Sample records for adenines

  1. Prolonged Pulmonary Exposure to Diesel Exhaust Particles Exacerbates Renal Oxidative Stress, Inflammation and DNA Damage in Mice with Adenine-Induced Chronic Renal Failure.

    PubMed

    Nemmar, Abderrahim; Karaca, Turan; Beegam, Sumaya; Yuvaraju, Priya; Yasin, Javed; Hamadi, Naserddine Kamel; Ali, Badreldin H

    2016-01-01

    Epidemiological evidence indicates that patients with chronic kidney diseases have increased susceptibility to adverse outcomes related to long-term exposure to particulate air pollution. However, mechanisms underlying these effects are not fully understood. Presently, we assessed the effect of prolonged exposure to diesel exhaust particles (DEP) on chronic renal failure induced by adenine (0.25% w/w in feed for 4 weeks), which is known to involve inflammation and oxidative stress. DEP (0.5m/kg) was intratracheally (i.t.) instilled every 4th day for 4 weeks (7 i.t. instillation). Four days following the last exposure to either DEP or saline (control), various renal endpoints were measured. While body weight was decreased, kidney weight increased in DEP+adenine versus saline+adenine or DEP. Water intake, urine volume, relative kidney weight were significantly increased in adenine+DEP versus DEP and adenine+saline versus saline. Plasma creatinine and urea increased and creatinine clearance decreased in adenine+DEP versus DEP and adenine+saline versus saline. Tumor necrosis factor α, lipid peroxidation and reactive oxygen species were significantly increased in adenine+DEP compared with either DEP or adenine+saline. The antioxidant calase was significantly decreased in adenine+DEP compared with either adenine+saline or DEP. Notably, renal DNA damage was significantly potentiated in adenine+DEP compared with either adenine+saline or DEP. Similarly, systolic blood pressure was increased in adenine+DEP versus adenine+saline or DEP, and in DEP versus saline. Histological evaluation revealed more collagen deposition, higher number of necrotic cell counts and dilated tubules, cast formation and collapsing glomeruli in adenine+DEP versus adenine+saline or DEP. Prolonged pulmonary exposure to diesel exhaust particles worsen renal oxidative stress, inflammation and DNA damage in mice with adenine-induced chronic renal failure. Our data provide biological plausibility that air pollution aggravates chronic renal failure. © 2016 The Author(s) Published by S. Karger AG, Basel.

  2. A comparison of adenine and some derivatives on pig isolated tracheal muscle.

    PubMed Central

    Bach-Dieterle, Y.; Holden, W. E.; Junod, A. F.

    1983-01-01

    We studied the muscle relaxation induced by adenine and several adenine derivatives in strips of tracheal smooth muscle from pigs; in addition their metabolism by the tissue was examined. Adenine relaxed tissue which was contracted by carbachol, histamine, or KCl. Adenine's potency was similar to that of adenosine and ATP (threshold about 4 X 10(-5)M). In tissues with carbachol-induced tone, the adenine effect differed from adenosine and ATP by being slower in onset and in 'washout' time. Furthermore, neither dipyridamole nor theophylline modified the response to adenine. The relationship was examined between pharmacological effects and the metabolism of [3H]-adenosine and [3H]-adenine. Both substrates were taken up by the tissue and converted to nucleotides, but relaxation correlated with nucleotide accumulation only in the case of [3H]-adenine. We conclude that the site and mechanism of adenine-induced relaxation is different from that of adenosine and ATP in porcine tracheal muscle. PMID:6571222

  3. Increased rate of adenine incorporation into adenine nucleotide pool in erythrocytes of patients with chronic renal failure.

    PubMed

    Marlewski, M; Smolenski, R T; Szolkiewicz, M; Aleksandrowicz, Z; Rutkowski, B; Swierczynski, J

    2000-11-01

    Elevated purine nucleotide pool (mainly ATP) in erythrocytes of patients with chronic renal failure (CRF) is a known phenomenon, however the mechanism responsible for this abnormality is far from being clear. We hypothesize that the increased rate of adenine incorporation into adenine nucleotide pool is responsible for the elevated level of ATP in uremic erythrocytes. In chronically uremic patients we evaluated using HPLC technique: (a) plasma adenine concentration; (b) the rate of adenine incorporation into adenine nucleotide pool in uremic erythrocytes. Additionally, the effect of higher than physiological phosphate concentration (2.4 mM) and lower than physiological pH (7.1) on adenine incorporation into erythrocytes adenine nucleotide pool was investigated. Healthy volunteers with normal renal function served as control. The concentration of adenine in plasma of CRF patients was found to be significantly higher than in plasma of healthy subjects. In contrast, adenosine concentration was similar both in healthy humans and in CRF patients. In isolated erythrocytes of uremic patients (incubated in the medium pH 7.4, containing 1.2 mM inorganic phosphate) adenine was incorporated into adenine nucleotide pool at a rate approximately 2-fold higher than in erythrocytes from healthy subjects. The rate of adenosine incorporation into adenine nucleotide pool was similar in erythrocytes of both studied groups. Incubation of erythrocytes obtained from healthy subjects in the medium pH 7.4, containing 2.4 mM inorganic phosphate, caused the increase of adenine incorporation into adenine nucleotide pool by about 60%. Incubation of the cells in the pH 7.1 buffer containing 2. 4 mM inorganic phosphate increased the rate of adenine incorporation into adenylate approximately 2-fold as compared to erythrocytes incubated in the medium pH 7.4 containing 1.2 mM inorganic phosphate. Erythrocytes obtained from uremic patients and incubated in the pH 7.1 medium containing 2.4 mM phosphate incorporated adenine into adenine nucleotide pool at a rate similar to erythrocytes incubated in the medium pH 7.4 containing 1.2 mM phosphate. Erythrocytes obtained from either healthy subjects or from patients with CRF and incubated in the presence of higher than physiological concentration of inorganic phosphate (2.4 mM) and lower than physiological pH (7. 1) did not exhibit any increase in the rate of adenisine incorporation into adenine nucleotide pool. These results suggest that the increased rate of adenine incorporation into adenine nucleotide pool could be partially responsible for the increased concentration of ATP in uremic erythrocytes. Copyright 2000 S. Karger AG, Basel

  4. Adenine Inhibits TNF-α Signaling in Intestinal Epithelial Cells and Reduces Mucosal Inflammation in a Dextran Sodium Sulfate-Induced Colitis Mouse Model.

    PubMed

    Fukuda, Toshihiko; Majumder, Kaustav; Zhang, Hua; Turner, Patricia V; Matsui, Toshiro; Mine, Yoshinori

    2016-06-01

    Adenine (6-amino-6H-purine), found in molokheiya (Corchorus olitorius L.), has exerted vasorelaxation effects in the thoracic aorta. However, the mode of action of the anti-inflammatory effect of adenine is unclear. Thus, we investigated to clarify the effect of adenine on chronic inflammation of the gastrointestinal tract. In intestinal epithelial cells, adenine significantly inhibited tumor necrosis factor-α-induced interleukin-8 secretion. The inhibition of adenine was abolished under the treatment of inhibitors of adenyl cyclase (AC) and protein kinase A (PKA), indicating the effect of adenine was mediated through the AC/PKA pathway. Adenine (5, 10, and 50 mg/kg BW/day) was administered orally for 14 days to female BALB/c mice, and then 5% dextran sodium sulfate (DSS) was given to induce colitis. Adenine (5 mg/kg BW/day) significantly prevented DSS-induced colon shortening, expression of pro-inflammatory cytokines, and histological damage in the colon. These results suggest that adenine can be a promising nutraceutical for the prevention of intestinal inflammation.

  5. Two-dimensional network stability of nucleobases and amino acids on graphite under ambient conditions: adenine, L-serine and L-tyrosine.

    PubMed

    Bald, Ilko; Weigelt, Sigrid; Ma, Xiaojing; Xie, Pengyang; Subramani, Ramesh; Dong, Mingdong; Wang, Chen; Mamdouh, Wael; Wang, Jianguo; Besenbacher, Flemming

    2010-04-14

    We have investigated the stability of two-dimensional self-assembled molecular networks formed upon co-adsorption of the DNA base, adenine, with each of the amino acids, L-serine and L-tyrosine, on a highly oriented pyrolytic graphite (HOPG) surface by drop-casting from a water solution. L-serine and L-tyrosine were chosen as model systems due to their different interaction with the solvent molecules and the graphite substrate, which is reflected in a high and low solubility in water, respectively, compared with adenine. Combined scanning tunneling microscopy (STM) measurements and density functional theory (DFT) calculations show that the self-assembly process is mainly driven by the formation of strong adenine-adenine hydrogen bonds. We find that pure adenine networks are energetically more stable than networks built up of either pure L-serine, pure L-tyrosine or combinations of adenine with L-serine or L-tyrosine, and that only pure adenine networks are stable enough to be observable by STM under ambient conditions.

  6. Adenine specific DNA chemical sequencing reaction.

    PubMed Central

    Iverson, B L; Dervan, P B

    1987-01-01

    Reaction of DNA with K2PdCl4 at pH 2.0 followed by a piperidine workup produces specific cleavage at adenine (A) residues. Product analysis revealed the K2PdCl4 reaction involves selective depurination at adenine, affording an excision reaction analogous to the other chemical DNA sequencing reactions. Adenine residues methylated at the exocyclic amine (N6) react with lower efficiency than unmethylated adenine in an identical sequence. This simple protocol specific for A may be a useful addition to current chemical sequencing reactions. Images PMID:3671067

  7. Electron transfer driven decomposition of adenine and selected analogs as probed by experimental and theoretical methods

    NASA Astrophysics Data System (ADS)

    Cunha, T.; Mendes, M.; Ferreira da Silva, F.; Eden, S.; García, G.; Bacchus-Montabonel, M.-C.; Limão-Vieira, P.

    2018-04-01

    We report on a combined experimental and theoretical study of electron-transfer-induced decomposition of adenine (Ad) and a selection of analog molecules in collisions with potassium (K) atoms. Time-of-flight negative ion mass spectra have been obtained in a wide collision energy range (6-68 eV in the centre-of-mass frame), providing a comprehensive investigation of the fragmentation patterns of purine (Pu), adenine (Ad), 9-methyl adenine (9-mAd), 6-dimethyl adenine (6-dimAd), and 2-D adenine (2-DAd). Following our recent communication about selective hydrogen loss from the transient negative ions (TNIs) produced in these collisions [T. Cunha et al., J. Chem. Phys. 148, 021101 (2018)], this work focuses on the production of smaller fragment anions. In the low-energy part of the present range, several dissociation channels that are accessible in free electron attachment experiments are absent from the present mass spectra, notably NH2 loss from adenine and 9-methyl adenine. This can be understood in terms of a relatively long transit time of the K+ cation in the vicinity of the TNI tending to enhance the likelihood of intramolecular electron transfer. In this case, the excess energy can be redistributed through the available degrees of freedom inhibiting fragmentation pathways. Ab initio theoretical calculations were performed for 9-methyl adenine (9-mAd) and adenine (Ad) in the presence of a potassium atom and provided a strong basis for the assignment of the lowest unoccupied molecular orbitals accessed in the collision process.

  8. The in vivo effects of adenine-induced chronic kidney disease on some renal and hepatic function and CYP450 metabolizing enzymes.

    PubMed

    Al Za'abi, M; Shalaby, A; Manoj, P; Ali, B H

    2017-05-04

    Adenine-induced model of chronic kidney disease (CKD) is a widely used model especially in studies testing novel nephroprotective agents. We investigated the effects of adenine-induced CKD in rats on the activities of some xenobiotic metabolizing enzymes in liver and kidneys, and on some in vivo indicators of drug metabolism (viz pentobarbitone sleeping time, and plasma concentration of theophylline 90 min post administration). CKD was induced by orally feeding adenine (0.25 % w/w) for 35 days. Adenine induced all the characteristics of CKD, which was confirmed by biochemical and histological findings. Glutathione concentration and activities of some enzymes involved in its metabolism were reduced in kidneys and livers of rats with CKD. Renal CYP450 1A1 activity was significantly inhibited by adenine, but other measured isoenzymes (1A2, 3A4 and 2E1) were not significantly affected. Adenine significantly prolonged pentobarbitone-sleeping time and increased plasma theophylline concentration 90 min post administration. Adenine also induced a moderate degree of hepatic damages as indicated histologically and by significant elevations in some plasma enzymes. The results suggest that adenine-induced CKD is associated with significant in vivo inhibitory activities on some drug-metabolizing enzymes, with most of the effect on the kidneys rather than the liver.

  9. Adenine alleviates iron overload by cAMP/PKA mediated hepatic hepcidin in mice.

    PubMed

    Zhang, Yingqi; Wang, Xudong; Wu, Qian; Wang, Hao; Zhao, Lu; Wang, Xinhui; Mu, Mingdao; Xie, Enjun; He, Xuyan; Shao, Dandan; Shang, Yanna; Lai, Yongrong; Ginzburg, Yelena; Min, Junxia; Wang, Fudi

    2018-03-30

    Hemochromatosis is prevalent and often associated with high rates of morbidity and mortality worldwide. The safe alternative iron-reducing approaches are urgently needed in order to better control iron overload. Our unbiased vitamin screen for modulators of hepcidin, a master iron regulatory hormone, identifies adenine (vitamin B4) as a potent hepcidin agonist. Adenine significantly induced hepcidin mRNA level and promoter activity activation in human cell lines, possibly through BMP/SMAD pathway. Further studies in mice validated the effect of adenine on hepcidin upregulation. Consistently, adenine dietary supplement in mice led to an increase of hepatic hepcidin expression compared with normal diet-fed mice via BMP/SMAD pathway. Notably, adenine-rich diet significantly ameliorated iron overload accompanied by the enhanced hepcidin expression in both high iron-fed mice and in Hfe -/- mice, a murine model of hereditary hemochromatosis. To further validate this finding, we selected pharmacological inhibitors against BMP (LDN193189). We found LDN193189 strongly blocked the hepcidin induction by adenine. Moreover, we uncovered an essential role of cAMP/PKA-dependent axis in triggering adenine-induced hepcidin expression in primary hepatocytes by using 8 br cAMP, a cAMP analog, and H89, a potent inhibitor for PKA signaling. These findings suggest a potential therapeutic role of adenine for hereditary hemochromatosis. © 2018 Wiley Periodicals, Inc.

  10. Transport of adenine, hypoxanthine and uracil into Escherichia coli.

    PubMed Central

    Burton, K

    1977-01-01

    Uptake of adenine, hypoxanthine and uracil by an uncA strain of Escherichia coli is inhibited by uncouplers or when phosphate in the medium is replaced by less than 1 mM-arsenate, indicating a need for both a protonmotive force and phosphorylated metabolites. The rate of uptake of adenine or hypoxanthine was not markedly affected by a genetic deficiency of purine nucleoside phosphorylase. In two mutants with undetected adenine phosphoribosyltransferase, the rate of adenine uptake was about 30% of that in their parent strain, and evidence was obtained to confirm that adenine had then been utilized via purine nucleoside phosphorylase. In a strain deficient in both enzymes adenine uptake was about 1% of that shown by wild-type strains. Uptake of hypoxanthine was similarly limited in a strain lacking purine nucleoside phosphorylase, hypoxanthine phosphoribosyltransferase and guanine phosphoribosyltransferase. Deficiency of uracil phosphoribosyltransferase severely limits uracil uptake, but the defect can be circumvented by addition of inosine, which presumably provides ribose 1-phosphate for reversal of uridine phosphorylase. The results indicate that there are porter systems for adenine, hypoxanthine and uracil dependent on a protonmotive force and facilitated by intracellular metabolism of the free bases. PMID:413544

  11. Responses of Adenine Nucleotides in Germinating Soybean Embryonic Axes to Exogenously Applied Adenine and Adenosine

    PubMed Central

    Anderson, James D.

    1977-01-01

    The ATP content of soybean (Glycine max [L.] Merr. cv. Kent) axes incubated for 3 hours in 1 mm solutions of adenine and adenosine increased over 100% and 75%, respectively, over axes incubated in water. The increase in ATP was primarily due to the conversion of these purines to nucleotides via the nucleotide salvage pathway. The ATP formed was in a metabolically active pool because label from adenine was incorporated into acid-insoluble material. Adenine also increased the levels of GTP, UTP, and CTP, but not to the extent of the ATP level. PMID:16660165

  12. Supramolecular polymeric chemosensor for biomedical applications: design and synthesis of a luminescent zinc metallopolymer as a chemosensor for adenine detection.

    PubMed

    Chow, Cheuk-Fai

    2012-11-01

    Adenine is an important bio-molecule that plays many crucial roles in food safety and biomedical diagnostics. Differentiating adenine from a mixture of adenosine and other nucleic bases (guanine, thymine, cytosine, and uracil) is particularly important for both biological and clinical applications. A neutral Zn(II) metallosupramolecular polymer based on acyl hydrazone derived coordination centres (P1) were generated through self-assembly polymerization. It is a linear coordination polymer that behaves like self-standing film. The synthesis, (1)H-NMR characterization, and spectroscopic properties of this supramolecular material are reported. P1 was found to be a chemosensor specific to adenine, with a luminescent enhancement. The binding properties of P1 with common nucleic bases and nucleosides reveal that this supramolecular polymer is very selective to adenine molecules (~20 to 420 times more selectivity than other nucleic bases). The formation constant (K) of P1 to adenine was found to be log K = 4.10 ± 0.02. This polymeric chemosensor produces a specific response to adenine down to 90 ppb. Spectrofluorimetric and (1)H-NMR titration studies showed that the P1 polymer allows each Zn(II) coordination centre to bind to two adenine molecules through hydrogen bonding with their imine and hydrazone protons.

  13. Silver-induced reconstruction of an adeninate-based metal-organic framework for encapsulation of luminescent adenine-stabilized silver clusters.

    PubMed

    Jonckheere, Dries; Coutino-Gonzalez, Eduardo; Baekelant, Wouter; Bueken, Bart; Reinsch, Helge; Stassen, Ivo; Fenwick, Oliver; Richard, Fanny; Samorì, Paolo; Ameloot, Rob; Hofkens, Johan; Roeffaers, Maarten B J; De Vos, Dirk E

    2016-05-21

    Bright luminescent silver-adenine species were successfully stabilized in the pores of the MOF-69A (zinc biphenyldicarboxylate) metal-organic framework, starting from the intrinsically blue luminescent bio-MOF-1 (zinc adeninate 4,4'-biphenyldicarboxylate). Bio-MOF-1 is transformed to the MOF-69A framework by selectively leaching structural adenine linkers from the original framework using silver nitrate solutions in aqueous ethanol. Simultaneously, bright blue-green luminescent silver-adenine clusters are formed inside the pores of the recrystallized MOF-69A matrix in high local concentrations. The structural transition and concurrent changes in optical properties were characterized using a range of structural, physicochemical and spectroscopic techniques (steady-state and time-resolved luminescence, quantum yield determination, fluorescence microscopy). The presented results open new avenues for exploring the use of MOFs containing luminescent silver clusters for solid-state lighting and sensor applications.

  14. Novel electrochemical sensor based on functionalized graphene for simultaneous determination of adenine and guanine in DNA.

    PubMed

    Huang, Ke-Jing; Niu, De-Jun; Sun, Jun-Yong; Han, Cong-Hui; Wu, Zhi-Wei; Li, Yan-Li; Xiong, Xiao-Qin

    2011-02-01

    A nano-material carboxylic acid functionalized graphene (graphene-COOH) was prepared and used to construct a novel biosensor for the simultaneous detection of adenine and guanine. The direct electrooxidation behaviors of adenine and guanine on the graphene-COOH modified glassy carbon electrode (graphene-COOH/GCE) were carefully investigated by cyclic voltammetry and differential pulse voltammetry. The results indicated that both adenine and guanine showed the increase of the oxidation peak currents with the negative shift of the oxidation peak potentials in contrast to that on the bare glassy carbon electrode. The electrochemical parameters of adenine and guanine on the graphene-COOH/GCE were calculated and a simple and reliable electroanalytical method was developed for the detection of adenine and guanine, respectively. The modified electrode exhibited good behaviors in the simultaneous detection of adenine and guanine with the peak separation as 0.334V. The detection limit for individual determination of guanine and adenine was 5.0×10(-8)M and 2.5×10(-8)M (S/N=3), respectively. Furthermore, the measurements of thermally denatured single-stranded DNA were carried out and the value of (G+C)/(A+T) of single-stranded DNA was calculated as 0.80. The biosensor exhibited some advantages, such as simplicity, rapidity, high sensitivity, good reproducibility and long-term stability. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Radioresistance of Adenine to Cosmic Rays.

    PubMed

    Vignoli Muniz, Gabriel S; Mejía, Christian F; Martinez, Rafael; Auge, Basile; Rothard, Hermann; Domaracka, Alicja; Boduch, Philippe

    2017-04-01

    The presence of nucleobases in carbonaceous meteorites on Earth is an indication of the existence of this class of molecules in outer space. However, space is permeated by ionizing radiation, which can have damaging effects on these molecules. Adenine is a purine nucleobase that amalgamates important biomolecules such as DNA, RNA, and ATP. Adenine has a unique importance in biochemistry and therefore life. The aim of this work was to study the effects of cosmic ray analogues on solid adenine and estimate its survival when exposed to corpuscular radiation. Adenine films were irradiated at GANIL (Caen, France) and GSI (Darmstadt, Germany) by 820 MeV Kr 33+ , 190 MeV Ca 10+ , 92 MeV Xe 23+ , and 12 MeV C 4+ ion beams at low temperature. The evolution of adenine molecules under heavy ion irradiation was studied by IR absorption spectroscopy as a function of projectile fluence. It was found that the adenine destruction cross section (σ d ) follows an electronic stopping power (S e ) power law under the form: CS e n ; C is a constant, and the exponential n is a dimensionless quantity. Using the equation above to fit our results, we determined σ d  = 4 × 10 -17 S e 1.17 , with S e in kiloelectronvolts per micrometer (keV μm -1 ). New IR absorption bands arise under irradiation of adenine and can be attributed to HCN, CN - , C 2 H 4 N 4 , CH 3 CN, and (CH 3 ) 3 CNC. These findings may help to understand the stability and chemistry related to complex organic molecules in space. The half-life of solid adenine exposed to the simulated interstellar medium cosmic ray flux was estimated as (10 ± 8) × 10 6 years. Key Words: Heavy ions-Infrared spectroscopy-Astrochemistry-Cosmic rays-Nucleobases-Adenine. Astrobiology 17, 298-308.

  16. Radioresistance of Adenine to Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Vignoli Muniz, Gabriel S.; Mejía, Christian F.; Martinez, Rafael; Auge, Basile; Rothard, Hermann; Domaracka, Alicja; Boduch, Philippe

    2017-04-01

    The presence of nucleobases in carbonaceous meteorites on Earth is an indication of the existence of this class of molecules in outer space. However, space is permeated by ionizing radiation, which can have damaging effects on these molecules. Adenine is a purine nucleobase that amalgamates important biomolecules such as DNA, RNA, and ATP. Adenine has a unique importance in biochemistry and therefore life. The aim of this work was to study the effects of cosmic ray analogues on solid adenine and estimate its survival when exposed to corpuscular radiation. Adenine films were irradiated at GANIL (Caen, France) and GSI (Darmstadt, Germany) by 820 MeV Kr33+, 190 MeV Ca10+, 92 MeV Xe23+, and 12 MeV C4+ ion beams at low temperature. The evolution of adenine molecules under heavy ion irradiation was studied by IR absorption spectroscopy as a function of projectile fluence. It was found that the adenine destruction cross section (σd) follows an electronic stopping power (Se) power law under the form: CSen; C is a constant, and the exponential n is a dimensionless quantity. Using the equation above to fit our results, we determined σd = 4 × 10-17 Se1.17, with Se in kiloelectronvolts per micrometer (keV μm-1). New IR absorption bands arise under irradiation of adenine and can be attributed to HCN, CN-, C2H4N4, CH3CN, and (CH3)3CNC. These findings may help to understand the stability and chemistry related to complex organic molecules in space. The half-life of solid adenine exposed to the simulated interstellar medium cosmic ray flux was estimated as (10 ± 8) × 106 years.

  17. Atomic substitution reveals the structural basis for substrate adenine recognition and removal by adenine DNA glycosylase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Seongmin; Verdine, Gregory L.; Harvard)

    2010-01-14

    Adenine DNA glycosylase catalyzes the glycolytic removal of adenine from the promutagenic A {center_dot} oxoG base pair in DNA. The general features of DNA recognition by an adenine DNA glycosylase, Bacillus stearothermophilus MutY, have previously been revealed via the X-ray structure of a catalytically inactive mutant protein bound to an A:oxoG-containing DNA duplex. Although the structure revealed the substrate adenine to be, as expected, extruded from the DNA helix and inserted into an extrahelical active site pocket on the enzyme, the substrate adenine engaged in no direct contacts with active site residues. This feature was paradoxical, because other glycosylases havemore » been observed to engage their substrates primarily through direct contacts. The lack of direct contacts in the case of MutY suggested that either MutY uses a distinctive logic for substrate recognition or that the X-ray structure had captured a noncatalytically competent state in lesion recognition. To gain further insight into this issue, we crystallized wild-type MutY bound to DNA containing a catalytically inactive analog of 2'-deoxyadenosine in which a single 2'-H atom was replaced by fluorine. The structure of this fluorinated lesion-recognition complex (FLRC) reveals the substrate adenine buried more deeply into the active site pocket than in the prior structure and now engaged in multiple direct hydrogen bonding and hydrophobic interactions. This structure appears to capture the catalytically competent state of adenine DNA glycosylases, and it suggests a catalytic mechanism for this class of enzymes, one in which general acid-catalyzed protonation of the nucleobase promotes glycosidic bond cleavage.« less

  18. Design and synthesis of novel adenine fluorescence probe based on Eu(III) complexes with dtpa-bis(guanine) ligand

    NASA Astrophysics Data System (ADS)

    Tian, Fengyun; Jiang, Xiaoqing; Dou, Xuekai; Wu, Qiong; Wang, Jun; Song, Youtao

    2017-05-01

    A novel adenine (Ad) fluorescence probe (EuIII-dtpa-bis(guanine)) was designed and synthesized by improving experimental method based on the Eu(III) complex and dtpa-bis(guanine) ligand. The dtpa-bis(guanine) ligand was first synthesized by the acylation action between dtpaa and guanine (Gu), and the corresponding Eu(III) complex was successfully prepared through heat-refluxing method with dtpa-bis(guanine) ligand. As a novel fluorescence probe, the EuIII-dtpa-bis(guanine) complex can detect adenine (Ad) with characteristics of strong targeting, high specificity and high recognition ability. The detection mechanism of the adenine (Ad) using this probe in buffer solution was studied by ultraviolet-visible (UV-vis) and fluorescence spectroscopy. When the EuIII-dtpa-bis(guanine) was introduced to the adenine (Ad) solution, the fluorescence emission intensity was significantly enhanced. However, adding other bases such as guanine (Gu), xanthine (Xa), hypoxanthine (Hy) and uric acid (Ur) with similar composition and structure to that of adenine (Ad) to the EuIII-dtpa-bis(guanine) solution, the fluorescence emission intensities are nearly invariable. Meanwhile, the interference of guanine (Gu), xanthine (Xa), hypoxanthine (Hy) and uric acid (Ur) on the detection of the adenine using EuIII-dtpa-bis(guanine) probe was also studied. It was found that presence of these bases does not affect the detection of adenine (Ad). A linear response of fluorescence emission intensities of EuIII-dtpa-bis(guanine) at 570 nm as a function of adenine (Ad) concentration in the range of 0.00-5.00 × 10- 5 mol L- 1 was observed. The detection limit is about 4.70 × 10- 7 mol L- 1.

  19. Optical properties of nucleobase thin films as studied by attenuated total reflection and surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Kim, MinSuk; Ham, Won Kyu; Kim, Wonyoung; Hwangbo, Chang Kwon; Choi, Eun Ha; Lee, Geon Joon

    2018-04-01

    Optical properties of nucleobase thin films were studied by attenuated total reflection (ATR) and surface-enhanced Raman spectroscopy (SERS). Adenine and guanine films were deposited on fused silica and silver at room temperature by thermal evaporation, and the normal dispersion of refractive indices of transparent adenine and guanine films in the visible and near-infrared regions were analyzed. The measured ATR spectra of adenine (guanine) films and numerical simulations by optical transfer matrix formalism demonstrate that the shift of surface plasmon resonance (SPR) wavelength is approximately linearly proportional to the adenine (guanine) film thickness, indicating that SPR can be used for quantitative measurements of biomaterials. The Raman spectra indicated that the adenine (guanine) films can be deposited by thermal evaporation. The adenine (guanine) films on silver exhibited Raman intensity enhancement as compared to those on glass, which was attributed to the SPR effect of silver platform and might play a role as a hot plate for SERS detection of biomaterials.

  20. One-pot synthesis of fluorescent polysaccharides: adenine grafted agarose and carrageenan.

    PubMed

    Oza, Mihir D; Prasad, Kamalesh; Siddhanta, A K

    2012-08-01

    New fluorescent polysaccharides were synthesized by grafting the nucleobase adenine on to the backbones of agarose and κ-carrageenan, which were characterized by FT-IR, (13)C NMR, TGA, XRD, UV, and fluorescence properties. The synthesis involved a rapid water based potassium persulfate (KPS) initiated method under microwave irradiation. The emission spectra of adenine grafted agarose and κ-carrageenan were recorded in aqueous (5×10(-5) M) solution, exhibiting λ(em,max) 347 nm by excitation at 261 nm, affording ca. 30% and 40% enhanced emission intensities, respectively compared to that of pure adenine solution in the same concentration. Similar emission intensity was recorded in the pure adenine solution at its molar equivalent concentrations present in the 5×10(-5) M solution of the agarose and carrageenan grafted products, that is, 3.28×10(-5) M and 4.5×10(-5) M respectively. These fluorescent adenine grafted products may have potential utility in various sensor applications. Copyright © 2012. Published by Elsevier Ltd.

  1. A Prebiotic Chemistry Experiment on the Adsorption of Nucleic Acids Bases onto a Natural Zeolite.

    PubMed

    Anizelli, Pedro R; Baú, João Paulo T; Gomes, Frederico P; da Costa, Antonio Carlos S; Carneiro, Cristine E A; Zaia, Cássia Thaïs B V; Zaia, Dimas A M

    2015-09-01

    There are currently few mechanisms that can explain how nucleic acid bases were synthesized, concentrated from dilute solutions, and/or protected against degradation by UV radiation or hydrolysis on the prebiotic Earth. A natural zeolite exhibited the potential to adsorb adenine, cytosine, thymine, and uracil over a range of pH, with greater adsorption of adenine and cytosine at acidic pH. Adsorption of all nucleic acid bases was decreased in artificial seawater compared to water, likely due to cation complexation. Furthermore, adsorption of adenine appeared to protect natural zeolite from thermal degradation. The C=O groups from thymine, cytosine and uracil appeared to assist the dissolution of the mineral while the NH2 group from adenine had no effect. As shown by FT-IR spectroscopy, adenine interacted with a natural zeolite through the NH2 group, and cytosine through the C=O group. A pseudo-second-order model best described the kinetics of adenine adsorption, which occurred faster in artificial seawaters.

  2. Transformation by complementation of an adenine auxotroph of the lignin-degrading basidiomycete Phanerochaete chrysosporium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alic, M.; Kornegay, J.R.; Pribnow, D.

    1989-02-01

    Swollen basiodiospores of an adenine auxotroph of Phanerochaete chrysosporium were protoplasted with Novozyme 234 and transformed to prototrophy by using a plasmid containing the gene for an adenine biosynthetic enzyme from Schizophyllum commune. Transformation frequencies of 100 transformants per {mu}g of DNA were obtained. Southern blot analysis of DNA extracted from transformants demonstrated that plasmid DNA was integrated into the chromosomal DNA in multiple tandem copies. Analysis of conidia and basiodiospores from transformants demonstrated that the transforming character was mitotically and meiotically stable on both selective and nonselective media. Genetic crosses between double mutants transformed for adenine prototrophy and othermore » auxotrophic strains yielded Ade{sup {minus}} progeny, which indicated that integration occurred at a site(s) other than the resident adenine biosynthetic gene.« less

  3. Transformation by Complementation of an Adenine Auxotroph of the Lignin-Degrading Basidiomycete Phanerochaete chrysosporium

    PubMed Central

    Alic, Margaret; Kornegay, Janet R.; Pribnow, David; Gold, Michael H.

    1989-01-01

    Swollen basidiospores of an adenine auxotroph of Phanerochaete chrysosporium were protoplasted with Novozyme 234 and transformed to prototrophy by using a plasmid containing the gene for an adenine biosynthetic enzyme from Schizophyllum commune. Transformation frequencies of 100 transformants per μg of DNA were obtained. Southern blot analysis of DNA extracted from transformants demonstrated that plasmid DNA was integrated into the chromosomal DNA in multiple tandem copies. Analysis of conidia and basidiospores from transformants demonstrated that the transforming character was mitotically and meiotically stable on both selective and nonselective media. Genetic crosses between double mutants transformed for adenine prototrophy and other auxotrophic strains yielded Ade− progeny, which indicated that integration occurred at a site(s) other than the resident adenine biosynthetic gene. Images PMID:16347848

  4. Sequence and Temperature Dependence of the End-to-End Collision Dynamics of Single-Stranded DNA

    PubMed Central

    Uzawa, Takanori; Isoshima, Takashi; Ito, Yoshihiro; Ishimori, Koichiro; Makarov, Dmitrii E.; Plaxco, Kevin W.

    2013-01-01

    Intramolecular collision dynamics play an essential role in biomolecular folding and function and, increasingly, in the performance of biomimetic technologies. To date, however, the quantitative studies of dynamics of single-stranded nucleic acids have been limited. Thus motivated, here we investigate the sequence composition, chain-length, viscosity, and temperature dependencies of the end-to-end collision dynamics of single-stranded DNAs. We find that both the absolute collision rate and the temperature dependencies of these dynamics are base-composition dependent, suggesting that base stacking interactions are a significant contributor. For example, whereas the end-to-end collision dynamics of poly-thymine exhibit simple, linear Arrhenius behavior, the behavior of longer poly-adenine constructs is more complicated. Specifically, 20- and 25-adenine constructs exhibit biphasic temperature dependencies, with their temperature dependences becoming effectively indistinguishable from that of poly-thymine above 335 K for 20-adenines and 328 K for 25-adenines. The differing Arrhenius behaviors of poly-thymine and poly-adenine and the chain-length dependence of the temperature at which poly-adenine crosses over to behave like poly-thymine can be explained by a barrier friction mechanism in which, at low temperatures, the energy barrier for the local rearrangement of poly-adenine becomes the dominant contributor to its end-to-end collision dynamics. PMID:23746521

  5. Hydration properties of natural and synthetic DNA sequences with methylated adenine or cytosine bases in the R.DpnI target and BDNF promoter studied by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Shanak, Siba; Helms, Volkhard

    2014-12-01

    Adenine and cytosine methylation are two important epigenetic modifications of DNA sequences at the levels of the genome and transcriptome. To characterize the differential roles of methylating adenine or cytosine with respect to their hydration properties, we performed conventional MD simulations and free energy perturbation calculations for two particular DNA sequences, namely the brain-derived neurotrophic factor (BDNF) promoter and the R.DpnI-bound DNA that are known to undergo methylation of C5-methyl cytosine and N6-methyl adenine, respectively. We found that a single methylated cytosine has a clearly favorable hydration free energy over cytosine since the attached methyl group has a slightly polar character. In contrast, capping the strongly polar N6 of adenine with a methyl group gives a slightly unfavorable contribution to its free energy of solvation. Performing the same demethylation in the context of a DNA double-strand gave quite similar results for the more solvent-accessible cytosine but much more unfavorable results for the rather buried adenine. Interestingly, the same demethylation reactions are far more unfavorable when performed in the context of the opposite (BDNF or R.DpnI target) sequence. This suggests a natural preference for methylation in a specific sequence context. In addition, free energy calculations for demethylating adenine or cytosine in the context of B-DNA vs. Z-DNA suggest that the conformational B-Z transition of DNA transition is rather a property of cytosine methylated sequences but is not preferable for the adenine-methylated sequences investigated here.

  6. Hydration properties of natural and synthetic DNA sequences with methylated adenine or cytosine bases in the R.DpnI target and BDNF promoter studied by molecular dynamics simulations.

    PubMed

    Shanak, Siba; Helms, Volkhard

    2014-12-14

    Adenine and cytosine methylation are two important epigenetic modifications of DNA sequences at the levels of the genome and transcriptome. To characterize the differential roles of methylating adenine or cytosine with respect to their hydration properties, we performed conventional MD simulations and free energy perturbation calculations for two particular DNA sequences, namely the brain-derived neurotrophic factor (BDNF) promoter and the R.DpnI-bound DNA that are known to undergo methylation of C5-methyl cytosine and N6-methyl adenine, respectively. We found that a single methylated cytosine has a clearly favorable hydration free energy over cytosine since the attached methyl group has a slightly polar character. In contrast, capping the strongly polar N6 of adenine with a methyl group gives a slightly unfavorable contribution to its free energy of solvation. Performing the same demethylation in the context of a DNA double-strand gave quite similar results for the more solvent-accessible cytosine but much more unfavorable results for the rather buried adenine. Interestingly, the same demethylation reactions are far more unfavorable when performed in the context of the opposite (BDNF or R.DpnI target) sequence. This suggests a natural preference for methylation in a specific sequence context. In addition, free energy calculations for demethylating adenine or cytosine in the context of B-DNA vs. Z-DNA suggest that the conformational B-Z transition of DNA transition is rather a property of cytosine methylated sequences but is not preferable for the adenine-methylated sequences investigated here.

  7. Silver-induced reconstruction of an adeninate-based metal–organic framework for encapsulation of luminescent adenine-stabilized silver clusters† †Electronic supplementary information (ESI) available: Experimental details and additional structural, physicochemical and optical characterisation. See DOI: 10.1039/c6tc00260a Click here for additional data file.

    PubMed Central

    Jonckheere, Dries; Coutino-Gonzalez, Eduardo; Baekelant, Wouter; Bueken, Bart; Reinsch, Helge; Stassen, Ivo; Fenwick, Oliver; Richard, Fanny; Samorì, Paolo; Ameloot, Rob; Hofkens, Johan

    2016-01-01

    Bright luminescent silver-adenine species were successfully stabilized in the pores of the MOF-69A (zinc biphenyldicarboxylate) metal–organic framework, starting from the intrinsically blue luminescent bio-MOF-1 (zinc adeninate 4,4′-biphenyldicarboxylate). Bio-MOF-1 is transformed to the MOF-69A framework by selectively leaching structural adenine linkers from the original framework using silver nitrate solutions in aqueous ethanol. Simultaneously, bright blue-green luminescent silver-adenine clusters are formed inside the pores of the recrystallized MOF-69A matrix in high local concentrations. The structural transition and concurrent changes in optical properties were characterized using a range of structural, physicochemical and spectroscopic techniques (steady-state and time-resolved luminescence, quantum yield determination, fluorescence microscopy). The presented results open new avenues for exploring the use of MOFs containing luminescent silver clusters for solid-state lighting and sensor applications. PMID:28496980

  8. Determination of adenine based on the fluorescence recovery of the L-Tryptophan-Cu(2+) complex.

    PubMed

    Duan, Ruilin; Li, Chunyan; Liu, Shaopu; Liu, Zhongfang; Li, Yuanfang; Yuan, Yusheng; Hu, Xiaoli

    2016-01-05

    A simple and sensitive method for determination of adenine was developed based on fluorescence quenching and recovery of L-Tryptophan (L-Trp). The fluorescence of L-Trp could efficiently quenched by copper ion compared with other common metal ions. Upon addition of adenine (Ade) in L-Trp-Cu(II) system, the fluorescence was reoccurred. Under the optimum conditions, the recovery fluorescence intensity was linearly correlated with the concentration of adenine in the range from 0.34 to 25.0μmolL(-1), with a correlation coefficient (R(2)) of 0.9994. The detection limit (3σ/k) was 0.046μmolL(-1), indicating that this method could applied to detect trace adenine. In this study, amino acids including L-Trp, D-Trp, L-Tyr, D-Tyr, L-Phe, D-Phe were investigated and only L-Trp could well chelated copper ion. Additionally, the mechanism of quench and recovery also were discussed and the method was successfully applied to detect the adenine in DNA with satisfactory results. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Structure-wise discrimination of adenine and guanine by proteins on the basis of their nonbonded interactions.

    PubMed

    Usha, S; Selvaraj, S

    2015-01-01

    We have analyzed the nonbonded interactions of the structurally similar moieties, adenine and guanine forming complexes with proteins. The results comprise (a) the amino acid-ligand atom preferences, (b) solvent accessibility of ligand atoms before and after complex formation with proteins, and (c) preferred amino acid residue atoms involved in the interactions. We have observed that the amino acid preferences involved in the hydrogen bonding interactions vary for adenine and guanine. The structural variation between the purine atoms is clearly reflected by their burial tendency in the solvent environment. Correlation of the mean amino acid preference values show the variation that exists between adenine and guanine preferences of all the amino acid residues. All our observations provide evidence for the discriminating nature of the proteins in recognizing adenine and guanine.

  10. Efficacy of Adenine in the Treatment of Leukopenia and Neutropenia Associated with an Overdose of Antipsychotics or Discontinuation of Lithium Carbonate Administration: Three Case Studies.

    PubMed

    Tomita, Takashi; Goto, Hidekazu; Sumiya, Kenji; Yoshida, Tadashi; Tanaka, Katsuya; Kohda, Yukinao

    2016-11-30

    Because adenine is effective for managing cases of radiation-induced and drug-induced leukopenia, it may be effective in cases of antipsychotic-induced leukopenia and neutropenia. Here, we report our experience with patients with leukopenia and neutropenia caused by an antipsychotic overdose or discontinuation of lithium carbonate, in whom adenine administration ameliorated the white blood cell and neutrophil counts. The progress of patients suggests that adenine is effective in cases of leukopenia and neutropenia associated with lithium carbonate discontinuation and an antipsychotic overdose.

  11. tif-dependent induction of colicin E1, prophage lambda, and filamentation in Escherichia coli K-12.

    PubMed

    Tessman, E S; Peterson, P K

    1980-09-01

    To help understand how the tif-1 mutation of the recA gene of Escherichia coli confers adenine activability on the recA protein, we used the fact that cytidine plus guanosine inhibits induction of prophage lambda and cell filamentation in a tif-1 mutant, and that adenine reverses this inhibition. We varied the amount of adenine in agar plates containing a fixed amount of cytidine and scored for survivors of three different tif-dependent lethal induction processes. Much more adenine was required for cell killing when cytidine was present than when it was absent. Therefore adenine does not override cytidine inhibition, but instead appears to compete with it for a site of action which may be on the recA protein. The competition is not at the cell transport level. Our results lead to a model in which the tif form of the recA protein is an allosteric enzyme that binds both negative and positive modulators. By varying the adenine-cytidine ratio of the medium it is possible to control the degree of induction in a tif-1 cell. For the three different tif-dependent inductions studied here, least adenine was required for lambda induction and most for lethal filamentation, presumably reflecting requirements for different amounts of activated recA protein in each process. Varying the adenine-cytidine ratio revealed two stable intermediate stages in lambda induction, as well as a stage of colicin E1 induction in which the cells produced colicin without cell death. The rate of filament formation could be similarly controlled. Experiments with tif (ColE1, lambda) gave evidence of a competition between colicin repressor and lambda repressor for activated recA protein.

  12. Adenine derivatives as phosphate-activating groups for the regioselective formation of 3',5'-linked oligoadenylates on montmorillonite: possible phosphate-activating groups for the prebiotic synthesis of RNA

    NASA Technical Reports Server (NTRS)

    Prabahar, K. J.; Ferris, J. P.

    1997-01-01

    Methyladenine and adenine N-phosphoryl derivatives of adenosine 5'-monophosphate (5'-AMP) and uridine 5'-monophosphate (5'-UMP) are synthesized, and their structures are elucidated. The oligomerization reactions of the adenine derivatives of 5'-phosphoramidates of adenosine on montmorillonite are investigated. 1-Methyladenine and 3-methyladenine derivatives on montmorillonite yielded oligoadenylates as long as undecamer, and the 2-methyladenine and adenine derivatives on montmorillonite yielded oligomers up to hexamers and pentamers, respectively. The 1-methyladenine derivative yielded linear, cyclic, and A5'ppA-derived oligonucleotides with a regioselectivity for the 3',5'-phosphodiester linkages averaging 84%. The effect of pKa and amine structure of phosphate-activating groups on the montmorillonite-catalyzed oligomerization of the 5'-phosphoramidate of adenosine are discussed. The binding and reaction of methyladenine and adenine N-phosphoryl derivatives of adenosine are described.

  13. Binding of adenine to Stx2, the protein toxin from Escherichia coli O157:H7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fraser, Marie E., E-mail: frasm@ucalgary.ca; Cherney, Maia M.; Marcato, Paola

    2006-07-01

    Crystals of Stx2 were grown in the presence of adenosine and adenine. In both cases, the resulting electron density showed only adenine bound at the active site of the A subunit, proving that the holotoxin is an active N-glycosidase. Stx2 is a protein toxin whose catalytic subunit acts as an N-glycosidase to depurinate a specific adenine base from 28S rRNA. In the holotoxin, the catalytic portion, A1, is linked to the rest of the A subunit, A2, and A2 interacts with the pentameric ring formed by the five B subunits. In order to test whether the holotoxin is active asmore » an N-glycosidase, Stx2 was crystallized in the presence of adenosine and adenine. The crystals diffracted to ∼1.8 Å and showed clear electron density for adenine in the active site. Adenosine had been cleaved, proving that Stx2 is an active N-glycosidase. While the holotoxin is active against small substrates, it would be expected that the B subunits would interfere with the binding of the 28S rRNA.« less

  14. PREVENTIVE AND CURATIVE VITAMIN B$sub 4$ THERAPY OF POSTRADIOTHERAPEUTIC HEMATOLOGICAL COMPLICATIONS (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Djian, A.; Puchot, H.; Calop, R.

    1962-06-01

    The antigranulocytic action of adenine (vitamin B/sub 4/), as a therapeutic agent in the prevention of postirradiation hematologic complications was studied. The patients chosen for this study, who received radiotherapy and protective adenine therapy at the same time, were of two types: those with rheumatic and other inflammatory diseases who had previously been exposed to radiation doses below 2000 r, and patients who had received massive localized radiotherapy for cancer and had suffered metastases or a recurrence of the primary tumor. The patients' hematologic condition was followed for 2 months to 2 yr. For the purpose of this study threemore » groups of patients were studied: those receiving adenine therapy from the start, whose blood picture was essentially normal; those given adenine following the appearance of leukopenia; and a group of 20 controls receiving no adenine. The 28 patients receiving adenine from the start were exposed to doses of 2500 to 17,000 r over a period of 2 yr 8 months. Twenty-two of these presented a normal blood picture, but in four leukopenia had already developed. Adenine administration maintained the good blood picture in 21 of this group; in the remainder its protective action was manifest but incomplete. The 14 patients receiving vitamin therapy after the appearance of leukopenia were exposed to x-ray doses of 1500 to 22,800 r during periods of 3 months to 2 yr. In seven of the 14 the blood picture returned to normal before termination of radiation treatment, thus permitting uninterrupted radiation therapy. In the other seven there was sufficient improvement to permit continuation of radiotherapy without any evidence of adverse effects. Approximately 85% of the controls showed evidence of hematologic deficiencies. Adenine was administered via intramuscular or intravenous injection or infusion, or orally, in amounts of 90 to 180 mg/day. Tolerance to medication was good in all cases. Adenine is not toxic and is completely eliminated. There were no gastric or intestinal upsets, and no allergies reported. In those cases where the correction of leukopenia was not satisfactory, at the termination of irradiation, recovery was more rapid than is usual in irradiated cases. It was concluded that adenine is a useful protective agent for the maintenance of hematologlc values, its use allowing more prolonged and high-dosage radiation treatment. (BBB)« less

  15. An experimental and theoretical vibrational study of interaction of adenine and thymine with artificial seawaters: A prebiotic chemistry experiment.

    PubMed

    Anizelli, Pedro R; Baú, João P T; Nabeshima, Henrique S; da Costa, Marcello F; de Santana, Henrique; Zaia, Dimas A M

    2014-05-21

    Nucleic acid bases play important roles in living beings. Thus, their interaction with salts the prebiotic Earth could be an important issue for the understanding of origin of life. In this study, the effect of pH and artificial seawaters on the structure of adenine and thymine was studied via parallel determinations using FT-IR, Raman spectroscopy and theoretical calculations. Thymine and adenine lyophilized in solutions at basic and acidic conditions showed characteristic bands of the enol-imino tautomer due to the deprotonation and the hydrochloride form due to protonation, respectively. The interaction of thymine and adenine with different seawaters representative of different geological periods on Earth was also studied. In the case of thymine a strong interaction with Sr(2+) promoted changes in the Raman and infrared spectra. For adenine changes in infrared and Raman spectra were observed in the presence of salts from all seawaters tested. The experimental results were compared to theoretical calculations, which showed structural changes due to the presence of ions Na(+), Mg(2+), Ca(2+) and Sr(2+) of artificial seawaters. For thymine the bands arising from C4=C5 and C6=O stretching were shifted to lower values, and for adenine, a new band at 1310cm(-1) was observed. The reactivity of adenine and thymine was studied by comparing changes in nucleophilicity and energy of the HOMO orbital. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Energy level alignment at the interfaces between typical electrodes and nucleobases: Al/adenine/indium-tin-oxide and Al/thymine/indium-tin-oxide

    NASA Astrophysics Data System (ADS)

    Lee, Younjoo; Lee, Hyunbok; Park, Soohyung; Yi, Yeonjin

    2012-12-01

    We investigated the interfacial electronic structures of Al/adenine/indium-tin-oxide (ITO) and Al/thymine/ITO using in situ ultraviolet and x-ray photoemission spectroscopy and density functional theory calculations. Adenine shows both an interface dipole and level bending, whereas thymine shows only an interface dipole in contact with ITO. In addition, thymine possesses a larger ionization energy than adenine. These are understood with delocalized π states confirmed with theoretical calculations. For the interface between nucleobases and Al, both nucleobases show a prominent reduction of the electron injection barrier from Al to each base in accordance with a downward level shift.

  17. Polynucleotide: adenosine glycosidase activity of saporin-L1: effect on DNA, RNA and poly(A).

    PubMed Central

    Barbieri, L; Valbonesi, P; Gorini, P; Pession, A; Stirpe, F

    1996-01-01

    The ribosome-inactivating proteins (RIPs) are a family of plant enzymes for which a unique activity has been determined: rRNA N-glycosidase, which removes adenine at a specific universally conserved position (A4324 in the case of rat ribosomes). Here we report that saporin-L1, a RIP from the leaves of Saponaria officinalis, recognizes other substrates, including RNAs from different sources, DNA and poly(A). Saporin-L1 depurinated DNA extensively and released adenine from all adenine-containing polynucleotides tested. Adenine was the only base released from DNA or artificial polynucleotides. The characteristics of the reactions catalysed by saporin-L1 have been determined: optimal pH and temperature, ionic requirements, and the kinetic parameters Km and kcat. The reaction proceeded without cofactors, at low ionic strength, in the absence of Mg2+ and K+. Saporin-L1 had no activity towards various adenine-containing non-polynucleotide compounds (cytokinins, cofactors, nucleotides). This plant protein may now be classified as a polynucleotide: adenosine glycosidase. PMID:8912688

  18. Spectroscopic investigation on cocrystal formation between adenine and fumaric acid based on infrared and Raman techniques

    NASA Astrophysics Data System (ADS)

    Du, Yong; Fang, Hong Xia; Zhang, Qi; Zhang, Hui Li; Hong, Zhi

    2016-01-01

    As an important component of double-stranded DNA, adenine has powerful hydrogen-bond capability, due to rich hydrogen bond donors and acceptors existing within its molecular structure. Therefore, it is easy to form cocrystal between adenine and other small molecules with intermolecular hydrogen-bond effect. In this work, cocrystal of adenine and fumaric acid has been characterized as model system by FT-IR and FT-Raman spectral techniques. The experimental results show that the cocrystal formed between adenine and fumaric acid possesses unique spectroscopical characteristic compared with that of starting materials. Density functional theory (DFT) calculation has been performed to optimize the molecular structures and simulate vibrational modes of adenine, fumaric acid and the corresponding cocrystal. Combining the theoretical and experimental vibrational results, the characteristic bands corresponding to bending and stretching vibrations of amino and carbonyl groups within cocrystal are shifted into lower frequencies upon cocrystal formation, and the corresponding bond lengths show some increase due to the effect of intermolecular hydrogen bonding. Different vibrational modes shown in the experimental spectra have been assigned based on the simulation DFT results. The study could provide experimental and theoretical benchmarks to characterize cocrystal formed between active ingredients and cocrystal formers and also the intermolecular hydrogen-bond effect within cocrystal formation process by vibrational spectroscopic techniques.

  19. Synthesis, spectroscopic, structural and thermal characterizations of vanadyl(IV) adenine complex prospective as antidiabetic drug agent

    NASA Astrophysics Data System (ADS)

    El-Megharbel, Samy M.; Hamza, Reham Z.; Refat, Moamen S.

    2015-01-01

    The vanadyl(IV) adenine complex; [VO(Adn)2]ṡSO4; was synthesized and characterized. The molar conductivity of this complex was measured in DMSO solution that showed an electrolyte nature. Spectroscopic investigation of the green solid complex studied here indicate that the adenine acts as a bidentate ligand, coordinated to vanadyl(IV) ions through the nitrogen atoms N7 and nitrogen atom of amino group. Thus, from the results presented the vanadyl(IV) complex has square pyramid geometry. Further characterizations using thermal analyses and scanning electron techniques was useful. The aim of this paper was to introduce a new drug model for the diabetic complications by synthesized a novel mononuclear vanadyl(IV) adenine complex to mimic insulin action and reducing blood sugar level. The antidiabetic ability of this complex was investigated in STZ-induced diabetic mice. The results suggested that VO(IV)/adenine complex has antidiabetic activity, it improved the lipid profile, it improved liver and kidney functions, also it ameliorated insulin hormone and blood glucose levels. The vanadyl(IV) complex possesses an antioxidant activity and this was clear through studying SOD, CAT, MDA, GSH and methionine synthase. The current results support the therapeutic potentiality of vanadyl(IV)/adenine complex for the management and treatment of diabetes.

  20. A new microplatform based on titanium dioxide nanofibers/graphene oxide nanosheets nanocomposite modified screen printed carbon electrode for electrochemical determination of adenine in the presence of guanine.

    PubMed

    Arvand, Majid; Ghodsi, Navid; Zanjanchi, Mohammad Ali

    2016-03-15

    The current techniques for determining adenine have several shortcomings such as high cost, high time consumption, tedious pretreatment steps and the requirements for highly skilled personnel often restrict their use in routine analytical practice. This paper describes the development and utilization of a new nanocomposite consisting of titanium dioxide nanofibers (TNFs) and graphene oxide nanosheets (GONs) for screen printed carbon electrode (SPCE) modification. The synthesized GONs and TNFs were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). The modified electrode (TNFs/GONs/SPCE) was used for electrochemical characterization of adenine. The TNFs/GONs/SPCE exhibited an increase in peak current and the electron transfer kinetics and decrease in the overpotential for the oxidation reaction of adenine. Using differential pulse voltammetry (DPV), the prepared sensor showed good sensitivity for determining adenine in two ranges from 0.1-1 and 1-10 μM, with a detection limit (DL) of 1.71 nM. Electrochemical studies suggested that the TNFs/GONs/SPCE provided a synergistic augmentation on the voltammetric behavior of electrochemical oxidation of adenine, which was indicated by the improvement of anodic peak current and a decrease in anodic peak potential. The amount of adenine in pBudCE4.1 plasmid was determined via the proposed sensor and the result was in good compatibility with the sequence data of pBudCE4.1 plasmid. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Synthesis of adenine-modified reduced graphene oxide nanosheets.

    PubMed

    Cao, Huaqiang; Wu, Xiaoming; Yin, Gui; Warner, Jamie H

    2012-03-05

    We report here a facile strategy to synthesize the nanocomposite of adenine-modified reduced graphene oxide (AMG) via reaction between adenine and GOCl which is generated from SOCl(2) reacted with graphite oxide (GO). The as-synthesized AMG was characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), UV-vis absorption spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), and galvanostatic discharge analysis. The AMG owns about one adenine group per 53 carbon atoms on a graphene sheet, which improves electronic conductivity compared with reduced graphene oxide (RGO). The AMG displays enhanced supercapacitor performance compared with RGO accompanying good stability and good cycling behavior in the supercapacitor.

  2. Adenine and 2-aminopurine: Paradigms of modern theoretical photochemistry

    PubMed Central

    Serrano-Andrés, Luis; Merchán, Manuela; Borin, Antonio C.

    2006-01-01

    Distinct photophysical behavior of nucleobase adenine and its constitutional isomer, 2-aminopurine, has been studied by using quantum chemical methods, in particular an accurate ab initio multiconfigurational second-order perturbation theory. After light irradiation, the efficient, ultrafast energy dissipation observed for nonfluorescent 9H-adenine is explained here by the nonradiative internal conversion process taking place along a barrierless reaction path from the initially populated 1(ππ* La) excited state toward a low-lying conical intersection (CI) connected with the ground state. In contrast, the strong fluorescence recorded for 2-aminopurine at 4.0 eV with large decay lifetime is interpreted by the presence of a minimum in the 1(ππ* La) hypersurface lying below the lowest CI and the subsequent potential energy barrier required to reach the funnel to the ground state. Secondary deactivation channels were found in the two systems related to additional CIs involving the 1(ππ* Lb) and 1(nπ*) states. Although in 9H-adenine a population switch between both states is proposed, in 7H-adenine this may be perturbed by a relatively larger barrier to access the 1(nπ*) state, and, therefore, the 1(ππ* Lb) state becomes responsible for the weak fluorescence measured in aqueous adenine at ≈4.5 eV. In contrast to previous models that explained fluorescence quenching in adenine, unlike in 2-aminopurine, on the basis of the vibronic coupling of the nearby 1(ππ*) and 1(nπ*) states, the present results indicate that the 1(nπ*) state does not contribute to the leading photophysical event and establish the prevalence of a model based on the CI concept in modern photochemistry. PMID:16731617

  3. Adenine and 2-aminopurine: paradigms of modern theoretical photochemistry.

    PubMed

    Serrano-Andrés, Luis; Merchán, Manuela; Borin, Antonio C

    2006-06-06

    Distinct photophysical behavior of nucleobase adenine and its constitutional isomer, 2-aminopurine, has been studied by using quantum chemical methods, in particular an accurate ab initio multiconfigurational second-order perturbation theory. After light irradiation, the efficient, ultrafast energy dissipation observed for nonfluorescent 9H-adenine is explained here by the nonradiative internal conversion process taking place along a barrierless reaction path from the initially populated 1(pipi* La) excited state toward a low-lying conical intersection (CI) connected with the ground state. In contrast, the strong fluorescence recorded for 2-aminopurine at 4.0 eV with large decay lifetime is interpreted by the presence of a minimum in the 1(pipi* La) hypersurface lying below the lowest CI and the subsequent potential energy barrier required to reach the funnel to the ground state. Secondary deactivation channels were found in the two systems related to additional CIs involving the 1(pipi* Lb) and 1(npi*) states. Although in 9H-adenine a population switch between both states is proposed, in 7H-adenine this may be perturbed by a relatively larger barrier to access the 1(npi*) state, and, therefore, the 1(pipi* Lb) state becomes responsible for the weak fluorescence measured in aqueous adenine at approximately 4.5 eV. In contrast to previous models that explained fluorescence quenching in adenine, unlike in 2-aminopurine, on the basis of the vibronic coupling of the nearby 1(pipi*) and 1(npi*) states, the present results indicate that the 1(npi*) state does not contribute to the leading photophysical event and establish the prevalence of a model based on the CI concept in modern photochemistry.

  4. Spectroscopic investigation on cocrystal formation between adenine and fumaric acid based on infrared and Raman techniques.

    PubMed

    Du, Yong; Fang, Hong Xia; Zhang, Qi; Zhang, Hui Li; Hong, Zhi

    2016-01-15

    As an important component of double-stranded DNA, adenine has powerful hydrogen-bond capability, due to rich hydrogen bond donors and acceptors existing within its molecular structure. Therefore, it is easy to form cocrystal between adenine and other small molecules with intermolecular hydrogen-bond effect. In this work, cocrystal of adenine and fumaric acid has been characterized as model system by FT-IR and FT-Raman spectral techniques. The experimental results show that the cocrystal formed between adenine and fumaric acid possesses unique spectroscopical characteristic compared with that of starting materials. Density functional theory (DFT) calculation has been performed to optimize the molecular structures and simulate vibrational modes of adenine, fumaric acid and the corresponding cocrystal. Combining the theoretical and experimental vibrational results, the characteristic bands corresponding to bending and stretching vibrations of amino and carbonyl groups within cocrystal are shifted into lower frequencies upon cocrystal formation, and the corresponding bond lengths show some increase due to the effect of intermolecular hydrogen bonding. Different vibrational modes shown in the experimental spectra have been assigned based on the simulation DFT results. The study could provide experimental and theoretical benchmarks to characterize cocrystal formed between active ingredients and cocrystal formers and also the intermolecular hydrogen-bond effect within cocrystal formation process by vibrational spectroscopic techniques. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Effect of Gum Arabic on Oxidative Stress and Inflammation in Adenine–Induced Chronic Renal Failure in Rats

    PubMed Central

    Ali, Badreldin H.; Al-Husseni, Isehaq; Beegam, Sumyia; Al-Shukaili, Ahmed; Nemmar, Abderrahim; Schierling, Simone; Queisser, Nina; Schupp, Nicole

    2013-01-01

    Inflammation and oxidative stress are known to be involved in the pathogenesis of chronic kidney disease in humans, and in chronic renal failure (CRF) in rats. The aim of this work was to study the role of inflammation and oxidative stress in adenine-induced CRF and the effect thereon of the purported nephroprotective agent gum arabic (GA). Rats were divided into four groups and treated for 4 weeks as follows: control, adenine in feed (0.75%, w/w), GA in drinking water (15%, w/v) and adenine+GA, as before. Urine, blood and kidneys were collected from the rats at the end of the treatment for analysis of conventional renal function tests (plasma creatinine and urea concentration). In addition, the concentrations of the pro-inflammatory cytokine TNF-α and the oxidative stress markers glutathione and superoxide dismutase, renal apoptosis, superoxide formation and DNA double strand break frequency, detected by immunohistochemistry for γ-H2AX, were measured. Adenine significantly increased the concentrations of urea and creatinine in plasma, significantly decreased the creatinine clearance and induced significant increases in the concentration of the measured inflammatory mediators. Further, it caused oxidative stress and DNA damage. Treatment with GA significantly ameliorated these actions. The mechanism of the reported salutary effect of GA in adenine-induced CRF is associated with mitigation of the adenine-induced inflammation and generation of free radicals. PMID:23383316

  6. Quercetin Attenuates Vascular Calcification through Suppressed Oxidative Stress in Adenine-Induced Chronic Renal Failure Rats.

    PubMed

    Chang, Xue-Ying; Cui, Lei; Wang, Xing-Zhi; Zhang, Lei; Zhu, Dan; Zhou, Xiao-Rong; Hao, Li-Rong

    2017-01-01

    This study investigated whether quercetin could alleviate vascular calcification in experimental chronic renal failure rats induced by adenine. 32 adult male Wistar rats were randomly divided into 4 groups fed normal diet, normal diet with quercetin supplementation (25 mg/kg·BW/d), 0.75% adenine diet, or adenine diet with quercetin supplementation. All rats were sacrificed after 6 weeks of intervention. Serum renal functions biomarkers and oxidative stress biomarkers were measured and status of vascular calcification in aorta was assessed. Furthermore, the induced nitric oxide synthase (iNOS)/p38 mitogen activated protein kinase (p38MAPK) pathway was determined to explore the potential mechanism. Adenine successfully induced renal failure and vascular calcification in rat model. Quercetin supplementation reversed unfavorable changes of phosphorous, uric acid (UA) and creatinine levels, malonaldehyde (MDA) content, and superoxide dismutase (SOD) activity in serum and the increases of calcium and alkaline phosphatase (ALP) activity in the aorta ( P < 0.05) and attenuated calcification and calcium accumulation in the medial layer of vasculature in histopathology. Western blot analysis showed that iNOS/p38MAPK pathway was normalized by the quercetin supplementation. Quercetin exerted a protective effect on vascular calcification in adenine-induced chronic renal failure rats, possibly through the modulation of oxidative stress and iNOs/p38MAPK pathway.

  7. Quercetin Attenuates Vascular Calcification through Suppressed Oxidative Stress in Adenine-Induced Chronic Renal Failure Rats

    PubMed Central

    Chang, Xue-ying; Cui, Lei; Wang, Xing-zhi; Zhang, Lei; Zhu, Dan

    2017-01-01

    Background This study investigated whether quercetin could alleviate vascular calcification in experimental chronic renal failure rats induced by adenine. Methods 32 adult male Wistar rats were randomly divided into 4 groups fed normal diet, normal diet with quercetin supplementation (25 mg/kg·BW/d), 0.75% adenine diet, or adenine diet with quercetin supplementation. All rats were sacrificed after 6 weeks of intervention. Serum renal functions biomarkers and oxidative stress biomarkers were measured and status of vascular calcification in aorta was assessed. Furthermore, the induced nitric oxide synthase (iNOS)/p38 mitogen activated protein kinase (p38MAPK) pathway was determined to explore the potential mechanism. Results Adenine successfully induced renal failure and vascular calcification in rat model. Quercetin supplementation reversed unfavorable changes of phosphorous, uric acid (UA) and creatinine levels, malonaldehyde (MDA) content, and superoxide dismutase (SOD) activity in serum and the increases of calcium and alkaline phosphatase (ALP) activity in the aorta (P < 0.05) and attenuated calcification and calcium accumulation in the medial layer of vasculature in histopathology. Western blot analysis showed that iNOS/p38MAPK pathway was normalized by the quercetin supplementation. Conclusions Quercetin exerted a protective effect on vascular calcification in adenine-induced chronic renal failure rats, possibly through the modulation of oxidative stress and iNOs/p38MAPK pathway. PMID:28691026

  8. Purine metabolism in Toxoplasma gondii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krug, E.C.; Marr, J.J.; Berens, R.L.

    1989-06-25

    We have studied the incorporation and interconversion of purines into nucleotides by freshly isolated Toxoplasma gondii. They did not synthesize nucleotides from formate, glycine, or serine. The purine bases hypoxanthine, xanthine, guanine, and adenine were incorporated at 9.2, 6.2, 5.1, and 4.3 pmol/10(7) cells/h, respectively. The purine nucleosides adenosine, inosine, guanosine, and xanthosine were incorporated at 110, 9.0, 2.7, and 0.3 pmol/10(7) cells/h, respectively. Guanine, xanthine, and their respective nucleosides labeled only guanine nucleotides. Inosine, hypoxanthine, and adenine labeled both adenine and guanine nucleotide pools at nearly equal ratios. Adenosine kinase was greater than 10-fold more active than the nextmore » most active enzyme in vitro. This is consistent with the metabolic data in vivo. No other nucleoside kinase or phosphotransferase activities were found. Phosphorylase activities were detected for guanosine and inosine; no other cleavage activities were detected. Deaminases were found for adenine and guanine. Phosphoribosyltransferase activities were detected for all four purine nucleobases. Interconversion occurs only in the direction of adenine to guanine nucleotides.« less

  9. 8-Chloroadenine: a novel product formed from hypochlorous acid-induced damage to calf thymus DNA.

    PubMed

    Matthew Whiteman Andrew Jenner Barry Halliwell

    1999-01-01

    Hypochlorous acid (HOCl) is formed by the action of the enzyme myeloperoxidase on hydrogen peroxide and chloride ions. It has been shown to be highly bactericidal and cytotoxic by a variety of mechanisms, one of which, may be the modification of DNA. Previously we have demonstrated by GC-MS analysis that exposure of calf thymus DNA to HOCl causes extensive pyrimidine modification, including 5-chlorocytosine formation. Using GC-MS analysis, we now demonstrate the formation of an additional chlorinated base product, 8-Cl adenine. The addition of 50 μM HOCl was sufficient to produce a significant increase in this product. The reaction of HOCl with adenine in calf thymus DNA was shown to be rapid with the reaction complete after 1 min. pH-dependence studies suggest HOCl rather than its conjugate base (OCl-) to be responsible for 8-Cl adenine formation. Other commercially available chlorinated base products, 6-Cl guanine or 2-Cl adenine were not detected. Therefore, 8-Cl adenine might prove a useful biomarker for studying the role of reactive chlorine species (RCS) during inflammatory processes.

  10. Selective killing of tumors deficient in methylthioadenosine phosphorylase: a novel strategy.

    PubMed

    Lubin, Martin; Lubin, Adam

    2009-05-29

    The gene for methylthioadenosine phosphorylase (MTAP) lies on 9p21, close to the gene CDKN2A that encodes the tumor suppressor proteins p16 and p14ARF. MTAP and CDKN2A are homozygously co-deleted, with a frequency of 35 to 70%, in lung and pancreatic cancer, glioblastoma, osteosarcoma, soft-tissue sarcoma, mesothelioma, and T-cell acute lymphoblastic leukemia. In normal cells, but not in tumor cells lacking MTAP, MTAP cleaves the natural substrate, 5'-deoxy-5'-methylthioadenosine (MTA), to adenine and 5-methylthioribose-1-phosphate (MTR-1-P), which are then converted to adenine nucleotides and methionine. This distinct difference between normal MTAP-positive cells and tumor MTAP-negative cells led to several proposals for therapy. We offer a novel strategy in which both MTA and a toxic adenine analog, such as 2,6-diaminopurine (DAP), 6-methylpurine (MeP), or 2-fluoroadenine (F-Ade), are administered. In MTAP-positive cells, abundant adenine, generated from supplied MTA, competitively blocks the conversion of an analog, by adenine phosphoribosyltransferase (APRT), to its active nucleotide form. In MTAP-negative tumor cells, the supplied MTA cannot generate adenine; hence conversion of the analog is not blocked. We show that this combination treatment--adenine analog plus MTA--kills MTAP-negative A549 lung tumor cells, while MTAP-positive human fibroblasts (HF) are protected. In co-cultures of the breast tumor cell line, MCF-7, and HF cells, MCF-7 is inhibited or killed, while HF cells proliferate robustly. 5-Fluorouracil (5-FU) and 6-thioguanine (6-TG) may also be used with our strategy. Though neither analog is activated by APRT, in MTAP-positive cells, adenine produced from supplied MTA blocks conversion of 5-FU and 6-TG to their toxic nucleotide forms by competing for 5-phosphoribosyl-1-pyrophosphate (PRPP). The combination of MTA with 5-FU or 6-TG, in the treatment of MTAP-negative tumors, may produce a significantly improved therapeutic index. We describe a selective strategy to kill tumor cells lacking MTAP.

  11. Catalytic Mechanism and Three-Dimensional Structure of Adenine Deaminase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamat, S.S.; Swaminathan, S.; Bagaria, A.

    2011-03-22

    Adenine deaminase (ADE) catalyzes the conversion of adenine to hypoxanthine and ammonia. The enzyme isolated from Escherichia coli using standard expression conditions was low for the deamination of adenine (k{sub cat} = 2.0 s{sup -1}; k{sub cat}/K{sub m} = 2.5 x 10{sup 3} M{sup -1} s{sup -1}). However, when iron was sequestered with a metal chelator and the growth medium was supplemented with Mn{sup 2+} prior to induction, the purified enzyme was substantially more active for the deamination of adenine with kcat and kcat/Km values of 200 s{sup -1} and 5 x 10{sup 5} M{sup -1} s{sup -1}, respectively. Themore » apoenzyme was prepared and reconstituted with Fe{sup 2+}, Zn{sup 2+}, or Mn{sup 2+}. In each case, two enzyme equivalents of metal were necessary for reconstitution of the deaminase activity. This work provides the first example of any member of the deaminase subfamily of the amidohydrolase superfamily to utilize a binuclear metal center for the catalysis of a deamination reaction. [Fe{sup II}/Fe{sup II}]-ADE was oxidized to [Fe{sup III}/Fe{sup III}]-ADE with ferricyanide with inactivation of the deaminase activity. Reducing [Fe{sup III}/Fe{sup III}]-ADE with dithionite restored the deaminase activity, and thus, the diferrous form of the enzyme is essential for catalytic activity. No evidence of spin coupling between metal ions was evident by electron paramagnetic resonance or Moessbauer spectroscopy. The three-dimensional structure of adenine deaminase from Agrobacterium tumefaciens (Atu4426) was determined by X-ray crystallography at 2.2 {angstrom} resolution, and adenine was modeled into the active site on the basis of homology to other members of the amidohydrolase superfamily. On the basis of the model of the adenine-ADE complex and subsequent mutagenesis experiments, the roles for each of the highly conserved residues were proposed. Solvent isotope effects, pH-rate profiles, and solvent viscosity were utilized to propose a chemical reaction mechanism and the identity of the rate-limiting steps.« less

  12. Catalytic Mechanism and Three-Dimensional Structure of Adenine Deaminase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S Kamat; A Bagaria; D Kumaran

    2011-12-31

    Adenine deaminase (ADE) catalyzes the conversion of adenine to hypoxanthine and ammonia. The enzyme isolated from Escherichia coli using standard expression conditions was low for the deamination of adenine (k{sub cat} = 2.0 s{sup -1}; k{sub cat}/K{sub m} = 2.5 x 10{sup 3} M{sup -1} s{sup -1}). However, when iron was sequestered with a metal chelator and the growth medium was supplemented with Mn{sup 2+} prior to induction, the purified enzyme was substantially more active for the deamination of adenine with k{sub cat} and k{sub cat}/K{sub m} values of 200 s{sup -1} and 5 x 10{sup 5} M{sup -1} s{supmore » -1}, respectively. The apoenzyme was prepared and reconstituted with Fe{sup 2+}, Zn{sup 2+}, or Mn{sup 2+}. In each case, two enzyme equivalents of metal were necessary for reconstitution of the deaminase activity. This work provides the first example of any member of the deaminase subfamily of the amidohydrolase superfamily to utilize a binuclear metal center for the catalysis of a deamination reaction. [Fe{sup II}/Fe{sup II}]-ADE was oxidized to [Fe{sup III}/Fe{sup III}]-ADE with ferricyanide with inactivation of the deaminase activity. Reducing [Fe{sup III}/Fe{sup III}]-ADE with dithionite restored the deaminase activity, and thus, the diferrous form of the enzyme is essential for catalytic activity. No evidence of spin coupling between metal ions was evident by electron paramagnetic resonance or Moessbauer spectroscopy. The three-dimensional structure of adenine deaminase from Agrobacterium tumefaciens (Atu4426) was determined by X-ray crystallography at 2.2 {angstrom} resolution, and adenine was modeled into the active site on the basis of homology to other members of the amidohydrolase superfamily. On the basis of the model of the adenine-ADE complex and subsequent mutagenesis experiments, the roles for each of the highly conserved residues were proposed. Solvent isotope effects, pH-rate profiles, and solvent viscosity were utilized to propose a chemical reaction mechanism and the identity of the rate-limiting steps.« less

  13. Randomised double-blind trial of acyclovir (Zovirax) and adenine arabinoside in herpes simplex amoeboid corneal ulceration.

    PubMed

    Collum, L M; Logan, P; McAuliffe-Curtin, D; Hung, S O; Patterson, A; Rees, P J

    1985-11-01

    Fifty-one patients were treated in a dual-centre, double-blind comparison of acyclovir and adenine arabinoside in herpetic amoeboid (geographic) corneal ulceration. Twenty-four of the 25 patients receiving acyclovir healed in a mean time of 12.2 days, while 24 of the 26 patients treated with adenine arabinoside healed in a mean time of 11.0 days. There was no statistically significant difference between the two groups in terms of healing. A second analysis, excluding any patients who had received antiviral treatment immediately prior to entry into the study, showed that 18 of the 19 who received acyclovir healed in an average of 11.7 days and 18 of the 19 recipients of adenine arabinoside healed in a mean time of 11.2 days. Again the difference was not statistically significant.

  14. [Regulation of age-dependent phenomena. Influence of C6-substituted purines on cell aggregation and cell migration in primary cultures of lense epithelial cells].

    PubMed

    Glässer, D; Iwig, M; Weber, E

    1975-01-01

    The existence of an age dependent latent period of cell emigration has been proved in the primary culture of epithelial cells of bovine lenses. The previously described aggregation phenomenon as well as the latent period of the cell emigration increase with the age of the sponsor animals. Extracellular adenine and other C6-substituted purines, isolated from the cells themselves and added to the medium, act the same way on the lens cells in the primary culture as the increasing age of the sponsor animals. Adenine stimulates cell aggregation and inhibits the adhesion of the cells to the substratum, the cell flattening and the cell migration. The adenine action has been proved down to a concentration of 3 X 10(-6) M. During the primary culture, the lens cells gradually los the adenine sensitivity. The adenine action also occurs on single cells, isolated by trypsination, it differs from the reaction of ouabain and can be removed at low concentration by washing procedures. The results favour the suggestion C6-substituted purines to be involved in cell ageing.

  15. Effect of aqueous extract and anthocyanins of calyces of Hibiscus sabdariffa (Malvaceae) in rats with adenine-induced chronic kidney disease.

    PubMed

    Ali, Badreldin H; Cahliková, Lucie; Opletal, Lubomir; Karaca, Turan; Manoj, Priyadarsini; Ramkumar, Aishwarya; Al Suleimani, Yousuf M; Al Za'abi, Mohammed; Nemmar, Abderrahim; Chocholousova-Havlikova, Lucie; Locarek, Miroslav; Siatka, Tomas; Blunden, Gerald

    2017-09-01

    The aim of this work was to assess the possible beneficial effects of aqueous extracts of Hibiscus sabdariffa L. calyces and anthocyanins isolated therefrom in an adenine-induced chronic kidney disease (CKD) model. Rats were orally given, for 28 consecutive days, either adenine alone or together with either aqueous extract of H. sabdariffa calyces (5 and 10%) or anthocyanins (50, 100 and 200 mg/kg of anthocyanin concentrate). For comparative purposes, two groups of rats were given lisinopril (10 mg/kg). When either H. sabdariffa aqueous extract or the anthocyanins isolated from it was administered along with adenine, the adverse effects of adenine-induced CKD were significantly lessened, mostly in a dose-dependent manner. The positive effects were similar to those obtained by administration of lisinopril. The results obtained show that both H. sabdariffa and its anthocyanins could be considered as possible promising safe dietary agents that could be used to attenuate the progression of human CKD. This could have added significance as H. sabdariffa tea is widely consumed in many parts of Africa and Asia and is thus readily available. © 2017 Royal Pharmaceutical Society.

  16. Cleavage of nicotinamide adenine dinucleotide by the ribosome-inactivating protein from Momordica charantia.

    PubMed

    Vinkovic, M; Dunn, G; Wood, G E; Husain, J; Wood, S P; Gill, R

    2015-09-01

    The interaction of momordin, a type 1 ribosome-inactivating protein from Momordica charantia, with NADP(+) and NADPH has been investigated by X-ray diffraction analysis of complexes generated by co-crystallization and crystal soaking. It is known that the proteins of this family readily cleave the adenine-ribose bond of adenosine and related nucleotides in the crystal, leaving the product, adenine, bound to the enzyme active site. Surprisingly, the nicotinamide-ribose bond of oxidized NADP(+) is cleaved, leaving nicotinamide bound in the active site in the same position but in a slightly different orientation to that of the five-membered ring of adenine. No binding or cleavage of NADPH was observed at pH 7.4 in these experiments. These observations are in accord with current views of the enzyme mechanism and may contribute to ongoing searches for effective inhibitors.

  17. CdSe quantum dot internalization by Bacillus subtilis and Escherichia coli

    NASA Astrophysics Data System (ADS)

    Kloepfer, Jeremiah A.; Mielke, Randall E.; Nadeau, Jay L.

    2004-06-01

    Biological labeling has been demonstrated with CdSe quantum dots in a variety of animal cells, but bacteria are harder to label because of their cell walls. We discuss the challenges of using minimally coated, bare CdSe quantum dots as luminescent internal labels for bacteria. These quantum dots were solubilized with mercaptoacetic acid and conjugated to adenine. Significant evidence for the internal staining of Bacillus subtilis (Gram positive) and Escherichia coli (Gram negative) using these structures is presented via steady-state emission, epifluorescence microscopy, transmission electron microscopy, and energy dispersive spectroscopy. In particular, the E. coli adenine auxotroph, and not the wild type, took up adenine coated quantum dots, and this only occurred in adenine deficient growth media. Labeling strength was enhanced by performing the incubation under room light. This process was examined with steady-state emission spectra and time-resolved luminescence profiles obtained from time-correlated-single-photon counting.

  18. Antinociceptive effect of purine nucleotides.

    PubMed

    Mello, C F; Begnini, J; De-La-Vega, D D; Lopes, F P; Schwartz, C C; Jimenez-Bernal, R E; Bellot, R G; Frussa-Filho, R

    1996-10-01

    The antinociceptive effect of purine nucleotides administered systematically (sc) was determined using the formalin and writhing tests in adult male albino mice. The mechanisms underlying nucleotide-induced antinociception were investigated by preinjecting the animals (sc) with specific antagonists for opioid (naloxone, 1 mg/kg), purinergic P1 (caffeine, 5, 10, of 30 mg/kg); theophylline, 10 mg/kg) or purinergic P2 receptors (suramin, 100 mg/kg; Coomassie blue, 30-300 mg/kg; quinidine, 10 mg/kg). Adenosine, adenosine monophosphate (AMP), diphosphate (ADP) and triphosphate (ATP) caused a reduction in the number of writhes and in the time of licking the formalin-injected paw. Naloxone had no effect on adenosine- or adenine nucleotide-induced antinociception. Caffeine (30 mg/kg) and theophylline (10 mg/kg) reversed the antinociceptive action of adenosine and adenine nucleotide derivatives in both tests. P2 antagonists did not reverse adenine nucleotide-induced antinociception. These results suggest that antinociceptive effect of adenine nucleotides is mediated by adenosine.

