Science.gov

Sample records for adeno-associated viral raav

  1. Recombinant adeno-associated viral (rAAV) vectors mediate efficient gene transduction in cultured neonatal and adult microglia.

    PubMed

    Su, Wei; Kang, John; Sopher, Bryce; Gillespie, James; Aloi, Macarena S; Odom, Guy L; Hopkins, Stephanie; Case, Amanda; Wang, David B; Chamberlain, Jeffrey S; Garden, Gwenn A

    2016-01-01

    Microglia are a specialized population of myeloid cells that mediate CNS innate immune responses. Efforts to identify the cellular and molecular mechanisms that regulate microglia behaviors have been hampered by the lack of effective tools for manipulating gene expression. Cultured microglia are refractory to most chemical and electrical transfection methods, yielding little or no gene delivery and causing toxicity and/or inflammatory activation. Recombinant adeno-associated viral (rAAVs) vectors are non-enveloped, single-stranded DNA vectors commonly used to transduce many primary cell types and tissues. In this study, we evaluated the feasibility and efficiency of utilizing rAAV serotype 2 (rAAV2) to modulate gene expression in cultured microglia. rAAV2 yields high transduction and causes minimal toxicity or inflammatory response in both neonatal and adult microglia. To demonstrate that rAAV transduction can induce functional protein expression, we used rAAV2 expressing Cre recombinase to successfully excise a LoxP-flanked miR155 gene in cultured microglia. We further evaluated rAAV serotypes 5, 6, 8, and 9, and observed that all efficiently transduced cultured microglia to varying degrees of success and caused little or no alteration in inflammatory gene expression. These results provide strong encouragement for the application of rAAV-mediated gene expression in microglia for mechanistic and therapeutic purposes. Neonatal microglia are functionally distinct from adult microglia, although the majority of in vitro studies utilize rodent neonatal microglia cultures because of difficulties of culturing adult cells. In addition, cultured microglia are refractory to most methods for modifying gene expression. Here, we developed a novel protocol for culturing adult microglia and evaluated the feasibility and efficiency of utilizing Recombinant Adeno-Associated Virus (rAAV) to modulate gene expression in cultured microglia.

  2. Modular adeno-associated virus (rAAV) vectors used for cellular virus-directed enzyme prodrug therapy.

    PubMed

    Hagen, Sven; Baumann, Tobias; Wagner, Hanna J; Morath, Volker; Kaufmann, Beate; Fischer, Adrian; Bergmann, Stefan; Schindler, Patrick; Arndt, Katja M; Müller, Kristian M

    2014-01-01

    The pre-clinical and clinical development of viral vehicles for gene transfer increased in recent years, and a recombinant adeno-associated virus (rAAV) drug took center stage upon approval in the European Union. However, lack of standardization, inefficient purification methods and complicated retargeting limit general usability. We address these obstacles by fusing rAAV-2 capsids with two modular targeting molecules (DARPin or Affibody) specific for a cancer cell-surface marker (EGFR) while simultaneously including an affinity tag (His-tag) in a surface-exposed loop. Equipping these particles with genes coding for prodrug converting enzymes (thymidine kinase or cytosine deaminase) we demonstrate tumor marker specific transduction and prodrug-dependent apoptosis of cancer cells. Coding terminal and loop modifications in one gene enabled specific and scalable purification. Our genetic parts for viral production adhere to a standardized cloning strategy facilitating rapid prototyping of virus directed enzyme prodrug therapy (VDEPT). PMID:24457557

  3. Serotype-dependent transduction efficiencies of recombinant adeno-associated viral vectors in monkey neocortex

    PubMed Central

    Gerits, Annelies; Vancraeyenest, Pascaline; Vreysen, Samme; Laramée, Marie-Eve; Michiels, Annelies; Gijsbers, Rik; Van den Haute, Chris; Moons, Lieve; Debyser, Zeger; Baekelandt, Veerle; Arckens, Lutgarde; Vanduffel, Wim

    2015-01-01

    Abstract. Viral vector-mediated expression of genes (e.g., coding for opsins and designer receptors) has grown increasingly popular. Cell-type specific expression is achieved by altering viral vector tropism through crosspackaging or by cell-specific promoters driving gene expression. Detailed information about transduction properties of most recombinant adeno-associated viral vector (rAAV) serotypes in macaque cortex is gradually becoming available. Here, we compare transduction efficiencies and expression patterns of reporter genes in two macaque neocortical areas employing different rAAV serotypes and promoters. A short version of the calmodulin-kinase-II (CaMKIIα0.4) promoter resulted in reporter gene expression in cortical neurons for all tested rAAVs, albeit with different efficiencies for spread: rAAV2/5>>rAAV2/7>rAAV2/8>rAAV2/9>>rAAV2/1 and proportion of transduced cells: rAAV2/1>rAAV2/5>rAAV2/7=rAAV2/9>rAAV2/8. In contrast to rodent studies, the cytomegalovirus (CMV) promoter appeared least efficient in macaque cortex. The human synapsin-1 promoter preceded by the CMV enhancer (enhSyn1) produced homogeneous reporter gene expression across all layers, while two variants of the CaMKIIα promoter resulted in different laminar transduction patterns and cell specificities. Finally, differences in expression patterns were observed when the same viral vector was injected in two neocortical areas. Our results corroborate previous findings that reporter-gene expression patterns and efficiency of rAAV transduction depend on serotype, promoter, cortical layer, and area. PMID:26839901

  4. Ultracentrifugation-free chromatography-mediated large-scale purification of recombinant adeno-associated virus serotype 1 (rAAV1)

    PubMed Central

    Tomono, Taro; Hirai, Yukihiko; Okada, Hironori; Adachi, Kumi; Ishii, Akiko; Shimada, Takashi; Onodera, Masafumi; Tamaoka, Akira; Okada, Takashi

    2016-01-01

    Recombinant adeno-associated virus (rAAV) is an attractive tool for gene transfer and shows potential for use in human gene therapies. The current methods for the production and purification of rAAV from the transfected cell lysate are mainly based on cesium chloride and iodixanol density ultracentrifugation, although those are not scalable. Meanwhile, chromatography-based systems are more scalable. Therefore, in this study, we developed a novel method for the production and purification of rAAV serotype 1 (rAAV1) from serum-free culture supernatant based on ion-exchange and gel-filtration chromatography to obtain highly purified products with an ultracentrifugation-free technique towards Good Manufacturing Practice (GMP) production. The purified rAAV1 displayed three clear and sharp bands (VP1, VP2, and VP3) following sodium dodecyl sulfate–polyacrylamide gel electrophoresis, and more than 90% of rAAV1 particles contained fully packaged viral genomes according to negative-stain electron micrographic analysis. Consequently, the resultant genomic titer of the purified rAAV1 was 3.63 × 1013 v.g./ml (the total titer was 4.17 × 1013 v.g.) from the 4 × 109 HEK293 cells. This novel chromatography-based method will facilitate scale-up of manufacturing for clinical applications in gene therapy. PMID:26913289

  5. Recombinant adeno-associated viral vector reference standards.

    PubMed

    Moullier, Philippe; Snyder, Richard O

    2012-01-01

    Reference standard materials (RSMs) exist for a variety of biologics including vaccines but are not readily available for gene therapy vectors. To date, a recombinant adeno-associated virus serotype 2 RSM (rAAV2 RSM) has been produced and characterized and was made available to the scientific community in 2010. In addition, a rAAV8 RSM has been produced and will be characterized in the coming months. The use of these reference materials by members of the gene therapy field facilitates the calibration of individual laboratory vector-specific internal standards and the eventual comparison of preclinical and clinical data based on common dosage units. Normalization of data to determine therapeutic dose ranges of rAAV vectors for each particular tissue target and disease indication is important information that can enhance the safety and protection of patients.

  6. Analytical Ultracentrifugation as an Approach to Characterize Recombinant Adeno-Associated Viral Vectors.

    PubMed

    Burnham, Brenda; Nass, Shelley; Kong, Elton; Mattingly, MaryEllen; Woodcock, Denise; Song, Antonius; Wadsworth, Samuel; Cheng, Seng H; Scaria, Abraham; O'Riordan, Catherine R

    2015-12-01

    Recombinant adeno-associated viral (rAAV) vectors represent a novel class of biopharmaceutical drugs. The production of clinical-grade rAAV vectors for gene therapy would benefit from analytical methods that are able to monitor drug product quality with regard to homogeneity, purity, and manufacturing consistency. Here, we demonstrate the novel application of analytical ultracentrifugation (AUC) to characterize the homogeneity of preparations of rAAV vectors. We show that a single sedimentation velocity run of rAAV vectors detected and quantified a number of different viral species, such as vectors harboring an intact genome, lacking a vector genome (empty particles), and containing fragmented or incomplete vector genomes. This information is obtained by direct boundary modeling of the AUC data generated from refractometric or UV detection systems using the computer program SEDFIT. Using AUC, we show that multiple parameters contributed to vector quality, including the AAV genome form (i.e., self-complementary vs. single-stranded), vector genome size, and the production and purification methods. Hence, AUC is a critical tool for identifying optimal production and purification processes and for monitoring the physical attributes of rAAV vectors to ensure their quality.

  7. Differential targeting of feline photoreceptors by recombinant adeno-associated viral vectors: implications for preclinical gene therapy trials.

    PubMed

    Minella, A L; Mowat, F M; Willett, K L; Sledge, D; Bartoe, J T; Bennett, J; Petersen-Jones, S M

    2014-10-01

    The cat is emerging as a promising large animal model for preclinical testing of retinal dystrophy therapies, for example, by gene therapy. However, there is a paucity of studies investigating viral vector gene transfer to the feline retina. We therefore sought to study the tropism of recombinant adeno-associated viral (rAAV) vectors for the feline outer retina. We delivered four rAAV serotypes: rAAV2/2, rAAV2/5, rAAV2/8 and rAAV2/9, each expressing green fluorescent protein (GFP) under the control of a cytomegalovirus promoter, to the subretinal space in cats and, for comparison, mice. Cats were monitored for gene expression by in vivo imaging and cellular tropism was determined using immunohistochemistry. In cats, rAAV2/2, rAAV2/8 and rAAV2/9 vectors induced faster and stronger GFP expression than rAAV2/5 and all vectors transduced the retinal pigment epithelium (RPE) and photoreceptors. Unlike in mice, cone photoreceptors in the cat retina were more efficiently transduced than rod photoreceptors. In mice, rAAV2/2 only transduced the RPE whereas the other vectors also transduced rods and cones. These results highlight species differences in cellular tropism of rAAV vectors in the outer retina. We conclude that rAAV serotypes are suitable for use for retinal gene therapy in feline models, particularly when cone photoreceptors are the target cell.

