, Dan; Zhou, Xiao-Rong; Hao, Li-Rong

    2017-01-01

    This study investigated whether quercetin could alleviate vascular calcification in experimental chronic renal failure rats induced by adenine. 32 adult male Wistar rats were randomly divided into 4 groups fed normal diet, normal diet with quercetin supplementation (25 mg/kg·BW/d), 0.75% adenine diet, or adenine diet with quercetin supplementation. All rats were sacrificed after 6 weeks of intervention. Serum renal functions biomarkers and oxidative stress biomarkers were measured and status of vascular calcification in aorta was assessed. Furthermore, the induced nitric oxide synthase (iNOS)/p38 mitogen activated protein kinase (p38MAPK) pathway was determined to explore the potential mechanism. Adenine successfully induced renal failure and vascular calcification in rat model. Quercetin supplementation reversed unfavorable changes of phosphorous, uric acid (UA) and creatinine levels, malonaldehyde (MDA) content, and superoxide dismutase (SOD) activity in serum and the increases of calcium and alkaline phosphatase (ALP) activity in the aorta ( P < 0.05) and attenuated calcification and calcium accumulation in the medial layer of vasculature in histopathology. Western blot analysis showed that iNOS/p38MAPK pathway was normalized by the quercetin supplementation. Quercetin exerted a protective effect on vascular calcification in adenine-induced chronic renal failure rats, possibly through the modulation of oxidative stress and iNOs/p38MAPK pathway.

  3. Quercetin Attenuates Vascular Calcification through Suppressed Oxidative Stress in Adenine-Induced Chronic Renal Failure Rats

    PubMed Central

    Chang, Xue-ying; Cui, Lei; Wang, Xing-zhi; Zhang, Lei; Zhu, Dan

    2017-01-01

    Background This study investigated whether quercetin could alleviate vascular calcification in experimental chronic renal failure rats induced by adenine. Methods 32 adult male Wistar rats were randomly divided into 4 groups fed normal diet, normal diet with quercetin supplementation (25 mg/kg·BW/d), 0.75% adenine diet, or adenine diet with quercetin supplementation. All rats were sacrificed after 6 weeks of intervention. Serum renal functions biomarkers and oxidative stress biomarkers were measured and status of vascular calcification in aorta was assessed. Furthermore, the induced nitric oxide synthase (iNOS)/p38 mitogen activated protein kinase (p38MAPK) pathway was determined to explore the potential mechanism. Results Adenine successfully induced renal failure and vascular calcification in rat model. Quercetin supplementation reversed unfavorable changes of phosphorous, uric acid (UA) and creatinine levels, malonaldehyde (MDA) content, and superoxide dismutase (SOD) activity in serum and the increases of calcium and alkaline phosphatase (ALP) activity in the aorta (P < 0.05) and attenuated calcification and calcium accumulation in the medial layer of vasculature in histopathology. Western blot analysis showed that iNOS/p38MAPK pathway was normalized by the quercetin supplementation. Conclusions Quercetin exerted a protective effect on vascular calcification in adenine-induced chronic renal failure rats, possibly through the modulation of oxidative stress and iNOs/p38MAPK pathway. PMID:28691026

  4. Prolonged Pulmonary Exposure to Diesel Exhaust Particles Exacerbates Renal Oxidative Stress, Inflammation and DNA Damage in Mice with Adenine-Induced Chronic Renal Failure.

    PubMed

    Nemmar, Abderrahim; Karaca, Turan; Beegam, Sumaya; Yuvaraju, Priya; Yasin, Javed; Hamadi, Naserddine Kamel; Ali, Badreldin H

    2016-01-01

    Epidemiological evidence indicates that patients with chronic kidney diseases have increased susceptibility to adverse outcomes related to long-term exposure to particulate air pollution. However, mechanisms underlying these effects are not fully understood. Presently, we assessed the effect of prolonged exposure to diesel exhaust particles (DEP) on chronic renal failure induced by adenine (0.25% w/w in feed for 4 weeks), which is known to involve inflammation and oxidative stress. DEP (0.5m/kg) was intratracheally (i.t.) instilled every 4th day for 4 weeks (7 i.t. instillation). Four days following the last exposure to either DEP or saline (control), various renal endpoints were measured. While body weight was decreased, kidney weight increased in DEP+adenine versus saline+adenine or DEP. Water intake, urine volume, relative kidney weight were significantly increased in adenine+DEP versus DEP and adenine+saline versus saline. Plasma creatinine and urea increased and creatinine clearance decreased in adenine+DEP versus DEP and adenine+saline versus saline. Tumor necrosis factor α, lipid peroxidation and reactive oxygen species were significantly increased in adenine+DEP compared with either DEP or adenine+saline. The antioxidant calase was significantly decreased in adenine+DEP compared with either adenine+saline or DEP. Notably, renal DNA damage was significantly potentiated in adenine+DEP compared with either adenine+saline or DEP. Similarly, systolic blood pressure was increased in adenine+DEP versus adenine+saline or DEP, and in DEP versus saline. Histological evaluation revealed more collagen deposition, higher number of necrotic cell counts and dilated tubules, cast formation and collapsing glomeruli in adenine+DEP versus adenine+saline or DEP. Prolonged pulmonary exposure to diesel exhaust particles worsen renal oxidative stress, inflammation and DNA damage in mice with adenine-induced chronic renal failure. Our data provide biological plausibility that air

  5. Effects of low-molecular-weight-chitosan on the adenine-induced chronic renal failure rats in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Zhi, Xuan; Han, Baoqin; Sui, Xianxian; Hu, Rui; Liu, Wanshun

    2015-02-01

    The effects of low-molecular-weight-chitosan (LMWC) on chronic renal failure (CRF) rats induced by adenine were investigated in vivo and in vitro. Chitosan were hydrolyzed using chitosanase at pH 6-7 and 37° for 24 h to obtain LMWC. In vitro, the effect of LMWC on the proliferation of renal tubular epithelial cells (RTEC) showed that it had no cytotoxic effect and could promote cell growth. For the in vivo experiment, chronic renal failure rats induced by adenine were randomly divided into control group, Niaoduqing group, and high-, medium- and low-dose LMWC groups. For each group, we detected serum creatinine (SCR), blood urea nitrogen (BUN), and total superoxide dismutase (T-SOD), glutathione oxidase (GSH-Px) activities of renal tissue, and obtained the ratio of kidney weight/body weight, pathological changes of kidney. The levels of serum SCR, BUN were higher in the adenine-induced rats than those in the control group, indicating that the rat chronic renal failure model worked successfully. The results after treatment showed that LMWC could reduce the SCR and BUN levels and enhance the activities/levels of T-SOD and GSH-PX in kidney compared to control group. Histopathological examination revealed that adenine-induced renal alterations were restored by LMWC at three tested dosages, especially at the low dosage of 100 mg kg-1 d-1.

  6. Erhuang Formula ameliorates renal damage in adenine-induced chronic renal failure rats via inhibiting inflammatory and fibrotic responses.

    PubMed

    Zhang, Chun-Yan; Zhu, Jian-Yong; Ye, Ying; Zhang, Miao; Zhang, Li-Jun; Wang, Su-Juan; Song, Ya-Nan; Zhang, Hong

    2017-11-01

    The present study aimed to evaluate the protective effects of Erhuang Formula (EHF) and explore its pharmacological mechanisms on adenine-induced chronic renal failure (CRF). The compounds in EHF were analyzed by HPLC/MS. Adenine-induced CRF rats were administrated by EHF. The effects were evaluated by renal function examination and histology staining. Immunostaining of some proteins related cell adhesion was performedin renal tissues, including E-cadherin, β-catenin, fibronectin and laminin. The qRT-PCR was carried out determination of gene expression related inflammation and fibrosis including NF-κB, TNF-α, TGF-β1, α-SMA and osteopontin (OPN). Ten compounds in EHF were identified including liquiritigenin, farnesene, vaccarin, pachymic acid, cycloastragenol, astilbin, 3,5,6,7,8,3',4'-heptemthoxyflavone, physcion, emodin and curzerene. Abnormal renal function and histology had significant improvements by EHF treatment. The protein expression of β-catenin, fibronectin and laminin were significantly increased and the protein expression of E-cadherin significantly decreased in CRF groups. However, these protein expressions were restored to normal levels in EHF group. Furthermore, low expression of PPARγ and high expression of NF-κB, TNF-α, TGF-β1, α-SMA and OPN were substantially restored by EHF treatment in a dose-dependent manner. EHF ameliorated renal damage in adenine-induced CRF rats, and the mechanisms might involve in the inhibition of inflammatory and fibrotic responses and the regulation of PPARγ, NF-κB and TGF-β signaling pathways. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Gum acacia mitigates genetic damage in adenine-induced chronic renal failure in rats.

    PubMed

    Ali, B H; Al Balushi, K; Al-Husseini, I; Mandel, P; Nemmar, A; Schupp, N; Ribeiro, D A

    2015-12-01

    Subjects with chronic renal failure (CRF) exhibit oxidative genome damage, which may predispose to carcinogenesis, and Gum acacia (GumA) ameliorates this condition in humans and animals. We evaluated here renal DNA damage and urinary excretion of four nucleic acid oxidation adducts namely 8-oxoguanine (8-oxoGua), 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), 8-oxoguanosine (8-oxoGuo) and 8-hydroxy-2-deoxyguanisone (8-OHdg) in rats with adenine (ADE)-induced CRF with and without GumA treatment. Twenty-four rats were divided into four equal groups and treated for 4 weeks. The first group was given normal food and water (control). The second group was given normal food and GumA (15% w/v) in drinking water. The third group was fed powder diet containing adenine (ADE) (0·75% w/w in feed). The fourth group was fed like in the third group, plus GumA in drinking water (15%, w/v). ADE feeding induced CRF (as measured by several physiological, biochemical and histological indices) and also caused a significant genetic damage and significant decreases in urinary 8-oxo Gua and 8-oxoGuo, but not in the other nucleic acids. However, concomitant GumA treatment reduced the level of genetic damage in kidney cells as detected by Comet assay and significantly reversed the effect of adenine on urinary 8-oxoGuo. Treatment with GumA is able to mitigate genetic damage in renal tissues of rats with ADE-induced CRF. © 2015 Stichting European Society for Clinical Investigation Journal Foundation.

  8. High-NaCl diet impairs dynamic renal blood flow autoregulation in rats with adenine-induced chronic renal failure.

    PubMed

    Saeed, Aso; DiBona, Gerald F; Grimberg, Elisabeth; Nguy, Lisa; Mikkelsen, Minne Line Nedergaard; Marcussen, Niels; Guron, Gregor

    2014-03-15

    This study examined the effects of 2 wk of high-NaCl diet on kidney function and dynamic renal blood flow autoregulation (RBFA) in rats with adenine-induced chronic renal failure (ACRF). Male Sprague-Dawley rats received either chow containing adenine or were pair-fed an identical diet without adenine (controls). After 10 wk, rats were randomized to either remain on the same diet (0.6% NaCl) or to be switched to high 4% NaCl chow. Two weeks after randomization, renal clearance experiments were performed under isoflurane anesthesia and dynamic RBFA, baroreflex sensitivity (BRS), systolic arterial pressure variability (SAPV), and heart rate variability were assessed by spectral analytical techniques. Rats with ACRF showed marked reductions in glomerular filtration rate and renal blood flow (RBF), whereas mean arterial pressure and SAPV were significantly elevated. In addition, spontaneous BRS was reduced by ∼50% in ACRF animals. High-NaCl diet significantly increased transfer function fractional gain values between arterial pressure and RBF in the frequency range of the myogenic response (0.06-0.09 Hz) only in ACRF animals (0.3 ± 4.0 vs. -4.4 ± 3.8 dB; P < 0.05). Similarly, a high-NaCl diet significantly increased SAPV in the low-frequency range only in ACRF animals. To conclude, a 2-wk period of a high-NaCl diet in ACRF rats significantly impaired dynamic RBFA in the frequency range of the myogenic response and increased SAPV in the low-frequency range. These abnormalities may increase the susceptibility to hypertensive end-organ injury and progressive renal failure by facilitating pressure transmission to the microvasculature.

  9. Zhen-wu-tang ameliorates adenine-induced chronic renal failure in rats: regulation of the canonical Wnt4/beta-catenin signaling in the kidneys.

    PubMed

    La, Lei; Wang, Lili; Qin, Fei; Jiang, Jian; He, Songqi; Wang, Chunxia; Li, Yuhao

    2018-06-12

    Zhen-wu-tang (ZWT), composed of Radix Aconiti lateralis, Rhizoma Atractylodis macrocephalae, Poria, Radix Paeoniae alba and ginger, is a classic Chinese herbal formula for the treatment of chronic kidney diseases that may cause chronic renal failure (CRF). To better understand its clinical use, this study investigated the effects and underlying mechanisms of action of ZWT on CRF. CRF was induced by adenine. ZWT was given via an oral gavage method. The serum biochemical parameters were measured enzymatically or by ELISA. The kidneys were examined pathohistologically. The gene expression was analyzed by real time PCR and Western blot. Similar to the positive control losartan, ZWT extract inhibited adenine-induced increase in serum concentrations of creatinine, BUN and advanced oxidation protein products in rats. These effects were accompanied by attenuation of proteinuria and renal pathological changes and suppression of renal mRNA and protein overexpression of Collagen IV and fibronectin, two of the key components of fibrosis. Mechanistically, renal mRNA and protein expression of Wnt4, a Wnt signaling ligand, was increased in the adenine-treated group, compared to the vehicle-treated control. Consistently, Wnt4 downstream genes beta-catenin and Axin were also overexpressed. Treatment with ZWT extract and losartan suppressed adenine-stimulated overexpression of these mRNAs and proteins. The present results demonstrate that ZWT extract ameliorates adenine-induced CRF in rats by regulation of the canonical Wnt4/beta-catenin signaling in the kidneys. Our findings provide new insight into the underlying renoprotective mechanisms of the ancient formula. Copyright © 2017. Published by Elsevier B.V.

  10. Ameliorative effect of ursolic acid on renal fibrosis in adenine-induced chronic kidney disease in rats.

    PubMed

    Thakur, Richa; Sharma, Anshuk; Lingaraju, Madhu C; Begum, Jubeda; Kumar, Dhirendra; Mathesh, Karikalan; Kumar, Pawan; Singh, Thakur Uttam; Kumar, Dinesh

    2018-05-01

    Ursolic acid (UA), an ursane-type pentacyclic triterpenoid commonly found in apple peels and holy basil has been shown to possess many beneficial effects. Renal fibrosis is a complication of kidney injury and associated with increased risk of morbidity and mortality. In our previous investigation, a lupane-type pentacyclic triterpenoid, betulinic acid (BA) was found to have protective effect on chronic kidney disease (CKD) and renal fibrosis. This prompted us to explore the therapeutic value of UA, a chemically related compound to BA in CKD. CKD was induced by feeding adenine with the feed at a concentration of 0.75% for 28 days. UA at the dose rate of 30 mg/kg in 0.5% carboxy methyl cellulose (CMC) was administered by oral route, simultaneously with adenine feeding for 28 days. Adenine feeding increased the kidney weight to body weight index, decreased the kidney function due to injury as indicated by increased markers like serum urea, uric acid, creatinine, cystatin C and neutrophil gelatinase-associated lipocalin (NGAL) and initiated the fibrotic response in kidney by increasing the profibrotic proteins viz. transforming growth factor-beta (TGF-β), connective tissue growth factor (CTGF), fibronectin and collagen. However, treatment with UA reversed the damage induced by adenine as shown by reduced kidney injury and fibrosis markers which was further clearly evident in histological picture indicating the suitability of UA for use in CKD. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  11. Chinese herbal medicine Shenqi Detoxification Granule inhibits fibrosis in adenine induced chronic renal failure rats.

    PubMed

    Peng, Min; Cai, Pingping; Ma, Hongbo; Meng, Hongyan; Xu, Yuan; Zhang, Xiaoyi; Si, Guomin

    2014-01-01

    Progressive fibrosis accompanies all chronic renal disease, connective tissue growth factor (CTGF,) and platelet-derived growth factor-B, (PDGF-B,) play important roles in extra-cellular matrix abnormal accumulation, while endothelin-1 (ET-1) nitric oxide (NO,) are related to endothelial dysfunction, which mediates the progression of renal fibrosis. Shenqi Detoxification Granule (SDG), a traditional Chinese herbal formula, has been used for treatment of chronic renal failure in clinic for many years. In order to evaluate the efficacy, and explore the mechanism of SDG to inhibit the progression of renal fibrosis, study was carried out using the adenine-induced Wister rats as the CRF model, and losartan as postive control drug. Levels of serum creatinine [Scr], and blood urea nitrogen (BUN), albumin (ALB), 24hrs, urine protein (24hUP), triacylglycerol (TG), and cholesterol (CHO), together with ET-1, and NO were detected. Pathological changes of renal tissues were observed by HE, staining. In addition, CTGF and PDGF-B expression were analyzed by immuno-histo-chemistry. The results indicated that SDG can effectively reduce Scr, BUN, 24hUP, TG, and CHO levels, increase ALB levels, inhibit renal tissue damage in CRF rats, and the mechanism maybe reduce PDGF-B, CTGF expression and ET-1/NO. Shenqi Detoxification Granule is a beneficial treatment for chronic renal failure.

  12. The in vivo effects of adenine-induced chronic kidney disease on some renal and hepatic function and CYP450 metabolizing enzymes.

    PubMed

    Al Za'abi, M; Shalaby, A; Manoj, P; Ali, B H

    2017-05-04

    Adenine-induced model of chronic kidney disease (CKD) is a widely used model especially in studies testing novel nephroprotective agents. We investigated the effects of adenine-induced CKD in rats on the activities of some xenobiotic metabolizing enzymes in liver and kidneys, and on some in vivo indicators of drug metabolism (viz pentobarbitone sleeping time, and plasma concentration of theophylline 90 min post administration). CKD was induced by orally feeding adenine (0.25 % w/w) for 35 days. Adenine induced all the characteristics of CKD, which was confirmed by biochemical and histological findings. Glutathione concentration and activities of some enzymes involved in its metabolism were reduced in kidneys and livers of rats with CKD. Renal CYP450 1A1 activity was significantly inhibited by adenine, but other measured isoenzymes (1A2, 3A4 and 2E1) were not significantly affected. Adenine significantly prolonged pentobarbitone-sleeping time and increased plasma theophylline concentration 90 min post administration. Adenine also induced a moderate degree of hepatic damages as indicated histologically and by significant elevations in some plasma enzymes. The results suggest that adenine-induced CKD is associated with significant in vivo inhibitory activities on some drug-metabolizing enzymes, with most of the effect on the kidneys rather than the liver.

  13. Increased rate of adenine incorporation into adenine nucleotide pool in erythrocytes of patients with chronic renal failure.

    PubMed

    Marlewski, M; Smolenski, R T; Szolkiewicz, M; Aleksandrowicz, Z; Rutkowski, B; Swierczynski, J

    2000-11-01

    Elevated purine nucleotide pool (mainly ATP) in erythrocytes of patients with chronic renal failure (CRF) is a known phenomenon, however the mechanism responsible for this abnormality is far from being clear. We hypothesize that the increased rate of adenine incorporation into adenine nucleotide pool is responsible for the elevated level of ATP in uremic erythrocytes. In chronically uremic patients we evaluated using HPLC technique: (a) plasma adenine concentration; (b) the rate of adenine incorporation into adenine nucleotide pool in uremic erythrocytes. Additionally, the effect of higher than physiological phosphate concentration (2.4 mM) and lower than physiological pH (7.1) on adenine incorporation into erythrocytes adenine nucleotide pool was investigated. Healthy volunteers with normal renal function served as control. The concentration of adenine in plasma of CRF patients was found to be significantly higher than in plasma of healthy subjects. In contrast, adenosine concentration was similar both in healthy humans and in CRF patients. In isolated erythrocytes of uremic patients (incubated in the medium pH 7.4, containing 1.2 mM inorganic phosphate) adenine was incorporated into adenine nucleotide pool at a rate approximately 2-fold higher than in erythrocytes from healthy subjects. The rate of adenosine incorporation into adenine nucleotide pool was similar in erythrocytes of both studied groups. Incubation of erythrocytes obtained from healthy subjects in the medium pH 7.4, containing 2.4 mM inorganic phosphate, caused the increase of adenine incorporation into adenine nucleotide pool by about 60%. Incubation of the cells in the pH 7.1 buffer containing 2. 4 mM inorganic phosphate increased the rate of adenine incorporation into adenylate approximately 2-fold as compared to erythrocytes incubated in the medium pH 7.4 containing 1.2 mM inorganic phosphate. Erythrocytes obtained from uremic patients and incubated in the pH 7.1 medium containing 2.4 m

  14. Effect of Gum Arabic on Oxidative Stress and Inflammation in Adenine–Induced Chronic Renal Failure in Rats

    PubMed Central

    Ali, Badreldin H.; Al-Husseni, Isehaq; Beegam, Sumyia; Al-Shukaili, Ahmed; Nemmar, Abderrahim; Schierling, Simone; Queisser, Nina; Schupp, Nicole

    2013-01-01

    Inflammation and oxidative stress are known to be involved in the pathogenesis of chronic kidney disease in humans, and in chronic renal failure (CRF) in rats. The aim of this work was to study the role of inflammation and oxidative stress in adenine-induced CRF and the effect thereon of the purported nephroprotective agent gum arabic (GA). Rats were divided into four groups and treated for 4 weeks as follows: control, adenine in feed (0.75%, w/w), GA in drinking water (15%, w/v) and adenine+GA, as before. Urine, blood and kidneys were collected from the rats at the end of the treatment for analysis of conventional renal function tests (plasma creatinine and urea concentration). In addition, the concentrations of the pro-inflammatory cytokine TNF-α and the oxidative stress markers glutathione and superoxide dismutase, renal apoptosis, superoxide formation and DNA double strand break frequency, detected by immunohistochemistry for γ-H2AX, were measured. Adenine significantly increased the concentrations of urea and creatinine in plasma, significantly decreased the creatinine clearance and induced significant increases in the concentration of the measured inflammatory mediators. Further, it caused oxidative stress and DNA damage. Treatment with GA significantly ameliorated these actions. The mechanism of the reported salutary effect of GA in adenine-induced CRF is associated with mitigation of the adenine-induced inflammation and generation of free radicals. PMID:23383316

  15. Continuing Exposure to Low-Dose Nonylphenol Aggravates Adenine-Induced Chronic Renal Dysfunction and Role of Rosuvastatin Therapy

    PubMed Central

    2012-01-01

    Background Nonylphenol (NP), an environmental organic compound, has been demonstrated to enhance reactive-oxygen species (ROS) synthesis. Chronic exposure to low-dose adenine (AD) has been reported to induce chronic kidney disease (CKD). Methods In this study, we tested the hypothesis that chronic exposure to NP will aggravate AD-induced CKD through increasing generations of inflammation, ROS, and apoptosis that could be attenuated by rosuvastatin. Fifty male Wistar rats were equally divided into group 1 (control), group 2 (AD in fodder at a concentration of 0.25%), group 3 (NP: 2 mg/kg/day), group 4 (combined AD & NP), and group 5 (AD-NP + rosuvastatin: 20 mg/kg/day). Treatment was continued for 24 weeks for all animals before being sacrificed. Results By the end of 24 weeks, serum blood urea nitrogen (BUN) and creatinine levels were increased in group 4 than in groups 1–3, but significantly reduced in group 5 as compared with group 4 (all p < 0.05). Histopathology scorings of renal-parenchymal and tubular damages were significantly higher in group 4 than in groups 1–3, but remarkably lower in group 5 compared with group 4 (all p < 0.01). Both gene and protein levels of inflammation, oxidative stress, ROS, and cellular apoptosis were remarkably higher in group 4 compared with groups 1–3, but lowered in group 5 than in group 4 (all p < 0.001). Conversely, both gene and protein levels of anti-oxidants, anti-inflammation and anti-apoptosis were markedly increased in group 5 compared with group 4 (all p < 0.001). Conclusion NP worsened AD-induced CKD that could be reversed by rosuvastatin therapy. PMID:22812704

  16. Obstructive uropathy and severe acute kidney injury from renal calculi due to adenine phosphoribosyltransferase deficiency.

    PubMed

    Chong, Siew Le; Ng, Yong Hong

    2016-05-01

    Adenine phosphoribosyltransferase (APRT) deficiency is an uncommon genetic cause of chronic kidney disease due to crystalline nephropathy. A case of a Chinese boy with APRT deficiency presenting with severe acute kidney injury secondary to obstructive uropathy from multiple renal calculi was reviewed. The patient underwent staged removal of the calculi. Infrared spectrometry of the renal calculi showed 2,8-dihydroxyadenine. APRT deficiency was confirmed with abolished APRT enzyme activity in red blood cells. He was started on allopurinol and low purine diet with complete resolution of the residual calculi. APRT deficiency should be considered in patients with multiple radiolucent renal calculi.

  17. An integrated lipidomics and metabolomics reveal nephroprotective effect and biochemical mechanism of Rheum officinale in chronic renal failure

    PubMed Central

    Zhang, Zhi-Hao; Vaziri, Nosratola D.; Wei, Feng; Cheng, Xian-Long; Bai, Xu; Zhao, Ying-Yong

    2016-01-01

    Chronic renal failure (CRF) is a major public health problem worldwide. Earlier studies have revealed salutary effects of rhubarb extracts in CRF. In this study, we employed lipidomic and metabolomic approaches to identify the plasma biomarkers and to determine the effect of treatment with petroleum ether, ethyl acetate and n-butanol extracts of rhubarb in a rat model of CRF with adenine-induced chronic tubulointerstitial nephropathy. In addition, clinical biochemistry, histological evaluation and pro-fibrotic protein expression were analyzed. Significant changes were found between the CRF and control groups representing characteristic phenotypes of rats with CRF. Treatment with the three rhubarb extracts improved renal injury and dysfunction, either fully or partially reversed the plasma metabolites abnormalities and attenuated upregulation of pro-fibrotic proteins including TGF-β1, α-SMA, PAI-1, CTGF, FN and collagen-1. The nephroprotective effect of ethyl acetate extract was better than other extracts. The differential metabolites were closely associated with glycerophospholipid, fatty acid and amino acid metabolisms. The results revealed a strong link between renal tubulointerstitial fibrosis and glycerophospholipid metabolism and L-carnitine metabolism in the development of CRF. Amelioration of CRF with the three rhubarb extracts was associated with the delayed development and/or reversal the disorders in key metabolites associated with adenine-induced CRF. PMID:26903149

  18. Effect of aqueous extract and anthocyanins of calyces of Hibiscus sabdariffa (Malvaceae) in rats with adenine-induced chronic kidney disease.

    PubMed

    Ali, Badreldin H; Cahliková, Lucie; Opletal, Lubomir; Karaca, Turan; Manoj, Priyadarsini; Ramkumar, Aishwarya; Al Suleimani, Yousuf M; Al Za'abi, Mohammed; Nemmar, Abderrahim; Chocholousova-Havlikova, Lucie; Locarek, Miroslav; Siatka, Tomas; Blunden, Gerald

    2017-09-01

    The aim of this work was to assess the possible beneficial effects of aqueous extracts of Hibiscus sabdariffa L. calyces and anthocyanins isolated therefrom in an adenine-induced chronic kidney disease (CKD) model. Rats were orally given, for 28 consecutive days, either adenine alone or together with either aqueous extract of H. sabdariffa calyces (5 and 10%) or anthocyanins (50, 100 and 200 mg/kg of anthocyanin concentrate). For comparative purposes, two groups of rats were given lisinopril (10 mg/kg). When either H. sabdariffa aqueous extract or the anthocyanins isolated from it was administered along with adenine, the adverse effects of adenine-induced CKD were significantly lessened, mostly in a dose-dependent manner. The positive effects were similar to those obtained by administration of lisinopril. The results obtained show that both H. sabdariffa and its anthocyanins could be considered as possible promising safe dietary agents that could be used to attenuate the progression of human CKD. This could have added significance as H. sabdariffa tea is widely consumed in many parts of Africa and Asia and is thus readily available. © 2017 Royal Pharmaceutical Society.

  19. PA21, a novel phosphate binder, improves renal osteodystrophy in rats with chronic renal failure.

    PubMed

    Yaguchi, Atsushi; Tatemichi, Satoshi; Takeda, Hiroo; Kobayashi, Mamoru

    2017-01-01

    The effects of PA21, a novel iron-based and non-calcium-based phosphate binder, on hyperphosphatemia and its accompanying bone abnormality in chronic kidney disease-mineral and bone disorder (CKD-MBD) were evaluated. Rats with adenine-induced chronic renal failure (CRF) were prepared by feeding them an adenine-containing diet for four weeks. They were also freely fed a diet that contained PA21 (0.5, 1.5, and 5%), sevelamer hydrochloride (0.6 and 2%) or lanthanum carbonate hydrate (0.6 and 2%) for four weeks. Blood biochemical parameters were measured and bone histomorphometry was performed for femurs, which were isolated after drug treatment. Serum phosphorus and parathyroid hormone (PTH) levels were higher in the CRF rats. Administration of phosphate binders for four weeks decreased serum phosphorus and PTH levels in a dose-dependent manner and there were significant decreases in the AUC0-28 day of these parameters in 5% PA21, 2% sevelamer hydrochloride, and 2% lanthanum carbonate hydrate groups compared with that in the CRF control group. Moreover, osteoid volume improved significantly in 5% of the PA21 group, and fibrosis volume and cortical porosity were ameliorated in 5% PA21, 2% sevelamer hydrochloride, and 2% lanthanum carbonate hydrate groups. These results suggest that PA21 is effective against hyperphosphatemia, secondary hyperparathyroidism, and bone abnormalities in CKD-MBD as sevelamer hydrochloride and lanthanum carbonate hydrate are, and that PA21 is a new potential alternative to phosphate binders.

  20. Lack of hepcidin ameliorates anemia and improves growth in an adenine-induced mouse model of chronic kidney disease

    PubMed Central

    Sureshbabu, Angara; Doty, Steve B.; Zhu, Yuan-Shan; Patino, Edwin; Cunningham-Rundles, Susanna; Choi, Mary E.; Boskey, Adele; Rivella, Stefano

    2016-01-01

    Growth delay is common in children with chronic kidney disease (CKD), often associated with poor quality of life. The role of anemia in uremic growth delay is poorly understood. Here we describe an induction of uremic growth retardation by a 0.2% adenine diet in wild-type (WT) and hepcidin gene (Hamp) knockout (KO) mice, compared with their respective littermates fed a regular diet. Experiments were started at weaning (3 wk). After 8 wk, blood was collected and mice were euthanized. Adenine-fed WT mice developed CKD (blood urea nitrogen 82.8 ± 11.6 mg/dl and creatinine 0.57 ± 0.07 mg/dl) and were 2.1 cm shorter compared with WT controls. WT adenine-fed mice were anemic and had low serum iron, elevated Hamp, and elevated IL6 and TNF-α. WT adenine-fed mice had advanced mineral bone disease (serum phosphorus 16.9 ± 3.1 mg/dl and FGF23 204.0 ± 115.0 ng/ml) with loss of cortical and trabecular bone volume seen on microcomputed tomography. Hamp disruption rescued the anemia phenotype resulting in improved growth rate in mice with CKD, thus providing direct experimental evidence of the relationship between Hamp pathway and growth impairment in CKD. Hamp disruption ameliorated CKD-induced growth hormone-insulin-like growth factor 1 axis derangements and growth plate alterations. Disruption of Hamp did not mitigate the development of uremia, inflammation, and mineral and bone disease in this model. Taken together, these results indicate that an adenine diet can be successfully used to study growth in mice with CKD. Hepcidin appears to be related to pathways of growth retardation in CKD suggesting that investigation of hepcidin-lowering therapies in juvenile CKD is warranted. PMID:27440777

  1. Adenine Inhibits TNF-α Signaling in Intestinal Epithelial Cells and Reduces Mucosal Inflammation in a Dextran Sodium Sulfate-Induced Colitis Mouse Model.

    PubMed

    Fukuda, Toshihiko; Majumder, Kaustav; Zhang, Hua; Turner, Patricia V; Matsui, Toshiro; Mine, Yoshinori

    2016-06-01

    Adenine (6-amino-6H-purine), found in molokheiya (Corchorus olitorius L.), has exerted vasorelaxation effects in the thoracic aorta. However, the mode of action of the anti-inflammatory effect of adenine is unclear. Thus, we investigated to clarify the effect of adenine on chronic inflammation of the gastrointestinal tract. In intestinal epithelial cells, adenine significantly inhibited tumor necrosis factor-α-induced interleukin-8 secretion. The inhibition of adenine was abolished under the treatment of inhibitors of adenyl cyclase (AC) and protein kinase A (PKA), indicating the effect of adenine was mediated through the AC/PKA pathway. Adenine (5, 10, and 50 mg/kg BW/day) was administered orally for 14 days to female BALB/c mice, and then 5% dextran sodium sulfate (DSS) was given to induce colitis. Adenine (5 mg/kg BW/day) significantly prevented DSS-induced colon shortening, expression of pro-inflammatory cytokines, and histological damage in the colon. These results suggest that adenine can be a promising nutraceutical for the prevention of intestinal inflammation.

  2. Biodegradable Magnesium (Mg) Implantation Does Not Impose Related Metabolic Disorders in Rats with Chronic Renal Failure

    PubMed Central

    Wang, Jiali; Xu, Jiankun; Liu, Waiching; Li, Yangde; Qin, Ling

    2016-01-01

    Mg and its alloys have been considered as one of the most promising biodegradable medical devices, but it was still unclear whether hypermagnesemia involved health risks would occur in persons with kidney disease due to their deteriorated kidney function for Mg ions excretion from their body. In this study, we established a chronic renal failure (CRF) model in rats induced by adenine administration prior to Mg implantation, aiming to predict if CRF patients are suitable for the use of Mg implants. The results showed that Mg levels in serum, urine, feces and internal organs had no significant changes after Mg implantation for both normal and CRF rats. Biochemical indices detection and histopathological analysis in kidney, liver and heart tissue confirmed that Mg implants did not induce any extra damage in animals even with renal failure. Our study indicates that Mg based orthopaedic medical device may be considered for use in CRF patients without biosafety concerns. PMID:27210744

  3. Biodegradable Magnesium (Mg) Implantation Does Not Impose Related Metabolic Disorders in Rats with Chronic Renal Failure

    NASA Astrophysics Data System (ADS)

    Wang, Jiali; Xu, Jiankun; Liu, Waiching; Li, Yangde; Qin, Ling

    2016-05-01

    Mg and its alloys have been considered as one of the most promising biodegradable medical devices, but it was still unclear whether hypermagnesemia involved health risks would occur in persons with kidney disease due to their deteriorated kidney function for Mg ions excretion from their body. In this study, we established a chronic renal failure (CRF) model in rats induced by adenine administration prior to Mg implantation, aiming to predict if CRF patients are suitable for the use of Mg implants. The results showed that Mg levels in serum, urine, feces and internal organs had no significant changes after Mg implantation for both normal and CRF rats. Biochemical indices detection and histopathological analysis in kidney, liver and heart tissue confirmed that Mg implants did not induce any extra damage in animals even with renal failure. Our study indicates that Mg based orthopaedic medical device may be considered for use in CRF patients without biosafety concerns.

  4. Icariin protects rats against 5/6 nephrectomy-induced chronic kidney failure by increasing the number of renal stem cells.

    PubMed

    Huang, Zhongdi; He, Liqun; Huang, Di; Lei, Shi; Gao, Jiandong

    2015-10-21

    Chronic kidney disease poses a serious health problem worldwide with increasing prevalence and lack of effective treatment. This study aimed to investigate the mechanism of icariin in alleviating chronic renal failure induced by 5/6 nephrectomy in rats. The chronic renal failure model was established by a two-phased 5/6 nephrectomy procedure. The model rats were given daily doses of water or icariin for 8 weeks. The kidney morphology was checked by HE staining. The levels of blood urea nitrogen, serum creatinine, and serum uric acid were measured by colometric methods. The expression of specified genes was analyzed by quantitative real-time PCR and immunohistochemical staining. The number of renal stem/progenitor cells was analyzed by CD133 and CD24 immunohistochemical staining. Icariin protected against CDK-caused damages to kidney histology and improved renal function, significantly reduced levels of BUN, creatinine, and uric acid. Icariin inhibited the expression level of TGF-β1 whereas upregulated HGF, BMP-7, WT-1, and Pax2 expression. Moreover, ccariin significantly increased the expression of CD24, CD133, Osr1, and Nanog in remnant kidney and the numbers of CD133(+)/CD24(+) renal stem/progenitor cells. These data demonstrated that icariin effectively alleviated 5/6 nephrectomy induced chronic renal failure through increasing renal stem/progenitor cells.

  5. Combination therapy of chitosan, gynostemma, and motherwort alleviates the progression of experimental rat chronic renal failure by inhibiting STAT1 activation

    PubMed Central

    Bai, Wenxia; Wang, Shudong; An, Shanshan; Guo, Mengjie; Gong, Guangming; Liu, Wenya; Ma, Shaoxin; Li, Xin; Fu, Jihua; Yao, Wenbing

    2018-01-01

    This study aimed to investigate the effect of single and combination therapy using chitosan (K), gynostemma (J), and motherwort (Y) on an experimental rat model of chronic renal failure (CRF) induced by adenine and the underlying mechanisms. CRF rats were treated with individual or combinational therapy with two or three of these agents. Biochemical indicators showed that the levels of blood urea nitrogen, creatinine and uric acid decreased and the levels of albumin and hemoglobin increased by single or combination therapy of these drugs. Drug treatment also decreased oxidative stress damage of renal tissues in CRF rats. Histopathological lesions were attenuated in each drug treatment group by various degrees. Additionally, drug treatment affected the expression of extracellular matrix (ECM) proteins including plasminogen activator inhibitor 1, collagen I, matrix metalloprotease-1, and tissue inhibitor of metalloproteinases 1. In particular, the combination therapy of K, J, and Y was superior to the respective monotherapy, which supported the prescription of KJY combination. We further studied the inhibitory effect of KJY on LPS-induced inflammation in RAW264.7 macrophages. The results showed that KJY inhibited LPS-induced secretion of inflammatory cytokines (Interferon-gamma, Interleukin-1 Beta, chemokine (C-X-C motif) ligand 10, cyclooxygenase-2 and Tumor necrosis factor-α in RAW264.7 macrophages. Combination therapy of KJY suppressed the protein expression of Cyclooxygenase-2 and inducible nitric oxide synthase in vivo and in vitro. Further study indicated that KJY inhibited STAT1 activation by down regulating p-STAT1 to exert anti-inflammatory effect and improve renal function in rats with chronic renal failure. PMID:29643988

  6. Preoperative Renal Volume: A Surrogate Measure for Radical Nephrectomy-Induced Chronic Kidney Disease.

    PubMed

    Wu, Fiona Mei Wen; Tay, Melissa Hui Wen; Tai, Bee Choo; Chen, Zhaojin; Tan, Lincoln; Goh, Benjamin Yen Seow; Raman, Lata; Tiong, Ho Yee

    2015-12-01

    Surgically induced chronic kidney disease (CKD) has been found to have less impact on survival as well as function when compared to medical causes for CKD. The aim of this study is to evaluate whether preoperative remaining kidney volume correlates with renal function after nephrectomy, which represents an individual's renal reserve before surgically induced CKD. A retrospective review of 75 consecutive patients (29.3% females) who underwent radical nephrectomy (RN) (2000-2010) was performed. Normal side kidney parenchyma, excluding renal vessels and central sinus fat, was manually outlined in each transverse slice of CT image and multiplied by slice thickness to calculate volume. Estimated glomerular filtration rate (eGFR) was determined using the Modification of Diet in Renal Disease equation. CKD is defined as eGFR < 60 mL/min/1.73 m(2). Mean preoperative normal kidney parenchymal volume (mean age 55 [SD 13] years) is 150.7 (SD 36.4) mL. Over median follow-up of 36 months postsurgery, progression to CKD occurred in 42.6% (n = 32) of patients. On multivariable analysis, preoperative eGFR and preoperative renal volume <144 mL are independent predictors for postoperative CKD. On Kaplan-Meier analysis, median time to reach CKD postnephrectomy is 12.7 (range 0.03-43.66) months for renal volume <144 mL but not achieved if renal volume is >144 mL. Normal kidney parenchymal volume and preoperative eGFR are independent predictive factors for postoperative CKD after RN and may represent renal reserve for both surgically and medically induced CKD, respectively. Preoperative remaining kidney volume may be an adjunct representation of renal reserve postsurgery and predict later renal function decline due to perioperative loss of nephrons.

  7. Alteration of the Intestinal Environment by Lubiprostone Is Associated with Amelioration of Adenine-Induced CKD

    PubMed Central

    Mishima, Eikan; Fukuda, Shinji; Shima, Hisato; Hirayama, Akiyoshi; Akiyama, Yasutoshi; Takeuchi, Yoichi; Fukuda, Noriko N.; Suzuki, Takehiro; Suzuki, Chitose; Yuri, Akinori; Kikuchi, Koichi; Tomioka, Yoshihisa; Ito, Sadayoshi; Soga, Tomoyoshi

    2015-01-01

    The accumulation of uremic toxins is involved in the progression of CKD. Various uremic toxins are derived from gut microbiota, and an imbalance of gut microbiota or dysbiosis is related to renal failure. However, the pathophysiologic mechanisms underlying the relationship between the gut microbiota and renal failure are still obscure. Using an adenine-induced renal failure mouse model, we evaluated the effects of the ClC-2 chloride channel activator lubiprostone (commonly used for the treatment of constipation) on CKD. Oral administration of lubiprostone (500 µg/kg per day) changed the fecal and intestinal properties in mice with renal failure. Additionally, lubiprostone treatment reduced the elevated BUN and protected against tubulointerstitial damage, renal fibrosis, and inflammation. Gut microbiome analysis of 16S rRNA genes in the renal failure mice showed that lubiprostone treatment altered their microbial composition, especially the recovery of the levels of the Lactobacillaceae family and Prevotella genus, which were significantly reduced in the renal failure mice. Furthermore, capillary electrophoresis–mass spectrometry-based metabolome analysis showed that lubiprostone treatment decreased the plasma level of uremic toxins, such as indoxyl sulfate and hippurate, which are derived from gut microbiota, and a more recently discovered uremic toxin, trans-aconitate. These results suggest that lubiprostone ameliorates the progression of CKD and the accumulation of uremic toxins by improving the gut microbiota and intestinal environment. PMID:25525179

  8. Urea-induced ROS generation causes insulin resistance in mice with chronic renal failure

    PubMed Central

    D’Apolito, Maria; Du, Xueliang; Zong, Haihong; Catucci, Alessandra; Maiuri, Luigi; Trivisano, Tiziana; Pettoello-Mantovani, Massimo; Campanozzi, Angelo; Raia, Valeria; Pessin, Jeffrey E.; Brownlee, Michael; Giardino, Ida

    2009-01-01

    Although supraphysiological concentrations of urea are known to increase oxidative stress in cultured cells, it is generally thought that the elevated levels of urea in chronic renal failure patients have negligible toxicity. We previously demonstrated that ROS increase intracellular protein modification by O-linked β-N-acetylglucosamine (O-GlcNAc), and others showed that increased modification of insulin signaling molecules by O-GlcNAc reduces insulin signal transduction. Because both oxidative stress and insulin resistance have been observed in patients with end-stage renal disease, we sought to determine the role of urea in these phenotypes. Treatment of 3T3-L1 adipocytes with urea at disease-relevant concentrations induced ROS production, caused insulin resistance, increased expression of adipokines retinol binding protein 4 (RBP4) and resistin, and increased O-GlcNAc–modified insulin signaling molecules. Investigation of a mouse model of surgically induced renal failure (uremic mice) revealed increased ROS production, modification of insulin signaling molecules by O-GlcNAc, and increased expression of RBP4 and resistin in visceral adipose tissue. Uremic mice also displayed insulin resistance and glucose intolerance, and treatment with an antioxidant SOD/catalase mimetic normalized these defects. The SOD/catalase mimetic treatment also prevented the development of insulin resistance in normal mice after urea infusion. These data suggest that therapeutic targeting of urea-induced ROS may help reduce the high morbidity and mortality caused by end-stage renal disease. PMID:19955654

  9. A magnesium based phosphate binder reduces vascular calcification without affecting bone in chronic renal failure rats.

    PubMed

    Neven, Ellen; De Schutter, Tineke M; Dams, Geert; Gundlach, Kristina; Steppan, Sonja; Büchel, Janine; Passlick-Deetjen, Jutta; D'Haese, Patrick C; Behets, Geert J

    2014-01-01

    The alternative phosphate binder calcium acetate/magnesium carbonate (CaMg) effectively reduces hyperphosphatemia, the most important inducer of vascular calcification, in chronic renal failure (CRF). In this study, the effect of low dose CaMg on vascular calcification and possible effects of CaMg on bone turnover, a persistent clinical controversy, were evaluated in chronic renal failure rats. Adenine-induced CRF rats were treated daily with 185 mg/kg CaMg or vehicle for 5 weeks. The aortic calcium content and area% calcification were measured to evaluate the effect of CaMg. To study the effect of CaMg on bone remodeling, rats underwent 5/6th nephrectomy combined with either a normal phosphorus diet or a high phosphorus diet to differentiate between possible bone effects resulting from either CaMg-induced phosphate deficiency or a direct effect of Mg. Vehicle or CaMg was administered at doses of 185 and 375 mg/kg/day for 8 weeks. Bone histomorphometry was performed. Aortic calcium content was significantly reduced by 185 mg/kg/day CaMg. CaMg ameliorated features of hyperparathyroid bone disease. In CRF rats on a normal phosphorus diet, the highest CaMg dose caused an increase in osteoid area due to phosphate depletion. The high phosphorus diet combined with the highest CaMg dose prevented the phosphate depletion and thus the rise in osteoid area. CaMg had no effect on osteoblast/osteoclast or dynamic bone parameters, and did not alter bone Mg levels. CaMg at doses that reduce vascular calcification did not show any harmful effect on bone turnover.

  10. Alteration of the Intestinal Environment by Lubiprostone Is Associated with Amelioration of Adenine-Induced CKD.

    PubMed

    Mishima, Eikan; Fukuda, Shinji; Shima, Hisato; Hirayama, Akiyoshi; Akiyama, Yasutoshi; Takeuchi, Yoichi; Fukuda, Noriko N; Suzuki, Takehiro; Suzuki, Chitose; Yuri, Akinori; Kikuchi, Koichi; Tomioka, Yoshihisa; Ito, Sadayoshi; Soga, Tomoyoshi; Abe, Takaaki

    2015-08-01

    The accumulation of uremic toxins is involved in the progression of CKD. Various uremic toxins are derived from gut microbiota, and an imbalance of gut microbiota or dysbiosis is related to renal failure. However, the pathophysiologic mechanisms underlying the relationship between the gut microbiota and renal failure are still obscure. Using an adenine-induced renal failure mouse model, we evaluated the effects of the ClC-2 chloride channel activator lubiprostone (commonly used for the treatment of constipation) on CKD. Oral administration of lubiprostone (500 µg/kg per day) changed the fecal and intestinal properties in mice with renal failure. Additionally, lubiprostone treatment reduced the elevated BUN and protected against tubulointerstitial damage, renal fibrosis, and inflammation. Gut microbiome analysis of 16S rRNA genes in the renal failure mice showed that lubiprostone treatment altered their microbial composition, especially the recovery of the levels of the Lactobacillaceae family and Prevotella genus, which were significantly reduced in the renal failure mice. Furthermore, capillary electrophoresis-mass spectrometry-based metabolome analysis showed that lubiprostone treatment decreased the plasma level of uremic toxins, such as indoxyl sulfate and hippurate, which are derived from gut microbiota, and a more recently discovered uremic toxin, trans-aconitate. These results suggest that lubiprostone ameliorates the progression of CKD and the accumulation of uremic toxins by improving the gut microbiota and intestinal environment. Copyright © 2015 by the American Society of Nephrology.

  11. The effect of swimming exercise on adenine-induced kidney disease in rats, and the influence of curcumin or lisinopril thereon

    PubMed Central

    Karaca, Turan; Al Suleimani, Yousuf; Al Za'abi, Mohammed; Al Kalbani, Jamila; Ashique, Mohammed; Nemmar, Abderrahim

    2017-01-01

    Patients with chronic kidney disease (CKD) have been reported to benefit from different types of exercises. It has also been shown that the ACE inhibitor lisinopril, and the natural product curcumin are also beneficial in different models of CKD in rats. We assessed the influence of moderate swimming exercise (SE) on rats with adenine-induced CKD, and tested the possible effects of lisinopril and/or curcumin thereon using several physiological, biochemical, histopathological and immunohistochemical parameters. Rats (either sedentary or subjected to SE) were randomly divided into several groups, and given for five weeks either normal food or food mixed with adenine (0.25% w/w) to induce CKD. Some of these groups were also concomitantly treated orally with curcumin (75 mg/kg), or lisinopril (10 mg/kg) and were subjected to moderate SE (45 min/day three days each week). Rats fed adenine showed the typical biochemical, histopathological signs of CKD such as elevations in blood pressure, urinary albumin / creatinine ratio, and plasma urea, creatinine, indoxyl sulfate and phosphorus. SE, curcumin or lisinopril, given singly, significantly ameliorated all the adenine-induced actions. Administering curcumin or lisinopril with SE improved the histopathology of the kidneys, a salutary effect not seen with SE alone. Combining SE to the nephroprotective agents’ curcumin or lisinopril might offer additional nephroprotection. PMID:28445490

  12. Role of pressure in angiotensin II-induced renal injury: chronic servo-control of renal perfusion pressure in rats.

    PubMed

    Mori, Takefumi; Cowley, Allen W

    2004-04-01

    Renal perfusion pressure was servo-controlled chronically in rats to quantify the relative contribution of elevated arterial pressure versus angiotensin II (Ang II) on the induction of renal injury in Ang II-induced hypertension. Sprague-Dawley rats fed a 4% salt diet were administered Ang II for 14 days (25 ng/kg per minute IV; saline only for sham rats), and the renal perfusion pressure to the left kidney was continuously servo-controlled to maintain a normal pressure in that kidney throughout the period of hypertension. An aortic occluder was implanted around the aorta between the two renal arteries and carotid and femoral arterial pressure were measured continuously throughout the experiment to determine uncontrolled and controlled renal perfusion pressure, respectively. Renal perfusion pressure of uncontrolled, controlled, and sham kidneys over the period of Ang II or saline infusion averaged 152.6+/-7.0, 117.4+/-3.5, and 110.7+/-2.2 mm Hg, respectively. The high-pressure uncontrolled kidneys exhibited tubular necrosis and interstitial fibrosis, especially prominent in the outer medullary region. Regional glomerular sclerosis and interlobular artery injury were also pronounced. Controlled kidneys were significantly protected from interlobular artery injury, juxtamedullary glomeruli injury, tubular necrosis, and interstitial fibrosis as determined by comparing the level of injury. Glomerular injury was not prevented in the outer cortex. Transforming growth factor (TGF)-beta and active NF-kappaB proteins determined by immunohistochemistry were colocalized in the uncontrolled kidney in regions of interstitial fibrosis. We conclude that the preferential juxtamedullary injury found in Ang II hypertension is largely induced by pressure and is probably mediated through the TGF-beta and NF-kappaB pathway.

  13. Impact of Iodinated Contrast on Renal Function and Hemodynamics in Rats with Chronic Hyperglycemia and Chronic Kidney Disease

    PubMed Central

    Fernandes, Sheila Marques; Martins, Daniel Malisani; da Fonseca, Cassiane Dezoti; Watanabe, Mirian; Vattimo, Maria de Fátima Fernandes

    2016-01-01

    Iodinated contrast (IC) is clinically used in diagnostic and interventional procedures, but its use can result in contrast-induced acute kidney injury (CI-AKI). Chronic kidney disease (CKD) and chronic hyperglycemia (CH) are important predisposing factors to CI-AKI. The aim of this study was to investigate the impact of iodinated contrast on the renal function and hemodynamics in rats with chronic hyperglycemia and chronic kidney disease. A total of 30 rats were divided into six groups; Sham: control of chronic renal disease; Citrate: control of chronic hyperglycemia (CH); Nx5/6: rats with 5/6 nephrectomy; Chronic Hyperglycemia: rats receiving Streptozotocin 65 mg/kg; Nx5/6 + IC: rats Nx5/6 received 6 mL/kg of IC; CH + IC: Chronic hyperglycemia rats receiving 6 mL/kg of IC. Renal function (inulin clearance; urinary neutrophil gelatinase-associated lipocalin, NGAL) and hemodynamics (arterial blood pressure; renal blood flow; renal vascular resistance) were evaluated. Iodinated contrast significantly increased urinary NGAL and reduced inulin clearance, while the hemodynamics parameters showed changes in arterial blood pressure, renal blood flow, and renal vascular resistance in both CKD and CH groups. The results suggest that the iodinated contrast in risk factors models has important impact on renal function and hemodynamics. NGAL was confirmed to play a role of highlight in diagnosis of CI-AKI. PMID:27034930

  14. Obesity-induced chronic inflammation in high fat diet challenged C57BL/6J mice is associated with acceleration of age-dependent renal amyloidosis

    PubMed Central

    van der Heijden, Roel A.; Bijzet, Johan; Meijers, Wouter C.; Yakala, Gopala K.; Kleemann, Robert; Nguyen, Tri Q.; de Boer, Rudolf A.; Schalkwijk, Casper G.; Hazenberg, Bouke P. C.; Tietge, Uwe J. F.; Heeringa, Peter

    2015-01-01

    Obesity-induced inflammation presumably accelerates the development of chronic kidney diseases. However, little is known about the sequence of these inflammatory events and their contribution to renal pathology. We investigated the effects of obesity on the evolution of age-dependent renal complications in mice in conjunction with the development of renal and systemic low-grade inflammation (LGI). C57BL/6J mice susceptible to develop age-dependent sclerotic pathologies with amyloid features in the kidney, were fed low (10% lard) or high-fat diets (45% lard) for 24, 40 and 52 weeks. HFD-feeding induced overt adiposity, altered lipid and insulin homeostasis, increased systemic LGI and adipokine release. HFD-feeding also caused renal upregulation of pro-inflammatory genes, infiltrating macrophages, collagen I protein, increased urinary albumin and NGAL levels. HFD-feeding severely aggravated age-dependent structural changes in the kidney. Remarkably, enhanced amyloid deposition rather than sclerosis was observed. The degree of amyloidosis correlated significantly with body weight. Amyloid deposits stained positive for serum amyloid A (SAA) whose plasma levels were chronically elevated in HFD mice. Our data indicate obesity-induced chronic inflammation as a risk factor for the acceleration of age-dependent renal amyloidosis and functional impairment in mice, and suggest that obesity-enhanced chronic secretion of SAA may be the driving factor behind this process. PMID:26563579

  15. Obesity-induced chronic inflammation in high fat diet challenged C57BL/6J mice is associated with acceleration of age-dependent renal amyloidosis.

    PubMed

    van der Heijden, Roel A; Bijzet, Johan; Meijers, Wouter C; Yakala, Gopala K; Kleemann, Robert; Nguyen, Tri Q; de Boer, Rudolf A; Schalkwijk, Casper G; Hazenberg, Bouke P C; Tietge, Uwe J F; Heeringa, Peter

    2015-11-13

    Obesity-induced inflammation presumably accelerates the development of chronic kidney diseases. However, little is known about the sequence of these inflammatory events and their contribution to renal pathology. We investigated the effects of obesity on the evolution of age-dependent renal complications in mice in conjunction with the development of renal and systemic low-grade inflammation (LGI). C57BL/6J mice susceptible to develop age-dependent sclerotic pathologies with amyloid features in the kidney, were fed low (10% lard) or high-fat diets (45% lard) for 24, 40 and 52 weeks. HFD-feeding induced overt adiposity, altered lipid and insulin homeostasis, increased systemic LGI and adipokine release. HFD-feeding also caused renal upregulation of pro-inflammatory genes, infiltrating macrophages, collagen I protein, increased urinary albumin and NGAL levels. HFD-feeding severely aggravated age-dependent structural changes in the kidney. Remarkably, enhanced amyloid deposition rather than sclerosis was observed. The degree of amyloidosis correlated significantly with body weight. Amyloid deposits stained positive for serum amyloid A (SAA) whose plasma levels were chronically elevated in HFD mice. Our data indicate obesity-induced chronic inflammation as a risk factor for the acceleration of age-dependent renal amyloidosis and functional impairment in mice, and suggest that obesity-enhanced chronic secretion of SAA may be the driving factor behind this process.

  16. First indications demonstrating the preventive effects of NZ-419, a novel intrinsic antioxidant, on the initiation and/or progression of chronic renal failure in rats.

    PubMed

    Ienaga, Kazuharu; Mikami, Hiroki; Yokozawa, Takako

    2009-07-01

    The concentration of NZ-419 (5-hydroxy-1-methylimidazolidine-2,4-dione), an intrinsic antioxidant, has been shown to increase in the sera of animals and patients with chronic renal failure (CRF). This is the first report that orally administered exogenous NZ-419 prevents the initiation and/or progression of CRF in rats using an adenine-loaded model. After 24 d of adenine loading, there was a ca. 90% decrease in creatinine clearance (C(Cr)) in the control rats. Treatment with NZ-419 from the beginning significantly inhibited the decrease in C(Cr) and also the increase in serum creatinine (sCr). Bio-markers for in vivo hydroxyl radicals, the serum methylguanidine (sMG) level, and sMG/sCr molar ratio, not only in serum but also in the urine, kidney, liver, and muscle indicated that NZ-419 inhibited the increase in oxidative stress induced by CRF in rats. An increase of guanidinosuccinic acid, an another bio-marker of oxidative stress, was also inhibited with NZ-419.

  17. Fructokinase activity mediates dehydration-induced renal injury.

    PubMed

    Roncal Jimenez, Carlos A; Ishimoto, Takuji; Lanaspa, Miguel A; Rivard, Christopher J; Nakagawa, Takahiko; Ejaz, A Ahsan; Cicerchi, Christina; Inaba, Shinichiro; Le, MyPhuong; Miyazaki, Makoto; Glaser, Jason; Correa-Rotter, Ricardo; González, Marvin A; Aragón, Aurora; Wesseling, Catharina; Sánchez-Lozada, Laura G; Johnson, Richard J

    2014-08-01

    The epidemic of chronic kidney disease in Nicaragua (Mesoamerican nephropathy) has been linked with recurrent dehydration. Here we tested whether recurrent dehydration may cause renal injury by activation of the polyol pathway, resulting in the generation of endogenous fructose in the kidney that might subsequently induce renal injury via metabolism by fructokinase. Wild-type and fructokinase-deficient mice were subjected to recurrent heat-induced dehydration. One group of each genotype was provided water throughout the day and the other group was hydrated at night, after the dehydration. Both groups received the same total hydration in 24 h. Wild-type mice that received delayed hydration developed renal injury, with elevated serum creatinine, increased urinary NGAL, proximal tubular injury, and renal inflammation and fibrosis. This was associated with activation of the polyol pathway, with increased renal cortical sorbitol and fructose levels. Fructokinase-knockout mice with delayed hydration were protected from renal injury. Thus, recurrent dehydration can induce renal injury via a fructokinase-dependent mechanism, likely from the generation of endogenous fructose via the polyol pathway. Access to sufficient water during the dehydration period can protect mice from developing renal injury. These studies provide a potential mechanism for Mesoamerican nephropathy.

  18. [Prospective observational study of angiotensin converting enzyme inhibitors-induced hyperkalemia in hospitalized patients with chronic renal failure].

    PubMed

    Ben Mahmoud, Lobna; Ghozzi, Hanene; Kammoun, Khawla; Hakim, Ahmed; Kharrat, Mahmoud; Ben Hmida, Mohamed; Jarraya, Faical; Sahnoun, Zouheir; Zeghal, Khaled; Hachicha, Jamil

    2013-04-01

    To study the incidence and risk factors of angiotensin converting enzyme inhibitors-induced hyperkalemia in hospitalized patients with hypertension and preexisting chronic renal failure. Two-months prospective observational study was used including all hospitalized patients older than 18 years with a history of hypertension, non-dialyzed chronic renal failure and who had angiotensin converting enzyme prescription at the time of the admission. Hyperkalemia greater than or equal to 5 mmol/L was detected in these patients. The studied variables were demographic, clinical, biological and therapeutic. Eight patients, among 27 included, had a hyperkalemia (2963%). They were 73±15 years old. Factors that predispose to hyperkalemia were present in all patients. Hyperkalemia was associated in six cases with decompensation of renal function. The age was associated with hyperkalaemia in patients treated with angiotensin converting enzyme inhibitors (RC=1.21; IC95 1,11-1,46; P=0,021). Diabetes is a possible risk factor (OR=59 021 et, 95 0.93 to 2410, P=0.053). Compared with patients who did not develop hyperkalemia, the occurrence of hyperkalemia in patients included was associated with a longer duration of hospitalization (OR=130, 95 112 to 160, P=0. 022). The prescription of angiotensin converting enzyme inhibitors in the elderly with chronic renal failure and diabetes requires careful monitoring of serum potassium. Copyright © 2012 Association Société de néphrologie. Published by Elsevier SAS. All rights reserved.

  19. Hemodynamic and neurochemical determinates of renal function in chronic heart failure.

    PubMed

    Gilbert, Cameron; Cherney, David Z I; Parker, Andrea B; Mak, Susanna; Floras, John S; Al-Hesayen, Abdul; Parker, John D

    2016-01-15

    Abnormal renal function is common in acute and chronic congestive heart failure (CHF) and is related to the severity of congestion. However, treatment of congestion often leads to worsening renal function. Our objective was to explore basal determinants of renal function and their response to hemodynamic interventions. Thirty-seven patients without CHF and 59 patients with chronic CHF (ejection fraction; 23 ± 8%) underwent right heart catheterization, measurements of glomerular filtration rate (GFR; inulin) and renal plasma flow (RPF; para-aminohippurate), and radiotracer estimates of renal sympathetic activity. A subset (26 without, 36 with CHF) underwent acute pharmacological intervention with dobutamine or nitroprusside. We explored the relationship between baseline and drug-induced hemodynamic changes and changes in renal function. In CHF, there was an inverse relationship among right atrial mean pressure (RAM) pressure, RPF, and GFR. By contrast, mean arterial pressure (MAP), cardiac index (CI), and measures of renal sympathetic activity were not significant predictors. In those with CHF there was also an inverse relationship among the drug-induced changes in RAM as well as pulmonary artery mean pressure and the change in GFR. Changes in MAP and CI did not predict the change in GFR in those with CHF. Baseline values and changes in RAM pressure did not correlate with GFR in those without CHF. In the CHF group there was a positive correlation between RAM pressure and renal sympathetic activity. There was also an inverse relationship among RAM pressure, GFR, and RPF in patients with chronic CHF. The observation that acute reductions in RAM pressure is associated with an increase in GFR in patients with CHF has important clinical implications. Copyright © 2016 the American Physiological Society.

  20. Arterially Delivered Mesenchymal Stem Cells Prevent Obstruction-Induced Renal Fibrosis

    PubMed Central

    Asanuma, Hiroshi; Vanderbrink, Brian A.; Campbell, Matthew T.; Hile, Karen L.; Zhang, Hongji; Meldrum, Daniel R.; Meldrum, Kirstan K.

    2010-01-01

    Purpose Mesenchymal stem cells (MSCs) hold promise for the treatment of renal disease. While MSCs have been shown to accelerate recovery and prevent acute renal failure in multiple disease models, the effect of MSC therapy on chronic obstruction-induced renal fibrosis has not previously been evaluated. Materials and Methods Male Sprague-Dawley rats underwent renal artery injection of vehicle or fluorescent-labeled human bone marrow-derived MSCs immediately prior to sham operation or induction of left ureteral obstruction (UUO). One or 4 weeks later, the kidneys were harvested and the renal cortex analyzed for evidence of stem cell infiltration, epithelial-mesenchymal transition (EMT) as evidenced by E-cadherin/α-smooth muscle actin (α-SMA) expression and fibroblast specific protein (FSP+) staining, renal fibrosis (collagen content, Masson’s trichrome staining), and cytokine and growth factor activity (ELISA and real time RT-PCR). Results Fluorescent-labeled MSCs were detected in the interstitium of the kidney up to 4 weeks post-obstruction. Arterially delivered MSCs significantly reduced obstruction-induced α-SMA expression, FSP+ cell accumulation, total collagen content, and tubulointerstitial fibrosis, while simultaneously preserving E-cadherin expression, suggesting that MSCs prevent obstruction-induced EMT and renal fibrosis. Exogenous MSCs reduced obstruction-induced tumor necrosis factor-α (TNF-α) levels, but did not alter transforming growth factor-β1 (TGF-β1), vascular endothelial growth factor (VEGF), interleukin-10 (IL-10), fibroblast growth factor (FGF), or hepatocyte growth factor (HGF) expression. Conclusions Human bone marrow-derived MSCs remain viable several weeks after delivery into the kidney and provide protection against obstruction-induced EMT and chronic renal fibrosis. While the mechanism of MSCs-induced renal protection during obstruction remains unclear, our results demonstrate that alterations in TNF-α production may be involved

  1. Cocaine-induced renal disease.

    PubMed

    Gitman, Michael D; Singhal, Pravin C

    2004-09-01

    Cocaine has anaesthetic, vasoconstrictive and CNS stimulatory effects. Presently, it is used clinically as a local anaesthetic and abused as a recreational drug. It has been implicated in both acute and chronic renal failure and has been reported to affect every aspect of the nephron. This article will review the spectrum of cocaine-induced kidney disease and attempt to give insight into the pathophysiological mechanisms involved.

  2. Renal perfusion index reflects cardiac systolic function in chronic cardio-renal syndrome.

    PubMed

    Lubas, Arkadiusz; Ryczek, Robert; Kade, Grzegorz; Niemczyk, Stanisław

    2015-04-17

    Cardiac dysfunction can modify renal perfusion, which is crucial to maintain sufficient kidney tissue oxygenation. Renal cortex perfusion assessed by dynamic ultrasound method is related both to renal function and cardiac hemodynamics. The aim of the study was to test the hypothesis that Renal Perfusion Index (RPI) can more closely reflect cardiac hemodynamics and differentiate etiology of chronic cardio-renal syndrome. Twenty-four patients with hypertension and chronic kidney disease (CKD) at 2-4 stage (12 with hypertensive nephropathy and 12 with CKD prior to hypertension) were enrolled in the study. Blood tests, 24-h ABPM, echocardiography, and ultrasonography with estimation of Total renal Cortical Perfusion intensity and Renal Perfusion Index (RPI) were performed. In the group of all patients, RPI correlated with left ventricular stoke volume (LVSV), and cardiac index, but not with markers of renal function. In multiple stepwise regression analysis CKD-EPI(Cys-Cr) (b=-0.360), LVSV (b=0.924) and MAP (b=0.376) together independently influenced RPI (R2=0.74; p<0.0001). RPI<0.567 allowed for the identification of patients with chronic cardio-renal syndrome with sensitivity of 41.7% and specificity of 83.3%. Renal perfusion index relates more strongly to cardiac output than to renal function, and could be helpful in recognizing chronic cardio-renal syndrome. Applicability of RPI in diagnosing early abnormalities in the cardio-renal axis requires further investigation.

  3. Lacking Ketohexokinase-A Exacerbates Renal Injury in Streptozotocin-induced Diabetic Mice.

    PubMed

    Doke, Tomohito; Ishimoto, Takuji; Hayasaki, Takahiro; Ikeda, Satsuki; Hasebe, Masako; Hirayama, Akiyoshi; Soga, Tomoyoshi; Kato, Noritoshi; Kosugi, Tomoki; Tsuboi, Naotake; Lanaspa, Miguel A; Johnson, Richard J; Kadomatsu, Kenji; Maruyama, Shoichi

    2018-03-28

    Ketohexokinase (KHK), a primary enzyme in fructose metabolism, has two isoforms, namely, KHK-A and KHK-C. Previously, we reported that renal injury was reduced in streptozotocin-induced diabetic mice which lacked both isoforms. Although both isoforms express in kidney, it has not been elucidated whether each isoform plays distinct roles in the development of diabetic kidney disease (DKD). The aim of the study is to elucidate the role of KHK-A for DKD progression. Diabetes was induced by five consecutive daily intraperitoneal injections of streptozotocin (50 mg/kg) in C57BL/6 J wild-type mice, mice lacking KHK-A alone (KHK-A KO), and mice lacking both KHK-A and KHK-C (KHK-A/C KO). At 35 weeks, renal injury, inflammation, hypoxia, and oxidative stress were examined. Metabolomic analysis including polyol pathway, fructose metabolism, glycolysis, TCA (tricarboxylic acid) cycle, and NAD (nicotinamide adenine dinucleotide) metabolism in kidney and urine was done. Diabetic KHK-A KO mice developed severe renal injury compared to diabetic wild-type mice, and this was associated with further increases of intrarenal fructose, dihydroxyacetone phosphate (DHAP), TCA cycle intermediates levels, and severe inflammation. In contrast, renal injury was prevented in diabetic KHK-A/C KO mice compared to both wild-type and KHK-A KO diabetic mice. Further, diabetic KHK-A KO mice contained decreased renal NAD + level with the increase of renal hypoxia-inducible factor 1-alpha expression despite having increased renal nicotinamide (NAM) level. These results suggest that KHK-C might play a deleterious role in DKD progression through endogenous fructose metabolism, and that KHK-A plays a unique protective role against the development of DKD. Copyright © 2018. Published by Elsevier Inc.

  4. 28 CFR 79.67 - Proof of chronic renal disease.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Proof of chronic renal disease. 79.67... renal disease. (a) In determining whether a claimant developed chronic renal disease following pertinent... claimant. A conclusion that a claimant developed chronic renal disease must be supported by medical...

  5. 28 CFR 79.67 - Proof of chronic renal disease.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Proof of chronic renal disease. 79.67... renal disease. (a) In determining whether a claimant developed chronic renal disease following pertinent... claimant. A conclusion that a claimant developed chronic renal disease must be supported by medical...

  6. [The morphometric characteristics of the main structural components of renal nephrons in the white rats with experimentally induced acute and chronic alcohol intoxication].

    PubMed

    Shcherbakova, V M

    2016-01-01

    The objective of the present work was to study the morphometric characteristics of the main structural components of renal nephrons in the white rats with the experimentally induced acute and chronic alcohol intoxication. We undertook the morphometric examination of the structural elements of rat kidneys with the subsequent statistical analysis of the data obtained. The results of the study give evidence of the toxic action of ethanol on all structural components of the nephron in the case of both acute and chronic alcohol intoxication. The study revealed some specific features of the development of pathological process in the renal tissue structures at different stages of alcohol intoxication. The most pronounced morphological changes were observed in the renal proximal tubules and the least pronounced ones in the structure of the renal glomeruli. The earliest morphological changes become apparent in distal convoluted tubules of the nephron; in the case of persistent alcoholemia, they first develop in the renal corpuscles and thereafter in the distal proximal tubules. The maximum changes occur in the case of acute alcohol intoxication and between 2 weeks and 2 months of chronic intoxication; they become less conspicuous during a later period.

  7. Sodium thiosulfate protects brain in rat model of adenine induced vascular calcification.

    PubMed

    Subhash, N; Sriram, R; Kurian, Gino A

    2015-11-01

    Vascular bed calcification is a common feature of ends stage renal disease that may lead to a complication in cardiovascular and cerebrovascular beds, which is a promoting cause of myocardial infarction, stroke, dementia and aneurysms. Sodium thiosulfate (STS) due to its multiple properties such as antioxidant and calcium chelation has been reported to prevent vascular calcification in uremic rats, without mentioning its impact on cerebral function. Moreover, the previous studies have not explored the effect of STS on the mitochondrial dysfunction, one of the main pathophysiological features associated with the disease and the main site for STS metabolism. The present study addresses this limitation by using a rat model where 0.75% adenine was administered to induce vascular calcification and 400 mg/kg b wt. of STS was given as preventive and curative agent. The blood and urine chemistries along with histopathology of aorta confirms the renal protective effect of STS in two modes of administration. The brain oxidative stress assessment was made through TBARS level, catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities, found to be in the near normal level. STS administration not only reduced the mitochondrial oxidative stress (measured by TBARS, SOD, GPx and CAT) but also preserved the mitochondrial respiratory enzyme activities (NADH dehydrogenase, Succinate dehydrogenase and Malate dehydrogenase) and its physiology (measured by P/O ratio and RCR). In fact, the protective effect of STS was prominent, when it was administered as a curative agent, where low H2S and high thiosulfate level was observed along with low cystathionine β synthase activity, confirms thiosulfate mediated renal protection. In conclusion, STS when given after induction of calcification is protective to the brain by preserving its mitochondria, compared to the treatment given concomitantly. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Febuxostat for the Prevention of Recurrent 2,8-dihydroxyadenine Nephropathy due to Adenine Phosphoribosyltransferase Deficiency Following Kidney Transplantation.

    PubMed

    Nanmoku, Koji; Kurosawa, Akira; Shinzato, Takahiro; Shimizu, Toshihiro; Kimura, Takaaki; Yagisawa, Takashi

    2017-01-01

    Adenine phosphoribosyltransferase (APRT) deficiency is a rare autosomal recessive disorder that results in irreversible renal damage due to 2,8-dihydroxyadenine (DHA) nephropathy. A 28-year-old man underwent living-related kidney transplantation for chronic kidney disease of unknown etiology. Numerous spherical brownish crystals observed in his urinary sediment on postoperative day 3 and were observed within the tubular lumen of renal allograft biopsy specimens on postoperative day 7. After a genetic diagnosis, febuxostat treatment was started on postoperative day 7, with the dosage gradually increased to 80 mg/day until complete the disappearance of 2,8-DHA crystals. Febuxostat prevented secondary 2,8-DHA nephropathy after kidney transplantation.

  9. Febuxostat for the Prevention of Recurrent 2,8-dihydroxyadenine Nephropathy due to Adenine Phosphoribosyltransferase Deficiency Following Kidney Transplantation

    PubMed Central

    Nanmoku, Koji; Kurosawa, Akira; Shinzato, Takahiro; Shimizu, Toshihiro; Kimura, Takaaki; Yagisawa, Takashi

    2017-01-01

    Adenine phosphoribosyltransferase (APRT) deficiency is a rare autosomal recessive disorder that results in irreversible renal damage due to 2,8-dihydroxyadenine (DHA) nephropathy. A 28-year-old man underwent living-related kidney transplantation for chronic kidney disease of unknown etiology. Numerous spherical brownish crystals observed in his urinary sediment on postoperative day 3 and were observed within the tubular lumen of renal allograft biopsy specimens on postoperative day 7. After a genetic diagnosis, febuxostat treatment was started on postoperative day 7, with the dosage gradually increased to 80 mg/day until complete the disappearance of 2,8-DHA crystals. Febuxostat prevented secondary 2,8-DHA nephropathy after kidney transplantation. PMID:28566603

  10. An unusual renal manifestation of chronic HBV infection.

    PubMed

    Aravindan, Ananthakrishnapuram; Yong, Jim; Killingsworth, Murray; Strasser, Simone; Suranyi, Michael

    2010-08-01

    Hepatitis B viral infection is usually a self-limiting disease in immunocompetent individuals. Chronic infection can be seen in up to 5% of infected patients. Renal manifestations of chronic HBV infection are usually glomerular. We describe here an uncommon presentation of a patient with chronic HBV infection with very high viral load and rapidly progressive renal failure. Renal biopsy showed features of tubulointerstitial nephritis and tubular epithelial inclusion bodies suggestive of HBV infection. Entecavir treatment slowed down the progression of his renal disease. Tubulointerstitial nephritis should be considered as a part of the differential diagnosis in patients with HBV infection. Early antiviral treatment may halt the progression of renal disease.

  11. 28 CFR 79.57 - Proof of chronic renal disease.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Proof of chronic renal disease. 79.57... disease. (a) In determining whether a claimant developed chronic renal disease following pertinent... conclusion that a claimant developed chronic renal disease must be supported by medical documentation. (b) A...

  12. 28 CFR 79.57 - Proof of chronic renal disease.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Proof of chronic renal disease. 79.57... disease. (a) In determining whether a claimant developed chronic renal disease following pertinent... conclusion that a claimant developed chronic renal disease must be supported by medical documentation. (b) A...

  13. Vascular toxicity of urea, a new "old player" in the pathogenesis of chronic renal failure induced cardiovascular diseases.

    PubMed

    Giardino, Ida; D'Apolito, Maria; Brownlee, Michael; Maffione, Angela Bruna; Colia, Anna Laura; Sacco, Michele; Ferrara, Pietro; Pettoello-Mantovani, Massimo

    2017-12-01

    Chronic kidney disease in children is an irreversible process that may lead to end-stage renal disease. The mortality rate in children with end-stage renal disease who receive dialysis increased dramatically in the last decade, and it is significantly higher compared with the general pediatric population. Furthermore, dialysis and transplant patients, who have developed end-stage renal disease during childhood, live respectively far less as compared with age/race-matched populations. Different reports show that cardiovascular disease is the leading cause of death in children with end-stage renal disease and in adults with childhood-onset chronic kidney disease, and that children with chronic kidney disease are in the highest risk group for the development of cardiovascular disease. Urea, which is generated in the liver during catabolism of amino acids and other nitrogenous metabolites, is normally excreted into the urine by the kidneys as rapidly as it is produced. When renal function is impaired, increasing concentrations of blood urea will steadily accumulate. For a long time, urea has been considered to have negligible toxicity. However, the finding that plasma urea is the only significant predictor of aortic plaque area fraction in an animal model of chronic renal failure -accelerated atherosclerosis, suggests that the high levels of urea found in chronic dialysis patients might play an important role in accelerated atherosclerosis in this group of patients. The aim of this review was to provide novel insights into the role played by urea in the pathogenesis of accelerated cardiovascular disease in renal failure.

  14. Renal Impairment with Sublethal Tubular Cell Injury in a Chronic Liver Disease Mouse Model

    PubMed Central

    Ishida, Tokiko; Kotani, Hirokazu; Miyao, Masashi; Kawai, Chihiro; Jemail, Leila; Abiru, Hitoshi; Tamaki, Keiji

    2016-01-01

    The pathogenesis of renal impairment in chronic liver diseases (CLDs) has been primarily studied in the advanced stages of hepatic injury. Meanwhile, the pathology of renal impairment in the early phase of CLDs is poorly understood, and animal models to elucidate its mechanisms are needed. Thus, we investigated whether an existing mouse model of CLD induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) shows renal impairment in the early phase. Renal injury markers, renal histology (including immunohistochemistry for tubular injury markers and transmission electron microscopy), autophagy, and oxidative stress were studied longitudinally in DDC- and standard diet–fed BALB/c mice. Slight but significant renal dysfunction was evident in DDC-fed mice from the early phase. Meanwhile, histological examinations of the kidneys with routine light microscopy did not show definitive morphological findings, and electron microscopic analyses were required to detect limited injuries such as loss of brush border microvilli and mitochondrial deformities. Limited injuries have been recently designated as sublethal tubular cell injury. As humans with renal impairment, either with or without CLD, often show almost normal tubules, sublethal injury has been of particular interest. In this study, the injuries were associated with mitochondrial aberrations and oxidative stress, a possible mechanism for sublethal injury. Intriguingly, two defense mechanisms were associated with this injury that prevent it from progressing to apparent cell death: autophagy and single-cell extrusion with regeneration. Furthermore, the renal impairment of this model progressed to chronic kidney disease with interstitial fibrosis after long-term DDC feeding. These findings indicated that DDC induces renal impairment with sublethal tubular cell injury from the early phase, leading to chronic kidney disease. Importantly, this CLD mouse model could be useful for studying the pathophysiological mechanisms

  15. A comparison of adenine and some derivatives on pig isolated tracheal muscle.

    PubMed Central

    Bach-Dieterle, Y.; Holden, W. E.; Junod, A. F.

    1983-01-01

    We studied the muscle relaxation induced by adenine and several adenine derivatives in strips of tracheal smooth muscle from pigs; in addition their metabolism by the tissue was examined. Adenine relaxed tissue which was contracted by carbachol, histamine, or KCl. Adenine's potency was similar to that of adenosine and ATP (threshold about 4 X 10(-5)M). In tissues with carbachol-induced tone, the adenine effect differed from adenosine and ATP by being slower in onset and in 'washout' time. Furthermore, neither dipyridamole nor theophylline modified the response to adenine. The relationship was examined between pharmacological effects and the metabolism of [3H]-adenosine and [3H]-adenine. Both substrates were taken up by the tissue and converted to nucleotides, but relaxation correlated with nucleotide accumulation only in the case of [3H]-adenine. We conclude that the site and mechanism of adenine-induced relaxation is different from that of adenosine and ATP in porcine tracheal muscle. PMID:6571222

  16. Diabetes mellitus and renal involvement in chronic viral liver disease.

    PubMed

    Iovanescu, V F; Streba, C T; Ionescu, M; Constantinescu, A F; Vere, C C; Rogoveanu, I; Moța, E

    2015-01-01

    HCC and none of them presented diabetes mellitus. Our study revealed that there is a significant association between diabetes mellitus and chronic viral liver disease induced by hepatitis C virus. Glomerulonephritis was the most common type of renal disease in both hepatitis patients and in those with cirrhosis. Glomerular injury was strongly correlated with the presence of hepatitis C virus than with hepatitis B virus. A connection between diabetes mellitus and hepatocellular carcinoma could not be established.

  17. Urea-induced ROS cause endothelial dysfunction in chronic renal failure.

    PubMed

    D'Apolito, Maria; Du, Xueliang; Pisanelli, Daniela; Pettoello-Mantovani, Massimo; Campanozzi, Angelo; Giacco, Ferdinando; Maffione, Angela Bruna; Colia, Anna Laura; Brownlee, Michael; Giardino, Ida

    2015-04-01

    The pathogenic events responsible for accelerated atherosclerosis in patients with chronic renal failure (CRF) are poorly understood. Here we investigate the hypothesis that concentrations of urea associated with CRF and increased ROS production in adipocytes might also increase ROS production directly in arterial endothelial cells, causing the same pathophysiologic changes seen with hyperglycemia. Primary cultures of human aortic endothelial cells (HAEC) were exposed to 20mM urea for 48 h. C57BL/6J wild-type mice underwent 5/6 nephrectomy or a sham operation. Randomized groups of 5/6 nephrectomized mice and their controls were also injected i.p. with a SOD/catalase mimetic (MnTBAP) for 15 days starting immediately after the final surgical procedure. Urea at concentrations seen in CRF induced mitochondrial ROS production in cultured HAEC. Urea-induced ROS caused the activation of endothelial pro-inflammatory pathways through the inhibition of GAPDH, including increased protein kinase C isoforms activity, increased hexosamine pathway activity, and accumulation of intracellular AGEs (advanced glycation end products). Urea-induced ROS directly inactivated the anti-atherosclerosis enzyme PGI2 synthase and also caused ER stress. Normalization of mitochondrial ROS production prevented each of these effects of urea. In uremic mice, treatment with MnTBAP prevented aortic oxidative stress, PGI2 synthase activity reduction and increased expression of the pro-inflammatory proteins TNFα, IL-6, VCAM1, Endoglin, and MCP-1. Taken together, these data show that urea itself, at levels common in patients with CRF, causes endothelial dysfunction and activation of proatherogenic pathways. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Renal Denervation Findings on Cardiac and Renal Fibrosis in Rats with Isoproterenol Induced Cardiomyopathy

    NASA Astrophysics Data System (ADS)

    Liu, Qian; Zhang, Qi; Wang, Kai; Wang, Shengchan; Lu, Dasheng; Li, Zhenzhen; Geng, Jie; Fang, Ping; Wang, Ying; Shan, Qijun

    2015-12-01

    Cardio-renal fibrosis plays key roles in heart failure and chronic kidney disease. We sought to determine the effects of renal denervation (RDN) on cardiac and renal fibrosis in rats with isoproterenol induced cardiomyopathy. Sixty male Sprague Dawley rats were randomly assigned to Control (n = 10) and isoproterenol (ISO)-induced cardiomyopathy group (n = 50). At week 5, 31 survival ISO-induced cardiomyopathy rats were randomized to RDN (n = 15) and Sham group (n = 16). Compared with Control group, ejection fraction was decreased, diastolic interventricular septal thickness and left atrial dimension were increased in ISO-induced cardiomyopathy group at 5 week. After 10 weeks, cardio-renal pathophysiologic results demonstrated that the collagen volume fraction of left atrio-ventricular and kidney tissues reduced significantly in RDN group compared with Sham group. Moreover the pro-fibrosis factors (TGF-β1, MMP2 and Collagen I), inflammatory cytokines (CRP and TNF-α), and collagen synthesis biomarkers (PICP, PINP and PIIINP) concentration significantly decreased in RDN group. Compared with Sham group, RDN group showed that release of noradrenaline and aldosterone were reduced, angiotensin-converting enzyme (ACE)/angiotensin II (Ang II)/angiotensin II type-1 receptor (AT1R) axis was downregulated. Meanwhile, angiotensin-converting enzyme 2 (ACE2)/angiotensin-1-7 (Ang-(1-7))/mas receptor (Mas-R) axis was upregulated. RDN inhibits cardio-renal fibrogenesis through multiple pathways, including reducing SNS over-activity, rebalancing RAAS axis.

  19. A hepcidin lowering agent mobilizes iron for incorporation into red blood cells in an adenine-induced kidney disease model of anemia in rats

    PubMed Central

    Sun, Chia Chi; Vaja, Valentina; Chen, Shanzhuo; Theurl, Igor; Stepanek, Aaron; Brown, Diane E.; Cappellini, Maria D.; Weiss, Guenter; Hong, Charles C.; Lin, Herbert Y.; Babitt, Jodie L.

    2013-01-01

    Background Anemia is a common complication of chronic kidney disease (CKD) that negatively impacts the quality of life and is associated with numerous adverse outcomes. Excess levels of the iron regulatory hormone hepcidin are thought to contribute to anemia in CKD patients by decreasing iron availability from the diet and from body stores. Adenine treatment in rats has been proposed as an animal model of anemia of CKD with high hepcidin levels that mirrors the condition in human patients. Methods We developed a modified adenine-induced kidney disease model with a higher survival rate than previously reported models, while maintaining persistent kidney disease and anemia. We then tested whether the small molecule bone morphogenetic protein (BMP) inhibitor LDN-193189, which was previously shown to lower hepcidin levels in rodents, mobilized iron into the plasma and improved iron-restricted erythropoiesis in this model. Results Adenine-treated rats exhibited increased hepatic hepcidin mRNA, decreased serum iron, increased spleen iron content, low hemoglobin (Hb) and inappropriately low erythropoietin (EPO) levels relative to the degree of anemia. LDN-193189 administration to adenine-treated rats lowered hepatic hepcidin mRNA, mobilized stored iron into plasma and increased Hb content of reticulocytes. Conclusions Our data suggest that hepcidin lowering agents may provide a new therapeutic strategy to improve iron availability for erythropoiesis in CKD. PMID:23345622

  20. Etiology of chronic renal failure in Jenin district, Palestine.

    PubMed

    Abumwais, Jamal Qasem

    2012-01-01

    A study was conducted on chronic renal failure patients treated by medications or by hemodialysis at The Martyr Dr. Khalil Sulaiman Hospital in Jenin city, Palestine, from 1/8/2005 to 1/8/2006 to know the underlying etiology of chronic renal failure. The subjects included were 84 patients. The information was obtained from files of the patients. The diagnosis was based on medical history, laboratory tests, X-rays, CT scans, ultrasound and renal biopsies. The results showed that the three most common causes of chronic renal failure in Jenin district were diabetes mellitus (33.32%), hypertension (16.7%), and chronic glomerulonephritis (13.1%). Inherited kidney diseases formed an important percentage (17.85%) and included primary hyperoxaluria (10.71%), Alport's syndrome (5.95%), and adult polycystic kidney disease (1.19%). These results differ from what is found in most developing countries including many Arab countries where the principal causes of chronic renal failure are chronic glomerulonephritis and interstitial nephritis. The high prevalence of inherited kidney diseases in some families (primary hyperoxaluria and Alport's) syndrome may be explained by the very high prevalence of consanguineous marriage especially among cousins in these families.

  1. Vascular toxicity of urea, a new “old player” in the pathogenesis of chronic renal failure induced cardiovascular diseases

    PubMed Central

    D’Apolito, Maria; Brownlee, Michael; Maffione, Angela Bruna; Colia, Anna Laura; Sacco, Michele; Ferrara, Pietro; Pettoello-Mantovani, Massimo

    2017-01-01

    Chronic kidney disease in children is an irreversible process that may lead to end-stage renal disease. The mortality rate in children with end-stage renal disease who receive dialysis increased dramatically in the last decade, and it is significantly higher compared with the general pediatric population. Furthermore, dialysis and transplant patients, who have developed end-stage renal disease during childhood, live respectively far less as compared with age/race-matched populations. Different reports show that cardiovascular disease is the leading cause of death in children with end-stage renal disease and in adults with childhood-onset chronic kidney disease, and that children with chronic kidney disease are in the highest risk group for the development of cardiovascular disease. Urea, which is generated in the liver during catabolism of amino acids and other nitrogenous metabolites, is normally excreted into the urine by the kidneys as rapidly as it is produced. When renal function is impaired, increasing concentrations of blood urea will steadily accumulate. For a long time, urea has been considered to have negligible toxicity. However, the finding that plasma urea is the only significant predictor of aortic plaque area fraction in an animal model of chronic renal failure -accelerated atherosclerosis, suggests that the high levels of urea found in chronic dialysis patients might play an important role in accelerated atherosclerosis in this group of patients. The aim of this review was to provide novel insights into the role played by urea in the pathogenesis of accelerated cardiovascular disease in renal failure. PMID:29483797

  2. Neural regulation of the kidney function in rats with cisplatin induced renal failure

    PubMed Central

    Goulding, Niamh E.; Johns, Edward J.

    2015-01-01

    Aim: Chronic kidney disease (CKD) is often associated with a disturbed cardiovascular homeostasis. This investigation explored the role of the renal innervation in mediating deranged baroreflex control of renal sympathetic nerve activity (RSNA) and renal excretory function in cisplatin-induced renal failure. Methods: Rats were either intact or bilaterally renally denervated 4 days prior to receiving cisplatin (5 mg/kg i.p.) and entered a chronic metabolic study for 8 days. At day 8, other groups of rats were prepared for acute measurement of RSNA or renal function with either intact or denervated kidneys. Results: Following the cisplatin challenge, creatinine clearance was 50% lower while fractional sodium excretion and renal cortical and medullary TGF-β1 concentrations were 3–4 fold higher in both intact and renally denervated rats compared to control rats. In cisplatin-treated rats, the maximal gain of the high-pressure baroreflex curve was only 20% that of control rats, but following renal denervation not different from that of renally denervated control rats. Volume expansion reduced RSNA by 50% in control and in cisplatin-treated rats but only following bilateral renal denervation. The volume expansion mediated natriuresis/diuresis was absent in the cisplatin-treated rats but was normalized following renal denervation. Conclusions: Cisplatin-induced renal injury impaired renal function and caused a sympatho-excitation with blunting of high and low pressure baroreflex regulation of RSNA, which was dependent on the renal innervation. It is suggested that in man with CKD there is a dysregulation of the neural control of the kidney mediated by its sensory innervation. PMID:26175693

  3. Silver-induced reconstruction of an adeninate-based metal-organic framework for encapsulation of luminescent adenine-stabilized silver clusters.

    PubMed

    Jonckheere, Dries; Coutino-Gonzalez, Eduardo; Baekelant, Wouter; Bueken, Bart; Reinsch, Helge; Stassen, Ivo; Fenwick, Oliver; Richard, Fanny; Samorì, Paolo; Ameloot, Rob; Hofkens, Johan; Roeffaers, Maarten B J; De Vos, Dirk E

    2016-05-21

    Bright luminescent silver-adenine species were successfully stabilized in the pores of the MOF-69A (zinc biphenyldicarboxylate) metal-organic framework, starting from the intrinsically blue luminescent bio-MOF-1 (zinc adeninate 4,4'-biphenyldicarboxylate). Bio-MOF-1 is transformed to the MOF-69A framework by selectively leaching structural adenine linkers from the original framework using silver nitrate solutions in aqueous ethanol. Simultaneously, bright blue-green luminescent silver-adenine clusters are formed inside the pores of the recrystallized MOF-69A matrix in high local concentrations. The structural transition and concurrent changes in optical properties were characterized using a range of structural, physicochemical and spectroscopic techniques (steady-state and time-resolved luminescence, quantum yield determination, fluorescence microscopy). The presented results open new avenues for exploring the use of MOFs containing luminescent silver clusters for solid-state lighting and sensor applications.

  4. Renal accumulation of pentosidine in non-diabetic proteinuria-induced renal damage in rats.

    PubMed

    Waanders, Femke; Greven, Wendela L; Baynes, John W; Thorpe, Suzanne R; Kramer, Andrea B; Nagai, Ryoji; Sakata, Noriyuki; van Goor, Harry; Navis, Gerjan

    2005-10-01

    Advanced glycation end-products (AGEs) contribute to the pathogenesis of diabetic glomerulopathy. The role of AGEs in non-diabetic renal damage is not well characterized. First, we studied whether renal AGE accumulation occurs in non-diabetic proteinuria-induced renal damage and whether this is ameliorated by renoprotective treatment. Secondly, we investigated whether renal AGE accumulation was due to intrarenal effects of local protein trafficking. Pentosidine was measured (by high-performance liquid chromatography) in rats with chronic bilateral adriamycin nephropathy (AN), untreated and treated with lisinopril. Age-matched healthy rats served as negative controls. Secondly, we compared renal pentosidine in mild proteinuric and non-proteinuric kidneys of unilateral AN and in age-matched controls at 12 and 30 weeks. Intrarenal localization of pentosidine was studied by immunohistochemistry. Renal pentosidine was elevated in untreated AN (0.14+/-0.04 micromol/mol valine) vs healthy controls (0.04+/-0.01 micromol/mol valine, P<0.01). In lisinopril-treated AN, pentosidine was lower (0.09+/-0.02 micromol/mol valine) than in untreated AN (P<0.05). In unilateral proteinuria, pentosidine was similar in non-proteinuric and proteinuric kidneys. After 30 weeks of unilateral proteinuria, pentosidine was increased in both kidneys (0.26+/-0.10 micromol/mol valine) compared with controls (0.18+/-0.06 micromol/mol valine, P<0.05). Pentosidine (AN, week 30) was also increased compared with AN at week 12 (0.16+/-0.06 micromol/mol valine, P<0.01). In control and diseased kidneys, pentosidine was present in the collecting ducts. In proteinuric kidneys, in addition, pentosidine was present in the brush border and cytoplasm of dilated tubular structures, i.e. at sites of proteinuria-induced tubular damage. Pentosidine accumulates in non-diabetic proteinuric kidneys in damaged tubules, and renoprotective treatment by angiotensin-converting enzyme (ACE) inhibitors inhibits AGE

  5. Stem Cell Conditioned Culture Media Attenuated Albumin-Induced Epithelial– Mesenchymal Transition in Renal Tubular Cells

    PubMed Central

    Hu, Junping; Zhu, Qing; Li, Pin-Lan; Wang, Weili; Yi, Fan; Li, Ningjun

    2015-01-01

    Background Proteinuria-induced epithelial-mesenchymal transition (EMT) plays an important role in progressive renal tubulointerstitial fibrosis in chronic renal disease. Stem cell therapy has been used for different diseases. Stem cell conditioned culture media (SCM) exhibits similar beneficial effects as stem cell therapy. The present study tested the hypothesis that SCM inhibits albumin-induced EMT in cultured renal tubular cells. Methods Rat renal tubular cells were treated with/without albumin (20 μmg/ml) plus SCM or control cell media (CCM). EMT markers and inflammatory factors were measured by Western blot and fluorescent images. Results Albumin induced EMT as shown by significant decreases in levels of epithelial marker E-cadherin, increases in mesenchymal markers fibroblast-specific protein 1 and α-smooth muscle actin, and elevations in collagen I. SCM inhibited all these changes. Meanwhile, albumin induced NF-κB translocation from cytosol into nucleus and that SCM blocked the nuclear translocation of NF-κB. Albumin also increased the levels of pro-inflammatory factor monocyte chemoattractant protein-1 (MCP)-1 by nearly 30 fold compared with control. SCM almost abolished albumin-induced increase of MCP-1. Conclusion These results suggest that SCM attenuated albumin-induced EMT in renal tubular cells via inhibiting activation of inflammatory factors, which may serve as a new therapeutic approach for chronic kidney diseases. PMID:25832005

  6. [CHRONIC RENAL FAILURE AND PREGNANCY--A CASE REPORT].

    PubMed

    Amaliev, G M; Uchikova, E; Malinova, M

    2015-01-01

    Pregnancy in women with chronic renal failure is a complex therapeutic problem requiring a multidisciplinary approach. It is associated with a higher risk of many perinatal complications. The most common abnormalities are related to: progression of renal failure, development of preeclampsia development of nephrotic syndrome, anemic syndrome, IUGR and fetal death. The prognosis depends on the values of serum creatinine prior to pregnancy, the degree of deterioration of renal function, development of additional obstetric complications and the specific etiological reasons that have led to the occurrence of renal failure. Determining the optimum time for authorization birth depends on the condition of the mother, the condition of the fetus and the rate of progression of renal failure, and the deadline the pregnancy should be terminated is 35 weeks. We present a case of a patient with chronic renal failure, with favorable perinatal outcome.

  7. Renal creatinine handling in very old patients with chronic renal disease.

    PubMed

    Musso, Carlos G; Michelángelo, Hernán; Vilas, Manuel; Martinez, Bernardo; Bonetto, Alberto; Jauregui, Ricardo; Algranati, Luis

    2011-09-01

    Renal creatinine handling is basically the result of its glomerular filtration and proximal tubular secretion. However, creatinine reabsorption has been documented in certain conditions, such as premature babies, newborns, and healthy elderly people. Additionally, it is known that there is an increase in the proportion of secreted creatinine in chronic renal disease. In this paper, we report our studies on the characteristic reabsorption pattern of creatinine in the elderly with chronic renal disease. We studied twenty-seven volunteers with chronic kidney disease, eleven of whom were young and the rest were very old (age > 75 years old). We measured creatinine clearance without (Ccr) and with cimetidine (CcrWC) and Ccr/CcrWC ratio from each volunteer, in timed urine samples. Then, Ccr, CcrWC, and Ccr/CcrWC ratio were compared between young and very old people in two chronic kidney disease subgroups: stages II-III and stages IV-V. Statistical analysis was performed applying a non-parametric test (Wilcoxon). We observed a tendency towards a lower Ccr/CcrWC ratio in the very old stage II-III group compared with the young one: 1 (0.96-1.26) (very old) vs 1.3 (1.1-1.5) (young), P = 0.09, on the contrary, there was no significant difference in Ccr/CcrWC ratio between very old and young person with stage IV-V CKD: 1.66 (1.41-2.21) (young) vs 1.77 (1.1-2.7) (young), P = NS. Creatinine secretion pattern in very old patients with advanced chronic renal disease is similar to that observed in young ones with similar level of CKD.