  19. Hydrothermal stability of adenine under controlled fugacities of N2, CO2 and H2.

    PubMed

    Franiatte, Michael; Richard, Laurent; Elie, Marcel; Nguyen-Trung, Chinh; Perfetti, Erwan; LaRowe, Douglas E

    2008-04-01

    An experimental study has been carried out on the stability of adenine (one of the five nucleic acid bases) under hydrothermal conditions. The experiments were performed in sealed autoclaves at 300 degrees C under fugacities of CO(2), N(2) and H(2) supposedly representative of those in marine hydrothermal systems on the early Earth. The composition of the gas phase was obtained from the degradation of oxalic acid, sodium nitrite and ammonium chloride, and the oxidation of metallic iron. The results of the experiments indicate that after 200 h, adenine is still present in detectable concentration in the aqueous phase. In fact, the concentration of adenine does not seem to be decreasing after approximately 24 h, which suggests that an equilibrium state may have been established with the inorganic constituents of the hydrothermal fluid. Such a conclusion is corroborated by independent thermodynamic calculations.

  20. Brain purine metabolism and xanthine dehydrogenase/oxidase conversion in hyperammonemia are under control of NMDA receptors and nitric oxide.

    PubMed

    Kaminsky, Yury; Kosenko, Elena

    2009-10-19

    In hyperammonemia, a decrease in brain ATP can be a result of adenine nucleotide catabolism. Xanthine dehydrogenase (XD) and xanthine oxidase (XO) are the end steps in the purine catabolic pathway and directly involved in depletion of the adenylate pool in the cell. Besides, XD can easily be converted to XO to produce reactive oxygen species in the cell. In this study, the effects of acute ammonia intoxication in vivo on brain adenine nucleotide pool and xanthine and hypoxanthine, the end degradation products of adenine nucleotides, during the conversion of XD to XO were studied. Injection of rats with ammonium acetate was shown to lead to the dramatic decrease in the ATP level, adenine nucleotide pool size and adenylate energy charge and to the great increase in hypoxanthine and xanthine 11 min after the lethal dose indicating rapid degradation of adenylates. Conversion of XD to XO in hyperammonemic rat brain was evidenced by elevated XO/XD activity ratio. Injection of MK-801, a NMDA receptor blocker, prevented ammonia-induced catabolism of adenine nucleotides and conversion of XD to XO suggesting that in vivo these processes are mediated by activation of NMDA receptors. The in vitro dose-dependent effects of sodium nitroprusside, a NO donor, on XD and XO activities are indicative of the direct modification of the enzymes by nitric oxide. This is the first report evidencing the increase in brain xanthine and hypoxanthine levels and adenine nucleotide breakdown in acute ammonia intoxication and NMDA receptor-mediated prevention of these alterations.

  1. ON THE INTERACTION OF ADENINE WITH IONIZING RADIATION: MECHANISTICAL STUDIES AND ASTROBIOLOGICAL IMPLICATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, Nicholas L.; Ullrich, Susanne; Bennett, Chris J.

    2011-04-01

    The molecular inventory available on the prebiotic Earth was likely derived from both terrestrial and extraterrestrial sources. A complete description of which extraterrestrial molecules may have seeded early Earth is therefore necessary to fully understand the prebiotic evolution which led to life. Galactic cosmic rays (GCRs) are expected to cause both the formation and destruction of important biomolecules-including nucleic acid bases such as adenine-in the interstellar medium within the ices condensed on interstellar grains. The interstellar ultraviolet (UV) component is expected to photochemically degrade gas-phase adenine on a short timescale of only several years. However, the destruction rate is expectedmore » to be significantly reduced when adenine is shielded in dense molecular clouds or even within the ices of interstellar grains. Here, biomolecule destruction by the energetic charged particle component of the GCR becomes important as it is not fully attenuated. Presented here are results on the destruction rate of the nucleobase adenine in the solid state at 10 K by energetic electrons, as generated in the track of cosmic ray particles as they penetrate ices. When both UV and energetic charged particle destructive processes are taken into account, the half-life of adenine within dense interstellar clouds is found to be {approx}6 Myr, which is on the order of a star-forming molecular cloud. We also discuss chemical reaction pathways within the ices to explain the production of observed species, including the formation of nitriles (R-C{identical_to}N), epoxides (C-O-C), and carbonyl functions (R-C=O).« less

  2. Effect of atracylodes rhizome polysaccharide in rats with adenine-induced chronic renal failure.

    PubMed

    Yang, C; Liu, C; Zhou, Q; Xie, Y C; Qiu, X M; Feng, X

    2015-01-01

    The aim of the study was to elucidate the therapeutic effects of Atracylodes rhizome polysaccharide on adenine-induced chronic renal failure in rats. Fifty male Sprague Dawley rats were selected and randomly divided in to 5 groups (n=10 rats per group): The normal control group, the chronic renal failure pathological control group, the dexamethasone treatment group and two Atracylodes rhizome polysaccharide treatment groups, treated with two different concentrations of the polysaccharide, the Atracylodes rhizome polysaccharide high group and the Atracylodes rhizome polysaccharide low group. All the rats, except those in the normal control group were fed adenine-enriched diets, containing 10 g adenine per kg food for 3 weeks. After being fed with adenine, the dexamethasone treatment group, Atracylodes rhizome polysaccharide high group and Atracylodes rhizome polysaccharide low group rats were administered the drug orally for 2 weeks. On day 35, the kidney coefficient of the rats and the serum levels of creatinine, blood urea nitrogen, total protein and hemalbumin were determined. Subsequent to experimentation on a model of chronic renal failure in rats, the preparation was proven to be able to reduce serum levels of creatinine, blood urea nitrogen and hemalbumin levels (P<0.05) and improve renal function. Atracylodes rhizome polysaccharide had reversed the majority of the indices of chronic renal failure in rats.

  3. Adenine formation from adenosine by mycoplasmas: adenosine phosphorylase activity.

    PubMed Central

    Hatanaka, M; Del Giudice, R; Long, C

    1975-01-01

    Mammalian cells have enzymes to convert adenosine to inosine by deamination and inosine to hypoxanthine by phosphorolysis, but they do not possess the enzymes necessary to form the free base, adenine, from adenosine. Mycoplasmas grown in broth or in cell cultures can produce adenine from adenosine. This activity was detected in a variety of mycoplasmatales, and the enzyme was shown to be adenosine phosphorylase. Adenosine formation from adenine and ribose 1-phosphate, the reverse reaction of adenine formation from adenosine, was also observed with the mycoplasma enzyme. Adenosine phosphorylase is apparently common to the mycoplasmatales but it is not universal, and the organisms can be divided into three groups on the basis of their use of adenosine as substrate. Thirteen of 16 Mycoplasma, Acholeplasma, and Siroplasma species tested exhibit adenosine phosphorylase activity. M. lipophilium differed from the other mycoplasmas and shared with mammalian cells the ability to convert adenosine to inosine by deamination. M. pneumoniae and the unclassified M. sp. 70-159 showed no reaction with adenosine. Adenosine phosphorylase activity offers an additional method for the detection of mycoplasma contamination of cells. The patterns of nucleoside metabolism will provide additional characteristics for identification of mycoplasmas and also may provide new insight into the classification of mycoplasmas. PMID:236559

  4. DNA precursor pool: a significant target for N-methyl-N-nitrosourea in C3H/10T1/2 clone 8 cells.

    PubMed Central

    Topal, M D; Baker, M S

    1982-01-01

    Synchronized C3H/10T1/2 clone 8 cells were treated in vitro with a nontoxic dose of N-methyl-N-nitrosourea during their S phase. Chromatographic isolation of the deoxyribonucleotide DNA precursor pool and measurement of the precursor content per cell showed that a nucleic acid residue in the precursor pool is 190-13,000 times more susceptible to methylation than a residue in the DNA duplex, depending on the site of methylation. This conclusion comes from measurements indicating that, for example, the N-1 position of adenine in dATP is 6.3 times more methylated than the same position in the DNA, even though the adenine content of the pool is only a fraction (0.0005) of the adenine content of the DNA helix. The comparative susceptibility between pool and DNA was found to vary with the site of methylation in the order the N-1 position of adenine greater than phosphate greater than the N-3 position of adenine greater than the O6 position of guanine greater than the N-7 position of guanine. The significance of these results for chemical mutagenesis and carcinogenesis is discussed. PMID:6954535

  5. Probing adenine rings and backbone linkages using base specific isotope-edited Raman spectroscopy: application to group II intron ribozyme domain V.

    PubMed

    Chen, Yuanyuan; Eldho, Nadukkudy V; Dayie, T Kwaku; Carey, Paul R

    2010-04-27

    Raman difference spectroscopy is used to probe the properties of a 36-nt RNA molecule, "D5", which lies at the heart of the catalytic apparatus in group II introns. For D5 that has all of its adenine residues labeled with (13)C and (15)N and utilizing Raman difference spectroscopy, we identify the conformationally sensitive -C-O-P-O-C- stretching modes of the unlabeled bonds adjacent to adenine bases, as well as the adenine ring modes themselves. The phosphodiester modes can be assigned to individual adenine residues based on earlier NMR data. The effect of Mg(2+) binding was explored by analyzing the Raman difference spectra for [D5 + Mg(2+)] minus [D5 no Mg(2+)], for D5 unlabeled, or D5 labeled with (13)C/(15)N-enriched adenine. In both sets of data we assign differential features to G ring modes perturbed by Mg(2+) binding at the N7 position. In the A-labeled spectra we attribute a Raman differential near 1450 cm(-1) and changes of intensity at 1296 cm(-1) to Mg binding at the N7 position of adenine bases. The A and G bases involved in Mg(2+) binding again can be identified using earlier NMR results. For the unlabeled D5, a change in the C-O-P-O-C stretch profile at 811 cm(-1) upon magnesium binding is due to a "tightening up" (in the sense of a more rigid molecule with less dynamic interchange among competing ribose conformers) of the D5 structure. For adenine-labeled D5, small changes in the adenine backbone bond signatures in the 810-830 cm(-1) region suggest that small conformational changes occur in the tetraloop and bulge regions upon binding of Mg(2+). The PO(2)(-) stretching vibration, near 1100 cm(-1), from the nonbridging phosphate groups, probes the effect of Mg(2+)-hydrate inner-sphere interactions that cause an upshift. In turn, the upshift is modulated by the presence of monovalent cations since in the presence of Na(+) and Li(+) the upshift is 23 +/- 2 cm(-1) while in the presence of K(+) and Cs(+) it is 13 +/- 3 cm(-1), a finding that correlates with the differences in hydration radii. These subtle differences in electrostatic interactions may be related to observed variations in catalytic activity. For a reconstructed ribozyme comprising domains 1-3 (D123) connected in cis plus domain 5 (D5) supplied in trans, cleavage of spliced exon substrates in the presence of magnesium and K(+) or Cs(+) is more efficient than that in the presence of magnesium with Na(+) or Li(+).

  6. Distinctive Spectral Features of Exciton and Excimer States in the Ultrafast Electronic Deactivation of the Adenine Dinucleotide

    NASA Astrophysics Data System (ADS)

    Stuhldreier, Mayra C.; Röttger, Katharina; Temps, Friedrich

    We report the observation by transient absorption spectroscopy of distinctive spectro-temporal signatures of delocalized exciton versus relaxed, weakly bound excimer states in the ultrafast electronic deactivation after UV photoexcitation of the adenine dinucleotide.

  7. Characterization of the Adsorption of Nucleic Acid Bases onto Ferrihydrite via Fourier Transform Infrared and Surface-Enhanced Raman Spectroscopy and X-ray Diffractometry.

    PubMed

    Canhisares-Filho, José E; Carneiro, Cristine E A; de Santana, Henrique; Urbano, Alexandre; da Costa, Antonio C S; Zaia, Cássia T B V; Zaia, Dimas A M

    2015-09-01

    Minerals could have played an important role in concentration, protection, and polymerization of biomolecules. Although iron is the fourth most abundant element in Earth's crust, there are few works in the literature that describe the use of iron oxide-hydroxide in prebiotic chemistry experiments. In the present work, the interaction of adenine, thymine, and uracil with ferrihydrite was studied under conditions that resemble those of prebiotic Earth. At acidic pH, anions in artificial seawater decreased the pH at the point of zero charge (pHpzc) of ferrihydrite; and at basic pH, cations increased the pHpzc. The adsorption of nucleic acid bases onto ferrihydrite followed the order adenine > uracil > thymine. Adenine adsorption peaked at neutral pH; however, for thymine and uracil, adsorption increased with increasing pH. Electrostatic interactions did not appear to play an important role on the adsorption of nucleic acid bases onto ferrihydrite. Adenine adsorption onto ferrihydrite was higher in distilled water compared to artificial seawater. After ferrihydrite was mixed with artificial seawaters or nucleic acid bases, X-ray diffractograms and Fourier transform infrared spectra did not show any change. Surface-enhanced Raman spectroscopy showed that the interaction of adenine with ferrihydrite was not pH-dependent. In contrast, the interactions of thymine and uracil with ferrihydrite were pH-dependent such that, at basic pH, thymine and uracil lay flat on the surface of ferrihydrite, and at acidic pH, thymine and uracil were perpendicular to the surface. Ferrihydrite adsorbed much more adenine than thymine; thus adenine would have been better protected against degradation by hydrolysis or UV radiation on prebiotic Earth.

  8. Zhen-wu-tang ameliorates adenine-induced chronic renal failure in rats: regulation of the canonical Wnt4/beta-catenin signaling in the kidneys.

    PubMed

    La, Lei; Wang, Lili; Qin, Fei; Jiang, Jian; He, Songqi; Wang, Chunxia; Li, Yuhao

    2018-06-12

    Zhen-wu-tang (ZWT), composed of Radix Aconiti lateralis, Rhizoma Atractylodis macrocephalae, Poria, Radix Paeoniae alba and ginger, is a classic Chinese herbal formula for the treatment of chronic kidney diseases that may cause chronic renal failure (CRF). To better understand its clinical use, this study investigated the effects and underlying mechanisms of action of ZWT on CRF. CRF was induced by adenine. ZWT was given via an oral gavage method. The serum biochemical parameters were measured enzymatically or by ELISA. The kidneys were examined pathohistologically. The gene expression was analyzed by real time PCR and Western blot. Similar to the positive control losartan, ZWT extract inhibited adenine-induced increase in serum concentrations of creatinine, BUN and advanced oxidation protein products in rats. These effects were accompanied by attenuation of proteinuria and renal pathological changes and suppression of renal mRNA and protein overexpression of Collagen IV and fibronectin, two of the key components of fibrosis. Mechanistically, renal mRNA and protein expression of Wnt4, a Wnt signaling ligand, was increased in the adenine-treated group, compared to the vehicle-treated control. Consistently, Wnt4 downstream genes beta-catenin and Axin were also overexpressed. Treatment with ZWT extract and losartan suppressed adenine-stimulated overexpression of these mRNAs and proteins. The present results demonstrate that ZWT extract ameliorates adenine-induced CRF in rats by regulation of the canonical Wnt4/beta-catenin signaling in the kidneys. Our findings provide new insight into the underlying renoprotective mechanisms of the ancient formula. Copyright © 2017. Published by Elsevier B.V.

  9. Adenine nucleotide-dependent and redox-independent control of mitochondrial malate dehydrogenase activity in Arabidopsis thaliana.

    PubMed

    Yoshida, Keisuke; Hisabori, Toru

    2016-06-01

    Mitochondrial metabolism is important for sustaining cellular growth and maintenance; however, the regulatory mechanisms underlying individual processes in plant mitochondria remain largely uncharacterized. Previous redox-proteomics studies have suggested that mitochondrial malate dehydrogenase (mMDH), a key enzyme in the tricarboxylic acid (TCA) cycle and redox shuttling, is under thiol-based redox regulation as a target candidate of thioredoxin (Trx). In addition, the adenine nucleotide status may be another factor controlling mitochondrial metabolism, as respiratory ATP production in mitochondria is believed to be influenced by several environmental stimuli. Using biochemical and reverse-genetic approaches, we addressed the redox- and adenine nucleotide-dependent regulation of mMDH in Arabidopsis thaliana. Recombinant mMDH protein formed intramolecular disulfide bonds under oxidative conditions, but these bonds did not have a considerable effect on mMDH activity. Mitochondria-localized o-type Trx (Trx-o) did not facilitate re-reduction of oxidized mMDH. Determination of the in vivo redox state revealed that mMDH was stably present in the reduced form even in Trx-o-deficient plants. Accordingly, we concluded that mMDH is not in the class of redox-regulated enzymes. By contrast, mMDH activity was lowered by adenine nucleotides (AMP, ADP, and ATP). Each adenine nucleotide suppressed mMDH activity with different potencies and ATP exerted the largest inhibitory effect with a significantly lower K(I). Correspondingly, mMDH activity was inhibited by the increase in ATP/ADP ratio within the physiological range. These results suggest that mMDH activity is finely controlled in response to variations in mitochondrial adenine nucleotide balance. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Lack of hepcidin ameliorates anemia and improves growth in an adenine-induced mouse model of chronic kidney disease

    PubMed Central

    Sureshbabu, Angara; Doty, Steve B.; Zhu, Yuan-Shan; Patino, Edwin; Cunningham-Rundles, Susanna; Choi, Mary E.; Boskey, Adele; Rivella, Stefano

    2016-01-01

    Growth delay is common in children with chronic kidney disease (CKD), often associated with poor quality of life. The role of anemia in uremic growth delay is poorly understood. Here we describe an induction of uremic growth retardation by a 0.2% adenine diet in wild-type (WT) and hepcidin gene (Hamp) knockout (KO) mice, compared with their respective littermates fed a regular diet. Experiments were started at weaning (3 wk). After 8 wk, blood was collected and mice were euthanized. Adenine-fed WT mice developed CKD (blood urea nitrogen 82.8 ± 11.6 mg/dl and creatinine 0.57 ± 0.07 mg/dl) and were 2.1 cm shorter compared with WT controls. WT adenine-fed mice were anemic and had low serum iron, elevated Hamp, and elevated IL6 and TNF-α. WT adenine-fed mice had advanced mineral bone disease (serum phosphorus 16.9 ± 3.1 mg/dl and FGF23 204.0 ± 115.0 ng/ml) with loss of cortical and trabecular bone volume seen on microcomputed tomography. Hamp disruption rescued the anemia phenotype resulting in improved growth rate in mice with CKD, thus providing direct experimental evidence of the relationship between Hamp pathway and growth impairment in CKD. Hamp disruption ameliorated CKD-induced growth hormone-insulin-like growth factor 1 axis derangements and growth plate alterations. Disruption of Hamp did not mitigate the development of uremia, inflammation, and mineral and bone disease in this model. Taken together, these results indicate that an adenine diet can be successfully used to study growth in mice with CKD. Hepcidin appears to be related to pathways of growth retardation in CKD suggesting that investigation of hepcidin-lowering therapies in juvenile CKD is warranted. PMID:27440777

  11. Simulation Concept - How to Exploit Tools for Computing Hybrids

    DTIC Science & Technology

    2010-06-01

    biomolecular reactions ................................................................ 42  Figure 30: Overview of MATLAB Implementation...Figure 50: Adenine graphed using MATLAB (left) and OpenGL (right) ........................ 70  Figure 51: An overhead view of a thymine and adenine base...93  Figure 68: Response frequency solution from MATLAB

  12. Sequencing of adenine in DNA by scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiroyuki; Taniguchi, Masateru

    2017-08-01

    The development of DNA sequencing technology utilizing the detection of a tunnel current is important for next-generation sequencer technologies based on single-molecule analysis technology. Using a scanning tunneling microscope, we previously reported that dI/dV measurements and dI/dV mapping revealed that the guanine base (purine base) of DNA adsorbed onto the Cu(111) surface has a characteristic peak at V s = -1.6 V. If, in addition to guanine, the other purine base of DNA, namely, adenine, can be distinguished, then by reading all the purine bases of each single strand of a DNA double helix, the entire base sequence of the original double helix can be determined due to the complementarity of the DNA base pair. Therefore, the ability to read adenine is important from the viewpoint of sequencing. Here, we report on the identification of adenine by STM topographic and spectroscopic measurements using a synthetic DNA oligomer and viral DNA.

  13. Heptacopper(II) and dicopper(II)-adenine complexes: synthesis, structural characterization, and magnetic properties

    DOE PAGES

    Leite Ferreira, B. J. M.; Brandão, Paula; Dos Santos, A. M.; ...

    2015-07-13

    The syntheses, crystal structures, and magnetic properties of two new copper(II) complexes with molecular formulas [Cu 7(μ 2-OH 2) 6(μ 3-O) 6(adenine) 6(NO 3) 26H 2O (1) and [Cu 2(μ 2-H 2O) 2(adenine) 2(H 2O) 4](NO 3) 42H 2O (2) are reported. We composed the heptanuclear compound of a central octahedral CuO 6 core sharing edges with six adjacent copper octahedra. In 2, the copper octahedra shares one equatorial edge. In both compounds, these basic copper cluster units are further linked by water bridges and bridging adenine ligands through N3 and N9 donors. All copper(II) centers exhibit Jahn-Teller distorted octahedralmore » coordination characteristic of a d 9 center. Our study of the magnetic properties of the heptacopper complex revealed a dominant ferromagnetic intra-cluster interaction, while the dicopper complex exhibits antiferromagnetic intra-dimer interactions with weakly ferromagnetic inter-dimer interaction.« less

  14. Absorption by DNA single strands of adenine isolated in vacuo: The role of multiple chromophores

    NASA Astrophysics Data System (ADS)

    Nielsen, Lisbeth Munksgaard; Pedersen, Sara Øvad; Kirketerp, Maj-Britt Suhr; Nielsen, Steen Brøndsted

    2012-02-01

    The degree of electronic coupling between DNA bases is a topic being up for much debate. Here we report on the intrinsic electronic properties of isolated DNA strands in vacuo free of solvent, which is a good starting point for high-level excited states calculations. Action spectra of DNA single strands of adenine reveal sign of exciton coupling between stacked bases from blueshifted absorption bands (˜3 nm) relative to that of the dAMP mononucleotide (one adenine base). The bands are blueshifted by about 10 nm compared to those of solvated strands, which is a shift similar to that for the adenine molecule and the dAMP mononucleotide. Desolvation has little effect on the bandwidth, which implies that inhomogenous broadening of the absorption bands in aqueous solution is of minor importance compared to, e.g., conformational disorder. Finally, at high photon energies, internal conversion competes with electron detachment since dissociation of the bare photoexcited ions on the microsecond time scale is measured.

  15. Raman Spectroscopy of the Interferon-Induced 2’,5’-Oligoadenylates

    DTIC Science & Technology

    1987-06-25

    generation of the Raman spectrum of triethyl ammonium ion ••••••••••••••••••••••••••••••• 41 12. structures of purine, adenine, purine riboside , adenosine...ribose 5 1-phosphate, AMP, and ATP........ 48 13. Raman spectra of adenine and purine •••••••.••••••••• 49 14. Raman spectra of purine riboside and... nicotinamide adenine dinucleotide; TFAB, triethyl anunonium bicarbonate; TFA, triethyl amm::mium. ion; CD circular _dichroism; NMR, nuclear magnetic

  16. Dissociative Excitation of Adenine by Electron Impact

    NASA Astrophysics Data System (ADS)

    McConkey, J. William; Trocchi, Joshuah; Dech, Jeffery; Kedzierski, Wladek

    2017-04-01

    Dissociative excitation of adenine (C6H5NH2) into excited atomic fragments has been studied in the electron impact energy range from threshold to 300 eV. A crossed beam system coupled to a vacuum ultraviolet (VUV) monochromator is used to study emissions in the wavelength range from 110 to 200 nm. The beam of adenine vapor from a stainless steel oven is crossed at right angles by the electron beam and the resultant UV radiation is detected in a mutually orthogonal direction. The strongest feature in the spectrum is H Lyman- α. Financial support from NSERC and CFI, Canada, is gratefully acknowledged.

  17. Effects of low-molecular-weight-chitosan on the adenine-induced chronic renal failure rats in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Zhi, Xuan; Han, Baoqin; Sui, Xianxian; Hu, Rui; Liu, Wanshun

    2015-02-01

    The effects of low-molecular-weight-chitosan (LMWC) on chronic renal failure (CRF) rats induced by adenine were investigated in vivo and in vitro. Chitosan were hydrolyzed using chitosanase at pH 6-7 and 37° for 24 h to obtain LMWC. In vitro, the effect of LMWC on the proliferation of renal tubular epithelial cells (RTEC) showed that it had no cytotoxic effect and could promote cell growth. For the in vivo experiment, chronic renal failure rats induced by adenine were randomly divided into control group, Niaoduqing group, and high-, medium- and low-dose LMWC groups. For each group, we detected serum creatinine (SCR), blood urea nitrogen (BUN), and total superoxide dismutase (T-SOD), glutathione oxidase (GSH-Px) activities of renal tissue, and obtained the ratio of kidney weight/body weight, pathological changes of kidney. The levels of serum SCR, BUN were higher in the adenine-induced rats than those in the control group, indicating that the rat chronic renal failure model worked successfully. The results after treatment showed that LMWC could reduce the SCR and BUN levels and enhance the activities/levels of T-SOD and GSH-PX in kidney compared to control group. Histopathological examination revealed that adenine-induced renal alterations were restored by LMWC at three tested dosages, especially at the low dosage of 100 mg kg-1 d-1.

  18. The effect of swimming exercise on adenine-induced kidney disease in rats, and the influence of curcumin or lisinopril thereon

    PubMed Central

    Karaca, Turan; Al Suleimani, Yousuf; Al Za'abi, Mohammed; Al Kalbani, Jamila; Ashique, Mohammed; Nemmar, Abderrahim

    2017-01-01

    Patients with chronic kidney disease (CKD) have been reported to benefit from different types of exercises. It has also been shown that the ACE inhibitor lisinopril, and the natural product curcumin are also beneficial in different models of CKD in rats. We assessed the influence of moderate swimming exercise (SE) on rats with adenine-induced CKD, and tested the possible effects of lisinopril and/or curcumin thereon using several physiological, biochemical, histopathological and immunohistochemical parameters. Rats (either sedentary or subjected to SE) were randomly divided into several groups, and given for five weeks either normal food or food mixed with adenine (0.25% w/w) to induce CKD. Some of these groups were also concomitantly treated orally with curcumin (75 mg/kg), or lisinopril (10 mg/kg) and were subjected to moderate SE (45 min/day three days each week). Rats fed adenine showed the typical biochemical, histopathological signs of CKD such as elevations in blood pressure, urinary albumin / creatinine ratio, and plasma urea, creatinine, indoxyl sulfate and phosphorus. SE, curcumin or lisinopril, given singly, significantly ameliorated all the adenine-induced actions. Administering curcumin or lisinopril with SE improved the histopathology of the kidneys, a salutary effect not seen with SE alone. Combining SE to the nephroprotective agents’ curcumin or lisinopril might offer additional nephroprotection. PMID:28445490

  19. A hepcidin lowering agent mobilizes iron for incorporation into red blood cells in an adenine-induced kidney disease model of anemia in rats

    PubMed Central

    Sun, Chia Chi; Vaja, Valentina; Chen, Shanzhuo; Theurl, Igor; Stepanek, Aaron; Brown, Diane E.; Cappellini, Maria D.; Weiss, Guenter; Hong, Charles C.; Lin, Herbert Y.; Babitt, Jodie L.

    2013-01-01

    Background Anemia is a common complication of chronic kidney disease (CKD) that negatively impacts the quality of life and is associated with numerous adverse outcomes. Excess levels of the iron regulatory hormone hepcidin are thought to contribute to anemia in CKD patients by decreasing iron availability from the diet and from body stores. Adenine treatment in rats has been proposed as an animal model of anemia of CKD with high hepcidin levels that mirrors the condition in human patients. Methods We developed a modified adenine-induced kidney disease model with a higher survival rate than previously reported models, while maintaining persistent kidney disease and anemia. We then tested whether the small molecule bone morphogenetic protein (BMP) inhibitor LDN-193189, which was previously shown to lower hepcidin levels in rodents, mobilized iron into the plasma and improved iron-restricted erythropoiesis in this model. Results Adenine-treated rats exhibited increased hepatic hepcidin mRNA, decreased serum iron, increased spleen iron content, low hemoglobin (Hb) and inappropriately low erythropoietin (EPO) levels relative to the degree of anemia. LDN-193189 administration to adenine-treated rats lowered hepatic hepcidin mRNA, mobilized stored iron into plasma and increased Hb content of reticulocytes. Conclusions Our data suggest that hepcidin lowering agents may provide a new therapeutic strategy to improve iron availability for erythropoiesis in CKD. PMID:23345622

  20. Plastic Antibodies: Molecular Recognition with Imprinted Polymers

    ERIC Educational Resources Information Center

    Rushton, Gregory T.; Furmanski, Brian; Shimizu, Ken D.

    2005-01-01

    Synthetic polymers are prepared and tested in a study for their molecular recognition properties of an adenine derivative, ethyl adenine-9-acetate (EA9A), within two laboratory periods. The procedure introduces undergraduate chemistry students to noncovalent molecular imprinting as well as the analytical techniques for assessing their recognition…

  1. Was adenine the first purine?

    NASA Technical Reports Server (NTRS)

    Schwartz, Alan W.; Bakker, C. G.

    1989-01-01

    Oligomerization of HCN (1 molar) in the presence of added formaldehyde (0.5 molar) produced an order of magnitude more 8-hydroxymethyladenine than adenine or any other biologically significant purine. This result suggests that on the prebiotic earth, nucleoside analogs may have been synthesized directly in more complex mixtures of HCN with other aldehydes.

  2. Communication: Site-selective bond excision of adenine upon electron transfer

    NASA Astrophysics Data System (ADS)

    Cunha, T.; Mendes, M.; Ferreira da Silva, F.; Eden, S.; García, G.; Limão-Vieira, P.

    2018-01-01

    This work demonstrates that selective excision of hydrogen atoms at a particular site of the DNA base adenine can be achieved in collisions with electronegative atoms by controlling the impact energy. The result is based on analysing the time-of-flight mass spectra yields of potassium collisions with a series of labeled adenine derivatives. The production of dehydrogenated parent anions is consistent with neutral H loss either from selective breaking of C-H or N-H bonds. These unprecedented results open up a new methodology in charge transfer collisions that can initiate selective reactivity as a key process in chemical reactions that are dominant in different areas of science and technology.

  3. Proton-impact ionization cross sections of adenine measured at 0.5 and 2.0 MeV by electron spectroscopy

    NASA Astrophysics Data System (ADS)

    Iriki, Y.; Kikuchi, Y.; Imai, M.; Itoh, A.

    2011-11-01

    Double-differential ionization cross sections (DDCSs) of vapor-phase adenine molecules (C5H5N5) by 0.5- and 2.0-MeV proton impact have been measured by the electron spectroscopy method. Electrons ejected from adenine were analyzed by a 45∘ parallel-plate electrostatic spectrometer over an energy range of 1.0-1000 eV at emission angles from 15∘ to 165∘. Single-differential cross sections (SDCSs) and total ionization cross sections (TICSs) were also deduced. It was found from the Platzman plot, defined as SDCSs divided by the classical Rutherford knock-on cross sections per target electron, that the SDCSs at higher electron energies are proportional to the total number of valence electrons (50) of adenine, while those at low-energy electrons are highly enhanced due to dipole and higher-order interactions. The present results of TICS are in fairly good agreement with recent classical trajectory Monte Carlo calculations, and moreover, a simple analytical formula gives nearly equivalent cross sections in magnitude at the incident proton energies investigated.

  4. Metabolism of Exogenous Purine Bases and Nucleosides by Salmonella typhimurium

    PubMed Central

    Hoffmeyer, J.; Neuhard, J.

    1971-01-01

    Purine-requiring mutants of Salmonella typhimurium LT2 containing additional mutations in either adenosine deaminase or purine nucleoside phosphorylase have been constructed. From studies of the ability of these mutants to utilize different purine compounds as the sole source of purines, the following conclusions may be drawn. (i) S. typhimurium does not contain physiologically significant amounts of adenine deaminase and adenosine kinase activities. (ii) The presence of inosine and guanosine kinase activities in vivo was established, although the former activity appears to be of minor significance for inosine metabolism. (iii) The utilization of exogenous purine deoxyribonucleosides is entirely dependent on a functional purine nucleoside phosphorylase. (iv) The pathway by which exogenous adenine is converted to guanine nucleotides in the presence of histidine requires a functional purine nucleoside phosphorylase. Evidence is presented that this pathway involves the conversion of adenine to adenosine, followed by deamination to inosine and subsequent phosphorolysis to hypoxanthine. Hypoxanthine is then converted to inosine monophosphate by inosine monophosphate pyrophosphorylase. The rate-limiting step in this pathway is the synthesis of adenosine from adenine due to lack of endogenous ribose-l-phosphate. PMID:4928005

  5. Dietary l-Lysine Prevents Arterial Calcification in Adenine-Induced Uremic Rats

    PubMed Central

    Shimomura, Akihiro; Matsui, Isao; Hamano, Takayuki; Ishimoto, Takuya; Katou, Yumiko; Takehana, Kenji; Inoue, Kazunori; Kusunoki, Yasuo; Mori, Daisuke; Nakano, Chikako; Obi, Yoshitsugu; Fujii, Naohiko; Takabatake, Yoshitsugu; Nakano, Takayoshi; Tsubakihara, Yoshiharu; Rakugi, Hiromi

    2014-01-01

    Vascular calcification (VC) is a life-threatening complication of CKD. Severe protein restriction causes a shortage of essential amino acids, and exacerbates VC in rats. Therefore, we investigated the effects of dietary l-lysine, the first-limiting amino acid of cereal grains, on VC. Male Sprague-Dawley rats at age 13 weeks were divided randomly into four groups: low-protein (LP) diet (group LP), LP diet+adenine (group Ade), LP diet+adenine+glycine (group Gly) as a control amino acid group, and LP diet+adenine+l-lysine·HCl (group Lys). At age 18 weeks, group LP had no VC, whereas groups Ade and Gly had comparable levels of severe VC. l-Lysine supplementation almost completely ameliorated VC. Physical parameters and serum creatinine, urea nitrogen, and phosphate did not differ among groups Ade, Gly, and Lys. Notably, serum calcium in group Lys was slightly but significantly higher than in groups Ade and Gly. Dietary l-lysine strongly suppressed plasma intact parathyroid hormone in adenine rats and supported a proper bone-vascular axis. The conserved orientation of the femoral apatite in group Lys also evidenced the bone-protective effects of l-lysine. Dietary l-lysine elevated plasma alanine, proline, arginine, and homoarginine but not lysine. Analyses in vitro demonstrated that alanine and proline inhibit apoptosis of cultured vascular smooth muscle cells, and that arginine and homoarginine attenuate mineral precipitations in a supersaturated calcium/phosphate solution. In conclusion, dietary supplementation of l-lysine ameliorated VC by modifying key pathways that exacerbate VC. PMID:24652795

  6. Ameliorative effect of ursolic acid on renal fibrosis in adenine-induced chronic kidney disease in rats.

    PubMed

    Thakur, Richa; Sharma, Anshuk; Lingaraju, Madhu C; Begum, Jubeda; Kumar, Dhirendra; Mathesh, Karikalan; Kumar, Pawan; Singh, Thakur Uttam; Kumar, Dinesh

    2018-05-01

    Ursolic acid (UA), an ursane-type pentacyclic triterpenoid commonly found in apple peels and holy basil has been shown to possess many beneficial effects. Renal fibrosis is a complication of kidney injury and associated with increased risk of morbidity and mortality. In our previous investigation, a lupane-type pentacyclic triterpenoid, betulinic acid (BA) was found to have protective effect on chronic kidney disease (CKD) and renal fibrosis. This prompted us to explore the therapeutic value of UA, a chemically related compound to BA in CKD. CKD was induced by feeding adenine with the feed at a concentration of 0.75% for 28 days. UA at the dose rate of 30 mg/kg in 0.5% carboxy methyl cellulose (CMC) was administered by oral route, simultaneously with adenine feeding for 28 days. Adenine feeding increased the kidney weight to body weight index, decreased the kidney function due to injury as indicated by increased markers like serum urea, uric acid, creatinine, cystatin C and neutrophil gelatinase-associated lipocalin (NGAL) and initiated the fibrotic response in kidney by increasing the profibrotic proteins viz. transforming growth factor-beta (TGF-β), connective tissue growth factor (CTGF), fibronectin and collagen. However, treatment with UA reversed the damage induced by adenine as shown by reduced kidney injury and fibrosis markers which was further clearly evident in histological picture indicating the suitability of UA for use in CKD. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  7. Exocyclic Deoxyadenosine Adducts of 1,2,3,4-Diepoxybutane: Synthesis, Structural Elucidation, and Mechanistic Studies

    PubMed Central

    Seneviratne, Uthpala; Antsypovich, Sergey; Goggin, Melissa; Dorr, Danae Quirk; Guza, Rebecca; Moser, Adam; Thompson, Carrie; York, Darrin M.; Tretyakova, Natalia

    2009-01-01

    1,2,3,4-Diepoxybutane (DEB)1 is considered the ultimate carcinogenic metabolite of 1,3-butadiene, an important industrial chemical and environmental pollutant present in urban air. Although it preferentially modifies guanine within DNA, DEB induces a large number of A → T transversions, suggesting that it forms strongly mispairing lesions at adenine nucleobases. We now report the discovery of three potentially mispairing exocyclic adenine lesions of DEB: N6,N6-(2,3-dihydroxybutan-1,4-diyl)-2′-deoxyadenosine (compound 2), 1,N6-(2-hydroxy-3-hydroxymethylpropan-1,3-diyl)-2′-deoxyadenosine (compound 3), and 1,N6-(1-hydroxymethyl-2-hydroxypropan-1,3-diyl)-2′-deoxyadenosine (compound 4). The structures and stereochemistry of the novel DEB-dA adducts were determined by a combination of UV and NMR spectroscopy, tandem mass spectrometry, and independent synthesis. We found that synthetic N6-(2-hydroxy-3,4-epoxybut-1-yl)-2′-deoxyadenosine (compound 1) representing the product of N6-adenine alkylation by DEB spontaneously cyclizes to form 3 under aqueous conditions or 2 under anhydrous conditions in the presence of organic base. Compound 3 can be interconverted with 4 by a reversible unimolecular pericyclic reaction favoring 4 as a more thermodynamically stable product. Both 3 and 4 are present in double stranded DNA treated with DEB in vitro and in liver DNA of laboratory mice exposed to 1,3-butadiene by inhalation. We propose that in DNA under physiological conditions, DEB alkylates the N-1 position of adenine in DNA to form N1-(2-hydroxy-3,4-epoxybut-1-yl)-adenine adducts, which undergo an SN2-type intramolecular nucleophilic substitution and rearrangement to give 3 (minor) and 4 (major). Formation of exocyclic DEB-adenine lesions following exposure to 1,3-butadiene provides a possible mechanism of mutagenesis at the A:T base pairs. PMID:19883087

  8. The catalase activity of diiron adenine deaminase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamat S. S.; Swaminathan S.; Holmes-Hampton, G. P.

    2011-12-01

    Adenine deaminase (ADE) from the amidohydrolase superfamily (AHS) of enzymes catalyzes the conversion of adenine to hypoxanthine and ammonia. Enzyme isolated from Escherichia coli was largely inactive toward the deamination of adenine. Molecular weight determinations by mass spectrometry provided evidence that multiple histidine and methionine residues were oxygenated. When iron was sequestered with a metal chelator and the growth medium supplemented with Mn{sup 2+} before induction, the post-translational modifications disappeared. Enzyme expressed and purified under these conditions was substantially more active for adenine deamination. Apo-enzyme was prepared and reconstituted with two equivalents of FeSO{sub 4}. Inductively coupled plasma mass spectrometrymore » and Moessbauer spectroscopy demonstrated that this protein contained two high-spin ferrous ions per monomer of ADE. In addition to the adenine deaminase activity, [Fe{sup II}/Fe{sup II}]-ADE catalyzed the conversion of H{sub 2}O{sub 2} to O{sub 2} and H{sub 2}O. The values of k{sub cat} and k{sub cat}/K{sub m} for the catalase activity are 200 s{sup -1} and 2.4 x 10{sup 4} M{sup -1} s{sup -1}, respectively. [Fe{sup II}/Fe{sup II}]-ADE underwent more than 100 turnovers with H{sub 2}O{sub 2} before the enzyme was inactivated due to oxygenation of histidine residues critical for metal binding. The iron in the inactive enzyme was high-spin ferric with g{sub ave} = 4.3 EPR signal and no evidence of anti-ferromagnetic spin-coupling. A model is proposed for the disproportionation of H{sub 2}O{sub 2} by [Fe{sup II}/Fe{sup II}]-ADE that involves the cycling of the binuclear metal center between the di-ferric and di-ferrous oxidation states. Oxygenation of active site residues occurs via release of hydroxyl radicals. These findings represent the first report of redox reaction catalysis by any member of the AHS.« less

  9. Dietary L-lysine prevents arterial calcification in adenine-induced uremic rats.

    PubMed

    Shimomura, Akihiro; Matsui, Isao; Hamano, Takayuki; Ishimoto, Takuya; Katou, Yumiko; Takehana, Kenji; Inoue, Kazunori; Kusunoki, Yasuo; Mori, Daisuke; Nakano, Chikako; Obi, Yoshitsugu; Fujii, Naohiko; Takabatake, Yoshitsugu; Nakano, Takayoshi; Tsubakihara, Yoshiharu; Isaka, Yoshitaka; Rakugi, Hiromi

    2014-09-01

    Vascular calcification (VC) is a life-threatening complication of CKD. Severe protein restriction causes a shortage of essential amino acids, and exacerbates VC in rats. Therefore, we investigated the effects of dietary l-lysine, the first-limiting amino acid of cereal grains, on VC. Male Sprague-Dawley rats at age 13 weeks were divided randomly into four groups: low-protein (LP) diet (group LP), LP diet+adenine (group Ade), LP diet+adenine+glycine (group Gly) as a control amino acid group, and LP diet+adenine+l-lysine·HCl (group Lys). At age 18 weeks, group LP had no VC, whereas groups Ade and Gly had comparable levels of severe VC. l-Lysine supplementation almost completely ameliorated VC. Physical parameters and serum creatinine, urea nitrogen, and phosphate did not differ among groups Ade, Gly, and Lys. Notably, serum calcium in group Lys was slightly but significantly higher than in groups Ade and Gly. Dietary l-lysine strongly suppressed plasma intact parathyroid hormone in adenine rats and supported a proper bone-vascular axis. The conserved orientation of the femoral apatite in group Lys also evidenced the bone-protective effects of l-lysine. Dietary l-lysine elevated plasma alanine, proline, arginine, and homoarginine but not lysine. Analyses in vitro demonstrated that alanine and proline inhibit apoptosis of cultured vascular smooth muscle cells, and that arginine and homoarginine attenuate mineral precipitations in a supersaturated calcium/phosphate solution. In conclusion, dietary supplementation of l-lysine ameliorated VC by modifying key pathways that exacerbate VC. Copyright © 2014 by the American Society of Nephrology.

  10. Diabetic complications within the context of aging: Nicotinamide adenine dinucleotide redox, insulin C-peptide, sirtuin 1-liver kinase B1-adenosine monophosphate-activated protein kinase positive feedback and forkhead box O3.

    PubMed

    Ido, Yasuo

    2016-07-01

    Recent research in nutritional control of aging suggests that cytosolic increases in the reduced form of nicotinamide adenine dinucleotide and decreasing nicotinamide adenine dinucleotide metabolism plays a central role in controlling the longevity gene products sirtuin 1 (SIRT1), adenosine monophosphate-activated protein kinase (AMPK) and forkhead box O3 (FOXO3). High nutrition conditions, such as the diabetic milieu, increase the ratio of reduced to oxidized forms of cytosolic nicotinamide adenine dinucleotide through cascades including the polyol pathway. This redox change is associated with insulin resistance and the development of diabetic complications, and might be counteracted by insulin C-peptide. My research and others' suggest that the SIRT1-liver kinase B1-AMPK cascade creates positive feedback through nicotinamide adenine dinucleotide synthesis to help cells cope with metabolic stress. SIRT1 and AMPK can upregulate liver kinase B1 and FOXO3, key factors that help residential stem cells cope with oxidative stress. FOXO3 directly changes epigenetics around transcription start sites, maintaining the health of stem cells. 'Diabetic memory' is likely a result of epigenetic changes caused by high nutritional conditions, which disturb the quiescent state of residential stem cells and impair tissue repair. This could be prevented by restoring SIRT1-AMPK positive feedback through activating FOXO3. © 2016 The Author. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  11. Dynamics of dipole- and valence bound anions in iodide-adenine binary complexes: A time-resolved photoelectron imaging and quantum mechanical investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephansen, Anne B.; King, Sarah B.; Li, Wei-Li

    2015-09-14

    Dipole bound (DB) and valence bound (VB) anions of binary iodide-adenine complexes have been studied using one-color and time-resolved photoelectron imaging at excitation energies near the vertical detachment energy. The experiments are complemented by quantum chemical calculations. One-color spectra show evidence for two adenine tautomers, the canonical, biologically relevant A9 tautomer and the A3 tautomer. In the UV-pump/IR-probe time-resolved experiments, transient adenine anions can be formed by electron transfer from the iodide. These experiments show signals from both DB and VB states of adenine anions formed on femto- and picosecond time scales, respectively. Analysis of the spectra and comparison withmore » calculations suggest that while both the A9 and A3 tautomers contribute to the DB signal, only the DB state of the A3 tautomer undergoes a transition to the VB anion. The VB anion of A9 is higher in energy than both the DB anion and the neutral, and the VB anion is therefore not accessible through the DB state. Experimental evidence of the metastable A9 VB anion is instead observed as a shape resonance in the one-color photoelectron spectra, as a result of UV absorption by A9 and subsequent electron transfer from iodide into the empty π-orbital. In contrast, the iodide-A3 complex constitutes an excellent example of how DB states can act as doorway state for VB anion formation when the VB state is energetically available.« less

  12. The Role of the Plant Hormone Benzyl Adenine to Promote Growth for the Diatom Thalassiosira pseudonana

    NASA Astrophysics Data System (ADS)

    Gutierrez Franco, D.; Vernet, M.; Walters, R. J.; Tan, M.

    2016-02-01

    This study was inspired by the establishment of autoinduction in the model diatom Thalassiosira pseudonana, and the identification of the cytokinin plant hormone benzyl adenine (BA) as a potential autoinducer in this species via comparative genome studies. The effects of a wide range (0.0017518 mg/L-500 mg/L) of concentrations of benzyl adenine on the growth dynamics of T. pseudonana have been explored. The results suggest that a concentration of 5 mg BA/L has the highest positive effect on the growth rate of T. pseudonana batch cultures, compared to the other concentrations tested. Furthermore, concentrations of >100 mg BA/L were lethal. No marked effects on the lag phase length were observed. However, it is possible that some trade-offs between growth rate and lag phase length exist as a result of benzyl adenine. For instance, the BA concentration that exhibited the highest growth rate (5mg BA/L; µ=1.06 d-1) had a negative effect on the lag phase length (6 days), as compared to our control (lag phase length = 5 d; µ=0.81 d-1). On the other hand, at 10 mg BA/L, a slightly smaller growth rate of 1.01 d-1 was observed, with a shorter lag phase length of 4 days, suggesting that benzyl adenine may not have a positive effect on all growth parameters at once. These results provide insight into the physiological and biochemical mechanisms of cell-to-cell communication employed by diatoms, and supports the hypothesis that hormones may play an important role in bloom development.

  13. Some reactions of the hydroxyl adduct of adenine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanhemmen, J.J.

    1975-01-01

    The chemical reactions of purine derivatives resulting from pulse radiolysis were studied. Some reactions of the hydroxyl adduct of adenine are described and one of these reactions was compared with similar reactions of hydroxyl adducts of other purine derivatives. Evidence is given that in various purines opening of the imidazole ring is due to unimolecular rearrangements of the hydroxyl adducts. (GRA)

  14. Ultramicroelectrode Sensors and Detectors. Considerations of the Stability, Sensitivity, Reproducibility, and Mechanism of Ion Transport in Gas Phase Chromatography and in High Performance Liquid Phase Chromatography

    DTIC Science & Technology

    1988-07-15

    solvents were used. For high performance liquid chromatographic studies, the DNA bases thymine, adenine, cytocine, uracil, and guanine (Aldrich...this experiment. The DNA bases guanine, adenine, cytocine, uracil, and thymine were detected for a gradient elution of a mixture of the bases in a

  15. Selective self-assembly of adenine-silver nanoparticles forms rings resembling the size of cells

    NASA Astrophysics Data System (ADS)

    Choi, Sungmoon; Park, Soonyoung; Yang, Seon-Ah; Jeong, Yujin; Yu, Junhua

    2015-12-01

    Self-assembly has played critical roles in the construction of functional nanomaterials. However, the structure of the macroscale multicomponent materials built by the self-assembly of nanoscale building blocks is hard to predict due to multiple intermolecular interactions of great complexity. Evaporation of solvents is usually an important approach to induce kinetically stable assemblies of building blocks with a large-scale specific arrangement. During such a deweting process, we tried to monitor the possible interactions between silver nanoparticles and nucleobases at a larger scale by epifluorescence microscopy, thanks to the doping of silver nanoparticles with luminescent silver nanodots. ssDNA oligomer-stabilized silver nanoparticles and adenine self-assemble to form ring-like compartments similar to the size of modern cells. However, the silver ions only dismantle the self-assembly of adenine. The rings are thermodynamically stable as the drying process only enrich the nanoparticles-nucleobase mixture to a concentration that activates the self-assembly. The permeable membrane-like edge of the ring is composed of adenine filaments glued together by silver nanoparticles. Interestingly, chemicals are partially confined and accumulated inside the ring, suggesting that this might be used as a microreactor to speed up chemical reactions during a dewetting process.

  16. Mechanism Underlying the Nucleobase-Distinguishing Ability of Benzopyridopyrimidine (BPP).

    PubMed

    Kochman, Michał A; Bil, Andrzej; Miller, R J Dwayne

    2017-11-02

    Benzopyridopyrimidine (BPP) is a fluorescent nucleobase analogue capable of forming base pairs with adenine (A) and guanine (G) at different sites. When incorporated into oligodeoxynucleotides, it is capable of differentiating between the two purine nucleobases by virtue of the fact that its fluorescence is largely quenched when it is base-paired to guanine, whereas base-pairing to adenine causes only a slight reduction of the fluorescence quantum yield. In the present article, the photophysics of BPP is investigated through computer simulations. BPP is found to be a good charge acceptor, as demonstrated by its positive and appreciably large electron affinity. The selective quenching process is attributed to charge transfer (CT) from the purine nucleobase, which is predicted to be efficient in the BPP-G base pair, but essentially inoperative in the BPP-A base pair. The CT process owes its high selectivity to a combination of two factors: the ionization potential of guanine is lower than that of adenine, and less obviously, the site occupied by guanine enables a greater stabilization of the CT state through electrostatic interactions than the one occupied by adenine. The case of BPP illustrates that molecular recognition via hydrogen bonding can enhance the selectivity of photoinduced CT processes.

  17. Binding of p-mercaptobenzoic acid and adenine to gold-coated electroless etched silicon nanowires studied by surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Mohaček-Grošev, Vlasta; Gebavi, Hrvoje; Bonifacio, Alois; Sergo, Valter; Daković, Marko; Bajuk-Bogdanović, Danica

    2018-07-01

    Modern diagnostic tools ever aim to reduce the amount of analyte and the time needed for obtaining the result. Surface-enhanced Raman spectroscopy is a method that could satisfy both of these requirements, provided that for each analyte an adequate substrate is found. Here we demonstrate the ability of gold-sputtered silicon nanowires (SiNW) to bind p-mercaptobenzoic acid in 10-3, 10-4 and 10-5 M and adenine in 30 and 100 μM concentrations. Based on the normal mode analysis, presented here for the first time, the binding of p-mercaptobenzoic acid is deduced. The intensity enhancement of the 1106 cm-1 band is explained by involvement of the Csbnd S stretching deformation, and the appearance of the broad 300 cm-1 band attributed to Ssbnd Au stretching mode. Adenine SERS spectra demonstrate the existence of the 7H tautomer since the strongest band observed is at 736 cm-1. The adenine binding is likely to occur in several ways, because the number of observed bands in the 1200-1600 cm-1 interval exceeds the number of observed bands in the normal Raman spectrum of the free molecule.

  18. REFORMATION OF NUCLEOLI AFTER ETHIONE-INDUCED FRAGMENTATION IN THE ABSENCE OF SIGNIFICANT PROTEIN SYNTHESIS

    PubMed Central

    Shinozuka, Hisashi; Farber, Emmanuel

    1969-01-01

    The rat liver nucleolus, after fragmentation induced by ethionine treatment, has been found to undergo complete reformation by adenine in the presence of a dose of cycloheximide sufficient to cause inhibition of protein synthesis by 90–95%. In contrast, actinomycin D given along with adenine was followed by the appearance of a small compact mass containing only the fibrillar component with no evident granules. This structure resembled pseudonucleoli seen in the anucleolate mutant of Xenopus laevis or in certain early stages of amphibian oocytes. Actinomycin D administered 2 hr after adenine induced a segregation of the fibrillar and granular components of nucleoli similar to that induced in the normal nucleolus. The implications of these findings in relation to nucleolar organization are briefly discussed. PMID:5775789

  19. Multivariate prediction of motor diagnosis in Huntington's disease: 12 years of PREDICT-HD.

    PubMed

    Long, Jeffrey D; Paulsen, Jane S

    2015-10-01

    It is well known in Huntington's disease that cytosine-adenine-guanine expansion and age at study entry are predictive of the timing of motor diagnosis. The goal of this study was to assess whether additional motor, imaging, cognitive, functional, psychiatric, and demographic variables measured at study entry increased the ability to predict the risk of motor diagnosis over 12 years. One thousand seventy-eight Huntington's disease gene-expanded carriers (64% female) from the Neurobiological Predictors of Huntington's Disease study were followed up for up to 12 y (mean = 5, standard deviation = 3.3) covering 2002 to 2014. No one had a motor diagnosis at study entry, but 225 (21%) carriers prospectively received a motor diagnosis. Analysis was performed with random survival forests, which is a machine learning method for right-censored data. Adding 34 variables along with cytosine-adenine-guanine and age substantially increased predictive accuracy relative to cytosine-adenine-guanine and age alone. Adding six of the common motor and cognitive variables (total motor score, diagnostic confidence level, Symbol Digit Modalities Test, three Stroop tests) resulted in lower predictive accuracy than the full set, but still had twice the 5-y predictive accuracy than when using cytosine-adenine-guanine and age alone. Additional analysis suggested interactions and nonlinear effects that were characterized in a post hoc Cox regression model. Measurement of clinical variables can substantially increase the accuracy of predicting motor diagnosis over and above cytosine-adenine-guanine and age (and their interaction). Estimated probabilities can be used to characterize progression level and aid in future studies' sample selection. © 2015 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.

  20. Butyrate influences intracellular levels of adenine and adenine derivatives in the fungus Penicillium restrictum.

    PubMed

    Zutz, Christoph; Chiang, Yi Ming; Faehnrich, Bettina; Bacher, Markus; Hellinger, Roland; Kluger, Bernhard; Wagner, Martin; Strauss, Joseph; Rychli, Kathrin

    2017-04-01

    Butyrate, a small fatty acid, has an important role in the colon of ruminants and mammalians including the inhibition of inflammation and the regulation of cell proliferation. There is also growing evidence that butyrate is influencing the histone structure in mammalian cells by inhibition of histone deacetylation. Butyrate shows furthermore an antimicrobial activity against fungi, yeast and bacteria, which is linked to its toxicity at a high concentration. In fungi there are indications that butyrate induces the production of secondary metabolites potentially via inhibition of histone deacetylases. However, information about the influence of butyrate on growth, primary metabolite production and metabolism, besides lipid catabolism, in fungi is scarce. We have identified the filamentous fungus Penicillium (P.) restrictum as a susceptible target for butyrate treatment in an antimicrobial activity screen. The antimicrobial activity was detected only in the mycelium of the butyrate treated culture. We investigated the effect of butyrate ranging from low (0.001mM) to high (30mM), potentially toxic, concentrations on biomass and antimicrobial activity. Butyrate at high concentrations (3 and 30mM) significantly reduced the fungal biomass. In contrast P. restrictum treated with 0.03mM of butyrate showed the highest antimicrobial activity. We isolated three antimicrobial active compounds, active against Staphylococcus aureus, from P. restrictum cellular extracts treated with butyrate: adenine, its derivate hypoxanthine and the nucleoside derivate adenosine. Production of all three compounds was increased at low butyrate concentrations. Furthermore we found that butyrate influences the intracellular level of the adenine nucleoside derivate cAMP, an important signalling molecule in fungi and various organisms. In conclusion butyrate treatment increases the intracellular levels of adenine and its respective derivatives. Copyright © 2017 Elsevier GmbH. All rights reserved.

  1. Degradation of Adenine on the Martian Surface in the Presence of Perchlorates and Ionizing Radiation: A Reflectron Time-of-flight Mass Spectrometric Study

    NASA Astrophysics Data System (ADS)

    Góbi, Sándor; Bergantini, Alexandre; Kaiser, Ralf I.

    2017-04-01

    The aim of the present work is to unravel the radiolytic decomposition of adenine (C5H5N5) under conditions relevant to the Martian surface. Being the fundamental building block of (deoxy)ribonucleic acids, the possibility of survival of this biomolecule on the Martian surface is of primary importance to the astrobiology community. Here, neat adenine and adenine-magnesium perchlorate mixtures were prepared and irradiated with energetic electrons that simulate the secondary electrons originating from the interaction of the galactic cosmic rays with the Martian surface. Perchlorates were added to the samples since they are abundant—and therefore relevant oxidizers on the surface of Mars—and they have been previously shown to facilitate the radiolysis of organics such as glycine. The degradation of the samples were monitored in situ via Fourier transformation infrared spectroscopy and the electron ionization quadruple mass spectrometric method; temperature-programmed desorption profiles were then collected by means of the state-of-the-art single photon photoionization reflectron time-of-flight mass spectrometry (PI-ReTOF-MS), allowing for the detection of the species subliming from the sample. The results showed that perchlorates do increase the destruction rate of adenine by opening alternative reaction channels, including the concurrent radiolysis/oxidation of the sample. This new pathway provides a plethora of different radiolysis products that were identified for the first time. These are carbon dioxide (CO2), isocyanic acid (HNCO), isocyanate (OCN-), carbon monoxide (CO), and nitrogen monoxide (NO); an oxidation product containing carbonyl groups (R1R2-C=O) with a constrained five-membered cyclic structure could also be observed. Cyanamide (H2N-C≡N) was detected in both irradiated samples as well.

  2. Intracellular ATP influences synaptic plasticity in area CA1 of rat hippocampus via metabolism to adenosine and activity-dependent activation of adenosine A1 receptors.

    PubMed

    zur Nedden, Stephanie; Hawley, Simon; Pentland, Naomi; Hardie, D Grahame; Doney, Alexander S; Frenguelli, Bruno G

    2011-04-20

    The extent to which brain slices reflect the energetic status of the in vivo brain has been a subject of debate. We addressed this issue to investigate the recovery of energetic parameters and adenine nucleotides in rat hippocampal slices and the influence this has on synaptic transmission and plasticity. We show that, although adenine nucleotide levels recover appreciably within 10 min of incubation, it takes 3 h for a full recovery of the energy charge (to ≥ 0.93) and that incubation of brain slices at 34°C results in a significantly higher ATP/AMP ratio and a threefold lower activity of AMP-activated protein kinase compared with slices incubated at room temperature. Supplementation of artificial CSF with d-ribose and adenine (Rib/Ade) increased the total adenine nucleotide pool of brain slices, which, when corrected for the influence of the dead cut edges, closely approached in vivo values. Rib/Ade did not affect basal synaptic transmission or paired-pulse facilitation but did inhibit long-term potentiation (LTP) induced by tetanic or weak theta-burst stimulation. This decrease in LTP was reversed by strong theta-burst stimulation or antagonizing the inhibitory adenosine A(1) receptor suggesting that the elevated tissue ATP levels had resulted in greater activity-dependent adenosine release during LTP induction. This was confirmed by direct measurement of adenosine release with adenosine biosensors. These observations provide new insight into the recovery of adenine nucleotides after slice preparation, the sources of loss of such compounds in brain slices, the means by which to restore them, and the functional consequences of doing so.

  3. Evidence for the absence of the terminal adenine nucleotide at the amino acid-acceptor end of transfer ribonucleic acid in non-lactating bovine mammary gland and its inhibitory effect on the aminoacylation of rat liver transfer ribonucleic acid

    PubMed Central

    Herrington, M. D.; Hawtrey, A. O.

    1970-01-01

    1. tRNA isolated from non-lactating bovine mammary gland competitively inhibits the formation of aminoacyl-tRNA in the rat liver system. 2. Non-lactating bovine mammary gland tRNA and twice-pyrophosphorolysed rat liver tRNA are unable to accept amino acids in a reaction catalysed by aminoacyl-tRNA synthetases from either rat liver or bovine mammary gland. Deacylated rat liver tRNA can however be aminoacylated in the presence of either enzyme. 3. Bovine mammary gland tRNA lacks the terminal adenine nucleotide at the 3′-terminus amino acid acceptor end, which can be replaced by incubation in the presence of rat liver nucleotide-incorporating enzyme, ATP and CTP. 4. The enzymically modified bovine tRNA (tRNApCpCpA) can bind labelled amino acids to form aminoacyl-tRNA, which can then transfer its labelled amino acids to growing polypeptide chains on ribosomes. 5. Molecules of rat liver tRNA or bovine mammary gland tRNA that lack the terminal adenine nucleotide or the terminal cytosine and adenine nucleotides inhibit the aminoacylation of normal rat liver tRNA to varying degrees. tRNA molecules lacking the terminal −pCpCpA nucleotide sequence exhibit the major inhibitory effect. 6. The enzyme fraction from bovine mammary gland corresponding to that containing the nucleotide-incorporating enzyme in rat liver is unable to catalyse the incorporation of cytosine and adenine nucleotides in pyrophosphorolysed rat liver tRNA and deacylated bovine tRNA. This fraction also markedly inhibits the action of the rat liver nucleotide-incorporating enzyme. PMID:5435687

  4. Adenosine deaminase from Streptomyces coelicolor: recombinant expression, purification and characterization.

    PubMed

    Pornbanlualap, Somchai; Chalopagorn, Pornchanok

    2011-08-01

    The sequencing of the genome of Streptomyces coelicolor A3(2) identified seven putative adenine/adenosine deaminases and adenosine deaminase-like proteins, none of which have been biochemically characterized. This report describes recombinant expression, purification and characterization of SCO4901 which had been annotated in data bases as a putative adenosine deaminase. The purified putative adenosine deaminase gives a subunit Mr=48,400 on denaturing gel electrophoresis and an oligomer molecular weight of approximately 182,000 by comparative gel filtration. These values are consistent with the active enzyme being composed of four subunits with identical molecular weights. The turnover rate of adenosine is 11.5 s⁻¹ at 30 °C. Since adenine is deaminated ∼10³ slower by the enzyme when compared to that of adenosine, these data strongly show that the purified enzyme is an adenosine deaminase (ADA) and not an adenine deaminase (ADE). Other adenine nucleosides/nucleotides, including 9-β-D-arabinofuranosyl-adenine (ara-A), 5'-AMP, 5'-ADP and 5'-ATP, are not substrates for the enzyme. Coformycin and 2'-deoxycoformycin are potent competitive inhibitors of the enzyme with inhibition constants of 0.25 and 3.4 nM, respectively. Amino acid sequence alignment of ScADA with ADAs from other organisms reveals that eight of the nine highly conserved catalytic site residues in other ADAs are also conserved in ScADA. The only non-conserved residue is Asn317, which replaces Asp296 in the murine enzyme. Based on these data, it is suggested here that ADA and ADE proteins are divergently related enzymes that have evolved from a common α/β barrel scaffold to catalyze the deamination of different substrates, using a similar catalytic mechanism. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Detection of Guanine and Adenine Using an Aminated Reduced Graphene Oxide Functional Membrane-Modified Glassy Carbon Electrode

    PubMed Central

    Li, Di; Yang, Xiao-Lu; Xiao, Bao-Lin; Geng, Fang-Yong; Hong, Jun; Sheibani, Nader; Moosavi-Movahedi, Ali Akbar

    2017-01-01

    A new electrochemical sensor based on a Nafion, aminated reduced graphene oxide and chitosan functional membrane-modified glassy carbon electrode was proposed for the simultaneous detection of adenine and guanine. Fourier transform-infrared spectrometry (FTIR), transmission electron microscopy (TEM), and electrochemical methods were utilized for the additional characterization of the membrane materials. The prepared electrode was utilized for the detection of guanine (G) and adenine (A). The anodic peak currents to G and A were linear in the concentrations ranging from 0.1 to 120 μM and 0.2 to 110 μM, respectively. The detection limits were found to be 0.1 μM and 0.2 μM, respectively. Moreover, the modified electrode could also be used to determine G and A in calf thymus DNA. PMID:28718793

  6. Hemoglobin Function in Stored Blood.

    DTIC Science & Technology

    1977-12-31

    reverse aide if neceseary and Identify by block number) Blood preservation, Red Cell Function, 2,3- Diphosphoglycerate , Adenine, Inosine, Methylene Blue...2,3-DPG, pH, and glucose levels of whole blood and packed cells studied in CPD-adenine with the following variables: pH, glucose concentrations...aimed directly at maintaining red cell 2,3-DPG levels during blood storage in order for transfused blood to deliver oxygen to the tissues immediately

  7. Selective self-assembly of adenine-silver nanoparticles forms rings resembling the size of cells

    PubMed Central

    Choi, Sungmoon; Park, Soonyoung; Yang, Seon-Ah; Jeong, Yujin; Yu, Junhua

    2015-01-01

    Self-assembly has played critical roles in the construction of functional nanomaterials. However, the structure of the macroscale multicomponent materials built by the self-assembly of nanoscale building blocks is hard to predict due to multiple intermolecular interactions of great complexity. Evaporation of solvents is usually an important approach to induce kinetically stable assemblies of building blocks with a large-scale specific arrangement. During such a deweting process, we tried to monitor the possible interactions between silver nanoparticles and nucleobases at a larger scale by epifluorescence microscopy, thanks to the doping of silver nanoparticles with luminescent silver nanodots. ssDNA oligomer-stabilized silver nanoparticles and adenine self-assemble to form ring-like compartments similar to the size of modern cells. However, the silver ions only dismantle the self-assembly of adenine. The rings are thermodynamically stable as the drying process only enrich the nanoparticles-nucleobase mixture to a concentration that activates the self-assembly. The permeable membrane-like edge of the ring is composed of adenine filaments glued together by silver nanoparticles. Interestingly, chemicals are partially confined and accumulated inside the ring, suggesting that this might be used as a microreactor to speed up chemical reactions during a dewetting process. PMID:26643504

  8. SiC nanoparticles-modified glassy carbon electrodes for simultaneous determination of purine and pyrimidine DNA bases.

    PubMed

    Ghavami, Raouf; Salimi, Abdollah; Navaee, Aso

    2011-05-15

    For the first time a novel and simple electrochemical method was used for simultaneous detection of DNA bases (guanine, adenine, thymine and cytosine) without any pretreatment or separation process. Glassy carbon electrode modified with silicon carbide nanoparticles (SiCNP/GC), have been used for electrocatalytic oxidation of purine (guanine and adenine) and pyrimidine bases (thymine and cytosine) nucleotides. Field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) techniques were used to examine the structure of the SiCNP/GC modified electrode. The modified electrode shows excellent electrocatalytic activity toward guanine, adenine, thymine and cytosine. Differential pulse voltammetry (DPV) was proposed for simultaneous determination of four DNA bases. The effects of different parameters such as the thickness of SiC layer, pulse amplitude, scan rate, supporting electrolyte composition and pH were optimized to obtain the best peak potential separation and higher sensitivity. Detection limit, sensitivity and linear concentration range of the modified electrode toward proposed analytes were calculated for, guanine, adenine, thymine and cytosine, respectively. As shown this sensor can be used for nanomolar or micromolar detection of different DNA bases simultaneously or individually. This sensor also exhibits good stability, reproducibility and long lifetime. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Biomarkers and Biological Spectral Imaging

    DTIC Science & Technology

    2001-01-23

    Image t iZ ~ Rotator SSteping r De m oo ontroler Frmegabe (single ams) ... Software -= • . ... PCCm ue Data acquisition Rotator control PC Co puterImage...the depth of bum injury", Bums, 7, pp. 197-202, 1981. 7. R. A. De Blasi, M. Cope, C. Elwell, F. Safoue and M. Ferrari, "Noninvasive measurement of...nicotinamide adenine dinucleotide (NADH), oxidized flavin adenine dinucleotide (FAD) and porphyrins. A number of studies have shown that the measured

  10. Long-Range Charge Transport in Adenine-Stacked RNA:DNA Hybrids.

    PubMed

    Li, Yuanhui; Artés, Juan M; Hihath, Joshua

    2016-01-27

    An extremely important biological component, RNA:DNA can also be used to design nanoscale structures such as molecular wires. The conductance of single adenine-stacked RNA:DNA hybrids is rapidly and reproducibly measured using the break junction approach. The conductance decreases slightly over a large range of molecular lengths, suggesting that RNA:DNA can be used as an oligonucleotide wire. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Metabolic adaptation to long term changes in gravity environment

    NASA Astrophysics Data System (ADS)

    Slenzka, K.; Appel, R.; Rahmann, H.

    Biochemical analyses of the brain of Cichlid fish larvae, exposed during their very early development for 7 days to an increased acceleration of 3g (hyper-gravity), revealed a decrease in brain nucleoside diphosphate kinase (NDPK) as well as creatine kinase (BB-CK) activity. Using high performance liquid chromatography (HPLC) the concentrations of adenine nucleotides (AMP, ADP, ATP), phosphocreatine (CP), as well as of nicotineamide adenine dinucleotides (NAD, NADP) were analyzed in the brain of hyper-g exposed larvae vs. 1g controls. A slight reduction in the total adenine nucleotides (TAN) as well as the adenylate energy charge (AEC) was found. In parallel a significant increase in the NAD concentration and a corresponding decrease in NADP concentration occurred in larva's hyper-g brains vs. 1g controls. These results give further evidence for an influence of gravity on cellular level and furthermore contribute to a clarification of the cellular signal-response chain for gravity perception.

  12. Spatial, Hysteretic, and Adaptive Host-Guest Chemistry in a Metal-Organic Framework with Open Watson-Crick Sites.

    PubMed

    Cai, Hong; Li, Mian; Lin, Xiao-Rong; Chen, Wei; Chen, Guang-Hui; Huang, Xiao-Chun; Li, Dan

    2015-09-01

    Biological and artificial molecules and assemblies capable of supramolecular recognition, especially those with nucleobase pairing, usually rely on autonomous or collective binding to function. Advanced site-specific recognition takes advantage of cooperative spatial effects, as in local folding in protein-DNA binding. Herein, we report a new nucleobase-tagged metal-organic framework (MOF), namely ZnBTCA (BTC=benzene-1,3,5-tricarboxyl, A=adenine), in which the exposed Watson-Crick faces of adenine residues are immobilized periodically on the interior crystalline surface. Systematic control experiments demonstrated the cooperation of the open Watson-Crick sites and spatial effects within the nanopores, and thermodynamic and kinetic studies revealed a hysteretic host-guest interaction attributed to mild chemisorption. We further exploited this behavior for adenine-thymine binding within the constrained pores, and a globally adaptive response of the MOF host was observed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Theoretical Study of Tautomerization Reactions for the Ground and First Excited Electronic States of Adenine

    NASA Technical Reports Server (NTRS)

    Salter, Latasha M.; Chaban, Galina M.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Geometrical structures and energetic properties for different tautomers of adenine are calculated in this study, using multi-configurational wave functions. Both the ground and the lowest singlet excited state potential energy surfaces are studied. Four tautomeric forms are considered, and their energetic order is found to be different on the ground and the excited state potential energy surfaces. Minimum energy reaction paths are obtained for hydrogen atom transfer (tautomerization) reactions in the ground and the lowest excited electronic states. It is found that the barrier heights and the shapes of the reaction paths are different for the ground and the excited electronic states, suggesting that the probability of such tautomerization reaction is higher on the excited state potential energy surface. This tautomerization process should become possible in the presence of water or other polar solvent molecules and should play an important role in the photochemistry of adenine.

  14. New method for estimating bacterial cell abundances in natural samples by use of sublimation

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Cleaves, H. James; Schubert, Michael; Aubrey, Andrew; Bada, Jeffrey L.

    2004-01-01

    We have developed a new method based on the sublimation of adenine from Escherichia coli to estimate bacterial cell counts in natural samples. To demonstrate this technique, several types of natural samples, including beach sand, seawater, deep-sea sediment, and two soil samples from the Atacama Desert, were heated to a temperature of 500 degrees C for several seconds under reduced pressure. The sublimate was collected on a cold finger, and the amount of adenine released from the samples was then determined by high-performance liquid chromatography with UV absorbance detection. Based on the total amount of adenine recovered from DNA and RNA in these samples, we estimated bacterial cell counts ranging from approximately 10(5) to 10(9) E. coli cell equivalents per gram. For most of these samples, the sublimation-based cell counts were in agreement with total bacterial counts obtained by traditional DAPI (4,6-diamidino-2-phenylindole) staining.

  15. Influence of gamma irradiation and benzyl adenine on keeping quality of custard apple fruits during storage.

    PubMed

    Chouksey, Swati; Singh, Alpana; Thakur, Rajendra Singh; Deshmukh, Reena

    2013-10-01

    The custard apple (Annona squamosa) fruits were procured from local market, irradiated with radiation doses 0, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75 kGy and then treated with benzyl adenine (50 and 100 part per million) and stored at ambient temperature (25 ± 5 °C, Relative Humidity 90 ± 2%) for 12 days. The treated fruits were evaluated for sensory (viz; flavour, texture, internal and external colour) and chemical constituents (viz; Total Soluble Solids, titrable acidity, ascorbic acid, free soluble sugar, reducing sugar. non reducing sugar, carbohydrate) during storage. The study concluded that radiation dose of 1.5 kilo Gray along with 50 ppm benzyl adenine enhanced in shelf-life of custard apple fruits by 6 days at ambient temperature with good pulp texture, flavour, colour and nutritional quality as compared to control.

  16. THE HEMOGLOBIN FUNCTION OF BLOOD AT 4C.

    DTIC Science & Technology

    depends on the red cell concentration of 2,3- diphosphoglycerate (2,3-DPG), this metabolic intermediate was assayed and oxygen dissociation curves...the storage period in blood stored in CPD than in ACD. If adenine was present the p50 and 2,3-DPG levels declined more rapidly. However, adenine and...inosine in CPD-stored blood allowed the p50 and 2,3-DPG to persist at near normal levels for most of the 3-week storage period. (Author)

  17. Approach to the unfolding and folding dynamics of add A-riboswitch upon adenine dissociation using a coarse-grained elastic network model

    NASA Astrophysics Data System (ADS)

    Li, Chunhua; Lv, Dashuai; Zhang, Lei; Yang, Feng; Wang, Cunxin; Su, Jiguo; Zhang, Yang

    2016-07-01

    Riboswitches are noncoding mRNA segments that can regulate the gene expression via altering their structures in response to specific metabolite binding. We proposed a coarse-grained Gaussian network model (GNM) to examine the unfolding and folding dynamics of adenosine deaminase (add) A-riboswitch upon the adenine dissociation, in which the RNA is modeled by a nucleotide chain with interaction networks formed by connecting adjoining atomic contacts. It was shown that the adenine binding is critical to the folding of the add A-riboswitch while the removal of the ligand can result in drastic increase of the thermodynamic fluctuations especially in the junction regions between helix domains. Under the assumption that the native contacts with the highest thermodynamic fluctuations break first, the iterative GNM simulations showed that the unfolding process of the adenine-free add A-riboswitch starts with the denature of the terminal helix stem, followed by the loops and junctions involving ligand binding pocket, and then the central helix domains. Despite the simplified coarse-grained modeling, the unfolding dynamics and pathways are shown in close agreement with the results from atomic-level MD simulations and the NMR and single-molecule force spectroscopy experiments. Overall, the study demonstrates a new avenue to investigate the binding and folding dynamics of add A-riboswitch molecule which can be readily extended for other RNA molecules.

  18. Adenine radicals generated in alternating AT duplexes by direct absorption of low-energy UV radiation.

    PubMed

    Banyasz, Akos; Ketola, Tiia; Martínez-Fernández, Lara; Improta, Roberto; Markovitsi, Dimitra

    2018-04-17

    There is increasing evidence that the direct absorption of photons with energies that are lower than the ionization potential of nucleobases may result in oxidative damage to DNA. The present work, which combines nanosecond transient absorption spectroscopy and quantum mechanical calculations, studies this process in alternating adenine-thymine duplexes (AT)n. We show that the one-photon ionization quantum yield of (AT)10 at 266 nm (4.66 eV) is (1.5 ± 0.3) × 10-3. According to our PCM/TD-DFT calculations carried out on model duplexes composed of two base pairs, (AT)1 and (TA)1, simultaneous base pairing and stacking does not induce important changes in the absorption spectra of the adenine radical cation and deprotonated radical. The adenine radicals, thus identified in the time-resolved spectra, disappear with a lifetime of 2.5 ms, giving rise to a reaction product that absorbs at 350 nm. In parallel, the fingerprint of reaction intermediates other than radicals, formed directly from singlet excited states and assigned to AT/TA dimers, is detected at shorter wavelengths. PCM/TD-DFT calculations are carried out to map the pathways leading to such species and to characterize their absorption spectra; we find that, in addition to the path leading to the well-known TA* photoproduct, an AT photo-dimerization path may be operative in duplexes.

  19. Molecular recognition modes between adenine or adeniniun(1+) ion and binary M(II)(pdc) chelates (MCoZn; pdc=pyridine-2,6-dicarboxylate(2-) ion).

    PubMed

    Del Pilar Brandi-Blanco, María; Choquesillo-Lazarte, Duane; Domínguez-Martín, Alicia; Matilla-Hernández, Antonio; González-Pérez, Josefa María; Castiñeiras, Alfonso; Niclós-Gutiérrez, Juan

    2013-10-01

    Mixed ligand M(II)-complexes (MCoZn) with pyridine-2,6-dicarboxylate(2-) chelator (pdc) and adenine (Hade) have been synthesized and studied by X-ray diffraction and other spectral and thermal methods: [Cu(pdc)(H(N9)ade)(H2O)] (1), [Cu2(pdc)2(H2O)2(μ2-N3,N7-H(N9)ade)]·3H2O (2), trans-[M(pdc)(H(N9)ade)(H2O)2]·nH2O for MCo (3-L, 3-M, 3-H) or Zn (4-L, 4-H), where n is 0, 1 or 3 for the 'lowest' (L), 'medium' (M) and 'highest' (H) hydrated forms, and the salt trans-[Ni(pdc)(H2(N1,N9)ade)(H2O)2]Cl·2H2O (5). In all the nine compounds, both neutral and cationic adenine exist as their most stable tautomer and the molecular recognition pattern between the metal-pdc chelates and the adenine or adeninium(1+) ligands involves the MN7 bond in cooperation with an intra-molecular N6H⋯O(coordinated carboxylate) interligand interaction. In addition the dinuclear copper(II) compound (2) has the CuN3 bond and the N9H⋯O(coord. carboxylate) interaction. The structures of mononuclear ternary complexes proved that the molecular recognition pattern is the same irrespective of (a) the coordination geometry of the complex molecule, (b) the different hydrated forms of crystals with Co or Zn, and (c) the neutral of cationic form of the adenine ligand. These features are related to the mer-NO2 chelating ligand conformation (imposed by the planar rigidity of pdc) as a driving force for the observed metal binding mode. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Kinetics and Thermodynamics of the Reaction between the (•)OH Radical and Adenine: A Theoretical Investigation.

    PubMed

    Milhøj, Birgitte O; Sauer, Stephan P A

    2015-06-18

    The accessibility of all possible reaction paths for the reaction between the nucleobase adenine and the (•)OH radical is investigated through quantum chemical calculations of barrier heights and rate constants at the ωB97X-D/6-311++G(2df,2pd) level with Eckart tunneling corrections. First the computational method is validated by considering the hydrogen abstraction from the heterocyclic N9 nitrogen in adenine as a test system. Geometries for all molecules in the reaction are optimized with four different DFT exchange-correlation functionals (B3LYP, BHandHLYP, M06-2X, and ωB97X-D), in combination with Pople and Dunning basis sets, all of which have been employed in similar investigations in the literature. Improved energies are obtained through single point calculations with CCSD(T) and the same basis sets, and reaction rate constants are calculated for all methods both without tunneling corrections and with the Wigner, Bell, and Eckart corrections. In comparison to CCSD(T)//BHandHLYP/aug-cc-pVTZ reference results, the ωB97X-D/6-311++G(2df,2pd) method combined with Eckart tunneling corrections provides a sensible compromise between accuracy and time. Using this method, all subreactions of the reaction between adenine and the (•)OH radical are investigated. The total rate constants for hydrogen abstraction and addition for adenine are predicted with this method to be 1.06 × 10(-12) and 1.10 × 10(-12) cm(3) molecules(-1) s(-1), respectively. Abstractions of H61 and H62 contribute the most, while only addition to the C8 carbon is found to be of any significance, in contrast to previous claims that addition is the dominant reaction pathway. The overall rate constant for the complete reaction is found to be 2.17 × 10(-12) cm(3) molecules(-1) s(-1), which agrees exceptionally well with experimental results.

  1. Fluorometric detection of adenine in target DNA by exciplex formation with fluorescent 8-arylethynylated deoxyguanosine.

    PubMed

    Saito, Yoshio; Kugenuma, Kenji; Tanaka, Makiko; Suzuki, Azusa; Saito, Isao

    2012-06-01

    We demonstrated an intriguing method to discriminate adenine by incident appearance of an intense new emission via exciplex formation in hybridization of target DNA with newly designed fluorescent 8-arylethynylated deoxyguanosine derivatives. We described the synthesis of such highly electron donating fluorescent guanosine derivatives and their incorporation into DNA oligomers which may be used for the structural study and the fluorometric analysis of nucleic acids. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Role of Crk Adaptor Proteins in Cellular Migration and Invasion in Human Breast Cancer

    DTIC Science & Technology

    2009-03-01

    mucin-like, hormone receptor- like 1 SLC25A5 -1.58342009 0.0202321 -1.20432 0.03115 solute carrier family 25 ( mitochondrial carrier ; adenine nucleotide...family 25 ( mitochondrial carrier ; adenine nucleotide translocator), member 5 CYP26B1 -1.45880527 0.019056 -1.20533 0.01287 cytochrome P450, family...FORM TO THE ABOVE ADDRESS. 1. REPORT DATE 01-03-2009 2. REPORT TYPE Annual Summary 3. DATES COVERED 1 Mar 2006 – 28 Feb 2009 4 . TITLE AND SUBTITLE

  3. Number of graphene layers exhibiting an influence on oxidation of DNA bases: analytical parameters.

    PubMed

    Goh, Madeline Shuhua; Pumera, Martin

    2012-01-20

    This article investigates the analytical performance of double-, few- and multi-layer graphene upon oxidation of adenine and guanine. We observed that the sensitivity of differential pulse voltammetric response of guanine and adenine is significantly higher at few-layer graphene surface than single-layer graphene. We use glassy carbon electrode as substrate coated with graphenes. Our findings shall have profound influence on construction of graphene based genosensors. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Semisynthetic biosensors for mapping cellular concentrations of nicotinamide adenine dinucleotides.