  8. Intracranial injection of adeno-associated viral vectors.

    PubMed

    Lowery, Rebecca L; Majewska, Ania K

    2010-01-01

    Intracranial injection of viral vectors engineered to express a fluorescent protein is a versatile labeling technique for visualization of specific subsets of cells in different brain regions both in vivo and in brain sections. Unlike the injection of fluorescent dyes, viral labeling offers targeting of individual cell types and is less expensive and time consuming than establishing transgenic mouse lines. In this technique, an adeno-associated viral (AAV) vector is injected intracranially using stereotaxic coordinates, a micropipette and an automated pump for precise delivery of AAV to the desired area with minimal damage to the surrounding tissue. Injection parameters can be tailored to individual experiments by adjusting the animal age at injection, injection location, volume of injection, rate of injection, AAV serotype and the promoter driving gene expression. Depending on the conditions chosen, virally-induced transgene expression can allow visualization of groups of cells, individual cells or fine cellular processes, down to the level of dendritic spines. The experiment shown here depicts an injection of double-stranded AAV expressing green fluorescent protein for the labeling of neurons and glia in the mouse primary visual cortex. PMID:21113119

  9. Manufacturing of recombinant adeno-associated viral vectors for clinical trials

    PubMed Central

    Clément, Nathalie; Grieger, Joshua C

    2016-01-01

    The ability to elicit robust and long-term transgene expression in vivo together with minimal immunogenicity and little to no toxicity are only a few features that make recombinant adeno-associated virus (rAAV) vectors ideally suited for many gene therapy applications. Successful preclinical studies have encouraged the use of rAAV for therapeutic gene transfer to patients in the clinical setting. Nevertheless, the use of rAAV in clinical trials has underscored the need for production and purification systems capable of generating large amounts of highly pure rAAV particles. To date, generating vector quantities sufficient to meet the expanding clinical demand is still a hurdle when using current production systems. In this chapter, we will provide a description of the current methods to produce clinical grade of rAAV under current good manufacturing practice (cGMP) settings. PMID:27014711

  10. Manufacturing of recombinant adeno-associated viral vectors for clinical trials.

    PubMed

    Clément, Nathalie; Grieger, Joshua C

    2016-01-01

    The ability to elicit robust and long-term transgene expression in vivo together with minimal immunogenicity and little to no toxicity are only a few features that make recombinant adeno-associated virus (rAAV) vectors ideally suited for many gene therapy applications. Successful preclinical studies have encouraged the use of rAAV for therapeutic gene transfer to patients in the clinical setting. Nevertheless, the use of rAAV in clinical trials has underscored the need for production and purification systems capable of generating large amounts of highly pure rAAV particles. To date, generating vector quantities sufficient to meet the expanding clinical demand is still a hurdle when using current production systems. In this chapter, we will provide a description of the current methods to produce clinical grade of rAAV under current good manufacturing practice (cGMP) settings.

  11. Efficient production of dual recombinant adeno-associated viral vectors for factor VIII delivery.

    PubMed

    Wang, Qizhao; Dong, Biao; Firrman, Jenni; Roberts, Sean; Moore, Andrea Rossi; Cao, Wenjing; Diao, Yong; Kapranov, Philipp; Xu, Ruian; Xiao, Weidong

    2014-08-01

    Recombinant adeno-associated viral (rAAV) vectors have gained attention for human gene therapy because of their high safety and clinical efficacy profile. For factor VIII gene delivery, splitting the coding region between two AAV vectors remains a viable strategy to avoid the packaging capacity limitation (∼5.0 kb). However, it is time-consuming and labor-intensive to produce two rAAV vectors in separate batches. Here we demonstrated successful production of dual rAAV vectors for hemophilia A gene therapy in a single preparation. When the AAV vector plasmids carrying the human factor VIII heavy chain (hHC) and the light chain (hLC) expression cassettes were cotransfected into 293 cells along with the AAV rep&cap and mini-adenovirus helper plasmids, both rAAV-hHC and rAAV-hLC were produced at the desired ratio and in high titer. Interestingly, the rAAV-hHC vectors always yielded higher titers than rAAV-hLC vectors as a result of more efficient replication of rAAV-hHC genomes. The resulting vectors were effective in transducing the tissue culture cells in vitro. When these vectors were administered to hemophilia A mice, factor VIII was detected in the mouse plasma by both the activated partial thromboplastin time assay and enzyme-linked immunosorbent assay. The functional activity as well as the antigen levels of secreted factor VIII were similar to those of vectors produced by the traditional method. The dual-vector production method has been successfully extended to both AAV2 and AAV8 serotypes. In conclusion, cotransfection of vector plasmids presents an efficient method for producing dual or multiple AAV vectors at significantly reduced cost and labor.

  12. The potential of adeno-associated viral vectors for gene delivery to muscle tissue

    PubMed Central

    Nahid, M Abu; Gao, Guangping

    2014-01-01

    Introduction Muscle-directed gene therapy is rapidly gaining attention primarily because muscle is an easily accessible target tissue and is also associated with various severe genetic disorders. Localized and systemic delivery of recombinant adeno-associated virus (rAAV) vectors of several serotypes results in very efficient transduction of skeletal and cardiac muscles, which has been achieved in both small and large animals, as well as in humans. Muscle is the target tissue in gene therapy for many muscular dystrophy diseases, and may also be exploited as a biofactory to produce secretory factors for systemic disorders. Current limitations of using rAAVs for muscle gene transfer include vector size restriction, potential safety concerns such as off-target toxicity and the immunological barrier composing of pre-existing neutralizing antibodies and CD8+ T-cell response against AAV capsid in humans. Areas covered In this article, we will discuss basic AAV vector biology and its application in muscle-directed gene delivery, as well as potential strategies to overcome the aforementioned limitations of rAAV for further clinical application. Expert opinion Delivering therapeutic genes to large muscle mass in humans is arguably the most urgent unmet demand in treating diseases affecting muscle tissues throughout the whole body. Muscle-directed, rAAV-mediated gene transfer for expressing antibodies is a promising strategy to combat deadly infectious diseases. Developing strategies to circumvent the immune response following rAAV administration in humans will facilitate clinical application. PMID:24386892

  13. The impact of minimally oversized adeno-associated viral vectors encoding human factor VIII on vector potency in vivo

    PubMed Central

    Kyostio-Moore, Sirkka; Berthelette, Patricia; Piraino, Susan; Sookdeo, Cathleen; Nambiar, Bindu; Jackson, Robert; Burnham, Brenda; O’Riordan, Catherine R; Cheng, Seng H; Armentano, Donna

    2016-01-01

    Recombinant adeno-associated viral (rAAV) vectors containing oversized genomes provide transgene expression despite low efficiency packaging of complete genomes. Here, we characterized the properties of oversized rAAV2/8 vectors (up to 5.4 kb) encoding human factor VIII (FVIII) under the transcriptional control of three liver promoters. All vectors provided sustained production of active FVIII in mice for 7 months and contained comparable levels of vector genomes and complete expression cassettes in liver. Therefore, for the 5.4 kb genome size range, a strong expression cassette was more important for FVIII production than the vector genome size. To evaluate the potency of slightly oversized vectors, a 5.1 kb AAVrh8R/FVIII vector was compared to a 4.6 kb (wild-type size) vector with an identical expression cassette (but containing a smaller C1-domain deleted FVIII) for 3 months in mice. The 5.1 kb vector had twofold to threefold lower levels of plasma FVIII protein and liver vector genomes than that obtained with the 4.6 kb vector. Vector genomes for both vectors persisted equally and existed primarily as high molecular weight concatemeric circular forms in liver. Taken together, these results indicate that the slightly oversized vectors containing heterogeneously packaged vector genomes generated a functional transgene product but exhibited a twofold to threefold lower in vivo potency. PMID:26958574

  14. Cre Activated and Inactivated Recombinant Adeno-Associated Viral Vectors for Neuronal Anatomical Tracing or Activity Manipulation

    PubMed Central

    Saunders, Arpiar

    2015-01-01

    Recombinant adeno-associated viruses (rAAVs) transcriptionally activated by Cre recombinase (Cre-On) are powerful tools for determining the anatomy and function of genetically defined neuronal types in transgenic Cre driver mice. Here we describe how rAAVs transcriptionally inactivated by Cre (Cre-Off) can be used in conjunction with Cre-On rAAVs or genomic Cre-reporter alleles to study brain circuits. Intracranial injection of Cre-On/Cre-Off rAAVs into spatially intermingled Cre+ and Cre- neurons allows these populations to be differentially labeled or manipulated within individual animals. This comparison helps define the unique properties of Cre+ neurons, highlighting the specialized role they play in their constituent brain circuits. This protocol touches on the conceptual and experimental background of Cre-Off rAAV systems, including caveats and methods of validation. PMID:26131660

  15. Safety and Biodistribution Evaluation in Cynomolgus Macaques of rAAV2tYF-CB-hRS1, a Recombinant Adeno-Associated Virus Vector Expressing Retinoschisin

    PubMed Central

    Ye, Guo-Jie; Budzynski, Ewa; Sonnentag, Peter; Miller, Paul E.; Sharma, Alok K.; Ver Hoeve, James N.; Howard, Kellie; Knop, David R.; Neuringer, Martha; McGill, Trevor; Stoddard, Jonathan; Chulay, Jeffrey D.