  8. Urinary neutrophil gelatinase associated lipocalin as a biomarker in ifosfamide induced chronic renal failure.

    PubMed

    Kesik, V; Demirkaya, E; Buyukpamukçu, M

    2015-12-01

    Neutrophil gelatinase associated lipocalin (NGAL) have been used with great success in acute renal failure and in some cases in chronic nephrotoxicity. In this work, we aimed to investigate urinary NGAL as an early marker of chronic renal failure (CRF). We investigated urinary NGAL of 29 children treated with ifosfamide chemotherapy and compared them with those of 12 healthy children. Urinary β2 microglobulin, serum cystatin C, and creatinine clearance analyses were also studied. The median age was 11 years (4-21) and median remission time was 4.3 years (1.8-14.4). The cumulative dose of ifosfamide was 36 g. Glomerular filtration rate was decreased in 41.4% and urine β2 microglobulin levels and serum cystatin C levels were elevated in 31% of the patients. As the remission time increased, serum creatinine and cystatin C levels were also increased. The sensitivity for β2 microglobulin and cystatin C in demonstrating CRF was 35.2% and 23% and specificity was 33.2% and 50% respectively. The 24-hour urine NGAL cut-off level for demonstrating CRF was found to be 1.065 ng/mL/24 hours. The sensitivity and specificity for this cut-off value were 83% and 77%, respectively. NGAL levels were significantly higher in the study group as compared with the control group. Although ifosfamide treatment was suggested to be safe with no complication of renal failure under a dose of 80 g/m2, chronic renal failure and deficits in glomerular and tubular function could be seen when the remission time increased. Elevated NGAL levels may be a good option in determining CRF.

  9. Metabolomic Analysis of N-acetylcysteine Protection of Injury from Gadolinium-DTPA Contrast Agent in Rats with Chronic Renal Failure.

    PubMed

    Wan, Chuanling; Xue, Rong; Zhan, Youyang; Wu, Yijie; Li, Xiaojing; Pei, Fengkui

    2017-09-01

    Gadolinium-based contrast agents (GBCAs) are frequently used to enhance the diagnostic efficacy of magnetic resonance imaging. On the other hand, the association between GBCA administration in patients with advanced renal disease and nephrogenic systemic fibrosis (NSF) was also noted. NSF is a systemic disorder characterized by widespread tissue fibrosis that may lead to death. N-acetylcysteine (NAC) protects rats from injury induced by gadolinium-based contrast agents, but the underlying mechanisms remain unclear. In this study, a nuclear magnetic resonance-based metabolomic approach was used to systematically investigate the protective effects of NAC on Gd-DTPA-induced injury. Thirty-two male Sprague-Dawley rats were given adenine (200 mg·kg -1 body weight) by oral gavage once a day for 3 weeks to induce chronic renal failure (CRF). NAC (600 mg/L in drinking water for 9 days) pretreatment was initiated 2 days before Gd-DTPA injection (a single tail vein injection, 2 mmol/kg body weight). Serum and liver samples were collected on day 7 after Gd-DTPA injection. By study design, the serum and hepatic metabolic changes of rats were measured in four groups of eight each: CRF, CRF-Gd, CRF-Gd-NAC, and CRF-NAC. Gd-DTPA administration to rats with CRF resulted in disturbances of several metabolic pathways, including glucose, lipid, glutamate, choline, gut microbiota, one-carbon, and purine metabolism. NAC pretreatment reversed the abundance changes of high-density lipoprotein, low-density lipoprotein, very low-density lipoprotein, glutamate, glutamine, oxidized glutathione, choline, phosphocholine, glycerophosphocholine, trimethylamine, and trimethylamine-N-oxide induced by Gd-DTPA. It is noteworthy, however, that the ameliorating effects of NAC on the disturbance of glutamate, choline, and gut microbiota metabolism may be specific to Gd-DTPA. In all, these findings could be potentially useful to decipher the underlying mechanisms of NAC protective effects from the

  10. Adenine phosphoribosyltransferase deficiency in the United Kingdom: two novel mutations and a cross-sectional survey

    PubMed Central

    Arenas-Hernandez, Monica; Escuredo, Emilia; Fairbanks, Lynette; Marinaki, Tony; Mapplebeck, Sarah; Sheaff, Michael; Almond, Michael K.

    2016-01-01

    Background Adenine phosphoribosyltransferase deficiency is an inborn error of metabolism that can cause kidney disease from crystalline nephropathy or kidney stones. Methods We present three cases from a single centre with varied presentations to illustrate how increasing awareness led to better patient identification. We then undertook a cross-sectional survey of all the patients identified from the Purine Research Laboratory in the UK since 1974. Results Our index case presented with recurrent nephrolithiasis and was diagnosed on stone analysis, the second case presented with acute kidney injury and the third case was identified from a biopsy undertaken for acute on chronic kidney injury. Genetic studies identified two novel mutations. Twenty patients were retrospectively identified. The mean age at diagnosis was 25 years (range 2–70); eight were <20 years, seven were 20–40 years and five were >40 years. Five of the 20 patients were deceased, 3 after end-stage renal disease (ESRD). Twelve have normal renal function, one had CKD stage 3, one had severe kidney disease and one was on dialysis. Conclusions Adenine phosphoribosyltransferase deficiency presents in a wide spectrum in all age groups. Patients can be completely asymptomatic and kidney disease may be incorrectly attributed to other conditions. Outcome is poor in late diagnosis and there is a high prevalence of ESRD. Patients with unexplained renal stone disease or deterioration in kidney function should be considered for screening. Identification and surveillance of patients in the UK can improve. There is now a rare disease registry with meetings organized that include patients, families and health care providers to improve awareness. PMID:27994857

  11. Preventing Contrast-induced Renal Failure: A Guide.

    PubMed

    Faggioni, Michela; Mehran, Roxana

    2016-10-01

    Contrast-induced acute kidney injury (CI-AKI) is characterised by a rapid deterioration of renal function within a few days of parenteral administration of contrast media (CM) in the absence of alternative causes. CI-AKI is the most common form of iatrogenic kidney dysfunction with an estimated prevalence of 12 % in patients undergoing percutaneous coronary intervention. Although usually self-resolving, in patients with pre-existing chronic kidney disease (CKD) or concomitant risk factors for renal damage, CI-AKI is associated with increased short-and long-term morbidity and mortality. Therefore, risk stratification based on clinical and peri-procedural characteristics is crucial in selecting patients at risk of CI-AKI who would benefit the most from implementation of preventive measures.

  12. Renal cortical thickness and PON1 activity both decrease in chronic renal failure.

    PubMed

    Ak, Gülçin; Ozgönül, Mert; Sözmen, Eser Y; Aslan, S Leyla; Sözmen, Bülent

    2002-01-01

    Chronic renal failure (CRF) is associated with a tendency to atherosclerosis due to the enhanced oxidative stress and insufficient antioxidant enzyme activities such as superoxide dismutase (SOD), catalase (CAT) and paraoxonase (PON 1), together with abnormalities in lipid parameters. We determined the in vitro susceptibility of low-density lipoprotein (LDL) to oxidation and PON1 activities in patients with chronic renal insufficiency to see how PON1 affected the progression of the disease and whether hemodialysis influenced these parameters. Thirty-seven patients (21 men, 16 women, mean age 43.9 +/- 16) with CRF were included, 23 were receiving hemodialysis treatment. Exclusion criteria were diabetes mellitus and acute coronary disease. Eighteen healthy subjects (9 men and 9 women, mean age 39.9 +/- 10.5) volunteered to participate as controls. All patients were evaluated by renal ultrasound (USG) and two-dimensional echography, and their lipid profiles, PON1 activity, basal and Cu-induced LDL oxidation were determined. PON1 activities of patients were lower than controls (14.4 +/- 11 vs 30.9 +/- 19 U/L, p < 0.05) while basal ox-LDL levels determined by the thiobarbituric acid reactive substances (TBARS) method were higher (0.6 +/- 0.4 vs 0.4+/- 0.2 nmol/mg LDL protein, p<0.01). There was no significant difference between the groups treated with hemodialysis or not. There was a positive correlation between renal cortical thickness and HDL levels (r=0.47, p=0.006) and PON1 activity (r=0.45, p=0.01). Our data showed that HDL cholesterol levels and PON1 activities were both lower in patients, indicating depletion of the protective antioxidant capacity. PON1 activities and phenotypes were no different in patients with coronary disease and others so it does not appear to be a significant indicator of coronary artery disease in patients with CRF.

  13. Effect of growth hormone treatment on the adult height of children with chronic renal failure. German Study Group for Growth Hormone Treatment in Chronic Renal Failure.

    PubMed

    Haffner, D; Schaefer, F; Nissel, R; Wühl, E; Tönshoff, B; Mehls, O

    2000-09-28

    Growth hormone treatment stimulates growth in short children with chronic renal failure. However, the extent to which this therapy increases final adult height is not known. We followed 38 initially prepubertal children with chronic renal failure treated with growth hormone for a mean of 5.3 years until they reached their final adult height. The mean (+/-SD) age at the start of treatment was 10.4+/-2.2 years, the mean bone age was 7.1+/-2.3 years, and the mean height was 3.1+/-1.2 SD below normal. Fifty matched children with chronic renal failure who were not treated with growth hormone served as controls. The children treated with growth hormone had sustained catch-up growth, whereas the control children had progressive growth failure. The mean final height of the growth hormone-treated children was 165 cm for boys and 156 cm for girls. The mean final adult height of the growth hormone-treated children was 1.6+/-1.2 SD below normal, which was 1.4 SD above their standardized height at base line (P< 0.001). In contrast, the final height of the untreated children (2.1+/-1.2 SD below normal) was 0.6 SD below their standardized height at base line (P<0.001). Although prepubertal bone maturation was accelerated in growth hormone-treated children, treatment was not associated with a shortening of the pubertal growth spurt. The total height gain was positively associated with the initial target-height deficit and the duration of growth hormone therapy and was negatively associated with the percentage of the observation period spent receiving dialysis treatment. Long-term growth hormone treatment of children with chronic renal failure induces persistent catch-up growth, and the majority of patients achieve normal adult height.

  14. Mechanisms of epoxyeicosatrienoic acids to improve cardiac remodeling in chronic renal failure disease.

    PubMed

    Zhang, Kun; Wang, Ju; Zhang, Huanji; Chen, Jie; Zuo, Zhiyi; Wang, Jingfeng; Huang, Hui

    2013-02-15

    Both clinical and basic science studies have demonstrated that cardiac remodeling in patients with chronic renal failure (CRF) is very common. It is a key feature during the course of heart failure and an important risk factor for subsequent cardiac mortality. Traditional drugs or therapies rarely have effects on cardiac regression of CRF and cardiovascular events are still the first cause of death. Epoxyeicosatrienoic acids (EETs) are the products of arachidonic acids metabolized by cytochrome P450 epoxygenases. It has been found that EETs have important biological effects including anti-hypertension and anti-inflammation. Recent data suggest that EETs are involved in regulating cardiomyocyte injury, renal dysfunction, chronic kidney disease (CKD)-related risk factors and signaling pathways, all of which play key roles in cardiac remodeling induced by CRF. This review analyzes the literature to identify the possible mechanisms for EETs to improve cardiac remodeling induced by CRF and indicates the therapeutic potential of EETs in it. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Ginger extract diminishes chronic fructose consumption-induced kidney injury through suppression of renal overexpression of proinflammatory cytokines in rats.

    PubMed

    Yang, Ming; Liu, Changjin; Jiang, Jian; Zuo, Guowei; Lin, Xuemei; Yamahara, Johji; Wang, Jianwei; Li, Yuhao

    2014-05-27

    The metabolic syndrome is associated with an increased risk of development and progression of chronic kidney disease. Renal inflammation is well known to play an important role in the initiation and progression of tubulointerstitial injury of the kidneys. Ginger, one of the most commonly used spices and medicinal plants, has been demonstrated to improve diet-induced metabolic abnormalities. However, the efficacy of ginger on the metabolic syndrome-associated kidney injury remains unknown. This study aimed to investigate the impact of ginger on fructose consumption-induced adverse effects in the kidneys. The fructose control rats were treated with 10% fructose in drinking water over 5 weeks. The fructose consumption in ginger-treated rats was adjusted to match that of fructose control group. The ethanolic extract of ginger was co-administered (once daily by oral gavage). The indexes of lipid and glucose homeostasis were determined enzymatically, by ELISA and/or histologically. Gene expression was analyzed by Real-Time PCR. In addition to improve hyperinsulinemia and hypertriglyceridemia, supplement with ginger extract (50 mg/kg) attenuated liquid fructose-induced kidney injury as characterized by focal cast formation, slough and dilation of tubular epithelial cells in the cortex of the kidneys in rats. Furthermore, ginger also diminished excessive renal interstitial collagen deposit. By Real-Time PCR, renal gene expression profiles revealed that ginger suppressed fructose-stimulated monocyte chemoattractant protein-1 and its receptor chemokine (C-C motif) receptor-2. In accord, overexpression of two important macrophage accumulation markers CD68 and F4/80 was downregulated. Moreover, overexpressed tumor necrosis factor-alpha, interleukin-6, transforming growth factor-beta1 and plasminogen activator inhibitor (PAI)-1 were downregulated. Ginger treatment also restored the downregulated ratio of urokinase-type plasminogen activator to PAI-1. The present results

  16. Ginger extract diminishes chronic fructose consumption-induced kidney injury through suppression of renal overexpression of proinflammatory cytokines in rats

    PubMed Central

    2014-01-01

    Background The metabolic syndrome is associated with an increased risk of development and progression of chronic kidney disease. Renal inflammation is well known to play an important role in the initiation and progression of tubulointerstitial injury of the kidneys. Ginger, one of the most commonly used spices and medicinal plants, has been demonstrated to improve diet-induced metabolic abnormalities. However, the efficacy of ginger on the metabolic syndrome-associated kidney injury remains unknown. This study aimed to investigate the impact of ginger on fructose consumption-induced adverse effects in the kidneys. Methods The fructose control rats were treated with 10% fructose in drinking water over 5 weeks. The fructose consumption in ginger-treated rats was adjusted to match that of fructose control group. The ethanolic extract of ginger was co-administered (once daily by oral gavage). The indexes of lipid and glucose homeostasis were determined enzymatically, by ELISA and/or histologically. Gene expression was analyzed by Real-Time PCR. Results In addition to improve hyperinsulinemia and hypertriglyceridemia, supplement with ginger extract (50 mg/kg) attenuated liquid fructose-induced kidney injury as characterized by focal cast formation, slough and dilation of tubular epithelial cells in the cortex of the kidneys in rats. Furthermore, ginger also diminished excessive renal interstitial collagen deposit. By Real-Time PCR, renal gene expression profiles revealed that ginger suppressed fructose-stimulated monocyte chemoattractant protein-1 and its receptor chemokine (C-C motif) receptor-2. In accord, overexpression of two important macrophage accumulation markers CD68 and F4/80 was downregulated. Moreover, overexpressed tumor necrosis factor-alpha, interleukin-6, transforming growth factor-beta1 and plasminogen activator inhibitor (PAI)-1 were downregulated. Ginger treatment also restored the downregulated ratio of urokinase-type plasminogen activator to PAI-1

  17. Use of prazosin in management of hypertension in patients with chronic renal failure and in renal transplant recipients.

    PubMed Central

    Curtis, J R; Bateman, F J

    1975-01-01

    Prazosin was used in combination with other antihypertensive drugs in the successful management of hypertension in seven patients with chronic renal failure and six renal transplant recipients, also with chronic renal failure. The addition of small doses of prazosin (mean 3 mg/day) to the antihypertensive regimen produced significant falls in systolic and diastolic blood pressures in both the lying and standing positions. The standing blood pressures were significantly lower than the lying blood pressures during prazosin treatment. Neither the mean blood urea concentrations nor the mean plasma creatinine concentrations changed significantly during prazosin administration. Chromium-51 edetic acid clearances did not change significantly during prazosin treatment in the seven patients in whom it was measured. Severe symptomatic postural hypotension occurred in one patient a week after starting prazosin 3 mg/day. This hypotensive episode was associated with a transient and reversible deterioration in renal function. Another patient developed a rash while on prazosin but it was probably related to propranolol rather than prazosin. Prazosin is thus an effective antihypertensive drug in patients with chronic renal failure, and it may be used with a variety of other drugs. It should be used cautiously, however, since patients with chronic renal failure may respond to small doses, and significant postural falls in blood pressure may result. There was no evidence that the use of prazosin resulted in progressive deterioration in the residual renal function of the patients with chronic renal failure. PMID:811312

  18. Use of prazosin in management of hypertension in patients with chronic renal failure and in renal transplant recipients.

    PubMed

    Curtis, J R; Bateman, F J

    1975-11-22

    Prazosin was used in combination with other antihypertensive drugs in the successful management of hypertension in seven patients with chronic renal failure and six renal transplant recipients, also with chronic renal failure. The addition of small doses of prazosin (mean 3 mg/day) to the antihypertensive regimen produced significant falls in systolic and diastolic blood pressures in both the lying and standing positions. The standing blood pressures were significantly lower than the lying blood pressures during prazosin treatment. Neither the mean blood urea concentrations nor the mean plasma creatinine concentrations changed significantly during prazosin administration. Chromium-51 edetic acid clearances did not change significantly during prazosin treatment in the seven patients in whom it was measured. Severe symptomatic postural hypotension occurred in one patient a week after starting prazosin 3 mg/day. This hypotensive episode was associated with a transient and reversible deterioration in renal function. Another patient developed a rash while on prazosin but it was probably related to propranolol rather than prazosin. Prazosin is thus an effective antihypertensive drug in patients with chronic renal failure, and it may be used with a variety of other drugs. It should be used cautiously, however, since patients with chronic renal failure may respond to small doses, and significant postural falls in blood pressure may result. There was no evidence that the use of prazosin resulted in progressive deterioration in the residual renal function of the patients with chronic renal failure.

  19. Hypoxia-induced Bmi1 promotes renal tubular epithelial cell–mesenchymal transition and renal fibrosis via PI3K/Akt signal

    PubMed Central

    Du, Rui; Xia, Lin; Ning, Xiaoxuan; Liu, Limin; Sun, Wenjuan; Huang, Chen; Wang, Hanmin; Sun, Shiren

    2014-01-01

    Hypoxia is an important microenvironmental factor in the development of renal fibrosis; however, the underlying mechanisms are not well elucidated. Here we show that hypoxia induces Bmi1 mRNA and protein expression in human tubular epithelial cells. We further demonstrate that Bmi1 expression might be directly regulated by hypoxia-inducible factor-1a (HIF-1a) under low oxygen. Moreover, chromatin immunoprecipitation and reporter gene assay studies reveal cooperative transactivation of Bmi1 by HIF-1α and Twist. Enforced Bmi1 expression induces epithelial–mesenchymal transition (EMT), whereas silencing endogenous Bmi-1 expression reverses hypoxia-induced EMT. Up-regulation of Bmi1 leads to stabilization of Snail via modulation of PI3K/Akt signaling, whereas ablation of PI3K/Akt signaling partially rescues the phenotype of Bmi1-overexpressing cells, indicating that PI3K/Akt signaling might be a major mediator of Bmi1-induced EMT. In a rat model of obstructive nephropathy, Bmi1 expression increases in a time-dependent manner. Furthermore, we demonstrate that increased levels of Bmi1, correlated with HIF-1α and Twist, are associated with patients with chronic kidney disease. We provide in vitro and in vivo evidence that activation of HIF-1a/Twist-Bmi1 signaling in renal epithelial cells is associated with the development of chronic renal disease and may promote fibrogenesis via modulation of PI3K/Akt/Snail signaling by facilitating EMT. PMID:25009285

  20. Chronic administration of sildenafil improves erectile function in a rat model of chronic renal failure

    PubMed Central

    Gurbuz, Nilgun; Kol, Arif; Ipekci, Tumay; Ates, Erhan; Baykal, Asli; Usta, Mustafa F

    2015-01-01

    The relationship between erectile dysfunction (ED) and chronic renal failure (CRF) has been reported in several studies. This study aimed to investigate whether the chronic use of sildenafil could enhance the erectile capacity in CRF-induced rats. In addition, we assessed the effect of that treatment on certain molecules, which have been suggested to play crucial roles in erectile physiology and CRF-related ED as well. Three groups of animals were utilized: (1) age-matched control rats, (2) CRF-induced rats, (3) CRF-induced rats treated with chronic administration of sildenafil (5 mg kg−1 p.o. for 6 weeks [treatment started after 6 weeks of CRF induction]). At 3 months, all animals underwent cavernosal nerve stimulation (CNS) to assess erectile function. Penile tissue advanced glycation end products (AGE's)/5-hydroxymethyl-2-furaldehyde, malondialdehyde (MDA), cGMP (ELISA), inducible nitric oxide synthase (iNOS) and neuronal NOS (nNOS) (Western blot) analyses were performed in all rat groups. CRF-induced rats had a significant decrease in erectile function when compared to control rats (P < 0.05). The increase in both intracavernosal pressure (ICP) and area under the curve of CRF-induced rats treated with sildenafil (Group 3) was greater than CRF-induced rats (Group 2). Additionally, sildenafil treatment decreased AGE, MDA and iNOS levels, while it preserved nNOS and cGMP contents in CRF-induced penile tissue. Decreased AGE, MDA, iNOS and increased nNOS, cGMP levels at the sildenafil-treated group increased both ICP and Total ICP to CNS, which led to improve erectile function in CRF-induced rats. The results of the present study revealed the therapeutic effect of chronic sildenafil administration on erectile function in CRF-induced rats. PMID:25652632

  1. Chronic Colovesical Fistula Leading to Chronic Urinary Tract Infection Resulting in End-Stage Renal Disease in a Chronic Granulomatous Disease Patient.

    PubMed

    Siddiqui, M R; Sanford, T; Nair, A; Zerbe, C S; Hughes, M S; Folio, L; Agarwal, Piyush K; Brancato, S J

    2017-02-01

    A 46-year old man with X-linked chronic granulomatous disease (CGD) being followed at the National Institute of Health with uncontrolled CGD colitis who developed chronic colovesical fistula, and end-stage renal disease (ESRD). Despite aggressive medical management of symptoms with immunomodulators and antibiotic prophylaxis, the chronic colovesical fistula led to chronic pyelonephritis, recurrent urinary tract infections, persistent air in the collecting system and bladder, and post-renal obstruction resulting in renal failure. Patient is now hemodialysis dependent and required diverting loop ileostomy placement. This report highlights multiple potential etiologies of rising serum creatinine in patients with CGD.

  2. Association between renal iron accumulation and renal interstitial fibrosis in a rat model of chronic kidney disease.

    PubMed

    Naito, Yoshiro; Fujii, Aya; Sawada, Hisashi; Oboshi, Makiko; Iwasaku, Toshihiro; Okuhara, Yoshitaka; Morisawa, Daisuke; Eguchi, Akiyo; Hirotani, Shinichi; Masuyama, Tohru

    2015-07-01

    Iron accumulation is associated with the pathophysiology of chronic kidney disease (CKD). Renal fibrosis is a final common feature that contributes to the progression of CKD; however, little is known about the association between renal iron accumulation and renal interstitial fibrosis in CKD. Here we investigate the effects of iron chelation on renal interstitial fibrosis in a rat model of CKD. CKD was induced by 5/6 nephrectomy in Sprague-Dawley rats. At 8 weeks after operation, 5/6 nephrectomized rats were administered an oral iron chelator, deferasirox (DFX), in chow for 8 weeks. Other CKD rats were given a normal diet. Sham-operative rats given a normal diet served as a control. CKD rats exhibited hypertension, glomerulosclerosis and renal interstitial fibrosis. Iron chelation with DFX did not change hypertension and glomerulosclerosis; however, renal interstitial fibrosis was attenuated in CKD rats. Consistent with these findings, renal gene expression of collagen type III and transforming growth factor-β was increased in CKD rats compared with the controls, while iron chelation suppressed these increments. In addition, a decrease in vimentin along an increase in E-cadherin in renal gene expression was observed in CKD rats with iron chelation. CKD rats also showed increased CD68-positive cells in the kidney, whereas its increase was attenuated by iron deprivation. Similarly, increased renal gene expression of CD68, tumor necrosis factor-α and monocyte chemoattractant protein-1 was suppressed in CKD rats with iron chelation. Renal iron accumulation seems to be associated with renal interstitial fibrosis in a rat model of CKD.

  3. Renoprotective effects of combined endothelin-converting enzyme/neutral endopeptidase inhibitor SLV338 in acute and chronic experimental renal damage.

    PubMed

    Sharkovska, Yuliya; Kalk, Philipp; von Websky, Karoline; Relle, Katharina; Pfab, Thiemo; Alter, Markus; Fischer, Yvan; Hocher, Berthold

    2011-01-01

    Acute kidney injury (AKI) as well as chronic renal failure are associated with a huge mortality/morbidity. However, so far no drugs have been approved for the treatment of acute kidney failure and only a few for the treatment of chronic kidney disease (CKD). We analysed the effect of SLV338, a neutral endopeptidase (NEP)/endothelin converting enzyme (ECE)-inhibitor in animal models of acute kidney failure as well as chronic renal failure. Acute renal failure was induced in male Wistar rats by uninephrectomy and clamping of the remaining kidney for 55 minutes. SLV338 (total dose: 4.9 mg/kg) or vehicle was continuously infused for 2 hours (starting 20 minutes prior to clamping). Sham operated animals served as controls. Plasma creatinine was measured at baseline and day 2 and 8 after renal ischemia-reperfusion. Hypertensive renal damage was induced in male Sprague Dawley rats by nitric oxide deficiency using L-NAME (50 mg/kg per day, added to drinking water for 4 weeks). One group was treated over the same time period with SLV338 (30 mg/kg per day, mixed with food). Systolic blood pressure was monitored weekly. At study end, urine and blood samples were collected and kidneys were harvested. Acute renal ischemia-reperfusion caused a 5-fold plasma creatinine elevation (day 2), which was significantly attenuated by more than 50% in animals treated with SLV338 (p < 0.05). Renal failure was accompanied by a 67% mortality in vehicle-treated rats, but only 20% after SLV338 treatment (p = 0.03 compared to sham controls). Chronic L-NAME administration caused hypertension, urinary albumin excretion, glomerulosclerosis, renal arterial remodelling, and renal interstitial fibrosis. Treatment with SLV338 did not significantly affect blood pressure, but abolished renal tissue damage (interstitial fibrosis, glomerulosclerosis, renal arterial remodelling (p < 0.05 versus L-NAME group in each case). The dual ECE/NEP inhibitor SLV338 preserves kidney function and reduces mortality in

  4. Human pluripotent stem cell-derived erythropoietin-producing cells ameliorate renal anemia in mice.

    PubMed

    Hitomi, Hirofumi; Kasahara, Tomoko; Katagiri, Naoko; Hoshina, Azusa; Mae, Shin-Ichi; Kotaka, Maki; Toyohara, Takafumi; Rahman, Asadur; Nakano, Daisuke; Niwa, Akira; Saito, Megumu K; Nakahata, Tatsutoshi; Nishiyama, Akira; Osafune, Kenji

    2017-09-27

    The production of erythropoietin (EPO) by the kidneys, a principal hormone for the hematopoietic system, is reduced in patients with chronic kidney disease (CKD), eventually resulting in severe anemia. Although recombinant human EPO treatment improves anemia in patients with CKD, returning to full red blood cell production without fluctuations does not always occur. We established a method to generate EPO-producing cells from human induced pluripotent stem cells (hiPSCs) by modifying previously reported hepatic differentiation protocols. These cells showed increased EPO expression and secretion in response to low oxygen conditions, prolyl hydroxylase domain-containing enzyme inhibitors, and insulin-like growth factor 1. The EPO protein secreted from hiPSC-derived EPO-producing (hiPSC-EPO) cells induced the erythropoietic differentiation of human umbilical cord blood progenitor cells in vitro. Furthermore, transplantation of hiPSC-EPO cells into mice with CKD induced by adenine treatment improved renal anemia. Thus, hiPSC-EPO cells may be a useful tool for clarifying the mechanisms of EPO production and may be useful as a therapeutic strategy for treating renal anemia. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  5. Periodontitis associated with chronic renal failure: a case report.

    PubMed

    Khocht, A

    1996-11-01

    Chronic renal disease is associated with well-documented impairments in polymorphonuclear leucocyte (PMN) function. PMNs are important in defending the periodontium against plaque infections. This report discusses a case of periodontitis in a patient with chronic renal failure. It presents treatment provided and 1-year follow up. It shows that periodontal infections in patients with depressed PMN function could still be managed successfully with standard periodontal treatment emphasizing plaque control.

  6. A new perspective on the pathogenesis of chronic renal disease in captive cheetahs (Acinonyx jubatus)

    PubMed Central

    Prozesky, Leon; Lawrence, John

    2018-01-01

    The sustainability of captive cheetah populations is limited by high mortality due to chronic renal disease. This necropsy study, conducted on 243 captive cheetahs from one institution, investigated the relationships between focal palatine erosions, gastritis, enterocolitis, glomerulosclerosis, chronic renal infarcts, renal cortical and medullary fibrosis, and renal medullary amyloidosis at death. Associations between the individual renal lesions and death due to chronic renal disease and comparisons of lesion prevalence between captive bred and wild born and between normal and king coated cheetahs were also assessed. All lesions were significantly positively correlated with age at death. Renal medullary fibrosis was the only lesion associated with the likelihood of death being due to chronic renal disease, and cheetahs with this lesion were younger, on average, than cheetahs with other renal lesions. Alimentary tract lesions were not associated with amyloidosis. All lesions, except for palatine erosions, were more common in wild born than in captive bred cheetahs; the former were older at death than the latter. Having a king coat had no clear effect on disease prevalence. These results suggest that age and renal medullary fibrosis are the primary factors influencing the pathogenesis of chronic renal disease in captive cheetahs. Apart from amyloidosis, these findings are analogous to those described in chronic renal disease in domestic cats, which is postulated to result primarily from repetitive hypoxic injury of renal tubules, mediated by age and stress. Cheetahs may be particularly susceptible to acute renal tubular injury due to their propensity for stress and their extended life span in captivity, as well as their adaptation for fecundity (rather than longevity) and adrenaline-mediated high speed prey chases. The presence of chronic renal disease in subadult cheetahs suggests that prevention, identification and mitigation of stress are critical to the

  7. A new perspective on the pathogenesis of chronic renal disease in captive cheetahs (Acinonyx jubatus).

    PubMed

    Mitchell, Emily P; Prozesky, Leon; Lawrence, John

    2018-01-01

    The sustainability of captive cheetah populations is limited by high mortality due to chronic renal disease. This necropsy study, conducted on 243 captive cheetahs from one institution, investigated the relationships between focal palatine erosions, gastritis, enterocolitis, glomerulosclerosis, chronic renal infarcts, renal cortical and medullary fibrosis, and renal medullary amyloidosis at death. Associations between the individual renal lesions and death due to chronic renal disease and comparisons of lesion prevalence between captive bred and wild born and between normal and king coated cheetahs were also assessed. All lesions were significantly positively correlated with age at death. Renal medullary fibrosis was the only lesion associated with the likelihood of death being due to chronic renal disease, and cheetahs with this lesion were younger, on average, than cheetahs with other renal lesions. Alimentary tract lesions were not associated with amyloidosis. All lesions, except for palatine erosions, were more common in wild born than in captive bred cheetahs; the former were older at death than the latter. Having a king coat had no clear effect on disease prevalence. These results suggest that age and renal medullary fibrosis are the primary factors influencing the pathogenesis of chronic renal disease in captive cheetahs. Apart from amyloidosis, these findings are analogous to those described in chronic renal disease in domestic cats, which is postulated to result primarily from repetitive hypoxic injury of renal tubules, mediated by age and stress. Cheetahs may be particularly susceptible to acute renal tubular injury due to their propensity for stress and their extended life span in captivity, as well as their adaptation for fecundity (rather than longevity) and adrenaline-mediated high speed prey chases. The presence of chronic renal disease in subadult cheetahs suggests that prevention, identification and mitigation of stress are critical to the

  8. Application of path analysis to urinary findings of cadmium-induced renal dysfunction.

    PubMed

    Abe, T; Kobayashi, E; Okubo, Y; Suwazono, Y; Kido, T; Shaikh, Z A; Nogawa, K

    2001-01-01

    In order to identify some causal relations among various urinary indices of cadmium-induced renal dysfunction, such as glucose, total protein, amino nitrogen, beta 2-microglobulin (beta 2-m), metallothionein (MT), and cadmium (Cd), we applied path analysis method to previous epidemiological studies targeting the residents of the Cd-polluted Kakehashi River basin of Ishikawa Prefecture, Japan. We obtained a diagram-termed path model, representing some causal relations among the above urinary indices. It shows that urinary Cd is located at the beginning point in the diagram, and Cd-induced renal dysfunction develops in the following order: Cd exposure-->increase of beta 2-m and/or MT excretion-->increase of amino-N and/or total protein excretion-->increase of glucose excretion. It was proved mathematically, that in the case of both males and females, increased excretions of beta 2-m and/or MT were the most sensitive urinary indices of the early stage of chronic Cd-induced renal dysfunction.

  9. Acute and chronic effects of the insecticide endrin on renal function and renal hemodynamics.

    DOT National Transportation Integrated Search

    1963-10-01

    Chronic and acute effects of the insecticide endrin on renal function were studied in dogs. Animals were exposed to endrin chronically by intramuscular injection and acutely by intravenous infusion. In acute studies dogs developed systemic hypertensi...

  10. [Perinatal complications in patients with chronic renal insufficiency on hemodialysis].

    PubMed

    Vázquez-Rodríguez, Juan Gustavo; del Angel-García, Guadalupe

    2010-09-01

    Pregnant patients with chronic renal insufficiency treated with hemodialysis experience adverse perinatal results. To compare perinatal complications of patients with chronic renal insufficiency undergoing hemodialysis who become pregnant vs. the complications of women with chronic renal insufficiency not undergoing dialysis but who then require dialysis during gestation. Transversal and retrospective study that included three patients with chronic renal insufficiency on chronic hemodialysis who became pregnant (group A) and three patients with chronic renal insufficiency without hemodialysis at the time of conception but who required dialysis during gestation (group B). Perinatal results were compared. Statistical analysis was performed with measures of central tendency and dispersion and Student t-test. Group A had 25 sessions vs. group B with 29 hemodialysis sessions (p = 0.88). Maternal complications were anemia 100% (six cases), Cesarean delivery 83.3% (group A 2 cases vs. group B 2 cases), preeclampsia 50% (group A 2 cases vs. group B 1 case), uncontrolled hypertension 50% (group A 2 cases vs. group B 1 case), preterm delivery 50% (group A 2 cases vs. group B 1 case), transfusion 33.3% (group A 2 cases), polyhydramnios 33.3% (group A 1 case vs. group B 1 case) and abortion 16.6% (group A 1 case). Fetal complications included fetal loss 16.6% (group A 1 case), neonatal mortality 33.3% (group A 1 cases vs. group B 1 case), prematurity 50% (group A2 cases vs. group B 1 case), fetal distress 50% (group A 1 case vs. group B 2 cases), respiratory failure 33.3% (group A 2 cases) and fetal growth restriction 16.6% (group A 1 case). Frequency of perinatal complications is elevated in both groups.

  11. Chronic renal failure in a patient with bilateral ureterocele

    PubMed Central

    Dada, Samuel A.; Rafiu, Mojeed O.; Olanrewaju, Timothy O.

    2015-01-01

    Ureterocele is a congenital anomaly, in which there is mal-development of the caudal segments of the ureter. There is a female preponderance with most cases seen in Caucasians. Among the reported complications of this condition, chronic renal failure occurring in the setting of ureterocele has not been well documented. We report a case of a young girl with bilateral ureterocele presenting with chronic renal failure, whose management presented a diagnostic failure and inadequate treatment. PMID:26108593

  12. Renal Oxidative Stress Induced by Long-Term Hyperuricemia Alters Mitochondrial Function and Maintains Systemic Hypertension

    PubMed Central

    Cristóbal-García, Magdalena; García-Arroyo, Fernando E.; Arellano-Buendía, Abraham S.; Madero, Magdalena; Rodríguez-Iturbe, Bernardo; Pedraza-Chaverrí, José; Zazueta, Cecilia; Johnson, Richard J.; Sánchez Lozada, Laura-Gabriela

    2015-01-01

    We addressed if oxidative stress in the renal cortex plays a role in the induction of hypertension and mitochondrial alterations in hyperuricemia. A second objective was to evaluate whether the long-term treatment with the antioxidant Tempol prevents renal oxidative stress, mitochondrial alterations, and systemic hypertension in this model. Long-term (11-12 weeks) and short-term (3 weeks) effects of oxonic acid induced hyperuricemia were studied in rats (OA, 750 mg/kg BW), OA+Allopurinol (AP, 150 mg/L drinking water), OA+Tempol (T, 15 mg/kg BW), or vehicle. Systolic blood pressure, renal blood flow, and vascular resistance were measured. Tubular damage (urine N-acetyl-β-D-glucosaminidase) and oxidative stress markers (lipid and protein oxidation) along with ATP levels were determined in kidney tissue. Oxygen consumption, aconitase activity, and uric acid were evaluated in isolated mitochondria from renal cortex. Short-term hyperuricemia resulted in hypertension without demonstrable renal oxidative stress or mitochondrial dysfunction. Long-term hyperuricemia induced hypertension, renal vasoconstriction, tubular damage, renal cortex oxidative stress, and mitochondrial dysfunction and decreased ATP levels. Treatments with Tempol and allopurinol prevented these alterations. Renal oxidative stress induced by hyperuricemia promoted mitochondrial functional disturbances and decreased ATP content, which represent an additional pathogenic mechanism induced by chronic hyperuricemia. Hyperuricemia-related hypertension occurs before these changes are evident. PMID:25918583

  13. Serum Lipase as Clinical Laboratory Index for Chronic Renal Failure Diagnosis.

    PubMed

    Zhu, Ying; Dong, Jing; Wang, Ping; Huang, Huifang; Jin, Xiaohua; Zhou, Jingou; Shi, Jingfang; Gu, Guohao; Chen, Jun; Xu, Jun; Song, Yanhui

    2016-07-01

    Measuring the level of serum lipase has been used for the clinical diagnosis of acute pancreatitis. Reports showed that the serum lipase level increased in patients of clinical renal failure. In this study, we aimed to measure the change of serum lipase levels in chronic kidney diseases and determine whether it could serve as a clinical laboratory index for clinical renal failure diagnosis. Materials: The OLYMPUS AU5400 automatic biochemical analyzer was used to determine the serum levels of lipase and creatinine. The study included 120 cases in the clinical renal failure group, 76 cases in the nephrotic syndrome group, 81 cases in the chronic nephritis group, and 80 healthy controls from our hospital volunteers in the same period. We then compared the lipase levels and conducted statistical analyses among these groups. The serum lipase levels were 15.3 U/L, 79.8 U/L, 45.1 U/L, and 51.0 U/L in the normal control, clinical renal failure, nephrotic syndrome, and chronic nephritis groups, respectively. The lipase levels in the groups with diseases were significantly different compared with that of the normal control group (p < 0.01). The lipase level of the clinical renal failure group was significantly higher than that of the nephrotic syndrome group and chronic nephritis group (p < 0.01). However, no statistically significant difference between the nephrotic syndrome and chronic nephritis group (p > 0.05) was observed. Moreover, an association of the serum lipase with disease progression was observed in the study. Serum lipase is an effective serological index which can reflect the clinical changes in the clinical renal failure and tends to increase through the progression of renal dysfunction.

  14. Comparative Evaluation of Periodontal Status of Chronic Renal Failure Patients and Systemically Healthy Individuals.

    PubMed

    Gupta, Radhika; Kumar, Uttam; Mallapragada, Siddharth; Agarwal, Pallavi

    2018-03-01

    Periodontitis, a chronic infectious disease, affects most of the population at one time or the other and its expression is a combination of hosts, microbial agents, and environmental factors. Extensive literature exists for the relationship between periodontal disease and diabetes mellitus, cardiovascular diseases, and adverse pregnancy outcomes. Only a few studies performed in a limited number of patients have reported peri-odontal health status in chronic renal failure patients. Hence, the aim of the present study is to assess and compare the periodontal status of patients with chronic renal failure undergoing dialysis, predialysis with systemically healthy individuals. A total of 90 patients were divided into three groups. Group I: 30 renal dialysis patients. Group II: 30 predialysis patients. Control group comprised 30 systemically healthy patients who formed group III. Periodontal examination was carried out using oral hygiene index-simplified (OHI-S), plaque index (PI), gingival index (GI), probing depth, and clinical attachment loss. The results of the study showed that the periodontal status of patients with chronic renal failure undergoing dialysis (dialysis group) and patients with chronic renal failure not undergoing renal dialysis (predialysis) when compared with systemically healthy subjects showed significantly higher mean scores of OHI-S, PI, and clinical attachment loss. Thus, patients with chronic renal failure showed poor oral hygiene and higher prevalence of periodontal disease. The dental community's awareness of implications of poor health within chronic renal failure patients should be elevated.

  15. ROLE OF THE RENAL MICROCIRCULATION IN PROGRESSION OF CHRONIC KIDNEY INJURY IN OBESITY

    PubMed Central

    Chade, Alejandro R.; Hall, John E.

    2016-01-01

    Background Obesity is largely responsible for the growing incidence and prevalence of diabetes, cardiovascular, and renal disease. Current strategies to prevent and treat obesity and its consequences have been insufficient to reverse the ongoing trends. Lifestyle modification or pharmacological therapies often produce modest weight loss which is not sustained and recurrence of obesity is frequently observed, leading to progression of target organ damage in many obese subjects. Therefore, research efforts have focused not only on the factors that regulate energy balance, but also on understanding mechanisms of target organ injury in obesity. Summary and Key message Microvascular disease plays a pivotal role in progressive kidney injury from different etiologies such as hypertension, diabetes, and atherosclerosis, which are all important consequences of chronic obesity. The microvascular networks are anatomical units that are closely adapted to specific functions of nutrition and removal of waste in every organ. Damage of the small vessels in several tissues and organs has been reported in obesity and may increase cardio-renal risk. However, the mechanisms by which obesity and its attendant cardiovascular and metabolic consequences interact to cause renal microvascular injury and chronic kidney disease are still unclear, although substantial progress has been made in recent years. This review addresses potential mechanisms and consequences of obesity-induced renal microvascular injury as well as current treatments that may provide protection of the renal microcirculation and slow progressive kidney injury in obesity. PMID:27771702

  16. Effects of chronic lithium administration on renal acid excretion in humans and rats

    PubMed Central

    Weiner, I. David; Leader, John P.; Bedford, Jennifer J.; Verlander, Jill W.; Ellis, Gaye; Kalita, Priyakshi; Vos, Frederiek; de Jong, Sylvia; Walker, Robert J.

    2014-01-01

    Abstract Lithium therapy's most common side effects affecting the kidney are nephrogenic diabetes insipidus (NDI) and chronic kidney disease. Lithium may also induce a distal renal tubular acidosis. This study investigated the effect of chronic lithium exposure on renal acid–base homeostasis, with emphasis on ammonia and citrate excretion. We compared 11 individuals on long‐term lithium therapy with six healthy individuals. Under basal conditions, lithium‐treated individuals excreted significantly more urinary ammonia than did control subjects. Following an acute acid load, urinary ammonia excretion increased approximately twofold above basal rates in both lithium‐treated and control humans. There were no significant differences between lithium‐treated and control subjects in urinary pH or urinary citrate excretion. To elucidate possible mechanisms, rats were randomized to diets containing lithium or regular diet for 6 months. Similar to humans, basal ammonia excretion was significantly higher in lithium‐treated rats; in addition, urinary citrate excretion was also significantly greater. There were no differences in urinary pH. Expression of the critical ammonia transporter, Rhesus C Glycoprotein (Rhcg), was substantially greater in lithium‐treated rats than in control rats. We conclude that chronic lithium exposure increases renal ammonia excretion through mechanisms independent of urinary pH and likely to involve increased collecting duct ammonia secretion via the ammonia transporter, Rhcg. PMID:25501430

  17. Evaluation of chronic kidney disease in chronic heart failure: From biomarkers to arterial renal resistances

    PubMed Central

    Iacoviello, Massimo; Leone, Marta; Antoncecchi, Valeria; Ciccone, Marco Matteo

    2015-01-01

    Chronic kidney disease and its worsening are recurring conditions in chronic heart failure (CHF) which are independently associated with poor patient outcome. The heart and kidney share many pathophysiological mechanisms which can determine dysfunction in each organ. Cardiorenal syndrome is the condition in which these two organs negatively affect each other, therefore an accurate evaluation of renal function in the clinical setting of CHF is essential. This review aims to revise the parameters currently used to evaluate renal dysfunction in CHF with particular reference to the usefulness and the limitations of biomarkers in evaluating glomerular dysfunction and tubular damage. Moreover, it is reported the possible utility of renal arterial resistance index (a parameter associated with abnormalities in renal vascular bed) for a better assesment of kidney disfunction. PMID:25610846

  18. Metabolic bone disease in chronic renal failure. II. Renal transplant patients.

    PubMed Central

    Huffer, W. E.; Kuzela, D.; Popovtzer, M. M.; Starzl, T. E.

    1975-01-01

    Trabecular vertebral bone of renal transplant patients was quantitatively compared with bone from normal individuals and dialyzed and nondialyzed patienets with chronic renal failure reported in detail in an earlier study. Long- and short-term transplant patients have increased bone resorption and mineralization defects similar to renal osteodystrophy in dialyzed and nondialyzed patients. However, in transplant patients the magnitude of resorption is greater, and bone volume tends to decrease rather than increase. Resorptive activity in transplant patients is maximal during the first year after transplantation. Bone volume decreases continuously for at least 96 months after transplantation. Only decreased bone volume correlated with success or failure of the renal transplant. Morphologic findings in this study correlate with other clinical and morphologic data to suggest that reduction in bone volume in transplant patients results from a combination of persistent hyperparathyroidism and suppression of bone formation by steroid therapy. Images Fig 1 PMID:1091152

  19. Physical Exercise and Patients with Chronic Renal Failure: A Meta-Analysis.

    PubMed

    Qiu, Zhenzhen; Zheng, Kai; Zhang, Haoxiang; Feng, Ji; Wang, Lizhi; Zhou, Hao

    2017-01-01

    Chronic renal failure is a severe clinical problem which has some significant socioeconomic impact worldwide and hemodialysis is an important way to maintain patients' health state, but it seems difficult to get better in short time. Considering these, the aim in our research is to update and evaluate the effects of exercise on the health of patients with chronic renal failure. The databases were used to search for the relevant studies in English or Chinese. And the association between physical exercise and health state of patients with chronic renal failure has been investigated. Random-effect model was used to compare the physical function and capacity in exercise and control groups. Exercise is helpful in ameliorating the situation of blood pressure in patients with renal failure and significantly reduces VO 2 in patients with renal failure. The results of subgroup analyses show that, in the age >50, physical activity can significantly reduce blood pressure in patients with renal failure. The activity program containing warm-up, strength, and aerobic exercises has benefits in blood pressure among sick people and improves their maximal oxygen consumption level. These can help patients in physical function and aerobic capacity and may give them further benefits.

  20. [Chronic renal disease as cardiovascular risk factor].

    PubMed

    Hermans, M M H; Kooman, J P; Stehouwer, C D A

    2008-07-19

    A lowering of the glomerular filtration rate (GFR) and/or the presence of albuminuria are signs of chronic renal disease. Both variables are for the most part independently associated with an increased risk of cardiovascular morbidity and mortality. Albuminuria is a marker of endothelial dysfunction. A decrease of the GFR is associated with non-traditional risk factors, e.g. renal anaemia, uraemic toxins due to a decrease of the renal clearance, hyperhomocysteinaemia caused by a diminished homocysteine metabolism, excessive activation of the sympathetic nervous system which is related to sleep apnoea syndrome, oxidative stress and dyslipidaemia associated with the formation of vasotoxic, oxidised LDL cholesterol. These non-traditional risk factors may, alone or in combination with traditional atherogenic risk factors (e.g. age, male gender, smoking, hypercholesterolaemia, hypertension, obesity, positive family history and diabetes mellitus), partially via endothelial dysfunction, result in harmful effects on arterial function, increasing cardiovascular morbidity and mortality. Different stages of chronic kidney disease are associated with specific risk factors, making a specific therapeutic approach essential.

  1. Improvement of renal function after human umbilical cord mesenchymal stem cell treatment on chronic renal failure and thoracic spinal cord entrapment: a case report.

    PubMed

    Rahyussalim, Ahmad Jabir; Saleh, Ifran; Kurniawati, Tri; Lutfi, Andi Praja Wira Yudha

    2017-11-30

    Chronic renal failure is an important clinical problem with significant socioeconomic impact worldwide. Thoracic spinal cord entrapment induced by a metabolic yield deposit in patients with renal failure results in intrusion of nervous tissue and consequently loss of motor and sensory function. Human umbilical cord mesenchymal stem cells are immune naïve and they are able to differentiate into other phenotypes, including the neural lineage. Over the past decade, advances in the field of regenerative medicine allowed development of cell therapies suitable for kidney repair. Mesenchymal stem cell studies in animal models of chronic renal failure have uncovered a unique potential of these cells for improving function and regenerating the damaged kidney. We report a case of a 62-year-old ethnic Indonesian woman previously diagnosed as having thoracic spinal cord entrapment with paraplegic condition and chronic renal failure on hemodialysis. She had diabetes mellitus that affected her kidneys and had chronic renal failure for 2 years, with creatinine level of 11 mg/dl, and no urinating since then. She was treated with human umbilical cord mesenchymal stem cell implantation protocol. This protocol consists of implantation of 16 million human umbilical cord mesenchymal stem cells intrathecally and 16 million human umbilical cord mesenchymal stem cells intravenously. Three weeks after first intrathecal and intravenous implantation she could move her toes and her kidney improved. Her creatinine level decreased to 9 mg/dl. Now after 8 months she can raise her legs and her creatinine level is 2 mg/dl with normal urinating. Human umbilical cord mesenchymal stem cell implantations led to significant improvement for spinal cord entrapment and kidney failure. The major histocompatibility in allogeneic implantation is an important issue to be addressed in the future.

  2. Chronic Sleep Restriction during Pregnancy - Repercussion on Cardiovascular and Renal Functioning of Male Offspring

    PubMed Central

    Lima, Ingrid L. B.; Rodrigues, Aline F. A. C.; Bergamaschi, Cássia T.; Campos, Ruy R.; Hirata, Aparecida E.; Tufik, Sergio; Xylaras, Beatriz D. P.; Visniauskas, Bruna; Chagas, Jair R.; Gomes, Guiomar N.

    2014-01-01

    Changes in the maternal environment can induce fetal adaptations that result in the progression of chronic diseases in the offspring. The objective of the present study was to evaluate the effects of maternal chronic sleep restriction on blood pressure, renal function and cardiac baroreflex response on male offspring at adult age. Female 3-month-old Wistar rats were divided in two experimental groups: control (C) and chronic sleep restricted (CSR). Pregnancy was confirmed by vaginal smear. Chronic sleep restricted females were subjected to sleep restriction by the multiple platform technique for 20 h daily, between the 1st and 20th day of pregnancy. After birth, the litters were reduced to 6 rats per mother, and were designated as offspring from control (OC) and offspring from chronic sleep restricted (OCSR). Indirect blood pressure (BPi – tail cuff) was measured by plethysmography in male offspring at 3 months old. Following, the renal function and cardiac baroreflex response were analyzed. Values of BPi in OCSR were significantly higher compared to OC [OC: 127±2.6 (19); OCSR: 144±2.5 (17) mmHg]. The baroreflex sensitivity to the increase of blood pressure was reduced in OCSR [Slope: OC: −2.6±0.15 (9); OCRS: −1.6±0.13 (9)]. Hypothalamic activity of ACE2 was significantly reduced in OCSR compared to OC [OC: 97.4±15 (18); OSR: 60.2±3.6 (16) UAF/min/protein mg]. Renal function alteration was noticed by the increase in glomerular filtration rate (GFR) observed in OCSR [OC: 6.4±0.2 (10); OCSR: 7.4±0.3 (7)]. Chronic sleep restriction during pregnancy caused in the offspring hypertension, altered cardiac baroreflex response, reduced ACE-2 activity in the hypothalamus and renal alterations. Our data suggest that the reduction of sleeping time along the pregnancy is able to modify maternal homeostasis leading to functional alterations in offspring. PMID:25405471

  3. Chronic sleep restriction during pregnancy--repercussion on cardiovascular and renal functioning of male offspring.

    PubMed

    Lima, Ingrid L B; Rodrigues, Aline F A C; Bergamaschi, Cássia T; Campos, Ruy R; Hirata, Aparecida E; Tufik, Sergio; Xylaras, Beatriz D P; Visniauskas, Bruna; Chagas, Jair R; Gomes, Guiomar N

    2014-01-01

    Changes in the maternal environment can induce fetal adaptations that result in the progression of chronic diseases in the offspring. The objective of the present study was to evaluate the effects of maternal chronic sleep restriction on blood pressure, renal function and cardiac baroreflex response on male offspring at adult age. Female 3-month-old Wistar rats were divided in two experimental groups: control (C) and chronic sleep restricted (CSR). Pregnancy was confirmed by vaginal smear. Chronic sleep restricted females were subjected to sleep restriction by the multiple platform technique for 20 h daily, between the 1st and 20th day of pregnancy. After birth, the litters were reduced to 6 rats per mother, and were designated as offspring from control (OC) and offspring from chronic sleep restricted (OCSR). Indirect blood pressure (BPi - tail cuff) was measured by plethysmography in male offspring at 3 months old. Following, the renal function and cardiac baroreflex response were analyzed. Values of BPi in OCSR were significantly higher compared to OC [OC: 127 ± 2.6 (19); OCSR: 144 ± 2.5 (17) mmHg]. The baroreflex sensitivity to the increase of blood pressure was reduced in OCSR [Slope: OC: -2.6 ± 0.15 (9); OCRS: -1.6 ± 0.13 (9)]. Hypothalamic activity of ACE2 was significantly reduced in OCSR compared to OC [OC: 97.4 ± 15 (18); OSR: 60.2 ± 3.6 (16) UAF/min/protein mg]. Renal function alteration was noticed by the increase in glomerular filtration rate (GFR) observed in OCSR [OC: 6.4 ± 0.2 (10); OCSR: 7.4 ± 0.3 (7)]. Chronic sleep restriction during pregnancy caused in the offspring hypertension, altered cardiac baroreflex response, reduced ACE-2 activity in the hypothalamus and renal alterations. Our data suggest that the reduction of sleeping time along the pregnancy is able to modify maternal homeostasis leading to functional alterations in offspring.

  4. Postoperative chronic renal failure: a new syndrome?

    PubMed Central

    Merino, G E; Buselmeier, T J; Kjellstrand, C M

    1975-01-01

    Of 125 patients with postsurgical acute tubular necrosis, 87 died, 34 regained clinical normal renal function, and 4 survivors (9.5%) were left with severe permanent renal failure, two of whom required chronic dialysis and transplantation. Preoperatively these 4 patients had normal renal function. The 4 patients were above age 60, two had undergone methoxyflurane anesthesia, and nephrotoxic antibiotics were used in all. The incidence of permanent renal failure is much higher than ever reported and may reflect the survival of patients who previously died because of less ideal dialysis. We believe that the cause of this permanent lesion is multifactorial, including age (over 60 years), nephrotoxic antibiotics (particularly cephalothin and gentamicin sulfate), and nephrotoxic anesthetic (methoxyflurane) agents. This combination of factors should be avoided whenever possible. Images Fig. 2. PMID:1147707

  5. Adenine alleviates iron overload by cAMP/PKA mediated hepatic hepcidin in mice.

    PubMed

    Zhang, Yingqi; Wang, Xudong; Wu, Qian; Wang, Hao; Zhao, Lu; Wang, Xinhui; Mu, Mingdao; Xie, Enjun; He, Xuyan; Shao, Dandan; Shang, Yanna; Lai, Yongrong; Ginzburg, Yelena; Min, Junxia; Wang, Fudi

    2018-03-30

    Hemochromatosis is prevalent and often associated with high rates of morbidity and mortality worldwide. The safe alternative iron-reducing approaches are urgently needed in order to better control iron overload. Our unbiased vitamin screen for modulators of hepcidin, a master iron regulatory hormone, identifies adenine (vitamin B4) as a potent hepcidin agonist. Adenine significantly induced hepcidin mRNA level and promoter activity activation in human cell lines, possibly through BMP/SMAD pathway. Further studies in mice validated the effect of adenine on hepcidin upregulation. Consistently, adenine dietary supplement in mice led to an increase of hepatic hepcidin expression compared with normal diet-fed mice via BMP/SMAD pathway. Notably, adenine-rich diet significantly ameliorated iron overload accompanied by the enhanced hepcidin expression in both high iron-fed mice and in Hfe -/- mice, a murine model of hereditary hemochromatosis. To further validate this finding, we selected pharmacological inhibitors against BMP (LDN193189). We found LDN193189 strongly blocked the hepcidin induction by adenine. Moreover, we uncovered an essential role of cAMP/PKA-dependent axis in triggering adenine-induced hepcidin expression in primary hepatocytes by using 8 br cAMP, a cAMP analog, and H89, a potent inhibitor for PKA signaling. These findings suggest a potential therapeutic role of adenine for hereditary hemochromatosis. © 2018 Wiley Periodicals, Inc.

  6. Renal oxygenation and hemodynamics in acute kidney injury and chronic kidney disease

    PubMed Central

    Singh, Prabhleen; Ricksten, Sven-Erik; Bragadottir, Gudrun; Redfors, Bengt; Nordquist, Lina

    2013-01-01

    Summary 1. Acute kidney injury (AKI) puts a major burden on health systems that may arise from multiple initiating insults, including ischemia-reperfusion injury, cardiovascular surgery, radio-contrast administration as well as sepsis. Similarly, the incidence and prevalence of chronic kidney disease (CKD) continues to increase with significant morbidity and mortality. Moreover, an increasing number of AKI patients survive to develop CKD and end-stage kidney disease (ESRD). 2. Although the mechanisms for development of AKI and progression of CKD remain poorly understood, initial impairment of oxygen balance is likely to constitute a common pathway, causing renal tissue hypoxia and ATP starvation that will in turn induce extracellular matrix production, collagen deposition and fibrosis. Thus, possible future strategies for one or both conditions may involve dopamine, loop-diuretics, inducible nitric oxide synthase inhibitors and atrial natriuretic peptide, substances that target kidney oxygen consumption and regulators of renal oxygenation such as nitric oxide and heme oxygenase-1. PMID:23360244

  7. Frequency and clinical predictors of coronary artery disease in chronic renal failure renal transplant candidates.

    PubMed

    de Albuquerque Seixas, Emerson; Carmello, Beatriz Leone; Kojima, Christiane Akemi; Contti, Mariana Moraes; Modeli de Andrade, Luiz Gustavo; Maiello, José Roberto; Almeida, Fernando Antonio; Martin, Luis Cuadrado

    2015-05-01

    Cardiovascular diseases are major causes of mortality in chronic renal failure patients before and after renal transplantation. Among them, coronary disease presents a particular risk; however, risk predictors have been used to diagnose coronary heart disease. This study evaluated the frequency and importance of clinical predictors of coronary artery disease in chronic renal failure patients undergoing dialysis who were renal transplant candidates, and assessed a previously developed scoring system. Coronary angiographies conducted between March 2008 and April 2013 from 99 candidates for renal transplantation from two transplant centers in São Paulo state were analyzed for associations between significant coronary artery diseases (≥70% stenosis in one or more epicardial coronary arteries or ≥50% in the left main coronary artery) and clinical parameters. Univariate logistic regression analysis identified diabetes, angina, and/or previous infarction, clinical peripheral arterial disease and dyslipidemia as predictors of coronary artery disease. Multiple logistic regression analysis identified only diabetes and angina and/or previous infarction as independent predictors. The results corroborate previous studies demonstrating the importance of these factors when selecting patients for coronary angiography in clinical pretransplant evaluation.

  8. Validation of an Experimental Model to Study Less Severe Chronic Renal Failure.

    PubMed

    Fernandes-Charpiot, Ida Mária Maximina; Caldas, Heloisa Cristina; Mendes, Glória Elisa Florido; Gomes de Sá Neto, Luiz; Oliveira, Henrique Lacativa; Baptista, Maria Alice Sperto Ferreira; Abbud-Filho, Mario

    2016-10-01

    The 5/6 nephrectomy, mimics the stages of human chronic renal failure (CRF), but the procedure causes severe renal functional and morphological damage that could interfere with the evaluation of therapies for slowing the progression of the disease. This study summarizes the results of renal function, histology, and immunohistochemical findings in rats undergoing a 2/3 nephrectomy. The rats were distributed in groups according to the type of nephrectomy: CRF5/6: induced by a 5/6 renal mass reduction and CRF2/3: less severe CRF. The body weight and blood pressure were monitored, and the serum creatinine (SCr), creatinine clearance (CCr), urine osmolality, and 24-h proteinuria (PT24h) were measured. CRF progression was evaluated by the rate of decline of CCr (RCCr). Histology and immunohistochemistry were performed in the remnant kidneys. Statistical analysis was done by unpaired t-test, and a P-value < 0.05 was taken as a statistical significance. Compared to the CRF5/6 group, the CRF2/3 model had a lower SCr, PT24h, CCr, and variations of the SCr from baseline. The disease progression was also significantly slower. The renal histopathological findings revealed fewer chronic lesions in rats with CRF2/3. Similarly, we observed less macrophage accumulation as well as lower proliferative activity and expression of fibronectin and a-smooth muscle-actin in the CRF2/3 model. The CRF2/3 model presented with a pattern of less severe CRF, functionally and morphologically, compared to the classical CRF5/6 model, and the CRF2/3 model may be useful for evaluating therapeutic interventions that target the early stages of CRF.

  9. Physical Exercise and Patients with Chronic Renal Failure: A Meta-Analysis

    PubMed Central

    Qiu, Zhenzhen; Zheng, Kai; Zhang, Haoxiang; Feng, Ji; Wang, Lizhi

    2017-01-01

    Chronic renal failure is a severe clinical problem which has some significant socioeconomic impact worldwide and hemodialysis is an important way to maintain patients' health state, but it seems difficult to get better in short time. Considering these, the aim in our research is to update and evaluate the effects of exercise on the health of patients with chronic renal failure. The databases were used to search for the relevant studies in English or Chinese. And the association between physical exercise and health state of patients with chronic renal failure has been investigated. Random-effect model was used to compare the physical function and capacity in exercise and control groups. Exercise is helpful in ameliorating the situation of blood pressure in patients with renal failure and significantly reduces VO2 in patients with renal failure. The results of subgroup analyses show that, in the age >50, physical activity can significantly reduce blood pressure in patients with renal failure. The activity program containing warm-up, strength, and aerobic exercises has benefits in blood pressure among sick people and improves their maximal oxygen consumption level. These can help patients in physical function and aerobic capacity and may give them further benefits. PMID:28316986

  10. Renal function in juvenile rats subjected to prenatal malnutrition and chronic salt overload.

    PubMed

    Magalhães, João Carlos G; da Silveira, Alex B; Mota, Diogenes L; Paixão, Ana Durce O

    2006-05-01

    Dietary sodium may contribute to hypertension and to cardiovascular and renal disease if a primary deficiency of the kidney to excrete sodium exists. In order to investigate whether chronic 1% NaCl in the drinking water changes blood pressure and renal haemodynamics in juvenile Wistar rats subjected to prenatal malnutrition, an evaluation of plasma volume, oxidative stress in the kidney, proteinuria and renal haemodynamics was carried out. Malnutrition was induced by a multideficient diet. Mean arterial pressure, renal blood flow and glomerular filtration rate (GFR) were measured using a blood pressure transducer, a flow probe and inulin clearance, respectively. Plasma volume and oxidative stress were measured by means of the Evans Blue method and by monitoring thiobarbituric acid reactive substances (TBARS) in the kidneys, respectively. Urinary protein was measured by precipitation with 3% sulphosalicylic acid. It was observed that prenatally malnourished rats presented higher values of plasma volume (26%, P < 0.05), kidney TBARS (43%, P < 0.01) and blood pressure (10%, P < 0.01) when compared with the control group. However, they showed no change in renal haemodynamics or proteinuria. Neither prenatally malnourished nor control rats treated with sodium overload presented plasma volume or blood pressure values different from their respective control groups, but both groups presented elevated proteinuria (P < 0.01). The prenatally malnourished group treated with sodium overload presented higher values of kidney TBARS, GFR and filtration fraction (58, 87 and 72% higher, respectively, P < 0.01) than its respective control group. In summary, sodium overload did not exacerbate the hypertension in juvenile prenatally malnourished rats, but induced renal haemodynamic adjustments compatible with the development of renal disease.

  11. Leptospirosis Renal Disease: Emerging Culprit of Chronic Kidney Disease Unknown Etiology.

    PubMed

    Yang, Chih-Wei

    2018-01-01

    Leptospirosis is the most prevalent zoonosis affecting more than 1 million populations worldwide. Interestingly, leptospirosis endemic regions coincide with chronic kidney disease (CKD) hotspots largely due to flooding and agricultural overlaps. Acute leptospirosis induces multiple organ dysfunction including acute kidney injury and may predispose to CKD and end-stage renal disease, if not treated timely. Asymptomatic infection may carry the bacteria in the kidney and CKD progresses insidiously. Histologic finding of leptospirosis renal disease includes tubulointerstitial nephritis, interstitial fibrosis, and tubular atrophy. Proximal tubule dysfunction and hypokalemia are observed in adult male workers with leptospirosis, a characteristic similarity to CKD unknown etiology (CKDu). CKDu is a form of CKD that is not attributable to traditional risk factors clustering in agricultural communities affecting young male farmers. Kidney pathology shows a chronic tubulointerstitial disease. CKDu is being reported as an endemic nephropathy across the globe. Recent surveys suggest that asymptomatic leptospira renal colonization is an overlooked risk for renal fibrosis and CKDu. Population with anti-leptospira seropositivity is associated with lower estimated glomerular filtration rate in endemic regions and carrier may progress to CKD. Leptospirosis has been considered as a risk factor for CKDu in Sri Lanka and in Mesoamerican area. Sugarcane workers in Nicaragua showed increased anti-leptospira seropositivity and higher urinary biomarkers for kidney injury. Emerging evidence with signs of infection were reported in these endemic population, indicating that leptospira exposure could play a role in CKDu as a cause of primary kidney disease or a susceptible factor when secondary injury such as heat stress or dehydration aggravates kidney disease. Therefore, leptospirosis as an emerging culprit of CKDu deserves further in-depth investigation. © 2017 S. Karger AG, Basel.

  12. Salivary markers in patients with chronic renal failure.

    PubMed

    Pallos, Debora; Leão, Mariella V P; Togeiro, Fernanda C F B; Alegre, Larissa; Ricardo, Lucilene Hernandes; Perozini, Caroline; Ruivo, Gilson Fernandes

    2015-12-01

    Chronic renal failure (CRF) is a progressive loss of renal function over a period of months or years. The major function of the kidneys is the removal of metabolic waste products, electrolytes and water. When this function is impaired, systemic changes, oral complications and alterations in salivary composition may occur. This study aimed to compare the levels of immunological and inflammatory components in the saliva samples from patients that undergo to hemodialysis treatment (HD), without HD and control. This study evaluated IgA, IgG, C reactive protein (CRP) and nitric oxide (NO) in saliva samples from 119 patients, who were divided into the control group (C), chronic renal failure (CRF) patient group and CRF patients on hemodialysis treatment (HD) group. IgA and IgG levels were analyzed by ELISA. Nitric oxide levels were determined indirectly by the nitrite concentration using Griess reagent; CRP by agglutination tests; and total proteins, by Bradford assay. The HD group showed significantly higher levels of IgG, IgA and CRP compared with the control and CRF groups. The CRF group presented the same amounts of IgG, IgA and CRP as the C group but significantly higher levels of NO similar to the HD group. Renal disease, particularly hemodialysis treatment during renal disease, seems to alter salivary immunological and inflammatory components. Thus, analyzing the levels of IgA, IgG, NO and CRP in saliva may be beneficial for monitoring renal disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Diabetes-Induced Reactive Oxygen Species: Mechanism of Their Generation and Role in Renal Injury

    PubMed Central

    Fakhruddin, Selim; Alanazi, Wael

    2017-01-01

    Diabetes induces the onset and progression of renal injury through causing hemodynamic dysregulation along with abnormal morphological and functional nephron changes. The most important event that precedes renal injury is an increase in permeability of plasma proteins such as albumin through a damaged glomerular filtration barrier resulting in excessive urinary albumin excretion (UAE). Moreover, once enhanced UAE begins, it may advance renal injury from progression of abnormal renal hemodynamics, increased glomerular basement membrane (GBM) thickness, mesangial expansion, extracellular matrix accumulation, and glomerulosclerosis to eventual end-stage renal damage. Interestingly, all these pathological changes are predominantly driven by diabetes-induced reactive oxygen species (ROS) and abnormal downstream signaling molecules. In diabetic kidney, NADPH oxidase (enzymatic) and mitochondrial electron transport chain (nonenzymatic) are the prominent sources of ROS, which are believed to cause the onset of albuminuria followed by progression to renal damage through podocyte depletion. Chronic hyperglycemia and consequent ROS production can trigger abnormal signaling pathways involving diverse signaling mediators such as transcription factors, inflammatory cytokines, chemokines, and vasoactive substances. Persistently, increased expression and activation of these signaling molecules contribute to the irreversible functional and structural changes in the kidney resulting in critically decreased glomerular filtration rate leading to eventual renal failure. PMID:28164134

  14. Odour perception in chronic renal disease.

    PubMed

    Griep, M I; Van der Niepen, P; Sennesael, J J; Mets, T F; Massart, D L; Verbeelen, D L

    1997-10-01

    The sense of smell plays an important role in the quality of life. Many studies have shown a declining odour perception in the elderly, as well as in subjects in poor health or nutritional state. Considering the high prevalence of poor nutritional state in renal disease and the importance of odour perception in nutrition and health, the relationship between renal function, nutritional state, and odour perception is explored in this study. A total of 101 patients with chronic renal failure participated in the study. Thirty-eight haemodialysis patients (mean age = 64.3 years) were evaluated both before and after dialysis. Sixteen patients on peritoneal dialysis treatment (mean age = 64.0 years), 28 transplanted patients (mean age = 53.5 years, mean creatinine clearance = 64.0 ml/min) and 19 patients with varying degrees of renal insufficiency were also included (mean age = 63.7 years, mean creatinine clearance = 29.5 ml/min). Patients with cognitive deficits or upper respiratory airway diseases were excluded. A validated objective procedure was used to measure odour perception, by determining the detection threshold for isoamyl acetate (banana odour) as the lowest detectable odour concentration. Healthy control persons had significantly lower odour thresholds compared to patients on peritoneal (P = 0.001) and haemodialysis (P = 0.002). No significant difference was observed in odour perception between patients on peritoneal and haemodialysis (P = 0.779) and for patients on haemodialysis before and after a dialysis session. Transplanted patients had significantly better odour perception compared to matched patients on dialysis (P < 0.001). Odour perception of transplanted patients and matched healthy control persons was similar (P = 0.81). In patients with varying degrees of renal insufficiency, including healthy controls and transplanted patients, a significant positive correlation was found between odour perception and creatinine clearance (P = 0.02). A significant

  15. Coexistence of chronic renal failure, hashimoto thyroiditis and idiopathic hypoparathyroidism: a rare case report.

    PubMed

    Yildiz, Saliha; Soyoral, Yasemin; Demirkiran, Davut; Ozturk, Mustafa

    2014-04-01

    Hypoparathyroidism is an uncommon disease and its coexistence with chronic renal failure is quite rare. Hypocalcemia and hyperphosphatemia are seen in both diseases. Diagnosis of hypoparathyroidism may be overlooked when parathormone response is not evaluated in patients with chronic renal failure. A 19-year-old female patient who had been receiving hemodialysis for 3 years because of chronic renal failure was diagnosed as idiopathic hypoparathyroidism and hashimoto thyroiditis. When her medical records on the first admission and medical history were evaluated, hypoparathyroidism and hashimoto thyroiditis were seen to be present also when she was started hemodialysis. Idiopathic hypoparathyroidism should be suspected in case as absence of parathormone response to hypocalcemia in patients with chronic renal failure. It should be taken into consideration that hashimoto thyroiditis may accompany and required analysis should be done.

  16. [Effectiveness of nephroprotection by the selection of contrast media used during vascular interventions in patients with chronic renal failure?].

    PubMed

    Schönefeld, E; Höwler, S; Osada, N; Torsello, G

    2011-10-01

    The increasing number of endovascular procedures made aware of a kidney disease induced by contrast media (CM). Contrast-induced nephropathy (= CIN) can develop in 0.6-44 % of the treated patients by angiography and / or endovascular intervention. The incidence in high-risk patients ranges from 50 to 70 %. In most cases CIN is inconspicuous and reversible. But pre-existing chronic kidney disease, diabetes mellitus, age and variable different risk factors (e. g., PAOD) can induce irreversible renal impairment. The purpose of the presented trial is to investigate incidence, predictors, and out-come of CIN in chronic renal failure patients using two different CM; one non-ionic isoosmolar -iodixanol and the other non-ionic low-osmolar iopromide. To evaluate the incidence of CIN after endovascular diagnostics and intervention two collectives of 100  patients with chronic renal insufficiency were treated with different contrast media (CM). Inclusion followed prospectively in two collectives. One collective received iopromide (Ultravist™, Bayer Health Care, Lever-kusen, Germany), and the second hundred patients received iodixanol (Visipaque™, Nycomed Amersham, Princeton, New Jersey). Demographics, comorbidities, procedure-related data were completed by serum creatinine levels and GFR (= glomerular filtration rate). Inclusion criteria were a serum creatinine level ≥ 1.5 mg% and a GFR ≤ 60 mL / min. Those parameters were measured twice pre-interventionally, and one time 48-72  hours after the endovascular procedure. Collectives were homogenous and comparable concerning pre-existing risk factors, age and gender. Renal function stayed at a constant level and was independent of contrast medium selection, repectively. Average creatinine levels ranged around 1.77 mg% ± 0.75  standard deviation (SD) pre-interventionally; postinterventional measurement exposed a creatinine level of 1.74 mg% ± 0.74 SD as mean of both

  17. [Watermelon stomach: Chronic renal failure and/or imatinib?].

    PubMed

    Montagnac, Richard; Blaison, Dominique; Brahimi, Saïd; Schendel, Adeline; Levasseur, Thomas; Takin, Romulus

    2015-11-01

    Watermelon stomach or gastric antral vascular ectasia (GAVE) syndrome is an uncommon cause of sometimes severe upper gastro-intestinal bleeding. Essentially based on a pathognomonic endoscopic appearance, its diagnosis may be unrecognised because mistaken with portal hypertensive gastropathy, while treatment of these two entities is different. Its etiopathogeny remains still unclear, even if it is frequently associated with different systemic illnesses as hepatic cirrhosis, autoimmune disorders and chronic renal failure. The mechanism inducing these vascular ectasia may be linked with mechanical stress on submucosal vessels due to antropyloric peristaltic motility dysfunction modulated by neurohormonal vasoactive alterations. Because medical therapies are not very satisfactory, among the endoscopic modalities, argon plasma coagulation seems to be actually the first-line treatment because the most effective and safe. However, surgical antrectomy may be sometimes necessary. Recently GAVE syndrome appeared as a new adverse reaction of imatinib mesylate, one of the tyrosine kinase inhibitors used in chronic myeloid leukemia, and we report here the observation of such a pathology in one patient treated at the same time by haemodialysis and by imatinib mesylate for chronic myeloid leukemia. Copyright © 2015 Association Société de néphrologie. Published by Elsevier SAS. All rights reserved.

  18. Effects of fenoldopam on renal blood flow in hypertensive chronic kidney disease.

    PubMed

    Rovella, Valentina; Ferrannini, Michele; Tesauro, Manfredi; Marrone, Giulia; Busca, Andrea; Sorge, Roberto; Manca di Villahermosa, Simone; Casasco, Maurizio; Di Daniele, Nicola; Noce, Annalisa

    2018-05-15

    The synthetic drug fenoldopam mesylate (FM) may have a renoprotective role, and a "renal dose" of 0.1 µg/kg/min intravenous (IV) infusion of FM has been reported as able to increase renal blood flow without affecting systemic blood pressure. But conclusive data are still lacking. We aimed to investigate by color-Doppler ultrasonography the effects of IV administration of FM at this dosage in hypertensive chronic kidney disease (CKD) patients, and verify whether it may induce any systemic hemodynamic alteration. In 60 hypertensive CKD patients, we measured by duplex Doppler ultrasonography, at baseline and during infusion of 0.1 µg/kg/min of FM, the systolic and diastolic flow velocity (sampled at the renal hilum, intermediate section and origin of both renal arteries) and the intra-parenchymal renal resistive index (RRI) sampled on interlobular arteries of both kidneys. Patients were divided into four subgroups (I-IV) according to classification of National Kidney Foundation Kidney Disease Outcomes Quality Initiative (NKF-DOQI). Infusion of 0.1 µg/kg/min FM significantly decreased the RRI (0.73 ± 0.05 vs. 0.65 ± 0.06; p < 0.0001) and increased the systolic and diastolic flow velocities in all renal artery tracts examined. No single episode of systemic hypotension was observed. Very low-dose FM may significantly increase renal blood flow and exert a renal protective effect in hypertensive CKD patients. Infusion of FM at such low dosage appears also to be quite safe, even in CKD and hypertensive patients.

  19. Simultaneous Bilateral Quadriceps Tendon Rupture in Patient with Chronic Renal Failure

    PubMed Central

    Lee, Yunseok; Kim, Byounggook; Chung, Ju-Hwan

    2011-01-01

    Simultaneous bilateral spontaneous rupture of the quadriceps tendon is a very rare condition and only a few cases have been reported in the literature. The etiology is not clear yet. But it occurs infrequently in patients with chronic metabolic disorders. A 30-year-old female patient with simultaneous bilateral spontaneous quadriceps tendon rupture visited our hospital. She had chronic renal failure and her parathyroid hormone level was elevated due to parathyroid adenoma. We report a surgical repair of both quadriceps tendons of a patient with chronic renal failure as well as management of hyperparathyroidism. PMID:22570843

  20. Rifampicin-Induced Concomitant Renal Injury and Hepatitis

    PubMed Central

    Chogtu, Bharti; Surendra, Vyshak Uddur; Acharya, Preetam Rajgopal; Yerrapragada, Devesh Bhaskar

    2016-01-01

    Adverse drug reactions are not unusual during Anti-Tubercular Therapy (ATT). One of the common complications of anti-tubercular treatment is drug induced hepatitis and renal insufficiency has also been reported. Renal failure and/or hepatitis encountered during treatment of tuberculosis can have varied aetiologies: drug induced, concomitant viral infection, pre-existing co-morbidities or a combination of these. Since, hepatitis and/or renal insufficiency can be life threatening a prompt diagnosis is warranted, where drugs should be kept as one of the important cause. Identifying the drug helps in treating hepatitis and/or renal insufficiency along with helping the physician to change the combination of ATT regimen. Rifampicin is one of the most important first line drugs in the treatment of tuberculosis. Hepatitis, epigastric distress, anaemia, thrombocytopenia, and interstitial nephritis are reported adverse drug reactions to rifampicin. As per literature rifampicin induced renal toxicity is usually seen on rifampicin re-exposure, or rifampicin administration on alternate days, both being present in this case. Here we are reporting a case of ATT induced renal failure with concomitant hepatitis where rifampicin was suspected to be the cause. PMID:27790502

  1. Inhibition of p38 MAPK attenuates renal atrophy and fibrosis in a murine renal artery stenosis model.

    PubMed

    Wang, Diping; Warner, Gina M; Yin, Ping; Knudsen, Bruce E; Cheng, Jingfei; Butters, Kim A; Lien, Karen R; Gray, Catherine E; Garovic, Vesna D; Lerman, Lilach O; Textor, Stephen C; Nath, Karl A; Simari, Robert D; Grande, Joseph P

    2013-04-01

    Renal artery stenosis (RAS) is an important cause of chronic renal dysfunction. Recent studies have underscored a critical role for CCL2 (MCP-1)-mediated inflammation in the progression of chronic renal damage in RAS and other chronic renal diseases. In vitro studies have implicated p38 MAPK as a critical intermediate for the production of CCL2. However, a potential role of p38 signaling in the development and progression of chronic renal disease in RAS has not been previously defined. We sought to test the hypothesis that inhibition of p38 MAPK ameliorates chronic renal injury in mice with RAS. We established a murine RAS model by placing a cuff on the right renal artery and treated mice with the p38 inhibitor SB203580 or vehicle for 2 wk. In mice treated with vehicle, the cuffed kidney developed interstitial fibrosis, tubular atrophy, and interstitial inflammation. In mice treated with SB203580, the RAS-induced renal atrophy was reduced (70% vs. 39%, P < 0.05). SB203580 also reduced interstitial inflammation and extracellular matrix deposition but had no effect on the development of hypertension. SB203580 partially blocked the induction of CCL2, CCL7 (MCP-3), CC chemokine receptor 2 (CCR2), and collagen 4 mRNA expression in the cuffed kidneys. In vitro, blockade of p38 hindered both TNF-α and TGF-β-induced CCL2 upregulation. Based on these observations, we conclude that p38 MAPK plays a critical role in the induction of CCL2/CCL7/CCR2 system and the development of interstitial inflammation in RAS.

  2. Endothelin-A Receptor Antagonism after Renal Angioplasty Enhances Renal Recovery in Renovascular Disease

    PubMed Central

    Tullos, Nathan; Stewart, Nicholas J.; Surles, Bret

    2015-01-01

    Percutaneous transluminal renal angioplasty/stenting (PTRAS) is frequently used to treat renal artery stenosis and renovascular disease (RVD); however, renal function is restored in less than one half of the cases. This study was designed to test a novel intervention that could refine PTRAS and enhance renal recovery in RVD. Renal function was quantified in pigs after 6 weeks of chronic RVD (induced by unilateral renal artery stenosis), established renal damage, and hypertension. Pigs with RVD then underwent PTRAS and were randomized into three groups: placebo (RVD+PTRAS), chronic endothelin-A receptor (ET-A) blockade (RVD+PTRAS+ET-A), and chronic dual ET-A/B blockade (RVD+PTRAS+ET-A/B) for 4 weeks. Renal function was again evaluated after treatments, and then, ex vivo studies were performed on the stented kidney. PTRAS resolved renal stenosis, attenuated hypertension, and improved renal function but did not resolve renal microvascular rarefaction, remodeling, or renal fibrosis. ET-A blocker therapy after PTRAS significantly improved hypertension, microvascular rarefaction, and renal injury and led to greater recovery of renal function. Conversely, combined ET-A/B blockade therapy blunted the therapeutic effects of PTRAS alone or PTRAS followed by ET-A blockade. These data suggest that ET-A receptor blockade therapy could serve as a coadjuvant intervention to enhance the outcomes of PTRAS in RVD. These results also suggest that ET-B receptors are important for renal function in RVD and may contribute to recovery after PTRAS. Using clinically available compounds and techniques, our results could contribute to both refinement and design of new therapeutic strategies in chronic RVD. PMID:25377076

  3. Effect of Smoking on Peripheral Blood Lymphocyte Subsets of Patients With Chronic Renal Failure.

    PubMed

    Düvenci Birben, Özlem; Akçay, Şule; Sezer, Siren; Şirvan, Şale; Haberal, Mehmet

    2016-11-01

    Smoking is known to suppress the immune system. It is also known that chronic renal failure affects the immune system. However, the number of studies investigating the effects of chronic renal failure and smoking together is limited. In our study, we examined whether smoking affects the diminished response of the immune system in patients with chronic renal failure. We compared peripheral blood lymphocyte subsets in smoking and nonsmoking patients with chronic renal failure. We also used the Fagerström Test for Nicotine Dependence to evaluate its correlation with the lymphocyte subset count in patients who are current smokers. Our study included 126 patients with chronic renal failure. According to their smoking habits, patients were divided into 2 groups: smokers and nonsmokers. The average age of patients who were smokers was 53.2 ± 1.5 years, with average age of nonsmokers being 59.2 ± 2.2 years. The average duration of smoking in smokers was 30.7 ± 2.7 packyears. We found that the percentage of cluster of differentiation 16-56 cells (natural killer cells) and lymphocyte percentage were significantly lower among smokers in our study (P < .05). We compared the lymphocyte subset panel to pack-years and found that the rate of cluster of differentiation 16-56 cells decreased as smoking duration increased. Our study revealed that smoking suppresses the immune system, as measured by lymphocyte subsets, in patients with chronic renal failure, similar to that shown in healthy smokers. According to our findings, patients with chronic renal failure, where infection is the primary reason for mortality and morbidity, must be questioned for smoking and referred to smoking cessation clinics. Because of its immunosuppressive effects, smoking behaviors must be solved preoperatively in transplant candidates.

  4. Brown Nail-bed Arcs and Chronic Renal Disease

    PubMed Central

    Stewart, W. K.; Raffle, E. J.

    1972-01-01

    A brown arc affecting the distal part of the fingernail-bed, just proximal to the point of separation of the nail from its bed, has been found in 12 out of 34 patients with chronic renal disease (35%) compared with an incidence of less than 2% in a series of unselected patients. It represents a distinctive form of pigmentation, possibly due to lipochromes. No decisive association could be found between the presence or absence of the pigmented nail arc and the level of impaired renal function. Nevertheless it seems that renal disease predisposes towards the development of brown nail arcs. Imagesp786-a PMID:5014252

  5. Treatment with NZ-419 (5-Hydroxy-1-methylimidazoline-2,4-dione), a novel intrinsic antioxidant, against the progression of chronic kidney disease at stages 3 and 4 in rats.

    PubMed

    Ienaga, Kazuharu; Yokozawa, Takako

    2010-01-01

    For rats, glomerular filtration rate (GFR) and its relative GFR (ratio to normal GFR(0)) were estimated in order to classify their chronic kidney disease (CKD) into 5 stages like those in humans. The adenine-loaded rats, which were used to show the intrinsic antioxidant and creatinine (Cr) metabolite, NZ-419 (5-hydroxy-1- methylimidazolidine-2,4-dione), when taken orally, prevented the progression of chronic renal failure (CRF), were used as a model to reach the severest stage 5. In this report, we show that, by using both a tubular lesion and a glomerular lesion models (adenine-loaded and 5/6 nephrectomized rats, respectively), peroral NZ-419 might be a common tool to prevent the progression of CRF at CKD stages 3 and 4 under the condition that most rats in the control group still remained at stage 4 (0.15adenine-loaded rats, serum Cr and all oxidative stress markers were ameliorated. Two doses (80, 160 mg/kg/d), at around the MED, used for 5/6 nephrectomized rats with a similar CRF severity, gave significant inhibitory effects against the increases in blood urea nitrogen, decreases in renal blood flow and renal plasma flow, and nephrotic syndrome. Oxidative stress markers, the urinary methylguanidine and serum albumin level, were significantly ameliorated.

  6. Renal Tubular Cell Mitochondrial Dysfunction Occurs Despite Preserved Renal Oxygen Delivery in Experimental Septic Acute Kidney Injury

    PubMed Central

    Pollen, Sean; Greco, Elisabetta; Courtneidge, Holly; Hall, Andrew M.; Duchen, Michael R.; Tam, Frederick W. K.; Unwin, Robert J.; Singer, Mervyn

    2018-01-01

    Objective: To explain the paradigm of significant renal functional impairment despite preserved hemodynamics and histology in sepsis-induced acute kidney injury. Design: Prospective observational animal study. Setting: University research laboratory. Subjects: Male Wistar rats. Intervention: Using a fluid-resuscitated sublethal rat model of fecal peritonitis, changes in renal function were characterized in relation to global and renal hemodynamics, and histology at 6 and 24 hours (n = 6–10). Sham-operated animals were used as comparison (n = 8). Tubular cell mitochondrial function was assessed using multiphoton confocal imaging of live kidney slices incubated in septic serum. Measurements and Main Results: By 24 hours, serum creatinine was significantly elevated with a concurrent decrease in renal lactate clearance in septic animals compared with sham-operated and 6-hour septic animals. Renal uncoupling protein-2 was elevated in septic animals at 24 hours although tubular cell injury was minimal and mitochondrial ultrastructure in renal proximal tubular cells preserved. There was no significant change in global or renal hemodynamics and oxygen delivery/consumption between sham-operated and septic animals at both 6- and 24-hour timepoints. In the live kidney slice model, mitochondrial dysfunction was seen in proximal tubular epithelial cells incubated with septic serum with increased production of reactive oxygen species, and decreases in nicotinamide adenine dinucleotide and mitochondrial membrane potential. These effects were prevented by coincubation with the reactive oxygen species scavenger, 4-hydroxy-2,2,6,6-tetramethyl-piperidin-1-oxyl. Conclusions: Renal dysfunction in sepsis occurs independently of hemodynamic instability or structural damage. Mitochondrial dysfunction mediated by circulating mediators that induce local oxidative stress may represent an important pathophysiologic mechanism. PMID:29293148

  7. Dietary L-lysine prevents arterial calcification in adenine-induced uremic rats.

    PubMed

    Shimomura, Akihiro; Matsui, Isao; Hamano, Takayuki; Ishimoto, Takuya; Katou, Yumiko; Takehana, Kenji; Inoue, Kazunori; Kusunoki, Yasuo; Mori, Daisuke; Nakano, Chikako; Obi, Yoshitsugu; Fujii, Naohiko; Takabatake, Yoshitsugu; Nakano, Takayoshi; Tsubakihara, Yoshiharu; Isaka, Yoshitaka; Rakugi, Hiromi

    2014-09-01

    Vascular calcification (VC) is a life-threatening complication of CKD. Severe protein restriction causes a shortage of essential amino acids, and exacerbates VC in rats. Therefore, we investigated the effects of dietary l-lysine, the first-limiting amino acid of cereal grains, on VC. Male Sprague-Dawley rats at age 13 weeks were divided randomly into four groups: low-protein (LP) diet (group LP), LP diet+adenine (group Ade), LP diet+adenine+glycine (group Gly) as a control amino acid group, and LP diet+adenine+l-lysine·HCl (group Lys). At age 18 weeks, group LP had no VC, whereas groups Ade and Gly had comparable levels of severe VC. l-Lysine supplementation almost completely ameliorated VC. Physical parameters and serum creatinine, urea nitrogen, and phosphate did not differ among groups Ade, Gly, and Lys. Notably, serum calcium in group Lys was slightly but significantly higher than in groups Ade and Gly. Dietary l-lysine strongly suppressed plasma intact parathyroid hormone in adenine rats and supported a proper bone-vascular axis. The conserved orientation of the femoral apatite in group Lys also evidenced the bone-protective effects of l-lysine. Dietary l-lysine elevated plasma alanine, proline, arginine, and homoarginine but not lysine. Analyses in vitro demonstrated that alanine and proline inhibit apoptosis of cultured vascular smooth muscle cells, and that arginine and homoarginine attenuate mineral precipitations in a supersaturated calcium/phosphate solution. In conclusion, dietary supplementation of l-lysine ameliorated VC by modifying key pathways that exacerbate VC. Copyright © 2014 by the American Society of Nephrology.

  8. Dietary l-Lysine Prevents Arterial Calcification in Adenine-Induced Uremic Rats

    PubMed Central

    Shimomura, Akihiro; Matsui, Isao; Hamano, Takayuki; Ishimoto, Takuya; Katou, Yumiko; Takehana, Kenji; Inoue, Kazunori; Kusunoki, Yasuo; Mori, Daisuke; Nakano, Chikako; Obi, Yoshitsugu; Fujii, Naohiko; Takabatake, Yoshitsugu; Nakano, Takayoshi; Tsubakihara, Yoshiharu; Rakugi, Hiromi

    2014-01-01

    Vascular calcification (VC) is a life-threatening complication of CKD. Severe protein restriction causes a shortage of essential amino acids, and exacerbates VC in rats. Therefore, we investigated the effects of dietary l-lysine, the first-limiting amino acid of cereal grains, on VC. Male Sprague-Dawley rats at age 13 weeks were divided randomly into four groups: low-protein (LP) diet (group LP), LP diet+adenine (group Ade), LP diet+adenine+glycine (group Gly) as a control amino acid group, and LP diet+adenine+l-lysine·HCl (group Lys). At age 18 weeks, group LP had no VC, whereas groups Ade and Gly had comparable levels of severe VC. l-Lysine supplementation almost completely ameliorated VC. Physical parameters and serum creatinine, urea nitrogen, and phosphate did not differ among groups Ade, Gly, and Lys. Notably, serum calcium in group Lys was slightly but significantly higher than in groups Ade and Gly. Dietary l-lysine strongly suppressed plasma intact parathyroid hormone in adenine rats and supported a proper bone-vascular axis. The conserved orientation of the femoral apatite in group Lys also evidenced the bone-protective effects of l-lysine. Dietary l-lysine elevated plasma alanine, proline, arginine, and homoarginine but not lysine. Analyses in vitro demonstrated that alanine and proline inhibit apoptosis of cultured vascular smooth muscle cells, and that arginine and homoarginine attenuate mineral precipitations in a supersaturated calcium/phosphate solution. In conclusion, dietary supplementation of l-lysine ameliorated VC by modifying key pathways that exacerbate VC. PMID:24652795

  9. Kidney Disease in Adenine Phosphoribosyltransferase Deficiency.

    PubMed

    Runolfsdottir, Hrafnhildur Linnet; Palsson, Runolfur; Agustsdottir, Inger M; Indridason, Olafur S; Edvardsson, Vidar O

    2016-03-01

    Adenine phosphoribosyltransferase (APRT) deficiency is a purine metabolism disorder causing kidney stones and chronic kidney disease (CKD). The course of nephrolithiasis and CKD has not been well characterized. The objective of this study was to examine long-term kidney outcomes in patients with APRT deficiency. An observational cohort study. All patients enrolled in the APRT Deficiency Registry of the Rare Kidney Stone Consortium. Kidney stones, acute kidney injury (AKI), stage of CKD, end-stage renal disease, estimated glomerular filtration rate (eGFR), and changes in eGFR. Serum creatinine and eGFR calculated using creatinine-based equations. Of 53 patients, 30 (57%) were females and median age at diagnosis was 37.0 (range, 0.6-67.9) years. Median duration of follow-up was 10.3 (range, 0.0-31.5) years. At diagnosis, kidney stones had developed in 29 (55%) patients and 20 (38%) had CKD stages 3 to 5, including 11 (21%) patients with stage 5. At latest follow-up, 33 (62%) patients had experienced kidney stones; 18 (34%), AKI; and 22 (42%), CKD stages 3 to 5. Of 14 (26%) patients with stage 5 CKD, 12 had initiated renal replacement therapy. Kidney stones recurred in 18 of 33 (55%) patients. The median eGFR slope was -0.38 (range, -21.99 to 1.42) mL/min/1.73m(2) per year in patients receiving treatment with an xanthine dehydrogenase inhibitor and -5.74 (range, -75.8 to -0.10) mL/min/1.73m(2) per year in those not treated prior to the development of stage 5 CKD (P=0.001). Use of observational registry data. Progressive CKD and AKI episodes are major features of APRT deficiency, whereas nephrolithiasis is the most common presentation. Advanced CKD without a history of kidney stones is more prevalent than previously reported. Our data suggest that timely therapy may retard CKD progression. Copyright © 2016 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  10. Rapamycin inhibition of mTORC1 reverses lithium-induced proliferation of renal collecting duct cells

    PubMed Central

    Gao, Yang; Romero-Aleshire, Melissa J.; Cai, Qi; Price, Theodore J.

    2013-01-01

    Nephrogenic diabetes insipidus (NDI) is the most common renal side effect in patients undergoing lithium therapy for bipolar affective disorders. Approximately 2 million US patients take lithium of whom ∼50% will have altered renal function and develop NDI (2, 37). Lithium-induced NDI is a defect in the urinary concentrating mechanism. Lithium therapy also leads to proliferation and abundant renal cysts (microcysts), commonly in the collecting ducts of the cortico-medullary region. The mTOR pathway integrates nutrient and mitogen signals to control cell proliferation and cell growth (size) via the mTOR Complex 1 (mTORC1). To address our hypothesis that mTOR activation may be responsible for lithium-induced proliferation of collecting ducts, we fed mice lithium chronically and assessed mTORC1 signaling in the renal medulla. We demonstrate that mTOR signaling is activated in the renal collecting ducts of lithium-treated mice; lithium increased the phosphorylation of rS6 (Ser240/Ser244), p-TSC2 (Thr1462), and p-mTOR (Ser2448). Consistent with our hypothesis, treatment with rapamycin, an allosteric inhibitor of mTOR, reversed lithium-induced proliferation of medullary collecting duct cells and reduced levels of p-rS6 and p-mTOR. Medullary levels of p-GSK3β were increased in the renal medullas of lithium-treated mice and remained elevated following rapamycin treatment. However, mTOR inhibition did not improve lithium-induced NDI and did not restore the expression of collecting duct proteins aquaporin-2 or UT-A1. PMID:23884148

  11. Ebselen induces mitochondrial permeability transition because of its interaction with adenine nucleotide translocase.

    PubMed

    Pavón, Natalia; Correa, Francisco; Buelna-Chontal, Mabel; Hernández-Esquivel, Luz; Chávez, Edmundo

    2015-10-15

    Mitochondrial permeability transition is a process established through massive Ca(2+) load in addition to an inducer reagent. Ebselen (Ebs), an antioxidant seleno compound, has been introduced as a reagent which inhibits mitochondrial dysfunction induced by permeability transition. Paradoxically enough, it has been shown that Ebs may also be able to induce the opening of the mitochondrial non-selective pores. This study was performed with the purpose of establishing the membrane system involved in Ebs-induced pore opening. Permeability transition was appraised by analyzing the following: i) matrix Ca(2+) release, and mitochondrial swelling, ii) efflux of cytochrome c, and iii) the inhibition of superoxide dismutase. All of these adverse reactions were inhibited by N-ethylmaleimide and cyclosporin A. At concentrations from 5 to 20 μM, we found that Ebs induces non-specific membrane permeability. Remarkably, Ebs blocks the binding of the fluorescent reagent eosin-5-maleimide to the thiol groups of the adenine nucleotide translocase. Based on the above, it is tempting to hypothesize that Ebs induces pore opening through its binding to the ADP/ATP carrier. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Sympatho-renal axis in chronic disease.