    PubMed

    Sallin, Olivier; Reymond, Luc; Gondrand, Corentin; Raith, Fabio; Koch, Birgit; Johnsson, Kai

    2018-05-29

    We introduce a new class of semisynthetic fluorescent biosensors for the quantification of free nicotinamide adenine dinucleotide (NAD + ) and ratios of reduced to oxidized nicotinamide adenine dinucleotide phosphate (NADPH/NADP + ) in live cells. Sensing is based on controlling the spatial proximity of two synthetic fluorophores by binding of NAD(P) to the protein component of the sensor. The sensors possess a large dynamic range, can be excited at long wavelengths, are pH-insensitive, have tunable response range and can be localized in different organelles. Ratios of free NADPH/NADP + are found to be higher in mitochondria compared to those found in the nucleus and the cytosol. By recording free NADPH/NADP + ratios in response to changes in environmental conditions, we observe how cells can react to such changes by adapting metabolic fluxes. Finally, we demonstrate how a comparison of the effect of drugs on cellular NAD(P) levels can be used to probe mechanisms of action. © 2018, Sallin et al.

  5. Dietary adenine controls adult lifespan via adenosine nucleotide biosynthesis and AMPK, and regulates the longevity benefit of caloric restriction

    PubMed Central

    Stenesen, Drew; Suh, Jae Myoung; Seo, Jin; Yu, Kweon; Lee, Kyu-Sun; Kim, Jong-Seok; Min, Kyung-Jin; Graff, Jonathan M.

    2012-01-01

    SUMMARY A common thread among conserved lifespan regulators lies within intertwined roles in metabolism and energy homeostasis. We show that heterozygous mutations of adenosine monophosphate (AMP) biosynthetic enzymes extend Drosophila lifespan. The lifespan benefit of these mutations depends upon increased AMP to adenosine triphosphate (ATP) and adenosine diphosphate (ADP) to ATP ratios and adenosine monophosphate-activated protein kinase (AMPK). Transgenic expression of AMPK in adult fat body or adult muscle, key metabolic tissues, extended lifespan, while AMPK RNAi reduced lifespan. Supplementing adenine, a substrate for AMP biosynthesis, to the diet of long-lived AMP biosynthesis mutants reversed lifespan extension. Remarkably, this simple change in diet also blocked the pro-longevity effects of dietary restriction. These data establish AMP biosynthesis, adenosine nucleotide ratios, and AMPK as determinants of adult lifespan, provide a mechanistic link between cellular anabolism and energy sensing pathways, and indicate that dietary adenine manipulations might alter metabolism to influence animal lifespan. PMID:23312286

  6. SERS Detection of Biomolecules by Highly Sensitive and Reproducible Raman-Enhancing Nanoparticle Array

    NASA Astrophysics Data System (ADS)

    Chan, Tzu-Yi; Liu, Ting-Yu; Wang, Kuan-Syun; Tsai, Kun-Tong; Chen, Zhi-Xin; Chang, Yu-Chi; Tseng, Yi-Qun; Wang, Chih-Hao; Wang, Juen-Kai; Wang, Yuh-Lin

    2017-05-01

    This paper describes the preparation of nanoarrays composed of silver nanoparticles (AgNPs: 20-50 nm) for use as surface-enhanced Raman scattering (SERS) substrates. The AgNPs were grown on porous anodic aluminum oxide (AAO) templates by electrochemical plating, and the inter-channel gap of AAO channels is between 10 and 20 nm. The size and interparticle gap of silver particles were adjusted in order to achieve optimal SERS signals and characterized by scanning electron microscopy, atomic force microscopy, and Raman spectroscopy. The fluctuation of SERS intensity is about 10-20% when measuring adenine solutions, showing a great reproducible SERS sensing. The nanoparticle arrays offer a large potential for practical applications as shown by the SERS-based quantitative detection and differentiation of adenine (A), thymine (T), cytosine (C), guanine (G), β-carotene, and malachite green. The respective detection limits are <1 ppb for adenine and <0.63 ppm for β-carotene and malachite green, respectively.

  7. DGR mutagenic transposition occurs via hypermutagenic reverse transcription primed by nicked template RNA

    PubMed Central

    Naorem, Santa S.; Han, Jin; Wang, Shufang; Lee, William R.; Heng, Xiao; Miller, Jeff F.

    2017-01-01

    Diversity-generating retroelements (DGRs) are molecular evolution machines that facilitate microbial adaptation to environmental changes. Hypervariation occurs via a mutagenic retrotransposition process from a template repeat (TR) to a variable repeat (VR) that results in adenine-to-random nucleotide conversions. Here we show that reverse transcription of the Bordetella phage DGR is primed by an adenine residue in TR RNA and is dependent on the DGR-encoded reverse transcriptase (bRT) and accessory variability determinant (Avd ), but is VR-independent. We also find that the catalytic center of bRT plays an essential role in site-specific cleavage of TR RNA for cDNA priming. Adenine-specific mutagenesis occurs during reverse transcription and does not involve dUTP incorporation, indicating it results from bRT-catalyzed misincorporation of standard deoxyribonucleotides. In vivo assays show that this hybrid RNA-cDNA molecule is required for mutagenic transposition, revealing a unique mechanism of DNA hypervariation for microbial adaptation. PMID:29109248

  8. Transition state analogues in structures of ricin and saporin ribosome-inactivating proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Meng-Chiao; Sturm, Matthew B.; Almo, Steven C.

    2010-01-12

    Ricin A-chain (RTA) and saporin-L1 (SAP) catalyze adenosine depurination of 28S rRNA to inhibit protein synthesis and cause cell death. We present the crystal structures of RTA and SAP in complex with transition state analogue inhibitors. These tight-binding inhibitors mimic the sarcin-ricin recognition loop of 28S rRNA and the dissociative ribocation transition state established for RTA catalysis. RTA and SAP share unique purine-binding geometry with quadruple {pi}-stacking interactions between adjacent adenine and guanine bases and 2 conserved tyrosines. An arginine at one end of the {pi}-stack provides cationic polarization and enhanced leaving group ability to the susceptible adenine. Common featuresmore » of these ribosome-inactivating proteins include adenine leaving group activation, a remarkable lack of ribocation stabilization, and conserved glutamates as general bases for activation of the H{sub 2}O nucleophile. Catalytic forces originate primarily from leaving group activation evident in both RTA and SAP in complex with transition state analogues.« less

  9. Nonselective enrichment for yeast adenine mutants by flow cytometry

    NASA Technical Reports Server (NTRS)

    Bruschi, C. V.; Chuba, P. J.

    1988-01-01

    The expression of certain adenine biosynthetic mutations in the yeast Saccharomyces cerevisiae results in a red colony color. This phenomenon has historically provided an ideal genetic marker for the study of mutation, recombination, and aneuploidy in lower eukaryotes by classical genetic analysis. In this paper, it is reported that cells carrying ade1 and/or ade2 mutations exhibit primary fluorescence. Based on this observation, the nonselective enrichment of yeast cultures for viable adenine mutants by using the fluorescence-activated cell sorter has been achieved. The advantages of this approach over conventional genetic analysis of mutation, recombination, and mitotic chromosomal stability include speed and accuracy in acquiring data for large numbers of clones. By using appropriate strains, the cell sorter has been used for the isolation of both forward mutations and chromosomal loss events in S. cerevisiae. The resolving power of this system and its noninvasiveness can easily be extended to more complex organisms, including mammalian cells, in which analogous metabolic mutants are available.

  10. Electrochemical determination of purine and pyrimidine DNA bases based on the recognition properties of azocalix[4]arene.

    PubMed

    Qin, Xu; Liu, Xiaoxian; Hong-Bo, Li; Li-Na, Yin; Xiaoya, Hu

    2013-04-15

    The azocalix[4]arene film modified glassy carbon electrode was established for the convenient and sensitive detection of four DNA bases (guanine, adenine, thymine and cytosine). Field emission scanning electron microscopy, attenuated total reflectance-FTIR and X-ray photoelectron spectroscopy were used to characterize the film. The azocalix[4]arene film exhibited excellent electrocatalytic activity toward the oxidation of all bases. Well-separated voltammetric peaks were obtained among guanine, adenine, thymine and cytosine, which lead to the feasibility for the simultaneous determination of all of them in a mixture without separation or pretreatment. Linear calibration curves were obtained from 0.125 to 200.0 μM for adenine, 0.125 to 175.0 μM for guanine, 2.50 to 650.0 μM for thymine, and 2.50 to 650.0 μM for cytosine. This sensor also exhibits good stability, reproducibility and long lifetime. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Molecular and Subcellular-Scale Modeling of Nucleotide Diffusion in the Cardiac Myofilament Lattice

    PubMed Central

    Kekenes-Huskey, Peter M.; Liao, Tao; Gillette, Andrew K.; Hake, Johan E.; Zhang, Yongjie; Michailova, Anushka P.; McCulloch, Andrew D.; McCammon, J. Andrew

    2013-01-01

    Contractile function of cardiac cells is driven by the sliding displacement of myofilaments powered by the cycling myosin crossbridges. Critical to this process is the availability of ATP, which myosin hydrolyzes during the cross-bridge cycle. The diffusion of adenine nucleotides through the myofilament lattice has been shown to be anisotropic, with slower radial diffusion perpendicular to the filament axis relative to parallel, and is attributed to the periodic hexagonal arrangement of the thin (actin) and thick (myosin) filaments. We investigated whether atomistic-resolution details of myofilament proteins can refine coarse-grain estimates of diffusional anisotropy for adenine nucleotides in the cardiac myofibril, using homogenization theory and atomistic thin filament models from the Protein Data Bank. Our results demonstrate considerable anisotropy in ATP and ADP diffusion constants that is consistent with experimental measurements and dependent on lattice spacing and myofilament overlap. A reaction-diffusion model of the half-sarcomere further suggests that diffusional anisotropy may lead to modest adenine nucleotide gradients in the myoplasm under physiological conditions. PMID:24209858

  12. Chirally selective, intramolecular interaction observed in an aminoacyl adenylate anhydride

    NASA Technical Reports Server (NTRS)

    Lacey, J. C., Jr.; Hall, L. M.; Mullins, D. W., Jr.; Watkins, C. L.

    1985-01-01

    The interaction between amino acids and nucleotide bases is studied. The proton NMR spectrum of N-acetylphenylalanyl-AMP-anhydride is analyzed H8 and H2 signals, two upfield signals of equal size, and five phenylalanine ring proton signals are observed in the spectrum; the upfield movement of the proton and the racemization of the N-acetyl L-phenylalanine material are examined. The differences in the position of the signals due to the diastereoisomers are investigated. The separation of the D and L amino acyl adenylates using HPLC is described. H-1 NMR spectra of the isomers are examined in order to determine which isomer displays the strongest interaction between the phenyl ring and the adenine ring. The spectra reveal that the L isomer shows the highest upfield change of both H8 and H2 signals. It is noted that the phenyl ring lies over C2 of the adenine ring with the phenyl meta and para protons extended past the adenine ring and the phenyl ortho protons.

  13. DNA adenine methylation of sams1 gene in symbiont-bearing Amoeba proteus.

    PubMed

    Jeon, Taeck J

    2008-10-01

    The expression of amoeba sams genes is switched from sams1 to sams2 when amoebae are infected with Legionella jeonii. To elucidate the mechanism for the inactivation of host sams1 gene by endosymbiotic bacteria, methylation states of the sams1 gene of D and xD amoebae was compared in this study. The sams1 gene of amoebae was methylated at an internal adenine residue of GATC site in symbiont-bearing xD amoebae but not in symbiont-free D amoebae, suggesting that the modification might have caused the inactivation of sams1 in xD amoebae. The sams1 gene of xD amoebae was inactivated at the transcriptional level. Analysis of DNA showed that adenine residues in L. jeonii sams were also methylated, implying that L. jeonii bacteria belong to a Dam methylase-positive strain. In addition, both SAM and Met appeared to act as negative regulators for the expression of sams1 whereas the expression of sams2 was not affected in amoebae.

  14. Unnatural substrates reveal the importance of 8-oxoguanine for in vivo mismatch repair by MutY

    PubMed Central

    Livingston, Alison L.; O’Shea, Valerie L.; Kim, Taewoo; Kool, Eric T.; David, Sheila S.

    2009-01-01

    Escherchia coli MutY plays an important role in preventing mutations associated with the oxidative lesion 7,8-dihydro-8-oxo-2′-deoxyguanosine (OG) in DNA by excising adenines from OG:A mismatches as the first step of base excision repair. To determine the importance of specific steps in the base pair recognition and base removal process of MutY, we have evaluated the effects of modifications of the OG:A substrate on the kinetics of base removal, mismatch affinity and repair to G:C in an Escherchia coli-based assay. Surprisingly, adenine modification was tolerated in the cellular assay, while modification of OG results in minimal cellular repair. High affinity for the mismatch and efficient base removal require the presence of OG. Taken together, these results suggest that the presence of OG is a critical feature for MutY to locate OG:A mismatches and select the appropriate adenines for excision to initiate repair in vivo prior to replication. PMID:18026095

  15. Optoelectronic studies on heterocyclic bases of deoxyribonucleic acid for DNA photonics.

    PubMed

    El-Diasty, Fouad; Abdel-Wahab, Fathy

    2015-10-01

    The optoelectronics study of large molecules, particularly π-stacking molecules, such as DNA is really an extremely difficult task. We perform first electronic structure calculations on the heterocyclic bases of 2'-deoxyribonucleic acid based on Lorentz-Fresnel dispersion theory. In the UV-VIS range of spectrum, many of the optoelectronic parameters for DNA four bases namely adenine, guanine, cytosine and thymine are calculated and discussed. The results demonstrate that adenine has the highest hyperpolarizability, whereas thymine has the lowest hyperpolarizability. Cytosine has the lower average oscillator energy and the higher lattice energy. Thymine infers the most stable nucleic base with the lower phonon energy. Thymine also has the highest average oscillator energy and the lower lattice energy. Moreover, the four nucleic acid bases have large band gap energies less than 5 eV with a semiconducting behavior. Guanine shows the smallest band gap and the highest Fermi level energy, whereas adenine elucidates the highest band gap energy. Copyright © 2015. Published by Elsevier B.V.

  16. Diaminopurine-Resistant Mutants of Cultured, Diploid Human Fibroblasts

    PubMed Central

    Rappaport, Harriet; DeMars, Robert

    1973-01-01

    Clones of cells resistant to 2,6-diaminopurine were detected in skin fibroblast cultures derived from 13 of 21 normal humans of both sexes from 17 unrelated families. Almost all of the cultures that yielded mutants were chosen for further study from among a total of 83 surveyed because they displayed a slight resistance to low concentrations of diaminopurine. The incidences of mutant colonies ranged between about 10-5 and 10-4 per cell surviving prior mutagenic treatment with MNNG. The incidences of spontaneous mutants were about 10-7 to 10-5 in three unrelated cultures. Most independent mutants had distinctly reduced activity of adenine phosphoribosyltransferase but some had apparently normal amounts of activity. Two mutants from unrelated boys had little or no detectable enzyme activity and were unable to effectively use exogenous adenine for growth when purine biosynthesis was blocked with azaserine. Most mutants could utilize exogenous adenine, just as most azaguanine-resistant fibroblast mutants can utilize exogenous hypoxanthine, even when their hypoxanthine-guanine phosphoribosyltransferase activity is reduced. Diverse genetic changes conferred diaminopurine resistance but their specific natures are still undefined. Gross numerical or structural chromosome abnormalities were not observed in the mutants examined so far. Since at least one gene responsible for adenine phosphoribosyltransferase activity is on autosome No. 16 our results suggest that at least some of the cultures yielding mutants were heterozygous and that alleles conferring diaminopurine resistance may be frequent enough to comprise a polymorphism. PMID:4358687

  17. Active Cytokinins

    PubMed Central

    Mornet, René; Theiler, Jane B.; Leonard, Nelson J.; Schmitz, Ruth Y.; Moore, F. Hardy; Skoog, Folke

    1979-01-01

    Four series of azidopurines have been synthesized and tested for cytokinin activity in the tobacco callus bioassay: 2- and 8-azido-N6-benzyladenines, -N6-(Δ2-isopentenyl)adenines, and -zeatins, and N6-(2- and 4-azidobenzyl)adenines. The compounds having 2-azido substitution on the adenine ring are as active as the corresponding parent compounds, while those with 8-azido substitution are about 10 or more times as active. The 8-azidozeatin, which is the most active cytokinin observed, exhibited higher than minimal detectable activity at 1.2 × 10−5 micromolar, the lowest concentration tested. The shape of the growth curve indicates that even a concentration as low as 5 × 10−6 micromolar would probably be effective. By comparison, the lowest active concentration ever reported for zeatin has been 5 × 10−5 micromolar, representing a sensitivity rarely attained. All of the azido compounds have been submitted to photolysis in aqueous ethanol, and the photoproducts have been detected and identified by low and high resolution mass spectrometry. They are rationalized as products of abstraction and insertion reactions of the intermediate nitrenes. The potential of the major released products as cytokinins was also assessed by bioassay. 2-Azido-N6-(Δ2-isopentenyl)adenine competed with [14C]kinetin for the cytokinin-binding protein isolated from wheat germ. When the azido compound was photolysed in the presence of this protein, its attachment effectively blocked the binding of [14C]kinetin. PMID:16661017

  18. Genetic evidence for the essential role of PfNT1 in the transport and utilization of xanthine, guanine, guanosine and adenine by Plasmodium falciparum.

    PubMed

    El Bissati, Kamal; Downie, Megan J; Kim, Seong-Kyoun; Horowitz, Michael; Carter, Nicola; Ullman, Buddy; Ben Mamoun, Choukri

    2008-10-01

    The malaria parasite, Plasmodium falciparum, is unable to synthesize the purine ring de novo and is therefore wholly dependent upon purine salvage from the host for survival. Previous studies have indicated that a P. falciparum strain in which the purine transporter PfNT1 had been disrupted was unable to grow on physiological concentrations of adenosine, inosine and hypoxanthine. We have now used an episomally complemented pfnt1Delta knockout parasite strain to confirm genetically the functional role of PfNT1 in P. falciparum purine uptake and utilization. Episomal complementation by PfNT1 restored the ability of pfnt1Delta parasites to transport and utilize adenosine, inosine and hypoxanthine as purine sources. The ability of wild-type and pfnt1Delta knockout parasites to transport and utilize the other physiologically relevant purines adenine, guanine, guanosine and xanthine was also examined. Unlike wild-type and complemented P. falciparum parasites, pfnt1Delta parasites could not proliferate on guanine, guanosine or xanthine as purine sources, and no significant transport of these substrates could be detected in isolated parasites. Interestingly, whereas isolated pfnt1Delta parasites were still capable of adenine transport, these parasites grew only when adenine was provided at high, non-physiological concentrations. Taken together these results demonstrate that, in addition to hypoxanthine, inosine and adenosine, PfNT1 is essential for the transport and utilization of xanthine, guanine and guanosine.

  19. Pulmonary preservation studies: effects on endothelial function and pulmonary adenine nucleotides.

    PubMed

    Paik, Hyo Chae; Hoffmann, Steven C; Egan, Thomas M

    2003-02-27

    Lung transplantation is an effective therapy plagued by a high incidence of early graft dysfunction, in part because of reperfusion injury. The optimal preservation solution for lung transplantation is unknown. We performed experiments using an isolated perfused rat lung model to test the effect of lung preservation with three solutions commonly used in clinical practice. Lungs were retrieved from Sprague-Dawley rats and flushed with one of three solutions: modified Euro-Collins (MEC), University of Wisconsin (UW), or low potassium dextran and glucose (LPDG), then stored cold for varying periods before reperfusion with Earle's balanced salt solution using the isolated perfused rat lung model. Outcome measures were capillary filtration coefficient (Kfc), wet-to-dry weight ratio, and lung tissue levels of adenine nucleotides and cyclic AMP. All lungs functioned well after 4 hr of storage. By 6 hr, UW-flushed lungs had a lower Kfc than LPDG-flushed lungs. After 8 hr of storage, only UW-flushed lungs had a measurable Kfc. Adenine nucleotide levels were higher in UW-flushed lungs after prolonged storage. Cyclic AMP levels correlated with Kfc in all groups. Early changes in endothelial permeability seemed to be better attenuated in lungs flushed with UW compared with LPDG or MEC; this was associated with higher amounts of adenine nucleotides. MEC-flushed lungs failed earlier than LPDG-flushed or UW-flushed lungs. The content of the solution may be more important for lung preservation than whether the ionic composition is intracellular or extracellular.

  20. Crystallization and preliminary X-ray diffraction study of recombinant adenine phosphoribosyltransferase from the thermophilic bacterium Thermus thermophilus strain HB27

    NASA Astrophysics Data System (ADS)

    Sinitsyna, E. V.; Timofeev, V. I.; Tuzova, E. S.; Kostromina, M. A.; Murav'eva, T. I.; Esipov, R. S.; Kuranova, I. P.

    2017-07-01

    Adenine phosphoribosyltransferase (APRT) belongs to the type I phosphoribosyltransferase family and catalyzes the formation of adenosine monophosphate via transfer of the 5-phosphoribosyl group from phosphoribosyl pyrophosphate to the nitrogen atom N9 of the adenine base. Proteins of this family are involved in a salvage pathway of nucleotide synthesis, thus providing purine base utilization and maintaining the optimal level of purine bases in the body. Adenine phosphoribosyltransferase from the extremely thermophilic Thermus thermophilus strain HB27 was produced using a highly efficient E. coli producer strain and was then purified by affinity and gel-filtration chromatography. This enzyme was successfully employed as a catalyst for the cascade biosynthesis of biologically important nucleotides. The screening of crystallization conditions for recombinant APRT from T. thermophilus HB27 was performed in order to determine the enzyme structure by X-ray diffraction. The crystallization conditions, which were found by the vapor-diffusion technique, were then optimized to apply the counter-diffusion technique. The crystals of the enzyme were grown by the capillary counter-diffusion method. The crystals belong to sp. gr. P1211 and have the following unitcell parameters: a = 69.86 Å, b = 82.16 Å, c = 91.39 Å, α = γ = 90°, β = 102.58°. The X-ray diffraction data set suitable for the determination of the APRT structure at 2.6 Å resolution was collected from the crystals at the SPring-8 synchrotron facility (Japan).

  1. Supra-molecular architecture in a co-crystal of the N(7)-H tautomeric form of N (6)-benzoyl-adenine with adipic acid (1/0.5).

    PubMed

    Swinton Darious, Robert; Thomas Muthiah, Packianathan; Perdih, Franc

    2016-06-01

    The asymmetric unit of the title co-crystal, C12H9N5O·0.5C6H10O4, consists of one mol-ecule of N (6)-benzoyl-adenine (BA) and one half-mol-ecule of adipic acid (AA), the other half being generated by inversion symmetry. The dihedral angle between the adenine and phenyl ring planes is 26.71 (7)°. The N (6)-benzoyl-adenine mol-ecule crystallizes in the N(7)-H tautomeric form with three non-protonated N atoms. This tautomeric form is stabilized by intra-molecular N-H⋯O hydrogen bonding between the carbonyl (C=O) group and the N(7)-H hydrogen atom on the Hoogsteen face of the purine ring, forming an S(7) ring motif. The two carboxyl groups of adipic acid inter-act with the Watson-Crick face of the BA mol-ecules through O-H⋯N and N-H⋯O hydrogen bonds, generating an R 2 (2)(8) ring motif. The latter units are linked by N-H⋯N hydrogen bonds, forming layers parallel to (10-5). A weak C-H⋯O hydrogen bond is also present, linking adipic acid mol-ecules in neighbouring layers, enclosing R (2) 2(10) ring motifs and forming a three-dimensional structure. C=O⋯π and C-H⋯π inter-actions are also present in the structure.

  2. Osmotic fragility changes in preserved blood: measurements by coil planet centrifuge and parpart methods.

    PubMed

    Sasakawa, S; Tokunaga, E; Hasegawa, G; Nakagawa, S

    1977-09-01

    The coil planet centrifuge (CPC) can be used to measure the osmotic fragility of erythrocytes. Fragility measured by this method alters when different salts are used. The CPC and Parpart methods were used to measure the changes during storage in red cell osmotic fragility in ACD or CPD blood with or without adenine. More marked changes were detected by the CPC method, especially in old cells. The changes of fragility of erythrocytes during storage seem to occur mainly in old cells. Adenine is effective in preventing such changes.

  3. Glutamate Dehydrogenase from Apodachlya (Oomycetes) 1

    PubMed Central

    Price, Jeffrey S.; Gleason, Frank H.

    1972-01-01

    A glutamate dehydrogenase specific for nicotinamide-adenine-dinucleotide has been purified 50-fold from Apodachlya brachynema (Leptomitales). Certain physical, chemical, and kinetic properties of this enzyme have been studied, particularly specificity for coenzymes and substrates. With glucose as the sole carbon source, the synthesis of glutamate dehydrogenase was repressed, whereas glutamate, proline, alanine, or ornithine plus aspartate as sole carbon sources induced synthesis of the enzyme. These data indicate that the function of this enzyme is primarily degradative, although there is no evidence for a nicotinamide-adenine-dinucleotide-phosphate-specific biosynthetic glutamate dehydrogenase in Apodachlya. PMID:16657902

  4. Multiple Animal Studies for Medical Chemical Defense Program in Soldier/ Patient Decontamination and Drug Development on Task Order 84-6: Pyruvate Dehydrogenase System for Determining the Effectiveness of Arsenic Antidotes

    DTIC Science & Technology

    1988-03-11

    adenine dinucleotide FAD = flavin-adenine dinucleotide iipS2 = lipoic acid lip(SH)2 = dihydrolipoic acid CoA = coenzyme A. SHepatic PDH complex activity...tissues has yet to be fully characterized, but it probably involves arsenic binding to the lipoic acid and dithiol moieties of the complex (Fluharty...covalently bound lipoic acid substrate of dihydrolipoyl transacetylase is greater per mole of L and CVAA than for sodium arsenite. This is possible

  5. Unraveling the complexity of the interactions of DNA nucleotides with gold by single molecule force spectroscopy

    NASA Astrophysics Data System (ADS)

    Bano, Fouzia; Sluysmans, Damien; Wislez, Arnaud; Duwez, Anne-Sophie

    2015-11-01

    Addressing the effect of different environmental factors on the adsorption of DNA to solid supports is critical for the development of robust miniaturized devices for applications ranging from biosensors to next generation molecular technology. Most of the time, thiol-based chemistry is used to anchor DNA on gold - a substrate commonly used in nanotechnology - and little is known about the direct interaction between DNA and gold. So far there have been no systematic studies on the direct adsorption behavior of the deoxyribonucleotides (i.e., a nitrogenous base, a deoxyribose sugar, and a phosphate group) and on the factors that govern the DNA-gold bond strength. Here, using single molecule force spectroscopy, we investigated the interaction of the four individual nucleotides, adenine, guanine, cytosine, and thymine, with gold. Experiments were performed in three salinity conditions and two surface dwell times to reveal the factors that influence nucleotide-Au bond strength. Force data show that, at physiological ionic strength, adenine-Au interactions are stronger, asymmetrical and independent of surface dwell time as compared to cytosine-Au and guanine-Au interactions. We suggest that in these conditions only adenine is able to chemisorb on gold. A decrease of the ionic strength significantly increases the bond strength for all nucleotides. We show that moderate ionic strength along with longer surface dwell period suggest weak chemisorption also for cytosine and guanine.Addressing the effect of different environmental factors on the adsorption of DNA to solid supports is critical for the development of robust miniaturized devices for applications ranging from biosensors to next generation molecular technology. Most of the time, thiol-based chemistry is used to anchor DNA on gold - a substrate commonly used in nanotechnology - and little is known about the direct interaction between DNA and gold. So far there have been no systematic studies on the direct adsorption behavior of the deoxyribonucleotides (i.e., a nitrogenous base, a deoxyribose sugar, and a phosphate group) and on the factors that govern the DNA-gold bond strength. Here, using single molecule force spectroscopy, we investigated the interaction of the four individual nucleotides, adenine, guanine, cytosine, and thymine, with gold. Experiments were performed in three salinity conditions and two surface dwell times to reveal the factors that influence nucleotide-Au bond strength. Force data show that, at physiological ionic strength, adenine-Au interactions are stronger, asymmetrical and independent of surface dwell time as compared to cytosine-Au and guanine-Au interactions. We suggest that in these conditions only adenine is able to chemisorb on gold. A decrease of the ionic strength significantly increases the bond strength for all nucleotides. We show that moderate ionic strength along with longer surface dwell period suggest weak chemisorption also for cytosine and guanine. Electronic supplementary information (ESI) available: Details of the data analysis; Fig. S1-S5 histograms of rupture lengths; histograms for Au-adenine and Au-amine interactions; Force-extension curve for MCH-Au interactions; normalized force-extension curves; theoretical length of the DNA oligomers. See DOI: 10.1039/c5nr05695k

  6. Structural energetics of the adenine tract from an intrinsic transcription terminator.

    PubMed

    Huang, Yuegao; Weng, Xiaoli; Russu, Irina M

    2010-04-02

    Intrinsic transcription termination sites generally contain a tract of adenines in the DNA template that yields a tract of uracils at the 3' end of the nascent RNA. To understand how this base sequence contributes to termination of transcription, we have investigated two nucleic acid structures. The first is the RNA-DNA hybrid that contains the uracil tract 5'-rUUUUUAU-3' from the tR2 intrinsic terminator of bacteriophage lambda. The second is the homologous DNA-DNA duplex that contains the adenine tract 5'-dATAAAAA-3'. This duplex is present at the tR2 site when the DNA is not transcribed. The opening and the stability of each rU-dA/dT-dA base pair in the two structures are characterized by imino proton exchange and nuclear magnetic resonance spectroscopy. The results reveal concerted opening of the central rU-dA base pairs in the RNA-DNA hybrid. Furthermore, the stability profile of the adenine tract in the RNA-DNA hybrid is very different from that of the tract in the template DNA-DNA duplex. In the RNA-DNA hybrid, the stabilities of rU-dA base pairs range from 4.3 to 6.5 kcal/mol (at 10 degrees C). The sites of lowest stability are identified at the central positions of the tract. In the template DNA-DNA duplex, the dT-dA base pairs are more stable than the corresponding rU-dA base pairs in the hybrid by 0.9 to 4.6 kcal/mol and, in contrast to the RNA-DNA hybrid, the central base pairs have the highest stability. These results suggest that the central rU-dA/dT-dA base pairs in the adenine tract make the largest energetic contributions to transcription termination by promoting both the dissociation of the RNA transcript and the closing of the transcription bubble. The results also suggest that the high stability of dT-dA base pairs in the DNA provides a signal for the pausing of RNA polymerase at the termination site. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. Adenine phosphoribosyltransferase from Sulfolobus solfataricus is an enzyme with unusual kinetic properties and a crystal structure that suggests it evolved from a 6-oxopurine phosphoribosyltransferase.

    PubMed

    Jensen, Kaj Frank; Hansen, Michael Riis; Jensen, Kristine Steen; Christoffersen, Stig; Poulsen, Jens-Christian Navarro; Mølgaard, Anne; Kadziola, Anders

    2015-04-14

    The adenine phosphoribosyltransferase (APRTase) encoded by the open reading frame SSO2342 of Sulfolobus solfataricus P2 was subjected to crystallographic, kinetic, and ligand binding analyses. The enzyme forms dimers in solution and in the crystals, and binds one molecule of the reactants 5-phosphoribosyl-α-1-pyrophosphate (PRPP) and adenine or the product adenosine monophosphate (AMP) or the inhibitor adenosine diphosphate (ADP) in each active site. The individual subunit adopts an overall structure that resembles a 6-oxopurine phosphoribosyltransferase (PRTase) more than known APRTases implying that APRT functionality in Crenarchaeotae has its evolutionary origin in this family of PRTases. Only the N-terminal two-thirds of the polypeptide chain folds as a traditional type I PRTase with a five-stranded β-sheet surrounded by helices. The C-terminal third adopts an unusual three-helix bundle structure that together with the nucleobase-binding loop undergoes a conformational change upon binding of adenine and phosphate resulting in a slight contraction of the active site. The inhibitor ADP binds like the product AMP with both the α- and β-phosphates occupying the 5'-phosphoribosyl binding site. The enzyme shows activity over a wide pH range, and the kinetic and ligand binding properties depend on both pH and the presence/absence of phosphate in the buffers. A slow hydrolysis of PRPP to ribose 5-phosphate and pyrophosphate, catalyzed by the enzyme, may be facilitated by elements in the C-terminal three-helix bundle part of the protein.

  8. The effect of pi-stacking, h-bonding, and electrostatic interactions on the ionization energies of nucleic acid bases: adenine-adenine, thymine-thymine and adenine-thymine dimers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bravaya, Ksenia B.; Kostko, Oleg; Ahmed, Musahid

    A combined theoretical and experimental study of the ionized dimers of thymine and adenine, TT, AA, and AT, is presented. Adiabatic and vertical ionization energies(IEs) for monomers and dimers as well as thresholds for the appearance of the protonated species are reported and analyzed. Non-covalent interactions stronglyaffect the observed IEs. The magnitude and the nature of the effect is different for different isomers of the dimers. The computations reveal that for TT, the largestchanges in vertical IEs (0.4 eV) occur in asymmetric h-bonded and symmetric pi- stacked isomers, whereas in the lowest-energy symmetric h-bonded dimer the shiftin IEs is muchmore » smaller (0.1 eV). The origin of the shift and the character of the ionized states is different in asymmetric h-bonded and symmetric stacked isomers. Inthe former, the initial hole is localized on one of the fragments, and the shift is due to the electrostatic stabilization of the positive charge of the ionized fragment by thedipole moment of the neutral fragment. In the latter, the hole is delocalized, and the change in IE is proportional to the overlap of the fragments' MOs. The shifts in AAare much smaller due to a less effcient overlap and a smaller dipole moment. The ionization of the h-bonded dimers results in barrierless (or nearly barrierless) protontransfer, whereas the pi-stacked dimers relax to structures with the hole stabilized by the delocalization or electrostatic interactions.« less

  9. Gum acacia mitigates genetic damage in adenine-induced chronic renal failure in rats.

    PubMed

    Ali, B H; Al Balushi, K; Al-Husseini, I; Mandel, P; Nemmar, A; Schupp, N; Ribeiro, D A

    2015-12-01

    Subjects with chronic renal failure (CRF) exhibit oxidative genome damage, which may predispose to carcinogenesis, and Gum acacia (GumA) ameliorates this condition in humans and animals. We evaluated here renal DNA damage and urinary excretion of four nucleic acid oxidation adducts namely 8-oxoguanine (8-oxoGua), 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), 8-oxoguanosine (8-oxoGuo) and 8-hydroxy-2-deoxyguanisone (8-OHdg) in rats with adenine (ADE)-induced CRF with and without GumA treatment. Twenty-four rats were divided into four equal groups and treated for 4 weeks. The first group was given normal food and water (control). The second group was given normal food and GumA (15% w/v) in drinking water. The third group was fed powder diet containing adenine (ADE) (0·75% w/w in feed). The fourth group was fed like in the third group, plus GumA in drinking water (15%, w/v). ADE feeding induced CRF (as measured by several physiological, biochemical and histological indices) and also caused a significant genetic damage and significant decreases in urinary 8-oxo Gua and 8-oxoGuo, but not in the other nucleic acids. However, concomitant GumA treatment reduced the level of genetic damage in kidney cells as detected by Comet assay and significantly reversed the effect of adenine on urinary 8-oxoGuo. Treatment with GumA is able to mitigate genetic damage in renal tissues of rats with ADE-induced CRF. © 2015 Stichting European Society for Clinical Investigation Journal Foundation.

  10. Erhuang Formula ameliorates renal damage in adenine-induced chronic renal failure rats via inhibiting inflammatory and fibrotic responses.

    PubMed

    Zhang, Chun-Yan; Zhu, Jian-Yong; Ye, Ying; Zhang, Miao; Zhang, Li-Jun; Wang, Su-Juan; Song, Ya-Nan; Zhang, Hong

    2017-11-01

    The present study aimed to evaluate the protective effects of Erhuang Formula (EHF) and explore its pharmacological mechanisms on adenine-induced chronic renal failure (CRF). The compounds in EHF were analyzed by HPLC/MS. Adenine-induced CRF rats were administrated by EHF. The effects were evaluated by renal function examination and histology staining. Immunostaining of some proteins related cell adhesion was performedin renal tissues, including E-cadherin, β-catenin, fibronectin and laminin. The qRT-PCR was carried out determination of gene expression related inflammation and fibrosis including NF-κB, TNF-α, TGF-β1, α-SMA and osteopontin (OPN). Ten compounds in EHF were identified including liquiritigenin, farnesene, vaccarin, pachymic acid, cycloastragenol, astilbin, 3,5,6,7,8,3',4'-heptemthoxyflavone, physcion, emodin and curzerene. Abnormal renal function and histology had significant improvements by EHF treatment. The protein expression of β-catenin, fibronectin and laminin were significantly increased and the protein expression of E-cadherin significantly decreased in CRF groups. However, these protein expressions were restored to normal levels in EHF group. Furthermore, low expression of PPARγ and high expression of NF-κB, TNF-α, TGF-β1, α-SMA and OPN were substantially restored by EHF treatment in a dose-dependent manner. EHF ameliorated renal damage in adenine-induced CRF rats, and the mechanisms might involve in the inhibition of inflammatory and fibrotic responses and the regulation of PPARγ, NF-κB and TGF-β signaling pathways. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. The conserved baculovirus protein p33 (Ac92) is a flavin adenine dinucleotide-linked sulfhydryl oxidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, C.M.; Rohrmann, G.F.; Merrill, G.F., E-mail: merrillg@onid.orst.ed

    2009-06-05

    Open reading frame 92 of the Autographa californica baculovirus (Ac92) is one of about 30 core genes present in all sequenced baculovirus genomes. Computer analyses predicted that the Ac92 encoded protein (called p33) and several of its baculovirus orthologs were related to a family of flavin adenine dinucleotide (FAD)-linked sulfhydryl oxidases. Alignment of these proteins indicated that, although they were highly diverse, a number of amino acids in common with the Erv1p/Alrp family of sulfhydryl oxidases are present. Some of these conserved amino acids are predicted to stack against the isoalloxazine and adenine components of FAD, whereas others are involvedmore » in electron transfer. To investigate this relationship, Ac92 was expressed in bacteria as a His-tagged fusion protein, purified, and characterized both spectrophotometrically and for its enzymatic activity. The purified protein was found to have the color (yellow) and absorption spectrum consistent with it being a FAD-containing protein. Furthermore, it was demonstrated to have sulfhydryl oxidase activity using dithiothreitol and thioredoxin as substrates.« less

  12. The conserved baculovirus protein p33 (Ac92) is a flavin adenine dinucleotide-linked sulfhydryl oxidase.

    PubMed

    Long, C M; Rohrmann, G F; Merrill, G F

    2009-06-05

    Open reading frame 92 of the Autographa californica baculovirus (Ac92) is one of about 30 core genes present in all sequenced baculovirus genomes. Computer analyses predicted that the Ac92 encoded protein (called p33) and several of its baculovirus orthologs were related to a family of flavin adenine dinucleotide (FAD)-linked sulfhydryl oxidases. Alignment of these proteins indicated that, although they were highly diverse, a number of amino acids in common with the Erv1p/Alrp family of sulfhydryl oxidases are present. Some of these conserved amino acids are predicted to stack against the isoalloxazine and adenine components of FAD, whereas others are involved in electron transfer. To investigate this relationship, Ac92 was expressed in bacteria as a His-tagged fusion protein, purified, and characterized both spectrophotometrically and for its enzymatic activity. The purified protein was found to have the color (yellow) and absorption spectrum consistent with it being a FAD-containing protein. Furthermore, it was demonstrated to have sulfhydryl oxidase activity using dithiothreitol and thioredoxin as substrates.

  13. Comparative NMR analysis of the decadeoxynucleotide d-(GCATTAATGC)2 and an analogue containing 2-aminoadenine.

    PubMed Central

    Chazin, W J; Rance, M; Chollet, A; Leupin, W

    1991-01-01

    The dodecadeoxynucleotide duplex d-(GCATTAATGC)2 has been prepared with all adenine bases replaced by 2-NH2-adenine. This modified duplex has been characterized by nuclear magnetic resonance (NMR) spectroscopy. Complete sequence-specific 1H resonance assignments have been obtained by using a variety of 2D NMR methods. Multiple quantum-filtered and multiple quantum experiments have been used to completely assign all sugar ring protons, including 5'H and 5'H resonances. The assignments form the basis for a detailed comparative analysis of the 1H NMR parameters of the modified and parent duplex. The structural features of both decamer duplexes in solution are characteristic of the B-DNA family. The spin-spin coupling constants in the sugar rings and the relative spatial proximities of protons in the bases and sugars (as determined from the comparison of corresponding nuclear Overhauser effects) are virtually identical in the parent and modified duplexes. Thus, substitution by this adenine analogue in oligonucleotides appears not to disturb the global or local conformation of the DNA duplex. PMID:1945828

  14. In situ evaluation of heavy metal-DNA interactions using an electrochemical DNA biosensor.

    PubMed

    Oliveira, S C B; Corduneanu, O; Oliveira-Brett, A M

    2008-02-01

    Heavy metal ions, lead, cadmium and nickel, are well known carcinogens with natural different origins and their direct mode of action is still not fully understood. A dsDNA-electrochemical biosensor, employing differential pulse voltammetry, was used for the in situ evaluation of Pb2+, Cd2+ and Ni2+ interaction with dsDNA. The results confirm that Pb2+, Cd2+ and Ni2+ bind to dsDNA, and that this interaction leads to different modifications in the dsDNA structure. These modifications were electrochemically recognized as changes in the oxidation peaks of guanosine and adenosine bases. Using homopolynucleotides of guanine and adenine it has been proved that the interaction between Pb2+ and DNA causes oxidative damage and preferentially takes place at adenine-containing segments, with the formation of 2,8-dihydroxyadenine, the oxidation product of adenine residues and a biomarker of DNA oxidative damage. The Pb2+ bound to dsDNA can still undergo oxidation. The interaction of Cd2+ and Ni2+ causes conformational changes, destabilizing the double helix, which can enable the action of other oxidative agents on DNA.

  15. Nicotinic Acid Adenine Dinucleotide Phosphate Analogs Substituted on the Nicotinic Acid and Adenine Ribosides. Effects on Receptor-Mediated Ca2+ release

    PubMed Central

    Trabbic, Christopher J.; Zhang, Fan; Walseth, Timothy F.; Slama, James T.

    2015-01-01

    Nicotinic acid adenine dinucleotide phosphate (NAADP) is a Ca2+ releasing intracellular second messenger in both mammals and echinoderms. We report that large functionalized substituents introduced at the nicotinic acid 5-position are recognized by the sea urchin receptor, albeit with a 20–500 fold loss in agonist potency. 5-(3-Azidopropyl)-NAADP was shown to release Ca2+ with an EC50 of 31 µM and to compete with NAADP for receptor binding with an IC50 of 56 nM. Attachment of charged groups to the nicotinic acid of NAADP is associated with loss of activity, suggesting that the nicotinate riboside moiety is recognized as a neutral zwitterion. Substituents (Br- and N3-) can be introduced at the 8-adenosyl position of NAADP while preserving high potency and agonist efficacy and an NAADP derivative substituted at both the 5-position of the nicotinic acid and at the 8-adenosyl position was also recognized although the agonist potency was significantly reduced. PMID:25826221

  16. Hydration properties of adenosine phosphate series as studied by microwave dielectric spectroscopy.

    PubMed

    Mogami, George; Wazawa, Tetsuichi; Morimoto, Nobuyuki; Kodama, Takao; Suzuki, Makoto

    2011-02-01

    Hydration properties of adenine nucleotides and orthophosphate (Pi) in aqueous solutions adjusted to pH=8 with NaOH were studied by high-resolution microwave dielectric relaxation (DR) spectroscopy at 20 °C. The dielectric spectra were analyzed using a mixture theory combined with a least-squares Debye decomposition method. Solutions of Pi and adenine nucleotides showed qualitatively similar dielectric properties described by two Debye components. One component was characterized by a relaxation frequency (f(c)=18.8-19.7 GHz) significantly higher than that of bulk water (17 GHz) and the other by a much lower f(c) (6.4-7.6 GHz), which are referred to here as hyper-mobile water and constrained water, respectively. By contrast, a hydration shell of only the latter type was found for adenosine (f(c)~6.7 GHz). The present results indicate that phosphoryl groups are mostly responsible for affecting the structure of the water surrounding the adenine nucleotides by forming one constrained water layer and an additional three or four layers of hyper-mobile water. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Pressure-tuning infrared and Raman microscopy study of the DNA bases: adenine, guanine, cytosine, and thymine.

    PubMed

    Yang, Seung Yun; Butler, Ian S

    2013-12-01

    Diamond-anvil cell, pressure-tuning infrared (IR), and Raman microspectroscopic measurements have been undertaken to examine the effects of high pressures up to about 45 kbar on the vibrational spectra of the four DNA bases, adenine, cytosine, guanine, and thymine. Small structural changes were evident for all the four bases, viz., for adenine and cytosine at 28-31 kbar; for guanine at 16-19 kbar; and for thymine at 25-26 kbar. These changes are most likely associated with alterations in the intermolecular hydrogen-bonding interactions. The pressure dependences of the main peaks observed in the IR spectra of the two phases of guanine lie in the -0.07-0.66 (low-pressure phase) and 0.06-0.91 (high-pressure phase) cm⁻¹/kbar ranges. Also, in the Raman spectra of this nucleoside base, the dν/dP values range from -0.07-0.31 (low-pressure phase) to 0.08-0.50 (high-pressure phase) cm⁻¹/kbar. Similar ranges of dν/dP values were obtained for the other three nucleoside bases.

  18. When does the lung die? Kfc, cell viability, and adenine nucleotide changes in the circulation-arrested rat lung.

    PubMed

    Jones, D R; Becker, R M; Hoffmann, S C; Lemasters, J J; Egan, T M

    1997-07-01

    Lungs harvested from cadaveric circulation-arrested donors may increase the donor pool for lung transplantation. To determine the degree and time course of ischemia-reperfusion injury, we evaluated the effect of O2 ventilation on capillary permeability [capillary filtration coefficient (Kfc)], cell viability, and total adenine nucleotide (TAN) levels in in situ circulation-arrested rat lungs. Kfc increased with increasing postmortem ischemic time (r = 0.88). Lungs ventilated with O2 1 h postmortem had similar Kfc and wet-to-dry ratios as controls. Nonventilated lungs had threefold (P < 0.05) and sevenfold (P < 0.0001) increases in Kfc at 30 and 60 min postmortem compared with controls. Cell viability decreased in all groups except for 30-min postmortem O2-ventilated lungs. TAN levels decreased with increasing ischemic time, particularly in nonventilated lungs. Loss of adenine nucleotides correlated with increasing Kfc values (r = 0.76). This study indicates that lungs retrieved 1 h postmortem may have normal Kfc with preharvest O2 ventilation. The relationship between Kfc and TAN suggests that vascular permeability may be related to lung TAN levels.

  19. Genetic and physiological characterization of the purine salvage pathway in the archaebacterium Methanobacterium thermoautotrophicum Marburg.

    PubMed Central

    Worrell, V E; Nagle, D P

    1990-01-01

    The enzymes involved in the purine interconversion pathway of wild-type and purine analog-resistant strains of Methanobacterium thermoautotrophicum Marburg were assayed by radiometric and spectrophotometric methods. Wild-type cells incorporated labeled adenine, guanine, and hypoxanthine, whereas mutant strains varied in their ability to incorporate these bases. Adenine, guanine, hypoxanthine, and xanthine were activated by phosphoribosyltransferase activities present in wild-type cell extracts. Some mutant strains simultaneously lost the ability to convert both guanine and hypoxanthine to the respective nucleotide, suggesting that the same enzyme activates both bases. Adenosine, guanosine, and inosine phosphorylase activities were detected for the conversion of base to nucleoside. Adenine deaminase activity was detected at low levels. Guanine deaminase activity was not detected. Nucleoside kinase activities for the conversion of adenosine, guanosine, and inosine to the respective nucleotides were detected by a new assay. The nucleotide-interconverting enzymes AMP deaminase, succinyl-AMP synthetase, succinyl-AMP lyase, IMP dehydrogenase, and GMP synthetase were present in extracts; GMP reductase was not detected. The results indicate that this autotrophic methanogen has a complex system for the utilization of exogenous purines. PMID:2345148

  20. Relationships between laser powers and photoacoustic signal intensities of flavin adenine dinucleotide and beta-carotene dissolved in solutions

    NASA Astrophysics Data System (ADS)

    Imakubo, Keiichi

    1994-10-01

    Ar ion laser-induced photoacoustic spectroscopy has been performed on 0.01 mu M flavin adenine dinucleotide in H2O and 0.01 mu M beta-carotene in n-hexane where the optical absorption spectroscopy is not applicable. On the basis of the linear relationships between laser powers and photoacoustic signal intensities up to 500 mW, it may be concluded that laser power ranging from 10 to 50 mW is required for the successful observation of photoacoustic signals without any photochemical or photobiological effects.

  1. Rationalizing the structural variability of the exocyclic amino groups in nucleobases and their metal complexes: cytosine and adenine.

    PubMed

    Fonseca Guerra, Célia; Sanz Miguel, Pablo J; Cebollada, Andrea; Bickelhaupt, F Matthias; Lippert, Bernhard

    2014-07-28

    The exocyclic amino groups of cytosine and adenine nucleobases are normally almost flat, with the N atoms essentially sp(2) hybridized and the lone pair largely delocalized into the heterocyclic rings. However, a change to marked pyramidality of the amino group (N then sp(3) hybridized, lone pair essentially localized at N) occurs during i) involvement of an amino proton in strong hydrogen bonding donor conditions or ii) with monofunctional metal coordination following removal of one of the two protons. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Unprecedented head-to-head right-handed cross-links between the antitumor bis(mu-N,N'-di-p-tolylformamidinate) dirhodium(II,II) core and the dinucleotide d(ApA) with the adenine bases in the rare imino form.

    PubMed

    Chifotides, Helen T; Dunbar, Kim R

    2007-10-17

    Reactions of the anticancer active compound cis-[Rh2(DTolF)2(CH3CN)6](BF4)2 with 9-ethyladenine (9-EtAdeH) or the dinucleotide d(ApA) proceed with bridging adenine bases in the rare imino form (A*), spanning the Rh-Rh bond at equatorial positions via N7/N6. The inflection points for the pH-dependent H2 and H8 NMR resonance curves of cis-[Rh2(DTolF)2(9-EtAdeH)2](BF4)2 correspond to N1H deprotonation of the metal-stabilized rare imino tautomer, which takes place at pKa approximately 7.5 in CD3CN-d3, a considerably reduced value as compared to that of the imino form of 9-EtAdeH. Similarly, coordination of the metal atoms to the N7/N6 adenine sites in Rh2(DTolF)2{d(ApA)} induces formation of the rare imino tautomer of the bases with a concomitant substantial decrease in the basicity of the N1H sites (pKa approximately 7.0 in CD3CN-d3), as compared to the imino form of the free dinucleotide. The presence of the adenine bases in the rare imino form, due to bidentate metalation of the N6/N7 sites, is further corroborated by DQF-COSY H2/N1H and ROE N1H/N6H cross-peaks in the 2D NMR spectra of Rh2(DTolF)2{d(ApA)} in CD3CN-d3 at -38 degrees C. Due to the N7/N6 bridging mode of the adenine bases in Rh2(DTolF)2{d(ApA)}, only the anti orientation of the imino tautomer is possible. The imino form A* of adenine in DNA may result in AT-->CG transversions or AT-->GC transitions, which can eventually lead to lethal mutations. The HH arrangement of the bases in Rh2(DTolF)2{d(ApA)} is indicated by the H8/H8 NOE cross-peaks in the 2D ROESY NMR spectrum, whereas the formamidinate bridging groups dictate the presence of one right-handed conformer HH1R in solution. Complete characterization of Rh2(DTolF)2{d(ApA)} by 2D NMR spectroscopy and molecular modeling supports the presence of the HH1R conformer, anti orientation of both sugar residues about the glycosyl bonds, and N-type conformation for the 5'-A base.

  3. Synthesis of novel (2R,4R)- and (2S,4S)-iso dideoxynucleosides with exocyclic methylene as potential antiviral agents.

    PubMed

    Yoo, Su Jeong; Kim, Hea Ok; Lim, Yoongho; Kim, Jeongmin; Jeong, Lak Shin

    2002-01-01

    Novel (2R,4R)- and (2S,4S)-iso dideoxynucleosides with exocyclic methylene have been designed and synthesized, based on the lead BMS-200475 (3) which exhibited potent anti-HBV activity. For the synthesis of D types of (2R,4R)-nucleosides, L-xylose was converted to the key intermediate 14. The intermediate 14 was converted to the uracil derivative 4a and the cytosine derivative 4b. Compound 14 was also converted to the purine derivatives such as adenine derivative 4c, hypoxanthine derivative 4d, and guanine derivative 4e. The corresponding L types of (2S,4S)-enantiomers were more efficiently synthesized from the commercially available 1,2-isopropylidene-D-xylose (20) than the synthetic method used in the synthesis of (2R,4R)-nucleosides. The key intermediate 25 was converted to the pyrimidine analogues 5a and 5b and the purine derivatives 5c, 5d, and 5e using the similar method used in the preparation of 4c, 4d, and 4e. The synthesized final (2R,4R)- and (2S,4S)-nucleosides were tested against several viruses such as HIV-1, HSV-1, HSV-2, HCMV and HBV. (2R,4R)-Adenine analogue 4c exhibited potent anti-HBV activity (EC(50)=1.5 microM in 2.2.15 cells) among compounds tested, while (2R,4R)-uracil derivative 4a was the most active against HCMV among compounds tested and (2R,4R)-adenine derivative 4c was found to be moderately active against the same virus. However, the corresponding (2S,4S)-isomers were found to be totally inactive against all tested viruses. Both (2R,4R)-adenine derivative 4c and (2S,4S)-adenine analogue 5c were totally resistant to the adenosine deaminase like iso-ddA (1). From the molecular modeling study the hydroxymethyl side chains of BMS-200475 (3) and 4c were almost overlapped, indicating that 4c may be suitable for phosphorylation by cellular kinases like the lead 3, but some discrepancy between two bases was observed, indicating why 4c is less potent against HBV than 3. It is concluded that discovery of (2R,4R)-adenine analogue 4c as potent anti-HBV agent suggested that the sugar moiety of this series can be regarded as a novel template for the development of new anti-HBV agent and oxygen atom can be acted as a bioisostere of C-OH.

  4. Genetic and environmental risks for high blood pressure among African American mothers and daughters.

    PubMed

    Taylor, Jacquelyn Y; Maddox, Rosanna; Wu, Chun Yi

    2009-07-01

    To determine the relationship between genetic and environmental lifestyle factors (physical activity and sodium) on blood pressure (BP) among African-American women. In this cross-sectional study involving 108 African-American mothers and daughters from a Midwestern area, investigators obtained BP measurements, information on minutes of physical activity, amount of sodium intake, and buccal swab saliva samples. Of the 4 single nucleotide polymorphisms (SNPs) on the sodium bicarbonate cotransporter gene (SLC4A5), rs8179526 had a statistically significant interaction with cytosine/thymine (C/T) genotype by sodium status on systolic BP (SBP; p=.0077). For gene x physical activity interaction, 2 significant interactions (cytosine/adenine [C/A] genotype by physical activity and adenine/adenine [A/A] genotype by physical activity, p=.0107 and p=.0171, respectively) on SBP and 1 on diastolic BP (DBP; A/A genotype by physical activity, p=.0233) were found on rs1017783. Two significant guanine/adenine [G/A] genotype by physical activity interactions were found on rs6731545 for SBP and DBP (p=.0160 and p=.0492, respectively). A gene x environmental interaction with rs8179526 has a protective effect on SBP in African-American women with high sodium intake. Participants with C/T genotype of rs8179526 who consumed greater than 2,300 mg of sodium had lower SBP than those who consumed less than recommended. Women with thymine/thymine (T/T) genotype of rs8179526 who consumed greater than 2,300 mg had lower SBP than those who consumed less. Awareness of both the protective and deleterious properties of rs8179526 in African-American women may one day assist in determining appropriate treatment plans.

  5. Profiling Redox and Energy Coenzymes in Whole Blood, Tissue and Cells Using NMR Spectroscopy.

    PubMed

    Gowda, G A Nagana

    2018-05-14

    Coenzymes of cellular redox reactions and cellular energy, as well as antioxidants mediate biochemical reactions fundamental to the functioning of all living cells. Conventional analysis methods lack the opportunity to evaluate these important redox and energy coenzymes and antioxidants in a single step. Major coenzymes include redox coenzymes: NAD⁺ (oxidized nicotinamide adenine dinucleotide), NADH (reduced nicotinamide adenine dinucleotide), NADP⁺ (oxidized nicotinamide adenine dinucleotide phosphate) and NADPH (reduced nicotinamide adenine dinucleotide phosphate); energy coenzymes: ATP (adenosine triphosphate), ADP (adenosine diphosphate) and AMP (adenosine monophosphate); and antioxidants: GSSG (oxidized glutathione) and GSH (reduced glutathione). We show here that a simple ¹H NMR experiment can measure these coenzymes and antioxidants in tissue and whole blood apart from a vast pool of other metabolites. In addition, focused on the goal of identification of coenzymes in subcellular fractions, we demonstrate analysis of coenzymes in the cytoplasm using breast cancer cells. Owing to their unstable nature, or low concentrations, most of the coenzymes either evade detection or lose their integrity when established sample preparation and analysis methods are used. To overcome this challenge, here we describe the development of new methods to detect these molecules without affecting the integrity of other metabolites. We used an array of 1D and 2D NMR methods, chemical shift databases, pH measurements and spiking with authentic compounds to establish the identity of peaks for the coenzymes and antioxidants in NMR spectra. Interestingly, while none of the coenzymes and antioxidants were detected in plasma, they were abundant in whole blood. Considering that the coenzymes and antioxidants represent a sensitive measure of human health and risk for numerous diseases, the presented NMR methods to measure them in one step potentially open new opportunities in the metabolomics field.

  6. High-NaCl diet impairs dynamic renal blood flow autoregulation in rats with adenine-induced chronic renal failure.

    PubMed

    Saeed, Aso; DiBona, Gerald F; Grimberg, Elisabeth; Nguy, Lisa; Mikkelsen, Minne Line Nedergaard; Marcussen, Niels; Guron, Gregor

    2014-03-15

    This study examined the effects of 2 wk of high-NaCl diet on kidney function and dynamic renal blood flow autoregulation (RBFA) in rats with adenine-induced chronic renal failure (ACRF). Male Sprague-Dawley rats received either chow containing adenine or were pair-fed an identical diet without adenine (controls). After 10 wk, rats were randomized to either remain on the same diet (0.6% NaCl) or to be switched to high 4% NaCl chow. Two weeks after randomization, renal clearance experiments were performed under isoflurane anesthesia and dynamic RBFA, baroreflex sensitivity (BRS), systolic arterial pressure variability (SAPV), and heart rate variability were assessed by spectral analytical techniques. Rats with ACRF showed marked reductions in glomerular filtration rate and renal blood flow (RBF), whereas mean arterial pressure and SAPV were significantly elevated. In addition, spontaneous BRS was reduced by ∼50% in ACRF animals. High-NaCl diet significantly increased transfer function fractional gain values between arterial pressure and RBF in the frequency range of the myogenic response (0.06-0.09 Hz) only in ACRF animals (0.3 ± 4.0 vs. -4.4 ± 3.8 dB; P < 0.05). Similarly, a high-NaCl diet significantly increased SAPV in the low-frequency range only in ACRF animals. To conclude, a 2-wk period of a high-NaCl diet in ACRF rats significantly impaired dynamic RBFA in the frequency range of the myogenic response and increased SAPV in the low-frequency range. These abnormalities may increase the susceptibility to hypertensive end-organ injury and progressive renal failure by facilitating pressure transmission to the microvasculature.

  7. Multiple Decay Mechanisms and 2D-UV Spectroscopic Fingerprints of Singlet Excited Solvated Adenine-Uracil Monophosphate.

    PubMed

    Li, Quansong; Giussani, Angelo; Segarra-Martí, Javier; Nenov, Artur; Rivalta, Ivan; Voityuk, Alexander A; Mukamel, Shaul; Roca-Sanjuán, Daniel; Garavelli, Marco; Blancafort, Lluís

    2016-05-23

    The decay channels of singlet excited adenine uracil monophosphate (ApU) in water are studied with CASPT2//CASSCF:MM potential energy calculations and simulation of the 2D-UV spectroscopic fingerprints with the aim of elucidating the role of the different electronic states of the stacked conformer in the excited state dynamics. The adenine (1) La state can decay without a barrier to a conical intersection with the ground state. In contrast, the adenine (1) Lb and uracil S(U) states have minima that are separated from the intersections by sizeable barriers. Depending on the backbone conformation, the CT state can undergo inter-base hydrogen transfer and decay to the ground state through a conical intersection, or it can yield a long-lived minimum stabilized by a hydrogen bond between the two ribose rings. This suggests that the (1) Lb , S(U) and CT states of the stacked conformer may all contribute to the experimental lifetimes of 18 and 240 ps. We have also simulated the time evolution of the 2D-UV spectra and provide the specific fingerprint of each species in a recommended probe window between 25 000 and 38 000 cm(-1) in which decongested, clearly distinguishable spectra can be obtained. This is expected to allow the mechanistic scenarios to be discerned in the near future with the help of the corresponding experiments. Our results reveal the complexity of the photophysics of the relatively small ApU system, and the potential of 2D-UV spectroscopy to disentangle the photophysics of multichromophoric systems. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  8. Effects of caffeine and adenine nucleotides on Ca2+ release by the sarcoplasmic reticulum in saponin-permeabilized frog skeletal muscle fibres

    PubMed Central

    Duke, Adrian M; Steele, Derek S

    1998-01-01

    The effect of caffeine and adenine nucleotides on the sarcoplasmic reticulum (SR) Ca2+ release mechanism was investigated in permeabilized frog skeletal muscle fibres. Caffeine was rapidly applied and the resulting release of Ca2+ from the SR detected using fura-2 fluorescence. Decreasing the [ATP] from 5 to 0.1 mm reduced the caffeine-induced Ca2+ transient by 89 ± 1.4 % (mean ± s.e.m., n = 16), while SR Ca2+ uptake was unaffected.The dependence of caffeine-induced Ca2+ release on cytosolic [ATP] was used to study the relative ability of other structurally related compounds to substitute for, or compete with, ATP at the adenine nucleotide binding site. It was found that AMP, ADP and the non-hydrolysable analogue adenylyl imidodiphosphate (AMP-PNP) partially substituted for ATP, although none was as potent in facilitating the Ca2+-releasing action of caffeine.Adenosine reversibly inhibited caffeine-induced Ca2+ release, without affecting SR Ca2+ uptake. Five millimolar adenosine markedly reduced the amplitude of the caffeine-induced Ca2+ transient by 64 ± 4 % (mean ± s.e.m., n = 11). The degree of inhibition was dependent upon the cytosolic [ATP], suggesting that adenosine may act as a competitive antagonist at the adenine nucleotide binding site.These data show that (i) the sensitivity of the in situ SR Ca2+ channel to caffeine activation is strongly dependent upon the cytosolic [ATP], (ii) the number of phosphates attached to the 5′ carbon of the ribose ring influences the efficacy of the ligand, and (iii) removal of a single phosphate group transforms AMP from a partial agonist, to adenosine, which acts as a competitive antagonist under these conditions. PMID:9782158

  9. Effects of caffeine and adenine nucleotides on Ca2+ release by the sarcoplasmic reticulum in saponin-permeabilized frog skeletal muscle fibres.

    PubMed

    Duke, A M; Steele, D S

    1998-11-15

    1. The effect of caffeine and adenine nucleotides on the sarcoplasmic reticulum (SR) Ca2+ release mechanism was investigated in permeabilized frog skeletal muscle fibres. Caffeine was rapidly applied and the resulting release of Ca2+ from the SR detected using fura-2 fluorescence. Decreasing the [ATP] from 5 to 0.1 mM reduced the caffeine-induced Ca2+ transient by 89 +/- 1.4% (mean +/- s.e.m., n = 16), while SR Ca2+ uptake was unaffected. 2. The dependence of caffeine-induced Ca2+ release on cytosolic [ATP] was used to study the relative ability of other structurally related compounds to substitute for, or compete with, ATP at the adenine nucleotide binding site. It was found that AMP, ADP and the non-hydrolysable analogue adenylyl imidodiphosphate (AMP-PNP) partially substituted for ATP, although none was as potent in facilitating the Ca2+-releasing action of caffeine. 3. Adenosine reversibly inhibited caffeine-induced Ca2+ release, without affecting SR Ca2+ uptake. Five millimolar adenosine markedly reduced the amplitude of the caffeine-induced Ca2+ transient by 64 +/- 4% (mean +/- s.e.m., n = 11). The degree of inhibition was dependent upon the cytosolic [ATP], suggesting that adenosine may act as a competitive antagonist at the adenine nucleotide binding site. 4. These data show that (i) the sensitivity of the in situ SR Ca2+ channel to caffeine activation is strongly dependent upon the cytosolic [ATP], (ii) the number of phosphates attached to the 5' carbon of the ribose ring influences the efficacy of the ligand, and (iii) removal of a single phosphate group transforms AMP from a partial agonist, to adenosine, which acts as a competitive antagonist under these conditions.

  10. Obstructive uropathy and severe acute kidney injury from renal calculi due to adenine phosphoribosyltransferase deficiency.

    PubMed

    Chong, Siew Le; Ng, Yong Hong

    2016-05-01

    Adenine phosphoribosyltransferase (APRT) deficiency is an uncommon genetic cause of chronic kidney disease due to crystalline nephropathy. A case of a Chinese boy with APRT deficiency presenting with severe acute kidney injury secondary to obstructive uropathy from multiple renal calculi was reviewed. The patient underwent staged removal of the calculi. Infrared spectrometry of the renal calculi showed 2,8-dihydroxyadenine. APRT deficiency was confirmed with abolished APRT enzyme activity in red blood cells. He was started on allopurinol and low purine diet with complete resolution of the residual calculi. APRT deficiency should be considered in patients with multiple radiolucent renal calculi.

  11. Oxidation of ethane by an Acremonium species.

    PubMed Central

    Davies, J S; Wellman, A M; Zajic, J E

    1976-01-01

    Ethane oxidation was studied in ethane-grown resting cells (mycelia) of an Acremonium sp. and in cell-free preparations of such mycelia. From resting cell experiments evidence was found for a pathway of ethane oxidation via ethanol, acetaldehyde, and acetic acid. In vitro studies indicated that ethane-oxidizing activity in such mycelia occurred predominantly in the microsomal fraction of crude homogenates. Microsomal preparations were inactive in the absence of added coenzyme. Marked stimulation of activity was obtained in such preparations with reduced nicotinamide adenine dinucleotide phosphate and to a much lesser degree with nicotinamide adenine dinucleotide phosphate. Ethane oxidation was inhibited by sodium azide and carbon monoxide. PMID:9900

  12. Magnetic Field Effect: An Efficient Tool To Investigate The Mechanism Of Reactions Using Laser Flash Photolysis Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basu, Samita; Bose, Adity; Dey, Debarati

    2008-04-24

    Magnetic field effect combined with laser flash photolysis technique have been used to study the mechanism of interactions between two drug-like quinone molecules, Menadione (1,4-naphthoquinone, MQ) and 9, 10 Anthraquinone (AQ) with one of the DNA bases, Adenine in homogeneous acetonitrile/water and heterogeneous micellar media. A switchover in reaction mode from electron transfer to hydrogen abstraction is observed with MQ on changing the solvent from acetonitrile/water to micelle; whereas, AQ retains its mode of interaction towards Adenine as electron transfer in both the media due to its bulky structure compared to MQ.

  13. Crystal structure of an intermolecular 2:1 complex between adenine and thymine. Evidence for both Hoogsteen and 'quasi-Watson-Crick' interactions.

    PubMed

    Chandrasekhar, Sosale; Naik, Tangali R Ravikumar; Nayak, Susanta K; Row, Tayur N Guru

    2010-06-15

    The titled complex, obtained by co-crystallization (EtOH/25 degrees C), is apparently the only known complex of the free bases. Its crystal structure, as determined by X-ray diffraction at both 90 K and 313 K, showed that one A-T pair involves a Hoogsteen interaction, and the other a Watson-Crick interaction but only with respect to the adenine unit. The absence of a clear-cut Watson-Crick base pair raises intriguing questions about the basis of the DNA double helix. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. Magnetic Field Effect: An Efficient Tool To Investigate The Mechanism Of Reactions Using Laser Flash Photolysis Technique

    NASA Astrophysics Data System (ADS)

    Basu, Samita; Bose, Adity; Dey, Debarati

    2008-04-01

    Magnetic field effect combined with laser flash photolysis technique have been used to study the mechanism of interactions between two drug-like quinone molecules, Menadione (1,4-naphthoquinone, MQ) and 9, 10 Anthraquinone (AQ) with one of the DNA bases, Adenine in homogeneous acetonitrile/water and heterogeneous micellar media. A switchover in reaction mode from electron transfer to hydrogen abstraction is observed with MQ on changing the solvent from acetonitrile/water to micelle; whereas, AQ retains its mode of interaction towards Adenine as electron transfer in both the media due to its bulky structure compared to MQ.

  15. DNA Adenine Methylase Is Essential for Viability and Plays a Role in the Pathogenesis of Yersinia pseudotuberculosis and Vibrio cholerae

    PubMed Central

    Julio, Steven M.; Heithoff, Douglas M.; Provenzano, Daniele; Klose, Karl E.; Sinsheimer, Robert L.; Low, David A.; Mahan, Michael J.

    2001-01-01

    Salmonella strains that lack or overproduce DNA adenine methylase (Dam) elicit a protective immune response to different Salmonella species. To generate vaccines against other bacterial pathogens, the dam genes of Yersinia pseudotuberculosis and Vibrio cholerae were disrupted but found to be essential for viability. Overproduction of Dam significantly attenuated the virulence of these two pathogens, leading to, in Yersinia, the ectopic secretion of virulence proteins (Yersinia outer proteins) and a fully protective immune response in vaccinated hosts. Dysregulation of Dam activity may provide a means for the development of vaccines against varied bacterial pathogens. PMID:11705940

  16. N-Sulfomethylation of guanine, adenine and cytosine with formaldehyde-bisulfite. A selective modification of guanine in DNA.

    PubMed

    Hayatsu, H; Yamashita, Y; Yui, S; Yamagata, Y; Tomita, K; Negishi, K

    1982-10-25

    When guanine-, adenine- and cytosine-nucleosides and nucleotides were treated with formaldehyde and then with bisulfite, stable N-sulfomethyl compounds were formed. N2-Sulfomethylguanine, N6-sulfomethyladenine, N4-sulfomthylcytosine and N6-sulfomethyl-9-beta-D-arabinofuranosyladenine were isolated as crystals and characterized. A guanine-specific sulfomethylation was brought about by treatment and denatured single-stranded DNA with formaldehyde and then with bisulfite at pH 7 and 4 degrees C. Since native double-stranded DNA was not modified by this treatment, this new method of modification is expected to be useful as a conformational probe for polynucleotides.

  17. N-Sulfomethylation of guanine, adenine and cytosine with formaldehyde-bisulfite. A selective modification of guanine in DNA.

    PubMed Central

    Hayatsu, H; Yamashita, Y; Yui, S; Yamagata, Y; Tomita, K; Negishi, K

    1982-01-01

    When guanine-, adenine- and cytosine-nucleosides and nucleotides were treated with formaldehyde and then with bisulfite, stable N-sulfomethyl compounds were formed. N2-Sulfomethylguanine, N6-sulfomethyladenine, N4-sulfomthylcytosine and N6-sulfomethyl-9-beta-D-arabinofuranosyladenine were isolated as crystals and characterized. A guanine-specific sulfomethylation was brought about by treatment and denatured single-stranded DNA with formaldehyde and then with bisulfite at pH 7 and 4 degrees C. Since native double-stranded DNA was not modified by this treatment, this new method of modification is expected to be useful as a conformational probe for polynucleotides. PMID:7177848

  18. ENZYME ACTIVITIES DURING THE ASEXUAL CYCLE OF NEUROSPORA CRASSA

    PubMed Central

    Stine, G. J.

    1968-01-01

    Three enzymes, (a) nicotinamide adenine diphosphate-dependent glutamic dehydrogenase (NAD enzyme), (b) nictoinamide adenine triphosphate-dependent glutamic dehydrogenase (NADP enzyme), and (c) nicotinamide-adenine dinucleotidase (NADase), were measured in separate extracts of Neurospora crassa grown in Vogel's medium N and medium N + glutamate. Specific activities and total units per culture of each enzyme were determined at nine separate intervals phased throughout the asexual cycle. The separate dehydrogenases were lowest in the conidia, increased slowly during germination, and increased rapidly during logarithmic mycelial growth. The amounts of these enzymes present during germination were small when compared with those found later during the production of the conidiophores. The NAD enzyme may be necessary for pregermination synthesis. The NADP-enzyme synthesis was associated with the appearance of the germ tube. Although higher levels of the dehydrogenases in the conidiophores resulted in more enzyme being found in the differentiated conidia, the rate of germination was uneffected. The greatest activity for the NADase enzyme was associated with the conidia, early phases of germination, and later production of new conidia. NADase decreased significantly with the onset of logarithmic growth, remained low during the differentiation of conidiophores, and increased considerably as the conidiophores aged. PMID:4384627

  19. The initial uridine of primary piRNAs does not create the tenth adenine that Is the hallmark of secondary piRNAs.

    PubMed

    Wang, Wei; Yoshikawa, Mayu; Han, Bo W; Izumi, Natsuko; Tomari, Yukihide; Weng, Zhiping; Zamore, Phillip D

    2014-12-04

    PIWI-interacting RNAs (piRNAs) silence transposons in animal germ cells. PIWI proteins bind and amplify piRNAs via the "Ping-Pong" pathway. Because PIWI proteins cleave RNAs between target nucleotides t10 and t11-the nucleotides paired to piRNA guide positions g10 and g11-the first ten nucleotides of piRNAs participating in the Ping-Pong amplification cycle are complementary. Drosophila piRNAs bound to the PIWI protein Aubergine typically begin with uridine (1U), while piRNAs bound to Argonaute3, which are produced by Ping-Pong amplification, often have adenine at position 10 (10A). The Ping-Pong model proposes that the 10A is a consequence of 1U. We find that 10A is not caused by 1U. Instead, fly Aubergine as well as its homologs, Siwi in silkmoth and MILI in mice, have an intrinsic preference for adenine at the t1 position of their target RNAs; during Ping-Pong amplification, this t1A subsequently becomes the g10A of a piRNA bound to Argonaute3. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Development of bright fluorescent quadracyclic adenine analogues: TDDFT-calculation supported rational design

    NASA Astrophysics Data System (ADS)

    Foller Larsen, Anders; Dumat, Blaise; Wranne, Moa S.; Lawson, Christopher P.; Preus, Søren; Bood, Mattias; Gradén, Henrik; Marcus Wilhelmsson, L.; Grøtli, Morten

    2015-07-01

    Fluorescent base analogues (FBAs) comprise a family of increasingly important molecules for the investigation of nucleic acid structure and dynamics. We recently reported the quantum chemical calculation supported development of four microenvironment sensitive analogues of the quadracyclic adenine (qA) scaffold, the qANs, with highly promising absorptive and fluorescence properties that were very well predicted by TDDFT calculations. Herein, we report on the efficient synthesis, experimental and theoretical characterization of nine novel quadracyclic adenine derivatives. The brightest derivative, 2-CNqA, displays a 13-fold increased brightness (ɛΦF = 4500) compared with the parent compound qA and has the additional benefit of being a virtually microenvironment-insensitive fluorophore, making it a suitable candidate for nucleic acid incorporation and use in quantitative FRET and anisotropy experiments. TDDFT calculations, conducted on the nine novel qAs a posteriori, successfully describe the relative fluorescence quantum yield and brightness of all qA derivatives. This observation suggests that the TDDFT-based rational design strategy may be employed for the development of bright fluorophores built up from a common scaffold to reduce the otherwise costly and time-consuming screening process usually required to obtain useful and bright FBAs.

  1. Effect of Electronic Excitation on Hydrogen Atom Transfer (Tautomerization) Reactions for the DNA Base Adenine

    NASA Technical Reports Server (NTRS)

    Chaban, Galina M.; Salter, Latasha M.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Geometrical structures and energetic properties for four different tautomers of adenine are calculated in this study, using multi-configurational wave functions. Both the ground and the lowest single excited state potential energy surface are studied. The energetic order of the tautomers on the ground state potential surface is 9H less than 7H less than 3H less than 1H, while on the excited state surface this order is found to be different: 3H less than 1H less than 9H less than 7H. Minimum energy reaction paths are obtained for hydrogen atom transfer (9 yields 3 tautomerization) reactions in the ground and the lowest excited electronic state. It is found that the barrier heights and the shapes of the reaction paths are different for the ground and the excited electronic state, suggesting that the probability of such tautomerization reaction is higher on the excited state potential energy surface. The barrier for this reaction in the excited state may become very low in the presence of water or other polar solvent molecules, and therefore such tautomerization reaction may play an important role in the solution phase photochemistry of adenine.

  2. Effects of Hypoxanthine Substitution in Peptide Nucleic Acids Targeting KRAS2 Oncogenic mRNA Molecules: Theory and Experiment

    PubMed Central

    Sanders, Jeffrey M.; Wampole, Matthew E.; Chen, Chang-Po; Sethi, Dalip; Singh, Amrita; Dupradeau, François-Yves; Wang, Fan; Gray, Brian D.; Thakur, Mathew L.; Wickstrom, Eric

    2013-01-01

    Genetic disorders can arise from single base substitutions in a single gene. A single base substitution for wild type guanine in the twelfth codon of KRAS2 mRNA occurs frequently to initiate lung, pancreatic, and colon cancer. We have observed single base mismatch specificity in radioimaging of mutant KRAS2 mRNA in tumors in mice by in vivo hybridization with radiolabeled peptide nucleic acid (PNA) dodecamers. We hypothesized that multi-mutant specificity could be achieved with a PNA dodecamer incorporating hypoxanthine, which can form Watson-Crick basepairs with adenine, cytosine, thymine, and uracil. Using molecular dynamics simulations and free energy calculations, we show that hypoxanthine substitutions in PNAs are tolerated in KRAS2 RNA-PNA duplexes where wild type guanine is replaced by mutant uracil or adenine in RNA. To validate our predictions, we synthesized PNA dodecamers with hypoxanthine, and then measured the thermal stability of RNA-PNA duplexes. Circular dichroism thermal melting results showed that hypoxanthine-containing PNAs are more stable in duplexes where hypoxanthine-adenine and hypoxanthine-uracil base pairs are formed than single mismatch duplexes or duplexes containing hypoxanthine-guanine opposition. PMID:23972113

  3. Oxidation of DNA bases, deoxyribonucleosides and homopolymers by peroxyl radicals.

    PubMed Central

    Simandan, T; Sun, J; Dix, T A

    1998-01-01

    DNA base oxidation is considered to be a key event associated with disease initiation and progression in humans. Peroxyl radicals (ROO. ) are important oxidants found in cells whose ability to react with the DNA bases has not been characterized extensively. In this paper, the products resulting from ROO. oxidation of the DNA bases are determined by gas chromatography/MS in comparison with authentic standards. ROO. radicals oxidize adenine and guanine to their 8-hydroxy derivatives, which are considered biomarkers of hydroxyl radical (HO.) oxidations in cells. ROO. radicals also oxidize adenine to its hydroxylamine, a previously unidentified product. ROO. radicals oxidize cytosine and thymine to the monohydroxy and dihydroxy derivatives that are formed by oxidative damage in cells. Identical ROO. oxidation profiles are observed for each base when exposed as deoxyribonucleosides, monohomopolymers and base-paired dihomopolymers. These results have significance for the development, utilization and interpretation of DNA base-derived biomarkers of oxidative damage associated with disease initiation and propagation, and support the idea that the mutagenic potential of N-oxidized bases, when generated in cellular DNA, will require careful evaluation. Adenine hydroxylamine is proposed as a specific molecular probe for the activity of ROO. in cellular systems. PMID:9761719

  4. Characterization of a DNA Adenine Methyltransferase Gene of Borrelia hermsii and Its Dispensability for Murine Infection and Persistence.

    PubMed

    James, Allison E; Rogovskyy, Artem S; Crowley, Michael A; Bankhead, Troy

    2016-01-01

    DNA methyltransferases have been implicated in the regulation of virulence genes in a number of pathogens. Relapsing fever Borrelia species harbor a conserved, putative DNA methyltransferase gene on their chromosome, while no such ortholog can be found in the annotated genome of the Lyme disease agent, Borrelia burgdorferi. In the relapsing fever species Borrelia hermsii, the locus bh0463A encodes this putative DNA adenine methyltransferase (dam). To verify the function of the BH0463A protein product as a Dam, the gene was cloned into a Dam-deficient strain of Escherichia coli. Restriction fragment analysis subsequently demonstrated that complementation of this E. coli mutant with bh0463A restored adenine methylation, verifying bh0463A as a Dam. The requirement of bh0463A for B. hermsii viability, infectivity, and persistence was then investigated by genetically disrupting the gene. The dam- mutant was capable of infecting immunocompetent mice, and the mean level of spirochetemia in immunocompetent mice was not significantly different from wild type B. hermsii. Collectively, the data indicate that dam is dispensable for B. hermsii viability, infectivity, and persistence.