    2015-01-01

    Applied Genetic Technologies Corporation is developing rAAV2tYF-CB-hRS1, a recombinant adeno-associated virus (rAAV) vector for treatment of X-linked retinoschisis (XLRS), an inherited retinal disease characterized by splitting (schisis) of retinal layers causing poor vision. We report here results of a study evaluating the safety and biodistribution of rAAV2tYF-CB-hRS1 in normal cynomolgus macaques. Three groups of male animals (n = 6 per group) received an intravitreal injection in one eye of either vehicle, or rAAV2tYF-CB-hRS1 at one of two dose levels (4 × 1010 or 4 × 1011 vg/eye). Half the animals were sacrificed after 14 days and the others after 91 or 115 days. The intravitreal injection procedure was well tolerated in all groups. Serial ophthalmic examinations demonstrated a dose-related anterior and posterior segment inflammatory response that improved over time. There were no test article-related effects on intraocular pressure, electroretinography, visual evoked potential, hematology, coagulation, clinical chemistry, or gross necropsy observations. Histopathological examination demonstrated minimal or moderate mononuclear infiltrates in 6 of 12 vector-injected eyes. Immunohistochemical staining showed RS1 labeling of the ganglion cell layer at the foveal slope in vector-injected eyes at both dose levels. Serum anti-AAV antibodies were detected in 4 of 6 vector-injected animals at the day 15 sacrifice and all vector-injected animals at later time points. No animals developed antibodies to RS1. Biodistribution studies demonstrated high levels of vector DNA in the injected eye but minimal or no vector DNA in any other tissue. These results support the use of rAAV2tYF-CB-hRS1 in clinical studies in patients with XLRS. PMID:26390090

  16. Artificial evolution with adeno-associated viral libraries.

    PubMed

    Perabo, Luca; Huber, Anke; Märsch, Stephan; Hallek, Michael; Büning, Hildegard

    2008-02-01

    After attracting the attention of the scientific community due to a number of favourable characteristics that make it an attractive vector for human gene therapy [1,2], AAV has been thoroughly investigated in the past two decades. Standard technologies for the manipulation of the viral genome and for efficient packaging and purification protocols have paved the road for trial and error manipulation by educated guesses to study viral infectious biology by reverse genetics and to generate improved vectors for human gene transfer. However, despite remarkable progress, our limited knowledge of molecular mechanisms implicated in virus-cell interactions has been a limiting factor. Combinatorial engineering and high-throughput selection techniques hold the potential to boost technological improvement by offering the possibility to screen large numbers of randomly generated clones by appropriate selection protocols. These approaches not only require lesser knowledge of viral biology, but can also be employed as valuable tools to investigate molecular mechanisms that drive the infection process. In this review we recapitulate the rationale for employment of combinatorial methods in AAV vector development and the accomplishments achieved so far, discussing current limitations and interesting developments that are in sight.

  17. The recombinant adeno-associated virus vector (rAAV2)-mediated apolipoprotein B mRNA-specific hammerhead ribozyme: a self-complementary AAV2 vector improves the gene expression

    PubMed Central

    Zhong, Shumei; Sun, Shihua; Teng, Ba-Bie

    2004-01-01

    Background In humans, overproduction of apolipoprotein B (apoB) is positively associated with premature coronary artery diseases. To reduce the levels of apoB mRNA, we have designed an apoB mRNA-specific hammerhead ribozyme targeted at nucleotide sequences GUA6679 (RB15) mediated by adenovirus, which efficiently cleaves and decreases apoB mRNA by 80% in mouse liver and attenuates the hyperlipidemic condition. In the current study, we used an adeno-associated virus vector, serotype 2 (AAV2) and a self-complementary AAV2 vector (scAAV2) to demonstrate the effect of long-term tissue-specific gene expression of RB15 on the regulation apoB mRNA in vivo. Methods We constructed a hammerhead ribozyme RB15 driven by a liver-specific transthyretin (TTR) promoter using an AAV2 vector (rAAV2-TTR-RB15). HepG2 cells and hyperlipidemic mice deficient in both the low density lipoprotein receptor and the apoB mRNA editing enzyme genes (LDLR-/-Apobec1-/-; LDb) were transduced with rAAV2-TTR-RB15 and a control vector rAAV-TTR-RB15-mutant (inactive ribozyme). The effects of ribozyme RB15 on apoB metabolism and atherosclerosis development were determined in LDb mice at 5-month after transduction. A self-complementary AAV2 vector expressing ribozyme RB15 (scAAV2-TTR-RB15) was also engineered and used to transduce HepG2 cells. Studies were designed to compare the gene expression efficiency between rAAV2-TTR-RB15 and scAAV2-TTR-RB15. Results The effect of ribozyme RB15 RNA on reducing apoB mRNA levels in HepG2 cells was observed only on day-7 after rAAV2-TTR-RB15 transduction. And, at 5-month after rAAV2-TTR-RB15 treatment, the apoB mRNA levels in LDb mice were significantly decreased by 43%, compared to LDb mice treated with control vector rAAV2-TTR-RB15-mutant. Moreover, both the rAAV2-TTR-RB15 viral DNA and ribozyme RB15 RNA were still detectable in mice livers at 5-month after treatment. However, this rAAV2-TTR-RB15 vector mediated a prolonged but low level of ribozyme RB15 gene

  18. Recombinant adeno-associated virus serotype 6 (rAAV2/6)-mediated gene transfer to nociceptive neurons through different routes of delivery

    PubMed Central

    Towne, Chris; Pertin, Marie; Beggah, Ahmed T; Aebischer, Patrick; Decosterd, Isabelle

    2009-01-01

    Background Gene transfer to nociceptive neurons of the dorsal root ganglia (DRG) is a promising approach to dissect mechanisms of pain in rodents and is a potential therapeutic strategy for the treatment of persistent pain disorders such as neuropathic pain. A number of studies have demonstrated transduction of DRG neurons using herpes simplex virus, adenovirus and more recently, adeno-associated virus (AAV). Recombinant AAV are currently the gene transfer vehicles of choice for the nervous system and have several advantages over other vectors, including stable and safe gene expression. We have explored the capacity of recombinant AAV serotype 6 (rAAV2/6) to deliver genes to DRG neurons and characterized the transduction of nociceptors through five different routes of administration in mice. Results Direct injection of rAAV2/6 expressing green fluorescent protein (eGFP) into the sciatic nerve resulted in transduction of up to 30% eGFP-positive cells of L4 DRG neurons in a dose dependant manner. More than 90% of transduced cells were small and medium sized neurons (< 700 μm2), predominantly colocalized with markers of nociceptive neurons, and had eGFP-positive central terminal fibers in the superficial lamina of the spinal cord dorsal horn. The efficiency and profile of transduction was independent of mouse genetic background. Intrathecal administration of rAAV2/6 gave the highest level of transduction (≈ 60%) and had a similar size profile and colocalization with nociceptive neurons. Intrathecal administration also transduced DRG neurons at cervical and thoracic levels and resulted in comparable levels of transduction in a mouse model for neuropathic pain. Subcutaneous and intramuscular delivery resulted in low levels of transduction in the L4 DRG. Likewise, delivery via tail vein injection resulted in relatively few eGFP-positive cells within the DRG, however, this transduction was observed at all vertebral levels and corresponded to large non-nociceptive cell

  19. Immune Responses to rAAV6: The Influence of Canine Parvovirus Vaccination and Neonatal Administration of Viral Vector

    PubMed Central

    Arnett, Andrea L. H.; Garikipati, Dilip; Wang, Zejing; Tapscott, Stephen; Chamberlain, Jeffrey S.

    2011-01-01

    Recombinant adeno-associated viral (rAAV) vectors promote long-term gene transfer in many animal species. Significant effort has focused on the evaluation of rAAV delivery and the immune response in both murine and canine models of neuromuscular disease. However, canines provided for research purposes are routinely vaccinated against canine parvovirus (CPV). rAAV and CPV possess significant homology and are both parvoviruses. Thus, any immune response generated to CPV vaccination has the potential to cross-react with rAAV vectors. In this study, we investigated the immune response to rAAV6 delivery in a cohort of CPV-vaccinated canines and evaluated multiple vaccination regimens in a mouse model of CPV-vaccination. We show that CPV-vaccination stimulates production of neutralizing antibodies with minimal cross-reactivity to rAAV6. In addition, no significant differences were observed in the magnitude of the rAAV6-directed immune response between CPV-vaccinated animals and controls. Moreover, CPV-vaccination did not inhibit rAAV6-mediated transduction. We also evaluated the immune response to early rAAV6-vaccination in neonatal mice. The influence of maternal hormones and cytokines leads to a relatively permissive state in the neonate. We hypothesized that immaturity of the immune system would permit induction of tolerance to rAAV6 when delivered during the neonatal period. Mice were vaccinated with rAAV6 at 1 or 5 days of age, and subsequently challenged with rAAV6 exposure during adulthood via two sequential IM injections, 1 month apart. All vaccinated animals generated a significant neutralizing antibody response to rAAV6-vaccination that was enhanced following IM injection in adulthood. Taken together, these data demonstrate that the immune response raised against rAAV6 is distinct from that which is elicited by the standard parvoviral vaccines and is sufficient to prevent stable tolerization in neonatal mice. PMID:22065964

  20. Use of Adeno-Associated and Herpes Simplex Viral Vectors for In Vivo Neuronal Expression in Mice

    PubMed Central

    Penrod, Rachel D.; Wells, Audrey M.; Carlezon, William A.; Cowan, Christopher W.

    2015-01-01

    Adeno-associated viruses and the herpes simplex virus are the two most widely used vectors for the in vivo expression of exogenous genes. Advances in the development of these vectors have enabled remarkable temporal and spatial control of gene expression. This unit provides methods for storing, delivering, and verifying expression of adeno-associated and herpes simplex viruses in the adult mouse brain. It also describes important considerations for experiments using in vivo expression of these viral vectors, including serotype and promoter selection, as well as timing of expression. Additional protocols are provided that describe methods for preliminary experiments to determine the appropriate conditions for in vivo delivery. PMID:26426386

  1. Use of Adeno-Associated and Herpes Simplex Viral Vectors for In Vivo Neuronal Expression in Mice.

    PubMed

    Penrod, Rachel D; Wells, Audrey M; Carlezon, William A; Cowan, Christopher W

    2015-01-01

    Adeno-associated viruses and the herpes simplex virus are the two most widely used vectors for the in vivo expression of exogenous genes. Advances in the development of these vectors have enabled remarkable temporal and spatial control of gene expression. This unit provides methods for storing, delivering, and verifying expression of adeno-associated and herpes simplex viruses in the adult mouse brain. It also describes important considerations for experiments using in vivo expression of these viral vectors, including serotype and promoter selection, as well as timing of expression. Additional protocols are provided that describe methods for preliminary experiments to determine the appropriate conditions for in vivo delivery.