    PubMed

    Sobotka, Paul A; Mahfoud, Felix; Schlaich, Markus P; Hoppe, Uta C; Böhm, Michael; Krum, Henry

    2011-12-01

    Essential hypertension, insulin resistance, heart failure, congestion, diuretic resistance, and functional renal disease are all characterized by excessive central sympathetic drive. The contribution of the kidney's somatic afferent nerves, as an underlying cause of elevated central sympathetic drive, and the consequences of excessive efferent sympathetic signals to the kidney itself, as well as other organs, identify the renal sympathetic nerves as a uniquely logical therapeutic target for diseases linked by excessive central sympathetic drive. Clinical studies of renal denervation in patients with resistant hypertension using an endovascular radiofrequency ablation methodology have exposed the sympathetic link between these conditions. Renal denervation could be expected to simultaneously affect blood pressure, insulin resistance, sleep disorders, congestion in heart failure, cardiorenal syndrome and diuretic resistance. The striking epidemiologic evidence for coexistence of these disorders suggests common causal pathways. Chronic activation of the sympathetic nervous system has been associated with components of the metabolic syndrome, such as blood pressure elevation, obesity, dyslipidemia, and impaired fasting glucose with hyperinsulinemia. Over 50% of patients with essential hypertension are hyperinsulinemic, regardless of whether they are untreated or in a stable program of treatment. Insulin resistance is related to sympathetic drive via a bidirectional mechanism. In this manuscript, we review the data that suggests that selective impairment of renal somatic afferent and sympathetic efferent nerves in patients with resistant hypertension both reduces markers of central sympathetic drive and favorably impacts diseases linked through central sympathetics-insulin resistance, heart failure, congestion, diuretic resistance, and cardiorenal disorders.

  13. Unusual course of infective endocarditis: acute renal failure progressing to chronic renal failure.

    PubMed

    Sevinc, Alper; Davutoglu, Vedat; Barutcu, Irfan; Kocoglu, M Esra

    2006-04-01

    Infective endocarditis is an infection of the endocardium that usually involves the valves and adjacent structures. The classical fever of unknown origin presentation represents a minority of infective endocarditis. The presented case was a 21-yearold young lady presenting with acute renal failure and fever to the emergency room. Cardiac auscultation revealed a soft S1 and 4/6 apical holosystolic murmur extended to axilla. Echocardiography showed mobile fresh vegetation under the mitral posterior leaflet. She was diagnosed as having infective endocarditis. Hemodialysis was started with antimicrobial therapy. However, because of the presence of severe mitral regurgitation with left ventricle dilatation and large mobile vegetation, mitral prosthetic mechanical valve replacement was performed. Although treated with antibiotics combined with surgery, renal functions were deteriorated and progressed to chronic renal failure.

  14. Vasopressin Mediates the Renal Damage Induced by Limited Fructose Rehydration in Recurrently Dehydrated Rats.

    PubMed

    García-Arroyo, Fernando E; Tapia, Edilia; Blas-Marron, Mónica G; Gonzaga, Guillermo; Silverio, Octaviano; Cristóbal, Magdalena; Osorio, Horacio; Arellano-Buendía, Abraham S; Zazueta, Cecilia; Aparicio-Trejo, Omar Emiliano; Reyes-García, Juan G; Pedraza-Chaverri, José; Soto, Virgilia; Roncal-Jiménez, Carlos; Johnson, Richard J; Sánchez-Lozada, Laura G

    2017-01-01

    Recurrent dehydration and heat stress cause chronic kidney damage in experimental animals. The injury is exacerbated by rehydration with fructose-containing beverages. Fructose may amplify dehydration-induced injury by directly stimulating vasopressin release and also by acting as a substrate for the aldose reductase-fructokinase pathway, as both of these systems are active during dehydration. The role of vasopressin in heat stress associated injury has not to date been explored. Here we show that the amplification of renal damage mediated by fructose in thermal dehydration is mediated by vasopressin. Fructose rehydration markedly enhanced vasopressin (copeptin) levels and activation of the aldose reductase-fructokinase pathway in the kidney. Moreover, the amplification of the renal functional changes (decreased creatinine clearance and tubular injury with systemic inflammation, renal oxidative stress, and mitochondrial dysfunction) were prevented by the blockade of V1a and V2 vasopressin receptors with conivaptan. On the other hand, there are also other operative mechanisms when water is used as rehydration fluid that produce milder renal damage that is not fully corrected by vasopressin blockade. Therefore, we clearly showed evidence of the cross-talk between fructose, even at small doses, and vasopressin that interact to amplify the renal damage induced by dehydration. These data may be relevant for heat stress nephropathy as well as for other renal pathologies due to the current generalized consumption of fructose and deficient hydration habits.

  15. Retinopathy and chronic kidney disease in the Chronic Renal Insufficiency Cohort (CRIC) study.

    PubMed

    Grunwald, Juan E; Alexander, Judith; Ying, Gui-Shuang; Maguire, Maureen; Daniel, Ebenezer; Whittock-Martin, Revell; Parker, Candace; McWilliams, Kathleen; Lo, Joan C; Go, Alan; Townsend, Raymond; Gadegbeku, Crystal A; Lash, James P; Fink, Jeffrey C; Rahman, Mahboob; Feldman, Harold; Kusek, John W; Xie, Dawei; Jaar, Bernard G

    2012-09-01

    To investigate the association between retinopathy and chronic kidney disease. In this observational, cross-sectional study, 2605 patients of the Chronic Renal Insufficiency Cohort (CRIC) study, a multicenter study of chronic kidney disease, were offered participation. Nonmydriatic fundus photographs of the disc and macula in both eyes were obtained in 1936 of these subjects. The photographs were reviewed in a masked fashion at a central photograph reading center using standard protocols. Presence and severity of retinopathy (diabetic, hypertensive, or other) and vessel diameter caliber were assessed by trained graders and a retinal specialist using protocols developed for large epidemiologic studies. Kidney function measurements and information on traditional and nontraditional risk factors for decreased kidney function were obtained from the CRIC study. Greater severity of retinopathy was associated with lower estimated glomerular filtration rate after adjustment for traditional and nontraditional risk factors. The presence of vascular abnormalities usually associated with hypertension was also associated with lower estimated glomerular filtration rate. We found no strong direct relationship between estimated glomerular filtration rate and average arteriolar or venular calibers. Our findings show a strong association between severity of retinopathy and its features and level of kidney function after adjustment for traditional and nontraditional risk factors for chronic kidney disease, suggesting that retinovascular pathology reflects renal disease.

  16. Astragaloside IV suppresses transforming growth factor-β1 induced fibrosis of cultured mouse renal fibroblasts via inhibition of the MAPK and NF-κB signaling pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Che, Xiajing; Wang, Qin; Xie, Yuanyuan

    Renal fibrosis, a progressive process characterized by the accumulation of extracellular matrix (ECM) leading to organ dysfunction, is a characteristic of chronic kidney diseases. Among fibrogenic factors known to regulate the renal fibrotic process, transforming growth factor-β (TGF-β) plays a central role. In the present study, we examined the effect of Astragaloside IV (AS-IV), a component of the traditional Chinese medicinal plant Astragalus membranaceus, on the processes associated with renal fibrosis in cultured mouse renal fibroblasts treated with TGF-β1. RT-PCR, western blotting, immunofluorescence staining and collagen assays showed that AS-IV suppressed TGF-β1 induced fibroblast proliferation, transdifferentiation, and ECM production inmore » a dose-dependent manner. Examination of the underlying mechanisms showed that the effect of AS-IV on the inhibition of fibroblast differentiation and ECM formation were mediated by its modulation of the activity of the MAPK and NF-κB signaling pathways. Taken together, our results indicate that AS-IV alleviates renal interstitial fibrosis via a mechanism involving the MAPK and NF-κB signaling pathways and demonstrate the therapeutic potential of AS-IV for the treatment of chronic kidney diseases. - Highlights: • AS-IV suppressed TGF-β1 induced renal fibroblast proliferation. • AS-IV suppressed TGF-β1 induced renal fibroblast transdifferentiation. • AS-IV suppressed TGF-β1 induced ECM production. • AS-IV alleviates renal fibrosis via the MAPK and NF-κB signaling pathways.« less

  17. Chronic Kidney Disease Epidemiology Collaboration versus Modification of Diet in Renal Disease equations for renal function evaluation in patients undergoing partial nephrectomy.

    PubMed

    Shikanov, Sergey; Clark, Melanie A; Raman, Jay D; Smith, Benjamin; Kaag, Matthew; Russo, Paul; Wheat, Jeffrey C; Wolf, J Stuart; Huang, William C; Shalhav, Arieh L; Eggener, Scott E

    2010-11-01

    A novel equation, the Chronic Kidney Disease Epidemiology Collaboration, has been proposed to replace the Modification of Diet in Renal Disease for estimated glomerular filtration rate due to higher accuracy, particularly in the setting of normal renal function. We compared these equations in patients with 2 functioning kidneys undergoing partial nephrectomy. We assembled a cohort of 1,158 patients from 5 institutions who underwent partial nephrectomy between 1991 and 2009. Only subjects with 2 functioning kidneys were included in the study. The end points were baseline estimated glomerular filtration rate, last followup estimated glomerular filtration rate (3 to 18 months), absolute and percent change estimated glomerular filtration rate ([absolute change/baseline] × 100%), and proportion of newly developed chronic kidney disease stage III. The agreement between the equations was evaluated using Bland-Altman plots and the McNemar test for paired observations. Mean baseline estimated glomerular filtration rate derived from the Modification of Diet in Renal Disease and Chronic Kidney Disease Epidemiology Collaboration equations were 73 and 77 ml/minute/1.73 m(2), respectively, and following surgery were 63 and 67 ml/minute/1.73 m(2), respectively. Mean percent change estimated glomerular filtration rate was -12% for both equations (p = 0.2). The proportion of patients with newly developed chronic kidney disease stage III following surgery was 32% and 25%, according to the Modification of Diet in Renal Disease and Chronic Kidney Disease Epidemiology Collaboration equations, respectively (p = 0.001). For patients with 2 functioning kidneys undergoing partial nephrectomy the Chronic Kidney Disease Epidemiology Collaboration equation provides slightly higher glomerular filtration rate estimates compared to the Modification of Diet in Renal Disease equation, with 7% fewer patients categorized as having chronic kidney disease stage III or worse. Copyright © 2010

  18. High anion gap metabolic acidosis induced by cumulation of ketones, L- and D-lactate, 5-oxoproline and acute renal failure.

    PubMed

    Heireman, Laura; Mahieu, Boris; Helbert, Mark; Uyttenbroeck, Wim; Stroobants, Jan; Piqueur, Marian

    2017-07-27

    Frequent causes of high anion gap metabolic acidosis (HAGMA) are lactic acidosis, ketoacidosis and impaired renal function. In this case report, a HAGMA caused by ketones, L- and D-lactate, acute renal failure as well as 5-oxoproline is discussed. A 69-year-old woman was admitted to the emergency department with lowered consciousness, hyperventilation, diarrhoea and vomiting. The patient had suffered uncontrolled type 2 diabetes mellitus, underwent gastric bypass surgery in the past and was chronically treated with high doses of paracetamol and fosfomycin. Urosepsis was diagnosed, whilst laboratory analysis of serum bicarbonate concentration and calculation of the anion gap indicated a  HAGMA. L-lactate, D-lactate, β-hydroxybutyric acid, acetone and 5-oxoproline serum levels were markedly elevated and renal function was impaired. We concluded that this case of HAGMA was induced by a variety of underlying conditions: sepsis, hyperglycaemia, prior gastric bypass surgery, decreased renal perfusion and paracetamol intake. Risk factors for 5-oxoproline intoxication present in this case are female gender, sepsis, impaired renal function and uncontrolled type 2 diabetes mellitus. Furthermore, chronic antibiotic treatment with fosfomycin might have played a role in the increased production of 5-oxoproline. Paracetamol-induced 5-oxoproline intoxication should be considered as a cause of HAGMA in patients with female gender, sepsis, impaired renal function or uncontrolled type 2 diabetes mellitus, even when other more obvious causes of HAGMA such as lactate, ketones or renal failure can be identified.

  19. Less contribution of mast cells to the progression of renal fibrosis in Rat kidneys with chronic renal failure.

    PubMed

    Baba, Asuka; Tachi, Masahiro; Ejima, Yutaka; Endo, Yasuhiro; Toyama, Hiroaki; Saito, Kazutomo; Abe, Nozomu; Yamauchi, Masanori; Miura, Chieko; Kazama, Itsuro

    2017-02-01

    Chronic renal failure (CRF) is histopathologically characterized by tubulointerstitial fibrosis in addition to glomerulosclerosis. Although mast cells are known to infiltrate into the kidneys with chronic inflammation, we know little about their contribution to the pathogenesis of renal fibrosis associated with CRF. The aim of this study was to reveal the involvement of mast cells in the progression of renal fibrosis in CRF. Using a rat model with CRF resulting from 5/6 nephrectomy, we examined the histopathological features of the kidneys and the infiltration of mast cells into the renal interstitium. By treating the rats with a potent mast cell stabilizer, tranilast, we also examined the involvement of mast cells in the progression of renal fibrosis associated with CRF. The CRF rat kidneys were characterized by the wide staining of collagen III and increased number of myofibroblasts, indicating the progression of renal fibrosis. Compared to T-lymphocytes or macrophages, the number of tryptase-positive mast cells was much smaller within the fibrotic kidneys and they did not proliferate in situ. The mRNA expression of mast cell-derived fibroblast-activating factors was not increased in the renal cortex isolated from CRF rat kidneys. Treatment with tranilast did not suppress the progression of renal fibrosis, nor did it ameliorate the progression of glomerulosclerosis and the interstitial proliferation of inflammatory leukocytes. This study demonstrated for the first time that mast cells are neither increased nor activated in the fibrotic kidneys of CRF rats. Compared to T-lymphocytes or macrophages that proliferate in situ within the fibrotic kidneys, mast cells were less likely to contribute to the progression of renal fibrosis associated with CRF. © 2016 Asian Pacific Society of Nephrology.

  20. Preemptive Renal Transplantation-The Best Treatment Option for Terminal Chronic Renal Failure.

    PubMed

    Arze Aimaretti, L; Arze, S

    2016-03-01

    Renal transplantation is the best therapeutic option for end-stage chronic renal disease. Assuming that it is more advisable if performed early, we aimed to show the clinical, social, and economic advantages in 70% of our patients who were dialyzed only for a short period. For this purpose, we retrospectively collected data over 28 years in 142 kidney transplants performed in patients with <6 weeks on dialysis. 66% of our patients were 30-60 years old; 98% of the patients had living donors. At transplantation, 64% of our patients had no public support; however, 64% of them returned to work and got health insurance 2 months later. Full rehabilitation was achieved in all cases, including integration to the family, return to full-time work, school and university, sports, and reproduction. Immunosuppression consisted of 3 drugs, including steroids, cyclosporine, and azathioprine or mycophenolate. The cost in the 1st year, including patient and donor evaluation, surgery, immunosuppression, and follow-up, was $13,300 USD versus $22,320 for hemodialysis. We conclude that preemptive renal transplantation with <6 weeks on dialysis is the best therapeutic option for end-stage renal failure, especially in developing countries such as Bolivia, where until last year, full public support for renal replacement therapy was unavailable. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Kidney dendritic cells in acute and chronic renal disease.

    PubMed

    Hochheiser, Katharina; Tittel, André; Kurts, Christian

    2011-06-01

    Dendritic cells are not only the master regulators of adaptive immunity, but also participate profoundly in innate immune responses. Much has been learned about their basic immunological functions and their roles in various diseases. Comparatively little is still known about their role in renal disease, despite their obvious potential to affect immune responses in the kidney, and immune responses that are directed against renal components. Kidney dendritic cells form an abundant network in the renal tubulointerstitium and constantly survey the environment for signs of injury or infection, in order to alert the immune system to the need to initiate defensive action. Recent studies have identified a role for dendritic cells in several murine models of acute renal injury and chronic nephritis. Here we summarize the current knowledge on the role of kidney dendritic cells that has been obtained from the study of murine models of renal disease. © 2010 The Authors. Journal compilation © 2010 Blackwell Publishing Ltd.

  2. Pregnancy in patients with chronic renal disease.

    PubMed Central

    Bear, R. A.

    1978-01-01

    Pregnancy is not invariably contra-indicated in patients with pre-existing renal disease. Clinical data now exist that permit the clinician to distinguish such patients who are likely to experience difficulty during pregnancy from those in whom pregnancy can be undertaken with high expectation of success. Patients suffering from systemic lupus erythematosus, active or inactive, with or without lupus nephritis, should avoid pregnancy. Patients with other forms of chronic renal disease in whom the serum creatinine concentration prior to pregnancy is less than 1.5 mg/dL are not exposed to increased maternal or fetal risk. On the other hand, patients with serum creatinine values exceeding 1.6 mg/dL experience a high incidence of maternal and fetal complications and should avoid pregnancy. The life expectancy of recipients of a renal transplant is uncertain, and these patients should receive counselling as to the advisability of undertaking pregnancy. The maternal risk in such patients is not inordinately high, but the fetal risk is considerable. PMID:350371

  3. Mechanism Underlying Linezolid-induced Thrombocytopenia in a Chronic Kidney Failure Mouse Model

    PubMed Central

    Nishijo, Nao; Tsuji, Yasuhiro; Matsunaga, Kazuhisa; Kutsukake, Masahiko; Okazaki, Fumiyasu; Fukumori, Shiro; Kasai, Hidefumi; Hiraki, Yoichi; Sakamaki, Ippei; Yamamoto, Yoshihiro; Karube, Yoshiharu; To, Hideto

    2017-01-01

    Objective: To investigate the relationship between renal function and linezolid (LZD)-induced thrombocytopenia and elucidate the underlying mechanism using a chronic renal disease (CRD) mouse model. Materials and Methods: CRD was induced in 5-week-old male Institute of Cancer Research (ICR) mice by 5/6 nephrectomy. After this procedure, LZD (25 and 100 mg/kg) was administered intraperitoneally once every day for 28 days. Platelet counts, white blood cell (WBC) counts, and hematocrit (HCT) levels were measured every 7 days. 2-14C-thymidine (0.185 MBq) was administrated intravenously to LZD-administered mice to evaluate the thymidine uptake ability of bone marrow. Results: Platelet counts were significantly lower in the LZD-administered CRD group than in the LZD-nonadministered groups at 14, 21, and 28 days (P < 0.05); however, these changes were not observed in LZD-administered mice with normal renal function, regardless of the duration of LZD administration. No significant changes were observed in WBC counts or HCT levels in any LZD-administered CRD mouse. Moreover, radioactive levels in bone marrow were not significantly different in each group. Conclusions: These results indicate that LZD-induced decreases in platelet counts were enhanced by renal impairment in vivo, suggesting that LZD-induced thrombocytopenia is not caused by nonimmune-mediated bone marrow suppression. PMID:28405130

  4. Preliminary Investigation of Cardiovascular-Renal Disorders in Dogs with Chronic Mitral Valve Disease.

    PubMed

    Martinelli, E; Locatelli, C; Bassis, S; Crosara, S; Paltrinieri, S; Scarpa, P; Spalla, I; Zanaboni, A M; Quintavalla, C; Brambilla, P

    2016-09-01

    Veterinary literature lacks data about cardiovascular-renal disorders (CvRD) and cardiorenal-anemia syndrome (CRAS) in dogs. A direct correlation exists between ACVIM class and IRIS stage; chronic kidney disease (CKD) complicates chronic mitral valve disease (CMVD) more often than does anemia in dogs. One hundred and fifty-eight client-owned dogs with CMVD. Signalment, physical examination findings, electrocardiography, thoracic radiographs, echocardiography, and blood analysis were retrospectively evaluated to assess the prevalence of CKD and anemia in dogs with CMVD and to investigate the relationships among ACVIM class, IRIS stage, and survival. The prevalence of CKD and anemia in dogs with CMVD was significantly higher than in the general population of dogs. Dogs being treated for heart failure had a significantly higher prevalence of CKD than did dogs that had not received treatment. A statistically significant direct correlation was found between ACVIM class and IRIS stage. Severe heart disease, severe renal disease or both, furosemide administration, and advanced age at diagnosis of heart disease were associated with shorter survival time. Survival time of dogs affected by CvRD was statistically shorter than survival time of dogs affected by CMVD alone. Chronic mitral valve disease is associated with increased prevalence of CKD and anemia in dogs. Treatment for medical management of heart failure may play a role in inducing CKD. Class of heart disease and IRIS stage were directly correlated. Cardiovascular-renal disorders decrease survival time compared to the only presence of CMVD alone, whereas anemia does not play a central role in worsening heart function. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  5. Increased Blood Pressure Variability Prior to Chronic Kidney Disease Exacerbates Renal Dysfunction in Rats

    PubMed Central

    Freitas, Frederico F. C. T.; Araujo, Gilberto; Porto, Marcella L.; Freitas, Flavia P. S.; Graceli, Jones B.; Balarini, Camille M.; Vasquez, Elisardo C.; Meyrelles, Silvana S.; Gava, Agata L.

    2016-01-01

    Increased blood pressure variability (BPV), which can be experimentally induced by sinoaortic denervation (SAD), has emerged as a new marker of the prognosis of cardiovascular and renal outcomes. Considering that increased BPV can lead to organ-damage, the goal of the present study was to evaluate the effects of SAD on renal function in an experimental model of chronic kidney disease (CKD). SAD was performed in male Wistar rats 2 weeks before 5/6 nephrectomy and the animals were evaluated 4 weeks after the induction of CKD. Our data demonstrated that BPV was increased in SAD and CKD animals and that the combination of both conditions (SAD+CKD) exacerbated BPV. The baroreflex sensitivity index was diminished in the SAD and CKD groups; this reduction was more pronounced when SAD and CKD were performed together. 5/6 nephrectomy led to hypertension, which was higher in SAD+CKD animals. Regarding renal function, the combination of SAD and CKD resulted in reduced renal plasma and blood flow, increased renal vascular resistance and augmented uraemia when compared to CKD animals. Glomerular filtration rate and BPV were negatively correlated in SAD, CKD, and SAD+CKD animals. Moreover, SAD+CKD animals presented a higher level of glomerulosclerosis when compared to all other groups. Cardiac and renal hypertrophy, as well as oxidative stress, was also further increased when SAD and CKD were combined. These results show that SAD prior to 5/6 nephrectomy exacerbates renal dysfunction, suggesting that previous augmented BPV should be considered as an important factor to the progression of renal diseases. PMID:27721797

  6. Effect of Cuscuta chinensis on renal function in ischemia/reperfusion-induced acute renal failure rats.

    PubMed

    Shin, Sun; Lee, Yun Jung; Kim, Eun Ju; Lee, An Sook; Kang, Dae Gill; Lee, Ho Sub

    2011-01-01

    The kidneys play a central role in regulating water, ion composition and excretion of metabolic waste products in the urine. Cuscuta chinensis has been known as an important traditional Oriental medicine for the treatment of liver and kidney disorders. Thus, we studied whether an aqueous extract of Cuscuta chinensis (ACC) seeds has an effect on renal function parameters in ischemia/reperfusion-induced acute renal failure (ARF) rats. Administration of 250 mg/kg/day ACC showed that renal functional parameters including urinary excretion rate, osmolality, Na(+), K(+), Cl(-), creatinine clearance, solute-free water reabsorption were significantly recovered in ischemia/reperfusion-induced ARF. Periodic acid Schiff staining showed that administration of ACC improved tubular damage in ischemia/reperfusion-induced ARF. In immunoblot and immunohistological examinations, ischemia/reperfusion-induced ARF decreased the expressions of water channel AQP 2, 3 and sodium potassium pump Na,K-ATPase in the renal medulla. However, administration of ACC markedly incremented AQP 2, 3 and Na,K-ATPase expressions. Therefore, these data indicate that administration of ACC ameliorates regulation of the urine concentration and renal functions in rats with ischemia/reperfusion-induced ARF.

  7. The Renal Arterial Resistance Index Predicts Worsening Renal Function in Chronic Heart Failure Patients

    PubMed Central

    Iacoviello, Massimo; Monitillo, Francesco; Leone, Marta; Citarelli, Gaetano; Doronzo, Annalisa; Antoncecchi, Valeria; Puzzovivo, Agata; Rizzo, Caterina; Lattarulo, Maria Silvia; Massari, Francesco; Caldarola, Pasquale; Ciccone, Marco Matteo

    2016-01-01

    Background/Aim The renal arterial resistance index (RRI) is a Doppler measure, which reflects abnormalities in the renal blood flow. The aim of this study was to verify the value of RRI as a predictor of worsening renal function (WRF) in a group of chronic heart failure (CHF) outpatients. Methods We enrolled 266 patients in stable clinical conditions and on conventional therapy. Peak systolic velocity and end diastolic velocity of a segmental renal artery were obtained by pulsed Doppler flow, and RRI was calculated. Creatinine serum levels were evaluated at baseline and at 1 year, and the changes were used to assess WRF occurrence. Results During follow-up, 34 (13%) patients showed WRF. RRI was associated with WRF at univariate (OR: 1.13; 95% CI: 1.07–1.20) as well as at a forward stepwise multivariate logistic regression analysis (OR: 1.09; 95% CI: 1.03–1.16; p = 0.005) including the other univariate predictors. Conclusions Quantification of arterial renal perfusion provides a new parameter that independently predicts the WRF in CHF outpatients. Its possible role in current clinical practice to better define the risk of cardiorenal syndrome progression is strengthened. PMID:27994601

  8. Clinical course of dengue fever and its impact on renal function in renal transplant recipients and patients with chronic kidney disease.

    PubMed

    Arun Thomas, E T; George, Jacob; Sruthi, Devi; Vineetha, N S; Gracious, Noble

    2018-04-01

    Dengue fever is a mosquito-borne viral disease endemic in many tropical and sub-tropical countries. There is only limited data in the literature about dengue fever in renal transplant recipients and patients with chronic kidney disease. This study compares the clinical course of dengue fever and its impact on renal function in renal transplant recipients, patients with chronic kidney disease and patients with normal base line renal function. An observational study was conducted from 1 st May to 31 st July 2017, at a tertiary care centre of South India. A major epidemic of dengue had occurred during the study period. Twelve renal transplant recipients, 22 patients with CKD and 58 patients with normal baseline renal function (control group) admitted with dengue fever were prospectively studied. Nadir WBC count was lowest in renal transplant recipients (2575 + 1187/mm 3 ), [P<0.001]. Renal transplant recipients took more time for normalisation of platelet count (6 + 4.5 days), [P<0.001]. All 22 patients with CKD and 11 of 12 renal transplant recipients had worsening of renal function where as only 17 of 58 patients in the control group had worsening [P<0.001]. Sixteen patients with CKD, one renal transplant recipient and none among control group required hemodialysis [P<0.001]. Dialysis requiring patients had more hemoconcentration (52.5+ 19.9% increase in haemoglobin), [P<0.001]. Seven patients with CKD were dialysis dependent at the end of 2 weeks. Clinical features of dengue fever were different in renal transplant recipients and patients with CKD. Severe worsening of renal function was common in CKD patients. Worsening of renal function in renal transplant recipients was less severe and transient. This article is protected by copyright. All rights reserved.

  9. Adenine specific DNA chemical sequencing reaction.

    PubMed Central

    Iverson, B L; Dervan, P B

    1987-01-01

    Reaction of DNA with K2PdCl4 at pH 2.0 followed by a piperidine workup produces specific cleavage at adenine (A) residues. Product analysis revealed the K2PdCl4 reaction involves selective depurination at adenine, affording an excision reaction analogous to the other chemical DNA sequencing reactions. Adenine residues methylated at the exocyclic amine (N6) react with lower efficiency than unmethylated adenine in an identical sequence. This simple protocol specific for A may be a useful addition to current chemical sequencing reactions. Images PMID:3671067

  10. [Factors related to the QT prolongation in chronic renal failure].

    PubMed

    Kurosu, M; Ando, Y; Akimoto, T; Ono, S; Kusano, E; Asano, Y

    1999-04-01

    QT prolongation, a risk factor for arrhythmia and cardiac death, is observed in uremic patients. Though hypocalcemia, autonomic nerve dysfunction and cardiac hypertrophy are assumed to cause the uremic QT prolongation, the exact mechanism remains unspecified. We therefore examined factors related to the QT interval in chronic renal failure (CRF). Corrected QT interval (QTc) was significantly prolonged in CRF just before the induction of dialysis therapy (group A) compared with nephrotic syndrome with the intact or mildly impaired renal function (group B). QTc was also prolonged in acute renal failure (group C). Cardio-thoracic ratio, serum albumin and Ca correlated with QTc in group A, but not in B or C. A single HD session in group A failed to shorten QTc, despite a significant increase in serum Ca++. Autonomic dysfunction did not appear to be a major determinant of QT prolongation, since QTc was not different between diabetics and non-diabetics in group A and in chronic HD patients (group D). In group D, QTc did not correlate with SV1 + RV5 on ECG or left ventricular wall thickness (LVWT) on echocardiography. In another group of chronic HD patients (group E), there was no significant correlation between QTc and the parameters of left ventricular mass, plasma brain natriuretic peptide (BNP). However, in the patients subjected to repeated echocardiography in group D, QTc and LVWT changed in parallel. In a retrospective analysis of QTc in group D, QTc was maximally prolonged at the time of starting HD therapy, and gradually improved in the following 1-5 years in both diabetics and non-diabetics. In contrast, chronic CAPD patients (group F) revealed no improvement of QTc. Thus, uremic QT prolongation cannot be explained simply by any of the previously assumed factors, but appears to be affected by multiple factors, which are partially correctable by chronic HD therapy.

  11. Complications and Mortality in Chronic Renal Failure Patients Undergoing Total Joint Arthroplasty: A Comparison Between Dialysis and Renal Transplant Patients.

    PubMed

    Cavanaugh, Priscilla K; Chen, Antonia F; Rasouli, Mohammad R; Post, Zachary D; Orozco, Fabio R; Ong, Alvin C

    2016-02-01

    In total joint arthroplasty (TJA) literature, there is a paucity of large cohort studies comparing chronic kidney disease (CKD) and end-stage renal disease (ESRD) vs non-CKD/ESRD patients. Thus, the purposes of this study were (1) to identify inhospital complications and mortality in CKD/ESRD and non-CKD/ESRD patients and (2) compare inhospital complications and mortality between dialysis and renal transplantation patients undergoing TJA. We queried the Nationwide Inpatient Sample database for patients with and without diagnosis of CKD/ESRD and those with a renal transplant or on dialysis undergoing primary or revision total knee or hip arthroplasty from 2007 to 2011. Patient comorbidities were identified using the Elixhauser comorbidity index. International Classification of Diseases, Ninth Revision, codes were used to identify postoperative surgical site infections (SSIs), wound complications, deep vein thrombosis, and transfusions. Chronic kidney disease/ESRD was associated with greater risk of SSIs (odds ratio [OR], 1.4; P<.001), wound complications (OR, 1.1; P=.01), transfusions (OR, 1.6; P<.001), deep vein thrombosis (OR, 1.4; P=.03), and mortality (OR, 2.1; P<.001) than non-CKD/ESRD patients. Dialysis patients had higher rates of SSI, wound complications, transfusions, and mortality compared to renal transplant patients. Chronic kidney disease/ESRD patients had a greater risk of SSIs and wound complications compared to those without renal disease, and the risk of these complications was even greater in CKD/ESRD patients receiving dialysis. These findings emphasize the importance of counseling CKD patients about higher potential complications after TJA, and dialysis patients may be encouraged to undergo renal transplantation before TJA. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Development of acute pancreatitis caused by sodium valproate in a patient with bipolar disorder on hemodialysis for chronic renal failure: a case report.

    PubMed

    Okayasu, Hiroaki; Shinozaki, Takahiro; Osone, Akira; Ozeki, Yuji; Shimoda, Kazutaka

    2014-03-29

    Cases of acute pancreatitis caused by sodium valproate (VPA) have been reported by many authors thus far. However, most of these were cases with epilepsy. Chronic renal failure is also regarded as a risk factor for acute pancreatitis. Here, we report a case of acute pancreatitis development due to VPA in a patient with bipolar disorder on hemodialysis for chronic renal failure. The patient was a 52-year-old Japanese male who was diagnosed as bipolar disorder on hemodialysis for renal failure. He was treated with VPA and manic symptoms gradually stabilized. However, the patient complained of severe abdominal pain. Blood amylase was found to be markedly high, and computed tomography revealed pancreatomegaly and an increased amount of peripancreatic fat. Hence, we diagnosed the case as acute pancreatitis caused by VPA. We discontinued oral medication, and he was started on a pancreatic enzyme inhibitor, antibiotics, and transfusion, and he showed improvement. It has been reported that acute pancreatitis induced by VPA is caused by intermediate metabolites of VPA. We consider that patients with renal failure are prone to pancreatitis caused by VPA because of the accumulation of these intermediate metabolites. We need close monitoring for serious adverse effects such as pancreatitis when we prescribe VPA to patients with bipolar disorder on hemodialysis for chronic renal failure, although VPA is safer than other mood stabilizers.

  13. Plasma immunoreactive beta-melanocyte-stimulating hormone and skin pigmentation in chronic renal failure.

    PubMed Central

    Smith, A G; Shuster, S; Comaish, J S; Plummer, N A; Thody, A J; Alvarez-Ude, F; Kerr, D N

    1975-01-01

    Plasma immunoreactive beta-melanocyte stimulating hormone (beta-MSH) concentrations were greatly increased in patients with chronic renal failure. There was no correlation between the severity of the renal failure or the degree of pigmentation and the plasma beta-MSH levels. PMID:1125653

  14. Resonant two-photon ionization and laser induced fluorescence spectroscopy of jet-cooled adenine

    NASA Astrophysics Data System (ADS)

    Kim, Nam Joon; Jeong, Gawoon; Kim, Yung Sam; Sung, Jiha; Keun Kim, Seong; Park, Young Dong

    2000-12-01

    Electronic spectra of the jet-cooled DNA base adenine were obtained by the resonant two-photon ionization (R2PI) and the laser induced fluorescence (LIF) techniques. The 0-0 band to the lowest electronically excited state was found to be located at 35 503 cm-1. Well-resolved vibronic structures were observed up to 1100 cm-1 above the 0-0 level, followed by a slow rise of broad structureless absorption. The lowest electronic state was proposed to be of nπ* character, which lies ˜600 cm-1 below the onset of the ππ* state. The broad absorption was attributed to the extensive vibronic mixing between the nπ* state and the high-lying ππ* state.

  15. AGXT2 rs37369 polymorphism predicts the renal function in patients with chronic heart failure.

    PubMed

    Hu, Xiao-Lei; Zeng, Wen-Jing; Li, Mu-Peng; Yang, Yong-Long; Kuang, Da-Bin; Li, He; Zhang, Yan-Jiao; Jiang, Chun; Peng, Li-Ming; Qi, Hong; Zhang, Ke; Chen, Xiao-Ping

    2017-12-30

    Patients with chronic heart failure (CHF) are often accompanied with varying degrees of renal diseases. The purpose of this study was to identify rs37369 polymorphism of AGXT2 specific to the renal function of CHF patients. A total of 1012 southern Chinese participants, including 487 CHF patients without history of renal diseases and 525 healthy volunteers, were recruited for this study. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was used to determine the genotypes of AGXT2 rs37369 polymorphism. Levels of blood urea nitrogen (BUN) and serum creatinine (SCr) were detected to indicate the renal function of the participants. BUN level was significantly higher in CHF patients without history of renal diseases compared with healthy volunteers (p=0.000). And the similar result was also obtained for SCr (p=0.000). Besides, our results indicated that the level of BUN correlated significantly with SCr in both the CHF patients without renal diseases (r=0.4533, p<0.0001) and volunteers (r=0.2489, p<0.0001). Furthermore, we found that the AGXT2 rs37369 polymorphism could significantly affect the level of BUN in CHF patients without history of renal diseases (p=0.036, AA+AG vs GG). Patients with rs37369 GG genotype showed a significantly reduced level of BUN compared to those with the AA genotype (p=0.024), and the significant difference was still observed in the smokers of CHF patients without renal diseases (p=0.023). In conclusion, we found that CHF might induce the impairment of kidney and cause deterioration of renal function. AGXT2 rs37369 polymorphism might affect the renal function of CHF patients free from renal diseases, especially in patients with cigarette smoking. Copyright © 2017. Published by Elsevier B.V.

  16. Protective effect of agmatine on ischemia/reperfusion-induced renal injury in rats.

    PubMed

    Sugiura, Takahiro; Tsutsui, Hidenobu; Takaoka, Masanori; Kobuchi, Shuhei; Hayashi, Kentaro; Fujii, Toshihide; Matsumura, Yasuo

    2008-03-01

    Enhanced renal sympathetic nerve activity (RSNA) during ischemic period and the renal venous norepinephrine (NE) overflow after reperfusion play important roles in the development of ischemic/reperfusion (I/R)-induced acute renal failure (ARF) in rats. This study evaluated whether agmatine, which is known to reduce sympathetic nerve activity and NE overflow by electrical stimulation, would prevent the I/R-induced renal dysfunction. Ischemic ARF was induced by clamping the left renal artery and vein for 45 minutes followed by reperfusion 2 weeks after the contralateral nephrectomy. Intravenous (IV) injection of agmatine (100 and 300 micromol/kg) to ischemic ARF rats dose-dependently suppressed the enhanced RSNA and attenuated the I/R-induced renal dysfunction and histological damage. Intracerebroventricular (ICV) injection of agmatine (600 nmol/kg) to ischemic ARF rats suppressed the enhanced RSNA during the ischemic period and attenuated the I/R-induced renal injury. Furthermore, both IV and ICV injection of agmatine significantly suppressed the renal venous NE overflow after the reperfusion. These results indicate that agmatine prevents the development of I/R-induced renal injury, and the effect is accompanied by suppression of the enhanced RSNA during ischemic period and NE overflow from renal sympathetic nerve endings.

  17. Renal Carcinogenesis After Uninephrectomy1

    PubMed Central

    Sui, Yi; Zhao, Hai-Lu; Lee, Heung Man; Guan, Jing; He, Lan; Lai, Fernand MM; Tong, Peter CY; Chan, Juliana CN

    2009-01-01

    Nephrectomized rats have widely been used to study chronic renal failure. Interestingly, renal cell carcinoma occurred in the remnant kidney after uninephrectomy (UNX). In this study, we probed insulin-like growth factor (IGF)-1 signaling pathway in UNX-induced renal cancer. Adult male Sprague-Dawley rats were randomized into two groups: UNX rats (n = 22) and sham-operated rats (n = 12). Rats were killed at 3, 7, and 10 months. After 7 months after nephrectomy, the UNX rats developed renal cell carcinoma with increased expression of proliferating cell nuclear antigen, and 68.2% (15/22) of the animals exhibited invasive carcinoma. Western blot demonstrated significant down-regulation of IGF binding protein 3 contrasting with the up-regulation of protein kinase Cζ and Akt/protein kinase B in the renal cancer tissues. These findings indicate a unique rat model of UNX-induced renal cancer associated with enhanced IGF-1 signaling pathway. PMID:19956387

  18. [Diagnosis and management of chronic renal failure in the elderly].

    PubMed

    Segalen, Isabelle; Le Meur, Yannick

    2016-01-01

    The incidence of chronic renal failure in the elderly is rising due to the ageing of the general population. Its management, and notably nephroprotective therapies, must be adapted to the elderly person who is often frail and with multiple pathologies. The decision to start extra-renal purification does not depend on the patient's chronological age but on their physiological age and requires dialogue between the patient and their family, the geriatrician and the nephrologist. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  19. [Colonic angiodysplasia in a chronic renal failure patient].

    PubMed

    Tudor, S; Dima, B; Herlea, V; Chiriac-Babei, Gh; Vasilescu, C

    2006-01-01

    An important cause of intestinal bleeding in patients with chronic renal failure is angiodysplasia. In retrospective reports up to 19-32% of patients had bleeding from angiodysplastic lesions. These are usually multiple, have a high tendency of rebleeding (25-47%) and are often located in the stomach and duodenum, but can affect the colon and the jejunum as well. Bleeding from angiodysplastic lesions is usually low grade and stops spontaneously in more than 90% of patients, but some times may be life threatening necessitate therapeutic interventions to achieve hemostasis. We report a case of an 18-year old female with renal failure on CAPD who presented a massive lower gastrointestinal bleeding and imposed emergency surgery.

  20. Radioresistance of Adenine to Cosmic Rays.

    PubMed

    Vignoli Muniz, Gabriel S; Mejía, Christian F; Martinez, Rafael; Auge, Basile; Rothard, Hermann; Domaracka, Alicja; Boduch, Philippe

    2017-04-01

    The presence of nucleobases in carbonaceous meteorites on Earth is an indication of the existence of this class of molecules in outer space. However, space is permeated by ionizing radiation, which can have damaging effects on these molecules. Adenine is a purine nucleobase that amalgamates important biomolecules such as DNA, RNA, and ATP. Adenine has a unique importance in biochemistry and therefore life. The aim of this work was to study the effects of cosmic ray analogues on solid adenine and estimate its survival when exposed to corpuscular radiation. Adenine films were irradiated at GANIL (Caen, France) and GSI (Darmstadt, Germany) by 820 MeV Kr 33+ , 190 MeV Ca 10+ , 92 MeV Xe 23+ , and 12 MeV C 4+ ion beams at low temperature. The evolution of adenine molecules under heavy ion irradiation was studied by IR absorption spectroscopy as a function of projectile fluence. It was found that the adenine destruction cross section (σ d ) follows an electronic stopping power (S e ) power law under the form: CS e n ; C is a constant, and the exponential n is a dimensionless quantity. Using the equation above to fit our results, we determined σ d  = 4 × 10 -17 S e 1.17 , with S e in kiloelectronvolts per micrometer (keV μm -1 ). New IR absorption bands arise under irradiation of adenine and can be attributed to HCN, CN - , C 2 H 4 N 4 , CH 3 CN, and (CH 3 ) 3 CNC. These findings may help to understand the stability and chemistry related to complex organic molecules in space. The half-life of solid adenine exposed to the simulated interstellar medium cosmic ray flux was estimated as (10 ± 8) × 10 6 years. Key Words: Heavy ions-Infrared spectroscopy-Astrochemistry-Cosmic rays-Nucleobases-Adenine. Astrobiology 17, 298-308.

  1. Responses of Adenine Nucleotides in Germinating Soybean Embryonic Axes to Exogenously Applied Adenine and Adenosine

    PubMed Central

    Anderson, James D.

    1977-01-01

    The ATP content of soybean (Glycine max [L.] Merr. cv. Kent) axes incubated for 3 hours in 1 mm solutions of adenine and adenosine increased over 100% and 75%, respectively, over axes incubated in water. The increase in ATP was primarily due to the conversion of these purines to nucleotides via the nucleotide salvage pathway. The ATP formed was in a metabolically active pool because label from adenine was incorporated into acid-insoluble material. Adenine also increased the levels of GTP, UTP, and CTP, but not to the extent of the ATP level. PMID:16660165

  2. Renal arterial resistive index is associated with severe histological changes and poor renal outcome during chronic kidney disease

    PubMed Central

    2012-01-01

    Background Chronic kidney disease (CKD) is a growing public health problem and end stage renal disease (ESRD) represents a large human and economic burden. It is important to identify patients at high risk of ESRD. In order to determine whether renal Doppler resistive index (RI) may discriminate those patients, we analyzed whether RI was associated with identified prognosis factors of CKD, in particular histological findings, and with renal outcome. Methods RI was measured in the 48 hours before renal biopsy in 58 CKD patients. Clinical and biological data were collected prospectively at inclusion. Arteriosclerosis, interstitial fibrosis and glomerulosclerosis were quantitatively assessed on renal biopsy in a blinded fashion. MDRD eGFR at 18 months was collected for 35 (60%) patients. Renal function decline was defined as a decrease in eGFR from baseline of at least 5 mL/min/ 1.73 m2/year or need for chronic renal replacement therapy. Pearson’s correlation, Mann–Whitney and Chi-square tests were used for analysis of quantitative and qualitative variables respectively. Kaplan Meier analysis was realized to determine renal survival according to RI value using the log-rank test. Multiple logistic regression was performed including variables with p < 0.20 in univariate analysis. Results Most patients had glomerulonephritis (82%). Median age was 46 years [21–87], eGFR 59 mL/min/ 1.73m2 [5–130], percentage of interstitial fibrosis 10% [0–90], glomerulosclerosis 13% [0–96] and RI 0.63 [0.31-1.00]. RI increased with age (r = 0.435, p = 0.0063), pulse pressure (r = 0.303, p = 0.022), renal atrophy (r = −0.275, p = 0.038) and renal dysfunction (r = −0.402, p = 0.0018). Patients with arterial intima/media ratio ≥ 1 (p = 0.032), interstitial fibrosis > 20% (p = 0.014) and renal function decline (p = 0.0023) had higher RI. Patients with baseline RI ≥ 0.65 had a poorer renal outcome than those with baseline RI < 0.65 (p = 0.0005). In multiple logistic

  3. Radioresistance of Adenine to Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Vignoli Muniz, Gabriel S.; Mejía, Christian F.; Martinez, Rafael; Auge, Basile; Rothard, Hermann; Domaracka, Alicja; Boduch, Philippe

    2017-04-01

    The presence of nucleobases in carbonaceous meteorites on Earth is an indication of the existence of this class of molecules in outer space. However, space is permeated by ionizing radiation, which can have damaging effects on these molecules. Adenine is a purine nucleobase that amalgamates important biomolecules such as DNA, RNA, and ATP. Adenine has a unique importance in biochemistry and therefore life. The aim of this work was to study the effects of cosmic ray analogues on solid adenine and estimate its survival when exposed to corpuscular radiation. Adenine films were irradiated at GANIL (Caen, France) and GSI (Darmstadt, Germany) by 820 MeV Kr33+, 190 MeV Ca10+, 92 MeV Xe23+, and 12 MeV C4+ ion beams at low temperature. The evolution of adenine molecules under heavy ion irradiation was studied by IR absorption spectroscopy as a function of projectile fluence. It was found that the adenine destruction cross section (σd) follows an electronic stopping power (Se) power law under the form: CSen; C is a constant, and the exponential n is a dimensionless quantity. Using the equation above to fit our results, we determined σd = 4 × 10-17 Se1.17, with Se in kiloelectronvolts per micrometer (keV μm-1). New IR absorption bands arise under irradiation of adenine and can be attributed to HCN, CN-, C2H4N4, CH3CN, and (CH3)3CNC. These findings may help to understand the stability and chemistry related to complex organic molecules in space. The half-life of solid adenine exposed to the simulated interstellar medium cosmic ray flux was estimated as (10 ± 8) × 106 years.

  4. Manifestations of Renal Impairment in Fructose-induced Metabolic Syndrome.

    PubMed

    Bratoeva, Kameliya; Stoyanov, George S; Merdzhanova, Albena; Radanova, Mariya

    2017-11-07

    Introduction International studies show an increased incidence of chronic kidney disease (CKD) in patients with metabolic syndrome (MS). It is assumed that the major components of MS - obesity, insulin resistance, dyslipidemia, and hypertension - are linked to renal damage through the systemic release of several pro-inflammatory mediators, such as uric acid (UA), C-reactive protein (CRP), and generalized oxidative stress. The aim of the present study was to investigate the extent of kidney impairment and manifestations of dysfunction in rats with fructose-induced MS. Methods We used a model of high-fructose diet in male Wistar rats with 35% glucose-fructose corn syrup in drinking water over a duration of 16 weeks. The experimental animals were divided into two groups: control and high-fructose drinking (HFD). Serum samples were obtained from both groups for laboratory study, and the kidneys were extracted for observation via light microscopy examination. Results All HFD rats developed obesity, hyperglycemia, hypertriglyceridemia, increased levels of CRP and UA (when compared to the control group), and oxidative stress with high levels of malondialdehyde and low levels of reduced glutathione. The kidneys of the HFD group revealed a significant increase in kidney weight in the absence of evidence of renal dysfunction and electrolyte disturbances. Under light microscopy, the kidneys of the HFD group revealed amyloid deposits in Kimmelstiel-Wilson-like nodules and the walls of the large caliber blood vessels, early-stage atherosclerosis with visible ruptures and scarring, hydropic change (vacuolar degeneration) in the epithelial cells covering the proximal tubules, and increased eosinophilia in the distant tubules when compared to the control group. Conclusion Under the conditions of a fructose-induced metabolic syndrome, high serum UA and CRP correlate to the development of early renal disorders without a clinical manifestation of renal dysfunction. These

  5. Renal denervation prevents long-term sequelae of ischemic renal injury

    PubMed Central

    Kim, Jinu; Padanilam, Babu J.

    2014-01-01

    Signals that drive interstitial fibrogenesis after renal ischemia reperfusion injury remain undefined. Sympathetic activation is manifest even in the early clinical stages of chronic kidney disease and is directly related to disease severity. A role for renal nerves in renal interstitial fibrogenesis in the setting of ischemia reperfusion injury has not been studied. In male 129S1/SvImJ mice, ischemia reperfusion injury induced tubulointerstitial fibrosis as indicated by collagen deposition and profibrotic protein expression 4 to 16 days after the injury.. Leukocyte influx, proinflammatory protein expression, oxidative stress, apoptosis, and cell cycle arrest at G2/M phase were enhanced after ischemia reperfusion injury. Renal denervation at the time of injury or up to 1 day post-injury improved histology, decreased proinflammatory/profibrotic responses and apoptosis, and prevented G2/M cell cycle arrest in the kidney. Treatment with afferent nerve-derived calcitonin gene-related peptide (CGRP) or efferent nerve-derived norepinephrine in denervated and ischemia reperfusion injury-induced kidneys mimicked innervation, restored inflammation and fibrosis, induced G2/M arrest, and enhanced TGF-β1 activation. Blocking norepinephrine or CGRP function using respective receptor blockers prevented these effects. Consistent with the in vivo study, treatment with either norepinephrine or CGRP induced G2/M cell cycle arrest in HK-2 proximal tubule cells, whereas antagonists against their respective receptors prevented G2/M arrest. Thus, renal nerve stimulation is a primary mechanism and renal nerve-derived factors drive epithelial cell cycle arrest and the inflammatory cascade causing interstitial fibrogenesis after ischemia reperfusion injury. PMID:25207878

  6. The renal nerves in chronic heart failure: efferent and afferent mechanisms

    PubMed Central

    Schiller, Alicia M.; Pellegrino, Peter R.; Zucker, Irving H.

    2015-01-01

    The function of the renal nerves has been an area of scientific and medical interest for many years. The recent advent of a minimally invasive catheter-based method of renal denervation has renewed excitement in understanding the afferent and efferent actions of the renal nerves in multiple diseases. While hypertension has been the focus of much this work, less attention has been given to the role of the renal nerves in the development of chronic heart failure (CHF). Recent studies from our laboratory and those of others implicate an essential role for the renal nerves in the development and progression of CHF. Using a rabbit tachycardia model of CHF and surgical unilateral renal denervation, we provide evidence for both renal efferent and afferent mechanisms in the pathogenesis of CHF. Renal denervation prevented the decrease in renal blood flow observed in CHF while also preventing increases in Angiotensin-II receptor protein in the microvasculature of the renal cortex. Renal denervation in CHF also reduced physiological markers of autonomic dysfunction including an improvement in arterial baroreflex function, heart rate variability, and decreased resting cardiac sympathetic tone. Taken together, the renal sympathetic nerves are necessary in the pathogenesis of CHF via both efferent and afferent mechanisms. Additional investigation is warranted to fully understand the role of these nerves and their role as a therapeutic target in CHF. PMID:26300788

  7. Atomic substitution reveals the structural basis for substrate adenine recognition and removal by adenine DNA glycosylase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Seongmin; Verdine, Gregory L.; Harvard)

    2010-01-14

    Adenine DNA glycosylase catalyzes the glycolytic removal of adenine from the promutagenic A {center_dot} oxoG base pair in DNA. The general features of DNA recognition by an adenine DNA glycosylase, Bacillus stearothermophilus MutY, have previously been revealed via the X-ray structure of a catalytically inactive mutant protein bound to an A:oxoG-containing DNA duplex. Although the structure revealed the substrate adenine to be, as expected, extruded from the DNA helix and inserted into an extrahelical active site pocket on the enzyme, the substrate adenine engaged in no direct contacts with active site residues. This feature was paradoxical, because other glycosylases havemore » been observed to engage their substrates primarily through direct contacts. The lack of direct contacts in the case of MutY suggested that either MutY uses a distinctive logic for substrate recognition or that the X-ray structure had captured a noncatalytically competent state in lesion recognition. To gain further insight into this issue, we crystallized wild-type MutY bound to DNA containing a catalytically inactive analog of 2'-deoxyadenosine in which a single 2'-H atom was replaced by fluorine. The structure of this fluorinated lesion-recognition complex (FLRC) reveals the substrate adenine buried more deeply into the active site pocket than in the prior structure and now engaged in multiple direct hydrogen bonding and hydrophobic interactions. This structure appears to capture the catalytically competent state of adenine DNA glycosylases, and it suggests a catalytic mechanism for this class of enzymes, one in which general acid-catalyzed protonation of the nucleobase promotes glycosidic bond cleavage.« less

  8. Effect of Regular Exercise on the Histochemical Changes of d-Galactose-Induced Oxidative Renal Injury in High-Fat Diet-Fed Rats

    PubMed Central

    Park, Sok; Kim, Chan-Sik; Lee, Jin; Suk Kim, Jung; Kim, Junghyun

    2013-01-01

    Renal lipid accumulation exhibits slowly developing chronic kidney disease and is associated with increased oxidative stress. The impact of exercise on the obese- and oxidative stress-related renal disease is not well understood. The purpose of this study was to investigate whether a high-fat diet (HFD) would accelerate d-galactose-induced aging process in rat kidney and to examine the preventive effect of regular exercise on the obese- and oxidative stress-related renal disease. Oxidative stress was induced by an administration of d-galactose (100 mg/kg intraperitoneally injected) for 9 weeks, and d-galactose-treated rats were also fed with a high-fat diet (60% kcal as fat) for 9 weeks to induce obesity. We investigated the efficacy of regular exercise in reducing renal injury by analyzing Nε-carboxymethyllysine (CML), 8-hydroxygluanine (8-OHdG) and apoptosis. When rats were fed with a HFD for 9 weeks in d-galactose-treated rats, an increased CML accumulation, oxidative DNA damage and renal podocyte loss were observed in renal glomerular cells and tubular epithelial cells. However, the regular exercise restored all these renal changes in HFD plus d-galactose-treated rats. Our data suggested that long-term HFD may accelerate the deposition of lipoxidation adducts and oxidative renal injury in d-galactose-treated rats. The regular exercise protects against obese- and oxidative stress-related renal injury by inhibiting this lipoxidation burden. PMID:24023395

  9. Butyrate influences intracellular levels of adenine and adenine derivatives in the fungus Penicillium restrictum.

    PubMed

    Zutz, Christoph; Chiang, Yi Ming; Faehnrich, Bettina; Bacher, Markus; Hellinger, Roland; Kluger, Bernhard; Wagner, Martin; Strauss, Joseph; Rychli, Kathrin

    2017-04-01

    Butyrate, a small fatty acid, has an important role in the colon of ruminants and mammalians including the inhibition of inflammation and the regulation of cell proliferation. There is also growing evidence that butyrate is influencing the histone structure in mammalian cells by inhibition of histone deacetylation. Butyrate shows furthermore an antimicrobial activity against fungi, yeast and bacteria, which is linked to its toxicity at a high concentration. In fungi there are indications that butyrate induces the production of secondary metabolites potentially via inhibition of histone deacetylases. However, information about the influence of butyrate on growth, primary metabolite production and metabolism, besides lipid catabolism, in fungi is scarce. We have identified the filamentous fungus Penicillium (P.) restrictum as a susceptible target for butyrate treatment in an antimicrobial activity screen. The antimicrobial activity was detected only in the mycelium of the butyrate treated culture. We investigated the effect of butyrate ranging from low (0.001mM) to high (30mM), potentially toxic, concentrations on biomass and antimicrobial activity. Butyrate at high concentrations (3 and 30mM) significantly reduced the fungal biomass. In contrast P. restrictum treated with 0.03mM of butyrate showed the highest antimicrobial activity. We isolated three antimicrobial active compounds, active against Staphylococcus aureus, from P. restrictum cellular extracts treated with butyrate: adenine, its derivate hypoxanthine and the nucleoside derivate adenosine. Production of all three compounds was increased at low butyrate concentrations. Furthermore we found that butyrate influences the intracellular level of the adenine nucleoside derivate cAMP, an important signalling molecule in fungi and various organisms. In conclusion butyrate treatment increases the intracellular levels of adenine and its respective derivatives. Copyright © 2017 Elsevier GmbH. All rights reserved.

  10. Residual Renal Function in Children Treated with Chronic Peritoneal Dialysis

    PubMed Central

    Roszkowska-Blaim, Maria

    2013-01-01

    Residual renal function (RRF) in patients with end-stage renal disease (ESRD) receiving renal replacement therapy is defined as the ability of native kidneys to eliminate water and uremic toxins. Preserved RRF improves survival and quality of life in adult ESRD patients treated with peritoneal dialysis. In children, RRF was shown not only to help preserve adequacy of renal replacement therapy but also to accelerate growth rate, improve nutrition and blood pressure control, reduce the risk of adverse myocardial changes, facilitate treatment of anemia and calcium-phosphorus balance abnormalities, and result in reduced serum and dialysate fluid levels of advanced glycation end-products. Factors contributing to RRF loss in children treated with peritoneal dialysis include the underlying renal disease such as hemolytic-uremic syndrome and hereditary nephropathy, small urine volume, severe proteinuria at the initiation of renal replacement therapy, and hypertension. Several approaches can be suggested to decrease the rate of RRF loss in pediatric patients treated with chronic peritoneal dialysis: potentially nephrotoxic drugs (e.g., aminoglycosides), episodes of hypotension, and uncontrolled hypertension should be avoided, urinary tract infections should be treated promptly, and loop diuretics may be used to increase salt and water excretion. PMID:24376376

  11. [Chronic renal disease--a global problem in the XXI century].

    PubMed

    Shutov, A M

    2014-01-01

    In 2002, it was proposed to consider functional renal disorders 3 and more months in duration under the general name chronic renal disease (CRD) bearing in mind the common mechanism behind progressive nephropathy and high cardiovascular mortality of such patients. The prevalence of CRD in Russia is unknown; it is supposed that every tenth adult in the world has CRD. Diagnostics of CRD requires at least measurement of serum creatinine, calculation of the glomerular filtration rate by CKD-EPI formula, and determination of albuminuria. A main cause of CRD is cardiovascular disorders. Complicated relationships between cardiac insufficiency and CRD account for 5 types of cardiorenal syndrome. CRD patients are at risk of terminal renal insufficiency requiring replacement therapy; moreover, CRD enhances cardiovascular morbidity and predisposes to acute renal lesion that in turn accelerates progress of CRD. Taken together these events account for the global character of the CRD problem.

  12. The Effect of Chronic Renal Failure on Drug Metabolism and Transport

    PubMed Central

    Dreisbach, Albert W; Lertora, Juan JL

    2009-01-01

    Background Chronic renal failure (CRF) has been shown to significantly reduce the nonrenal clearance and alter bioavailability of drugs predominantly metabolized by the liver and intestine. Objectives The purpose of this article is to review all significant animal and clinical studies dealing with the effect of CRF on drug metabolism and transport. Methods The National Library of Medicine PubMed was utilized with the search terms ‘chronic renal failure, cytochrome P450, liver metabolism, efflux drug transport and uptake transport’ including relevant articles back to 1969. Results Animal studies in CRF have shown a major downregulation (40-85%) of hepatic and intestinal cytochrome P450 (CYP) metabolism. High levels of parathyroid hormone, cytokines, and uremic toxins have been shown to reduce CYP activity. Phase II reactions and drug transporters such as P-glycoprotein (Pgp) and organic anion transporting polypeptide (OATP) are also affected. Conclusion CRF alters intestinal, renal, and hepatic drug metabolism and transport producing a clinically significant impact on drug disposition and increasing the risk for adverse drug reactions. PMID:18680441

  13. Comparison of FDG-PET/CT images between chronic renal failure patients on hemodialysis and controls.

    PubMed

    Toriihara, Akira; Kitazume, Yoshio; Nishida, Hidenori; Kubota, Kazunori; Nakadate, Masashi; Tateishi, Ukihide

    2015-01-01

    The whole-body 2-deoxy-2-[(18)F]fluoro-D-glucose (FDG) distribution in chronic renal failure (CRF) patients on hemodialysis would be different from that in subjects with normal renal function, because they lack urinary FDG excretion and remain in a constant volume overload. We evaluated the difference in the physiological uptake pattern of FDG between chronic renal failure patients on hemodialysis and control subjects. The subjects for this retrospective study consisted of 24 chronic renal failure patients on hemodialysis (HD group) and 24 age- and sex-matched control subjects (NC group). Standardized uptake values normalized by the body weight (SUVbw), ideal body weight (SUVibw), lean body mass (SUVlbm), and body surface area (SUVbsa) in the cerebellum, lungs, liver, gluteal muscles and subcutaneous fat, spleen, thoracolumbar spine, thoracic and abdominal aorta, and right atrium were calculated in positron emission tomography/computed tomography (PET/CT) images. SUVbw in the gluteal muscles, subcutaneous fat, spleen and right atrium was significantly higher in the HD group as compared to that in the NC group (p < 0.05; unpaired t test). In addition, SUVibm, SUVlbm, as well as SUVbsa in the abdominal aorta were significantly higher in the HD group as compared to those in the NC group (p < 0.05; unpaired t test). In conclusion, as compared to normal subjects, chronic renal failure patients on hemodialysis show significantly higher physiological FDG uptake in the soft tissues, spleen and blood pool.

  14. Comparison of FDG-PET/CT images between chronic renal failure patients on hemodialysis and controls

    PubMed Central

    Toriihara, Akira; Kitazume, Yoshio; Nishida, Hidenori; Kubota, Kazunori; Nakadate, Masashi; Tateishi, Ukihide

    2015-01-01

    The whole-body 2-deoxy-2-[18F]fluoro-D-glucose (FDG) distribution in chronic renal failure (CRF) patients on hemodialysis would be different from that in subjects with normal renal function, because they lack urinary FDG excretion and remain in a constant volume overload. We evaluated the difference in the physiological uptake pattern of FDG between chronic renal failure patients on hemodialysis and control subjects. The subjects for this retrospective study consisted of 24 chronic renal failure patients on hemodialysis (HD group) and 24 age- and sex-matched control subjects (NC group). Standardized uptake values normalized by the body weight (SUVbw), ideal body weight (SUVibw), lean body mass (SUVlbm), and body surface area (SUVbsa) in the cerebellum, lungs, liver, gluteal muscles and subcutaneous fat, spleen, thoracolumbar spine, thoracic and abdominal aorta, and right atrium were calculated in positron emission tomography/computed tomography (PET/CT) images. SUVbw in the gluteal muscles, subcutaneous fat, spleen and right atrium was significantly higher in the HD group as compared to that in the NC group (p < 0.05; unpaired t test). In addition, SUVibm, SUVlbm, as well as SUVbsa in the abdominal aorta were significantly higher in the HD group as compared to those in the NC group (p < 0.05; unpaired t test). In conclusion, as compared to normal subjects, chronic renal failure patients on hemodialysis show significantly higher physiological FDG uptake in the soft tissues, spleen and blood pool. PMID:25973341

  15. Blood transfusion improves renal oxygenation and renal function in sepsis-induced acute kidney injury in rats.

    PubMed

    Zafrani, Lara; Ergin, Bulent; Kapucu, Aysegul; Ince, Can

    2016-12-20

    The effects of blood transfusion on renal microcirculation during sepsis are unknown. This study aimed to investigate the effect of blood transfusion on renal microvascular oxygenation and renal function during sepsis-induced acute kidney injury. Twenty-seven Wistar albino rats were randomized into four groups: a sham group (n = 6), a lipopolysaccharide (LPS) group (n = 7), a LPS group that received fluid resuscitation (n = 7), and a LPS group that received blood transfusion (n = 7). The mean arterial blood pressure, renal blood flow, and renal microvascular oxygenation within the kidney cortex were recorded. Acute kidney injury was assessed using the serum creatinine levels, metabolic cost, and histopathological lesions. Nitrosative stress (expression of endothelial (eNOS) and inducible nitric oxide synthase (iNOS)) within the kidney was assessed by immunohistochemistry. Hemoglobin levels, pH, serum lactate levels, and liver enzymes were measured. Fluid resuscitation and blood transfusion both significantly improved the mean arterial pressure and renal blood flow after LPS infusion. Renal microvascular oxygenation, serum creatinine levels, and tubular damage significantly improved in the LPS group that received blood transfusion compared to the group that received fluids. Moreover, the renal expression of eNOS was markedly suppressed under endotoxin challenge. Blood transfusion, but not fluid resuscitation, was able to restore the renal expression of eNOS. However, there were no significant differences in lactic acidosis or liver function between the two groups. Blood transfusion significantly improved renal function in endotoxemic rats. The specific beneficial effect of blood transfusion on the kidney could have been mediated in part by the improvements in renal microvascular oxygenation and sepsis-induced endothelial dysfunction via the restoration of eNOS expression within the kidney.

  16. The role of keto acids in the supportive treatment of children with chronic renal failure.

    PubMed

    Mir, Sevgi; Ozkayin, Nese; Akgun, Aysegul

    2005-07-01

    According to the hyperfiltration theory of renal diseases characterized by a decrease in the number of functional nephrons, increased arterial blood pressure, excessive protein intake in the diet, high levels of calcium (Ca) and phosphorus (P), secondary hyperparathyroidism, hypertriglyceridemia and/or hypercholesterolemia, proteinuria and metabolic acidosis are some factors that impair the prognosis of the disease. The amount of protein in the diet is the most important of these factors. A protein-restricted diet administered to patients with chronic renal failure results in the risk of inadequate amino acid intake. To overcome this problem, the use of dysaminated alpha-keto analogues has been considered to reduce the risk of nitrogenemia resulting from the continuous intake of essential amino acids. Currently, the necessity of essential amino acids even in adult patients with chronic renal failure is controversial; besides, trials on the use of these amino acids in pediatric patients are scarce. The aim of this study is to investigate the efficacy and applicability of conservative therapy with a protein-restricted diet supplemented with keto acids in the management of chronic renal insufficiency or failure.

  17. Induced Autologous Stem Cell Transplantation for Treatment of Rabbit Renal Interstitial Fibrosis

    PubMed Central

    Ruan, Guang-Ping; Xu, Fan; Li, Zi-An; Zhu, Guang-Xu; Pang, Rong-Qing; Wang, Jin-Xiang; Cai, Xue-Min; He, Jie; Yao, Xiang; Ruan, Guang-Hong; Xu, Xin-Ming; Pan, Xing-Hua

    2013-01-01

    Introduction Renal interstitial fibrosis (RIF) is a significant cause of end-stage renal failure. The goal of this study was to characterize the distribution of transplanted induced autologous stem cells in a rabbit model of renal interstitial fibrosis and evaluate its therapeutic efficacy for treatment of renal interstitial fibrosis. Methods A rabbit model of renal interstitial fibrosis was established. Autologous fibroblasts were cultured, induced and labeled with green fluorescent protein (GFP). These labeled stem cells were transplanted into the renal artery of model animals at 8 weeks. Results Eight weeks following transplantation of induced autologous stem cells, significant reductions (P < 0.05) were observed in serum creatinine (SCr) (14.8 ± 1.9 mmol/L to 10.1 ± 2.1 mmol/L) and blood urea nitrogen (BUN) (119 ± 22 µmol/L to 97 ± 13 µmol/L), indicating improvement in renal function. Conclusions We successfully established a rabbit model of renal interstitial fibrosis and demonstrated that transplantation of induced autologous stem cells can repair kidney damage within 8 weeks. The repair occurred by both inhibition of further development of renal interstitial fibrosis and partial reversal of pre-existing renal interstitial fibrosis. These beneficial effects lead to the development of normal tissue structure and improved renal function. PMID:24367598

  18. Iohexol clearance is superior to creatinine-based renal function estimating equations in detecting short-term renal function decline in chronic heart failure.

    PubMed

    Cvan Trobec, Katja; Kerec Kos, Mojca; von Haehling, Stephan; Anker, Stefan D; Macdougall, Iain C; Ponikowski, Piotr; Lainscak, Mitja

    2015-12-01

    To compare the performance of iohexol plasma clearance and creatinine-based renal function estimating equations in monitoring longitudinal renal function changes in chronic heart failure (CHF) patients, and to assess the effects of body composition on the equation performance. Iohexol plasma clearance was measured in 43 CHF patients at baseline and after at least 6 months. Simultaneously, renal function was estimated with five creatinine-based equations (four- and six-variable Modification of Diet in Renal Disease, Cockcroft-Gault, Cockcroft-Gault adjusted for lean body mass, Chronic Kidney Disease Epidemiology Collaboration equation) and body composition was assessed using bioimpedance and dual-energy x-ray absorptiometry. Over a median follow-up of 7.5 months (range 6-17 months), iohexol clearance significantly declined (52.8 vs 44.4 mL/[min ×1.73 m2], P=0.001). This decline was significantly higher in patients receiving mineralocorticoid receptor antagonists at baseline (mean decline -22% of baseline value vs -3%, P=0.037). Mean serum creatinine concentration did not change significantly during follow-up and no creatinine-based renal function estimating equation was able to detect the significant longitudinal decline of renal function determined by iohexol clearance. After accounting for body composition, the accuracy of the equations improved, but not their ability to detect renal function decline. Renal function measured with iohexol plasma clearance showed relevant decline in CHF patients, particularly in those treated with mineralocorticoid receptor antagonists. None of the equations for renal function estimation was able to detect these changes. ClinicalTrials.gov registration number: NCT01829880.

  19. Clinical types and drug therapy of renal impairment in cirrhosis

    PubMed Central

    Rodés, J.; Bosch, J.; Arroyo, V.

    1975-01-01

    Four separate types of renal failure in cirrhosis are described: functional renal failure; diuretic induced uraemia; acute tubular necrosis; chronic intrinsic renal disease. Functional renal failure may arise spontaneously or be precipitated by such factors as haemorrhage, surgery, or infection. It carries a poor prognosis but preliminary results of treating this condition with plasma volume expansion in combination with high doses of furosemide are encouraging. PMID:1234328

  20. Cancer Theranostic Nanoparticles Self-Assembled from Amphiphilic Small Molecules with Equilibrium Shift-Induced Renal Clearance

    PubMed Central

    Ma, Yuan; Mou, Quanbing; Sun, Mo; Yu, Chunyang; Li, Jianqi; Huang, Xiaohua; Zhu, Xinyuan; Yan, Deyue; Shen, Jian

    2016-01-01

    Nano drug delivery systems have emerged as promising candidates for cancer therapy, whereas their uncertainly complete elimination from the body within specific timescales restricts their clinical translation. Compared with hepatic clearance of nanoparticles, renal excretion of small molecules is preferred to minimize the agent-induced toxicity. Herein, we construct in vivo renal-clearable nanoparticles, which are self-assembled from amphiphilic small molecules holding the capabilities of magnetic resonance imaging (MRI) and chemotherapy. The assembled nanoparticles can accumulate in tumor tissues for their nano-characteristics, while the small molecules dismantled from the nanoparticles can be efficiently cleared by kidneys. The renal-clearable nanoparticles exhibit excellent tumor-inhibition performance as well as low side effects and negligible chronic toxicity. These results demonstrate a potential strategy for small molecular nano drug delivery systems with obvious anticancer effect and low-toxic metabolism pathway for clinical applications. PMID:27446502

  1. Restoration of podocyte structure and improvement of chronic renal disease in transgenic mice overexpressing renin.

    PubMed

    Huby, Anne-Cécile; Rastaldi, Maria-Pia; Caron, Kathleen; Smithies, Oliver; Dussaule, Jean-Claude; Chatziantoniou, Christos

    2009-08-21

    Proteinuria is a major marker of the decline of renal function and an important risk factor of coronary heart disease. Elevated proteinuria is associated to the disruption of slit-diaphragm and loss of podocyte foot processes, structural alterations that are considered irreversible. The objective of the present study was to investigate whether proteinuria can be reversed and to identify the structural modifications and the gene/protein regulation associated to this reversal. We used a novel transgenic strain of mouse (RenTg) that overexpresses renin at a constant high level. At the age of 12-month, RenTg mice showed established lesions typical of chronic renal disease such as peri-vascular and periglomerular inflammation, glomerular ischemia, glomerulosclerosis, mesangial expansion and tubular dilation. Ultrastructural analysis indicated abnormal heterogeneity of basement membrane thickness and disappearance of podocyte foot processes. These structural alterations were accompanied by decreased expressions of proteins specific of podocyte (nephrin, podocin), or tubular epithelial cell (E-cadherin and megalin) integrity. In addition, since TGFbeta is considered the major pro-fibrotic agent in renal disease and since exogenous administration of BMP7 is reported to antagonize the TGFbeta-induced phenotype changes in kidney, we have screened the expressions of several genes belonging in the TGFbeta/BMP superfamily. We found that the endogenous inhibitors of BMPs such as noggin and Usag-1 were several-fold activated inhibiting the action of BMPs and thus reinforcing the deleterious action of TGFbeta.Treatment with an AT1 receptor antagonist, at dose that did not decrease arterial pressure, gradually reduced albuminuria. This decrease was accompanied by re-expression of podocin, nephrin, E-cadherin and megalin, and reappearance of podocyte foot processes. In addition, expressions of noggin and Usag-1 were markedly decreased, permitting thus activation of the beneficial

  2. Efficacy of Adenine in the Treatment of Leukopenia and Neutropenia Associated with an Overdose of Antipsychotics or Discontinuation of Lithium Carbonate Administration: Three Case Studies.

    PubMed

    Tomita, Takashi; Goto, Hidekazu; Sumiya, Kenji; Yoshida, Tadashi; Tanaka, Katsuya; Kohda, Yukinao

    2016-11-30

    Because adenine is effective for managing cases of radiation-induced and drug-induced leukopenia, it may be effective in cases of antipsychotic-induced leukopenia and neutropenia. Here, we report our experience with patients with leukopenia and neutropenia caused by an antipsychotic overdose or discontinuation of lithium carbonate, in whom adenine administration ameliorated the white blood cell and neutrophil counts. The progress of patients suggests that adenine is effective in cases of leukopenia and neutropenia associated with lithium carbonate discontinuation and an antipsychotic overdose.

  3. [Treatment Strategy and Results of Carotid Endarterectomy in Chronic Renal Failure Patients].

    PubMed

    Murahashi, Takeo; Kamiyama, Kenji; Osato, Toshiaki; Watanabe, Toshiichi; Ogino, Tatsuya; Sugio, Hironori; Endo, Hideki; Takahira, Kazuki; Shindo, Koichiro; Takahashi, Shuhei; Nakamura, Hirohiko

    2017-02-01

    The number of patients receiving chronic dialysis treatment in Japan currently exceeds 300,000 people. Few reports have described carotid endarterectomy(CEA)for chronic renal failure patients because of the unacceptable rate of perioperative stroke and other morbidities. A strategy for and treatment results of CEA for chronic renal failure patients in our hospital are described herein. The present study included 6 patients who underwent CEA while receiving dialysis treatment between April 2011 and November 2014. Dialysis treatment was initiated due to diabetes in 4 patients and renal sclerosis in 2 patients. All the patients were men, with a mean age of 74.0 years. Two patients were symptomatic, and four were asymptomatic. In all the patients, heart vascular lesions and arteriosclerosis risk factors were present. Postoperatively, pneumonia transient cranial neuropathy, heart failure, and pneumonia in 1 case required extensive treatment. However, by the time of discharge from hospital, no cases had deteriorated compared with their pre-CEA state. The modified Rankin scale score on discharge was 0-2 for all the patients. CEA can be performed safely in patients receiving dialysis, but further operative procedures and careful postoperative management are likely to be needed for patients with CEA who are receiving dialysis.

  4. Inhibiting aerobic glycolysis suppresses renal interstitial fibroblast activation and renal fibrosis.

    PubMed

    Ding, Hao; Jiang, Lei; Xu, Jing; Bai, Feng; Zhou, Yang; Yuan, Qi; Luo, Jing; Zen, Ke; Yang, Junwei

    2017-09-01

    Chronic kidney diseases generally lead to renal fibrosis. Despite great progress having been made in identifying molecular mediators of fibrosis, the mechanism that governs renal fibrosis remains unclear, and so far no effective therapeutic antifibrosis strategy is available. Here we demonstrated that a switch of metabolism from oxidative phosphorylation to aerobic glycolysis (Warburg effect) in renal fibroblasts was the primary feature of fibroblast activation during renal fibrosis and that suppressing renal fibroblast aerobic glycolysis could significantly reduce renal fibrosis. Both gene and protein assay showed that the expression of glycolysis enzymes was upregulated in mouse kidneys with unilateral ureter obstruction (UUO) surgery or in transforming growth factor-β1 (TGF-β1)-treated renal interstitial fibroblasts. Aerobic glycolysis flux, indicated by glucose uptake and lactate production, was increased in mouse kidney with UUO nephropathy or TGF-β1-treated renal interstitial fibroblasts and positively correlated with fibrosis process. In line with this, we found that increasing aerobic glycolysis can remarkably induce myofibroblast activation while aerobic glycolysis inhibitors shikonin and 2-deoxyglucose attenuate UUO-induced mouse renal fibrosis and TGF-β1-stimulated myofibroblast activation. Furthermore, mechanistic study indicated that shikonin inhibits renal aerobic glycolysis via reducing phosphorylation of pyruvate kinase type M2, a rate-limiting glycolytic enzyme associated with cell reliance on aerobic glycolysis. In conclusion, our findings demonstrate the critical role of aerobic glycolysis in renal fibrosis and support treatment with aerobic glycolysis inhibitors as a potential antifibrotic strategy. Copyright © 2017 the American Physiological Society.

  5. Endothelin-A receptor blockade slows the progression of renal injury in experimental renovascular disease.

    PubMed

    Kelsen, Silvia; Hall, John E; Chade, Alejandro R

    2011-07-01

    Endothelin (ET)-1, a potent renal vasoconstrictor with mitogenic properties, is upregulated by ischemia and has been shown to induce renal injury via the ET-A receptor. The potential role of ET-A blockade in chronic renovascular disease (RVD) has not, to our knowledge, been previously reported. We hypothesized that chronic ET-A receptor blockade would preserve renal hemodynamics and slow the progression of injury of the stenotic kidney in experimental RVD. Renal artery stenosis, a major cause of chronic RVD, was induced in 14 pigs and observed for 6 wk. In half of the pigs, chronic ET-A blockade was initiated (RVD+ET-A, 0.75 mg·kg(-1)·day(-1)) at the onset of RVD. Single-kidney renal blood flow, glomerular filtration rate, and perfusion were quantified in vivo after 6 wk using multidetector computer tomography. Renal microvascular density was quantified ex vivo using three-dimensional microcomputer tomography, and growth factors, inflammation, apoptosis, and fibrosis were determined in renal tissue. The degree of stenosis and increase in blood pressure were similar in RVD and RVD+ET-A pigs. Renal hemodynamics, function, and microvascular density were decreased in the stenotic kidney but preserved by ET-A blockade, accompanied by increased renal expression of vascular endothelial growth factor, hepatocyte growth factor, and downstream mediators such as phosphorilated-Akt, angiopoietins, and endothelial nitric oxide synthase. ET-A blockade also reduced renal apoptosis, inflammation, and glomerulosclerosis. This study shows that ET-A blockade slows the progression of renal injury in experimental RVD and preserves renal hemodynamics, function, and microvascular density in the stenotic kidney. These results support a role for ET-1/ET-A as a potential therapeutic target in chronic RVD.

  6. Endothelin-A receptor blockade slows the progression of renal injury in experimental renovascular disease

    PubMed Central

    Kelsen, Silvia; Hall, John E.

    2011-01-01

    Endothelin (ET)-1, a potent renal vasoconstrictor with mitogenic properties, is upregulated by ischemia and has been shown to induce renal injury via the ET-A receptor. The potential role of ET-A blockade in chronic renovascular disease (RVD) has not, to our knowledge, been previously reported. We hypothesized that chronic ET-A receptor blockade would preserve renal hemodynamics and slow the progression of injury of the stenotic kidney in experimental RVD. Renal artery stenosis, a major cause of chronic RVD, was induced in 14 pigs and observed for 6 wk. In half of the pigs, chronic ET-A blockade was initiated (RVD+ET-A, 0.75 mg·kg−1·day−1) at the onset of RVD. Single-kidney renal blood flow, glomerular filtration rate, and perfusion were quantified in vivo after 6 wk using multidetector computer tomography. Renal microvascular density was quantified ex vivo using three-dimensional microcomputer tomography, and growth factors, inflammation, apoptosis, and fibrosis were determined in renal tissue. The degree of stenosis and increase in blood pressure were similar in RVD and RVD+ET-A pigs. Renal hemodynamics, function, and microvascular density were decreased in the stenotic kidney but preserved by ET-A blockade, accompanied by increased renal expression of vascular endothelial growth factor, hepatocyte growth factor, and downstream mediators such as phosphorilated-Akt, angiopoietins, and endothelial nitric oxide synthase. ET-A blockade also reduced renal apoptosis, inflammation, and glomerulosclerosis. This study shows that ET-A blockade slows the progression of renal injury in experimental RVD and preserves renal hemodynamics, function, and microvascular density in the stenotic kidney. These results support a role for ET-1/ET-A as a potential therapeutic target in chronic RVD. PMID:21478482

  7. Effect of selective inhibition of renal inducible nitric oxide synthase on renal blood flow and function in experimental hyperdynamic sepsis.

    PubMed

    Ishikawa, Ken; Calzavacca, Paolo; Bellomo, Rinaldo; Bailey, Michael; May, Clive N

    2012-08-01

    Nitric oxide plays an important role in the control of renal blood flow and renal function. In sepsis, increased levels of inducible nitric oxide synthase produce excessive nitric oxide, which may contribute to the development of acute kidney injury. We, therefore, examined the effects of intrarenal infusion of selective inducible nitric oxide synthase inhibitors in a large animal model of hyperdynamic sepsis in which acute kidney injury occurs in the presence of increased renal blood flow. Prospective crossover randomized controlled interventional studies. University-affiliated research institute. Twelve unilaterally nephrectomized Merino ewes. Infusion of a selective (1400W) and a partially selective inducible nitric oxide synthase inhibitor (aminoguanidine) into the renal artery for 2 hrs after the induction of sepsis, and comparison with a nonselective inhibitor (Nω-nitro-L-arginine methyl ester). In sheep with nonhypotensive hyperdynamic sepsis, creatinine clearance halved (32 to 16 mL/min, ratio [95% confidence interval] 0.51 [0.28-0.92]) despite increased renal blood flow (241 to 343 mL/min, difference [95% confidence interval] 102 [78-126]). Infusion of 1400W did not change renal blood flow, urine output, or creatinine clearance, whereas infusion of Nω-nitro-L-arginine methyl ester and a high dose of aminoguanidine normalized renal blood flow, but did not alter creatinine clearance. In hyperdynamic sepsis, intrarenal infusion of a highly selective inducible nitric oxide synthase inhibitor did not reduce the elevated renal blood flow or improve renal function. In contrast, renal blood flow was reduced by infusion of a nonselective NOS inhibitor or a high dose of a partially selective inducible nitric oxide synthase inhibitor. The renal vasodilatation in septic acute kidney injury may be due to nitric oxide derived from the endothelial and neural isoforms of nitric oxide synthase, but their blockade did not restore renal function.

  8. Clinical and pathological analysis of IgA nephropathy with chronic renal failure.

    PubMed

    Liu, Yuyuan; Hu, Qinfeng; Shen, Ping; Tang, Li; Yuan, Gang; Zhou, Yongmei; Chai, Huaqi

    2016-10-01

    To investigative clinical and pathological characteristics of IgA nephropathy with chronic renal failure. Clinical and pathological findings from 65 cases of IgA nephropathy with chronic renal failure were reviewed. Pathological characteristics of all the cases were analyzed according to WHO definition and Oxford Classification. Evaluating the severity of pathological lesions by the Katafuchi R semiquantitative scoring system, and analyzing their relationship with clinical indexes of renal function. Of all 65 cases the male and female ratio was 1.4, and the mean age was 37 ± 13 years old. Levels of systolic pressure, mean arterial pressure (MAP), blood urea nitrogen (BUN), serum creatinine (Scr), uric acid (UA), album (Alb), serum IgG and 24 h urinary protein were related with eGRF level (p < 0.05, respectively). The most common pathological type was proliferative sclerosis glomerulonephritis (PSGN) and M1S1E0T0 according to WHO definition and Oxford Classification, respectively, and most of the 65 cases had glomerulosclerosis. Simple IgA deposition was the most common immunopathologic type. Of all the cases, 44.6% accompanied with C3 while 4.6% with C1q. Further analysis revealed there were no relationships between severity of pathological lesion and levels of clinical indexes (Scr and eGRF) (p > 0.05). IgA nephropathy with chronic renal failure usually occurred in young adults, and it had severe clinical condition and pathological changes, while there was no significant relationship between them.

  9. Activation of TRPV4 by dietary apigenin antagonizes renal fibrosis in deoxycorticosterone acetate (DOCA)-salt-induced hypertension.

    PubMed

    Wei, Xing; Gao, Peng; Pu, Yunfei; Li, Qiang; Yang, Tao; Zhang, Hexuan; Xiong, Shiqiang; Cui, Yuanting; Li, Li; Ma, Xin; Liu, Daoyan; Zhu, Zhiming

    2017-04-01

    Hypertension-induced renal fibrosis contributes to the progression of chronic kidney disease, and apigenin, an anti-hypertensive flavone that is abundant in celery, acts as an agonist of transient receptor potential vanilloid 4 (TRPV4). However, whether apigenin reduces hypertension-induced renal fibrosis, as well as the underlying mechanism, remains elusive. In the present study, the deoxycorticosterone acetate (DOCA)-salt hypertension model was established in male Sprague-Dawley rats that were treated with apigenin or vehicle for 4 weeks. Apigenin significantly attenuated the DOCA-salt-induced structural and functional damage to the kidney, which was accompanied by reduced expression of transforming growth factor-β1 (TGF-β1)/Smad2/3 signaling pathway and extracellular matrix proteins. Immunochemistry, cell-attached patch clamp and fluorescent Ca 2+ imaging results indicated that TRPV4 was expressed and activated by apigenin in both the kidney and renal cells. Importantly, knockout of TRPV4 in mice abolished the beneficial effects of apigenin that were observed in the DOCA-salt hypertensive rats. Additionally, apigenin directly inhibited activation of the TGF-β1/Smad2/3 signaling pathway in different renal tissues through activation of TRPV4 regardless of the type of pro-fibrotic stimulus. Moreover, the TRPV4-mediated intracellular Ca 2+ influx activated the AMP-activated protein kinase (AMPK)/sirtuin 1 (SIRT1) pathway, which inhibited the TGF-β1/Smad2/3 signaling pathway. In summary, dietary apigenin has beneficial effects on hypertension-induced renal fibrosis through the TRPV4-mediated activation of AMPK/SIRT1 and inhibition of the TGF-β1/Smad2/3 signaling pathway. This work suggests that dietary apigenin may represent a promising lifestyle modification for the prevention of hypertension-induced renal damage in populations that consume a high-sodium diet. © 2017 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  10. Compensatory Structural and Functional Adaptation after Radical Nephrectomy for Renal Cell Carcinoma According to Preoperative Stage of Chronic Kidney Disease.

    PubMed

    Choi, Don Kyoung; Jung, Se Bin; Park, Bong Hee; Jeong, Byong Chang; Seo, Seong Il; Jeon, Seong Soo; Lee, Hyun Moo; Choi, Han-Yong; Jeon, Hwang Gyun

    2015-10-01

    We investigated structural hypertrophy and functional hyperfiltration as compensatory adaptations after radical nephrectomy in patients with renal cell carcinoma according to the preoperative chronic kidney disease stage. We retrospectively identified 543 patients who underwent radical nephrectomy for renal cell carcinoma between 1997 and 2012. Patients were classified according to preoperative glomerular filtration rate as no chronic kidney disease--glomerular filtration rate 90 ml/minute/1.73 m(2) or greater (230, 42.4%), chronic kidney disease stage II--glomerular filtration rate 60 to less than 90 ml/minute/1.73 m(2) (227, 41.8%) and chronic kidney disease stage III--glomerular filtration rate 30 to less than 60 ml/minute/1.73 m(2) (86, 15.8%). Computerized tomography performed within 2 months before surgery and 1 year after surgery was used to assess functional renal volume for measuring the degree of hypertrophy of the remnant kidney, and the preoperative and postoperative glomerular filtration rate per unit volume of functional renal volume was used to calculate the degree of hyperfiltration. Among all patients (mean age 56.0 years) mean preoperative glomerular filtration rate, functional renal volume and glomerular filtration rate/functional renal volume were 83.2 ml/minute/1.73 m(2), 340.6 cm(3) and 0.25 ml/minute/1.73 m(2)/cm(3), respectively. The percent reduction in glomerular filtration rate was statistically significant according to chronic kidney disease stage (no chronic kidney disease 31.2% vs stage II 26.5% vs stage III 12.8%, p <0.001). However, the degree of hypertrophic functional renal volume in the remnant kidney was not statistically significant (no chronic kidney disease 18.5% vs stage II 17.3% vs stage III 16.5%, p=0.250). The change in glomerular filtration rate/functional renal volume was statistically significant (no chronic kidney disease 18.5% vs stage II 20.1% vs stage III 45.9%, p <0.001). Factors that increased glomerular

  11. Expression of GSK-3β in renal allograft tissue and its significance in pathogenesis of chronic allograft dysfunction.

    PubMed

    Yan, Qiang; Wang, Baoyao; Sui, Weiguo; Zou, Guimian; Chen, Huaizhou; Xie, Shenping; Zou, Hequn

    2012-01-13

    To explore the expression of Glycogen synthase kinase 3 beta (GSK-3β) in renal allograft tissue and its significance in the pathogenesis of chronic allograft dysfunction. Renal allograft biopsy was performed in all of the renal allograft recipients with proteinuria or increased serum creatinine level who came into our hospital from January 2007 to December 2009. Among them 28 cases was diagnosed as chronic allograft dysfunction based on pahtological observation, including 21 males with a mean age of 45 ± 10 years old and 7 females with a mean age of 42 ± 9 years old. The time from kidney transplantation to biopsy were 1-9 (3.5) years. Their serum creatinine level were 206 ± 122 umol/L. Immunohistochemical assay and computer-assisted genuine color image analysis system (imagepro-plus 6.0) were used to detect the expression of GSK-3β in the renal allografts of 28 cases of recipients with chronic allograft dysfunction. Mean area and mean integrated optical density of GSK-3β expression were calculated. The relationship between expression level of GSK-3β and either the grade of inflammatory cell infiltration or interstitial fibrosis/tubular atrophy in renal allograft was analyzed. Five specimens of healthy renal tissue were used as controls. The expression level of the GSK-3β was significantly increased in the renal allograft tissue of recipients with chronic allograft dysfunction, compared to normal renal tissues, and GSK-3β expression became stronger along with the increasing of the grade of either inflammatory cell infiltration or interstitial fibrosis/tubular atrophy in renal allograft tissue. There might be a positive correlation between either inflammatory cell infiltration or interstitial fibrosis/tubular atrophy and high GSK-3β expression in renal allograft tissue. The virtual slide(s) for this article can be found here:http://www.diagnosticpathology.diagnomx.eu/vs/9924478946162998.

  12. Iohexol clearance is superior to creatinine-based renal function estimating equations in detecting short-term renal function decline in chronic heart failure

    PubMed Central

    Cvan Trobec, Katja; Kerec Kos, Mojca; von Haehling, Stephan; Anker, Stefan D.; Macdougall, Iain C.; Ponikowski, Piotr; Lainscak, Mitja

    2015-01-01

    Aim To compare the performance of iohexol plasma clearance and creatinine-based renal function estimating equations in monitoring longitudinal renal function changes in chronic heart failure (CHF) patients, and to assess the effects of body composition on the equation performance. Methods Iohexol plasma clearance was measured in 43 CHF patients at baseline and after at least 6 months. Simultaneously, renal function was estimated with five creatinine-based equations (four- and six-variable Modification of Diet in Renal Disease, Cockcroft-Gault, Cockcroft-Gault adjusted for lean body mass, Chronic Kidney Disease Epidemiology Collaboration equation) and body composition was assessed using bioimpedance and dual-energy x-ray absorptiometry. Results Over a median follow-up of 7.5 months (range 6-17 months), iohexol clearance significantly declined (52.8 vs 44.4 mL/[min ×1.73 m2], P = 0.001). This decline was significantly higher in patients receiving mineralocorticoid receptor antagonists at baseline (mean decline -22% of baseline value vs -3%, P = 0.037). Mean serum creatinine concentration did not change significantly during follow-up and no creatinine-based renal function estimating equation was able to detect the significant longitudinal decline of renal function determined by iohexol clearance. After accounting for body composition, the accuracy of the equations improved, but not their ability to detect renal function decline. Conclusions Renal function measured with iohexol plasma clearance showed relevant decline in CHF patients, particularly in those treated with mineralocorticoid receptor antagonists. None of the equations for renal function estimation was able to detect these changes. ClinicalTrials.gov registration number NCT01829880 PMID:26718759

  13. Urinary Angiostatin - A Novel Putative Marker of Renal Pathology Chronicity in Lupus Nephritis*

    PubMed Central

    Wu, Tianfu; Du, Yong; Han, Jie; Singh, Sandeep; Xie, Chun; Guo, Yuyuan; Zhou, Xin J.; Ahn, Chul; Saxena, Ramesh; Mohan, Chandra

    2013-01-01

    There is a critical need to identify biomarkers for Systemic Lupus Erythematosus (SLE) which has a high prevalence of renal failure. When urine from patients with lupus nephritis was recently screened for the levels of ∼280 molecules using an exploratory array-based proteomic platform, elevated angiostatin levels were noted. Angiostatin is a bioactive fragment of plasminogen, and has been known to have modulatory function in angiogenesis and inflammation. The significant elevation in urinary angiostatin was next validated in an independent cohort of SLE patients (n = 100) using ELISA. Among patients with SLE, urine angiostatin was significantly increased in active SLE compared with inactive SLE, correlating well with the SLEDAI disease activity index and SLICC renal activity score (r = 0.66, p < 0.0001). ROC curve analysis further confirmed that urinary angiostatin had the capacity to discriminate patients with active SLE from those with inactive disease. Patients with Class IV lupus nephritis exhibited the highest levels of urinary angiostatin. Immunohistochemistry staining localized angiostatin expression to the renal tubular cells in these patients. Finally, when paired urine-kidney samples procured concurrently from patients with LN were next examined, urine angiostatin levels correlated strongly with the renal pathology chronicity index, but not with the activity index. Given that Class IV lupus nephritis and renal pathology chronicity changes forebode poor renal and patient survival, urinary angiostatin emerges as a novel noninvasive marker of renal disease in SLE. Longitudinal studies are in progress to further assess the disease-predictive potential of urinary angiostatin. PMID:23345539

  14. Electron transfer driven decomposition of adenine and selected analogs as probed by experimental and theoretical methods

    NASA Astrophysics Data System (ADS)

    Cunha, T.; Mendes, M.; Ferreira da Silva, F.; Eden, S.; García, G.; Bacchus-Montabonel, M.-C.; Limão-Vieira, P.

    2018-04-01

    We report on a combined experimental and theoretical study of electron-transfer-induced decomposition of adenine (Ad) and a selection of analog molecules in collisions with potassium (K) atoms. Time-of-flight negative ion mass spectra have been obtained in a wide collision energy range (6-68 eV in the centre-of-mass frame), providing a comprehensive investigation of the fragmentation patterns of purine (Pu), adenine (Ad), 9-methyl adenine (9-mAd), 6-dimethyl adenine (6-dimAd), and 2-D adenine (2-DAd). Following our recent communication about selective hydrogen loss from the transient negative ions (TNIs) produced in these collisions [T. Cunha et al., J. Chem. Phys. 148, 021101 (2018)], this work focuses on the production of smaller fragment anions. In the low-energy part of the present range, several dissociation channels that are accessible in free electron attachment experiments are absent from the present mass spectra, notably NH2 loss from adenine and 9-methyl adenine. This can be understood in terms of a relatively long transit time of the K+ cation in the vicinity of the TNI tending to enhance the likelihood of intramolecular electron transfer. In this case, the excess energy can be redistributed through the available degrees of freedom inhibiting fragmentation pathways. Ab initio theoretical calculations were performed for 9-methyl adenine (9-mAd) and adenine (Ad) in the presence of a potassium atom and provided a strong basis for the assignment of the lowest unoccupied molecular orbitals accessed in the collision process.

  15. Apocynin improving cardiac remodeling in chronic renal failure disease is associated with up-regulation of epoxyeicosatrienoic acids.

    PubMed

    Zhang, Kun; Liu, Yu; Liu, Xiaoqiang; Chen, Jie; Cai, Qingqing; Wang, Jingfeng; Huang, Hui

    2015-09-22

    Cardiac remodeling is one of the most common cardiac abnormalities and associated with a high mortality in chronic renal failure (CRF) patients. Apocynin, a nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase inhibitor, has been showed cardio-protective effects. However, whether apocynin can improve cardiac remodeling in CRF and what is the underlying mechanism are unclear. In the present study, we enrolled 94 participants. In addition, we used 5/6 nephrectomized rats to mimic cardiac remodeling in CRF. Serum levels of epoxyeicosatrienoic acids (EETs) and its mainly metabolic enzyme-soluble epoxide hydrolase (sEH) were measured. The results showed that the serum levels of EETs were significantly decreased in renocardiac syndrome participants (P < 0.05). In 5/6 nephrectomized CRF model, the ratio of left ventricular weight / body weight, left ventricular posterior wall thickness, and cardiac interstitial fibrosis were significantly increased while ejection fraction significantly decreased (P < 0.05). All these effects could partly be reversed by apocynin. Meanwhile, we found during the process of cardiac remodeling in CRF, apocynin significantly increased the reduced serum levels of EETs and decreased the mRNA and protein expressions of sEH in the heart (P < 0.05). Our findings indicated that the protective effect of apocynin on cardiac remodeling in CRF was associated with the up-regulation of EETs. EETs may be a new mediator for the injury of kidney-heart interactions.