  5. A Cascade of Thermophilic Enzymes As an Approach to the Synthesis of Modified Nucleotides.

    PubMed

    Esipov, R S; Abramchik, Yu A; Fateev, I V; Konstantinova, I D; Kostromina, M A; Muravyova, T I; Artemova, K G; Miroshnikov, A I

    2016-01-01

    We propose a new approach for the synthesis of biologically important nucleotides which includes a multi-enzymatic cascade conversion of D -pentoses into purine nucleotides. The approach exploits nucleic acid exchange enzymes from thermophilic microorganisms: ribokinase, phosphoribosylpyrophosphate synthetase, and adenine phosphoribosyltransferase. We cloned the ribokinase gene from Thermus sp . 2.9, as well as two different genes of phosphoribosylpyrophosphate synthetase (PRPP-synthetase) and the adenine phosphoribosyltransferase (APR-transferase) gene from Thermus thermophilus HB27 into the expression vectors, generated high-yield E. coli producer strains, developed methods for the purification of the enzymes, and investigated enzyme substrate specificity. The enzymes were used for the conversion of D -pentoses into 5-phosphates that were further converted into 5-phospho-α- D -pentofuranose 1-pyrophosphates by means of ribokinase and PRPP-synthetases. Target nucleotides were obtained through the condensation of the pyrophosphates with adenine and its derivatives in a reaction catalyzed by APR-transferase. 2-Chloro- and 2-fluoroadenosine monophosphates were synthesized from D -ribose and appropriate heterobases in one pot using a system of thermophilic enzymes in the presence of ATP, ribokinase, PRPP-synthetase, and APR-transferase.

  6. Strong coupling between adenine nucleobases in DNA single strands revealed by circular dichroism using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Kadhane, Umesh; Holm, Anne I. S.; Hoffmann, Søren Vrønning; Nielsen, Steen Brøndsted

    2008-02-01

    Circular dichroism (CD) experiments on DNA single strands (dAn) at the ASTRID synchrotron radiation facility reveal that eight adenine (A) bases electronically couple upon 190nm excitation. After n=8 , the CD signal increases linearly with n with a slope equal to the sum of the coupling terms. Nearest neighbor interactions account for only 24% of the CD signal whereas electronic communication is limited to nearest neighbors for two other exciton bands observed at 218 and 251nm (i.e., dimer excited states). Electronic coupling between bases in DNA is important for nonradiative deexcitation of electronically excited states since the hazardous energy is spread over a larger spatial region.

  7. New carbocyclic nucleoside analogues with a bicyclo[2.2.1]heptane fragment as sugar moiety; synthesis, X-ray crystallography and anticancer activity.

    PubMed

    Tănase, Constantin I; Drăghici, Constantin; Căproiu, Miron Teodor; Shova, Sergiu; Mathe, Christophe; Cocu, Florea G; Enache, Cristian; Maganu, Maria

    2014-01-01

    An amine group was synthesized starting from an optically active bicyclo[2.2.1]heptane compound, which was then used to build the 5 atoms ring of a key 6-chloropurine intermediate. This was then reacted with ammonia and selected amines obtaining new adenine- and 6-substituted adenine conformationally constrained carbocyclic nucleoside analogues with a bicyclo[2.2.1]heptane skeleton in the sugar moiety. X-ray crystallography confirmed an exo-coupling of base to the ring and a L configuration of the nucleoside analogues. The compounds were tested for anticancer activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Azathioprine and 6-mercaptopurine (6-MP) suppress the human mixed lymphocyte reaction (MLR) by different mechanisms.

    PubMed Central

    Al-Safi, S A; Maddocks, J L

    1984-01-01

    6-MP inhibitory effects on the MLR were reversed by AIC (46%), adenine (32%), hypoxanthine (89%), adenosine (86%) and inosine (93%). AIC, adenine, hypoxanthine and inosine had no effect on azathioprine inhibition of the MLR. Adenosine at 10 microM caused 29% reversal and had no effect at 100-400 microM on azathioprine inhibition of the MLR. Reversal of 6-MP suppression of the MLR was decreased with the delay of adenosine addition. Guanine, xanthine and guanosine caused no reversal of 6-MP or azathioprine inhibitory effects on the MLR. These results show that azathioprine and 6-MP suppress the MLR by different mechanisms. PMID:6232936

  9. Febuxostat for the Prevention of Recurrent 2,8-dihydroxyadenine Nephropathy due to Adenine Phosphoribosyltransferase Deficiency Following Kidney Transplantation.

    PubMed

    Nanmoku, Koji; Kurosawa, Akira; Shinzato, Takahiro; Shimizu, Toshihiro; Kimura, Takaaki; Yagisawa, Takashi

    2017-01-01

    Adenine phosphoribosyltransferase (APRT) deficiency is a rare autosomal recessive disorder that results in irreversible renal damage due to 2,8-dihydroxyadenine (DHA) nephropathy. A 28-year-old man underwent living-related kidney transplantation for chronic kidney disease of unknown etiology. Numerous spherical brownish crystals observed in his urinary sediment on postoperative day 3 and were observed within the tubular lumen of renal allograft biopsy specimens on postoperative day 7. After a genetic diagnosis, febuxostat treatment was started on postoperative day 7, with the dosage gradually increased to 80 mg/day until complete the disappearance of 2,8-DHA crystals. Febuxostat prevented secondary 2,8-DHA nephropathy after kidney transplantation.

  10. A theoretical investigation on bio-transformation of third generation anti-cancer drug Heptaplatin and its interaction with DNA purine bases

    NASA Astrophysics Data System (ADS)

    Reddy B., Venkata P.; Mukherjee, Subhajit; Mitra, Ishani; Moi, Sankar Ch.

    2017-12-01

    Heptaplatin is an approved platinum based cytostatic drug for the treatment of gastric cancers. The hydrolytic bio-transformation of Heptaplatin and the platination processes of guanine (G) and adenine (A) with resulting mono and di-aquated species of Heptaplatin have been investigated using density functional theory (DFT) combined with the conductor like dielectric continuum model (CPCM) approach, to spotlight the drug activation energy profiles and their binding mechanisms. The stationary points on the potential energy surfaces were fully optimized and characterized. The mono-functional binding of Heptaplatin, guanine as target over adenine due to electronic factors and more favorable hydrogen-bonds pattern.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chunhua; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 45108; Lv, Dashuai

    Riboswitches are noncoding mRNA segments that can regulate the gene expression via altering their structures in response to specific metabolite binding. We proposed a coarse-grained Gaussian network model (GNM) to examine the unfolding and folding dynamics of adenosine deaminase (add) A-riboswitch upon the adenine dissociation, in which the RNA is modeled by a nucleotide chain with interaction networks formed by connecting adjoining atomic contacts. It was shown that the adenine binding is critical to the folding of the add A-riboswitch while the removal of the ligand can result in drastic increase of the thermodynamic fluctuations especially in the junction regionsmore » between helix domains. Under the assumption that the native contacts with the highest thermodynamic fluctuations break first, the iterative GNM simulations showed that the unfolding process of the adenine-free add A-riboswitch starts with the denature of the terminal helix stem, followed by the loops and junctions involving ligand binding pocket, and then the central helix domains. Despite the simplified coarse-grained modeling, the unfolding dynamics and pathways are shown in close agreement with the results from atomic-level MD simulations and the NMR and single-molecule force spectroscopy experiments. Overall, the study demonstrates a new avenue to investigate the binding and folding dynamics of add A-riboswitch molecule which can be readily extended for other RNA molecules.« less

  12. Singlet Oxygen Generation by UVA Light Exposure of Endogenous Photosensitizers

    PubMed Central

    Baier, Jürgen; Maisch, Tim; Maier, Max; Engel, Eva; Landthaler, Michael; Bäumler, Wolfgang

    2006-01-01

    UVA light (320–400 nm) has been shown to produce deleterious biological effects in tissue due to the generation of singlet oxygen by substances like flavins or urocanic acid. Riboflavin, flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD), β-nicotinamide adenine dinucleotide (NAD), and β-nicotinamide adenine dinucleotide phosphate (NADP), urocanic acid, or cholesterol in solution were excited at 355 nm. Singlet oxygen was directly detected by time-resolved measurement of its luminescence at 1270 nm. NAD, NADP, and cholesterol showed no luminescence signal possibly due to the very low absorption coefficient at 355 nm. Singlet oxygen luminescence of urocanic acid was clearly detected but the signal was too weak to quantify a quantum yield. The quantum yield of singlet oxygen was precisely determined for riboflavin (ΦΔ = 0.54 ± 0.07), FMN (ΦΔ = 0.51 ± 0.07), and FAD (ΦΔ = 0.07 ± 0.02). In aerated solution, riboflavin and FMN generate more singlet oxygen than exogenous photosensitizers such as Photofrin, which are applied in photodynamic therapy to kill cancer cells. With decreasing oxygen concentration, the quantum yield of singlet oxygen generation decreased, which must be considered when assessing the role of singlet oxygen at low oxygen concentrations (inside tissue). PMID:16751234

  13. Adenine-functionalized Spongy Graphene for Green and High-Performance Supercapacitors

    PubMed Central

    El-Gendy, Dalia M.; Ghany, Nabil A. Abdel; El Sherbini, E. E. Foad; Allam, Nageh K.

    2017-01-01

    A simple method is demonstrated to prepare spongy adenine-functionalized graphene (SFG) as interconnected, porous 3-dimensional (3D) network crinkly sheets. Such 3D network structure provides better contact at the electrode/electrolyte interface and facilitates the charge transfer kinetics. The fabricated SFG was characterized by X-ray diffraction (XRD), FTIR, scanning electron microscopy (FESEM), Raman spectroscopy, thermogravimetric analysis (TGA), UV−vis absorption spectroscopy, and transmission electron microscopy (TEM). The synthesized materials have been evaluated as supercapacitor materials in 0.5 M H2SO4 using cyclic voltammetry (CV) at different potential scan rates, and galvanostatic charge/discharge tests at different current densities. The SFG electrodes showed a maximum specific capacitance of 333 F/g at scan rate of 1 mV/s and exhibited excellent cycling retention of 102% after 1000 cycles at 200 mV/s. The energy density was 64.42 Wh/kg with a power density of 599.8 W/kg at 1.0 A/g. Those figures of merit are much higher than those reported for graphene-based materials tested under similar conditions. The observed high performance can be related to the synergistic effects of the spongy structure and the adenine functionalization. PMID:28216668

  14. A comprehensive survey of 3' animal miRNA modification events and a possible role for 3' adenylation in modulating miRNA targeting effectiveness.

    PubMed

    Burroughs, A Maxwell; Ando, Yoshinari; de Hoon, Michiel J L; Tomaru, Yasuhiro; Nishibu, Takahiro; Ukekawa, Ryo; Funakoshi, Taku; Kurokawa, Tsutomu; Suzuki, Harukazu; Hayashizaki, Yoshihide; Daub, Carsten O

    2010-10-01

    Animal microRNA sequences are subject to 3' nucleotide addition. Through detailed analysis of deep-sequenced short RNA data sets, we show adenylation and uridylation of miRNA is globally present and conserved across Drosophila and vertebrates. To better understand 3' adenylation function, we deep-sequenced RNA after knockdown of nucleotidyltransferase enzymes. The PAPD4 nucleotidyltransferase adenylates a wide range of miRNA loci, but adenylation does not appear to affect miRNA stability on a genome-wide scale. Adenine addition appears to reduce effectiveness of miRNA targeting of mRNA transcripts while deep-sequencing of RNA bound to immunoprecipitated Argonaute (AGO) subfamily proteins EIF2C1-EIF2C3 revealed substantial reduction of adenine addition in miRNA associated with EIF2C2 and EIF2C3. Our findings show 3' addition events are widespread and conserved across animals, PAPD4 is a primary miRNA adenylating enzyme, and suggest a role for 3' adenine addition in modulating miRNA effectiveness, possibly through interfering with incorporation into the RNA-induced silencing complex (RISC), a regulatory role that would complement the role of miRNA uridylation in blocking DICER1 uptake.

  15. DNA dynamics in aqueous solution: opening the double helix

    NASA Technical Reports Server (NTRS)

    Pohorille, A.; Ross, W. S.; Tinoco, I. Jr; MacElroy, R. D. (Principal Investigator)

    1990-01-01

    The opening of a DNA base pair is a simple reaction that is a prerequisite for replication, transcription, and other vital biological functions. Understanding the molecular mechanisms of biological reactions is crucial for predicting and, ultimately, controlling them. Realistic computer simulations of the reactions can provide the needed understanding. To model even the simplest reaction in aqueous solution requires hundreds of hours of supercomputing time. We have used molecular dynamics techniques to simulate fraying of the ends of a six base pair double strand of DNA, [TCGCGA]2, where the four bases of DNA are denoted by T (thymine), C (cytosine), G (guanine), and A (adenine), and to estimate the free energy barrier to this process. The calculations, in which the DNA was surrounded by 2,594 water molecules, required 50 hours of CRAY-2 CPU time for every simulated 100 picoseconds. A free energy barrier to fraying, which is mainly characterized by the movement of adenine away from thymine into aqueous environment, was estimated to be 4 kcal/mol. Another fraying pathway, which leads to stacking between terminal adenine and thymine, was also observed. These detailed pictures of the motions and energetics of DNA base pair opening in water are a first step toward understanding how DNA will interact with any molecule.

  16. Dietary purines in vegetarian meat analogues.

    PubMed

    Havlik, Jaroslav; Plachy, Vladimir; Fernandez, Javier; Rada, Vojtech

    2010-11-01

    The meat alternatives market offers a wide range of products resembling meat in taste, flavour or texture but based on vegetable protein sources. These high protein-low purine foods may find application in a low purine or purine-free diet, which is sometimes suggested for subjects with increased serum urate levels, i.e. hyperuricaemia. We determined purine content (uric acid, adenine, guanine, hypoxanthine, xanthine) in 39 commercially available meat substitutes and evaluated them in relation to their protein content. Some of the products contained a comparable sum of adenine and hypoxanthine per protein as meat. Analysis of variance showed an influence of protein source used. Mycoprotein-based products had significantly higher contents (2264 mg kg(-1)) of adenine and hypoxanthine per kg of 100% protein than soybean-based products (1648 mg kg(-1)) or mixtures consisting of soybean protein and wheat protein (1239 mg kg(-1)). Protein-rich vegetable-based meat substitutes might be generally accepted as meat alternatives for individuals on special diets. The type of protein used to manufacture these products determines the total content of purines, which is relatively higher in the case of mycoprotein or soybean protein, while appearing lower in wheat protein and egg white-based products. These are therefore more suitable for dietary considerations in a low-purine diet for hyperuricaemic subjects. 2010 Society of Chemical Industry

  17. Control of box C/D snoRNP assembly by N6-methylation of adenine.

    PubMed

    Huang, Lin; Ashraf, Saira; Wang, Jia; Lilley, David Mj

    2017-09-01

    N 6 -methyladenine is the most widespread mRNA modification. A subset of human box C/D snoRNA species have target GAC sequences that lead to formation of N 6 -methyladenine at a key trans Hoogsteen-sugar A·G base pair, of which half are methylated in vivo The GAC target is conserved only in those that are methylated. Methylation prevents binding of the 15.5-kDa protein and the induced folding of the RNA Thus, the assembly of the box C/D snoRNP could in principle be regulated by RNA methylation at its critical first stage. Crystallography reveals that N 6 -methylation of adenine prevents the formation of trans Hoogsteen-sugar A·G base pairs, explaining why the box C/D RNA cannot adopt its kinked conformation. More generally, our data indicate that sheared A·G base pairs (but not Watson-Crick base pairs) are more susceptible to disruption by N 6 mA methylation and are therefore possible regulatory sites. The human signal recognition particle RNA and many related Alu retrotransposon RNA species are also methylated at N6 of an adenine that forms a sheared base pair with guanine and mediates a key tertiary interaction. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  18. Nucleosides and nucleotides. 192. Toward the total synthesis of cyclic ADP-carbocyclic-ribose. Formation of the intramolecular pyrophosphate linkage by a conformation-restriction strategy in a syn-form using a halogen substitution at the 8-position of the adenine ring.

    PubMed

    Sumita, Y; Shirato, M; Ueno, Y; Matsuda, A; Shuto, S

    2000-01-01

    The synthesis of cyclic ADP-carbocyclic-ribose (2), as a stable mimic for cyclic ADP-ribose, was investigated. Construction of the 18-membered backbone structure was successfully achieved by condensation of the two phosphate groups of 19, possibly due to restriction of the conformation of the substrate in a syn-form using an 8-chloro substituent at the adenine moiety. SN2 reactions between an optically active carbocyclic unit 8, which was constructed by a previously developed method, and 8-bromo-N6-trichloroacetyl-2',3'-O-isopropylideneadenosine 9c gave N-1-carbocyclic derivative, which was deprotected to give 5'-5"-diol derivatives 18. When 18 was treated with POCl3 in PO(OEt)3, the bromo group at the 8-position was replaced to give N-1-carbocyclic-8-chloroadenosine 5',5"-diphosphate derivative 19 in 43% yield. Treatment of 19 with 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride gave the desired intramolecular condensation product 20 in 10% yield. This is the first chemical construction of the 18-membered backbone structure containing an intramolecular pyrophosphate linkage of a cADPR-related compound with an adenine base.

  19. The chemistry of nicotinamide adenine dinucleotide (NAD) analogues containing C-nucleosides related to nicotinamide riboside.

    PubMed

    Pankiewicz, Krzysztof W; Watanabe, Kyoichi A; Lesiak-Watanabe, Krystyna; Goldstein, Barry M; Jayaram, Hiremagalur N

    2002-04-01

    Oncolytic C-nucleosides, tiazofurin (2-beta-D-ribofuranosylthiazole-4-carboxamide) and benzamide riboside (3-beta-D-ribofuranosylbenzamide) are converted in cell into active metabolites thiazole-4-carboxamide- and benzamide adenine dinucleotide, TAD and BAD, respectively. TAD and BAD as NAD analogues were found to bind at the nicotinamide adenine dinucleotide (cofactor NAD) site of inosine monophosphate dehydrogenase (IMPDH), an important target in cancer treatment. The synthesis and evaluation of anticancer activity of a number of C-nucleosides related to tiazofurin and nicotinamide riboside then followed and are reviewed herein. Interestingly, pyridine C-nucleosides (such as C-nicotinamide riboside) are not metabolized into the corresponding NAD analogues in cell. Their conversion by chemical methods is described. As dinucleotides these compounds show inhibition of IMPDH in low micromolar level. Also, the synthesis of BAD in metabolically stable bis(phosphonate) form is discussed indicating the usefulness of such preformed inhibitors in drug development. Among tiazofurin analogues, Franchetti and Grifantini found, that the replacement of the sulfur by oxygen (as in oxazafurin) but not the removal of nitrogen (tiophenfurin) of the thiazole ring resulted in inactive compounds. The anti cancer activity of their synthetic dinucleotide analogues indicate that inactive compounds are not only poorly metabolized in cell but also are weak inhibitors of IMPDH as dinucleotides.

  20. Novel furosemide cocrystals and selection of high solubility drug forms.

    PubMed

    Goud, N Rajesh; Gangavaram, Swarupa; Suresh, Kuthuru; Pal, Sharmistha; Manjunatha, Sulur G; Nambiar, Sudhir; Nangia, Ashwini

    2012-02-01

    Furosemide was screened in cocrystallization experiments with pharmaceutically acceptable coformer molecules to discover cocrystals of improved physicochemical properties, that is high solubility and good stability. Eight novel equimolar cocrystals of furosemide were obtained by liquid-assisted grinding with (i) caffeine, (ii) urea, (iii) p-aminobenzoic acid, (iv) acetamide, (v) nicotinamide, (vi) isonicotinamide, (vii) adenine, and (viii) cytosine. The product crystalline phases were characterized by powder x-ray diffraction, differential scanning calorimetry, infrared, Raman, near IR, and (13) C solid-state NMR spectroscopy. Furosemide-caffeine was characterized as a neutral cocrystal and furosemide-cytosine an ionic salt by single crystal x-ray diffraction. The stability of furosemide-caffeine, furosemide-adenine, and furosemide-cytosine was comparable to the reference drug in 10% ethanol-water slurry; there was no evidence of dissociation of the cocrystal to furosemide for up to 48 h. The other five cocrystals transformed to furosemide within 24 h. The solubility order for the stable forms is furosemide-cytosine > furosemide-adenine > furosemide-caffeine, and their solubilities are approximately 11-, 7-, and 6-fold higher than furosemide. The dissolution rates of furosemide cocrystals were about two times faster than the pure drug. Three novel furosemide compounds of higher solubility and good phase stability were identified in a solid form screen. Copyright © 2011 Wiley Periodicals, Inc.

  1. A disposable tear glucose biosensor--part 3: assessment of enzymatic specificity.

    PubMed

    Lan, Kenneth; McAferty, Kenyon; Shah, Pankti; Lieberman, Erica; Patel, Dharmendra R; Cook, Curtiss B; La Belle, Jeffrey T

    2011-09-01

    A concept for a tear glucose sensor based on amperometric measurement of enzymatic oxidation of glucose was previously presented, using glucose dehydrogenase flavin adenine dinucleotide (GDH-FAD) as the enzyme. Glucose dehydrogenase flavin adenine dinucleotide is further characterized in this article and evaluated for suitability in glucose-sensing applications in purified tear-like saline, with specific attention to the effect of interfering substances only. These interferents are specifically saccharides that could interact with the enzymatic activity seen in the sensor's performance. Bench top amperometric glucose assays were performed using an assay solution of GDH-FAD and ferricyanide redox mediator with samples of glucose, mannose, lactose, maltose, galactose, fructose, sucrose, and xylose at varying concentrations to evaluate specificity, linear dynamic range, signal size, and signal-to-noise ratio. A comparison study was done by substituting an equivalent activity unit concentration of glucose oxidase (GOx) for GDH-FAD. Glucose dehydrogenase flavin adenine dinucleotide was found to be more sensitive than GOx, producing larger oxidation currents than GOx on an identical glucose concentration gradient, and GDH-FAD exhibited larger slope response (-5.65 × 10(-7) versus -3.11 × 10(-7) A/mM), signal-to-noise ratio (18.04 versus 2.62), and linear dynamic range (0-30 versus 0-10 mM), and lower background signal (-7.12 versus -261.63 nA) than GOx under the same assay conditions. GDH-FAD responds equally to glucose and xylose but is otherwise specific for glucose. Glucose dehydrogenase flavin adenine dinucleotide compares favorably with GOx in many sensor-relevant attributes and may enable measurement of glucose concentrations both higher and lower than those measurable by GOx. GDH-FAD is a viable enzyme to use in the proposed amperometric tear glucose sensor system and perhaps also in detecting extreme hypoglycemia or hyperglycemia in blood. © 2011 Diabetes Technology Society.

  2. TRAF6-Mediated SM22α K21 Ubiquitination Promotes G6PD Activation and NADPH Production, Contributing to GSH Homeostasis and VSMC Survival In Vitro and In Vivo.

    PubMed

    Dong, Li-Hua; Li, Liang; Song, Yu; Duan, Zhi-Li; Sun, Shao-Guang; Lin, Yan-Ling; Miao, Sui-Bing; Yin, Ya-Juan; Shu, Ya-Nan; Li, Huan; Chen, Peng; Zhao, Li-Li; Han, Mei

    2015-09-25

    Vascular smooth muscle cell (VSMC) survival under stressful conditions is integral to promoting vascular repair, but facilitates plaque stability during the development of atherosclerosis. The cytoskeleton-associated smooth muscle (SM) 22α protein is involved in the regulation of VSMC phenotypes, whereas the pentose phosphate pathway plays an essential role in cell proliferation through the production of dihydronicotinamide adenine dinucleotide phosphate. To identify the relationship between dihydronicotinamide adenine dinucleotide phosphate production and SM22α activity in the development and progression of vascular diseases. We showed that the expression and activity of glucose-6-phosphate dehydrogenase (G6PD) are promoted in platelet-derived growth factor (PDGF)-BB-induced proliferative VSMCs. PDGF-BB induced G6PD membrane translocation and activation in an SM22α K21 ubiquitination-dependent manner. Specifically, the ubiquitinated SM22α interacted with G6PD and mediated G6PD membrane translocation. Furthermore, we found that tumor necrosis factor receptor-associated factor (TRAF) 6 mediated SM22α K21 ubiquitination in a K63-linked manner on PDGF-BB stimulation. Knockdown of TRAF6 decreased the membrane translocation and activity of G6PD, in parallel with reduced SM22α K21 ubiquitination. Elevated levels of activated G6PD consequent to PDGF-BB induction led to increased dihydronicotinamide adenine dinucleotide phosphate generation through stimulation of the pentose phosphate pathway, which enhanced VSMC viability and reduced apoptosis in vivo and in vitro via glutathione homeostasis. We provide evidence that TRAF6-induced SM22α ubiquitination maintains VSMC survival through increased G6PD activity and dihydronicotinamide adenine dinucleotide phosphate production. The TRAF6-SM22α-G6PD pathway is a novel mechanism underlying the association between glucose metabolism and VSMC survival, which is beneficial for vascular repair after injury but facilitates atherosclerotic plaque stability. © 2015 American Heart Association, Inc.

  3. High-Spin Ferric Ions in Saccharomyces cerevisiae Vacuoles Are Reduced to the Ferrous State during Adenine-Precursor Detoxification

    PubMed Central

    2015-01-01

    The majority of Fe in Fe-replete yeast cells is located in vacuoles. These acidic organelles store Fe for use under Fe-deficient conditions and they sequester it from other parts of the cell to avoid Fe-associated toxicity. Vacuolar Fe is predominantly in the form of one or more magnetically isolated nonheme high-spin (NHHS) FeIII complexes with polyphosphate-related ligands. Some FeIII oxyhydroxide nanoparticles may also be present in these organelles, perhaps in equilibrium with the NHHS FeIII. Little is known regarding the chemical properties of vacuolar Fe. When grown on adenine-deficient medium (A↓), ADE2Δ strains of yeast such as W303 produce a toxic intermediate in the adenine biosynthetic pathway. This intermediate is conjugated with glutathione and shuttled into the vacuole for detoxification. The iron content of A↓ W303 cells was determined by Mössbauer and EPR spectroscopies. As they transitioned from exponential growth to stationary state, A↓ cells (supplemented with 40 μM FeIII citrate) accumulated two major NHHS FeII species as the vacuolar NHHS FeIII species declined. This is evidence that vacuoles in A↓ cells are more reducing than those in adenine-sufficient cells. A↓ cells suffered less oxidative stress despite the abundance of NHHS FeII complexes; such species typically promote Fenton chemistry. Most Fe in cells grown for 5 days with extra yeast-nitrogen-base, amino acids and bases in minimal medium was HS FeIII with insignificant amounts of nanoparticles. The vacuoles of these cells might be more acidic than normal and can accommodate high concentrations of HS FeIII species. Glucose levels and rapamycin (affecting the TOR system) affected cellular Fe content. This study illustrates the sensitivity of cellular Fe to changes in metabolism, redox state and pH. Such effects broaden our understanding of how Fe and overall cellular metabolism are integrated. PMID:24919141

  4. A Disposable Tear Glucose Biosensor—Part 3: Assessment of Enzymatic Specificity

    PubMed Central

    Lan, Kenneth; McAferty, Kenyon; Shah, Pankti; Lieberman, Erica; Patel, Dharmendra R; Cook, Curtiss B; La Belle, Jeffrey T

    2011-01-01

    Background A concept for a tear glucose sensor based on amperometric measurement of enzymatic oxidation of glucose was previously presented, using glucose dehydrogenase flavin adenine dinucleotide (GDH-FAD) as the enzyme. Glucose dehydrogenase flavin adenine dinucleotide is further characterized in this article and evaluated for suitability in glucose-sensing applications in purified tear-like saline, with specific attention to the effect of interfering substances only. These interferents are specifically saccharides that could interact with the enzymatic activity seen in the sensor's performance. Methods Bench top amperometric glucose assays were performed using an assay solution of GDH-FAD and ferricyanide redox mediator with samples of glucose, mannose, lactose, maltose, galactose, fructose, sucrose, and xylose at varying concentrations to evaluate specificity, linear dynamic range, signal size, and signal-to-noise ratio. A comparison study was done by substituting an equivalent activity unit concentration of glucose oxidase (GOx) for GDH-FAD. Results Glucose dehydrogenase flavin adenine dinucleotide was found to be more sensitive than GOx, producing larger oxidation currents than GOx on an identical glucose concentration gradient, and GDH-FAD exhibited larger slope response (-5.65 × 10-7 versus -3.11 × 10-7 A/mM), signal-to-noise ratio (18.04 versus 2.62), and linear dynamic range (0–30 versus 0–10 mM), and lower background signal (-7.12 versus -261.63 nA) than GOx under the same assay conditions. GDH-FAD responds equally to glucose and xylose but is otherwise specific for glucose. Conclusion Glucose dehydrogenase flavin adenine dinucleotide compares favorably with GOx in many sensor-relevant attributes and may enable measurement of glucose concentrations both higher and lower than those measurable by GOx. GDH-FAD is a viable enzyme to use in the proposed amperometric tear glucose sensor system and perhaps also in detecting extreme hypoglycemia or hyperglycemia in blood. PMID:22027303

  5. Inhibition of purine phosphoribosyltransferases of Ehrlich ascites-tumour cells by 6-mercaptopurine

    PubMed Central

    Atkinson, M. R.; Murray, A. W.

    1965-01-01

    1. The formation of adenosine 5′-phosphate, guanosine 5′-phosphate and inosine 5′-phosphate from [8-14C]adenine, [8-14C]guanine and [8-14C]hypoxanthine respectively in the presence of 5-phosphoribosyl pyrophosphate and an extract from Ehrlich ascites-tumour cells was assayed by a method involving liquid-scintillation counting of the radioactive nucleotides on diethylaminoethylcellulose paper. The results obtained with guanine were confirmed by a spectrophotometric assay which was also used to assay the conversion of 6-mercaptopurine and 5-phosphoribosyl pyrophosphate into 6-thioinosine 5′-phosphate in the presence of 6-mercaptopurine phosphoribosyltransferase from these cells. 2. At pH 7·8 and 25° the Michaelis constants for adenine, guanine and hypoxanthine were 0·9 μm, 2·9 μm and 11·0 μm in the assay with radioactive purines; the Michaelis constant for guanine in the spectrophotometric assay was 2·6 μm. At pH 7·9 the Michaelis constant for 6-mercaptopurine was 10·9 μm. 3. 25 μm-6-Mercaptopurine did not inhibit adenine phosphoribosyltransferase. 6-Mercaptopurine is a competitive inhibitor of guanine phosphoribosyltransferase (Ki 4·7 μm) and hypoxanthine phosphoribosyltransferase (Ki 8·3 μm). Hypoxanthine is a competitive inhibitor of guanine phosphoribosyltransferase (Ki 3·4 μm). 4. Differences in kinetic parameters and in the distribution of phosphoribosyltransferase activities after electrophoresis in starch gel indicate that different enzymes are involved in the conversion of adenine, guanine and hypoxanthine into their nucleotides. 5. From the low values of Ki for 6-mercaptopurine, and from published evidence that ascites-tumour cells require supplies of purines from the host tissues, it is likely that inhibition of hypoxanthine and guanine phosphoribosyltransferases by free 6-mercaptopurine is involved in the biological activity of this drug. PMID:14342250

  6. A novel adenine-based metal organic framework derived nitrogen-doped nanoporous carbon for flexible solid-state supercapacitor.

    PubMed

    Li, Haowen; Fu, Dongying; Zhang, Xian-Ming

    2018-01-01

    In this article, we have synthesized a series of nitrogen-doped nanoporous carbon (NPC) from metal organic framework of UiO-66 with different ratios of adenine and 1,4-benzendicarboxylate (H 2 BDC) coated on carbon nanotube film (CNTF) to obtain a flexible porous electrode (NPC/CNTF). It is worth noting that the introduction of adenine at different ratios did not change the structure of UiO-66. We also investigated the effect of carbonization temperature from 800 to 1000°C on the electrochemical properties of the NPC. The ratio (H 2 BDC:adenine) 9 : 1 and the NPC carbonized at 900°C (denoted as NPC-1-900) exhibits better electrochemical properties. The results show that NPC-1-900/CNTF electrode exhibits an exceptional areal capacitance of 121.5 mF cm -2 compared to that of PC-900/CNTF electrode (22.8 mF cm -2 ) at 5 mV s -1 in a three-electrode system, indicating that the incorporation of nitrogen is beneficial to the electrochemical properties of nanoporous carbon. A symmetric flexible solid-state supercapacitor of NPC-1-900/CNTF has also been assembled and tested. Electrochemical data show that the device exhibited superior areal capacitance (43.2 mF cm -2 ) at the scan rate of 5 mV s -1 ; the volumetric energy density is 57.3 µWh cm -3 and the volumetric power density is 2.4 mW cm -3 at the current density of 0.5 mA cm -2 based on poly(vinyl alcohol)/H 3 PO 4 gel electrolyte. For practical application, we have also studied the bending tests of the device, which show that the device exhibits outstanding mechanical stability under different bending angles. Furthermore, the flexible device shows excellent cyclic stability, which can retain 91.5% of the initial capacitance after 2000 cycles.

  7. A novel adenine-based metal organic framework derived nitrogen-doped nanoporous carbon for flexible solid-state supercapacitor

    PubMed Central

    Li, Haowen; Zhang, Xian-Ming

    2018-01-01

    In this article, we have synthesized a series of nitrogen-doped nanoporous carbon (NPC) from metal organic framework of UiO-66 with different ratios of adenine and 1,4-benzendicarboxylate (H2BDC) coated on carbon nanotube film (CNTF) to obtain a flexible porous electrode (NPC/CNTF). It is worth noting that the introduction of adenine at different ratios did not change the structure of UiO-66. We also investigated the effect of carbonization temperature from 800 to 1000°C on the electrochemical properties of the NPC. The ratio (H2BDC:adenine) 9 : 1 and the NPC carbonized at 900°C (denoted as NPC-1-900) exhibits better electrochemical properties. The results show that NPC-1-900/CNTF electrode exhibits an exceptional areal capacitance of 121.5 mF cm−2 compared to that of PC-900/CNTF electrode (22.8 mF cm−2) at 5 mV s−1 in a three-electrode system, indicating that the incorporation of nitrogen is beneficial to the electrochemical properties of nanoporous carbon. A symmetric flexible solid-state supercapacitor of NPC-1-900/CNTF has also been assembled and tested. Electrochemical data show that the device exhibited superior areal capacitance (43.2 mF cm−2) at the scan rate of 5 mV s−1; the volumetric energy density is 57.3 µWh cm−3 and the volumetric power density is 2.4 mW cm−3 at the current density of 0.5 mA cm−2 based on poly(vinyl alcohol)/H3PO4 gel electrolyte. For practical application, we have also studied the bending tests of the device, which show that the device exhibits outstanding mechanical stability under different bending angles. Furthermore, the flexible device shows excellent cyclic stability, which can retain 91.5% of the initial capacitance after 2000 cycles. PMID:29410815

  8. Degradation of Adenine on the Martian Surface in the Presence of Perchlorates and Ionizing Radiation: A Reflectron Time-of-flight Mass Spectrometric Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Góbi, Sándor; Bergantini, Alexandre; Kaiser, Ralf I., E-mail: ralfk@hawaii.edu

    The aim of the present work is to unravel the radiolytic decomposition of adenine (C{sub 5}H{sub 5}N{sub 5}) under conditions relevant to the Martian surface. Being the fundamental building block of (deoxy)ribonucleic acids, the possibility of survival of this biomolecule on the Martian surface is of primary importance to the astrobiology community. Here, neat adenine and adenine–magnesium perchlorate mixtures were prepared and irradiated with energetic electrons that simulate the secondary electrons originating from the interaction of the galactic cosmic rays with the Martian surface. Perchlorates were added to the samples since they are abundant—and therefore relevant oxidizers on the surfacemore » of Mars—and they have been previously shown to facilitate the radiolysis of organics such as glycine. The degradation of the samples were monitored in situ via Fourier transformation infrared spectroscopy and the electron ionization quadruple mass spectrometric method; temperature-programmed desorption profiles were then collected by means of the state-of-the-art single photon photoionization reflectron time-of-flight mass spectrometry (PI-ReTOF-MS), allowing for the detection of the species subliming from the sample. The results showed that perchlorates do increase the destruction rate of adenine by opening alternative reaction channels, including the concurrent radiolysis/oxidation of the sample. This new pathway provides a plethora of different radiolysis products that were identified for the first time. These are carbon dioxide (CO{sub 2}), isocyanic acid (HNCO), isocyanate (OCN{sup −}), carbon monoxide (CO), and nitrogen monoxide (NO); an oxidation product containing carbonyl groups (R{sub 1}R{sub 2}–C=O) with a constrained five-membered cyclic structure could also be observed. Cyanamide (H{sub 2}N–C≡N) was detected in both irradiated samples as well.« less

  9. CYTOLOGICAL STUDIES ON THE ANTIMETABOLITE ACTION OF 2,6-DIAMINOPURINE IN VICIA FABA ROOTS

    PubMed Central

    Setterfield, George; Duncan, Robert E.

    1955-01-01

    At a concentration of 9.6 x 10–5 M, 2,6-diaminopurine (DAP) completely inhibited cell enlargement, cell division, and DNA synthesis (determined by microphotometric measurement of Feulgen dye) in Vicia faba roots. Inhibition of cell enlargement was partially reversed by adenine, guanine, xanthine, adenosine, and desoxyadenosine. Guanine and the nucleosides gave the greatest reversal, suggesting that one point of DAP action upon cell enlargement is a disruption of nucleoside or nucleotide metabolism, possibly during pentosenucleic acid synthesis. DAP inhibited cell division by preventing onset of prophase. At the concentrations used it had no significant effect on the rate or appearance of mitoses in progress. Inhibition of entrance into prophase was not directly due to inhibition of DNA synthesis since approximately half of the inhibited nuclei had the doubled (4C) amount of DNA. Adenine competitively reversed DAP inhibition of cell division, giving an inhibition index of about 0.5. Guanine gave a slight reversal while xanthine, hypoxanthine, adenosine, and desoxyadenosine were inactive. A basic need for free adenine for the onset of mitosis was suggested by this reversal pattern. Meristems treated with DAP contained almost no nuclei with intermediate amounts of DNA, indicating that DAP prevented the onset of DNA synthesis while allowing that underway to reach completion. The inhibition of DNA synthesis was reversed by adenine, adenosine, and desoxyadenosine although synthesis appeared to proceed at a slower rate in reversals than in controls. Inhibition of DNA synthesis by DAP is probably through nucleoside or nucleotide metabolism. A small general depression of DNA content of nuclei in the reversal treatments was observed. This deviation from DNA "constancy" cannot be adequately explained at present although it may be a result of direct incorporation of DAP into DNA. The possible purine precursor, 4-amino-5-imidazolecarboxamide gave no reversal of DAP inhibition of cell elongation and cell division and only a slight possible reversal of inhibition of DNA synthesis. PMID:13263329

  10. DNA adenine methylation modulates pathogenicity of Klebsiella pneumoniae genotype K1.

    PubMed

    Fang, Chi-Tai; Yi, Wen-Ching; Shun, Chia-Tung; Tsai, Shih-Feng

    2017-08-01

    Klebsiella pneumoniae genotype K1 is a highly virulent pathogen that causes liver abscess and metastatic endophthalmitis/meningitis. Whether its pathogenicity is controlled by DNA adenine methylase (Dam), an epigenetic regulator of bacterial virulence gene expression, is yet unknown. We aimed to study the role of DNA adenine methylation in the pathogenicity of K. pneumoniae genotype K1. We identified the dam gene in the prototype tissue-invasive strain (NTUH-K2044) of K. pneumoniae genotype K1, using the strain's complete genome sequence in GenBank. We constructed a dam - mutant and compared it with the wild type, in terms of in vitro serum resistance and in vivo BALB/cByl mice inoculation. Loss of Dam activity in the mutant was verified by MboI restriction digestion of the genomic DNA and a 1000-fold increase in spontaneous mutation rate. The dam mutant lost at least 68% of serum resistance when compared with the wild type (survival ratio at 1 hour: 2.6 ± 0.4 vs. 8.2 ± 1.9; at 2 hours: 3.9 ± 1.6 vs. 17.4 ± 3.6; p values < 0.05). Likewise, virulence to mice decreased by 40-fold in an intraperitoneal injection model [lethal dose, 50% (LD 50 ): 2 × 10 3 colony-forming units (CFUs) vs. 5 × 10 1 CFUs] and by sixfold in a gastric ingestion model (LD 50 : 3 × 10 4 CFUs vs. 5 × 10 3 CFUs). Attenuation of the dam mutant was not attributable to its growth rate, which was similar to that of the wild type. Our results support the view that DNA adenine methylation plays an important role in modulating the pathogenicity of K. pneumoniae genotype K1. The incomplete attenuation indicates the existence of other regulatory factors. Copyright © 2015. Published by Elsevier B.V.

  11. Mixed adenine/guanine quartets with three trans-a2 Pt(II) (a=NH(3) or MeNH(2)) cross-links: linkage and rotational isomerism, base pairing, and loss of NH(3).

    PubMed

    Albertí, Francisca M; Rodríguez-Santiago, Luis; Sodupe, Mariona; Mirats, Andrea; Kaitsiotou, Helena; Sanz Miguel, Pablo J; Lippert, Bernhard

    2014-03-17

    Of the numerous ways in which two adenine and two guanines (N9 positions blocked in each) can be cross-linked by three linear metal moieties such as trans-a2 Pt(II) (with a=NH3 or MeNH2 ) to produce open metalated purine quartets with exclusive metal coordination through N1 and N7 sites, one linkage isomer was studied in detail. The isomer trans,trans,trans-[{Pt(NH3 )2 (N7-9-EtA-N1)2 }{Pt(MeNH2 )2 (N7-9-MeGH)}2 ][(ClO4 )6 ]⋅3H2 O (1) (with 9-EtA=9-ethyladenine and 9-MeGH=9-methylguanine) was crystallized from water and found to adopt a flat Z-shape in the solid state as far as the trinuclear cation is concerned. In the presence of excess 9-MeGH, a meander-like construct, trans,trans,trans-[{Pt(NH3 )2 (N7-9-EtA-N1)2 }{Pt(MeNH2 )2 (N7-9-MeGH)2 }][(ClO4 )6 ]⋅[(9-MeGH)2 ]⋅7 H2 O (2) is formed, in which the two extra 9-MeGH nucleobases are hydrogen bonded to the two terminal platinated guanine ligands of 1. Compound 1, and likewise the analogous complex 1 a (with NH3 ligands only), undergo loss of an ammonia ligand and formation of NH4 (+) when dissolved in [D6 ]DMSO. From the analogy between the behavior of 1 and 1 a it is concluded that a NH3 ligand from the central Pt atom is lost. Addition of 1-methylcytosine (1-MeC) to such a DMSO solution reveals coordination of 1-MeC to the central Pt. In an analogous manner, 9-MeGH can coordinate to the central Pt in [D6 ]DMSO. It is proposed that the proton responsible for formation of NH4 (+) is from one of the exocyclic amino groups of the two adenine bases, and furthermore, that this process is accompanied by a conformational change of the cation from Z-form to U-form. DFT calculations confirm the proposed mechanism and shed light on possible pathways of this process. Calculations show that rotational isomerism is not kinetically hindered and that it would preferably occur previous to the displacement of NH3 by DMSO. This displacement is the most energetically costly step, but it is compensated by the proton transfer to NH3 and formation of U(-H(+) ) species, which exhibits an intramolecular hydrogen bond between the deprotonated N6H(-) of one adenine and the N6H2 group of the other adenine. Finally the question is examined, how metal cross-linking patterns in closed metallacyclic quartets containing two adenine and two guanine nucleobases influence the overall shape (square, rectangle, trapezoid) and the planarity of a metalated purine quartet. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Resonant two-photon ionization and laser induced fluorescence spectroscopy of jet-cooled adenine

    NASA Astrophysics Data System (ADS)

    Kim, Nam Joon; Jeong, Gawoon; Kim, Yung Sam; Sung, Jiha; Keun Kim, Seong; Park, Young Dong

    2000-12-01

    Electronic spectra of the jet-cooled DNA base adenine were obtained by the resonant two-photon ionization (R2PI) and the laser induced fluorescence (LIF) techniques. The 0-0 band to the lowest electronically excited state was found to be located at 35 503 cm-1. Well-resolved vibronic structures were observed up to 1100 cm-1 above the 0-0 level, followed by a slow rise of broad structureless absorption. The lowest electronic state was proposed to be of nπ* character, which lies ˜600 cm-1 below the onset of the ππ* state. The broad absorption was attributed to the extensive vibronic mixing between the nπ* state and the high-lying ππ* state.

  13. Chiral symmetry breaking during the self-assembly of monolayers from achiral purine molecules.

    PubMed

    Sowerby, S J; Heckl, W M; Petersen, G B

    1996-11-01

    Scanning tunneling microscopy was used to investigate the structure of the two-dimensional adsorbate formed by molecular self-assembly of the purine base, adenine, on the surfaces of the naturally occurring mineral molybdenite and the synthetic crystal highly oriented pyrolytic graphite. Although formed from adenine, which is achiral, the observed adsorbate surface structures were enantiomorphic on molybdenite. This phenomenon suggests a mechanism for the introduction of a localized chiral symmetry break by the spontaneous crystallization of these prebiotically available molecules on inorganic surfaces and may have some role in the origin of biomolecular optical asymmetry. The possibility that purine-pyrimidine arrays assembled on naturally occurring mineral surfaces might act as possible templates for biomolecular assembly is discussed.

  14. Modulating the Levels of Plant Hormone Cytokinins at the Host-Pathogen Interface.

    PubMed

    Naseem, Muhammad; Shams, Shabana; Roitsch, Thomas

    2017-01-01

    Cytokinins are adenine and non-adenine derived heterogeneous class of regulatory molecules that participate in almost every aspect of plant biology. They also affect plant defense responses as well as help microbial pathogens to establish pathogenesis. The functional approaches that ensure desired and subtle modulations in the levels of plant cytokinins are highly instrumental in assessing their functions in plant immunity. Here, we describe a detailed working protocol regarding the enhanced production of cytokinins from plants that harbor isopentenyltransferase (IPT) enzyme gene under the control of 4xJERE (jasmonic acid and elicitor-responsive element) pathogen-inducible promoter. Our devised expression system is a context-dependent solution when it comes to investigating host-pathogen interactions under the modulated conditions of plant cytokinins.

  15. Febuxostat for the Prevention of Recurrent 2,8-dihydroxyadenine Nephropathy due to Adenine Phosphoribosyltransferase Deficiency Following Kidney Transplantation

    PubMed Central

    Nanmoku, Koji; Kurosawa, Akira; Shinzato, Takahiro; Shimizu, Toshihiro; Kimura, Takaaki; Yagisawa, Takashi

    2017-01-01

    Adenine phosphoribosyltransferase (APRT) deficiency is a rare autosomal recessive disorder that results in irreversible renal damage due to 2,8-dihydroxyadenine (DHA) nephropathy. A 28-year-old man underwent living-related kidney transplantation for chronic kidney disease of unknown etiology. Numerous spherical brownish crystals observed in his urinary sediment on postoperative day 3 and were observed within the tubular lumen of renal allograft biopsy specimens on postoperative day 7. After a genetic diagnosis, febuxostat treatment was started on postoperative day 7, with the dosage gradually increased to 80 mg/day until complete the disappearance of 2,8-DHA crystals. Febuxostat prevented secondary 2,8-DHA nephropathy after kidney transplantation. PMID:28566603

  16. Quantum chemical investigations of AlN-doped C60 for use as a nano-biosensor in detection of mispairing between DNA bases.

    PubMed

    Siddiqui, Shamoon Ahmad; Bouarissa, Nadir; Rasheed, Tabish; Al-Hajry, A

    2014-12-01

    Quantum chemical calculations were carried out to study the electronic structure and stability of adenine-thymine and the rare tautomer of adenine-thymine base pairs along with their Cu 2+ complexes and their interactions with AlN-modified fullerene (C58AlN) using Density Functional Theory (B3LYP method). Since, these two forms of base pairs and their Cu 2+ complexes have almost similar electronic structures, their chemical differentiation is an extremely difficult task. In this investigation, we have observed that AlN-doped C 60 could be used as a potentially viable nanoscale sensor to detect these two base pairs as well as their Cu2+ complexes.

  17. Exchange transfusion with red blood cells preserved in adenine clears a child of severe falciparum malaria.

    PubMed

    Boctor, F N; Ali, N M; Choi, Y J; Morse, E E

    1997-01-01

    Falciparum malaria may be associated with significant morbidity and mortality. The degree of mortality and morbidity usually corresponds to the degree of parasitemia. Quinine and other antimalarial drugs are relatively slow acting and not always effective owing to the presence of drug resistance falciparum. Rapid reduction of the number of circulating parasites may be required. Exchange transfusion has been used as a safe and quick approach to decreasing the parasitemia and antimalaria drugs used to eradicate the rest of the Plasmodium. In the present report, a case is described of a child with severe falciparum malaria who was successfully treated with exchange transfusion using the new adenine and mannitol enriched preservative media, Adsol.

  18. Role of conserved nucleotides in building the 16S rRNA binding site of E. coli ribosomal protein S8.

    PubMed Central

    Allmang, C; Mougel, M; Westhof, E; Ehresmann, B; Ehresmann, C

    1994-01-01

    Ribosomal protein S8 specifically recognizes a helical and irregular region of 16S rRNA that is highly evolutionary constrained. Despite its restricted size, the precise conformation of this region remains a question of debate. Here, we used chemical probing to analyze the structural consequences of mutations in this RNA region. These data, combined with computer modelling and previously published data on protein binding were used to investigate the conformation of the RNA binding site. The experimental data confirm the model in which adenines A595, A640 and A642 bulge out in the deep groove. In addition to the already proposed non canonical U598-U641 interaction, the structure is stabilized by stacking interactions (between A595 and A640) and an array of hydrogen bonds involving bases and the sugar phosphate backbone. Mutations that alter the ability to form these interdependent interactions result in a local destabilization or reorganization. The specificity of recognition by protein S8 is provided by the irregular and distorted backbone and the two bulged adenines 640 and 642 in the deep groove. The third adenine (A595) is not a direct recognition site but must adopt a bulged position. The U598-U641 pair should not be directly in contact with the protein. Images PMID:7937081

  19. A New Method for Estimating Bacterial Abundances in Natural Samples using Sublimation

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Cleaves, H. James; Schubert, Michael; Aubrey, Andrew; Bada, Jeffrey L.

    2004-01-01

    We have developed a new method based on the sublimation of adenine from Escherichia coli to estimate bacterial cell counts in natural samples. To demonstrate this technique, several types of natural samples including beach sand, seawater, deep-sea sediment, and two soil samples from the Atacama Desert were heated to a temperature of 500 C for several seconds under reduced pressure. The sublimate was collected on a cold finger and the amount of adenine released from the samples then determined by high performance liquid chromatography (HPLC) with UV absorbance detection. Based on the total amount of adenine recovered from DNA and RNA in these samples, we estimated bacterial cell counts ranging from approx. l0(exp 5) to l0(exp 9) E. coli cell equivalents per gram. For most of these samples, the sublimation based cell counts were in agreement with total bacterial counts obtained by traditional DAPI staining. The simplicity and robustness of the sublimation technique compared to the DAPI staining method makes this approach particularly attractive for use by spacecraft instrumentation. NASA is currently planning to send a lander to Mars in 2009 in order to assess whether or not organic compounds, especially those that might be associated with life, are present in Martian surface samples. Based on our analyses of the Atacama Desert soil samples, several million bacterial cells per gam of Martian soil should be detectable using this sublimation technique.

  20. [Determination of 5 nucleosides components in culture of Paecilomyces hepialid by HPLC].

    PubMed

    Yang, Dan; Ma, Yun-shu; Huang, Ting-ting; Chen, Cheng

    2015-08-01

    The concentration of 5 nucleosides, uracil, uridine, guanidine, adenine and adenosine in culture of Paecilomyces hepialid was determined by the developed method of HPLC. The HPLC method was performed on a Waters SunFire C18 (4.6 mm x 250 mm, 5 μm) column with methanol-water gradient elution as the mobile phase. The detection wavelength was 260 nm and the colunmn temperature was controlled at 30 °C. The linear range was 10.00-200.00 mg · L(-1) (r = 0.9994) for uracil, 10.10-202.00 mg · L(-1) (r = 0.9992) for uridine, 10.00-200.00 mg · L(-1) (r = 0.9991) for guanidine, 10.30-206.00 mg · L(-1) (r = 0.9992) for adenine and 10.45-209.00 mg · L(-1) (r = 0.9991) for adenosine, respectively. The RSD of precision was 0.032%, 0.035%, 0.039%, 0.049%, 0.00080%, respectively. The average recoveries of uracil, guanidine, adenine, and adenosine were 97.34%, 99.10%, 101.6%, 98.61% and 100.2% with RSD of 1.3%, 2.1%, 0.96%, 0.95%, and 1.3% respectively. The method showed high sensitivity, good selectivity, linearity and repeatability, which was suitable for the content analysis of 5 nucleosides components in P. hepialid and its extracts.

  1. Probing phenylalanine/adenine pi-stacking interactions in protein complexes with explicitly correlated and CCSD(T) computations.

    PubMed

    Copeland, Kari L; Anderson, Julie A; Farley, Adam R; Cox, James R; Tschumper, Gregory S

    2008-11-13

    To examine the effects of pi-stacking interactions between aromatic amino acid side chains and adenine bearing ligands in crystalline protein structures, 26 toluene/(N9-methyl)adenine model configurations have been constructed from protein/ligand crystal structures. Full geometry optimizations with the MP2 method cause the 26 crystal structures to collapse to six unique structures. The complete basis set (CBS) limit of the CCSD(T) interaction energies has been determined for all 32 structures by combining explicitly correlated MP2-R12 computations with a correction for higher-order correlation effects from CCSD(T) calculations. The CCSD(T) CBS limit interaction energies of the 26 crystal structures range from -3.19 to -6.77 kcal mol (-1) and average -5.01 kcal mol (-1). The CCSD(T) CBS limit interaction energies of the optimized complexes increase by roughly 1.5 kcal mol (-1) on average to -6.54 kcal mol (-1) (ranging from -5.93 to -7.05 kcal mol (-1)). Corrections for higher-order correlation effects are extremely important for both sets of structures and are responsible for the modest increase in the interaction energy after optimization. The MP2 method overbinds the crystal structures by 2.31 kcal mol (-1) on average compared to 4.50 kcal mol (-1) for the optimized structures.

  2. Heterogeneity of the calcium-induced permeability transition in isolated non-synaptic brain mitochondria.

    PubMed

    Kristián, Tibor; Weatherby, Tina M; Bates, Timothy E; Fiskum, Gary

    2002-12-01

    Calcium overload of neural cell mitochondria plays a key role in excitotoxic and ischemic brain injury. This study tested the hypothesis that brain mitochondria consist of subpopulations with differential sensitivity to calcium-induced inner membrane permeability transition, and that this sensitivity is greatly reduced by physiological levels of adenine nucleotides. Isolated non-synaptosomal rat brain mitochondria were incubated in a potassium-based medium in the absence or presence of ATP or ADP. Measurements were made of medium and intramitochondrial free calcium, light scattering, mitochondrial ultrastructure, and the elemental composition of electron-opaque deposits within mitochondria treated with calcium. In the absence of adenine nucleotides, calcium induced a partial decrease in light scattering, accompanied by three distinct ultrastructural morphologies, including large-amplitude swelling, matrix vacuolization and a normal appearance. In the presence of ATP or ADP the mitochondrial calcium uptake capacity was greatly enhanced and calcium induced an increase rather than a decrease in mitochondrial light scattering. Approximately 10% of the mitochondria appeared damaged and the rest contained electron-dense precipitates that contained calcium, as determined by electron-energy loss spectroscopy. These results indicate that brain mitochondria are heterogeneous in their response to calcium. In the absence of adenine nucleotides, approximately 20% of the mitochondrial population exhibit morphological alterations consistent with activation of the permeability transition, but less than 10% exhibit evidence of osmotic swelling and membrane disruption in the presence of ATP or ADP.

  3. Uncoupling protein and ATP/ADP carrier increase mitochondrial proton conductance after cold adaptation of king penguins.

    PubMed

    Talbot, Darren A; Duchamp, Claude; Rey, Benjamin; Hanuise, Nicolas; Rouanet, Jean Louis; Sibille, Brigitte; Brand, Martin D

    2004-07-01

    Juvenile king penguins develop adaptive thermogenesis after repeated immersion in cold water. However, the mechanisms of such metabolic adaptation in birds are unknown, as they lack brown adipose tissue and uncoupling protein-1 (UCP1), which mediate adaptive non-shivering thermogenesis in mammals. We used three different groups of juvenile king penguins to investigate the mitochondrial basis of avian adaptive thermogenesis in vitro. Skeletal muscle mitochondria isolated from penguins that had never been immersed in cold water showed no superoxide-stimulated proton conductance, indicating no functional avian UCP. Skeletal muscle mitochondria from penguins that had been either experimentally immersed or naturally adapted to cold water did possess functional avian UCP, demonstrated by a superoxide-stimulated, GDP-inhibitable proton conductance across their inner membrane. This was associated with a markedly greater abundance of avian UCP mRNA. In the presence (but not the absence) of fatty acids, these mitochondria also showed a greater adenine nucleotide translocase-catalysed proton conductance than those from never-immersed penguins. This was due to an increase in the amount of adenine nucleotide translocase. Therefore, adaptive thermogenesis in juvenile king penguins is linked to two separate mechanisms of uncoupling of oxidative phosphorylation in skeletal muscle mitochondria: increased proton transport activity of avian UCP (dependent on superoxide and inhibited by GDP) and increased proton transport activity of the adenine nucleotide translocase (dependent on fatty acids and inhibited by carboxyatractylate).

  4. Dimerization of human immunodeficiency virus (type 1) RNA: stimulation by cations and possible mechanism.

    PubMed

    Marquet, R; Baudin, F; Gabus, C; Darlix, J L; Mougel, M; Ehresmann, C; Ehresmann, B

    1991-05-11

    The retroviral genome consists of two identical RNA molecules joined close to their 5' ends by the dimer linkage structure. Recent findings indicated that retroviral RNA dimerization and encapsidation are probably related events during virion assembly. We studied the cation-induced dimerization of HIV-1 RNA and results indicate that all in vitro generated HIV-1 RNAs containing a 100 nucleotide domain downstream from the 5' splice site are able to dimerize. RNA dimerization depends on the concentration of RNA, mono- and multivalent cations, the size of the monovalent cation, temperature, and pH. Up to 75% of HIV-1 RNA is dimeric in the presence of spermidine. HIV-1 RNA dimer is fairly resistant to denaturing agents and unaffected by intercalating drugs. Antisense HIV-1 RNA does not dimerize but heterodimers can be formed between HIV-1 RNA and either MoMuLV or RSV RNA. Therefore retroviral RNA dimerization probably does not simply proceed through mechanisms involving Watson-Crick base-pairing. Neither adenine and cytosine protonation, nor quartets containing only guanines appear to determine the stability of the HIV-1 RNA dimer, while quartets involving both adenine(s) and guanine(s) could account for our results. A consensus sequence PuGGAPuA found in the putative dimerization-encapsidation region of all retroviral genomes examined may participate in the dimerization process.

  5. Dimerization of human immunodeficiency virus (type 1) RNA: stimulation by cations and possible mechanism.

    PubMed Central

    Marquet, R; Baudin, F; Gabus, C; Darlix, J L; Mougel, M; Ehresmann, C; Ehresmann, B

    1991-01-01

    The retroviral genome consists of two identical RNA molecules joined close to their 5' ends by the dimer linkage structure. Recent findings indicated that retroviral RNA dimerization and encapsidation are probably related events during virion assembly. We studied the cation-induced dimerization of HIV-1 RNA and results indicate that all in vitro generated HIV-1 RNAs containing a 100 nucleotide domain downstream from the 5' splice site are able to dimerize. RNA dimerization depends on the concentration of RNA, mono- and multivalent cations, the size of the monovalent cation, temperature, and pH. Up to 75% of HIV-1 RNA is dimeric in the presence of spermidine. HIV-1 RNA dimer is fairly resistant to denaturing agents and unaffected by intercalating drugs. Antisense HIV-1 RNA does not dimerize but heterodimers can be formed between HIV-1 RNA and either MoMuLV or RSV RNA. Therefore retroviral RNA dimerization probably does not simply proceed through mechanisms involving Watson-Crick base-pairing. Neither adenine and cytosine protonation, nor quartets containing only guanines appear to determine the stability of the HIV-1 RNA dimer, while quartets involving both adenine(s) and guanine(s) could account for our results. A consensus sequence PuGGAPuA found in the putative dimerization-encapsidation region of all retroviral genomes examined may participate in the dimerization process. Images PMID:1645868

  6. Acidity and complex formation studies of 3-(adenine-9-yl)-propionic and 3-(thymine-1-yl)-propionic acids in ethanol-water media

    NASA Astrophysics Data System (ADS)

    Hammud, Hassan H.; El Shazly, Shawky; Sonji, Ghassan; Sonji, Nada; Bouhadir, Kamal H.

    2015-05-01

    The ligands 3-(adenine-9-yl)propionic acid (AA) and 3-(thymine-1-yl)propionic acid (TA) were prepared by N9-alkylation of adenine and N1-alkylation of thymine with ethylacrylate in presence of a base catalyst, followed by acid hydrolysis of the formed ethyl esters to give the corresponding propionic acid derivatives. The products were characterized by spectral methods (FTIR, 1H NMR and 13C NMR), which confirm their structures. The dissociation constants of ligands, were potentiometrically determined in 0.3 M KCl at 20-50 °C temperature range. The work was extended to study complexation behavior of AA and TA with various biologically important divalent metal ions (Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Mn2+ and Pb2+) in 50% v/v water-ethanol medium at four different temperatures, keeping ionic strength constant (0.3 M KCl). The order of the stability constants of the formed complexes decreases in the sequence Cu2+ > Pb2+ > Zn2+ > Ni2+ > Co2+ > Mn2+ > Cd2+ for both ligands. The effect of temperature was also studied and the corresponding thermodynamic functions (ΔG, ΔH, ΔS) were derived and discussed. The formation of metal complexes has been found to be spontaneous, and the stability constants were dependant markedly on the basicity of the ligands.

  7. Analysis of serum from type II diabetes mellitus and diabetic complication using surface-enhanced Raman spectra (SERS)

    NASA Astrophysics Data System (ADS)

    Han, H. W.; Yan, X. L.; Dong, R. X.; Ban, G.; Li, K.

    2009-03-01

    In this paper, we show surface-enhanced Raman spectra (SERS) of serums from type II diabetes mellitus and diabetic complication (coronary disease, glaucoma and cerebral infarction), and analyze the SERS through the multivariate statistical methods of principal component analysis (PCA). In particular, we find that there exist many adenines in these serums, which maybe come from DNA (RNA) damage. The relative intensity of the band at 725±2 cm-1 assigned to adenine is higher for patients than for the healthy volunteers; therefore, it can be used as an important ‘fingerprint’ in order to diagnose these diseases. It is also shown that serums from type II diabetes mellitus group, diabetic complication group and healthy volunteers group can be discriminated by PCA.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ai Yuejie; Zhang Feng; Theoretical Chemistry, School of Biotechnology, Royal Institute of Technology, S-10691 Stockholm

    2-aminopyridine dimer has frequently been used as a model system for studying photochemistry of DNA base pairs. We examine here the relevance of 2-aminopyridine dimer for a Watson-Crick adenine-thymine base pair by studying UV-light induced photodynamics along two main hydrogen bridges after the excitation to the localized {sup 1}{pi}{pi}* excited-state. The respective two-dimensional potential-energy surfaces have been determined by time-dependent density functional theory with Coulomb-attenuated hybrid exchange-correlation functional (CAM-B3LYP). Different mechanistic aspects of the deactivation pathway have been analyzed and compared in detail for both systems, while the related reaction rates have also be obtained from Monte Carlo kinetic simulations.more » The limitations of the 2-aminopyridine dimer as a model system for the adenine-thymine base pair are discussed.« less

  9. Germination Requirements of Bacillus macerans Spores

    PubMed Central

    Sacks, L. E.; Thompson, P. A.

    1971-01-01

    2-Phenylacetamide is an effective germinant for spores of five strains of Bacillus macerans, particularly in the presence of fructose. Benzyl penicillin, the phenyl acetamide derivative of penicillin, and phenylacetic acid are also good germinants. l-Asparagine is an excellent germinant for four strains. α-Amino-butyric acid is moderately effective. Pyridoxine, pyridoxal, adenine, and 2,6-diaminopurine are potent germinants for NCA strain 7X1 only. d-Glucose is a powerful germinant for strain B-70 only. d-Fructose and d-ribose strongly potentiate germination induced by other germinants (except l-asparagine) but have only weak activity by themselves. Niacinamide and nicotinamide-adenine dinucleotide, inactive by themselves, are active in the presence of fructose or ribose. Effects of pH, ion concentration, and temperature are described. PMID:4251279

  10. Prebiotic synthesis of adenine and amino acids under Europa-like conditions

    NASA Technical Reports Server (NTRS)

    Levy, M.; Miller, S. L.; Brinton, K.; Bada, J. L.

    2000-01-01

    In order to simulate prebiotic synthetic processes on Europa and other ice-covered planets and satellites, we have investigated the prebiotic synthesis of organic compounds from dilute solutions of NH4CN frozen for 25 years at -20 and -78 degrees C. In addition, the aqueous products of spark discharge reactions from a reducing atmosphere were frozen for 5 years at -20 degrees C. We find that both adenine and guanine, as well as a simple set of amino acids dominated by glycine, are produced in substantial yields under these conditions. These results indicate that some of the key components necessary for the origin of life may have been available on Europa throughout its history and suggest that the circumstellar zone where life might arise may be wider than previously thought.

  11. Prebiotic synthesis of adenine and amino acids under Europa-like conditions.

    PubMed

    Levy, M; Miller, S L; Brinton, K; Bada, J L

    2000-06-01

    In order to simulate prebiotic synthetic processes on Europa and other ice-covered planets and satellites, we have investigated the prebiotic synthesis of organic compounds from dilute solutions of NH4CN frozen for 25 years at -20 and -78 degrees C. In addition, the aqueous products of spark discharge reactions from a reducing atmosphere were frozen for 5 years at -20 degrees C. We find that both adenine and guanine, as well as a simple set of amino acids dominated by glycine, are produced in substantial yields under these conditions. These results indicate that some of the key components necessary for the origin of life may have been available on Europa throughout its history and suggest that the circumstellar zone where life might arise may be wider than previously thought.

  12. Increased targeting of adenine-rich sequences by (2-amino-2-methyl-3-butanone oxime)dichloroplatinum(II) and investigations into its low cytotoxicity.

    PubMed

    Hambley, T W; Ling, E C; O'Mara, S; McKeage, M J; Russell, P J

    2000-12-01

    Using assays based on the inhibition of restriction enzyme cleavage of plasmid and synthetic DNA, the complex (2-amino-2-methyl-3-butanone oxime)dichloroplatinum(II), [PtCl2(ambo)], has been shown to have an increased tendency for binding to adenine-rich sequences when compared to cis[PtCl2(NH3)2] (cisplatin). [PtCl2(ambo)] was found to form substantially fewer interstrand adducts than does cisplatin. The in vitro cytotoxicity of [PtCl2(ambo)] against a human bladder cancer cell line was determined and found to be more than two orders of magnitude lower than that of cisplatin, yet it was also found to be equally effective at passing into cells and binding to isolated DNA.

  13. Prebiotic Synthesis of Adenine and Amino Acids Under Europa-like Conditions

    NASA Technical Reports Server (NTRS)

    Levy, Matthew; Miller, Stanley L.; Brinton, Karen; Bada, Jeffrey L.

    2003-01-01

    In order to simulate prebiotic synthetic processes on Europa and other ice-covered planets and satellites. we have investigated the prebiotic synthesis of organic compounds from dilute solutions of NH4CN frozen for 25 year at -20 and -78 C. In addition the aqueous products of spark discharge reactions from a reducing atmosphere were frozen for 5 years at -20%. We find that both adenine and guanine, as well as a simple set of amino acids dominated by glycine, are produced in substantial yields under these conditions. These results indicate that some of the key components necessary for the origin of life may have been available on Europa throughout its history and suggest that the circumstellar zone where life might arise may be m der than previously thought.

  14. 8-(2-Furyl)adenine derivatives as A₂A adenosine receptor ligands.

    PubMed

    Dal Ben, Diego; Buccioni, Michela; Lambertucci, Catia; Thomas, Ajiroghene; Klotz, Karl-Norbert; Federico, Stephanie; Cacciari, Barbara; Spalluto, Giampiero; Volpini, Rosaria

    2013-01-01

    Selective adenosine receptor modulators are potential tools for numerous therapeutic applications, including cardiovascular, inflammatory, and neurodegenerative diseases. In this work, the synthesis and biological evaluation at the four human adenosine receptor subtypes of a series of 9-substituted 8-(2-furyl)adenine derivatives are reported. Results show that 8-(2-furyl)-9-methyladenine is endowed with high affinity at the A₂A subtype. Further modification of this compound with introduction of arylacetyl or arylcarbamoyl groups in N(6)-position takes to different effects on the A₂A affinity and in particular on the selectivity versus the other three adenosine receptor subtypes. A molecular modelling analysis at three different A₂A receptor crystal structures provides an interpretation of the obtained biological results. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  15. Importance of length and sequence order on magnesium binding to surface-bound oligonucleotides studied by second harmonic generation and atomic force microscopy.

    PubMed

    Holland, Joseph G; Geiger, Franz M

    2012-06-07

    The binding of magnesium ions to surface-bound single-stranded oligonucleotides was studied under aqueous conditions using second harmonic generation (SHG) and atomic force microscopy (AFM). The effect of strand length on the number of Mg(II) ions bound and their free binding energy was examined for 5-, 10-, 15-, and 20-mers of adenine and guanine at pH 7, 298 K, and 10 mM NaCl. The binding free energies for adenine and guanine sequences were calculated to be -32.1(4) and -35.6(2) kJ/mol, respectively, and invariant with strand length. Furthermore, the ion density for adenine oligonucleotides did not change as strand length increased, with an average value of 2(1) ions/strand. In sharp contrast, guanine oligonucleotides displayed a linear relationship between strand length and ion density, suggesting that cooperativity is important. This data gives predictive capabilities for mixed strands of various lengths, which we exploit for 20-mers of adenines and guanines. In addition, the role sequence order plays in strands of hetero-oligonucleotides was examined for 5'-A(10)G(10)-3', 5'-(AG)(10)-3', and 5'-G(10)A(10)-3' (here the -3' end is chemically modified to bind to the surface). Although the free energy of binding is the same for these three strands (averaged to be -33.3(4) kJ/mol), the total ion density increases when several guanine residues are close to the 3' end (and thus close to the solid support substrate). To further understand these results, we analyzed the height profiles of the functionalized surfaces with tapping-mode atomic force microscopy (AFM). When comparing the average surface height profiles of the oligonucleotide surfaces pre- and post- Mg(II) binding, a positive correlation was found between ion density and the subsequent height decrease following Mg(II) binding, which we attribute to reductions in Coulomb repulsion and strand collapse once a critical number of Mg(II) ions are bound to the strand.

  16. Hole Transport in A-form DNA/RNA Hybrid Duplexes

    NASA Astrophysics Data System (ADS)

    Wong, Jiun Ru; Shao, Fangwei

    2017-01-01

    DNA/RNA hybrid duplexes are prevalent in many cellular functions and are an attractive target form for electrochemical biosensing and electric nanodevice. However the electronic conductivities of DNA/RNA hybrid duplex remain relatively unexplored and limited further technological applications. Here cyclopropyl-modified deoxyribose- and ribose-adenosines were developed to explore hole transport (HT) in both DNA duplex and DNA/RNA hybrids by probing the transient hole occupancies on adenine tracts. HT yields through both B-form and A-form double helixes displayed similar shallow distance dependence, although the HT yields of DNA/RNA hybrid duplexes were lower than those of DNA duplexes. The lack of oscillatory periods and direction dependence in HT through both helixes implied efficient hole propagation can be achieved via the hole delocalization and coherent HT over adenine tracts, regardless of the structural variations.

  17. Analytic energy gradients in combined second order Møller-Plesset perturbation theory and conductorlike polarizable continuum model calculation.

    PubMed

    Si, Dejun; Li, Hui

    2011-10-14

    The analytic energy gradients in combined second order Møller-Plesset perturbation theory and conductorlike polarizable continuum model calculations are derived and implemented for spin-restricted closed shell (RMP2), Z-averaged spin-restricted open shell (ZAPT2), and spin-unrestricted open shell (UMP2) cases. Using these methods, the geometries of the S(0) ground state and the T(1) state of three nucleobase pairs (guanine-cytosine, adenine-thymine, and adenine-uracil) in the gas phase and aqueous solution phase are optimized. It is found that in both the gas phase and the aqueous solution phase the hydrogen bonds in the T(1) state pairs are weakened by ~1 kcal/mol as compared to those in the S(0) state pairs. © 2011 American Institute of Physics

  18. A purification and some properties of an insecticidal exotoxin from Bacillus thuringiensis Berliner

    PubMed Central

    Bond, R. P. M.; Boyce, C. B. C.; French, S. J.

    1969-01-01

    An insecticidal exotoxin from Bacillus thuringiensis var. thuringiensis (Berliner) has been purified. The efficiency of each stage of the purification has been ascertained and the yield of toxic material estimated by means of a quantitative bioassay. It is shown that the exotoxin is an adenine derivative substituted at position 9 and having a molecular weight of approximately 825. It can be dephosphorylated enzymically or chemically under conditions that define the exotoxin as a phosphomonoester. This results in loss of toxicity, both to insects and to mice. Spectroscopic and kinetic data are presented which suggest that a β-ribofuranosyl moiety may be attached to the adenine. Glucose and allomucic acid have been positively identified as hydrolysis fragments from the exotoxin. These results are discussed and compared with the results of others on similar (or possibly identical) compounds. PMID:5820635

  19. Hole Transport in A-form DNA/RNA Hybrid Duplexes

    PubMed Central

    Wong, Jiun Ru; Shao, Fangwei

    2017-01-01

    DNA/RNA hybrid duplexes are prevalent in many cellular functions and are an attractive target form for electrochemical biosensing and electric nanodevice. However the electronic conductivities of DNA/RNA hybrid duplex remain relatively unexplored and limited further technological applications. Here cyclopropyl-modified deoxyribose- and ribose-adenosines were developed to explore hole transport (HT) in both DNA duplex and DNA/RNA hybrids by probing the transient hole occupancies on adenine tracts. HT yields through both B-form and A-form double helixes displayed similar shallow distance dependence, although the HT yields of DNA/RNA hybrid duplexes were lower than those of DNA duplexes. The lack of oscillatory periods and direction dependence in HT through both helixes implied efficient hole propagation can be achieved via the hole delocalization and coherent HT over adenine tracts, regardless of the structural variations. PMID:28084308

  20. Salmonella DNA Adenine Methylase Mutants Confer Cross-Protective Immunity

    PubMed Central

    Heithoff, Douglas M.; Enioutina, Elena Y.; Daynes, Raymond A.; Sinsheimer, Robert L.; Low, David A.; Mahan, Michael J.

    2001-01-01

    Salmonella isolates that lack or overproduce DNA adenine methylase (Dam) elicited a cross-protective immune response to different Salmonella serovars. The protection afforded by the Salmonella enterica serovar Typhimurium Dam vaccine was greater than that elicited in mice that survived a virulent infection. S. enterica serovar Typhimurium Dam mutant strains exhibited enhanced sensitivity to mediators of innate immunity such as antimicrobial peptides, bile salts, and hydrogen peroxide. Also, S. enterica serovar Typhimurium Dam− vaccines were not immunosuppressive; unlike wild-type vaccines, they failed to induce increased nitric oxide levels and permitted a subsequent robust humoral response to diptheria toxoid antigen in infected mice. Dam mutant strains exhibited a low-grade persistence which, coupled with the nonimmunosuppression and the ectopic protein expression caused by altered levels of Dam, may provide an expanded source of potential antigens in vaccinated hosts. PMID:11598044

  1. [Adenylate cyclase from rabbit heart: substrate binding site].

    PubMed

    Perfil'eva, E A; Khropov, Iu V; Khachatrian, L; Bulargina, T V; Baranova, L A

    1981-08-01

    The effects of 17 ATP analogs on the solubilized rabbit heart adenylate cyclase were studied. The triphosphate chain, position 8 of the adenine base and the ribose residue of the ATP molecule were modified. Despite the presence of the alkylating groups in two former types of the analogs tested, no covalent blocking of the active site of the enzyme was observed. Most of the compounds appeared to be competitive reversible inhibitors. The kinetic data confirmed the importance of the triphosphate chain for substrate binding in the active site of adenylate cyclase. (Formula: See Text) The inhibitors with different substituents in position 8 of the adenine base had a low affinity for the enzyme. The possible orientation of the triphosphate chain and the advantages of anti-conformation of the ATP molecule for their binding in the active site of adenylate cyclase are discussed.

  2. Persistent changes in the initial rate of pyruvate transport by isolated rat liver mitochondria after preincubation with adenine nucleotides and calcium ions.

    PubMed

    Vaartjes, W J; den Breejen, J N; Geelen, M J; van den Bergh, S G

    1980-08-05

    1. Preincubation of isolated rat-liver mitochondria in the presence of adenine nucleotides or Ca2+ results in definite and persistent changes in the initial rate of pyruvate transport. 2. These changes in the rate of pyruvate transport are accompanied by equally persistent changes in the opposite direction of the activity of pyruvate dehydrogenase (EC 1.2.4.1). 3. Changes of the transmembrane pH gradient and of the membrane potential, brought about by the pretreatments of the mitochondria, cannot account for the observed changes in the rate of pyruvate transport. 4. It is proposed that the pretreatment of the mitochondria directly modulates the activity of the mitochondrial pyruvate carrier. The possible regulatory role of such a modulation system is discussed.

  3. Structures and physical properties of the cocrystals of adefovir dipivoxil with dicarboxylic acids

    NASA Astrophysics Data System (ADS)

    Jung, Sungyup; Lee, Jonghwi; Kim, Il Won

    2013-06-01

    The cocrystallization of adefovir dipivoxil (AD) with suberic acid (SUB) or succinic acid (SUC) was examined. X-ray diffraction was used to determine the structures of AD/SUB and AD/SUC cocrystals. Both cocrystals were formed via multiple hydrogen bonds between the adenine part of AD and the carboxylic acid groups of SUB or SUC. Longer SUB effectively dispersed AD molecules, and AD hydrogen-bonded only to SUB. When shorter SUC was used, AD formed hydrogen bonding with both SUC and adjacent AD. As a result, the cocrystal compositions were AD/SUB=1:1 and AD/SUC=2:1. Both cocrystals displayed superior thermal stability and increased aqueous solubility. The present study demonstrated that the adenine and similar structures of active pharmaceutical ingredients could be used to produce cocrystals of improved physical properties.

  4. Mannitol and Mannitol Dehydrogenases in Conidia of Aspergillus oryzae

    PubMed Central

    Horikoshi, Koki; Iida, Shigeji; Ikeda, Yonosuke

    1965-01-01

    Horikoshi, Koki (The Institute of Physical and Chemical Research, Tokyo, Japan), Shigeji Iida, and Yonosuke Ikeda. Mannitol and mannitol dehydrogenases in conidia of Aspergillus oryzae. J. Bacteriol. 89:326–330. 1965.—A sugar alcohol was isolated from the conidia of Aspergillus oryzae and identified as d-mannitol. Two types of d-mannitol dehydrogenases, nicotinamide adenine dinucleotide phosphate-linked and nicotinamide adenine dinucleotide-linked, were found in the conidia. Substrate specificities, pH optima, Michaelis-Menton constants, and the effects of inhibitors were studied. d-Mannitol was converted to fructose by the dehydrogenases. Synthesis of d-mannitol dehydrogenases was not observed during germination; the content of d-mannitol decreased at an early stage of germination. It was assumed, therefore, that d-mannitol might be used as the source of endogenous respiration and provide energy for the germination. PMID:14255698

  5. Direct Isolation of Purines and Pyrimidines from Nucleic Acids Using Sublimation

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Schubert, Michael; Bada, Jeffrey L.

    2003-01-01

    A sublimation technique was developed to isolate purines and pyrimidines directly from lambda-deoxyribonucleic acid (lambda-DNA) and Escherichia coli cells. The sublimation of adenine, cytosine, guanine, and thymine from lambda-DNA was tested under reduced pressure (approx. 0.5 Torr) at temperatures of >150 C. With the exception of guanine, approximately 60 -75% of each base was sublimed directly from the lambda-DNA and recovered on a coldfinger of the sublimation apparatus after heating to 450 C. Several nucleobases including adenine, cytosine, thymine, and uracil were also recovered from E. coli bacteria after heating the cells to the same temperature, although some thermal decomposition of the bases also occurred. These results demonstrate the feasibility of using sublimation to isolate purines and pyrimidines from native E. coli DNA and RNA without any chemical treatment of the cells.

  6. Surface-Enhanced Hyper-Raman Spectra of Adenine, Guanine, Cytosine, Thymine, and Uracil

    PubMed Central

    2016-01-01

    Using picosecond excitation at 1064 nm, surface-enhanced hyper-Raman scattering (SEHRS) spectra of the nucleobases adenine, guanine, cytosine, thymine, and uracil with two different types of silver nanoparticles were obtained. Comparing the SEHRS spectra with SERS data from the identical samples excited at 532 nm and with known infrared spectra, the major bands in the spectra are assigned. Due to the different selection rules for the one- and two-photon excited Raman scattering, we observe strong variation in relative signal strengths of many molecular vibrations obtained in SEHRS and SERS spectra. The two-photon excited spectra of the nucleobases are found to be very sensitive with respect to molecule–nanoparticle interactions. Using both the SEHRS and SERS data, a comprehensive vibrational characterization of the interaction of nucleobases with silver nanostructures can be achieved. PMID:28077982

  7. Uncoupling protein and ATP/ADP carrier increase mitochondrial proton conductance after cold adaptation of king penguins

    PubMed Central

    Talbot, Darren A; Duchamp, Claude; Rey, Benjamin; Hanuise, Nicolas; Rouanet, Jean Louis; Sibille, Brigitte; Brand, Martin D

    2004-01-01

    Juvenile king penguins develop adaptive thermogenesis after repeated immersion in cold water. However, the mechanisms of such metabolic adaptation in birds are unknown, as they lack brown adipose tissue and uncoupling protein-1 (UCP1), which mediate adaptive non-shivering thermogenesis in mammals. We used three different groups of juvenile king penguins to investigate the mitochondrial basis of avian adaptive thermogenesis in vitro. Skeletal muscle mitochondria isolated from penguins that had never been immersed in cold water showed no superoxide-stimulated proton conductance, indicating no functional avian UCP. Skeletal muscle mitochondria from penguins that had been either experimentally immersed or naturally adapted to cold water did possess functional avian UCP, demonstrated by a superoxide-stimulated, GDP-inhibitable proton conductance across their inner membrane. This was associated with a markedly greater abundance of avian UCP mRNA. In the presence (but not the absence) of fatty acids, these mitochondria also showed a greater adenine nucleotide translocase-catalysed proton conductance than those from never-immersed penguins. This was due to an increase in the amount of adenine nucleotide translocase. Therefore, adaptive thermogenesis in juvenile king penguins is linked to two separate mechanisms of uncoupling of oxidative phosphorylation in skeletal muscle mitochondria: increased proton transport activity of avian UCP (dependent on superoxide and inhibited by GDP) and increased proton transport activity of the adenine nucleotide translocase (dependent on fatty acids and inhibited by carboxyatractylate). PMID:15146050

  8. Treatment with NZ-419 (5-Hydroxy-1-methylimidazoline-2,4-dione), a novel intrinsic antioxidant, against the progression of chronic kidney disease at stages 3 and 4 in rats.