  2. Adeno-Associated Viral Vector-Induced Overexpression of Neuropeptide Y Y2 Receptors in the Hippocampus Suppresses Seizures

    ERIC Educational Resources Information Center

    Woldbye, David P. D.; Angehagen, Mikael; Gotzsche, Casper R.; Elbrond-Bek, Heidi; Sorensen, Andreas T.; Christiansen, Soren H.; Olesen, Mikkel V.; Nikitidou, Litsa; Hansen, Thomas v. O.; Kanter-Schlifke, Irene; Kokaia, Merab

    2010-01-01

    Gene therapy using recombinant adeno-associated viral vectors overexpressing neuropeptide Y in the hippocampus exerts seizure-suppressant effects in rodent epilepsy models and is currently considered for clinical application in patients with intractable mesial temporal lobe epilepsy. Seizure suppression by neuropeptide Y in the hippocampus is…

  3. DNA Shuffling of Adeno-associated Virus Yields Functionally Diverse Viral Progeny

    PubMed Central

    Koerber, James T; Jang, Jae-Hyung; Schaffer, David V

    2009-01-01

    Adeno-associated virus (AAV) vectors are extremely effective gene-delivery vehicles for a broad range of applications. However, the therapeutic efficacy of these and other vectors is currently limited by barriers to safe, efficient gene delivery, including pre-existing antiviral immunity, and infection of off-target cells. Recently, we have implemented directed evolution of AAV, involving the generation of randomly mutagenized viral libraries based on serotype 2 and high-throughput selection, to engineer enhanced viral vectors. Here, we significantly extend this capability by performing high-efficiency in vitro recombination to create a large (107), diverse library of random chimeras of numerous parent AAV serotypes (AAV1, 2, 4–6, 8, and 9). In order to analyze the extent to which such highly chimeric viruses can be viable, we selected the library for efficient viral packaging and infection, and successfully recovered numerous novel chimeras. These new viruses exhibited a broad range of cell tropism both in vitro and in vivo and enhanced resistance to human intravenous immunoglobulin (IVIG), highlighting numerous functional differences between these chimeras and their parent serotypes. Thus, directed evolution can potentially yield unlimited numbers of new AAV variants with novel gene-delivery properties, and subsequent analysis of these variants can further extend basic knowledge of AAV biology. PMID:18728640

  4. Tyrosine crosslinking reveals interfacial dynamics in adeno-associated viral capsids during infection

    PubMed Central

    Horowitz, Eric D.; Finn, M.G.; Asokan, Aravind

    2012-01-01

    Viral capsid dynamics are often observed during infectious events such as cell surface attachment, entry and genome release. Structural analysis of adeno-associated virus (AAV), a helper-dependent parvovirus, revealed a cluster of surface-exposed tyrosine residues at the icosahedral two-fold symmetry axis. We exploited the latter observation to carry out selective oxidation of Tyr residues, which yielded crosslinked viral protein (VP) subunit dimers, effectively “stitching” together the AAV capsid two-fold interface. Characterization of different Tyr-to-Phe mutants confirmed that the formation of crosslinked VP dimers is mediated by dityrosine adducts and requires the Tyr704 residue, which crosses over from one neighboring VP subunit to the other. When compared to unmodified capsids, Tyr-crosslinked AAV displayed decreased transduction efficiency in cell culture. Surprisingly, further biochemical and quantitative microscopy studies revealed that restraining the two-fold interface hinders externalization of buried VP N-termini, which contain a phospholipase A2 domain and nuclear localization sequences critical for infection. These adverse effects caused by tyrosine oxidation support the notion that interfacial dynamics at the AAV capsid two-fold symmetry axis play a role in externalization of VP N-termini during infection. PMID:22458529

  5. DNA Minicircle Technology Improves Purity of Adeno-associated Viral Vector Preparations

    PubMed Central

    Schnödt, Maria; Schmeer, Marco; Kracher, Barbara; Krüsemann, Christa; Espinosa, Laura Escalona; Grünert, Anja; Fuchsluger, Thomas; Rischmüller, Anja; Schleef, Martin; Büning, Hildegard

    2016-01-01

    Adeno-associated viral (AAV) vectors are considered as one of the most promising delivery systems in human gene therapy. In addition, AAV vectors are frequently applied tools in preclinical and basic research. Despite this success, manufacturing pure AAV vector preparations remains a difficult task. While empty capsids can be removed from vector preparations owing to their lower density, state-of-the-art purification strategies as of yet failed to remove antibiotic resistance genes or other plasmid backbone sequences. Here, we report the development of minicircle (MC) constructs to replace AAV vector and helper plasmids for production of both, single-stranded (ss) and self-complementary (sc) AAV vectors. As bacterial backbone sequences are removed during MC production, encapsidation of prokaryotic plasmid backbone sequences is avoided. This is of particular importance for scAAV vector preparations, which contained an unproportionally high amount of plasmid backbone sequences (up to 26.1% versus up to 2.9% (ssAAV)). Replacing standard packaging plasmids by MC constructs not only allowed to reduce these contaminations below quantification limit, but in addition improved transduction efficiencies of scAAV preparations up to 30-fold. Thus, MC technology offers an easy to implement modification of standard AAV packaging protocols that significantly improves the quality of AAV vector preparations.

  6. Rapid, Simple, and Versatile Manufacturing of Recombinant Adeno-Associated Viral Vectors at Scale

    PubMed Central

    Lock, Martin; Alvira, Mauricio; Vandenberghe, Luk H.; Samanta, Arabinda; Toelen, Jaan; Debyser, Zeger

    2010-01-01

    Abstract Adeno-associated viral (AAV) manufacturing at scale continues to hinder the application of AAV technology to gene therapy studies. Although scalable systems based on AAV–adenovirus, AAV–herpesvirus, and AAV–baculovirus hybrids hold promise for clinical applications, they require time-consuming generation of reagents and are not highly suited to intermediate-scale preclinical studies in large animals, in which several combinations of serotype and genome may need to be tested. We observed that during production of many AAV serotypes, large amounts of vector are found in the culture supernatant, a relatively pure source of vector in comparison with cell-derived material. Here we describe a high-yielding, recombinant AAV production process based on polyethylenimine (PEI)-mediated transfection of HEK293 cells and iodixanol gradient centrifugation of concentrated culture supernatant. The entire process can be completed in 1 week and the steps involved are universal for a number of different AAV serotypes. Process conditions have been optimized such that final purified yields are routinely greater than 1 × 1014 genome copies per run, with capsid protein purity exceeding 90%. Initial experiments with vectors produced by the new process demonstrate equivalent or better transduction both in vitro and in vivo when compared with small-scale, CsCl gradient-purified vectors. In addition, the iodixanol gradient purification process described effectively separates infectious particles from empty capsids, a desirable property for reducing toxicity and unwanted immune responses during preclinical studies. PMID:20497038

  7. Native molecular state of adeno-associated viral vectors revealed by single-molecule sequencing.

    PubMed

    Kapranov, Philipp; Chen, Lingxia; Dederich, Debra; Dong, Biao; He, Jie; Steinmann, Kathleen E; Moore, Andrea R; Thompson, John F; Milos, Patrice M; Xiao, Weidong

    2012-01-01

    The single-stranded genome of adeno-associated viral (AAV) vectors is one of the key factors leading to slow-rising but long-term transgene expression kinetics. Previous molecular studies have established what is now considered a textbook molecular model of AAV genomes with two copies of inverted tandem repeats at either end. In this study, we profiled hundreds of thousands of individual molecules of AAV vector DNA directly isolated from capsids, using single-molecule sequencing (SMS), which avoids any intermediary steps such as plasmid cloning. The sequence profile at 3' ends of both the regular and oversized vector did show the presence of an inverted terminal repeat (ITR), which provided direct confirmation that AAV vector packaging initiates from its 3' end. Furthermore, the vector 5'-terminus profile showed inconsistent termination for oversized vectors. Such incomplete vectors would not be expected to undergo canonical synthesis of the second strand of their genomic DNA and thus could function only via annealing of complementary strands of DNA. Furthermore, low levels of contaminating plasmid DNA were also detected. SMS may become a valuable tool during the development phase of vectors that are candidates for clinical use and for facilitating/accelerating studies on vector biology. PMID:21875357

  8. [Novel qPCR strategy for quantification of recombinant adeno-associated virus serotype 2 vector genome-titer].

    PubMed

    Meng, Qinglin; Zhang, Binbin; Zhang, Chun

    2013-02-01

    Adeno-associated virus (AAV) has many advantages for gene therapy over other vector systems. However, after the production of recombinant AAV (Raav) vectors, the biological titration of rAAV stocks is still cumbersome. Different investigators used laboratory-specific methods or internal reference standards that may limit preclinical and clinical applications. The inverted terminal repeats (ITR) sequences are the only cis-regulated viral elements required for rAAV packaging and remain within viral vector genomes. ITR is the excellent target sequences for qPCR quantification of rAAV titer. In this study, we developed a novel qPCR strategy to quantify rAAVs' vector genome titer via targeting the ITR2 or ITR2-CMV element. In conclusion, the method is fast and accurate for the titration of rAAV2-derived vector genomes. It will promote the standardization of rAAV titration in the future.

  9. Successful disabling of the 5' UTR of HCV using adeno-associated viral vectors to deliver modular multimeric primary microRNA mimics.