  16. Apocynin improving cardiac remodeling in chronic renal failure disease is associated with up-regulation of epoxyeicosatrienoic acids

    PubMed Central

    Chen, Jie; Cai, Qingqing; Wang, Jingfeng; Huang, Hui

    2015-01-01

    Cardiac remodeling is one of the most common cardiac abnormalities and associated with a high mortality in chronic renal failure (CRF) patients. Apocynin, a nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase inhibitor, has been showed cardio-protective effects. However, whether apocynin can improve cardiac remodeling in CRF and what is the underlying mechanism are unclear. In the present study, we enrolled 94 participants. In addition, we used 5/6 nephrectomized rats to mimic cardiac remodeling in CRF. Serum levels of epoxyeicosatrienoic acids (EETs) and its mainly metabolic enzyme-soluble epoxide hydrolase (sEH) were measured. The results showed that the serum levels of EETs were significantly decreased in renocardiac syndrome participants (P < 0.05). In 5/6 nephrectomized CRF model, the ratio of left ventricular weight /body weight, left ventricular posterior wall thickness, and cardiac interstitial fibrosis were significantly increased while ejection fraction significantly decreased (P < 0.05). All these effects could partly be reversed by apocynin. Meanwhile, we found during the process of cardiac remodeling in CRF, apocynin significantly increased the reduced serum levels of EETs and decreased the mRNA and protein expressions of sEH in the heart (P < 0.05). Our findings indicated that the protective effect of apocynin on cardiac remodeling in CRF was associated with the up-regulation of EETs. EETs may be a new mediator for the injury of kidney-heart interactions. PMID:26322503

  17. Probable chronic renal failure caused by Lonomia caterpillar envenomation

    PubMed Central

    2013-01-01

    Erucism is a skin reaction to envenomation from certain poisonous caterpillar bristles. In Brazil, most reports of erucism provoked by Lonomia caterpillars are from the southern region. Most manifestations of erucism are local and include burning pain, itching, local hyperthermia and, rarely, blisters (benign symptoms with spontaneous regression in a few hours). General symptoms such as nausea and vomiting, headache, fever, myalgia, abdominal pain and conjunctivitis may also occur. Uncommon symptoms include arthritis, coagulation disorders (manifested as bruising and bleeding), intracerebral hemorrhage and acute renal failure, which comprise serious complications. The present study reports the case of 60-year-old patient from Rio de Janeiro state, Brazil, who came into contact with a caterpillar and developed, a few days later, chronic renal disease. PMID:23849585

  18. Attenuation of Folic Acid-Induced Renal Inflammatory Injury in Platelet-Activating Factor Receptor-Deficient Mice

    PubMed Central

    Doi, Kent; Okamoto, Koji; Negishi, Kousuke; Suzuki, Yoshifumi; Nakao, Akihide; Fujita, Toshiro; Toda, Akiko; Yokomizo, Takehiko; Kita, Yoshihiro; Kihara, Yasuyuki; Ishii, Satoshi; Shimizu, Takao; Noiri, Eisei

    2006-01-01

    Platelet-activating factor (PAF), a potent lipid mediator with various biological activities, plays an important role in inflammation by recruiting leukocytes. In this study we used platelet-activating factor receptor (PAFR)-deficient mice to elucidate the role of PAF in inflammatory renal injury induced by folic acid administration. PAFR-deficient mice showed significant amelioration of renal dysfunction and pathological findings such as acute tubular damage with neutrophil infiltration, lipid peroxidation observed with antibody to 4-hydroxy-2-hexenal (day 2), and interstitial fibrosis with macrophage infiltration associated with expression of monocyte chemoattractant protein-1 and tumor necrosis factor-α in the kidney (day 14). Acute tubular damage was attenuated by neutrophil depletion using a monoclonal antibody (RB6-8C5), demonstrating the contribution of neutrophils to acute phase injury. Macrophage infiltration was also decreased when treatment with a PAF antagonist (WEB2086) was started after acute phase. In vitro chemotaxis assay using a Boyden chamber demonstrated that PAF exhibits a strong chemotactic activity for macrophages. These results indicate that PAF is involved in pathogenesis of folic acid-induced renal injury by activating neutrophils in acute phase and macrophages in chronic interstitial fibrosis. Inhibiting the PAF pathway might be therapeutic to kidney injury from inflammatory cells. PMID:16651609

  19. Nosogogy: when the learner is a patient with chronic renal failure.

    PubMed

    Ballerini, L; Paris, V

    2006-11-01

    Patient education approaches are currently derived from a biomedical 'acute' model characterized by the sequence of health, disease, and recovery resulting from our professional intervention. Unfortunately, this model proves to be totally inadequate when applied to a chronic disease such as kidney failure. Our patients never fully regain their health and may continue to worsen under our care, even after many state-of-the-art treatments. The solution is represented in acquiring a new professional identity, shifting from the 'biomedical' acute model to a 'bio-psycho-social-educational model'. Within this model, a Therapeutic Education approach in predialysis has been proven to provide both short- and long-term positive results for renal patients. There is a tremendous difference between the learning processes in children and adults and two different sciences have already been described. 'Pedagogy' deals with child learning and 'Andragogy' with adult learning. Nevertheless, when the learner is a patient with a chronic disease, we believe that new considerations must be taken into account. We propose to create a novel science and to call it 'Nosogogy', derived from the ancient Greek word (see text), meaning 'disease'. Nosogogy could be defined as the science of teaching adults affected by chronic disease. The new educator is someone deeply involved in renal care who knows and understands the characteristic conflicts and dynamics that arise in the renal patient, and possesses adequate communication skills to deal with him. In our experience, we prefer to have educational sessions run by nephrologists and nurses who have great experience in the field.

  20. Coenzyme Q10 protects renal proximal tubule cells against nicotine-induced apoptosis through induction of p66shc-dependent antioxidant responses.

    PubMed

    Arany, Istvan; Carter, Anthony; Hall, Samuel; Fulop, Tibor; Dixit, Mehul

    2017-02-01

    Chronic nicotine exposure (via smoking, E-cigarettes) increases oxidative stress in the kidney that sensitizes it to additional injury in experimental models and in the renal patient. The pro-apoptotic p66 shc protein-via serine36 phosphorylation that facilitates its mitochondrial translocation and therein cytochrome c binding-generates oxidative stress that leads to injury of renal proximal tubule cells during chronic nicotine exposure. Coenzyme Q10-a clinically safe antioxidant-has been used against nicotine/smoke extract-associated oxidative stress in various non-renal cells. This study explored the anti-oxidant/anti-apoptotic effect of Coenzyme Q10 on nicotine-induced oxidative stress and its impact on p66shc in cultured rat renal proximal tubule cells (NRK52E). We studied the anti-oxidant effect of 10 µM Coenzyme Q10 using various mutants of the p66shc gene and also determined the induction of selected anti-oxidant entities (antioxidant response element, promoter of the manganese superoxide dismutase gene) in reporter luciferase assay during oxidative stress induced by 200 µM nicotine. Our studies revealed that Coenzyme Q10 strongly inhibits nicotine-mediated production of reactive oxygen species and consequent apoptosis that requires serine36 phosphorylation but not mitochondrial translocation/cytochrome c binding of p66 shc . While both nicotine and Coenzyme Q10 stimulates the p66shc promoter, only nicotine exposure results in mitochondrial translocation of p66 shc . In contrast, the Coenzyme Q10-stimulated and non-mitochondrial p66 shc activates the anti-oxidant manganese superoxide dismutase promoter via the antioxidant response elements and hence, rescues cells from nicotine-induced oxidative stress and consequent apoptosis.

  1. Slit2 ameliorates renal inflammation and fibrosis after hypoxia-and lipopolysaccharide-induced epithelial cells injury in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xiangjun; Yao, Qisheng, E-mail: yymcyqs@126.com; Sun, Xinbo

    Hypoxic acute kidney injury (AKI) is often incompletely repaired and leads to chronic kidney disease (CKD), which is characterized by tubulointerstitial inflammation and fibrosis. The Slit2 family of secreted glycoproteins is expressed in the kidney, it has been shown to exert an anti-inflammatory activity and prevent ischemic renal injury in vivo. However, whether Slit2 reduces renal fibrosis and inflammation after hypoxic and inflammatory epithelial cells injury in vitro remains unknown. In this study, we aimed to evaluate whether Slit2 ameliorated fibrosis and inflammation in two renal epithelial cells line challenged with hypoxia and lipopolysaccharide (LPS). Renal epithelial cells were treatedmore » with hypoxia and LPS to induce cell injury. Hoechst staining and Western blot analysis was conducted to examine epithelial cells injury. Immunofluorescence staining and Western blot analysis was performed to evaluate tubulointerstitial fibrosis. Real-time polymerase chain reaction (PCR) tested the inflammatory factor interleukin (IL)−1β and tumor necrosis factor (TNF)-α, and Western blot analysis determined the hypoxia-inducible factor (HIF)−1α, Toll-like receptor 4 (TLR4) and nuclear factor (NF)-κB. Results revealed that hypoxia induced epithelial cells apoptosis, inflammatory factor IL-1β and TNF-α release and tubulointerstitial fibrosis. LPS could exacerbate hypoxia -induced epithelial cells apoptosis, IL-1β and TNF-α release and fibrosis. Slit2 reduced the expression of fibronectin, the rate of epithelial cell apoptosis, and the expression of inflammatory factor. Slit2 could also inhibit the expression of TLR4 and NF-κB, but not the expression of HIF-1α. Therefore, Slit2 attenuated inflammation and fibrosis after LPS- and hypoxia-induced epithelial cells injury via the TLR4/NF-κB signaling pathway, but not depending on the HIF-1α signaling pathway. - Highlights: • Slit2 ameliorates inflammation after hypoxia-and LPS-induced epithelial cells

  2. Acute Knockdown of Uncoupling Protein-2 Increases Uncoupling via the Adenine Nucleotide Transporter and Decreases Oxidative Stress in Diabetic Kidneys

    PubMed Central

    Friederich-Persson, Malou; Aslam, Shakil; Nordquist, Lina; Welch, William J.; Wilcox, Christopher S.; Palm, Fredrik

    2012-01-01

    Increased O2 metabolism resulting in chronic hypoxia is common in models of endstage renal disease. Mitochondrial uncoupling increases O2 consumption but the ensuing reduction in mitochondrial membrane potential may limit excessive oxidative stress. The present study addressed the hypothesis that mitochondrial uncoupling regulates mitochondria function and oxidative stress in the diabetic kidney. Isolated mitochondria from kidney cortex of control and streptozotocin-induced diabetic rats were studied before and after siRNA knockdown of uncoupling protein-2 (UCP-2). Diabetes resulted in increased UCP-2 protein expression and UCP-2-mediated uncoupling, but normal mitochondria membrane potential. This uncoupling was inhibited by GDP, which also increased the membrane potential. siRNA reduced UCP-2 protein expression in controls and diabetics (−30–50%), but paradoxically further increased uncoupling and markedly reduced the membrane potential. This siRNA mediated uncoupling was unaffected by GDP but was blocked by ADP and carboxyatractylate (CAT). Mitochondria membrane potential after UCP-2 siRNA was unaffected by GDP but increased by CAT. This demonstrated that further increased mitochondria uncoupling after siRNA towards UCP-2 is mediated through the adenine nucleotide transporter (ANT). The increased oxidative stress in the diabetic kidney, manifested as increased thiobarbituric acids, was reduced by knocking down UCP-2 whereas whole-body oxidative stress, manifested as increased circulating malondialdehyde, remained unaffected. All parameters investigated were unaffected by scrambled siRNA. In conclusion, mitochondrial uncoupling via UCP-2 regulates mitochondria membrane potential in diabetes. However, blockade of the diabetes-induced upregulation of UCP- 2 results in excessive uncoupling and reduced oxidative stress in the kidney via activation of ANT. PMID:22768304

  3. The iothalamate clearance in cats with experimentally induced renal failure.

    PubMed

    Ohashi, F; Kuroda, K; Shimada, T; Shimada, Y; Ota, M

    1996-08-01

    Plasma iothalamate (IOT) disappearance rates were measured after a single-injection of IOT (113.8 mg/kg, IV) in cats with experimentally induced renal failure. The disappearance rates especially fitted into the one compartment model. The mean value of plasma disappearance rates of IOT in these cats with induced renal failure (2.16 +/- 0.240 x 10(-3) micrograms/ml/min) was markedly lower than that of clinically healthy cats (4.10 +/- 1.00 x 10(-3) micrograms/ml/min). These results demonstrate that IOT clearance is available for evaluation of renal function in cats.

  4. Oxalate nephropathy associated with chronic pancreatitis.

    PubMed

    Cartery, Claire; Faguer, Stanislas; Karras, Alexandre; Cointault, Olivier; Buscail, Louis; Modesto, Anne; Ribes, David; Rostaing, Lionel; Chauveau, Dominique; Giraud, Patrick

    2011-08-01

    Enteric overabsorption of oxalate may lead to hyperoxaluria and subsequent acute oxalate nephritis (AON). AON related to chronic pancreatitis is a rare and poorly described condition precluding early recognition and treatment. We collected the clinical characteristics, treatment, and renal outcome of 12 patients with chronic pancreatitis-associated AON followed in four French renal units. Before AON, mild to moderate chronic kidney disease was present in all patients, diabetes mellitus in eight (insulin [n = 6]; oral antidiabetic drugs [n = 2]), and known chronic pancreatitis in only eight. At presentation, pancreas imaging showed gland atrophy/heterogeneity, Wirsung duct dilation, calcification, or pseudocyst. Renal findings consisted of rapidly progressive renal failure with tubulointerstitial profile. Acute modification of glomerular filtration preceded the AON (i.e., diarrhea and diuretics). Increase in urinary oxalate excretion was found in all tested patients and hypocalcemia in nine (<1.5 mmol/L in four patients). Renal biopsy showed diffuse crystal deposits, highly suggestive of oxalate crystals, with tubular necrosis and interstitial inflammatory cell infiltrates. Treatment consisted of pancreatic enzyme supplementation, oral calcium intake, and an oxalate-free diet in all patients and renal replacement therapy in five patients. After a median follow-up of 7 months, three of 12 patients reached end-stage renal disease. AON is an under-recognized severe crystal-induced renal disease with features of tubulointerstitial nephritis that may occur in patients with a long history of chronic pancreatitis or reveal the pancreatic disease. Extrinsic triggering factors should be prevented.

  5. Chromium-induced kidney disease.

    PubMed

    Wedeen, R P; Qian, L F

    1991-05-01

    Kidney disease is often cited as one of the adverse effects of chromium, yet chronic renal disease due to occupational or environmental exposure to chromium has not yet been reported. Occasional cases of acute tubular necrosis (ATN) following massive absorption of chromate have been described. Chromate-induced ATN has been extensively studied in experimental animals following parenteral administration of large doses of potassium chromate (hexavalent) (15 mg/kg body weight). The chromate is selectively accumulated in the convoluted proximal tubule where necrosis occurs. An adverse long-term effect of low-dose chromium exposure on the kidneys is suggested by reports of low molecular weight (LMW) proteinuria in chromium workers. Excessive urinary excretion of beta 2-microglobulin, a specific proximal tubule brush border protein, and retinol-binding protein has been reported among chrome platers and welders. However, LMW proteinuria occurs after a variety of physiologic stresses, is usually reversible, and cannot by itself be considered evidence of chronic renal disease. Chromate-induced ATN and LMW proteinuria in chromium workers, nevertheless, raise the possibility that low-level, long-term exposure may produce persistent renal injury. The absence of evidence of chromate-induced exposure may produce persistent renal injury. The absence of evidence of chromate-induced chronic renal disease cannot be interpreted as evidence of the absence of such injury. Rather, it must be recognized that no prospective cohort or case-control study of the delayed renal effects of low-level, long-term exposure to chromium has been published.

  6. Comparative effects of mesenchymal stem cell therapy in distinct stages of chronic renal failure.

    PubMed

    Caldas, Heloisa Cristina; de Paula Couto, Thaís Amarante Peres; Fernandes, Ida Maria Maximina; Baptista, Maria Alice Sperto Ferreira; Kawasaki-Oyama, Rosa Sayoko; Goloni-Bertollo, Eny Maria; Braile, Domingo Marcolino; Abbud-Filho, Mario

    2015-10-01

    The therapeutic potential of adult stem cells in the treatment of chronic diseases is becoming increasingly evident. In the present study, we sought to assess whether treatment with mesenchymal stem cells (MSCs) efficiently retards progression of chronic renal failure (CRF) when administered to experimental models of less severe CRF. We used two renal mass reduction models to simulate different stages of CRF (5/6 or 2/3 mass renal reduction). Renal functional parameters measured were serum creatinine (SCr), creatinine clearance (CCr), rate of decline in CCr (RCCr), and 24-h proteinuria (PT24h). We also evaluated renal morphology by histology and immunohistochemistry. MSCs were obtained from bone marrow aspirates and injected into the renal parenchyma of the remnant kidneys of both groups of rats with CRF (MSC5/6 or MSC2/3). Animals from groups MSC5/6 and CRF2/3 seemed to benefit from MSC therapy because they showed significantly reduction in SCr and PT24h, increase in CCr and slowed the RCCr after 90 days. Treatment reduced glomerulosclerosis but significant improvement did occur in the tubulointerstitial compartment with much less fibrosis and atrophy. MSC therapy reduced inflammation by decreasing macrophage accumulation proliferative activity (PCNA-positive cells) and fibrosis (α-SM-actin). Comparisons of renal functional and morphological parameters responses between the two groups showed that rats MSC2/3 were more responsive to MSC therapy than MSC5/6. This study showed that MSC therapy is efficient to retard CRF progression and might be more effective when administered during less severe stages of CRF.

  7. Sodium butyrate suppresses angiotensin II-induced hypertension by inhibition of renal (pro)renin receptor and intrarenal renin-angiotensin system.

    PubMed

    Wang, Lei; Zhu, Qing; Lu, Aihua; Liu, Xiaofen; Zhang, Linlin; Xu, Chuanming; Liu, Xiyang; Li, Haobo; Yang, Tianxin

    2017-09-01

    Butyrate, a short-chain fatty acid, is the end product of the fermentation of complex carbohydrates by the gut microbiota. Recently, sodium butyrate (NaBu) has been found to play a protective role in a number of chronic diseases. However, it is still unclear whether NaBu has a therapeutic potential in hypertension. The present study was aimed to investigate the role of NaBu in angiotensin II (Ang II)-induced hypertension and to further explore the underlying mechanism. Ang II was infused into uninephrectomized Sprague-Dawley rats with or without intramedullary infusion of NaBu for 14 days. Mean arterial blood pressure was recorded by the telemetry system. Renal tissues, serum samples, and 24-h urine samples were collected to examine renal injury and the regulation of the (pro)renin receptor (PRR) and renin. Intramedullary infusion of NaBu in Sprague-Dawley rats lowered the Ang II-induced mean arterial pressure from 129 ± 6 mmHg to 108 ± 4 mmHg (P < 0.01). This corresponded with an improvement in Ang II-induced renal injury, including urinary albumin, glomerulosclerosis, and renal fibrosis, as well as the expression of inflammatory mediators tumor necrosis factor α, interleukin 6. The renal expression of PRR, angiotensinogen, angiotensin I-converting enzyme and the urinary excretion of soluble PRR, renin, and angiotensinogen were all increased by Ang II infusion but decreased by NaBu treatment. In cultured innermedullary collecting duct cells, NaBu treatment attenuated Ang II-induced expression of PRR and renin. These results demonstrate that NaBu exerts an antihypertensive action, likely by suppressing the PRR-mediated intrarenal renin-angiotensin system.

  8. Pathological Renal Findings of Chronic Renal Failure in a Patient with the E66Q Mutation in the α-galactosidase A Gene.

    PubMed

    Satomura, Atsushi; Fujita, Takayuki; Nakayama, Tomohiro; Kusano, Hiroyuki; Takayama, Eiichi; Hamada, Hiroaki; Maruyama, Toshiharu

    2015-01-01

    A 66-year-old Japanese man was diagnosed with interstitial nephritis on a renal biopsy at 45 years of age and began to receive hemodialysis at 65 years of age. He was suspected of having Fabry disease as a result of a screening study for Fabry disease performed in hemodialysis patients. He had an E66Q mutation in the α-galactosidase A gene. We conducted an electron microscopic examination of a renal biopsy specimen obtained when the patient was diagnosed with chronic renal failure at 45 years of age in order to elucidate the pathogenicity of the E66Q mutation. Interestingly, an electron microscopic examination of the renal biopsy specimen indicated no characteristic findings of Fabry disease.

  9. Renal Hypoxia and Dysoxia After Reperfusion of the Ischemic Kidney

    PubMed Central

    Legrand, Matthieu; Mik, Egbert G; Johannes, Tanja; Payen, Didier; Ince, Can

    2008-01-01

    Ischemia is the most common cause of acute renal failure. Ischemic-induced renal tissue hypoxia is thought to be a major component in the development of acute renal failure in promoting the initial tubular damage. Renal oxygenation originates from a balance between oxygen supply and consumption. Recent investigations have provided new insights into alterations in oxygenation pathways in the ischemic kidney. These findings have identified a central role of microvascular dysfunction related to an imbalance between vasoconstrictors and vasodilators, endothelial damage and endothelium–leukocyte interactions, leading to decreased renal oxygen supply. Reduced microcirculatory oxygen supply may be associated with altered cellular oxygen consumption (dysoxia), because of mitochondrial dysfunction and activity of alternative oxygen-consuming pathways. Alterations in oxygen utilization and/or supply might therefore contribute to the occurrence of organ dysfunction. This view places oxygen pathways’ alterations as a potential central player in the pathogenesis of acute kidney injury. Both in regulation of oxygen supply and consumption, nitric oxide seems to play a pivotal role. Furthermore, recent studies suggest that, following acute ischemic renal injury, persistent tissue hypoxia contributes to the development of chronic renal dysfunction. Adaptative mechanisms to renal hypoxia may be ineffective in more severe cases and lead to the development of chronic renal failure following ischemia-reperfusion. This paper is aimed at reviewing the current insights into oxygen transport pathways, from oxygen supply to oxygen consumption in the kidney and from the adaptation mechanisms to renal hypoxia. Their role in the development of ischemia-induced renal damage and ischemic acute renal failure are discussed. PMID:18488066

  10. Histomorphometry of feline chronic kidney disease and correlation with markers of renal dysfunction.

    PubMed

    Chakrabarti, S; Syme, H M; Brown, C A; Elliott, J

    2013-01-01

    Chronic kidney disease is common in geriatric cats, but most cases have nonspecific renal lesions, and few studies have correlated these lesions with clinicopathological markers of renal dysfunction. The aim of this study was to identify the lesions best correlated with renal function and likely mediators of disease progression in cats with chronic kidney disease. Cats were recruited through 2 first-opinion practices between 1992 and 2010. When postmortem examinations were authorized, renal tissues were preserved in formalin. Sections were evaluated by a pathologist masked to all clinicopathological data. They were scored semiquantitatively for the severity of glomerulosclerosis, interstitial inflammation, and fibrosis. Glomerular volume was measured using image analysis; the percentage of glomeruli that were obsolescent was recorded. Sections were assessed for hyperplastic arteriolosclerosis and tubular mineralization. Kidneys from 80 cats with plasma biochemical data from the last 2 months of life were included in the study. Multivariable linear regression (P < .05) was used to assess the association of lesions with clinicopathological data obtained close to death. Interstitial fibrosis was the lesion best correlated with the severity of azotemia, hyperphosphatemia, and anemia. Proteinuria was associated with interstitial fibrosis and glomerular hypertrophy, whereas higher time-averaged systolic blood pressure was associated with glomerulosclerosis and hyperplastic arteriolosclerosis.

  11. Acute Alcohol Intoxication Exacerbates Rhabdomyolysis-Induced Acute Renal Failure in Rats.

    PubMed

    Tsai, Jen-Pi; Lee, Chung-Jen; Subeq, Yi-Maun; Lee, Ru-Ping; Hsu, Bang-Gee

    2017-01-01

    Traumatic and nontraumatic rhabdomyolysis can lead to acute renal failure (ARF), and acute alcohol intoxication can lead to multiple abnormalities of the renal tubules. We examined the effect of acute alcohol intoxication in a rat model of rhabdomyolysis and ARF. Intravenous injections of 5 g/kg ethanol were given to rats over 3 h, followed by glycerol-induced rhabdomyolysis. Biochemical parameters, including blood urea nitrogen (BUN), creatinine (Cre), glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), and creatine phosphokinase (CPK), were measured before and after induction of rhabdomyolysis. Renal tissue injury score, renal tubular cell expression of E-cadherin, nuclear factor-κB (NF-κB), and inducible nitric oxide synthase (iNOS) were determined. Relative to rats in the vehicle group, rats in the glycerol-induced rhabdomyolysis group had significantly increased serum levels of BUN, Cre, GOT, GPT, and CPK, elevated renal tissue injury scores, increased expression of NF-κB and iNOS, and decreased expression of E-cadherin. Ethanol exacerbated all of these pathological responses. Our results suggest that acute alcohol intoxication exacerbates rhabdomyolysis-induced ARF through its pro-oxidant and inflammatory effects.

  12. Acute Alcohol Intoxication Exacerbates Rhabdomyolysis-Induced Acute Renal Failure in Rats

    PubMed Central

    Tsai, Jen-Pi; Lee, Chung-Jen; Subeq, Yi-Maun; Lee, Ru-Ping; Hsu, Bang-Gee

    2017-01-01

    Traumatic and nontraumatic rhabdomyolysis can lead to acute renal failure (ARF), and acute alcohol intoxication can lead to multiple abnormalities of the renal tubules. We examined the effect of acute alcohol intoxication in a rat model of rhabdomyolysis and ARF. Intravenous injections of 5 g/kg ethanol were given to rats over 3 h, followed by glycerol-induced rhabdomyolysis. Biochemical parameters, including blood urea nitrogen (BUN), creatinine (Cre), glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), and creatine phosphokinase (CPK), were measured before and after induction of rhabdomyolysis. Renal tissue injury score, renal tubular cell expression of E-cadherin, nuclear factor-κB (NF-κB), and inducible nitric oxide synthase (iNOS) were determined. Relative to rats in the vehicle group, rats in the glycerol-induced rhabdomyolysis group had significantly increased serum levels of BUN, Cre, GOT, GPT, and CPK, elevated renal tissue injury scores, increased expression of NF-κB and iNOS, and decreased expression of E-cadherin. Ethanol exacerbated all of these pathological responses. Our results suggest that acute alcohol intoxication exacerbates rhabdomyolysis-induced ARF through its pro-oxidant and inflammatory effects. PMID:28824301

  13. Transport of adenine, hypoxanthine and uracil into Escherichia coli.

    PubMed Central

    Burton, K

    1977-01-01

    Uptake of adenine, hypoxanthine and uracil by an uncA strain of Escherichia coli is inhibited by uncouplers or when phosphate in the medium is replaced by less than 1 mM-arsenate, indicating a need for both a protonmotive force and phosphorylated metabolites. The rate of uptake of adenine or hypoxanthine was not markedly affected by a genetic deficiency of purine nucleoside phosphorylase. In two mutants with undetected adenine phosphoribosyltransferase, the rate of adenine uptake was about 30% of that in their parent strain, and evidence was obtained to confirm that adenine had then been utilized via purine nucleoside phosphorylase. In a strain deficient in both enzymes adenine uptake was about 1% of that shown by wild-type strains. Uptake of hypoxanthine was similarly limited in a strain lacking purine nucleoside phosphorylase, hypoxanthine phosphoribosyltransferase and guanine phosphoribosyltransferase. Deficiency of uracil phosphoribosyltransferase severely limits uracil uptake, but the defect can be circumvented by addition of inosine, which presumably provides ribose 1-phosphate for reversal of uridine phosphorylase. The results indicate that there are porter systems for adenine, hypoxanthine and uracil dependent on a protonmotive force and facilitated by intracellular metabolism of the free bases. PMID:413544

  14. Renal denervation attenuates aldosterone expression and associated cardiovascular pathophysiology in angiotensin II-induced hypertension.

    PubMed

    Hong, Mo-Na; Li, Xiao-Dong; Chen, Dong-Rui; Ruan, Cheng-Chao; Xu, Jian-Zhong; Chen, Jing; Wu, Yong-Jie; Ma, Yu; Zhu, Ding-Liang; Gao, Ping-Jin

    2016-10-18

    The sympathetic nervous system interacts with the renin-angiotensin-aldosterone system (RAAS) contributing to cardiovascular diseases. In this study, we sought to determine if renal denervation (RDN) inhibits aldosterone expression and associated cardiovascular pathophysiological changes in angiotensin II (Ang II)-induced hypertension. Bilateral RDN or SHAM operation was performed before chronic 14-day Ang II subcutaneous infusion (200ng/kg/min) in male Sprague-Dawley rats. Bilateral RDN blunted Ang II-induced hypertension and ameliorated the mesenteric vascular dysfunction. Cardiovascular hypertrophy in response to Ang II was significantly attenuated by RDN as shown by histopathology and transthoracic echocardiography. Moreover, Ang II-induced vascular and myocardial inflammation and fibrosis were suppressed by RDN with concurrent decrease in fibronectin and collagen deposition, macrophage infiltration, and MCP-1 expression. Interestingly, RDN also inhibited Ang II-induced aldosterone expression in the plasma, kidney and heart. This was associated with the reduction of calcitonin gene-related peptide (CGRP) in the adrenal gland. Ang II promoted aldosterone secretion which was partly attenuated by CGRP in the adrenocortical cell line, suggesting a protective role of CGRP in this model. Activation of transforming growth factor-β (TGF-β)/Smad and mitogen-activated protein kinases (MAPKs) signaling pathway was both inhibited by RDN especially in the heart. These results suggest that the regulation of the renal sympathetic nerve in Ang II-induced hypertension and associated cardiovascular pathophysiological changes is likely mediated by aldosterone, with CGRP involvement.

  15. Renal denervation attenuates aldosterone expression and associated cardiovascular pathophysiology in angiotensin II-induced hypertension

    PubMed Central

    Chen, Dong-Rui; Ruan, Cheng-Chao; Xu, Jian-Zhong; Chen, Jing; Wu, Yong-Jie; Ma, Yu; Zhu, Ding-Liang; Gao, Ping-Jin

    2016-01-01

    The sympathetic nervous system interacts with the renin-angiotensin-aldosterone system (RAAS) contributing to cardiovascular diseases. In this study, we sought to determine if renal denervation (RDN) inhibits aldosterone expression and associated cardiovascular pathophysiological changes in angiotensin II (Ang II)-induced hypertension. Bilateral RDN or SHAM operation was performed before chronic 14-day Ang II subcutaneous infusion (200ng/kg/min) in male Sprague-Dawley rats. Bilateral RDN blunted Ang II-induced hypertension and ameliorated the mesenteric vascular dysfunction. Cardiovascular hypertrophy in response to Ang II was significantly attenuated by RDN as shown by histopathology and transthoracic echocardiography. Moreover, Ang II-induced vascular and myocardial inflammation and fibrosis were suppressed by RDN with concurrent decrease in fibronectin and collagen deposition, macrophage infiltration, and MCP-1 expression. Interestingly, RDN also inhibited Ang II-induced aldosterone expression in the plasma, kidney and heart. This was associated with the reduction of calcitonin gene-related peptide (CGRP) in the adrenal gland. Ang II promoted aldosterone secretion which was partly attenuated by CGRP in the adrenocortical cell line, suggesting a protective role of CGRP in this model. Activation of transforming growth factor-β (TGF-β)/Smad and mitogen-activated protein kinases (MAPKs) signaling pathway was both inhibited by RDN especially in the heart. These results suggest that the regulation of the renal sympathetic nerve in Ang II-induced hypertension and associated cardiovascular pathophysiological changes is likely mediated by aldosterone, with CGRP involvement. PMID:27661131

  16. Massive spontaneous choroidal hemorrhage in a patient with chronic renal failure and coronary artery disease treated with Plavix.

    PubMed

    De Marco, Rocco; Aurilia, Pasquale; Mele, Alessandro

    2009-01-01

    To report a case of massive spontaneous choroidal hemorrhage in a patient with chronic renal failure and coronary artery disease treated with clopidogrel bisulfate (Plavix). Case report. A 75-year-old man presented with pain and loss of vision in the left eye for 1 week. His medical history was remarkable for systemic hypertension, chronic renal failure, and artery coronary disease. For 6 months, he had been taking 75 mg/day of Plavix after coronary angioplasty. Ocular examination revealed the patient to be in angle closure. Ultrasonography and computed tomography scan revealed a massive choroidal hemorrhage pushing the iris-lens diaphragm forward. Pain and intraocular pressure were treated successfully with evacuative sclerotomies, but the final exitus after 6 months was bulbar phthisis. Massive spontaneous choroidal hemorrhage is an extremely rare event that usually has been described in older patients (65-87 years old) receiving anticoagulants or thrombolytic agents. Systemic hypertension, generalized atherosclerosis, and age-related macular degeneration are additional risk factors. In the present case, massive choroidal hemorrhage was associated with use of clopidogrel bisulfate (Plavix) in a patient with chronic renal failure. Our report indicates that Plavix should be administered with caution in patients with chronic renal failure owing to the risk of serious choroidal bleeding. Chronic renal failure should be also included in the list of risk factors for massive spontaneous choroidal hemorrhage. Evacuative sclerotomies may have value in the relief of pain and elevated intraocular pressure but has not been shown to be beneficial in visual and anatomic outcomes.

  17. Alteration of renal excretion pathways in gentamicin-induced renal injury in rats.

    PubMed

    Ma, Yan-Rong; Luo, Xuan; Wu, Yan-Fang; Zhang, Tiffany; Zhang, Fan; Zhang, Guo-Qiang; Wu, Xin-An

    2018-07-01

    The kidney plays a major part in the elimination of many drugs and their metabolites, and drug-induced kidney injury commonly alters either glomerular filtration or tubular transport, or both. However, the renal excretion pathway of drugs has not been fully elucidated at different stages of renal injury. This study aimed to evaluate the alteration of renal excretion pathways in gentamicin (GEN)-induced renal injury in rats. Results showed that serum cystatin C, creatinine and urea nitrogen levels were greatly increased by the exposure of GEN (100 mg kg -1 ), and creatinine concentration was increased by 39.7% by GEN (50 mg kg -1 ). GEN dose-dependently upregulated the protein expression of rOCT1, downregulated rOCT2 and rOAT1, but not affected rOAT2. Efflux transporters, rMRP2, rMRP4 and rBCRP expressions were significantly increased by GEN(100), and the rMATE1 level was markedly increased by GEN(50) but decreased by GEN(100). GEN(50) did not alter the urinary excretion of inulin, but increased metformin and furosemide excretion. However, GEN(100) resulted in a significant decrease of the urinary excretion of inulin, metformin and p-aminohippurate. In addition, urinary metformin excretions in vivo were significantly decreased by GEN(100), but slightly increased by GEN(50). These results suggested that GEN(50) resulted in the induction of rOCTs-rMATE1 and rOAT3-rMRPs pathway, but not changed the glomerular filtration rate, and GEN(100)-induced acute kidney injury caused the downregulated function of glomerular filtration -rOCTs-rMATE1 and -rOAT1-rMRPs pathway. Copyright © 2018 John Wiley & Sons, Ltd.

  18. Metabonomic study of the fruits of Alpinia oxyphylla as an effective treatment for chronic renal injury in rats.

    PubMed

    Li, Yong-Hui; Tan, Yin-Feng; Cai, Hong-Die; Zhang, Jun-Qing

    2016-05-30

    Alpinia oxyphylla (Zingiberaceae) is a well-known medicinal plant. Its fruit ("Yi-Zhi-Ren" in Chinese) is used as an anti-diuretic and traditionally used for the treatment of enuresis and reduce urination. Chronic kidney disease (CKD) is a disease with the characteristic of the slowly loss of kidney function and has a prevalence of up to 7-10% in adults. Recent advances in its etiology and pathogenesis are providing more speculative hypotheses focused on integral systems. Using a UPLC-QTOF-MS/MS-based metabolomic platform, we explored the changes of metabolic profiling in plasma/urine simultaneously between chronic kidney disease (CKD) induced from adenine excess and the protective effects of A. oxyphylla extract (AOE). The total twenty-one metabolites (twelve in urine and nine in plasma), up-regulated or down-regulated, were identified and contributed to CKD progress. Among these biomarkers, agmatine, CAMP, 7-methylguanine, hippuric acid, indoxyl sulfate, asparagines, kynurenic acid and p-cresol sulfate were restored back to the control-like level after the treatment of AOE (p<0.05 or 0.01), These findings may be promising to yield a valuable insight into the pathophysiology of CKD and serve as characteristics to explain the mechanisms of AOE. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Chronic kidney disease

    MedlinePlus

    Kidney failure - chronic; Renal failure - chronic; Chronic renal insufficiency; Chronic kidney failure; Chronic renal failure ... Chronic kidney disease (CKD) slowly gets worse over months or years. You may not notice any symptoms for some ...

  20. Alterations of Hepatic Metabolism in Chronic Kidney Disease via D-box-binding Protein Aggravate the Renal Dysfunction.

    PubMed

    Hamamura, Kengo; Matsunaga, Naoya; Ikeda, Eriko; Kondo, Hideaki; Ikeyama, Hisako; Tokushige, Kazutaka; Itcho, Kazufumi; Furuichi, Yoko; Yoshida, Yuya; Matsuda, Masaki; Yasuda, Kaori; Doi, Atsushi; Yokota, Yoshifumi; Amamoto, Toshiaki; Aramaki, Hironori; Irino, Yasuhiro; Koyanagi, Satoru; Ohdo, Shigehiro

    2016-03-04

    Chronic kidney disease (CKD) is associated with an increase in serum retinol; however, the underlying mechanisms of this disorder are poorly characterized. Here, we found that the alteration of hepatic metabolism induced the accumulation of serum retinol in 5/6 nephrectomy (5/6Nx) mice. The liver is the major organ responsible for retinol metabolism; accordingly, microarray analysis revealed that the hepatic expression of most CYP genes was changed in 5/6Nx mice. In addition, D-box-binding protein (DBP), which controls the expression of several CYP genes, was significantly decreased in these mice. Cyp3a11 and Cyp26a1, encoding key proteins in retinol metabolism, showed the greatest decrease in expression in 5/6Nx mice, a process mediated by the decreased expression of DBP. Furthermore, an increase of plasma transforming growth factor-β1 (TGF-β1) in 5/6Nx mice led to the decreased expression of the Dbp gene. Consistent with these findings, the alterations of retinol metabolism and renal dysfunction in 5/6Nx mice were ameliorated by administration of an anti-TGF-β1 antibody. We also show that the accumulation of serum retinol induced renal apoptosis in 5/6Nx mice fed a normal diet, whereas renal dysfunction was reduced in mice fed a retinol-free diet. These findings indicate that constitutive Dbp expression plays an important role in mediating hepatic dysfunction under CKD. Thus, the aggravation of renal dysfunction in patients with CKD might be prevented by a recovery of hepatic function, potentially through therapies targeting DBP and retinol. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Well Preserved Renal Function in Children With Untreated Chronic Liver Disease.

    PubMed

    Berg, Ulla B; Németh, Antal

    2018-04-01

    On the basis of studies with hepatorenal syndrome, it is widely regarded that renal function is impacted in chronic liver disease (CLD). Therefore, we investigated renal function in children with CLD. In a retrospective study of 277 children with CLD, renal function was investigated as glomerular filtration rate (GFR) and effective renal plasma flow (ERPF), measured as clearance of inulin and para-amino hippuric acid or clearance of iohexol. The data were analyzed with regard to different subgroups of liver disease and to the grade of damage. Hyperfiltration (>+2 SD of controls) was found in the subgroups of progressive familial intrahepatic cholestasis (44%), glycogenosis (75%), and acute fulminant liver failure (60%). Patients with biliary atresia, most other patients with metabolic disease and intrahepatic cholestasis, and those with vascular anomalies and cryptogenic cirrhosis had normal renal function. Decreased renal function was found in patients with Alagille's syndrome (64% < -2 SD). Increased GFR and ERPF was found in patients with elevated transaminases, low prothrombin level, high bile acid concentration, and high aspartate-aminotransferase-to-platelet ratio. Most children with CLD had surprisingly well preserved renal function and certain groups had even hyperfiltration. The finding that children with decompensated liver disease and ongoing liver failure had stable kidney function suggests that no prognostic markers of threatening hepatorenal syndrome were at hand. Moreover, estimation of GFR based on serum creatinine fails to reveal hyperfiltration.

  2. Renal alterations in feline immunodeficiency virus (FIV)-infected cats: a natural model of lentivirus-induced renal disease changes.

    PubMed

    Poli, Alessandro; Tozon, Natasa; Guidi, Grazia; Pistello, Mauro

    2012-09-01

    Human immunodeficiency virus (HIV) is associated with several renal syndromes including acute and chronic renal failures, but the underlying pathogenic mechanisms are unclear. HIV and feline immunodeficiency virus (FIV) share numerous biological and pathological features, including renal alterations. We investigated and compared the morphological changes of renal tissue of 51 experimentally and 21 naturally infected cats. Compared to the latter, the experimentally infected cats exhibited some mesangial widening and glomerulonephritis, milder proteinuria, and lower tubular and interstitial alterations. The numbers of giant protein tubular casts and tubular microcysts were also lower. In contrast, diffuse interstitial infiltrates and glomerular and interstitial amyloidosis were detected only in naturally infected cats. Similar alterations are found in HIV infected patients, thus supporting the idea of a causative role of FIV infection in renal disease, and underlining the relevance of the FIV and its natural host as an animal model for investigating lentivirus-associated nephropathy.

  3. Mineralocorticoid-induced sodium appetite and renal salt retention: Evidence for common signaling and effector mechanisms

    PubMed Central

    Fu, Yiling; Vallon, Volker

    2014-01-01

    An increase in renal sodium chloride (salt) retention and an increase in sodium appetite is the body's response to salt restriction or depletion in order to restore salt balance. Renal salt retention and increased sodium appetite can also be maladaptive and sustain the pathophysiology in conditions like salt-sensitive hypertension and chronic heart failure. Here we review the central role of the mineralocorticoid aldosterone in both the increase in renal salt reabsorption and sodium appetite. We discuss the working hypothesis that aldosterone activates similar signaling and effector mechanisms in the kidney and brain, including the mineralocorticoid receptor, the serum-and-glucocorticoid-induced kinase SGK1, the ubiquitin ligase NEDD4-2, and the epithelial sodium channel ENaC. The latter also mediates the gustatory salt sensing in the tongue, which is required for the manifestation of increased salt intake. Effects of aldosterone on both brain and kidney synergize with the effects of angiotensin II. Thus, mineralocorticoids appear to induce similar molecular pathways in the kidney, brain, and possibly tongue, which could provide opportunities for more effective therapeutic interventions. Inhibition of renal salt reabsorption is compensated by stimulation of salt appetite and vice versa; targeting both mechanisms should be more effective. Inhibiting the arousal to consume salty food may improve a patient's compliance to reducing salt intake. While a better understanding of the molecular mechanisms is needed and will provide new options, current pharmacological interventions that target both salt retention and sodium appetite include mineralocorticoid receptor antagonists and potentially inhibitors of angiotensin II and ENaC. PMID:25376899

  4. Naringin ameliorates sodium arsenite-induced renal and hepatic toxicity in rats: decisive role of KIM-1, Caspase-3, TGF-β, and TNF-α.

    PubMed

    Adil, Mohammad; Kandhare, Amit D; Visnagri, Asjad; Bodhankar, Subhash L

    2015-01-01

    Chronic exposure of a naturally occurring metal arsenic leads to renal and hepatic diseases. Naringin, a flavanone glycoside, possesses anti-inflammatory and anti-oxidant potential. The aim of this investigation was to evaluate the protective effect of naringin against arsenic-induced renal and hepatic toxicity in rats. Renal and hepatic toxicity was induced in rats by sodium arsenite (5 mg/kg, p.o.). Rats were treated orally with either vehicle or naringin (20, 40, and 80 mg/kg) or Coenzyme Q10 (10 mg/kg) for 28 days. Various biochemical, histological, and molecular biomarkers were assessed in kidney and liver. Treatment with naringin (40 and 80 mg/kg) significantly and dose-dependently restored (p < 0.01 and p < 0.001) altered levels of kidney (serum creatinine, urine creatinine, BUN, uric acid, and creatinine clearance) and liver function test (AST and ALT) induced by sodium arsenite. Elevated levels of oxido-nitrosative stress in renal and hepatic tissue was significantly and dose-dependently decreased (p < 0.01 and p < 0.001) by naringin (40 and 80 mg/kg) treatment. It significantly and dose-dependently down-regulated (p < 0.01 and p < 0.001) renal KIM-1, Caspase-3, TGF-β, and TNF-α mRNA expression. Histopathological alteration induced in kidney and liver by sodium arsenite was reduced by naringin (40 and 80 mg/kg) treatment. In conclusion, naringin treatment ameliorates arsenic-induced renal and hepatic damage in rats due its antioxidant and anti-inflammatory properties via down-regulation of elevated oxido-nitrosative stress, KIM-1, Caspase-3, TGF-β, and TNF-α levels.

  5. Renal Response to Chronic Centrifugation in Rats

    NASA Technical Reports Server (NTRS)

    Ortiz, Rudy M.; Wang, T. J.; Corbin, B. J.; Wade, C. E.; Hargens, Alan R. (Technical Monitor)

    1996-01-01

    Previously reported effects of chronic centrifugation on renal function in mammals are contradictory. The present study was conducted as an effort to provide a comprehensive analysis of renal response to chronic centrifugation (12 days at +2 Gz). Sixteen male Sprague-Dawley rats (210-230 g) were used: eight centrifuged (EC) and eight off centrifuge controls (OCC). During centrifugation EC had lower body weight and food consumption. EC showed a decrease (72%) in water intake for the first two days (T1 and T2) followed by significant increases from T4-T6. EC urine output increased two-fold over the first four days, returning to baseline by T9. EC urea excretion was elevated on T3 through T5. Creatinine, Na(+), K(+), and osmolar excretion were lower than OCC over the last four days of the study. Assuming constant plasma osmolarity and creatinine levels, EC free water clearance (C(sub H2O)) was elevated significantly on T4 when the peak urine output was exhibited. EC also had a greater C(sub H2O) over the last four days, associated with a significantly lower osmolar clearance and GFR. The initial diuresis exhibited during centrifugation can be attributed to a reduced water resorption and increased urea excretion. This diuresis was mediated independent of changes in GFR over the first eight days. However, differences in excretion seen after eight days of centrifugation are probably GFR mediated which would imply animals established a new homeostatic setpoint by that time. Centrifugation elicites an acute alteration in fluid homeostasis followed by adaptation within a week.

  6. Ochratoxin A induced premature senescence in human renal proximal tubular cells.

    PubMed

    Yang, Xuan; Liu, Sheng; Huang, Chuchu; Wang, Haomiao; Luo, Yunbo; Xu, Wentao; Huang, Kunlun

    2017-05-01

    Ochratoxin A (OTA) has many nephrotoxic effects and is a promising compound for the study of nephrotoxicity. Human renal proximal tubular cells (HKC) are an important model for the study of renal reabsorption, renal physiology and pathology. Since the induction of OTA in renal senescence is largely unknown, whether OTA can induce renal senescence, especially at a sublethal dose, and the mechanism of OTA toxicity remain unclear. In our study, a sublethal dose of OTA led to an enhanced senescent phenotype, β-galactosidase staining and senescence associated secretory phenotype (SASP). Cell cycle arrest and cell shape alternations also confirmed senescence. In addition, telomere analysis by RT-qPCR allowed us to classify OTA-induced senescence as a premature senescence. Western blot assays showed that the p53-p21 and the p16-pRB pathways and the ezrin-associated cell spreading changes were activated during the OTA-induced senescence of HKC. In conclusion, our results demonstrate that OTA promotes the senescence of HKC through the p53-p21 and p16-pRB pathways. The understanding of the mechanisms of OTA-induced senescence is critical in determining the role of OTA in cytotoxicity and its potential carcinogenicity. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  7. The complement factor 5a receptor 1 has a pathogenic role in chronic inflammation and renal fibrosis in a murine model of chronic pyelonephritis.

    PubMed

    Choudhry, Naheed; Li, Ke; Zhang, Ting; Wu, Kun-Yi; Song, Yun; Farrar, Conrad A; Wang, Na; Liu, Cheng-Fei; Peng, Qi; Wu, Weiju; Sacks, Steven H; Zhou, Wuding

    2016-09-01

    Complement factor 5a (C5a) interaction with its receptor (C5aR1) contributes to the pathogenesis of inflammatory diseases, including acute kidney injury. However, its role in chronic inflammation, particularly in pathogen-associated disorders, is largely unknown. Here we tested whether the development of chronic inflammation and renal fibrosis is dependent on C5aR1 in a murine model of chronic pyelonephritis. C5aR1-deficient (C5aR1-/-) mice showed a significant reduction in bacterial load, tubule injury and tubulointerstitial fibrosis in the kidneys following infection, compared with C5aR1-sufficient mice. This was associated with reduced renal leukocyte infiltration specifically for the population of Ly6Chi proinflammatory monocytes/macrophages and reduced intrarenal gene expression of key proinflammatory and profibrogenic factors in C5aR1-/- mice following infection. Antagonizing C5aR1 decreased renal bacterial load, tissue inflammation and tubulointerstitial fibrosis. Ex vivo and in vitro studies showed that under infection conditions, C5a/C5aR1 interaction upregulated the production of proinflammatory and profibrogenic factors by renal tubular epithelial cells and monocytes/macrophages, whereas the phagocytic function of monocytes/macrophages was down-regulated. Thus, C5aR1-dependent bacterial colonization of the tubular epithelium, C5a/C5aR1-mediated upregulation of local inflammatory responses to uropathogenic E. coli and impairment of phagocytic function of phagocytes contribute to persistent bacterial colonization of the kidney, chronic renal inflammation and subsequent tubulointerstitial fibrosis. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  8. Proximal renal tubular injury in rats sub-chronically exposed to low fluoride concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cárdenas-González, Mariana C.; Del Razo, Luz M.; Barrera-Chimal, Jonatan

    2013-11-01

    Fluoride is usually found in groundwater at a very wide range of concentration between 0.5 and 25 ppm. At present, few studies have assessed the renal effects of fluoride at environmentally relevant concentrations. Furthermore, most of these studies have used insensitive and nonspecific biomarkers of kidney injury. The aim of this study was to use early and sensitive biomarkers to evaluate kidney injury after fluoride exposure to environmentally relevant concentrations. Recently weaned male Wistar rats were exposed to low (15 ppm) and high (50 ppm) fluoride concentrations in drinking water for a period of 40 days. At the end ofmore » the exposure period, kidney injury biomarkers were measured in urine and renal mRNA expression levels were assessed by real time RT-PCR. Our results showed that the urinary kidney injury molecule (Kim-1), clusterin (Clu), osteopontin (OPN) and heat shock protein 72 excretion rate significantly increased in the group exposed to the high fluoride concentration. Accordingly, fluoride exposure increased renal Kim-1, Clu and OPN mRNA expression levels. Moreover, there was a significant dose-dependent increase in urinary β-2-microglobulin and cystatin-C excretion rate. Additionally, a tendency towards a dose dependent increase of tubular damage in the histopathological light microscopy findings confirmed the preferential impact of fluoride on the tubular structure. All of these changes occurred at early stages in which, the renal function was not altered. In conclusion using early and sensitive biomarkers of kidney injury, we were able to found proximal tubular alterations in rats sub-chronically exposed to fluoride. - Highlights: • Exposure to low concentrations of fluoride induced proximal tubular injury • Increase in urinary Kim-1, Clu, OPN and Hsp72 in 50 ppm fluoride-exposed group • Increase in urinary B2M and CysC in 15 and 50 ppm fluoride-exposed groups • Fluoride exposure increased renal Kim, Clu and OPN mRNA expression

  9. Mechanism of tacrolimus-induced chronic renal fibrosis following transplantation is regulated by ox-LDL and its receptor, LOX-1

    PubMed Central

    Deng, Shi; Jin, Tao; Zhang, Li; Bu, Hong; Zhang, Peng

    2016-01-01

    Chronic renal allograft dysfunction (CRAD) is the most common cause of graft failure following renal transplantation. However, the underlying mechanisms remain to be fully elucidated. Immunosuppressants and hyperlipidemia are associated with renal fibrosis following long-term use. The present study aimed to determine the effects of tacrolimus (FK506) and lipid metabolism disorder on CRAD. In vitro and in vivo models were used for this investigation. Cells of the mouse proximal renal tubular epithelial cell strain, NRK-52E, were cultured either with oxidized low-density lipoprotein (ox-LDL), FK506, ox-LDL combined with FK506, or vehicle, respectively. Changes in cell morphology and changes in the levels of lectin-like ox-LDL receptor-1 (LOX-1), reactive oxygen species (ROS), hydrogen peroxide and fibrosis-associated genes were evaluated at 24, 48 and 72 h. In separate experiment, total of 60 Sprague-Dawley rats were divided randomly into four groups, which included a high-fat group, FK506 group, high-fat combined with FK506 group, and control group. After 2, 4 and 8 weeks, the serum lipid levels, the levels of ox-LDL, ROS, and the expression levels of transforming growth factor (TGF)-β1 and connective tissue growth factor were determined. The in vitro and in vivo models revealed that lipid metabolism disorder and FK506 caused oxidative stress and a fibrogenic response. In addition, decreased levels of LOX-1 markedly reduced the levels of TGF-β1 in the in vitro model. Taken together, FK506 and dyslipidemia were found to be associated with CRAD following transplantation. PMID:27633115

  10. Systemic and Renal-Specific Sympathoinhibition in Obesity Hypertension

    PubMed Central

    Lohmeier, Thomas E.; Iliescu, Radu; Liu, Boshen; Henegar, Jeffrey R.; Maric-Bilkan, Christine; Irwin, Eric D.

    2012-01-01

    Chronic pressure-mediated baroreflex activation suppresses renal sympathetic nerve activity. Recent observations indicate that chronic electrical activation of the carotid baroreflex produces sustained reductions in global sympathetic activity and arterial pressure. Thus, we investigated the effects of global and renal specific suppression of sympathetic activity in dogs with sympathetically-mediated, obesity-induced hypertension by comparing the cardiovascular, renal, and neurohormonal responses to chronic baroreflex activation and bilateral surgical renal denervation. After control measurements, the diet was supplemented with beef fat while sodium intake was held constant. After 4 weeks on the high-fat, when body weight had increased ~a 50%, fat intake was reduced to a level that maintained this body weight. This weight increase was associated with an increase in mean arterial pressure from 100±2 to 117±3 mm Hg and heart rate from 86±3 to 130±4 bpm. The hypertension was associated with a marked increase in cumulative sodium balance despite ~ a 35% increase in GFR. The importance of increased tubular reabsorption to sodium retention was further reflected by ~ a 35% decrease in fractional sodium excretion. Subsequently, both chronic baroreflex activation (7 days) and renal denervation decreased plasma renin activity and abolished the hypertension. However, baroreflex activation also suppressed systemic sympathetic activity and tachycardia and reduced glomerular hyperfiltration while increasing fractional sodium excretion. In contrast, GFR increased further after renal denervation. Thus, by improving autonomic control of cardiac function and diminishing glomerular hyperfiltration, suppression of global sympathetic activity by baroreflex activation may have beneficial effects in obesity beyond simply attenuating hypertension. PMID:22184321

  11. Renal haemodynamics and natriuretic responses to intravenous administration of diadenosine tetraphosphate (Ap4A) and nicotinamide adenine dinucleotide (NAD) in rat.

    PubMed

    Szczepańska-Konkel, M; Langner, G; Bednarczuk, G; Stiepanow-Trzeciak, A; Jankowski, M; Angielski, S

    2003-06-01

    Effects of Ap4A and NAD--precursor of adenosine, on renal plasma flow (RPF), glomerular filtration rate (GFR) and urine excretion were determined in the anaesthetised rats. Infusion of Ap4A or NAD (i.v., bolus--1 micromol/kg followed by 10 nmol/min/kg) decreased RPF and GFR (by 30 and 40%, respectively). In spite of GFR reduction during Ap4A infusion, the significant increase in sodium excretion and urine flow was noticed: fractional sodium (FENa) and urine excretion (FEurine) rose 15-fold and 2.5-fold in comparison with the control value, respectively. In contrast to Ap4A, NAD-induced decrease in GFR was associated with parallel decrease in sodium and urine excretion, thus the FENa and FEurine did not significantly change. Pretreatment with adenosine deaminase (adenosine degrading enzyme, 2 U/min/kg) or theophylline (P1-receptors antagonist, 0.2 mmol/min/kg) ceased responses to NAD, whereas Ap4A-induced changes were not affected. Pre-treatment with suramin (P2-receptors antagonist, (i.v., bolus--12 mg/kg followed by 1.2 mg/min/kg) completely abolished the renal effects of Ap4A. We conclude that Ap4A may exert specific action on renal function. It acts different from NAD that modified renal function through its hydrolysis product--adenosine. Ap4A might reduce glomerular filtration rate and evoke natriuresis and diuresis, and its effects are probably mediated through stimulation of P2-receptors.

  12. [Salt-induced inappropriate augmentation of intrarenal RAAS and its treatment in patients with chronic kidney disease].

    PubMed

    Konishi, Yoshio

    2012-09-01

    Focus on the role of the renin-angiotensin-aldosterone system (RAAS) in the pathophysiology of hypertension and renal damage has shifted recently to the role of the local RAAS in the kidneys. Inappropriate augmentation of intrarenal RAAS activity in patients with chronic kidney disease has suggested playing important roles in the development of hypertension and renal injury. In this article, I show the recent findings that salt-induced this augmentation may contribute to the development of salt-sensitive hypertension and play a key role in cardiorenal syndrome (CRS), and that blockade of intrarenal RAAS may be an important strategy for salt-sensitive hypertension and CRS.

  13. Chronic Renal Failure Secondary to Unrecognized Neurogenic Bladder in A Child with Myelodysplasia.

    PubMed

    Ahmed, Shameem; Paul, Siba Prosad

    2017-01-01

    Myelodysplasia includes a group of developmental anomalies resulting from defects that occur during neural tube closure. Urological morbidity in patients with myelodysplasia is significant and if not treated appropriately in a timely manner can potentially lead to progressive renal failure, requiring dialysis or transplantation. We report the case of a 13-year old girl with neurogenic bladder who presented chronic renal failure secondary to lipomyelomeningocele with retethering of cord. She was managed with urinary indwelling catheterization until optimization of renal function and then underwent detethering of cord with excision and repair of residual lipomeningomyelocele. Her renal parameters improved gradually over weeks and then were managed on self clean intermittent catheterization. The case emphasizes the need for considering retethering of spinal cord in children with myelodysplasia where symptoms of neurogenic bladder and recurrent urinary tract infections occur.

  14. [The French Chronic Kidney Disease-Renal Epidemiology and Information Network (CKD-REIN) cohort study: To better understand chronic kidney disease].

    PubMed

    Stengel, Bénédicte; Combe, Christian; Jacquelinet, Christian; Briançon, Serge; Fouque, Denis; Laville, Maurice; Frimat, Luc; Pascal, Christophe; Herpe, Yves-Édouard; Morel, Pascal; Deleuze, Jean-François; Schanstra, Joost P; Pisoni, Ron L; Robinson, Bruce M; Massy, Ziad A

    2016-04-01

    Preserving kidney function and improving the transition from chronic kidney disease to end stage is a research and healthcare challenge. The national Chronic Kidney Disease-Renal Epidemiology and Information Network (CKD-REIN) cohort was established to identify the determinants, biomarkers and practice patterns associated with chronic kidney disease outcomes. The study will include more than 3000 adult patients with moderate to advanced chronic kidney disease from a representative sample of 40 nephrology clinics with respect to regions and legal status, public or private. Patients are recruited during a routine visit and followed for 5 years, before and after starting renal replacement therapy. Patient-level clinical, biological, and lifestyle data are collected annually, as well as provider-level data on clinical practices, coordinated with the International Chronic Kidney Disease Outcomes and Practice Pattern Study. Blood and urine samples are stored in a biobank. Major studied outcomes include survival, patient-reported outcomes, disease progression and hospitalizations. More than 13,000 eligible patients with chronic kidney disease were identified, 60% with stage 3 and 40% with stage 4. Their median age is 72 years [interquartile range, 62-80 years], 60% are men and 38% have diabetes. By the end of December 2015, 2885 patients were included. The CKD-REIN cohort will serve to improve our understanding of chronic kidney disease and provide evidence to improve patient survival and quality of life as well as health care system performances. Copyright © 2016 Association Société de néphrologie. All rights reserved.

  15. A review of dietary supplement-induced renal dysfunction.

    PubMed

    Gabardi, Steven; Munz, Kristin; Ulbricht, Catherine

    2007-07-01

    Complementary and alternative medicine (CAM) is a multibillion-dollar industry. Almost half of the American population uses some form of CAM, with many using them in addition to prescription medications. Most patients fail to inform their health care providers of their CAM use, and physicians rarely inquire. Annually, thousands of dietary supplement-induced adverse events are reported to Poison Control Centers nationwide. CAM manufacturers are not responsible for proving safety and efficacy, because the Food and Drug Administration does not regulate them. However, concern exists surrounding the safety of CAM. A literature search using MEDLINE and EMBASE was undertaken to explore the impact of CAM on renal function. English-language studies and case reports were selected for inclusion but were limited to those that consisted of human subjects, both adult and pediatric. This review provides details on dietary supplements that have been associated with renal dysfunction and focuses on 17 dietary supplements that have been associated with direct renal injury, CAM-induced immune-mediated nephrotoxicity, nephrolithiasis, rhabdomyolysis with acute renal injury, and hepatorenal syndrome. It is concluded that it is imperative that use of dietary supplements be monitored closely in all patients. Health care practitioners must take an active role in identifying patients who are using CAM and provide appropriate patient education.

  16. Comparison of oral nicotinamide adenine dinucleotide (NADH) versus conventional therapy for chronic fatigue syndrome.

    PubMed

    Santaella, María L; Font, Ivonne; Disdier, Orville M

    2004-06-01

    To compare effectiveness of oral therapy with reduced nicotinamide adenine dinucleotide (NADH) to conventional modalities of treatment in patients with chronic fatigue syndrome (CFS). CFS is a potentially disabling condition of unknown etiology. Although its clinical presentation is associated to a myriad of symptoms, fatigue is a universal and essential finding for its diagnosis. No therapeutic regimen has proven effective for this condition. A total of 31 patients fulfilling the Centers for Disease Control criteria for CFS, were randomly assigned to either NADH or nutritional supplements and psychological therapy for 24 months. A thorough medical history, physical examination and completion of a questionnaire on the severity of fatigue and other symptoms were performed each trimester of therapy. In addition, all of them underwent evaluation in terms of immunological parameters and viral antibody titers. Statistical analysis was applied to the demographic data, as well as to symptoms scores at baseline and at each trimester of therapy. The twelve patients who received NADH had a dramatic and statistically significant reduction of the mean symptom score in the first trimester (p < 0.001). However, symptom scores in the subsequent trimesters of therapy were similar in both treatment groups. Elevated IgG and Ig E antibody levels were found in a significant number of patients. Observed effectiveness of NADH over conventional treatment in the first trimester of the trial and the trend of improvement of that modality in the subsequent trimesters should be further assessed in a larger patient sample.

  17. Exogenous and endogenous angiotensin-II decrease renal cortical oxygen tension in conscious rats by limiting renal blood flow.

    PubMed

    Emans, Tonja W; Janssen, Ben J; Pinkham, Maximilian I; Ow, Connie P C; Evans, Roger G; Joles, Jaap A; Malpas, Simon C; Krediet, C T Paul; Koeners, Maarten P

    2016-11-01

    Our understanding of the mechanisms underlying the role of hypoxia in the initiation and progression of renal disease remains rudimentary. We have developed a method that allows wireless measurement of renal tissue oxygen tension in unrestrained rats. This method provides stable and continuous measurements of cortical tissue oxygen tension (PO2) for more than 2 weeks and can reproducibly detect acute changes in cortical oxygenation. Exogenous angiotensin-II reduced renal cortical tissue PO2 more than equi-pressor doses of phenylephrine, probably because it reduced renal oxygen delivery more than did phenylephrine. Activation of the endogenous renin-angiotensin system in transgenic Cyp1a1Ren2 rats reduced cortical tissue PO2; in this model renal hypoxia precedes the development of structural pathology and can be reversed acutely by an angiotensin-II receptor type 1 antagonist. Angiotensin-II promotes renal hypoxia, which may in turn contribute to its pathological effects during development of chronic kidney disease. We hypothesised that both exogenous and endogenous angiotensin-II (AngII) can decrease the partial pressure of oxygen (PO2) in the renal cortex of unrestrained rats, which might in turn contribute to the progression of chronic kidney disease. Rats were instrumented with telemeters equipped with a carbon paste electrode for continuous measurement of renal cortical tissue PO2. The method reproducibly detected acute changes in cortical oxygenation induced by systemic hyperoxia and hypoxia. In conscious rats, renal cortical PO2 was dose-dependently reduced by intravenous AngII. Reductions in PO2 were significantly greater than those induced by equi-pressor doses of phenylephrine. In anaesthetised rats, renal oxygen consumption was not affected, and filtration fraction was increased only in the AngII infused animals. Oxygen delivery decreased by 50% after infusion of AngII and renal blood flow (RBF) fell by 3.3 ml min -1 . Equi-pressor infusion of

  18. Renal Denervation Prevents Immune Cell Activation and Renal Inflammation in Angiotensin II–Induced Hypertension

    PubMed Central

    Xiao, Liang; Kirabo, Annet; Wu, Jing; Saleh, Mohamed A.; Zhu, Linjue; Wang, Feng; Takahashi, Takamune; Loperena, Roxana; Foss, Jason D.; Mernaugh, Raymond L.; Chen, Wei; Roberts, Jackson; Osborn, John W.; Itani, Hana A.; Harrison, David G.

    2015-01-01

    Rationale Inflammation and adaptive immunity plays a crucial role in the development of hypertension. Angiotensin II and likely other hypertensive stimuli activate the central nervous system and promote T cell activation and end-organ damage in peripheral tissues. Objective To determine if renal sympathetic nerves mediate renal inflammation and T cell activation in hypertension. Methods and Results Bilateral renal denervation (RDN) using phenol application to the renal arteries reduced renal norepinephrine (NE) levels and blunted angiotensin II induced hypertension. Bilateral RDN also reduced inflammation, as reflected by decreased accumulation of total leukocytes, T cells and both CD4+ and CD8+ T cells in the kidney. This was associated with a marked reduction in renal fibrosis, albuminuria and nephrinuria. Unilateral RDN, which partly attenuated blood pressure, only reduced inflammation in the denervated kidney, suggesting that this effect is pressure independent. Angiotensin II also increased immunogenic isoketal-protein adducts in renal dendritic cells (DCs) and increased surface expression of costimulation markers and production of IL-1α, IL-1β, and IL-6 from splenic dendritic cells. NE also dose dependently stimulated isoketal formation in cultured DCs. Adoptive transfer of splenic DCs from angiotensin II-treated mice primed T cell activation and hypertension in recipient mice. RDN prevented these effects of hypertension on DCs. In contrast to these beneficial effects of ablating all renal nerves, renal afferent disruption with capsaicin had no effect on blood pressure or renal inflammation. Conclusions Renal sympathetic nerves contribute to dendritic cell activation, subsequent T cell infiltration and end-organ damage in the kidney in the development of hypertension. PMID:26156232

  19. Synthesis, spectroscopic, structural and thermal characterizations of vanadyl(IV) adenine complex prospective as antidiabetic drug agent

    NASA Astrophysics Data System (ADS)

    El-Megharbel, Samy M.; Hamza, Reham Z.; Refat, Moamen S.

    2015-01-01

    The vanadyl(IV) adenine complex; [VO(Adn)2]ṡSO4; was synthesized and characterized. The molar conductivity of this complex was measured in DMSO solution that showed an electrolyte nature. Spectroscopic investigation of the green solid complex studied here indicate that the adenine acts as a bidentate ligand, coordinated to vanadyl(IV) ions through the nitrogen atoms N7 and nitrogen atom of amino group. Thus, from the results presented the vanadyl(IV) complex has square pyramid geometry. Further characterizations using thermal analyses and scanning electron techniques was useful. The aim of this paper was to introduce a new drug model for the diabetic complications by synthesized a novel mononuclear vanadyl(IV) adenine complex to mimic insulin action and reducing blood sugar level. The antidiabetic ability of this complex was investigated in STZ-induced diabetic mice. The results suggested that VO(IV)/adenine complex has antidiabetic activity, it improved the lipid profile, it improved liver and kidney functions, also it ameliorated insulin hormone and blood glucose levels. The vanadyl(IV) complex possesses an antioxidant activity and this was clear through studying SOD, CAT, MDA, GSH and methionine synthase. The current results support the therapeutic potentiality of vanadyl(IV)/adenine complex for the management and treatment of diabetes.

  20. Transforming growth factor beta-1 An important biomarker for developing cardiovascular diseases in chronic renal failure.

    PubMed

    Avci, E; Avci, G Alp; Ozcelik, B; Cevher, S Coskun; Suicmez, M

    2017-01-01

    Our study focuses on the determination and evaluation of TGF-β1 levels of patients receiving hemodialysis treatment because of chronic renal failure. Chronic renal failure, characterized by irreversible loss of renal function, is a major public health problem in the world. Transforming growth factor-beta is a multifunctional cytokine involved in the cellular growth, differentiation, migration, apoptosis and immune regulation. Among the three TGF-β isoforms, TGF-β1 plays a key role in the pathogenesis of renal diseases. We studied 24 patients who were on regular hemodialysis, with non-diabetic nephropathy. 20 healthy people who proved to be in a good state of health and free from any signs of chronic diseases or disorders were enrolled as a control group. Serum samples were collected both before and after hemodialysis treatment from each patient. TGF-β1 levels were determined by Enzyme Immunoassay method. TGF-β1 levels were found significantly higher in the hemodialysis patients than those of the control groups. Also, the TGF-β1 was significantly reduced after hemodialysis treatment but it was still higher than in control groups. This result indicates that hemodialysis is an effective treatment method to decrease the serum TGF-B1 levels. Nevertheless, this decrease is not enough to reduce existing risks (Tab. 1, Fig. 2, Ref. 28).

  1. Corneal Endothelial Alterations in Chronic Renal Failure.

    PubMed

    Sati, Alok; Jha, Ashok; Moulick, P S; Shankar, Sandeep; Gupta, Sandeep; Khan, M A; Dogra, Manu; Sangwan, Virender S

    2016-10-01

    To evaluate the corneal endothelial changes in patients with chronic renal failure. A total of 128 corneas of 128 subjects were studied, and 3 groups were formed. The first, the dialyzed group, composed of 32 corneas of 32 patients; the second, the nondialyzed group, composed of 34 corneas of 34 patients; and the third, the age-matched control group, composed of 64 corneas of 64 healthy subjects were examined by a specular microscope and the endothelial parameters were compared. The dialyzed group (enhanced level of toxins in the blood) was further analyzed to assess the influence of blood urea, serum creatinine, serum calcium, and serum phosphorus including the duration of dialysis on corneal endothelium. On comparing the 3 groups using analysis of variance and posthoc tests, a significant difference was found in the central corneal thickness (CCT) and endothelial cell density (CD) between the control (CCT: 506 ± 29 μm, CD: 2760 ± 304 cells/mm) and dialyzed groups (CCT: 549 ± 30 μm, CD: 2337 ± 324 cells/mm) [P < 0.001 (CCT); P < 0.001 (CD)]; control and nondialyzed groups (CCT: 524 ± 27 μm, CD: 2574 ± 260 cells/mm) [P = 0.023 (CCT); P = 0.016 (CD)]; and dialyzed and nondialyzed groups [P = 0.002 (CCT); P = 0.007 (CD)]. Using the linear generalized model, a significant correlation was found between the endothelial parameters and blood urea only [P = 0.006 (CCT), 0.002 (coefficient of variation), 0.022 (CD), and 0.026 (percentage of hexagonality)], although the correlation was poorly positive for CCT but poorly negative for the remaining endothelial parameters. Corneal endothelial alteration is present in patients with chronic renal failure, more marked in patients undergoing hemodialysis and with raised blood urea level.

  2. Iron restriction inhibits renal injury in aldosterone/salt-induced hypertensive mice.

    PubMed

    Sawada, Hisashi; Naito, Yoshiro; Oboshi, Makiko; Iwasaku, Toshihiro; Okuhara, Yoshitaka; Morisawa, Daisuke; Eguchi, Akiyo; Hirotani, Shinichi; Masuyama, Tohru

    2015-05-01

    Excess iron is associated with the pathogenesis of several renal diseases. Aldosterone is reported to have deleterious effects on the kidney, but there have been no reports of the role of iron in aldosterone/salt-induced renal injury. Therefore, we investigated the effects of dietary iron restriction on the development of hypertension and renal injury in aldosterone/salt-induced hypertensive mice. Ten-week-old male C57BL/6J mice were uninephrectomized and infused with aldosterone for four weeks. These were divided into two groups: one fed a high-salt diet (Aldo) and the other fed a high-salt with iron-restricted diet (Aldo-IR). Vehicle-infused mice without a uninephrectomy were also divided into two groups: one fed a normal diet (control) and the other fed an iron-restricted diet (IR) for 4 weeks. As compared with control and IR mice, Aldo mice showed an increase in both systolic blood pressure and urinary albumin/creatinine ratio, but these increases were reduced in the Aldo-IR group. In addition, renal histology revealed that Aldo mice exhibited glomerulosclerosis and tubulointerstitial fibrosis, whereas these changes were attenuated in Aldo-IR mice. Expression of intracellular iron transport protein transferrin receptor 1 was increased in the renal tubules of Aldo mice compared with control mice. Dietary iron restriction attenuated the development of hypertension and renal injury in aldosterone/salt-induced hypertensive mice.

  3. Simultaneous Bilateral Femur Neck Fracture in A Young Adult with Chronic Renal Failure- A Case Report and Review of Literature.

    PubMed

    V, Sathyanarayana; Patel, Maulik Tulsibhai; S, Raghavan; D, Naresh

    2015-01-01

    Pathological bilateral femoral neck fracture due to renal osteodystrophy is rare. This is a report of a chronic renal failure patient who had sustained bilateral intra-capsular displaced fracture neck of femur following an episode of convulsion and the difficulties encountered in early diagnosis and treatment. The pathophysiology of renal osteodystrophy and the treatment of hip fractures in patients with renal failure are also discussed. A 23 years old male patient admitted with h/o dysuria, pyuria and loss of appetite since 3 months. He was a known case of chronic renal failure and reflux nephropathy. On investigating, patient's renal parameters were high and he was started with haemodialysis. The next day patient had c/o bilateral hip pain and inability to move bilateral lower limbs following an episode of seizure. Radiograph of pelvis showed vertical sub capital fractures of bilateral neck of femur. In this patient, considering his age, general condition & prognosis, an elective surgery in the form of bilateral uncemented modular bipolar hemiarthroplasty was done. Overall risk of hip fracture among patients with chronic renal failure is considerably higher than in the general population, independent of age and gender. Simultaneous spontaneous bilateral fractures of the femoral neck are rare and a delayed diagnosis is usual. The study of etiological factors of these fractures is essential to guide us in choosing the treatment of choice. Obviously patient's age, life expectancy as well as renal co morbidity has an influence over deciding treatment and outcome.

  4. Green Tea Polyphenols Stimulate Mitochondrial Biogenesis and Improve Renal Function after Chronic Cyclosporin A Treatment in Rats

    PubMed Central

    Rehman, Hasibur; Krishnasamy, Yasodha; Haque, Khujista; Lemasters, John J.; Schnellmann, Rick G.; Zhong, Zhi

    2013-01-01

    Our previous studies showed that an extract from Camellia sinenesis (green tea), which contains several polyphenols, attenuates nephrotoxicity caused by cyclosporine A (CsA). Since polyphenols are stimulators of mitochondrial biogenesis (MB), this study investigated whether stimulation of MB plays a role in green tea polyphenol protection against CsA renal toxicity. Rats were fed a powdered diet containing green tea polyphenolic extract (0.1%) starting 3 days prior to CsA treatment (25 mg/kg, i.g. daily for 3 weeks). CsA alone decreased renal nuclear DNA-encoded oxidative phosphorylation (OXPHOS) protein ATP synthase-β (AS-β) by 42%, mitochondrial DNA (mtDNA)-encoded OXPHOS protein NADH dehydrogenase-3 (ND3) by 87% and their associated mRNAs. Mitochondrial DNA copy number was also decreased by 78% by CsA. Immunohistochemical analysis showed decreased cytochrome c oxidase subunit IV (COX-IV), an OXPHOS protein, in tubular cells. Peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α, the master regulator of MB, and mitochondrial transcription factor-A (Tfam), the transcription factor that regulates mtDNA replication and transcription, were 42% and 90% lower, respectively, in the kidneys of CsA-treated than in untreated rats. These results indicate suppression of MB by chronic CsA treatment. Green tea polyphenols alone and following CsA increased AS-β, ND3, COX-IV, mtDNA copy number, PGC-1α mRNA and protein, decreased acetylated PGC-1α, and increased Tfam mRNA and protein. In association with suppressed MB, CsA increased serum creatinine, caused loss of brush border and dilatation of proximal tubules, tubular atrophy, vacuolization, apoptosis, calcification, and increased neutrophil gelatinase-associated lipocalin expression, leukocyte infiltration, and renal fibrosis. Green tea polyphenols markedly attenuated CsA-induced renal injury and improved renal function. Together, these results demonstrate that green tea polyphenols attenuate CsA-induced

  5. [Hypogonadism, a serious complication of chronic renal insufficiency].

    PubMed

    Zofková, I; Bubenícek, P; Sotorník, I

    2007-06-01

    Hypogonadism is a frequent complication in patients with chronic renal insufficiency (CHRI). From a pathogenetic point of view, it is a disorder at the level of the hypothalamus caused by central inhibition of the pulsatile generation of gonadotropin releasing hormone (GnRH) and by a primary disorder of gonads. The cause of hypogonadism in dialysed patients is not completely known. The effect of inhibition of erythropoietin production is believed to be one of the factors, as well as the adverse effects of complicated therapeutic procedures and malnutrition. In men, the affection manifests itself as a disorder of sexual functions, inhibition ofspermatogenesis, premature andropause and severe fatigue syndrome. Menstruation disorders, premature menopause and anovulation cycles are frequent symptoms in dialysed women. Androgen or estrogen substitution improves the quality of life in both sexes and slows down the loss of bone mass. Complete remission of hypogonadism is obtained, in the majority of patients, by renal transplant. The overview study deals with the pathogenesis, diagnosis and treatment of hypogonadism in dialysed patients.

  6. Sida rhomboidea.Roxb leaf extract ameliorates gentamicin induced nephrotoxicity and renal dysfunction in rats.

    PubMed

    Thounaojam, Menaka C; Jadeja, Ravirajsinh N; Devkar, Ranjitsinh V; Ramachandran, A V

    2010-10-28

    Sida rhomboidea.Roxb (SR) known as "Mahabala" in Ayurveda and marketed as "Shahadeyi" is used in ethnomedicine to treat ailments such as dysuria and urinary disorders. To evaluate nephroprotective potential of SR against gentamicin (GM) induced nephrotoxicity and renal dysfunction. Nephrotoxicity was induced in rats with GM (100 mg/kg bodyweight (i.p.) for 8 days) and were treated with SR extract (200 and 400 mg/kg bodyweight (p.o.) for 8 days) or 0.5% carboxymethyl cellulose (vehicle). Plasma and urine urea and creatinine, renal enzymatic and non-enzymatic antioxidants along with lipid peroxidation were evaluated in various experimental groups. GM treatment induced significant elevation (p<0.05) in plasma and urine urea, creatinine, renal lipid peroxidation along with significant decrement (p<0.05) in renal enzymatic and non-enzymatic antioxidants. SR treatment to GM treated rats (GM+SR) recorded significant decrement (p<0.05) in plasma and urine urea and creatinine, renal lipid peroxidation along with significant increment (p<0.05) in renal enzymatic and non-enzymatic antioxidants. SR leaf extract ameliorates GM induced nephrotoxicity and renal dysfunction and thus validates its ethnomedicinal use. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  7. The management of neonatal acute and chronic renal failure: A review.

    PubMed

    Coulthard, Malcolm G

    2016-11-01

    Most babies with chronic renal failure are identified antenatally, and over half that are treated with peritoneal dialysis receive kidney transplants before school age. Most infants that develop acute renal failure have hypotension following cardiac surgery, or multiple organ failure. Sometimes the falls in glomerular filtration and urine output are physiological and reversible, and sometimes due to kidney injury, but (illogically) it is now common to define them all as having 'acute kidney injury'. Contrary to widespread opinion, careful interpretation of the plasma creatinine concentrations can provide sensitive evidence of early acute renal failure. Conservative management frequently leads to under-nutrition or fluid overload. Acute peritoneal dialysis is often technically fraught in very small patients, and haemotherapies have been limited by vascular access and anticoagulation requirements, the need to blood-prime circuits, and serious limitations in regulating fluid removal. Newer devices, including the Nidus, have been specifically designed to reduce these difficulties. Crown Copyright © 2016. Published by Elsevier Ireland Ltd. All rights reserved.

  8. Hypercalcaemia Secondary to Hypervitaminosis A in a Patient with Chronic Renal Failure

    PubMed Central

    Hammoud, D; El Haddad, B; Abdallah, J

    2014-01-01

    Vitamin A toxicity is a well-described medical condition with a multitude of potential presenting signs and symptoms. It can be divided into acute and chronic toxicity. Serum vitamin A concentrations are raised in chronic renal failure even with ingestion of less than the usual toxic doses. Hypercalcaemia can occasionally be associated with high levels of vitamin A but it is rare. In this report, we describe a 67- year old female patient with chronic kidney disease who was taking vitamin A supplements for approximately 10 years. The patient had worsening of her chronic kidney disease over the last years and developed chronic hypercalcaemia. Her vitamin A level was elevated with a daily intake of 7000 IU. The vitamin A supplement was stopped. A few months later, vitamin A level diminished substantially and serum calcium levels returned to normal. PMID:25303202

  9. Hypercalcaemia secondary to hypervitaminosis a in a patient with chronic renal failure.

    PubMed

    Hammoud, D; El Haddad, B; Abdallah, J

    2014-01-01

    Vitamin A toxicity is a well-described medical condition with a multitude of potential presenting signs and symptoms. It can be divided into acute and chronic toxicity. Serum vitamin A concentrations are raised in chronic renal failure even with ingestion of less than the usual toxic doses. Hypercalcaemia can occasionally be associated with high levels of vitamin A but it is rare. In this report, we describe a 67- year old female patient with chronic kidney disease who was taking vitamin A supplements for approximately 10 years. The patient had worsening of her chronic kidney disease over the last years and developed chronic hypercalcaemia. Her vitamin A level was elevated with a daily intake of 7000 IU. The vitamin A supplement was stopped. A few months later, vitamin A level diminished substantially and serum calcium levels returned to normal.

  10. Renal targeting potential of a polymeric drug carrier, poly-l-glutamic acid, in normal and diabetic rats.

    PubMed

    Chai, Hann-Juang; Kiew, Lik-Voon; Chin, Yunni; Norazit, Anwar; Mohd Noor, Suzita; Lo, Yoke-Lin; Looi, Chung-Yeng; Lau, Yeh-Siang; Lim, Tuck-Meng; Wong, Won-Fen; Abdullah, Nor Azizan; Abdul Sattar, Munavvar Zubaid; Johns, Edward J; Chik, Zamri; Chung, Lip-Yong

    2017-01-01

    Poly-l-glutamic acid (PG) has been used widely as a carrier to deliver anticancer chemotherapeutics. This study evaluates PG as a selective renal drug carrier. 3 H-deoxycytidine-labeled PGs (17 or 41 kDa) and 3 H-deoxycytidine were administered intravenously to normal rats and streptozotocin-induced diabetic rats. The biodistribution of these compounds was determined over 24 h. Accumulation of PG in normal kidneys was also tracked using 5-(aminoacetamido) fluorescein (fluoresceinyl glycine amide)-labeled PG (PG-AF). To evaluate the potential of PGs in ferrying renal protective anti-oxidative stress compounds, the model drug 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride (AEBSF) was conjugated to 41 kDa PG to form PG-AEBSF. PG-AEBSF was then characterized and evaluated for intracellular anti-oxidative stress efficacy (relative to free AEBSF). In the normal rat kidneys, 17 kDa radiolabeled PG (PG-Tr) presents a 7-fold higher, while 41 kDa PG-Tr shows a 15-fold higher renal accumulation than the free radiolabel after 24 h post injection. The accumulation of PG-AF was primarily found in the renal tubular tissues at 2 and 6 h after an intravenous administration. In the diabetic (oxidative stress-induced) kidneys, 41 kDa PG-Tr showed the greatest renal accumulation of 8-fold higher than the free compound 24 h post dose. Meanwhile, the synthesized PG-AEBSF was found to inhibit intracellular nicotinamide adenine dinucleotide phosphate oxidase (a reactive oxygen species generator) at an efficiency that is comparable to that of free AEBSF. This indicates the preservation of the anti-oxidative stress properties of AEBSF in the conjugated state. The favorable accumulation property of 41 kDa PG in normal and oxidative stress-induced kidneys, along with its capabilities in conserving the pharmacological properties of the conjugated renal protective drugs, supports its role as a potential renal targeting drug carrier.

  11. Nephroprotective effects of b-carotene on ACE gene expression, oxidative stress and antioxidant status in thioacetamide induced renal toxicity in rats.

    PubMed

    Fazal, Yumna; Fatima, Syeda Nuzhat; Shahid, Syed Muhammad; Mahboob, Tabassum

    2016-07-01

    β -carotene is one of carotenoid natural pigments, which are produced by plants and are accountable for the bright colors of various fruits and vegetables. These pigments have been widely studied for their ability to prevent chronic diseases and toxicities. This study was designed to evaluate the effects of β-carotene on angiotensin converting enzyme (ACE) gene expression, oxidative stress and antioxidant status in thioacetamide induced renal toxicity. Total 24 albino wistar rats of male sex (200-250gm) were divided into 6 groups as Group-1: The control remained untreated; Group-2: Received thioacetamide (200mg/kg b.w; i.p) for 12 weeks; Group-3: Received β-carotene orally (200mg/kg b.w), for 24 weeks; and Group-4: Received thioacetamide (200mg/kg b.w; i.p) for 12 weeks + received β-carotene orally (200mg/kg b.w), for further 12 weeks. The expression of ACE gene in thioacetamide induced renal toxicity in rats as well as supplemented with β-carotene was investigated and compared their level with control groups by using the quantitative RT-PCR method. The ACE gene expression was significantly increase in TAA rats as compare to control rats specifies that TAA induced changes in ACE gene of kidney, elevated renal ACE has been correlated with increase hypertensive end organ renal damage. The quantity of ACE gene were diminish in our rats who received β-Carotene after TAA is administered, for this reason they seemed to be defended against increased ACE levels in kidney bought by TAA. In pre- and post-treatment groups, we studied the role of β-Carotene against thioacetamide in the kidney of Wistar rats. Experimental confirmation from our study illustrates that β-Carotene can certainly work as a successful radical-trapping antioxidant our results proved that TAA injury increased lipid peroxidation and diminish antioxidant GSH, SOD and CAT in renal tissue. Since β-Carotene administration recover renal lipid peroxidation and antioxidants, it give the impression that

  12. Adenine nucleotide translocase-1 induces cardiomyocyte death through upregulation of the pro-apoptotic protein Bax.

    PubMed

    Baines, Christopher P; Molkentin, Jeffery D

    2009-06-01

    Overexpression of the adenine nucleotide translocase (ANT) has been shown to be cytotoxic in several cell types. Although ANT was originally proposed to be a critical component of the mitochondrial permeability transition (MPT) pore, recent data have suggested that this may not be the case. We therefore hypothesized that the cytotoxic actions of ANT are through an alternative mechanism, independent of the MPT pore. Infection of cultured neonatal cardiomyocytes with an ANT1-encoding adenovirus induced a gene dosage-dependent increase in cell death. However, ANT1 overexpression failed to induce MPT, and neither pharmacological nor genetic inhibition of the MPT pore was able to prevent ANT1-induced cell death. These data suggested that ANT1-induced death progressed through an MPT pore-independent pathway. Somewhat surprisingly, we observed that protein levels of Bax, a pro-apoptotic Bcl protein, were consistently elevated in ANT1-infected cardiomyocytes. Membranes isolated from ANT1-infected myocytes exhibited significantly increased amounts of membrane-inserted Bax, and immunocytochemistry revealed increased Bax activation in ANT1-infected myocytes. Co-expression with the Bax antagonist Bcl2 was able to greatly reduce the degree of ANT1-induced cell death. Furthermore, Bax/Bak-deficient fibroblasts were resistant to the cytotoxic effects of ANT1 overexpression. Interestingly, ANT1 overexpression was also associated with enhanced production of reactive oxygen species (ROS), and the antioxidant MnTBAP was able to significantly attenuate both the ANT1-induced upregulation of Bax and cell death. Taken together, these data indicate that ANT mediates cell death, not through the MPT pore, but rather via a ROS-dependent upregulation and activation of Bax.

  13. Effects of hemodialysis on iodine-131 biokinetics in thyroid carcinoma patients with end-stage chronic renal failure.

    PubMed

    Yeyin, Nami; Cavdar, Iffet; Uslu, Lebriz; Abuqbeitah, Mohammad; Demir, Mustafa

    2016-03-01

    Radioiodine therapy could be challenging in chronic renal failure patients requiring hemodialysis. The aim of this study was to establish the effects of hemodialysis on elimination of radioiodine from the body in thyroid carcinoma patients with end-stage chronic renal failure and to determine its effects on environmental radiation dose. Three end-stage chronic renal failure patients (four cases) diagnosed with differentiated thyroid carcinoma requiring radioiodine therapy were included in our study. Each patient was given 50-75 mCi (1850-2775 MBq) iodine-131 with 50% dose reduction. Dose rate measurement was performed at the 2nd, 24th, and 48th hour (immediately before and after hemodialysis) after radioiodine administration. The Geiger-Müller probe was held at 1 m distance at the level of the midpoint of the thorax for the dose rate measurement. The effective half-life of iodine-131 for three patients was found to be 44 h. In conclusion, the amount of radioiodine excreted per hemodialysis session was calculated to be 51.25%.

  14. Acute renal haemodynamic and renin-angiotensin system responses to graded renal artery stenosis in the dog.

    PubMed Central

    Anderson, W P; Johnston, C I; Korner, P I

    1979-01-01

    1. The acute renal haemodynamic and renin-angiotensin system responses to graded renal artery stenosis were studied in chronically instrumented, unanaesthetized dogs. 2. Stenosis was induced over 30 sec by inflation of a cuff around the renal artery to lower distal pressure to 60, 40 or 20 mmHg, with stenosis maintained for 1 hr. This resulted in an immediate fall in renal vascular resistance, but over the next 5--30 min both resistance and renal artery pressure were restored back towards prestenosis values. Only transient increases in systemic arterial blood pressure and plasma renin and angiotensin levels were seen with the two milder stenoses. Despite restoration of renal artery pressure, renal blood flow remained reduced at all grades of stenosis. 3. Pre-treatment with angiotensin I converting enzyme inhibitor or sarosine1, isoleucone8 angiotensin II greatly attenuated or abolished the restoration of renal artery pressure and renal vascular resistance after stenosis, and plasma renin and angiotensin II levels remained high. Renal dilatation was indefinitely maintained, but the normal restoration of resistance and pressure could be simulated by infusing angiotensin II into the renal artery. 4. The effective resistance to blood flow by the stenosis did not remain constant but varied with changes in the renal vascular resistance. PMID:219182

  15. Chronic treatment with atrial natriuretic peptide in spontaneously hypertensive rats: beneficial renal effects and sex differences.

    PubMed

    Romero, Mariana; Caniffi, Carolina; Bouchet, Gonzalo; Costa, María A; Elesgaray, Rosana; Arranz, Cristina; Tomat, Analía L

    2015-01-01

    The aim of this study was to investigate the effects of chronic treatment with atrial natriuretic peptide (ANP) on renal function, nitric oxide (NO) system, oxidative stress, collagen content and apoptosis in kidneys of spontaneously hypertensive rats (SHR), as well as sex-related differences in the response to the treatment. 10 week-old male and female SHR were infused with ANP (100 ng/h/rat) or saline (NaCl 0.9%) for 14 days (subcutaneous osmotic pumps). Systolic blood pressure (SBP) was recorded and diuresis and natriuresis were determined. After treatment, renal NO synthase (NOS) activity and eNOS expression were evaluated. Thiobarbituric acid-reactive substances (TBARS), glutathione concentration and glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities were determined in the kidney. Collagen was identified in renal slices by Sirius red staining and apoptosis by Tunel assay. Female SHR showed lower SBP, oxidative stress, collagen content and apoptosis in kidney, and higher renal NOS activity and eNOS protein content, than males. ANP lowered SBP, increased diuresis, natriuresis, renal NOS activity and eNOS expression in both sexes. Renal response to ANP was more marked in females than in males. In kidney, ANP reduced TBARS, renal collagen content and apoptosis, and increased glutathione concentration and activity of GPx and SOD enzymes in both sexes. Female SHR exhibited less organ damage than males. Chronic ANP treatment would ameliorate hypertension and end-organ damage in the kidney by reducing oxidative stress, increasing NO-system activity, and diminishing collagen content and apoptosis, in both sexes.

  16. Chronic Treatment with Atrial Natriuretic Peptide in Spontaneously Hypertensive Rats: Beneficial Renal Effects and Sex Differences

    PubMed Central

    Romero, Mariana; Caniffi, Carolina; Bouchet, Gonzalo; Costa, María A.; Elesgaray, Rosana; Arranz, Cristina; Tomat, Analía L.

    2015-01-01

    Objective The aim of this study was to investigate the effects of chronic treatment with atrial natriuretic peptide (ANP) on renal function, nitric oxide (NO) system, oxidative stress, collagen content and apoptosis in kidneys of spontaneously hypertensive rats (SHR), as well as sex-related differences in the response to the treatment. Methods 10 week-old male and female SHR were infused with ANP (100 ng/h/rat) or saline (NaCl 0.9%) for 14 days (subcutaneous osmotic pumps). Systolic blood pressure (SBP) was recorded and diuresis and natriuresis were determined. After treatment, renal NO synthase (NOS) activity and eNOS expression were evaluated. Thiobarbituric acid-reactive substances (TBARS), glutathione concentration and glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities were determined in the kidney. Collagen was identified in renal slices by Sirius red staining and apoptosis by Tunel assay. Results Female SHR showed lower SBP, oxidative stress, collagen content and apoptosis in kidney, and higher renal NOS activity and eNOS protein content, than males. ANP lowered SBP, increased diuresis, natriuresis, renal NOS activity and eNOS expression in both sexes. Renal response to ANP was more marked in females than in males. In kidney, ANP reduced TBARS, renal collagen content and apoptosis, and increased glutathione concentration and activity of GPx and SOD enzymes in both sexes. Conclusions Female SHR exhibited less organ damage than males. Chronic ANP treatment would ameliorate hypertension and end-organ damage in the kidney by reducing oxidative stress, increasing NO-system activity, and diminishing collagen content and apoptosis, in both sexes. PMID:25774801

  17. Cardiovascular and renal manifestations of glutathione depletion induced by buthionine sulfoximine.

    PubMed

    Vargas, Félix; Rodríguez-Gómez, Isabel; Pérez-Abud, Rocío; Vargas Tendero, Pablo; Baca, Yolanda; Wangensteen, Rosemary

    2012-06-01

    Oxidative stress contributes to the development of several cardiovascular diseases, including diabetes, renal insufficiency, and arterial hypertension. Animal studies have evidenced the association between higher blood pressure (BP) and increased oxidative stress, and treatment with antioxidants has been shown to reduce BP, while BP reduction due to antihypertensive drugs is associated with reduced oxidative stress. In 2000, it was first reported that oxidative stress and arterial hypertension were produced in normal Sprague-Dawley rats by oral administration of buthionine sulfoximine (BSO), which induces glutathione (GSH) depletion, indicating that oxidative stress may induce hypertension. The contribution of several potential pathogenic factors has been evaluated in the BSO rat model, the prototype of oxidative stress-induced hypertension, including vascular reactivity, endothelium-derived factors, renin-angiotensin system activity, TXA(2)-PGH(2) production, sodium sensitivity, renal dopamine-induced natriuresis, and sympathetic tone. This review summarizes the main factors implicated in the pathogenesis of BSO-induced hypertension and the alterations associated with GSH depletion that are related to renal function or BP control.

  18. The effect of different antihypertensive drugs on cavernous tissue in experimental chronic renal insufficiency.

    PubMed

    Toblli, Jorge E; Stella, Inés; Mazza, Osvaldo N; Ferder, León; Inserra, Felipe

    2006-01-01

    Male erectile dysfunction increases in prevalence in patients with severe chronic renal failure. Since arterial hypertension induces significant damage in cavernous tissue (CT), and considering that hypertension is extremely common in patients with end-stage renal disease (ESRD), the aim of this study was to evaluate the effect of the most conventionally employed antihypertensive drugs on CT in a rat model of renal insufficiency. Five groups of male rats with subtotal nephrectomy (STNx) and 1 with sham operations were studied over 6 months: STNx without treatment, STNx with benazepril (BZ), STNx with losartan (LS), STNx with amlodipine (AML) and STNx with atenolol (AT) plus the sham group. All rats were sacrificed at 6 months after STNx, and penises processed for LM and immunohistochemical studies. Cavernous smooth muscle (CSM) and vascular smooth muscle (VSM) from cavernous arteries and the amount of collagen type III were evaluated. All groups with antihypertensive drugs showed similar control in blood pressure throughout the study. Un-treated STNx, STNx with AML and STNx with AT presented significant (p<0.01) hypertrophy in both VSM and CSM, together with an increased amount of collagen type III in CT. Conversely, STNx with either BZ or LS showed a substantial (p<0.01) reduction in all of these variables, with values not different from the sham group. There was a significant (p<0.01) negative correlation between creatinine clearance and the amount of VSM, CSM and collagen type III deposition in CT in untreated STNx, STNx with AML and STNx with AT, but not in STNx with BZ, STNx with LS and sham. These results suggest that the interactions against the renin-angiotensin system (RAS) either by ACE inhibitors or angiotensin AT1 receptor blockers produce considerable benefits regarding structural abnormalities in CT in this animal model of renal insufficiency beyond blood pressure control.