    PubMed

    Ienaga, Kazuharu; Yokozawa, Takako

    2010-01-01

    For rats, glomerular filtration rate (GFR) and its relative GFR (ratio to normal GFR(0)) were estimated in order to classify their chronic kidney disease (CKD) into 5 stages like those in humans. The adenine-loaded rats, which were used to show the intrinsic antioxidant and creatinine (Cr) metabolite, NZ-419 (5-hydroxy-1- methylimidazolidine-2,4-dione), when taken orally, prevented the progression of chronic renal failure (CRF), were used as a model to reach the severest stage 5. In this report, we show that, by using both a tubular lesion and a glomerular lesion models (adenine-loaded and 5/6 nephrectomized rats, respectively), peroral NZ-419 might be a common tool to prevent the progression of CRF at CKD stages 3 and 4 under the condition that most rats in the control group still remained at stage 4 (0.15

  9. Pd-catalyzed versus uncatalyzed, PhI(OAc)2-mediated cyclization reactions of N6-([1,1'-biaryl]-2-yl)adenine nucleosides.

    PubMed

    Satishkumar, Sakilam; Poudapally, Suresh; Vuram, Prasanna K; Gurram, Venkateshwarlu; Pottabathini, Narender; Sebastian, Dellamol; Yang, Lijia; Pradhan, Padmanava; Lakshman, Mahesh K

    2017-11-09

    In this work we have assessed reactions of N 6 -([1,1'-biaryl]-2-yl)adenine nucleosides with Pd(OAc) 2 and PhI(OAc) 2 , via a Pd II /Pd IV redox cycle. The substrates are readily obtained by Pd/Xantphos-catalyzed reaction of adenine nucleosides with 2-bromo-1,1'-biaryls. In PhMe, the N 6 -biarylyl nucleosides gave C6-carbazolyl nucleoside analogues by C-N bond formation with the exocyclic N 6 nitrogen atom. In the solvent screening for the Pd-catalyzed reactions, an uncatalyzed process was found to be operational. It was observed that the carbazolyl products could also be obtained in the absence of a metal catalyst by reaction with PhI(OAc) 2 in 1,1,1,3,3,3-hexafluoroisopropanol (HFIP). Thus, under Pd catalysis and in HFIP, reactions proceed to provide carbazolyl nucleoside analogues, with some differences. If reactions of N 6 -biarylyl nucleoside substrates were conducted in MeCN, formation of aryl benzimidazopurinyl nucleoside derivatives was observed in many cases by C-N bond formation with the N 1 ring nitrogen atom of the purine (carbazole and benzimidazole isomers are readily separated by chromatography). Whereas Pd II /Pd IV redox is responsible for carbazole formation under the metal-catalyzed conditions, in HFIP and MeCN radical cations and/or nitrenium ions can be intermediates. An extensive set of radical inhibition experiments was conducted and the data are presented.

  10. Neutron structures of the Helicobacter pylori 5'-methylthioadenosine nucleosidase highlight proton sharing and protonation states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banco, Michael T.; Mishra, Vidhi; Ostermann, Andreas

    2016-11-16

    MTAN (5'-methylthioadenosine nucleosidase) catalyzes the hydrolysis of the N-ribosidic bond of a variety of adenosine-containing metabolites. The Helicobacter pylori MTAN (HpMTAN) hydrolyzes 6-amino-6-deoxyfutalosine in the second step of the alternative menaquinone biosynthetic pathway. Substrate binding of the adenine moiety is mediated almost exclusively by hydrogen bonds, and the proposed catalytic mechanism requires multiple proton-transfer events. Of particular interest is the protonation state of residue D198, which possesses a pKa above 8 and functions as a general acid to initiate the enzymatic reaction. In this study we present three corefined neutron/X-ray crystal structures of wild-type HpMTAN cocrystallized with S-adenosylhomocysteine (SAH), Formycinmore » A (FMA), and (3R,4S)-4-(4-Chlorophenylthiomethyl)-1-[(9-deaza-adenin-9-yl)methyl]-3-hydroxypyrrolidine (p-ClPh-Thio-DADMe-ImmA) as well as one neutron/X-ray crystal structure of an inactive variant (HpMTAN-D198N) cocrystallized with SAH. These results support a mechanism of D198 pKa elevation through the unexpected sharing of a proton with atom N7 of the adenine moiety possessing unconventional hydrogen-bond geometry. Additionally, the neutron structures also highlight active site features that promote the stabilization of the transition state and slight variations in these interactions that result in 100-fold difference in binding affinities between the DADMe-ImmA and ImmA analogs.« less

  11. Salicylate Treatment Improves Age-Associated Vascular Endothelial Dysfunction: Potential Role of Nuclear Factor κB and Forkhead Box O Phosphorylation

    PubMed Central

    Durrant, Jessica R.; Connell, Melanie L.; Folian, Brian J.; Donato, Anthony J.; Seals, Douglas R.

    2011-01-01

    We hypothesized that I kappa B kinase (IKK)-mediated nuclear factor kappa B and forkhead BoxO3a phosphorylation will be associated with age-related endothelial dysfunction. Endothelium-dependent dilation and aortic protein expression/phosphorylation were determined in young and old male B6D2F1 mice and old mice treated with the IKK inhibitor, salicylate. IKK activation was greater in old mice and was associated with greater nitrotyrosine and cytokines. Endothelium-dependent dilation, nitric oxide (NO), and endothelial NO synthase phosphorylation were lower in old mice. Endothelium-dependent dilation and NO bioavailability were restored by a superoxide dismutase mimetic. Nuclear factor kappa B and forkhead BoxO3a phosphorylation were greater in old and were associated with increased expression/activity of nicotinamide adenine dinucleotide phosphate oxidase and lower manganese superoxide dismutase expression. Salicylate lowered IKK phosphorylation and reversed age-associated changes in nitrotyrosine, endothelium-dependent dilation, NO bioavailability, endothelial NO synthase, nuclear factor kappa B and forkhead BoxO3a phosphorylation, nicotinamide adenine dinucleotide phosphate oxidase, and manganese superoxide dismutase. Increased activation of IKK with advancing age stimulates nuclear factor kappa B and inactivates forkhead BoxO3a. This altered transcription factor activation contributes to a pro-inflammatory/pro-oxidative arterial phenotype that is characterized by increased cytokines and nicotinamide adenine dinucleotide phosphate oxidase and decreased manganese superoxide dismutase leading to oxidative stress-mediated endothelial dysfunction. PMID:21303813

  12. Deconvoluting AMP-activated protein kinase (AMPK) adenine nucleotide binding and sensing

    PubMed Central

    Gu, Xin; Yan, Yan; Novick, Scott J.; Kovach, Amanda; Goswami, Devrishi; Ke, Jiyuan; Tan, M. H. Eileen; Wang, Lili; Li, Xiaodan; de Waal, Parker W.; Webb, Martin R.; Griffin, Patrick R.; Xu, H. Eric

    2017-01-01

    AMP-activated protein kinase (AMPK) is a central cellular energy sensor that adapts metabolism and growth to the energy state of the cell. AMPK senses the ratio of adenine nucleotides (adenylate energy charge) by competitive binding of AMP, ADP, and ATP to three sites (CBS1, CBS3, and CBS4) in its γ-subunit. Because these three binding sites are functionally interconnected, it remains unclear how nucleotides bind to individual sites, which nucleotides occupy each site under physiological conditions, and how binding to one site affects binding to the other sites. Here, we comprehensively analyze nucleotide binding to wild-type and mutant AMPK protein complexes by quantitative competition assays and by hydrogen-deuterium exchange MS. We also demonstrate that NADPH, in addition to the known AMPK ligand NADH, directly and competitively binds AMPK at the AMP-sensing CBS3 site. Our findings reveal how AMP binding to one site affects the conformation and adenine nucleotide binding at the other two sites and establish CBS3, and not CBS1, as the high affinity exchangeable AMP/ADP/ATP-binding site. We further show that AMP binding at CBS4 increases AMP binding at CBS3 by 2 orders of magnitude and reverses the AMP/ATP preference of CBS3. Together, these results illustrate how the three CBS sites collaborate to enable highly sensitive detection of cellular energy states to maintain the tight ATP homeostastis required for cellular metabolism. PMID:28615457

  13. Characterization of the type 2 NADH:menaquinone oxidoreductases from Staphylococcus aureus and the bactericidal action of phenothiazines.

    PubMed

    Schurig-Briccio, Lici A; Yano, Takahiro; Rubin, Harvey; Gennis, Robert B

    2014-07-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is currently one of the principal multiple drug resistant bacterial pathogens causing serious infections, many of which are life-threatening. Consequently, new therapeutic targets are required to combat such infections. In the current work, we explore the type 2 Nicotinamide adenine dinucleotide reduced form (NADH) dehydrogenases (NDH-2s) as possible drug targets and look at the effects of phenothiazines, known to inhibit NDH-2 from Mycobacterium tuberculosis. NDH-2s are monotopic membrane proteins that catalyze the transfer of electrons from NADH via flavin adenine dinucleotide (FAD) to the quinone pool. They are required for maintaining the NADH/Nicotinamide adenine dinucleotide (NAD(+)) redox balance and contribute indirectly to the generation of proton motive force. NDH-2s are not present in mammals, but are the only form of respiratory NADH dehydrogenase in several pathogens, including S. aureus. In this work, the two putative ndh genes present in the S. aureus genome were identified, cloned and expressed, and the proteins were purified and characterized. Phenothiazines were shown to inhibit both of the S. aureus NDH-2s with half maximal inhibitory concentration (IC50) values as low as 8μM. However, evaluating the effects of phenothiazines on whole cells of S. aureus was complicated by the fact that they are also acting as uncouplers of oxidative phosphorylation. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Neutron structures of the Helicobacter pylori 5'-methylthioadenosine nucleosidase highlight proton sharing and protonation states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banco, Michael T.; Mishra, Vidhi; Ostermann, Andreas

    MTAN (5'-methylthioadenosine nucleosidase) catalyzes the hydrolysis of the N-ribosidic bond of a variety of adenosine-containing metabolites. The Helicobacter pylori MTAN (HpMTAN) hydrolyzes 6-amino-6-deoxyfutalosine in the second step of the alternative menaquinone biosynthetic pathway. Substrate binding of the adenine moiety is mediated almost exclusively by hydrogen bonds, and the proposed catalytic mechanism requires multiple proton-transfer events. Of particular interest is the protonation state of residue D198, which possesses a pK a above 8 and functions as a general acid to initiate the enzymatic reaction. In this study we present three corefined neutron/X-ray crystal structures of wild-type HpMTAN cocrystallized with S-adenosylhomocysteine (SAH),more » Formycin A (FMA), and (3R,4S)-4-(4-Chlorophenylthiomethyl)-1-[(9-deaza-adenin-9-yl)methyl]-3-hydroxypyrrolidine (p-ClPh-Thio-DADMe-ImmA) as well as one neutron/X-ray crystal structure of an inactive variant (HpMTAN-D198N) cocrystallized with SAH. These results support a mechanism of D198 pKa elevation through the unexpected sharing of a proton with atom N7 of the adenine moiety possessing unconventional hydrogen-bond geometry. Additionally, the neutron structures also highlight active site features that promote the stabilization of the transition state and slight variations in these interactions that result in 100-fold difference in binding affinities between the DADMe-ImmA and ImmA analogs.« less

  15. Glycogen synthase activation by sugars in isolated hepatocytes.

    PubMed

    Ciudad, C J; Carabaza, A; Bosch, F; Gòmez I Foix, A M; Guinovart, J J

    1988-07-01

    We have investigated the activation by sugars of glycogen synthase in relation to (i) phosphorylase a activity and (ii) changes in the intracellular concentration of glucose 6-phosphate and adenine nucleotides. All the sugars tested in this work present the common denominator of activating glycogen synthase. On the other hand, phosphorylase a activity is decreased by mannose and glucose, unchanged by galactose and xylitol, and increased by tagatose, glyceraldehyde, and fructose. Dihydroxyacetone exerts a biphasic effect on phosphorylase. These findings provide additional evidence proving that glycogen synthase can be activated regardless of the levels of phosphorylase a, clearly establishing that a nonsequential mechanism for the activation of glycogen synthase occurs in liver cells. The glycogen synthase activation state is related to the concentrations of glucose 6-phosphate and adenine nucleotides. In this respect, tagatose, glyceraldehyde, and fructose deplete ATP and increase AMP contents, whereas glucose, mannose, galactose, xylitol, and dihydroxyacetone do not alter the concentration of these nucleotides. In addition, all these sugars, except glyceraldehyde, increase the intracellular content of glucose 6-phosphate. The activation of glycogen synthase by sugars is reflected in decreases on both kinetic constants of the enzyme, M0.5 (for glucose 6-phosphate) and S0.5 (for UDP-glucose). We propose that hepatocyte glycogen synthase is activated by monosaccharides by a mechanism triggered by changes in glucose 6-phosphate and adenine nucleotide concentrations which have been described to modify glycogen synthase phosphatase activity. This mechanism represents a metabolite control of the sugar-induced activation of hepatocyte glycogen synthase.

  16. The solute specificity profiles of nucleobase cation symporter 1 (NCS1) from Zea mays and Setaria viridis illustrate functional flexibility.

    PubMed

    Rapp, Micah; Schein, Jessica; Hunt, Kevin A; Nalam, Vamsi; Mourad, George S; Schultes, Neil P

    2016-03-01

    The solute specificity profiles (transport and binding) for the nucleobase cation symporter 1 (NCS1) proteins, from the closely related C4 grasses Zea mays and Setaria viridis, differ from that of Arabidopsis thaliana and Chlamydomonas reinhardtii NCS1. Solute specificity profiles for NCS1 from Z. mays (ZmNCS1) and S. viridis (SvNCS1) were determined through heterologous complementation studies in NCS1-deficient Saccharomyces cerevisiae strains. The four Viridiplantae NCS1 proteins transport the purines adenine and guanine, but unlike the dicot and algal NCS1, grass NCS1 proteins fail to transport the pyrimidine uracil. Despite the high level of amino acid sequence similarity, ZmNCS1 and SvNCS1 display distinct solute transport and recognition profiles. SvNCS1 transports adenine, guanine, hypoxanthine, cytosine, and allantoin and competitively binds xanthine and uric acid. ZmNCS1 transports adenine, guanine, and cytosine and competitively binds, 5-fluorocytosine, hypoxanthine, xanthine, and uric acid. The differences in grass NCS1 profiles are due to a limited number of amino acid alterations. These amino acid residues do not correspond to amino acids essential for overall solute and cation binding or solute transport, as previously identified in bacterial and fungal NCS1, but rather may represent residues involved in subtle solute discrimination. The data presented here reveal that within Viridiplantae, NCS1 proteins transport a broad range of nucleobase compounds and that the solute specificity profile varies with species.

  17. Neutron structures of the Helicobacter pylori 5'-methylthioadenosine nucleosidase highlight proton sharing and protonation states

    DOE PAGES

    Banco, Michael T.; Mishra, Vidhi; Ostermann, Andreas; ...

    2016-10-01

    MTAN (5'-methylthioadenosine nucleosidase) catalyzes the hydrolysis of the N-ribosidic bond of a variety of adenosine-containing metabolites. The Helicobacter pylori MTAN (HpMTAN) hydrolyzes 6-amino-6-deoxyfutalosine in the second step of the alternative menaquinone biosynthetic pathway. Substrate binding of the adenine moiety is mediated almost exclusively by hydrogen bonds, and the proposed catalytic mechanism requires multiple proton-transfer events. Of particular interest is the protonation state of residue D198, which possesses a pK a above 8 and functions as a general acid to initiate the enzymatic reaction. In this study we present three corefined neutron/X-ray crystal structures of wild-type HpMTAN cocrystallized with S-adenosylhomocysteine (SAH),more » Formycin A (FMA), and (3R,4S)-4-(4-Chlorophenylthiomethyl)-1-[(9-deaza-adenin-9-yl)methyl]-3-hydroxypyrrolidine (p-ClPh-Thio-DADMe-ImmA) as well as one neutron/X-ray crystal structure of an inactive variant (HpMTAN-D198N) cocrystallized with SAH. These results support a mechanism of D198 pKa elevation through the unexpected sharing of a proton with atom N7 of the adenine moiety possessing unconventional hydrogen-bond geometry. Additionally, the neutron structures also highlight active site features that promote the stabilization of the transition state and slight variations in these interactions that result in 100-fold difference in binding affinities between the DADMe-ImmA and ImmA analogs.« less

  18. Applications of adenine nucleotide measurements in oceanography

    NASA Technical Reports Server (NTRS)

    Holm-Hansen, O.; Hodson, R.; Azam, F.

    1975-01-01

    The methodology involved in nucleotide measurements is outlined, along with data to support the premise that ATP concentrations in microbial cells can be extrapolated to biomass parameters. ATP concentrations in microorganisms and nucleotide analyses are studied.

  19. A Molecular Vestige of the Origin of Life on Minerals: Phosphorybosyl-Disphosphate

    NASA Astrophysics Data System (ADS)

    Akouche, M.; Jaber, M.; Maurel, M.-C.; Lambert, J.-F.; Georgelin, T.

    2017-07-01

    Nucleotides were synthesized from Ribose, Adenine, and phosphates on silica surfaces in one pot process. A important molecular intermediate was enlightened, the phosphoribosyl pyrophosphate. This molecule is a molecular relic of early earth.

  20. A simple method for N-15 labelling of exocyclic amino groups in synthetic oligodeoxynucleotides

    PubMed Central

    Acedo, Montse; Fàbrega, Carme; Aviño, Anna; Goodman, Myron; Fagan, Patricia; Wemmer, David; Eritja, Ramon

    1994-01-01

    The use of the ammonia deprotection step to introduce 15N labels at specific exocyclic amino positions of adenine, cytosine, guanine or 2-aminopurine of oligodeoxynucleotides is described. PMID:8065910

  1. Proteomic Analysis of Prostate Cancer Field Effect

    DTIC Science & Technology

    2011-02-01

    Homo sapiens] profilin 1 [Homo sapiens] enolase 1 [Homo sapiens] sorbitol dehydrogenase [Homo sapiens] calmodulin 1 [Homo sapiens] apolipoprotein... sorbitol dehydrogenase [Homo sapiens] solute carrier family 25 (mitochondrial carrier; adenine nucleotide translocator), member 4 [Homo sapiens] DJ-1

  2. New carbocyclic N(6)-substituted adenine and pyrimidine nucleoside analogues with a bicyclo[2.2.1]heptane fragment as sugar moiety; synthesis, antiviral, anticancer activity and X-ray crystallography.

    PubMed

    Tănase, Constantin I; Drăghici, Constantin; Cojocaru, Ana; Galochkina, Anastasia V; Orshanskaya, Jana R; Zarubaev, Vladimir V; Shova, Sergiu; Enache, Cristian; Maganu, Maria

    2015-10-01

    New nucleoside analogues with an optically active bicyclo[2.2.1]heptane skeleton as sugar moiety and 6-substituted adenine were synthesized by alkylation of 6-chloropurine intermediate. Thymine and uracil analogs were synthesized by building the pyrimidine ring on amine 1. X-ray crystallography confirmed an exo-coupling of the thymine to the ring and an L configuration of the nucleoside analogue. The library of compounds was tested for their inhibitory activity against influenza virus A∖California/07/09 (H1N1)pdm09 and coxsackievirus B4 in cell culture. Compounds 13a and 13d are the most promising for their antiviral activity against influenza, and compound 3c against coxsackievirus B4. Compounds 3b and 3g were tested for anticancer activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. The rate of the AMP/adenosine substrate cycle in concanavalin-A-stimulated rat lymphocytes.

    PubMed Central

    Szondy, Z; Newsholme, E A

    1989-01-01

    The effect of adenosine on the metabolism of prelabelled adenine nucleotides was investigated in concanavalin-A-stimulated rat lymphocytes. Adenosine in the presence of the adenosine deaminase inhibitor, deoxycoformycin, caused a 2-fold increase in the ATP concentration. This effect was, in part, countereacted by an increased rate of adenine nucleotide catabolism, which could be explained by a stimulation of AMP deaminase (EC 3.5.4.6). At the same time a continuous rate of labelled adenosine production was found, which was not affected by the increased ATP concentration and which could only be detected by the trapping effect of a high concentration of added unlabelled adenosine. It is concluded that the rate of the substrate cycle between AMP and adenosine is low (1.9 +/- 0.2 nmol/h per 10(7) cells) in comparison to the rate of AMP deamination. PMID:2552990

  4. Kennedy's disease and partial androgen insensitivity syndrome. Report of 4 cases and literature review.

    PubMed

    Valera Yepes, Rocío; Virgili Casas, Maria; Povedano Panades, Monica; Guerrero Gual, Mireia; Villabona Artero, Carles

    2015-05-01

    Kennedy's disease, also known as bulbospinal muscular atrophy, is a rare, X-linked recessive neurodegenerative disorder affecting adult males. It is caused by expansion of an unstable cytosine-adenine-guanine tandem-repeat in exon 1 of the androgen-receptor gene on chromosome Xq11-12, and is characterized by spinal motor neuron progressive degeneration. Endocrinologically, these patients often have the features of hypogonadism associated to the androgen insensitivity syndrome, particularly its partial forms. We report 4 cases with the typical neurological presentation, consisting of slowly progressing generalized muscle weakness with atrophy and bulbar muscle involvement; these patients also had several endocrine manifestations; the most common non-neurological manifestation was gynecomastia. In all cases reported, molecular analysis showed an abnormal cytosine-adenine-guanine triplet repeat expansion in the androgen receptor gene. Copyright © 2014 SEEN. Published by Elsevier España, S.L.U. All rights reserved.

  5. Molecular and Biochemical Characterization of a Cytokinin Oxidase from Maize1

    PubMed Central

    Bilyeu, Kristin D.; Cole, Jean L.; Laskey, James G.; Riekhof, Wayne R.; Esparza, Thomas J.; Kramer, Michelle D.; Morris, Roy O.

    2001-01-01

    It is generally accepted that cytokinin oxidases, which oxidatively remove cytokinin side chains to produce adenine and the corresponding isopentenyl aldehyde, play a major role in regulating cytokinin levels in planta. Partially purified fractions of cytokinin oxidase from various species have been studied for many years, but have yet to clearly reveal the properties of the enzyme or to define its biological significance. Details of the genomic organization of the recently isolated maize (Zea mays) cytokinin oxidase gene (ckx1) and some of its Arabidopsis homologs are now presented. Expression of an intronless ckx1 in Pichia pastoris allowed production of large amounts of recombinant cytokinin oxidase and facilitated detailed kinetic and cofactor analysis and comparison with the native enzyme. The enzyme is a flavoprotein containing covalently bound flavin adenine dinucleotide, but no detectable heavy metals. Expression of the oxidase in maize tissues is described. PMID:11154345

  6. Paper microfluidic-based enzyme catalyzed double microreactor.

    PubMed

    Ferrer, Ivonne M; Valadez, Hector; Estala, Lissette; Gomez, Frank A

    2014-08-01

    We describe a paper microfluidic-based enzyme catalyzed double microreactor assay using fluorescent detection. Here, solutions of lactate dehydrogenase (LDH) and diaphorase (DI) were directly spotted onto the microfluidic paper-based analytical device (μPAD). Samples containing lactic acid, resazurin, and nicotinamide adenine dinucleotide oxidized form (NAD(+) ), potassium chloride (KCl), and BSA, in MES buffer were separately spotted onto the μPAD and MES buffer flowed through the device. A cascade reaction occurs upon the sample spot overlapping with LDH to form pyruvate and nicotinamide adenine dinucleotide reduced form (NADH). Subsequently, NADH is used in the conversion of resazurin to fluorescent resorufin by DI. The μPAD avoids the need of surface functionalization or enzyme immobilization steps. These microreactor devices are low cost and easy to fabricate and effect reaction based solely on buffer capillary action. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Oligomerization reactions of deoxyribonucleotides on montmorillonite clay: The effect of mononucleotide structure on phosphodiester bond formation

    NASA Astrophysics Data System (ADS)

    Ferris, James P.; Kamaluddin

    1989-11-01

    Adenine deoxynucleotides bind more strongly to Na+-montmorillonite than do the corresponding ribonucleotides. Thymidine nucleotides binds less strongly to Na+-montmorillonite than do the corresponding adenine deoxynucleotides. Oligomers of 2'-dpA up to the tetramer were detected in the reaction 2'-d-5'-AMP with EDAC (a water-soluble carbodiimide) in the presence of Na+-montmorillonite. Reaction of 3'-d-5'-AMP with EDAC on Na+-montmorillonite yields 3'-d-2',5'-pApA while the reaction of 2'-d-3'-AMP yields almost exclusively 3',5'-cdAMP. The reaction of 5'-TMP under the same reaction conditions give 3',5'-cpTpT and 3',5'-pTpT while 3'-TMP gives mainly 3',5'-cpT. The yield of dinucleotide products (dpNpN) containing the phosphodiester bond is 1% or less when Na+-montmorillonite is omitted from the reaction mixture.

  8. The substrate specificity of purine phosphoribosyltransferases in Schizosaccharomyces pombe

    PubMed Central

    De Groodt, A.; Whitehead, E. P.; Heslot, H.; Poirier, L.

    1971-01-01

    1. The activities of the purine phosphoribosyltransferases (EC 2.4.2.7 and 2.4.2.8) in purine-analogue-resistant mutants of Schizosaccharomyces pombe were checked. An 8-azathioxanthine-resistant mutant lacked hypoxanthine phosphoribosyltransferase, xanthine phosphoribosyltransferase and guanine phosphoribosyltransferase activities (EC 2.4.2.8) and appeared to carry a single mutation. Two 2,6-diaminopurine-resistant mutants retained these activities but lacked adenine phosphoribosyltransferase activity (EC 2.4.2.7). This evidence, together with data on purification and heat-inactivation patterns of phosphoribosyltransferase activities towards the various purines, strongly suggests that there are two phosphoribosyltransferase enzymes for purine bases in Schiz. pombe, one active with adenine, the other with hypoxanthine, xanthine and guanine. 2. Neither growth-medium supplements of purines nor mutations on genes involved in the pathway for new biosynthesis of purine have any influence on the amount of hypoxanthine–xanthine–guanine phosphoribosyltransferase produced by this organism. PMID:5123876

  9. Studies with a reconstituted muscle glycolytic system. The anaerobic glycolytic response to simulated tetanic contraction

    PubMed Central

    Scopes, Robert K.

    1974-01-01

    By using a reconstituted glycolytic system and a highly active adenosine triphosphatase (ATPase), the metabolism during muscular tetanic contraction was simulated and observed. With an ATPase activity somewhat greater than can be maintained in muscle tissue, phosphocreatine was rapidly and completely utilized, lactate production commenced about 5s after the ATPase was added and after 15s adenine nucleotides were lost through deamination to IMP. By 40s, all metabolism ceased because of complete loss of adenine mononucleotides. With a lower ATPase activity, glycolytic regeneration of ATP was capable of maintaining the ATP concentration at its initial value and even by 80s, only one-half of the phosphocreatine had been utilized. No deamination occurred in this time. It is suggested that the metabolic events observed in the simulated system are basically the same as occur in muscle doing heavy work. PMID:4275706

  10. Conformational change of adenosine deaminase during ligand-exchange in a crystal.

    PubMed

    Kinoshita, Takayoshi; Tada, Toshiji; Nakanishi, Isao

    2008-08-15

    Adenosine deaminase (ADA) perpetuates chronic inflammation by degrading extracellular adenosine which is toxic for lymphocytes. ADA has two distinct conformations: open form and closed form. From the crystal structures with various ligands, the non-nucleoside type inhibitors bind to the active site occupying the critical water-binding-position and sustain the open form of apo-ADA. In contrast, substrate mimics do not occupy the critical position, and induce the large conformational change to the closed form. However, it is difficult to predict the binding of (+)-erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA), as it possesses characteristic parts of both the substrate and the non-nucleoside inhibitors. The crystal structure shows that EHNA binds to the open form through a novel recognition of the adenine base accompanying conformational change from the closed form of the PR-ADA complex in crystalline state.

  11. The influence of Cu+ binding to hypoxanthine on stabilization of mismatches involving hypoxanthine and DNA bases: A DFT study.

    PubMed

    Masoodi, Hamid Reza; Bagheri, Sotoodeh; Ghaderi, Zahra

    2018-05-14

    In the present work, the influence of Cu + binding to N3- and N7-positions of hypoxanthine on energetic, geometrical and topological properties of hypoxanthine-guanine, hypoxanthine-adenine, hypoxanthine-cytosine, hypoxanthine-thymine and hypoxanthine-hypoxanthine mismatches is theoretically investigated. The calculations, in gas phase, are performed at B3LYP/6-311++G(3df,3pd) level of theory. Unlike the other mispairs, Cu + binding to N3-position of hypoxanthine causes the proton transfer process from enol form of hypoxanthine to imino forms of adenine and cytosine. This process also occurs in all mismatches having enol form of hypoxanthine when Cu + binds to N7-position of hypoxanthine. The mismatches are stabilized by hydrogen bonds. The influence of Cu + on hydrogen bonds is also examined by atoms in molecules (AIM) and natural bond orbital (NBO) analyses.

  12. Studies on the energy metabolism of opossum (Didelphis virginiana) erythrocytes: V. Utilization of hypoxanthine for the synthesis of adenine and guanine nucleotides in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bethlenfalvay, N.C.; White, J.C.; Chadwick, E.

    1990-06-01

    High pressure liquid radiochromatography was used to test the ability of opossum erythrocytes to incorporate tracer amounts of (G-{sup 3}H) hypoxanthine (Hy) into ({sup 3}H) labelled triphosphates of adenine and guanine. In the presence of supraphysiologic (30 mM) phosphate which is optimal for PRPP synthesis, both ATP and GTP are extensively labelled. When physiologic (1 mM) medium phosphate is used, red cells incubated under an atmosphere of nitrogen accumulate ({sup 3}H) ATP in a linear fashion suggesting ongoing PRPP synthesis in red cells whose hemoglobin is deoxygenated. In contrast, a lesser increase of labelled ATP is observed in cells incubatedmore » under oxygen, suggesting that conditions for purine nucleotide formation from ambient Hy are more favorable in the venous circulation.« less

  13. Reduction of mitomycin C is catalysed by human recombinant NRH:quinone oxidoreductase 2 using reduced nicotinamide adenine dinucleotide as an electron donating co-factor

    PubMed Central

    Jamieson, D; Tung, A T Y; Knox, R J; Boddy, A V

    2006-01-01

    NRH:Quinone Oxidoreductase 2 (NQO2) has been described as having no enzymatic activity with nicotinamide adenine dinucleotide (NADH) or NADPH as electron donating cosubstrates. Mitomycin C (MMC) is both a substrate for and a mechanistic inhibitor of the NQO2 homologue NQO1. NRH:quinone oxidoreductase 2 catalysed the reduction of MMC at pH 5.8 with NADH as a co-factor. This reaction results in species that inhibit the NQO2-mediated metabolism of CB1954. In addition, MMC caused an increase in DNA cross-links in a cell line transfected to overexpress NQO2 to an extent comparable to that observed with an isogenic NQO1-expressing cell line. These data indicate that NQO2 may contribute to the metabolism of MMC to cytotoxic species. PMID:17031400

  14. General approach to reversing ketol-acid reductoisomerase cofactor dependence from NADPH to NADH

    DOE PAGES

    Brinkmann-Chen, Sabine; Flock, Tilman; Cahn, Jackson K. B.; ...

    2013-06-17

    To date, efforts to switch the cofactor specificity of oxidoreductases from nicotinamide adenine dinucleotide phosphate (NADPH) to nicotinamide adenine dinucleotide (NADH) have been made on a case-by-case basis with varying degrees of success. Here we present a straightforward recipe for altering the cofactor specificity of a class of NADPH-dependent oxidoreductases, the ketol-acid reductoisomerases (KARIs). Combining previous results for an engineered NADH-dependent variant of Escherichia coli KARI with available KARI crystal structures and a comprehensive KARI-sequence alignment, we identified key cofactor specificity determinants and used this information to construct five KARIs with reversed cofactor preference. Additional directed evolution generated two enzymesmore » having NADH-dependent catalytic efficiencies that are greater than the wild-type enzymes with NADPH. As a result, high-resolution structures of a wild-type/variant pair reveal the molecular basis of the cofactor switch.« less

  15. Orofacial inflammatory pain affects the expression of MT1 and NADPH-d in rat caudal spinal trigeminal nucleus and trigeminal ganglion

    PubMed Central

    Huang, Fang; He, Hongwen; Fan, Wenguo; Liu, Yongliang; Zhou, Hongyu; Cheng, Bin

    2013-01-01

    Very little is known about the role of melatonin in the trigeminal system, including the function of melatonin receptor 1. In the present study, adult rats were injected with formaldehyde into the right vibrissae pad to establish a model of orofacial inflammatory pain. The distribution of melatonin receptor 1 and nicotinamide adenine dinucleotide phosphate diaphorase in the caudal spinal trigeminal nucleus and trigeminal ganglion was determined with immunohistochemistry and histochemistry. The results show that there are significant differences in melatonin receptor 1 expression and nicotinamide adenine dinucleotide phosphate diaphorase expression in the trigeminal ganglia and caudal spinal nucleus during the early stage of orofacial inflammatory pain. Our findings suggest that when melatonin receptor 1 expression in the caudal spinal nucleus is significantly reduced, melatonin's regulatory effect on pain is attenuated. PMID:25206619

  16. [Mutants of the yeast Saccharomyces cerevisiae characterized by enhanced induced mutagenesis. III. Effect of the him mutation on the effectiveness and specificity of UF-induced mutagenesis].

    PubMed

    Ivanov, E L; Koval'tsova, S V; Korolev, V G

    1987-09-01

    We have studied the influence of him1-1, him2-1, him3-1 and himX mutations on induction frequency and specificity of UV-induced adenine-dependent mutations in the yeast Saccharomyces cerevisiae. Him mutations do not render haploid cells more sensitive to the lethal action of UV-light; however, in him strains adenine-dependent mutations (ade1, ade2) were induced more frequently (1.5--2-fold), as compared to the HIM strain. An analysis of the molecular nature of ade2 mutants revealed that him1-1, him2-1 and himX mutations increase specifically the yield of transitions (AT----GC and GC----AT), whereas in the him3-1 strain the yield of transversions was enhanced as well. We suggest him mutations analysed to affect specific repair pathway for mismatch correction.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazurkiewicz, Kamil; Haranczyk, Maciej; Gutowski, Maciej S.

    The electron affinity and the propensity to electron-induced proton transfer (PT) of hydrogen-bonded complexes between the Watson–Crick adenine–thymine pair (AT) and simple organic acid (HX), attached to adenine in the Hoogsteen-type configuration, were studied at the B3LYP/6-31+G** level. Although the carboxyl group is deprotonated at physiological pH, its neutral form, COOH, resembles the peptide bond or the amide fragment in the side chain of asparagine (Asn) or glutamine (Gln). Thus, these complexes mimic the interaction between the DNA environment (e.g., proteins) and nucleobase pairs incorporated in the biopolymer. Electron attachment is thermodynamically feasible and adiabatic electron affinities range from 0.41more » to 1.28 eV, while the vertical detachment energies of the resulting anions span the range of 0.39 –2.88 eV. Low-energy activation barriers separate the anionic minima: aHX(AT) from the more stable single-PT anionic geometry, aHX(AT)-SPT, and aHX(AT)-SPT from the double-PT anionic geometry, aHX(AT)-DPT. Interaction between the adenine of the Watson–Crick AT base pair with an acidic proton donor probably counterbalances the larger EA of isolated thymine, as SOMO is almost evenly delocalized over both types of nucleic bases in the aHX(AT) anions. Moreover, as a result of PT the excess electron localizes entirely on adenine. Thus, in DNA interacting with its physiological environment, damage induced by low-energy electrons could begin, contrary to the current view, with the formation of purine anions, which are not formed in isolated DNA because of the greater stability of anionic pyrimidines.« less

  18. The evolution of function within the Nudix homology clan

    PubMed Central

    Srouji, John R.; Xu, Anting; Park, Annsea; Kirsch, Jack F.

    2017-01-01

    ABSTRACT The Nudix homology clan encompasses over 80,000 protein domains from all three domains of life, defined by homology to each other. Proteins with a domain from this clan fall into four general functional classes: pyrophosphohydrolases, isopentenyl diphosphate isomerases (IDIs), adenine/guanine mismatch‐specific adenine glycosylases (A/G‐specific adenine glycosylases), and nonenzymatic activities such as protein/protein interaction and transcriptional regulation. The largest group, pyrophosphohydrolases, encompasses more than 100 distinct hydrolase specificities. To understand the evolution of this vast number of activities, we assembled and analyzed experimental and structural data for 205 Nudix proteins collected from the literature. We corrected erroneous functions or provided more appropriate descriptions for 53 annotations described in the Gene Ontology Annotation database in this family, and propose 275 new experimentally‐based annotations. We manually constructed a structure‐guided sequence alignment of 78 Nudix proteins. Using the structural alignment as a seed, we then made an alignment of 347 “select” Nudix homology domains, curated from structurally determined, functionally characterized, or phylogenetically important Nudix domains. Based on our review of Nudix pyrophosphohydrolase structures and specificities, we further analyzed a loop region downstream of the Nudix hydrolase motif previously shown to contact the substrate molecule and possess known functional motifs. This loop region provides a potential structural basis for the functional radiation and evolution of substrate specificity within the hydrolase family. Finally, phylogenetic analyses of the 347 select protein domains and of the complete Nudix homology clan revealed general monophyly with regard to function and a few instances of probable homoplasy. Proteins 2017; 85:775–811. © 2016 Wiley Periodicals, Inc. PMID:27936487

  19. Mechanisms of the Formation of Adenine, Guanine, and Their Analogues in UV-Irradiated Mixed NH3:H2O Molecular Ices Containing Purine

    NASA Astrophysics Data System (ADS)

    Bera, Partha P.; Stein, Tamar; Head-Gordon, Martin; Lee, Timothy J.

    2017-08-01

    We investigated the formation mechanisms of the nucleobases adenine and guanine and the nucleobase analogues hypoxanthine, xanthine, isoguanine, and 2,6-diaminopurine in a UV-irradiated mixed 10:1 H2O:NH3 ice seeded with precursor purine by using ab initio and density functional theory computations. Our quantum chemical investigations suggest that a multistep reaction mechanism involving purine cation, hydroxyl and amino radicals, together with water and ammonia, explains the experimentally obtained products in an independent study. The relative abundances of these products appear to largely follow from relative thermodynamic stabilities. The key role of the purine cation is likely to be the reason why purine is not functionalized in pure ammonia ice, where cations are promptly neutralized by free electrons from NH3 ionization. Amine group addition to purine is slightly favored over hydroxyl group attachment based on energetics, but hydroxyl is much more abundant due to higher abundance of H2O. The amino group is preferentially attached to the 6 position, giving 6-aminopurine, that is, adenine, while the hydroxyl group is preferentially attached to the 2 position, leading to 2-hydroxypurine. A second substitution by hydroxyl or amino group occurs at either the 6 or the 2 position depending on the first substitution. Given that H2O is far more abundant than NH3 in the experimentally studied ices (as well as based on interstellar abundances), xanthine and isoguanine are expected to be the most abundant bi-substituted photoproducts.

  20. Synthesis and characterization of zinc adeninate metal-organic frameworks (bioMOF1) as potential anti-inflammatory drug delivery material

    NASA Astrophysics Data System (ADS)

    Usman, Ken Aldren S.; Buenviaje, Salvador C.; Razal, Joselito M.; Conato, Marlon T.; Payawan, Leon M.

    2018-05-01

    Zn8(ad)4(BPDC)6O•2Me2NH2 (bioMOF1), a porous metal-organic framework with zinc-adeninate secondary building units (SBUs), interconnected via biphenyldicarboxylate linkers, shows great potential for drug delivery applications due to its non-toxic and biocompatible components (zinc and adenine). In this study, bioMOF1 crystals synthesized solvothermally at 130°C for 24 hours, were characterized thoroughly and loaded with a known anti-inflammatory drug, nimesulide (NIM). The crystalline nature of the material was confirmed using powder x-ray diffraction crystallography (PXRD) along with morphology assessment using focused-ion beam/field emission scanning electron microscopy (FIB/FESEM). NIM was introduced to the crystals via solvent exchange accompanied with vigorous stirring and quantified using thermogravimetric analysis (TGA) with loading saturation of ˜30% attained during the 2nd to 3rd day of drug immersion. Drug release in phosphate buffer saline and in deionized water was done to monitor the kinetic of drug release in vitro. The drug release showed a controlled discharge profile which slowed down at the 24th and 48th hour of release. Drug release in buffer showed a faster release of drug from the material, which means that the presence of cations in the solution could further trigger the release of drug. Slow drug release was observed for all of the set-ups with maximum % drug release of 24.47%, and 16.14% for the bioMOF1 in buffer and bioMOF1 in water respectively for the span of 48 hours.

  1. MD simulations of ligand-bound and ligand-free aptamer: molecular level insights into the binding and switching mechanism of the add A-riboswitch.

    PubMed

    Sharma, Monika; Bulusu, Gopalakrishnan; Mitra, Abhijit

    2009-09-01

    Riboswitches are structural cis-acting genetic regulatory elements in 5' UTRs of mRNAs, consisting of an aptamer domain that regulates the behavior of an expression platform in response to its recognition of, and binding to, specific ligands. While our understanding of the ligand-bound structure of the aptamer domain of the adenine riboswitches is based on crystal structure data and is well characterized, understanding of the structure and dynamics of the ligand-free aptamer is limited to indirect inferences from physicochemical probing experiments. Here we report the results of 15-nsec-long explicit-solvent molecular dynamics simulations of the add A-riboswitch crystal structure (1Y26), both in the adenine-bound (CLOSED) state and in the adenine-free (OPEN) state. Root-mean-square deviation, root-mean-square fluctuation, dynamic cross-correlation, and backbone torsion angle analyses are carried out on the two trajectories. These, along with solvent accessible surface area analysis of the two average structures, are benchmarked against available experimental data and are shown to constitute the basis for obtaining reliable insights into the molecular level details of the binding and switching mechanism. Our analysis reveals the interaction network responsible for, and conformational changes associated with, the communication between the binding pocket and the expression platform. It further highlights the significance of a, hitherto unreported, noncanonical W:H trans base pairing between A73 and A24, in the OPEN state, and also helps us to propose a possibly crucial role of U51 in the context of ligand binding and ligand discrimination.

  2. Structure-Function Relationship of a Plant NCS1 Member – Homology Modeling and Mutagenesis Identified Residues Critical for Substrate Specificity of PLUTO, a Nucleobase Transporter from Arabidopsis

    PubMed Central

    Witz, Sandra; Panwar, Pankaj; Schober, Markus; Deppe, Johannes; Pasha, Farhan Ahmad; Lemieux, M. Joanne; Möhlmann, Torsten

    2014-01-01

    Plastidic uracil salvage is essential for plant growth and development. So far, PLUTO, the plastidic nucleobase transporter from Arabidopsis thaliana is the only known uracil importer at the inner plastidic membrane which represents the permeability barrier of this organelle. We present the first homology model of PLUTO, the sole plant NCS1 member from Arabidopsis based on the crystal structure of the benzyl hydantoin transporter MHP1 from Microbacterium liquefaciens and validated by molecular dynamics simulations. Polar side chains of residues Glu-227 and backbones of Val-145, Gly-147 and Thr-425 are proposed to form the binding site for the three PLUTO substrates uracil, adenine and guanine. Mutational analysis and competition studies identified Glu-227 as an important residue for uracil and to a lesser extent for guanine transport. A differential response in substrate transport was apparent with PLUTO double mutants E227Q G147Q and E227Q T425A, both of which most strongly affected adenine transport, and in V145A G147Q, which markedly affected guanine transport. These differences could be explained by docking studies, showing that uracil and guanine exhibit a similar binding mode whereas adenine binds deep into the catalytic pocket of PLUTO. Furthermore, competition studies confirmed these results. The present study defines the molecular determinants for PLUTO substrate binding and demonstrates key differences in structure-function relations between PLUTO and other NCS1 family members. PMID:24621654

  3. Structure-function relationship of a plant NCS1 member--homology modeling and mutagenesis identified residues critical for substrate specificity of PLUTO, a nucleobase transporter from Arabidopsis.

    PubMed

    Witz, Sandra; Panwar, Pankaj; Schober, Markus; Deppe, Johannes; Pasha, Farhan Ahmad; Lemieux, M Joanne; Möhlmann, Torsten

    2014-01-01

    Plastidic uracil salvage is essential for plant growth and development. So far, PLUTO, the plastidic nucleobase transporter from Arabidopsis thaliana is the only known uracil importer at the inner plastidic membrane which represents the permeability barrier of this organelle. We present the first homology model of PLUTO, the sole plant NCS1 member from Arabidopsis based on the crystal structure of the benzyl hydantoin transporter MHP1 from Microbacterium liquefaciens and validated by molecular dynamics simulations. Polar side chains of residues Glu-227 and backbones of Val-145, Gly-147 and Thr-425 are proposed to form the binding site for the three PLUTO substrates uracil, adenine and guanine. Mutational analysis and competition studies identified Glu-227 as an important residue for uracil and to a lesser extent for guanine transport. A differential response in substrate transport was apparent with PLUTO double mutants E227Q G147Q and E227Q T425A, both of which most strongly affected adenine transport, and in V145A G147Q, which markedly affected guanine transport. These differences could be explained by docking studies, showing that uracil and guanine exhibit a similar binding mode whereas adenine binds deep into the catalytic pocket of PLUTO. Furthermore, competition studies confirmed these results. The present study defines the molecular determinants for PLUTO substrate binding and demonstrates key differences in structure-function relations between PLUTO and other NCS1 family members.

  4. Crystal structure of a poly(rA) staggered zipper at acidic pH: evidence that adenine N1 protonation mediates parallel double helix formation

    DOE PAGES

    Gleghorn, Michael L.; Zhao, Jianbo; Turner, Douglas H.; ...

    2016-06-10

    We have solved at 1.07 Å resolution the X-ray crystal structure of a polyriboadenylic acid (poly(rA)) parallel and continuous double helix. Fifty-nine years ago, double helices of poly(rA) were first proposed to form at acidic pH. Here, we show that 7-mer oligo(rA), i.e. rA 7, hybridizes and overlaps in all registers at pH 3.5 to form stacked double helices that span the crystal. Under these conditions, rA 7 forms well-ordered crystals, whereas rA 6 forms fragile crystalline-like structures, and rA 5, rA 8 and rA 11 fail to crystallize. Our findings support studies from ~50 years ago: one showed usingmore » spectroscopic methods that duplex formation at pH 4.5 largely starts with rA 7 and begins to plateau with rA 8; another proposed a so-called ‘staggered zipper’ model in which oligo(rA) strands overlap in multiple registers to extend the helical duplex. While never shown, protonation of adenines at position N1 has been hypothesized to be critical for helix formation. Bond angles in our structure suggest that N1 is protonated on the adenines of every other rAMP–rAMP helix base pair. Lastly, our data offer new insights into poly(rA) duplex formation that may be useful in developing a pH sensor.« less

  5. Four unprecedented 2D trinuclear Mn(II)-complexes with adenine nucleobase controlled by solvent or co-ligand: Hydrothermal synthesis, crystal structure and magnetic behaviour

    NASA Astrophysics Data System (ADS)

    Zhao, Hongkun; He, Hongming; Wang, Xiuguang; Liu, Zhongyi; Ding, Bo; Yang, Hanwen

    2018-03-01

    Four unique infinite 2D Mn(II) aggregates, [Mn3(μ3-ade)2(OAc)4X]n (X = DMF for 1, DMA for 2 and C2H5O- for 3), [Mn3(μ3-ade)2(ap)2DMF]n (4) (Hade = adenine; DMF = N,N-dimethylformamide; DMA = N,N-dimethylacetamide, OAc- = acetate ion, H2ap = adipic acid) with trinuclear Mn(II) as secondary building units (SBUs), have been successfully synthesized by the assembly of Hade nucleobase and manganese acetate under solvothermal conditions. The resultant complexes can be applied to explore the influence of solvent or co-ligands on the self-assembly and properties of metal complexes based on adenine. The Hade represent tridentate μ3-N3, N7, N9 bridging coordination modes. The acetate anions exhibit μ2-η1:η1 bidentate, μ2-η1:η2 tridentate mode, and μ2-η0:η2 bidentate mode. The adipate anions in complex 4 adopt two coordination modes: one is μ4-η2:η1:η1:η1 pentadentate mode, the other one is μ3-η1:η2:η2:η1 hexadentate mode. Their magnetic behaviors exhibit interesting variations, in which the local net magnetization at low temperature increases from 1 to 3. The MnII3 SBUs in 1-3 are symmetric with an inversion center, whereas that in 4 has three crystallographically independent MnII atoms. Thus, the magnetic behaviors of 4 are different from complex 1-3.

  6. Muscle adenine nucleotide degradation during submaximal treadmill exercise to fatigue.

    PubMed

    Essén-Gustavsson, B; Gottlieb-Vedi, M; Lindholm, A

    1999-07-01

    The aim was to investigate metabolic response in muscle during submaximal treadmill exercise to fatigue, with a special emphasis on adenine nucleotide degradation products such as inosine monophosphate (IMP) in muscle and hypoxanthine, xanthine and uric acid in plasma. Five Standardbred trotters performed treadmill exercise on 2 occasions, once at 7 m/s and once at 10 m/s. Venous blood samples were taken at rest, during exercise and at the end of exercise. Muscle biopsies were taken before and after exercise and muscle temperature was measured before and after exercise. Running time differed among horses and was 48-58 min at 7 m/s and 10-15.5 min at 10 m/s. Both lactate and uric acid concentrations in plasma showed a gradual increase during exercise at both 7 and 10 m/s. At the end of exercise, values for uric acid were higher and values for lactate lower at 7 m/s compared with at 10 m/s. No marked changes were seen in plasma concentrations of hypoxanthine or xanthine with exercise. Muscle glycogen decreased after exercise at both 7 and 10 m/s with a marked depletion seen in some fibres. Muscle lactate concentrations increased after exercise at both 7 m/s and at 10 m/s. No significant changes were seen in adenosine triphosphate (ATP), ADP and AMP concentrations, whereas IMP concentrations increased after exercise at both 7 m/s and at 10 m/s. The results of this study indicate that AMP deamination occurs with submaximal exercise and that development of fatigue may be related to adenine nucleotide degradation in muscle.

  7. Crystal structure of a poly(rA) staggered zipper at acidic pH: evidence that adenine N1 protonation mediates parallel double helix formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gleghorn, Michael L.; Zhao, Jianbo; Turner, Douglas H.

    We have solved at 1.07 Å resolution the X-ray crystal structure of a polyriboadenylic acid (poly(rA)) parallel and continuous double helix. Fifty-nine years ago, double helices of poly(rA) were first proposed to form at acidic pH. Here, we show that 7-mer oligo(rA), i.e. rA 7, hybridizes and overlaps in all registers at pH 3.5 to form stacked double helices that span the crystal. Under these conditions, rA 7 forms well-ordered crystals, whereas rA 6 forms fragile crystalline-like structures, and rA 5, rA 8 and rA 11 fail to crystallize. Our findings support studies from ~50 years ago: one showed usingmore » spectroscopic methods that duplex formation at pH 4.5 largely starts with rA 7 and begins to plateau with rA 8; another proposed a so-called ‘staggered zipper’ model in which oligo(rA) strands overlap in multiple registers to extend the helical duplex. While never shown, protonation of adenines at position N1 has been hypothesized to be critical for helix formation. Bond angles in our structure suggest that N1 is protonated on the adenines of every other rAMP–rAMP helix base pair. Lastly, our data offer new insights into poly(rA) duplex formation that may be useful in developing a pH sensor.« less

  8. Acceleration of adventitious shoots by interaction between exogenous hormone and adenine sulphate in Althaea officinalis L.

    PubMed

    Naz, Ruphi; Anis, M

    2012-11-01

    In the current study attempts were made to investigate the effects of three different phases of callus induction followed by adventitious regeneration from leaf segments (central and lateral vein). Callus induction was observed in Murashige and Skoog's (MS) medium supplemented with 15.0 μM 2,4-dichloro phenoxy acetic acid (2,4-D). Adventitious shoot buds formation was achieved on MS medium supplemented with 7.5 μM 2,4-D and 20.0 μM AdS in liquid medium as it induced 19.2 ± 0.58 buds in central vein explants. Addition of different growth regulators (cytokinins-6-benzyladenine, kinetin and 2-isopentenyl adenine alone or in combination with auxins-indole-3-acetic acid, indole-3-butyric acid and α-naphthalene acetic acid, improved the shoot regeneration efficiency, in which 5.0 μM 6-benzyl adenine along with 0.25 μM α-naphthalene acetic acid was shown to be the most effective medium for maximum shoot regeneration (81.3 %) with 24.6 number of shoots and 4.4 ± 0.08 cm shoot length per explant. Leaf culture of central veins led to better shoot formation capacity in comparison to lateral vein. Rooting was readily achieved on the differentiated shoots on 1/2 MS medium augmented with 20.0 μM indole-3-butyric acid. The plants were successfully hardened off in sterile soilrite followed by their establishment in garden soil with 80 % survival rate.

  9. Identification of DNA Methyltransferase Genes in Human Pathogenic Bacteria by Comparative Genomics.

    PubMed

    Brambila-Tapia, Aniel Jessica Leticia; Poot-Hernández, Augusto Cesar; Perez-Rueda, Ernesto; Rodríguez-Vázquez, Katya

    2016-06-01

    DNA methylation plays an important role in gene expression and virulence in some pathogenic bacteria. In this report, we describe DNA methyltransferases (MTases) present in human pathogenic bacteria and compared them with related species, which are not pathogenic or less pathogenic, based in comparative genomics. We performed a search in the KEGG database of the KEGG database orthology groups associated with adenine and cytosine DNA MTase activities (EC: 2.1.1.37, EC: 2.1.1.113 and EC: 2.1.1.72) in 37 human pathogenic species and 18 non/less pathogenic relatives and performed comparisons of the number of these MTases sequences according to their genome size, the DNA MTase type and with their non-less pathogenic relatives. We observed that Helicobacter pylori and Neisseria spp. presented the highest number of MTases while ten different species did not present a predicted DNA MTase. We also detected a significant increase of adenine MTases over cytosine MTases (2.19 vs. 1.06, respectively, p < 0.001). Adenine MTases were the only MTases associated with restriction modification systems and DNA MTases associated with type I restriction modification systems were more numerous than those associated with type III restriction modification systems (0.84 vs. 0.17, p < 0.001); additionally, there was no correlation with the genome size and the total number of DNA MTases, indicating that the number of DNA MTases is related to the particular evolution and lifestyle of specific species, regulating the expression of virulence genes in some pathogenic bacteria.

  10. Photoaffinity-labeled Cytokinins

    PubMed Central

    Theiler, Jane B.; Leonard, Nelson J.; Schmitz, Ruth Y.; Skoog, Folke

    1976-01-01

    Two new azidopurine derivatives, 2-azido-N6-(Δ2-isopentenyl)adenine and 2-azido-N6-benzyladenine, have been synthesized as potential photoaffinity labels for probing cytokinin-binding sites. The preparation and the biological activity of these compounds are described. PMID:16659772

  11. Post-Transcriptional Regulation of BCL2 mRNA by the RNA-Binding Protein ZFP36L1 in Malignant B Cells

    PubMed Central

    Zekavati, Anna; Nasir, Asghar; Alcaraz, Amor; Aldrovandi, Maceler; Marsh, Phil; Norton, John D.; Murphy, John J.

    2014-01-01

    The human ZFP36 zinc finger protein family consists of ZFP36, ZFP36L1, and ZFP36L2. These proteins regulate various cellular processes, including cell apoptosis, by binding to adenine uridine rich elements in the 3′ untranslated regions of sets of target mRNAs to promote their degradation. The pro-apoptotic and other functions of ZFP36 family members have been implicated in the pathogenesis of lymphoid malignancies. To identify candidate mRNAs that are targeted in the pro-apoptotic response by ZFP36L1, we reverse-engineered a gene regulatory network for all three ZFP36 family members using the ‘maximum information coefficient’ (MIC) for target gene inference on a large microarray gene expression dataset representing cells of diverse histological origin. Of the three inferred ZFP36L1 mRNA targets that were identified, we focussed on experimental validation of mRNA for the pro-survival protein, BCL2, as a target for ZFP36L1. RNA electrophoretic mobility shift assay experiments revealed that ZFP36L1 interacted with the BCL2 adenine uridine rich element. In murine BCL1 leukemia cells stably transduced with a ZFP36L1 ShRNA lentiviral construct, BCL2 mRNA degradation was significantly delayed compared to control lentiviral expressing cells and ZFP36L1 knockdown in different cell types (BCL1, ACHN, Ramos), resulted in increased levels of BCL2 mRNA levels compared to control cells. 3′ untranslated region luciferase reporter assays in HEK293T cells showed that wild type but not zinc finger mutant ZFP36L1 protein was able to downregulate a BCL2 construct containing the BCL2 adenine uridine rich element and removal of the adenine uridine rich core from the BCL2 3′ untranslated region in the reporter construct significantly reduced the ability of ZFP36L1 to mediate this effect. Taken together, our data are consistent with ZFP36L1 interacting with and mediating degradation of BCL2 mRNA as an important target through which ZFP36L1 mediates its pro-apoptotic effects in malignant B-cells. PMID:25014217

  12. Lack of Association Between Toll-like Receptor 2 Polymorphisms (R753Q and A-16934T) and Atopic Dermatitis in Children from Thrace Region of Turkey

    PubMed Central

    Can, Ceren; Yazıcıoğlu, Mehtap; Gürkan, Hakan; Tozkır, Hilmi; Görgülü, Adnan; Süt, Necdet Hilmi

    2017-01-01

    Background: Atopic dermatitis is the most common chronic inflammatory skin disease. A complex interaction of both genetic and environmental factors is thought to contribute to the disease. Aims: To evaluate whether single nucleotide polymorphisms in the TLR2 gene c.2258C>T (R753Q) (rs5743708) and TLR2 c.-148+1614T>A (A-16934T) (rs4696480) (NM_0032643) are associated with atopic dermatitis in Turkish children. Study Design: Case-control study. Methods: The study was conducted on 70 Turkish children with atopic dermatitis aged 0.5-18 years. The clinical severity of atopic dermatitis was evaluated by the severity scoring of atopic dermatitis index. Serum total IgE levels, specific IgE antibodies to inhalant and food allergens were measured in both atopic dermatitis patients and controls, skin prick tests were done on 70 children with atopic dermatitis. Genotyping for TLR2 (R753Q and A-16934T) single nucleotide polymorphisms was performed in both atopic dermatitis patients and controls. Results: Cytosine-cytosine and cytosin-thymine genotype frequencies of the TLR2 R753Q single nucleotide polymorphism in the atopic dermatitis group were determined as being 98.6% and 1.4%, cytosine allele frequency for TLR2 R753Q single nucleotide polymorphism was determined as 99.29% and the thymine allele frequency was 0.71%, thymine-thymine, thymine-adenine, and adenine-adenine genotype frequencies of the TLR2 A-16934T single nucleotide polymorphism were 24.3%, 44.3%, and 31.4%. The thymine allele frequency for the TLR2 A-16934T single nucleotide polymorphism in the atopic dermatitis group was 46.43%, and the adenine allele frequency was 53.57%, respectively. There was not statistically significant difference between the groups for all investigated polymorphisms (p>0.05). For all single nucleotide polymorphisms studied, allelic distribution was analogous among atopic dermatitis patients and controls, and no significant statistical difference was observed. No homozygous carriers of the TLR2 R753Q single nucleotide polymorphism were found in the atopic dermatitis and control groups. Conclusion: The TLR2 (R753Q and A-16934T) single nucleotide polymorphisms are not associated with atopic dermatitis in a group of Turkish patients. PMID:28443596

  13. Lack of Association Between Toll-like Receptor 2 Polymorphisms (R753Q and A-16934T) and Atopic Dermatitis in Children from Thrace Region of Turkey.

    PubMed

    Can, Ceren; Yazıcıoğlu, Mehtap; Gürkan, Hakan; Tozkır, Hilmi; Görgülü, Adnan; Süt, Necdet Hilmi

    2017-05-05

    Atopic dermatitis is the most common chronic inflammatory skin disease. A complex interaction of both genetic and environmental factors is thought to contribute to the disease. To evaluate whether single nucleotide polymorphisms in the TLR2 gene c.2258C>T (R753Q) (rs5743708) and TLR2 c.-148+1614T>A (A-16934T) (rs4696480) (NM_0032643) are associated with atopic dermatitis in Turkish children. Case-control study. The study was conducted on 70 Turkish children with atopic dermatitis aged 0.5-18 years. The clinical severity of atopic dermatitis was evaluated by the severity scoring of atopic dermatitis index. Serum total IgE levels, specific IgE antibodies to inhalant and food allergens were measured in both atopic dermatitis patients and controls, skin prick tests were done on 70 children with atopic dermatitis. Genotyping for TLR2 (R753Q and A-16934T) single nucleotide polymorphisms was performed in both atopic dermatitis patients and controls. Cytosine-cytosine and cytosin-thymine genotype frequencies of the TLR2 R753Q single nucleotide polymorphism in the atopic dermatitis group were determined as being 98.6% and 1.4%, cytosine allele frequency for TLR2 R753Q single nucleotide polymorphism was determined as 99.29% and the thymine allele frequency was 0.71%, thymine-thymine, thymine-adenine, and adenine-adenine genotype frequencies of the TLR2 A-16934T single nucleotide polymorphism were 24.3%, 44.3%, and 31.4%. The thymine allele frequency for the TLR2 A-16934T single nucleotide polymorphism in the atopic dermatitis group was 46.43%, and the adenine allele frequency was 53.57%, respectively. There was not statistically significant difference between the groups for all investigated polymorphisms (p>0.05). For all single nucleotide polymorphisms studied, allelic distribution was analogous among atopic dermatitis patients and controls, and no significant statistical difference was observed. No homozygous carriers of the TLR2 R753Q single nucleotide polymorphism were found in the atopic dermatitis and control groups. The TLR2 (R753Q and A-16934T) single nucleotide polymorphisms are not associated with atopic dermatitis in a group of Turkish patients.

  14. Selectivity and activity of adenine dinucleotides at recombinant P2X2 and P2Y1 purinoceptors.

    PubMed Central

    Pintor, J.; King, B. F.; Miras-Portugal, M. T.; Burnstock, G.

    1996-01-01

    1. Adenine dinucleotides (Ap3A, x = 2-6) are naturally-occurring polyphosphated nucleotidic substances which are found in the CNS and are known to be released in a calcium-dependent manner from storage vesicles in brain synaptosomes. The selectivity and activity of adenine dinucleotides for neuronally-derived recombinant P2 purinoceptors were studied using P2X2 and P2Y1 subtypes expressed in Xenopus oocytes. 2. For the P2Y1 subtype derived from chick brain, Ap3A was equipotent and as active as ATP (EC50 values: 375 +/- 86 nM and 334 +/- 25 nM, respectively). Ap4A was a weak partial agonist and other dinucleotides were inactive as agonists. None of the inactive dinucleotides were antagonists nor modulated the activity of Ap3A and ATP. 3. For the P2X2 subtype derived from rat PC12 cells, Ap4A was as active as ATP but less potent (EC50 values: 15.2 +/- 1 microM and 3.7 +/- 0.7 microM, respectively). Other adenosine dinucleotides were inactive as either agonists or antagonists. 4. Ap5A (1-100 nM) potentiated ATP-responses at the P2X2 subtype, showing an EC50 of 2.95 +/- 0.7 nM for this modulatory effect. Ap5A (10 nM) shifted the concentration-response curves for ATP to the left by one-half log10 unit but did not alter the Hill co-efficient for ATP (nH = 2.1 +/- 0.1). Ap5A (10 nM) failed to potentiate Ap4A-responses but did enhance the efficacy of the P2 purinoceptor antagonist, suramin, by 12 fold at the P2X2 subtype. 5. In conclusion, the results show that ionotropic (P2X2) and metabotropic (P2Y1) ATP receptors which occur in the CNS are activated selectively by naturally-occurring adenine dinucleotides which are known to be released with nucleotides from storage vesicles. The observed potentiation of P2X2-responses by Ap5A, where co-released with ATP by brain synaptosomes, may have a functional bearing in purinergic signalling in the CNS. PMID:8922753

  15. Development of a simple and efficient method for assaying cytidine monophosphate sialic acid synthetase activity using an enzymatic reduced nicotinamide adenine dinucleotide/oxidized nicotinamide adenine dinucleotide converting system.

    PubMed

    Fujita, Akiko; Sato, Chihiro; Münster-Kühnel, Anja-K; Gerardy-Schahn, Rita; Kitajima, Ken

    2005-02-01

    A new reliable method to assay the activity of cytidine monophosphate sialic acid (CMP-Sia) synthetase (CSS) has been developed. The activation of sialic acids (Sia) to CMP-Sia is a prerequisite for the de novo synthesis of sialoglycoconjugates. In vertebrates, CSS has been cloned from human, mouse, and rainbow trout, and the crystal structure has been resolved for the mouse enzyme. The mouse and rainbow trout enzyme have been compared with respect to substrate specificity, demonstrating that the mouse enzyme exhibits a pronounced specificity for N-acetylneuraminic acid (Neu5Ac), while the rainbow trout CSS is equally active with either of three Sia species, Neu5Ac, N-glycolylneuraminic acid (Neu5Gc), and deaminoneuraminic acid (KDN). However, molecular details that explain the pronounced substrate specificities are unknown. Understanding the catalytic mechanisms of these enzymes is of major importance, since CSSs play crucial roles in cellular sialylation patterns and thus are potential drug targets in a number of pathophysiological situations. The availability of the cDNAs and the obtained structural data enable rational approaches; however, these efforts are limited by the lack of a reliable high-throughput assay system. Here we describe a new assay system that allows product quantification in a reduced nicotinamide adenine dinucleotide (NADH)-dependent color reaction. The activation reaction catalyzed by CSS, CTP+Sia-->CMP-Sia+pyrophosphate, was evaluated by a consumption of Sia, which corresponds to that of NADH on the following two successive reactions: (i) Sia-->pyruvate+ManNAc (or Man), catalyzed by a sialic acid lyase (SAL), and (ii) pyruvate+NADH-->lactate+oxidized nicotinamide adenine dinucleotide (NAD+), catalyzed by a lactate dehydrogenase (LDH). Consumption of NADH can be photometrically monitored on a microtiter plate reader for a number of test samples at the same time. Furthermore, based on the quantification of CSS used in the SAL/LDH assay, relative activities toward Sia derivatives have been obtained. The preference of mouse CSS toward Neu5Ac and the ability of the rainbow trout enzyme to activate both KDN and Neu5Ac were confirmed. Thus, this simple and time-saving method is suitable for a systematic comparison of enzyme activity of structurally mutated enzymes based on the relative specific activity.

  16. Mechanism of epoxide hydrolysis in microsolvated nucleotide bases adenine, guanine and cytosine: a DFT study.

    PubMed

    Vijayalakshmi, Kunduchi P; Mohan, Neetha; Ajitha, Manjaly J; Suresh, Cherumuttathu H

    2011-07-21

    Six water molecules have been used for microsolvation to outline a hydrogen bonded network around complexes of ethylene epoxide with nucleotide bases adenine (EAw), guanine (EGw) and cytosine (ECw). These models have been developed with the MPWB1K-PCM/6-311++G(3df,2p)//MPWB1K/6-31+G(d,p) level of DFT method and calculated S(N)2 type ring opening of the epoxide due to amino group of the nucleotide bases, viz. the N6 position of adenine, N2 position of guanine and N4 position of cytosine. Activation energy (E(act)) for the ring opening was found to be 28.06, 28.64, and 28.37 kcal mol(-1) respectively for EAw, EGw and ECw. If water molecules were not used, the reactions occurred at considerably high value of E(act), viz. 53.51 kcal mol(-1) for EA, 55.76 kcal mol(-1) for EG and 56.93 kcal mol(-1) for EC. The ring opening led to accumulation of negative charge on the developing alkoxide moiety and the water molecules around the charge localized regions showed strong hydrogen bond interactions to provide stability to the intermediate systems EAw-1, EGw-1 and ECw-1. This led to an easy migration of a proton from an activated water molecule to the alkoxide moiety to generate a hydroxide. Almost simultaneously, a proton transfer chain reaction occurred through the hydrogen bonded network of water molecules and resulted in the rupture of one of the N-H bonds of the quaternized amino group. The highest value of E(act) for the proton transfer step of the reaction was 2.17 kcal mol(-1) for EAw, 2.93 kcal mol(-1) for EGw and 0.02 kcal mol(-1) for ECw. Further, the overall reaction was exothermic by 17.99, 22.49 and 13.18 kcal mol(-1) for EAw, EGw and ECw, respectively, suggesting that the reaction is irreversible. Based on geometric features of the epoxide-nucleotide base complexes and the energetics, the highest reactivity is assigned for adenine followed by cytosine and guanine. Epoxide-mediated damage of DNA is reported in the literature and the present results suggest that hydrated DNA bases become highly S(N)2 active on epoxide systems and the occurrence of such reactions can inflict permanent damage to the DNA.

  17. DNA Music.

    ERIC Educational Resources Information Center

    Miner, Carol; della Villa, Paula

    1997-01-01

    Describes an activity in which students reverse-translate proteins from their amino acid sequences back to their DNA sequences then assign musical notes to represent the adenine, guanine, cytosine, and thymine bases. Data is obtained from the National Institutes of Health (NIH) on the Internet. (DDR)

  18. Biochemistry of Trypanosomatidae of Importance in Africa.

    DTIC Science & Technology

    1983-12-01

    translocation of the substrate across the cytoplasmic menbrane . As a consequence of this trans- location, substrates may become available to intracellular...concentration in plasma (Arnold and Cysyk, 1983). These authors found that in rat liver the purines hypoxanthine, inosine, and adenine were all found

  19. Detection of ATP and NADH: A Bioluminescent Experience.

    ERIC Educational Resources Information Center

    Selig, Ted C.; And Others

    1984-01-01

    Described is a bioluminescent assay for adenosine triphosphate (ATP) and reduced nicotineamide-adenine dinucleotide (NADH) that meets the requirements of an undergraduate biochemistry laboratory course. The 3-hour experiment provides students with experience in bioluminescence and analytical biochemistry yet requires limited instrumentation,…

  20. Efficacy and Safety of Frozen Blood for Transfusion in Trauma Patients

    DTIC Science & Technology

    2012-11-01

    ELIZABETH E. HEYD DR. RODGER D. VANDERBEEK Chief, Airmen Integration Research Support Chair...blood mixed with citrate-phosphate-dextrose-adenine (CPDA) is centrifuged, the plasma is partially removed, and it is stored at 2-8 o C. The US

  1. Quantitative bioluminescent detection of bacteria

    NASA Technical Reports Server (NTRS)

    Chappelle, E. W.; Picciolo, G. L.

    1976-01-01

    Phosphoflavins in sample are measured using photobacterial luciferase assay technique for flavin mononucleotide (FMN). Boiling perchloric acid is used to rupture cells to free bound flavin and to hydrolyze flavin adenine dinucleotide to FMN. Base-stabilized water solution of sodium borohydride is used as reactant.

  2. New insights on the regulation of the adenine nucleotide pool of erythrocytes in mouse models

    PubMed Central

    O’Brien, William G.; Ling, Han Shawn; Lee, Cheng Chi

    2017-01-01

    The observation that induced torpor in non-hibernating mammals could result from an increased AMP concentration in circulation led our investigation to reveal that the added AMP altered oxygen transport of erythrocytes. To further study the effect of AMP in regulation of erythrocyte function and systemic metabolism, we generated mouse models deficient in key erythrocyte enzymes in AMP metabolism. We have previously reported altered erythrocyte adenine nucleotide levels corresponding to altered oxygen saturation in mice deficient in both CD73 and AMPD3. Here we further investigate how these Ampd3-/-/Cd73-/- mice respond to the administered dose of AMP in comparison with the control models of single enzyme deficiency and wild type. We found that Ampd3-/-/Cd73-/- mice are more sensitive to AMP-induced hypometabolism than mice with a single enzyme deficiency, which are more sensitive than wild type. A dose-dependent rightward shift of erythrocyte p50 values in response to increasing amounts of extracellular AMP was observed. We provide further evidence for the direct uptake of AMP by erythrocytes that is insensitive to dipyridamole, a blocker for ENT1. The uptake of AMP by the erythrocytes remained linear at the highest concentration tested, 10mM. We also observed competitive inhibition of AMP uptake by ATP and ADP but not by the other nucleotides and metabolites tested. Importantly, our studies suggest that AMP uptake is associated with an erythrocyte ATP release that is partially sensitive to inhibition by TRO19622 and Ca++ ion. Taken together, our study suggests a novel mechanism by which erythrocytes recycle and maintain their adenine nucleotide pool through AMP uptake and ATP release. PMID:28746349

  3. New insights on the regulation of the adenine nucleotide pool of erythrocytes in mouse models.

    PubMed

    O'Brien, William G; Ling, Han Shawn; Zhao, Zhaoyang; Lee, Cheng Chi

    2017-01-01

    The observation that induced torpor in non-hibernating mammals could result from an increased AMP concentration in circulation led our investigation to reveal that the added AMP altered oxygen transport of erythrocytes. To further study the effect of AMP in regulation of erythrocyte function and systemic metabolism, we generated mouse models deficient in key erythrocyte enzymes in AMP metabolism. We have previously reported altered erythrocyte adenine nucleotide levels corresponding to altered oxygen saturation in mice deficient in both CD73 and AMPD3. Here we further investigate how these Ampd3-/-/Cd73-/- mice respond to the administered dose of AMP in comparison with the control models of single enzyme deficiency and wild type. We found that Ampd3-/-/Cd73-/- mice are more sensitive to AMP-induced hypometabolism than mice with a single enzyme deficiency, which are more sensitive than wild type. A dose-dependent rightward shift of erythrocyte p50 values in response to increasing amounts of extracellular AMP was observed. We provide further evidence for the direct uptake of AMP by erythrocytes that is insensitive to dipyridamole, a blocker for ENT1. The uptake of AMP by the erythrocytes remained linear at the highest concentration tested, 10mM. We also observed competitive inhibition of AMP uptake by ATP and ADP but not by the other nucleotides and metabolites tested. Importantly, our studies suggest that AMP uptake is associated with an erythrocyte ATP release that is partially sensitive to inhibition by TRO19622 and Ca++ ion. Taken together, our study suggests a novel mechanism by which erythrocytes recycle and maintain their adenine nucleotide pool through AMP uptake and ATP release.

  4. Multiple Decay Mechanisms and 2D‐UV Spectroscopic Fingerprints of Singlet Excited Solvated Adenine‐Uracil Monophosphate

    PubMed Central

    Li, Quansong; Giussani, Angelo; Segarra‐Martí, Javier; Nenov, Artur; Rivalta, Ivan; Voityuk, Alexander A.; Mukamel, Shaul; Roca‐Sanjuán, Daniel

    2016-01-01

    Abstract The decay channels of singlet excited adenine uracil monophosphate (ApU) in water are studied with CASPT2//CASSCF:MM potential energy calculations and simulation of the 2D‐UV spectroscopic fingerprints with the aim of elucidating the role of the different electronic states of the stacked conformer in the excited state dynamics. The adenine 1La state can decay without a barrier to a conical intersection with the ground state. In contrast, the adenine 1Lb and uracil S(U) states have minima that are separated from the intersections by sizeable barriers. Depending on the backbone conformation, the CT state can undergo inter‐base hydrogen transfer and decay to the ground state through a conical intersection, or it can yield a long‐lived minimum stabilized by a hydrogen bond between the two ribose rings. This suggests that the 1Lb, S(U) and CT states of the stacked conformer may all contribute to the experimental lifetimes of 18 and 240 ps. We have also simulated the time evolution of the 2D‐UV spectra and provide the specific fingerprint of each species in a recommended probe window between 25 000 and 38 000 cm−1 in which decongested, clearly distinguishable spectra can be obtained. This is expected to allow the mechanistic scenarios to be discerned in the near future with the help of the corresponding experiments. Our results reveal the complexity of the photophysics of the relatively small ApU system, and the potential of 2D‐UV spectroscopy to disentangle the photophysics of multichromophoric systems. PMID:27113273

  5. OmpF, a nucleotide-sensing nanoprobe, computational evaluation of single channel activities

    NASA Astrophysics Data System (ADS)

    Abdolvahab, R. H.; Mobasheri, H.; Nikouee, A.; Ejtehadi, M. R.

    2016-09-01

    The results of highthroughput practical single channel experiments should be formulated and validated by signal analysis approaches to increase the recognition precision of translocating molecules. For this purpose, the activities of the single nano-pore forming protein, OmpF, in the presence of nucleotides were recorded in real time by the voltage clamp technique and used as a means for nucleotide recognition. The results were analyzed based on the permutation entropy of current Time Series (TS), fractality, autocorrelation, structure function, spectral density, and peak fraction to recognize each nucleotide, based on its signature effect on the conductance, gating frequency and voltage sensitivity of channel at different concentrations and membrane potentials. The amplitude and frequency of ion current fluctuation increased in the presence of Adenine more than Cytosine and Thymine in milli-molar (0.5 mM) concentrations. The variance of the current TS at various applied voltages showed a non-monotonic trend whose initial increasing slope in the presence of Thymine changed to a decreasing one in the second phase and was different from that of Adenine and Cytosine; e.g., by increasing the voltage from 40 to 140 mV in the 0.5 mM concentration of Adenine or Cytosine, the variance decreased by one third while for the case of Thymine it was doubled. Moreover, according to the structure function of TS, the fractality of current TS differed as a function of varying membrane potentials (pd) and nucleotide concentrations. Accordingly, the calculated permutation entropy of the TS, validated the biophysical approach defined for the recognition of different nucleotides at various concentrations, pd's and polarities. Thus, the promising outcomes of the combined experimental and theoretical methodologies presented here can be implemented as a complementary means in pore-based nucleotide recognition approaches.

  6. An important role for adenine, cholera toxin, hydrocortisone and triiodothyronine in the proliferation, self-renewal and differentiation of limbal stem cells in vitro.

    PubMed

    Yu, Min; Bojic, Sanja; Figueiredo, Gustavo S; Rooney, Paul; de Havilland, Julian; Dickinson, Anne; Figueiredo, Francisco C; Lako, Majlinda

    2016-11-01

    The cornea is a self-renewing tissue located at the front of the eye. Its transparency is essential for allowing light to focus onto the retina for visual perception. The continuous renewal of corneal epithelium is supported by limbal stem cells (LSCs) which are located in the border region between conjunctiva and cornea known as the limbus. Ex vivo expansion of LSCs has been successfully applied in the last two decades to treat patients with limbal stem cell deficiency (LSCD). Various methods have been used for their expansion, yet the most widely used culture media contains a number of ingredients derived from animal sources which may compromise the safety profile of human LSC transplantation. In this study we sought to understand the role of these components namely adenine, cholera toxin, hydrocortisone and triiodothyronine with the aim of re-defining a safe and GMP compatible minimal media for the ex vivo expansion of LSCs on human amniotic membrane. Our data suggest that all four components play a critical role in maintaining LSC proliferation and promoting LSC self-renewal. However removal of adenine and triiodothyronine had a more profound impact and led to LSC differentiation and loss of viability respectively, suggesting their essential role for ex vivo expansion of LSCs. Replacement of each of the components with GMP-grade reagents resulted in equal growth to non-GMP grade media, however an enhanced differentiation of LSCs was observed, suggesting that additional combinations of GMP grade reagents need to be tested to achieve similar or better level of LSC maintenance in the same manner as the traditional LSC media. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  7. Raman microspectroscopic study of effects of Na(I) and Mg(II) ions on low pH induced DNA structural changes.

    PubMed

    Muntean, C M; Segers-Nolten, G M J

    2003-01-01

    In this work a confocal Raman microspectrometer is used to investigate the influence of Na(+) and Mg(2+) ions on the DNA structural changes induced by low pH. Measurements are carried out on calf thymus DNA at neutral pH (7) and pH 3 in the presence of low and high concentrations of Na(+) and Mg(2+) ions, respectively. It is found that low concentrations of Na(+) ions do not protect DNA against binding of H(+). High concentrations of monovalent ions can prevent protonation of the DNA double helix. Our Raman spectra show that low concentrations of Mg(2+) ions partly protect DNA against protonation of cytosine (line at 1262 cm(-1)) but do not protect adenine and guanine N(7) against binding of H(+) (characteristic lines at 1304 and 1488 cm(-1), respectively). High concentrations of Mg(2+) can prevent protonation of cytosine and protonation of adenine (disruption of AT pairs). By analyzing the line at 1488 cm(-1), which obtains most of its intensity from a guanine vibration, high magnesium salt protect the N(7) of guanine against protonation. A high salt concentration can prevent protonation of guanine, cytosine, and adenine in DNA. Higher salt concentrations cause less DNA protonation than lower salt concentrations. Magnesium ions are found to be more effective in protecting DNA against binding of H(+) as compared with calcium ions presented in a previous study. Divalent metal cations (Mg(2+), Ca(2+)) are more effective in protecting DNA against protonation than monovalent ions (Na(+)). Copyright 2003 Wiley Periodicals, Inc. Biopolymers (Biospectroscopy) 72: 000-000, 2003

  8. Crystal structures of eosinophil-derived neurotoxin (EDN) in complex with the inhibitors 5'-ATP, Ap3A, Ap4A, and Ap5A.