    PubMed

    Bourhill, Tarryn; Arbuthnot, Patrick; Ely, Abdullah

    2016-09-01

    Chronic hepatitis C virus (HCV) infection is a major health concern and is strongly associated with cirrhosis, hepatocellular carcinoma and liver-related mortality. The HCV genome is the template for both protein translation and viral replication and, being RNA, is amenable to direct genetic silencing by RNA interference (RNAi). HCV is a highly mutable virus and is capable of escaping RNAi-mediated silencing. This has highlighted the importance of developing RNAi-based therapy that simultaneously targets multiple regions of the HCV genome. To develop a multi-targeting RNAi activator, a novel approach for the generation of anti-HCV gene therapy was investigated. Five artificial primary miRNA (pri-miR) were each designed to mimic the naturally occurring monomeric pri-miR-31. Potent knockdown of an HCV reporter was seen with four of the five constructs and were processed according to the intended design. The design of the individual pri-miR mimics enabled the modular assembly into multimeric mimics of any possible conformation. Consequently the four potent pri-miR mimics were used to generate polycistronic cassettes, which showed impressive silencing of an HCV target. To further their application as a gene therapy, recombinant adeno-associated viral (rAAV) vectors that express the polycistronic pri-miR mimics were generated. All AAV-delivered anti-HCV pri-miR mimics significantly knocked down the expression of an HCV target and showed inhibition of HCV replicon replication. Here we describe a protocol for the generation of therapeutic rAAVs that express modular polycistronic pri-miR cassettes allowing for rapid alteration and generation of tailored therapeutic constructs against HCV. PMID:27181212

  10. Successful disabling of the 5' UTR of HCV using adeno-associated viral vectors to deliver modular multimeric primary microRNA mimics.

    PubMed

    Bourhill, Tarryn; Arbuthnot, Patrick; Ely, Abdullah

    2016-09-01

    Chronic hepatitis C virus (HCV) infection is a major health concern and is strongly associated with cirrhosis, hepatocellular carcinoma and liver-related mortality. The HCV genome is the template for both protein translation and viral replication and, being RNA, is amenable to direct genetic silencing by RNA interference (RNAi). HCV is a highly mutable virus and is capable of escaping RNAi-mediated silencing. This has highlighted the importance of developing RNAi-based therapy that simultaneously targets multiple regions of the HCV genome. To develop a multi-targeting RNAi activator, a novel approach for the generation of anti-HCV gene therapy was investigated. Five artificial primary miRNA (pri-miR) were each designed to mimic the naturally occurring monomeric pri-miR-31. Potent knockdown of an HCV reporter was seen with four of the five constructs and were processed according to the intended design. The design of the individual pri-miR mimics enabled the modular assembly into multimeric mimics of any possible conformation. Consequently the four potent pri-miR mimics were used to generate polycistronic cassettes, which showed impressive silencing of an HCV target. To further their application as a gene therapy, recombinant adeno-associated viral (rAAV) vectors that express the polycistronic pri-miR mimics were generated. All AAV-delivered anti-HCV pri-miR mimics significantly knocked down the expression of an HCV target and showed inhibition of HCV replicon replication. Here we describe a protocol for the generation of therapeutic rAAVs that express modular polycistronic pri-miR cassettes allowing for rapid alteration and generation of tailored therapeutic constructs against HCV.

  11. Adeno-Associated Viral-Mediated Catalase Expression Suppresses Optic Neuritis in Experimental Allergic Encephalomyelitis

    NASA Astrophysics Data System (ADS)

    Guy, John; Qi, Xiaoping; Hauswirth, William W.

    1998-11-01

    Suppression of oxidative injury by viral-mediated transfer of the human catalase gene was tested in the optic nerves of animals with experimental allergic encephalomyelitis (EAE). EAE is an inflammatory autoimmune disorder of primary central nervous system demyelination that has been frequently used as an animal model for the human disease multiple sclerosis (MS). The optic nerve is a frequent site of involvement common to both EAE and MS. Recombinant adeno-associated virus containing the human gene for catalase was injected over the right optic nerve heads of SJL/J mice that were simultaneously sensitized for EAE. After 1 month, cell-specific catalase activity, evaluated by quantitation of catalase immunogold, was increased approximately 2-fold each in endothelia, oligodendroglia, astrocytes, and axons of the optic nerve. Effects of catalase on the histologic lesions of EAE were measured by computerized analysis of the myelin sheath area (for demyelination), optic disc area (for optic nerve head swelling), extent of the cellular infiltrate, extravasated serum albumin labeled by immunogold (for blood-brain barrier disruption), and in vivo H2O2 reaction product. Relative to control, contralateral optic nerves injected with the recombinant virus without a therapeutic gene, catalase gene inoculation reduced demyelination by 38%, optic nerve head swelling by 29%, cellular infiltration by 34%, disruption of the blood-brain barrier by 64%, and in vivo levels of H2O2 by 61%. Because the efficacy of potential treatments for MS are usually initially tested in the EAE animal model, this study suggests that catalase gene delivery by using viral vectors may be a therapeutic strategy for suppression of MS.

  12. Analysis of the production efficiency and titration of various recombinant adeno-associated viruses.

    PubMed

    Nam, Young Ran; Kim, Sung Jin; Lee, Boyoung; Chang, Jin Woo; Joo, Chul-Hyen; Kim, Yoo Kyum; Lee, Heuiran

    2004-10-01

    Recombinant adeno-associated virus type 2 (rAAV2) viral vector, a non-pathogenic human parvovirus, has recently emerged as a gene transfer vehicle for cancer gene therapy. To utilize rAAV2 properly and safely while carrying out preclinical and clinical studies, it is crucial to exactly titer the virus. We therefore compared biological infectious rAAV2 titers with physical titers of rAAV2 vectors encoding various transgenes with different sized viral genomes. Biological rAAV2 infectivity was assayed by measuring the number of virus particles able to transduce Hela cells using several detection methods, including X-gal staining and immunocytostaining. Physical titers of rAAV2 were determined using a commercially available rAAV2 particle-specific enzyme-linked immunosorbent assay. We found that total rAAV2 particle production was consistent within the limited size variations of the rAAV2 genome, regardless of the difference in transgenes. In contrast, the infectious titer of rAAV2 differed greatly, even for the same viruses, due to variation in the sensitivity of the relevant assays. Thus, the results suggest that both infectious virus titer and total virus particle should be precisely measured for rAAV2 vector utilized in each study.

  13. In utero lung gene transfer using adeno-associated viral and lentiviral vectors in mice.

    PubMed

    Joyeux, Luc; Danzer, Enrico; Limberis, Maria P; Zoltick, Philip W; Radu, Antoneta; Flake, Alan W; Davey, Marcus G

    2014-06-01

    Virus-mediated gene transfer to the fetal lung epithelium holds considerable promise for the therapeutic management of prenatally diagnosed, potentially life-threatening inherited lung diseases. In this study we hypothesized that efficient and life-long lung transduction can be achieved by in utero gene therapy, using viral vectors. To facilitate diffuse entry into the lung, viral vector was injected into the amniotic sac of C57BL/6 mice on embryonic day 16 (term, ∼ 20 days) in a volume of 10 μl. Vectors investigated included those based on adeno-associated virus (AAV) (serotypes 5, 6.2, 9, rh.64R1) and vesicular stomatitis virus G glycoprotein (VSV-G)-pseudotyped HIV-1-based lentivirus (LV). All vectors expressed green fluorescent protein (GFP) under the transcriptional control of various promoters including chicken β-actin (CB) or cytomegalovirus (CMV) for AAV and CMV or MND (myeloproliferative sarcoma virus enhancer, negative control region deleted) for LV. Pulmonary GFP gene expression was detected by fluorescence stereoscopic microscopy and immunohistochemistry for up to 9 months after birth. At equivalent vector doses (mean, 12 × 10(10) genome copies per fetus) three AAV vectors resulted in long-term (up to 9 months) pulmonary epithelium transduction. AAV2/6.2 transduced predominantly cells of the conducting airway epithelium, although transduction decreased 2 months after vector delivery. AAV2/9-transduced cells of the alveolar epithelium with a type 1 pneumocyte phenotype for up to 6 months. Although minimal levels of GFP expression were observed with AAV2/5 up to 9 months, the transduced cells immunostained positive for F480 and were retrievable by bronchoalveolar lavage, confirming an alveolar macrophage phenotype. No GFP expression was observed in lung epithelial cells after AAV2/rh.64R1 and VSV-G-LV vector-mediated gene transfer. We conclude that these experiments demonstrate that prenatal lung gene transfer with AAV vectors engineered to target

  14. Laser Photocoagulation Induces Transduction of Retinal Pigment Epithelial Cells by Intravitreally Administered Adeno-Associated Viral Vectors.

    PubMed

    Lee, Si Hyung; Kong, Yoon Jin; Lyu, Jungmook; Lee, Heuiran; Park, Keerang; Park, Tae Kwann

    2015-10-01

    Retinal transduction by intravitreally administered adeno-associated viral (AAV) vector is previously known to be extremely limited to the neural retina except AAV2 capsid type. Recently, we showed that prior laser photocoagulation enhances retinal transduction of intravitreally administered AAV vectors, including the outer retina and retinal pigment epithelium (RPE). Here, by performing short-pulse laser pretreatment on the mouse retina, we demonstrate RPE cells transduced by three different capsid types of AAV vectors, AAV2, AAV5, and AAV8, using RPE wholemounts. For all capsid types, laser pretreatment effectively induced the transduction of RPE cells in and around the laser site.

  15. Genetic Manipulation of Brown Fat Via Oral Administration of an Engineered Recombinant Adeno-associated Viral Serotype Vector.