  19. Global- and renal-specific sympathoinhibition in aldosterone hypertension.

    PubMed

    Lohmeier, Thomas E; Liu, Boshen; Hildebrandt, Drew A; Cates, Adam W; Georgakopoulos, Dimitrios; Irwin, Eric D

    2015-06-01

    Recent technology for chronic electric activation of the carotid baroreflex and renal nerve ablation provide global and renal-specific suppression of sympathetic activity, respectively, but the conditions for favorable antihypertensive responses in resistant hypertension are unclear. Because inappropriately high plasma levels of aldosterone are prevalent in these patients, we investigated the effects of baroreflex activation and surgical renal denervation in dogs with hypertension induced by chronic infusion of aldosterone (12 μg/kg per day). Under control conditions, basal values for mean arterial pressure and plasma norepinephrine concentration were 100±3 mm Hg and 134±26 pg/mL, respectively. By day 7 of baroreflex activation, plasma norepinephrine was reduced by ≈40% and arterial pressure by 16±2 mm Hg. All values returned to control levels during the recovery period. Arterial pressure increased to 122±5 mm Hg concomitant with a rise in plasma aldosterone concentration from 4.3±0.4 to 70.0±6.4 ng/dL after 14 days of aldosterone infusion, with no significant effect on plasma norepinephrine. After 7 days of baroreflex activation at control stimulation parameters, the reduction in plasma norepinephrine was similar but the fall in arterial pressure (7±1 mm Hg) was diminished (≈55%) during aldosterone hypertension when compared with control conditions. Despite sustained suppression of sympathetic activity, baroreflex activation did not have central actions to inhibit either the stimulation of vasopressin secretion or drinking induced by increased plasma osmolality during chronic aldosterone infusion. Finally, renal denervation did not attenuate aldosterone hypertension. These findings suggest that aldosterone excess may portend diminished blood pressure lowering to global and especially renal-specific sympathoinhibition during device-based therapy. © 2015 American Heart Association, Inc.

  20. Global and Renal-Specific Sympathoinhibition in Aldosterone Hypertension

    PubMed Central

    Lohmeier, Thomas E.; Liu, Boshen; Hildebrandt, Drew A.; Cates, Adam W.; Georgakopoulos, Dimitrios; Irwin, Eric D.

    2015-01-01

    Recent technology for chronic electrical activation of the carotid baroreflex and renal nerve ablation provide global and renal-specific suppression of sympathetic activity, respectively, but the conditions for favorable antihypertensive responses in resistant hypertension are unclear. Because inappropriately high plasma levels of aldosterone are prevalent in these patients, we investigated the effects of baroreflex activation and surgical renal denervation in dogs with hypertension induced by chronic infusion of aldosterone (12µg/kg/day). Under control conditions, basal values for mean arterial pressure and plasma norepinephrine concentration were 100±3 mm Hg and 134±26 pg/mL, respectively. By day 7 of baroreflex activation, plasma norepinephrine was reduced by ~ 40% and arterial pressure by 16±2 mmHg. All values returned to control levels during the recovery period. Arterial pressure increased to 122±5 mm Hg concomitant with a rise in plasma aldosterone concentration from 4.3±0.4 to 70.0±6.4 ng/dL after 14 days of aldosterone infusion, with no significant effect on plasma norepinephrine. After 7 days of baroreflex activation at control stimulation parameters, the reduction in plasma norepinephrine was similar but the fall in arterial pressure (7±1 mmHg) was diminished (~ 55%) during aldosterone hypertension as compared to control conditions. Despite sustained suppression of sympathetic activity, baroreflex activation did not have central actions to inhibit either the stimulation of vasopressin secretion or drinking induced by increased plasma osmolality during chronic aldosterone infusion. Finally, renal denervation did not attenuate aldosterone hypertension. These findings suggest that aldosterone excess may portend diminished blood pressure lowering to global and especially renal-specific sympathoinhibition during device-based therapy. PMID:25895584

  1. Microdialysis assessment of shock wave lithotripsy-induced renal injury.

    PubMed

    Brown, S A; Munver, R; Delvecchio, F C; Kuo, R L; Zhong, P; Preminger, G M

    2000-09-01

    Shock wave lithotripsy (SWL) is the primary treatment modality for managing the majority of symptomatic renal calculi. However, the fundamental mechanisms for stone fragmentation and the resultant morphologic changes that occur are not fully understood. Furthermore, a thorough understanding of the complex biologic pathways involved in SWL-induced renal injury does not exist at present. To elucidate the biologic processes involved in tissue injury after SWL, an animal model was designed to mimic the pathogenesis of high-energy SWL in humans. Juvenile female swine were anesthetized, and a midline laparotomy incision was performed to expose the right kidney. Using an introducer apparatus, a microdialysis probe was placed into the renal parenchyma of the right kidney lower pole and a tunnel was generated to exit the distal ends of the inlet and outlet tubing outside the body. After a 72-hour postoperative recovery period, SWL was performed to the lower pole renal region of the kidney, as a microdialysis pump continuously infused dialysate through the inlet tubing. Microdialysis fluids were collected during SWL, and lipid peroxidation, as measured by conjugated diene concentrations, was monitored. All microdialysis probes remained patent for a total of 2000 shock waves. A significant elevation in conjugated diene levels was observed in the SWL versus untreated kidneys after 1000 shock waves were administered (P <0.02). This animal model is unique in that it represents the first system for the real-time collection of renal interstitial fluids during SWL. Analysis of this fluid may provide insight into the physiologic mechanisms responsible for shock wave-induced renal injury.

  2. Agmatine improves renal function in gentamicin-induced nephrotoxicity in rats.

    PubMed

    El-Kashef, Dalia H; El-Kenawi, Asmaa E; Abdel Rahim, Mona; Suddek, Ghada M; Salem, Hatem A

    2016-03-01

    The present study was designed to explore the possible protective effects of agmatine, a known nitric oxide (NO) synthase inhibitor, against gentamicin-induced nephrotoxicity in rats. For this purpose, we quantitatively evaluated gentamicin-induced renal structural and functional alterations using histopathological and biochemical approaches. Furthermore, the effect of agmatine on gentamicin-induced hypersensitivity of urinary bladder rings to acetylcholine (ACh) was evaluated. Twenty-four male Wistar albino rats were randomly divided into 3 groups, namely control, gentamicin (100 mg/kg, i.p.), and gentamicin plus agmatine (40 mg/kg, orally). At the end of the study, all rats were sacrificed and then blood and urine samples and kidneys were taken. Administration of agmatine significantly decreased kidney/body mass ratio, serum creatinine, lactate dehydrogenase (LDH), renal malondialdehyde (MDA), myeloperoxidase (MPO), NO, and tumor necrosis factor-alpha (TNF-α) while it significantly increased creatinine clearance and renal superoxide dismutase (SOD) activity when compared with the gentamicin-treated group. Additionally, agmatine ameliorated tissue morphology as evidenced by histological evaluation and reduced the responses of isolated bladder rings to ACh. Our study indicates that agmatine administration with gentamicin attenuates oxidative-stress associated renal injury by reducing oxygen free radicals and lipid peroxidation, restoring NO level and inhibiting inflammatory mediators such as TNF-α.

  3. High-volume forced diuresis with matched hydration using the RenalGuard System to prevent contrast-induced nephropathy: A meta-analysis of randomized trials.

    PubMed

    Shah, Rahman; Wood, Sarah J; Khan, Sajjad A; Chaudhry, Amina; Rehan Khan, M; Morsy, Mohamed S

    2017-12-01

    Contrast-induced nephropathy (CIN) is a well-recognized complication of coronary angiography that is associated with poor outcomes. Several small randomized controlled trials (RCTs) have recently shown that in patients with chronic kidney disease (CKD), furosemide-induced forced diuresis with matched hydration using the RenalGuard system can prevent its occurrence. However, individual studies have been underpowered and thus cannot show significant differences in major clinical endpoints. Forced diuresis with matched hydration using the RenalGuard system improves clinical outcomes in patients undergoing coronary angiography. Scientific databases and websites were searched for relevant RCTs. The pooled risk ratios were calculated using random-effects models. The primary endpoint was CIN, and the secondary endpoints were major adverse clinical events (MACEs) and the need for renal replacement therapy. Data from 3 trials including 586 patients were analyzed. High-volume forced diuresis with matched hydration using the RenalGuard system decreased risk of CIN by 60% (risk ratio: 0.40, 95% confidence interval: 0.25 to 0.65, P < 0.001), MACE rate by 59%, and the need for renal replacement therapy by 78%, compared with the standard of care. In patients with CKD undergoing coronary angiography, high-volume forced diuresis with matched hydration using the RenalGuard system significantly reduces the risk of CIN, MACE rate, and the need for renal replacement therapy. Larger RCTs with sufficient power are needed to confirm these findings. © 2017 Wiley Periodicals, Inc.

  4. Feline chronic renal failure: clinical findings in 80 cases diagnosed between 1992 and 1995.

    PubMed

    Elliott, J; Barber, P J

    1998-02-01

    Clinical and laboratory findings at the time of first diagnosis in 80 cats with chronic renal failure (CRF) were examined in a prospective study to determine the survival time of these animals and identify possible factors contributing to the progression of feline CRF. On the basis of clinical presentation, animals were assigned to one of three groups; compensated (n = 15), uraemic (n = 39) and end-stage (n = 26) CRF. Loss of renal concentrating ability was a common finding, even before clinical signs of renal disease were evident. The plasma creatinine concentration at initial presentation was a poor predictor of survival time and the presence of significant anaemia was indicative of a poor prognosis. The study demonstrated the highly variable degree of renal impairment present at the time of diagnosis and the potentially long survival time of many compensated and uraemic cases.

  5. [Intestinal absorption of Ca47 in chronic renal insufficiency before and after treatment with 1,25 dihydroxycholecalciferol].

    PubMed

    Vattimo, A

    1979-12-01

    The effects of vitamin D3 follow its metabolisation in the liver and then in the kidney. Its most active metabolite is 1,25 (OH)2D3, produced by the liver precursor 25(OH)D3. In chronic renal insufficiency, demineralising osteopathy can be corrected by administering 1,25 (OH)2D3 to make up for its under-production by the kidneys. An assessment if is made of 47Ca intestinal transport in patients with chronic renal insufficiency before and after such treatment. It was found that the effects of the metabolite on calcium transport were dose-dependent.

  6. CDP-choline circumvents mercury-induced mitochondrial damage and renal dysfunction.

    PubMed

    Buelna-Chontal, Mabel; Franco, Martha; Hernández-Esquivel, Luz; Pavón, Natalia; Rodríguez-Zavala, José S; Correa, Francisco; Jasso, Ricardo; Pichardo-Ramos, Gregorio; Santamaría, José; González-Pacheco, Héctor; Soto, Virgilia; Díaz-Ruíz, Jorge L; Chávez, Edmundo

    2017-12-01

    Heavy metal ions are known to produce harmful alterations on kidney function. Specifically, the accumulation of Hg 2+ in kidney tissue may induce renal failure. In this work, the protective effect of CDP-choline against the deleterious effects induced by Hg 2+ on renal function was studied. CDP-choline administered ip at a dose of 125 mg/kg body weight prevented the damage induced by Hg 2+ administration at a dose of 3 mg/kg body weight. The findings indicate that CDP-choline guards mitochondria against Hg 2+ -toxicity by preserving their ability to retain matrix content, such as accumulated Ca 2+ . This nucleotide also protected mitochondria from Hg 2+ -induced loss of the transmembrane electric gradient and from the generation of hydrogen peroxide and membrane TBARS. In addition, CDP-choline avoided the oxidative damage of mtDNA and inhibited the release of the interleukins IL-1 and IL6, recognized as markers of acute inflammatory reaction. After the administration of Hg 2+ and CDP, CDP-choline maintained nearly normal levels of renal function and creatinine clearance, as well as blood urea nitrogen (BUN) and serum creatinine. © 2017 International Federation for Cell Biology.

  7. Genomic integration of ERRγ-HNF1β regulates renal bioenergetics and prevents chronic kidney disease.

    PubMed

    Zhao, Juanjuan; Lupino, Katherine; Wilkins, Benjamin J; Qiu, Chengxiang; Liu, Jian; Omura, Yasuhiro; Allred, Amanda L; McDonald, Caitlin; Susztak, Katalin; Barish, Grant D; Pei, Liming

    2018-05-22

    Mitochondrial dysfunction is increasingly recognized as a critical determinant of both hereditary and acquired kidney diseases. However, it remains poorly understood how mitochondrial metabolism is regulated to support normal kidney function and how its dysregulation contributes to kidney disease. Here, we show that the nuclear receptor estrogen-related receptor gamma (ERRγ) and hepatocyte nuclear factor 1 beta (HNF1β) link renal mitochondrial and reabsorptive functions through coordinated epigenomic programs. ERRγ directly regulates mitochondrial metabolism but cooperatively controls renal reabsorption via convergent binding with HNF1β. Deletion of ERRγ in renal epithelial cells (RECs), in which it is highly and specifically expressed, results in severe renal energetic and reabsorptive dysfunction and progressive renal failure that recapitulates phenotypes of animals and patients with HNF1β loss-of-function gene mutations. Moreover, ERRγ expression positively correlates with renal function and is decreased in patients with chronic kidney disease (CKD). REC-ERRγ KO mice share highly overlapping renal transcriptional signatures with human patients with CKD. Together these findings reveal a role for ERRγ in directing independent and HNF1β-integrated programs for energy production and use essential for normal renal function and the prevention of kidney disease.

  8. Longitudinal prospective observational type study about determinants of renal resistive index variations in chronic renal failure patients treated with conventional medical and dietetic therapy.

    PubMed

    Brardi, Simone; Cevenini, Gabriele; Giovannelli, Vanni; Romano, Giuseppe

    2017-12-31

    This longitudinal prospective observational type study was conceived with the aim to examine the impact on renal resistive index (RRI) of the variables that we can manipulate with therapeutic and or dietetic interventions in a chronic kidney disease population in order to known which of these variables was statistically related to changes in RRI and therefore could become the object of the greatest therapeutic effort. This study was undertaken between May 2016 to May 2017 in the outpatient nephrology and urology clinic of San Donato Hospital in Arezzo. The study population (84 patients: 47 males and 37 females) was randomly selected among the chronic kidney patients (with various degrees of renal impairment) affected by hypertension and or diabetes mellitus. After a comprehensive medical examination these patients were submitted to determination of serum creatinine, glycated hemoglobin, 24-hour urinary albumin excretion and finally renal Doppler ultrasonography. Then the patients were submitted to a full therapeutic and dietetic intervention to ameliorate the renal impairment by a wide range of actions and after on average a one-year interval were submitted again to a new medical examination and a second determination of serum creatinine, glycated hemoglobin, 24-hour urinary albumin excretion and a new renal Doppler ultrasonography too. The comparison between basal and final data revealed a slight reduction in the mean of bilateral renal resistance indices (Delta RRI: -0.0182 ± 0.08), associated to a slight increase in the mean glomerular filtration rate (Delta GFR: 0.8738 ± 10.95 ml/min/1.73 m2), a reduction in mean body weight (Delta weight: -1.9548 ± 5.26 Kg) and mean BMI (Delta BMI: -0.7643 ± 2.10 Kg/m2) as well as a reduction in the mean systolic blood pressure (Delta systolic blood pressure: -8.8333 ± 25.19 mmHg). Statistical analysis showed statistically significant correlations (p < 0.05) between Delta RRI and Delta weight (p < 0.03), Delta BMI (p < 0

  9. Taurine Ameliorates Renal Oxidative Damage and Thyroid Dysfunction in Rats Chronically Exposed to Fluoride.

    PubMed

    Adedara, Isaac A; Ojuade, Temini Jesu D; Olabiyi, Bolanle F; Idris, Umar F; Onibiyo, Esther M; Ajeigbe, Olufunke F; Farombi, Ebenezer O

    2017-02-01

    Excessive exposure to fluoride poses several detrimental effects to human health particularly the kidney which is a major organ involved in its elimination from the body. The influence of taurine on fluoride-induced renal toxicity was investigated in a co-exposure paradigm for 45 days using five groups of eight rats each. Group I rats received normal drinking water alone, group II rats were exposed to sodium fluoride (NaF) in drinking water at 15 mg/L alone, group III received taurine alone at a dose of 200 mg/kg group IV rats were co-administered with NaF and taurine (100 mg/kg), while group V rats were co-administered with NaF and taurine (200 mg/kg). Administration of taurine significantly reversed the fluoride-mediated decrease in absolute weight and organo-somatic index of the kidney in the exposed rats. Taurine significantly prevented fluoride-induced elevation in plasma urea and creatinine levels in the exposed rats. Moreover, taurine restored fluoride-mediated decrease in the circulatory concentrations of triiodothyronine, thyroxine, and the ratio of triiodothyronine to thyroxine. Taurine ameliorated fluoride-mediated decrease in renal antioxidant status by significantly enhancing the antioxidant enzyme activities as well as glutathione level in the exposed rats. Additionally, taurine inhibited fluoride-induced renal oxidative damage by markedly decreasing the hydrogen peroxide and malondialdehyde levels as well as improved the kidney architecture in the treated rats. Collectively, taurine protected against fluoride-induced renal toxicity via enhancement of thyroid gland function, renal antioxidant status, and histology in rats.

  10. Lower Blood Pressure-Induced Renal Hypoperfusion Promotes Cisplatin-Induced Nephrotoxicity.

    PubMed

    Mizuno, Tomohiro; Hayashi, Takahiro; Shimabukuro, Yuka; Murase, Maho; Hayashi, Hiroki; Ishikawa, Kazuhiro; Takahashi, Kazuo; Yuzawa, Yukio; Yamada, Shigeki; Nagamatsu, Tadashi

    2016-01-01

    Cisplatin-induced nephrotoxicity primarily occurs in the proximal tubules, and tubular injuries reduce glomerular filtration rates. Lower blood pressure causes renal hypoperfusion, which promotes ischemic acute kidney injury (AKI). Our study examined the relationship between lower blood pressure-induced renal hypoperfusion and cisplatin-induced nephrotoxicity. The relationship between cisplatin use and hypoalbuminemia is not clear. This study consisted of Japanese patients who received cisplatin as the first-line chemotherapy at Fujita Health University Hospital from April 2006 to December 2012. Hypoalbuminemia was defined as serum albumin levels ≤3.5 mg/dl. Patients who experienced lower blood pressure during chemotherapy were included in the lower blood pressure group (n = 229), and those who did not were included in the normal blood pressure group (n = 743). Total cisplatin dose in the normal blood pressure and lower blood pressure groups was 58.9 ± 23.8 and 55.0 ± 20.4 mg/m2, respectively. The rate of severe nephrotoxicity was higher and overall survival was shorter in the lower blood pressure group than in the normal blood pressure group. In a multivariable analysis, lower blood pressure significantly correlated with hypoalbuminemia. To prevent ischemic AKI, nutrition and cachexia controlling are important parts of cancer treatment. © 2016 S. Karger AG, Basel.

  11. Energy expenditure in patients with chronic renal failure.

    PubMed

    Monteon, F J; Laidlaw, S A; Shaib, J K; Kopple, J D

    1986-11-01

    Although nondialyzed, chronically uremic patients and patients undergoing maintenance hemodialysis often show evidence for wasting and calorie malnutrition and have low dietary energy intakes, their energy expenditure has never been systematically evaluated. It is possible that low energy intakes are an adaptive response to reduced energy needs; alternatively, energy expenditure could be normal or high and the low energy intakes would be inappropriate. Energy expenditure was therefore measured by indirect calorimetry in 12 normal individuals, 10 nondialyzed patients with chronic renal failure, and 16 patients undergoing maintenance hemodialysis. Energy expenditure was measured in the resting state, during quiet sitting, during controlled exercise on an exercise bicycle, and for four hours after ingestion of a test meal. Resting energy expenditure (kcal/min/1.73 m2) in the normal subjects, chronically uremic patients and hemodialysis patients was, respectively, 0.94 +/- 0.24 (SD), 0.91 +/- 0.20, and 0.97 +/- 0.10. There was also no difference among the three groups in energy expenditure during sitting, exercise, or the postprandial state. Within each group, energy expenditure during resting and sitting was directly correlated. During bicycling, energy expenditure was directly correlated with work performed, and the regression equation for this relationship was similar in each of the three groups. These findings suggest that for a given physical activity, energy expenditure in nondialyzed, chronically uremic patients and maintenance hemodialysis patients is not different from normal. The low energy intakes of many of these patients may be inadequate for their needs.

  12. Niacin improves renal lipid metabolism and slows progression in chronic kidney disease.

    PubMed

    Cho, Kyu-hyang; Kim, Hyun-ju; Kamanna, Vaijinath S; Vaziri, Nosratola D

    2010-01-01

    Mounting evidence points to lipid accumulation in the diseased kidney and its contribution to progression of nephropathy. We recently found heavy lipid accumulation and marked dysregulation of lipid metabolism in the remnant kidneys of rats with chronic renal failure (CRF). Present study sought to determine efficacy of niacin supplementation on renal tissue lipid metabolism in CRF. Kidney function, lipid content, and expression of molecules involved in cholesterol and fatty acid metabolism were determined in untreated CRF (5/6 nephrectomized), niacin-treated CRF (50 mg/kg/day in drinking water for 12 weeks) and control rats. CRF resulted in hypertension, proteinuria, renal tissue lipid accumulation, up-regulation of scavenger receptor A1 (SR-A1), acyl-CoA cholesterol acyltransferase-1 (ACAT1), carbohydrate-responsive element binding protein (ChREBP), fatty acid synthase (FAS), acyl-CoA carboxylase (ACC), liver X receptor (LXR), ATP binding cassette (ABC) A-1, ABCG-1, and SR-B1 and down-regulation of sterol responsive element binding protein-1 (SREBP-1), SREBP-2, HMG-CoA reductase, PPAR-alpha, fatty acid binding protein (L-FABP), and CPT1A. Niacin therapy attenuated hypertension, proteinuria, and tubulo-interstitial injury, reduced renal tissue lipids, CD36, ChREBP, LXR, ABCA-1, ABCG-1, and SR-B1 abundance and raised PPAR-alpha and L-FABP. Niacin administration improves renal tissue lipid metabolism and renal function and structure in experimental CRF.

  13. Treatment of Autonomous Hyperparathyroidism in Post Renal Transplant Recipients

    ClinicalTrials.gov

    2017-02-07

    Chronic Allograft Nephropathy; Chronic Kidney Disease; Chronic Renal Failure; Disordered Mineral Metabolism; End Stage Renal Disease; Hyperparathyroidism; Hypophosphatemia; Kidney Disease; Kidney Transplantation; Post Renal Transplantation

  14. Homocystein as a Risk Factor for Developing Complications in Chronic Renal Failure

    PubMed Central

    Jakovljevic, Biljana; Gasic, Branislav; Kovacevic, Pedja; Rajkovaca, Zvezdana; Kovacevic, Tijana

    2015-01-01

    Aim: Cardiovascular diseases are leading cause of death in patients with chronic renal failure. The aim of our study was to establish connection between levels of homocysteine and traditional and nontraditional risk factors for developing cardiovascular diseases in dialysis and pre dialysis patients. Methods: We included 33 pre dialysis (23 in stage three and 10 in stage four of chronic kidney disease) and 43 patients receiving hemodialysis longer than six months. Besides standard laboratory parameters, levels of homocysteine and blood pressure were measured in all patients. Glomerular filtration rate was measured in pre dialysis patients and dialysis quality parameters in dialysis patients. Results: Homocysteine levels were elevated in all patients (19±5.42mmol/l). The connection between homocysteine levels and other cardiovascular diseases risk factors was not established in pre dialysis patients. In patients treated with hemodialysis we found negative correlation between homocysteine levels and patients’ age (p<0.05) and positive correlation between homocysteine levels and length of dialysis (p<0.01) as well as between homocysteine and anemia parameters (erythrocytes, hemoglobin), (p<0.01). Homocysteine and LDL (and total cholesterol) were in negative correlation (p<0.01). Conclusion: Homocysteine, as one of nontraditional cardiovascular diseases risk factors, is elevated in all patients with chronic renal failure and it’s positive correlation with some other risk factors was found. PMID:26005384

  15. Development of injury in a rat model of chronic renal allograft rejection: effect of dietary protein restriction.

    PubMed

    Bombas, A; Stein-Oakley, A N; Baxter, K; Thomson, N M; Jablonski, P

    1999-01-01

    Non-allogeneic factors such as increased nephron "workload" may contribute to chronic renal allograft rejection. Reducing dietary protein from 20% to 8% was tested in a model of chronic rejection: Dark Agouti kidney to Albino Surgery recipient, "tolerised" by previous donor blood transfusions. Survival, weight gain, serum creatinine concentration and creatinine clearance were similar for both groups at all times. Urinary protein was significantly (P < 0.05) lower in the low-protein (LP) group 1 month after transplantation. After 3 and 6 months, both groups demonstrated mild chronic rejection. After 6 months, tubular atrophy was significantly (P < 0.05) less in the LP group and interstitial fibrosis was marginally reduced. Glomerular hypertrophy, glomerular sclerosis, tubular dilatation, leucocyte infiltration, adhesion molecule expression and TGF-beta1 mRNA expression were similarly increased in both groups. Thus, reducing dietary protein to 8% lowered urinary protein, but did not significantly affect the development of chronic rejection in renal allografts beyond affording a degree of protection from tubulointerstitial damage.

  16. Early superoxide scavenging accelerates renal microvascular rarefaction and damage in the stenotic kidney.

    PubMed

    Kelsen, Silvia; He, Xiaochen; Chade, Alejandro R

    2012-08-15

    Renal artery stenosis (RAS), the main cause of chronic renovascular disease (RVD), is associated with significant oxidative stress. Chronic RVD induces renal injury partly by promoting renal microvascular (MV) damage and blunting MV repair in the stenotic kidney. We tested the hypothesis that superoxide anion plays a pivotal role in MV dysfunction, reduction of MV density, and progression of renal injury in the stenotic kidney. RAS was induced in 14 domestic pigs and observed for 6 wk. Seven RAS pigs were chronically treated with the superoxide dismutase mimetic tempol (RAS+T) to reduce oxidative stress. Single-kidney hemodynamics and function were quantified in vivo using multidetector computer tomography (CT) and renal MV density was quantified ex vivo using micro-CT. Expression of angiogenic, inflammatory, and apoptotic factors was measured in renal tissue, and renal apoptosis and fibrosis were quantified in tissue sections. The degree of RAS and blood pressure were similarly increased in RAS and RAS+T. Renal blood flow (RBF) and glomerular filtration rate (GFR) were reduced in the stenotic kidney (280.1 ± 36.8 and 34.2 ± 3.1 ml/min, P < 0.05 vs. control). RAS+T kidneys showed preserved GFR (58.5 ± 6.3 ml/min, P = not significant vs. control) but a similar decreases in RBF (293.6 ± 85.2 ml/min) and further decreases in MV density compared with RAS. These changes were accompanied by blunted angiogenic signaling and increased apoptosis and fibrosis in the stenotic kidney of RAS+T compared with RAS. The current study shows that tempol administration provided limited protection to the stenotic kidney. Despite preserved GFR, renal perfusion was not improved by tempol, and MV density was further reduced compared with untreated RAS, associated with increased renal apoptosis and fibrosis. These results suggest that a tight balance of the renal redox status is necessary for a normal MV repair response to injury, at least at the early stage of RVD, and raise caution

  17. Early superoxide scavenging accelerates renal microvascular rarefaction and damage in the stenotic kidney

    PubMed Central

    Kelsen, Silvia; He, Xiaochen

    2012-01-01

    Renal artery stenosis (RAS), the main cause of chronic renovascular disease (RVD), is associated with significant oxidative stress. Chronic RVD induces renal injury partly by promoting renal microvascular (MV) damage and blunting MV repair in the stenotic kidney. We tested the hypothesis that superoxide anion plays a pivotal role in MV dysfunction, reduction of MV density, and progression of renal injury in the stenotic kidney. RAS was induced in 14 domestic pigs and observed for 6 wk. Seven RAS pigs were chronically treated with the superoxide dismutase mimetic tempol (RAS+T) to reduce oxidative stress. Single-kidney hemodynamics and function were quantified in vivo using multidetector computer tomography (CT) and renal MV density was quantified ex vivo using micro-CT. Expression of angiogenic, inflammatory, and apoptotic factors was measured in renal tissue, and renal apoptosis and fibrosis were quantified in tissue sections. The degree of RAS and blood pressure were similarly increased in RAS and RAS+T. Renal blood flow (RBF) and glomerular filtration rate (GFR) were reduced in the stenotic kidney (280.1 ± 36.8 and 34.2 ± 3.1 ml/min, P < 0.05 vs. control). RAS+T kidneys showed preserved GFR (58.5 ± 6.3 ml/min, P = not significant vs. control) but a similar decreases in RBF (293.6 ± 85.2 ml/min) and further decreases in MV density compared with RAS. These changes were accompanied by blunted angiogenic signaling and increased apoptosis and fibrosis in the stenotic kidney of RAS+T compared with RAS. The current study shows that tempol administration provided limited protection to the stenotic kidney. Despite preserved GFR, renal perfusion was not improved by tempol, and MV density was further reduced compared with untreated RAS, associated with increased renal apoptosis and fibrosis. These results suggest that a tight balance of the renal redox status is necessary for a normal MV repair response to injury, at least at the early stage of RVD, and raise caution

  18. Protection from renal fibrosis, putative role of TRIB3 gene silencing.

    PubMed

    Ding, Wen-yuan; Li, Wen-bo; Ti, Yun; Bi, Xiu-ping; Sun, Hui; Wang, Zhi-hao; Zhang, Yun; Zhang, Wei; Zhong, Ming

    2014-02-01

    Renal fibrosis is thought to be the common pathway in most cases of chronic kidney disease. Recently, TRIB3 was found to play an important role in progression of cardiac fibrosis in an insulin-resistant state. We investigated whether TRIB3 might participate in the pathogenesis of renal fibrosis in insulin-resistant rats. We randomly separated 40 male Sprague-Dawley into 4 groups for treatment (n = 10 each): control and high-fat diet (HFD) with TRIB3 siRNA adenovirus transfection, vehicle transfection or HFD alone. Insulin resistance markers were measured. Renal tissues were stained with hematoxylin and eosin, Masson's trichrome and periodic acid-Schiff. Rats with HFD showed insulin resistance and TRIB3 overexpression. Upregulated TRIB3 expression could induce renal fibrosis accompanied by increased phosphorylation of extracellular signal-regulated kinase (ERK). Also, TRIB3 siRNA knockdown could ameliorate renal fibrosis, which was accompanied by decreased phosphorylation of ERK. TRIB3 gene silencing can attenuate renal fibrosis for beneficial effect on the development of renal fibrosis in chronic kidney disease in rat. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  19. A Pilot Study Linking Endothelial Injury in Lungs and Kidneys in Chronic Obstructive Pulmonary Disease

    PubMed Central

    Laucho-Contreras, Maria E.; Petersen, Hans; Bijol, Vanesa; Sholl, Lynette M.; Choi, Mary E.; Divo, Miguel; Pinto-Plata, Victor; Chetta, Alfredo; Tesfaigzi, Yohannes; Celli, Bartolomé R.

    2017-01-01

    Rationale: Patients with chronic obstructive pulmonary disease (COPD) frequently have albuminuria (indicative of renal endothelial cell injury) associated with hypoxemia. Objectives: To determine whether (1) cigarette smoke (CS)-induced pulmonary and renal endothelial cell injury explains the association between albuminuria and COPD, (2) CS-induced albuminuria is linked to increases in the oxidative stress–advanced glycation end products (AGEs) receptor for AGEs (RAGE) pathway, and (3) enalapril (which has antioxidant properties) limits the progression of pulmonary and renal injury by reducing activation of the AGEs–RAGE pathway in endothelial cells in both organs. Methods: In 26 patients with COPD, 24 ever-smokers without COPD, 32 nonsmokers who underwent a renal biopsy or nephrectomy, and in CS-exposed mice, we assessed pathologic and ultrastructural renal lesions, and measured urinary albumin/creatinine ratios, tissue oxidative stress levels, and AGEs and RAGE levels in pulmonary and renal endothelial cells. The efficacy of enalapril on pulmonary and renal lesions was assessed in CS-exposed mice. Measurements and Main Results: Patients with COPD and/or CS-exposed mice had chronic renal injury, increased urinary albumin/creatinine ratios, and increased tissue oxidative stress and AGEs-RAGE levels in pulmonary and renal endothelial cells. Treating mice with enalapril attenuated CS-induced increases in urinary albumin/creatinine ratios, tissue oxidative stress levels, endothelial cell AGEs and RAGE levels, pulmonary and renal cell apoptosis, and the progression of chronic renal and pulmonary lesions. Conclusions: Patients with COPD and/or CS-exposed mice have pulmonary and renal endothelial cell injury linked to increased endothelial cell AGEs and RAGE levels. Albuminuria could identify patients with COPD in whom angiotensin-converting enzyme inhibitor therapy improves renal and lung function by reducing endothelial injury. PMID:28085500

  20. [Effect of flavin adenine dinucleotide on ultraviolet B induced damage in cultured human corneal epithelial cells].

    PubMed

    Sakamoto, Asuka; Nakamura, Masatsugu

    2012-01-01

    This study evaluated the effects of flavin adenine dinucleotide (FAD) on ultraviolet B (UV-B)-induced damage in cultured human corneal epithelial (HCE-T) cells. The cultured HCE-T cells were treated with 0.003125-0.05% FAD before exposure to 80 mJ/cm2 UV-B. Cell viability was measured 24 h after UV-B irradiation using the MTS assay. Reactive oxygen species (ROS) were detected 30 min after UV-B irradiation using 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate acetyl ester. Apoptosis was evaluated 4 h after UV-B irradiation in the caspase-3/7 activity assay. UV-B irradiation reduced cell viability and stimulated ROS production and caspase-3/7 activity in HCE-T cells. Pretreatment of UV-B irradiated HCE-T cells with FAD significantly attenuated cell viability reduction and inhibited the stimulation of both ROS production and caspase-3/7 activity due to UV-B exposure compared with those with vehicle (0% FAD). These results clarified that FAD inhibits ROS-mediated apoptosis by UV-B irradiation in HCE-T cells and suggest that FAD may be effective as a radical scavenger in UV-B-induced corneal damage.

  1. [The degree of chronic renal failure is associated with the rate of pro-inflammatory cytokines, hyperhomocysteinemia and with oxidative stress].

    PubMed

    Tbahriti, H F; Messaoudi, A; Kaddous, A; Bouchenak, M; Mekki, K

    2014-06-01

    To evaluate pro-inflammatory cytokines, homocysteinemia and markers of oxidative status in the course of chronic renal failure. One hundred and two patients (male/female: 38/64; age: 45±07 years) with chronic renal failure were divided into 4 groups according to the National Kidney Foundation classification. They included 28 primary stage renal failure patients, 28 moderate stage renal failure, 28 severe stage renal failure and 18 end stage renal failure. The inflammatory status was evaluated by the determination of pro-inflammatory cytokines (tumor necrosis factor-α, interleukin-1β, interleukin-6) and total homocysteine. Pro-oxidant status was assessed by assaying thiobarbituric acid reactive substances, hydroperoxides, and protein carbonyls. Antioxidant defence was performed by analysis of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase. Inflammatory markers were elevated in the end stage renal failure group compared to the other groups (P<0.001). Indeed, an increase in thiobarbituric acid reactive substances, hydroperoxides and protein carbonyls was noted in the end stage renal failure group in comparison with the other groups (P<0.001), while the levels of antioxidants enzymes activity were decreased in the study population (P<0.001). Impaired renal function is closely associated with the elevation of inflammatory markers leading to both increased markers of oxidative stress and decreased antioxidant defense. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  2. Changes in jawbones of male patients with chronic renal failure on digital panoramic radiographs.

    PubMed

    Dagistan, Saadettin; Miloglu, Ozkan; Caglayan, Fatma

    2016-01-01

    To compare the existence of gonial cortical bone thickness, antegonial index, mandibular canal bone resorption and gonial angle values and pathologies like ground-glass appearance in jawbones and brown tumor in male patients undergoing dialysis due to chronic renal failure and men from the healthy control group on panoramic radiographs. Panoramic radiographs were taken from 80 male individuals in total (40 normal and 40 dialysis patients). Values obtained from the right and left sides of the mandible were summed and their means were calculated. Gonial cortical thickness, antegonial index and gonial angle values were assessed with the Student's t-test, mandibular canal wall resorption with the Chi-square test, and pathologies such as ground-glass appearance and Brown tumor as "available" or "not available." Statistically significant differences were observed among the antegonial index (P < 0.001), gonial cortical bone thickness (P < 0.001), and gonial angle (P < 0.001) values of study and control groups. Besides, mandibular canal wall resorption (P < 0.001) was also statistically significant. In the study group, pathologies with ground-glass appearance were encountered in mandible, but no radiographic findings were observed similar to brown tumor. Compared to the control group, decreases were found in gonial cortical bone thicknesses, antegonial index values, mandibular canal wall resorption, and gonial angle values of the patients receiving dialysis treatment due to chronic renal failure. Although it is not statistically significant, pathology with ground-glass appearance was detected in a patient, but no pathologies like brown tumor were observed. These findings from patients with chronic renal failure must be evaluated in panoramic radiography.

  3. Different reactivity to angiotensin II of peripheral and renal arteries in spontaneously hypertensive rats: effect of acute and chronic angiotensin converting enzyme inhibition

    NASA Technical Reports Server (NTRS)

    Guidi, E.; Hollenberg, N. K.

    1986-01-01

    We assessed renal blood flow and pressor responses to graded angiotensin II doses in spontaneously hypertensive (SHR) and Wistar-Kyoto (WKY) rats ingesting a diet containing 1.6% sodium basally and after acute and chronic angiotensin converting enzyme (ACE) inhibition with captopril. In the basal state the pressor response to angiotensin II was enhanced (P<0.0005) and the renal vascular response was blunted (P<0.005) in SHR compared with WKY rats. After acute captopril administration the pressor response was enhanced in both strains, and the difference between them was maintained, while the renal vascular response was enhanced in both, but more in SHR, so that the renal vascular response in the SHR became larger than in WKY (P<0.0001). Chronic captopril treatment blunted both pressor and renal responses in WKY rats, but only the pressor response in SHR. The renal vessels of SHR seem to be different from those of WKY rats in reaction to exogenous angiotensin II, and in response to both acute administration of captopril (probably acting through blockade of angiotensin II production) and chronic administration of captopril (probably acting mainly through accumulation of kinin or production of prostaglandins).

  4. Renal denervation improves cardiac function in rats with chronic heart failure: Effects on expression of β-adrenoceptors

    PubMed Central

    Zheng, Hong; Liu, Xuefei; Sharma, Neeru M.

    2016-01-01

    Chronic activation of the sympathetic drive contributes to cardiac remodeling and dysfunction during chronic heart failure (HF). The present study was undertaken to assess whether renal denervation (RDN) would abrogate the sympathoexcitation in HF and ameliorate the adrenergic dysfunction and cardiac damage. Ligation of the left coronary artery was used to induce HF in Sprague-Dawley rats. Four weeks after surgery, RDN was performed, 1 wk before the final measurements. At the end of the protocol, cardiac function was assessed by measuring ventricular hemodynamics. Rats with HF had an average infarct area >30% of the left ventricle and left ventricular end-diastolic pressure (LVEDP) >20 mmHg. β1- and β2-adrenoceptor proteins in the left ventricle were reduced by 37 and 49%, respectively, in the rats with HF. RDN lowered elevated levels of urinary excretion of norepinephrine and brain natriuretic peptide levels in the hearts of rats with HF. RDN also decreased LVEDP to 10 mmHg and improved basal dP/dt to within the normal range in rats with HF. RDN blunted loss of β1-adrenoceptor (by 47%) and β2-adrenoceptor (by 100%) protein expression and improved isoproterenol (0.5 μg/kg)-induced increase in +dP/dt (by 71%) and −dP/dt (by 62%) in rats with HF. RDN also attenuated the increase in collagen 1 expression in the left ventricles of rats with HF. These findings demonstrate that RDN initiated in chronic HF condition improves cardiac function mediated by adrenergic agonist and blunts β-adrenoceptor expression loss, providing mechanistic insights for RDN-induced improvements in cardiac function in the HF condition. PMID:27288440

  5. Cardio-renal syndromes: from foggy bottoms to sunny hills.

    PubMed

    Ronco, Claudio

    2011-11-01

    "Cardio-renal syndromes" (CRS) are disorders of the heart and kidneys whereby acute or chronic dysfunction in one organ may induce acute or chronic dysfunction of the other. The current definition has been expanded into five subtypes whose etymology reflects the primary and secondary pathology, the time-frame and simultaneous cardiac and renal co-dysfunction secondary to systemic disease: CRS type I: acute worsening of heart function (AHF-ACS) leading to kidney injury and/or dysfunction. CRS type II: chronic abnormalities in heart function (CHF-CHD) leading to kidney injury or dysfunction. CRS type III: acute worsening of kidney function (AKI) leading to heart injury and/or dysfunction. CRS type IV: chronic kidney disease (CKD) leading to heart injury, disease and/or dysfunction. CRS type V: systemic conditions leading to simultaneous injury and/or dysfunction of heart and kidney. These different subtypes may have a different pathophysiological mechanism and they may represent separate entities in terms of prevention and therapy.

  6. Protective role of apigenin in cisplatin-induced renal injury.

    PubMed

    He, Xuexiu; Li, Chunmei; Wei, Zhengkai; Wang, Jingjing; Kou, Jinhua; Liu, Weijian; Shi, Mingyu; Yang, Zhengtao; Fu, Yunhe

    2016-10-15

    This study aimed to investigate the effects and molecular mechanisms of the effects of apigenin on cisplatin (CP)-induced kidney injury in mice. Apigenin was intraperitoneally administered for 3 consecutive days before CP treatment. We found that apigenin pretreatment significantly attenuated the damage to the kidneys and decreased the levels of serum creatinine, blood urea nitrogen (BUN), glutathione peroxidase (GSH-PX) and superoxide dismutase (SOD), which were increased by CP. Apigenin significantly decreased the levels of TNF-α, IL-1β and TGFβ in the kidneys. Additionally, apigenin inhibited the activations of CYP2E1, phospho-NF-κB p65 and phospho-P38 MAPK in CP-induced renal injury. These results suggest that the renoprotective effects of apigenin may be related to the suppressions of oxidative stress and inflammation in CP-induced renal injury in mice. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Feline chronic renal failure: calcium homeostasis in 80 cases diagnosed between 1992 and 1995.

    PubMed

    Barber, P J; Elliott, J

    1998-03-01

    Eighty cats with chronic renal failure (CRF) were evaluated in a prospective study to investigate the prevalence and aetiopathogenesis of renal secondary hyperparathyroidism (RHPTH), using routine plasma biochemistry and assays of parathyroid hormone (PTH), blood ionised calcium and 1,25 dihydroxycholecalciferol (1,25[OH]2D3). Hyperparathyroidism was a frequent sequela of CRF, affecting 84 per cent of cats with CRF, the severity and prevalence of RHPTH increasing with the degree of renal dysfunction. Compared with an age-matched control population, plasma concentrations of phosphate and PTH were significantly higher and 1,25(OH)2D3 concentrations were significantly lower in the two groups of cats presenting with clinical signs of CRF. Significant ionised hypocalcaemia was present only in cats with end-stage renal failure. However, a number of cats were hyperparathyroid in the absence of abnormalities in the parameters of calcium homeostasis measured in this study. There was a significant correlation between plasma phosphate and PTH concentrations.

  8. Elevated Endothelial Hypoxia-Inducible Factor-1α Contributes to Glomerular Injury and Promotes Hypertensive Chronic Kidney Disease.

    PubMed

    Luo, Renna; Zhang, Weiru; Zhao, Cheng; Zhang, Yujin; Wu, Hongyu; Jin, Jianping; Zhang, Wenzheng; Grenz, Almut; Eltzschig, Holger K; Tao, Lijian; Kellems, Rodney E; Xia, Yang

    2015-07-01

    Hypertensive chronic kidney disease is one of the most prevalent medical conditions with high morbidity and mortality in the United States and worldwide. However, early events initiating the progression to hypertensive chronic kidney disease are poorly understood. We hypothesized that elevated endothelial hypoxia-inducible factor-1α (HIF-1α) is a common early insult triggering initial glomerular injury leading to hypertensive chronic kidney disease. To test our hypothesis, we used an angiotensin II infusion model of hypertensive chronic kidney disease to determine the specific cell type and mechanisms responsible for elevation of HIF-1α and its role in the progression of hypertensive chronic kidney disease. Genetic studies coupled with reverse transcription polymerase chain reaction profiling revealed that elevated endothelial HIF-1α is essential to initiate glomerular injury and progression to renal fibrosis by the transcriptional activation of genes encoding multiple vasoactive proteins. Mechanistically, we found that endothelial HIF-1α gene expression was induced by angiotensin II in a nuclear factor-κB-dependent manner. Finally, we discovered reciprocal positive transcriptional regulation of endothelial Hif-1α and Nf-κb genes is a key driving force for their persistent activation and disease progression. Overall, our findings revealed that the stimulation of HIF-1α gene expression in endothelial cells is detrimental to induce kidney injury, hypertension, and disease progression. Our findings highlight early diagnostic opportunities and therapeutic approaches for hypertensive chronic kidney disease. © 2015 American Heart Association, Inc.

  9. The role of renin-angiotensin-aldosterone system genes in the progression of chronic kidney disease: findings from the Chronic Renal Insufficiency Cohort (CRIC) study.

    PubMed

    Kelly, Tanika N; Raj, Dominic; Rahman, Mahboob; Kretzler, Matthias; Kallem, Radhakrishna R; Ricardo, Ana C; Rosas, Sylvia E; Tao, Kaixiang; Xie, Dawei; Hamm, Lotuce Lee; He, Jiang

    2015-10-01

    We conducted single-marker, gene- and pathway-based analyses to examine the association between renin-angiotensin-aldosterone system (RAAS) variants and chronic kidney disease (CKD) progression among Chronic Renal Insufficiency Cohort study participants. A total of 1523 white and 1490 black subjects were genotyped for 490 single nucleotide polymorphisms (SNPs) in 12 RAAS genes as part of the ITMAT-Broad-CARe array. CKD progression phenotypes included decline in estimated glomerular filtration rate (eGFR) over time and the occurrence of a renal disease event, defined as incident end-stage renal disease or halving of eGFR from baseline. Mixed-effects models were used to examine SNP associations with eGFR decline, while Cox proportional hazards models tested SNP associations with renal events. Gene- and pathway-based analyses were conducted using the truncated product method. All analyses were stratified by race, and a Bonferroni correction was applied to adjust for multiple testing. Among white and black participants, eGFR declined an average of 1.2 and 2.3 mL/min/1.73 m(2)/year, respectively, while renal events occurred in a respective 11.5 and 24.9% of participants. We identified strong gene- and pathway-based associations with CKD progression. The AGT and RENBP genes were consistently associated with risk of renal events in separate analyses of white and black participants (both P < 1.00 × 10(-6)). Driven by the significant gene-based findings, the entire RAAS pathway was also associated with renal events in both groups (both P < 1.00 × 10(-6)). No single-marker associations with CKD progression were observed. The current study provides strong evidence for a role of the RAAS in CKD progression. © The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  10. The role of renin–angiotensin–aldosterone system genes in the progression of chronic kidney disease: findings from the Chronic Renal Insufficiency Cohort (CRIC) study

    PubMed Central

    Kelly, Tanika N.; Raj, Dominic; Rahman, Mahboob; Kretzler, Matthias; Kallem, Radhakrishna R.; Ricardo, Ana C.; Rosas, Sylvia E.; Tao, Kaixiang; Xie, Dawei; Hamm, Lotuce Lee; He, Jiang; Appel, J.; Feldman, Harold I.; Go, Alan S.; Kusek, John W.; Lash, James P.; Ojo, Akinlolu; Townsend, Raymond R.

    2015-01-01

    Background We conducted single-marker, gene- and pathway-based analyses to examine the association between renin–angiotensin–aldosterone system (RAAS) variants and chronic kidney disease (CKD) progression among Chronic Renal Insufficiency Cohort study participants. Methods A total of 1523 white and 1490 black subjects were genotyped for 490 single nucleotide polymorphisms (SNPs) in 12 RAAS genes as part of the ITMAT-Broad-CARe array. CKD progression phenotypes included decline in estimated glomerular filtration rate (eGFR) over time and the occurrence of a renal disease event, defined as incident end-stage renal disease or halving of eGFR from baseline. Mixed-effects models were used to examine SNP associations with eGFR decline, while Cox proportional hazards models tested SNP associations with renal events. Gene- and pathway-based analyses were conducted using the truncated product method. All analyses were stratified by race, and a Bonferroni correction was applied to adjust for multiple testing. Results Among white and black participants, eGFR declined an average of 1.2 and 2.3 mL/min/1.73 m2/year, respectively, while renal events occurred in a respective 11.5 and 24.9% of participants. We identified strong gene- and pathway-based associations with CKD progression. The AGT and RENBP genes were consistently associated with risk of renal events in separate analyses of white and black participants (both P < 1.00 × 10−6). Driven by the significant gene-based findings, the entire RAAS pathway was also associated with renal events in both groups (both P < 1.00 × 10−6). No single-marker associations with CKD progression were observed. Conclusions The current study provides strong evidence for a role of the RAAS in CKD progression. PMID:25906781

  11. Renal Nerve Stimulation-Induced Blood Pressure Changes Predict Ambulatory Blood Pressure Response After Renal Denervation.

    PubMed

    de Jong, Mark R; Adiyaman, Ahmet; Gal, Pim; Smit, Jaap Jan J; Delnoy, Peter Paul H M; Heeg, Jan-Evert; van Hasselt, Boudewijn A A M; Lau, Elizabeth O Y; Persu, Alexandre; Staessen, Jan A; Ramdat Misier, Anand R; Steinberg, Jonathan S; Elvan, Arif

    2016-09-01

    Blood pressure (BP) response to renal denervation (RDN) is highly variable and its effectiveness debated. A procedural end point for RDN may improve consistency of response. The objective of the current analysis was to look for the association between renal nerve stimulation (RNS)-induced BP increase before and after RDN and changes in ambulatory BP monitoring (ABPM) after RDN. Fourteen patients with drug-resistant hypertension referred for RDN were included. RNS was performed under general anesthesia at 4 sites in the right and left renal arteries, both before and immediately after RDN. RNS-induced BP changes were monitored and correlated to changes in ambulatory BP at a follow-up of 3 to 6 months after RDN. RNS resulted in a systolic BP increase of 50±27 mm Hg before RDN and systolic BP increase of 13±16 mm Hg after RDN (P<0.001). Average systolic ABPM was 153±11 mm Hg before RDN and decreased to 137±10 mm Hg at 3- to 6-month follow-up (P=0.003). Changes in RNS-induced BP increase before versus immediately after RDN and changes in ABPM before versus 3 to 6 months after RDN were correlated, both for systolic BP (R=0.77, P=0.001) and diastolic BP (R=0.79, P=0.001). RNS-induced maximum BP increase before RDN had a correlation of R=0.61 (P=0.020) for systolic and R=0.71 (P=0.004) for diastolic ABPM changes. RNS-induced BP changes before versus after RDN were correlated with changes in 24-hour ABPM 3 to 6 months after RDN. RNS should be tested as an acute end point to assess the efficacy of RDN and predict BP response to RDN. © 2016 American Heart Association, Inc.

  12. Paroxysmal ventricular tachycardia and paroxysmal atrial fibrillation associated with subclinical hyperthyroidism, chronic renal failure and elevation of prostate-specific antigen during acute myocardial infarction.

    PubMed

    Patanè, Salvatore; Marte, Filippo

    2010-02-04

    Subclinical hyperthyroidism is an increasingly recognized entity that is defined as a normal serum free thyroxine and free triiodothyronine levels with a thyroid-stimulating hormone level suppressed below the normal range and usually undetectable. Paroxysmal atrial fibrillation is a frequent complication of acute myocardial infarction. It has been reported that subclinical hyperthyroidism is not associated with coronary heart disease or mortality from cardiovascular causes but it is sufficient to induce arrhythmias including an increase in atrial fibrillation rate. It has also been reported that increased factor X activity in patients with subclinical hyperthyroidism represents a potential hypercoagulable state. Moreover chronic renal failure presents an increased arrhythmic risk. Apparently spurious result has been reported in a work about mean serum prostate-specific antigen (PSA) concentration during acute myocardial infarction with mean serum PSA concentration significantly lower on day 2 than either day 1 or day 3 and it has been reported that these preliminary results could reflect several factors, such as antiinfarctual treatment, reduced physical activity or an acute-phase response. We present a case of paroxysmal ventricular tachycardia and paroxysmal atrial fibrillation associated with subclinical hyperthyroidism, chronic renal failure and elevation of serum PSA concentration in a 90-year-old Italian man during acute myocardial infarction. Also this case focuses attention on the importance of a correct evaluation of subclinical hyperthyroidism and of chronic renal failure. Moreover, our report also confirms previous findings and extends the evaluation of PSA during acute myocardial infarction. Copyright 2008 Elsevier Ireland Ltd. All rights reserved.

  13. Multiple Low-Dose Radiation Prevents Type 2 Diabetes-Induced Renal Damage through Attenuation of Dyslipidemia and Insulin Resistance and Subsequent Renal Inflammation and Oxidative Stress

    PubMed Central

    Shao, Minglong; Lu, Xuemian; Cong, Weitao; Xing, Xiao; Tan, Yi; Li, Yunqian; Li, Xiaokun; Jin, Litai; Wang, Xiaojie; Dong, Juancong; Jin, Shunzi; Zhang, Chi; Cai, Lu

    2014-01-01

    Background Dyslipidemia and lipotoxicity-induced insulin resistance, inflammation and oxidative stress are the key pathogeneses of renal damage in type 2 diabetes. Increasing evidence shows that whole-body low dose radiation (LDR) plays a critical role in attenuating insulin resistance, inflammation and oxidative stress. Objective The aims of the present study were to investigate whether LDR can prevent type 2 diabetes-induced renal damage and the underlying mechanisms. Methods Mice were fed with a high-fat diet (HFD, 40% of calories from fat) for 12 weeks to induce obesity followed by a single intraperitoneal injection of streptozotocin (STZ, 50 mg/kg) to develop a type 2 diabetic mouse model. The mice were exposed to LDR at different doses (25, 50 and 75 mGy) for 4 or 8 weeks along with HFD treatment. At each time-point, the kidney weight, renal function, blood glucose level and insulin resistance were examined. The pathological changes, renal lipid profiles, inflammation, oxidative stress and fibrosis were also measured. Results HFD/STZ-induced type 2 diabetic mice exhibited severe pathological changes in the kidney and renal dysfunction. Exposure of the mice to LDR for 4 weeks, especially at 50 and 75 mGy, significantly improved lipid profiles, insulin sensitivity and protein kinase B activation, meanwhile, attenuated inflammation and oxidative stress in the diabetic kidney. The LDR-induced anti-oxidative effect was associated with up-regulation of renal nuclear factor E2-related factor-2 (Nrf-2) expression and function. However, the above beneficial effects were weakened once LDR treatment was extended to 8 weeks. Conclusion These results suggest that LDR exposure significantly prevented type 2 diabetes-induced kidney injury characterized by renal dysfunction and pathological changes. The protective mechanisms of LDR are complicated but may be mainly attributed to the attenuation of dyslipidemia and the subsequent lipotoxicity-induced insulin resistance

  14. Cooperative mechanisms involved in chronic antidiuretic response to bendroflumethiazide in rats with lithium-induced nephrogenic diabetes insipidus.

    PubMed

    Moosavi, S M S; Karimi, Z

    2014-03-01

    Previous studies of central diabetes insipidus suggested that thiazides acutely exerted a paradoxical antidiuresis by either indirectly activating volume-homeostatic reflexes to decrease distal fluid-delivery, or directly stimulating distal water-reabsorption. This study investigated whether the direct and indirect actions of bendroflumethiazide (BFTZ) simultaneously cooperated and also whether the renal nerves were involved in inducing long-term antidiuresis in nephrogenic diabetes insipidus (NDI). BFTZ or vehicle was gavaged into bilateral renal denervated and innervated rats with lithium-induced NDI for 10 days, constituting four groups. At one day before (D0) and one, five and ten days after starting administration of BFTZ or vehicle, rats were placed in metabolic cages to collect urine for 6 hours. BFTZ-treatment in both renal innervated and denervated rats caused equivalent reductions in urine-flow, creatinine clearance, lithium clearance and free-water clearance, but rises in urine-osmolality, fractional proximal reabsorption and fractional distal reabsorption at all days compared to D0, as well as to those of their relevant vehicle-received group. Therefore, the chronic antidiuretic response to BFTZ in conscious NDI rats was exerted through a concomitant cooperation of its direct distal effect of stimulating water-reabsorption and its indirect effect of reducing distal fluid-delivery by activating volume-homeostatic mechanisms, which appeared independent of the renal nerves.

  15. [A retrospective study on the incidence of chronic renal failure in the Department of Internal Medicine and Nephrology at University Hospital of Antananarivo (the capital city of Madagascar)].

    PubMed

    Ramilitiana, Benja; Ranivoharisoa, Eliane Mikkelsen; Dodo, Mihary; Razafimandimby, Evanirina; Randriamarotia, Willy Franck

    2016-01-01

    Chronic renal failure is a global public health problem. In developed countries, this disease occurs mainly in the elderly, but in Africa it rather affects active young subjects. This disease need for expensive treatments in a low income country, because of its costs. Our aim is to describe the epidemiology of new cases of chronic renal failure in Madagascar. This is a retrospective, descriptive study of 239 patients with chronic renal failure over a 3 year period, starting from 1 January 2007 to 31 December 2009, in the Department of Internal Medicine and Nephrology at University Hospital of Antananarivo. The incidence was 8.51% among patients hospitalized in the Department. The average age of patients was 45.4 years with extremes of 16 and 82 years and a sex ratio 1,46. The main antecedent was arterial hypertension (59.8%). Chronic renal failure was terminal in 75.31% of the cases (n=180). The causes of chronic renal failure were dominated by chronic glomerulonephritis (40.1%), nephroangiosclerosis (35.5%). Hemodialysis was performed in 3 patients (1.26%), no patient was scheduled for a renal transplantation. Mortality rate in the Department was 28.87%. Chronic renal failure is a debilitating disease with a dreadful prognosis which affects young patients in Madagascar. Its treatment remains inaccessible to the majority of patients. The focus must be mainly on prevention, especially on early effective management of infections, arterial hypertension and diabetes to reduce its negative impacts on the community and public health. The project on renal transplantation: living donor, effective and less expensive treatment compared to hemodialysis could also be a good solution for these Malagasy young subjects.

  16. Calcineurin inhibitor-induced complement system activation via ERK1/2 signalling is inhibited by SOCS-3 in human renal tubule cells.

    PubMed

    Loeschenberger, Beatrix; Niess, Lea; Würzner, Reinhard; Schwelberger, Hubert; Eder, Iris E; Puhr, Martin; Guenther, Julia; Troppmair, Jakob; Rudnicki, Michael; Neuwirt, Hannes

    2018-02-01

    One factor that significantly contributes to renal allograft loss is chronic calcineurin inhibitor (CNI) nephrotoxicity (CIN). Among other factors, the complement (C-) system has been proposed to be involved CIN development. Hence, we investigated the impact of CNIs on intracellular signalling and the effects on the C-system in human renal tubule cells. In a qPCR array, CNI treatment upregulated C-factors and downregulated SOCS-3 and the complement inhibitors CD46 and CD55. Additionally, ERK1/-2 was required for these regulations. Following knock-down and overexpression of SOCS-3, we found that SOCS-3 inhibits ERK1/-2 signalling. Finally, we assessed terminal complement complex formation, cell viability and apoptosis. Terminal complement complex formation was induced by CNIs. Cell viability was significantly decreased, whereas apoptosis was increased. Both effects were reversed under complement component-depleted conditions. In vivo, increased ERK1/-2 phosphorylation and SOCS-3 downregulation were observed at the time of transplantation in renal allograft patients who developed a progressive decline of renal function in the follow-up compared to stable patients. The progressive cohort also had lower total C3 levels, suggesting higher complement activity at baseline. In conclusion, our data suggest that SOCS-3 inhibits CNI-induced ERK1/-2 signalling, thereby blunting the negative control of C-system activation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Embryonic kidney function in a chronic renal failure model in rodents.

    PubMed

    Fujimoto, Eisuke; Yamanaka, Shuichiro; Kurihara, Sho; Tajiri, Susumu; Izuhara, Luna; Katsuoka, Yuichi; Yokote, Shinya; Matsumoto, Kei; Kobayashi, Eiji; Okano, Hirotaka James; Chikaraishi, Tatsuya; Yokoo, Takashi

    2017-08-01

    Rapid advancements have been made in alternative treatments for renal diseases. Our goal for renal regeneration is to establish a kidney graft derived from human embryonic tissues. In this study, we investigated the effects of host renal failure on the structure and activity of transplanted embryonic kidney and bladder, and found that diuretics effectively induced urine production in the transplanted kidney. Uremic conditions were reproduced using a 5/6 renal infarction rat model. An embryonic kidney plus bladder (embryonic day 15) was isolated from a pregnant Lewis rat and transplanted into the para-aortic area of a 5/6 renal-infarcted Lewis rat. Following growth, the embryonic bladder was successfully anastomosed to the host ureter. We assessed graft function in terms of survival rates and found no differences between normal (n = 5) and renal failure (n = 8) groups (median survival: 70.5 vs 74.5 h; p = 0.331) in terms of survival, indicating that the grafts prolonged rat survival, even under renal failure conditions. Furosemide (n = 9) significantly increased urine volume compared with saline-treated controls (n = 7; p < 0.05), confirming that the grafts were functional. We also demonstrated the possibilities of an in vivo imaging system for determining the viability of transplanted embryonic kidney with bladder. The results of this study demonstrate that transplanted embryonic kidney and bladder can grow and function effectively, even under uremic conditions.

  18. Effects of adding Rheum officinale to angiotensin-converting enzyme inhibitors or angiotensin receptor blockers on renal function in patients with chronic renal failure: A meta-analysis of randomized controlled trials
.

    PubMed

    Yang, Yue; Ma, Ye-Ping; Zhang, Zheng; Dai, Pei-Lin; Li, Ping; Li, Wen-Ge

    2018-06-01

    Rheum officinale is a traditional medicinal herb used widely in China to treat chronic renal failure, but the proof of evidence-based medicine is poor. This meta-analysis aims to assess the benefits of angiotensin-converting enzyme inhibitors (ACEIs) or angiotensin receptor blockers (ARBs) supplemented with Rheum officinale for delaying the progression of chronic renal failure. The MEDLINE, EMBASE, Cochrane Library, SinoMed, Chinese National Knowledge Infrastructure, Wanfang, and VIP databases were searched to identify studies published before September 2016 that investigated the effects of ACEI/ARB plus the Chinese patented medicine Rheum (CPM-Rheum) compared to ACEI/ARB alone in lowering serum creatinine (SCr) and blood urea nitrogen (BUN) levels in chronic renal failure patients. Review Manager 5.3 was used to perform the meta-analysis. Fixed- and random-effects models were used to analyze the data. The meta-analysis included nine clinical trials. Comparisons of patients before and after treatment with ACEI/ARB plus CPM-Rheum or ACEI/ARB alone revealed that ACEI/ARB plus CPM-Rheum resulted in significantly greater reductions in SCr (short-term: weighted mean difference (WMD): 17.26, 95% confidence interval (CI): 7.28 - 27.24; long-term: WMD: 63.71, 95% CI: 51.01 - 76.41) and BUN (short-term: WMD: 1.70, 95% CI: 1.27 - 2.12; long-term: WMD: 3.98, 95% CI: 3.14 - 4.82) than ACEI/ARB alone. In patients with chronic renal failure, the addition of CPM-Rheum to ACEI/ARB significantly lowered both SCr and BUN, particularly after long-term administration. Thus, the combination of ACEI/ARB and CPM-Rheum may improve the treatment of patients with impaired renal function.
.

  19. Synthesis of adenine-modified reduced graphene oxide nanosheets.

    PubMed

    Cao, Huaqiang; Wu, Xiaoming; Yin, Gui; Warner, Jamie H

    2012-03-05

    We report here a facile strategy to synthesize the nanocomposite of adenine-modified reduced graphene oxide (AMG) via reaction between adenine and GOCl which is generated from SOCl(2) reacted with graphite oxide (GO). The as-synthesized AMG was characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), UV-vis absorption spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), and galvanostatic discharge analysis. The AMG owns about one adenine group per 53 carbon atoms on a graphene sheet, which improves electronic conductivity compared with reduced graphene oxide (RGO). The AMG displays enhanced supercapacitor performance compared with RGO accompanying good stability and good cycling behavior in the supercapacitor.

  20. Plasma pentosidine levels measured by a newly developed method using ELISA in patients with chronic renal failure.

    PubMed

    Sanaka, Tsutomu; Funaki, Takenori; Tanaka, Toshihisa; Hoshi, Sayako; Niwayama, Jyun; Taitoh, Takashi; Nishimura, Hideki; Higuchi, Chieko

    2002-05-01

    The plasma pentosidine levels in patients with renal disease were measured by a simple method which was established for plasma and urinary pentosidine determinations. The method, which can be completed within a few hours, involves pretreating plasma with proteolytic enzyme (pronase) and measuring the concentration of pentosidine in the sample by ELISA using antipentosidine antibodies. The prepared antibodies showed no cross-reaction with the raw materials for pentosidine synthesis or with compounds having similar structures. SDS-PAGE indicated that the antibodies had a high purity. The reaction of the antibodies and keyhole limpet hemocyanin-pentosidine in the competitive ELISA system was inhibited by free pentosidine. Excellent standard curves for pentosidine determination were obtained. In actual measurements of clinical samples from patients, a good correlation (r = 0.9356) was obtained between the values measured by ELISA and HPLC. The plasma pentosidine level in patients with renal disease correlated significantly with plasma creatinine, urea nitrogen, beta2-microglobulin, and creatinine clearance, indicating its usefulness in evaluating the severity of renal disease. A significant elevation in plasma pentosidine levels was observed in mild renal dysfunction, whereas no significant increases in creatinine and urea nitrogen levels were detected, suggesting that the plasma pentosidine level is useful in the early diagnosis of beginning renal failure. In patients with chronic renal failure, no difference in plasma pentosidine levels was observed between diabetic nephropathy and chronic glomerulonephritis, while a significant correlation was observed with phosphatidylcholine hydroperoxide, suggesting the possibility that the plasma pentosidine level reflects injury due to oxidation. From these results, the quantitative measurement method developed by us is judged to be a superior innovation for measuring pentosidine in body fluids. The plasma pentosidine level may

  1. Interaction of Gender and Hepatitis C in Risk of Chronic Renal Failure After Liver Transplantation.

    PubMed

    Ip, Stephen; Hussaini, Trana; Daulat, Aliya; Partovi, Nilufar; Erb, Siegfried R; Yoshida, Eric M; Marquez, Vladimir

    2017-01-01

    Chronic renal failure (CRF) is a significant cause of morbidity and mortality in post-liver transplantation (LT) recipients. The risk factors associated with the development of renal dysfunction are not clearly elucidated. To examine the risk factors in the development of CRF in these patients. Retrospective case-cohort of liver transplant patients without baseline kidney dysfunction who developed chronic renal failure during their follow-up. Of 370 patients, 254 met the inclusion criteria. 30% (76) of these patients had CRF of which 57% (43) were male. Age, estimated glomerular filtration rate (eGFR) at discharge, and HCV infection were found to be risk factors for CRF post-LT. The odds ratio of developing CRF was 1.4 (0.6-3.3) in males with HCV, 1.6 (0.7-3.9) in females without HCV and 4.4 (1.5-13.2) among females with HCV when compared to men without HCV. In this cohort of LT receipients of a major Canadian city, age, eGFR, and HCV infection were risk factors for CRF. Female gender and HCV increased this odds by a factor of more than 4.

  2. Staphylococcus aureus Sepsis Induces Early Renal Mitochondrial DNA Repair and Mitochondrial Biogenesis in Mice

    PubMed Central

    Bartz, Raquel R.; Fu, Ping; Suliman, Hagir B.; Crowley, Stephen D.; MacGarvey, Nancy Chou; Welty-Wolf, Karen; Piantadosi, Claude A.

    2014-01-01

    Acute kidney injury (AKI) contributes to the high morbidity and mortality of multi-system organ failure in sepsis. However, recovery of renal function after sepsis-induced AKI suggests active repair of energy-producing pathways. Here, we tested the hypothesis in mice that Staphyloccocus aureus sepsis damages mitochondrial DNA (mtDNA) in the kidney and activates mtDNA repair and mitochondrial biogenesis. Sepsis was induced in wild-type C57Bl/6J and Cox-8 Gfp-tagged mitochondrial-reporter mice via intraperitoneal fibrin clots embedded with S. aureus. Kidneys from surviving mice were harvested at time zero (control), 24, or 48 hours after infection and evaluated for renal inflammation, oxidative stress markers, mtDNA content, and mitochondrial biogenesis markers, and OGG1 and UDG mitochondrial DNA repair enzymes. We examined the kidneys of the mitochondrial reporter mice for changes in staining density and distribution. S. aureus sepsis induced sharp amplification of renal Tnf, Il-10, and Ngal mRNAs with decreased renal mtDNA content and increased tubular and glomerular cell death and accumulation of protein carbonyls and 8-OHdG. Subsequently, mtDNA repair and mitochondrial biogenesis was evidenced by elevated OGG1 levels and significant increases in NRF-1, NRF-2, and mtTFA expression. Overall, renal mitochondrial mass, tracked by citrate synthase mRNA and protein, increased in parallel with changes in mitochondrial GFP-fluorescence especially in proximal tubules in the renal cortex and medulla. Sub-lethal S. aureus sepsis thus induces widespread renal mitochondrial damage that triggers the induction of the renal mtDNA repair protein, OGG1, and mitochondrial biogenesis as a conspicuous resolution mechanism after systemic bacterial infection. PMID:24988481

  3. Decreased contraction induced by endothelium-derived contracting factor in prolonged treatment of rat renal artery with endoplasmic reticulum stress inducer.

    PubMed

    Ando, Makoto; Matsumoto, Takayuki; Taguchi, Kumiko; Kobayashi, Tsuneo

    2018-05-04

    Recent evidence suggests that endoplasmic reticulum (ER) stress is involved in the regulation of various physiological functions, including those of the vascular system. However, the relationship between ER stress and vascular function is poorly understood. The endothelial cells control the vascular tone by releasing endothelium-derived relaxing factors and contracting factors (EDCFs). We hypothesized that tunicamycin, an inducer of ER stress, modifies endothelium-dependent contraction and prostaglandins (PGs), a major class of EDCFs, induced contractions in the rat renal artery in rats. An organ-culture technique was used to purely investigate the effects of ER stress on the vascular tissue. We observed that tunicamycin treatment (20 μg/mL for 23 ± 1 h) did not affect acetylcholine (ACh)-induced relaxation and decreased EDCF-mediated contractions under nitric oxide synthase (NOS) inhibition induced by ACh, ATP, or A23187 (a calcium ionophore) in the renal arteries. Under NOS inhibition, U46619 (a thromboxane A 2 mimetic)- and beraprost (a prostacyclin analog)-induced contractions were also decreased in the renal arteries of the tunicamycin-treated group (vs. vehicle), while PGE 2 - and PGF 2α -induced contractions were similar between the groups. Tunicamycin treatment slightly enhanced the contractions induced by phenylephrine, an α 1 adrenoceptor ligand. Isotonic high-K + -induced contractions were similar between the vehicle- and tunicamycin-treated groups. Another ER stress inducer, thapsigargin (4 μmol/L for 23 ± 1 h), also caused substantial reduction of ACh-induced EDCF-mediated contraction (vs. vehicle-treated group). In the cultured renal arteries, tunicamycin and thapsigargin increased the expression of binding immunoglobulin protein (BiP), an ER stress marker. In conclusion, ER stress induction directly affects renal arterial function, especially in reducing EDCF-mediated contractions.

  4. Occupational exposure to respirable crystalline silica and chronic non-malignant renal disease: systematic review and meta-analysis.

    PubMed

    Möhner, Matthias; Pohrt, Anne; Gellissen, Johannes

    2017-10-01

    While occupational exposure to respirable silica is known to lead to lung disease, most notably silicosis, its association with chronic kidney disease is unclear. This review explores the association between occupational exposure to respirable silica and chronic non-malignant renal disease such as glomerulonephritis. The evidence has been collected and compiled. Possible sources of bias are thoroughly discussed. Cohort studies with silica exposure and case-control studies of renal disease were searched in PubMed until January 2015. Two authors independently abstracted data; any disagreement was resolved by consulting a third reviewer. A meta-analysis was performed to evaluate the association to silica exposure. A total of 23 cohort and four case-control studies were included in the analysis. The meta-analysis of cohort studies yielded elevated overall SMRs for renal disease. Some studies, however, included dose-response analyses, most of which did not show a positive trend. The approaches and results of the case-control studies were very heterogeneous. While the studies of cohorts exposed to silica found elevated SMRs for renal disease, no clear evidence of a dose-response relationship emerged. The elevated risk may be attributed to diagnostic and methodological issues. In order to permit a reliable estimation of a possible causal link, exposed cohorts should be monitored for renal disease, as the information from mortality studies is hardly reliable in this field.

  5. The NLRP3 inflammasome is a potential target of ozone therapy aiming to ease chronic renal inflammation in chronic kidney disease.

    PubMed

    Yu, Gang; Bai, Zhiming; Chen, Zhiyuan; Chen, Hui; Wang, Guoren; Wang, Gang; Liu, Zhenxiang

    2017-02-01

    Ozone therapy is an effective medical treatment for various diseases. A previous study has demonstrated its reno-protective effect in chronic kidney disease (CKD), but the mechanism involved is not completely known. This study produced the 5/6 nephrectomized CKD rat model and investigated whether the reno-protective effect of ozone therapy was achieved by its anti-inflammatory property through the modulation of the NLRP3 inflammasome. The results showed that ozone therapy at a low concentration improved renal function and ameliorated renal morphological injury in 5/6 nephrectomized rats. The expression of NLRP3, ASC, and caspase-1-p10 in the kidney of these rats was simultaneously lowered by ozone therapy. Moreover, renal inflammation caused by IL-1β was significantly alleviated by ozone therapy. The Pearson correlation analysis indicated that the protein level of IL-1β was positively correlated with renal injury scores. Taken together, these results indicated that ozone therapy might reduce sterile renal inflammation and slow down CKD progression through the modulation of the NLRP3 inflammasome in 5/6 nephrectomized rats. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Sinomenine Hydrochloride Attenuates Renal Fibrosis by Inhibiting Excessive Autophagy Induced by Adriamycin: An Experimental Study

    PubMed Central

    Zhao, Ming-ming

    2017-01-01

    The objective of this study is to investigate if sinomenine hydrochloride (SIN-HCl) could be effective against adriamycin-induced renal fibrosis by regulating autophagy in a rat model. Forty male Sprague-Dawley (SD) rats were randomly divided into control group, model group, telmisartan group, and SIN-HCl group; rat model was induced by adriamycin; all rats were given intragastric administration for 6 weeks. Urine was collected from rats in metabolic cages to determine 24 h protein level. This was done after intragastric administration for the first two weeks and then once for every two weeks. Renal pathological changes were examined by the staining of HE, Masson, and PASM. Expressions and distributions of fibronectin (FN), laminin (LN), light chain 3 (LC3), and Beclin-1 were observed by immunohistochemistry. SIN-HCl ameliorates proteinuria, meanwhile attenuating the renal pathological changes in adriamycin-induced rats and also attenuating renal fibrosis and excessive autophagy by reducing the expression of FN, LN, LC3, and Beclin-1. SIN-HCl attenuates renal fibrosis by inhibiting excessive autophagy induced by adriamycin and upregulates the basal autophagy. PMID:28798804

  7. Renal insufficiency following contrast media administration trial II (REMEDIAL II): RenalGuard system in high-risk patients for contrast-induced acute kidney injury: rationale and design.

    PubMed

    Briguori, Carlo; Visconti, Gabriella; Ricciardelli, Bruno; Condorelli, Gerolama

    2011-04-01

    The combined prophylactic strategy of sodium bicarbonate plus N-acetylsyteine (NAC) seems to be effective in preventing contrast induced acute kidney injury (CI-AKI) in patients at low-to-medium risk. However, in patients at high and very high risk the rate of CI-AKI is still high. In this subset of patients the anticipated advantages of the RenalGuard(tm) System should be investigated. The RenalGuard(tm) System (PLC Medical Systems, Inc., Franklin, MA, USA) is a real-time measurement and real time matched fluid replacement device designed to accommodate the RenalGuard therapy, which is based on the theory that creating and maintaining a high urine output is beneficial by allowing a quick elimination of contrast media, and, therefore, reducing its toxic effects. The REMEDIAL II trial is a randomised, multicentre, investigator-sponsored trial addressing the hypothesis that the RenalGuard System is superior to the prophylaxis with sodium bicarbonate infusion plus NAC in preventing CI-AKI in high and very high risk patients. Consecutive patients with chronic kidney disease (CKD) and at high to very high risk for CI-AKI, referred to our institutions for coronary and/or peripheral procedures, will be randomly assigned to 1) prophylactic administration of sodium bicarbonate plus NAC (control group) and 2) RenalGuard System treatment (RenalGuard group). All enrolled patients must have an estimated glomerular filtration rate ≤ 30 ml/min/1.73 m2 and/or a contrast nephropathy risk score ≥ 11. In all cases iodixanol (an iso-osmolar, non-ionic contrast agent) will be administered. The primary endpoint is an increase of ≥ 0.3 mg/dL in the serum creatinine concentration 48 hours after the procedure. The REMEDIAL II trial will give important answers on how to prevent CI-AKI in high and very high risk patients undergoing contrast media exposure.

  8. Does elevation of serum creatinine in patients with chronic hepatitis C under therapy of telaprevir mean renal impairment?

    PubMed

    Matsui, Katsuomi; Kamijo-Ikemori, Atsuko; Sugaya, Takeshi; Ikeda, Hiroki; Okuse, Chiaki; Shibagaki, Yugo; Yasuda, Takashi; Kimura, Kenjiro

    2015-11-01

    Treatment with telaprevir (TVR) entails adverse side-effects including anaemia and elevation of serum creatinine (SCr) level. Our purpose was to evaluate the effects of treatment with TVR on renal function in adults with chronic hepatitis C. Thirteen adult patients with HCV genotype 1b who were scheduled to be treated with TVR, pegylated interferon (PEG IFN), and ribavirin (RBV) were prospectively followed. Patients were divided into two groups: (i) patients with an increase in SCr during the treatment (n = 8), and (ii) patients without an increase in SCr (n = 5). Urine and serum parameters were evaluated. Although there was no difference in SCr level between the two groups before HCV therapy, the SCr level was persistently high in the patients in the increase-in-SCr group during the triple therapy. The SCr level returned to the pre-treatment level after cessation of TVR. There were no differences in urinary L-FABP, NAG, serum cystatin C level and eGFRcys throughout the study between the two groups. The serum cystatin C level at pre-treatment tended to be higher in the increase-in-SCr group. Urinary L-FABP and NAG levels in these groups remained within normal limits during treatment. We found that the increase in SCr was not associated with the degree of renal impairment. The increase in SCr may have been induced as a result of a decrease in creatinine secretion from proximal tubules via inhibition of transporters of creatinine induced by TVR. Elevation of SCr levels with TVR therapy may not suggest renal impairment. © 2015 Asian Pacific Society of Nephrology.

  9. Adenine and 2-aminopurine: paradigms of modern theoretical photochemistry.

    PubMed

    Serrano-Andrés, Luis; Merchán, Manuela; Borin, Antonio C

    2006-06-06

    Distinct photophysical behavior of nucleobase adenine and its constitutional isomer, 2-aminopurine, has been studied by using quantum chemical methods, in particular an accurate ab initio multiconfigurational second-order perturbation theory. After light irradiation, the efficient, ultrafast energy dissipation observed for nonfluorescent 9H-adenine is explained here by the nonradiative internal conversion process taking place along a barrierless reaction path from the initially populated 1(pipi* La) excited state toward a low-lying conical intersection (CI) connected with the ground state. In contrast, the strong fluorescence recorded for 2-aminopurine at 4.0 eV with large decay lifetime is interpreted by the presence of a minimum in the 1(pipi* La) hypersurface lying below the lowest CI and the subsequent potential energy barrier required to reach the funnel to the ground state. Secondary deactivation channels were found in the two systems related to additional CIs involving the 1(pipi* Lb) and 1(npi*) states. Although in 9H-adenine a population switch between both states is proposed, in 7H-adenine this may be perturbed by a relatively larger barrier to access the 1(npi*) state, and, therefore, the 1(pipi* Lb) state becomes responsible for the weak fluorescence measured in aqueous adenine at approximately 4.5 eV. In contrast to previous models that explained fluorescence quenching in adenine, unlike in 2-aminopurine, on the basis of the vibronic coupling of the nearby 1(pipi*) and 1(npi*) states, the present results indicate that the 1(npi*) state does not contribute to the leading photophysical event and establish the prevalence of a model based on the CI concept in modern photochemistry.

  10. Cinnamaldehyde impairs high glucose-induced hypertrophy in renal interstitial fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chao, Louis Kuoping; Chang, W.-T.; Shih, Y.-W.

    2010-04-15

    Cinnamaldehyde is a major and a bioactive compound isolated from the leaves of Cinnamomum osmophloeum kaneh. To explore whether cinnamaldehyde was linked to altered high glucose (HG)-mediated renal tubulointerstitial fibrosis in diabetic nephropathy (DN), the molecular mechanisms of cinnamaldehyde responsible for inhibition of HG-induced hypertrophy in renal interstitial fibroblasts were examined. We found that cinnamaldehyde caused inhibition of HG-induced cellular mitogenesis rather than cell death by either necrosis or apoptosis. There were no changes in caspase 3 activity, cleaved poly(ADP-ribose) polymerase (PARP) protein expression, and mitochondrial cytochrome c release in HG or cinnamaldehyde treatments in these cells. HG-induced extracellular signal-regulatedmore » kinase (ERK)/c-Jun N-terminal kinase (JNK)/p38 mitogen-activated protein kinase (MAPK) (but not the Janus kinase 2/signal transducers and activators of transcription) activation was markedly blocked by cinnamaldehyde. The ability of cinnamaldehyde to inhibit HG-induced hypertrophy was verified by the observation that it significantly decreased cell size, cellular hypertrophy index, and protein levels of collagen IV, fibronectin, and alpha-smooth muscle actin (alpha-SMA). The results obtained in this study suggest that cinnamaldehyde treatment of renal interstitial fibroblasts that have been stimulated by HG reduces their ability to proliferate and hypertrophy through mechanisms that may be dependent on inactivation of the ERK/JNK/p38 MAPK pathway.« less

  11. Renal targeting potential of a polymeric drug carrier, poly-l-glutamic acid, in normal and diabetic rats

    PubMed Central

    Chai, Hann-Juang; Kiew, Lik-Voon; Chin, Yunni; Norazit, Anwar; Mohd Noor, Suzita; Lo, Yoke-Lin; Looi, Chung-Yeng; Lau, Yeh-Siang; Lim, Tuck-Meng; Wong, Won-Fen; Abdullah, Nor Azizan; Abdul Sattar, Munavvar Zubaid; Johns, Edward J; Chik, Zamri; Chung, Lip-Yong

    2017-01-01

    Background and purpose Poly-l-glutamic acid (PG) has been used widely as a carrier to deliver anticancer chemotherapeutics. This study evaluates PG as a selective renal drug carrier. Experimental approach 3H-deoxycytidine-labeled PGs (17 or 41 kDa) and 3H-deoxycytidine were administered intravenously to normal rats and streptozotocin-induced diabetic rats. The biodistribution of these compounds was determined over 24 h. Accumulation of PG in normal kidneys was also tracked using 5-(aminoacetamido) fluorescein (fluoresceinyl glycine amide)-labeled PG (PG-AF). To evaluate the potential of PGs in ferrying renal protective anti-oxidative stress compounds, the model drug 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride (AEBSF) was conjugated to 41 kDa PG to form PG-AEBSF. PG-AEBSF was then characterized and evaluated for intracellular anti-oxidative stress efficacy (relative to free AEBSF). Results In the normal rat kidneys, 17 kDa radiolabeled PG (PG-Tr) presents a 7-fold higher, while 41 kDa PG-Tr shows a 15-fold higher renal accumulation than the free radiolabel after 24 h post injection. The accumulation of PG-AF was primarily found in the renal tubular tissues at 2 and 6 h after an intravenous administration. In the diabetic (oxidative stress-induced) kidneys, 41 kDa PG-Tr showed the greatest renal accumulation of 8-fold higher than the free compound 24 h post dose. Meanwhile, the synthesized PG-AEBSF was found to inhibit intracellular nicotinamide adenine dinucleotide phosphate oxidase (a reactive oxygen species generator) at an efficiency that is comparable to that of free AEBSF. This indicates the preservation of the anti-oxidative stress properties of AEBSF in the conjugated state. Conclusion/Implications The favorable accumulation property of 41 kDa PG in normal and oxidative stress-induced kidneys, along with its capabilities in conserving the pharmacological properties of the conjugated renal protective drugs, supports its role as a potential renal

  12. Dose-adjusted arsenic trioxide for acute promyelocytic leukaemia in chronic renal failure.

    PubMed

    Firkin, Frank; Roncolato, Fernando; Ho, Wai Khoon

    2015-10-01

    To determine the potential for arsenic trioxide (ATO) to be safely and effectively incorporated into induction therapy of newly diagnosed acute promyelocytic leukaemia (APL) in patients with severe chronic renal failure (CRF) by reduction of the ATO dosage to compensate for reduced renal elimination of arsenic in CRF. Two of the four CRF patients with APL in the study were dialysis-dependent, and two had eGFRs of 18 and 19 mL/min/1.73 m(2) . ATO dosage schedules were adjusted to obtain comparable whole-blood arsenic levels to those in APL patients with normal renal function who achieved molecular remission (MR) while receiving 10 mg ATO daily for 28 d. Average ATO administered per day in CRF patients ranged from 36 to 50% of the ATO administered to APL patients with normal renal function. No clinically significant cardiac, hepatic or other toxicities were detected. RT-PCR-negative MR was achieved after one treatment course in two patients and after two courses in the others. Relapse-free survival is 155, 60, 43 and 5 months. The observations in this pilot study have demonstrated whole-blood arsenic levels can provide a guide to adjustments of ATO dosage schedules that permit safe and effective therapeutic outcomes in APL patients with severely compromised renal function. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Acceptance and effects of a therapeutic renal food in pet cats with chronic kidney disease

    PubMed Central

    Fritsch, Dale A; Jewell, Dennis E

    2015-01-01

    Introduction Renal foods are used to manage chronic kidney disease (CKD) in dogs and cats, but their effectiveness may be limited by the ability to transition animals to them. Material and Methods In a prospective study, pet cats with previously undiagnosed kidney disease (20 International Renal Interest Society (IRIS) 1, 61 IRIS 2, 14 IRIS 3/4, 33 at risk for CKD) were transitioned to a renal food. Markers of renal function were measured and owners answered questionnaires about their pet over one year. Results All but eight cats (120/128; 94 per cent) successfully transitioned to the renal food. Most of the time, cats moderately or extremely liked the food (89 per cent), ate at least half (73 per cent) and were moderately or extremely enthusiastic while eating (68 per cent). Cats rarely disliked the food (2 per cent) or refused to eat it (1 per cent). Markers of renal function were unchanged in IRIS 1 and 2 cats and changed little in IRIS 3/4 cats. In all groups, owner-assessed quality of life improved initially and then remained stable. Mean bodyweight did not change in cats with CKD. Conclusions Most cats with CKD successfully transitioned to the renal food. The results also support previous studies that the renal food can help stabilise cats with CKD. PMID:26587240

  14. Role of TGF-β in a Mouse Model of High Turnover Renal Osteodystrophy†

    PubMed Central

    Liu, Shiguang; Song, Wenping; Boulanger, Joseph H; Tang, Wen; Sabbagh, Yves; Kelley, Brian; Gotschall, Russell; Ryan, Susan; Phillips, Lucy; Malley, Katie; Cao, Xiaohong; Xia, Tai-He; Zhen, Gehua; Cao, Xu; Ling, Hong; Dechow, Paul C; Bellido, Teresita M; Ledbetter, Steven R; Schiavi, Susan C

    2014-01-01

    Altered bone turnover is a key pathologic feature of chronic kidney disease-mineral and bone disorder (CKD-MBD). Expression of TGF-β1, a known regulator of bone turnover, is increased in bone biopsies from individuals with CKD. Similarly, TGF-β1 mRNA and downstream signaling is increased in bones from jck mice, a model of high-turnover renal osteodystropy. A neutralizing anti-TGF-β antibody (1D11) was used to explore TGF-βs role in renal osteodystrophy. 1D11 administration to jck significantly attenuated elevated serum osteocalcin and type I collagen C-telopeptides. Histomorphometric analysis indicated that 1D11 administration increased bone volume and suppressed the elevated bone turnover in a dose-dependent manner. These effects were associated with reductions in osteoblast and osteoclast surface areas. μCT confirmed the observed increase in trabecular bone volume and demonstrated improvements in trabecular architecture and increased cortical thickness. 1D11 administration was associated with significant reductions in expression of osteoblast marker genes (Runx2, alkaline phosphatase, osteocalcin) and the osteoclast marker gene, Trap5. Importantly, in this model, 1D11 did not improve kidney function or reduce serum PTH levels indicating that 1D11 effects on bone are independent of changes in renal or parathyroid function. 1D11 also significantly attenuated high turnover bone disease in the adenine-induced uremic rat model. Antibody administration was associated with a reduction in pSMAD2/SMAD2 in bone but not bone marrow as assessed by quantitative immunoblot analysis. Immunostaining revealed pSMAD staining in osteoblasts and osteocytes but not osteoclasts, suggesting 1D11 effects on osteoclasts may be indirect. Immunoblot and whole genome mRNA expression analysis confirmed our previous observation that repression of Wnt/β catenin expression in bone is correlated with increased osteoclast activity in jck mice and bone biopsies from CKD patients. Furthermore

  15. Progression of Renal Impairment and Chronic Kidney Disease in Chronic Heart Failure: An Analysis From GISSI-HF.

    PubMed

    Damman, Kevin; Masson, Serge; Lucci, Donata; Gorini, Marco; Urso, Renato; Maggioni, Aldo P; Tavazzi, Luigi; Tarantini, Luigi; Tognoni, Gianni; Voors, Adriaan; Latini, Roberto

    2017-01-01

    Data on the natural change in renal function in patients with chronic heart failure (HF) are limited. Estimated glomerular filtration rate (eGFR) was assessed over 36 months in 6934 patients included in the GISSI-HF study. Associations from baseline, changes in renal function, and occurrence of cardiovascular death or HF hospitalization were assessed. Mean age was 67 years, mainly men (78%), and mean eGFR was 68 mL • min -1  • 1.73 m -2 . Change in eGFR in the 1st year was -1.5 ± 16 mL • min -1  • 1.73 m -2 , and over 36 months it was -3.7 ± 18 mL • min -1  • 1.73 m -2 . Over the latter period, only 25% deteriorated ≥1 Kidney Disease Outcomes Quality Initiatives (KDOQI) class of chronic kidney disease (CKD). Fifteen percent of patients had >15 mL • min -1  • 1.73 m -2 decrease in eGFR in the 1st 12 months. Lower eGFR was associated with outcome: hazard ratio (HR) 1.10, 95% confidence interval (CI) 1.08-1.10 (P < .001) per 10 mL • min -1  • 1.73 m -2 decrease, as well as every 10 mL • min -1  • 1.73 m -2 decrease over the 1st year (HR 1.10, 95% CI 1.04-1.17; P < .001). A deterioration in eGFR >15 mL • min -1  • 1.73 m -2 in the 1st year showed the highest risk of events (HR 1.22, 95% CI 1.10-1.36; P < .001). Mean decrease in renal function over time in patients with chronic HF was modest. Only 25% deteriorated ≥1 KDOQI class of CKD after 3 years. Any decrease in eGFR over time was associated with strongly increased event rates. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Effect of Cordyceps sinensis on renal function of patients with chronic allograft nephropathy.

    PubMed

    Zhang, Zhihong; Wang, Xiangwei; Zhang, Yuanning; Ye, Gang

    2011-01-01

    To investigate the effect of Cordyceps sinensis (Bailing capsule, fermented agent of C. sinensis) on renal function of patients with chronic allograft nephropathy (CAN). A total of 231 CAN patients who underwent transplantation between 2005 and 2008 and experienced chronic graft dysfunction were randomly divided into 2 groups. Patients in group A (n = 122) were treated with immunosuppressive agents and C. sinensis (2.0 g/day, 3 times a day), while patients in group B (n = 109) were treated with traditional immunosuppressive drugs. Serum creatinine (SCr), blood urea nitrogen (BUN), creatinine clearance rate (C(Cr)) and urinary protein in 24 h (24-hour Upro) of all patients were measured before and after treatment. Urinary concentrations of transforming growth factor (TGF)-β(1), retinol-binding protein (RBP) and β(2)-microglobulin (β(2)-MG) were detected at the same time. After 6-month treatment with C. sinensis, SCr and C(Cr) in group A were significantly improved (p < 0.05), while there was no significant improvement observed for group B. There was no significant change in BUN in groups A and B (p > 0.05). 24-hour Upro, RBP and β(2)-MG were lower in group A after treatment with C. sinensis (p < 0.05 or p < 0.01), and urinary TGF-β(1) in group A was significantly lower than the values before C. sinensis treatment (p < 0.05), but showed no change in patients of group B. In group A, renal function had improved in 72 cases, stabilized in 38 cases, and worsened in 12 cases. In group B, renal function had improved in 14 cases, stabilized in 50 cases, and worsened in 45 cases (p < 0.05). C. sinensis therapy is advantageous in improving renal function of CAN patients by retarding CAN progression. Copyright © 2011 S. Karger AG, Basel.

  17. Potential for all-trans retinoic acid (tretinoin) to enhance interferon-alpha treatment response in chronic myelogenous leukemia, melanoma, myeloma and renal cell carcinoma.

    PubMed

    Kast, Richard E

    2008-10-01

    This note mechanistically accounts for recent unexplained findings that all-trans retinoic acid (ATRA, also termed tretinoin) exerts an anti-viral effect against hepatitis C virus (HCV) in chronically infected patients, in whom ATRA also showed synergy with interferon-alpha. How HCV replication was suppressed was unclear. Both effects of ATRA can be accounted for by ATRA's upregulation of RIG protein, an 18 kDa product of retinoic induced gene-1. Increased RIG then couples ATRA to increased Type 1 interferons' production. Details of this mechanism predict that ATRA will similarly augment interferon-a activity in treating chronic myelogenous leukemia, melanoma, myeloma and renal cell carcinoma and that the addition of ribavirin and/or bexarotene will each incrementally enhance interferon-a responses in these cancers.

  18. Augmenting kidney mass at transplantation abrogates chronic renal allograft injury in rats.

    PubMed

    Mackenzie, H S; Azuma, H; Troy, J L; Rennke, H G; Tilney, N L; Brenner, B M

    1996-03-01

    Conventional renal transplantation, which substitutes a single allograft for two native kidneys, imposes an imbalance between nephron supply and the metabolic and excretory demands of the recipient. This discrepancy, which stimulates hyperfunction and hypertrophy of viable allograft nephrons, may be intensified by nephron loss through ischemia-reperfusion injury or acute rejection episodes occurring soon after transplantation. In other settings where less than 50% of the total renal mass remains, progressive glomerular injury develops through mechanisms associated with compensatory nephron hyperfiltration and hypertrophy. To determine whether responses to nephron loss contribute to chronic injury in renal allografts, nephron supply was restored to near-normal levels by transplanting Lewis recipients with two Fisher 344 kidneys (group 2A) compared with the standard single allograft F344 --> LEW rat model of late renal allograft failure (group 1A). At 20 weeks, indices of injury were observed in 1A but not 2A rats. These indices included proteinuria (1A: 45 +/- 13; 2A: 4.0 +/- 0.29 mg/day) and glomerulosclerosis (1A: 23 +/- 4.9%, 2A: 0.7 +/- 0.3%) (p < .05). Double-allograft recipients maintained near normal renal structure and function, whereas 1A rats showed evidence of compensatory hyperfiltration (single-nephron glomerular filtration rate of 63 +/- 10 versus 44 +/- 2.0 nl/min in 2A rats) and hypertrophy (mean glomerular volume of 2.64 +/- 0.15 versus 1.52 +/- 0.05 microns3 x 10(6) in 2A rats) (p < .05). Thus, we conclude that a major component of late allograft injury is attributable to processes associated with inadequate transplanted renal mass, a finding that has major implications for kidney transplantation biology and policy.

  19. One-pot synthesis of fluorescent polysaccharides: adenine grafted agarose and carrageenan.

    PubMed

    Oza, Mihir D; Prasad, Kamalesh; Siddhanta, A K

    2012-08-01

    New fluorescent polysaccharides were synthesized by grafting the nucleobase adenine on to the backbones of agarose and κ-carrageenan, which were characterized by FT-IR, (13)C NMR, TGA, XRD, UV, and fluorescence properties. The synthesis involved a rapid water based potassium persulfate (KPS) initiated method under microwave irradiation. The emission spectra of adenine grafted agarose and κ-carrageenan were recorded in aqueous (5×10(-5) M) solution, exhibiting λ(em,max) 347 nm by excitation at 261 nm, affording ca. 30% and 40% enhanced emission intensities, respectively compared to that of pure adenine solution in the same concentration. Similar emission intensity was recorded in the pure adenine solution at its molar equivalent concentrations present in the 5×10(-5) M solution of the agarose and carrageenan grafted products, that is, 3.28×10(-5) M and 4.5×10(-5) M respectively. These fluorescent adenine grafted products may have potential utility in various sensor applications. Copyright © 2012. Published by Elsevier Ltd.