    PubMed

    Baker, Matthew D; Holloway, Daniel E; Swaminathan, G Jawahar; Acharya, K Ravi

    2006-01-17

    Eosinophil-derived neurotoxin (EDN) is a catalytically proficient member of the pancreatic ribonuclease superfamily secreted along with other eosinophil granule proteins during innate host defense responses and various eosinophil-related inflammatory and allergic diseases. The ribonucleolytic activity of EDN is central to its antiviral and neurotoxic activities and possibly to other facets of its biological activity. To probe the importance of this enzymatic activity further, specific inhibitors will be of great aid. Derivatives of 5'-ADP are among the most potent inhibitors currently known. Here, we use X-ray crystallography to investigate the binding of four natural nucleotides containing this moiety. 5'-ATP binds in two alternative orientations, one occupying the B2 subsite in a conventional manner and one being a retro orientation with no ordered adenosine moiety. Diadenosine triphosphate (Ap3A) and diadenosine tetraphosphate (Ap4A) bind with one adenine positioned at the B2 subsite, the polyphosphate chain extending across the P1 subsite in an ill-defined conformation, and a disordered second adenosine moiety. Diadenosine pentaphosphate (Ap5A), the most avid inhibitor of this series, binds in a completely ordered fashion with one adenine positioned conventionally at the B2 subsite, the polyphosphate chain occupying the P1 and putative P(-1) subsites, and the other adenine bound in a retro-like manner at the edge of the B1 subsite. The binding mode of each of these inhibitors has features seen in previously determined structures of adenosine diphosphates. We examine the structure-affinity relationships of these inhibitors and discuss the implications for the design of improved inhibitors.

  9. Curcumin and resveratrol rescue cortical-hippocampal system from chronic fluoride-induced neurodegeneration and enhance memory retrieval.

    PubMed

    Sharma, Chhavi; Suhalka, Pooja; Bhatnagar, Maheep

    2018-04-13

    The aim of this study was: (1) to evaluate the neuroprotective effect of resveratrol and curcumin on nicotinamide adenine dinucleotide phosphate diaphorase activity in neuronal cell in subregions of mice brain, (2) to evaluate the effects on antioxidant status and (3) to evaluate the protective effects of phytochemicals on learning and memory following fluoride exposure. Young mice (one month old, body weight (BW) 30 ± 5 mg) were provided with 120 ppm sodium fluoride dissolved in drinking water. They were given curcumin (30 mg/kg BW) or resveratrol (30 mg/kg BW) orally once in a day up to 30 days. Effects of resveratrol and curcumin on spatial learning and memory were studied using Morris water maze and classic maze test. Effects on brain antioxidants' (lactose dehydrogenase (LDH), malondialdehyde and reactive oxygen species) status were also studied in vitro. Histochemistry was done to assess the effect of treatments on nitric oxide neurotransmitter. Our study showed that in fluoride-treated animals, the number of nicotinamide adenine dinucleotide phosphate diaphorase positive neurons, intracellular Ca 2+ , reactive oxygen species level, LDH and malondialdehyde concentration increased significantly. Interestingly, after treatment with curcumin or resveratrol, a significant decrease in the number of nicotinamide adenine dinucleotide phosphate diaphorase positive neurons and antioxidant status was observed. This decrease was more considerable in resveratrol-treated group. Our study indicates that both antioxidants, curcumin and resveratrol, are useful in reducing neurodegeneration in selective areas of cornus ammonis 1 (CA1), CA3, dentate gyrus (DG) and the cortex of mice brain and in recuperating the loss of memory and learning caused due to fluoride exposure.

  10. Adenine phosphoribosyltransferase deficiency in the United Kingdom: two novel mutations and a cross-sectional survey

    PubMed Central

    Arenas-Hernandez, Monica; Escuredo, Emilia; Fairbanks, Lynette; Marinaki, Tony; Mapplebeck, Sarah; Sheaff, Michael; Almond, Michael K.

    2016-01-01

    Background Adenine phosphoribosyltransferase deficiency is an inborn error of metabolism that can cause kidney disease from crystalline nephropathy or kidney stones. Methods We present three cases from a single centre with varied presentations to illustrate how increasing awareness led to better patient identification. We then undertook a cross-sectional survey of all the patients identified from the Purine Research Laboratory in the UK since 1974. Results Our index case presented with recurrent nephrolithiasis and was diagnosed on stone analysis, the second case presented with acute kidney injury and the third case was identified from a biopsy undertaken for acute on chronic kidney injury. Genetic studies identified two novel mutations. Twenty patients were retrospectively identified. The mean age at diagnosis was 25 years (range 2–70); eight were <20 years, seven were 20–40 years and five were >40 years. Five of the 20 patients were deceased, 3 after end-stage renal disease (ESRD). Twelve have normal renal function, one had CKD stage 3, one had severe kidney disease and one was on dialysis. Conclusions Adenine phosphoribosyltransferase deficiency presents in a wide spectrum in all age groups. Patients can be completely asymptomatic and kidney disease may be incorrectly attributed to other conditions. Outcome is poor in late diagnosis and there is a high prevalence of ESRD. Patients with unexplained renal stone disease or deterioration in kidney function should be considered for screening. Identification and surveillance of patients in the UK can improve. There is now a rare disease registry with meetings organized that include patients, families and health care providers to improve awareness. PMID:27994857

  11. Protective effect of dietary potassium against vascular injury in salt-sensitive hypertension.

    PubMed

    Kido, Makiko; Ando, Katsuyuki; Onozato, Maristela L; Tojo, Akihiro; Yoshikawa, Masahiro; Ogita, Teruhiko; Fujita, Toshiro

    2008-02-01

    Hypertensive cardiovascular damage is accelerated by salt loading but counteracted by dietary potassium supplementation. We suggested recently that antioxidant actions of potassium contribute to protection against salt-induced cardiac dysfunction. Therefore, we examined whether potassium supplementation ameliorated cuff-induced vascular injury in salt-sensitive hypertension via suppression of oxidative stress. Four-week-old Dahl salt-sensitive rats were fed a normal-salt (0.3% NaCl), high-salt (8% NaCl), or high-salt plus high-potassium (8% KCl) diet for 5 weeks, and some of the rats fed a high-salt diet were also given antioxidants. One week after the start of the treatments, a silicone cuff was implanted around the femoral artery. Examination revealed increased cuff-induced neointimal proliferation with adventitial macrophage infiltration in arteries from salt-loaded Dahl salt-sensitive rats compared with that in arteries from non-salt-loaded animals (intima/media ratio: 0.471+/-0.070 versus 0.302+/-0.037; P<0.05), associated with regional superoxide overproduction and reduced nicotinamide-adenine dinucleotide phosphate oxidase activation and mRNA overexpression. On the other hand, simultaneous potassium supplementation attenuated salt-induced neointimal hyperplasia (intima/media ratio: 0.205+/-0.012; P<0.001), adventitial macrophage infiltration, superoxide overproduction, and reduced nicotinamide-adenine dinucleotide phosphate oxidase activation and overexpression. Antioxidants, which decrease vascular oxidative stress, also reduced neointima formation induced by salt excess. In conclusion, high-potassium diets seems to have a protective effect against the development of vascular damage induced by salt loading mediated, at least in part, through suppression of the production of reactive oxygen species probably generated by reduced nicotinamide-adenine dinucleotide phosphate oxidase.

  12. Influence of naturally-occurring 5′-pyrophosphate-linked substituents on the binding of adenylic inhibitors to ribonuclease a: An X-ray crystallographic study

    PubMed Central

    Holloway, Daniel E; Chavali, Gayatri B; Leonidas, Demetres D; Baker, Matthew D; Acharya, K Ravi

    2009-01-01

    Ribonuclease A is the archetype of a functionally diverse superfamily of vertebrate-specific ribonucleases. Inhibitors of its action have potential use in the elucidation of the in vivo roles of these enzymes and in the treatment of pathologies associated therewith. Derivatives of adenosine 5′-pyrophosphate are the most potent nucleotide-based inhibitors known. Here, we use X-ray crystallography to visualize the binding of four naturally-occurring derivatives that contain 5′-pyrophosphate-linked extensions. 5′-ATP binds with the adenine occupying the B2 subsite in the manner of an RNA substrate but with the γ-phosphate at the P1 subsite. Diadenosine triphosphate (Ap3A) binds with the adenine in syn conformation, the β-phosphate as the principal P1 subsite ligand and without order beyond the γ-phosphate. NADPH and NADP+ bind with the adenine stacked against an alternative rotamer of His119, the 2′-phosphate at the P1 subsite, and without order beyond the 5′-α-phosphate. We also present the structure of the complex formed with pyrophosphate ion. The structural data enable existing kinetic data on the binding of these compounds to a variety of ribonucleases to be rationalized and suggest that as the complexity of the 5′-linked extension increases, the need to avoid unfavorable contacts places limitations on the number of possible binding modes. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 995–1008, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com PMID:19191310

  13. Modified formulation of CPDA for storage of whole blood, and of SAGM for storage of red blood cells, to maintain the concentration of 2,3-diphosphoglycerate.

    PubMed

    Kurup, P A; Arun, P; Gayathri, N S; Dhanya, C R; Indu, A R

    2003-11-01

    A dramatic decrease in the level of 2,3-diphosphoglycerate (2,3-DPG) takes place during the storage of whole blood (WB) in CPDA (citrate-phosphate-dextrose-adenine) and a similar decrease occurs during the storage of red blood cells (RBCs) in SAGM (saline-adenine-glucose-mannitol). The aim of the present study was to prevent this decrease by modifying CPDA and SAGM. The pH of WB anticoagulant or RBC preservative solution was maintained at 7.6 by autoclaving the dextrose solution separately, by incorporating ascorbic acid and nicotinic acid into both CPDA and SAGM (to produce modified CPDA and SAGM solutions), and by reducing the concentration of adenine and adding citrate to the modified SAGM solution. The concentration of 2,3-DPG in WB after 28 days of storage in modified CPDA, and in RBCs stored in modified SAGM, was compared with that in WB or RBCs stored in unmodified solutions. The initial 2,3-DPG levels were maintained after 28 days in the modified formulations [10.63 +/- 2.58 microM/g of haemoglobin (Hb) in the case of modified CPDA and 12.07 +/- 1.47 microM/g of Hb in the case of modified SAGM], whereas in standard CPDA and SAGM solutions, the concentration of 2,3-DPG decreased to very low levels (0.86 +/- 0.97 microM/g Hb for CPDA and 0.12 +/- 0.008 for SAGM). Our modification in the formulation of CPDA or SAGM is effective in arresting the dramatic decrease in the level of 2,3-DPG that occurs during storage of WB and RBCs in unmodified solutions.

  14. Oral aversion to dietary sugar, ethanol and glycerol correlates with alterations in specific hepatic metabolites in a mouse model of human citrin deficiency.

    PubMed

    Saheki, Takeyori; Inoue, Kanako; Ono, Hiromi; Fujimoto, Yuki; Furuie, Sumie; Yamamura, Ken-Ichi; Kuroda, Eishi; Ushikai, Miharu; Asakawa, Akihiro; Inui, Akio; Eto, Kazuhiro; Kadowaki, Takashi; Moriyama, Mitsuaki; Sinasac, David S; Yamamoto, Takashi; Furukawa, Tatsuhiko; Kobayashi, Keiko

    2017-04-01

    Mice carrying simultaneous homozygous mutations in the genes encoding citrin, the mitochondrial aspartate-glutamate carrier 2 (AGC2) protein, and mitochondrial glycerol-3-phosphate dehydrogenase (mGPD), are a phenotypically representative model of human citrin (a.k.a., AGC2) deficiency. In this study, we investigated the voluntary oral intake and preference for sucrose, glycerol or ethanol solutions by wild-type, citrin (Ctrn)-knockout (KO), mGPD-KO, and Ctrn/mGPD double-KO mice; all substances that are known or suspected precipitating factors in the pathogenesis of human citrin deficiency. The double-KO mice showed clear suppressed intake of sucrose, consuming less with progressively higher concentrations compared to the other mice. Similar observations were made when glycerol or ethanol were given. The preference of Ctrn-KO and mGPD-KO mice varied with the different treatments; essentially no differences were observed for sucrose, while an intermediate intake or similar to that of the double-KO mice was observed for glycerol and ethanol. We next examined the hepatic glycerol 3-phosphate, citrate, citrulline, lysine, glutamate and adenine nucleotide levels following forced enteral administration of these solutions. A strong correlation between the simultaneous increased hepatic glycerol 3-phosphate and decreased ATP or total adenine nucleotide content and observed aversion of the mice during evaluation of their voluntary preferences was found. Overall, our results suggest that the aversion observed in the double-KO mice to these solutions is initiated and/or mediated by hepatic metabolic perturbations, resulting in a behavioral response to increased hepatic cytosolic NADH and a decreased cellular adenine nucleotide pool. These findings may underlie the dietary predilections observed in human citrin deficient patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Raman studies on anticancer inorganic ring-dna interactions. Part 1. HexaziridmocyclotriphosphazeneN 3P 3(NC 2H 4) 6

    NASA Astrophysics Data System (ADS)

    Manfait, Michel; Alix, Alain J. P.; Butour, Jean-Luc; Labarre, Jean-François; Sournies, François

    1981-02-01

    A Raman investigation of hexaziridinocyclotriphosphazene3D¯NA interactions in vitro suggests that the alkylating sites on DNA for this powerful antitumour agent are the N(7) and NH 2 positions of adenine.

  16. Development of a method for the analysis of nucleotides from the mantle tissue of the mussel Mytilus galloprovincialis.

    PubMed

    Blanco López, S L; Moal, J; San Juan Serrano, F

    2000-09-01

    Reversed-phase HPLC was applied to obtain a sensitive and efficient means for quantitating nucleotides in the mussel Mytilus galloprovincialis. We obtained a good separation of adenylic, guanylic, uridylic and cytidylic nucleotides. Adenine nucleotides play a critical role in the regulation and integration of cellular metabolism; particularly in the mantle tissue in the mussel, they are involved in the regulation of the enzyme glycogen phosphorylase, a key enzyme in the transfer of bioenergetic reserves (glycogen) to gametogenic development; it is of great importance to have a measure of the concentrations in vivo during the reproductive cycle of the organism. Different elution conditions were tested: isocratic versus step gradient elution, different mobile phase pH and the type and proportion of ion-pairing agent added to the mobile phase. The best method was selected and the separation and accurate determination of adenine, citidine, guanine and uridine nucleotides was accomplished within a 20-min run, with UV-Vis detection (254 nm).

  17. Improved Ethanol Production from Xylose by Candida shehatae Induced by Dielectric Barrier Discharge Air Plasma

    NASA Astrophysics Data System (ADS)

    Chen, Huixia; Xiu, Zhilong; Bai, Fengwu

    2014-06-01

    Xylose fermentation is essential for ethanol production from lignocellulosic biomass. Exposure of the xylose-fermenting yeast Candida shehatae (C. shehatae) CICC1766 to atmospheric pressure dielectric barrier discharge (DBD) air plasma yields a clone (designated as C81015) with stability, which exhibits a higher ethanol fermentation rate from xylose, giving a maximal enhancement in ethanol production of 36.2% compared to the control (untreated). However, the biomass production of C81015 is lower than that of the control. Analysis of the NADH (nicotinamide adenine dinucleotide)- and NADPH (nicotinamide adenine dinucleotide phosphate)-linked xylose reductases and NAD+-linked xylitol dehydrogenase indicates that their activities are enhanced by 34.1%, 61.5% and 66.3%, respectively, suggesting that the activities of these three enzymes are responsible for improving ethanol fermentation in C81015 with xylose as a substrate. The results of this study show that DBD air plasma could serve as a novel and effective means of generating microbial strains that can better use xylose for ethanol fermentation.

  18. 3,7-Dideazaneplanocin: Synthesis and antiviral analysis.

    PubMed

    Yin, Xue-Qiang; Schneller, Stewart W

    2017-12-01

    Objective To synthesize 3,7-dideazaneplanocin and evaluate its antiviral potential. Methods The target 3,7-dideazaneplanocin has been prepared in five steps from a readily available cyclopentenol. A thorough in vitro antiviral analysis was conducted versus both DNA and RNA viruses. Results A rational synthesis of 3,7-dideazaneplanocin was conceived and successfully pursued in such a way that it can be adapted to various analogs of 3,7-dideazaneplanocin. Using standard antiviral assays, no activity for 3,7-dideazaneplanocn was found. Conclusion Two structural features are necessary for adenine-based carbocyclic nucleosides (like neplanocin) for potential antiviral properties: (i) inhibition of S-adenosylhomocysteine hydrolase and/or (ii) C-5' activation via the mono-nucleotide. These two requisite adenine structural features to fit these criteria are not present in in the target 3,7-dideazaneplanocin: (i) an N-7 is necessary for inhibition of the hydrolase and the N-3 is claimed to be essential for phosphorylation at C-5'. Thus, it is not surprising that 3,7-dideazaneplaoncin lacked antiviral properties.

  19. A bend, flip and trap mechanism for transposon integration

    PubMed Central

    Morris, Elizabeth R; Grey, Heather; McKenzie, Grant; Jones, Anita C; Richardson, Julia M

    2016-01-01

    Cut-and-paste DNA transposons of the mariner/Tc1 family are useful tools for genome engineering and are inserted specifically at TA target sites. A crystal structure of the mariner transposase Mos1 (derived from Drosophila mauritiana), in complex with transposon ends covalently joined to target DNA, portrays the transposition machinery after DNA integration. It reveals severe distortion of target DNA and flipping of the target adenines into extra-helical positions. Fluorescence experiments confirm dynamic base flipping in solution. Transposase residues W159, R186, F187 and K190 stabilise the target DNA distortions and are required for efficient transposon integration and transposition in vitro. Transposase recognises the flipped target adenines via base-specific interactions with backbone atoms, offering a molecular basis for TA target sequence selection. Our results will provide a template for re-designing mariner/Tc1 transposases with modified target specificities. DOI: http://dx.doi.org/10.7554/eLife.15537.001 PMID:27223327

  20. Effect of electronic coupling of Watson-Crick hopping in DNA poly(dA)-poly(dT)

    NASA Astrophysics Data System (ADS)

    Risqi, A. M.; Yudiarsah, E.

    2017-07-01

    Charge transport properties of poly(dA)-poly(dT) DNA has been studied by using thigh binding Hamiltonian approach. Molecule DNA that we use consist of 32 base pair of adenine (A) and thymine (T) and backbone is consist of phosphate and sugar. The molecule DNA is contacted electrode at both ends. Charge transport in molecule DNA depend on the environment, we studied the effect of electronic coupling of Watson-Crick hopping in poly(dA)-poly(dT) DNA to transmission probability and characteristic I-V. The electronic coupling constant influence charge transport between adenine-thymine base pairs at the same site. Transmission probability is studied by using transfer matrix and scattering matrix method, and the result of transmission probability is used to calculate the characteristic I-V by using formula Landauer Buttiker. The result shows that when the electronic coupling increase then transmission probability and characteristic I-V increase slightly.

  1. Relative Stability of the La and Lb Excited States in Adenine and Guanine: Direct Evidence from TD-DFT Calculations of MCD Spectra.

    PubMed

    Santoro, Fabrizio; Improta, Roberto; Fahleson, Tobias; Kauczor, Joanna; Norman, Patrick; Coriani, Sonia

    2014-06-05

    The relative position of La and Lb ππ* electronic states in purine nucleobases is a much debated topic, since it can strongly affect our understanding of their photoexcited dynamics. To assess this point, we calculated the absorption and magnetic circular dichroism (MCD) spectra of adenine, guanine, and their nucleosides in gas-phase and aqueous solution, exploiting recent developments in MCD computational technology within time-dependent density functional theory. MCD spectroscopy allows us to resolve the intense S0→ La transition from the weak S0→ Lb transition. The spectra obtained in water solution, by using B3LYP and CAM-B3LYP functionals and describing solvent effect by cluster models and by the polarizable continuum model (PCM), are in very good agreement with the experimental counterparts, thus providing direct and unambiguous evidence that the energy ordering predicted by TD-DFT, La < Lb, is the correct one.

  2. High resolution mass approach to characterize refrigerated black truffles stored under different storage atmospheres.

    PubMed

    Longo, Edoardo; Morozova, Ksenia; Loizzo, Monica R; Tundis, Rosa; Savini, Sara; Foligni, Roberta; Mozzon, Massimo; Martin-Vertedor, Daniel; Scampicchio, Matteo; Boselli, Emanuele

    2017-12-01

    Freshly harvested Tuber melanosporum samples were packed and stored at 4°C under reduced atmospheric pressure or modified atmosphere for four weeks. Multivariate analysis was employed to correlate the antioxidant power of the ethanolic extracts of the samples with the chemical composition determined by high resolution mass spectrometry. High performance liquid chromatography coupled with a coularray detector was applied to select the chemical species associated with the antioxidant power. Four classes of chemical compounds were investigated in more detail by a targeted approach: derivatives of glutathione, adenine (such as S-adenosyl-homocysteine), oxidized linoleic acid and ergosterol. Adducts containing glutathione and adenine with oxidized linoleic acid were observed in TM for the first time and can be considered markers of freshness of the product. S-adenosyl-homocysteine, the acetyl-carnitine adduct with cysteinyl-glycine and several oxidized linoleic acid derivatives were among the markers of degradation. Copyright © 2017. Published by Elsevier Ltd.

  3. Peptide-nucleic acids (PNAs) with pyrimido[4,5-d]pyrimidine-2,4,5,7-(1H,3H,6H,8H)-tetraone (PPT) as a universal base: their synthesis and binding affinity for oligodeoxyribonucleotides.

    PubMed

    Hirano, Taisuke; Kuroda, Kenji; Kataoka, Masanori; Hayakawa, Yoshihiro

    2009-07-21

    Peptide-nucleic acids (PNAs) including pyrimido[4,5-d]pyrimidine-2,4,5,7-(1H,3H,6H,8H)-tetraone (PPT) as a nucleobase were synthesized, and their binding affinity for the complementary oligodeoxyribonucleotides was investigated. We found that PNAs with one or two PPT(s) and natural nucleobases (i.e., adenine, cytosine, guanine, or thymine) have excellent binding affinity for oligodeoxyribonucleotides with complementary bases at the positions facing the natural nucleobases, and with adenine, cytosine, guanine, and thymine at the positions opposite PPT in PNAs. The binding affinity of the PPT-containing PNA is higher than or comparable to that of a PNA consisting of all complementary natural nucleobases, viz. a PNA with a suitable natural nucleobase in place of PPT in the PPT-containing PNA. Consequently, it was concluded that PPT serves as a useful universal base that can recognize all natural nucleobases.

  4. Constitutional self-organization of adenine-uracil-derived hybrid materials.

    PubMed

    Arnal-Hérault, Carole; Barboiu, Mihai; Pasc, Andreea; Michau, Mathieu; Perriat, Pascal; van der Lee, Arie

    2007-01-01

    The alkoxysilane nucleobase adenine (A) and uracil (U) precursors described in this paper generate in solution a complex library of hydrogen-bonded aggregates, which can be expressed in the solid state as discrete higher oligomers. The different interconverting outputs that nucleobases may form by oligomerization define a dynamic polyfunctional diversity that may be "extracted selectively" in solid state by sol-gel transcription, under the intrinsic stability of the system. After the sol-gel process, unique constitutional preference for specific geometries in hybrid materials is consistent with a preferential arrangement of nucleobase systems, favoring the self-assembly by the Hoogsteen geometry. FTIR and NMR spectroscopy and X-ray powder diffraction experiments demonstrate the formation of self-organized hybrid supramolecular materials. Electron microscopy reveals the micrometric platelike morphology of the hybrid materials. The M(A-U) hybrid material is nanostructured in ordered circular domains of 5 nm in diameter of alternative light and dark rows with an one-dimensional periodicity of 3.5 A.

  5. Cocrystal Structures of Primed Side-Extending α-Ketoamide Inhibitors Reveal Novel Calpain-Inhibitor Aromatic Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian,J.; Cuerrier, D.; Davies, P.

    Calpains are intracellular cysteine proteases that catalyze the cleavage of target proteins in response to Ca2+ signaling. When Ca2+ homeostasis is disrupted, calpain overactivation causes unregulated proteolysis, which can contribute to diseases such as postischemic injury and cataract formation. Potent calpain inhibitors exist, but of these many cross-react with other cysteine proteases and will need modification to specifically target calpain. Here, we present crystal structures of rat calpain 1 protease core ({mu}I-II) bound to two a-ketoamide-based calpain inhibitors containing adenyl and piperazyl primed-side extensions. An unexpected aromatic-stacking interaction is observed between the primed-side adenine moiety and the Trp298 side chain.more » This interaction increased the potency of the inhibitor toward {mu}I-II and heterodimeric m-calpain. Moreover, stacking orients the adenine such that it can be used as a scaffold for designing novel primed-side address regions, which could be incorporated into future inhibitors to enhance their calpain specificity.« less

  6. Inhibition by 6-mercaptopurine of purine phosphoribosyltransferases from Ehrlich ascites-tumour cells that are resistant to this drug

    PubMed Central

    Atkinson, M. R.; Murray, A. W.

    1965-01-01

    1. A strain of Ehrlich ascites-tumour cells that showed little inhibition of growth in the presence of 6-mercaptopurine accumulated less than 5% as much 6-thioinosine 5′-phosphate in vivo, in the presence of 6-mercaptopurine, as did the sensitive strain from which it was derived. 2. Specific activities of the phosphoribosyltransferases that convert adenine, guanine, hypoxanthine and 6-mercaptopurine into AMP, GMP, IMP and 6-thioinosine 5′-phosphate were similar in extracts of the resistant and the sensitive cells. 3. As found previously with sensitive cells, 6-mercaptopurine is a competitive inhibitor of guanine phosphoribosyltransferase and hypoxanthine phosphoribosyltransferase from the resistant cells and does not inhibit the adenine phosphoribosyltransferase from these cells. Michaelis constants and inhibitor constants of the purine phosphoribosyltransferases from resistant cells did not differ significantly from those measured with the corresponding enzymes from sensitive cells. 4. Resistance to 6-mercaptopurine in this case is probably not due to qualitative or quantitative changes in these transferases. PMID:14342251

  7. Gender and chronological age affect erythrocyte membrane oxidative indices in citrate phosphate dextrose adenine-formula 1 (CPDA-1) blood bank storage condition.

    PubMed

    Erman, Hayriye; Aksu, Uğur; Belce, Ahmet; Atukeren, Pınar; Uzun, Duygu; Cebe, Tamer; Kansu, Ahmet D; Gelişgen, Remisa; Uslu, Ezel; Aydın, Seval; Çakatay, Ufuk

    2016-07-01

    It is well known that in vitro storage lesions lead to membrane dysfunction and decreased number of functional erythrocytes. As erythrocytes get older, in storage media as well as in peripheral circulation, they undergo a variety of biochemical changes. In our study, the erythrocytes with different age groups in citrate phosphate dextrose adenine-formula 1 (CPDA-1) storage solution were used in order to investigate the possible effect of gender factor on oxidative damage. Oxidative damage biomarkers in erythrocyte membranes such as ferric reducing antioxidant power, pro-oxidant-antioxidant balance, protein-bound advance glycation end products, and sialic acid were analyzed. Current study reveals that change in membrane redox status during blood-bank storage condition also depends on both gender depended homeostatic factors and the presence of CPDA-1. During the storage period in CPDA-1, erythrocytes from the male donors are mostly affected by free radical-mediated oxidative stress but erythrocytes obtained from females are severely affected by glyoxidative stress.

  8. The prokaryotic FAD synthetase family: a potential drug target.

    PubMed

    Serrano, Ana; Ferreira, Patricia; Martínez-Júlvez, Marta; Medina, Milagros

    2013-01-01

    Disruption of cellular production of the flavin cofactors, flavin adenine mononucleotide (FMN) and flavin adenine dinucleotide(FAD) will prevent the assembly of a large number of flavoproteins and flavoenzymes involved in key metabolic processes in all types of organisms. The enzymes responsible for FMN and FAD production in prokaryotes and eukaryotes exhibit various structural characteristics to catalyze the same chemistry, a fact that converts the prokaryotic FAD synthetase (FADS) in a potential drug target for the development of inhibitors endowed with anti-pathogenic activity. The first step before searching for selective inhibitors of FADS is to understand the structural and functional mechanisms for the riboflavin kinase and FMN adenylyltransferase activities of the prokaryotic enzyme, and particularly to identify their differential functional characteristics with regard to the enzymes performing similar functions in other organisms, particularly humans. In this paper, an overview of the current knowledge of the structure-function relationships in prokaryotic FADS has been presented, as well as of the state of the art in the use of these enzymes as drug targets.

  9. Pre-Incubation of Auric Acid with DNA Is Unnecessary for the Formation of DNA-Templated Gold Nanoclusters.

    PubMed

    Chen, Yang; Tao, Guangyu; Lin, Ruoyun; Pei, Xiaojing; Liu, Feng; Li, Na

    2016-06-06

    The rationale for the preparation of DNA-templated gold nanoclusters (DNA-Au NCs) has not been well understood, thereby slowing down the advancement of the synthesis and applications of DNA-Au NCs. The interaction between metal ions and the DNA template seems to be the key factor for the successful preparation of DNA-templated metal nanoclusters. With the help of circular dichroism in this contribution, we put efforts into interrogating the necessity of pre-incubation of HAuCl4 with poly-adenine template in the formation of Au NCs by citrate reduction. Our results revealed that the pre-incubation of HAuCl4 with poly-adenine is not favorable for the formation of Au NCs, which is distinctly different from the formation process for silver nanoclusters. It is our hope that this study can provide guidance in the preparation of Au NCs with more DNA templates. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. How the CCA-Adding Enzyme Selects Adenine over Cytosine at Position 76 of tRNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B Pan; Y Xiong; T Steitz

    2011-12-31

    CCA-adding enzymes [ATP(CTP):tRNA nucleotidyltransferases] add CCA onto the 3' end of transfer RNA (tRNA) precursors without using a nucleic acid template. Although the mechanism by which cytosine (C) is selected at position 75 of tRNA has been established, the mechanism by which adenine (A) is selected at position 76 remains elusive. Here, we report five cocrystal structures of the enzyme complexed with both a tRNA mimic and nucleoside triphosphates under catalytically active conditions. These structures suggest that adenosine 5'-monophosphate is incorporated onto the A76 position of the tRNA via a carboxylate-assisted, one-metal-ion mechanism with aspartate 110 functioning as a generalmore » base. The discrimination against incorporation of cytidine 5'-triphosphate (CTP) at position 76 arises from improper placement of the {alpha} phosphate of the incoming CTP, which results from the interaction of C with arginine 224 and prevents the nucleophilic attack by the 3' hydroxyl group of cytidine75.« less

  11. Optical biopsy using fluorescence spectroscopy for prostate cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Wu, Binlin; Gao, Xin; Smith, Jason; Bailin, Jacob

    2017-02-01

    Native fluorescence spectra are acquired from fresh normal and cancerous human prostate tissues. The fluorescence data are analyzed using a multivariate analysis algorithm such as non-negative matrix factorization. The nonnegative spectral components are retrieved and attributed to the native fluorophores such as collagen, reduced nicotinamide adenine dinucleotide (NADH), and flavin adenine dinucleotide (FAD) in tissue. The retrieved weights of the components, e.g. NADH and FAD are used to estimate the relative concentrations of the native fluorophores and the redox ratio. A machine learning algorithm such as support vector machine (SVM) is used for classification to distinguish normal and cancerous tissue samples based on either the relative concentrations of NADH and FAD or the redox ratio alone. The classification performance is shown based on statistical measures such as sensitivity, specificity, and accuracy, along with the area under receiver operating characteristic (ROC) curve. A cross validation method such as leave-one-out is used to evaluate the predictive performance of the SVM classifier to avoid bias due to overfitting.

  12. Chemically-modified graphenes for oxidation of DNA bases: analytical parameters.

    PubMed

    Goh, Madeline Shuhua; Bonanni, Alessandra; Ambrosi, Adriano; Sofer, Zdeněk; Pumera, Martin

    2011-11-21

    We studied the electroanalytical performances of chemically-modified graphenes (CMGs) containing different defect densities and amounts of oxygen-containing groups, namely graphite oxide (GPO), graphene oxide (GO), thermally reduced graphene oxide (TR-GO) and electrochemically reduced graphene oxide (ER-GO) by comparing the sensitivity, selectivity, linearity and repeatability towards the oxidation of DNA bases. We have observed that for differential pulse voltammetric (DPV) detection of adenine and cytosine, all CMGs showed enhanced sensitivity to oxidation, while for guanine and thymine, ER-GO and TR-GO exhibited much improved sensitivity over bare glassy carbon (GC) as well as over GPO and GO. There is also significant selectivity enhancement when using GPO for adenine and TR-GO for thymine. Our results have uncovered that the differences in surface functionalities, structure and defects of various CMGs largely influence their electrochemical behaviour in detecting the oxidation of DNA bases. The findings in this report will provide a useful guide for the future development of label-free electrochemical devices for DNA analysis.

  13. DNA bases thymine and adenine in bio-organic light emitting diodes.

    PubMed

    Gomez, Eliot F; Venkatraman, Vishak; Grote, James G; Steckl, Andrew J

    2014-11-24

    We report on the use of nucleic acid bases (NBs) in organic light emitting diodes (OLEDs). NBs are small molecules that are the basic building blocks of the larger DNA polymer. NBs readily thermally evaporate and integrate well into the vacuum deposited OLED fabrication. Adenine (A) and thymine (T) were deposited as electron-blocking/hole-transport layers (EBL/HTL) that resulted in increases in performance over the reference OLED containing the standard EBL material NPB. A-based OLEDs reached a peak current efficiency and luminance performance of 48 cd/A and 93,000 cd/m(2), respectively, while T-based OLEDs had a maximum of 76 cd/A and 132,000 cd/m(2). By comparison, the reference OLED yielded 37 cd/A and 113,000 cd/m(2). The enhanced performance of T-based devices is attributed to a combination of energy levels and structured surface morphology that causes more efficient and controlled hole current transport to the emitting layer.

  14. Mineral catalysis of the formation of the phosphodiester bond in aqueous solution - The possible role of montmorillonite clays

    NASA Technical Reports Server (NTRS)

    Ferris, James P.; Ertem, Gozen; KAMALUDDIN; Agarwal, Vipin; Hua, Lu Lin

    1989-01-01

    The possible role of montmorillonite clays in the spontaneous formation on the primitive earth of the phosphodiester bond in the presence of water was investigated in experiments measuring the binding of various nucleosides and nucleotides with Na(+)-montmorillonite 22A and the reactions of these compounds with a water-soluble carbodiimide. It was found that, at neutral pH, adenine derivatives bind stronger than the corresponding uracil derivatives, consistent with the protonation of the adenine by the acidic clay surface and a cationic binding of the protonated ring to the anionic clay surface. The reaction of the 5-prime-AMP with carbodiimide resulted in the formation of 2-prime,5-prime-pApA (18.9 percent), 3-prime,5-prime-pApA (11 percent), and AppA (4.8 percent). The yields of these oligomers obtained when poly(U) was used in place of the clay were 15.5 percent, 3.7 percent, and 14.9 percent AppA, respectively.

  15. Molecular switching behavior in isosteric DNA base pairs.

    PubMed

    Jissy, A K; Konar, Sukanya; Datta, Ayan

    2013-04-15

    The structures and proton-coupled behavior of adenine-thymine (A-T) and a modified base pair containing a thymine isostere, adenine-difluorotoluene (A-F), are studied in different solvents by dispersion-corrected density functional theory. The stability of the canonical Watson-Crick base pair and the mismatched pair in various solvents with low and high dielectric constants is analyzed. It is demonstrated that A-F base pairing is favored in solvents with low dielectric constant. The stabilization and conformational changes induced by protonation are also analyzed for the natural as well as the mismatched base pair. DNA sequences capable of changing their sequence conformation on protonation are used in the construction of pH-based molecular switches. An acidic medium has a profound influence in stabilizing the isostere base pair. Such a large gain in stability on protonation leads to an interesting pH-controlled molecular switch, which can be incorporated in a natural DNA tract. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Crystal structure of MboIIA methyltransferase.

    PubMed

    Osipiuk, Jerzy; Walsh, Martin A; Joachimiak, Andrzej

    2003-09-15

    DNA methyltransferases (MTases) are sequence-specific enzymes which transfer a methyl group from S-adenosyl-L-methionine (AdoMet) to the amino group of either cytosine or adenine within a recognized DNA sequence. Methylation of a base in a specific DNA sequence protects DNA from nucleolytic cleavage by restriction enzymes recognizing the same DNA sequence. We have determined at 1.74 A resolution the crystal structure of a beta-class DNA MTase MboIIA (M.MboIIA) from the bacterium Moraxella bovis, the smallest DNA MTase determined to date. M.MboIIA methylates the 3' adenine of the pentanucleotide sequence 5'-GAAGA-3'. The protein crystallizes with two molecules in the asymmetric unit which we propose to resemble the dimer when M.MboIIA is not bound to DNA. The overall structure of the enzyme closely resembles that of M.RsrI. However, the cofactor-binding pocket in M.MboIIA forms a closed structure which is in contrast to the open-form structures of other known MTases.

  17. Transcriptional regulation of nicotinamide adenine dinucleotide phosphate: quinone oxidoreductase in murine hepatoma cells by 6-(methylsufinyl)hexyl isothiocyanate, an active principle of wasabi (Eutrema wasabi Maxim).

    PubMed

    Hou, D X; Fukuda, M; Fujii, M; Fuke, Y

    2000-12-20

    Wasabi is a very popular pungent spice in Japan. This study examined the ability of 6-(methylsufinyl)hexyl isothiocyanate (6-MITC), an active principle of wasabi, to induce the cellular expression of nicotinamide adenine dinucleotide phosphate: quinone oxidoreductase (QR) in Hepa 1c1c7 cells. The cells were treated with various concentrations of 6-MITC, and were then assessed for cell growth, QR activity and QR mRNA expression. The induction of QR activity and QR mRNA expression was time- and dose-responsive over a narrow range of 0.1-5 microM, with declining induction at higher concentrations due to cell toxicity. Furthermore, transfection studies demonstrated that the induction of transcription of the QR gene by 6-MITC involved an antioxidant/electrophile-responsive element (ARE/EpRE) activation. Our results suggest a novel mechanism by which dietary wasabi 6-MITC may be implicated in cancer chemoprevention.

  18. Studies related to primitive chemistry. A proton and nitrogen-14 nuclear magnetic resonance amino acid and nucleic acid constituents and a and their possible relation to prebiotic

    NASA Technical Reports Server (NTRS)

    Manatt, S. L.; Cohen, E. A.; Shiller, A. M.; Chan, S. I.

    1973-01-01

    Preliminary proton nuclear magnetic resonance (NMR) studies were made to determine the applicability of this technique for the study of interactions between monomeric and polymeric amino acids with monomeric nucleic acid bases and nucleotides. Proton NMR results for aqueous solutions (D2O) demonstrated interactions between the bases cytosine and adenine and acidic and aromatic amino acids. Solutions of 5'-AMP admixed with amino acids exhibited more complex behavior but stacking between aromatic rings and destacking at high amino acids concentration was evident. The multisite nature of 5'-AMP was pointed out. Chemical shift changes for adenine and 5'-AMP with three water soluble polypeptides demonstrated that significant interactions exist. It was found that the linewidth-pH profile of each amino acid is unique. It is concluded that NMR techniques can give significant and quantitative data on the association of amino acid and nucleic acid constituents.

  19. The photolytic degradation and oxidation of organic compounds under simulated Martian conditions.

    PubMed

    Oró, J; Holzer, G

    1979-12-01

    Cosmochemical considerations suggest various potential sources for the accumulation of organic matter on Mars. However the Viking Molecular Analysis did not indicate any indigenous organic compounds on the surface of Mars. Their disappearance from the top layer is most likely caused by the combined action of the high solar radiation flux and various oxidizing species in the substances and a sample of the Murchison meteorite was tested under simulated Martian conditions. After adsorption on powdered quartz, samples of adenine, glycine and naphthalene were irradiated with UV light at various oxygen concentrations and exposure times. In the absence of oxygen, adenine and glycine appeared stable over the given irradiation period, whereas a definite loss was observed in the case of naphthalene, as well as in the volatilizable and pyrozable content of the Murchison meteroite. The presence of oxygen during UV exposure caused a significant increase in the degradation rate of all samples. It is likely that similar processes have led to the destruction of organic materials on the surface of Mars.

  20. Immobilization of flavin adenine dinucleotide (FAD) onto carbon cloth and its application as working electrode in an electroenzymatic bioreactor.

    PubMed

    Jayabalan, R; Sathishkumar, M; Jeong, E S; Mun, S P; Yun, S E

    2012-11-01

    A high porosity carbon cloth with immobilized FAD was employed as working electrode in electrochemical NADH-regeneration procedure. Carbon cloth was oxidized with hot acids to create surface carboxyl group and then coupled by adenine amino group of FAD with carbodiimide in the presence of N-hydroxysulfosuccinimide. The bioelectrocatalytic NADH-regeneration was coupled to the conversion of achiral substrate pyruvate into chiral product l-lactate by l-lactate dehydrogenase (l-LDH) within the same reactor. The conversion was completed at 96h in bioreactor with FAD-modified carbon cloth, resulting in about 6mM of l-lactate from 10mM of pyruvate. While with bare carbon cloth, the yield at 120h was around 5mM. Immobilized FAD on the surface of carbon cloth electrode facilitated it to carry electrons from electrode to electron transfer enzymes; thereby NADH-regeneration was accelerated to drive the enzymatic reaction efficiently. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Flow-injection analysis with electrochemical detection of reduced nicotinamide adenine dinucleotide using 2,6-dichloroindophenol as a redox coupling agent.

    PubMed

    Tang, H T; Hajizadeh, K; Halsall, H B; Heineman, W R

    1991-01-01

    The determination of reduced nicotinamide adenine dinucleotide (NADH) by electrochemical oxidation requires a more positive potential than is predicted by the formal reduction potential for the NAD+/NADH couple. This problem is alleviated by use of 2,6-dichloroindophenol (DCIP) as a redox coupling agent for NADH. The electrochemical characteristics of DCIP at the glassy carbon electrode are examined by cyclic voltammetry and hydrodynamic voltammetry. NADH is determined by reaction with DCIP to form NAD+ and DCIPH2. DCIPH2 is then quantitated by flow-injection analysis with electrochemical detection by oxidation at a detector potential of +0.25 V at pH 7. NADH is determined over a linear range of 0.5 to 200 microM and with a detection limit of 0.38 microM. The lower detection potential for DCIPH2 compared to NADH helps to minimize interference from oxidizable components in serum samples.

  2. Application of Negative Curvature Hollow-Core Fiber in an Optical Fiber Sensor Setup for Multiphoton Spectroscopy

    PubMed Central

    Stawska, Hanna Izabela; Mazur, Leszek Mateusz; Kosolapov, Alexey; Kolyadin, Anton; Bereś-Pawlik, Elżbieta

    2017-01-01

    In this paper, an application of negative curvature hollow core fiber (NCHCF) in an all-fiber, multiphoton fluorescence sensor setup is presented. The dispersion parameter (D) of this fiber does not exceed the value of 5 ps/nm × km across the optical spectrum of (680–750) nm, making it well suited for the purpose of multiphoton excitation of biological fluorophores. Employing 1.5 m of this fiber in a simple, all-fiber sensor setup allows us to perform multiphoton experiments without any dispersion compensation methods. Multiphoton excitation of nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) with this fiber shows a 6- and 9-fold increase, respectively, in the total fluorescence signal collected when compared with the commercial solution in the form of a hollow-core photonic band gap fiber (HCPBF). To the author’s best knowledge, this is the first time an NCHCF was used in an optical-fiber sensor setup for multiphoton fluorescence experiments. PMID:28984838

  3. Simultaneous quantitation of nicotinamide riboside, nicotinamide mononucleotide and nicotinamide adenine dinucleotide in milk by a novel enzyme-coupled assay.

    PubMed

    Ummarino, Simone; Mozzon, Massimo; Zamporlini, Federica; Amici, Adolfo; Mazzola, Francesca; Orsomando, Giuseppe; Ruggieri, Silverio; Raffaelli, Nadia

    2017-04-15

    Nicotinamide riboside, the most recently discovered form of vitamin B3, and its phosphorylated form nicotinamide mononucleotide, have been shown to be potent supplements boosting intracellular nicotinamide adenine dinucleotide (NAD) levels, thus preventing or ameliorating metabolic and mitochondrial diseases in mouse models. Here we report for the first time on the simultaneous quantitation of nicotinamide riboside, nicotinamide mononucleotide and NAD in milk by means of a fluorometric, enzyme-coupled assay. Application of this assay to milk from different species revealed that the three vitamers were present in human and donkey milk, while being selectively distributed in the other milks. Human milk was the richest source of nicotinamide mononucleotide. Overall, the three vitamers accounted for a significant fraction of total vitamin B3 content. Pasteurization did not affect the bovine milk content of nicotinamide riboside, whereas UHT processing fully destroyed the vitamin. In human milk, NAD levels were significantly affected by the lactation time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Cation Exchange Strategy for the Encapsulation of a Photoactive CO-Releasing Organometallic Molecule into Anionic Porous Frameworks.

    PubMed

    Carmona, Francisco J; Rojas, Sara; Sánchez, Purificación; Jeremias, Hélia; Marques, Ana R; Romão, Carlos C; Choquesillo-Lazarte, Duane; Navarro, Jorge A R; Maldonado, Carmen R; Barea, Elisa

    2016-07-05

    The encapsulation of the photoactive, nontoxic, water-soluble, and air-stable cationic CORM [Mn(tacn)(CO)3]Br (tacn = 1,4,7-triazacyclononane) in different inorganic porous matrixes, namely, the metalorganic framework bio-MOF-1, (NH2(CH3)2)2[Zn8(adeninate)4(BPDC)6]·8DMF·11H2O (BPDC = 4,4'-biphenyldicarboxylate), and the functionalized mesoporous silicas MCM-41-SO3H and SBA-15-SO3H, is achieved by a cation exchange strategy. The CO release from these loaded materials, under simulated physiological conditions, is triggered by visible light. The results show that the silica matrixes, which are unaltered under physiological conditions, slow the kinetics of CO release, allowing a more controlled CO supply. In contrast, bio-MOF-1 instability leads to the complete leaching of the CORM. Nevertheless, the degradation of the MOF matrix gives rise to an enhanced CO release rate, which is related to the presence of free adenine in the solution.

  5. Isotope effect studies of the chemical mechanism of nicotinamide adenine dinucleotide malic enzyme from Crassula

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grissom, C.B.; Willeford, O.; Wedding, R.T.

    1987-05-05

    The /sup 13/C primary kinetic isotope effect on the decarboxylation of malate by nicotinamide adenine dinucleotide malic enzyme from Crassula argentea is 1.0199 +/- 0.0006 with proteo L-malate-2-H and 1.0162 +/- 0.0003 with malate-2-d. The primary deuterium isotope effect is 1.45 +/- 0.10 on V/K and 1.93 +/- 0.13 on V/sub max/. This indicates a stepwise conversion of malate to pyruvate and CO/sub 2/ with hydride transfer preceding decarboxylation, thereby suggesting a discrete oxaloacetate intermediate. This is in agreement with the stepwise nature of the chemical mechanism of other malic enzymes despite the Crassula enzyme's inability to reduce or decarboxylatemore » oxaloacetate. Differences in morphology and allosteric regulation between enzymes suggest specialization of the Crassula malic enzyme for the physiology of crassulacean and acid metabolism while maintaining the catalytic events founds in malic enzymes from animal sources.« less

  6. Application of Negative Curvature Hollow-Core Fiber in an Optical Fiber Sensor Setup for Multiphoton Spectroscopy.

    PubMed

    Popenda, Maciej Andrzej; Stawska, Hanna Izabela; Mazur, Leszek Mateusz; Jakubowski, Konrad; Kosolapov, Alexey; Kolyadin, Anton; Bereś-Pawlik, Elżbieta

    2017-10-06

    In this paper, an application of negative curvature hollow core fiber (NCHCF) in an all-fiber, multiphoton fluorescence sensor setup is presented. The dispersion parameter (D) of this fiber does not exceed the value of 5 ps/nm × km across the optical spectrum of (680-750) nm, making it well suited for the purpose of multiphoton excitation of biological fluorophores. Employing 1.5 m of this fiber in a simple, all-fiber sensor setup allows us to perform multiphoton experiments without any dispersion compensation methods. Multiphoton excitation of nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) with this fiber shows a 6- and 9-fold increase, respectively, in the total fluorescence signal collected when compared with the commercial solution in the form of a hollow-core photonic band gap fiber (HCPBF). To the author's best knowledge, this is the first time an NCHCF was used in an optical-fiber sensor setup for multiphoton fluorescence experiments.

  7. Effect of Microcystin-LR on Cultured Rat Endothelial Cells

    DTIC Science & Technology

    1989-01-10

    changes, as indicated bv the release of (14C]adenine nucleotides, and a small reduction of cell devsity in entlothelial cell monolayers. Silymarin at...oxidants, dithioerythritol (DTE) (CLELAND, 1964), or silymarin (SM) (FRAGA et al., 1987), in order to determine if these agents could prevent changes

  8. Mutant tristetraprolin: a potent inhibitor of malignant glioma cell growth

    USDA-ARS?s Scientific Manuscript database

    Malignant gliomas rely on the production of certain critical growth factors including VEGF, interleukin (IL)-6 and IL-8, to fuel rapid tumor growth, angiogenesis, and treatment resistance. Post-transcriptional regulation through adenine and uridine-rich elements of the 3' untranslated region is one ...

  9. 2,6-Diaminopurine to TNA: Effect on Duplex Stabilities and on the Efficiency of Template-Controlled Ligations

    NASA Technical Reports Server (NTRS)

    Wu, Xiaolin; Delgado, Guillermo; Krishnamurthy, Ramanarayanan; Eschenmoser, Albert

    2003-01-01

    Replacement of adenine by 2,6-diaminopurine-two nucleobases to be considered equivalent from an etlological point of view-strongly enhances the stability of TNA/TNA, TNA/RNA, or TNA/DNA duplexes and efficiently accelerates template-directed ligation of TNA ligands.

  10. A Quantitative in Vitro Assay for Chemical Mosquito-Deterrent Activity Without Human Blood Cells

    DTIC Science & Technology

    2008-12-01

    centrifugation of whole blood, removal of plasma, and suspension of the cells in citrate-phosphate-dextrose-adenine (CPDA-1), an anticoagulant preservative (AABB...Cantrell CL, Klun JA, Kramer M. 2007. Repellency of two terpenoid compounds isolated from Callicarpa americana ( Lamiaceae ) against Ixo- des scapularis and

  11. Computational mechanistic investigation of radiation damage of adenine induced by hydroxyl radicals

    NASA Astrophysics Data System (ADS)

    Tan, Rongri; Liu, Huixuan; Xun, Damao; Zong, Wenjun

    2018-02-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11564015 and 61404062), the Research Fund for the Doctoral Program of China (Grant No. 3000990110), and the Fund for Distinguished Young Scholars of Jiangxi Science & Technology Normal University (Grant Nos. 2015QNBJRC002 and 2016QNBJRC006).

  12. Saccharomyces cerevisiae engineered for xylose metabolism requires gluconeogenesis and the oxidative branch of the pentose phosphate pathway for aerobic xylose assimilation

    USDA-ARS?s Scientific Manuscript database

    Saccharomyces strains engineered to ferment xylose using Scheffersomyces stipitis xylose reductase (XR) and xylitol dehydrogenase (XDH) genes appear to be limited by metabolic imbalances due to differing cofactor specificities of XR and XDH. The S. stipitis XR, which uses nicotinamide adenine dinucl...

  13. Rapid detection of ssDNA and RNA using multi-walled carbon nanotubes modified screen-printed carbon electrode.

    PubMed

    Ye, Yongkang; Ju, Huangxian

    2005-11-15

    A method for rapid sensitive detection of DNA or RNA was designed using a composite screen-printed carbon electrode modified with multi-walled carbon nanotubes (MWNTs). MWNTs showed catalytic characteristics for the direct electrochemical oxidation of guanine or adenine residues of signal strand DNA (ssDNA) and adenine residues of RNA, leading to indicator-free detection of ssDNA and RNA concentrations. With an accumulation time of 5 min, the proposed method could be used for detection of calf thymus ssDNA ranging from 17.0 to 345 microg ml(-1) with a detection limit of 2.0 microg ml(-1) at 3 sigma and yeast tRNA ranging from 8.2 microg ml(-1) to 4.1 mg ml(-1). AC impedance was employed to characterize the surface of modified electrodes. The advantages of convenient fabrication, low-cost detection, short analysis time and combination with nanotechnology for increasing the sensitivity made the subject worthy of special emphasis in the research programs and sources of new commercial products.

  14. The role of free radicals in cold injuries

    NASA Astrophysics Data System (ADS)

    Bhaumik, G.; Srivastava, K. K.; Selvamurthy, W.; Purkayastha, S. S.

    1995-12-01

    Cold injury is a tissue trauma produced by exposure to freezing temperatures and even brief exposure to a severely cold and windy environment. Rewarming of frozen tissue is associated with blood reperfusion and the simultaneous generation of free oxygen radicals. In this review is discussed the current understanding of the mechanism of action of free oxygen radicals as related to cold injury during rewarming. Decreased energy stores during ischaemia lead to the accumulation of adenine nucleotides and liberation of free fatty acids due to the breakdown of lipid membranes. On rewarming, free fatty acids are metabolized via cyclo-oxygenase and adenine nucleotides are metabolized via the xanthine oxidase pathway. These may be the source of free oxygen radicals. Leukocytes may also play a major role in the pathogenesis of cold injury. Oxygen radical scavengers, such as superoxide dismutase and catalase, may help to reduce the cold induced injury but their action is limited due to the inability readily to cross the plasma membrane. Lipid soluble antioxidants are likely to be more effective scavengers because of their presence in membranes where peroxidative reactions can be arrested.

  15. Mutations in valosin-containing protein (VCP) decrease ADP/ATP translocation across the mitochondrial membrane and impair energy metabolism in human neurons

    PubMed Central

    Arber, Charles; Bartolome, Fernando; de Vicente, Macarena; Houlden, Henry

    2017-01-01

    Mutations in the gene encoding valosin-containing protein (VCP) lead to multisystem proteinopathies including frontotemporal dementia. We have previously shown that patient-derived VCP mutant fibroblasts exhibit lower mitochondrial membrane potential, uncoupled respiration, and reduced ATP levels. This study addresses the underlying basis for mitochondrial uncoupling using VCP knockdown neuroblastoma cell lines, induced pluripotent stem cells (iPSCs), and iPSC-derived cortical neurons from patients with pathogenic mutations in VCP. Using fluorescent live cell imaging and respiration analysis we demonstrate a VCP mutation/knockdown-induced dysregulation in the adenine nucleotide translocase, which results in a slower rate of ADP or ATP translocation across the mitochondrial membranes. This deregulation can explain the mitochondrial uncoupling and lower ATP levels in VCP mutation-bearing neurons via reduced ADP availability for ATP synthesis. This study provides evidence for a role of adenine nucleotide translocase in the mechanism underlying altered mitochondrial function in VCP-related degeneration, and this new insight may inform efforts to better understand and manage neurodegenerative disease and other proteinopathies. PMID:28360103

  16. The Importance of Electron Correlation on Stacking Interaction of Adenine-Thymine Base-Pair Step in B-DNA: A Quantum Monte Carlo Study.

    PubMed

    Hongo, Kenta; Cuong, Nguyen Thanh; Maezono, Ryo

    2013-02-12

    We report fixed-node diffusion Monte Carlo (DMC) calculations of stacking interaction energy between two adenine(A)-thymine(T) base pairs in B-DNA (AA:TT), for which reference data are available, obtained from a complete basis set estimate of CCSD(T) (coupled-cluster with singles, doubles, and perturbative triples). We consider four sets of nodal surfaces obtained from self-consistent field calculations and examine how the different nodal surfaces affect the DMC potential energy curves of the AA:TT molecule and the resulting stacking energies. We find that the DMC potential energy curves using the different nodes look similar to each other as a whole. We also benchmark the performance of various quantum chemistry methods, including Hartree-Fock (HF) theory, second-order Møller-Plesset perturbation theory (MP2), and density functional theory (DFT). The DMC and recently developed DFT results of the stacking energy reasonably agree with the reference, while the HF, MP2, and conventional DFT methods give unsatisfactory results.

  17. Effective immobilization of alcohol dehydrogenase on carbon nanoscaffolds for ethanol biofuel cell.

    PubMed

    Umasankar, Yogeswaran; Adhikari, Bal-Ram; Chen, Aicheng

    2017-12-01

    An efficient approach for immobilizing alcohol dehydrogenase (ADH) while enhancing its electron transfer ability has been developed using poly(2-(trimethylamino)ethyl methacrylate) (MADQUAT) cationic polymer and carbon nanoscaffolds. The carbon nanoscaffolds were comprised of single-walled carbon nanotubes (SWCNTs) wrapped with reduced graphene oxide (rGO). The ADH entrapped within the MADQUAT that was present on the carbon nanoscaffolds exhibited a high electron exchange capability with the electrode through its cofactor β-nicotinamide adenine dinucleotide hydrate and β-nicotinamide adenine dinucleotide reduced disodium salt hydrate (NAD + /NADH) redox reaction. The advantages of the carbon nanoscaffolds used as the support matrix and the MADQUAT employed for the entrapment of ADH versus physisorption were demonstrated via cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Our experimental results showed a higher electron transfer, electrocatalytic activity, and rate constant for MADQUAT entrapped ADH on the carbon nanoscaffolds. The immobilization of ADH using both MADQUAT and carbon nanoscaffolds exhibited strong potential for the development of an efficient bio-anode for ethanol powered biofuel cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Adenine nucleotide translocator promotes oxidative phosphorylation and mild uncoupling in mitochondria after dexamethasone treatment.

    PubMed

    Arvier, Matthieu; Lagoutte, Laëtitia; Johnson, Gyasi; Dumas, Jean-François; Sion, Benoit; Grizard, Genevieve; Malthièry, Yves; Simard, Gilles; Ritz, Patrick

    2007-11-01

    The composition of the mitochondrial inner membrane and uncoupling protein [such as adenine nucleotide translocator (ANT)] contents are the main factors involved in the energy-wasting proton leak. This leak is increased by glucocorticoid treatment under nonphosphorylating conditions. The aim of this study was to investigate mechanisms involved in glucocorticoid-induced proton leak and to evaluate the consequences in more physiological conditions (between states 4 and 3). Isolated liver mitochondria, obtained from dexamethasone-treated rats (1.5 mg.kg(-1).day(-1)), were studied by polarography, Western blotting, and high-performance thin-layer chromatography. We confirmed that dexamethasone treatment in rats induces a proton leak in state 4 that is associated with an increased ANT content, although without any change in membrane surface or lipid composition. Between states 4 and 3, dexamethasone stimulates ATP synthesis by increasing both the mitochondrial ANT and F1-F0 ATP synthase content. In conclusion, dexamethasone increases mitochondrial capacity to generate ATP by modifying ANT and ATP synthase. The side effect is an increased leak in nonphosphorylating conditions.

  19. Poly-adenine-mediated fluorescent spherical nucleic acid probes for live-cell imaging of endogenous tumor-related mRNA.

    PubMed

    Zhu, Dan; Zhao, Dongxia; Huang, Jiaxuan; Zhu, Yu; Chao, Jie; Su, Shao; Li, Jiang; Wang, Lihua; Shi, Jiye; Zuo, Xiaolei; Weng, Lixing; Li, Qian; Wang, Lianhui

    2018-05-16

    Identification of tumor-related mRNA in living cells hold great promise for early cancer diagnosis and pathological research. Herein, we present poly-adenine (polyA)-mediated fluorescent spherical nucleic acid (FSNA) probes for intracellular mRNA detection with regulable sensitivities by programmably adjusting the loading density of DNA on gold nano-interface. Gold nanoparticles (AuNPs) functionalized with polyA-tailed recognition sequences were hybridized to fluorescent "reporter" strands to fabricate fluorescence-quenched FSNA probes. While exposed to target gene, the "reporter" strands were released from FSNA through strand displacement and fluorescence was recovered. With polyA20 tail as the attaching block, the detection limit of FSNA probes was calculated to be 0.31 nM, which is ~55 fold lower than that of thiolated probes without surface density regulation. Quantitative intracellular mRNA detection and imaging could be achieved with polyA-mediated FSNA probes within 2 hours, indicating their application potential in rapid and sensitive intracellular target imaging. Copyright © 2018. Published by Elsevier Inc.

  20. First indications demonstrating the preventive effects of NZ-419, a novel intrinsic antioxidant, on the initiation and/or progression of chronic renal failure in rats.

    PubMed

    Ienaga, Kazuharu; Mikami, Hiroki; Yokozawa, Takako

    2009-07-01

    The concentration of NZ-419 (5-hydroxy-1-methylimidazolidine-2,4-dione), an intrinsic antioxidant, has been shown to increase in the sera of animals and patients with chronic renal failure (CRF). This is the first report that orally administered exogenous NZ-419 prevents the initiation and/or progression of CRF in rats using an adenine-loaded model. After 24 d of adenine loading, there was a ca. 90% decrease in creatinine clearance (C(Cr)) in the control rats. Treatment with NZ-419 from the beginning significantly inhibited the decrease in C(Cr) and also the increase in serum creatinine (sCr). Bio-markers for in vivo hydroxyl radicals, the serum methylguanidine (sMG) level, and sMG/sCr molar ratio, not only in serum but also in the urine, kidney, liver, and muscle indicated that NZ-419 inhibited the increase in oxidative stress induced by CRF in rats. An increase of guanidinosuccinic acid, an another bio-marker of oxidative stress, was also inhibited with NZ-419.

  1. Fluorescence spectroscopy using excitation and emission matrix for quantification of tissue native fluorophores and cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Wu, Binlin; Gayen, S. K.; Xu, M.

    2014-03-01

    Native fluorescence spectrum of normal and cancerous human prostate tissues is studied to distinguish between normal and cancerous tissues, and cancerous tissues at different cancer grade. The tissue samples were obtained from Cooperative Human Tissue Network (CHTN) and National Disease Research Interchange(NDRI). An excitation and emission matrix (EEM) was generated for each tissue sample by acquiring native fluorescence spectrum of the sample using multiple excitation wavelengths. The non-negative matrix factorization algorithm was used to generate fluorescence EEMs that correspond to the fluorophores in biological tissues, including tryptophan, collagen, elastin, nicotinamide adenine dinucleotide (NADH), flavin adenine dinucleotide (FAD) and the background paraffin. We hypothesize that, as a consequence of metabolic changes associated with the development of cancer, the concentrations of NADH and FAD are different in normal and cancerous tissues, and also different for different cancer grades. We used the ratio of the abundances of FAD and NADH to distinguish between normal and cancerous tissues, and the tissue cancer grade. The FAD-to-NADH ratio was found to be the highest for normal tissue and decreased as the cancer grade increased.

  2. Solvent effect on the intermolecular proton transfer of the Watson and Crick guanine-cytosine and adenine-thymine base pairs: a polarizable continuum model study.

    PubMed

    Romero, Eduardo E; Hernandez, Florencio E

    2018-01-03

    Herein we present our results on the study of the double proton transfer (DPT) mechanism in the adenine-thymine (AT) and guanine-cytosine (GC) base pairs, both in gas phase and in solution. The latter was modeled using the polarizable continuum method (PCM) in different solvents. According to our DFT calculations, the DPT may occur for both complexes in a stepwise mechanism in condensate phase. In gas phase only the GC base pair exhibits a concerted DPT mechanism. Using the Wigner's tunneling corrections to the transition state theory we demonstrate that such corrections are important for the prediction of the rate constants of both systems in gas and in condensate phase. We also show that (i) as the polarity of the medium decreases the equilibrium constant of the DPT reaction increases in both complexes, and (ii) that the equilibrium constant in the GC complex is four orders of magnitude larger than in AT. This observation suggests that the spontaneous mutations in DNA base pairs are more probable in GC than in AT.

  3. High-fidelity in vivo replication of DNA base shape mimics without Watson–Crick hydrogen bonds

    PubMed Central

    Delaney, James C.; Henderson, Paul T.; Helquist, Sandra A.; Morales, Juan C.; Essigmann, John M.; Kool, Eric T.

    2003-01-01

    We report studies testing the importance of Watson–Crick hydrogen bonding, base-pair geometry, and steric effects during DNA replication in living bacterial cells. Nonpolar DNA base shape mimics of thymine and adenine (abbreviated F and Q, respectively) were introduced into Escherichia coli by insertion into a phage genome followed by transfection of the vector into bacteria. Genetic assays showed that these two base mimics were bypassed with moderate to high efficiency in the cells and with very high efficiency under damage-response (SOS induction) conditions. Under both sets of conditions, the T-shape mimic (F) encoded genetic information in the bacteria as if it were thymine, directing incorporation of adenine opposite it with high fidelity. Similarly, the A mimic (Q) directed incorporation of thymine opposite itself with high fidelity. The data establish that Watson–Crick hydrogen bonding is not necessary for high-fidelity replication of a base pair in vivo. The results suggest that recognition of DNA base shape alone serves as the most powerful determinant of fidelity during transfer of genetic information in a living organism. PMID:12676985

  4. Correlating two-photon excited fluorescence imaging of breast cancer cellular redox state with seahorse flux analysis of normalized cellular oxygen consumption

    NASA Astrophysics Data System (ADS)

    Hou, Jue; Wright, Heather J.; Chan, Nicole; Tran, Richard; Razorenova, Olga V.; Potma, Eric O.; Tromberg, Bruce J.

    2016-06-01

    Two-photon excited fluorescence (TPEF) imaging of the cellular cofactors nicotinamide adenine dinucleotide and oxidized flavin adenine dinucleotide is widely used to measure cellular metabolism, both in normal and pathological cells and tissues. When dual-wavelength excitation is used, ratiometric TPEF imaging of the intrinsic cofactor fluorescence provides a metabolic index of cells-the "optical redox ratio" (ORR). With increased interest in understanding and controlling cellular metabolism in cancer, there is a need to evaluate the performance of ORR in malignant cells. We compare TPEF metabolic imaging with seahorse flux analysis of cellular oxygen consumption in two different breast cancer cell lines (MCF-7 and MDA-MB-231). We monitor metabolic index in living cells under both normal culture conditions and, for MCF-7, in response to cell respiration inhibitors and uncouplers. We observe a significant correlation between the TPEF-derived ORR and the flux analyzer measurements (R=0.7901, p<0.001). Our results confirm that the ORR is a valid dynamic index of cell metabolism under a range of oxygen consumption conditions relevant for cancer imaging.

  5. Effect of ethanol on metabolism of purine bases (hypoxanthine, xanthine, and uric acid).

    PubMed

    Yamamoto, Tetsuya; Moriwaki, Yuji; Takahashi, Sumio

    2005-06-01

    There are many factors that contribute to hyperuricemia, including obesity, insulin resistance, alcohol consumption, diuretic use, hypertension, renal insufficiency, genetic makeup, etc. Of these, alcohol (ethanol) is the most important. Ethanol enhances adenine nucleotide degradation and increases lactic acid level in blood, leading to hyperuricemia. In beer, purines also contribute to an increase in plasma uric acid. Although rare, dehydration and ketoacidosis (due to ethanol ingestion) are associated with the ethanol-induced increase in serum uric acid levels. Ethanol also increases the plasma concentrations and urinary excretion of hypoxanthine and xanthine via the acceleration of adenine nucleotide degradation and a possible weak inhibition of xanthine dehydrogenase activity. Since many factors such as the ALDH2*1 gene and ADH2*2 gene, daily drinking habits, exercise, and dehydration enhance the increase in plasma concentration of uric acid induced by ethanol, it is important to pay attention to these factors, as well as ingested ethanol volume, type of alcoholic beverage, and the administration of anti-hyperuricemic agents, to prevent and treat ethanol-induced hyperuricemia.

  6. Two new mutations in the 3' coding region of the glycogen debranching enzyme in a glycogen storage disease type IIIa Ashkenazi Jewish patient.

    PubMed

    Parvari, R; Shen, J; Hershkovitz, E; Chen, Y T; Moses, S W

    1998-04-01

    Glycogen storage disease type III (GSD III) is an autosomal recessive disease caused by the deficiency of glycogen debranching enzyme (AGL). We report the finding of two new mutations in a GSD IIIa Ashkenazi Jewish patient. Both mutations are insertion of an adenine into a stretch of 8 adenines towards the 3' end of the coding region, one at position 3904 (3904insA) in exon 30, the second at position 4214 (4214insA) in exon 32. The mutations cause frameshifts and premature terminations of the glycogen debranching enzyme, the first causing a frameshift at amino acid 1304, the second causing a frameshift at amino acid 1408 of the total of 1532. These mutations demonstrate the importance of the 125 amino acids at the carboxy-terminus of the debrancher enzyme for its activity and support the suggestion that the putative glycogen binding domain is located in the carboxy-terminus of the AGL. The mutations cause distinctive single-strand conformation polymorphism (SSCP) patterns enabling easy detection.

  7. How the CCA-Adding Enzyme Selects Adenine over Cytosine at Position 76 of tRNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Baocheng; Xiong, Yong; Steitz, Thomas A.

    2010-11-22

    CCA-adding enzymes [ATP(CTP):tRNA nucleotidyltransferases] add CCA onto the 3{prime} end of transfer RNA (tRNA) precursors without using a nucleic acid template. Although the mechanism by which cytosine (C) is selected at position 75 of tRNA has been established, the mechanism by which adenine (A) is selected at position 76 remains elusive. Here, we report five cocrystal structures of the enzyme complexed with both a tRNA mimic and nucleoside triphosphates under catalytically active conditions. These structures suggest that adenosine 5{prime}-monophosphate is incorporated onto the A76 position of the tRNA via a carboxylate-assisted, one-metal-ion mechanism with aspartate 110 functioning as a generalmore » base. The discrimination against incorporation of cytidine 5{prime}-triphosphate (CTP) at position 76 arises from improper placement of the {alpha} phosphate of the incoming CTP, which results from the interaction of C with arginine 224 and prevents the nucleophilic attack by the 3{prime} hydroxyl group of cytidine75.« less

  8. Crystal structure of MboIIA methyltransferase.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osipiuk, J.; Walsh, M. A.; Joachimiak, A.

    2003-09-15

    DNA methyltransferases (MTases) are sequence-specific enzymes which transfer a methyl group from S-adenosyl-L-methionine (AdoMet) to the amino group of either cytosine or adenine within a recognized DNA sequence. Methylation of a base in a specific DNA sequence protects DNA from nucleolytic cleavage by restriction enzymes recognizing the same DNA sequence. We have determined at 1.74 {angstrom} resolution the crystal structure of a {beta}-class DNA MTase MboIIA (M {center_dot} MboIIA) from the bacterium Moraxella bovis, the smallest DNA MTase determined to date. M {center_dot} MboIIA methylates the 3' adenine of the pentanucleotide sequence 5'-GAAGA-3'. The protein crystallizes with two molecules inmore » the asymmetric unit which we propose to resemble the dimer when M {center_dot} MboIIA is not bound to DNA. The overall structure of the enzyme closely resembles that of M {center_dot} RsrI. However, the cofactor-binding pocket in M {center_dot} MboIIA forms a closed structure which is in contrast to the open-form structures of other known MTases.« less

  9. Anhydrous crystals of DNA bases are wide gap semiconductors.

    PubMed

    Maia, F F; Freire, V N; Caetano, E W S; Azevedo, D L; Sales, F A M; Albuquerque, E L

    2011-05-07

    We present the structural, electronic, and optical properties of anhydrous crystals of DNA nucleobases (guanine, adenine, cytosine, and thymine) found after DFT (Density Functional Theory) calculations within the local density approximation, as well as experimental measurements of optical absorption for powders of these crystals. Guanine and cytosine (adenine and thymine) anhydrous crystals are predicted from the DFT simulations to be direct (indirect) band gap semiconductors, with values 2.68 eV and 3.30 eV (2.83 eV and 3.22 eV), respectively, while the experimentally estimated band gaps we have measured are 3.83 eV and 3.84 eV (3.89 eV and 4.07 eV), in the same order. The electronic effective masses we have obtained at band extremes show that, at low temperatures, these crystals behave like wide gap semiconductors for electrons moving along the nucleobases stacking direction, while the hole transport are somewhat limited. Lastly, the calculated electronic dielectric functions of DNA nucleobases crystals in the parallel and perpendicular directions to the stacking planes exhibit a high degree of anisotropy (except cytosine), in agreement with published experimental results.

  10. SYNTHESIS AND ANTIVIRAL EVALUATION OF 9-(S)-[3-ALKOXY-2-(PHOSPHONOMETHOXY)PROPYL]NUCLEOSIDE ALKOXYALKYL ESTERS: INHIBITORS OF HEPATITIS C VIRUS AND HIV-1 REPLICATION

    PubMed Central

    Valiaeva, Nadejda; Wyles, David L.; Schooley, Robert T.; Hwu, Julia B.; Beadle, James R.; Prichard, Mark N.

    2011-01-01

    We reported previously that octadecyloxyethyl 9-(S)-[3-hydroxy-2-(phosphonomethoxy)-propyl]adenine (ODE-(S)-HPMPA) was active against genotype 1b and 2a hepatitis C virus (HCV) replicons. This is surprising because acyclic nucleoside phosphonates have been regarded as having antiviral activity only against double stranded DNA viruses, HIV and HBV. We synthesized octadecyloxyethyl 9-(S)-[3-methoxy-2-(phosphonomethoxy)propyl]-adenine and found it to be active in genotype 1b and 2a HCV replicons with EC50 values of 1-2 μM and a CC50 of>150 μM. Analogs with substitutions at the 3′-hydroxyl larger than methyl or ethyl, or with other purine bases were less active but most compounds had significant antiviral activity against HIV-1 in vitro. The most active anti-HIV compound was octadecyloxyethyl 9-(R)-[3-methoxy-2-(phosphonomethoxy)propyl]guanine with an EC50 <0.01 nanomolar and a selectivity index of>4.4 million. PMID:21719300

  11. Genome-scale metabolic network of Cordyceps militaris useful for comparative analysis of entomopathogenic fungi.

    PubMed

    Vongsangnak, Wanwipa; Raethong, Nachon; Mujchariyakul, Warasinee; Nguyen, Nam Ninh; Leong, Hon Wai; Laoteng, Kobkul

    2017-08-30

    The first genome-scale metabolic network of Cordyceps militaris (iWV1170) was constructed representing its whole metabolisms, which consisted of 894 metabolites and 1,267 metabolic reactions across five compartments, including the plasma membrane, cytoplasm, mitochondria, peroxisome and extracellular space. The iWV1170 could be exploited to explain its phenotypes of growth ability, cordycepin and other metabolites production on various substrates. A high number of genes encoding extracellular enzymes for degradation of complex carbohydrates, lipids and proteins were existed in C. militaris genome. By comparative genome-scale analysis, the adenine metabolic pathway towards putative cordycepin biosynthesis was reconstructed, indicating their evolutionary relationships across eleven species of entomopathogenic fungi. The overall metabolic routes involved in the putative cordycepin biosynthesis were also identified in C. militaris, including central carbon metabolism, amino acid metabolism (glycine, l-glutamine and l-aspartate) and nucleotide metabolism (adenosine and adenine). Interestingly, a lack of the sequence coding for ribonucleotide reductase inhibitor was observed in C. militaris that might contribute to its over-production of cordycepin. Copyright © 2017. Published by Elsevier B.V.

  12. Metabolic intervention to affect myocardial recovery following ischemia.

    PubMed Central

    Pasque, M K; Wechsler, A S

    1984-01-01

    Myocardial recovery during reperfusion following ischemia is critical to patient survival in a broad spectrum of clinical settings. Myocardial functional recovery following ischemia correlates well with recovery of myocardial adenosine triphosphate (ATP). Adenosine triphosphate recovery is uniformly incomplete during reperfusion following moderate ischemic injury and is therefore subject to manipulation by metabolic intervention. By definition ATP recovery is limited either by (1) energy availability and application in the phosphorylation of adenosine monophosphate (AMP) to ATP or (2) availability of AMP for this conversion. Experimental data suggest that substrate energy and the mechanisms required for its application in the creation of high energy phosphate bonds (AMP conversion to ATP) are more than adequate during reperfusion following moderate ischemic injury. Adenosine monophosphate availability, however, is inadequate following ischemia due to loss of diffusable adenine nucleotide purine metabolites. These purine precursors are necessary to fuel adenine nucleotide salvage pathways. Metabolic interventions that enhance AMP recovery rather than those that improve substrate energy availability during reperfusion are therefore recommended. The mechanisms of various metabolic interventions are discussed in this framework along with the rationale for or against their clinical application. PMID:6428332

  13. SpDamID: Marking DNA Bound by Protein Complexes Identifies Notch-Dimer Responsive Enhancers

    PubMed Central

    Hass, Matthew R.; Liow, Hien-haw; Chen, Xiaoting; Sharma, Ankur; Inoue, Yukiko U.; Inoue, Takayoshi; Reeb, Ashley; Martens, Andrew; Fulbright, Mary; Raju, Saravanan; Stevens, Michael; Boyle, Scott; Park, Joo-Seop; Weirauch, Matthew T.; Brent, Michael; Kopan, Raphael

    2015-01-01

    SUMMARY We developed Split DamID (SpDamID), a protein complementation version of DamID, to mark genomic DNA bound in vivo by interacting or juxtapositioned transcription factors. Inactive halves of DAM (DNA Adenine Methyltransferase) were fused to protein pairs to be queried Interaction or proximity enabled DAM reconstitution and methylation of adenine in GATC. Inducible SpDamID was used to analyze Notch-mediated transcriptional activation. We demonstrate that Notch complexes label RBP sites broadly across the genome, and show that a subset of these complexes that recruit MAML and p300 undergo changes in chromatin accessibility in response to Notch signaling. SpDamID differentiates between monomeric and dimeric binding thereby allowing for identification of half-site motifs used by Notch dimers. Motif enrichment of Notch enhancers coupled with SpDamID reveals co-targeting of regulatory sequences by Notch and Runx1. SpDamID represents a sensitive and powerful tool that enables dynamic analysis of combinatorial protein-DNA transactions at a genome-wide level. PMID:26257285

  14. The photolytic degradation and oxidation of organic compounds under simulated Martian conditions

    NASA Technical Reports Server (NTRS)

    Oro, J.; Holzer, G.

    1979-01-01

    Cosmochemical considerations suggest various potential sources for the accumulation of organic matter on Mars. However the Viking Molecular Analysis did not indicate any indigenous organic compounds on the surface of Mars. Their disappearance from the top layer is most likely caused by the combined action of the high solar radiation flux and various oxidizing species in the Martian atmosphere and regolith. In this study the stability of several organic substances and a sample of the Murchison meteorite was tested under simulated Martian conditions. After adsorption on powdered quartz, samples of adenine, glycine and naphthalene were irradiated with UV light at various oxygen concentrations and exposure times. In the absence of oxygen, adenine and glycine appeared stable over the given irradiation period, whereas a definite loss was observed in the case of naphthalene, as well as in the volatilizable and pyrolizable content of the Murchison meteorite. The presence of oxygen during UV exposure caused a significant increase in the degradation rate of all samples. It is likely that similar processes have led to the destruction of organic materials on the surface of Mars.

  15. Determination of purine contents in different parts of pork and beef by high performance liquid chromatography.

    PubMed

    Rong, Shengzhong; Zou, Lina; Zhang, Yannan; Zhang, Guangteng; Li, Xiaoxia; Li, Miaojing; Yang, Fenghua; Li, Chunmei; He, Yingjuan; Guan, Hongjun; Guo, Yupeng; Wang, Dong; Cui, Xinyu; Ye, Hongting; Liu, Fenghai; Pan, Hongzhi; Yang, Yuexin

    2015-03-01

    Determination of adenine, hypoxanthine, guanine and xanthine in different parts of pork and beef using high performance liquid chromatography was described. Chromatographic separation was carried out on Waters Atlantis T3 column (4.6 mm × 250 mm × 5 μm) with column temperature at 30 °C. The mobile phase contained 99% 10.0 mmol/L ammonium formate solution at pH 3.6 and 1.0% methanol. Chromatography was achieved at a flow rate of 1.0 mL/min and detection wavelength at 254 nm. The results indicated that total purine amounts in pork rump and beef sirloin were higher than those in other parts (P<0.05). The principal purine bases were hypoxanthine and adenine, and hypoxanthine content was the most highest in all samples (P<0.05). As pork rump and beef sirloin contain considerable amounts of total purine and uricogenic purine base, we suggest that excess consumption of them be avoid, whereas pork loin chop and beef rib eye are more suitable for a low-purine diet. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP)-mediated Calcium Signaling and Arrhythmias in the Heart Evoked by β-Adrenergic Stimulation*♦

    PubMed Central

    Nebel, Merle; Schwoerer, Alexander P.; Warszta, Dominik; Siebrands, Cornelia C.; Limbrock, Ann-Christin; Swarbrick, Joanna M.; Fliegert, Ralf; Weber, Karin; Bruhn, Sören; Hohenegger, Martin; Geisler, Anne; Herich, Lena; Schlegel, Susan; Carrier, Lucie; Eschenhagen, Thomas; Potter, Barry V. L.; Ehmke, Heimo; Guse, Andreas H.

    2013-01-01

    Nicotinic acid adenine dinucleotide phosphate (NAADP) is the most potent Ca2+-releasing second messenger known to date. Here, we report a new role for NAADP in arrhythmogenic Ca2+ release in cardiac myocytes evoked by β-adrenergic stimulation. Infusion of NAADP into intact cardiac myocytes induced global Ca2+ signals sensitive to inhibitors of both acidic Ca2+ stores and ryanodine receptors and to NAADP antagonist BZ194. Furthermore, in electrically paced cardiac myocytes BZ194 blocked spontaneous diastolic Ca2+ transients caused by high concentrations of the β-adrenergic agonist isoproterenol. Ca2+ transients were recorded both as increases of the free cytosolic Ca2+ concentration and as decreases of the sarcoplasmic luminal Ca2+ concentration. Importantly, NAADP antagonist BZ194 largely ameliorated isoproterenol-induced arrhythmias in awake mice. We provide strong evidence that NAADP-mediated modulation of couplon activity plays a role for triggering spontaneous diastolic Ca2+ transients in isolated cardiac myocytes and arrhythmias in the intact animal. Thus, NAADP signaling appears an attractive novel target for antiarrhythmic therapy. PMID:23564460

  17. Transport of extraterrestrial biomolecules to the Earth: problem of thermal stability.

    PubMed

    Basiuk, V A; Douda, J; Navarro-Gonzalez, R

    1999-01-01

    The idea of extraterrestrial delivery of organic matter to the early Earth is especially attractive at present and is strongly supported by the detection of a large variety of organic compounds, including amino acids and nucleobases, in carbonaceous chondrites. Whether these compounds can be delivered by other space bodies is unclear and depends primarily on capability of the biomolecules to survive high temperatures during atmospheric deceleration and impacts to the terrestrial surface. In the present study we estimated survivability of simple amino acids (alpha-aminoisobutyric acid, L-alanine, L-valine and L-leucine), purines (adenine and guanine) and pyrimidines (uracil and cytosine) under rapid heating to temperatures of 400 to 1000 degrees C under N2 or CO2 atmosphere. We have found that most of the compounds studied cannot survive the temperatures substantially higher than 700 degrees C; however at 500-600 degrees C, the recovery can be at a per cent level (or even 10%-level for adenine, uracil, alanine, and valine). Implications of the data for extraterrestrial delivery of the biomolecules are discussed.