    PubMed

    Huang, Wei; McMurphy, Travis; Liu, Xianglan; Wang, Chuansong; Cao, Lei

    2016-06-01

    Recombinant adeno-associated virus (rAAV) vectors are attractive vehicles for gene therapy. Gene delivery to the adipose tissue using naturally occurring AAV serotypes is less successful compared to liver and muscle. Here, we demonstrate that oral administration of an engineered serotype Rec2 led to preferential transduction of brown fat with absence of transduction in the gastrointestinal track. Among the six natural and engineered serotypes being compared, Rec2 was the most efficient serotype achieving high level transduction at a dose 1~2 orders lower than reported doses for systemic administration. Overexpressing vascular endothelial growth factor (VEGF) in brown fat via oral administration of Rec2-VEGF vector increased the brown fat mass and enhanced thermogenesis. In contrast, knockdown VEGF in brown fat of VEGF (loxP) mice via Rec2-Cre vector hampered cold response and decreased brown fat mass. Oral administration of Rec2 vector provides a novel tool to genetically manipulate brown fat for research and therapeutic applications. PMID:26857843

  16. Mitochondria-Targeted Antiaging Gene Therapy with Adeno-associated Viral Vectors

    PubMed Central

    Li, Dejia; Duan, Dongsheng

    2015-01-01

    Transgenic expression of catalase in mitochondria using a transgenic strategy extends life span and prevents aging-related pathology in mice. However, transgenic overexpression is not suitable for a clinical application. Adeno-associated virus (AAV) is the most promising gene delivery vehicle. Here we outline strategies on the generation of an AAV vector expressing the mitochondria-targeted catalase gene (AV.RSV.MCAT). We also describe methods for evaluating physiological impact of AV.RSV.MCAT on muscle contractility and running performance in mice. PMID:23929105

  17. Germline viral "fossils" guide in silico reconstruction of a mid-Cenozoic era marsupial adeno-associated virus.

    PubMed

    Smith, Richard H; Hallwirth, Claus V; Westerman, Michael; Hetherington, Nicola A; Tseng, Yu-Shan; Cecchini, Sylvain; Virag, Tamas; Ziegler, Mona-Larissa; Rogozin, Igor B; Koonin, Eugene V; Agbandje-McKenna, Mavis; Kotin, Robert M; Alexander, Ian E

    2016-01-01

    Germline endogenous viral elements (EVEs) genetically preserve viral nucleotide sequences useful to the study of viral evolution, gene mutation, and the phylogenetic relationships among host organisms. Here, we describe a lineage-specific, adeno-associated virus (AAV)-derived endogenous viral element (mAAV-EVE1) found within the germline of numerous closely related marsupial species. Molecular screening of a marsupial DNA panel indicated that mAAV-EVE1 occurs specifically within the marsupial suborder Macropodiformes (present-day kangaroos, wallabies, and related macropodoids), to the exclusion of other Diprotodontian lineages. Orthologous mAAV-EVE1 locus sequences from sixteen macropodoid species, representing a speciation history spanning an estimated 30 million years, facilitated compilation of an inferred ancestral sequence that recapitulates the genome of an ancient marsupial AAV that circulated among Australian metatherian fauna sometime during the late Eocene to early Oligocene. In silico gene reconstruction and molecular modelling indicate remarkable conservation of viral structure over a geologic timescale. Characterisation of AAV-EVE loci among disparate species affords insight into AAV evolution and, in the case of macropodoid species, may offer an additional genetic basis for assignment of phylogenetic relationships among the Macropodoidea. From an applied perspective, the identified AAV "fossils" provide novel capsid sequences for use in translational research and clinical applications. PMID:27377618

  18. Germline viral "fossils" guide in silico reconstruction of a mid-Cenozoic era marsupial adeno-associated virus.

    PubMed

    Smith, Richard H; Hallwirth, Claus V; Westerman, Michael; Hetherington, Nicola A; Tseng, Yu-Shan; Cecchini, Sylvain; Virag, Tamas; Ziegler, Mona-Larissa; Rogozin, Igor B; Koonin, Eugene V; Agbandje-McKenna, Mavis; Kotin, Robert M; Alexander, Ian E

    2016-07-05

    Germline endogenous viral elements (EVEs) genetically preserve viral nucleotide sequences useful to the study of viral evolution, gene mutation, and the phylogenetic relationships among host organisms. Here, we describe a lineage-specific, adeno-associated virus (AAV)-derived endogenous viral element (mAAV-EVE1) found within the germline of numerous closely related marsupial species. Molecular screening of a marsupial DNA panel indicated that mAAV-EVE1 occurs specifically within the marsupial suborder Macropodiformes (present-day kangaroos, wallabies, and related macropodoids), to the exclusion of other Diprotodontian lineages. Orthologous mAAV-EVE1 locus sequences from sixteen macropodoid species, representing a speciation history spanning an estimated 30 million years, facilitated compilation of an inferred ancestral sequence that recapitulates the genome of an ancient marsupial AAV that circulated among Australian metatherian fauna sometime during the late Eocene to early Oligocene. In silico gene reconstruction and molecular modelling indicate remarkable conservation of viral structure over a geologic timescale. Characterisation of AAV-EVE loci among disparate species affords insight into AAV evolution and, in the case of macropodoid species, may offer an additional genetic basis for assignment of phylogenetic relationships among the Macropodoidea. From an applied perspective, the identified AAV "fossils" provide novel capsid sequences for use in translational research and clinical applications.

  19. Germline viral “fossils” guide in silico reconstruction of a mid-Cenozoic era marsupial adeno-associated virus

    PubMed Central

    Smith, Richard H.; Hallwirth, Claus V.; Westerman, Michael; Hetherington, Nicola A.; Tseng, Yu-Shan; Cecchini, Sylvain; Virag, Tamas; Ziegler, Mona-Larissa; Rogozin, Igor B.; Koonin, Eugene V.; Agbandje-McKenna, Mavis; Kotin, Robert M.; Alexander, Ian E.

    2016-01-01

    Germline endogenous viral elements (EVEs) genetically preserve viral nucleotide sequences useful to the study of viral evolution, gene mutation, and the phylogenetic relationships among host organisms. Here, we describe a lineage-specific, adeno-associated virus (AAV)-derived endogenous viral element (mAAV-EVE1) found within the germline of numerous closely related marsupial species. Molecular screening of a marsupial DNA panel indicated that mAAV-EVE1 occurs specifically within the marsupial suborder Macropodiformes (present-day kangaroos, wallabies, and related macropodoids), to the exclusion of other Diprotodontian lineages. Orthologous mAAV-EVE1 locus sequences from sixteen macropodoid species, representing a speciation history spanning an estimated 30 million years, facilitated compilation of an inferred ancestral sequence that recapitulates the genome of an ancient marsupial AAV that circulated among Australian metatherian fauna sometime during the late Eocene to early Oligocene. In silico gene reconstruction and molecular modelling indicate remarkable conservation of viral structure over a geologic timescale. Characterisation of AAV-EVE loci among disparate species affords insight into AAV evolution and, in the case of macropodoid species, may offer an additional genetic basis for assignment of phylogenetic relationships among the Macropodoidea. From an applied perspective, the identified AAV “fossils” provide novel capsid sequences for use in translational research and clinical applications. PMID:27377618

  20. CRISPR/Cas9-mediated genome engineering: an adeno-associated viral (AAV) vector toolbox.

    PubMed

    Senís, Elena; Fatouros, Chronis; Große, Stefanie; Wiedtke, Ellen; Niopek, Dominik; Mueller, Ann-Kristin; Börner, Kathleen; Grimm, Dirk

    2014-11-01

    Its remarkable ease and efficiency make the CRISPR (clustered regularly interspaced short palindromic repeats) DNA editing machinery highly attractive as a new tool for experimental gene annotation and therapeutic genome engineering in eukaryotes. Here, we report a versatile set of plasmids and vectors derived from adeno-associated virus (AAV) that allow robust and specific delivery of the two essential CRISPR components - Cas9 and chimeric g(uide)RNA - either alone or in combination. All our constructs share a modular design that enables simple and stringent guide RNA (gRNA) cloning as well as rapid exchange of promoters driving Cas9 or gRNA. Packaging into potent synthetic AAV capsids permits CRISPR delivery even into hard-to-transfect targets, as shown for human T-cells. Moreover, we demonstrate the feasibility to direct Cas9 expression to or away from hepatocytes, using a liver-specific promoter or a hepatic miRNA binding site, respectively. We also report a streamlined and economical protocol for detection of CRISPR-induced mutations in less than 3 h. Finally, we provide original evidence that AAV/CRISPR vectors can be exploited for gene engineering in vivo, as exemplified in the liver of adult mice. Our new tools and protocols should foster the broad application of CRISPR technology in eukaryotic cells and organisms, and accelerate its clinical translation into humans. PMID:25186301

  1. Gene therapy for choroideremia using an adeno-associated viral (AAV) vector.

    PubMed

    Barnard, Alun R; Groppe, Markus; MacLaren, Robert E

    2014-10-30

    Choroideremia is an outer retinal degeneration with a characteristic clinical appearance that was first described in the nineteenth century. The disorder begins with reduction of night vision and gradually progresses to blindness by middle age. The appearance of the fundus in sufferers is recognizable by the characteristic pale color caused by the loss of the outer retina, retinal-pigmented epithelium, and choroidal vessels, leading to exposure of the underlying sclera. Choroideremia shows X-linked recessive inheritance and the choroideremia gene (CHM) was one of the first to be identified by positional cloning in 1990. Subsequent identification and characterization of the CHM gene, which encodes Rab escort protein 1 (REP1), has led to better comprehension of the disease and enabled advances in genetic diagnosis. Despite several decades of work to understand the exact pathogenesis, no established treatments currently exist to stop or even slow the progression of retinal degeneration in choroideremia. Encouragingly, several specific molecular and clinical features make choroideremia an ideal candidate for treatment with gene therapy. This work describes the considerations and challenges in the development of a new clinical trial using adeno-associated virus (AAV) encoding the CHM gene.

  2. Adeno Associated Viral Vector Delivered RNAi for Gene Therapy of SOD1 Amyotrophic Lateral Sclerosis

    PubMed Central

    Stoica, Lorelei; Sena-Esteves, Miguel

    2016-01-01

    Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease caused by progressive loss of upper and lower motor neurons. Mutations in superoxide dismutase 1 (SOD1) are a leading cause of ALS, responsible for up to 20% of familial cases. Although the exact mechanism by which mutant SOD1 causes disease remains unknown, multiple studies have shown that reduction of the mutant species leads to delayed disease onset and extension of lifespan of animal models. This makes SOD1 an ideal target for gene therapy coupling adeno associated virus vector (AAV) gene delivery with RNAi molecules. In this review we summarize the studies done thus far attempting to decrease SOD1 gene expression, using AAV vectors as delivery tools, and RNAi as therapeutic molecules. Current hurdles to be overcome, such as the need for widespread gene delivery through the entire central nervous system (CNS), are discussed. Continued efforts to improve current AAV delivery methods and capsids will accelerate the application of these therapeutics to the clinic. PMID:27531973