  20. Nitration and inactivation of manganese superoxide dismutase in chronic rejection of human renal allografts.

    PubMed Central

    MacMillan-Crow, L A; Crow, J P; Kerby, J D; Beckman, J S; Thompson, J A

    1996-01-01

    Inflammatory processes in chronic rejection remain a serious clinical problem in organ transplantation. Activated cellular infiltrate produces high levels of both superoxide and nitric oxide. These reactive oxygen species interact to form peroxynitrite, a potent oxidant that can modify proteins to form 3-nitrotyrosine. We identified enhanced immunostaining for nitrotyrosine localized to tubular epithelium of chronically rejected human renal allografts. Western blot analysis of rejected tissue demonstrated that tyrosine nitration was restricted to a few specific polypeptides. Immunoprecipitation and amino acid sequencing techniques identified manganese superoxide dismutase, the major antioxidant enzyme in mitochondria, as one of the targets of tyrosine nitration. Total manganese superoxide dismutase protein was increased in rejected kidney, particularly in the tubular epithelium; however, enzymatic activity was significantly decreased. Exposure of recombinant human manganese superoxide dismutase to peroxynitrite resulted in a dose-dependent (IC50 = 10 microM) decrease in enzymatic activity and concomitant increase in tyrosine nitration. Collectively, these observations suggest a role for peroxynitrite during development and progression of chronic rejection in human renal allografts. In addition, inactivation of manganese superoxide dismutase by peroxynitrite may represent a general mechanism that progressively increases the production of peroxynitrite, leading to irreversible oxidative injury to mitochondria. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8876227

  1. Relation of aortic valve calcium to chronic kidney disease (from the Chronic Renal Insufficiency Cohort Study).

    PubMed

    Guerraty, Marie A; Chai, Boyang; Hsu, Jesse Y; Ojo, Akinlolu O; Gao, Yanlin; Yang, Wei; Keane, Martin G; Budoff, Matthew J; Mohler, Emile R

    2015-05-01

    Although subjects with chronic kidney disease (CKD) are at markedly increased risk for cardiovascular mortality, the relation between CKD and aortic valve calcification has not been fully elucidated. Also, few data are available on the relation of aortic valve calcification and earlier stages of CKD. We sought to assess the relation of aortic valve calcium (AVC) with estimated glomerular filtration rate (eGFR), traditional and novel cardiovascular risk factors, and markers of bone metabolism in the Chronic Renal Insufficiency Cohort (CRIC) Study. All patients who underwent aortic valve scanning in the CRIC study were included. The relation between AVC and eGFR, traditional and novel cardiovascular risk factors, and markers of calcium metabolism were analyzed using both unadjusted and adjusted regression models. A total of 1,964 CRIC participants underwent computed tomography for AVC quantification. Decreased renal function was independently associated with increased levels of AVC (eGFR 47.11, 44.17, and 39 ml/min/1.73 m2, respectively, p<0.001). This association persisted after adjusting for traditional, but not novel, AVC risk factors. Adjusted regression models identified several traditional and novel risk factors for AVC in patients with CKD. There was a difference in AVC risk factors between black and nonblack patients. In conclusion, our study shows that eGFR is associated in a dose-dependent manner with AVC in patients with CKD, and this association is independent of traditional cardiovascular risk factors. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Adenine and 2-aminopurine: Paradigms of modern theoretical photochemistry

    PubMed Central

    Serrano-Andrés, Luis; Merchán, Manuela; Borin, Antonio C.

    2006-01-01

    Distinct photophysical behavior of nucleobase adenine and its constitutional isomer, 2-aminopurine, has been studied by using quantum chemical methods, in particular an accurate ab initio multiconfigurational second-order perturbation theory. After light irradiation, the efficient, ultrafast energy dissipation observed for nonfluorescent 9H-adenine is explained here by the nonradiative internal conversion process taking place along a barrierless reaction path from the initially populated 1(ππ* La) excited state toward a low-lying conical intersection (CI) connected with the ground state. In contrast, the strong fluorescence recorded for 2-aminopurine at 4.0 eV with large decay lifetime is interpreted by the presence of a minimum in the 1(ππ* La) hypersurface lying below the lowest CI and the subsequent potential energy barrier required to reach the funnel to the ground state. Secondary deactivation channels were found in the two systems related to additional CIs involving the 1(ππ* Lb) and 1(nπ*) states. Although in 9H-adenine a population switch between both states is proposed, in 7H-adenine this may be perturbed by a relatively larger barrier to access the 1(nπ*) state, and, therefore, the 1(ππ* Lb) state becomes responsible for the weak fluorescence measured in aqueous adenine at ≈4.5 eV. In contrast to previous models that explained fluorescence quenching in adenine, unlike in 2-aminopurine, on the basis of the vibronic coupling of the nearby 1(ππ*) and 1(nπ*) states, the present results indicate that the 1(nπ*) state does not contribute to the leading photophysical event and establish the prevalence of a model based on the CI concept in modern photochemistry. PMID:16731617

  3. [The effect of low-protein diet supplemented with ketoacids in patients with chronic renal failure].

    PubMed

    Molnár, Márta; Szekeresné Izsák, Margit; Nagy, Judit; Figler, Mária

    2009-02-01

    It is known that dietary protein restriction slows the progression of chronic renal disease. If daily protein intake is less than 0.5-0.6 g/kgbw, the diet has to be supplemented with essential aminoacids/ketoacids. In this study the authors evaluate the long-term effect of low-protein diet supplemented with ketoacids on the progression of chronic renal failure, calcium and phosphorus metabolism, nutritional status, the compliance of patients and the permanent dietary education for the compliance. 51 predialysis patients have been treated with ketoacids supplemented low-protein diet during 12-57 months (mean treatment period: 26 months). Serum creatinine raised from 349.72+/-78.04 micromol/l to 460.66+/-206.66 micromol/l (27 micromol/l/year or 2.3 micromol/l/month), glomerular filtration rate (GFR) decreased from 21.52+/-7.84 ml/min to 18.22+/-7.76 ml/min (0.83 ml/min/year or 0.07 ml/min/month). The slope of 1/serum creatinine versus time was 0.0018 by linear regression analysis. Serum parathormon decreased significantly, but serum calcium and phosphorus did not change. Nutritional status of patients did not change significantly during the follow-up period. Protein intake decreased significantly and remained at this lower level during the treatment period. According to results: low-protein diet supplemented with ketoacids was effective in slowing progression of chronic renal failure, decreased PTH, did not change nutritional status. With permanently and good education it was possible to keep patients on low-protein diet for a long period.

  4. The protective effect of grape seed procyanidin extract against cadmium-induced renal oxidative damage in mice.

    PubMed

    Chen, Qing; Zhang, Rong; Li, Wei-min; Niu, Yu-jie; Guo, Hui-cai; Liu, Xue-hui; Hou, Yu-chun; Zhao, Li-juan

    2013-11-01

    As an important environmental pollutant, cadmium (Cd) can lead to serious renal damage. Grape seed procyanidins extract (GSPE), a biological active component of grape seed, has been shown to possess antioxidative effects. Here, we assessed the protective effect of GSPE on Cd-induced renal damage using animal experiment. After 30 days, the oxidative damage of kidney was evaluated through measurement of superoxide dismutase (SOD), glutathione peroxidation (GSH-Px) and malondialdehyde (MDA). Since, oxidative stress could lead to apoptosis, the renal apoptosis was measured using flow cytometer. Moreover, the expression of apoptosis-related protein Bax and Bcl-2 was analyzed by immunohistochemistry and Western blot. The results showed that Cd led to the decrease of SOD and GSH-Px activities, and the increase of MDA level, induced renal apoptosis. However, the coadministration of GSPE attenuated Cd-induced lipid peroxidation, and antagonized renal apoptosis, probably associated with the expression of Bax and Bcl-2. These data suggested that GSPE has protective effect against renal oxidative damage induced by Cd, which provide a potential natural chemopreventive agent against Cd-poisoning. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Radon inhalation protects mice from carbon-tetrachloride-induced hepatic and renal damage.

    PubMed

    Kataoka, Takahiro; Nishiyama, Yuichi; Toyota, Teruaki; Yoshimoto, Masaaki; Sakoda, Akihiro; Ishimori, Yuu; Aoyama, Yutaka; Taguchi, Takehito; Yamaoka, Kiyonori

    2011-12-01

    We assessed whether radon inhalation provided protection from carbon tetrachloride (CCl4)-induced hepatic and renal damage in mice. Mice were subjected to intraperitoneal injection of CCl4 after inhaling approximately 18 kBq/m3 radon for 6 h. Radon inhalation significantly increased total glutathione (t-GSH) content and glutathione peroxidase (GPx) activity in the liver and kidney. Injection of CCl4 was associated with significantly higher levels of glutamic oxaloacetic transaminase (GOT) and alkaline phosphatase (ALP) activity and creatinine level in serum, and pretreatment with radon significantly decreased the GOT and ALP activity and creatinine level associated with CCl4 injection, suggesting that radon inhalation alleviates CCl4-induced hepatic and renal damage. The t-GSH contents and GPx activity in the liver and kidney of animals pretreated with radon were significantly higher than those of the CCl(4)-only group. These findings suggested that radon inhalation activated antioxidative functions and inhibited CCl4-induced hepatic and renal damage in mice.

  6. The catalase activity of diiron adenine deaminase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamat S. S.; Swaminathan S.; Holmes-Hampton, G. P.

    2011-12-01

    Adenine deaminase (ADE) from the amidohydrolase superfamily (AHS) of enzymes catalyzes the conversion of adenine to hypoxanthine and ammonia. Enzyme isolated from Escherichia coli was largely inactive toward the deamination of adenine. Molecular weight determinations by mass spectrometry provided evidence that multiple histidine and methionine residues were oxygenated. When iron was sequestered with a metal chelator and the growth medium supplemented with Mn{sup 2+} before induction, the post-translational modifications disappeared. Enzyme expressed and purified under these conditions was substantially more active for adenine deamination. Apo-enzyme was prepared and reconstituted with two equivalents of FeSO{sub 4}. Inductively coupled plasma mass spectrometrymore » and Moessbauer spectroscopy demonstrated that this protein contained two high-spin ferrous ions per monomer of ADE. In addition to the adenine deaminase activity, [Fe{sup II}/Fe{sup II}]-ADE catalyzed the conversion of H{sub 2}O{sub 2} to O{sub 2} and H{sub 2}O. The values of k{sub cat} and k{sub cat}/K{sub m} for the catalase activity are 200 s{sup -1} and 2.4 x 10{sup 4} M{sup -1} s{sup -1}, respectively. [Fe{sup II}/Fe{sup II}]-ADE underwent more than 100 turnovers with H{sub 2}O{sub 2} before the enzyme was inactivated due to oxygenation of histidine residues critical for metal binding. The iron in the inactive enzyme was high-spin ferric with g{sub ave} = 4.3 EPR signal and no evidence of anti-ferromagnetic spin-coupling. A model is proposed for the disproportionation of H{sub 2}O{sub 2} by [Fe{sup II}/Fe{sup II}]-ADE that involves the cycling of the binuclear metal center between the di-ferric and di-ferrous oxidation states. Oxygenation of active site residues occurs via release of hydroxyl radicals. These findings represent the first report of redox reaction catalysis by any member of the AHS.« less

  7. MUTATIONS IN THE VHL GENE FRIOM POTASSIUM BROMATE-INDUCED RAT CLEAR CELL RENAL TUMORS

    EPA Science Inventory

    Potassium bromate (KBrO3) is a rat renal carcinogen and a major drinking water disinfection by-product in water disinfected with ozone. Clear cell renal tumors, the most common form of human renal epithelial neoplasm, are rare in animals but are inducible by KBrO3 in F344 rats. ...

  8. Catalytic Mechanism and Three-Dimensional Structure of Adenine Deaminase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamat, S.S.; Swaminathan, S.; Bagaria, A.

    2011-03-22

    Adenine deaminase (ADE) catalyzes the conversion of adenine to hypoxanthine and ammonia. The enzyme isolated from Escherichia coli using standard expression conditions was low for the deamination of adenine (k{sub cat} = 2.0 s{sup -1}; k{sub cat}/K{sub m} = 2.5 x 10{sup 3} M{sup -1} s{sup -1}). However, when iron was sequestered with a metal chelator and the growth medium was supplemented with Mn{sup 2+} prior to induction, the purified enzyme was substantially more active for the deamination of adenine with kcat and kcat/Km values of 200 s{sup -1} and 5 x 10{sup 5} M{sup -1} s{sup -1}, respectively. Themore » apoenzyme was prepared and reconstituted with Fe{sup 2+}, Zn{sup 2+}, or Mn{sup 2+}. In each case, two enzyme equivalents of metal were necessary for reconstitution of the deaminase activity. This work provides the first example of any member of the deaminase subfamily of the amidohydrolase superfamily to utilize a binuclear metal center for the catalysis of a deamination reaction. [Fe{sup II}/Fe{sup II}]-ADE was oxidized to [Fe{sup III}/Fe{sup III}]-ADE with ferricyanide with inactivation of the deaminase activity. Reducing [Fe{sup III}/Fe{sup III}]-ADE with dithionite restored the deaminase activity, and thus, the diferrous form of the enzyme is essential for catalytic activity. No evidence of spin coupling between metal ions was evident by electron paramagnetic resonance or Moessbauer spectroscopy. The three-dimensional structure of adenine deaminase from Agrobacterium tumefaciens (Atu4426) was determined by X-ray crystallography at 2.2 {angstrom} resolution, and adenine was modeled into the active site on the basis of homology to other members of the amidohydrolase superfamily. On the basis of the model of the adenine-ADE complex and subsequent mutagenesis experiments, the roles for each of the highly conserved residues were proposed. Solvent isotope effects, pH-rate profiles, and solvent viscosity were utilized to propose a chemical reaction mechanism

  9. Catalytic Mechanism and Three-Dimensional Structure of Adenine Deaminase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S Kamat; A Bagaria; D Kumaran

    2011-12-31

    Adenine deaminase (ADE) catalyzes the conversion of adenine to hypoxanthine and ammonia. The enzyme isolated from Escherichia coli using standard expression conditions was low for the deamination of adenine (k{sub cat} = 2.0 s{sup -1}; k{sub cat}/K{sub m} = 2.5 x 10{sup 3} M{sup -1} s{sup -1}). However, when iron was sequestered with a metal chelator and the growth medium was supplemented with Mn{sup 2+} prior to induction, the purified enzyme was substantially more active for the deamination of adenine with k{sub cat} and k{sub cat}/K{sub m} values of 200 s{sup -1} and 5 x 10{sup 5} M{sup -1} s{supmore » -1}, respectively. The apoenzyme was prepared and reconstituted with Fe{sup 2+}, Zn{sup 2+}, or Mn{sup 2+}. In each case, two enzyme equivalents of metal were necessary for reconstitution of the deaminase activity. This work provides the first example of any member of the deaminase subfamily of the amidohydrolase superfamily to utilize a binuclear metal center for the catalysis of a deamination reaction. [Fe{sup II}/Fe{sup II}]-ADE was oxidized to [Fe{sup III}/Fe{sup III}]-ADE with ferricyanide with inactivation of the deaminase activity. Reducing [Fe{sup III}/Fe{sup III}]-ADE with dithionite restored the deaminase activity, and thus, the diferrous form of the enzyme is essential for catalytic activity. No evidence of spin coupling between metal ions was evident by electron paramagnetic resonance or Moessbauer spectroscopy. The three-dimensional structure of adenine deaminase from Agrobacterium tumefaciens (Atu4426) was determined by X-ray crystallography at 2.2 {angstrom} resolution, and adenine was modeled into the active site on the basis of homology to other members of the amidohydrolase superfamily. On the basis of the model of the adenine-ADE complex and subsequent mutagenesis experiments, the roles for each of the highly conserved residues were proposed. Solvent isotope effects, pH-rate profiles, and solvent viscosity were utilized to propose a chemical

  10. Mechanisms of bee venom-induced acute renal failure.

    PubMed

    Grisotto, Luciana S D; Mendes, Glória E; Castro, Isac; Baptista, Maria A S F; Alves, Venancio A; Yu, Luis; Burdmann, Emmanuel A

    2006-07-01

    The spread of Africanized bees in the American continent has increased the number of severe envenomation after swarm attacks. Acute renal failure (ARF) is one of the major hazards in surviving patients. To assess the mechanisms of bee venom-induced ARF, rats were evaluated before, up to 70 min and 24h after 0.5mg/kg of venom injection. Control rats received saline. Bee venom caused an early and significant reduction in glomerular filtration rate (GFR, inulin clearance, 0.84+/-0.05 to 0.40+/-0.08 ml/min/100g, p<0.0001) and renal blood flow (RBF, laser Doppler flowmetry), which was more severe in the cortical (-72%) than in the medullary area (-48%), without systemic blood pressure decrease. Creatine phosphokinase, lactic dehydrogenase (LDH) and serum glutamic oxaloacetic transaminase increased significantly, pointing to rhabdomyolysis, whereas serum glutamic pyruvic transaminase and hematocrit remained stable. Twenty-four hours after venom, RBF recovered but GFR remained significantly impaired. Renal histology showed acute tubular injury and a massive tubular deposition of myoglobin. Venom was added to isolated rat proximal tubules (PT) suspension subjected to normoxia and hypoxia/reoxygenation (H/R) for direct nephrotoxicity evaluation. After 60 min of incubation, 0.1, 2 and 10 microg of venom induced significant increases in LDH release: 47%, 64% and 86%, respectively, vs. 21% in control PT while 2 microg of venom enhanced H/R injury (85% vs. 55%, p<0.01). These results indicate that vasoconstriction, direct nephrotoxicity and rhabdomyolysis are important mechanisms in the installation of bee venom-induced ARF that may occur even without hemolysis or hypotension.

  11. Sickle cell disease: renal manifestations and mechanisms

    PubMed Central

    Nath, Karl A.; Hebbel, Robert P.

    2015-01-01

    Sickle cell disease (SCD) substantially alters renal structure and function, and causes various renal syndromes and diseases. Such diverse renal outcomes reflect the uniquely complex vascular pathobiology of SCD and the propensity of red blood cells to sickle in the renal medulla because of its hypoxic, acidotic, and hyperosmolar conditions. Renal complications and involvement in sickle cell nephropathy (SCN) include altered haemodynamics, hypertrophy, assorted glomerulopathies, chronic kidney disease, acute kidney injury, impaired urinary concentrating ability, distal nephron dysfunction, haematuria, and increased risks of urinary tract infections and renal medullary carcinoma. SCN largely reflects an underlying vasculopathy characterized by cortical hyperperfusion, medullary hypoperfusion, and an increased, stress-induced vasoconstrictive response. Renal involvement is usually more severe in homozygous disease (sickle cell anaemia, HbSS) than in compound heterozygous types of SCD (for example HbSC and HbSβ+-thalassaemia), and is typically mild, albeit prevalent, in the heterozygous state (sickle cell trait, HbAS). Renal involvement contributes substantially to the diminished life expectancy of patients with SCD, accounting for 16–18% of mortality. As improved clinical care promotes survival into adulthood, SCN imposes a growing burden on both individual health and health system costs. This Review addresses the renal manifestations of SCD and focuses on their underlying mechanisms. PMID:25668001

  12. Heparin-based hydrogels induce human renal tubulogenesis in vitro.

    PubMed

    Weber, Heather M; Tsurkan, Mikhail V; Magno, Valentina; Freudenberg, Uwe; Werner, Carsten

    2017-07-15

    Dialysis or kidney transplantation is the only therapeutic option for end stage renal disease. Accordingly, there is a large unmet clinical need for new causative therapeutic treatments. Obtaining robust models that mimic the complex nature of the human kidney is a critical step in the development of new therapeutic strategies. Here we establish a synthetic in vitro human renal tubulogenesis model based on a tunable glycosaminoglycan-hydrogel platform. In this system, renal tubulogenesis can be modulated by the adjustment of hydrogel mechanics and degradability, growth factor signaling, and the presence of insoluble adhesion cues, potentially providing new insights for regenerative therapy. Different hydrogel properties were systematically investigated for their ability to regulate renal tubulogenesis. Hydrogels based on heparin and matrix metalloproteinase cleavable peptide linker units were found to induce the morphogenesis of single human proximal tubule epithelial cells into physiologically sized tubule structures. The generated tubules display polarization markers, extracellular matrix components, and organic anion transport functions of the in vivo renal proximal tubule and respond to nephrotoxins comparable to the human clinical response. The established hydrogel-based human renal tubulogenesis model is thus considered highly valuable for renal regenerative medicine and personalized nephrotoxicity studies. The only cure for end stage kidney disease is kidney transplantation. Hence, there is a huge need for reliable human kidney models to study renal regeneration and establish alternative treatments. Here we show the development and application of an in vitro human renal tubulogenesis model using heparin-based hydrogels. To the best of our knowledge, this is the first system where human renal tubulogenesis can be monitored from single cells to physiologically sized tubule structures in a tunable hydrogel system. To validate the efficacy of our model as a drug

  13. Renal Adaptation to Gentamicin-Induced Mineral Loss

    PubMed Central

    Lee, Chien-Te; Chen, Hung Chun; Ng, Hwee-Yeong; Lai, Li-Wen; Lien, Yeong-Hau H.

    2012-01-01

    Background Gentamicin, a well-known nephrotoxic drug, affects calcium and magnesium homeostasis. Although gentamicin induces urinary calcium and magnesium wasting immediately, it rarely causes significant hypocalcemia or hypomagnesemia clinically. Methods We conducted an animal study to investigate the renal adaptation in calcium and magnesium handling after gentamicin treatment and effects on the expression of calcium and magnesium transport molecules in distal tubule. Gentamicin (40 mg/kg) was injected daily in male Sprague-Dawley rats (220–250 g) for up to 7 days. Results This treatment did not affect serum creatinine, calcium, or magnesium levels. Gentamicin induced significant hypercalciuria (14-fold) and hypermagnesiuria (10-fold) in 6 h, which was associated with upregulation of TRPV5 (175 ± 3%), TRPV6 (170 ± 4%), TRPM6 (156 ± 4%) and calbindin-D28k (174 ± 3%; all p < 0.05 vs. control). This gene upregulation was maintained with daily injection of gentamicin for 7 days. The gentamicin-induced urinary calcium loss was reduced by 80% at days 3 and 7, while magnesium loss was reduced by 52 and 57% at days 3 and 7, respectively. On the other hand, urinary loss of potassium became worse on day 7 (2-fold), and phosphorus loss worse from day 3 to day 7 (3-fold). Conclusion There is a rapid adaptation to gentamicin-induced hypercalciuria and hypermagnesiuria. The upregulation of distal tubule transport molecules, TRPV5, TRPV6, TRPM6 and calbindin-D28k occurs within 6 h of gentamicin treatment. This renal adaptation prevents further mineral loss due to gentamicin treatment. PMID:22378246

  14. Valsartan attenuates cardiac and renal hypertrophy in rats with experimental cardiorenal syndrome possibly through down-regulating galectin-3 signaling.

    PubMed

    Zhang, M-J; Gu, Y; Wang, H; Zhu, P-F; Liu, X-Y; Wu, J

    2016-01-01

    Aortocaval fistula (AV) induced chronic volume overload in rats with preexisting mild renal dysfunction (right kidney remove: UNX) could mimic the type 4 cardiorenal syndrome (CRS): chronic renocardiac syndrome. Galectin-3, a β-galactoside binding lectin, is an emerging biomarker in cardiovascular as well as renal diseases. We observed the impact of valsartan on cardiac and renal hypertrophy and galectin-3 changes in this model. Adult male Sprague-Dawley (SD) rats (200-250 g) were divided into S (Sham, n = 7), M (UNX+AV, n = 7) and M+V (UNX+AV+valsartan, n = 7) groups. Eight weeks later, cardiac function was measured by echocardiography. Renal outcome was measured by glomerular filtration rate, effective renal plasma flow, renal blood flow and 24 hours albuminuria. Immunohistochemistry and real-time PCR were used to evaluate the expressions of galectin-3 in heart and renal. Cardiac hypertrophy and renal hypertrophy as well as cardiac enlargement were evidenced in this AV shunt induced chronic volume overload rat model with preexisting mild renal dysfunction. Cardiac and renal hypertrophy were significantly attenuated but cardiac enlargement was unaffected by valsartan independent of its blood pressure lowering effect. 24 hours urine albumin was significantly increased, which was significantly reduced by valsartan in this model. Immunohistochemistry and real-time PCR evidenced significantly up-regulated galectin-3 expression in heart and kidney and borderline increased myocardial collagen I expression, which tended to be lower post valsartan treatment. Up-regulated galectin-3 signaling might also be involved in the pathogenesis in this CRS model. The beneficial effects of valsartan in terms of attenuating cardiac and renal hypertrophy and reducing 24 hours albumin in this model might partly be mediated through down-regulating galectin-3 signal pathway.

  15. Urinary Proteolytic Activation of Renal Epithelial Na+ Channels in Chronic Heart Failure.

    PubMed

    Zheng, Hong; Liu, Xuefei; Sharma, Neeru M; Li, Yulong; Pliquett, Rainer U; Patel, Kaushik P

    2016-01-01

    One of the key mechanisms involved in renal Na(+) retention in chronic heart failure (CHF) is activation of epithelial Na(+) channels (ENaC) in collecting tubules. Proteolytic cleavage has an important role in activating ENaC. We hypothesized that enhanced levels of proteases in renal tubular fluid activate ENaC, resulting in renal Na(+) retention in rats with CHF. CHF was produced by left coronary artery ligation in rats. By immunoblotting, we found that several urinary serine proteases were significantly increased in CHF rats compared with sham rats (fold increases: furin 6.7, prostasin 23.6, plasminogen 2.06, and plasmin 3.57 versus sham). Similar increases were observed in urinary samples from patients with CHF. Whole-cell patch clamp was conducted in cultured renal collecting duct M-1 cells to record Na(+) currents. Protease-rich urine (from rats and patients with CHF) significantly increased the Na(+) inward current in M-1 cells. Two weeks of protease inhibitor treatment significantly abrogated the enhanced diuretic and natriuretic responses to ENaC inhibitor benzamil in rats with CHF. Increased podocyte lesions were observed in the kidneys of rats with CHF by transmission electron microscopy. Consistent with these results, podocyte damage markers desmin and podocin expressions were also increased in rats with CHF (increased ≈2-folds). These findings suggest that podocyte damage may lead to increased proteases in the tubular fluid, which in turn contributes to the enhanced renal ENaC activity, providing a novel mechanistic insight for Na(+) retention commonly observed in CHF. © 2015 American Heart Association, Inc.

  16. Urinary proteolytic activation of renal epithelial Na+ channels in chronic heart failure

    PubMed Central

    Zheng, Hong; Liu, Xuefei; Sharma, Neeru M.; Li, Yulong; Pliquett, Rainer U; Patel, Kaushik P.

    2015-01-01

    One of the key mechanisms involved in renal Na+ retention in chronic heart failure (CHF) is activation of epithelial Na+ channels (ENaC) in collecting tubules. Proteolytic cleavage has an important role in activating ENaC. We hypothesized that enhanced levels of proteases in renal tubular fluid activate ENaC resulting in renal Na+ retention in rats with CHF. CHF was produced by left coronary artery ligation in rats. By immunoblotting, we found that several urinary serine proteases were significantly increased in CHF rats compared to sham rats (fold increases: furin 6.7, prostasin 23.6, plasminogen 2.06 and plasmin 3.57 vs. sham). Similar increases were observed in urinary samples from patients with CHF. Whole-cell patch-clamp was conducted in cultured renal collecting duct M-1 cells to record Na+ currents. Protease-rich urine (from rats and patients with CHF) significantly increased the Na+ inward current in M-1 cells. Two weeks of protease inhibitor treatment significantly abrogated the enhanced diuretic and natriuretic responses to ENaC inhibitor benzamil in rats with CHF. Increased podocyte lesions were observed in the kidneys of rats with CHF by transmission electron microscopy. Consistent with these results, podocyte damage markers desmin and podocin expressions were also increased in rats with CHF (increased ~2 folds). These findings suggest that podocyte damage may lead to increased proteases in the tubular fluid which in turn contributes to the enhanced renal ENaC activity, providing a novel mechanistic insight for Na+ retention commonly observed in CHF. PMID:26628676

  17. Depressive Symptomatology in Children and Adolescents with Chronic Renal Insufficiency Undergoing Chronic Dialysis

    PubMed Central

    Hernandez, Edith G.; Loza, Reyner; Vargas, Horacio; Jara, Mercedes F.

    2011-01-01

    This paper presents a descriptive study, using the Birleson Scale to determine the frequency of depressive symptomatology in children and adolescents with chronic renal insufficiency (CRI) undergoing hemodialysis (HD) and chronic peritoneal dialysis (CPD). There were 67 patients (40 female and 27 male) with a mean age of 14.76 ± 2.71 years, duration of illness ≥3 months, 43 (64.18%) patients with CPD and 24 (35.82%) undergoing HD. The frequency of high occurrence, low occurrence, and absence of depressive symptomatology was 10.45% (n = 7), 43.28% (n = 29), and 46.27% (n = 31), respectively; all of the seven (100%) patients with high occurrence of depressive symptomatology were female (P = 0.04), and none of these (0%) had a friend to confide in (P = 0.03). Depressive symptomatology in patients with CPD was associated with a lower weekly K t/V compared to those without depressive symptomatology (2.15 ± 0.68 versus 2.52 ± 0.65; P = 0.01). There was no association with patient age, caregiver, time and dialysis type, anemia, bone disease, nutritional or financial status, origin, schooling, or employment. PMID:21941654

  18. Pre-stimulation of the kallikrein system in cisplatin-induced acute renal injury: An approach to renoprotection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aburto, Andrés; Barría, Agustín; Cárdenas, Areli

    Antineoplastic treatment with cisplatin is frequently complicated by nephrotoxicity. Although oxidative stress may be involved, the pathogenic mechanisms responsible for renal damage have not been completely clarified. In order to investigate the role of the renal kinin system in this condition, a group of rats was submitted to high potassium diet to stimulate the synthesis and excretion of tissue kallikrein 1 (rKLK1) previous to an intraperitoneal injection of 7 mg/kg cisplatin. A significant reduction in lipoperoxidation, evidenced by urinary excretion of malondialdehyde and renal immunostaining of hidroxy-nonenal, was accompanied by a decline in apoptosis. Coincident with these findings we observedmore » a reduction in the expression of renal KIM-1 suggesting that renoprotection may be occurring. Stimulation or indemnity of the renal kinin system deserves to be evaluated as a complementary pharmacological measure to diminish cisplatin nephrotoxicity. - Highlights: • Mechanisms of cisplatin-induced-renal damage have not been completely clarified. • Cisplatin induces oxidative stress and apoptosis. • The renal kallikrein-kinin system is protective in experimental acute renal damage. • Kallikrein stimulation reduces oxidative stress and apoptosis induced by cisplatin. • Protection of the kallikrein-kinin system may reduce cisplatin toxicity.« less

  19. Consequences of advanced aging on renal function in chronic hyperandrogenemic female rat model: implications for aging women with polycystic ovary syndrome.

    PubMed

    Patil, Chetan N; Racusen, Lorraine C; Reckelhoff, Jane F

    2017-11-01

    Polycystic ovary syndrome (PCOS) is the most common endocrine and reproductive disorder in premenopausal women, characterized by hyperandrogenemia, metabolic syndrome, and inflammation. Women who had PCOS during their reproductive years remain hyperandrogenemic after menopause. The consequence of chronic hyperandrogenemia with advanced aging has not been studied to our knowledge. We have characterized a model of hyperandrogenemia in female rats and have aged them to 22-25 months to mimic advanced aging in hyperandrogenemic women, and tested the hypothesis that chronic exposure to hyperandrogenemia with aging has a deleterious effect on renal function. Female rats were chronically implanted with dihydrotestosterone pellets (DHT 7.5 mg/90 days) that were changed every 85 days or placebo pellets, and renal function was measured by clearance methods. Aging DHT-treated females had a threefold higher level of DHT with significantly higher body weight, mean arterial pressure, left kidney weight, proteinuria, and kidney injury molecule-1 (KIM-1), than did age-matched controls. In addition, DHT-treated-old females had a 60% reduction in glomerular filtration rate, 40% reduction in renal plasma flow, and significant reduction in urinary nitrate and nitrite excretion (UNOxV), an index of nitric oxide production. Morphological examination of kidneys showed that old DHT-treated females had significant focal segmental glomerulosclerosis, global sclerosis, and interstitial fibrosis compared to controls. Thus chronic hyperandrogenemia that persists into old age in females is associated with renal injury. These data suggest that women with chronic hyperandrogenemia such as in PCOS may be at increased risk for development of chronic kidney disease with advanced age. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  20. In search of adult renal stem cells.

    PubMed

    Anglani, F; Forino, M; Del Prete, D; Tosetto, E; Torregrossa, R; D'Angelo, A

    2004-01-01

    The therapeutic potential of adult stem cells in the treatment of chronic degenerative diseases has becoming increasingly evident over the last few years. Significant attention is currently being paid to the development of novel treatments for acute and chronic kidney diseases too. To date, promising sources of stem cells for renal therapies include adult bone marrow stem cells and the kidney precursors present in the early embryo. Both cells have clearly demonstrated their ability to differentiate into the kidney's specialized structures. Adult renal stem cells have yet to be identified, but the papilla is where the stem cell niche is probably located. Now we need to isolate and characterize the fraction of papillary cells that constitute the putative renal stem cells. Our growing understanding of the cellular and molecular mechanisms behind kidney regeneration and repair processes - together with a knowledge of the embryonic origin of renal cells - should induce us, however, to bear in mind that in the kidney, as in other mesenchymal tissues, the need for a real stem cell compartment might be less important than the phenotypic flexibility of tubular cells. Thus, by displaying their plasticity during kidney maintenance and repair, terminally differentiated cells may well function as multipotent stem cells despite being at a later stage of maturation than adult stem cells. One of the major tasks of Regenerative Medicine will be to disclose the molecular mechanisms underlying renal tubular plasticity and to exploit its biological and therapeutic potential.

  1. Sunitinib-Induced Acute Interstitial Nephritis in a Thrombocytopenic Renal Cell Cancer Patient.

    PubMed

    Azar, Ibrahim; Esfandiarifard, Saghi; Sinai, Pedram; Wazir, Ali; Foulke, Llewellyn; Mehdi, Syed

    2017-01-01

    Sunitinib, a multitargeted tyrosine kinase inhibitor (TKI), is currently the standard of care for patients with metastatic renal cell carcinoma. Renal adverse events associated with sunitinib include proteinuria, renal insufficiency secondary to focal segmental glomerulosclerosis (FSGS), and thrombotic microangiopathy. We describe the second reported instance of biopsy-proven sunitinib-induced acute interstitial nephritis (AIN), in a challenging case complicated by thrombocytopenia. The case illustrates the importance of early diagnosis and intervention in ensuring long-term recovery from renal complications. Four other cases of AIN reported along with inhibition of the vascular endothelial growth factor (VEGF) by either TKI (sunitinib and sorafenib) or antibodies (bevacizumab) suggest a possible class effect. Given our experience, we recommend monitoring renal function with VEGF inhibition, and in the case of renal failure in the setting of an unclear diagnosis, we recommend prompt biopsy.

  2. Association of serum bicarbonate with risk of renal and cardiovascular outcomes in CKD: a report from the Chronic Renal Insufficiency Cohort (CRIC) study.

    PubMed

    Dobre, Mirela; Yang, Wei; Chen, Jing; Drawz, Paul; Hamm, L Lee; Horwitz, Edward; Hostetter, Thomas; Jaar, Bernard; Lora, Claudia M; Nessel, Lisa; Ojo, Akinlolu; Scialla, Julia; Steigerwalt, Susan; Teal, Valerie; Wolf, Myles; Rahman, Mahboob

    2013-10-01

    The purpose of this study is to evaluate serum bicarbonate level as a risk factor for renal outcomes, cardiovascular events, and mortality in patients with chronic kidney disease (CKD). Observational cohort study. 3,939 participants with CKD stages 2-4 who enrolled in the Chronic Renal Insufficiency Cohort (CRIC) between June 2003 and December 2008. Serum bicarbonate level. Renal outcomes, defined as end-stage renal disease (either initiation of dialysis therapy or kidney transplantation) or 50% reduction in estimated glomerular filtration rate (eGFR); atherosclerotic events (myocardial infarction, stroke, or peripheral arterial disease); congestive heart failure events; and death. Time to event. Mean eGFR was 44.8 ± 16.8 (SD) mL/min/1.73 m(2), and median serum bicarbonate level was 24 (IQR, 22-26) mEq/L. During a median follow-up of 3.9 years, 374 participants died, 767 had a renal outcome, 332 experienced an atherosclerotic event, and 391 had a congestive heart failure event. In adjusted analyses, the risk of developing a renal end point was 3% lower per 1-mEq/L increase in serum bicarbonate level (HR, 0.97; 95% CI, 0.94-0.99; P = 0.01). The association was stronger for participants with eGFR >45 mL/min/1.73 m(2) (HR, 0.91; 95% CI, 0.85-0.97; P = 0.004). The risk of heart failure increased by 14% (HR, 1.14; 95% CI, 1.03-1.26; P = 0.02) per 1-mEq/L increase in serum bicarbonate level over 24 mEq/L. Serum bicarbonate level was not associated independently with atherosclerotic events (HR, 0.99; 95% CI, 0.95-1.03; P = 0.6) and all-cause mortality (HR, 0.98; 95% CI, 0.95-1.02; P = 0.3). Single measurement of sodium bicarbonate. In a cohort of participants with CKD, low serum bicarbonate level was an independent risk factor for kidney disease progression, particularly for participants with preserved kidney function. The risk of heart failure was higher at the upper extreme of serum bicarbonate levels. There was no association between serum bicarbonate level and all

  3. Association of Serum Bicarbonate With Risk of Renal and Cardiovascular Outcomes in CKD: A Report From the Chronic Renal Insufficiency Cohort (CRIC) Study

    PubMed Central

    Dobre, Mirela; Yang, Wei; Chen, Jing; Drawz, Paul; Hamm, L. Lee; Horwitz, Edward; Hostetter, Thomas; Jaar, Bernard; Lora, Claudia M; Nessel, Lisa; Ojo, Akinlolu; Scialla, Julia; Steigerwalt, Susan; Teal, Valerie; Wolf, Myles; Rahman, Mahboob

    2013-01-01

    Background The purpose of this study is to evaluate serum bicarbonate as a risk factor for renal outcomes, cardiovascular events and mortality in patients with chronic kidney disease (CKD). Study Design Observational cohort study. Setting & Participants 3939 participants with CKD stages 2-4 who enrolled in the Chronic Renal Insufficiency Cohort (CRIC) between June 2003 - December 2008. Predictor Serum bicarbonate. Outcomes Renal outcomes, defined as end-stage renal disease (either initiation of dialysis or kidney transplantation) or 50% reduction in eGFR; atherosclerotic events (myocardial infarction, stroke, peripheral arterial disease); congestive heart failure events; and death. Measurements Time to event. Results The mean eGFR was 44.8 ± 16.8 (SD) mL/min/1.73 m2, and the median serum bicarbonate was 24 (IQR, 22-26) mEq/L. During a median follow-up of 3.9 years, 374 participants died, 767 had a renal outcome, and 332 experienced an atherosclerotic event and 391 had a congestive heart failure event. In adjusted analyses, the risk of developing a renal endpoint was 3% lower per mEq/L increase in serum bicarbonate (HR, 0.97; 95% CI, 0.94-0.99; p=0.01). The association was stronger for participants with eGFR> 45ml/min/1.73m2 (HR, 0.91; 95%CI, 0.85-0.97; p=0.004). The risk of heart failure increased by 14% (HR, 1.14; 95%CI, 1.03-1.26; p=0.02) per mEq/L increase in serum bicarbonate over 24 mEq/L. Serum bicarbonate was not independently associated with atherosclerotic events (HR, 0.99; 95%CI, 0.95-1.03; p=0.6) and all-cause mortality (HR, 0.98; 95%CI, 0.95-1.02; p=0.3). Limitations Single measurement of sodium bicarbonate. Conclusions In a cohort of participants with CKD, low serum bicarbonate was an independent risk factor for kidney disease progression, particularly for participants with preserved kidney function. The risk of heart failure was higher at the upper extreme of serum bicarbonate. There was no association between serum bicarbonate and all

  4. Gemfibrozil-induced myositis in a patient with normal renal function.

    PubMed

    Hahn, Martin; Sriharan, Kalavally; McFarland, M Shawn

    2010-01-01

    the literature revealed one case of gemfibrozil-related myositis in a patient with chronic renal failure. There is also one report of myopathy associated with gemfibrozil monotherapy in a patient with normal renal function. The present case is the first documented case of gemfibrozil monotherapy-induced myositis in a patient with normal renal function. The Naranjo probability scale indicated a probable relationship between gemfibrozil treatment and the onset of myositis in our patient. Other potential causes of myositis were ruled out by patient interview and chart review. Although the risk of myositis appears to be low with gemfibrozil monotherapy, clinicians should be aware of the potential for this adverse event. For patients taking gemfibrozil monotherapy who present with myalgia, discontinuation of the medication may be necessary for the alleviation of pain.

  5. Caffeine intake antagonizes salt sensitive hypertension through improvement of renal sodium handling

    PubMed Central

    Yu, Hao; Yang, Tao; Gao, Peng; Wei, Xing; Zhang, Hexuan; Xiong, Shiqiang; Lu, Zongshi; Li, Li; Wei, Xiao; Chen, Jing; Zhao, Yu; Arendshorst, William J.; Shang, Qianhui; Liu, Daoyan; Zhu, Zhiming

    2016-01-01

    High salt intake is a major risk factor for hypertension. Although acute caffeine intake produces moderate diuresis and natriuresis, caffeine increases the blood pressure (BP) through activating sympathetic activity. However, the long-term effects of caffeine on urinary sodium excretion and blood pressure are rarely investigated. Here, we investigated whether chronic caffeine administration antagonizes salt sensitive hypertension by promoting urinary sodium excretion. Dahl salt-sensitive (Dahl-S) rats were fed with high salt diet with or without 0.1% caffeine in drinking water for 15 days. The BP, heart rate and locomotor activity of rats was analyzed and urinary sodium excretion was determined. The renal epithelial Na+ channel (ENaC) expression and function were measured by in vivo and in vitro experiments. Chronic consumption of caffeine attenuates hypertension induced by high salt without affecting sympathetic nerve activity in Dahl-S rats. The renal α-ENaC expression and ENaC activity of rats decreased after chronic caffeine administration. Caffeine increased phosphorylation of AMPK and decrease α-ENaC expression in cortical collecting duct cells. Inhibiting AMPK abolished the effect of caffeine on α-ENaC. Chronic caffeine intake prevented the development of salt-sensitive hypertension through promoting urinary sodium excretion, which was associated with activation of renal AMPK and inhibition of renal tubular ENaC. PMID:27173481

  6. Chronically Elevated Levels of Short-Chain Fatty Acids Induce T Cell-Mediated Ureteritis and Hydronephrosis.

    PubMed

    Park, Jeongho; Goergen, Craig J; HogenEsch, Harm; Kim, Chang H

    2016-03-01

    Short-chain fatty acids (SCFAs) are major products of gut microbial fermentation and profoundly affect host health and disease. SCFAs generate IL-10(+) regulatory T cells, which may promote immune tolerance. However, SCFAs can also induce Th1 and Th17 cells upon immunological challenges and, therefore, also have the potential to induce inflammatory responses. Because of the seemingly paradoxical SCFA activities in regulating T cells, we investigated, in depth, the impact of elevated SCFA levels on T cells and tissue inflammation in mice. Orally administered SCFAs induced effector (Th1 and Th17) and regulatory T cells in ureter and kidney tissues, and they induced T cell-mediated ureteritis, leading to kidney hydronephrosis (hereafter called acetate-induced renal disease, or C2RD). Kidney hydronephrosis in C2RD was caused by ureteral obstruction, which was, in turn, induced by SCFA-induced inflammation in the ureteropelvic junction and proximal ureter. Oral administration of all major SCFAs, such as acetate, propionate, and butyrate, induced the disease. We found that C2RD development is dependent on mammalian target of rapamycin activation, T cell-derived inflammatory cytokines such as IFN-γ and IL-17, and gut microbiota. Young or male animals were more susceptible than old or female animals, respectively. However, SCFA receptor (GPR41 or GPR43) deficiency did not affect C2RD development. Thus, SCFAs, when systemically administered at levels higher than physiological levels, cause dysregulated T cell responses and tissue inflammation in the renal system. The results provide insights into the immunological and pathological effects of chronically elevated SCFAs. Copyright © 2016 by The American Association of Immunologists, Inc.

  7. Selective self-assembly of adenine-silver nanoparticles forms rings resembling the size of cells

    NASA Astrophysics Data System (ADS)

    Choi, Sungmoon; Park, Soonyoung; Yang, Seon-Ah; Jeong, Yujin; Yu, Junhua

    2015-12-01

    Self-assembly has played critical roles in the construction of functional nanomaterials. However, the structure of the macroscale multicomponent materials built by the self-assembly of nanoscale building blocks is hard to predict due to multiple intermolecular interactions of great complexity. Evaporation of solvents is usually an important approach to induce kinetically stable assemblies of building blocks with a large-scale specific arrangement. During such a deweting process, we tried to monitor the possible interactions between silver nanoparticles and nucleobases at a larger scale by epifluorescence microscopy, thanks to the doping of silver nanoparticles with luminescent silver nanodots. ssDNA oligomer-stabilized silver nanoparticles and adenine self-assemble to form ring-like compartments similar to the size of modern cells. However, the silver ions only dismantle the self-assembly of adenine. The rings are thermodynamically stable as the drying process only enrich the nanoparticles-nucleobase mixture to a concentration that activates the self-assembly. The permeable membrane-like edge of the ring is composed of adenine filaments glued together by silver nanoparticles. Interestingly, chemicals are partially confined and accumulated inside the ring, suggesting that this might be used as a microreactor to speed up chemical reactions during a dewetting process.

  8. Selective self-assembly of adenine-silver nanoparticles forms rings resembling the size of cells

    PubMed Central

    Choi, Sungmoon; Park, Soonyoung; Yang, Seon-Ah; Jeong, Yujin; Yu, Junhua

    2015-01-01

    Self-assembly has played critical roles in the construction of functional nanomaterials. However, the structure of the macroscale multicomponent materials built by the self-assembly of nanoscale building blocks is hard to predict due to multiple intermolecular interactions of great complexity. Evaporation of solvents is usually an important approach to induce kinetically stable assemblies of building blocks with a large-scale specific arrangement. During such a deweting process, we tried to monitor the possible interactions between silver nanoparticles and nucleobases at a larger scale by epifluorescence microscopy, thanks to the doping of silver nanoparticles with luminescent silver nanodots. ssDNA oligomer-stabilized silver nanoparticles and adenine self-assemble to form ring-like compartments similar to the size of modern cells. However, the silver ions only dismantle the self-assembly of adenine. The rings are thermodynamically stable as the drying process only enrich the nanoparticles-nucleobase mixture to a concentration that activates the self-assembly. The permeable membrane-like edge of the ring is composed of adenine filaments glued together by silver nanoparticles. Interestingly, chemicals are partially confined and accumulated inside the ring, suggesting that this might be used as a microreactor to speed up chemical reactions during a dewetting process. PMID:26643504

  9. Relationship of left ventricular hypertrophy and diastolic function with cardiovascular and renal outcomes in African Americans with hypertensive chronic kidney disease.

    PubMed

    Peterson, Gail E; de Backer, Tine; Contreras, Gabriel; Wang, Xuelei; Kendrick, Cynthia; Greene, Tom; Appel, Lawrence J; Randall, Otelio S; Lea, Janice; Smogorzewski, Miroslaw; Vagaonescu, Tudor; Phillips, Robert A

    2013-09-01

    African Americans with hypertension are at high risk for adverse outcomes from cardiovascular and renal disease. Patients with stage 3 or greater chronic kidney disease have a high prevalence of left ventricular (LV) hypertrophy and diastolic dysfunction. Our goal was to study prospectively the relationships of LV mass and diastolic function with subsequent cardiovascular and renal outcomes in the African American Study of Kidney Disease and Hypertension cohort study. Of 691 patients enrolled in the cohort, 578 had interpretable echocardiograms and complete relevant clinical data. Exposures were LV hypertrophy and diastolic parameters. Outcomes were cardiovascular events requiring hospitalization or causing death; a renal composite outcome of doubling of serum creatinine or end-stage renal disease (censoring death); and heart failure. We found strong independent relationships between LV hypertrophy and subsequent cardiovascular (hazard ratio, 1.16; 95% confidence interval, 1.05-1.27) events, but not renal outcomes. After adjustment for LV mass and clinical variables, lower systolic tissue Doppler velocities and diastolic parameters reflecting a less compliant LV (shorter deceleration time and abnormal E/A ratio) were significantly (P<0.05) associated with future heart failure events. This is the first study to show a strong relationship among LV hypertrophy, diastolic parameters, and adverse cardiac outcomes in African Americans with hypertension and chronic kidney disease. These echocardiographic risk factors may help identify high-risk patients with chronic kidney disease for aggressive therapeutic intervention.

  10. Comparison of clinical and laboratory parameters in patients with end-stage renal failure in the outcome of chronic glomerulonephritis and patients with end-stage renal failure in the outcome of other diseases.

    PubMed

    Popova, J A; Yadrihinskaya, V N; Krylova, M I; Sleptsovа, S S; Borisovа, N V

    frequent complications of hemodialysis treatments are coagulation disorders. This is due to activation of the coagulation of blood flow in the interaction with a dialysis membrane material vascular prostheses and extracorporeal circuit trunks. In addition, in hemodialysis patients receiving heparin for years, there is depletion of stocks in endothelial cells in tissue factor inhibitor, inhibits the activity of an external blood clotting mechanism. the aim of our study was to evaluate the hemostatic system parameters in patients with end-stage renal failure, depending on the cause of renal failure. to evaluate the hemostatic system parameters in patients with end-stage renal failure, depending on the cause of renal failure and hemodialysis treatment duration conducted a study that included 100 patients observed in the department of chronic hemodialysis and nephrology hospital №1 Republican National Medical Center in the period of 2013-2016. in patients with end-stage renal failure in the outcome of chronic glomerulonephritis, a great expression of activation of blood coagulation confirm increased the mean concentration of fibrinogen, whereas in the group, which included patients with end-stage renal failure in the outcome of other diseases, such is not different from the norm, and a higher rate of hyperfibrinogenemia, identified in 2/3 patients in this group. it was revealed that the state of homeostasis in patients with end-stage renal failure in increasingly characterizes the level of fibrinogen and the activation of the hemostatic markers: soluble fibrin monomer complexes, D-dimers.

  11. NADPH Oxidase as a Therapeutic Target for Oxalate Induced Injury in Kidneys

    PubMed Central

    Peck, Ammon B.; Khan, Saeed R.

    2013-01-01

    A major role of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase family of enzymes is to catalyze the production of superoxides and other reactive oxygen species (ROS). These ROS, in turn, play a key role as messengers in cell signal transduction and cell cycling, but when they are produced in excess they can lead to oxidative stress (OS). Oxidative stress in the kidneys is now considered a major cause of renal injury and inflammation, giving rise to a variety of pathological disorders. In this review, we discuss the putative role of oxalate in producing oxidative stress via the production of reactive oxygen species by isoforms of NADPH oxidases expressed in different cellular locations of the kidneys. Most renal cells produce ROS, and recent data indicate a direct correlation between upregulated gene expressions of NADPH oxidase, ROS, and inflammation. Renal tissue expression of multiple NADPH oxidase isoforms most likely will impact the future use of different antioxidants and NADPH oxidase inhibitors to minimize OS and renal tissue injury in hyperoxaluria-induced kidney stone disease. PMID:23840917

  12. Diabetes mellitus as a risk factor for incident chronic kidney disease and end-stage renal disease in women compared with men: a systematic review and meta-analysis.

    PubMed

    Shen, Yanjue; Cai, Rongrong; Sun, Jie; Dong, Xue; Huang, Rong; Tian, Sai; Wang, Shaohua

    2017-01-01

    Diabetes mellitus is a strong risk factor for chronic kidney disease and end-stage renal disease. Whether sex differences in chronic kidney disease and end-stage renal disease incidence exist among diabetic patients remains unclear. This systematic review and meta-analysis was conducted to evaluate the relative effect of diabetes on chronic kidney disease and end-stage renal disease risk in women compared with men. We systematically searched Embase, PubMed, and the Cochrane Library for both cohort and case-control studies until October 2015. Studies were selected if they reported a sex-specific relationship between diabetes mellitus and chronic kidney disease or end-stage renal disease. We generated pooled estimates across studies using random-effects meta-analysis after log transformation with inverse variance weighting. Ten studies with data from more than 5 million participants were included. The pooled adjusted risk ratio of chronic kidney disease associated with diabetes mellitus was 3.34 (95 % CI 2.27, 4.93) in women and 2.84 (95 % CI 1.73, 4.68) in men. The data showed no difference in diabetes-related chronic kidney disease risk between the sexes (pooled adjusted women-to-men relative risk ratio was 1.14 [95 % CI 0.97, 1.34]) except for end-stage renal disease-the pooled adjusted women-to men relative risk ratio was 1.38 (95 % CI 1.22, 1.55; p = 0.114, I² = 38.1 %). The study found no evidence of a sex difference in the association between diabetes mellitus and chronic kidney disease. However, the excess risk for end-stage renal disease was higher in women with diabetes than in men with the same condition, from which we assume that the female gender could accelerate the disease progression. Further studies are needed to support this notion and elucidate the underlying mechanisms.

  13. Renal tissue damage induced by focused shock waves

    NASA Astrophysics Data System (ADS)

    Ioritani, N.; Kuwahara, M.; Kambe, K.; Taguchi, K.; Saitoh, T.; Shirai, S.; Orikasa, S.; Takayama, K.; Lush, P. A.

    1990-07-01

    Biological evidence of renal arterial wall damage induced by the microjet due to shock wave-cavitation bubble interaction was demonstrated in living dog kidneys. We also intended to clarify the mechanism of renal tissue damage and the effects of different conditions of shock wave exposure (peak pressure of focused area, number of shots, exposure rate) on the renal tissue damage in comparison to stone disintegration. Disruption of arterial wall was the most remarkable histological change in the focused area of the kidneys. This lesion appeared as if the wall had been punctured by a needle. Large hematoma formation in the renal parenchym, and interstitial hemorrhage seemed to be the results of the arterial lesion. This arterial disorder also led to ischemic necrosis of the tubules surrounding the hematoma. Micro-angiographic examination of extracted kidneys also proved such arterial puncture lesions and ischemic lesions. The number of shots required for model stone disintegration was not inversely proportional to peak pressure. It decreased markedly when peak pressure was above 700 bar. Similarly thenumber of shots for hematoma formation was not inversely proportional to peak pressure, however, this decreased markedly above 500 bar. These results suggested that a hematoma could be formed under a lower peak pressure than that required for stone disintegration.

  14. Interrelations between cerebrospinal fluid and plasma inorganic ions and glucose in patients with chronic renal failure.

    PubMed Central

    Pye, I F; Aber, G M

    1982-01-01

    The concentrations of inorganic ions and glucose in the plasma and CSF of 11 patients with "steady-state" chronic renal failure have been measured and their CSF: plasma interrelations studied. The results have been compared with the corresponding data from 34 control subjects. In the patients with renal failure, there was a positive correlation between raised CSF and plasma potassium concentrations. In contrast to the impaired potassium homeostasis, normal CSF magnesium and calcium concentrations were observed despite wide variations in the plasma concentrations of these ions. PMID:7085915

  15. [Surgical model of chronic renal failure: study in rabbits].

    PubMed

    Costa, Andrei Ferreira Nicolau da; Pereira, Lara de Paula Miranda; Ferreira, Manoel Luiz; Silva, Paulo Cesar; Chagar, Vera Lucia Antunes; Schanaider, Alberto

    2009-02-01

    To establish a model of chronic renal failure in rabbits, with perspectives of its use for therapeutic and repairing actions. Nineteen males, adults rabbits (New Zealand) randomly distributed into three groups were used: Group 1 - Control (n =5); Group 2-Sham (n =7); and Group 3 - Experimental (n =7). They were anaesthetized by using intramuscular Cetamine, Diazepam and Fentanyl followed by Sevorane with vaporizer device. In Group 3, a bipolar left nephrectomy was carried out and after four weeks, it was also done a right nephrectomy. All the samples of the renal tissue were weighed. The Group 2 was only submitted to both abdominal laparotomies, without nephrectomy. Biochemical evaluations, with urea, creatinina, sodium and potassium measurement; abdominal ultrasound scan; scintigraphy and histological analysis were performed in all animals. In group 3 there was a progressive increase of urea (p=0.0001), creatinine (p=0.0001), sodium (p = 0,0002) and potassium (p=0,0003). The comparison of these results with those one of the Groups 1 and 2, in all intervals, revealed blood rising with statistical significant level (p < 0,05). In Group 3, the ultrasound scan identified an increasing of the left kidney size, after 16 weeks and at the 4th week the scintigraphy confirmed the loss of 75% of the left renal mass. In the same group, the histological evaluation showed subcapsular and intersticial fibrosis and also tubular regeneration. The experimental model of IRC is feasible, with animal's survival in middle term which allows the use of this interval like a therapeutic window for testing different approaches in order to repair the kidney damages.

  16. Long-term nebivolol administration reduces renal fibrosis and prevents endothelial dysfunction in rats with hypertension induced by renal mass reduction.

    PubMed

    Pires, María J; Rodríguez-Peña, Ana B; Arévalo, Miguel; Cenador, Begoña; Evangelista, Stefano; Esteller, Alejandro; Sánchez-Rodríguez, Angel; Colaço, Aura; López-Novoa, José M

    2007-12-01

    D/L-Nebivolol is a lypophilic beta1-adrenergic antagonist which is devoid of intrinsic sympathomimetic activity and can increase nitric oxide (NO) bioavailability with its subsequent vasodilating properties. The purpose of the present work was to assess the effect of long-term nebivolol administration on both renal damage and endothelial dysfunction induced by renal mass reduction (RMR) in rats. Atenolol, which does not increase NO bioavailability, was included in the study as a comparative beta-adrenoceptor antagonist. Rats were subjected to both right nephrectomy and surgical removal of two-thirds of the left kidney in order to retain approximately one-sixth of the total renal mass. One week after ablation, rats were distributed randomly according to the following experimental groups: control group containing RMR rats without treatment; RMR rats treated daily with nebivolol for 6 months (drinking water, 8 mg/kg per day); and RMR rats treated daily with atenolol for 6 months (drinking water, 80 mg/kg per day). A group of sham-operated animals was also included. Administration of either nebivolol or atenolol similarly reduced arterial pressure in comparison with RMR untreated animals; however, animals receiving nebivolol presented lower levels of collagen type I expression as well as lower glomerular and interstitial fibrosis than those receiving atenolol. Urinary excretion of oxidative stress markers were also lower in animals receiving nebivolol than in rats treated with atenolol. Furthermore, nebivolol prevented RMR-induced endothelial dysfunction more efficiently than atenolol. Nebivolol protects against renal fibrosis, oxidative stress and endothelial dysfunction better than equivalent doses, in terms of arterial pressure reduction, of atenolol in a hypertensive model of renal damage induced by RMR.

  17. Inflammatory stress promotes the development of obesity-related chronic kidney disease via CD36 in mice.

    PubMed

    Yang, Ping; Xiao, Yayun; Luo, Xuan; Zhao, Yunfei; Zhao, Lei; Wang, Yan; Wu, Tingting; Wei, Li; Chen, Yaxi

    2017-07-01

    Ectopic fat located in the kidney has emerged as a novel cause of obesity-related chronic kidney disease (CKD). In this study, we aimed to investigate whether inflammatory stress promotes ectopic lipid deposition in the kidney and causes renal injury in obese mice and whether the pathological process is mediated by the fatty acid translocase, CD36. High-fat diet (HFD) feeding alone resulted in obesity, hyperlipidemia, and slight renal lipid accumulation in mice, which nevertheless had normal kidney function. HFD-fed mice with chronic inflammation had severe renal steatosis and obvious glomerular and tubular damage, which was accompanied by increased CD36 expression. Interestingly, CD36 deficiency in HFD-fed mice eliminated renal lipid accumulation and pathological changes induced by chronic inflammation. In both human mesangial cells (HMCs) and human kidney 2 (HK2) cells, inflammatory stress increased the efficiency of CD36 protein incorporation into membrane lipid rafts, promoting FFA uptake and intracellular lipid accumulation. Silencing of CD36 in vitro markedly attenuated FFA uptake, lipid accumulation, and cellular stress induced by inflammatory stress. We conclude that inflammatory stress aggravates renal injury by activation of the CD36 pathway, suggesting that this mechanism may operate in obese individuals with chronic inflammation, making them prone to CKD. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  18. RenalGuard system to prevent contrast-induced acute kidney injury in Japanese patients with renal dysfunction; RESPECT KIDNEY study.

    PubMed

    Katoh, Hiromasa; Nozue, Tsuyoshi; Horie, Kazuki; Sozu, Takashi; Inoue, Naoto; Michishita, Ichiro

    2018-05-05

    Increasing the urine flow rate (UFR) reduces the toxic effect of contrast media. Use of the RenalGuard system enables the achievement of a high UFR by maintaining intravascular volume and prevents the development of contrast-induced acute kidney injury (CI-AKI). However, the efficacy and safety of RenalGuard system have not yet been evaluated in Japan. This multicenter prospective study evaluated the efficacy and safety of the RenalGuard therapy in preventing CI-AKI development in 60 Japanese patients with renal dysfunction [estimated glomerular filtration rate (eGFR) < 45 mL/min/1.73 m 2 ] undergoing catheter procedures. Baseline eGFR and Mehran's CIN (contrast-induced nephropathy) risk score were 35.1 ± 8.5 mL/min/1.73 m 2 and 11.7 ± 4.3, respectively. Regardless of this high-risk profile, the incidence of CI-AKI was 8.6% (5/58) compared with the 26.1% incidence estimated by the CIN risk score. Moreover, two-sided 95% (Fisher's) exact confidence interval was 2.9-19.0 and its upper limit (i.e., 19.0) was less than the prespecified threshold incidence of 25.0. Univariate logistic regression analysis demonstrated that the UFR during catheter procedure was one of the most important factor associated with CI-AKI (odds ratio 0.99, confidence interval 0.98-1.00, p = 0.03). In conclusion, RenalGuard therapy may prevent CI-AKI development in Japanese patients with renal dysfunction. Further large-scale prospective multicenter studies are necessary to confirm our findings.

  19. [Study on the role of the tubule in renal vasoconstriction induced by cyclosporine].

    PubMed

    Camaño Páez, S; Lázaro Fernández, A; Callejas Martínez, R; Lázaro Manero, J A; Castilla Barba, M; Martín-Vasallo, P; Martínez Escandell, A; Tejedor Jorge, A

    2008-01-01

    Cyclosporine (CyA) has proved to induce cell apoptosis on cultured proximal tubule cells. However, there is no much data about the in vivo functional consequences of this injury or the long time observed CyA-induced renal vasoconstriction. In a swine model of subacute CyA nephrotoxicity (10 mg/ Kg. dx 15 days), we performed a right nephrectomy, followed by left renal artery, vein and ureter catheterisati8n. After inducing water diuresis, three clearance periods of 15 minutes were performed before and after a furosemide 1 mg/kg infusion. Plasma and urine electrolytes, blood gas, acid excretion, plasma renin activity and aldosterone concentration, GFR, RPF, RBF, intra-renal vascular resistances, glomerular filtration pressure, distal Cl- delivery, water clearance and TTKG were measured or estimated on 7 control and 7 treated animals. Right kidney was processed for NaKATPase activity and immunostaining. Treated animals presented detaching proximal cells, luminal blebbing and loss of tight junctions. Cortical but not medullar sodium pump was internalised and partially inactive. Treated animals showed much lower fractional excretions of Na+, with significantly higher distal fractional reabsorption of Cl. Distal shift in fluid load resulted in a significant rise in renal O2 consumption, and modifications in the global renal estequiometry of Na+ transport/O2 uptake. Several consequences followed this situation: preglomerular resistances increased 3 times with only minor changes in postglomerular resistances and renal blood and plasma flow were significantly reduced. Furosemide partially reversed these effects. A slight increase in fractional filtration prevented GFR differences to become statistically significant. subacute CyA treatment even al doses not modifying GFR, may cause proximal tubule Na+ transport impairment, resulting in increased rates of distal delivery and absorption of fluid load. Renal uptake of O2 may be increased and tubule glomerular feedback should be

  20. Autophagy inhibition attenuates hyperoxaluria-induced renal tubular oxidative injury and calcium oxalate crystal depositions in the rat kidney.

    PubMed

    Duan, Xiaolu; Kong, Zhenzhen; Mai, Xin; Lan, Yu; Liu, Yang; Yang, Zhou; Zhao, Zhijian; Deng, Tuo; Zeng, Tao; Cai, Chao; Li, Shujue; Zhong, Wen; Wu, Wenqi; Zeng, Guohua

    2018-06-01

    Hyperoxaluria-induced oxidative injury of renal tubular epithelial cell is a casual and essential factor in kidney calcium oxalate (CaOx) stone formation. Autophagy has been shown to be critical for the regulation of oxidative stress-induced renal tubular injury; however, little is known about its role in kidney CaOx stone formation. In the present study, we found that the autophagy antagonist chloroquine could significantly attenuate oxalate-induced autophagy activation, oxidative injury and mitochondrial damage of renal tubular cells in vitro and in vivo, as well as hyperoxaluria-induced CaOx crystals depositions in rat kidney, whereas the autophagy agonist rapamycin exerted contrasting effects. In addition, oxalate-induced p38 phosphorylation was significantly attenuated by chloroquine pretreatment but was markedly enhanced by rapamycin pretreatment, whereas the protective effect of chloroquine on rat renal tubular cell oxidative injury was partly reversed by a p38 protein kinase activator anisomycin. Furthermore, the knockdown of Beclin1 represented similar effects to chloroquine on oxalate-induced cell oxidative injury and p38 phosphorylation in vitro. Taken together, our results revealed that autophagy inhibition could attenuate oxalate-induced oxidative injury of renal tubular cell and CaOx crystal depositions in the rat kidney via, at least in part, inhibiting the activation of p38 signaling pathway, thus representing a novel role of autophagy in the regulation of oxalate-induced renal oxidative injury and CaOx crystal depositions for the first time. Copyright © 2018. Published by Elsevier B.V.

  1. Icariin combined with human umbilical cord mesenchymal stem cells significantly improve the impaired kidney function in chronic renal failure.

    PubMed

    Li, Wen; Wang, Li; Chu, Xiaoqian; Cui, Huantian; Bian, Yuhong

    2017-04-01

    At present, the main therapy for chronic renal failure (CRF) is dialysis and renal transplantation, but neither obtains satisfactory results. Human umbilical cord mesenchymal stem cells (huMSCs) are isolated from the fetal umbilical cord which has a high self-renewal and multi-directional differentiation potential. Icariin (ICA), a kidney-tonifying Chinese Medicine can enhance the multipotency of huMSCs. Therefore, this work seeks to employ the use of ICA-treated huMSCs for the treatment of chronic renal failure. Blood urea nitrogen and creatinine (Cr) analyses showed amelioration of functional parameters in ICA-treated huMSCs for the treatment of CRF rats at 3, 7, and 14 days after transplantation. ICA-treated huMSCs can obviously increase the number of cells in injured renal tissues at 3, 7, and 14 days after transplantation by optical molecular imaging system. Hematoxylin-eosin staining demonstrated that ICA-treated huMSCs reduced the levels of fibrosis in CRF rats at 14 days after transplantation. Superoxide dismutase and Malondialdehyde analyses showed that ICA-treated huMSCs reduced the oxidative damage in CRF rats. Moreover, transplantation with ICA-treated huMSCs decreased inflammatory responses, promoted the expression of growth factors, and protected injured renal tissues. Taken together, our findings suggest that ICA-treated huMSCs could improve the kidney function in CRF rats.

  2. Nephropathy in dietary hyperoxaluria: A potentially preventable acute or chronic kidney disease

    PubMed Central

    Glew, Robert H; Sun, Yijuan; Horowitz, Bruce L; Konstantinov, Konstantin N; Barry, Marc; Fair, Joanna R; Massie, Larry; Tzamaloukas, Antonios H

    2014-01-01

    Hyperoxaluria can cause not only nephrolithiasis and nephrocalcinosis, but also renal parenchymal disease histologically characterized by deposition of calcium oxalate crystals throughout the renal parenchyma, profound tubular damage and interstitial inflammation and fibrosis. Hyperoxaluric nephropathy presents clinically as acute or chronic renal failure that may progress to end-stage renal disease (ESRD). This sequence of events, well recognized in the past in primary and enteric hyperoxalurias, has also been documented in a few cases of dietary hyperoxaluria. Estimates of oxalate intake in patients with chronic dietary hyperoxaluria who developed chronic kidney disease or ESRD were comparable to the reported average oxalate content of the diets of certain populations worldwide, thus raising the question whether dietary hyperoxaluria is a primary cause of ESRD in these regions. Studies addressing this question have the potential of improving population health and should be undertaken, alongside ongoing studies which are yielding fresh insights into the mechanisms of intestinal absorption and renal excretion of oxalate, and into the mechanisms of development of oxalate-induced renal parenchymal disease. Novel preventive and therapeutic strategies for treating all types of hyperoxaluria are expected to develop from these studies. PMID:25374807

  3. Dissociative Excitation of Adenine by Electron Impact

    NASA Astrophysics Data System (ADS)

    McConkey, J. William; Trocchi, Joshuah; Dech, Jeffery; Kedzierski, Wladek

    2017-04-01

    Dissociative excitation of adenine (C6H5NH2) into excited atomic fragments has been studied in the electron impact energy range from threshold to 300 eV. A crossed beam system coupled to a vacuum ultraviolet (VUV) monochromator is used to study emissions in the wavelength range from 110 to 200 nm. The beam of adenine vapor from a stainless steel oven is crossed at right angles by the electron beam and the resultant UV radiation is detected in a mutually orthogonal direction. The strongest feature in the spectrum is H Lyman- α. Financial support from NSERC and CFI, Canada, is gratefully acknowledged.

  4. Intake of water with high levels of dissolved hydrogen (H2) suppresses ischemia-induced cardio-renal injury in Dahl salt-sensitive rats.

    PubMed

    Zhu, Wan-Jun; Nakayama, Masaaki; Mori, Takefumi; Nakayama, Keisuke; Katoh, Junichiro; Murata, Yaeko; Sato, Toshinobu; Kabayama, Shigeru; Ito, Sadayoshi

    2011-07-01

    Hydrogen (H(2)) reportedly produces an antioxidative effect by quenching cytotoxic oxygen radicals. We studied the biological effects of water with dissolved H(2) on ischemia-induced cardio-renal injury in a rat model of chronic kidney disease (CKD). Dahl salt-sensitive rats (7 weeks old) were allowed ad libitum drinking of filtered water (FW: dissolved H(2), 0.00 ± 0.00 mg/L) or water with dissolved H(2) produced by electrolysis (EW: dissolved H(2), 0.35 ± 0.03 mg/L) for up to 6 weeks on a 0.5% salt diet. The rats then underwent ischemic reperfusion (I/R) of one kidney and were killed a week later for investigation of the contralateral kidney and the heart. In the rats given FW, unilateral kidney I/R induced significant increases in plasma monocyte chemoattractant protein-1, methylglyoxal and blood urea nitrogen. Histologically, significant increases were found in glomerular adhesion, cardiac fibrosis, number of ED-1 (CD68)-positive cells and nitrotyrosine staining in the contralateral kidney and the heart. In rats given EW, those findings were significantly ameliorated and there were significant histological differences between rats given FW and those given EW. Consumption of EW by ad libitum drinking has the potential to ameliorate ischemia-induced cardio-renal injury in CKD model rats. This indicates a novel strategy of applying H(2) produced by water electrolysis technology for the prevention of CKD cardio-renal syndrome.

  5. [Choosing not to dialysis in chronic renal failure in stage V (Renal Failure). Evolution of the characteristics of patients between 1992-1995 and 2000-2003].

    PubMed

    García García, M; Martínez Ocaña, J C; Rodríguez Jornet, A; Almirall, J; Ponz, E; Ibeas, J; López Alba, T

    2007-01-01

    The incidence of chronic renal failure increase with the age. The selection of patient to dialysis has been increasing in spite of the high comorbidity. Moreover, in our clinical practice the aged patient is not contraindicated to dialysis. However, in the nephrology clinical practice not all the patients start the treatment with dialysis. OBJECTIVE The aim of our study has been to compare the characteristics of the patients who had not been dialyzed between the periods 1992-1995 and 2000-2003 to analyze the trend of the nephrology clinical practice. Comparative study of the characteristics and the evolution of patients with chronic renal failure in stage V, (renal failure) not incorporated to dialysis in one hospital during four years between the periods the 1992-1995 ( period A) and 2000-2003 (period B). Start dialysis (period A versus period B): 116 patients, age 59.9+15.5 years vs. 229 patients, age 64.0+15.8 years (p<0.05). Non-dialysis (period A versus period B): 38 patients, age 77.5+9.3 years vs. 37 patients, age 81.7+6.2 years (p<0.01). Renal function: serum creatinina 7.4+2.4 mg/dl vs. 5.3+1.2 mg/dl (p<0.001), MDRD estimate glomerular filtration 6.9+2.4 mg/dl ml/min/1.73 m2 vs. 10.0+2.3 ml/min/1.73 m2 (p<0.001). Primary renal disease: unknown etiology 31.5 % vs. 24.3 %, nephroangiosclerosis 23.6 % vs. 32.4 %, diabetes 28.9 % vs. 21.6 %. Functional status: dependent patients 34.2 % vs 83.8 % (p<0.001). The principal reason for non-dialysis were: personal decision: 26.3 % vs. 35.1 %, dementia 15.8 % vs. 29.7 %, brief life expectancy because of serious co-existing diseases 13.1 % vs. 21.7 % and serious chronic illness with inability for themselves care 44.7 % vs. 13.1 %. Comorbid conditions: 2.3+1.0 vs. 3.0+1.5 (p<0.05). Survival: 55+168 days vs. 168+236 days (p<0.001). Most of the patients that don't begin dialysis are elderly together with a poor functional capacity and with more autonomy in their decisions. The identification of patients with renal

  6. Dietary mobile apps and their effect on nutritional indicators in chronic renal disease: a systematic review.

    PubMed

    Lai, Janice; Porter, Judi

    2015-05-10

    Dietary apps for mobile technology are becoming increasingly available and can assist in recording food and fluid intake for nutrition assessment or monitoring. Patients with chronic renal disease, particularly those on dialysis, are required to make significant dietary changes. This study systematically reviews the current literature to assess whether dietary mobile apps improve dietary intake and clinical outcomes in the renal population, specifically those with Chronic Kidney Disease levels 3-5, including dialysis. A systematic search of Medline Complete, CINAHL, Embase, PsycINFO and the Cochrane Library was performed and supplemented by manual searches of citation and reference lists. Of the 712 studies considered, five were eligible for inclusion in this review. The quality of each included study was assessed using a Quality Criteria Checklist for Primary Research. Among five studies (two RCTs and three case studies/reports), none found significant changes in nutrient intake, biochemical markers or intradialytic weight gain, through the use of dietary mobile apps. The included studies show potential for clinical benefits of mobile app interventions in a renal population. However there is a need for additional rigorous trials to demonstrate if there is a clinical benefit to mobile phone app interventions in this population. This article is protected by copyright. All rights reserved.

  7. Role of Renal Drug Exposure in Polymyxin B-Induced Nephrotoxicity

    PubMed Central

    Manchandani, Pooja; Zhou, Jian; Babic, Jessica T.; Ledesma, Kimberly R.; Truong, Luan D.

    2017-01-01

    ABSTRACT Despite dose-limiting nephrotoxic potentials, polymyxin B has reemerged as the last line of therapy against multidrug-resistant Gram-negative bacterial infections. However, the handling of polymyxin B by the kidneys is still not thoroughly understood. The objectives of this study were to evaluate the impact of renal polymyxin B exposure on nephrotoxicity and to explore the role of megalin in renal drug accumulation. Sprague-Dawley rats (225 to 250 g) were divided into three dosing groups, and polymyxin B was administered (5 mg/kg, 10 mg/kg, and 20 mg/kg) subcutaneously once daily. The onset of nephrotoxicity over 7 days and renal drug concentrations 24 h after the first dose were assessed. The effects of sodium maleate (400 mg/kg intraperitoneally) on megalin homeostasis were evaluated by determining the urinary megalin concentration and electron microscopic study of renal tissue. The serum/renal pharmacokinetics of polymyxin B were assessed in megalin-shedding rats. The onset of nephrotoxicity was correlated with the daily dose of polymyxin B. Renal polymyxin B concentrations were found to be 3.6 ± 0.4 μg/g, 9.9 ± 1.5 μg/g, and 21.7 ± 4.8 μg/g in the 5-mg/kg, 10-mg/kg, and 20-mg/kg dosing groups, respectively. In megalin-shedding rats, the serum pharmacokinetics of polymyxin B remained unchanged, but the renal exposure was attenuated by 40% compared to that of control rats. The onset of polymyxin B-induced nephrotoxicity is correlated with the renal drug exposure. In addition, megalin appears to play a pivotal role in the renal accumulation of polymyxin B, which might contribute to nephrotoxicity. PMID:28096166

  8. Chronic treatment with recombinant human erythropoietin exerts renoprotective effects beyond hematopoiesis in streptozotocin-induced diabetic rat.

    PubMed

    Toba, Hiroe; Sawai, Naoki; Morishita, Masayuki; Murata, Shoko; Yoshida, Mamiko; Nakashima, Kohei; Morita, Yosuke; Kobara, Miyuki; Nakata, Tetsuo

    2009-06-10

    Recombinant human erythropoietin (rHuEPO), which has been used clinically for the management of renal anemia, is reported to exert pleiotropic beneficial properties against acute ischemic/reperfusion injury in various tissues. To investigate the hypothesis that chronic treatment with rHuEPO might ameliorate diabetic nephropathy beyond hematopoiesis, rHuEPO (150 U/kg, subcutaneously) was administered three times per week to the streptozotocin-induced diabetic rats for 4 weeks. Streptozotocin (65 mg/kg, intravenously) significantly increased urinary protein excretion and collagen deposition in glomerular and tubulointerstitial areas in the kidney, which were attenuated by rHuEPO. rHuEPO normalized the levels of creatinine clearance, serum creatinine, and blood urea nitrogen of diabetic rats. RT-PCR analysis revealed that the expressions of mRNA for transforming growth factor-beta, osteopontin and adhesion molecules were enhanced in the diabetic rat kidney and that the overexpression of these molecules was suppressed by rHuEPO. rHuEPO exerted antioxidant properties by inhibiting renal activation and overexpression of NADPH oxidase. We found the activation of the Akt signaling pathway by the increased expression of phosphorylated Akt and GSK-3beta and a reduction of TUNEL-positive apoptotic cell death in renal tissue from rHuEPO-treated diabetic group. We also demonstrated that rHuEPO restored the endothelial nitric oxide synthase (eNOS) content in the diabetic rat kidney. On the other hand, treatment with rHuEPO did not affect blood glucose level, blood pressure, or hematocrit in diabetic rats. These results suggest that chronic treatment with rHuEPO attenuated renal injury beyond hematopoiesis and regulated apoptosis and eNOS expression, which might be due to the activation of Akt pathway.

  9. Adenine formation from adenosine by mycoplasmas: adenosine phosphorylase activity.

    PubMed Central

    Hatanaka, M; Del Giudice, R; Long, C

    1975-01-01

    Mammalian cells have enzymes to convert adenosine to inosine by deamination and inosine to hypoxanthine by phosphorolysis, but they do not possess the enzymes necessary to form the free base, adenine, from adenosine. Mycoplasmas grown in broth or in cell cultures can produce adenine from adenosine. This activity was detected in a variety of mycoplasmatales, and the enzyme was shown to be adenosine phosphorylase. Adenosine formation from adenine and ribose 1-phosphate, the reverse reaction of adenine formation from adenosine, was also observed with the mycoplasma enzyme. Adenosine phosphorylase is apparently common to the mycoplasmatales but it is not universal, and the organisms can be divided into three groups on the basis of their use of adenosine as substrate. Thirteen of 16 Mycoplasma, Acholeplasma, and Siroplasma species tested exhibit adenosine phosphorylase activity. M. lipophilium differed from the other mycoplasmas and shared with mammalian cells the ability to convert adenosine to inosine by deamination. M. pneumoniae and the unclassified M. sp. 70-159 showed no reaction with adenosine. Adenosine phosphorylase activity offers an additional method for the detection of mycoplasma contamination of cells. The patterns of nucleoside metabolism will provide additional characteristics for identification of mycoplasmas and also may provide new insight into the classification of mycoplasmas. PMID:236559

  10. Hypophosphatemic osteomalacia and renal Fanconi syndrome induced by low-dose adefovir dipivoxil: a case report and literature review suggesting ethnic predisposition.

    PubMed

    Wu, C; Zhang, H; Qian, Y; Wang, L; Gu, X; Dai, Z

    2013-08-01

    Adefovir dipivoxil (ADV) is one of the commonly used antiviral agents in the treatment of chronic hepatitis B (CHB) infection. Safety of a daily dose of 10 mg ADV is advocated by the registration trials. We report a case of severe hypophosphatemic osteomalacia and renal Fanconi syndrome induced by low-dose ADV in a CHB-related cirrhosis patient, and discuss the case through a thorough review of other cases reported in the literature. A 48-yr-old Chinese man with CHB-related cirrhosis developed severe progressive generalized bone pain and muscle weakness after receiving ADV 10 mg daily for 54 months. The laboratory results showed severe hypophosphatemia and features of proximal renal tubule dysfunction. Imaging studies were consistent with osteomalacia. After discontinuation of ADV, his symptoms resolved, laboratory abnormalities normalized and imaging studies showed improvement. In addition to our case, 12 other patients have been reported to have developed hypophosphatemic osteomalacia induced by low-dose ADV. Most of the reported cases were of subjects of East-Asian ethnicity. After discontinuation or reduction of ADV, serum phosphate level increased and clinical symptoms significantly improved in all cases. Hypophosphatemic osteomalacia and renal Fanconi syndrome can be associated with low-dose ADV. Clinicians treating CHB patients with ADV 10 mg daily over long periods of time should be aware of this infrequent but serious complication. © 2013 John Wiley & Sons Ltd.

  11. [Renal elastography].

    PubMed

    Correas, Jean-Michel; Anglicheau, Dany; Gennisson, Jean-Luc; Tanter, Mickael

    2016-04-01

    Renal elastography has become available with the development of noninvasive quantitative techniques (including shear-wave elastography), following the rapidly growing field of diagnosis and quantification of liver fibrosis, which has a demonstrated major clinical impact. Ultrasound or even magnetic resonance techniques are leaving the pure research area to reach the routine clinical use. With the increased incidence of chronic kidney disease and its specific morbidity and mortality, the noninvasive diagnosis of renal fibrosis can be of critical value. However, it is difficult to simply extend the application from one organ to the other due to a large number of anatomical and technical issues. Indeed, the kidney exhibits various features that make stiffness assessment more complex, such as the presence of various tissue types (cortex, medulla), high spatial orientation (anisotropy), local blood flow, fatty sinus with variable volume and echotexture, perirenal space with variable fatty content, and the variable depth of the organ. Furthermore, the stiffness changes of the renal parenchyma are not exclusively related to fibrosis, as renal perfusion or hydronephrosis will impact the local elasticity. Renal elastography might be able to diagnose acute or chronic obstruction, or to renal tumor or pseudotumor characterization. Today, renal elastography appears as a promising application that still requires optimization and validation, which is the contrary for liver stiffness assessment. Copyright © 2016 Association Société de néphrologie. Published by Elsevier SAS. All rights reserved.

  12. Measurements of renal shear wave velocities in chronic kidney disease patients.

    PubMed

    Sasaki, Yutaka; Hirooka, Yoshiki; Kawashima, Hiroki; Ishikawa, Takuya; Takeshita, Kyosuke; Goto, Hidemi

    2018-07-01

    Background Chronic kidney disease (CKD) patients have advanced glomerulosclerosis and renal interstitial fibrosis. Shear wave elastography (SWE) is useful to diagnose liver fibrosis. However, there are few data available regarding evaluation of kidney function on the use of SWE. Purpose To assess the utility of SWE by evaluating the correlation between renal function and renal elasticity using SWE. Material and Methods A total of 187 participants who had available serum creatinine levels and also underwent SWE of the kidney using a transabdominal ultrasonography were recruited at Nagoya University Hospital. We measured the depth of the shear wave (SW) in the right and left kidneys and calculated the measurement success rates. The glomerular filtration rate (GFR) classification and shear wave value (SWV) were compared. Results The success rates of the right and left kidneys were 93.6% and 71.6%, respectively. Based on these results, the correlation between GFR classification and SWV were analyzed in only the right kidneys because the success rates and the number of enrolled patients were low for the left kidney. There were significant differences found between G1 and G3a, G2 and G3a, G3a and G3b, G3a and G4, and G3a and G5. SWV significantly negatively and positively correlated with the G2-G3a and G3a-G3b classifications. Conclusion There is no correlation between renal function and SW. However, we can diagnose the progression to the CKD stages G3a and G3b by observing the changes over time using the SWV.

  13. Effect of a magnesium-based phosphate binder on medial calcification in a rat model of uremia.

    PubMed

    De Schutter, Tineke M; Behets, Geert J; Geryl, Hilde; Peter, Mirjam E; Steppan, Sonja; Gundlach, Kristina; Passlick-Deetjen, Jutta; D'Haese, Patrick C; Neven, Ellen

    2013-06-01

    Calcium-based phosphate binders are used to control hyperphosphatemia; however, they promote hypercalcemia and may accelerate aortic calcification. Here we compared the effect of a phosphate binder containing calcium acetate and magnesium carbonate (CaMg) to that of sevelamer carbonate on the development of medial calcification in rats with chronic renal failure induced by an adenine diet for 4 weeks. After 1 week, rats with chronic renal failure were treated with vehicle, 375 or 750 mg/kg CaMg, or 750 mg/kg sevelamer by daily gavage for 5 weeks. Renal function was significantly impaired in all groups. Vehicle-treated rats with chronic renal failure developed severe hyperphosphatemia, but this was controlled in treated groups, particularly by CaMg. Neither CaMg nor sevelamer increased serum calcium ion levels. Induction of chronic renal failure significantly increased serum PTH, dose-dependently prevented by CaMg but not sevelamer. The aortic calcium content was significantly reduced by CaMg but not by sevelamer. The percent calcified area of the aorta was significantly lower than vehicle-treated animals for all three groups. The presence of aortic calcification was associated with increased sox9, bmp-2, and matrix gla protein expression, but this did not differ in the treatment groups. Calcium content in the carotid artery was lower with sevelamer than with CaMg but that in the femoral artery did not differ between groups. Thus, treatment with either CaMg or sevelamer effectively controlled serum phosphate levels in CRF rats and reduced aortic calcification.

  14. Effect of a magnesium-based phosphate binder on medial calcification in a rat model of uremia

    PubMed Central

    De Schutter, Tineke M; Behets, Geert J; Geryl, Hilde; Peter, Mirjam E; Steppan, Sonja; Gundlach, Kristina; Passlick-Deetjen, Jutta; D'Haese, Patrick C; Neven, Ellen

    2013-01-01

    Calcium-based phosphate binders are used to control hyperphosphatemia; however, they promote hypercalcemia and may accelerate aortic calcification. Here we compared the effect of a phosphate binder containing calcium acetate and magnesium carbonate (CaMg) to that of sevelamer carbonate on the development of medial calcification in rats with chronic renal failure induced by an adenine diet for 4 weeks. After 1 week, rats with chronic renal failure were treated with vehicle, 375 or 750 mg/kg CaMg, or 750 mg/kg sevelamer by daily gavage for 5 weeks. Renal function was significantly impaired in all groups. Vehicle-treated rats with chronic renal failure developed severe hyperphosphatemia, but this was controlled in treated groups, particularly by CaMg. Neither CaMg nor sevelamer increased serum calcium ion levels. Induction of chronic renal failure significantly increased serum PTH, dose-dependently prevented by CaMg but not sevelamer. The aortic calcium content was significantly reduced by CaMg but not by sevelamer. The percent calcified area of the aorta was significantly lower than vehicle-treated animals for all three groups. The presence of aortic calcification was associated with increased sox9, bmp-2, and matrix gla protein expression, but this did not differ in the treatment groups. Calcium content in the carotid artery was lower with sevelamer than with CaMg but that in the femoral artery did not differ between groups. Thus, treatment with either CaMg or sevelamer effectively controlled serum phosphate levels in CRF rats and reduced aortic calcification. PMID:23486515

  15. Axillary brachial plexus block duration with mepivacaine in patients with chronic renal failure. Case-control study.

    PubMed

    Mojica, V; Nieuwveld, D; Herrera, A E; Mestres, G; López, A M; Sala-Blanch, X

    2017-04-01

    Regional anaesthesia is commonly preferred for arteriovenous fistula (AVF) creation. Previous studies suggest a shorter block duration in patients with chronic renal failure, maybe because of the changes in regional blood flow. The aim of our study was to evaluate the duration of the axillary block with 1.5% mepivacaine in patients with chronic renal failure scheduled for AVF compared with healthy controls. Patients scheduled for AVF creation for the first time (GIRC) were included. They were compared with patients without renal failure (GC), with similar anthropometric characteristics. Ultrasound-guided axillary blocks with 20mL of 1.5% mepivacaine were performed on all patients. We evaluated onset time, humeral artery diameter and blood flow before and after the block, as well as the block duration. Twenty-three patients (GIRC: 12 and GC: 11) were included. No differences between groups were observed in block duration (GIRC: 227±43min vs GC: 229±27min; P=.781), or in onset time (GIRC: 13±5min vs GC: 12.2±3min; P=.477). The humeral blood flow before and after block was significantly lower in the GIRC (pre-block: GIRC: 52±21ml/min GC: 100±62ml/min; P=.034 and p ost block: GIRC: 130±57ml/min and GC: 274±182ml/min; P=.010). There was no significant correlation between the duration of the block and the preblock humeral blood flow (Spearman Rho: 0.106; P=.657) or the postblock humeral blood flow (Spearman Rho: 0.267; P=.254). The duration of the axillary block with 1.5% mepivacaine in patients with chronic renal failure was similar to that of the control patients. The duration of axillary brachial plexus block seems not to be related to changes in regional blood flow. Copyright © 2016 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  16. Epidemiology of chronic renal disease in the Galician population: results of the pilot Spanish EPIRCE study.

    PubMed

    Otero, Alfonso; Gayoso, Pilar; Garcia, Fernando; de Francisco, Angel L

    2005-12-01

    Chronic kidney disease (CKD) is a major social health problem because of the aging of the population, the high incidence of diabetes mellitus, and the epidemic of silent CKD resulting from inadequate diagnosis of early chronic renal insufficiency The sociodemographic, baseline characteristics and CKD prevalence measured by the Modification of Diet in Renal Disease formula were studied in a randomly selected sample of people aged 20 years or older in the general population. We report the results of the analysis of the EPIRCE (Estudio Epidemiológico de la Insuficiencia Renal en España) pilot study performed in Galicia, Spain, in the last quarter of 2004. Baseline characteristics, sociodemographic characteristics, and results of a clinical examination and blood variables were collected from 237 patients who fulfilled the study's inclusion and exclusion criteria. The mean age of the sample was 49.58 years (95% confidence interval, 47.39-51.76). The prevalence of Kidney Disease Outcomes Quality Initiative grade 3 CKD was 5.1%, but the coexistence of an albumin/creatinine ratio>30 mg/g with grade 1 to 2 CKD raised the final rate to 12.7% in this population. We found a high prevalence of hypertension (31.5%), isolated systolic hypertension (20.1%), diabetes mellitus (8%), obesity (13.1%), smoking habit (22.7%), high atherogenic index (30.8%), and high alcohol intake (24%). Risk factors significantly associated with renal disease were age [P=0.018; odds ratio (OR) 2.7], hypertension (P=0.023; OR 2.13), pulse pressure (P=0.04; OR 0.10), diabetes mellitus (P=0.08; OR 4.48), obesity (P=0.000; OR 7.7), and insulin resistance index (P=0.04; OR 4.95). The prevalence of CKD and conventional cardiovascular risk factors is high in this randomly selected sample of the general population. Secondary preventive measures are needed to detect chronic kidney impairment as early as possible and to reduce the incidence and mortality arising from the associated comorbidities.

  17. Hydrogen sulfide: A novel nephroprotectant against cisplatin-induced renal toxicity.

    PubMed

    Dugbartey, George J; Bouma, Hjalmar R; Lobb, Ian; Sener, Alp

    2016-07-01

    Cisplatin is a potent chemotherapeutic agent for the treatment of various solid-organ cancers. However, a plethora of evidence indicates that nephrotoxicity is a major side effect of cisplatin therapy. While the antineoplastic action of cisplatin is due to formation of cisplatin-DNA cross-links, which damage rapidly dividing cancer cells upon binding to DNA, its nephrotoxic effect results from metabolic conversion of cisplatin into a nephrotoxin and production of reactive oxygen species, causing oxidative stress leading to renal tissue injury and potentially, kidney failure. Despite therapeutic targets in several pre-clinical and clinical studies, there is still incomplete protection against cisplatin-induced nephrotoxicity. Hydrogen sulfide (H2S), the third discovered gasotransmitter next to nitric oxide and carbon monoxide, has recently been identified in several in vitro and in vivo studies to possess specific antioxidant, anti-inflammatory and anti-apoptotic properties that modulate several pathogenic pathways involved in cisplatin-induced nephrotoxicity. The current article reviews the molecular mechanisms underlying cisplatin-induced nephrotoxicity and displays recent findings in the H2S field that could disrupt such mechanisms to ameliorate cisplatin-induced renal injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Clinical assessment and determinants of chronic allograft nephropathy in maintenance renal transplant patients.

    PubMed

    Grinyo, Josep M; Saval, Nuria; Campistol, Josep M

    2011-11-01

    Current knowledge about the natural history, treatment and physicians' perception of chronic allograft nephropathy (CAN) is limited. The present study evaluated the prevalence and determinants of CAN in renal transplant patients. Epidemiological, cross-sectional multi-centre study conducted in Spain. A total of 872 renal transplant recipients with a functioning graft and at least 2 years of post-transplant data on renal function were consecutively included. CAN diagnosis was recorded based on physician's clinical criteria and on laboratory criteria (serum creatinine ≥ 2 mg/dL and/or glomerular filtration rate ≤ 50 mL/min). The mean time from transplantation until the time of this study was 8.2 years. CAN was diagnosed in 35% of patients (n = 305) according to the physician's criteria (31% of whom with histological assessment) and in 55.5% (n = 482) according to laboratory objective criteria. An older donor age, lack of induction therapy, cyclosporine use, lower tacrolimus levels at 1 year, acute rejection, hypertension and worse initial renal function were associated with CAN development. Time from transplant to biopsy was greater in patients with anti-proteinuric treatment. Immunosuppression was modified in 46.9% of patients with CAN diagnosis [calcineurin inhibitor (CNI) reduction alone in 18.9% of cases; CNI reduction and mycophenolate modification in 17.8% and CNI reduction or withdrawal with introduction of proliferation signal inhibitors in 12.9%). After ~8 years from renal transplantation, 55.5% of patients presented CAN, which was considerably underestimated by physicians. An older donor age and less initial immunosuppression seemed to be related to CAN development.

  19. Experimental drug-induced changes in renal function and biodistribution of /sup 99m/Tc-MDP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McAfee, J.G.; Singh, A.; Roskopf, M.

    Increased renal uptake of /sup 99m/Tc methylene diphosphonate (MDP) was observed irregularly in rats after methotrexate, vincristine or gentamicin, administered separately. Cisplatin regularly induced a dose-related increased MDP uptake which correlated with the degree of tubular damage histologically. The augmented MDP renal uptake was not consistently accompanied by a decreased clearance of simultaneously injected I-131 Hippuran, particularly at lower drug dose levels. This observation agreed with previous evidence that the mechanisms of tubular transport of diphosphonates and organic acids like Hippuran are different. At higher dose levels, the augmented MDP uptake was accompanied by increased renal calcium, hypophosphatemia, elevated serummore » urea nitrogen and creatinine, and only occasional, mild hypercalcemia. The magnitude of the increased renal uptake of MDP observed could not be explained by alterations in iron metabolism or by dehydration. Drug-induced renal retention of MDP by a factor of 2 or more above normal appears to be a useful indicator of tubular damage when other parameters of renal function are sometimes normal.« less

  20. Collecting duct prorenin receptor knockout reduces renal function, increases sodium excretion, and mitigates renal responses in ANG II-induced hypertensive mice.

    PubMed

    Prieto, Minolfa C; Reverte, Virginia; Mamenko, Mykola; Kuczeriszka, Marta; Veiras, Luciana C; Rosales, Carla B; McLellan, Matthew; Gentile, Oliver; Jensen, V Behrana; Ichihara, Atsuhiro; McDonough, Alicia A; Pochynyuk, Oleh M; Gonzalez, Alexis A

    2017-12-01

    Augmented intratubular angiotensin (ANG) II is a key determinant of enhanced distal Na + reabsorption via activation of epithelial Na + channels (ENaC) and other transporters, which leads to the development of high blood pressure (BP). In ANG II-induced hypertension, there is increased expression of the prorenin receptor (PRR) in the collecting duct (CD), which has been implicated in the stimulation of the sodium transporters and resultant hypertension. The impact of PRR deletion along the nephron on BP regulation and Na + handling remains controversial. In the present study, we investigate the role of PRR in the regulation of renal function and BP by using a mouse model with specific deletion of PRR in the CD ( CD PRR-KO). At basal conditions, CD PRR-KO mice had decreased renal function and lower systolic BP associated with higher fractional Na + excretion and lower ANG II levels in urine. After 14 days of ANG II infusion (400 ng·kg -1 ·min -1 ), the increases in systolic BP and diastolic BP were mitigated in CD PRR-KO mice. CD PRR-KO mice had lower abundance of cleaved αENaC and γENaC, as well as lower ANG II and renin content in urine compared with wild-type mice. In isolated CD from CD PRR-KO mice, patch-clamp studies demonstrated that ANG II-dependent stimulation of ENaC activity was reduced because of fewer active channels and lower open probability. These data indicate that CD PRR contributes to renal function and BP responses during chronic ANG II infusion by enhancing renin activity, increasing ANG II, and activating ENaC in the distal nephron segments. Copyright © 2017 the American Physiological Society.