  18. The human amygdaloid complex: a cytologic and histochemical atlas using Nissl, myelin, acetylcholinesterase and nicotinamide adenine dinucleotide phosphate diaphorase staining.

    PubMed

    Sims, K S; Williams, R S

    1990-01-01

    We examined the distribution of acetylcholinesterase and nicotinamide adenine dinucleotide phosphate diaphorase enzyme activity in the human amygdala using histochemical techniques. Both methods revealed compartments of higher or lower enzyme activity, in cells or neuropil, which corresponded to the nuclear subdivisions of the amygdala as defined with classical Nissl and myelin methods. The boundaries between the histochemical compartments were usually so sharp that the identification of these nuclear subdivisions was enhanced. There was also variation of staining intensity within many of the nuclear subdivisions, such as the lateral and central nuclei, anterior amygdaloid area and the intercalated groups. This histochemical difference corresponded to more subtle differences in Nissl and myelin staining patterns, and suggests further structural subdivisions of potential functional significance. We present a revised scheme of anatomical parcellation of the human amygdala based upon serial analysis with all four techniques. Our expectation is that this will allow the delineation of a clearer homology between the cytoarchitectonic subdivisions of the human amygdala and those of experimental animals.

  19. Comparison of the effects of Ca2+, adenine nucleotides and pH on the kinetic properties of mitochondrial NAD(+)-isocitrate dehydrogenase and oxoglutarate dehydrogenase from the yeast Saccharomyces cerevisiae and rat heart.

    PubMed Central

    Nichols, B J; Rigoulet, M; Denton, R M

    1994-01-01

    The regulatory properties of NAD(+)-isocitrate dehydrogenase and oxoglutarate dehydrogenase in extracts of yeast and rat heart mitochondria were studied under identical conditions. Yeast NAD(+)-isocitrate dehydrogenase exhibits a low K0.5 for isocitrate and is activated by AMP and ADP, but is insensitive to ATP and Ca2+. In contrast, the rat heart NAD(+)-isocitrate dehydrogenase was insensitive to AMP, but was activated by ADP and by Ca2+ in the presence of ADP or ATP. Both yeast and rat heart oxoglutarate dehydrogenase were stimulated by ADP, but only the heart enzyme was activated by Ca2+. All the enzymes studied were activated by decreases in pH, but to differing extents. The effects of Ca2+, adenine nucleotides and pH were through K0.5 for isocitrate or 2-oxoglutarate. These observations are discussed with reference to the deduced amino acid sequences of the constituent subunits of the enzymes, where they are available. PMID:7980405

  20. 3'-NADP and 3'-NAADP, Two Metabolites Formed by the Bacterial Type III Effector AvrRxo1.

    PubMed

    Schuebel, Felix; Rocker, Andrea; Edelmann, Daniel; Schessner, Julia; Brieke, Clara; Meinhart, Anton

    2016-10-28

    An arsenal of effector proteins is injected by bacterial pathogens into the host cell or its vicinity to increase virulence. The commonly used top-down approaches inferring the toxic mechanism of individual effector proteins from the host's phenotype are often impeded by multiple targets of different effectors as well as by their pleiotropic effects. Here we describe our bottom-up approach, showing that the bacterial type III effector AvrRxo1 of plant pathogens is an authentic phosphotransferase that produces two novel metabolites by phosphorylating nicotinamide/nicotinic acid adenine dinucleotide at the adenosine 3'-hydroxyl group. Both products of AvrRxo1, 3'-NADP and 3'-nicotinic acid adenine dinucleotide phosphate (3'-NAADP), are substantially different from the ubiquitous co-enzyme 2'-NADP and the calcium mobilizer 2'-NAADP. Interestingly, 3'-NADP and 3'-NAADP have previously been used as inhibitors or signaling molecules but were regarded as "artificial" compounds so far. Our findings now necessitate a shift in thinking about the biological importance of 3'-phosphorylated NAD derivatives. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Fragmentation of DNA components by hyperthermal heavy ion (Ar+ and Xe+) impact in the condensed phase

    NASA Astrophysics Data System (ADS)

    Sarabipour, Sarvenaz; Sarvenaz Sarabipour, Ms; Michaud, Marc; Deng, Zongwu; Huels, Michael A.

    The overriding environmental factor that presently limits human endeavors in space is exposure to heavy ion radiation. While knowledge of its damage to living tissue is essential for radiation protection and risk estimates for astronauts, very little data exists at the molecular level regarding the nascent DNA damage by the primary particle track, or by secondary species during subsequent reaction cascades. This persistent lack of a basic understanding of nascent damage induced by such low dose, high LET radiation, introduces unacceptable errors in radiation risk estimates (based mainly on extrapolation from high dose, low LET radiation), particularly for long term exposure. Mutagenic effects induced by heavy ion radiation to cells are largely due to DNA damage by secondary transient species, i.e. secondary ballistic ions, electrons and radicals generated along the ion tracks; the secondary ions have hyperthermal energies up to several 100 eV, which they will deposit within a few nm in the surrounding medium; thus their LET is very high, and yields lethal clustered DNA lesions. We present measurements of molecular damage induced in films of DNA components by ions with precisely such low energies (1-100 eV) and compare results to conventional electron impact measurements. Experiments are conducted in UHV using a mass selected low energy ion source, and a high-resolution quadrupole MS to monitor ion yields desorbing from molecular films. Among the major fragments, NH4 + is identified in the desorption mass spectra of irradiated films of Adenine, Guanine, Cytosine, indicating efficient deamination; in cells this results in pre-mutagenic lesions. Experiments with 5-amino-Uracil, and comparison to previous results on uracil and thymine show that deamination is a key step in the NH4 + fragment formation. For Adenine, we also observe formation of amine aducts in the films, viz. amination of Adenine, and global fragmentation in all ion impact mass spectra, attributed mainly to kinetic & potential ion scattering.[Funded by NSERC and the Canadian Space Agency].

  2. Synthetic oligonucleotide separations by mixed-mode reversed-phase/weak anion-exchange liquid chromatography.

    PubMed

    Zimmermann, Aleksandra; Greco, Roberto; Walker, Isabel; Horak, Jeannie; Cavazzini, Alberto; Lämmerhofer, Michael

    2014-08-08

    Synthetic oligonucleotides gain increasing importance in new therapeutic concepts and as probes in biological sciences. If pharmaceutical-grade purities are required, chromatographic purification using ion-pair reversed-phase chromatography is commonly carried out. However, separation selectivity for structurally closely related impurities is often insufficient, especially at high sample loads. In this study, a "mixed-mode" reversed-phase/weak anion exchanger stationary phase has been investigated as an alternative tool for chromatographic separation of synthetic oligonucleotides with minor sequence variations. The employed mixed-mode phase shows great flexibility in method development. It has been run in various gradient elution modes, viz. one, two or three parameter (mixed) gradients (altering buffer pH, buffer concentration, and organic modifier) to find optimal elution conditions and gain further insight into retention mechanisms. Compared to ion-pair reversed-phase and mere anion-exchange separation, enhanced selectivities were observed with the mixed-mode phase for 20-23 nucleotide (nt) long oligonucleotides with similar sequences. Oligonucleotides differing by 1, 2 or 3 nucleotides in length could be readily resolved and separation factors for single nucleotide replacements declined in the order Cytosine (C)/Guanine (G)>Adenine (A)/Guanine∼Guanine/Thymine (T)>Adenine/Cytosine∼Cytosine/Thymine>Adenine/Thymine. Selectivities were larger when the modification was at the 3' terminal-end, declined when it was in the middle of the sequence and was smallest when it was located at the 5' terminus. Due to the lower surface area of the 200Å pore size mixed-mode stationary phase compared to the corresponding 100Å material, lower retention times with equal selectivities under milder elution conditions were achievable. Considering high sample loading capacities of the mixed-mode anion-exchanger phase, it should have great potential for chromatographic oligonucleotide separation and purification. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Quantum-chemical studies on the favored and rare tautomers of neutral and redox adenine.

    PubMed

    Raczyńska, Ewa D; Makowski, Mariusz; Zientara-Rytter, Katarzyna; Kolczyńska, Katarzyna; Stępniewski, Tomasz M; Hallmann, Małgorzata

    2013-02-21

    All possible twenty-three prototropic tautomers of neutral and redox adenine (nine amine and fourteen imine forms, including geometric isomerism of the exo ═NH group) were examined in vacuo {DFT(B3LYP)/6-311+G(d,p)}. The NH → NH conversions as well as those usually omitted, NH → CH and CH → CH, were considered. An interesting change of the tautomeric preference occurs when proceeding from neutral to reduced adenine. One-electron reduction favors the nonaromatic amine C8H-N10H tautomer. This tautomeric preference is similar to that (C2H) for reduced imidazole. Water molecules (PCM model) seem to not change this trend. They influence solely the relative energies. The DFT vertical detachment energy in the gas phase is positive for each tautomer, e.g., 0.03 eV for N9H-N10H and 1.84 eV for C8H-N10H. The DFT adiabatic electron affinity for the favored process, neutral N9H-N10H → reduced C8H-N10H (ground states), is equal to 0.18 eV at 0 K (ZPE included). One-electron oxidation does not change the tautomeric preference in the gas phase. The aromatic amine N9H-N10H tautomer is favored for the oxidized molecule similarly as for the neutral one. The DFT adiabatic ionization potential for the favored process, neutral N9H-N10H → oxidized N9H-N10H (ground states), is equal to 8.12 eV at 0 K (ZPE included). Water molecules (PCM model) seem to influence solely the composition of the tautomeric mixture and the relative energies. They change the energies of the oxidation and reduction processes by ca. 2 eV.

  4. Effect of treated-sewage contamination upon bacterial energy charge, adenine nucleotides, and DNA content in a sandy aquifer on cape cod

    USGS Publications Warehouse

    Metge, D.W.; Brooks, M.H.; Smith, R.L.; Harvey, R.W.

    1993-01-01

    Changes in adenylate energy charge (EC(A)) and in total adenine nucleotides (A(T)) and DNA content (both normalized to the abundance of free- living, groundwater bacteria) in response to carbon loading were determined for a laboratory-grown culture and for a contaminated aquifer. The latter study involved a 3-km-long transect through a contaminant plume resulting from continued on-land discharge of secondary sewage to a shallow, sandy aquifer on Cape Cod, Mass. With the exception of the most contaminated groundwater immediately downgradient from the contaminant source, DNA and adenylate levels correlated strongly with bacterial abundance and decreased exponentially with increasing distance downgradient. EC(A)s (0.53 to 0.60) and the ratios of ATP to DNA (0.001 to 0.003) were consistently low, suggesting that the unattached bacteria in this groundwater study are metabolically stressed, despite any eutrophication that might have occurred. Elevated EC(A)s (up to 0.74) were observed in glucose-amended groundwater, confirming that the metabolic state of this microbial community could be altered. In general, per-bacterium DNA and ATP contents were approximately twofold higher in the plume than in surrounding groundwater, although EC(A) and per-bacterium levels of A(T) differed little in the plume and the surrounding uncontaminated groundwater. However, per-bacterium levels of DNA and A(T) varied six- and threefold, respectively, during a 6-h period of decreasing growth rate for an unidentified pseudomonad isolated from contaminated groundwater and grown in batch culture. These data suggest that the DNA content of groundwater bacteria may be more sensitive than their A(T) to the degree of carbon loading, which may have significant ramifications in the use of nucleic acids and adenine nucleotides for estimating the metabolic status of bacterial communities within more highly contaminated aquifers.

  5. Erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) blocks differentiation and maintains the expression of pluripotency markers in human embryonic stem cells.

    PubMed

    Burton, Peter; Adams, David R; Abraham, Achamma; Allcock, Robert W; Jiang, Zhong; McCahill, Angela; Gilmour, Jane; McAbney, John; Kaupisch, Alexandra; Kane, Nicole M; Baillie, George S; Baker, Andrew H; Milligan, Graeme; Houslay, Miles D; Mountford, Joanne C

    2010-12-15

    hESCs (human embryonic stem cells) have enormous potential for use in pharmaceutical development and therapeutics; however, to realize this potential, there is a requirement for simple and reproducible cell culture methods that provide adequate numbers of cells of suitable quality. We have discovered a novel way of blocking the spontaneous differentiation of hESCs in the absence of exogenous cytokines by supplementing feeder-free conditions with EHNA [erythro-9-(2-hydroxy-3-nonyl)adenine], an established inhibitor of ADA (adenosine deaminase) and cyclic nucleotide PDE2 (phosphodiesterase 2). hESCs maintained in feeder-free conditions with EHNA for more than ten passages showed no reduction in hESC-associated markers including NANOG, POU5F1 (POU domain class 5 transcription factor 1, also known as Oct-4) and SSEA4 (stage-specific embryonic antigen 4) compared with cells maintained in feeder-free conditions containing bFGF (basic fibroblast growth factor). Spontaneous differentiation was reversibly suppressed by the addition of EHNA, but, upon removing EHNA, hESC populations underwent efficient spontaneous, multi-lineage and directed differentiation. EHNA also acts as a strong blocker of directed neuronal differentiation. Chemically distinct inhibitors of ADA and PDE2 lacked the capacity of EHNA to suppress hESC differentiation, suggesting that the effect is not driven by inhibition of either ADA or PDE2. Preliminary structure-activity relationship analysis found the differentiation-blocking properties of EHNA to reside in a pharmacophore comprising a close adenine mimetic with an extended hydrophobic substituent in the 8- or 9-position. We conclude that EHNA and simple 9-alkyladenines can block directed neuronal and spontaneous differentiation in the absence of exogenous cytokine addition, and may provide a useful replacement for bFGF in large-scale or cGMP-compliant processes.

  6. Evidence of the Importance of Nox4 in Production of Hypertension in Dahl Salt-Sensitive Rats.

    PubMed

    Cowley, Allen W; Yang, Chun; Zheleznova, Nadezhda N; Staruschenko, Alexander; Kurth, Theresa; Rein, Lisa; Kumar, Vikash; Sadovnikov, Katherine; Dayton, Alex; Hoffman, Matthew; Ryan, Robert P; Skelton, Meredith M; Salehpour, Fahimeh; Ranji, Mahsa; Geurts, Aron

    2016-02-01

    This study reports the consequences of knocking out NADPH (nicotinamide adenine dinucleotide phosphate) oxidase 4 (Nox4) on the development of hypertension and kidney injury in the Dahl salt-sensitive (SS) rat. Zinc finger nuclease injection of single-cell SS embryos was used to create an 8 base-pair frame-shift deletion of Nox4, resulting in a loss of the ≈68 kDa band in Western blot analysis of renal cortical tissue of the knock out of Nox4 in the SS rat (SS(Nox4-/-)) rats. SS(Nox4-/-) rats exhibited a significant reduction of salt-induced hypertension compared with SS rats after 21 days of 4.0% NaCl diet (134±5 versus 151±3 mm Hg in SS) and a significant reduction of albuminuria, tubular casts, and glomerular injury. Optical fluorescence 3-dimensional cryoimaging revealed significantly higher redox ratios (NADH/FAD [reduced nicotinamide adenine dinucleotide/flavin adenine dinucleotide]) in the kidneys of SS(Nox4-/-) rats even when fed the 0.4% NaCl diet, indicating greater levels of mitochondrial electron transport chain metabolic activity and reduced oxidative stress compared with SS rats. Before the development of hypertension, RNA expression levels of Nox subunits Nox2, p67(phox), and p22(phox) were found to be significantly lower (P<0.05) in SS(Nox4-/-) compared with SS rats in the renal cortex. Thus, the mutation of Nox4 seems to modify transcription of several genes in ways that contribute to the protective effects observed in the SS(Nox4-/-) rats. We conclude that the reduced renal injury and attenuated blood pressure response to high salt in the SS(Nox4-/-) rat could be the result of multiple pathways, including gene transcription, mitochondrial energetics, oxidative stress, and protein matrix production impacted by the knock out of Nox4. © 2015 American Heart Association, Inc.

  7. Heterogeneity and dynamics of the ligand recognition mode in purine-sensing riboswitches.

    PubMed

    Jain, Niyati; Zhao, Liang; Liu, John D; Xia, Tianbing

    2010-05-04

    High-resolution crystal structures and biophysical analyses of purine-sensing riboswitches have revealed that a network of hydrogen bonding interactions appear to be largey responsible for discrimination of cognate ligands against structurally related compounds. Here we report that by using femtosecond time-resolved fluorescence spectroscopy to capture the ultrafast decay dynamics of the 2-aminopurine base as the ligand, we have detected the presence of multiple conformations of the ligand within the binding pockets of one guanine-sensing and two adenine-sensing riboswitches. All three riboswitches have similar conformational distributions of the ligand-bound state. The known crystal structures represent the global minimum that accounts for 50-60% of the population, where there is no significant stacking interaction between the ligand and bases of the binding pocket, but the hydrogen-bonding cage collectively provides an electronic environment that promotes an ultrafast ( approximately 1 ps) charge transfer pathway. The ligand also samples multiple conformations in which it significantly stacks with either the adenine or the uracil bases of the A21-U75 and A52-U22 base pairs that form the ceiling and floor of the binding pocket, respectively, but favors the larger adenine bases. These alternative conformations with well-defined base stacking interactions are approximately 1-1.5 kcal/mol higher in DeltaG degrees than the global minimum and have distinct charge transfer dynamics within the picosecond to nanosecond time regime. Inside the pocket, the purine ligand undergoes dynamic motion on the low nanosecond time scale, sampling the multiple conformations based on time-resolved anisotropy decay dynamics. These results allowed a description of the energy landscape of the bound ligand with intricate details and demonstrated the elastic nature of the ligand recognition mode by the purine-sensing riboswitches, where there is a dynamic balance between hydrogen bonding and base stacking interactions, yielding the high affinity and specificity by the aptamer domain.

  8. Toxicity associated with high dosage 9-[(2R,5R-2,5-dihydro-5-phosphonomethoxy)-2-furanyl]adenine therapy off attempts to abort early FIV infection.

    PubMed

    Hartmann, K; Ferk, G; North, T W; Pedersen, N C

    1997-09-01

    9-[(2R,5R-2,5-dihydro-5-phosphonomethoxy)-2-furanyl]adenine, or D4API, was tested in the feline immunodeficiency virus (FIV) infection model and found to be significantly more inhibitory in vitro than its parent compound 9-phosphonylmethoxethyl adenine (PMEA). Cytotoxicity was less than for PMEA or azidothymidine (AZT) for culture periods of 7 days, but more toxic after 10 days. D4API was rapidly absorbed by cats following subcutaneous inoculation, with a plasma half-life of less than 1 h after intravenous inoculation and between 2 and 3 h after subcutaneous injection. Peripheral blood mononuclear cells collected from cats given a single dose of D4API were refractory, however, to FIV infection in vitro for up to 24 h. Given its prolonged intracellular phase and high selectivity index, high dose D4API therapy was tested for its ability to abort an acute (i.e. 2 week) FIV infection. A divided daily dose of D4API, which was one-fourth the toxic dose and 125 times the concentration that would totally inhibit virus replication in vitro, completely abrogated the anticipated viremia and antibody responses. Unfortunately, a majority of treated/uninfected and treated/infected test cats died acutely of drug toxicity after 47 days of treatment. Toxicity in vivo mirrored what was observed in vitro, being precipitous and cumulative in nature. Toxic signs included widespread hepatic and lymphoid necrosis. A surviving treated/FIV infected cat remained healthy to day 175 when the study was terminated; antibodies appeared 2 months later than in untreated/infected cats and virus was only detectable at low levels on day 175. In contrast, untreated/infected cats were viremic and antibody positive from 3 to 4 weeks post-infection onwards. Therefore, it was possible to alter, but not abort, an early FIV infection with prolonged, high-dose D4API treatment.

  9. Silver(I) complexes with DNA and RNA studied by Fourier transform infrared spectroscopy and capillary electrophoresis.

    PubMed Central

    Arakawa, H; Neault, J F; Tajmir-Riahi, H A

    2001-01-01

    Ag(I) is a strong nucleic acids binder and forms several complexes with DNA such as types I, II, and III. However, the details of the binding mode of silver(I) in the Ag-polynucleotides remains unknown. Therefore, it was of interest to examine the binding of Ag(I) with calf-thymus DNA and bakers yeast RNA in aqueous solutions at pH 7.1-6.6 with constant concentration of DNA or RNA and various concentrations of Ag(I). Fourier transform infrared spectroscopy and capillary electrophoresis were used to analyze the Ag(I) binding mode, the binding constant, and the polynucleotides' structural changes in the Ag-DNA and Ag-RNA complexes. The spectroscopic results showed that in the type I complex formed with DNA, Ag(I) binds to guanine N7 at low cation concentration (r = 1/80) and adenine N7 site at higher concentrations (r = 1/20 to 1/10), but not to the backbone phosphate group. At r = 1/2, type II complexes formed with DNA in which Ag(I) binds to the G-C and A-T base pairs. On the other hand, Ag(I) binds to the guanine N7 atom but not to the adenine and the backbone phosphate group in the Ag-RNA complexes. Although a minor alteration of the sugar-phosphate geometry was observed, DNA remained in the B-family structure, whereas RNA retained its A conformation. Scatchard analysis following capillary electrophoresis showed two binding sites for the Ag-DNA complexes with K(1) = 8.3 x 10(4) M(-1) for the guanine and K(2) = 1.5 x 10(4) M(-1) for the adenine bases. On the other hand, Ag-RNA adducts showed one binding site with K = 1.5 x 10(5) M(-1) for the guanine bases. PMID:11509371

  10. Microclonal Multipication of Wild Cherry (Prunus Avium L.) from Shoot Tips and Root Sucker Buds

    Treesearch

    Branka Pevalek-Kozlina; Charles H. Michler; Sibila Jelaska

    1994-01-01

    The effects of different combinations and concentrations of the growth regulators: 6-benzylaminopurine (BA), 6 furfurylaminopurine (KIN), N6- (2-isopentenyl) adenine (2iP), indole-3-butyric acid (IBA), indole-3-acetic acid (IAA) and a-naphthaleneacetic acid (NAA) on axillary shoot multiplication rates for wild cherry (Prunus aviurn...

  11. Often Ignored Facts about the Control of the 2-Oxoglutarate Dehydrogenase Complex

    ERIC Educational Resources Information Center

    Strumilo, Slawomir

    2005-01-01

    Information about the control of the activity of the 2-oxoglutarate dehydrogenase complex (OGDHC), a key enzyme in the citric acid cycle, is not well covered in the biochemical education literature, especially as it concerns the allosteric regulation of OGDHC by adenine nucleotide and ortophosphate. From experimental work published during the last…

  12. Enzymatic Basis for Differentiation of Rhizobium into Fast- and Slow-Growing Groups

    PubMed Central

    Drets, G. Martinez-De; Arias, A.

    1972-01-01

    Glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and other enzymes related to carbohydrate metabolism were studied in rhizobia. A nicotinamide adenine dinucleotide phosphate-6-phosphogluconate dehydrogenase was detected in strains of the fast-growing group of Rhizobium but not in strains of the slow-growing group. An enzymatic differentiation of rhizobia was established. PMID:4400417

  13. Theoretical Studies of Chemical Reactions following Electronic Excitation

    NASA Technical Reports Server (NTRS)

    Chaban, Galina M.

    2003-01-01

    The use of multi-configurational wave functions is demonstrated for several processes: tautomerization reactions in the ground and excited states of the DNA base adenine, dissociation of glycine molecule after electronic excitation, and decomposition/deformation of novel rare gas molecules HRgF. These processes involve bond brealung/formation and require multi-configurational approaches that include dynamic correlation.

  14. Pleiotropic effects of the sirtuin inhibitor sirtinol involves concentration-dependent modulation of multiple nuclear receptor-mediated pathways in the androgen-responsive prostate cancer cell LNCaP

    USDA-ARS?s Scientific Manuscript database

    Sirtinol, a purported specific inhibitor of the nicotinamide adenine dinucleotide (NAD)-dependent type III histone deacetylase (also known as sirtuin), has been used extensively to identify chemopreventive/chemotherapeutic agents that modulate the activity of this group of enzymes. However, the mole...

  15. Resistant starch alters gut microbiota and reduces uremic retention solutes in rats with adenine-induced chronic kidney disease

    USDA-ARS?s Scientific Manuscript database

    Chronic kidney disease (CKD) is characterized by the reduced ability to void urine, leading to accumulation of waste products in the body. Recently, it has been observed that patients with CKD have an altered gut microbiome. This may in part be due to reduced fiber intake. Patients with CKD are ofte...

  16. Ultra-performance liquid chromatography tandem mass-spectrometry (uplc-ms/ms) for the rapid, simultaneous analysis of thiamin, riboflavin, flavin adenine dinucleotide, nicotinamide and pyridoxal in human milk

    USDA-ARS?s Scientific Manuscript database

    A novel, rapid and sensitive Ultra Performance Liquid-Chromatography tandem Mass-Spectrometry (UPLC-MS/MS) method for the simultaneous determination of several B-vitamins in human milk was developed. Resolution by retention time or multiple reaction monitoring (MRM) for thiamin, riboflavin, flavin a...

  17. Transient expression of GUS in bombarded embryogenic longleaf, loblolly, and eastern white pine

    Treesearch

    Alex M. Diner; Allan Zipf; Rufina Ward; Yinghua Huang; George Brown

    1999-01-01

    Embryogenic tissue cultures derived from immature zygotic embryos of longleaf, loblolly, and eastern white pine were maintained in culture for up to 2 years, then bombarded with gold particles coated with a gene construct containing the GUS reporter gene fused to an adenine methyltransferase promoter from an algal virus. Physiological expression of GUS was observed in...

  18. Micropropagation of annatto (Bixa orellana L.) from mature tree and assessment of genetic fidelity of micropropagated plants with RAPD markers.

    PubMed

    Siril, E A; Joseph, Nisha

    2013-01-01

    An in vitro propagation technique based on axillary bud proliferation was developed for the first time to mature annatto (Bixa orellana L.) tree. Nodal segments cultured on Murashige and Skoog (MS) medium supplemented with 1.0 μM benzyl adenine (BA) and tender coconut water (10 %) showed significantly high (P < 0.05) explant response (67.0 %), development of elongated shoots (3.36), shoot buds (8.9) and shoot elongation (3.53 cm). Cytokinins like zeatin, isopentenyl adenine (2-iP), kinetin, or thidiazuron (TDZ) were inferior to BA to induce multiple shoots. Seasonal variations significantly affected the in vitro response of nodal explants. In vitro rooting experiments have showed 55.6 % rooting on MS medium containing 15 μM indole-3-butyric acid (IBA). Alternatively, in vitro raised shoots were rooted (61.1 %) ex vitro, by 10 mM indole-3-butyric acid (IBA) for 30 s. The results of the RAPD marker system revealed the genetic stability among the micropropagated plants. The present protocol in brief, can be used for the clonal propagation of the superior genotype and preservation of germplasm.

  19. Measuring Inhibition and Cognitive Flexibility in Friedreich Ataxia.

    PubMed

    Corben, Louise A; Klopper, Felicity; Stagnitti, Monique; Georgiou-Karistianis, Nellie; Bradshaw, John L; Rance, Gary; Delatycki, Martin B

    2017-08-01

    Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disorder with subtle impact on cognition. Inhibitory processes and cognitive flexibility were examined in FRDA by assessing the ability to suppress a predictable verbal response. We administered the Hayling Sentence Completion Test (HSCT), the Trail Making Test, and the Stroop Test to 43 individuals with FRDA and 42 gender- and age-matched control participants. There were no significant group differences in performance on the Stroop or Trail Making Test whereas significant impairment in cognitive flexibility including the ability to predict and inhibit a pre-potent response as measured in the HSCT was evident in individuals with FRDA. These deficits did not correlate with clinical characteristics of FRDA (age of disease onset, disease duration, number of guanine-adenine-adenine repeats on the shorter or larger FXN allele, or Friedreich Ataxia Rating Scale score), suggesting that such impairment may not be related to the disease process in a straightforward way. The observed specific impairment of inhibition and predictive capacity in individuals with FRDA on the HSCT task, in the absence of impairment in associated executive functions, supports cerebellar dysfunction in conjunction with disturbance to cortico-thalamo-cerebellar connectivity, perhaps via inability to access frontal areas necessary for successful task completion.

  20. Photosensitized oxidation of nicotinamide adenine dinucleotide by diethoxyphosphorus(V)tetraphenylporphyrin and its fluorinated derivative: Possibility of chain reaction

    NASA Astrophysics Data System (ADS)

    Hirakawa, Kazutaka; Murata, Atsushi

    2018-01-01

    Water-soluble porphyrins, diethoxyphosphorus(V)tetraphenylporphyrin (EtP(V)TPP) and its fluorinated analogue (FEtP(V)TPP), decreased the typical absorption around 340 nm of nicotinamide adenine dinucleotide (NADH) under visible light irradiation, indicating oxidative decomposition. A singlet oxygen quencher, sodium azide, and a triplet quencher, potassium iodide, slightly inhibited photosensitized NADH oxidation. However, these inhibitory effects were very small. Furthermore, the fluorescence lifetime of these P(V)porphyrins was decreased by NADH, suggesting the contribution of electron transfer to the singlet excited (S1) state of P(V)porphyrin. The redox potential measurement supports the electron transfer-mediated oxidation of NADH. The quantum yields of NADH photodecomposition by P(V)porphyrins could be estimated from the kinetic data and the effect of these quenchers on NADH oxidation. The obtained values suggest that the electron accepting by the S1 states of P(V)porphyrins triggers a chain reaction of NADH oxidation. This photosensitized reaction may play an important role in the photocytotoxicity of P(V)porphyrins. The axial ligand fluorination of P(V)porphyrins improved electron accepting ability. However, fluorination slightly suppressed static interaction with NADH, resulting in decreased oxidation quantum yield.

  1. Deproteinization is Necessary for the Accurate Determination of Ammonia Levels by Glutamate Dehydrogenase Assay in Blood Plasma From Subjects With Liver Injury.

    PubMed

    Vodenicarovova, Melita; Skalska, Hana; Holecek, Milan

    2017-11-08

    To determine the effect of presence of high concentrations of nicotinamide adenine dinucleotide (NADH)- and nicotinamide adenine dinucleotide phosphate (NADPH)-consuming enzymes on the accuracy of glutamate dehydrogenase (GLDH) assay for ammonia. We measured ammonia concentrations using GLDH and NADH or NADPH in blood-plasma specimens and specimens deproteinized by sulfosalicylic acid from CCl4-treated or control rats. The nonspecific oxidation of NADH and NADPH was measured in mixtures without GLDH. We observed a gradual decrease (~0.5%) in absorbance in the plasma of controls after the addition of NADH but not after adding NADPH. The decrease in absorbance in plasma of CCl4-treated animals was 13.2% and 5.2% after the addition of NADH and NADPH, respectively. The decrease in absorbance was not detected in deproteinized specimens. The values of ammonia concentration were higher in the plasma specimens compared with the deproteinized ones. Deproteinization is necessary for accurate measurement of ammonia using GLDH assay in the blood plasma of subjects with liver injury. © American Society for Clinical Pathology, 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  2. A continuous spectrophotometric assay for monitoring adenosine 5'-monophosphate production.

    PubMed

    First, Eric A

    2015-08-15

    A number of biologically important enzymes release adenosine 5'-monophosphate (AMP) as a product, including aminoacyl-tRNA synthetases, cyclic AMP (cAMP) phosphodiesterases, ubiquitin and ubiquitin-like ligases, DNA ligases, coenzyme A (CoA) ligases, polyA deadenylases, and ribonucleases. In contrast to the abundance of assays available for monitoring the conversion of adenosine 5'-triphosphate (ATP) to ADP, there are relatively few assays for monitoring the conversion of ATP (or cAMP) to AMP. In this article, we describe a homogeneous assay that continuously monitors the production of AMP. Specifically, we have coupled the conversion of AMP to inosine 5'-monophosphate (IMP) (by AMP deaminase) to the oxidation of IMP (by IMP dehydrogenase). This results in the reduction of oxidized nicotine adenine dinucleotide (NAD(+)) to reduced nicotine adenine dinucleotide (NADH), allowing AMP formation to be monitored by the change in the absorbance at 340 nm. Changes in AMP concentrations of 5 μM or more can be reliably detected. The ease of use and relatively low expense make the AMP assay suitable for both high-throughput screening and kinetic analyses. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Blood constituents as phagostimulants for the bed bug Cimex lectularius L.

    PubMed

    Romero, Alvaro; Schal, Coby

    2014-02-15

    Many hematophagous arthropods are stimulated by blood constituents to initiate feeding. We used a membrane-based feeding system to identify chemicals that stimulate acceptance and engorgement responses in various life stages of bed bugs. Water was fortified with a variety of compounds (e.g. salts, amino acids, vitamins, nucleotides, cholesterol and fatty acids) in these bioassays. ATP was the most effective phagostimulant in adults and nymphs, resulting in >70% of bed bugs fully engorging. Addition of NaCl to low ATP solutions that alone elicited <50% engorgement significantly enhanced feeding responses of bed bugs. A comparison of feeding responses with solutions of various adenine nucleotides showed that ATP was more stimulatory than ADP, which was more effective than AMP. Feeding assays with physiological levels of other blood constituents such as d-glucose, albumin, globulin, cholesterol and mixtures of vitamins and amino acids did not stimulate engorgement, suggesting that adenine nucleotides are the most important feeding stimulants in bed bugs. Identification of phagostimulants for bed bugs will contribute towards the development of artificial diets for rearing purposes, as well as for the development of alternative methods to eliminate bed bug infestations.

  4. [Structural and Dipole Structure Peculiarities of Hoogsteen Base Pairs Formed in Complementary Nucleobases according to ab initio Quantum Mechanics Studies].

    PubMed

    Petrenko, Y M

    2015-01-01

    Ab initio quantum mechanics studies for the detection of structure and dipole structure peculiarities of Hoogsteen base pairs relative to Watson-Crick base pairs, were performed during our work. These base pairs are formed as a result of complementary interactions. It was revealed, that adenine-thymine Hoogsteen base pair and adenine-thymine Watson-Crick base pairs can be formed depending on initial configuration. Cytosine-guanine Hoogsteen pairs are formed only when cytosine was originally protonated. Both types of Hoogsteen pairs have noticeable difference in the bond distances and angles. These differences appeared in purine as well as in pyrimidine parts of the pairs. Hoogsteen pairs have mostly shorter hydrogen bond lengths and significantly larger angles of hydrogen bonds and larger angles between the hydrogen bonds than Watson-Crick base pairs. Notable differences are also observed with respect to charge distribution and dipole moment. Quantitative data on these differences are shown in our work. It is also reported that the values of local parameters (according to Cambridge classification of the parameters which determine DNA properties) in Hoogsteen base pairs, are greatly different from Watson-Crick ones.

  5. Absorption and luminescence spectroscopy of mass-selected flavin adenine dinucleotide mono-anions

    NASA Astrophysics Data System (ADS)

    Giacomozzi, L.; Kjær, C.; Langeland Knudsen, J.; Andersen, L. H.; Brøndsted Nielsen, S.; Stockett, M. H.

    2018-06-01

    We report the absorption profile of isolated Flavin Adenine Dinucleotide (FAD) mono-anions recorded using photo-induced dissociation action spectroscopy. In this charge state, one of the phosphoric acid groups is deprotonated and the chromophore itself is in its neutral oxidized state. These measurements cover the first four optical transitions of FAD with excitation energies from 2.3 to 6.0 eV (210-550 nm). The S0 → S2 transition is strongly blue shifted relative to aqueous solution, supporting the view that this transition has a significant charge-transfer character. The remaining bands are close to their solution-phase positions. This confirms that the large discrepancy between quantum chemical calculations of vertical transition energies and solution-phase band maxima cannot be explained by solvent effects. We also report the luminescence spectrum of FAD mono-anions in vacuo. The gas-phase Stokes shift for S1 is 3000 cm-1, which is considerably larger than any previously reported for other molecular ions and consistent with a significant displacement of the ground and excited state potential energy surfaces. Consideration of the vibronic structure is thus essential for simulating the absorption and luminescence spectra of flavins.

  6. Evaluation of actinic cheilitis using fluorescence lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Saito Nogueira, Marcelo; Cosci, Alessandro; Pratavieira, Sebastião.; Takahama, Ademar; Souza Azevedo, Rebeca; Kurachi, Cristina

    2016-03-01

    Actinic cheilitis is a potentially malignant disorder that mostly affects the vermilion border of the lower lip and can lead to squamous cell carcinoma. Because of its heterogeneous clinical aspect, it is difficult to indicate representative biopsy area. Late diagnosis is a limiting factor of therapeutic possibilities available to treat oral cancer. The diagnosis of actinic cheilitis is mainly based on clinical and histopathological analysis and it is a time consuming procedure to get the results. Information about the organization and chemical composition of the tissues can be obtained using fluorescence lifetime spectroscopy techniques without the need for biopsy. The main targeted fluorophores are NADH (nicotinamide adenine dinucleotide) and FAD (flavin adenine dinucleotide), which have free and bound states, each one with different average lifetimes. The average lifetimes for free and bound NADH and FAD change according to tissue metabolic alterations and allow a quick and non-invasive clinical investigation of injuries and to help clinicians with the early diagnosis of actinic cheilitis. This study aims to evaluate the fluorescence lifetime parameters at the discrimination of three degrees of epithelial dysplasia, the most important predictor of malignant development, described in up to 100% of actinic cheilitis cases.

  7. Rapid measurement of meat spoilage using fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Wu, Binlin; Dahlberg, Kevin; Gao, Xin; Smith, Jason; Bailin, Jacob

    2017-02-01

    Food spoilage is mainly caused by microorganisms, such as bacteria. In this study, we measure the autofluorescence in meat samples longitudinally over a week in an attempt to develop a method to rapidly detect meat spoilage using fluorescence spectroscopy. Meat food is a biological tissue, which contains intrinsic fluorophores, such as tryptophan, collagen, nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) etc. As meat spoils, it undergoes various morphological and chemical changes. The concentrations of the native fluorophores present in a sample may change. In particular, the changes in NADH and FAD are associated with microbial metabolism, which is the most important process of the bacteria in food spoilage. Such changes may be revealed by fluorescence spectroscopy and used to indicate the status of meat spoilage. Therefore, such native fluorophores may be unique, reliable and nonsubjective indicators for detection of spoiled meat. The results of the study show that the relative concentrations of all above fluorophores change as the meat samples kept in room temperature ( 19° C) spoil. The changes become more rapidly after about two days. For the meat samples kept in a freezer ( -12° C), the changes are much less or even unnoticeable over a-week-long storage.

  8. Structures of Escherichia coli DNA adenine methyltransferase (Dam) in complex with a non-GATC sequence: Potential implications for methylation-independent transcriptional repression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horton, John R.; Zhang, Xing; Blumenthal, Robert M.

    DNA adenine methyltransferase (Dam) is widespread and conserved among the γ-proteobacteria. Methylation of the Ade in GATC sequences regulates diverse bacterial cell functions, including gene expression, mismatch repair and chromosome replication. Dam also controls virulence in many pathogenic Gram-negative bacteria. An unexplained and perplexing observation about Escherichia coli Dam (EcoDam) is that there is no obvious relationship between the genes that are transcriptionally responsive to Dam and the promoter-proximal presence of GATC sequences. Here, we demonstrate that EcoDam interacts with a 5-base pair non-cognate sequence distinct from GATC. The crystal structure of a non-cognate complex allowed us to identify amore » DNA binding element, GTYTA/TARAC (where Y = C/T and R = A/G). This element immediately flanks GATC sites in some Dam-regulated promoters, including the Pap operon which specifies pyelonephritis-associated pili. In addition, Dam interacts with near-cognate GATC sequences (i.e. 3/4-site ATC and GAT). All together, these results imply that Dam, in addition to being responsible for GATC methylation, could also function as a methylation-independent transcriptional repressor.« less

  9. A Specific Mutational Signature Associated with DNA 8-Oxoguanine Persistence in MUTYH-defective Colorectal Cancer

    DOE PAGES

    Viel, Alessandra; Bruselles, Alessandro; Meccia, Ettore; ...

    2017-04-13

    8-Oxoguanine, a common mutagenic DNA lesion, generates G:C > T:A transversions via mispairing with adenine during DNA replication. When operating normally, the MUTYH DNA glycosylase prevents 8-oxoguanine-related mutagenesis by excising the incorporated adenine. Biallelic MUTYH mutations impair this enzymatic function and are associated with colorectal cancer (CRC) in MUTYH-Associated Polyposis (MAP) syndrome. Here in this paper, we perform whole-exome sequencing that reveals a modest mutator phenotype in MAP CRCs compared to sporadic CRC stem cell lines or bulk tumours. The excess G:C > T:A transversion mutations in MAP CRCs exhibits a novel mutational signature, termed Signature 36, with a strongmore » sequence dependence. The MUTYH mutational signature reflecting persistent 8-oxoG:A mismatches occurs frequently in the APC, KRAS, PIK3CA, FAT4, TP53, FAT1, AMER1, KDM6A, SMAD4 and SMAD2 genes that are associated with CRC. In conclusion, the occurrence of Signature 36 in other types of human cancer indicates that DNA 8-oxoguanine-related mutations might contribute to the development of cancer in other organs.« less

  10. Tyrosine-Based 1-(S)-[3-hydroxy-2-(phosphonomethoxy)propyl]cytosine and -adenine ((S)-HPMPC and (S)-HPMPA) Prodrugs: Synthesis, Stability, Antiviral Activity and in Vivo Transport Studies

    PubMed Central

    Zakharova, Valeria M.; Serpi, Michaela; Krylov, Ivan S.; Peterson, Larryn W.; Breitenbach, Julie M.; Borysko, Katherine Z.; Drach, John C.; Collins, Mindy; Hilfinger, John M.; Kashemirov, Boris A.; McKenna, Charles E.

    2011-01-01

    Eight novel single amino acid (6–11) and dipeptide (12, 13) tyrosine P-O esters of cyclic cidofovir ((S)-cHPMPCa, 4) and its cyclic adenine analog ((S)-cHPMPA, 3) were synthesized and evaluated as prodrugs. In vitro IC50 values for the prodrugs vs vaccinia, cowpox, human cytomegalo- and herpes simplex type 1 viruses were similar to those for the parent drugs ((S)-HPMPC, 2, (S)-HPMPA, 1; IC50 0.3 – 30 µM); there were no cytoxicity with KB or HFF cells at ≤ 100 µM. The prodrugs exhibited a wide range of half-lives in rat intestinal homogenate at pH 6.5 (<30 – 1732 min) with differences of 3–10× between phostonate diastereomers. The tyrosine-alkylamide derivatives of 3 and 4 were the most stable. (L)-Tyr-NHiBu cHPMPA (11) was converted in rat or mouse plasma solely to two active metabolites and had significantly enhanced oral bioavailability vs parent drug 1 in a mouse model (39 % vs <5 %). PMID:21812420

  11. [Effect of flavin adenine dinucleotide on ultraviolet B induced damage in cultured human corneal epithelial cells].

    PubMed

    Sakamoto, Asuka; Nakamura, Masatsugu

    2012-01-01

    This study evaluated the effects of flavin adenine dinucleotide (FAD) on ultraviolet B (UV-B)-induced damage in cultured human corneal epithelial (HCE-T) cells. The cultured HCE-T cells were treated with 0.003125-0.05% FAD before exposure to 80 mJ/cm2 UV-B. Cell viability was measured 24 h after UV-B irradiation using the MTS assay. Reactive oxygen species (ROS) were detected 30 min after UV-B irradiation using 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate acetyl ester. Apoptosis was evaluated 4 h after UV-B irradiation in the caspase-3/7 activity assay. UV-B irradiation reduced cell viability and stimulated ROS production and caspase-3/7 activity in HCE-T cells. Pretreatment of UV-B irradiated HCE-T cells with FAD significantly attenuated cell viability reduction and inhibited the stimulation of both ROS production and caspase-3/7 activity due to UV-B exposure compared with those with vehicle (0% FAD). These results clarified that FAD inhibits ROS-mediated apoptosis by UV-B irradiation in HCE-T cells and suggest that FAD may be effective as a radical scavenger in UV-B-induced corneal damage.

  12. Imaging Redox State in Mouse Muscles of Different Ages.

    PubMed

    Moon, Lily; Frederick, David W; Baur, Joseph A; Li, Lin Z

    2017-01-01

    Aging is the greatest risk factor for many diseases. Intracellular concentrations of nicotinamide adenine dinucleotide (NAD + ) and the NAD + -coupled redox state have been proposed to moderate many aging-related processes, yet the specific mechanisms remain unclear. The concentration of NAD + falls with age in skeletal muscle, yet there is no consensus on whether aging will increase or decrease the redox potential of NAD + /NADH. Oxidized flavin groups (Fp) (e.g. FAD, i.e., flavin adenine dinucleotide, contained in flavoproteins) and NADH are intrinsic fluorescent indicators of oxidation and reduction status of tissue, respectively. The redox ratio, i.e., the ratio of Fp to NADH, may be a surrogate indicator of the NAD + /NADH redox potential. In this study we used the Chance redox scanner (NADH/Fp fluorescence imaging at low temperature) to investigate the effect of aging on the redox state of mitochondria in skeletal muscles. The results showed that there are borderline significant differences in nominal concentrations of Fp and NADH, but not in the redox ratio s when comparing 3.5-month and 13-month old muscles of mice (n = 6). It may be necessary to increase the number of muscle samples and study mice of more advanced age.

  13. Mutations in valosin-containing protein (VCP) decrease ADP/ATP translocation across the mitochondrial membrane and impair energy metabolism in human neurons.

    PubMed

    Ludtmann, Marthe H R; Arber, Charles; Bartolome, Fernando; de Vicente, Macarena; Preza, Elisavet; Carro, Eva; Houlden, Henry; Gandhi, Sonia; Wray, Selina; Abramov, Andrey Y

    2017-05-26

    Mutations in the gene encoding valosin-containing protein (VCP) lead to multisystem proteinopathies including frontotemporal dementia. We have previously shown that patient-derived VCP mutant fibroblasts exhibit lower mitochondrial membrane potential, uncoupled respiration, and reduced ATP levels. This study addresses the underlying basis for mitochondrial uncoupling using VCP knockdown neuroblastoma cell lines, induced pluripotent stem cells (iPSCs), and iPSC-derived cortical neurons from patients with pathogenic mutations in VCP Using fluorescent live cell imaging and respiration analysis we demonstrate a VCP mutation/knockdown-induced dysregulation in the adenine nucleotide translocase, which results in a slower rate of ADP or ATP translocation across the mitochondrial membranes. This deregulation can explain the mitochondrial uncoupling and lower ATP levels in VCP mutation-bearing neurons via reduced ADP availability for ATP synthesis. This study provides evidence for a role of adenine nucleotide translocase in the mechanism underlying altered mitochondrial function in VCP-related degeneration, and this new insight may inform efforts to better understand and manage neurodegenerative disease and other proteinopathies. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Mapping absolute tissue endogenous fluorophore concentrations with chemometric wide-field fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Xu, Zhang; Reilley, Michael; Li, Run; Xu, Min

    2017-06-01

    We report chemometric wide-field fluorescence microscopy for imaging the spatial distribution and concentration of endogenous fluorophores in thin tissue sections. Nonnegative factorization aided by spatial diversity is used to learn both the spectral signature and the spatial distribution of endogenous fluorophores from microscopic fluorescence color images obtained under broadband excitation and detection. The absolute concentration map of individual fluorophores is derived by comparing the fluorescence from "pure" fluorophores under the identical imaging condition following the identification of the fluorescence species by its spectral signature. This method is then demonstrated by characterizing the concentration map of endogenous fluorophores (including tryptophan, elastin, nicotinamide adenine dinucleotide, and flavin adenine dinucleotide) for lung tissue specimens. The absolute concentrations of these fluorophores are all found to decrease significantly from normal, perilesional, to cancerous (squamous cell carcinoma) tissue. Discriminating tissue types using the absolute fluorophore concentration is found to be significantly more accurate than that achievable with the relative fluorescence strength. Quantification of fluorophores in terms of the absolute concentration map is also advantageous in eliminating the uncertainties due to system responses or measurement details, yielding more biologically relevant data, and simplifying the assessment of competing imaging approaches.

  15. 3′-NADP and 3′-NAADP, Two Metabolites Formed by the Bacterial Type III Effector AvrRxo1*♦

    PubMed Central

    Schuebel, Felix; Rocker, Andrea; Edelmann, Daniel; Schessner, Julia; Brieke, Clara; Meinhart, Anton

    2016-01-01

    An arsenal of effector proteins is injected by bacterial pathogens into the host cell or its vicinity to increase virulence. The commonly used top-down approaches inferring the toxic mechanism of individual effector proteins from the host's phenotype are often impeded by multiple targets of different effectors as well as by their pleiotropic effects. Here we describe our bottom-up approach, showing that the bacterial type III effector AvrRxo1 of plant pathogens is an authentic phosphotransferase that produces two novel metabolites by phosphorylating nicotinamide/nicotinic acid adenine dinucleotide at the adenosine 3′-hydroxyl group. Both products of AvrRxo1, 3′-NADP and 3′-nicotinic acid adenine dinucleotide phosphate (3′-NAADP), are substantially different from the ubiquitous co-enzyme 2′-NADP and the calcium mobilizer 2′-NAADP. Interestingly, 3′-NADP and 3′-NAADP have previously been used as inhibitors or signaling molecules but were regarded as “artificial” compounds so far. Our findings now necessitate a shift in thinking about the biological importance of 3′-phosphorylated NAD derivatives. PMID:27621317

  16. Uncoupling protein-3 lowers reactive oxygen species production in isolated mitochondria

    PubMed Central

    Toime, Laurence J.; Brand, Martin D.

    2010-01-01

    Mitochondria are the major cellular producers of reactive oxygen species (ROS), and mitochondrial ROS production increases steeply with increased protonmotive force. The uncoupling proteins (UCP1, UCP2 and UCP3) and adenine nucleotide translocase induce proton leak in response to exogenously added fatty acids, superoxide or lipid peroxidation products. “Mild uncoupling” by these proteins may provide a negative feedback loop to decrease protonmotive force and attenuate ROS production. Using wild type and Ucp3−/− mice, we found that native UCP3 actively lowers the rate of ROS production in isolated energized skeletal muscle mitochondria, in the absence of exogenous activators. The estimated specific activity of UCP3 in lowering ROS production was 90 to 500 times higher than that of the adenine nucleotide translocase. The mild uncoupling hypothesis was tested by measuring whether the effect of UCP3 on ROS production could be mimicked by chemical uncoupling. A chemical uncoupler mimicked the effect of UCP3 at early time points after mitochondrial energization, in support of the mild uncoupling hypothesis. However, at later time points the uncoupler did not mimic UCP3, suggesting that UCP3 can also affect on ROS production through a membrane potential-independent mechanism. PMID:20493945

  17. Structures of Escherichia coli DNA adenine methyltransferase (Dam) in complex with a non-GATC sequence: Potential implications for methylation-independent transcriptional repression

    DOE PAGES

    Horton, John R.; Zhang, Xing; Blumenthal, Robert M.; ...

    2015-04-06

    DNA adenine methyltransferase (Dam) is widespread and conserved among the γ-proteobacteria. Methylation of the Ade in GATC sequences regulates diverse bacterial cell functions, including gene expression, mismatch repair and chromosome replication. Dam also controls virulence in many pathogenic Gram-negative bacteria. An unexplained and perplexing observation about Escherichia coli Dam (EcoDam) is that there is no obvious relationship between the genes that are transcriptionally responsive to Dam and the promoter-proximal presence of GATC sequences. Here, we demonstrate that EcoDam interacts with a 5-base pair non-cognate sequence distinct from GATC. The crystal structure of a non-cognate complex allowed us to identify amore » DNA binding element, GTYTA/TARAC (where Y = C/T and R = A/G). This element immediately flanks GATC sites in some Dam-regulated promoters, including the Pap operon which specifies pyelonephritis-associated pili. In addition, Dam interacts with near-cognate GATC sequences (i.e. 3/4-site ATC and GAT). All together, these results imply that Dam, in addition to being responsible for GATC methylation, could also function as a methylation-independent transcriptional repressor.« less

  18. Characterization of Two Mitochondrial Flavin Adenine Dinucleotide-Dependent Glycerol-3-Phosphate Dehydrogenases in Trypanosoma brucei

    PubMed Central

    Škodová, Ingrid; Verner, Zdeněk; Bringaud, Fréderic; Fabian, Peter

    2013-01-01

    Glycerol-3-phosphate dehydrogenases (G3PDHs) constitute a shuttle that serves for regeneration of NAD+ reduced during glycolysis. This NAD-dependent enzyme is employed in glycolysis and produces glycerol-3-phosphate from dihydroxyacetone phosphate, while its flavin adenine dinucleotide (FAD)-dependent homologue catalyzes a reverse reaction coupled to the respiratory chain. Trypanosoma brucei possesses two FAD-dependent G3PDHs. While one of them (mitochondrial G3PDH [mtG3PDH]) has been attributed to the mitochondrion and seems to be directly involved in G3PDH shuttle reactions, the function of the other enzyme (putative G3PDH [putG3PDH]) remains unknown. In this work, we used RNA interference and protein overexpression and tagging to shed light on the relative contributions of both FAD-G3PDHs to overall cellular metabolism. Our results indicate that mtG3PDH is essential for the bloodstream stage of T. brucei, while in the procyclic stage the enzyme is dispensable. Expressed putG3PDH-V5 was localized to the mitochondrion, and the data obtained by digitonin permeabilization, Western blot analysis, and immunofluorescence indicate that putG3PDH is located within the mitochondrion. PMID:24142106

  19. The impact of aging, hearing loss, and body weight on mouse hippocampal redox state, measured in brain slices using fluorescence imaging.

    PubMed

    Stebbings, Kevin A; Choi, Hyun W; Ravindra, Aditya; Llano, Daniel Adolfo

    2016-06-01

    The relationships between oxidative stress in the hippocampus and other aging-related changes such as hearing loss, cortical thinning, or changes in body weight are not yet known. We measured the redox ratio in a number of neural structures in brain slices taken from young and aged mice. Hearing thresholds, body weight, and cortical thickness were also measured. We found striking aging-related increases in the redox ratio that were isolated to the stratum pyramidale, while such changes were not observed in thalamus or cortex. These changes were driven primarily by changes in flavin adenine dinucleotide, not nicotinamide adenine dinucleotide hydride. Multiple regression analysis suggested that neither hearing threshold nor cortical thickness independently contributed to this change in hippocampal redox ratio. However, body weight did independently contribute to predicted changes in hippocampal redox ratio. These data suggest that aging-related changes in hippocampal redox ratio are not a general reflection of overall brain oxidative state but are highly localized, while still being related to at least one marker of late aging, weight loss at the end of life. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Regulation of the Biosynthesis of Amino Acids of the Aspartate Family in Coliform Bacteria and Pseudomonads

    PubMed Central

    Cohen, G. N.; Stanier, R. Y.; Bras, Gisele Le

    1969-01-01

    The control of aspartokinase and homoserine dehydrogenase activities was compared in aerobic and fermentative pseudomonads (genera Pseudomonas and Aeromonas), and in coliform bacteria representative of the principal genera of the Enterobacteriaceae. Isofunctional aspartokinases subject to independent end-product control occur in the Enterobacteriaceae and in Aeromonas. In Pseudomonas, there appears to be a single aspartokinase, subject to concerted feedback inhibition by lysine and threonine. Within this genus, the sensitivity of aspartokinase to the single allosteric inhibitors varies considerably: the aspartokinase of the acidovorans group is little affected by the single inhibitors, whereas that of the fluorescent group is severely inhibited by either amino acid at high concentration. In all bacteria examined, homoserine dehydrogenase activity is inhibited by threonine; inhibition is more severe in aerobic pseudomonads than in the other groups. In most of the bacteria examined, either nicotinamide adenine dinucleotide (NAD) or nicotinamide adenine dinucleotide phosphate can serve as a cofactor for this enzyme, though the relative activity with the two pyridine nucleotides varies widely. Aerobic pseudomonads of the acidovorans group contain a homoserine dehydrogenase that is absolutely specific for NAD. The taxonomic implications of these findings are discussed. PMID:4391829

  1. Reaction of. beta. -propiolactone with derivatives of adenine and with DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, R.; Mieyal, J.J.; Goldthwait, D.A.

    1982-01-01

    The reaction of deoxyadenosine with ..beta..-propiolactone produces two derivatives. One is 1-(2-carboxyethyl)-2-deoxyadenosine (CEdA). The proposed structure for the other is 3-(..beta..-D-2-deoxyribosyl)-7,8-dihydropyrimido-(2,l-i)purine-9-one (dDPP). Spectral characteristics of both compounds are presented. These include u.v. spectra of each in acidic, neutral and alkaline solutions, i.r. spectra, fluorescence spectra, and n.m.r. spectra. The dDPP can be converted to CEdA by mild acid hydrolysis, and the CEdA can be converted to dDPP by reaction with a carbodiimide derivative. When poly A was reacted with ..beta..-propiolactone, the yield of dDPP in the polymer was 7-9%. When double-stranded DNA was alkylated by (/sup 3/H)..beta..-propiolactone at relatively highmore » concentrations and then acid hydrolyzed to separate 1-(2-carboxyethyl)adenine (CEA) and 7-(2-carboxyethyl)guanine (CEG), and CEA to CEG ratio of up to 0.62 was obtained. With relatively low concentrations of (/sup 3/H)..beta..-propiolactone, the yield of CEA was low with double-stranded DNA but was 5-6 fold greater with single-stranded DNA.« less

  2. Primitive Photosynthetic Architectures Based on Self-Organization and Chemical Evolution of Amino Acids and Metal Ions.

    PubMed

    Liu, Kai; Ren, Xiaokang; Sun, Jianxuan; Zou, Qianli; Yan, Xuehai

    2018-06-01

    The emergence of light-energy-utilizing metabolism is likely to be a critical milestone in prebiotic chemistry and the origin of life. However, how the primitive pigment is spontaneously generated still remains unknown. Herein, a primitive pigment model based on adaptive self-organization of amino acids (Cystine, Cys) and metal ions (zinc ion, Zn 2+ ) followed by chemical evolution under hydrothermal conditions is developed. The resulting hybrid microspheres are composed of radially aligned cystine/zinc (Cys/Zn) assembly decorated with carbonate-doped zinc sulfide (C-ZnS) nanocrystals. The part of C-ZnS can work as a light-harvesting antenna to capture ultraviolet and visible light, and use it in various photochemical reactions, including hydrogen (H 2 ) evolution, carbon dioxide (CO 2 ) photoreduction, and reduction of nicotinamide adenine dinucleotide (NAD + ) to nicotinamide adenine dinucleotide hydride (NADH). Additionally, guest molecules (e.g., glutamate dehydrogenase, GDH) can be encapsulated within the hierarchical Cys/Zn framework, which facilitates sustainable photoenzymatic synthesis of glutamate. This study helps deepen insight into the emergent functionality (conversion of light energy) and complexity (hierarchical architecture) from interaction and reaction of prebiotic molecules. The primitive pigment model is also promising to work as an artificial photosynthetic microreactor.

  3. Ebselen induces mitochondrial permeability transition because of its interaction with adenine nucleotide translocase.

    PubMed

    Pavón, Natalia; Correa, Francisco; Buelna-Chontal, Mabel; Hernández-Esquivel, Luz; Chávez, Edmundo

    2015-10-15

    Mitochondrial permeability transition is a process established through massive Ca(2+) load in addition to an inducer reagent. Ebselen (Ebs), an antioxidant seleno compound, has been introduced as a reagent which inhibits mitochondrial dysfunction induced by permeability transition. Paradoxically enough, it has been shown that Ebs may also be able to induce the opening of the mitochondrial non-selective pores. This study was performed with the purpose of establishing the membrane system involved in Ebs-induced pore opening. Permeability transition was appraised by analyzing the following: i) matrix Ca(2+) release, and mitochondrial swelling, ii) efflux of cytochrome c, and iii) the inhibition of superoxide dismutase. All of these adverse reactions were inhibited by N-ethylmaleimide and cyclosporin A. At concentrations from 5 to 20 μM, we found that Ebs induces non-specific membrane permeability. Remarkably, Ebs blocks the binding of the fluorescent reagent eosin-5-maleimide to the thiol groups of the adenine nucleotide translocase. Based on the above, it is tempting to hypothesize that Ebs induces pore opening through its binding to the ADP/ATP carrier. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Ebselen Reversibly Inhibits Human Glutamate Dehydrogenase at the Catalytic Site.

    PubMed

    Jin, Yanhong; Li, Di; Lu, Shiying; Zhao, Han; Chen, Zhao; Hou, Wei; Ruan, Benfang Helen

    Human glutamate dehydrogenase (GDH) plays an important role in neurological diseases, tumor metabolism, and hyperinsulinism-hyperammonemia syndrome (HHS). However, there are very few inhibitors known for human GDH. Recently, Ebselen was reported to crosslink with Escherichia coli GDH at the active site cysteine residue (Cys321), but the sequence alignment showed that the corresponding residue is Ala329 in human GDH. To investigate whether Ebselen could be an inhibitor for human GDH, we cloned and expressed an N-terminal His-tagged human GDH in E. coli. The recombinant human GDH enzyme showed expected properties such as adenosine diphosphate activation and nicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide phosphate dual recognition. Further, we developed a 2-(3-(2-methoxy-4-nitrophenyl)-2-(4-nitrophenyl)-2H-tetrazol-3-ium-5-yl) benzenesulfonate sodium salt (EZMTT)-based assay for human GDH, which was highly sensitive and is suitable for high-throughput screening for potent GDH inhibitors. In addition, ForteBio binding assays demonstrated that Ebselen is a reversible active site inhibitor for human GDH. Since Ebselen is a multifunctional organoselenium compound in Phase III clinical trials for inflammation, an Ebselen-based GDH inhibitor might be valuable for future drug discovery for HHS patients.

  5. Theoretical study of the adsorption of DNA bases on the acidic external surface of montmorillonite.

    PubMed

    Mignon, Pierre; Sodupe, Mariona

    2012-01-14

    In the present study, DFT periodic plane wave calculations, at the PBE-D level of theory, were carried out to investigate the interaction of DNA nucleobases with acidic montmorillonite. The surface model was considered in its octahedral (Osub) and tetrahedral (Tsub) substituted forms, known to have different acidic properties. The adsorption of adenine, guanine and cytosine was considered in both orthogonal and coplanar orientations with the surface, interacting with the proton via a given heteroatom. In almost all considered cases, adsorption involved the spontaneous proton transfer to the nucleobase, with a more pronounced character in the Osub structures. The binding energy is about 10 kcal mol(-1) larger for Osub than for Tsub complexes mainly due to the larger acidity in Osub surfaces and due to the better stabilization by H-bond contacts between the negatively charged surface and the protonated base. The binding energy of coplanar orientations of the base is observed to be as large as the orthogonal ones due to a balance between electrostatic and dispersion contributions. Finally the binding of guanine and adenine on the acidic surface amounts to 50 kcal mol(-1) while that of cytosine rises to 44 kcal mol(-1).

  6. Complexes of DNA bases and Watson-Crick base pairs interaction with neutral silver Agn (n = 8, 10, 12) clusters: a DFT and TDDFT study.

    PubMed

    Srivastava, Ruby

    2018-03-01

    We study the binding of the neutral Ag n (n = 8, 10, 12) to the DNA base-adenine (A), guanine (G) and Watson-Crick -adenine-thymine, guanine-cytosine pairs. Geometries of complexes were optimized at the DFT level using the hybrid B3LYP functional. LANL2DZ effective core potential was used for silver and 6-31 + G ** was used for all other atoms. NBO charges were analyzed using the Natural population analysis. The absorption properties of Ag n -A,G/WC complexes were also studied using time-dependent density functional theory. The absorption spectra for these complexes show wavelength in the visible region. It was revealed that silver clusters interact more strongly with WC pairs than with isolated DNA complexes. Furthermore, it was found that the electronic charge transferred from silver to isolated DNA clusters are less than the electronic charge transferred from silver to the Ag n -WC complexes. The vertical ionization potential, vertical electron affinity, hardness, and electrophilicity index of Ag n -DNA/WC complexes have also been discussed.

  7. A lectin receptor kinase as a potential sensor for extracellular nicotinamide adenine dinucleotide in Arabidopsis thaliana

    PubMed Central

    Wang, Chenggang; Zhou, Mingqi; Zhang, Xudong; Yao, Jin; Zhang, Yanping; Mou, Zhonglin

    2017-01-01

    Nicotinamide adenine dinucleotide (NAD+) participates in intracellular and extracellular signaling events unrelated to metabolism. In animals, purinergic receptors are required for extracellular NAD+ (eNAD+) to evoke biological responses, indicating that eNAD+ may be sensed by cell-surface receptors. However, the identity of eNAD+-binding receptors still remains elusive. Here, we identify a lectin receptor kinase (LecRK), LecRK-I.8, as a potential eNAD+ receptor in Arabidopsis. The extracellular lectin domain of LecRK-I.8 binds NAD+ with a dissociation constant of 436.5 ± 104.8 nM, although much higher concentrations are needed to trigger in vivo responses. Mutations in LecRK-I.8 inhibit NAD+-induced immune responses, whereas overexpression of LecRK-I.8 enhances the Arabidopsis response to NAD+. Furthermore, LecRK-I.8 is required for basal resistance against bacterial pathogens, substantiating a role for eNAD+ in plant immunity. Our results demonstrate that lectin receptors can potentially function as eNAD+-binding receptors and provide direct evidence for eNAD+ being an endogenous signaling molecule in plants. DOI: http://dx.doi.org/10.7554/eLife.25474.001 PMID:28722654

  8. Catabolism of phloroglucinol by the rumen anaerobe coprococcus.

    PubMed

    Patel, T R; Jure, K G; Jones, G A

    1981-12-01

    A rumen isolate, Coprococcus, sp. Pe(1)5, was found to carry phloroglucinol reductase, which catalyzed the initial step in the breakdown of phloroglucinol. The organism uses phloroglucinol as the sole source of carbon and energy when grown in the absence of oxygen. Induced levels of enzyme were detected in cells grown either on phloroglucinol or on other carbon sources in the presence of limiting quantities of phloroglucinol. Although the organism is a strict anaerobe, the enzyme from anaerobically grown cells was insensitive to air. The partially purified enzyme required reduced nicotinamide adenine dinucleotide phosphate as an electron donor and was specific for phloroglucinol. However, partial enzyme activity (14 to 17%) was also detected in the presence of 2-methyl-1,4-naphthoquinone but not in the presence of several other phenolic compounds. The enzyme exhibited a higher affinity for phloroglucinol than for reduced nicotinamide adenine dinucleotide phosphate, with K(m) values of 3.0 x 10 M and 29.0 x 10 M, respectively. The optimum pH for maximal enzyme activity was 7.4, and the molecular weight of the native protein was about 130,000, as determined by the Sephadex gel filtration technique.

  9. Catabolism of Phloroglucinol by the Rumen Anaerobe Coprococcus

    PubMed Central

    Patel, T. R.; Jure, K. G.; Jones, G. A.

    1981-01-01

    A rumen isolate, Coprococcus, sp. Pe15, was found to carry phloroglucinol reductase, which catalyzed the initial step in the breakdown of phloroglucinol. The organism uses phloroglucinol as the sole source of carbon and energy when grown in the absence of oxygen. Induced levels of enzyme were detected in cells grown either on phloroglucinol or on other carbon sources in the presence of limiting quantities of phloroglucinol. Although the organism is a strict anaerobe, the enzyme from anaerobically grown cells was insensitive to air. The partially purified enzyme required reduced nicotinamide adenine dinucleotide phosphate as an electron donor and was specific for phloroglucinol. However, partial enzyme activity (14 to 17%) was also detected in the presence of 2-methyl-1,4-naphthoquinone but not in the presence of several other phenolic compounds. The enzyme exhibited a higher affinity for phloroglucinol than for reduced nicotinamide adenine dinucleotide phosphate, with Km values of 3.0 × 10−5 M and 29.0 × 10−5 M, respectively. The optimum pH for maximal enzyme activity was 7.4, and the molecular weight of the native protein was about 130,000, as determined by the Sephadex gel filtration technique. PMID:16345897

  10. Calcium-dependent nonspecific permeability of the inner mitochondrial membrane is not induced in mitochondria of the yeast Endomyces magnusii.

    PubMed

    Deryabina, Y I; Isakova, E P; Shurubor, E I; Zvyagilskaya, R A

    2004-09-01

    Mitochondria of the yeast Endomyces magnusii were examined for the presence of a Ca2+- and phosphate-induced permeability of the inner mitochondrial membrane (pore). For this purpose, coupled mitochondria were incubated under conditions known to induce the permeability transition pore in animal mitochondria, i.e., in the presence of high concentrations of Ca2+ and P(i), prooxidants (t-butylhydroperoxide), oxaloacetate, atractyloside (an inhibitor of ADP/ATP translocator), SH-reagents, by depletion of adenine nucleotide pools, and deenergization of the mitochondria. Large amplitude swelling, collapse of the membrane potential, and efflux of the accumulated Ca2+ were used as parameters for demonstrating pore induction. E. magnusii mitochondria were highly resistant to the above-mentioned substances. Deenergization of mitochondria or depletion of adenine nucleotide pools have no effect on low-amplitude swelling or the other parameters. Cyclosporin A, a specific inhibitor of the nonspecific permeability transition in animal mitochondria, did not affect the parameters measured. It is thus evident that E. magnusii mitochondria lack a functional Ca2+-dependent pore, or possess a pore differently regulated as compared to that of mammalian mitochondria.

  11. In vitro characterization of the NAD+ synthetase NadE1 from Herbaspirillum seropedicae.

    PubMed

    Laskoski, Kerly; Santos, Adrian R S; Bonatto, Ana C; Pedrosa, Fábio O; Souza, Emanuel M; Huergo, Luciano F

    2016-05-01

    Nicotinamide adenine dinucleotide synthetase enzyme (NadE) catalyzes the amination of nicotinic acid adenine dinucleotide (NaAD) to form NAD(+). This reaction represents the last step in the majority of the NAD(+) biosynthetic routes described to date. NadE enzymes typically use either glutamine or ammonium as amine nitrogen donor, and the reaction is energetically driven by ATP hydrolysis. Given the key role of NAD(+) in bacterial metabolism, NadE has attracted considerable interest as a potential target for the development of novel antibiotics. The plant-associative nitrogen-fixing bacteria Herbaspirillum seropedicae encodes two putative NadE, namely nadE1 and nadE2. The nadE1 gene is linked to glnB encoding the signal transduction protein GlnB. Here we report the purification and in vitro characterization of H. seropedicae NadE1. Gel filtration chromatography analysis suggests that NadE1 is an octamer. The NadE1 activity was assayed in vitro, and the Michaelis-Menten constants for substrates NaAD, ATP, glutamine and ammonium were determined. Enzyme kinetic and in vitro substrate competition assays indicate that H. seropedicae NadE1 uses glutamine as a preferential nitrogen donor.

  12. Endogenous adenosine produced during hypoxia attenuates neutrophil accumulation: coordination by extracellular nucleotide metabolism.

    PubMed

    Eltzschig, Holger K; Thompson, Linda F; Karhausen, Jorn; Cotta, Richard J; Ibla, Juan C; Robson, Simon C; Colgan, Sean P

    2004-12-15

    Hypoxia is a well-documented inflammatory stimulus and results in tissue polymorphonuclear leukocyte (PMN) accumulation. Likewise, increased tissue adenosine levels are commonly associated with hypoxia, and given the anti-inflammatory properties of adenosine, we hypothesized that adenosine production via adenine nucleotide metabolism at the vascular surface triggers an endogenous anti-inflammatory response during hypoxia. Initial in vitro studies indicated that endogenously generated adenosine, through activation of PMN adenosine A(2A) and A(2B) receptors, functions as an antiadhesive signal for PMN binding to microvascular endothelia. Intravascular nucleotides released by inflammatory cells undergo phosphohydrolysis via hypoxia-induced CD39 ectoapyrase (CD39 converts adenosine triphosphate/adenosine diphosphate [ATP/ADP] to adenosine monophosphate [AMP]) and CD73 ecto-5'-nucleotidase (CD73 converts AMP to adenosine). Extensions of our in vitro findings using cd39- and cd73-null animals revealed that extracellular adenosine produced through adenine nucleotide metabolism during hypoxia is a potent anti-inflammatory signal for PMNs in vivo. These findings identify CD39 and CD73 as critical control points for endogenous adenosine generation and implicate this pathway as an innate mechanism to attenuate excessive tissue PMN accumulation.

  13. Nicotinamide adenine dinucleotide biosynthesis promotes liver regeneration

    PubMed Central

    Mukherjee, Sarmistha; Chellappa, Karthikeyani; Moffitt, Andrea; Ndungu, Joan; Dellinger, Ryan W.; Davis, James G.; Agarwal, Beamon; Baur, Joseph A.

    2016-01-01

    The regenerative capacity of the liver is essential for recovery from surgical resection or injuries induced by trauma or toxins. During liver regeneration, the concentration of nicotinamide adenine dinucleotide (NAD) falls, at least in part due to metabolic competition for precursors. To test whether NAD availability restricts the rate of liver regeneration, we supplied nicotinamide riboside (NR), an NAD precursor, in the drinking water of mice subjected to partial hepatectomy. NR increased DNA synthesis, mitotic index, and mass restoration in the regenerating livers. Intriguingly, NR also ameliorated the steatosis that normally accompanies liver regeneration. To distinguish the role of hepatocyte NAD levels from any systemic effects of NR, we generated mice overexpressing Nicotinamide phosphoribosyltransferase (Nampt), a rate-limiting enzyme for NAD synthesis, specifically in the liver. Nampt overexpressing mice were mildly hyperglycemic at baseline and, similarly to the mice treated with NR, exhibited enhanced liver regeneration and reduced steatosis following partial hepatectomy. Conversely, mice lacking Nampt in hepatocytes exhibited impaired regenerative capacity that was completely rescued by administering NR. Conclusion NAD availability is limiting during liver regeneration and supplementation with precursors such as NR may be therapeutic in settings of acute liver injury. PMID:27809334

  14. Purification and characterization of the enzymes involved in nicotinamide adenine dinucleotide degradation by Penicillium brevicompactum NRC 829.

    PubMed

    Ali, Thanaa Hamed; El-Ghonemy, Dina Helmy

    2016-06-01

    The present study was conducted to investigate a new pathway for the degradation of nicotinamide adenine dinucleotide (NAD) by Penicillium brevicompactum NRC 829 extracts. Enzymes involved in the hydrolysis of NAD, i.e. alkaline phosphatase, aminohydrolase and glycohydrolase were determined. Alkaline phosphatase was found to catalyse the sequential hydrolysis of two phosphate moieties of NAD molecule to nicotinamide riboside plus adenosine. Adenosine was then deaminated by aminohydrolase to inosine and ammonia. While glycohydrolase catalyzed the hydrolysis of the nicotinamide-ribosidic bond of NAD+ to produce nicotinamide and ADP-ribose in equimolar amounts, enzyme purification through a 3-step purification procedure revealed the existence of two peaks of alkaline phosphatases, and one peak contained deaminase and glycohydrolase activities. NAD deaminase was purified to homogeneity as estimated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis with an apparent molecular mass of 91 kDa. Characterization and determination of some of NAD aminohydrolase kinetic properties were conducted due to its biological role in the regulation of cellular NAD level. The results also revealed that NAD did not exert its feedback control on nicotinamide amidase produced by P. brevicompactum.

  15. The X3LYP extended density functional accurately describes H-bonding but fails completely for stacking.

    PubMed

    Cerný, Jirí; Hobza, Pavel

    2005-04-21

    The performance of the recently introduced X3LYP density functional which was claimed to significantly improve the accuracy for H-bonded and van der Waals complexes was tested for extended H-bonded and stacked complexes (nucleic acid base pairs and amino acid pairs). In the case of planar H-bonded complexes (guanine...cytosine, adenine...thymine) the DFT results nicely agree with accurate correlated ab initio results. For the stacked pairs (uracil dimer, cytosine dimer, adenine...thymine and guanine...cytosine) the DFT fails completely and it was even not able to localize any minimum at the stacked subspace of the potential energy surface. The geometry optimization of all these stacked clusters leads systematically to the planar H-bonded pairs. The amino acid pairs were investigated in the crystal geometry. DFT again strongly underestimates the accurate correlated ab initio stabilization energies and usually it was not able to describe the stabilization of a pair. The X3LYP functional thus behaves similarly to other current functionals. Stacking of nucleic acid bases as well as interaction of amino acids was described satisfactorily by using the tight-binding DFT method, which explicitly covers the London dispersion energy.

  16. [Influence exogenous nicotinamide adenine dinucleotide (NAD+) on contractile and bioelectric activity of the rat heart].

    PubMed

    Pustovit, K B; Kuz'min, V S; Sukhova, G S

    2014-04-01

    This study is aimed to the investigation of the nicotinamide adenine dinucleotide (NAD+) effects and mechanisms of action in a heart. NAD+ (mcM) induces multiphase alternation of contractile activity of isolated rat heart: short positive inotropic action is followed by a negative inotropic phase. NAD+ (1-100 mcM) induces decreasing of action potential duration (APD) in rat atrial myocardium (from 45 +/- 0.82 ms in control experiments to 39 +/- 1.05 (n = 8) and 32 +/- 2 (n = 8) during application of 10 and 100 mcM of NAD+, respectively). Significant APD increase (from 45 +/- 0.82 ms to 74 +/- 1.89 (n = 8) ms) was observed during washing out of NAD+ (100 mcM). ATP or adenosine was unable to increase APD both during application or washing out. NAD+ induced APD decrease was not suppressed by P1-antagonist theophylline. P1-purinoreceptor and metabolite independent direct action of NAD+ in rat heart is suggested. Activation of P2X or P2Y receptors, cyclic ADP-ribose accumulation in cardiomyocytes is proposed as a main mechanism of NAD(+)-induced effects in the heart.

  17. Characterization of Biosynthetic Genes of Ascamycin/Dealanylascamycin Featuring a 5′-O-Sulfonamide Moiety in Streptomyces sp. JCM9888

    PubMed Central

    Zhao, Chunhua; Qi, Jianzhao; Tao, Weixing; He, Lei; Xu, Wei; Chan, Jason; Deng, Zixin

    2014-01-01

    Ascamycin (ACM) and dealanylascamycin (DACM) are nucleoside antibiotics elaborated by Streptomyces sp. JCM9888. The later shows broad spectrum inhibition activity to various gram-positive and gram-negative bacteria, eukaryotic Trypanosoma and is also toxic to mice, while ascamycin is active against very limited microorganisms, such as Xanthomonas. Both compounds share an unusual 5′-O-sulfonamide moiety which is attached to an adenosine nucleoside. In this paper, we first report on the 30 kb gene cluster (23 genes, acmA to acmW) involved in the biosynthesis of these two antibiotics and a biosynthetic assembly line was proposed. Of them, six genes (AcmABGKIW) are hypothetical genes involved in 5′-O-sulfonamide formation. Two flavin adenine dinucleotide (FAD)-dependent chlorinase genes acmX and acmY were characterized which are significantly remote from acmA-W and postulated to be required for adenine C2-halogenation. Notably gene disruption of acmE resulted in a mutant which could only produce dealanylascamycin but was blocked in its ability to biosynthesize ascamycin, revealing its key role of conversion of dealanylascamycin to ascamycin. PMID:25479601

  18. Application of the Mars Organic Analyzer to nucleobase and amine biomarker detection.

    PubMed

    Skelley, Alison M; Cleaves, H James; Jayarajah, Christine N; Bada, Jeffrey L; Mathies, Richard A

    2006-12-01

    The Mars Organic Analyzer (MOA), a portable microfabricated capillary electrophoresis instrument being developed for planetary exploration, is used to analyze a wide variety of fluorescamine-labeled amine-containing biomarker compounds, including amino acids, mono and diaminoalkanes, amino sugars, nucleobases, and nucleobase degradation products. The nucleobases cytosine and adenine, which contain an exocyclic primary amine, were effectively labeled, separated, and detected at concentrations <500 nM. To test the general applicability of the MOA for biomarker detection, amino acids and mono- and diamines were extracted from bacterial cells using both hydrolysis and sublimation followed by analysis. The extrapolated limit of detection provided by the valine biomarker was approximately 4 x 10(3) cells per sample. Products of an NH(4)CN polymerization that simulate a prebiotic synthesis were also successfully isolated via sublimation and analyzed. Adenine and alanine/serine were detected with no additional sample cleanup at 120 +/- 13 microM and 4.1 +/- 1 microM, respectively, corresponding to a reaction yield of 0.04% and 0.0003%, respectively. This study demonstrates that the MOA provides sensitive detection and analysis of low levels of a wide variety of amine-containing organic compounds from both biological and abiotic sources.

  19. Graphene and CdS nanocomposite: a facile interface for construction of DNA-based electrochemical biosensor and its application to the determination of phenformin.

    PubMed

    Zeng, Lijiao; Wang, Rui; Zhu, Lihua; Zhang, Jingdong

    2013-10-01

    Graphene/cadmium sulphide (GR-CdS) nanocomposite was synthesized via a low temperature process in aqueous solution. The as-prepared nanocomposite was characterized by scanning electron microscopy, UV-visible spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. The impedance analysis indicated that GR-CdS nanocomposite possessed outstanding electrochemical performance for facile electron transfer. When DNA was immobilized on GR-CdS (DNA/GR-CdS) modified electrode, the electrochemical oxidation of guanine and adenine in DNA residue bases was significantly promoted. Due to the interaction of DNA with phenformin, the voltammetric current of guanine or adenine on the DNA/GR-CdS electrode was decreased when phenformin was present in the electrolytic solution. Under optimized conditions, the signal of guanine on DNA/GR-CdS electrode decreased linearly with increasing the concentration of phenformin in the range of 1.0×10(-6)molL(-1) to 1.0×10(-3)molL(-1). The proposed DNA-based electrochemical biosensor was successfully applied to the determination of phenformin in real samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baig, M.; Brown, A.; Eswaramoorthy, S.