  3. Adeno Associated Viral Vector Delivered RNAi for Gene Therapy of SOD1 Amyotrophic Lateral Sclerosis.

    PubMed

    Stoica, Lorelei; Sena-Esteves, Miguel

    2016-01-01

    Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease caused by progressive loss of upper and lower motor neurons. Mutations in superoxide dismutase 1 (SOD1) are a leading cause of ALS, responsible for up to 20% of familial cases. Although the exact mechanism by which mutant SOD1 causes disease remains unknown, multiple studies have shown that reduction of the mutant species leads to delayed disease onset and extension of lifespan of animal models. This makes SOD1 an ideal target for gene therapy coupling adeno associated virus vector (AAV) gene delivery with RNAi molecules. In this review we summarize the studies done thus far attempting to decrease SOD1 gene expression, using AAV vectors as delivery tools, and RNAi as therapeutic molecules. Current hurdles to be overcome, such as the need for widespread gene delivery through the entire central nervous system (CNS), are discussed. Continued efforts to improve current AAV delivery methods and capsids will accelerate the application of these therapeutics to the clinic. PMID:27531973

  4. Gene therapy for choroideremia using an adeno-associated viral (AAV) vector.

    PubMed

    Barnard, Alun R; Groppe, Markus; MacLaren, Robert E

    2015-03-01

    Choroideremia is an outer retinal degeneration with a characteristic clinical appearance that was first described in the nineteenth century. The disorder begins with reduction of night vision and gradually progresses to blindness by middle age. The appearance of the fundus in sufferers is recognizable by the characteristic pale color caused by the loss of the outer retina, retinal-pigmented epithelium, and choroidal vessels, leading to exposure of the underlying sclera. Choroideremia shows X-linked recessive inheritance and the choroideremia gene (CHM) was one of the first to be identified by positional cloning in 1990. Subsequent identification and characterization of the CHM gene, which encodes Rab escort protein 1 (REP1), has led to better comprehension of the disease and enabled advances in genetic diagnosis. Despite several decades of work to understand the exact pathogenesis, no established treatments currently exist to stop or even slow the progression of retinal degeneration in choroideremia. Encouragingly, several specific molecular and clinical features make choroideremia an ideal candidate for treatment with gene therapy. This work describes the considerations and challenges in the development of a new clinical trial using adeno-associated virus (AAV) encoding the CHM gene. PMID:25359548

  5. Copackaging of multiple adeno-associated viral vectors in a single production step.

    PubMed

    Doerfler, Phillip A; Byrne, Barry J; Clément, Nathalie

    2014-10-01

    Limiting factors in large preclinical and clinical studies utilizing adeno-associated virus (AAV) for gene therapy are focused on the restrictive packaging capacity, the overall yields, and the versatility of the production methods for single AAV vector production. Furthermore, applications where multiple vectors are needed to provide long expression cassettes, whether because of long cDNA sequences or the need of different regulatory elements, require that each vector be packaged and characterized separately, directly affecting labor and cost associated with such manufacturing strategies. To overcome these limitations, we propose a novel method of vector production that allows for the packaging of multiple expression cassettes in a single transfection step. Here we combined two expression cassettes in predetermined ratios before transfection and empirically demonstrate that the output vector recapitulates the predicted ratios. Titration by quantitative polymerase chain reaction of AAV vector genome copies using shared or unique genetic elements allowed for delineation of the individual vector contribution to the total preparation that showed the predicted differential packaging outcomes. By copackaging green fluorescent protein (GFP) and mCherry constructs, we demonstrate that both vector genome and infectious titers reiterated the ratios utilized to produce the constructs by transfection. Copackaged therapeutic constructs that only differ in transcriptional elements produced a heterogeneous vector population of both constructs in the predefined ratios. This study shows feasibility and reproducibility of a method that allows for two constructs, differing in either transgene or transcription elements, to be efficiently copackaged and characterized simultaneously, reducing cost of manufacturing and release testing.

  6. CRISPR/Cas9-mediated genome engineering: an adeno-associated viral (AAV) vector toolbox.

    PubMed

    Senís, Elena; Fatouros, Chronis; Große, Stefanie; Wiedtke, Ellen; Niopek, Dominik; Mueller, Ann-Kristin; Börner, Kathleen; Grimm, Dirk

    2014-11-01

    Its remarkable ease and efficiency make the CRISPR (clustered regularly interspaced short palindromic repeats) DNA editing machinery highly attractive as a new tool for experimental gene annotation and therapeutic genome engineering in eukaryotes. Here, we report a versatile set of plasmids and vectors derived from adeno-associated virus (AAV) that allow robust and specific delivery of the two essential CRISPR components - Cas9 and chimeric g(uide)RNA - either alone or in combination. All our constructs share a modular design that enables simple and stringent guide RNA (gRNA) cloning as well as rapid exchange of promoters driving Cas9 or gRNA. Packaging into potent synthetic AAV capsids permits CRISPR delivery even into hard-to-transfect targets, as shown for human T-cells. Moreover, we demonstrate the feasibility to direct Cas9 expression to or away from hepatocytes, using a liver-specific promoter or a hepatic miRNA binding site, respectively. We also report a streamlined and economical protocol for detection of CRISPR-induced mutations in less than 3 h. Finally, we provide original evidence that AAV/CRISPR vectors can be exploited for gene engineering in vivo, as exemplified in the liver of adult mice. Our new tools and protocols should foster the broad application of CRISPR technology in eukaryotic cells and organisms, and accelerate its clinical translation into humans.

  7. Highly Efficient Delivery of Adeno-Associated Viral Vectors to the Primate Retina.

    PubMed

    Boye, Shannon E; Alexander, John J; Witherspoon, C Douglas; Boye, Sanford L; Peterson, James J; Clark, Mark E; Sandefer, Kristen J; Girkin, Chris A; Hauswirth, William W; Gamlin, Paul D

    2016-08-01

    Adeno-associated virus (AAV) has emerged as the preferred vector for targeting gene expression to the retina. Subretinally injected AAV can efficiently transduce retinal pigment epithelium and photoreceptors in primate retina. Inner and middle primate retina can be transduced by intravitreally delivered AAV, but with low efficiency. This is due to dilution of vector, potential neutralization of capsid because it is not confined to the immune-privileged retinal compartment, and the presence of the inner limiting membrane (ILM), a barrier separating the vitreous from the neural retina. We here describe a novel "subILM" injection method that addresses all three issues. Specifically, vector is placed in a surgically induced, hydrodissected space between the ILM and neural retina. In an initial experiment, we injected viscoelastic (Healon(®)), a substance we confirmed was biocompatible with AAV, to create a subILM bleb and subsequently injected AAV2-GFP into the bleb after irrigation with basic salt solution. For later experiments, we used a Healon-AAV mixture to place single, subILM injections. In all cases, subILM delivery of AAV was well tolerated-no inflammation or gross structural changes were observed by ophthalmological examination or optical coherence tomography. In-life fluorescence imaging revealed profound transgene expression within the area of the subILM injection bleb that persisted for the study duration. Uniform and extensive transduction of retinal ganglion cells (RGCs) was achieved in the areas beneath the subILM bleb. Transduction of Müller glia, ON bipolar cells, and photoreceptors was also observed. Robust central labeling from green fluorescent protein-expressing RGCs confirmed their continued survival, and was observed in the lateral geniculate nucleus, the superior colliculus, and the pretectum. Our results confirm that the ILM is a major barrier to transduction by AAV in primate retina and that, when it is circumvented, the efficiency and

  8. Efficient transduction of vascular endothelial cells with recombinant adeno-associated virus serotype 1 and 5 vectors.

    PubMed

    Chen, Sifeng; Kapturczak, Matthias; Loiler, Scott A; Zolotukhin, Sergei; Glushakova, Olena Y; Madsen, Kirsten M; Samulski, Richard J; Hauswirth, William W; Campbell-Thompson, Martha; Berns, Kenneth I; Flotte, Terence R; Atkinson, Mark A; Tisher, C Craig; Agarwal, Anupam

    2005-02-01

    Recombinant adeno-associated virus (rAAV) has become an attractive tool for gene therapy because of its ability to transduce both dividing and nondividing cells, elicit a limited immune response, and the capacity for imparting long-term transgene expression. Previous studies have utilized rAAV serotype 2 predominantly and found that transduction of vascular cells is relatively inefficient. The purpose of the present study was to evaluate the transduction efficiency of rAAV serotypes 1 through 5 in human and rat aortic endothelial cells (HAEC and RAEC). rAAV vectors with AAV2 inverted terminal repeats containing the human alpha1-antitrypsin (hAAT) gene were transcapsidated using helper plasmids to provide viral capsids for the AAV1 through 5 serotypes. True type rAAV2 and 5 vectors encoding beta-galactosidase or green fluorescence protein were also studied. Infection with rAAV1 resulted in the most efficient transduction in both HAEC and RAEC compared to other serotypes (p < 0.001) at 7 days posttransduction. Interestingly, expression was increased in cells transduced with rAAV5 to levels surpassing rAAV1 by day 14 and 21. Transduction with rAAV1 was completely inhibited by removal of sialic acid with sialidase, while heparin had no effect. These studies are the first demonstration that sialic acid residues are required for rAAV1 transduction in endothelial cells. Transduction of rat aortic segments ex vivo and in vivo demonstrated significant transgene expression in endothelial and smooth muscle cells with rAAV1 and 5 serotype vectors, in comparison to rAAV2. These results suggest the unique potential of rAAV1 and rAAV5-based vectors for vascular-targeted gene-based therapeutic strategies.