  1. A Randomized 2x2 Factorial Clinical Trial of Renal Transplantation: Steroid-Free Maintenance Immunosuppression with Calcineurin Inhibitor Withdrawal after Six Months Associates with Improved Renal Function and Reduced Chronic Histopathology.

    PubMed

    Stevens, R Brian; Foster, Kirk W; Miles, Clifford D; Kalil, Andre C; Florescu, Diana F; Sandoz, John P; Rigley, Theodore H; Malik, Tamer; Wrenshall, Lucile E

    2015-01-01

    The two most significant impediments to renal allograft survival are rejection and the direct nephrotoxicity of the immunosuppressant drugs required to prevent it. Calcineurin inhibitors (CNI), a mainstay of most immunosuppression regimens, are particularly nephrotoxic. Until less toxic antirejection agents become available, the only option is to optimize our use of those at hand. To determine whether intensive rabbit anti-thymocyte globulin (rATG) induction followed by CNI withdrawal would individually or combined improve graft function and reduce graft chronic histopathology-surrogates for graft and, therefore, patient survival. As previously reported, a single large rATG dose over 24 hours was well-tolerated and associated with better renal function, fewer infections, and improved patient survival. Here we report testing whether complete CNI discontinuation would improve renal function and decrease graft pathology. Between April 20, 2004 and 4-14-2009 we conducted a prospective, randomized, non-blinded renal transplantation trial of two rATG dosing protocols (single dose, 6 mg/kg vs. divided doses, 1.5 mg/kg every other day x 4; target enrollment = 180). Subsequent maintenance immunosuppression consisted of tacrolimus, a CNI, and sirolimus, a mammalian target of rapamycin inhibitor. We report here the outcome of converting patients after six months either to minimized tacrolimus/sirolimus or mycophenolate mofetil/sirolimus. Primary endpoints were graft function and chronic histopathology from protocol kidney biopsies at 12 and 24 months. CNI withdrawal (on-treatment analysis) associated with better graft function (p <0.001) and lower chronic histopathology composite scores in protocol biopsies at 12 (p = 0.003) and 24 (p = 0.013) months, without affecting patient (p = 0.81) or graft (p = 0.93) survival, or rejection rate (p = 0.17). CNI (tacrolimus) withdrawal at six months may provide a strategy for decreased nephrotoxicity and improved long-term function in

  2. Pregnancy in women with renal disease. Yes or no?

    PubMed Central

    Edipidis, K

    2011-01-01

    Women with renal disease who conceive and continue pregnancy, are at significant risk for adverse maternal and fetal outcomes. Although advances in antenatal and neonatal care continue to improve these outcomes, the risks remain proportionate to the degree of underlying renal dysfunction. The aim of this article, is to examine the impact of varying degrees of renal insufficiency on pregnancy outcome, in women with chronic renal disease and to provide if possible, useful conclusions whether and when, a woman with Chronic Kidney Disease (CKD), should decide to get pregnant. This article, reviews briefly the normal physiological changes of renal function during pregnancy, and make an attempt to clarify the nature and severity of the risks, in the settings of chronic renal insufficiency and end stage renal disease, including dialysis patients and transplant recipients. PMID:21897751

  3. Environmental enrichment and abstinence attenuate ketamine-induced cardiac and renal toxicity

    PubMed Central

    Li, Xingxing; Li, Shuangyan; Zheng, Wenhui; Pan, Jian; Huang, Kunyu; Chen, Rong; Pan, Tonghe; Liao, Guorong; Chen, Zhongming; Zhou, Dongsheng; Shen, Wenwen; Zhou, Wenhua; Liu, Yu

    2015-01-01

    The current study was designed to investigate the effect of abstinence in combination with environmental enrichment (EE) on cardiac and renal toxicity induced by 2 weeks of ketamine self-administration (SA) in rodents. In Experiment 1, one group of rats underwent ketamine SA for 14 days. In Experiment 2, the animals completed 2 weeks of ketamine SA followed by 2 and 4 weeks of abstinence. In Experiment 3, animals underwent 14 days of ketamine SA and 4 weeks of abstinence in which isolated environment (IE) and EE was introduced. The corresponding control groups were included for each experiment. Two weeks of ketamine SA caused significant increases in organ weight, Apoptosis Stimulating Fragment/Kidney Injury Molecule-1, and apoptotic level of heart and kidney. The extended length of withdrawal from ketamine SA partially reduced toxicity on the heart and kidney. Finally, introduction of EE during the period of abstinence greatly promoted the effect of abstinence on ketamine-induced cardiac and renal toxicity. The interactive effect of EE and abstinence was promising to promote the recovery of cardiac and renal toxicity of ketamine. PMID:26112338

  4. Hydrogen Rich Water Attenuates Renal Injury and Fibrosis by Regulation Transforming Growth Factor-β Induced Sirt1.

    PubMed

    Xing, Zhaoyu; Pan, Wanma; Zhang, Jing; Xu, Xianlin; Zhang, Xuemei; He, Xiaozhou; Fan, Min

    2017-01-01

    The current research was designed to study the role of hydrogen in renal fibrosis and the renal epithelial to mesenchymal transition (EMT) induced by transforming growth factor-β1 (TGF-β1). Hydrogen rich water (HW) was used to treat animal and cell models. Unilateral ureteral obstruction (UUO) was performed on Balb/c mice to create a model of renal fibrosis. Human kidney proximal tubular epithelial cells (HK-2 cells) were treated with TGF-β1 for 36 h to induce EMT. Serum creatinine (Scr) and blood urea nitrogen (BUN) were measured to test renal function, in addition, kidney histology and immunohistochemical staining of alpha-smooth muscle actin (α-SMA) positive cells was performed to examine the morphological changes. The treatment with UUO induced a robust fibrosis of renal interstitium, shrink of glomerulus and partial fracture of basement membrane. Renal function was also impaired in the experimental group with UUO, with an increase of Scr and BUN in serum. After that, Western-blot was performed to examine the expression of α-SMA, fibronectin, E-cadherin, Smad2 and Sirtuin-1 (Sirt1). The treatment with HW attenuated the development of fibrosis and deterioration of renal function in UUO model. In HK-2 cells, the pretreatment of HW abolished EMT induced by TGF-β1. The down-regulation the expression of Sirt1 induced by TGF-β1 which was dampened by the treatment with HW. Sirtinol, a Sirt1 inhibitor, reversed the effect of HW on EMT induced by TGF-β1. HW can inhibit the development of fibrosis in kidney and prevents HK-2 cells from undergoing EMT which is mediated through Sirt1, a downstream molecule of TGF-β1.

  5. The impact of galectin-3 inhibition on aldosterone-induced cardiac and renal injuries.

    PubMed

    Calvier, Laurent; Martinez-Martinez, Ernesto; Miana, Maria; Cachofeiro, Victoria; Rousseau, Elodie; Sádaba, J Rafael; Zannad, Faiez; Rossignol, Patrick; López-Andrés, Natalia

    2015-01-01

    This study investigated whether galectin (Gal)-3 inhibition could block aldosterone-induced cardiac and renal fibrosis and improve cardiorenal dysfunction. Aldosterone is involved in cardiac and renal fibrosis that is associated with the development of cardiorenal injury. However, the mechanisms of these interactions remain unclear. Gal-3, a β-galactoside-binding lectin, is increased in heart failure and kidney injury. Rats were treated with aldosterone-salt combined with spironolactone (a mineralocorticoid receptor antagonist) or modified citrus pectin (a Gal-3 inhibitor), for 3 weeks. Wild-type and Gal-3 knockout mice were treated with aldosterone for 3 weeks. Hemodynamic, cardiac, and renal parameters were analyzed. Hypertensive aldosterone-salt-treated rats presented cardiac and renal hypertrophy (at morphometric, cellular, and molecular levels) and dysfunction. Cardiac and renal expressions of Gal-3 as well as levels of molecular markers attesting fibrosis were also augmented by aldosterone-salt treatment. Spironolactone or modified citrus pectin treatment reversed all of these effects. In wild-type mice, aldosterone did not alter blood pressure levels but increased cardiac and renal Gal-3 expression, fibrosis, and renal epithelial-mesenchymal transition. Gal-3 knockout mice were resistant to aldosterone effects. In experimental hyperaldosteronism, the increase in Gal-3 expression was associated with cardiac and renal fibrosis and dysfunction but was prevented by pharmacological inhibition (modified citrus pectin) or genetic disruption of Gal-3. These data suggest a key role for Gal-3 in cardiorenal remodeling and dysfunction induced by aldosterone. Gal-3 could be used as a new biotarget for specific pharmacological interventions. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  6. Chronic potassium depletion increases adrenal progesterone production that is necessary for efficient renal retention of potassium.

    PubMed

    Elabida, Boutaïna; Edwards, Aurélie; Salhi, Amel; Azroyan, Anie; Fodstad, Heidi; Meneton, Pierre; Doucet, Alain; Bloch-Faure, May; Crambert, Gilles

    2011-08-01

    Modern dietary habits are characterized by high-sodium and low-potassium intakes, each of which was correlated with a higher risk for hypertension. In this study, we examined whether long-term variations in the intake of sodium and potassium induce lasting changes in the plasma concentration of circulating steroids by developing a mathematical model of steroidogenesis in mice. One finding of this model was that mice increase their plasma progesterone levels specifically in response to potassium depletion. This prediction was confirmed by measurements in both male mice and men. Further investigation showed that progesterone regulates renal potassium handling both in males and females under potassium restriction, independent of its role in reproduction. The increase in progesterone production by male mice was time dependent and correlated with decreased urinary potassium content. The progesterone-dependent ability to efficiently retain potassium was because of an RU486 (a progesterone receptor antagonist)-sensitive stimulation of the colonic hydrogen, potassium-ATPase (known as the non-gastric or hydrogen, potassium-ATPase type 2) in the kidney. Thus, in males, a specific progesterone concentration profile induced by chronic potassium restriction regulates potassium balance.

  7. Renal function assessment in atrial fibrillation: Usefulness of chronic kidney disease epidemiology collaboration vs re-expressed 4 variable modification of diet in renal disease.

    PubMed

    Abumuaileq, Rami Riziq-Yousef; Abu-Assi, Emad; López-López, Andrea; Raposeiras-Roubin, Sergio; Rodríguez-Mañero, Moisés; Martínez-Sande, Luis; García-Seara, Francisco Javier; Fernandez-López, Xesus Alberte; González-Juanatey, Jose Ramón

    2015-10-26

    To compare the performance of the re-expressed Modification of Diet in Renal Disease equation vs the new Chronic Kidney Disease Epidemiology Collaboration equation in patients with non-valvular atrial fibrillation. We studied 911 consecutive patients with non-valvular atrial fibrillation on vitamin-K antagonist. The performance of the re-expressed Modification of Diet in Renal Disease equation vs the new Chronic Kidney Disease Epidemiology Collaboration equation in patients with non-valvular atrial fibrillation with respect to either a composite endpoint of major bleeding, thromboembolic events and all-cause mortality or each individual component of the composite endpoint was assessed using continuous and categorical ≥ 60, 59-30, and < 30 mL/min per 1.73 m(2) estimated glomerular filtration rate. During 10 ± 3 mo, the composite endpoint occurred in 98 (10.8%) patients: 30 patients developed major bleeding, 18 had thromboembolic events, and 60 died. The new equation provided lower prevalence of renal dysfunction < 60 mL/min per 1.73 m(2) (32.9%), compared with the re-expressed equation (34.1%). Estimated glomerular filtration rate from both equations was independent predictor of composite endpoint (HR = 0.98 and 0.97 for the re-expressed and the new equation, respectively; P < 0.0001) and all-cause mortality (HR = 0.98 for both equations, P < 0.01). Strong association with thromboembolic events was observed only when estimated glomerular filtration rate was < 30 mL/min per 1.73 m(2): HR is 5.1 for the re-expressed equation, and HR = 5.0 for the new equation. No significant association with major bleeding was observed for both equations. The new equation reduced the prevalence of renal dysfunction. Both equations performed similarly in predicting major adverse outcomes.

  8. Relation of Aortic Valve Calcium to Chronic Kidney Disease (from the Chronic Renal Insufficiency Cohort [CRIC] Study)

    PubMed Central

    Guerraty, Marie A.; Chai, Boyang; Hsu, Jesse Yenchih; Ojo, Akinlolu O.; Gao, Yanlin; Yang, Wei; Keane, Martin G.; Budoff, Matthew J.; Mohler, Emile R.

    2015-01-01

    Although subjects with chronic kidney disease (CKD) are at markedly increased risk for cardiovascular mortality, the relationship between CKD and aortic valve calcification has not been fully elucidated. Also, few data are available on the relationship of aortic valve calcification and earlier stages of CKD. We sought to assess the relationship of aortic valve calcium (AVC) with estimated glomerular filtration rate (eGFR), traditional and novel cardiovascular risk factors, and markers of bone metabolism in the Chronic Renal Insufficiency Cohort (CRIC) Study. All patients who underwent aortic valve scanning in the CRIC study were included. The relationship between AVC and eGFR, traditional and novel cardiovascular risk factors, and markers of calcium metabolism were analyzed using both unadjusted and adjusted regression models. A total of 1964 CRIC participants underwent computed tomography for AVC quantification. Decreased renal function was independently associated with increased levels of AVC (eGFR 47.11 ml/min/1.73m2, 44.17 ml/min/1.73m2, and 39 ml/min/1.73m2, respectively, p< 0.001). This association persisted after adjusting for traditional, but not novel, AVC risk factors. Adjusted regression models identified several traditional and novel risk factors for AVC in patients with CKD. There was a difference in AVC risk factors between black and non-black patients. In conclusion, our study shows that eGFR is associated in a dose-dependent manner with AVC in patients with CKD, and this association is independent of traditional cardiovascular risk factors. PMID:25791240

  9. Renal Function of Rats in Response to 37 Days of Head-Down Tilt

    NASA Technical Reports Server (NTRS)

    Wang, Tommy J.; Wade, Charles E.; Dalton, Bonnie P. (Technical Monitor)

    2001-01-01

    Spaceflight induces changes in human renal function, suggesting similar changes may occur in rats. Since rats continue to be the prime mammalian model for study in space, the effects of chronic microgravity on rat renal function should be clarified. Acute studies in rats using the ground-based microgravity simulation model, head-down tilt (HDT), have shown increases in glomerular filtration rate (GFR), electrolyte excretion, and a diuresis. However, long term effects of HDT have not been studied extensively. This study was performed to elucidate rat renal function following long-term simulated microgravity. Chronic exposure to HDT will cause an increase in GFR and electrolyte excretion in rats, similar to acute exposures, and lead to a decrease in the fractional excretion of filtered electrolytes. Experimental animals (HDT, n=10) were tail-suspended for 37 days and renal function compared to ambulatory controls (AMB, n=10). On day 37 of HDT, GFR, osmolal clearance, and electrolyte excretion were decreased, while plasma osmolality and free water clearance were increased. Urine output remained similar between groups. The fractional excretion of the filtered electrolytes was unchanged except for a decrease in the percentage of filtered calcium excreted. Chronic exposure to HDT results in decreased GFR and electrolyte excretion, but the fractional excretion of filtered electrolytes remained primarily unaffected.

  10. Protective Effect of Morocco Carob Honey Against Lead-Induced Anemia and Hepato-Renal Toxicity.

    PubMed

    Fihri, Aicha Fassi; Al-Waili, Noori S; El-Haskoury, Redouan; Bakour, Meryem; Amarti, Afaf; Ansari, Mohammad J; Lyoussi, Badiaa

    2016-01-01

    Natural honey has many biological activities including protective effect against toxic materials. The aim of this study was to evaluate the protective effect of carob honey against lead-induced hepato-renal toxicity and lead-induced anemia in rabbits. Twenty four male rabbits were allocated into four groups six rabbits each; group 1: control group, received distilled water (0.1 ml / kg.b.wt /daily); group 2: received oral lead acetate (2 g/kg.b.wt/daily); group 3: treated with oral honey (1g /kg.b.wt/daily) and oral lead (2 g/kg.b.wt/daily), and group 4: received oral honey (1 g/kg.b.wt/daily). Honey and lead were given daily during 24 days of experimentation. Laboratory tests and histopathological evaluations of kidneys were done. Oral administration of lead induced hepatic and kidney injury and caused anemia during three weeks of the exposure. Treatment with honey prevented hepato-renal lead toxicity and ameliorated lead-induced anemia when honey was given to animals during lead exposure. It might be concluded that honey has a protective effect against lead-induced blood, hepatic and renal toxic effects. © 2016 The Author(s) Published by S. Karger AG, Basel.

  11. [Comparison of pharmacological renal preconditioning with dalargin and lithium ions in the model of gentamycin-induced acute renal failure].

    PubMed

    Cherpakov, R A; Grebenchikov, O A; Plotnikov, E Ju; Likhvantsev, V V

    2015-01-01

    To examine the efficacy of renal preconditioning effect of dalargin and lithium ions by observing the model of gentamycin-induced acute renalfailure. The experiments were performed on white rats, male. The influence of dalargin and lithium ions on the development of gentamycin-induced acute renalfailure was studied in vivo. On the first 24 hours after dalargin injections were terminated, the rats were euthanized humanly. After this we took the blood for a biochemistry study and a renal culture for biochemical test and also for the test of gsk-3β activity. Concentrations of creatinine and urea were studied in serum. The culture samples of renal tubular epithelium before insertion of gentamycin were incubated in dalargin or lithium ions in different concentrations. After that the substratum was immediately changed to gentamycin in different concentrations also and the incubated for 24 hours. After all the standards MTT-test was performed (based on the ability of living cells to reduce the unpainted form by 3-4,5-dimethylthiazol-2-yl-2,5-difenilterarazola to blue crystalline farmazan). Lithium precondition leads to the 250% increase of gsk-3β concentration (p = 0.035). The same results were observed after injection of dalargin in 50 mcg/kg concentration. Concentration of creatinine was 44% lower in the dalargin group than in the control group (p = 0.022). Concentration of creatinine was 32% lower in the lithium group than in the control group (p = 0.030). Concentration of urea was 27% lower in the lithium group than in the control group (p = 0.049). Morphological inflammatory changes in the control group were more significant also. In vitro studies showed the maximum efficacy in the lithium group. The most effective dalargin concentration was 5 mg/ml. Lithium and dalargine preconditioning lowers the signs of gentamycine induced acute renal failure and damage rate of renal parenchyma in vivo and in vitro.

  12. Is Fluid Overload More Important than Diabetes in Renal Progression in Late Chronic Kidney Disease?

    PubMed Central

    Tsai, Yi-Chun; Tsai, Jer-Chia; Chiu, Yi-Wen; Kuo, Hung-Tien; Chen, Szu-Chia; Hwang, Shang-Jyh; Chen, Tzu-Hui; Kuo, Mei-Chuan; Chen, Hung-Chun

    2013-01-01

    Fluid overload is one of the major presentations in patients with late stage chronic kidney disease (CKD). Diabetes is the leading cause of renal failure, and progression of diabetic nephropathy has been associated with changes in extracellular fluid volume. The aim of the study was to assess the association of fluid overload and diabetes in commencing dialysis and rapid renal function decline (the slope of estimated glomerular filtration rate (eGFR) less than -3 ml/min per 1.73 m2/y) in 472 patients with stages 4-5 CKD. Fluid status was determined by bioimpedance spectroscopy method, Body Composition Monitor. The study population was further classified into four groups according to the median of relative hydration status (△HS =fluid overload/extracellular water) and the presence or absence of diabetes. The median level of relative hydration status was 7%. Among all patients, 207(43.9 %) were diabetic. 71 (15.0%) subjects had commencing dialysis, and 187 (39.6%) subjects presented rapid renal function decline during a median 17.3-month follow-up. Patients with fluid overload had a significantly increased risk for commencing dialysis and renal function decline independent of the presence or absence of diabetes. No significantly increased risk for renal progression was found between diabetes and non-diabetes in late CKD without fluid overload. In conclusion, fluid overload has a higher predictive value of an elevated risk for renal progression than diabetes in late CKD. PMID:24349311

  13. Immunological tolerance induced by galectin-1 in rat allogeneic renal transplantation.

    PubMed

    Xu, Gaosi; Tu, Weiping; Xu, Chengyun

    2010-06-01

    The existed literatures indicated that galectin-1 has anti-inflammatory effects and plays a pivotal role in autoimmune diseases. Present study was to identify the roles of galectin-1 in acute animal renal allograft rejection. Rat acute rejection models were erected by allogeneic renal transplantation. Galectin-1 injection was performed in different concentrations in renal recipients post-transplantation. Recipient survivals, CD8+ T cell proliferation, production of IFN-gamma, levels of serum CD30, enzyme-linked immunoabsorbent spot assay (ELISPOT) and immunohistochemistry were observed or tested 7days after renal transplantation. Galectin-1 injection can prolong the recipient animal survival, reduce the serum levels of IFN-gamma, soluble CD30, percentage of CD8+ T cell subset, CD8+ T cell-mediated cytotoxicity, and IFN-gamma ELISPOT frequency for allograft recipients. The therapeutic effects of galectin-1 injection on recipient rats were dose-dependent. Galectin-1 plays an important role in CD8+ T cell-mediated renal rejection by inducing immunological tolerance. Copyright 2010 Elsevier B.V. All rights reserved.

  14. In vivo and in vitro assessment of pathways involved in contrast media-induced renal cells apoptosis

    PubMed Central

    Quintavalle, C; Brenca, M; De Micco, F; Fiore, D; Romano, S; Romano, M F; Apone, F; Bianco, A; Zabatta, M A; Troncone, G; Briguori, C; Condorelli, G

    2011-01-01

    Contrast-induced nephropathy accounts for >10% of all causes of hospital-acquired renal failure, causes a prolonged in-hospital stay and represents a powerful predictor of poor early and late outcome. Mechanisms of contrast-induced nephropathy are not completely understood. In vitro data suggests that contrast media (CM) induces a direct toxic effect on renal tubular cells through the activation of the intrinsic apoptotic pathway. It is unclear whether this effect has a role in the clinical setting. In this work, we evaluated the effects of CM both in vivo and in vitro. By analyzing urine samples obtained from patients who experienced contrast-induced acute kidney injury (CI-AKI), we verified, by western blot and immunohistochemistry, that CM induces tubular renal cells apoptosis. Furthermore, in cultured cells, CM caused a dose–response increase in reactive oxygen species (ROS) production, which triggered Jun N-terminal kinases (JNK1/2) and p38 stress kinases marked activation and thus apoptosis. Inhibition of JNK1/2 and p38 by different approaches (i.e. pharmacological antagonists and transfection of kinase-death mutants of the upstream p38 and JNK kinases) prevented CM-induced apoptosis. Interestingly, N-acetylcysteine inhibited ROS production, and thus stress kinases and apoptosis activation. Therefore, we conclude that CM-induced tubular renal cells apoptosis represents a key mechanism of CI-AKI. PMID:21562587

  15. Low molecular weight fucoidan protects renal tubular cells from injury induced by albumin overload.

    PubMed

    Jia, Yingli; Sun, Yi; Weng, Lin; Li, Yingjie; Zhang, Quanbin; Zhou, Hong; Yang, Baoxue

    2016-08-22

    Albuminuria is a causative and aggravating factor for progressive renal damage in chronic kidney disease (CKD). The aim of this study was to determine if low molecular weight fucoidan (LMWF) could protect renal function and tubular cells from albumin overload caused injury. Treatment with 10 mg/g bovine serum albumin caused renal dysfunction, morphological changes, and overexpression of inflammation and fibrosis associated proteins in 129S2/Sv mice. LMWF (100 mg/kg) protected against kidney injury and renal dysfunction with decreased blood creatinine by 34% and urea nitrogen by 25%, increased creatinine clearance by 48%, and decreased significantly urinary albumin concentration. In vitro proximal tubule epithelial cell (NRK-52E) model showed that LMWF dose-dependently inhibited overexpression of proinflammatory and profibrotic factors, oxidative stress and apoptosis caused by albumin overload. These experimental results indicate that LMWF protects against albumin overload caused renal injury by inhibiting inflammation, fibrosis, oxidative stress and apoptosis, which suggests that LMWF could be a promising candidate drug for preventing CKD.

  16. Estimation of liver parameters and oxidative stress in chronic renal failure patients on hemodialysis in Erbil governorate

    NASA Astrophysics Data System (ADS)

    Kakey, Musher Ismail Salih; Abdoulrahman, Kamaran Kaiani

    2017-09-01

    The present study aims to evaluate iron related parameters in chronic renal failure (CRF) patients on hemodialysis (HD). The study was carried out in Kidney Dialysis Center of Hawler Teaching Hospital in Erbil governorate. This study comprised (76) patients with chronic renal failure on hemodialysis and 41 healthy subjects as a control group of same ages. All hemodialysis patients were taking erythropoietin. The blood samples were taken from the patients before and after the process of hemodialysis for liver parameters and oxidative stress estimations. The results of this study showed lower levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), albumin, total bilirubin, total protein and total antioxidant capacity (TAC), while higher levels of alkaline phosphatase (ALP), direct bilirubin and malondialdeyhde (MDA) before analysis was seen. Hemodialysis causes increasing in AST, ALT, albumin, total bilirubin, total protein and decreasing in ALP, direct bilirubin MDA and TAC.

  17. [Mean values of blood pressure and endothelin plasma concentration in patients with chronic renal failure].

    PubMed

    Kocur, E; Kidawa, Z; Polakowski, P; Orszulak-Michalak, D; Karpinski, J; Rogulski, B; Wołkanin, P

    1998-09-01

    The aim of the present study was evaluation of correlation between big-endothelin concentration of the precursor substance of endothelin and mean values of blood pressure in 13 patients with compensates chronic renal failure. Their age ranged from 29 years to 55 years the mean age was 42.9 +/- 8.2 years. The patients were from the Consultational Nephrologic Outpatient Clinic. These patients were sent to the clinic after a hospital observation with recognised chronic renal failure (CRF), caused by chronic glomerulonephritis (without pathomorphological differentiation). The control group consistent of 10 healthy volunteers, an age ranged from 22 years to 49 years, a mean was 32.6 +/- 10.8 years. The following mean blood pressure values were found: in patient group a systolic pressure was 139.1 +/- 17.3 mm Hg and a diastolic pressure was 88.4 +/- 12.5 mm Hg and similar values in healthy control group were respectively: 118.6 +/- 4.0 and 72.4 +/- 5.9 mm Hg. Analogously the proendothelin concentration was 18.48 +/- 22.04 fmol/ml in patients with CRF and it was 4.67 +/- 0.27 fmol/ml in the control group. A positive correlation between mean blood systolic pressure values and the proendothelin concentration (r = 0.666, Y = 0.52X + 129.5; p < 0.05) in the was found patients group.

  18. Was adenine the first purine?

    NASA Technical Reports Server (NTRS)

    Schwartz, Alan W.; Bakker, C. G.

    1989-01-01

    Oligomerization of HCN (1 molar) in the presence of added formaldehyde (0.5 molar) produced an order of magnitude more 8-hydroxymethyladenine than adenine or any other biologically significant purine. This result suggests that on the prebiotic earth, nucleoside analogs may have been synthesized directly in more complex mixtures of HCN with other aldehydes.

  19. Advanced glycation end products in children with chronic renal failure and type 1 diabetes.

    PubMed

    Misselwitz, Joachim; Franke, Sybille; Kauf, Eberhard; John, Ulrike; Stein, Günter

    2002-05-01

    Serum levels of advanced glycation end products (AGEs) are markedly elevated in adults with chronic renal failure (CRF) and diabetes mellitus. Accumulation of AGEs in tissues contributes to the development of long-term complications. Up to now little has been known about the formation of AGEs in childhood. We determined serum levels of the well known AGEs pentosidine and Nvarepsilon-carboxymethyllysine (CML) in children with CRF (n=12), end-stage renal disease (ESRD) (n=9), renal transplantation (n=12), and type 1 diabetes mellitus (n=42) and in healthy children (n=20). Pentosidine was measured by high-performance liquid chromatography (HPLC), CML by a competitive enzyme-linked immunosorbent assay (ELISA) system. Serum levels of pentosidine and CML were significantly higher in the children with CRF and ESRD than in controls (P< 0.001), but nearly within the normal range after transplantation. Both AGEs showed a significant negative correlation with creatinine clearance (P< 0.001). During a single session of low-flux hemodialysis, total pentosidine and CML levels did not change. Free pentosidine, however, was reduced by 78% (P=0.04). Diabetic children showed significantly elevated pentosidine levels (P< 0.001) despite normal renal function. We conclude that, similar to adults, increased formation and accumulation of AGEs also exist in children with CRF and type 1 diabetes mellitus. At present the best prevention of AGE-related complications is an early renal transplantation in children with ESRD, as well as a careful metabolic monitoring of diabetics.

  20. Selective Rac1 inhibition protects renal tubular epithelial cells from oxalate-induced NADPH oxidase-mediated oxidative cell injury

    PubMed Central

    Thamilselvan, Vijayalakshmi; Menon, Mani

    2013-01-01

    Oxalate-induced oxidative cell injury is one of the major mechanisms implicated in calcium oxalate nucleation, aggregation and growth of kidney stones. We previously demonstrated that oxalate-induced NADPH oxidase-derived free radicals play a significant role in renal injury. Since NADPH oxidase activation requires several regulatory proteins, the primary goal of this study was to characterize the role of Rac GTPase in oxalate-induced NADPH oxidase-mediated oxidative injury in renal epithelial cells. Our results show that oxalate significantly increased membrane translocation of Rac1 and NADPH oxidase activity of renal epithelial cells in a time-dependent manner. We found that NSC23766, a selective inhibitor of Rac1, blocked oxalate-induced membrane translocation of Rac1 and NADPH oxidase activity. In the absence of Rac1 inhibitor, oxalate exposure significantly increased hydrogen peroxide formation and LDH release in renal epithelial cells. In contrast, Rac1 inhibitor pretreatment, significantly decreased oxalate-induced hydrogen peroxide production and LDH release. Furthermore, PKC α and δ inhibitor, oxalate exposure did not increase Rac1 protein translocation, suggesting that PKC resides upstream from Rac1 in the pathway that regulates NADPH oxidase. In conclusion, our data demonstrate for the first time that Rac1-dependent activation of NADPH oxidase might be a crucial mechanism responsible for oxalate-induced oxidative renal cell injury. These findings suggest that Rac1 signaling plays a key role in oxalate-induced renal injury, and may serve as a potential therapeutic target to prevent calcium oxalate crystal deposition in stone formers and reduce recurrence. PMID:21814770

  1. Unilateral renal ischaemia in rats induces a rapid secretion of inflammatory markers to renal lymph and increased capillary permeability

    PubMed Central

    Bivol, Liliana Monica; Iversen, Bjarne Magnus; Hultström, Michael; Wallace, Paal William; Reed, Rolf Kåre

    2015-01-01

    Key points Transient reduction in renal blood flow results in inflammation and is a primary cause of acute kidney injury, thereby representing a major clinical problem.It is not known whether the inflammatory reaction is local only or part of a systemic response.We accessed the renal microenvironment through isolation of lymph and were in this way able to investigate whether the inflammatory reaction is local or systemic.Transient ischaemia followed by reperfusion resulted in a rapid production of inflammatory mediators locally in the renal interstitium.We moreover showed that the injury response affected the glomerular as well as the non‐glomerular barrier and resulted in a reduced size and charge selectivity of the glomerular capillaries. Abstract A better understanding of the inflammatory process associated with renal ischaemia–reperfusion (IR) injury may be clinically important. In this study we examined the role of the kidney in production of inflammatory mediators by analysing renal lymph after 30 min unilateral occlusion of renal artery followed by 120 min reperfusion, as well as the effect of IR on size selectivity for proteins in both glomerular and peritubular capillaries. All measured mediators increased dramatically in renal hilar lymph, plasma and renal cortical tissue samples and returned to control levels after 120 min reperfusion. The responses were differentiated; interleukin‐1β, monocyte chemoattractant protein‐1 and leptin were markedly increased in plasma before reperfusion, reflecting an extrarenal response possibly induced by afferent renal nerve activity from the ischaemic kidney. Tumour necrosis factor‐α  was the only mediator showing elevated lymph‐to‐plasma ratio following 30 min reperfusion, indicating that most cytokines were released directly into the bloodstream. The IR‐induced rise in cytokine levels was paralleled by a significant increase in high molecular weight plasma proteins in both lymph and urine. The

  2. A successful renal transplantation for renal failure after dasatinib-induced thrombotic thrombocytopenic purpura in a patient with imatinib-resistant chronic myelogenous leukaemia on nilotinib.

    PubMed

    Martino, Suella; Daguindau, Etienne; Ferrand, Christophe; Bamoulid, Jamal; Hayette, Sandrine; Nicolini, F-E; Capellier, G; Deconinck, Eric; Larosa, Fabrice

    2013-01-01

    Second-generation tyrosine kinase inhibitors (TKI2) often induce molecular remission, and prolonged survival with a better tolerance in imatinib-resistant chronic myelogenous leukaemia (CML) patients. We report the case of a CML in first chronic phase who was diagnosed in August 2003 in a young 24 year-old Caucasian woman. Our patient received first imatinib and then dasatinib and nilotinib. Imatinib was well tolerated and she developed TTP/HUS on dasatinib without documented evolution of CML and finally obtained MR5.0 with nilotinib and without any side effect. This case also illustrates the absence of cross-resistance and side-effects between the different TKIs and the feasibility of kidney transplantation associated with a nilotinib treatment of CML allowing a continuing MR5.0 and no further side effects.

  3. SIRT1 overexpression decreases cisplatin-induced acetylation of NF-{kappa}B p65 subunit and cytotoxicity in renal proximal tubule cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Yu Jin; Lee, Jung Eun; Lee, Ae Sin

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer Cisplatin increases acetylation of NF-{kappa}B p65 subunit in HK2 cells. Black-Right-Pointing-Pointer SIRT1 overexpression decreases cisplatin-induced p65 acetylation and -cytotoxicity. Black-Right-Pointing-Pointer Resveratrol decreased cisplatin-induced cell viability through deacetylation of p65. -- Abstract: As the increased acetylation of p65 is linked to nuclear factor-{kappa}B (NF-{kappa}B) activation, the regulation of p65 acetylation can be a potential target for the treatment of inflammatory injury. Cisplatin-induced nephrotoxicity is an important issue in chemotherapy of cancer patients. SIRT1, nicotinamide adenine dinucleotide (NAD{sup +})-dependent protein deacetylase, has been implicated in a variety of cellular processes such as inflammatory injury and the control of multidrug resistancemore » in cancer. However, there is no report on the effect of SIRT1 overexpression on cisplatin-induced acetylation of p65 subunit of NF-{kappa}B and cell injury. To investigate the effect of SIRT1 in on cisplatin-induced acetylation of p65 subunit of NF-{kappa}B and cell injury, HK2 cells were exposed with SIRT1 overexpression, LacZ adenovirus or dominant negative adenovirus after treatment with cisplatin. While protein expression of SIRT1 was decreased by cisplatin treatment compared with control buffer treatment, acetylation of NF-{kappa}B p65 subunit was significantly increased after treatment with cisplatin. Overexpression of SIRT1 ameliorated the increased acetylation of p65 of NF-{kappa}B during cisplatin treatment and cisplatin-induced cytotoxicity. Further, treatment of cisplatin-treated HK2 cells with resveratrol, a SIRT1 activator, also decreased acetylation of NF-{kappa}B p65 subunit and cisplatin-induced increase of the cell viability in HK2 cells. Our findings suggests that the regulation of acetylation of p65 of NF-{kappa}B through SIRT1 can be a possible target to attenuate cisplatin-induced renal cell damage.« less

  4. Renal Dysfunction Induced by Kidney-Specific Gene Deletion of Hsd11b2 as a Primary Cause of Salt-Dependent Hypertension.

    PubMed

    Ueda, Kohei; Nishimoto, Mitsuhiro; Hirohama, Daigoro; Ayuzawa, Nobuhiro; Kawarazaki, Wakako; Watanabe, Atsushi; Shimosawa, Tatsuo; Loffing, Johannes; Zhang, Ming-Zhi; Marumo, Takeshi; Fujita, Toshiro

    2017-07-01

    Genome-wide analysis of renal sodium-transporting system has identified specific variations of Mendelian hypertensive disorders, including HSD11B2 gene variants in apparent mineralocorticoid excess. However, these genetic variations in extrarenal tissue can be involved in developing hypertension, as demonstrated in former studies using global and brain-specific Hsd11b2 knockout rodents. To re-examine the importance of renal dysfunction on developing hypertension, we generated kidney-specific Hsd11b2 knockout mice. The knockout mice exhibited systemic hypertension, which was abolished by reducing salt intake, suggesting its salt-dependency. In addition, we detected an increase in renal membrane expressions of cleaved epithelial sodium channel-α and T53-phosphorylated Na + -Cl - cotransporter in the knockout mice. Acute intraperitoneal administration of amiloride-induced natriuresis and increased urinary sodium/potassium ratio more in the knockout mice compared with those in the wild-type control mice. Chronic administration of amiloride and high-KCl diet significantly decreased mean blood pressure in the knockout mice, which was accompanied with the correction of hypokalemia and the resultant decrease in Na + -Cl - cotransporter phosphorylation. Accordingly, a Na + -Cl - cotransporter blocker hydrochlorothiazide significantly decreased mean blood pressure in the knockout mice. Chronic administration of mineralocorticoid receptor antagonist spironolactone significantly decreased mean blood pressure of the knockout mice along with downregulation of cleaved epithelial sodium channel-α and phosphorylated Na + -Cl - cotransporter expression in the knockout kidney. Our data suggest that kidney-specific deficiency of 11β-HSD2 leads to salt-dependent hypertension, which is attributed to mineralocorticoid receptor-epithelial sodium channel-Na + -Cl - cotransporter activation in the kidney, and provides evidence that renal dysfunction is essential for developing the

  5. Acquired perforating dermatosis in a patient with chronic renal failure.

    PubMed

    Fernandes, Karen de Almeida Pinto; Lima, Lourenço de Azevedo; Guedes, Juliana Chaves Ruiz; Lima, Ricardo Barbosa; D'Acri, Antônio Macedo; Martins, Carlos José

    2016-01-01

    Perforating dermatoses are a group of skin diseases characterized by transepidermal elimination of dermal material. The disease is divided into two groups: the primary group and the secondary group. The classical or primary perforating dermatoses are subdivided into four types according to the eliminated dermal materials: Kyrle disease, perforating reactive collagenosis, elastosis perforans serpiginosa, and perforating folliculitis. The secondary form is known as acquired perforating dermatosis. The term was proposed in 1989 by Rapini to designate the perforating dermatoses affecting adult patients with systemic disease, regardless of the dermal materials eliminated. This report describes a case of the disease with elimination of collagen and elastic fibers in a patient with chronic renal failure.

  6. Protective effect of nicotinamide adenine dinucleotide (NAD+) against spinal cord ischemia-reperfusion injury via reducing oxidative stress-induced neuronal apoptosis.

    PubMed

    Xie, Lei; Wang, Zhenfei; Li, Changwei; Yang, Kai; Liang, Yu

    2017-02-01

    As previous studies demonstrate that oxidative stress and apoptosis play crucial roles in ischemic pathogenesis and nicotinamide adenine dinucleotide (NAD + ) treatment attenuates oxidative stress-induced cell death among primary neurons and astrocytes as well as significantly reduce cerebral ischemic injury in rats. We used a spinal cord ischemia injury (SCII) model in rats to verify our hypothesis that NAD + could ameliorate oxidative stress-induced neuronal apoptosis. Adult male rats were subjected to transient spinal cord ischemia for 60min, and different doses of NAD + were administered intraperitoneally immediately after the start of reperfusion. Neurological function was determined by Basso, Beattie, Bresnahan (BBB) scores. The oxidative stress level was assessed by superoxide dismutase (SOD) activity and malondialdehyde (MDA) content. The degree of apoptosis was analyzed by deoxyuridinetriphosphate nick-end labeling (TUNEL) staining and protein levels of cleaved caspase-3 and AIF (apoptosis inducing factor). The results showed that NAD + at 50 or 100mg/kg significantly decreased the oxidative stress level and neuronal apoptosis in the spinal cord of ischemia-reperfusion rats compared with saline, as accompanied with the decreased oxidative stress, NAD + administration significantly restrained the neuronal apoptosis after ischemia injury while improved the neurological and motor function. These findings suggested that NAD + might protect against spinal cord ischemia-reperfusion via reducing oxidative stress-induced neuronal apoptosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Outcomes of tubeless percutaneous nephrolithotomy in patients with chronic renal insufficiency.

    PubMed

    Etemadian, Masoud; Maghsoudi, Robab; Shadpour, Pejman; Ghasemi, Hadi; Shati, Mohsen

    2012-05-01

    We evaluated the outcomes of percutaneous nephrolithotomy in patients with chronic renal insufficiency. A total of 60 patients with a creatinine level greater than 1.5 mg/dL who underwent PCNL were included. Serum creatinine level, as a kidney function index, was assessed before and after the operation. The mean calculus size was 31.13 ± 9.38 mm. The mean pre-operative and 2-week postoperative serum creatinine levels were 2.43 ± 0.75 mg/dL and 2.08 ± 0.78 mg/dL, respectively. There was a significant difference between the pre-operative and postoperative creatinine levels in all postoperative days (days 1, 2, and 14). Fifty of the 60 patients (83.3%) were stone free. Ten patients (16.6%) developed postoperative fever. We can conclude that percutaneous nephrolithotomy seems to be a safe and effective therapeutic option for kidney calculi in patients with chronic kidney disease.

  8. Incidence of Infection and Inhospital Mortality in Patients With Chronic Renal Failure After Total Joint Arthroplasty.

    PubMed

    Erkocak, Omer F; Yoo, Joanne Y; Restrepo, Camilo; Maltenfort, Mitchell G; Parvizi, Javad

    2016-11-01

    Patients with chronic renal failure (CRF) may require total joint arthroplasty (TJA) to treat degenerative joint disease, fractures, osteonecrosis, or amyloid arthropathy. There have been conflicting results, however, regarding outcomes of TJA in patients with chronic renal disease. The aim of this case-controlled study was to determine the outcome of TJA in patients with CRF, with particular interest in the incidence of infections and inhospital mortality. We queried our electronic database to determine which patients among the 29,389 TJAs performed at our institution between January 2000 and June 2012 had a diagnosis of CRF. A total of 359 CRF patients were identified and matched for procedure, gender, age (±4 years), date of surgery (±2 years), and body mass index (±5 kg/m 2 ) in a 2:1 ratio to 718 control patients. The incidence of infection and inhospital mortality was not significantly different between the nondialysis CRF patients and controls, whereas it was significantly higher in dialysis-dependent end-stage renal failure patients compared to controls. Of the 50 CRF patients receiving hemodialysis, 10 (20%) developed surgical site infection, of which 4 (8%) were periprosthetic joint infection, and 4 (8%) died during hospital stay. The odds ratio for infection in the dialysis group was 7.54 (95% confidence interval: 2.83-20.12) and 10.46 (95% confidence interval: 1.67-65.34) for the inhospital mortality. We conclude that end-stage renal failure patients receiving hemodialysis have higher postoperative infection and inhospital mortality rates after an elective TJA procedure, whereas nondialysis CRF patients have similar outcomes compared with the general TJA population. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Sequencing of adenine in DNA by scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiroyuki; Taniguchi, Masateru

    2017-08-01

    The development of DNA sequencing technology utilizing the detection of a tunnel current is important for next-generation sequencer technologies based on single-molecule analysis technology. Using a scanning tunneling microscope, we previously reported that dI/dV measurements and dI/dV mapping revealed that the guanine base (purine base) of DNA adsorbed onto the Cu(111) surface has a characteristic peak at V s = -1.6 V. If, in addition to guanine, the other purine base of DNA, namely, adenine, can be distinguished, then by reading all the purine bases of each single strand of a DNA double helix, the entire base sequence of the original double helix can be determined due to the complementarity of the DNA base pair. Therefore, the ability to read adenine is important from the viewpoint of sequencing. Here, we report on the identification of adenine by STM topographic and spectroscopic measurements using a synthetic DNA oligomer and viral DNA.

  10. Tubular damage and worsening renal function in chronic heart failure.

    PubMed

    Damman, Kevin; Masson, Serge; Hillege, Hans L; Voors, Adriaan A; van Veldhuisen, Dirk J; Rossignol, Patrick; Proietti, Gianni; Barbuzzi, Savino; Nicolosi, Gian Luigi; Tavazzi, Luigi; Maggioni, Aldo P; Latini, Roberto

    2013-10-01

    This study sought to investigate the relationship between tubular damage and worsening renal function (WRF) in chronic heart failure (HF) BACKGROUND: WRF is associated with poor outcome in chronic HF. It is unclear whether urinary tubular markers may identify patients at risk for WRF. In 2,011 patients with chronic HF, we evaluated the ability of urinary tubular markers (N-acetyl-beta-d-glucosaminidase (NAG), kidney injury molecule (KIM)-1, and neutrophil gelatinase-associated lipocalin (NGAL) to predict WRF. Finally, we assessed the prognostic importance of WRF. A total of 290 patients (14.4%) experienced WRF during follow-up, and WRF was a strong and independent predictor of all-cause mortality and HF hospitalizations (hazard ratio [HR]: 2.87; 95% CI: 2.40 to 3.43; p < 0.001). Patients with WRF had lower baseline glomerular filtration rate and higher KIM-1, NAG, and NGAL levels. In a multivariable-adjusted model, KIM-1 was the strongest independent predictor of WRF (HR: 1.23; 95% CI: 1.09 to 1.39 per log increase; p = 0.001). WRF was associated with strongly impaired outcome in patients with chronic HF. Increased level of urinary KIM-1 was the strongest independent predictor of WRF and could therefore be used to identify patients at risk for WRF and poor clinical outcome. (GISSI-HF-Effects of n-3 PUFA and Rosuvastatin on Mortality-Morbidity of Patients With Symptomatic CHF; NCT00336336). Copyright © 2013 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  11. Role of 11beta-hydroxysteroid dehydrogenase 2 renal activity in potassium homeostasis in rats with chronic renal failure.

    PubMed

    Yeyati, N L; Altuna, M E; Damasco, M C; Mac Laughlin, M A

    2010-01-01

    Aldosterone concentrations vary in advanced chronic renal failure (CRF). The isozyme 11beta-hydroxysteroid dehydrogenase 2 (11beta-HSD2), which confers aldosterone specificity for mineralocorticoid receptors in distal tubules and collecting ducts, has been reported to be decreased or normal in patients with renal diseases. Our objective was to determine the role of aldosterone and 11beta-HSD2 renal microsome activity, normalized for glomerular filtration rate (GFR), in maintaining K+ homeostasis in 5/6 nephrectomized rats. Male Wistar rats weighing 180-220 g at the beginning of the study were used. Rats with experimental CRF obtained by 5/6 nephrectomy (N = 9) and sham rats (N = 10) were maintained for 4 months. Systolic blood pressure and plasma creatinine (Pcr) concentration were measured at the end of the experiment. Sodium and potassium excretion and GFR were evaluated before and after spironolactone administration (10 mg.kg-1.day-1 for 7 days) and 11beta-HSD2 activity on renal microsomes was determined. Systolic blood pressure (means +/- SEM; Sham = 105 +/- 8 and CRF = 149 +/- 10 mmHg) and Pcr (Sham = 0.42 +/- 0.03 and CRF = 2.53 +/- 0.26 mg/dL) were higher (P < 0.05) while GFR (Sham = 1.46 +/- 0.26 and CRF = 0.61 +/- 0.06 mL/min) was lower (P < 0.05) in CRF, and plasma aldosterone (Pald) was the same in the two groups. Urinary sodium and potassium excretion was similar in the two groups under basal conditions but, after spironolactone treatment, only potassium excretion was decreased in CRF rats (sham = 0.95 +/- 0.090 (before) vs 0.89 +/- 0.09 microEq/min (after) and CRF = 1.05 +/- 0.05 (before) vs 0.37 +/- 0.07 microEq/min (after); P < 0.05). 11beta-HSD2 activity on renal microsomes was lower in CRF rats (sham = 0.807 +/- 0.09 and CRF = 0.217 +/- 0.07 nmol.min-1.mg protein-1; P < 0.05), although when normalized for mL GFR it was similar in both groups. We conclude that K+ homeostasis is maintained during CRF development despite normal Pald levels. This

  12. Renal diagnosis of chronic hemodialysis patients with urinary tract transitional cell carcinoma in Taiwan.

    PubMed

    Chang, Chung-Hsin; Yang, Cheng-Ming; Yang, An-Hang

    2007-04-15

    Transitional cell carcinoma (TCC) is the most common malignancy in dialysis patients of Taiwan. The reason for such a high incidence of TCC is undetermined. The correlation between the underlying renal disease and the development of TCC was investigated. The authors retrospectively reviewed the clinical data and outcome of 1537 chronic hemodialysis (HD) patients from 1993 to 2002. The incidence of TCC was computed. The Cox regression method was used to analyze the role of potential risk factors. After a mean dialysis duration of 46.5 months, 26 (1.69%) patients with TCC were diagnosed. The standardized incidence ratio (SIR) of TCC was 48.2 as compared with the general population and the SIR of TCC seemed higher in women (65.1) and in the age group 50 to 54 years (173.6). Of them, most cases showed no definite etiology. All these cases showed bilateral contracted kidneys. Nonnephrotic proteinuria was found in all cases and trace glucosuria was found in 17 (65%). Painless gross hematuria was the cardinal symptom and distant metastasis was rare. Also, TCC in upper urinary tracts were common and found in 14 (54%) of patients. Age at the time of dialysis, female sex, compound analgesic use, and Chinese herb use had statistical significance as risk factors (P < .05). Chronic HD patients have a high risk of TCC in Taiwan, especially in female and middle-aged patients. The study indicated that chronic tubulointerstitial nephritis (CTIN) is the most likely underlying renal disease in HD patients with TCC, a high percentage of the CTIN related to the usage of Chinese herbs or compound analgesics may contribute to the development of TCC, whereas diabetes or chronic glomerulonephritis play only a minor role.

  13. Role of TGF-β in a mouse model of high turnover renal osteodystrophy.

    PubMed

    Liu, Shiguang; Song, Wenping; Boulanger, Joseph H; Tang, Wen; Sabbagh, Yves; Kelley, Brian; Gotschall, Russell; Ryan, Susan; Phillips, Lucy; Malley, Katie; Cao, Xiaohong; Xia, Tai-He; Zhen, Gehua; Cao, Xu; Ling, Hong; Dechow, Paul C; Bellido, Teresita M; Ledbetter, Steven R; Schiavi, Susan C

    2014-01-01

    Altered bone turnover is a key pathologic feature of chronic kidney disease-mineral and bone disorder (CKD-MBD). Expression of TGF-β1, a known regulator of bone turnover, is increased in bone biopsies from individuals with CKD. Similarly, TGF-β1 mRNA and downstream signaling is increased in bones from jck mice, a model of high-turnover renal osteodystrophy. A neutralizing anti-TGF-β antibody (1D11) was used to explore TGF-β's role in renal osteodystrophy. 1D11 administration to jck significantly attenuated elevated serum osteocalcin and type I collagen C-telopeptides. Histomorphometric analysis indicated that 1D11 administration increased bone volume and suppressed the elevated bone turnover in a dose-dependent manner. These effects were associated with reductions in osteoblast and osteoclast surface areas. Micro-computed tomography (µCT) confirmed the observed increase in trabecular bone volume and demonstrated improvements in trabecular architecture and increased cortical thickness. 1D11 administration was associated with significant reductions in expression of osteoblast marker genes (Runx2, alkaline phosphatase, osteocalcin) and the osteoclast marker gene, Trap5. Importantly, in this model, 1D11 did not improve kidney function or reduce serum parathyroid hormone (PTH) levels, indicating that 1D11 effects on bone are independent of changes in renal or parathyroid function. 1D11 also significantly attenuated high-turnover bone disease in the adenine-induced uremic rat model. Antibody administration was associated with a reduction in pSMAD2/SMAD2 in bone but not bone marrow as assessed by quantitative immunoblot analysis. Immunostaining revealed pSMAD staining in osteoblasts and osteocytes but not osteoclasts, suggesting 1D11 effects on osteoclasts may be indirect. Immunoblot and whole genome mRNA expression analysis confirmed our previous observation that repression of Wnt/β-catenin expression in bone is correlated with increased osteoclast activity in jck

  14. Hypertension in chronic kidney disease: the influence of renal transplantation.

    PubMed

    Azancot, Maria A; Ramos, Natalia; Moreso, Francesc J; Ibernon, Meritxell; Espinel, Eugenia; Torres, Irina B; Fort, Joan; Seron, Daniel

    2014-09-15

    Hypertension is one of the most prevalent cardiovascular risk factors in chronic kidney disease (CKD) and kidney transplants. The contribution of transplantation to hypertension in comparison to patients with CKD and similar renal function has not been characterized. Ninety-two transplants and 97 CKD patients with an estimated glomerular filtration rate less than 60 mL/min/1.73 m not receiving dialysis were enrolled. At entry, office blood pressure (BP) and 24-hr ambulatory blood pressure monitoring (ABPM) were obtained. Office BP was not different between transplants and CKD patients (139.5±14.3 vs. 135.2±19.3, P=1.00, respectively). ABPM 24-hr systolic blood pressure (SBP) (133.9±14.3 vs. 126.2±16.1, P=0.014), awake SBP (135.6±15.2 vs. 128.7±16.2, P=0.042), and sleep SBP (131.2±16.2 vs. 120.2 ±17.9, P=0.0014) were higher in renal transplants. When patients were classified according to BP patterns associated with highest cardiovascular risk, the proportion of patients with both nocturnal hypertension and non-dipper pattern was higher in transplants (68.5% vs. 47.4%, P=0.03). In the multivariate regression analysis, transplantation was an independent predictor of 24-hr, awake, and sleep SBP. Office BP is similar in kidney transplants and CKD patients with similar renal function. On the contrary, hypertension is more severe in kidney transplants when evaluated with ABPM mainly as a result of increased sleep systolic BP. Thus, precise evaluation of hypertension in kidney transplants requires ABPM.

  15. A two-hit mechanism for sepsis-induced impairment of renal tubule function

    PubMed Central

    Watts, Bruns A.; George, Thampi; Sherwood, Edward R.

    2013-01-01

    Renal insufficiency is a common and severe complication of sepsis, and the development of kidney dysfunction increases morbidity and mortality in septic patients. Sepsis is associated with a variety of defects in renal tubule function, but the underlying mechanisms are incompletely understood. We used a cecal ligation and puncture (CLP) model to examine mechanisms by which sepsis influences the transport function of the medullary thick ascending limb (MTAL). MTALs from sham and CLP mice were studied in vitro 18 h after surgery. The results show that sepsis impairs the ability of the MTAL to absorb HCO3− through two distinct mechanisms. First, sepsis induces an adaptive decrease in the intrinsic capacity of the tubules to absorb HCO3−. This effect is associated with an increase in ERK phosphorylation in MTAL cells and is prevented by pretreatment of CLP mice with a MEK/ERK inhibitor. The CLP-induced reduction in intrinsic HCO3− absorption rate appears to involve loss of function of basolateral Na+/H+ exchange. Second, sepsis enhances the ability of LPS to inhibit HCO3− absorption, mediated through upregulation of Toll-like receptor 4 (TLR4)-ERK signaling in the basolateral membrane. The two inhibitory mechanisms are additive and thus can function in a two-hit capacity to impair renal tubule function in sepsis. Both effects depend on ERK and are eliminated by interventions that prevent ERK activation. Thus the TLR4 and ERK signaling pathways represent potential therapeutic targets to treat or prevent sepsis-induced renal tubule dysfunction. PMID:23324175

  16. Effect of drug-induced hyperuricaemia on renal function in Nigerians with pulmonary tuberculosis.

    PubMed

    Adebisi, S A; Oluboyo, P O; Okesina, A B

    2000-01-01

    Some anti-tuberculosis chemotherapeutic agents have been established as causing hyperuricaemia. Hyperuricaemia in turn causes renal damage. This study therefore aims at establishing the effect of anti-tuberculosis drugs-induced hyperuricaemia on renal function of the patients. Fifty patients with newly diagnosed pulmonary tuberculosis with mean age of 36.8 years (SD 13.69) consisting of 14 females and 17 males were longitudinally studied each for 6 months to determine the effect of drug-induced hyperuricaemia on their renal function. The Biochemical indices determined included serum urate level, serum creatinine level, and creatinine clearance of newly diagnosed patient with tuberculosis, before and during treatment with anti-tuberculosis therapy. Serum urate level revealed that 16 (51.6%) and 15 (48.4%) of the patients were hyperuricaemic at the end of the first and second months of anti-tuberculosis therapy. There was no significant difference in the mean serum creatinine level of the control group 96 micromol/L when compared with both the pre-treat value 89 micromol/L (P > 0.25) as well as the value at the end of the sixth month of treatment 91 micromol/L (P > 0.40). However, there was a statistically significant difference in the mean creatinine clearance of the control group 102 ml/min/1.73 m2 when compared with the patient's mean pre-treatment value (89 ml/min/1.73 m2) P < 0.05. Also the mean creatinine clearance increased to (103 ml/min/1.73 m2) by the end of the 6th month of treatment, a value that is statistically significant when compared with the pretreatment value of (89 ml/min/1.73 m2) P < 0.05. We submit as follows: that pulmonary tuberculosis as a disease with significant impairment of renal function; despite the associated drug-induced hyperuricaemia recorded during the treatment, renal function steadily improved with the treatment of pulmonary tuberculosis to the extent that comparable values with control was obtained at the end of treatment. We

  17. Pandemic influenza A 2009 (H1N1) vaccination in high risk children with chronic renal diseases: acceptance and perceptions.

    PubMed

    Printza, Nikoleta; Farmaki, Evagelia; Bosdou, Julia; Gkogka, Chrysa; Papachristou, Fotios

    2010-10-01

    We aimed to evaluate the acceptance of pandemic influenza A 2009 vaccination in our high risk children with chronic renal diseases. A total of 64 children/parents of pediatric nephrology department were approached to fill in a standardised questionnaire on influenza immunization profile. The H1N1 vaccination rates were 57.1% for transplant recipients, 61.5% for patients on peritoneal dialysis (PD), 36.4% for patients with various stages of chronic renal disease (CRD) and 26.7% for patients with glomerulonephritis (GN) on immunosuppressive therapy. Children on renal transplantation or PD had a fourfold higher rate of being vaccinated than children with GN (p=0.04). Causes of denying vaccination included fear of adverse effects (48.9%), lack of sufficient data on the new vaccine (31.9%) and others (19.2%). Patients being vaccinated were all urged by their pediatric nephrologist (100%), while patients not vaccinated were negatively influenced by media (41.4%), friends (24.1%), pediatrician (20.7%) and others (13.8%). Regarding parents education, higher level was associated with increased rate of children vaccination (p=0.04). It seems that patients with severe renal disease had better compliance with vaccination. The pediatric nephrologists had the most significant positive influence in contrast to the media which had the most negative influence.

  18. Increased Dietary Sodium Induces COX2 Expression by activating NFκB in Renal Medullary Interstitial Cells

    PubMed Central

    Zhao, Min; Davis, Linda S.; Blackwell, Timothy S.; Yull, Fiona; Breyer, Matthew D.; Hao, Chuan-Ming

    2013-01-01

    High salt diet induces renal medullary COX2 expression. Selective blockade of renal medullary COX2 activity in rats causes salt sensitive hypertension, suggesting a role for renal medullary COX2 in maintaining systemic sodium balance. The present study characterized the cellular location of COX2 induction in the kidney of mice following high salt diet and examined the role of NFκB in mediating this COX2 induction in response to increased dietary salt. High salt diet (8% NaCl) for 3 days markedly increased renal medullary COX2 expression in C57Bl/6J mice. Co-immunofluorescence using a COX2 antibody and antibodies against AQP2, ClC-K, AQP1 and CD31 showed that high salt diet-induced COX2 was selectively expressed in renal medullary interstitial cells. By using NFκB reporter transgenic mice, we observed a 7 fold increase of luciferase activity in the renal medulla of the NFκB-luciferase reporter mice following high salt diet, and a robust induction of EGFP expression mainly in renal medullary interstitial cells of the NFκB-EGFP reporter mice following high salt diet. Treating high salt diet fed C57Bl/6J mice with selective IκB kinase inhibitor IMD-0354 (8mg/kg bw) substantially suppressed COX2 induction in renal medulla, and also significantly reduced urinary PGE2. These data therefore suggest that renal medullary interstitial cell NFκB plays an important role in mediating renal medullary COX2 expression and promoting renal PGE2 synthesis in response to increased dietary sodium. PMID:23900806

  19. Captopril to Mitigate Chronic Renal Failure After Hematopoietic Stem Cell Transplantation: A Randomized Controlled Trial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, Eric P.; Irving, Amy A. B.A.; Drobyski, William R.

    Purpose: To test whether the angiotensin-converting enzyme inhibitor captopril was effective in mitigating chronic renal failure after hematopoietic stem cell transplantation (HSCT). Methods and Materials: A total of 55 subjects undergoing total body irradiation (TBI)-HSCT were enrolled in this randomized controlled trial. Captopril or identical placebo was started at engraftment and continued as tolerated until 1 year after HSCT. Results: The baseline serum creatinine and calculated glomerular filtration rate (GFR) did not differ between groups. The 1-year serum creatinine level was lower and the GFR higher in the captopril compared with the placebo group (p = 0.07 for GFR). Patientmore » survival was higher in the captopril compared with the placebo group, but this was also not statistically significant (p = 0.09). In study subjects who received the study drug for more than 2 months, the 1-year calculated GFRs were 92 mL/min and 80 mL/min, for the captopril and placebo groups, respectively (p = 0.1). There was no adverse effect on hematologic outcome. Conclusions: There is a trend in favor of captopril in mitigation of chronic renal failure after radiation-based HSCT.« less

  20. Adenine radicals generated in alternating AT duplexes by direct absorption of low-energy UV radiation.

    PubMed

    Banyasz, Akos; Ketola, Tiia; Martínez-Fernández, Lara; Improta, Roberto; Markovitsi, Dimitra

    2018-04-17

    There is increasing evidence that the direct absorption of photons with energies that are lower than the ionization potential of nucleobases may result in oxidative damage to DNA. The present work, which combines nanosecond transient absorption spectroscopy and quantum mechanical calculations, studies this process in alternating adenine-thymine duplexes (AT)n. We show that the one-photon ionization quantum yield of (AT)10 at 266 nm (4.66 eV) is (1.5 ± 0.3) × 10-3. According to our PCM/TD-DFT calculations carried out on model duplexes composed of two base pairs, (AT)1 and (TA)1, simultaneous base pairing and stacking does not induce important changes in the absorption spectra of the adenine radical cation and deprotonated radical. The adenine radicals, thus identified in the time-resolved spectra, disappear with a lifetime of 2.5 ms, giving rise to a reaction product that absorbs at 350 nm. In parallel, the fingerprint of reaction intermediates other than radicals, formed directly from singlet excited states and assigned to AT/TA dimers, is detected at shorter wavelengths. PCM/TD-DFT calculations are carried out to map the pathways leading to such species and to characterize their absorption spectra; we find that, in addition to the path leading to the well-known TA* photoproduct, an AT photo-dimerization path may be operative in duplexes.

  1. Persistent Increase in Blood Pressure After Renal Nerve Stimulation in Accessory Renal Arteries After Sympathetic Renal Denervation.

    PubMed

    de Jong, Mark R; Hoogerwaard, Annemiek F; Gal, Pim; Adiyaman, Ahmet; Smit, Jaap Jan J; Delnoy, Peter Paul H M; Ramdat Misier, Anand R; van Hasselt, Boudewijn A A M; Heeg, Jan-Evert; le Polain de Waroux, Jean-Benoit; Lau, Elizabeth O Y; Staessen, Jan A; Persu, Alexandre; Elvan, Arif

    2016-06-01

    Blood pressure response to renal denervation is highly variable, and the proportion of responders is disappointing. This may be partly because of accessory renal arteries too small for denervation, causing incomplete ablation. Renal nerve stimulation before and after renal denervation is a promising approach to assess completeness of renal denervation and may predict blood pressure response to renal denervation. The objective of the current study was to assess renal nerve stimulation-induced blood pressure increase before and after renal sympathetic denervation in main and accessory renal arteries of anaesthetized patients with drug-resistant hypertension. The study included 21 patients. Nine patients had at least 1 accessory renal artery in which renal denervation was not feasible. Renal nerve stimulation was performed in the main arteries of all patients and in accessory renal arteries of 6 of 9 patients with accessory arteries, both before and after renal sympathetic denervation. Renal nerve stimulation before renal denervation elicited a substantial increase in systolic blood pressure, both in main (25.6±2.9 mm Hg; P<0.001) and accessory (24.3±7.4 mm Hg; P=0.047) renal arteries. After renal denervation, renal nerve stimulation-induced systolic blood pressure increase was blunted in the main renal arteries (Δ systolic blood pressure, 8.6±3.7 mm Hg; P=0.020), but not in the nondenervated renal accessory renal arteries (Δ systolic blood pressure, 27.1±7.6 mm Hg; P=0.917). This residual source of renal sympathetic tone may result in persistent hypertension after ablation and partly account for the large response variability. © 2016 American Heart Association, Inc.

  2. Immune and Inflammatory Role in Renal Disease

    PubMed Central

    Ryan, Michael J.

    2013-01-01

    Chronic and acute renal diseases, irrespective of the initiating cause, have inflammation and immune system activation as a common underlying mechanism. The purpose of this review is to provide a broad overview of immune cells and inflammatory proteins that contribute to the pathogenesis of renal disease, and to discuss some of the physiological changes that occur in the kidney as a result of immune system activation. An overview of common forms of acute and chronic renal disease is provided, followed by a discussion of common therapies that have antiinflammatory or immunosuppressive effects in the treatment of renal disease. PMID:23720336

  3. Effects of alpha-2 agonists on renal function in hypertensive humans.

    PubMed

    Goldberg, M; Gehr, M

    1985-01-01

    Centrally acting adrenergic agonists, by decreasing peripheral adrenergic activity, are effective antihypertensive agents. The older agents, however, especially methyldopa, have been associated with weight gain, clinical edema, and antihypertensive tolerance when used as monotherapy. While acute studies in humans have demonstrated weight gain and sodium retention with clonidine and guanabenz, chronic administration results in a decrease in weight and plasma volume. The absence of chronic weight gain and of sodium retention could be the result of a counterbalance between hypotension-related antinatriuresis, secondary to a decrease in glomerular filtration rate and renal blood flow, and natriuretic activity, as a result of a decrease in renal sympathetic tone. Whereas natriuresis and water diuresis have been demonstrated in animals with acute clonidine or guanabenz administration, this has not been demonstrated in humans. Recent studies in which saline administration was used to precondition humans to a subsequent natriuretic stimulus (i.e., guanabenz-induced decreased renal adrenergic activity) resulted in stabilization of renal blood flow and natriuresis. Selective reduction renal sympathetic activity affecting salt and water transport may explain why guanabenz and probably also clonidine seem to be devoid of the sodium/fluid-retaining properties that are common with other antihypertensive agents. Because agents of this class have effects other than pure central alpha-2 agonism (such as alpha-1 activity), they might have confounding and counterbalancing side effects leading to sodium and water retention.

  4. A Randomized 2x2 Factorial Clinical Trial of Renal Transplantation: Steroid-Free Maintenance Immunosuppression with Calcineurin Inhibitor Withdrawal after Six Months Associates with Improved Renal Function and Reduced Chronic Histopathology

    PubMed Central

    Stevens, R. Brian; Foster, Kirk W.; Miles, Clifford D.; Kalil, Andre C.; Florescu, Diana F.; Sandoz, John P.; Rigley, Theodore H.; Malik, Tamer; Wrenshall, Lucile E.

    2015-01-01

    Introduction The two most significant impediments to renal allograft survival are rejection and the direct nephrotoxicity of the immunosuppressant drugs required to prevent it. Calcineurin inhibitors (CNI), a mainstay of most immunosuppression regimens, are particularly nephrotoxic. Until less toxic antirejection agents become available, the only option is to optimize our use of those at hand. Aim To determine whether intensive rabbit anti-thymocyte globulin (rATG) induction followed by CNI withdrawal would individually or combined improve graft function and reduce graft chronic histopathology–surrogates for graft and, therefore, patient survival. As previously reported, a single large rATG dose over 24 hours was well-tolerated and associated with better renal function, fewer infections, and improved patient survival. Here we report testing whether complete CNI discontinuation would improve renal function and decrease graft pathology. Methods Between April 20, 2004 and 4-14-2009 we conducted a prospective, randomized, non-blinded renal transplantation trial of two rATG dosing protocols (single dose, 6 mg/kg vs. divided doses, 1.5 mg/kg every other day x 4; target enrollment = 180). Subsequent maintenance immunosuppression consisted of tacrolimus, a CNI, and sirolimus, a mammalian target of rapamycin inhibitor. We report here the outcome of converting patients after six months either to minimized tacrolimus/sirolimus or mycophenolate mofetil/sirolimus. Primary endpoints were graft function and chronic histopathology from protocol kidney biopsies at 12 and 24 months Results CNI withdrawal (on-treatment analysis) associated with better graft function (p <0.001) and lower chronic histopathology composite scores in protocol biopsies at 12 (p = 0.003) and 24 (p = 0.013) months, without affecting patient (p = 0.81) or graft (p = 0.93) survival, or rejection rate (p = 0.17). Conclusion CNI (tacrolimus) withdrawal at six months may provide a strategy for decreased

  5. [Management experience of acute renal failure induced by unilateral ureteral calculi obstruction].

    PubMed

    Tan, Fu-qing; Shen, Bo-hua; Xie, Li-ping; Meng, Hong-zhou; Fang, Dan-bo; Wang, Chao-jun

    2013-05-28

    To explore the causes and treatment options of acute renal failure induced by unilateral ureteral calculi obstruction. The clinical data of 12 cases of acute renal failure induced by unilateral ureteral calculi obstruction between August 2008 and July 2012 were reviewed retrospectively. There were 5 males and 7 females with an average age of 65.7 years. Their clinical data and treatment options were retrospectively analyzed and summarized. Seven cases showed right side ureteral calculus with hydronephrosis while another 5 presented left side ureteral calculus with hydronephrosis. Serum creatinine was higher than 310 µmol/L in 12 cases. Anuria appeared in 4 cases for 1-7 days while oliguria in 8 cases for 2-10 days. High fever was present in 11 cases, the highest of whom was 40 °C. White blood cell count increased in 10 cases (>10×10(9)/L) and decreased in 2 cases (<4 × 10(9)/L). The therapeutic options included insertion of double J stent for internal drainage (n = 1), percutaneous nephrostomy for external drainage (n = 10) and open operation (n = 1). Traditional treatments were performed to manage ureteral calculus in the above 11 cases with drainage. All cases had improved renal function after comprehensive treatment of anti-infection, antishock, rinsing stones and relieving obstruction. All 12 cases were treated successfully. Unilateral ureteral calculus may impair contralateral renal function and cause acute renal failure due to the absorption of toxin at obstructive side. The keys of management are eliminating toxin and relieving obstruction.

  6. Thalidomide ameliorates cisplatin-induced nephrotoxicity by inhibiting renal inflammation in an experimental model.

    PubMed

    Amirshahrokhi, Keyvan; Khalili, Ali-Reza

    2015-04-01

    Cisplatin is a platinum-based chemotherapy drug. However, its chemotherapeutic use is restricted by serious side effects, especially nephrotoxicity. Inflammatory mechanisms have a significant role in the pathogenesis of cisplatin-induced nephrotoxicity. Thalidomide is an immunomodulatory and anti-inflammatory agent and is used for the treatment of various inflammatory diseases. The purpose of this study was to investigate the potential nephroprotective effect of thalidomide in a mouse model of cisplatin-induced nephrotoxicity. Nephrotoxicity was induced in mice by a single injection of cisplatin (15 mg/kg, i.p.) and treated with thalidomide (50 and 100 mg/kg/day, orally) for 4 days, beginning 24 h prior to the cisplatin injection. Renal toxicity induced by cisplatin was demonstrated by increasing plasma levels of creatinine and blood urea nitrogen (BUN). Cisplatin increased the renal production of the proinflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and transforming growth factor (TGF)-β1. In addition, kidney levels of malondialdehyde (MDA), myeloperoxidase (MPO), and nitric oxide (NO) were increased by cisplatin. Biochemical results showed that thalidomide reduced cisplatin-induced increase in plasma creatinine and BUN. Thalidomide treatment also significantly reduced tissue levels of the proinflammatory cytokines, MDA, MPO, and NO and increased anti-inflammatory cytokine IL-10. Furthermore, histological examination indicated that thalidomide ameliorated renal damage caused by cisplatin. These data suggest that thalidomide attenuates cisplatin-induced nephrotoxicity possibly by inhibition of inflammatory reactions. Taken together, our findings indicate that thalidomide might be a valuable candidate for the prevention of nephrotoxicity in patients receiving cisplatin.

  7. Inhibition of G0/G1 Switch 2 Ameliorates Renal Inflammation in Chronic Kidney Disease.

    PubMed

    Matsunaga, Naoya; Ikeda, Eriko; Kakimoto, Keisuke; Watanabe, Miyako; Shindo, Naoya; Tsuruta, Akito; Ikeyama, Hisako; Hamamura, Kengo; Higashi, Kazuhiro; Yamashita, Tomohiro; Kondo, Hideaki; Yoshida, Yuya; Matsuda, Masaki; Ogino, Takashi; Tokushige, Kazutaka; Itcho, Kazufumi; Furuichi, Yoko; Nakao, Takaharu; Yasuda, Kaori; Doi, Atsushi; Amamoto, Toshiaki; Aramaki, Hironori; Tsuda, Makoto; Inoue, Kazuhide; Ojida, Akio; Koyanagi, Satoru; Ohdo, Shigehiro

    2016-11-01

    Chronic kidney disease (CKD) is a global health problem, and novel therapies to treat CKD are urgently needed. Here, we show that inhibition of G 0 /G 1 switch 2 (G0s2) ameliorates renal inflammation in a mouse model of CKD. Renal expression of chemokine (C-C motif) ligand 2 (Ccl2) was increased in response to p65 activation in the kidneys of wild-type 5/6 nephrectomy (5/6Nx) mice. Moreover, 5/6Nx Clk/Clk mice, which carry homozygous mutations in the gene encoding circadian locomotor output cycles kaput (CLOCK), did not exhibit aggravation of apoptosis or induction of F4/80-positive cells. The renal expression of G0s2 in wild-type 5/6Nx mice was important for the transactivation of Ccl2 by p65. These pathologies were ameliorated by G0s2 knockdown. Furthermore, a novel small-molecule inhibitor of G0s2 expression was identified by high-throughput chemical screening, and the inhibitor suppressed renal inflammation in 5/6Nx mice. These findings indicated that G0s2 inhibitors may have applications in the treatment of CKD. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Effect of Angiotensin II and Small GTPase Ras Signaling Pathway Inhibition on Early Renal Changes in a Murine Model of Obstructive Nephropathy

    PubMed Central

    Rodríguez-Peña, Ana B.; Fuentes-Calvo, Isabel; Docherty, Neil G.; Arévalo, Miguel; Grande, María T.; Eleno, Nélida; Pérez-Barriocanal, Fernando; López-Novoa, José M.

    2014-01-01

    Tubulointerstitial fibrosis is a major feature of chronic kidney disease. Unilateral ureteral obstruction (UUO) in rodents leads to the development of renal tubulointerstitial fibrosis consistent with histopathological changes observed in advanced chronic kidney disease in humans. The purpose of this study was to assess the effect of inhibiting angiotensin II receptors or Ras activation on early renal fibrotic changes induced by UUO. Animals either received angiotensin II or underwent UUO. UUO animals received either losartan, atorvastatin, and farnesyl transferase inhibitor (FTI) L-744,832, or chaetomellic acid A (ChA). Levels of activated Ras, phospho-ERK1/2, phospho-Akt, fibronectin, and α-smooth muscle actin were subsequently quantified in renal tissue by ELISA, Western blot, and/or immunohistochemistry. Our results demonstrate that administration of angiotensin II induces activation of the small GTPase Ras/Erk/Akt signaling system, suggesting an involvement of angiotensin II in the early obstruction-induced activation of renal Ras. Furthermore, upstream inhibition of Ras signalling by blocking either angiotensin AT1 type receptor or by inhibiting Ras prenylation (atorvastatin, FTI o ChA) reduced the activation of the Ras/Erk/Akt signaling system and decreased the early fibrotic response in the obstructed kidney. This study points out that pharmacological inhibition of Ras activation may hold promise as a future strategy in the prevention of renal fibrosis. PMID:25101263

  9. Effect of angiotensin II and small GTPase Ras signaling pathway inhibition on early renal changes in a murine model of obstructive nephropathy.

    PubMed

    Rodríguez-Peña, Ana B; Fuentes-Calvo, Isabel; Docherty, Neil G; Arévalo, Miguel; Grande, María T; Eleno, Nélida; Pérez-Barriocanal, Fernando; López-Novoa, José M

    2014-01-01

    Tubulointerstitial fibrosis is a major feature of chronic kidney disease. Unilateral ureteral obstruction (UUO) in rodents leads to the development of renal tubulointerstitial fibrosis consistent with histopathological changes observed in advanced chronic kidney disease in humans. The purpose of this study was to assess the effect of inhibiting angiotensin II receptors or Ras activation on early renal fibrotic changes induced by UUO. Animals either received angiotensin II or underwent UUO. UUO animals received either losartan, atorvastatin, and farnesyl transferase inhibitor (FTI) L-744,832, or chaetomellic acid A (ChA). Levels of activated Ras, phospho-ERK1/2, phospho-Akt, fibronectin, and α-smooth muscle actin were subsequently quantified in renal tissue by ELISA, Western blot, and/or immunohistochemistry. Our results demonstrate that administration of angiotensin II induces activation of the small GTPase Ras/Erk/Akt signaling system, suggesting an involvement of angiotensin II in the early obstruction-induced activation of renal Ras. Furthermore, upstream inhibition of Ras signalling by blocking either angiotensin AT1 type receptor or by inhibiting Ras prenylation (atorvastatin, FTI o ChA) reduced the activation of the Ras/Erk/Akt signaling system and decreased the early fibrotic response in the obstructed kidney. This study points out that pharmacological inhibition of Ras activation may hold promise as a future strategy in the prevention of renal fibrosis.

  10. Physiology and pathophysiology of renal erythropoietin-producing cells.

    PubMed

    Shih, Hong-Mou; Wu, Chih-Jen; Lin, Shuei-Liong

    2018-04-11

    Anemia is a common complication and contributes to increased morbidity and mortality in chronic kidney disease (CKD) patients. Whereas there has been a significant improvement of understanding the underlying mechanism of erythropoiesis, the treatment of renal anemia is still restricted to erythropoietin (EPO)-stimulating agents. The purpose of this article is to review the physiology of erythropoiesis, functional role of EPO and underlying molecular and cellular basis that regulate EPO production. Regulation of EPO production is at mRNA level. When anemia or hypoxia occurs, transcriptional factor, hypoxia-inducible factor (HIF), binds to EPO 5' hypoxic response element and EPO gene transcription increases. The renal EPO is mainly produced by pericytes. In CKD, pericytes transdifferentiate to myofibroblasts, and subsequently the ability of EPO production decreases, leading to renal anemia. Recent experimental and clinical studies show the promising efficacy of prolyl hydroxylase inhibitors in renal anemia through increasing EPO production by stabilizing HIF. Recent advances on epigenetics create a new field to study EPO gene expression at chromatin level. We will discuss the role of demethylating agent on restoring EPO expression, providing a novel approach to the treatment of renal anemia. Copyright © 2018. Published by Elsevier B.V.

  11. Renal tubular angiotensin converting enzyme is responsible for nitro-L-arginine methyl ester (L-NAME)-induced salt sensitivity

    PubMed Central

    Giani, Jorge F.; Eriguchi, Masahiro; Bernstein, Ellen A.; Katsumata, Makoto; Shen, Xiao Z.; Li, Liang; McDonough, Alicia A.; Fuchs, Sebastien; Bernstein, Kenneth E.; Gonzalez-Villalobos, Romer A.

    2017-01-01

    Renal parenchymal injury predisposes to salt-sensitive hypertension, but how this occurs is not known. Here we tested whether renal tubular angiotensin converting enzyme (ACE), the main site of kidney ACE expression, is central to the development of salt sensitivity in this setting. Two mouse models were used: it-ACE mice in which ACE expression is selectively eliminated from renal tubular epithelial cells; and ACE 3/9 mice, a compound heterozygous mouse model that makes ACE only in renal tubular epithelium from the ACE 9 allele, and in liver hepatocytes from the ACE 3 allele. Salt sensitivity was induced using a post L-NAME salt challenge. While both wild-type and ACE 3/9 mice developed arterial hypertension following three weeks of high salt administration, it-ACE mice remained normotensive with low levels of renal angiotensin II. These mice displayed increased sodium excretion, lower sodium accumulation, and an exaggerated reduction in distal sodium transporters. Thus, in mice with renal injury induced by L-NAME pretreatment, renal tubular epithelial ACE, and not ACE expression by renal endothelium, lung, brain, or plasma, is essential for renal angiotensin II accumulation and salt-sensitive hypertension. PMID:27988209

  12. Renal Insufficiency After Contrast Media Administration Trial II (REMEDIAL II): RenalGuard System in high-risk patients for contrast-induced acute kidney injury.

    PubMed

    Briguori, Carlo; Visconti, Gabriella; Focaccio, Amelia; Airoldi, Flavio; Valgimigli, Marco; Sangiorgi, Giuseppe Massimo; Golia, Bruno; Ricciardelli, Bruno; Condorelli, Gerolama

    2011-09-13

    The RenalGuard System, which creates high urine output and fluid balancing, may be beneficial in preventing contrast-induced acute kidney injury. The Renal Insufficiency After Contrast Media Administration Trial II (REMEDIAL II) trial is a randomized, multicenter, investigator-driven trial addressing the prevention of contrast-induced acute kidney injury in high-risk patients. Patients with an estimated glomerular filtration rate ≤30 mL · min(-1) · 1.73 m(-2) and/or a risk score ≥11 were randomly assigned to sodium bicarbonate solution and N-acetylcysteine (control group) or hydration with saline and N-acetylcysteine controlled by the RenalGuard System and furosemide (RenalGuard group). The primary end point was an increase of ≥0.3 mg/dL in the serum creatinine concentration at 48 hours after the procedure. The secondary end points included serum cystatin C kinetics and rate of in-hospital dialysis. Contrast-induced acute kidney injury occurred in 16 of 146 patients in the RenalGuard group (11%) and in 30 of 146 patients in the control group (20.5%; odds ratio, 0.47; 95% confidence interval, 0.24 to 0.92). There were 142 patients (48.5%) with an estimated glomerular filtration rate ≤30 mL · min(-1) · 1.73 and 149 patients (51.5%) with only a risk score ≥11. Subgroup analysis according to inclusion criteria showed a similarly lower risk of adverse events (estimated glomerular filtration rate ≤30 mL · min(-1) · 1.73 m(-2): odds ratio, 0.44; risk score ≥11: odds ratio, 0.45; P for interaction=0.97). Changes in cystatin C at 24 hours (0.02±0.32 versus -0.08±0.26; P=0.002) and 48 hours (0.12±0.42 versus 0.03±0.31; P=0.001) and the rate of in-hospital dialysis (4.1% versus 0.7%; P=0.056) were higher in the control group. RenalGuard therapy is superior to sodium bicarbonate and N-acetylcysteine in preventing contrast-induced acute kidney injury in high-risk patients. URL: http://www.clinicaltrial.gov. Unique identifier: NCT01098032.

  13. Role of oxidants/inflammation in declining renal function in chronic kidney disease and normal aging.

    PubMed

    Vlassara, Helen; Torreggiani, Massimo; Post, James B; Zheng, Feng; Uribarri, Jaime; Striker, Gary E

    2009-12-01

    Oxidant stress (OS) and inflammation increase in normal aging and in chronic kidney disease (CKD), as observed in human and animal studies. In cross-sectional studies of the US population, these changes are associated with a decrease in renal function, which is exhibited by a significant proportion of the population. However, since many normal adults have intact renal function, and longitudinal studies show that some persons maintain normal renal function with age, the link between OS, inflammation, and renal decline is not clear. In aging mice, greater oxidant intake is associated with increased age-related CKD and mortality, which suggests that interventions that reduce OS and inflammation may be beneficial for older individuals. Both OS and inflammation can be readily lowered in normal subjects and patients with CKD stage 3-4 by a simple dietary modification that lowers intake and results in reduced serum and tissue levels of advanced glycation end products. Diabetic patients, including those with microalbuminuria, have a decreased ability to metabolize and excrete oxidants prior to observable changes in serum creatinine. Thus, OS and inflammation may occur in the diabetic kidney at an early time. We review the evidence that oxidants in the diet directly lead to increased serum levels of OS and inflammatory mediators in normal aging and in CKD. We also discuss a simple dietary intervention that helps reduce OS and inflammation, an important and achievable therapeutic goal for patients with CKD and aging individuals with reduced renal function.

  14. The association of oxidant-antioxidant status in patients with chronic renal failure.

    PubMed

    Aziz, Manal A; Majeed, Ghanim H; Diab, Kareem S; Al-Tamimi, Raid J

    2016-01-01

    Oxidative stress has been linked to disease progression, including chronic renal failure (CRF). The aim of the present study was to determine malondialdehyde (MDA) as a sign of lipid peroxidation, and to investigate the association between antioxidant activities and three trace elements, in 49 patients with CRF. The erythrocyte and plasma trace elements [selenium (Se), zinc (Zn), and copper (Cu)] and antioxidant defense levels were determined: glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT), vitamins E and C. The obtained values were compared with 42 age- and sex-matched healthy controls. There were significantly lower mean values of plasma Se, GPx, vitamins E and C, erythrocyte Se, SOD and CAT levels in the patient group compared to the control group (p < 0.001). Plasma MDA showed a significant increase in all CRF patients in comparison with controls. No significant difference was found in plasma Cu, Zn, and erythrocyte GPx, Cu and Zn levels between patient and control groups. These findings indicate oxidative stress is present in patients of CRF, and may serve to establish a simple protocol for evaluation of renal function.

  15. Inhibition of soluble epoxide hydrolase does not improve the course of congestive heart failure and the development of renal dysfunction in rats with volume overload induced by aorto-caval fistula

    PubMed Central

    Červenka, Luděk; Melenovský, Vojtěch; Husková, Zuzana; Sporková, Alexandra; Bürgelová, Marcela; Škaroupková, Petra; Hwang, Sung Hee; Hammock, Bruce D.; Imig, John D.; Sadowski, Janusz

    2016-01-01

    The detailed mechanisms determining the course of congestive heart failure (CHF) and associated renal dysfunction remain unclear. In a volume overload model of CHF induced by creation of aorto-caval fistula (ACF) in Hannover Sprague-Dawley (HanSD) rats we explored the putative pathogenetic contribution of epoxyeicosatrienoic acids (EETs), active products of CYP-450 dependent epoxygenase pathway of arachidonic acid metabolism, and compared it with the role of the renin-angiotensin system (RAS). Chronic treatment with cis-4-[4-(3-adamantan-1-yl-ureido) cyclohexyloxy]benzoic acid (c-AUCB, 3 mg/L in drinking water), an inhibitor of soluble epoxide hydrolase (sEH) which normally degrades EETs, increased intrarenal and myocardial EETs to levels observed in sham-operated HanSD rats, but did not improve the survival or renal function impairment. In contrast, chronic angiotensin-converting enzyme inhibition (ACEi, trandolapril, 6 mg/L in drinking water) increased renal blood flow, fractional sodium excretion and markedly improved survival, without affecting left ventricular structure and performance. Hence, renal dysfunction rather than cardiac remodeling determines long-term mortality in advanced stage of CHF due to volume overload. Strong protective actions of ACEi were associated with suppression of the vasoconstrictor/sodium retaining axis and activation of vasodilatory/natriuretic axis of the renin-angiotensin system in the circulating blood and kidney tissue. PMID:26047375

  16. A low plasma 1,25(OH)2 vitamin D/PTH (1-84) ratio predicts worsening of renal function in patients with chronic heart failure.

    PubMed

    Masson, Serge; Barlera, Simona; Colotta, Francesco; Magnoli, Michela; Bonelli, Fabrizio; Moro, Milena; Marchioli, Roberto; Tavazzi, Luigi; Tognoni, Gianni; Latini, Roberto

    2016-12-01

    Dysregulation of the vitamin D system promotes renal dysfunction and has direct detrimental effects on the heart. Progressive deterioration of renal function is common in patients with chronic heart failure (HF) and is invariably associated with unfavorable outcomes which can be improved by early identification and timely interventions. We examined the relation between two plasma markers of vitamin D metabolism and worsening of renal function (WRF) in a large cohort of patients with chronic HF. Plasma levels of 1,25-dihydroxyvitamin D (1,25(OH) 2 D) and parathyroid hormone PTH (1-84) were measured in 1237 patients with clinical evidence of chronic and stable HF enrolled in the multicentre GISSI-HF trial and followed for 3.9years. We examined the relation of 1,25(OH) 2 D, PTH(1-84), and their ratio with WRF, defined as first increase in serum creatinine concentration ≥0.3mg/dL and ≥25% at two consecutive measurements at any time during the study. Lower 1,25(OH) 2 D/PTH(1-84) ratio was associated with a higher baseline serum concentration of creatinine, winter season, female sex and older age; 335 patients (29.6%) experienced an episode of WRF. After adjustment, a lower 1,25(OH) 2 D/PTH(1-84) ratio remained significantly associated with a higher risk of WRF (HR=0.75 [0.62-0.90], p=0.002) and correctly reclassified events. This ratio also independently predicted mortality and admission to hospital for cardiovascular reasons. The plasma 1,25(OH) 2 D/PTH(1-84) ratio is a promising indicator of future risk of deterioration of renal function in patients with chronic HF and mild renal impairment, that may serve to optimize therapies and improve outcomes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Therapeutic efficacy of DL-alpha-lipoic acid on cyclosporine A induced renal alterations.

    PubMed

    Amudha, Ganapathy; Josephine, Anthony; Mythili, Yenjerla; Sundarapandiyan, Rajaguru; Varalakshmi, Palaninathan

    2007-10-01

    The present study was designed to evaluate the possible beneficial effect of lipoic acid in preventing the renal damage induced by cyclosporine A in rats. Male albino rats of Wistar strain were divided into four groups and treated as follows. Two groups received cyclosporine A by oral gavage (25 mg/kg/body weight) for 21 days to induce nephrotoxicity, one of which simultaneously received lipoic acid treatment (20 mg/kg body weight) for 21 days. A vehicle (olive oil) and a lipoic acid drug control were also included. Cyclosporine A induced renal damage was evident from the decreased activities of tissue marker enzymes (alkaline phosphatase, acid phosphatase, lactate dehydrogenase, aspartate transaminase and alanine transaminase) and decreased activities of ATPases (Na+, K+-ATPase, Ca2+-ATPase and Mg2+ ATPase). An apparent increase in the levels of serum constituents (urea, uric acid and creatinine) and urinary marker enzymes (N-acetyl-beta-D-glucosaminidase, beta-glucosidase, beta-galactosidase, cathepsin-D and gamma-glutamyl transpeptidase) along with significant decline in creatinine clearance were seen in the cyclosporine treated rats, which was reversed upon treatment with lipoic acid. Ultrastructural observations were also in agreement with the above abnormal changes. Lipoic acid effectively reverted these abnormal biochemical changes and minimized the morphological lesions in renal tissue. Hence, this study clearly exemplifies that lipoic acid might be an ideal choice against cyclosporine A induced cellular abnormalities.

  18. Increased dietary sodium induces COX2 expression by activating NFκB in renal medullary interstitial cells.

    PubMed

    He, Wenjuan; Zhang, Min; Zhao, Min; Davis, Linda S; Blackwell, Timothy S; Yull, Fiona; Breyer, Matthew D; Hao, Chuan-Ming

    2014-02-01

    High salt diet induces renal medullary cyclooxygenase 2 (COX2) expression. Selective blockade of renal medullary COX2 activity in rats causes salt-sensitive hypertension, suggesting a role for renal medullary COX2 in maintaining systemic sodium balance. The present study characterized the cellular location of COX2 induction in the kidney of mice following high salt diet and examined the role of NFκB in mediating this COX2 induction in response to increased dietary salt. High salt diet (8 % NaCl) for 3 days markedly increased renal medullary COX2 expression in C57Bl/6 J mice. Co-immunofluorescence using a COX2 antibody and antibodies against aquaporin-2, ClC-K, aquaporin-1, and CD31 showed that high salt diet-induced COX2 was selectively expressed in renal medullary interstitial cells. By using NFκB reporter transgenic mice, we observed a sevenfold increase of luciferase activity in the renal medulla of the NFκB-luciferase reporter mice following high salt diet, and a robust induction of enhanced green fluorescent protein (EGFP) expression mainly in renal medullary interstitial cells of the NFκB-EGFP reporter mice following high salt diet. Treating high salt diet-fed C57Bl/6 J mice with selective IκB kinase inhibitor IMD-0354 (8 mg/kg bw) substantially suppressed COX2 induction in renal medulla, and also significantly reduced urinary prostaglandin E2 (PGE2). These data therefore suggest that renal medullary interstitial cell NFκB plays an important role in mediating renal medullary COX2 expression and promoting renal PGE2 synthesis in response to increased dietary sodium.

  19. The effect of renin-angiotensin system blockade on renal protection in chronic kidney disease patients with hyperkalemia.

    PubMed

    Lee, Ju-Hyun; Kwon, Young Eun; Park, Jung Tak; Lee, Mi Jung; Oh, Hyung Jung; Han, Seung Hyeok; Kang, Shin-Wook; Choi, Kyu Hun; Yoo, Tae-Hyun

    2014-12-01

    The aim of this study was to determine the effects of renin-angiotensin system (RAS) blockade maintenance on renal protection in chronic kidney disease (CKD) patients with hyperkalemia occurring during treatment with RAS blockade. CKD III or IV patients, who were prescribed with RAS blockers and also had hyperkalemia, were included. The study population was divided into two groups based on maintenance or withdrawal of RAS blocker. Renal outcomes (doubling of creatinine or end-stage renal disease) and incidence of hyperkalemia were compared between the two groups. Out of 258 subjects who developed hyperkalemia during treatment with RAS blockers, 150 (58.1%) patients continued on RAS blockades, while RAS blockades were discontinued for more than 3 months in the remaining 108 patients. Renal event-free survival was significantly higher in the maintenance group compared with the withdrawal group. Cox proportional hazard ratio for renal outcomes was 1.35 (95% CI: 1.08-1.92, p=0.04) in the withdrawal group compared with the maintenance group. However, the incidence of hyperkalemia and hyperkalemia-related hospitalization or mortality did not differ between the two groups. This study demonstrated that the maintenance of RAS blockade is beneficial for the preservation of renal function and relatively tolerable in patients with CKD and hyperkalemia occurring during treatment with RAS blockade. © The Author(s) 2014.

  20. Silver-induced reconstruction of an adeninate-based metal–organic framework for encapsulation of luminescent adenine-stabilized silver clusters† †Electronic supplementary information (ESI) available: Experimental details and additional structural, physicochemical and optical characterisation. See DOI: 10.1039/c6tc00260a Click here for additional data file.

    PubMed Central

    Jonckheere, Dries; Coutino-Gonzalez, Eduardo; Baekelant, Wouter; Bueken, Bart; Reinsch, Helge; Stassen, Ivo; Fenwick, Oliver; Richard, Fanny; Samorì, Paolo; Ameloot, Rob; Hofkens, Johan

    2016-01-01

    Bright luminescent silver-adenine species were successfully stabilized in the pores of the MOF-69A (zinc biphenyldicarboxylate) metal–organic framework, starting from the intrinsically blue luminescent bio-MOF-1 (zinc adeninate 4,4′-biphenyldicarboxylate). Bio-MOF-1 is transformed to the MOF-69A framework by selectively leaching structural adenine linkers from the original framework using silver nitrate solutions in aqueous ethanol. Simultaneously, bright blue-green luminescent silver-adenine clusters are formed inside the pores of the recrystallized MOF-69A matrix in high local concentrations. The structural transition and concurrent changes in optical properties were characterized using a range of structural, physicochemical and spectroscopic techniques (steady-state and time-resolved luminescence, quantum yield determination, fluorescence microscopy). The presented results open new avenues for exploring the use of MOFs containing luminescent silver clusters for solid-state lighting and sensor applications. PMID:28496980

  1. Tributyltin chloride induces renal dysfunction by inflammation and oxidative stress in female rats.

    PubMed

    Coutinho, João V S; Freitas-Lima, Leandro C; Freitas, Frederico F C T; Freitas, Flávia P S; Podratz, Priscila L; Magnago, Rafaella P L; Porto, Marcella L; Meyrelles, Silvana S; Vasquez, Elisardo C; Brandão, Poliane A A; Carneiro, Maria T W D; Paiva-Melo, Francisca D; Miranda-Alves, Leandro; Silva, Ian V; Gava, Agata L; Graceli, Jones B

    2016-10-17

    Tributyltin chloride (TBT) is an organometallic pollutant that is used as a biocide in antifouling paints. TBT induces several toxic and endocrine-disrupting effects. However, studies evaluating the effects of TBT on renal function are rare. This study demonstrates that TBT exposure is responsible for improper renal function as well as the development of abnormal morphophysiology in mammalian kidneys. Female rats were treated with TBT, and their renal morphophysiology was assessed. Morphophysiological abnormalities such as decreased glomerular filtration rate and increased proteinuria levels were observed in TBT rats. In addition, increases in inflammation, collagen deposition and α-smooth muscle actin (α-SMA) protein expression were observed in TBT kidneys. A disrupted cellular redox balance and apoptosis in kidney tissue were also observed in TBT rats. TBT rats demonstrated reduced serum estrogen levels and estrogen receptor-α (ERα) protein expression in renal cortex. Together, these data provide in vivo evidence that TBT is toxic to normal renal function and that these effects may be associated with renal histopathology complications, such as inflammation and fibrosis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Reversal of renal dysfunction by targeted administration of VEGF into the stenotic kidney: a novel potential therapeutic approach.