    Klebsiella pneumoniae, a gram-negative enteric bacterium, is found in nosocomial infections which are acquired during hospital stays for about 10% of hospital patients in the United States. The crystal structure of a putative oxidoreductase from K. pneumoniae has been determined. The structural information of this K. pneumoniae protein was used to understand its function. Crystals of the putative oxidoreductase enzyme were obtained by the sitting drop vapor diffusion method using Polyethylene glycol (PEG) 3350, Bis-Tris buffer, pH 5.5 as precipitant. These crystals were used to collect X-ray data at beam line X12C of the National Synchrotron Light Source (NSLS) atmore » Brookhaven National Laboratory (BNL). The crystal structure was determined using the SHELX program and refi ned with CNS 1.1. This protein, which is involved in the catalysis of an oxidation-reduction (redox) reaction, has an alpha/beta structure. It utilizes nicotinamide adenine dinucleotide phosphate (NADP) or nicotine adenine dinucleotide (NAD) to perform its function. This structure could be used to determine the active and co-factor binding sites of the protein, information that could help pharmaceutical companies in drug design and in determining the protein’s relationship to disease treatment such as that for pneumonia and other related pathologies.« less

  1. Preclinical evidence of mitochondrial nicotinamide adenine dinucleotide as an effective alarm parameter under hypoxia

    NASA Astrophysics Data System (ADS)

    Shi, Hua; Sun, Nannan; Mayevsky, Avraham; Zhang, Zhihong; Luo, Qingming

    2014-01-01

    Early detection of tissue hypoxia in the intensive care unit is essential for effective treatment. Reduced nicotinamide adenine dinucleotide (NADH) has been suggested to be the most sensitive indicator of tissue oxygenation at the mitochondrial level. However, no experimental evidence comparing the kinetics of changes in NADH and other physiological parameters has been provided. The aim of this study is to obtain the missing data in a systematic and reliable manner. We constructed four acute hypoxia models, including hypoxic hypoxia, hypemic hypoxia, circulatory hypoxia, and histogenous hypoxia, and measured NADH fluorescence, tissue reflectance, cerebral blood flow, respiration, and electrocardiography simultaneously from the induction of hypoxia until death. We found that NADH was not always the first onset parameter responding to hypoxia. The order of responses was mainly affected by the cause of hypoxia. However, NADH reached its alarm level earlier than the other monitored parameters, ranging from several seconds to >10 min. As such, we suggest that the NADH can be used as a hypoxia indicator, although the exact level that should be used must be further investigated. When the NADH alarm is detected, the body still has a chance to recover if appropriate and timely treatment is provided.

  2. A Specific Mutational Signature Associated with DNA 8-Oxoguanine Persistence in MUTYH-defective Colorectal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viel, Alessandra; Bruselles, Alessandro; Meccia, Ettore

    8-Oxoguanine, a common mutagenic DNA lesion, generates G:C > T:A transversions via mispairing with adenine during DNA replication. When operating normally, the MUTYH DNA glycosylase prevents 8-oxoguanine-related mutagenesis by excising the incorporated adenine. Biallelic MUTYH mutations impair this enzymatic function and are associated with colorectal cancer (CRC) in MUTYH-Associated Polyposis (MAP) syndrome. Here in this paper, we perform whole-exome sequencing that reveals a modest mutator phenotype in MAP CRCs compared to sporadic CRC stem cell lines or bulk tumours. The excess G:C > T:A transversion mutations in MAP CRCs exhibits a novel mutational signature, termed Signature 36, with a strongmore » sequence dependence. The MUTYH mutational signature reflecting persistent 8-oxoG:A mismatches occurs frequently in the APC, KRAS, PIK3CA, FAT4, TP53, FAT1, AMER1, KDM6A, SMAD4 and SMAD2 genes that are associated with CRC. In conclusion, the occurrence of Signature 36 in other types of human cancer indicates that DNA 8-oxoguanine-related mutations might contribute to the development of cancer in other organs.« less

  3. DNA adenine methylation is required to replicate both Vibrio cholerae chromosomes once per cell cycle.

    PubMed

    Demarre, Gaëlle; Chattoraj, Dhruba K

    2010-05-06

    DNA adenine methylation is widely used to control many DNA transactions, including replication. In Escherichia coli, methylation serves to silence newly synthesized (hemimethylated) sister origins. SeqA, a protein that binds to hemimethylated DNA, mediates the silencing, and this is necessary to restrict replication to once per cell cycle. The methylation, however, is not essential for replication initiation per se but appeared so when the origins (oriI and oriII) of the two Vibrio cholerae chromosomes were used to drive plasmid replication in E. coli. Here we show that, as in the case of E. coli, methylation is not essential for oriI when it drives chromosomal replication and is needed for once-per-cell-cycle replication in a SeqA-dependent fashion. We found that oriII also needs SeqA for once-per-cell-cycle replication and, additionally, full methylation for efficient initiator binding. The requirement for initiator binding might suffice to make methylation an essential function in V. cholerae. The structure of oriII suggests that it originated from a plasmid, but unlike plasmids, oriII makes use of methylation for once-per-cell-cycle replication, the norm for chromosomal but not plasmid replication.

  4. Human sperm NADH and NADPH diaphorase cytochemistry: correlation with sperm motility.

    PubMed

    Zini, A; O'Bryan, M K; Israel, L; Schlegel, P N

    1998-03-01

    We have examined the correlation between the retention of residual sperm cytoplasm and sperm motility in semen from men presenting for infertility evaluation. Semen samples (n = 12) were obtained from nonazoospermic men presenting for infertility evaluation at our institution. Samples were fractionated into high-, intermediate-, and low-density subpopulations by Percoll gradients in order to examine the correlation between the retention of residual sperm cytoplasm and sperm motility. Residual sperm cytoplasm retention was detected by cytochemical staining of sperm for nicotinamide adenine dinucleotide (NADH)- or nicotinamide adenine dinucleotide phosphate (NADPH)-dependent diaphorase activity. The different sperm subpopulations (low, intermediate, and high density) had significantly different percentages of sperm with droplet retention (analysis of variance, P < 0.05). Using either NADH or NADPH diaphorase staining as a marker of the cytoplasmic space, a significant negative correlation was observed between the percentage of sperm with residual cytoplasmic droplets and the percentage of motile sperm (r = -0.58 and -0.61, respectively, P < 0.05). Assessment of residual sperm cytoplasm retention is a simple diagnostic test. Although this test is of unproven value in the management of infertile men, this and other studies suggest that it may provide useful data on sperm function.

  5. Synthesis, conformational analysis, and biological activity of new analogues of thiazole-4-carboxamide adenine dinucleotide (TAD) as IMP dehydrogenase inhibitors.

    PubMed

    Franchetti, Palmarisa; Cappellacci, Loredana; Pasqualini, Michela; Petrelli, Riccardo; Jayaprakasan, Vetrichelvan; Jayaram, Hiremagalur N; Boyd, Donald B; Jain, Manojkumar D; Grifantini, Mario

    2005-03-15

    Thiazole-4-carboxamide adenine dinucleotide (TAD) analogues T-2'-MeAD (1) and T-3'-MeAD (2) containing, respectively, a methyl group at the ribose 2'-C-, and 3'-C-position of the adenosine moiety, were prepared as potential selective human inosine monophosphate dehydrogenase (IMPDH) type II inhibitors. The synthesis of heterodinucleotides was carried out by CDI-catalyzed coupling reaction of unprotected 2'-C-methyl- or 3'-C-methyl-adenosine 5'-monophosphate with 2',3'-O-isopropylidene-tiazofurin 5'-monophosphate, and then deisopropylidenation. Biological evaluation of dinucleotides 1 and 2 as inhibitors of recombinant human IMPDH type I and type II resulted in a good activity. Inhibition of both isoenzymes by T-2'-MeAD and T-3'-MeAD was noncompetitive with respect to NAD substrate. Binding of T-3'-MeAD was comparable to that of parent compound TAD, while T-2'-MeAD proved to be a weaker inhibitor. However, no significant difference was found in inhibition of the IMPDH isoenzymes. T-2'-MeAD and T-3'-MeAD were found to inhibit the growth of K562 cells (IC(50) 30.7 and 65.0muM, respectively).

  6. Electrochemical Detection of the Molecules of Life

    NASA Technical Reports Server (NTRS)

    Thomson, Seamus; Quinn, Richard; Koehne, Jessica

    2017-01-01

    All forms of life on Earth contain cellular machinery that can transform and regulate chemical energy through metabolic pathways. These processes are oxidation-reduction reactions that are performed by four key classes of molecules: flavins, nicotinamaides, porphyrins, and quinones. By detecting the electrochemical interaction of these redox-active molecules with an electrode, a method of differentiating them by their class could be established and incorporated into future life-detecting missions. This body of work investigates the electrochemistry of ubiquitous molecules found in life and how they may be detected. Molecules can oxidise or reduce the surface of an electrode - giving or receiving electrons - and these interactions are represented by changes in current with respect to an applied voltage. This relationship varies with: electrolyte type and concentration, working electrode material, the redox-active molecule itself, and scan rate. Flavin adenine dinucleotide (FAD), riboflavin, nicotinamide adenine dinucleotide (NADH), and anthraquinone are all molecules found intracellularly in almost all living organisms. An organism-synthesised extracellular redox-active molecule, Plumbagin, was also selected as part of this study. The goal of this work is to detect these molecules in seawater and assess its application in searching for life on Ocean Worlds.

  7. Characterization of a dam Mutant of Serratia marcescens and Nucleotide Sequence of the dam Region

    PubMed Central

    Ostendorf, Tammo; Cherepanov, Peter; de Vries, Johann; Wackernagel, Wilfried

    1999-01-01

    The DNA of Serratia marcescens has N6-adenine methylation in GATC sequences. Among 2-aminopurine-sensitive mutants isolated from S. marcescens Sr41, one was identified which lacked GATC methylation. The mutant showed up to 30-fold increased spontaneous mutability and enhanced mutability after treatment with 2-aminopurine, ethyl methanesulfonate, or UV light. The gene (dam) coding for the adenine methyltransferase (Dam enzyme) of S. marcescens was identified on a gene bank plasmid which alleviated the 2-aminopurine sensitivity and the higher mutability of a dam-13::Tn9 mutant of Escherichia coli. Nucleotide sequencing revealed that the deduced amino acid sequence of Dam (270 amino acids; molecular mass, 31.3 kDa) has 72% identity to the Dam enzyme of E. coli. The dam gene is located between flanking genes which are similar to those found to the sides of the E. coli dam gene. The results of complementation studies indicated that like Dam of E. coli and unlike Dam of Vibrio cholerae, the Dam enzyme of S. marcescens plays an important role in mutation avoidance by allowing the mismatch repair enzymes to discriminate between the parental and newly synthesized strands during correction of replication errors. PMID:10383952

  8. Adenosine and adenine nucleotides as regulators of cerebral blood flow: roles of acidosis, cell swelling, and KATP channels.

    PubMed

    Phillis, John W

    2004-01-01

    A considerable volume of evidence implicates the purine adenosine in the regulation of cerebral blood flow during states such as hypotension, neural activation, hypoxia/ischemia, and hypercapnia/acidosis. The aim of this review is to describe developments in our understanding of the roles that adenosine and the adenine nucleotides play in cerebral blood flow control, with some comparisons to coronary blood flow. The first part of the review focuses on the categorization of receptors for adenosine (A1, A2A, A2B, and A3) and the adenine nucleotides, ATP and ADP (P2X and P2Y). Frequently used agonists and antagonists for these different receptors are mentioned. A description follows of the distribution of these different receptors in cerebral arterioles. The second part of the review initially deals with the literature on the release of adenosine and adenine nucleotides into the extracellular space of the brain, describing the various techniques used to make these measurements and assessing the pitfalls associated with their use. This is followed by a discussion of the factors affecting purine release, which include cell swelling and acidosis. The third section evaluates the role of smooth muscle potassium channels in controlling arteriolar diameter. There is evidence for an important role of KATP and KCa channels, but less is known about the contributions of voltage-dependent (KV) and inwardly rectifying (KIR) channels. This section ends with a discussion on the reported inhibitory effect of nitric oxide synthase inhibitors on the KATP channel and the consequences of such an action for the interpretation of much of the published work on nitric oxide as a regulator of cerebral blood flow. The fourth section evaluates the data supporting a role of adenosine and ATP in the regulation of cerebral blood flow during autoregulation, hypotension, neural activity, hypoxia/ ischemia, and hypercapnia. Studies using antagonists and potentiators of adenosine's actions have led to the conclusion that adenosine is involved in vascular flow control, matching metabolic activity to blood flow in all of these conditions, possibly with the exceptions of autoregulation at mean arterial blood pressures above approximately 60 mmHg. Evidence is presented for a major role of A2A, and a more limited role of A2B receptors, in balancing blood flow with metabolism. The primary effect of receptor occupancy is activation of KATP and KCa channels with smooth muscle relaxation and elevated blood flow rates. There are presently fewer data on ATP's participation in flow control, but recent evidence regarding glial cell control of cerebral arteriolar diameter suggests that this may be an important mechanism. The semi-final section, which briefly describes the evidence for a comparable role of adenosine in regulating coronary blood flow, is followed by a concluding statement reaffirming the importance of adenosine as a cerebral blood flow regulator.

  9. Death by Protein Damage in Irradiated Cells

    DTIC Science & Technology

    2011-01-01

    tardigrades, J. Exp. Biol. 212 (2009) 4033– 4039. [63] A. Oren, N. Gunde-Cimerman, Mycosporines and mycosporine - like amino acids : UV protectants or...catalytically remove superoxide via a disproportionation mechanism [29,46]; and amino acids and peptides, which scav- enge hydroxyl radicals very efficiently...most radiation resistant mutants of B. pumilus displayed mul- tiple amino acid auxotrophies and a requirement for nicotinamide adenine dinucleotide

  10. Effective fragment potential study of the interaction of DNA bases.

    PubMed

    Smith, Quentin A; Gordon, Mark S; Slipchenko, Lyudmila V

    2011-10-20

    Hydrogen-bonded and stacked structures of adenine-thymine and guanine-cytosine nucleotide base pairs, along with their methylated analogues, are examined with the ab inito based general effective fragment potential (EFP2) method. A comparison of coupled cluster with single, double, and perturbative triple (CCSD(T)) energies is presented, along with an EFP2 energy decomposition to illustrate the components of the interaction energy.

  11. Thiamin and riboflavin vitamers in human milk: effects of lipid-based nutrient supplementation and stage of lactation on vitamer secretion and contributions to total vitamin content

    USDA-ARS?s Scientific Manuscript database

    While thiamin and riboflavin in breast milk have been analyzed for over 50 years, less attention has been given to the different forms of each vitamin. Thiamin-monophosphate (TMP) and free thiamin contribute to total thiamin content; flavin adenine-dinucleotide (FAD) and free riboflavin are the main...

  12. Mössbauer, EPR, and Modeling Study of Iron Trafficking and Regulation in Δccc1 and CCC1-up Saccharomyces cerevisiae

    PubMed Central

    2015-01-01

    Strains lacking and overexpressing the vacuolar iron (Fe) importer CCC1 were characterized using Mössbauer and EPR spectroscopies. Vacuolar Fe import is impeded in Δccc1 cells and enhanced in CCC1-up cells, causing vacuolar Fe in these strains to decline and accumulate, respectively, relative to WT cells. Cytosolic Fe levels should behave oppositely. The Fe content of Δccc1 cells grown under low-Fe conditions was similar to that in WT cells. Most Fe was mitochondrial with some nonheme high spin (NHHS) FeII present. Δccc1 cells grown with increasing Fe concentration in the medium contained less total Fe, less vacuolar HS FeIII, and more NHHS FeII than in comparable WT cells. As the Fe concentration in the growth medium increased, the concentration of HS FeIII in Δccc1 cells increased to just 60% of WT levels, while NHHS FeII increased to twice WT levels, suggesting that the NHHS FeII was cytosolic. Δccc1 cells suffered more oxidative damage than WT cells, suggesting that the accumulated NHHS FeII promoted Fenton chemistry. The Fe concentration in CCC1-up cells was higher than in WT cells; the extra Fe was present as NHHS FeII and FeIII and as FeIII oxyhydroxide nanoparticles. These cells contained less mitochondrial Fe and exhibited less ROS damage than Δccc1 cells. CCC1-up cells were adenine-deficient on minimal medium; supplementing with adenine caused a decline of NHHS FeII suggesting that some of the NHHS FeII that accumulated in these cells was associated with adenine deficiency rather than the overexpression of CCC1. A mathematical model was developed that simulated changes in Fe distributions. Simulations suggested that only a modest proportion of the observed NHHS FeII in both strains was the cytosolic form of Fe that is sensed by the Fe import regulatory system. The remainder is probably generated by the reduction of the vacuolar NHHS FeIII species. PMID:24785783

  13. Association between mutation spectra and stable and unstable DNA adduct profiles in Salmonella for benzo[a]pyrene and dibenzo[a,l]pyrene.

    PubMed

    DeMarini, David M; Hanley, Nancy M; Warren, Sarah H; Adams, Linda D; King, Leon C

    2011-09-01

    Benzo[a]pyrene (BP) and dibenzo[a,l]pyrene (DBP) are two polycyclic aromatic hydrocarbons (PAHs) that exhibit distinctly different mutagenicity and carcinogenicity profiles. Although some studies show that these PAHs produce unstable DNA adducts, conflicting data and arguments have been presented regarding the relative roles of these unstable adducts versus stable adducts, as well as oxidative damage, in the mutagenesis and tumor-mutation spectra of these PAHs. However, no study has determined the mutation spectra along with the stable and unstable DNA adducts in the same system with both PAHs. Thus, we determined the mutagenic potencies and mutation spectra of BP and DBP in strains TA98, TA100 and TA104 of Salmonella, and we also measured the levels of abasic sites (aldehydic-site assay) and characterized the stable DNA adducts ((32)P-postlabeling/HPLC) induced by these PAHs in TA104. Our results for the mutation spectra and site specificity of stable adducts were consistent with those from other systems, showing that DBP was more mutagenic than BP in TA98 and TA100. The mutation spectra of DBP and BP were significantly different in TA98 and TA104, with 24% of the mutations induced by BP in TA98 being complex frameshifts, whereas DBP produced hardly any of these mutations. In TA104, BP produced primarily GC to TA transversions, whereas DBP produced primarily AT to TA transversions. The majority (96%) of stable adducts induced by BP were at guanine, whereas the majority (80%) induced by DBP were at adenine. Although BP induced abasic sites, DBP did not. Most importantly, the proportion of mutations induced by DBP at adenine and guanine paralleled the proportion of stable DNA adducts induced by DBP at adenine and guanine; however, this was not the case for BP. Our results leave open a possible role for unstable DNA adducts in the mutational specificity of BP but not for DBP. Published by Elsevier B.V.

  14. Blackbody infrared radiative dissociation of oligonucleotide anions.

    PubMed

    Klassen, J S; Schnier, P D; Williams, E R

    1998-11-01

    The dissociation kinetics of a series of doubly deprotonated oligonucleotide 7-mers [d(A)7(2-), d(AATTAAT)2-, d(TTAATTA)2-, and d(CCGGCCG)2-] were measured using blackbody infrared radiative dissociation in a Fourier-transform mass spectrometer. The oligonucleotides dissociate first by cleavage at the glycosidic bond leading to the loss of a neutral nucleobase, followed by cleavage at the adjacent (5') phosphodiester bond to produce structurally informative a-base and w type ions. From the temperature dependence of the unimolecular dissociation rate constants, Arrhenius activation parameters in the zero-pressure limit are obtained for the loss of base. The measured Arrhenius parameters are dependent on the identity of the nucleobase. The process involving the loss of an adenine base from the dianions, d(A)7(2-), d(AATTAAT)2-, and d(TTAATTA)2- has an average activation energy (Ea) of approximately 1.0 eV and a preexponential factor (A) of 10(10) s-1. Both guanine and cytosine base loss occurs for d(CCGGCCG)2-. The average Arrhenius parameters for the loss of cytosine and guanine are Ea = 1.32 +/- 0.03 eV and A = 10(13.3 +/- 0.3) s-1. No loss of thymine was observed for mixed adenine-thymine oligonucleotides. Neither base loss nor any other fragmentation reactions occur for d(T)7(2-) over a 600 s reaction delay at 207 degrees C, a temperature close to the upper limit accessible with our instrument. The Arrhenius parameters indicate that the preferred cleavage sites for mixed oligonucleotides of similar mass-to-charge ratio will be strongly dependent on the internal energy of the precursor ions. At low internal energies (effective temperatures below 475 K), loss of adenine and subsequent cleavage of the adjacent phosphoester bonds will dominate, whereas at higher energies, preferential cleavage at C and G residues will occur. The magnitude of the A factors < or = 10(13) s-1 measured for the loss of the three nucleobases (A, G, and C) is indicative of an entropically neutral or disfavored process as the rate limiting step for this reaction.

  15. Quantification of nitrogenous bases, DNA and Collagen type I for the estimation of the postmortem interval in bone remains.

    PubMed

    Pérez-Martínez, Cristina; Pérez-Cárceles, María D; Legaz, Isabel; Prieto-Bonete, Gemma; Luna, Aurelio

    2017-12-01

    Estimating the postmortem interval (PMI) is an important goal in forensic medicine and continues to be one of the most difficult tasks of the forensic investigator. Few accurate methods exist to determine the time since death of skeletonized human remains due to the great number of intrinsic and external factors that may alter the normal course of postmortem change. The purpose of this research was to assess the usefulness of various biochemical parameters, such as nitrogenous bases (adenine, guanine, purines, cytosine, thymine, pyrimidines, hypoxanthine and xanthine), DNA and Collagen Type I peptides to estimate PMI. These parameters were analysed in cortical bone for the establishment of data in a total of 80 long bones of 80 corpses (50 males, 30 females) with a mean age of 68.31 years (S.D.=18.021, range=20-97). The bones were removed from the cement niches of a cemetery in Murcia (south-eastern Spain), where they had lain for between 5 and 47 years (mean time 23.83 years, S.D.=10.85). Our results show a significant decrease in adenine (p=0.0004), guanine (p=0.0001), purines (p=0.0001), cytosine (p=0.0001), thymine (p=0.0226), pyrimidines (p=0.0002) and the number of peptides of Collagen type I (p=0.0053) in those with a PMI≥20 years. In a curvilinear regression analysis the results show that 30.6% of the variable PMI could be explained by guanine concentration, in bones with a PMI<20 years, while in cases of a PMI≥20 years, the variable that best explained membership of this group was adenine (38.0%). In the discriminant analysis applied to the all the variables as a function of PMI when two groups were established, 86.7% of the cases were correctly classified. These results show that the quantification of Collagen type I proteins and nitrogenous bases could be used as a complementary tool, together with other analyses, in the estimation of PMI. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Binding of pixantrone to DNA at CpA dinucleotide sequences and bulge structures.

    PubMed

    Konda, Shyam K; Wang, Haiqiang; Cutts, Suzanne M; Phillips, Don R; Collins, J Grant

    2015-06-07

    The binding of the anti-cancer drug pixantrone to three oligonucleotide sequences, d(TCATATGA)2, d(CCGAGAATTCCGG)2 {double bulge = DB} and the non-self complementary d(TACGATGAGTA) : d(TACCATCGTA) {single bulge = SB}, has been studied by NMR spectroscopy and molecular modelling. The upfield shifts observed for the aromatic resonances of pixantrone upon addition of the drug to each oligonucleotide confirmed the drug bound by intercalation. For the duplex sequence d(TCATATGA)2, NOEs were observed from the pixantrone aromatic H7/8 and aliphatic Ha/Hb protons to the H6/H8 and H1' protons of the C2, A3, T6 and G7 nucleotides, demonstrating that pixantrone preferentially binds at the symmetric CpA sites. However, weaker NOEs observed to various protons from the T4 and A5 residues indicated alternative minor binding sites. NOEs from the H7/H8 and Ha/Hb protons to both major (H6/H8) and minor groove (H1') protons indicated approximately equal proportions of intercalation was from the major and minor groove at the CpA sites. Intermolecular NOEs were observed between the H7/H8 and H4 protons of pixantrone and the A4H1' and G3H1' protons of the oligonucleotide that contains two symmetrically related bulge sites (DB), indicative of binding at the adenine bulge sites. For the oligonucleotide that only contains a single bulge site (SB), NOEs were observed from pixantrone protons to the SB G7H1', A8H1' and G9H1' protons, confirming that the drug bound selectively at the adenine bulge site. A molecular model of pixantrone-bound SB could be constructed with the drug bound from the minor groove at the A8pG9 site that was consistent with the observed NMR data. The results demonstrate that pixantrone preferentially intercalates at adenine bulge sites, compared to duplex DNA, and predominantly from the minor groove.

  17. Mössbauer, EPR, and modeling study of iron trafficking and regulation in Δccc1 and CCC1-up Saccharomyces cerevisiae.

    PubMed

    Cockrell, Allison; McCormick, Sean P; Moore, Michael J; Chakrabarti, Mrinmoy; Lindahl, Paul A

    2014-05-13

    Strains lacking and overexpressing the vacuolar iron (Fe) importer CCC1 were characterized using Mössbauer and EPR spectroscopies. Vacuolar Fe import is impeded in Δccc1 cells and enhanced in CCC1-up cells, causing vacuolar Fe in these strains to decline and accumulate, respectively, relative to WT cells. Cytosolic Fe levels should behave oppositely. The Fe content of Δccc1 cells grown under low-Fe conditions was similar to that in WT cells. Most Fe was mitochondrial with some nonheme high spin (NHHS) Fe(II) present. Δccc1 cells grown with increasing Fe concentration in the medium contained less total Fe, less vacuolar HS Fe(III), and more NHHS Fe(II) than in comparable WT cells. As the Fe concentration in the growth medium increased, the concentration of HS Fe(III) in Δccc1 cells increased to just 60% of WT levels, while NHHS Fe(II) increased to twice WT levels, suggesting that the NHHS Fe(II) was cytosolic. Δccc1 cells suffered more oxidative damage than WT cells, suggesting that the accumulated NHHS Fe(II) promoted Fenton chemistry. The Fe concentration in CCC1-up cells was higher than in WT cells; the extra Fe was present as NHHS Fe(II) and Fe(III) and as Fe(III) oxyhydroxide nanoparticles. These cells contained less mitochondrial Fe and exhibited less ROS damage than Δccc1 cells. CCC1-up cells were adenine-deficient on minimal medium; supplementing with adenine caused a decline of NHHS Fe(II) suggesting that some of the NHHS Fe(II) that accumulated in these cells was associated with adenine deficiency rather than the overexpression of CCC1. A mathematical model was developed that simulated changes in Fe distributions. Simulations suggested that only a modest proportion of the observed NHHS Fe(II) in both strains was the cytosolic form of Fe that is sensed by the Fe import regulatory system. The remainder is probably generated by the reduction of the vacuolar NHHS Fe(III) species.

  18. Conformational preferences of DNA following damage by aristolochic acids: Structural and energetic insights into the different mutagenic potential of the ALI and ALII-N(6)-dA adducts.

    PubMed

    Kathuria, Preetleen; Sharma, Purshotam; Abendong, Minette N; Wetmore, Stacey D

    2015-04-21

    Aristolochic acids (AAI and AAII), produced by the Aristolochiaceae family of plants, are classified as group I (human) carcinogens by the International Agency for Research on Cancer. These acids are metabolized in cells to yield aristolactams (ALI and ALII, respectively), which further form bulky adducts with the purine nucleobases. Specifically, the adenine lesions are more persistent in cells and have been associated with chronic renal diseases and related carcinogenesis. To understand the structural basis of the nephrotoxicity induced by AAs, the ALI-N(6)-dA and ALII-N(6)-dA lesions are systematically studied using computational methods. Density functional theory calculations indicate that the aristolactam moiety intrinsically prefers a planar conformation with respect to adenine. Nucleoside and nucleotide models suggest that the anti and syn orientations about the glycosidic bond are isoenergetic for both adducts. Molecular dynamics simulations and free energy calculations reveal that the anti base-displaced intercalated conformation is the most stable conformer for both types of AL-N(6)-dA adducted DNA, which agrees with previous experimental work on the ALII-N(6)-dA adduct and thereby validates our approach. Interestingly, this conformer differs from the dominant conformations adopted by other N6-linked adenine lesions, including those derived from polycyclic aromatic hydrocarbons. Furthermore, the second most stable syn base-displaced intercalated conformation lies closer in energy to the anti base-displaced intercalated conformation for ALI-N(6)-dA compared to ALII-N(6)-dA. This indicates that a mixture of conformations may be detectable for ALI-N(6)-dA in DNA. If this enhanced conformational flexibility of double-stranded DNA persists when bound to a lesion-bypass polymerase, this provides a possible structural explanation for the previously observed greater nephrotoxic potential for the ALI versus ALII-N(6)-dA adduct. In addition, the structural characteristics of the preferred conformations of adducted DNA explain the resistance of these adducts to repair and thereby add to our current understanding of the toxicity of AAs within living cells.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nenov, Artur, E-mail: Artur.Nenov@unibo.it; Giussani, Angelo; Segarra-Martí, Javier

    Pump-probe electronic spectroscopy using femtosecond laser pulses has evolved into a standard tool for tracking ultrafast excited state dynamics. Its two-dimensional (2D) counterpart is becoming an increasingly available and promising technique for resolving many of the limitations of pump-probe caused by spectral congestion. The ability to simulate pump-probe and 2D spectra from ab initio computations would allow one to link mechanistic observables like molecular motions and the making/breaking of chemical bonds to experimental observables like excited state lifetimes and quantum yields. From a theoretical standpoint, the characterization of the electronic transitions in the visible (Vis)/ultraviolet (UV), which are excited viamore » the interaction of a molecular system with the incoming pump/probe pulses, translates into the determination of a computationally challenging number of excited states (going over 100) even for small/medium sized systems. A protocol is therefore required to evaluate the fluctuations of spectral properties like transition energies and dipole moments as a function of the computational parameters and to estimate the effect of these fluctuations on the transient spectral appearance. In the present contribution such a protocol is presented within the framework of complete and restricted active space self-consistent field theory and its second-order perturbation theory extensions. The electronic excited states of adenine have been carefully characterized through a previously presented computational recipe [Nenov et al., Comput. Theor. Chem. 1040–1041, 295-303 (2014)]. A wise reduction of the level of theory has then been performed in order to obtain a computationally less demanding approach that is still able to reproduce the characteristic features of the reference data. Foreseeing the potentiality of 2D electronic spectroscopy to track polynucleotide ground and excited state dynamics, and in particular its expected ability to provide conformational dependent fingerprints in dimeric systems, the performances of the selected reduced level of calculations have been tested in the construction of 2D electronic spectra for the in vacuo adenine monomer and the unstacked adenine homodimer, thereby exciting the L{sub b}/L{sub a} transitions with the pump pulse pair and probing in the Vis to near ultraviolet spectral window.« less

  20. Efficient Quenching of Oligomeric Fluorophores on a DNA Backbone

    PubMed Central

    Wilson, James N.; Teo, Yin Nah; Kool, Eric T.

    2008-01-01

    The quenching properties of a series of oligodeoxyribosides bearing fluorophore ‘bases’ is described. Sequences of adjacent, π-stacked pyrenes exhibit stronger electronic interactions visible in both absorbance and emission spectra than pyrenes that are insulated by intervening adenines. Quenching by N, N′-dimethyl-4,4′-bipyridinium dichloride is efficient for excimer-and exciplex-forming oligomers, with Stern-Volmer constants comparable to conjugated polymer “superquenching” schemes. PMID:18027944

  1. STUDIES ON MAMMALIAN AND HUMAN PYRUVATE AND ALPHA-KETOGLUTARATE DEHYDROGENATION COMPLEXES.

    DTIC Science & Technology

    Enzyme systems that catalyze a coenzyme A- and nicotinamide adenine dinucleotide-linked oxidative decarboxylation of pyruvate and alpha - ketoglutarate ...The pig heart pyruvate dehydrogenase complex was strongly inhibited by EDTA at low concentration, but the pig heart alpha - ketoglutarate ...On the oxidative decarboxylation of alpha -keto acids in pig heart complexes, Ca(2+) was strongly stimulatory to the same or more extent than Mg(2

  2. Mapping DNA Methylation with High Throughput Nanopore Sequencing

    PubMed Central

    Rand, Arthur C.; Jain, Miten; Eizenga, Jordan M.; Musselman-Brown, Audrey; Olsen, Hugh E.; Akeson, Mark

    2017-01-01

    Chemical modifications to DNA regulate its biological function. We present a framework for mapping methylation to cytosine and adenosine with the Oxford Nanopore Technologies MinION using its ionic current signal. We map three cytosine variants and two adenine variants. The results show that our model is sensitive enough to detect changes in genomic DNA methylation levels as a function of growth phase in E. coli. PMID:28218897

  3. New Inosine and Guanosine Analogs as Inhibitors of Parasitic Infections.

    DTIC Science & Technology

    1985-11-30

    infections. Although chloroquine (CQ) is generally considered to be one of the most fascinating, useful and versatile drugs developed during the modern...ribonucleosides are of particular interest since these nucleosides may be looked upon as aza- analogues of formycin B. The parent s-triazolo[3,4-f]-as...hexopyranosyl)adenine indicate slightly altered glycon. This type of nucleoside analogues could mimic either as ribonucleo- sides or as 2

  4. Novel Approaches for Targeting Antiviral Agents in the Treatment of Arena-, Bunya-, Flavi-, and Retroviral Infections

    DTIC Science & Technology

    1989-05-22

    potentially useful antivirals (e... S-HMPA, selenazole, WIN 5177, arildone, phosphonoformic acid ) are currently under investigation. There are, however...by increasing dosage, this often results in toxicity. For example, a number of antiviral agents (ribavirin, adenine arabinoside, phosphonoformic acid ...Three possibilities exist for the activation of carrier bound drugs: 1) endocytosis and release in acidic endosomes; 2) extracellular activation at cell

  5. An Enzymatic Bioassay for Perchlorate

    DTIC Science & Technology

    2010-07-01

    redox active dye phenazine methosulfate (PMS) and nicotine adenine dinucleotide (NADH). By using a specific addition scheme and covering all...redox potentials determined from (Fultz and Durst, 1982)). The dye structures include an indole, a quinone, a bipyridinium, and two phenazine ...listed above, as well as 100 μM of the dye shown on the x-axis. As can be seen in figure 18, phenazine methosulfate (PMS, fourth from the left) is

  6. ROS open roads to roundworm infection.

    PubMed

    Feng, Baomin; Shan, Libo

    2014-04-08

    The rapid production of reactive oxygen species (ROS) upon pathogen attack is generally considered a defense mechanism for microbial killing and an initiation of host defense responses in plants and animals. In this issue, Siddique et al. show that nicotinamide adenine dinucleotide phosphate oxidase-derived ROS function as a pathogenicity factor to promote the roundworm nematode infection in Arabidopsis thaliana, revealing the complex action of ROS in host-pathogen interactions.

  7. Restoring NAD(+) Levels with NAD(+) Intermediates, the Second Law of Thermodynamics and Aging Delay.

    PubMed

    Poljsak, Borut; Milisav, Irina

    2018-04-26

    The hypothesis regarding the role of increased nicotinamide adenine dinucleotide (NAD+) levels with reference to the fundamental concepts of ageing and entropy is presented. Considering the second law of thermodynamics, NAD+ seems the appropriate candidate for reversing many aging-associated pathologies. NAD+ is presented as an essential compound that enables organisms to stay highly organized and well-maintained, with a lower entropy state.

  8. Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) and Endolysosomal Two-pore Channels Modulate Membrane Excitability and Stimulus-Secretion Coupling in Mouse Pancreatic β Cells*

    PubMed Central

    Arredouani, Abdelilah; Ruas, Margarida; Collins, Stephan C.; Parkesh, Raman; Clough, Frederick; Pillinger, Toby; Coltart, George; Rietdorf, Katja; Royle, Andrew; Johnson, Paul; Braun, Matthias; Zhang, Quan; Sones, William; Shimomura, Kenju; Morgan, Anthony J.; Lewis, Alexander M.; Chuang, Kai-Ting; Tunn, Ruth; Gadea, Joaquin; Teboul, Lydia; Heister, Paula M.; Tynan, Patricia W.; Bellomo, Elisa A.; Rutter, Guy A.; Rorsman, Patrik; Churchill, Grant C.; Parrington, John; Galione, Antony

    2015-01-01

    Pancreatic β cells are electrically excitable and respond to elevated glucose concentrations with bursts of Ca2+ action potentials due to the activation of voltage-dependent Ca2+ channels (VDCCs), which leads to the exocytosis of insulin granules. We have examined the possible role of nicotinic acid adenine dinucleotide phosphate (NAADP)-mediated Ca2+ release from intracellular stores during stimulus-secretion coupling in primary mouse pancreatic β cells. NAADP-regulated Ca2+ release channels, likely two-pore channels (TPCs), have recently been shown to be a major mechanism for mobilizing Ca2+ from the endolysosomal system, resulting in localized Ca2+ signals. We show here that NAADP-mediated Ca2+ release from endolysosomal Ca2+ stores activates inward membrane currents and depolarizes the β cell to the threshold for VDCC activation and thereby contributes to glucose-evoked depolarization of the membrane potential during stimulus-response coupling. Selective pharmacological inhibition of NAADP-evoked Ca2+ release or genetic ablation of endolysosomal TPC1 or TPC2 channels attenuates glucose- and sulfonylurea-induced membrane currents, depolarization, cytoplasmic Ca2+ signals, and insulin secretion. Our findings implicate NAADP-evoked Ca2+ release from acidic Ca2+ storage organelles in stimulus-secretion coupling in β cells. PMID:26152717

  9. Nuclear Overhauser effect studies on the conformation of magnesium adenosine 5'-triphosphate bound to rabbit muscle creatine kinase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosevear, P.R.; Powers, V.M.; Dowhan, D.

    1987-08-25

    Nuclear Overhauser effects were used to determine interproton distances on MgATP bound to rabbit muscle creatine kinase. The internuclear distances were used in a distance geometry program that objectively determines both the conformation of the bound MgATP and its uniqueness. Two classes of structures were found that satisfied the measured interproton distances. Both classes had the same anti glycosidic torsional angle (X = 78 +/- 10/sup 0/) but differed in their ribose ring puckers (O1'-endo or C4'-exo). The uniqueness of the glycosidic torsional angle is consistent with the preference of creatine kinase for adenine nucleotides. One of these conformations ofmore » MgATP bound to creatine kinase is indistinguishable from the conformation found for Co(NH/sub 3/)/sub 4/ ATP bound to the catalytic subunit of protein kinase, which also has a high specificity for adenine nucleotides. Distance geometry calculations also suggest that upper limit distances, when low enough (less than or equal to 3.4 A), can be used instead of measured distances to define, within experimental error, the glycosidic torsional angle of bound nucleotides. However, this approach does not permit an evaluation of the ribose ring pucker.« less

  10. Roles of Nicotinamide Adenine Dinucleotide Phosphate (NADPH) Oxidase in Angiogenesis: Isoform-Specific Effects

    PubMed Central

    Wang, Haibo; Hartnett, M. Elizabeth

    2017-01-01

    Angiogenesis is the formation of new blood vessels from preexisting ones and is implicated in physiologic vascular development, pathologic blood vessel growth, and vascular restoration. This is in contrast to vasculogenesis, which is de novo growth of vessels from vascular precursors, or from vascular repair that occurs when circulating endothelial progenitor cells home into an area and develop into blood vessels. The objective of this review is to discuss the isoform-specific role of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) in physiologic and pathologic angiogenesis and vascular repair, but will not specifically address vasculogenesis. As the major source of reactive oxygen species (ROS) in vascular endothelial cells (ECs), NOX has gained increasing attention in angiogenesis. Activation of NOX leads to events necessary for physiologic and pathologic angiogenesis, including EC migration, proliferation and tube formation. However, activation of different NOX isoforms has different effects in angiogenesis. Activation of NOX2 promotes pathologic angiogenesis and vascular inflammation, but may be beneficial in revascularization in the hindlimb ischemic model. In contrast, activation of NOX4 appears to promote physiologic angiogenesis mainly by protecting the vasculature during ischemia, hypoxia and inflammation and by restoring vascularization, except in models of oxygen-induced retinopathy and diabetes where NOX4 activation leads to pathologic angiogenesis. PMID:28587189

  11. Studies of yeast cell oxygenation and energetics by laser fluorometry of reduced nicotinamide adenine dinucleotide

    NASA Astrophysics Data System (ADS)

    Pan, Fu-shih; Chen, Stephen; Mintzer, Robert A.; Chen, Chin-Tu; Schumacker, Paul

    1991-03-01

    It is of fundamental importance for biological scientists to assess cellular energetics. Under aerobic conditions, the tricarboxylic acid cycle (TCA cycle) is coupled with the mitochondrial electron cascade pathway to provide the cell with energy. The nicotinamide adenine dinucleotide-conjugated pair (NAD and NADH) is the coenzyme in numerous important biomedical reactions which include several important dehydrogenase reactions in the TCA cycle. Based on Le Chatelier's principle, NADH will accumulate when this energy production mechanism is impaired. The relative amounts of NAD and NADH in a cell are defined as the redox state of the cell (Williamson et.al. 1967) which provides a valuable index of cellular energetics. The sum of the amounts of NAD and NADH in a cell may be assumed to be constant during a finite time; therefore, a reliable means of measuring the NADH concentration would provide us with a useful indicator of tissue viability. Traditionally, the quantities of NADH and NAD may be measured by chemical assay methods. We can avoid these tediois analyses by exploiting the significant difference between the ultraviolet absorption spectra of this redox pair. However, because of the opacity of biological samples and the interference of other biochemicals that also absorb ultraviolet radiation, measurement of NADH and NAD+ concentrations in vivo by absorption spectroscopy is not feasible.

  12. Assessing the photoaging process at sun exposed and non-exposed skin using fluorescence lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Saito Nogueira, Marcelo; Kurachi, Cristina

    2016-03-01

    Photoaging is the skin premature aging due to exposure to ultraviolet light, which damage the collagen, elastin and can induce alterations on the skin cells DNA, and, then, it may evolve to precancerous lesions, which are widely investigated by fluorescence spectroscopy and lifetime. The fluorescence spectra and fluorescence lifetime analysis has been presented as a technique of great potential for biological tissue characterization at optical diagnostics. The main targeted fluorophores are NADH (nicotinamide adenine dinucleotide) and FAD (flavin adenine dinucleotide), which have free and bound states, each one with different average lifetimes. The average lifetimes for free and bound NADH and FAD change according to tissue metabolic alterations and may contribute to a non-invasive clinical investigation of injuries such as skin lesions. These lesions and the possible areas where they may develop can be interrogated using fluorescence lifetime spectroscopy taking into account the variability of skin phototypes and the changes related to melanin, collagen and elastin, endogenous fluorophores which have emissions that spectrally overlap to the NADH and FAD emission. The objective of this study is to assess the variation on fluorescence lifetimes of normal skin at sun exposed and non-exposed areas and associate this variation to the photoaging process.

  13. Ethanol and liver: Recent insights into the mechanisms of ethanol-induced fatty liver

    PubMed Central

    Liu, Jinyao

    2014-01-01

    Alcoholic fatty liver disease (AFLD), a potentially pathologic condition, can progress to steatohepatitis, fibrosis, and cirrhosis, leading to an increased probability of hepatic failure and death. Alcohol induces fatty liver by increasing the ratio of reduced form of nicotinamide adenine dinucleotide to oxidized form of nicotinamide adenine dinucleotide in hepatocytes; increasing hepatic sterol regulatory element-binding protein (SREBP)-1, plasminogen activator inhibitor (PAI)-1, and early growth response-1 activity; and decreasing hepatic peroxisome proliferator-activated receptor-α activity. Alcohol activates the innate immune system and induces an imbalance of the immune response, which is followed by activated Kupffer cell-derived tumor necrosis factor (TNF)-α overproduction, which is in turn responsible for the changes in the hepatic SREBP-1 and PAI-1 activity. Alcohol abuse promotes the migration of bone marrow-derived cells (BMDCs) to the liver and then reprograms TNF-α expression from BMDCs. Chronic alcohol intake triggers the sympathetic hyperactivity-activated hepatic stellate cell (HSC) feedback loop that in turn activates the HSCs, resulting in HSC-derived TNF-α overproduction. Carvedilol may block this feedback loop by suppressing sympathetic activity, which attenuates the progression of AFLD. Clinical studies evaluating combination therapy of carvedilol with a TNF-α inhibitor to treat patients with AFLD are warranted to prevent the development of alcoholic liver disease. PMID:25356030

  14. Electron impact fragmentation of adenine: partial ionization cross sections for positive fragments

    NASA Astrophysics Data System (ADS)

    van der Burgt, Peter J. M.; Finnegan, Sinead; Eden, Samuel

    2015-07-01

    Using computer-controlled data acquisition we have measured mass spectra of positive ions for electron impact on adenine, with electron energies up to 100 eV. Ion yield curves for 50 ions have been obtained and normalized by comparing their sum to the average of calculated total ionization cross sections. Appearance energies have been determined for 37 ions; for 20 ions for the first time. All appearance energies are consistent with the fragmentation pathways identified in the literature. Second onset energies have been determined for 12 fragment ions (for 11 ions for the first time), indicating the occurrence of more than one fragmentation process e.g. for 39 u (C2HN+) and 70 u (C2H4N3+). Matching ion yield shapes (118-120 u, 107-108 u, 91-92 u, and 54-56 u) provide new evidence supporting closely related fragmentation pathways and are attributed to hydrogen rearrangement immediately preceding the fragmentation. We present the first measurement of the ion yield curve of the doubly charged parent ion (67.5 u), with an appearance energy of 23.5 ± 1.0 eV. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey Solov'yov, Nigel Mason, Gustavo García, Eugene Surdutovich.

  15. Mitochondrial respiratory complex I probed by delayed luminescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Baran, Irina; Ionescu, Diana; Privitera, Simona; Scordino, Agata; Mocanu, Maria Magdalena; Musumeci, Francesco; Grasso, Rosaria; Gulino, Marisa; Iftime, Adrian; Tofolean, Ioana Teodora; Garaiman, Alexandru; Goicea, Alexandru; Irimia, Ruxandra; Dimancea, Alexandru; Ganea, Constanta

    2013-12-01

    The role of mitochondrial complex I in ultraweak photon-induced delayed photon emission [delayed luminescence (DL)] of human leukemia Jurkat T cells was probed by using complex I targeting agents like rotenone, menadione, and quercetin. Rotenone, a complex I-specific inhibitor, dose-dependently increased the mitochondrial level of reduced nicotinamide adenine dinucleotide (NADH), decreased clonogenic survival, and induced apoptosis. A strong correlation was found between the mitochondrial levels of NADH and oxidized flavin mononucleotide (FMNox) in rotenone-, menadione- and quercetin-treated cells. Rotenone enhanced DL dose-dependently, whereas quercetin and menadione inhibited DL as well as NADH or FMNox. Collectively, the data suggest that DL of Jurkat cells originates mainly from mitochondrial complex I, which functions predominantly as a dimer and less frequently as a tetramer. In individual monomers, both pairs of pyridine nucleotide (NADH/reduced nicotinamide adenine dinucleotide phosphate) sites and flavin (FMN-a/FMN-b) sites appear to bind cooperatively their specific ligands. Enhancement of delayed red-light emission by rotenone suggests that the mean time for one-electron reduction of ubiquinone or FMN-a by the terminal Fe/S center (N2) is 20 or 284 μs, respectively. All these findings suggest that DL spectroscopy could be used as a reliable, sensitive, and robust technique to probe electron flow within complex I in situ.

  16. In vivo native fluorescence spectroscopy and nicotinamide adinine dinucleotide/flavin adenine dinucleotide reduction and oxidation states of oral submucous fibrosis for chemopreventive drug monitoring

    NASA Astrophysics Data System (ADS)

    Sivabalan, Shanmugam; Vedeswari, C. Ponranjini; Jayachandran, Sadaksharam; Koteeswaran, Dornadula; Pravda, Chidambaranathan; Aruna, Prakasa Rao; Ganesan, Singaravelu

    2010-01-01

    Native fluorescence spectroscopy has shown potential to characterize and diagnose oral malignancy. We aim at extending the native fluorescence spectroscopy technique to characterize normal and oral submucous fibrosis (OSF) patients under pre- and post-treated conditions, and verify whether this method could also be considered in the monitoring of therapeutic prognosis noninvasively. In this study, 28 normal subjects and 28 clinically proven cases of OSF in the age group of 20 to 40 years are diagnosed using native fluorescence spectroscopy. The OSF patients are given dexamethasone sodium phosphate and hyaluronidase twice a week for 6 weeks, and the therapeutic response is monitored using fluorescence spectroscopy. The fluorescence emission spectra of normal and OSF cases of both pre- and post-treated conditions are recorded in the wavelength region of 350 to 600 nm at an excitation wavelength of 330 nm. The statistical significance is verified using discriminant analysis. The oxidation-reduction ratio of the tissue is also calculated using the fluorescence emission intensities of flavin adenine dinucleotide and nicotinamide adinine dinucleotide at 530 and 440 nm, respectively, and they are compared with conventional physical clinical examinations. This study suggests that native fluorescence spectroscopy could also be extended to OSF diagnosis and therapeutic prognosis.

  17. A Molecular Method for the Identification of Honey Bee Subspecies Used by Beekeepers in Russia

    PubMed Central

    Syromyatnikov, Mikhail Y.; Borodachev, Anatoly V.; Kokina, Anastasia V.; Popov, Vasily N.

    2018-01-01

    Apis mellifera L. includes several recognized subspecies that differ in their biological properties and agricultural characteristics. Distinguishing between honey bee subspecies is complicated. We analyzed the Folmer region of the COX1 gene in honey bee subspecies cultivated at bee farms in Russia and identified subspecies-specific SNPs. DNA analysis revealed two clearly distinct haplogroups in A. mellifera mellifera. The first one was characterized by multiple cytosine-thymine (thymine–cytosine) transitions, one adenine-guanine substitution, and one thymine–adenine substitution. The nucleotide sequence of the second haplogroup coincided with sequences from other subspecies, except the unique C/A SNP at position 421 of the 658-bp Folmer region. A. mellifera carnica and A. mellifera carpatica could be distinguished from A. mellifera mellifera and A. mellifera caucasica by the presence of the A/G SNP at position 99 of the 658-bp Folmer region. The G/A SNP at position 448 was typical for A. mellifera carnica. A. mellifera caucasica COX1 sequence lacked all the above-mentioned sites. We developed a procedure for rapid identification of honey bee subspecies by PCR with restriction fragment length polymorphism (RFLP) using mutagenic primers. The developed molecular method for honey bee subspecies identification is fast and inexpensive. PMID:29382048

  18. Overoxidized polyimidazole/graphene oxide copolymer modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid, guanine and adenine.

    PubMed

    Liu, Xiaofang; Zhang, Ling; Wei, Shaping; Chen, Shihong; Ou, Xin; Lu, Qiyi

    2014-07-15

    In the present work, a novel strategy based on overoxidized polyimidazole (PImox) and graphene oxide (GO) copolymer modified electrode was proposed for the simultaneous determination of ascorbic acid (AA), dopamine (DA), uric acid (UA), guanine (G) and adenine (A). The copolymer was characterized by the scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). Due to the synergistic effects between PImox and GO, the proposed electrode exhibited excellent electrochemical catalytic activities and high selectivity and sensitivity toward the oxidation of AA, DA, UA, G and A. The peak separations between AA and DA, AA and UA, UA and G, and G and A were 140 mV, 200 mV, 380 mV and 300 mV, respectively. The linear response ranges for AA, DA, UA, G and A were 75-2275 μM, 12-278 μM, 3.6-249.6 μM, 3.3-103.3 μM and 9.6-215 μM, respectively, and corresponding detection limits were 18 μM, 0.63 μM, 0.59 μM, 0.48 μM and 1.28 μM. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. The structure of 3'-O-anthraniloyladenosine, an analogue of the 3'-end of aminoacyl-tRNA.

    PubMed Central

    Nawrot, B; Milius, W; Ejchart, A; Limmer, S; Sprinzl, M

    1997-01-01

    3'-O-Anthraniloyladenosine, an analogue of the 3'- terminal aminoacyladenosine residue in aminoacyl-tRNAs, was prepared by chemical synthesis, and its crystal structure was determined. The sugar pucker of 3'-O-anthraniloyladenosine is 2'-endo resulting in a 3'-axial position of the anthraniloyl residue. The nucleoside is insynconformation, which is stabilized by alternating stacking of adenine and benzoyl residues of the neighboring molecules in the crystal lattice. The conformation of the 5'-hydroxymethylene in 3'-O- anthraniloyladenosine is gauche-gauche. There are two intramolecular and two intermolecular hydrogen bonds and several H-bridges with surrounding water molecules. The predominant structure of 3'-O-anthraniloyladenosine in solution, as determined by NMR spectroscopy, is 2'-endo,gauche-gauche and anti for the sugar ring pucker, the torsion angle around the C4'-C5'bond and the torsion angle around the C1'-N9 bond, respectively. The 2'-endo conformation of the ribose in 2'(3')-O-aminoacyladenosine, which places the adenine and aminoacyl residues in equatorial and axial positions, respectively, could serve as a structural element that is recognized by enzymes that interact with aminoacyl-tRNA or by ribosomes to differentiate between aminoacylated and non-aminoacylated tRNA. PMID:9023103

  20. Lipid-Loving ANTs: Molecular Simulations of Cardiolipin Interactions and the Organization of the Adenine Nucleotide Translocase in Model Mitochondrial Membranes.

    PubMed

    Hedger, George; Rouse, Sarah L; Domański, Jan; Chavent, Matthieu; Koldsø, Heidi; Sansom, Mark S P

    2016-11-15

    The exchange of ADP and ATP across the inner mitochondrial membrane is a fundamental cellular process. This exchange is facilitated by the adenine nucleotide translocase, the structure and function of which are critically dependent on the signature phospholipid of mitochondria, cardiolipin (CL). Here we employ multiscale molecular dynamics simulations to investigate CL interactions within a membrane environment. Using simulations at both coarse-grained and atomistic resolutions, we identify three CL binding sites on the translocase, in agreement with those seen in crystal structures and inferred from nuclear magnetic resonance measurements. Characterization of the free energy landscape for lateral lipid interaction via potential of mean force calculations demonstrates the strength of interaction compared to those of binding sites on other mitochondrial membrane proteins, as well as their selectivity for CL over other phospholipids. Extending the analysis to other members of the family, yeast Aac2p and mouse uncoupling protein 2, suggests a degree of conservation. Simulation of large patches of a model mitochondrial membrane containing multiple copies of the translocase shows that CL interactions persist in the presence of protein-protein interactions and suggests CL may mediate interactions between translocases. This study provides a key example of how computational microscopy may be used to shed light on regulatory lipid-protein interactions.

  1. Sensitive colorimetric visualization of dihydronicotinamide adenine dinucleotide based on anti-aggregation of gold nanoparticles via boronic acid-diol binding.

    PubMed

    Liu, Shufeng; Du, Zongfeng; Li, Peng; Li, Feng

    2012-05-15

    A facile, highly sensitive colorimetric strategy for dihydronicotinamide adenine dinucleotide (NADH) detection is proposed based on anti-aggregation of gold nanoparticles (AuNPs) via boronic acid-diol binding chemistry. The aggregation agent, 4-mercaptophenylboronic acid (MPBA), has specific affinity for AuNPs through Au-S interaction, leading to the aggregation of AuNPs by self-dehydration condensation at a certain concentration, which is responsible for a visible color change of AuNPs from wine red to blue. With the addition of NADH, MPBA would prefer reacting with NADH to form stable borate ester via boronic acid-diol binding dependent on the pH and solvent, revealing an obvious color change from blue to red with increasing the concentration of NADH. The anti-aggregation effect of NADH on AuNPs was seen by the naked eye and monitored by UV-vis extinction spectra. The linear range of the colorimetric sensor for NADH is from 8.0 × 10(-9)M to 8.0 × 10(-6)M, with a low detection limit of 2.0 nM. The as-established colorimetric strategy opened a new avenue for NADH determination. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. An integrated lipidomics and metabolomics reveal nephroprotective effect and biochemical mechanism of Rheum officinale in chronic renal failure

    PubMed Central

    Zhang, Zhi-Hao; Vaziri, Nosratola D.; Wei, Feng; Cheng, Xian-Long; Bai, Xu; Zhao, Ying-Yong

    2016-01-01

    Chronic renal failure (CRF) is a major public health problem worldwide. Earlier studies have revealed salutary effects of rhubarb extracts in CRF. In this study, we employed lipidomic and metabolomic approaches to identify the plasma biomarkers and to determine the effect of treatment with petroleum ether, ethyl acetate and n-butanol extracts of rhubarb in a rat model of CRF with adenine-induced chronic tubulointerstitial nephropathy. In addition, clinical biochemistry, histological evaluation and pro-fibrotic protein expression were analyzed. Significant changes were found between the CRF and control groups representing characteristic phenotypes of rats with CRF. Treatment with the three rhubarb extracts improved renal injury and dysfunction, either fully or partially reversed the plasma metabolites abnormalities and attenuated upregulation of pro-fibrotic proteins including TGF-β1, α-SMA, PAI-1, CTGF, FN and collagen-1. The nephroprotective effect of ethyl acetate extract was better than other extracts. The differential metabolites were closely associated with glycerophospholipid, fatty acid and amino acid metabolisms. The results revealed a strong link between renal tubulointerstitial fibrosis and glycerophospholipid metabolism and L-carnitine metabolism in the development of CRF. Amelioration of CRF with the three rhubarb extracts was associated with the delayed development and/or reversal the disorders in key metabolites associated with adenine-induced CRF. PMID:26903149

  3. Effects of Nicotinamide Adenine Dinucleotide (NAD(+)) and Diadenosine Tetraphosphate (Ap4A) on Electrical Activity of Working and Pacemaker Atrial Myocardium in Guinea Pigs.

    PubMed

    Pustovit, K B; Abramochkin, D V

    2016-04-01

    Effects of nucleotide polyphosphate compounds (nicotinamide adenine dinucleotide, NAD(+); diadenosine tetraphosphate, Ap4A) on the confi guration of action potentials were studied in isolated preparations of guinea pig sinoatrial node and right atrial appendage (auricle). In the working myocardium, NAD(+) and Ap4A in concentrations of 10(-5) and 10(-4) M had no effect on resting potential, but significantly reduced the duration of action potentials; the most pronounced decrease was found at 25% repolarization. In the primary pacemaker of the sinoatrial node, both concentrations of NAD(+) and Ap4A induced hyperpolarization and reduction in the rate of slow diastolic depolarization, but significant slowing of the sinus rhythm was produced by these substances only in the concentration of 10(-4) M. Moreover, AP shortening and marked acceleration of AP upstroke were observed in the pacemaker myocardium after application of polyphosphates. Comparative analysis of the effects of NAD(+) and Ap4A in the working and pacemaker myocardium drove us to a hypothesis on inhibitory effects of these substances on L-type calcium current accompanied by stimulation of one or several potassium currents, which induce enhancement of repolarization and hyperpolarization of membranes probably mediated by the activation of purine receptors.

  4. Triazolophostins: a library of novel and potent agonists of IP3 receptors.

    PubMed

    Vibhute, Amol M; Konieczny, Vera; Taylor, Colin W; Sureshan, Kana M

    2015-06-28

    IP3 receptors are channels that mediate the release of Ca(2+) from the intracellular stores of cells stimulated by hormones or neurotransmitters. Adenophostin A (AdA) is the most potent agonist of IP3 receptors, with the β-anomeric adenine contributing to the increased potency. The potency of AdA and its stability towards the enzymes that degrade IP3 have aroused interest in AdA analogs for biological studies. The complex structure of AdA poses problems that have necessitated optimization of synthetic conditions for each analog. Such lengthy one-at-a-time syntheses limit access to AdA analogs. We have addressed this problem by synthesizing a library of triazole-based AdA analogs, triazolophostins, by employing click chemistry. An advanced intermediate having all the necessary phosphates and a β-azide at the anomeric position was reacted with various alkynes under Cu(i) catalysis to yield triazoles, which upon deprotection gave triazolophostins. All eleven triazolophostins synthesized are more potent than IP3 and some are equipotent with AdA in functional analyses of IP3 receptors. We show that a triazole ring can replace adenine without compromising the potency of AdA and provide facile routes to novel AdA analogs.

  5. Biochemical behavior of N-oxidized cytosine and adenine bases in DNA polymerase-mediated primer extension reactions

    PubMed Central

    Tsunoda, Hirosuke; Kudo, Tomomi; Masaki, Yoshiaki; Ohkubo, Akihiro; Seio, Kohji; Sekine, Mitsuo

    2011-01-01

    To clarify the biochemical behavior of 2′-deoxyribonucleoside 5′-triphosphates and oligodeoxyribonucleotides (ODNs) containing cytosine N-oxide (Co) and adenine N-oxide (Ao), we examined their base recognition ability in DNA duplex formation using melting temperature (Tm) experiments and their substrate specificity in DNA polymerase-mediated replication. As the result, it was found that the Tm values of modified DNA–DNA duplexes incorporating 2′-deoxyribonucleoside N-oxide derivatives significantly decreased compared with those of the unmodified duplexes. However, single insertion reactions by DNA polymerases of Klenow fragment (KF) (exo−) and Vent (exo−) suggested that Co and Ao selectively recognized G and T, respectively. Meanwhile, the kinetic study showed that the incorporation efficiencies of the modified bases were lower than those of natural bases. Ab initio calculations suggest that these modified bases can form the stable base pairs with the original complementary bases. These results indicate that the modified bases usually recognize the original bases as partners for base pairing, except for misrecognition of dATP by the action of KF (exo−) toward Ao on the template, and the primers could be extended on the template DNA. When they misrecognized wrong bases, the chain could not be elongated so that the modified base served as the chain terminator. PMID:21300642

  6. Biochemical behavior of N-oxidized cytosine and adenine bases in DNA polymerase-mediated primer extension reactions.

    PubMed

    Tsunoda, Hirosuke; Kudo, Tomomi; Masaki, Yoshiaki; Ohkubo, Akihiro; Seio, Kohji; Sekine, Mitsuo

    2011-04-01

    To clarify the biochemical behavior of 2'-deoxyribonucleoside 5'-triphosphates and oligodeoxyribonucleotides (ODNs) containing cytosine N-oxide (C(o)) and adenine N-oxide (A(o)), we examined their base recognition ability in DNA duplex formation using melting temperature (T(m)) experiments and their substrate specificity in DNA polymerase-mediated replication. As the result, it was found that the T(m) values of modified DNA-DNA duplexes incorporating 2'-deoxyribonucleoside N-oxide derivatives significantly decreased compared with those of the unmodified duplexes. However, single insertion reactions by DNA polymerases of Klenow fragment (KF) (exo(-)) and Vent (exo(-)) suggested that C(o) and A(o) selectively recognized G and T, respectively. Meanwhile, the kinetic study showed that the incorporation efficiencies of the modified bases were lower than those of natural bases. Ab initio calculations suggest that these modified bases can form the stable base pairs with the original complementary bases. These results indicate that the modified bases usually recognize the original bases as partners for base pairing, except for misrecognition of dATP by the action of KF (exo(-)) toward A(o) on the template, and the primers could be extended on the template DNA. When they misrecognized wrong bases, the chain could not be elongated so that the modified base served as the chain terminator.

  7. Which one among the Pt-containing anticancer drugs more easily forms monoadducts with G and A DNA bases? A comparative study among oxaliplatin, nedaplatin, and carboplatin.

    PubMed

    Alberto, Marta E; Butera, Valeria; Russo, Nino

    2011-08-01

    The platination processes of DNA bases with second- and third-generation Pt(II) anticancer drugs have been investigated using density functional theory (DFT) combined with the conductor-like dielectric continuum model (CPCM) approach, in order to describe their binding mechanisms and to obtain detailed data on the reaction energy profiles. Although there is no doubt that a Pt-N7 bond forms during initial attack, the energetic profiles for the formation of the monofunctional adducts are not known. Herein, a direct comparison between the rate of formation of the monofunctional adducts of the second- and third-generation anticancer drugs with guanine (G) and adenine (A) DNA bases has been made in order to spotlight possible common or different behavior. The guanine as target for platination process is confirmed to be preferred over adenine for all the investigated compounds and for both the hydrolyzed forms considered in our investigation. The preference for G purine base is dominated by electronic factors and promoted by a more favorable hydrogen-bonds pattern, confirming the important role played by H-bonds in determining both structural and kinetic control on the purine platination process. © 2011 American Chemical Society

  8. Exposure of DNA bases induced by the interaction of DNA and calf thymus DNA helix-destabilizing protein.

    PubMed Central

    Kohwi-Shigematsu, T; Enomoto, T; Yamada, M A; Nakanishi, M; Tsuboi, M

    1978-01-01

    The reaction of chloroacetaldehyde with adenine bases in DNA to give a fluorescent product was used to study the availability to intermolecular reaction of positions 1 and 6 of adenine in DNA complexes with calf thymus DNA helix-destabilizing protein. No inhibition of this reaction was observed when heat-denatured DNA was complexed with the protein at a protein/DNA weight ratio of 10:1, compared to free DNA. On the contrary, the same reaction was inhibited markedly for denatured DNA in the presence of calf thymus histone HI at protein/DNA weight ratio of 2:1. Furthermore, the exchange rate for hydrogens of amino and imide groups of DNA bases in DNA strands with deuterium in the solvent was totally unaffected upon complexing of DNA with the DNA helix-destabilizing protein as examined by stopped-flow ultraviolet spectroscopy. These results indicate that the DNA helix-destabilizing protein forms a complex with single-stranded DNA, leaving DNA bases uncovered by the protein. The fluorescence intensity of DNA pretreated with chloroacetaldehyde was amplified by nearly 3-fold upon addition of the DNA helix-destabilizing protein. The possibility of "unstacking" of DNA bases induced by the protein is discussed. PMID:216994

  9. X-ray-structure of a cytidylyl-3',5'-adenosine-proflavine complex: a self-paired parallel-chain double helical dimer with an intercalated acridine dye.

    PubMed Central

    Westhof, E; Sundaralingam, M

    1980-01-01

    The non-self-complementary dinucleoside monophosphate cytidylyl-3',5'-adenosine (CpA) forms a base-paired parallel-chain dimer with an intercalated proflavine. The dimer complex possesses a right-handed helical twist. The dimer helix has an irregular girth with a neutral adenine-adenine (A-A) pair, hydrogen-bonded through the N6 and N7 sites (C1'...C1' separation of 10.97 A), and a triply hydrogen-bonded protonated cytosine-cytosine (C-C) pair with a proton shared between the base N3 sites (Cl'...Cl' separation of 9.59 A). The torsion angles of the sugar-phosphate backbone are within their most preferred ranges and the sugar puckering sequence (5' leads to 3') is C3'-endo, C2'-endo. There is also a second proflavine molecule sandwiched between CpA dimers on the 21-axis. Both proflavines are necessarily disordered, being on dyad axis, and this suggests possible insights into the dynamics of intercalation of planar drugs. This structure shows that intercalation of planar drugs in nucleic acids may not be restricted to antiparallel complementary Watson-Crick pairing regions and provides additional mechanisms for acridine mutagenesis. PMID:6929524

  10. Ketose induced respiratory inhibition in isolated hepatocytes.

    PubMed

    Martínez, P; Carrascosa, J M; Núñez de Castro, I

    1987-06-01

    The addition of 10 mM fructose or 10 mM tagatose to a suspension of hepatocytes caused respiratory inhibition, whereas no change in oxygen uptake was observed following the addition of glucose. However, incubations in the presence of fructose showed a high, aerobic glycolytic activity. Tagatose is phosphorylated to tagatose 1-phosphate but is not further metabolized by cell free liver extract. Moreover, the addition of fructose to glucagon treated cells also caused the Crabtree-like effect. The concentration of adenine nucleotides and inorganic phosphate (Pi) in the mitochondrial and cytosolic compartments during incubation (time 30 min) was determined by the digitonin fractionation procedure. In the presence of 10 mM fructose or tagatose, the total adenine nucleotide pools decreased by 40%; however, glucose produced no change. The addition of ketoses diminished the asymmetric distribution of extramitochondrial (ATP/ADP)e ratio and intramitochondrial (ATP/ADP)i ratio. At the same time the total mitochondrial Pi fell from 17 mM to 6-7 mM. The mitochondrial membrane potential (-161 mV) in the presence of fructose showed no changes during the 30 min experimental period. An increase in the NADH/NAD+ ratio was observed. These results suggest that in hepatocytes the inhibition of respiration is not necessarily linked with the enhanced aerobic glycolysis, by competition for common substrates.

  11. Non-Euclidean phasor analysis for quantification of oxidative stress in ex vivo human skin exposed to sun filters using fluorescence lifetime imaging microscopy

    NASA Astrophysics Data System (ADS)

    Osseiran, Sam; Roider, Elisabeth M.; Wang, Hequn; Suita, Yusuke; Murphy, Michael; Fisher, David E.; Evans, Conor L.

    2017-12-01

    Chemical sun filters are commonly used as active ingredients in sunscreens due to their efficient absorption of ultraviolet (UV) radiation. Yet, it is known that these compounds can photochemically react with UV light and generate reactive oxygen species and oxidative stress in vitro, though this has yet to be validated in vivo. One label-free approach to probe oxidative stress is to measure and compare the relative endogenous fluorescence generated by cellular coenzymes nicotinamide adenine dinucleotides and flavin adenine dinucleotides. However, chemical sun filters are fluorescent, with emissive properties that contaminate endogenous fluorescent signals. To accurately distinguish the source of fluorescence in ex vivo skin samples treated with chemical sun filters, fluorescence lifetime imaging microscopy data were processed on a pixel-by-pixel basis using a non-Euclidean separation algorithm based on Mahalanobis distance and validated on simulated data. Applying this method, ex vivo samples exhibited a small oxidative shift when exposed to sun filters alone, though this shift was much smaller than that imparted by UV irradiation. Given the need for investigative tools to further study the clinical impact of chemical sun filters in patients, the reported methodology may be applied to visualize chemical sun filters and measure oxidative stress in patients' skin.

  12. Impaired mitochondrial Ca{sup 2+} homeostasis in respiratory chain-deficient cells but efficient compensation of energetic disadvantage by enhanced anaerobic glycolysis due to low ATP steady state levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleist-Retzow, Juergen-Christoph von; Hue-Tran Hornig-Do; Schauen, Matthias

    2007-08-15

    Energy-producing pathways, adenine nucleotide levels, oxidative stress response and Ca{sup 2+} homeostasis were investigated in cybrid cells incorporating two pathogenic mitochondrial DNA point mutations, 3243A > G and 3302A > G in tRNA{sup Leu(UUR)}, as well as Rho{sup 0} cells and compared to their parental 143B osteosarcoma cell line. All cells suffering from a severe respiratory chain deficiency were able to proliferate as fast as controls. The major defect in oxidative phosphorylation was efficiently compensated by a rise in anaerobic glycolysis, so that the total ATP production rate was preserved. This enhancement of glycolysis was enabled by a considerable decreasemore » of cellular total adenine nucleotide pools and a concomitant shift in the AMP + ADP/ATP ratios, while the energy charge potential was still in the normal range. Further important consequences were an increased production of superoxide which, however, was neither escorted by major changes in the antioxidative defence systems nor was it leading to substantial oxidative damage. Most interestingly, the lowered mitochondrial membrane potential led to a disturbed intramitochondrial calcium homeostasis, which most likely is a major pathomechanism in mitochondrial diseases.« less

  13. Classification of pseudo pairs between nucleotide bases and amino acids by analysis of nucleotide-protein complexes.

    PubMed

    Kondo, Jiro; Westhof, Eric

    2011-10-01

    Nucleotide bases are recognized by amino acid residues in a variety of DNA/RNA binding and nucleotide binding proteins. In this study, a total of 446 crystal structures of nucleotide-protein complexes are analyzed manually and pseudo pairs together with single and bifurcated hydrogen bonds observed between bases and amino acids are classified and annotated. Only 5 of the 20 usual amino acid residues, Asn, Gln, Asp, Glu and Arg, are able to orient in a coplanar fashion in order to form pseudo pairs with nucleotide bases through two hydrogen bonds. The peptide backbone can also form pseudo pairs with nucleotide bases and presents a strong bias for binding to the adenine base. The Watson-Crick side of the nucleotide bases is the major interaction edge participating in such pseudo pairs. Pseudo pairs between the Watson-Crick edge of guanine and Asp are frequently observed. The Hoogsteen edge of the purine bases is a good discriminatory element in recognition of nucleotide bases by protein side chains through the pseudo pairing: the Hoogsteen edge of adenine is recognized by various amino acids while the Hoogsteen edge of guanine is only recognized by Arg. The sugar edge is rarely recognized by either the side-chain or peptide backbone of amino acid residues.

  14. Classification of pseudo pairs between nucleotide bases and amino acids by analysis of nucleotide–protein complexes

    PubMed Central

    Kondo, Jiro; Westhof, Eric

    2011-01-01

    Nucleotide bases are recognized by amino acid residues in a variety of DNA/RNA binding and nucleotide binding proteins. In this study, a total of 446 crystal structures of nucleotide–protein complexes are analyzed manually and pseudo pairs together with single and bifurcated hydrogen bonds observed between bases and amino acids are classified and annotated. Only 5 of the 20 usual amino acid residues, Asn, Gln, Asp, Glu and Arg, are able to orient in a coplanar fashion in order to form pseudo pairs with nucleotide bases through two hydrogen bonds. The peptide backbone can also form pseudo pairs with nucleotide bases and presents a strong bias for binding to the adenine base. The Watson–Crick side of the nucleotide bases is the major interaction edge participating in such pseudo pairs. Pseudo pairs between the Watson–Crick edge of guanine and Asp are frequently observed. The Hoogsteen edge of the purine bases is a good discriminatory element in recognition of nucleotide bases by protein side chains through the pseudo pairing: the Hoogsteen edge of adenine is recognized by various amino acids while the Hoogsteen edge of guanine is only recognized by Arg. The sugar edge is rarely recognized by either the side-chain or peptide backbone of amino acid residues. PMID:21737431

  15. Electrocatalytic reaction of hydrogen peroxide and NADH based on poly(neutral red) and FAD hybrid film.

    PubMed

    Lin, Kuo Chiang; Lin, Yu Ching; Chen, Shen Ming

    2012-01-07

    A simple method to immobilize poly(neutral red) (PNR) and flavin adenine dinucleotide (FAD) hybrid film (PNR/FAD) by cyclic voltammetry is proposed. The PNR/FAD hybrid film can be easily prepared on an electrode surface involving electropolymerization of neutral red (NR) monomers and the electrostatic interaction between the positively charged PNR and the negatively charged FAD. It exhibits electroactive, stable, surface-confined, pH-dependent, nano-sized, and compatible properties. It provides good electrocatalytic properties to various species. It shows a sensitivity of 5.4 μA mM(-1) cm(-2) and 21.5 μA mM(-1) cm(-2) for hydrogen peroxide (H(2)O(2)) and nicotinamide adenine dinucleotide (NADH) with the linear range of 0.1 μM-39 mM and 5 × 10(-5) to 2.5 × 10(-4) M, respectively. It shows another linear range of 48.8-355.5 mM with the sensitivity of 12.3 μA mM(-1) cm(-2) for H(2)O(2). In particular, the PNR/FAD hybrid film has potential to replace some hemoproteins to be a cathode of biofuel cells and provide the biosensing system for glucose and ethanol. This journal is © The Royal Society of Chemistry 2012

  16. Regular exercise training reverses ectonucleotidase alterations and reduces hyperaggregation of platelets in metabolic syndrome patients.

    PubMed

    Martins, Caroline Curry; Bagatini, Margarete Dulce; Cardoso, Andréia Machado; Zanini, Daniela; Abdalla, Fátima Husein; Baldissarelli, Jucimara; Dalenogare, Diéssica Padilha; Farinha, Juliano Boufleur; Schetinger, Maria Rosa Chitolina; Morsch, Vera Maria

    2016-02-15

    Alterations in the activity of ectonucleotidase enzymes have been implicated in cardiovascular diseases, whereas regular exercise training has been shown to prevent these alterations. However, nothing is known about it relating to metabolic syndrome (MetS). We investigated the effect of exercise training on platelet ectonucleotidase enzymes and on the aggregation profile of MetS patients. We studied 38 MetS patients who performed regular concurrent exercise training for 30 weeks. Anthropometric measurements, biochemical profiles, hydrolysis of adenine nucleotides in platelets and platelet aggregation were collected from patients before and after the exercise intervention as well as from individuals of the control group. An increase in the hydrolysis of adenine nucleotides (ATP, ADP and AMP) and a decrease in adenosine deamination in the platelets of MetS patients before the exercise intervention were observed (P<0.001). However, these alterations were reversed by exercise training (P<0.001). Additionally, an increase in platelet aggregation was observed in the MetS patients (P<0.001) and the exercise training prevented platelet hyperaggregation in addition to decrease the classic cardiovascular risks. An alteration of ectonucleotidase enzymes occurs during MetS, whereas regular exercise training had a protective effect on these enzymes and on platelet aggregation. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. A step into the RNA world: Conditional analysis of hydrogel formation of adenosine 5'-monophosphate induced by cyanuric acid.

    PubMed

    Yokosawa, Takumi; Enomoto, Ryota; Uchino, Sho; Hirasawa, Ito; Umehara, Takuya; Tamura, Koji

    2017-12-01

    Nucleotide polymerization occurs by the nucleophilic attack of 3'-oxygen of the 3'-terminal nucleotide on the α-phosphorus of the incoming nucleotide 5'-triphosphate. The π-stacking of mononucleotides is an important factor for prebiotic RNA polymerization in terms of attaining the proximity of two reacting moieties. Adenosine and adenosine 5'-monophosphate (AMP) are known to form hydrogel in the presence of cyanuric acid at neutral pH. However, we observed that other canonical ribonucleotides did not gel under the same condition. The π-stacking-induced hydrogel formation of AMP was destroyed at pH 2.0, suggesting that the protonation of N at position 1 of adenine abolished hydrogen bonding with the NH of cyanuric acid and resulted in the deformation of the hexad of adenine and cyanuric acid. A liquid-like gel was formed in the case of adenosine with cyanuric acid and boric acid, whereas AMP caused the formation of a solid gel, implying that the negative charge inherent to AMP prevented the formation of esters of boric acid with the cis-diols of ribose. Cyanuric acid-driven oligomerizations of AMP might have been the first crucial event in the foundation of the RNA world. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Cloning, heterologous expression, and in situ characterization of the first high affinity nucleobase transporter from a protozoan.

    PubMed

    Burchmore, Richard J S; Wallace, Lynsey J M; Candlish, Denise; Al-Salabi, Mohammed I; Beal, Paul R; Barrett, Michael P; Baldwin, Stephen A; de Koning, Harry P

    2003-06-27

    While multiple nucleoside transporters, some of which can also transport nucleobases, have been cloned in recent years from many different organisms, no sequence information is available for the high affinity, nucleobase-selective transporters of metazoa, parazoa, or protozoa. We have identified a gene, TbNBT1, from Trypanosoma brucei brucei that encodes a 435-residue protein of the equilibrative nucleoside transporter superfamily. The gene was expressed in both the procyclic and bloodstream forms of the organism. Expression of TbNBT1 in a Saccharomyces cerevisiae strain lacking an endogenous purine transporter allowed growth on adenine as sole purine source and introduced a high affinity transport activity for adenine and hypoxanthine, with Km values of 2.1 +/- 0.6 and 0.66 +/- 0.22 microm, respectively, as well as high affinity for xanthine, guanine, guanosine, and allopurinol and moderate affinity for inosine. A transporter with an indistinguishable kinetic profile was identified in T. b. brucei procyclics and designated H4. RNA interference of TbNBT1 in procyclics reduced cognate mRNA levels by approximately 80% and H4 transport activity by approximately 90%. Expression of TbNBT1 in Xenopus oocytes further confirmed that this gene encodes the first high affinity nucleobase transporter from protozoa or animals to be identified at the molecular level.

  19. A second target of benzamide riboside: dihydrofolate reductase.

    PubMed

    Roussel, Breton; Johnson-Farley, Nadine; Kerrigan, John E; Scotto, Kathleen W; Banerjee, Debabrata; Felczak, Krzysztof; Pankiewicz, Krzysztof W; Gounder, Murugesan; Lin, HongXia; Abali, Emine Ercikan; Bertino, Joseph R

    2012-11-01

    Dihydrofolate reductase (DHFR) is an essential enzyme involved in de novo purine and thymidine biosynthesis. For several decades, selective inhibition of DHFR has proven to be a potent therapeutic approach in the treatment of various cancers including acute lymphoblastic leukemia, non-Hodgkin's lymphoma, osteogenic sarcoma, carcinoma of the breast, and head and neck cancer. Therapeutic success with DHFR inhibitor methotrexate (MTX) has been compromised in the clinic, which limits the success of MTX treatment by both acquired and intrinsic resistance mechanisms. We report that benzamide riboside (BR), via anabolism to benzamide adenine dinucleotide (BAD) known to potently inhibit inosine monophosphate dehydrogenase (IMPDH), also inhibits cell growth through a mechanism involving downregulation of DHFR protein. Evidence to support this second site of action of BR includes the finding that CCRF-CEM/R human T-cell lymphoblasic leukemia cells, resistant to MTX as a consequence of gene amplification and overexpression of DHFR, are more resistant to BR than are parental cells. Studies of the mechanism by which BR lowers DHFR showed that BR, through its metabolite BAD, reduced NADP and NADPH cellular levels by inhibiting nicotinamide adenine dinucleotide kinase (NADK). As consequence of the lack of NADPH, DHFR was shown to be destabilized. We suggest that, inhibition of NADK is a new approach to downregulate DHFR and to inhibit cell growth.

  20. Nicotinamide adenine dinucleotide biosynthesis promotes liver regeneration.

    PubMed

    Mukherjee, Sarmistha; Chellappa, Karthikeyani; Moffitt, Andrea; Ndungu, Joan; Dellinger, Ryan W; Davis, James G; Agarwal, Beamon; Baur, Joseph A

    2017-02-01

    The regenerative capacity of the liver is essential for recovery from surgical resection or injuries induced by trauma or toxins. During liver regeneration, the concentration of nicotinamide adenine dinucleotide (NAD) falls, at least in part due to metabolic competition for precursors. To test whether NAD availability restricts the rate of liver regeneration, we supplied nicotinamide riboside (NR), an NAD precursor, in the drinking water of mice subjected to partial hepatectomy. NR increased DNA synthesis, mitotic index, and mass restoration in the regenerating livers. Intriguingly, NR also ameliorated the steatosis that normally accompanies liver regeneration. To distinguish the role of hepatocyte NAD levels from any systemic effects of NR, we generated mice overexpressing nicotinamide phosphoribosyltransferase, a rate-limiting enzyme for NAD synthesis, specifically in the liver. Nicotinamide phosphoribosyltransferase overexpressing mice were mildly hyperglycemic at baseline and, similar to mice treated with NR, exhibited enhanced liver regeneration and reduced steatosis following partial hepatectomy. Conversely, mice lacking nicotinamide phosphoribosyltransferase in hepatocytes exhibited impaired regenerative capacity that was completely rescued by administering NR. NAD availability is limiting during liver regeneration, and supplementation with precursors such as NR may be therapeutic in settings of acute liver injury. (Hepatology 2017;65:616-630). © 2016 by the American Association for the Study of Liver Diseases.

Top