    PubMed

    Chade, Alejandro R; Kelsen, Silvia

    2012-05-15

    Renal microvascular (MV) damage and loss contribute to the progression of renal injury in renovascular disease (RVD). Whether a targeted intervention in renal microcirculation could reverse renal damage is unknown. We hypothesized that intrarenal vascular endothelial growth factor (VEGF) therapy will reverse renal dysfunction and decrease renal injury in experimental RVD. Unilateral renal artery stenosis (RAS) was induced in 14 pigs, as a surrogate of chronic RVD. Six weeks later, renal blood flow (RBF) and glomerular filtration rate (GFR) were quantified in vivo in the stenotic kidney using multidetector computed tomography (CT). Then, intrarenal rhVEGF-165 or vehicle was randomly administered into the stenotic kidneys (n = 7/group), they were observed for 4 additional wk, in vivo studies were repeated, and then renal MV density was quantified by 3D micro-CT, and expression of angiogenic factors and fibrosis was determined. RBF and GFR, MV density, and renal expression of VEGF and downstream mediators such as p-ERK 1/2, Akt, and eNOS were significantly reduced after 6 and at 10 wk of untreated RAS compared with normal controls. Remarkably, administration of VEGF at 6 wk normalized RBF (from 393.6 ± 50.3 to 607.0 ± 45.33 ml/min, P < 0.05 vs. RAS) and GFR (from 43.4 ± 3.4 to 66.6 ± 10.3 ml/min, P < 0.05 vs. RAS) at 10 wk, accompanied by increased angiogenic signaling, augmented renal MV density, and attenuated renal scarring. This study shows promising therapeutic effects of a targeted renal intervention, using an established clinically relevant large-animal model of chronic RAS. It also implies that disruption of renal MV integrity and function plays a pivotal role in the progression of renal injury in the stenotic kidney. Furthermore, it shows a high level of plasticity of renal microvessels to a single-dose VEGF-targeted intervention after established renal injury, supporting promising renoprotective effects of a novel potential therapeutic intervention to

  3. Reversal of renal dysfunction by targeted administration of VEGF into the stenotic kidney: a novel potential therapeutic approach

    PubMed Central

    Kelsen, Silvia

    2012-01-01

    Renal microvascular (MV) damage and loss contribute to the progression of renal injury in renovascular disease (RVD). Whether a targeted intervention in renal microcirculation could reverse renal damage is unknown. We hypothesized that intrarenal vascular endothelial growth factor (VEGF) therapy will reverse renal dysfunction and decrease renal injury in experimental RVD. Unilateral renal artery stenosis (RAS) was induced in 14 pigs, as a surrogate of chronic RVD. Six weeks later, renal blood flow (RBF) and glomerular filtration rate (GFR) were quantified in vivo in the stenotic kidney using multidetector computed tomography (CT). Then, intrarenal rhVEGF-165 or vehicle was randomly administered into the stenotic kidneys (n = 7/group), they were observed for 4 additional wk, in vivo studies were repeated, and then renal MV density was quantified by 3D micro-CT, and expression of angiogenic factors and fibrosis was determined. RBF and GFR, MV density, and renal expression of VEGF and downstream mediators such as p-ERK 1/2, Akt, and eNOS were significantly reduced after 6 and at 10 wk of untreated RAS compared with normal controls. Remarkably, administration of VEGF at 6 wk normalized RBF (from 393.6 ± 50.3 to 607.0 ± 45.33 ml/min, P < 0.05 vs. RAS) and GFR (from 43.4 ± 3.4 to 66.6 ± 10.3 ml/min, P < 0.05 vs. RAS) at 10 wk, accompanied by increased angiogenic signaling, augmented renal MV density, and attenuated renal scarring. This study shows promising therapeutic effects of a targeted renal intervention, using an established clinically relevant large-animal model of chronic RAS. It also implies that disruption of renal MV integrity and function plays a pivotal role in the progression of renal injury in the stenotic kidney. Furthermore, it shows a high level of plasticity of renal microvessels to a single-dose VEGF-targeted intervention after established renal injury, supporting promising renoprotective effects of a novel potential therapeutic intervention to

  4. Persistent high serum bicarbonate and the risk of heart failure in patients with chronic kidney disease (CKD): A report from the Chronic Renal Insufficiency Cohort (CRIC) study.

    PubMed

    Dobre, Mirela; Yang, Wei; Pan, Qiang; Appel, Lawrence; Bellovich, Keith; Chen, Jing; Feldman, Harold; Fischer, Michael J; Ham, L L; Hostetter, Thomas; Jaar, Bernard G; Kallem, Radhakrishna R; Rosas, Sylvia E; Scialla, Julia J; Wolf, Myles; Rahman, Mahboob

    2015-04-20

    Serum bicarbonate varies over time in chronic kidney disease (CKD) patients, and this variability may portend poor cardiovascular outcomes. The aim of this study was to conduct a time-updated longitudinal analysis to evaluate the association of serum bicarbonate with long-term clinical outcomes: heart failure, atherosclerotic events, renal events (halving of estimated glomerular filtration rate [eGFR] or end-stage renal disease), and mortality. Serum bicarbonate was measured annually, in 3586 participants with CKD, enrolled in the Chronic Renal Insufficiency Cohort (CRIC) study. Marginal structural models were created to allow for integration of all available bicarbonate measurements and proper adjustment for time-dependent confounding. During the 6 years follow-up, 512 participants developed congestive heart failure (26/1000 person-years) and 749 developed renal events (37/1000 person-years). The risk of heart failure and death was significantly higher for participants who maintained serum bicarbonate >26 mmol/L for the entire duration of follow-up (hazard ratio [HR] 1.66; 95% confidence interval [CI], 1.23 to 2.23, and HR 1.36, 95% CI 1.02 to 1.82, respectively) compared with participants who kept their bicarbonate 22 to 26 mmol/L, after adjusting for demographics, co-morbidities, medications including diuretics, eGFR, and proteinuria. Participants who maintained serum bicarbonate <22 mmol/L had almost a 2-fold increased risk of renal disease progression (HR 1.97; 95% CI, 1.50 to 2.57) compared with participants with bicarbonate 22 to 26 mmol/L. In this large CKD cohort, persistent serum bicarbonate >26 mmol/L was associated with increased risk of heart failure events and mortality. Further studies are needed to determine the optimal range of serum bicarbonate in CKD to prevent adverse clinical outcomes. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  5. Persistent High Serum Bicarbonate and the Risk of Heart Failure in Patients With Chronic Kidney Disease (CKD): A Report From the Chronic Renal Insufficiency Cohort (CRIC) Study

    PubMed Central

    Dobre, Mirela; Yang, Wei; Pan, Qiang; Appel, Lawrence; Bellovich, Keith; Chen, Jing; Feldman, Harold; Fischer, Michael J.; Ham, L. L.; Hostetter, Thomas; Jaar, Bernard G.; Kallem, Radhakrishna R.; Rosas, Sylvia E.; Scialla, Julia J.; Wolf, Myles; Rahman, Mahboob

    2015-01-01

    Background Serum bicarbonate varies over time in chronic kidney disease (CKD) patients, and this variability may portend poor cardiovascular outcomes. The aim of this study was to conduct a time‐updated longitudinal analysis to evaluate the association of serum bicarbonate with long‐term clinical outcomes: heart failure, atherosclerotic events, renal events (halving of estimated glomerular filtration rate [eGFR] or end‐stage renal disease), and mortality. Methods and Results Serum bicarbonate was measured annually, in 3586 participants with CKD, enrolled in the Chronic Renal Insufficiency Cohort (CRIC) study. Marginal structural models were created to allow for integration of all available bicarbonate measurements and proper adjustment for time‐dependent confounding. During the 6 years follow‐up, 512 participants developed congestive heart failure (26/1000 person‐years) and 749 developed renal events (37/1000 person‐years). The risk of heart failure and death was significantly higher for participants who maintained serum bicarbonate >26 mmol/L for the entire duration of follow‐up (hazard ratio [HR] 1.66; 95% confidence interval [CI], 1.23 to 2.23, and HR 1.36, 95% CI 1.02 to 1.82, respectively) compared with participants who kept their bicarbonate 22 to 26 mmol/L, after adjusting for demographics, co‐morbidities, medications including diuretics, eGFR, and proteinuria. Participants who maintained serum bicarbonate <22 mmol/L had almost a 2‐fold increased risk of renal disease progression (HR 1.97; 95% CI, 1.50 to 2.57) compared with participants with bicarbonate 22 to 26 mmol/L. Conclusion In this large CKD cohort, persistent serum bicarbonate >26 mmol/L was associated with increased risk of heart failure events and mortality. Further studies are needed to determine the optimal range of serum bicarbonate in CKD to prevent adverse clinical outcomes. PMID:25896890

  6. Microvascular disease precedes the decline in renal function in the streptozotocin-induced diabetic rat

    PubMed Central

    Maric-Bilkan, Christine; Flynn, Elizabeth R.

    2012-01-01

    Diabetic nephropathy is a progressive and generalized vasculopathic condition associated with abnormal angiogenesis. We aim to determine whether changes in renal microvascular (MV) density correlate with and play a role in the progressive deterioration of renal function in diabetes. We hypothesize that MV changes represent the early steps of renal injury that worsen as diabetes progresses, initiating a vicious circle that leads to irreversible renal injury. Male nondiabetic (ND) or streptozotocin-induced diabetic (D) Sprague-Dawley rats were followed for 4 or 12 wk. Renal blood flow and glomerular filtration rate (GFR) were measured by PAH and 125I-[iothalamate], respectively. Renal MV density was quantified ex vivo using three-dimensional micro computed tomography and JG-12 immunoreactivity. Vascular endothelial growth factor (VEGF) levels (ELISA) and expression of VEGF receptors and factors involved in MV remodeling were quantified in renal tissue by Western blotting. Finally, renal morphology was investigated by histology. Four weeks of diabetes was associated with increased GFR, accompanied by a 34% reduction in renal MV density and augmented renal VEGF levels. However, at 12 wk, while GFR remained similarly elevated, reduction of MV density was more pronounced (75%) and associated with increased MV remodeling, renal fibrosis, but unchanged renal VEGF compared with ND at 12 wk. The damage, loss, and subsequent remodeling of the renal MV architecture in the diabetic kidney may represent the initiating events of progressive renal injury. This study suggests a novel concept of MV disease as an early instigator of diabetic kidney disease that may precede and likely promote the decline in renal function. PMID:22031855

  7. Increased renal tubular sodium reabsorption during exercise-induced hypervolemia in humans

    NASA Technical Reports Server (NTRS)

    Nagashima, K.; Wu, J.; Kavouras, S. A.; Mack, G. W.

    2001-01-01

    We tested the hypothesis that renal tubular Na(+) reabsorption increased during the first 24 h of exercise-induced plasma volume expansion. Renal function was assessed 1 day after no-exercise control (C) or intermittent cycle ergometer exercise (Ex, 85% of peak O(2) uptake) for 2 h before and 3 h after saline loading (12.5 ml/kg over 30 min) in seven subjects. Ex reduced renal blood flow (p-aminohippurate clearance) compared with C (0.83 +/- 0.12 vs. 1.49 +/- 0.24 l/min, P < 0.05) but did not influence glomerular filtration rates (97 +/- 10 ml/min, inulin clearance). Fractional tubular reabsorption of Na(+) in the proximal tubules was higher in Ex than in C (P < 0.05). Saline loading decreased fractional tubular reabsorption of Na(+) from 99.1 +/- 0.1 to 98.7 +/- 0.1% (P < 0.05) in C but not in Ex (99.3 +/- 0.1 to 99.4 +/- 0.1%). Saline loading reduced plasma renin activity and plasma arginine vasopressin levels in C and Ex, although the magnitude of decrease was greater in C (P < 0.05). These results indicate that, during the acute phase of exercise-induced plasma volume expansion, increased tubular Na(+) reabsorption is directed primarily to the proximal tubules and is associated with a decrease in renal blood flow. In addition, saline infusion caused a smaller reduction in fluid-regulating hormones in Ex. The attenuated volume-regulatory response acts to preserve distal tubular Na(+) reabsorption during saline infusion 24 h after exercise.

  8. Effect of baclofen on morphine-induced conditioned place preference, extinction, and stress-induced reinstatement in chronically stressed mice.

    PubMed

    Meng, Shanshan; Quan, Wuxing; Qi, Xu; Su, Zhiqiang; Yang, Shanshan

    2014-01-01

    A stress-induced increase in excitability can result from a reduction in inhibitory neurotransmission. Modulation of gamma-aminobutyric acid (GABA)ergic transmission is an effective treatment for drug seeking and relapse. This study investigated whether baclofen, a GABA(B) receptor agonist, had an impact on morphine-induced conditioned place preference (CPP), extinction, and stress-induced relapse in chronically stressed mice. Chronic stress was induced by restraining mice for 2 h for seven consecutive days. We first investigated whether chronic stress influenced morphine-induced CPP, extinction, and stress-induced relapse in the stressed mice. Next, we investigated whether three different doses of baclofen influenced chronic stress as measured by the expression of morphine-induced CPP. We chose the most effective dose for subsequent extinction and reinstatement experiments. Reinstatement of morphine-induced CPP was induced by a 6-min forced swim stress. Locomotor activity was also measured for each test. Chronic stress facilitated the expression of morphine-induced CPP and prolonged extinction time. Forced swim stress primed the reinstatement of morphine-induced CPP in mice. Baclofen treatment affected the impact of chronic stress on different phases of morphine-induced CPP. Our results showed that baclofen antagonized the effects of chronic stress on morphine-induced CPP. These findings suggest the potential clinical utility of GABA(B) receptor-positive modulators as an anti-addiction agent in people suffering from chronic stress.

  9. Mesenchymal stem cells protect against obstruction-induced renal fibrosis by decreasing STAT3 activation and STAT3-dependent MMP-9 production.

    PubMed

    Matsui, Futoshi; Babitz, Stephen A; Rhee, Audrey; Hile, Karen L; Zhang, Hongji; Meldrum, Kirstan K

    2017-01-01

    STAT3 is a transcription factor implicated in renal fibrotic injury, but the role of STAT3 in mesenchymal stem cell (MSC)-induced renoprotection during renal fibrosis remains unknown. We hypothesized that MSCs protect against obstruction-induced renal fibrosis by downregulating STAT3 activation and STAT3-induced matrix metalloproteinase-9 (MMP-9) expression. Male Sprague-Dawley rats underwent renal arterial injection of vehicle or MSCs (1 × 10 6 /rat) immediately before sham operation or induction of unilateral ureteral obstruction (UUO). The kidneys were harvested after 4 wk and analyzed for collagen I and III gene expression, collagen deposition (Masson's trichrome), fibronectin, α-smooth muscle actin, active STAT3 (p-STAT3), MMP-9, and tissue inhibitor of matrix metalloproteinases 1 (TIMP-1) expression. In a separate arm, the STAT3 inhibitor S3I-201 (10 mg/kg) vs. vehicle was administered to rats intraperitoneally just after induction of UUO and daily for 14 days thereafter. The kidneys were harvested after 2 wk and analyzed for p-STAT3 and MMP-9 expression, and collagen and fibronectin deposition. Renal obstruction induced a significant increase in collagen, fibronectin, α-SMA, p-STAT3, MMP-9, and TIMP-1 expression while exogenously administered MSCs significantly reduced these indicators of obstruction-induced renal fibrosis. STAT3 inhibition with S3I-201 significantly reduced obstruction-induced MMP-9 expression and tubulointerstitial fibrosis. These results demonstrate that MSCs protect against obstruction-induced renal fibrosis, in part, by decreasing STAT3 activation and STAT3-dependent MMP-9 production. Copyright © 2017 the American Physiological Society.

  10. Mesenchymal stem cells protect against obstruction-induced renal fibrosis by decreasing STAT3 activation and STAT3-dependent MMP-9 production

    PubMed Central

    Matsui, Futoshi; Babitz, Stephen A.; Rhee, Audrey; Hile, Karen L.; Zhang, Hongji

    2017-01-01

    STAT3 is a transcription factor implicated in renal fibrotic injury, but the role of STAT3 in mesenchymal stem cell (MSC)-induced renoprotection during renal fibrosis remains unknown. We hypothesized that MSCs protect against obstruction-induced renal fibrosis by downregulating STAT3 activation and STAT3-induced matrix metalloproteinase-9 (MMP-9) expression. Male Sprague-Dawley rats underwent renal arterial injection of vehicle or MSCs (1 × 106/rat) immediately before sham operation or induction of unilateral ureteral obstruction (UUO). The kidneys were harvested after 4 wk and analyzed for collagen I and III gene expression, collagen deposition (Masson’s trichrome), fibronectin, α-smooth muscle actin, active STAT3 (p-STAT3), MMP-9, and tissue inhibitor of matrix metalloproteinases 1 (TIMP-1) expression. In a separate arm, the STAT3 inhibitor S3I-201 (10 mg/kg) vs. vehicle was administered to rats intraperitoneally just after induction of UUO and daily for 14 days thereafter. The kidneys were harvested after 2 wk and analyzed for p-STAT3 and MMP-9 expression, and collagen and fibronectin deposition. Renal obstruction induced a significant increase in collagen, fibronectin, α-SMA, p-STAT3, MMP-9, and TIMP-1 expression while exogenously administered MSCs significantly reduced these indicators of obstruction-induced renal fibrosis. STAT3 inhibition with S3I-201 significantly reduced obstruction-induced MMP-9 expression and tubulointerstitial fibrosis. These results demonstrate that MSCs protect against obstruction-induced renal fibrosis, in part, by decreasing STAT3 activation and STAT3-dependent MMP-9 production. PMID:27760767

  11. [Bilateral nephrectomy in patients with end-stage renal failure and chronic active pyelonephritis].

    PubMed

    Lysenko, M A; Vtorenko, V I; Trushkin, R N; Lubennikov, A E; Sysoev, A M; Sokolov, A A

    2016-02-01

    This study analyzed the results of bilateral nephrectomy in 14 patients with end-stage renal disease (ESRD) and chronic active pyelonephritis. Seven patients had urosepsis, and 10 patients had a purulent form of pyelonephritis, which was one-sided in 7 of them. In the early postoperative period, on average, after 9.3 days, 9 patients died. Statistically significant risk factors for death were: chronic hemodialysis, long-term antibiotic therapy, and existing sepsis. Intraoperative complications and postoperative morbidity were not significantly associated with death. The study results imply the need of differentiated approach to bilateral nephrectomy in patients with ESRD and risk factors for fatal outcome. It must be performed on the strong indications since the intervention does not lead to eradication of sepsis. It is advisable to perform "preventive, sanation" bilateral nephrectomy in the "cold period" in patients at risk for developing urosepsis.

  12. Mechanism of vasodilation induced by alpha-human atrial natriuretic polypeptide in rabbit and guinea-pig renal arteries.

    PubMed Central

    Fujii, K; Ishimatsu, T; Kuriyama, H

    1986-01-01

    Effects of alpha-human atrial natriuretic polypeptide (alpha-HANP) on electrical and mechanical properties of smooth muscle cells of the guinea-pig and rabbit renal arteries and of the guinea-pig mesenteric artery were investigated. alpha-HANP (up to 10 nM) modified neither the membrane potential nor resistance of smooth muscle cells of the guinea-pig and rabbit renal arteries. In the guinea-pig mesenteric and renal arteries, alpha-HANP (up to 10 nM) had no effect on the amplitude and facilitation (mesenteric artery) or depression (renal artery) of excitatory junction potentials nor on action potentials. In the guinea-pig renal artery, alpha-HANP (up to 10 nM) had no effect on the depolarization induced by noradrenaline (NA) (up to 10 microM) but markedly inhibited NA-induced contraction. alpha-HANP (10 nM) slightly inhibited the K-induced contraction. In the rabbit renal artery, alpha-HANP (10 nM) inhibited the NA-induced contraction and to a lesser extent the K-induced contraction. In the rabbit renal artery, the effects of alpha-HANP on the release of Ca from the cellular storage by two applications of NA, and its re-storage, were investigated in Ca-free solution containing 2 mM-EGTA. When 5 nM-alpha-HANP was applied before and during the first application of 0.5 microM-NA, the contraction was markedly inhibited but the contraction to a second application of 10 microM-NA was potentiated. If the first dose of NA was 10 microM the effect was very small. Under the same experimental procedures, nitroglycerine (10 microM) showed almost the same effects as alpha-HANP on the NA-induced contractions. When both the first (3 mM) and second (10 mM) contractions were evoked by caffeine in Ca-free solution, alpha-HANP (5 nM) and nitroglycerine (10 microM) inhibited both contractions to the same extent. In the rabbit renal artery, applications of alpha-HANP or nitroglycerine increased the amount of guanosine 3',5'-phosphate (cyclic GMP) in a dose-dependent manner. However, a

  13. Autophagy activation promotes removal of damaged mitochondria and protects against renal tubular injury induced by albumin overload.

    PubMed

    Tan, Jin; Wang, Miaohong; Song, Shuling; Miao, Yuyang; Zhang, Qiang

    2018-01-10

    Proteinuria (albuminuria) is an important cause of aggravating tubulointerstitial injury. Previous studies have shown that autophagy activation can alleviate renal tubular epithelial cell injury caused by urinary protein, but the mechanism is not clear. Here, we investigated the role of clearance of damaged mitochondria in this protective effect. We found that albumin overload induces a significant increase in turnover of LC3-II and decrease in p62 protein level in renal proximal tubular (HK-2) cells in vitro. Albumin overload also induces an increase in mitochondrial damage. ALC, a mitochondrial torpent, alleviates mitochondrial damage induced by albumin overload and also decreases autophagy, while mitochondrial damage revulsant CCCP further increases autophagy. Furthermore, pretreatment of HK-2 cells with rapamycin reduced the amount of damaged mitochondria and the level of apoptosis induced by albumin overload. In contrast, blocking autophagy with chloroquine exerted an opposite effect. Taken together, our results indicated autophagy activation promotes removal of damaged mitochondria and protects against renal tubular injury caused by albumin overload. This further confirms previous research that autophagy activation is an adaptive response in renal tubular epithelial cells after urinary protein overload.

  14. Transformation by Complementation of an Adenine Auxotroph of the Lignin-Degrading Basidiomycete Phanerochaete chrysosporium

    PubMed Central

    Alic, Margaret; Kornegay, Janet R.; Pribnow, David; Gold, Michael H.

    1989-01-01

    Swollen basidiospores of an adenine auxotroph of Phanerochaete chrysosporium were protoplasted with Novozyme 234 and transformed to prototrophy by using a plasmid containing the gene for an adenine biosynthetic enzyme from Schizophyllum commune. Transformation frequencies of 100 transformants per μg of DNA were obtained. Southern blot analysis of DNA extracted from transformants demonstrated that plasmid DNA was integrated into the chromosomal DNA in multiple tandem copies. Analysis of conidia and basidiospores from transformants demonstrated that the transforming character was mitotically and meiotically stable on both selective and nonselective media. Genetic crosses between double mutants transformed for adenine prototrophy and other auxotrophic strains yielded Ade− progeny, which indicated that integration occurred at a site(s) other than the resident adenine biosynthetic gene. Images PMID:16347848

  15. A randomised controlled trial evaluating renal protective effects of selenium with vitamins A, C, E, verapamil, and losartan against extracorporeal shockwave lithotripsy-induced renal injury.

    PubMed

    El-Nahas, Ahmed R; Elsaadany, Mohamed M; Taha, Diaa-Eldin; Elshal, Ahmed M; El-Ghar, Mohamed Abo; Ismail, Amani M; Elsawy, Essam A; Saleh, Hazem H; Wafa, Ehab W; Awadalla, Amira; Barakat, Tamer S; Sheir, Khaled Z

    2017-01-01

    To evaluate the protective effects of selenium with vitamins A, C and E (selenium ACE, i.e. antioxidants), verapamil (calcium channel blocker), and losartan (angiotensin receptor blocker) against extracorporeal shockwave lithotripsy (ESWL)-induced renal injury. A randomised controlled trial was conducted between August 2012 and February 2015. Inclusion criteria were adult patients with a single renal stone (<2 cm) suitable for ESWL. Patients with diabetes, hypertension, congenital renal anomalies, moderate or marked hydronephrosis, or preoperative albuminuria (>300 mg/L) were excluded. ESWL was performed using the electromagnetic DoLiS lithotripter. Eligible patients were randomised into one of four groups using sealed closed envelopes: Group1, control; Group 2, selenium ACE; Group 3, losartan; and Group 4, verapamil. Albuminuria and urinary neutrophil gelatinase-associated lipocalin (uNGAL) were estimated after 2-4 h and 1 week after ESWL. The primary outcome was differences between albuminuria and uNGAL. Dynamic contrast-enhanced magnetic resonance imaging was performed before ESWL, and at 2-4 h and 1 week after ESWL to compare changes in renal perfusion. Of 329 patients assessed for eligibility, the final analysis comprised 160 patients (40 in each group). Losartan was the only medication that showed significantly lower levels of albuminuria after 1 week (P < 0.001). For perfusion changes, there was a statistically significant decrease in the renal perfusion in patients with obstructed kidneys in comparison to before ESWL (P = 0.003). These significant changes were present in the control or antioxidant group, whilst in the losartan and verapamil groups renal perfusion was not significantly decreased. Losartan was found to protect the kidney against ESWL-induced renal injury by significantly decreasing post-ESWL albuminuria. Verapamil and losartan maintained renal perfusion in patients with post-ESWL renal obstruction. © 2016 The Authors BJU International

  16. Heparanase regulates the M1 polarization of renal macrophages and their crosstalk with renal epithelial tubular cells after ischemia/reperfusion injury.

    PubMed

    Masola, Valentina; Zaza, Gianluigi; Bellin, Gloria; Dall'Olmo, Luigi; Granata, Simona; Vischini, Gisella; Secchi, Maria Francesca; Lupo, Antonio; Gambaro, Giovanni; Onisto, Maurizio

    2018-02-01

    Heparanase (HPSE) is part of the biologic network triggered by ischemia/reperfusion (I/R) injury, a complication of renal transplantation and acute kidney injury. During this period, the kidney or graft undergoes a process of macrophages recruitment and activation. HPSE may therefore control these biologic effects. We measured the ability of HPSE and its inhibitor, SST0001, to regulate macrophage polarization and the crosstalk between macrophages and HK-2 renal tubular cells during in vitro hypoxia/reoxygenation (H/R). Furthermore, we evaluated in vivo renal inflammation, macrophage polarization, and histologic changes in mice subjected to monolateral I/R and treated with SST0001 for 2 or 7 d. The in vitro experiments showed that HPSE sustained M1 macrophage polarization and modulated apoptosis, the release of damage associated molecular patterns in post-H/R tubular cells, the synthesis of proinflammatory cytokines, and the up-regulation of TLRs on both epithelial cells and macrophages. HPSE also regulated M1 polarization induced by H/R-injured tubular cells and the partial epithelial-mesenchymal transition of these epithelial cells by M1 macrophages. All these effects were prevented by inhibiting HPSE. Furthermore, the inhibition of HPSE in vivo reduced inflammation and M1 polarization in mice undergoing I/R injury, partially restored renal function and normal histology, and reduced apoptosis. These results show for the first time that HPSE regulates macrophage polarization as well as renal damage and repair after I/R. HPSE inhibitors could therefore provide a new pharmacologic approach to minimize acute kidney injury and to prevent the chronic profibrotic damages induced by I/R.-Masola, V., Zaza, G., Bellin, G., Dall'Olmo, L., Granata, S., Vischini, G., Secchi, M. F., Lupo, A., Gambaro, G., Onisto, M. Heparanase regulates the M1 polarization of renal macrophages and their crosstalk with renal epithelial tubular cells after ischemia/reperfusion injury.

  17. Role of L-arginine in the pathogenesis and treatment of renal disease.

    PubMed

    Cherla, Gautam; Jaimes, Edgar A

    2004-10-01

    L-arginine is a semi essential amino acid and also a substrate for the synthesis of nitric oxide (NO), polyamines, and agmatine. These L-arginine metabolites may participate in the pathogenesis of renal disease and constitute the rationale for manipulating L-arginine metabolism as a strategy to ameliorate kidney disease. Modification of dietary L-arginine intake in experimental models of kidney diseases has been shown to have both beneficial as well as deleterious effects depending on the specific model studied. L-arginine supplementation in animal models of glomerulonephritis has been shown to be detrimental, probably by increasing the production of NO from increased local expression of inducible NO synthase (iNOS). L-arginine supplementation does not modify the course of renal disease in humans with chronic glomerular diseases. However, beneficial effects of L-arginine supplementation have been reported in several models of chronic kidney disease including renal ablation, ureteral obstruction, nephropathy secondary to diabetes, and salt-sensitive hypertension. L-arginine is reduced in preeclampsia and recent experimental studies indicate that L-arginine supplementation may be beneficial in attenuating the symptoms of preeclampsia. Administration of exogenous L-arginine has been shown to be protective in ischemic acute renal failure. In summary, the role of L-arginine in the pathogenesis and treatment of renal disease is not completely understood and remains to be established.

  18. Epoxyeicosatrienoic Acids Prevent Cisplatin-Induced Renal Apoptosis through a p38 Mitogen-Activated Protein Kinase–Regulated Mitochondrial Pathway

    PubMed Central

    Liu, Yingmei; Lu, Xiaodan; Nguyen, Sinh; Olson, Jean L.; Webb, Heather K.

    2013-01-01

    Soluble epoxide hydrolase (sEH) catalyzes the conversion of epoxyeicosatrienoic acids into less active eicosanoids, and inhibitors of sEH have anti-inflammatory and antiapoptotic properties. Based on previous observations that sEH inhibition attenuates cisplatin-induced nephrotoxicity by modulating nuclear factor-κB signaling, we hypothesized that this strategy would also attenuate cisplatin-induced renal apoptosis. Inhibition of sEH with AR9273 [1-adamantan-1-yl-3-(1-methylsulfonyl-piperidin-4-yl-urea)] reduced cisplatin-induced apoptosis through mechanisms involving mitochondrial apoptotic pathways and by reducing reactive oxygen species. Renal mitochondrial Bax induction following cisplatin treatment was significantly decreased by treatment of mice with AR9273 and these antiapoptotic effects involved p38 mitogen-activated protein kinase signaling. Similar mechanisms contributed to reduced apoptosis in Ephx2−/− mice treated with cisplatin. Moreover, in pig kidney proximal tubule cells, cisplatin-induced mitochondrial trafficking of Bax and cytochrome c, caspase-3 activation, and oxidative stress are significantly attenuated in the presence of epoxyeicosatrienoic acids (EETs). Collectively, these in vivo and in vitro studies demonstrate a role for EETs in limiting cisplatin-induced renal apoptosis. Inhibition of sEH represents a novel therapeutic strategy for protection against cisplatin-induced renal damage. PMID:24092818

  19. Inhibition of NA+/H+ Exchanger 1 Attenuates Renal Dysfunction Induced by Advanced Glycation End Products in Rats

    PubMed Central

    Li, Peng; Chen, Geng-Rong; Wang, Fu; Xu, Ping; Liu, Li-Ying; Yin, Ya-Ling; Wang, Shuang-Xi

    2016-01-01

    It has been recognized that sodium hydrogen exchanger 1 (NHE1) is involved in the development of diabetic nephropathy. The role of NHE1 in kidney dysfunction induced by advanced glycation end products (AGEs) remains unknown. Renal damage was induced by AGEs via tail vein injections in rats. Function and morphology of kidney were determined. Compared to vehicle- or BSA-treated rats, AGEs caused abnormalities of kidney structures and functions in rats, accompanied with higher MDA level and lower GSH content. Gene expressions of NHE1 gene and TGF-β1 in the renal cortex and urine were also increased in AGEs-injected rats. Importantly, all these detrimental effects induced by AGEs were reversed by inhibition of NHE1 or suppression of oxidative stress. These pieces of data demonstrated that AGEs may activate NHE1 to induce renal damage, which is related to TGF-β1. PMID:26697498

  20. Protocatechuic Aldehyde Attenuates Cisplatin-Induced Acute Kidney Injury by Suppressing Nox-Mediated Oxidative Stress and Renal Inflammation

    PubMed Central

    Gao, Li; Wu, Wei-Feng; Dong, Lei; Ren, Gui-Ling; Li, Hai-Di; Yang, Qin; Li, Xiao-Feng; Xu, Tao; Li, Zeng; Wu, Bao-Ming; Ma, Tao-Tao; Huang, Cheng; Huang, Yan; Zhang, Lei; Lv, Xiongwen; Li, Jun; Meng, Xiao-Ming

    2016-01-01

    Cisplatin is a classic chemotherapeutic agent widely used to treat different types of cancers including ovarian, head and neck, testicular and uterine cervical carcinomas. However, cisplatin induces acute kidney injury by directly triggering an excessive inflammatory response, oxidative stress, and programmed cell death of renal tubular epithelial cells, all of which lead to high mortality rates in patients. In this study, we examined the protective effect of protocatechuic aldehyde (PA) in vitro in cisplatin-treated tubular epithelial cells and in vivo in cisplatin nephropathy. PA is a monomer of Traditional Chinese Medicine isolated from the root of S. miltiorrhiza (Lamiaceae). Results show that PA prevented cisplatin-induced decline of renal function and histological damage, which was confirmed by attenuation of KIM1 in both mRNA and protein levels. Moreover, PA reduced renal inflammation by suppressing oxidative stress and programmed cell death in response to cisplatin, which was further evidenced by in vitro data. Of note, PA suppressed NAPDH oxidases, including Nox2 and Nox4, in a dosage-dependent manner. Moreover, silencing Nox4, but not Nox2, removed the inhibitory effect of PA on cisplatin-induced renal injury, indicating that Nox4 may play a pivotal role in mediating the protective effect of PA in cisplatin-induced acute kidney injury. Collectively, our data indicate that PA blocks cisplatin-induced acute kidney injury by suppressing Nox-mediated oxidative stress and renal inflammation without compromising anti-tumor activity of cisplatin. These findings suggest that PA and its derivatives may serve as potential protective agents for cancer patients receiving cisplatin treatment. PMID:27999546

  1. Aqueous extract of Boerhaavia diffusa root ameliorates ethylene glycol-induced hyperoxaluric oxidative stress and renal injury in rat kidney.

    PubMed

    Pareta, Surendra K; Patra, Kartik C; Mazumder, Papiya M; Sasmal, Dinakar

    2011-12-01

    Boerhaavia diffusa Linn. (Nyctaginaceae) is widely used in traditional Indian medicines against renal afflictions including calcium oxalate (CaOx) urolithiasis and is known for antioxidant activity. The present study was designed to investigate the ameliorating effect of aqueous extract of B. diffusa roots (BDE) in hyperoxaluric oxidative stress and renal cell injury. In vitro antioxidant activity of BDE was estimated in terms of total phenolic content and 1,1-diphenyl-2-picryl hydrazyl free radical scavenging activity. Wistar albino rats were given 0.75% v/v ethylene glycol in drinking water to induce chronic hyperoxaluria and simultaneously BDE was given to nephrolithiasic treated rats at the dose of 100 and 200 mg/kg b.w. orally for 28 days. Urinary volume, oxalate, serum creatinine, blood urea nitrogen (BUN), malondialdehyde (MDA) and antioxidant enzyme (SOD, CAT, GST, GPx) were evaluated. BDE extract was found to posses a high total phenolic content and exhibited significant free radicals scavenging activity. Oxalate excretion significantly increased in hyperoxaluric animals as compared to control which was protected in BDE-treated animals. BDE treatment significantly reduced level of MDA and improved the activity of antioxidant enzymes followed by reduction in BUN and serum creatinine. In addition, BDE reduced the number of CaOx monohydrate crystals in the urine. Histological analysis depicted that BDE treatment inhibited deposition of CaOx crystal and renal cell damage. The present study reveals that antioxidant activity of BDE significantly protects against hyperoxaluric oxidative stress and renal cell injury in urolithiasis.

  2. Predictive value of ADAMTS-13 on concealed chronic renal failure in COPD patients

    PubMed Central

    Zeng, Mian; Chen, Qingui; Liang, Wenjie; He, Wanmei; Zheng, Haichong; Huang, Chunrong

    2017-01-01

    Background Impaired renal function is often neglected in COPD patients. Considering that COPD patients usually have an ongoing prothrombotic state and systemic inflammation status, we investigated the association among them and explored the predictive value of a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS-13), on concealed chronic renal failure (CRF) in COPD patients. Methods COPD patients were recruited from the First Affiliated Hospital of Sun Yat-Sen University between January 2015 and December 2016. Control was selected from contemporaneous hospitalized patients without COPD and matched by age and gender at a ratio of 1:1. Estimated glomerular filtration rate (eGFR) was calculated by using the Chronic Kidney Disease Epidemiology Collaboration formula, and all subjects were categorized as having normal renal function (eGFR ≥60 mL min−1 1.73 m−2) and having concealed CRF (normal serum creatinine while eGFR <60 mL min−1 1.73 m−2). Independent correlates of concealed CRF were investigated by logistic regression analysis, and receiver operating characteristic (ROC) curves were used to determine the predictive value of ADAMTS-13. Results In total, 106 COPD and 106 non-COPD patients were finally recruited, and the incidences of concealed CRF were 19.81% and 7.55%, respectively. ADAMTS-13 (odds ratio [OR] =0.858, 95% CI =0.795–0.926), D-dimer (OR =1.095, 95% CI =1.027–1.169), and C-reactive protein (OR =1.252, 95% CI =1.058–1.480) were significantly associated with concealed CRF. Sensitivity and specificity at an ADAMTS-13 cutoff of 318.72 ng/mL were 100% and 81.2%, respectively. The area under the ROC curve was 0.959. Conclusion Prothrombotic state and systemic inflammation status might contribute to explaining the high incidence of concealed CRF in COPD, and plasma ADAMTS-13 levels may serve as a strong predictor. PMID:29255356

  3. Eliciting the mitochondrial unfolded protein response by nicotinamide adenine dinucleotide repletion reverses fatty liver disease in mice

    PubMed Central

    Gariani, Karim; Menzies, Keir J.; Ryu, Dongryeol; Wegner, Casey J.; Wang, Xu; Ropelle, Eduardo R.; Moullan, Norman; Zhang, Hongbo; Perino, Alessia; Lemos, Vera; Kim, Bohkyung; Park, Young‐Ki; Piersigilli, Alessandra; Pham, Tho X.; Yang, Yue; Ku, Chai Siah; Koo, Sung I.; Fomitchova, Anna; Cantó, Carlos; Schoonjans, Kristina; Sauve, Anthony A.

    2015-01-01

    With no approved pharmacological treatment, nonalcoholic fatty liver disease (NAFLD) is now the most common cause of chronic liver disease in Western countries and its worldwide prevalence continues to increase along with the growing obesity epidemic. Here, we show that a high‐fat high‐sucrose (HFHS) diet, eliciting chronic hepatosteatosis resembling human fatty liver, lowers hepatic nicotinamide adenine dinucleotide (NAD+) levels driving reductions in hepatic mitochondrial content, function, and adenosine triphosphate (ATP) levels, in conjunction with robust increases in hepatic weight, lipid content, and peroxidation in C57BL/6J mice. To assess the effect of NAD+ repletion on the development of steatosis in mice, nicotinamide riboside, a precursor of NAD+ biosynthesis, was added to the HFHS diet, either as a preventive strategy or as a therapeutic intervention. We demonstrate that NR prevents and reverts NAFLD by inducing a sirtuin (SIRT)1‐ and SIRT3‐dependent mitochondrial unfolded protein response, triggering an adaptive mitohormetic pathway to increase hepatic β‐oxidation and mitochondrial complex content and activity. The cell‐autonomous beneficial component of NR treatment was revealed in liver‐specific Sirt1 knockout mice (Sirt1hep−/−), whereas apolipoprotein E‐deficient mice (Apoe −/−) challenged with a high‐fat high‐cholesterol diet affirmed the use of NR in other independent models of NAFLD. Conclusion: Our data warrant the future evaluation of NAD+ boosting strategies to manage the development or progression of NAFLD. (Hepatology 2016;63:1190–1204) PMID:26404765

  4. Increased nitric oxide production in platelets from severe chronic renal failure patients.

    PubMed

    Siqueira, Mariana Alves de Sá; Brunini, Tatiana M C; Pereira, Natália Rodrigues; Martins, Marcela Anjos; Moss, Monique Bandeira; Santos, Sérgio F; Lugon, Jocemir R; Mendes-Ribeiro, Antônio C

    2011-02-01

    Nitric oxide (NO) production occurs through oxidation of the amino acid L-arginine by NO synthase (NOS). NO inhibits platelet activation by increasing the levels of cyclic guanosine monophosphate (cGMP), thus maintaining vascular homeostasis. Our group previously demonstrated (da Silva et al. 2005) an enhancement of the L-arginine-NO-cGMP pathway in platelets taken from chronic renal failure (CRF) patients on haemodialysis associated with reduced platelet aggregation. We investigate the platelet L-arginine-NO-cGMP pathway, platelet function, and inflammation from patients in CRF on conservative treatment. A total of 42 CRF patients and 42 controls (creatinine clearance = 27 ± 3 vs. 93 ± 1 mL per min per 1.73 m2, respectively) participated in this study. NOS activity and expression and cGMP concentration were measured in platelets. Platelet aggregation induced by collagen or ADP was evaluated and plasma levels of fibrinogen were determined by the Clauss method. A marked increase in basal NOS activity was seen in undialysed CRF patients compared with controls, accompanied by an elevation of fibrinogen plasma levels. There were no differences in expression of NOS and in cGMP levels. In this context, platelet aggregation was not affected. We provide the first evidence of increased intraplatelet NO biosynthesis in undialysed CRF patients, which can be an early marker of future haemostatic abnormalities during dialysis treatment.

  5. Sympathetic Response and Outcomes Following Renal Denervation in Patients With Chronic Heart Failure: 12-Month Outcomes From the Symplicity HF Feasibility Study.

    PubMed

    Hopper, Ingrid; Gronda, Edoardo; Hoppe, Uta C; Rundqvist, Bengt; Marwick, Thomas H; Shetty, Sharad; Hayward, Christopher; Lambert, Thomas; Hering, Dagmara; Esler, Murray; Schlaich, Markus; Walton, Antony; Airoldi, Flavio; Brandt, Mathias C; Cohen, Sidney A; Reiters, Pascalle; Krum, Henry

    2017-09-01

    Heart failure (HF) is associated with chronic sympathetic activation. Renal denervation (RDN) aims to reduce sympathetic activity by ablating the renal sympathetic nerves. We investigated the effect of RDN in patients with chronic HF and concurrent renal dysfunction in a prospective, multicenter, single-arm feasibility study. Thirty-nine patients with chronic systolic HF (left ventricular ejection fraction [LVEF] <40%, New York Heart Association class II-III,) and renal impairment (estimated glomerular filtration rate [eGFR; assessed with the use of the Modification of Diet in Renal Disease equation] < 75 mL • min -1  • 1.73 m -2 ) on stable medical therapy were enrolled. Mean age was 65 ± 11 years; 62% had ischemic HF. The average number of ablations per patient was 13 ± 3. No protocol-defined safety events were associated with the procedure. One subject experienced a renal artery occlusion that was possibly related to the denervation procedure. Statistically significant reductions in N-terminal pro-B-type natriuretic peptide (NT-proBNP; 1530 ± 1228 vs 1428 ± 1844 ng/mL; P = .006) and 120-minute glucose tolerance test (11.2 ± 5.1 vs 9.9 ± 3.6; P = .026) were seen at 12 months, but there was no significant change in LVEF (28 ± 9% vs 29 ± 11%; P= .536), 6-minute walk test (384 ± 96 vs 391 ± 97 m; P= .584), or eGFR (52.6 ± 15.3 vs 52.3 ± 18.5 mL • min -1  • 1.73 m -2 ; P= .700). RDN was associated with reductions in NT-proBNP and 120-minute glucose tolerance test in HF patients 12 months after RDN treatment. There was no deterioration in other indices of cardiac and renal function in this small feasibility study. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Effects of caffeine and adenine nucleotides on Ca2+ release by the sarcoplasmic reticulum in saponin-permeabilized frog skeletal muscle fibres

    PubMed Central

    Duke, Adrian M; Steele, Derek S

    1998-01-01

    The effect of caffeine and adenine nucleotides on the sarcoplasmic reticulum (SR) Ca2+ release mechanism was investigated in permeabilized frog skeletal muscle fibres. Caffeine was rapidly applied and the resulting release of Ca2+ from the SR detected using fura-2 fluorescence. Decreasing the [ATP] from 5 to 0.1 mm reduced the caffeine-induced Ca2+ transient by 89 ± 1.4 % (mean ± s.e.m., n = 16), while SR Ca2+ uptake was unaffected.The dependence of caffeine-induced Ca2+ release on cytosolic [ATP] was used to study the relative ability of other structurally related compounds to substitute for, or compete with, ATP at the adenine nucleotide binding site. It was found that AMP, ADP and the non-hydrolysable analogue adenylyl imidodiphosphate (AMP-PNP) partially substituted for ATP, although none was as potent in facilitating the Ca2+-releasing action of caffeine.Adenosine reversibly inhibited caffeine-induced Ca2+ release, without affecting SR Ca2+ uptake. Five millimolar adenosine markedly reduced the amplitude of the caffeine-induced Ca2+ transient by 64 ± 4 % (mean ± s.e.m., n = 11). The degree of inhibition was dependent upon the cytosolic [ATP], suggesting that adenosine may act as a competitive antagonist at the adenine nucleotide binding site.These data show that (i) the sensitivity of the in situ SR Ca2+ channel to caffeine activation is strongly dependent upon the cytosolic [ATP], (ii) the number of phosphates attached to the 5′ carbon of the ribose ring influences the efficacy of the ligand, and (iii) removal of a single phosphate group transforms AMP from a partial agonist, to adenosine, which acts as a competitive antagonist under these conditions. PMID:9782158

  7. Effects of caffeine and adenine nucleotides on Ca2+ release by the sarcoplasmic reticulum in saponin-permeabilized frog skeletal muscle fibres.

    PubMed

    Duke, A M; Steele, D S

    1998-11-15

    1. The effect of caffeine and adenine nucleotides on the sarcoplasmic reticulum (SR) Ca2+ release mechanism was investigated in permeabilized frog skeletal muscle fibres. Caffeine was rapidly applied and the resulting release of Ca2+ from the SR detected using fura-2 fluorescence. Decreasing the [ATP] from 5 to 0.1 mM reduced the caffeine-induced Ca2+ transient by 89 +/- 1.4% (mean +/- s.e.m., n = 16), while SR Ca2+ uptake was unaffected. 2. The dependence of caffeine-induced Ca2+ release on cytosolic [ATP] was used to study the relative ability of other structurally related compounds to substitute for, or compete with, ATP at the adenine nucleotide binding site. It was found that AMP, ADP and the non-hydrolysable analogue adenylyl imidodiphosphate (AMP-PNP) partially substituted for ATP, although none was as potent in facilitating the Ca2+-releasing action of caffeine. 3. Adenosine reversibly inhibited caffeine-induced Ca2+ release, without affecting SR Ca2+ uptake. Five millimolar adenosine markedly reduced the amplitude of the caffeine-induced Ca2+ transient by 64 +/- 4% (mean +/- s.e.m., n = 11). The degree of inhibition was dependent upon the cytosolic [ATP], suggesting that adenosine may act as a competitive antagonist at the adenine nucleotide binding site. 4. These data show that (i) the sensitivity of the in situ SR Ca2+ channel to caffeine activation is strongly dependent upon the cytosolic [ATP], (ii) the number of phosphates attached to the 5' carbon of the ribose ring influences the efficacy of the ligand, and (iii) removal of a single phosphate group transforms AMP from a partial agonist, to adenosine, which acts as a competitive antagonist under these conditions.

  8. Transformation by complementation of an adenine auxotroph of the lignin-degrading basidiomycete Phanerochaete chrysosporium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alic, M.; Kornegay, J.R.; Pribnow, D.

    1989-02-01

    Swollen basiodiospores of an adenine auxotroph of Phanerochaete chrysosporium were protoplasted with Novozyme 234 and transformed to prototrophy by using a plasmid containing the gene for an adenine biosynthetic enzyme from Schizophyllum commune. Transformation frequencies of 100 transformants per {mu}g of DNA were obtained. Southern blot analysis of DNA extracted from transformants demonstrated that plasmid DNA was integrated into the chromosomal DNA in multiple tandem copies. Analysis of conidia and basiodiospores from transformants demonstrated that the transforming character was mitotically and meiotically stable on both selective and nonselective media. Genetic crosses between double mutants transformed for adenine prototrophy and othermore » auxotrophic strains yielded Ade{sup {minus}} progeny, which indicated that integration occurred at a site(s) other than the resident adenine biosynthetic gene.« less

  9. Purinergic receptors contribute to early mesangial cell transformation and renal vessel hypertrophy during angiotensin II-induced hypertension

    PubMed Central

    Graciano, Miguel L.; Nishiyama, Akira; Jackson, Keith; Seth, Dale M.; Ortiz, Rudy M.; Prieto-Carrasquero, Minolfa C.; Kobori, Hiroyuki; Navar, L. Gabriel

    2008-01-01

    Chronic ANG II infusions lead to increases in intrarenal ANG II levels, hypertension, and tissue injury. Increased blood pressure also elicits increases in renal interstitial fluid (RIF) ATP concentrations that stimulate cell proliferation. We evaluated the contribution of purinergic receptor activation to ANG II-induced renal injury in rats by treating with clopidogrel, a P2Y12 receptor blocker, or with PPADS, a nonselective P2 receptor blocker. α-Actin expression in mesangial cells, afferent arteriolar wall thickness (AAWT), cortical cell proliferation, and macrophage infiltration were used as early markers of renal injury. Clopidogrel and PPADS did not alter blood pressure, renin or kidney ANG II content. α-Actin expression increased from control of 0.6 ± 0.4% of mesangial area to 6.3 ± 1.9% in ANG II-infused rats and this response was prevented by clopidogrel (0.4 ± 0.2%) and PPADS. The increase in AAWT from 4.7 ± 0.1 to 6.0 ± 0.1 mm in ANG II rats was also prevented by clopidogrel (4.8 ± 0.1 mm) and PPADS. ANG II infusion led to interstitial macrophage infiltration (105 ± 16 vs. 62 ± 4 cell/mm2) and tubular proliferation (71 ± 15 vs. 20 ± 4 cell/mm2) and these effects were prevented by clopidogrel (52 ± 4 and 36 ± 3 cell/mm2) and PPADS. RIF ATP levels were higher in ANG II-infused rats than in control rats (11.8 ± 1.9 vs. 5.6 ± 0.6 nmol/l, P < 0.05). The results suggest that activation of vascular and glomerular purinergic P2 receptors may contribute to the mesangial cell transformation, renal inflammation, and vascular hypertrophy observed in ANG II-dependent hypertension. PMID:17989111

  10. RAAS inhibition and renal protection.

    PubMed

    Leoncini, Giovanna; Giovanna, Leoncini; Viazzi, Francesca; Francesca, Viazzi; Pontremoli, Roberto; Roberto, Pontremoli

    2012-01-01

    Chronic kidney disease has become a major public health problem worldwide mainly as a consequence of the emerging epidemic of hypertension, diabetes, and obesity. It is currently estimated that nearly 15% of the general population has some degree of renal damage, a figure that reaches 50% in at-risk subgroups. Renin-angiotensin-aldosterone system (RAAS) inhibitors represent the agents of choice to control hypertension and reduce urinary albumin excretion, thereby delaying renal function deterioration. Greater blockade of the RAAS either by the combined use of multiple drugs or by supramaximal doses of single agents may provide greater renal protection. Furthermore, it has been proposed especially in the presence of proteinuria. However, at this time there is insufficient evidence to routinely recommend this therapeutic approach in patients with chronic kidney disease. The present article examines the currently available evidence and practical implications of pharmacological disruption of RAAS activity for renal protection.

  11. Curcumin prevents mitochondrial dynamics disturbances in early 5/6 nephrectomy: Relation to oxidative stress and mitochondrial bioenergetics.

    PubMed

    Aparicio-Trejo, Omar Emiliano; Tapia, Edilia; Molina-Jijón, Eduardo; Medina-Campos, Omar Noel; Macías-Ruvalcaba, Norma Angélica; León-Contreras, Juan Carlos; Hernández-Pando, Rogelio; García-Arroyo, Fernando E; Cristóbal, Magdalena; Sánchez-Lozada, Laura Gabriela; Pedraza-Chaverri, José

    2017-03-01

    Five-sixths nephrectomy (5/6NX) is a widely used model to study the mechanisms leading to renal damage in chronic kidney disease (CKD). However, early alterations on renal function, mitochondrial dynamics, and oxidative stress have not been explored yet. Curcumin is an antioxidant that has shown nephroprotection in 5/6NX-induced renal damage. The aim of this study was to explore the effect of curcumin on early mitochondrial alterations induced by 5/6NX in rats. In isolated mitochondria, 5/6NX-induced hydrogen peroxide production was associated with decreased activity of complexes I and V, decreased activity of antioxidant enzymes, alterations in oxygen consumption and increased MDA-protein adducts. In addition, it was found that 5/6NX shifted mitochondrial dynamics to fusion, which was evidenced by increased optic atrophy 1 and mitofusin 1 (Mfn1) and decreased fission 1 and dynamin-related protein 1 expressions. These data were confirmed by morphological analysis and immunoelectron microscopy of Mfn-1. All the above-described mechanisms were prevented by curcumin. Also, it was found that curcumin prevented renal dysfunction by improving renal blood flow and the total antioxidant capacity induced by 5/6NX. Moreover, in glomeruli and proximal tubules 5/6NX-induced superoxide anion production by uncoupled nitric oxide synthase (NOS) and nicotinamide adenine dinucleotide phosphate oxidase (NOX) dependent way, this latter was associated with increased phosphorylation of serine 304 of p47phox subunit of NOX. In conclusion, this study shows that curcumin pretreatment decreases early 5/6NX-induced altered mitochondrial dynamics, bioenergetics, and oxidative stress, which may be associated with the preservation of renal function. © 2016 BioFactors, 43(2):293-310, 2017. © 2016 International Union of Biochemistry and Molecular Biology.

  12. Analysis of Why the Renal Dialysis Unit is Losing Money

    DTIC Science & Technology

    1997-06-30

    urinary obstruction, severe hypertension, diabetes mellitus, gout, and polycystic kidney disease. Patients with advanced chronic renal failure develop...failure. An excess amount of potassium in the body, also termed hyperkalemia , occurs in chronic renal failure because of inadequate renal excretion...Patients with hyperkalemia can develop skeletal muscle paralysis, but the most dangerous effect of hyperkalemia is the effect it has on the heart

  13. Radiologic imaging of the renal parenchyma structure and function.

    PubMed

    Grenier, Nicolas; Merville, Pierre; Combe, Christian

    2016-06-01

    Radiologic imaging has the potential to identify several functional and/or structural biomarkers of acute and chronic kidney diseases that are useful diagnostics to guide patient management. A renal ultrasound examination can provide information regarding the gross anatomy and macrostructure of the renal parenchyma, and ultrasound imaging modalities based on Doppler or elastography techniques can provide haemodynamic and structural information, respectively. CT is also able to combine morphological and functional information, but the use of CT is limited due to the required exposure to X-ray irradiation and a risk of contrast-induced nephropathy following intravenous injection of a radio-contrast agent. MRI can be used to identify a wide range of anatomical and physiological parameters at the tissue and even cellular level, such as tissue perfusion, oxygenation, water diffusion, cellular phagocytic activity, tissue stiffness, and level of renal filtration. The ability of MRI to provide valuable information for most of these parameters within a renal context is still in development and requires more clinical experience, harmonization of technical procedures, and an evaluation of reliability and validity on a large scale.

  14. Renal blood flow measurement with contrast-enhanced harmonic ultrasonography: evaluation of dopamine-induced changes in renal cortical perfusion in humans.

    PubMed

    Kishimoto, N; Mori, Y; Nishiue, T; Shibasaki, Y; Iba, O; Nose, A; Uchiyama-Tanaka, Y; Masaki, H; Matsubara, H; Iwasaka, T

    2003-06-01

    An accessible non-invasive method for evaluating renal regional blood flow in real time is highly desirable in the clinical setting. Recent progress in ultrasonography with microbubble contrast has allowed quantification of regional blood flow in animal models. Goal ofthis study was to establish a convenient contrast--enhanced harmonic ultrasonography (CEHU) method for evaluating renal cortical blood flow in humans. We carried out intermittent second harmonic imaging in 9 healthy volunteers. Pulse interval was progressively decreased from 4 s - 0.2 s during continuous venous infusion of the microbubble contrast agent. Pulse interval versus CEHU-derived acoustic intensity plots provided microbubble velocity (MV) and fractional vascular volume (FVV) during renal cortical perfusion in humans. Low-dose dopamine infusion (2 microg/min/kg) resulted in a significant increase in MV which correlated well with the increase in total renal blood flow (RBF) determined by a conventional study of p-aminohippurate clearance (C(PAH)) (r = 0.956, p < 0.0001). Although FVV was not significantly increased, alterations in CEHU-derived renal cortical blood flow calculated by the products of MV and FVV were also correlated with alterations in total RBF (r = 0.969, p < 0.0001). Thus, low-dose dopamine infusion increases renal cortical blood flow observed in CEHU, mainly by increasing MV. The present study shows that renal cortical blood flow in humans can be measured non-invasively by CEHU and that CEHU can be used for quantitatively evaluating changes induced by a therapeutic agent such as dopamine in flow velocity and in FVV.

  15. Renal effects of renal x irradiation and induced autoallergic glomerulonephritis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rappaport, D.S.; Casarett, G.W.

    1979-09-01

    This study was conducted to determine what influence a single large x-ray exposure of kidney has on the development and course of an experimental autoallergic glomerulonephritis (EAG) in rats. EAG was induced in female Sprague-Dawley rats by immunization with Bordetella pertussis vaccine and homogenate of homologous kidney tissue and Freund's complete adjuvant. Progressive arteriolonephrosclerosis (ANS) was observed in right (irradiated) kidneys following unilateral renal irradiation (1500 rad). Rats were either immunized, sham-immunized, irradiated, sham-irradiated, or both immunized and irradiated. Light and immunofluorescent microscopic observation, urine protein content, and kidney weights were evaluated. In immunized-irradiated animals the effects of irradiation andmore » immunization were largely additive. Immunization did not considerably influence the development and course of ANS and irradiation did not considerably influence the development and course of EAG.« less

  16. Membranoproliferative glomerulonephritis and acute renal failure in a patient with chronic lymphocytic leukemia: Response to obinutuzumab.

    PubMed

    Jain, Punit; Kanagal-Shamanna, Rashmi; Wierda, William; Ferrajoli, Alessandra; Keating, Michael; Jain, Nitin

    2017-09-01

    Membranoproliferative glomerulonephritis (MPGN) is a common extramedullary renal presentation in chronic lymphocytic leukemia (CLL) and can present with either a frank renal failure or proteinuria. One of its etiologies has been attributed to a paraneoplastic, immune complex phenomenon occurring in CLL. Although there is no standard of care in such patients, use of anti-CD20 monoclonal antibodies like rituximab have been used before in such patients with variable responses. Obinutuzumab is a novel, type II, immunoglobulin-G1 monoclonal antibody with a higher efficacy than rituximab and has an established safely profile in patients with comorbidities and poor renal functions. There are no such reported cases of MPGN in CLL being treated with obinutuzumab. We used the standard doses of obinutuzumab in our elderly patient (78-year-old woman) with high-risk CLL due to an underlying TP53 mutation, along with a MPGN-related acute renal failure. The patient achieved complete remission after six cycles of obinutuzumab; however, she remained positive for minimal residual disease on flow cytometry. Her renal function improved completely, suggesting a complete response of her underlying MPGN. Obinutuzumab has an established safety profile in patients with CLL, but our case is the first reported case of a paraneoplastic, immune complex-mediated MPGN in CLL being treated with obinutuzumab. Obinutuzumab should be explored as a potential option in patients with CLL and MPGN. Copyright © 2016 King Faisal Specialist Hospital & Research Centre. Published by Elsevier B.V. All rights reserved.

  17. Changes in renal function after discontinuation of vitamin D analogues in advanced chronic kidney disease.

    PubMed

    Caravaca, Francisco; Caravaca-Fontán, Fernando; Azevedo, Lilia; Luna, Enrique

    In routine clinical practice, the prescription of vitamin D analogues (VDA) in patients with chronic kidney disease (CKD) is often associated with a decline of the estimated renal function. The reason for this is not fully understood. To analyse the effects of VDA discontinuation in advanced CKD and to determine the factors associated with changes in renal function. Retrospective cohort study of adult patients with advanced CKD. The case subgroup was treated with VDA and this medication was discontinued at baseline (the first visit). The control subgroup was not treated with VDA and they were selected according to comparability principles for CKD progression by propensity score matching. The primary outcome measure was a change to both the estimated glomerular filtration rate (MDRD-GFR) and the measured glomerular filtration rate (mGFR by combined creatinine and urea clearances). Baseline parameters related to mineral metabolism and creatinine generation were analysed as potential determinants of renal function changes. The study sample consisted of 67 cases and 67 controls. Renal function improved in 67% of cases and worsened in 72% of controls (p<0.0001). Changes in MDRD-GFR for the case subgroup and the control subgroup were +0.455±0.997 vs. -0.436±1.103ml/min/1.73 m 2 /month (p<0.0001), respectively. Total creatinine excretion was slightly higher in cases than in controls but the difference was not significant. According to multivariate logistic and linear regression analyses, baseline total serum calcium was one of the best determinants of both renal function recovery (Odds ratio=3.49; p=0.001), and of the extent of renal function recovery (beta=0.276; p=0.001). Discontinuation of VDA treatment in CKD patients is associated with significant recovery of estimated renal function. The extent of these changes is mainly associated with baseline total serum calcium. Copyright © 2017 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All

  18. Maternal fructose-intake-induced renal programming in adult male offspring.

    PubMed

    Tain, You-Lin; Wu, Kay L H; Lee, Wei-Chia; Leu, Steve; Chan, Julie Y H

    2015-06-01

    Nutrition in pregnancy can elicit long-term effects on the health of offspring. Although fructose consumption has increased globally and is linked to metabolic syndrome, little is known about the long-term effects of maternal high-fructose (HF) exposure during gestation and lactation, especially on renal programming. We examined potential key genes and pathways that are associated with HF-induced renal programming using whole-genome RNA next-generation sequencing (NGS) to quantify the abundance of RNA transcripts in kidneys from 1-day-, 3-week-, and 3-month-old male offspring. Pregnant Sprague-Dawley rats received regular chow or chow supplemented with HF (60% diet by weight) during the entire period of pregnancy and lactation. Male offspring exhibited programmed hypertension at 3 months of age. Maternal HF intake modified over 200 renal transcripts from nephrogenesis stage to adulthood. We observed that 20 differentially expressed genes identified in 1-day-old kidney are related to regulation of blood pressure. Among them, Hmox1, Bdkrb2, Adra2b, Ptgs2, Col1a2 and Tbxa2r are associated with endothelium-derived hyperpolarizing factor (EDHF). NGS also identified genes in arachidonic acid metabolism (Cyp2c23, Hpgds, Ptgds and Ptges) that may be potential key genes/pathways contributing to renal programming and hypertension. Collectively, our NGS data suggest that maternal HF intake elicits a defective adaptation of interrelated EDHFs during nephrogenesis which may lead to renal programming and hypertension in later life. Moreover, our results highlight genes and pathways involved in renal programming as potential targets for therapeutic approaches to prevent metabolic-syndrome-related comorbidities in children with HF exposure in early life. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Mechanisms for renal blood flow control early in diabetes as revealed by chronic flow measurement and transfer function analysis.

    PubMed

    Bell, Tracy D; DiBona, Gerald F; Wang, Ying; Brands, Michael W

    2006-08-01

    The purpose of this study was to establish the roles of the myogenic response and the TGF mechanism in renal blood flow (RBF) control at the very earliest stages of diabetes. Mean arterial pressure (MAP) and RBF were measured continuously, 18 h/d, in uninephrectomized control and diabetic rats, and transfer function analysis was used to determine the dynamic autoregulatory efficiency of the renal vasculature. During the control period, MAP averaged 91 +/- 0.5 and 89 +/- 0.4 mmHg, and RBF averaged 8.0 +/- 0.1 and 7.8 +/- 0.1 ml/min in the control and diabetic groups, respectively. Induction of diabetes with streptozotocin caused a marked and progressive increase in RBF in the diabetic rats, averaging 10 +/- 6% above control on day 1 of diabetes and 22 +/- 3 and 34 +/- 1% above control by the end of diabetes weeks 1 and 2. MAP increased approximately 9 mmHg during the 2 wk in the diabetic rats, and renal vascular resistance decreased. Transfer function analysis revealed significant increases in gain to positive values over the frequency ranges of both the TGF and myogenic mechanisms, beginning on day 1 of diabetes and continuing through day 14. These very rapid increases in RBF and transfer function gain suggest that autoregulation is impaired at the very onset of hyperglycemia in streptozotocin-induced type 1 diabetes and may play an important role in the increase in RBF and GFR in diabetes. Together with previous reports of decreases in chronically measured cardiac output and hindquarter blood flow, this suggests that there may be differential effects of diabetes on RBF versus nonrenal BF control.

  20. Hordenine protects against hyperglycemia-associated renal complications in streptozotocin-induced diabetic mice.

    PubMed

    Su, Shuhao; Cao, Meng; Wu, Guangyuan; Long, Zi; Cheng, Xiaodong; Fan, Junshu; Xu, Zhongrui; Su, Hongfei; Hao, Yiming; Li, Ge; Peng, Jie; Li, Shuang; Wang, Xin

    2018-05-15

    The worldwide prevalence of diabetes and associated metabolic diseases has dramatically increased. Pharmacological treatment of diabetes is still limited. Hordenine (HOR), a phenethylamine alkaloid, is a natural constituent in many plants. The present study was designed to explore the possible anti-diabetic effect of HOR in streptozotocin (STZ)-induced diabetic mice. Combined treatment of HOR and insulin significantly reduced fasting and postprandial blood glucose level in diabetic mice. HOR and insulin did not show evident protective effect against structural and functional injuries of pancreas. Renal histological and functional injuries were significantly improved by HOR or insulin treatment. Moreover, combined treatment of HOR and insulin resulted in a more significant amelioration of renal histological and functional injuries in diabetic mice. HOR induced a decrease of renal IL-1α/β and IL-6 expression, and a reduction of Col1α1 and MMP9 expression and PAS-stained mesangial expansion in glomeruli of diabetic mice. In diabetic mice, HOR significantly decreased Nrf2 expression and increased hnRNPF and hnRNPK expression in kidney. Moreover, HOR showed a synergistic effect with insulin on the expression of these regulators. Renal ROS level and TBARS content in diabetic mice were decreased by HOR. The reduction of renal expression of antioxidant enzymes in diabetic mice was inhibited by HOR and insulin. Furthermore, HOR and insulin function synergistically to play an antioxidant role against oxidative injury in diabetic nephropathy. In conclusion, to the best of our knowledge, we, for the first time, found the anti-diabetic, anti-inflammatory, and anti-fibrotic role of HOR in combination with insulin. HOR functions synergistically with insulin and prevents diabetic nephropathy. However, the molecular mechanism of the synergistic effect of HOR and insulin needs to be elucidated. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  1. Serum cystatin C is an independent biomarker associated with the renal resistive index in patients with chronic kidney disease.

    PubMed

    Ogawa-Akiyama, Ayu; Sugiyama, Hitoshi; Kitagawa, Masashi; Tanaka, Keiko; Onishi, Akifumi; Yamanari, Toshio; Morinaga, Hiroshi; Uchida, Haruhito Adam; Nakamura, Kazufumi; Ito, Hiroshi; Wada, Jun

    2018-01-01

    Cystatin C is a cysteine protease inhibitor that is produced by nearly all human cells. The serum level of cystatin C is a stronger predictor of the renal outcome and the risk of cardiovascular events than the creatinine level. The resistive index (RI) on renal Doppler ultrasonography is a good indicator of vascular resistance as well as the renal outcomes in patients with chronic kidney disease (CKD). However, it is unclear whether serum cystatin C is associated with signs of vascular dysfunction, such as the renal RI. We measured the serum cystatin C levels in 101 CKD patients and investigated the relationships between cystatin C and markers of vascular dysfunction, including the renal RI, ankle-brachial pulse wave velocity (baPWV), intima-media thickness (IMT), and cardiac function. The renal RI was significantly correlated with the serum cystatin C level (p < 0.0001, r = 0.6920). The serum cystatin C level was found to be a significant determinant of the renal RI (p < 0.0001), but not the baPWV, in a multivariate regression analysis. The multivariate odds ratio of the serum cystatin C level for a renal RI of more than 0.66 was statistically significant (2.92, p = 0.0106). The area under the receiver-operating characteristic curve comparing the sensitivity and specificity of cystatin C for predicting an RI of more than 0.66 was 0.882 (cutoff value: 2.04 mg/L). In conclusion, the serum cystatin C level is an independent biomarker associated with the renal RI in patients with CKD.

  2. Novel electrochemical sensor based on functionalized graphene for simultaneous determination of adenine and guanine in DNA.

    PubMed

    Huang, Ke-Jing; Niu, De-Jun; Sun, Jun-Yong; Han, Cong-Hui; Wu, Zhi-Wei; Li, Yan-Li; Xiong, Xiao-Qin

    2011-02-01

    A nano-material carboxylic acid functionalized graphene (graphene-COOH) was prepared and used to construct a novel biosensor for the simultaneous detection of adenine and guanine. The direct electrooxidation behaviors of adenine and guanine on the graphene-COOH modified glassy carbon electrode (graphene-COOH/GCE) were carefully investigated by cyclic voltammetry and differential pulse voltammetry. The results indicated that both adenine and guanine showed the increase of the oxidation peak currents with the negative shift of the oxidation peak potentials in contrast to that on the bare glassy carbon electrode. The electrochemical parameters of adenine and guanine on the graphene-COOH/GCE were calculated and a simple and reliable electroanalytical method was developed for the detection of adenine and guanine, respectively. The modified electrode exhibited good behaviors in the simultaneous detection of adenine and guanine with the peak separation as 0.334V. The detection limit for individual determination of guanine and adenine was 5.0×10(-8)M and 2.5×10(-8)M (S/N=3), respectively. Furthermore, the measurements of thermally denatured single-stranded DNA were carried out and the value of (G+C)/(A+T) of single-stranded DNA was calculated as 0.80. The biosensor exhibited some advantages, such as simplicity, rapidity, high sensitivity, good reproducibility and long-term stability. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. The role of renal function loss on circadian misalignment of cytokines EPO, IGF-1, IL-6 and TNF-alfa in chronic renal disease.

    PubMed

    van der Putten, Karien; Koch, Birgit; van Someren, Eus; Wielders, Jos; Ter Wee, Piet; Nagtegaal, Elsbeth; Gaillard, Carlo

    2011-01-01

    Chronic inflammation plays a pivotal role in the development of renal disease. Circadian sleep-wake rhythm is disturbed in renal disease. Awareness of other disturbed rhythms, such as inflammation processes, can affect the treatment of patients with renal disease. Knowledge of possibly related circadian misalignment of the cytokines erythropoietin (EPO), Insulin Growth Factor-1 (IGF-1) and interleukins (IL) however is limited. We therefore performed an observational study. The objective of this study was to characterize levels of EPO, IGF-1 and inflammation markers IL-6 and TNF-α, related to renal function. The study population consisted of patients with various degrees of renal function, admitted to our hospital. During 24 hours, blood of 28 subjects with various degrees of renal function was collected every 2 hours. The patients were stable, not acutely ill and they were waiting for a procedure, such as elective surgery. Circadian parameters of EPO, IGF-1, IL-6 and TNF-α were measured in serum and were correlated with glomerular filtration rate (GFR) and Hb, using Pearson correlations. Although diurnal variations in EPO level were found in 15 out of 28 patients, the curves did not show a consistent phase. The presence of an EPO rhythm was not related to GFR. No diurnal rhythm could be detected for IGF-1, IL-6 and TNF-α. Mean levels of IGF-1 were correlated inversely to mean levels of EPO (p=0.03). When divided based on GFR and Hb subjects with GFR 10-30 ml/min and lower Hb had the highest IGF-1 levels (p=0.02). A relationship between Il-6, TNF-α and EPO or GFR was not found. The existence of a circadian (mis)alignment of EPO, IGF-1, IL-6 and TNF-α was not found. The association between high IGF-1 and low Hb suggests that EPO and IGF-1 have an alternating role, dependent on GFR, in stimulating erythropoiesis. These results could have consequences for the treatment of anemia.

  4. Mangiferin attenuates oxidative stress induced renal cell damage through activation of PI3K induced Akt and Nrf-2 mediated signaling pathways.

    PubMed

    Saha, Sukanya; Sadhukhan, Pritam; Sinha, Krishnendu; Agarwal, Namrata; Sil, Parames C

    2016-03-01

    Mangiferin is a polyphenolic xanthonoid with remarkable antioxidant activity. Oxidative stress plays the key role in tert-butyl hydroperoxide (tBHP) induced renal cell damage. In this scenario, we consider mangiferin, as a safe agent in tBHP induced renal cell death and rationalize its action systematically, in normal human kidney epithelial cells (NKE). NKE cells were exposed to 20 µM mangiferin for 2 h followed by 50 µM tBHP for 18 h. The effect on endogenous ROS production, antioxidant status (antioxidant enzymes and thiols), mitochondrial membrane potential, apoptotic signaling molecules, PI3K mediated signaling cascades and cell cycle progression were examined using various biochemical assays, FACS and immunoblot analyses. tBHP exposure damaged the NKE cells and decreased its viability. It also elevated the intracellular ROS and other oxidative stress-related biomarkers within the cells. However, mangiferin dose dependently, exhibited significant protection against this oxidative cellular damage. Mangiferin inhibited tBHP induced activation of different pro-apoptotic signals and thus protected the renal cells against mitochondrial permeabilization. Further, mangiferin enhanced the expression of cell proliferative signaling cascade molecules, Cyclin d1, NFκB and antioxidant molecules HO-1, SOD2, by PI3K/Akt dependent pathway. However, the inhibitor of PI3K abolished mangiferin's protective activity. Results show Mangiferin maintains the intracellular anti-oxidant status, induces the expression of PI3K and its downstream molecules and shields NKE cells against the tBHP induced cytotoxicity. Mangiferin can be indicated as a therapeutic agent in oxidative stress-mediated renal toxicity. This protective action of mangiferin primarily attributes to its potent antioxidant and antiapoptotic nature.

  5. Vascular Smooth Muscle-Specific EP4 Receptor Deletion in Mice Exacerbates Angiotensin II-Induced Renal Injury.

    PubMed

    Thibodeau, Jean-Francois; Holterman, Chet E; He, Ying; Carter, Anthony; Cron, Gregory O; Boisvert, Naomi C; Abd-Elrahman, Khaled S; Hsu, Karolynn J; Ferguson, Stephen S G; Kennedy, Christopher R J

    2016-10-20

    Cyclooxygenase inhibition by non-steroidal anti-inflammatory drugs is contraindicated in hypertension, as it may reduce glomerular filtration rate (GFR) and renal blood flow. However, the identity of the specific eicosanoid and receptor underlying these effects is not known. We hypothesized that vascular smooth muscle prostaglandin E2 (PGE2) E-prostanoid 4 (EP4) receptor deletion predisposes to renal injury via unchecked vasoconstrictive actions of angiotensin II (AngII) in a hypertension model. Mice with inducible vascular smooth muscle cell (VSMC)-specific EP4 receptor deletion were generated and subjected to AngII-induced hypertension. EP4 deletion was verified by PCR of aorta and renal vessels, as well as functionally by loss of PGE2-mediated mesenteric artery relaxation. Both AngII-treated groups became similarly hypertensive, whereas albuminuria, foot process effacement, and renal hypertrophy were exacerbated in AngII-treated EP4 VSMC-/- but not in EP4 VSMC+/+ mice and were associated with glomerular scarring, tubulointerstitial injury, and reduced GFR. AngII-treated EP4 VSMC-/- mice exhibited capillary damage and reduced renal perfusion as measured by fluorescent bead microangiography and magnetic resonance imaging, respectively. NADPH oxidase 2 (Nox2) expression was significantly elevated in AngII-treated EP4 -/- mice. EP4-receptor silencing in primary VSMCs abolished PGE2 inhibition of AngII-induced Nox2 mRNA and superoxide production. These data suggest that vascular EP4 receptors buffer the actions of AngII on renal hemodynamics and oxidative injury. EP4 agonists may, therefore, protect against hypertension-associated kidney damage. Antioxid. Redox Signal. 25, 642-656.

  6. Emodin ameliorates cisplatin-induced apoptosis of rat renal tubular cells in vitro by activating autophagy

    PubMed Central

    Liu, Hong; Gu, Liu-bao; Tu, Yue; Hu, Hao; Huang, Yan-ru; Sun, Wei

    2016-01-01

    Aim: A previous report shows that emodin extracted from the Chinese herbs rhubarb and giant knotweed rhizome can ameliorate the anticancer drug cisplatin-induced injury of HEK293 cells. In this study, we investigated whether and how emodin could protect renal tubular epithelial cells against cisplatin-induced nephrotoxicity in vitro. Methods: The viability and apoptosis of normal rat renal tubular epithelial cells (NRK-52E) were detected using formazan assay and flow cytometry analysis, respectively. The expression levels of cleaved caspase-3, autophagy maker LC3 I/II, and AMPK/mTOR signaling pathway-related proteins were measured with Western blot analysis. The changes of morphology and RFP-LC3 fluorescence were observed under microscopy. Results: Cisplatin (10-50 μmol/L) dose-dependently induced cell damage and apoptosis in NRK-52E cells, whereas emodin (10 and 100 μmol/L) significantly ameliorated cisplatin-induced cell damage, apoptosis and caspase-3 cleavage. Emodin dose-dependently increased LC3-II levels and induced RFP-LC3-containing punctate structures in NRK-52E cells. Furthermore, the protective effects of emodin were abolished by bafilomycin A1 (10 nmol/L), and mimicked by rapamycin (100 nmol/L). Moreover, emodin increased the phosphorylation of AMPK and suppressed the phosphorylation of mTOR. The AMPK inhibitor compound C (10 μmol/L) not only abolished emodin-induced autophagy activation, but also emodin-induced anti-apoptotic effects. Conclusion: Emodin ameliorates cisplatin-induced apoptosis of rat renal tubular cells in vitro through modulating the AMPK/mTOR signaling pathways and activating autophagy. Emodin may have therapeutic potential for the prevention of cisplatin-induced nephrotoxicity. PMID:26775661

  7. Emodin ameliorates cisplatin-induced apoptosis of rat renal tubular cells in vitro by activating autophagy.

    PubMed

    Liu, Hong; Gu, Liu-bao; Tu, Yue; Hu, Hao; Huang, Yan-ru; Sun, Wei

    2016-02-01

    A previous report shows that emodin extracted from the Chinese herbs rhubarb and giant knotweed rhizome can ameliorate the anticancer drug cisplatin-induced injury of HEK293 cells. In this study, we investigated whether and how emodin could protect renal tubular epithelial cells against cisplatin-induced nephrotoxicity in vitro. The viability and apoptosis of normal rat renal tubular epithelial cells (NRK-52E) were detected using formazan assay and flow cytometry analysis, respectively. The expression levels of cleaved caspase-3, autophagy maker LC3 I/II, and AMPK/mTOR signaling pathway-related proteins were measured with Western blot analysis. The changes of morphology and RFP-LC3 fluorescence were observed under microscopy. Cisplatin (10-50 μmol/L) dose-dependently induced cell damage and apoptosis in NRK-52E cells, whereas emodin (10 and 100 μmol/L) significantly ameliorated cisplatin-induced cell damage, apoptosis and caspase-3 cleavage. Emodin dose-dependently increased LC3-II levels and induced RFP-LC3-containing punctate structures in NRK-52E cells. Furthermore, the protective effects of emodin were abolished by bafilomycin A1 (10 nmol/L), and mimicked by rapamycin (100 nmol/L). Moreover, emodin increased the phosphorylation of AMPK and suppressed the phosphorylation of mTOR. The AMPK inhibitor compound C (10 μmol/L) not only abolished emodin-induced autophagy activation, but also emodin-induced anti-apoptotic effects. Emodin ameliorates cisplatin-induced apoptosis of rat renal tubular cells in vitro through modulating the AMPK/mTOR signaling pathways and activating autophagy. Emodin may have therapeutic potential for the prevention of cisplatin-induced nephrotoxicity.

  8. Hepcidin in chronic kidney disease: not an anaemia management tool, but promising as a cardiovascular biomarker.

    PubMed

    van der Weerd, N C; Grooteman, M P C; Nubé, M J; ter Wee, P M; Swinkels, D W; Gaillard, C A J M

    2015-03-01

    Hepcidin is a key regulator of iron homeostasis and plays a role in the pathogenesis of anaemia of chronic disease. Its levels are increased in patients with chronic kidney disease (CKD) due to diminished renal clearance and an inflammatory state. Increased hepcidin levels in CKD patients are supposed to be responsible for functional iron deficiency in these patients and contribute to renal anaemia and resistance to erythropoiesis-stimulating agents. Therefore, hepcidin was purported to be useful as a management tool guiding treatment of renal anaemia. Furthermore, since hepcidin is associated with iron accumulation in macrophages in the vessel wall inducing oxidative stress and atherosclerosis, it has been speculated that hepcidin might function as a biomarker of cardiovascular disease. In this descriptive review, the merits of hepcidin with respect to its role in the pathophysiology of renal anaemia in CKD patients, its presumptive role as a practical diagnostic tool guiding management of renal anaemia, and its possible usefulness as a prognostic biomarker will be discussed.

  9. PHARMACOLOGIC PROBING OF AMPHOTERICIN B-INDUCED RENAL DYSFUNCTION IN THE NEONATAL RAT

    EPA Science Inventory

    Pharmacologic Probing of Amphotericin B-Induced Renal Dysfunction in the Neonatal Rat. Gray, J.A., and Kavlock, R.J. (1988). Toxicol. Appl. Pharmacol. 93, 360-368. Acetazolamide, furosemide, chlorothiazide, and amiloride pharmacologic agents that act primarily in the proximal tub...

  10. Safety of cerebral angiography and neuroendovascular therapy in patients with chronic kidney disease.

    PubMed

    Kim, Jae; Male, Shailesh; Jagadeesan, Bharathi D; Streib, Christopher; Tummala, Ramachandra P

    2018-05-01

    Contrast-induced nephropathy is a common clinical concern in patients undergoing neuroendovascular procedures, especially in those with pre-existent kidney disease. We aimed to define the incidence of contrast-induced nephropathy in these high-risk patients in our practice. We analyzed data retrospectively from patients undergoing neuroendovascular procedures at two academic medical centers over a 4-year period. Contrast-induced nephropathy was determined by an absolute increase in serum creatinine of 0.5 mg/dL or a rise from its baseline value by ≥ 25%, at 48-72 h after exposure to contrast agent after excluding other causes of renal impairment. High-risk patients were identified as those with pre-procedural estimated glomerular filtration rate < 60 mL/min irrespective of creatinine level, corresponding to stages 3-5 of chronic kidney disease. One hundred eighty-five high-risk patients undergoing conventional cerebral angiography and neuroendovascular interventions were identified. Only 1 out of 184 (0.54%) high-risk patients developed contrast-induced nephropathy. That one patient had stage 5 chronic kidney disease and multiple other risk factors. We have observed a very low rate of renal injury in patients with chronic kidney disease, traditionally considered high risk for neuroendovascular procedures. Multiple factors may be responsible in the risk reduction of contrast-induced nephropathy in this patient population.

  11. Endoglin regulates renal ischaemia-reperfusion injury.

    PubMed

    Docherty, Neil G; López-Novoa, José M; Arevalo, Miguel; Düwel, Annette; Rodriguez-Peña, Ana; Pérez-Barriocanal, Fernando; Bernabeu, Carmelo; Eleno, Nélida

    2006-08-01

    Renal ischaemia-reperfusion (I-R) can cause acute tubular necrosis and chronic renal deterioration. Endoglin, an accessory receptor for Transforming Growth Factor-beta1 (TGF-beta1), is expressed on activated endothelium during macrophage maturation and implicated in the control of fibrosis, angiogenesis and inflammation. Endoglin expression was monitored over 14 days after renal I-R in rats. As endoglin-null mice are not viable, the role of endoglin in I-R was studied by comparing renal I-R injury in haploinsufficient mice (Eng(+/-)) and their wild-type littermates (Eng(+/+)). Renal function, morphology and molecular markers of acute renal injury and inflammation were compared. Endoglin mRNA up-regulation in the post-ischaemic kidneys of rats occurred at 12 h after I-R; endoglin protein levels were elevated throughout the study period. Expression was initially localized to the vascular endothelium, then extended to fibrotic and inflamed areas of the interstitium. Two days after I-R, plasma creatinine elevation and acute tubular necrosis were less marked in Eng(+/-) than in Eng(+/+) mice. Significant up-regulation of endoglin protein was found only in the post-ischaemic kidneys of Eng(+/+) mice and coincided with an increased mRNA expression of the TGF-beta1 and collagen IV (alpha1) chain genes. Significant increases in vascular cell adhesion molecule-1 (VCAM-1) and inducible nitric oxide synthase (iNOS) expression, nitrosative stress, myeloperoxidase activity and CD68 staining for macrophages were evident in post-ischaemic kidneys of Eng(+/+), but not Eng(+/-) mice, suggesting that impaired endothelial activation and macrophage maturation may account for the reduced injury in post-ischaemic kidneys of Eng(+/-) mice. Endoglin is up-regulated in the post-ischaemic kidney and endoglin-haploinsufficient mice are protected from renal I-R injury. Endoglin may play a primary role in promoting inflammatory responses following renal I-R.

  12. Mechanisms for an effect of acetylcysteine on renal function after exposure to radio-graphic contrast material: study protocol

    PubMed Central

    2012-01-01

    Background Contrast-induced nephropathy is a common complication of contrast administration in patients with chronic kidney disease and diabetes. Its pathophysiology is not well understood; similarly the role of intravenous or oral acetylcysteine is unclear. Randomized controlled trials to date have been conducted without detailed knowledge of the effect of acetylcysteine on renal function. We are conducting a detailed mechanistic study of acetylcysteine on normal and impaired kidneys, both with and without contrast. This information would guide the choice of dose, route, and appropriate outcome measure for future clinical trials in patients with chronic kidney disease. Methods/Design We designed a 4-part study. We have set up randomised controlled cross-over studies to assess the effect of intravenous (50 mg/kg/hr for 2 hrs before contrast exposure, then 20 mg/kg/hr for 5 hrs) or oral acetylcysteine (1200 mg twice daily for 2 days, starting the day before contrast exposure) on renal function in normal and diseased kidneys, and normal kidneys exposed to contrast. We have also set up a parallel-group randomized controlled trial to assess the effect of intravenous or oral acetylcysteine on patients with chronic kidney disease stage III undergoing elective coronary angiography. The primary outcome is change in renal blood flow; secondary outcomes include change in glomerular filtration rate, tubular function, urinary proteins, and oxidative balance. Discussion Contrast-induced nephropathy represents a significant source of hospital morbidity and mortality. Over the last ten years, acetylcysteine has been administered prior to contrast to reduce the risk of contrast-induced nephropathy. Randomized controlled trials, however, have not reliably demonstrated renoprotection; a recent large randomized controlled trial assessing a dose of oral acetylcysteine selected without mechanistic insight did not reduce the incidence of contrast-induced nephropathy. Our study should

  13. Mechanisms for an effect of acetylcysteine on renal function after exposure to radio-graphic contrast material: study protocol.

    PubMed

    Sandilands, Euan A; Cameron, Sharon; Paterson, Frances; Donaldson, Sam; Briody, Lesley; Crowe, Jane; Donnelly, Julie; Thompson, Adrian; Johnston, Neil R; Mackenzie, Ivor; Uren, Neal; Goddard, Jane; Webb, David J; Megson, Ian L; Bateman, Nicholas; Eddleston, Michael

    2012-02-03

    Contrast-induced nephropathy is a common complication of contrast administration in patients with chronic kidney disease and diabetes. Its pathophysiology is not well understood; similarly the role of intravenous or oral acetylcysteine is unclear. Randomized controlled trials to date have been conducted without detailed knowledge of the effect of acetylcysteine on renal function. We are conducting a detailed mechanistic study of acetylcysteine on normal and impaired kidneys, both with and without contrast. This information would guide the choice of dose, route, and appropriate outcome measure for future clinical trials in patients with chronic kidney disease. We designed a 4-part study. We have set up randomised controlled cross-over studies to assess the effect of intravenous (50 mg/kg/hr for 2 hrs before contrast exposure, then 20 mg/kg/hr for 5 hrs) or oral acetylcysteine (1200 mg twice daily for 2 days, starting the day before contrast exposure) on renal function in normal and diseased kidneys, and normal kidneys exposed to contrast. We have also set up a parallel-group randomized controlled trial to assess the effect of intravenous or oral acetylcysteine on patients with chronic kidney disease stage III undergoing elective coronary angiography. The primary outcome is change in renal blood flow; secondary outcomes include change in glomerular filtration rate, tubular function, urinary proteins, and oxidative balance. Contrast-induced nephropathy represents a significant source of hospital morbidity and mortality. Over the last ten years, acetylcysteine has been administered prior to contrast to reduce the risk of contrast-induced nephropathy. Randomized controlled trials, however, have not reliably demonstrated renoprotection; a recent large randomized controlled trial assessing a dose of oral acetylcysteine selected without mechanistic insight did not reduce the incidence of contrast-induced nephropathy. Our study should reveal the mechanism of effect of

  14. The End-Stage Renal Disease Program: Basis for the Army Organ Transplant Program

    DTIC Science & Technology

    1985-07-19

    gradually lost, the condition is known as chronic renal failure . End-stage renal disease (ESRD) is the late and terminal phase of chronic renal ...extended Medicare coverage to persons suffering from kidney ( renal ) failure who either were currently or fully insured under the Social Security Act or...NO.NO. 11. TITLE (Include Security Classification) THE END-STAGE RENAL DISEASE PROGRAM: BASIS FOR THE ARMY ORGAN TRANSPLANT PROGRAM 12. PERSONAL

  15. Targeting Renal Purinergic Signalling for the Treatment of Lithium-induced Nephrogenic Diabetes Insipidus

    PubMed Central

    Kishore, B. K.; Carlson, N. G.; Ecelbarger, C. M.; Kohan, D. E.; Müller, C. E.; Nelson, R. D.; Peti-Peterdi, J.; Zhang, Y.

    2015-01-01

    Lithium still retains its critical position in the treatment of bipolar disorder by virtue of its ability to prevent suicidal tendencies. However, chronic use of lithium is often limited by the development nephrogenic diabetes insipidus (NDI), a debilitating condition. Lithium-induced NDI is due to resistance of the kidney to arginine vasopressin (AVP), leading to polyuria, natriuresis and kaliuresis. Purinergic signalling mediated by extracellular nucleotides (ATP/UTP), acting via P2Y receptors, opposes the action of AVP on renal collecting duct (CD) by decreasing the cellular cAMP and thus AQP2 protein levels. Taking a cue from this phenomenon, we discovered the potential involvement of ATP/UTP-activated P2Y2 receptor in lithium-induced NDI in rats, and showed that P2Y2 receptor knockout mice are significantly resistant to Li-induced polyuria, natriuresis and kaliuresis. Extension of these studies revealed that ADP-activated P2Y12 receptor is expressed in the kidney, and its irreversible blockade by the administration of clopidogrel bisulfate (Plavix®) ameliorates Li-induced NDI in rodents. Parallel in vitro studies showed that P2Y12 receptor blockade by the reversible antagonist PSB-0739 sensitizes CD to the action of AVP. Thus, our studies unraveled the potential beneficial effects of targeting P2Y2 or P2Y12 receptors to counter AVP resistance in lithium-induced NDI. If established in further studies, our findings may pave the way for the development of better and safer methods for the treatment of NDI by bringing a paradigm shift in the approach from the current therapies that predominantly counter the anti-AVP effects to those that enhance the sensitivity of the kidney to AVP action. PMID:25877068

  16. Targeting renal purinergic signalling for the treatment of lithium-induced nephrogenic diabetes insipidus.

    PubMed

    Kishore, B K; Carlson, N G; Ecelbarger, C M; Kohan, D E; Müller, C E; Nelson, R D; Peti-Peterdi, J; Zhang, Y

    2015-06-01

    Lithium still retains its critical position in the treatment of bipolar disorder by virtue of its ability to prevent suicidal tendencies. However, chronic use of lithium is often limited by the development of nephrogenic diabetes insipidus (NDI), a debilitating condition. Lithium-induced NDI is due to resistance of the kidney to arginine vasopressin (AVP), leading to polyuria, natriuresis and kaliuresis. Purinergic signalling mediated by extracellular nucleotides (ATP/UTP), acting via P2Y receptors, opposes the action of AVP on renal collecting duct (CD) by decreasing the cellular cAMP and thus AQP2 protein levels. Taking a cue from this phenomenon, we discovered the potential involvement of ATP/UTP-activated P2Y2 receptor in lithium-induced NDI in rats and showed that P2Y2 receptor knockout mice are significantly resistant to Li-induced polyuria, natriuresis and kaliuresis. Extension of these studies revealed that ADP-activated P2Y12 receptor is expressed in the kidney, and its irreversible blockade by the administration of clopidogrel bisulphate (Plavix(®)) ameliorates Li-induced NDI in rodents. Parallel in vitro studies showed that P2Y12 receptor blockade by the reversible antagonist PSB-0739 sensitizes CD to the action of AVP. Thus, our studies unravelled the potential beneficial effects of targeting P2Y2 or P2Y12 receptors to counter AVP resistance in lithium-induced NDI. If established in further studies, our findings may pave the way for the development of better and safer methods for the treatment of NDI by bringing a paradigm shift in the approach from the current therapies that predominantly counter the anti-AVP effects to those that enhance the sensitivity of the kidney to AVP action. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  17. The volatile anesthetic isoflurane induces ecto-5′-nucleotidase (CD73) to protect against renal ischemia and reperfusion injury

    PubMed Central

    Kim, Mihwa; Ham, Ahrom; Kim, Joo Yun; Brown, Kevin M.; D’Agati, Vivette D.; Lee, H. Thomas

    2013-01-01

    The volatile anesthetic isoflurane protects against renal ischemia and reperfusion injury by releasing renal tubular TGF-β1. Since adenosine is a powerful cytoprotective molecule, we tested whether TGF-β1 generated by isoflurane induces renal tubular ecto-5′-nucleotidase (CD73) and adenosine to protect against renal ischemia and reperfusion injury. Isoflurane induced new CD73 synthesis and increased adenosine generation in cultured kidney proximal tubule cells and in mouse kidney. Moreover, a TGF-β1 neutralizing antibody prevented isoflurane-mediated induction of CD73 activity. Mice anesthetized with isoflurane after renal ischemia and reperfusion had significantly reduced plasma creatinine and decreased renal tubular necrosis, neutrophil infiltration and apoptosis compared to pentobarbital-anesthetized mice. Isoflurane failed to protect against renal ischemia and reperfusion injury in CD73 deficient mice, in mice pretreated with a selective CD73 inhibitor or mice treated with an adenosine receptor antagonist. The TGF-β1 neutralizing antibody or the CD73 inhibitor attenuated isoflurane-mediated protection against HK-2 cell apoptosis. Thus, isoflurane causes TGF-β1-dependent induction of renal tubular CD73 and adenosine generation to protect against renal ischemia and reperfusion injury. Modulation of this pathway may have important therapeutic implications to reduce morbidity and mortality arising from ischemic acute kidney injury. PMID:23423261

  18. Oral Manifestations in a Renal Osteodystrophy Patient - A Case Report with Review of Literature

    PubMed Central

    Nisha V, Aarthi; GS, Asokan; CA, Prakash; MM, Varadharaja

    2014-01-01

    Renal Osteodystrophy (ROD) is a common complication of chronic renal disease (CRD) and is the part of a broad spectrum of disorders of mineral metabolism that occurs in the clinical setting. It occurs early in the course of chronic renal failure and progresses as the kidney function deteriorates. It is an osseous alteration believed to arise from increased parathyroid function associated with inappropriate calcium, phosphorus and vitamin D metabolism. Involvement of the jaws is common and radiographic alterations are often one of the earliest signs of chronic renal failure. Herein, reporting a case of Chronic Renal Failure (Bilateral Grade I Neuropathy) with ROD presenting oral manifestations in an 11-year -old male child. PMID:25302278

  19. Oral manifestations in a renal osteodystrophy patient - a case report with review of literature.

    PubMed

    J, Parthiban; Nisha V, Aarthi; Gs, Asokan; Ca, Prakash; Mm, Varadharaja

    2014-08-01

    Renal Osteodystrophy (ROD) is a common complication of chronic renal disease (CRD) and is the part of a broad spectrum of disorders of mineral metabolism that occurs in the clinical setting. It occurs early in the course of chronic renal failure and progresses as the kidney function deteriorates. It is an osseous alteration believed to arise from increased parathyroid function associated with inappropriate calcium, phosphorus and vitamin D metabolism. Involvement of the jaws is common and radiographic alterations are often one of the earliest signs of chronic renal failure. Herein, reporting a case of Chronic Renal Failure (Bilateral Grade I Neuropathy) with ROD presenting oral manifestations in an 11-year -old male child.

  20. Salmonella DNA Adenine Methylase Mutants Confer Cross-Protective Immunity

    PubMed Central

    Heithoff, Douglas M.; Enioutina, Elena Y.; Daynes, Raymond A.; Sinsheimer, Robert L.; Low, David A.; Mahan, Michael J.

    2001-01-01

    Salmonella isolates that lack or overproduce DNA adenine methylase (Dam) elicited a cross-protective immune response to different Salmonella serovars. The protection afforded by the Salmonella enterica serovar Typhimurium Dam vaccine was greater than that elicited in mice that survived a virulent infection. S. enterica serovar Typhimurium Dam mutant strains exhibited enhanced sensitivity to mediators of innate immunity such as antimicrobial peptides, bile salts, and hydrogen peroxide. Also, S. enterica serovar Typhimurium Dam− vaccines were not immunosuppressive; unlike wild-type vaccines, they failed to induce increased nitric oxide levels and permitted a subsequent robust humoral response to diptheria toxoid antigen in infected mice. Dam mutant strains exhibited a low-grade persistence which, coupled with the nonimmunosuppression and the ectopic protein expression caused by altered levels of Dam, may provide an expanded source of potential antigens in vaccinated hosts. PMID:11598044