  9. Novel Adeno-Associated Viral Vector Delivering the Utrophin Gene Regulator Jazz Counteracts Dystrophic Pathology in mdx Mice

    PubMed Central

    Strimpakos, Georgios; Corbi, Nicoletta; Pisani, Cinzia; Di Certo, Maria Grazia; Onori, Annalisa; Luvisetto, Siro; Severini, Cinzia; Gabanella, Francesca; Monaco, Lucia; Mattei, Elisabetta; Passananti, Claudio

    2014-01-01

    Over-expression of the dystrophin-related gene utrophin represents a promising therapeutic strategy for Duchenne muscular dystrophy (DMD). The strategy is based on the ability of utrophin to functionally replace defective dystrophin. We developed the artificial zinc finger transcription factor “Jazz” that up-regulates both the human and mouse utrophin promoter. We observed a significant recovery of muscle strength in dystrophic Jazz-transgenic mdx mice. Here we demonstrate the efficacy of an experimental gene therapy based on the systemic delivery of Jazz gene in mdx mice by adeno-associated virus (AAV). AAV serotype 8 was chosen on the basis of its high affinity for skeletal muscle. Muscle-specific expression of the therapeutic Jazz gene was enhanced by adding the muscle α-actin promoter to the AAV vector (mAAV). Injection of mAAV8-Jazz viral preparations into mdx mice resulted in muscle-specific Jazz expression coupled with up-regulation of the utrophin gene. We show a significant recovery from the dystrophic phenotype in mAAV8-Jazz-treated mdx mice. Histological and physiological analysis revealed a reduction of fiber necrosis and inflammatory cell infiltration associated with functional recovery in muscle contractile force. The combination of ZF-ATF technology with the AAV delivery can open a new avenue to obtain a therapeutic strategy for treatment of DMD. J. Cell. Physiol. 229: 1283–1291, 2014. © 2014 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc. PMID:24469912

  10. In vivo adeno-associated viral vector-mediated genetic engineering of white and brown adipose tissue in adult mice.

    PubMed

    Jimenez, Veronica; Muñoz, Sergio; Casana, Estefania; Mallol, Cristina; Elias, Ivet; Jambrina, Claudia; Ribera, Albert; Ferre, Tura; Franckhauser, Sylvie; Bosch, Fatima

    2013-12-01

    Adipose tissue is pivotal in the regulation of energy homeostasis through the balance of energy storage and expenditure and as an endocrine organ. An inadequate mass and/or alterations in the metabolic and endocrine functions of adipose tissue underlie the development of obesity, insulin resistance, and type 2 diabetes. To fully understand the metabolic and molecular mechanism(s) involved in adipose dysfunction, in vivo genetic modification of adipocytes holds great potential. Here, we demonstrate that adeno-associated viral (AAV) vectors, especially serotypes 8 and 9, mediated efficient transduction of white (WAT) and brown adipose tissue (BAT) in adult lean and obese diabetic mice. The use of short versions of the adipocyte protein 2 or uncoupling protein-1 promoters or micro-RNA target sequences enabled highly specific, long-term AAV-mediated transgene expression in white or brown adipocytes. As proof of concept, delivery of AAV vectors encoding for hexokinase or vascular endothelial growth factor to WAT or BAT resulted in increased glucose uptake or increased vessel density in targeted depots. This method of gene transfer also enabled the secretion of stable high levels of the alkaline phosphatase marker protein into the bloodstream by transduced WAT. Therefore, AAV-mediated genetic engineering of adipose tissue represents a useful tool for the study of adipose pathophysiology and, likely, for the future development of new therapeutic strategies for obesity and diabetes. PMID:24043756

  11. Treatment of multifocal breast cancer by systemic delivery of dual-targeted adeno-associated viral vectors.

    PubMed

    Trepel, M; Körbelin, J; Spies, E; Heckmann, M B; Hunger, A; Fehse, B; Katus, H A; Kleinschmidt, J A; Müller, O J; Michelfelder, S

    2015-10-01

    Adeno-associated viral (AAV) vectors yield high potential for clinical gene therapy but, like for other vectors systems, they frequently do not sufficiently transduce the target tissue and their unspecific tropism prevents their application for multifocal diseases such as disseminated cancer. Targeted AAV vectors have been obtained from random AAV display peptide libraries but so far, all vector variants selected from AAV libraries upon systemic administration in vivo retained some collateral tropism, frequently the heart. Here we explored, if this impediment can be overcome by microRNA-regulated transgene cassettes as the combination of library-derived capsid targeting and micro-RNA control has not been evaluated so far. We used a tumor-targeted AAV capsid variant (ESGLSQS) selected from random AAV-display peptide libraries in vivo with remaining off-target tropism toward the heart and regulated targeted transgene expression in vivo by complementary target elements for heart-specific microRNA (miRT-1d). Although this vector still maintained its strong transduction capacity for tumor target tissue after intravenous injection, transgene expression in the heart was almost completely abrogated. This strong and completely tumor-specific transgene expression was used for therapeutic gene transfer in an aggressive multifocal, transgenic, polyoma middle T-induced, murine breast cancer model. A therapeutic suicide gene, delivered systemically by this dual-targeted AAV vector to multifocal breast cancer, significantly inhibited tumor growth after one single vector administration while avoiding side effects compared with untargeted vectors.

  12. Novel adeno-associated viral vector delivering the utrophin gene regulator jazz counteracts dystrophic pathology in mdx mice.

    PubMed

    Strimpakos, Georgios; Corbi, Nicoletta; Pisani, Cinzia; Di Certo, Maria Grazia; Onori, Annalisa; Luvisetto, Siro; Severini, Cinzia; Gabanella, Francesca; Monaco, Lucia; Mattei, Elisabetta; Passananti, Claudio

    2014-09-01

    Over-expression of the dystrophin-related gene utrophin represents a promising therapeutic strategy for Duchenne muscular dystrophy (DMD). The strategy is based on the ability of utrophin to functionally replace defective dystrophin. We developed the artificial zinc finger transcription factor "Jazz" that up-regulates both the human and mouse utrophin promoter. We observed a significant recovery of muscle strength in dystrophic Jazz-transgenic mdx mice. Here we demonstrate the efficacy of an experimental gene therapy based on the systemic delivery of Jazz gene in mdx mice by adeno-associated virus (AAV). AAV serotype 8 was chosen on the basis of its high affinity for skeletal muscle. Muscle-specific expression of the therapeutic Jazz gene was enhanced by adding the muscle α-actin promoter to the AAV vector (mAAV). Injection of mAAV8-Jazz viral preparations into mdx mice resulted in muscle-specific Jazz expression coupled with up-regulation of the utrophin gene. We show a significant recovery from the dystrophic phenotype in mAAV8-Jazz-treated mdx mice. Histological and physiological analysis revealed a reduction of fiber necrosis and inflammatory cell infiltration associated with functional recovery in muscle contractile force. The combination of ZF-ATF technology with the AAV delivery can open a new avenue to obtain a therapeutic strategy for treatment of DMD.

  13. Adeno-Associated Viral-Mediated LARGE Gene Therapy Rescues the Muscular Dystrophic Phenotype in Mouse Models of Dystroglycanopathy

    PubMed Central

    Yu, Miao; He, Yonglin; Wang, Kejian; Zhang, Peng; Zhang, Shengle

    2013-01-01

    Abstract Dystroglycanopathies are a group of congenital muscular dystrophies (CMD) often caused by mutations in genes encoding glycosyltransferases that lead to hypoglycosylation of α-dystroglycan (α-DG) and reduce its extracellular matrix-binding activity. Overexpressing LARGE (formerly known as like-glycosyltransferase) generates an extracellular matrix-binding carbohydrate epitope in cells with CMD-causing mutations in not only LARGE but also other glycosyltransferases, including POMT1, POMGnT1, and fukutin, creating the possibilities of a one-for-all gene therapy. To determine the feasibility of LARGE gene therapy, a serotype 9 adeno-associated viral vector for overexpressing LARGE (AAV9-LARGE) was injected intracardially into newborns of two mouse models of CMD: the natural LARGE mutant Largemyd mice and protein O-mannose N-acetylglucosaminyltransferase 1 (POMGnT1) knockout mice. AAV9-LARGE virus treatment yielded partial restoration of α-DG glycosylation and ligand-binding activity. The muscular dystrophy phenotype in skeletal muscles was ameliorated as revealed by significantly reduced fibrosis, necrosis, and numbers of centrally located nuclei with improved motor function. These results indicate that LARGE overexpression in vivo by AAV9-mediated gene therapy is effective at restoring functional glycosylation of α-DG and rescuing the muscular dystrophy phenotype in deficiency of not only LARGE but also POMGnT1, providing evidence that in vivo LARGE gene therapy may be broadly useful in dystroglycanopathies. PMID:23379513

  14. Inner Ear Gene Transfection in Neonatal Mice Using Adeno-Associated Viral Vector: A Comparison of Two Approaches

    PubMed Central

    Xia, Li; Yin, Shankai; Wang, Jian

    2012-01-01

    Local gene transfection is a promising technique for the prevention and/or correction of inner ear diseases, particularly those resulting from genetic defects. Adeno-associated virus (AAV) is an ideal viral vector for inner ear gene transfection because of its safety, stability, long-lasting expression, and its high tropism for many different cell types. Recently, a new generation of AAV vectors with a tyrosine mutation (mut-AAV) has demonstrated significant improvement in transfection efficiency. A method for inner ear gene transfection via the intact round window membrane (RWM) has been developed in our laboratory. This method has not been tested in neonatal mice, an important species for the study of inherited hearing loss. Following a preliminary study to optimize the experimental protocol in order to reduce mortality, the present study investigated inner ear gene transfection in mice at postnatal day 7. We compared transfection efficiency, the safety of the scala tympani injection via RWM puncture, and the trans-RWM diffusion following partial digestion with an enzyme technique. The results revealed that approximately 47% of inner hair cells (IHCs) and 17% of outer hair cells (OHCs) were transfected via the trans-RWM approach. Transfection efficiency via RWM puncture (58% and 19% for IHCs and OHCs, respectively) was slightly higher, but the difference was not significant. PMID:22912830

  15. Development of next generation adeno-associated viral vectors capable of selective tropism and efficient gene delivery.

    PubMed

    Zhang, Chuanling; Yao, Tianzhuo; Zheng, Yongxiang; Li, Zhongjun; Zhang, Qiang; Zhang, Lihe; Zhou, Demin

    2016-02-01

    Virus-based nanoparticles have shown promise as vehicles for delivering therapeutic genes. However, the rational design of viral vectors that enable selective tropism towards particular types of cells and tissues remains challenging. Here, we explored structural-functional relationships of the adeno-associated virus 2 (AAV2) vector by expanding its genetic code during production. As a proof-of-principle, an azide moiety was strategically displayed on the vector capsid as a bioorthogonal chemical reporter. Upon bioorthogonal conjugation of AAV2 with fluorophores and cyclic arginyl-glycyl-aspartic acid ligands at certain modifiable sites, we characterized in vitro and in vivo AAV2 movement and enhanced tropism selectivity towards integrin-expressing tumor cells. Targeting AAV2 vectors resulted in selective killing of U87 glioblastoma cells and derived xenografts via the herpes simplex virus suicide gene thymidine kinase, with the potency of ganciclovir being increased by 25-fold. Our results demonstrated successful rational modification of AAV2 as a targeting delivery vehicle, establishing a facile platform for precision engineering of virus-based nanoparticles in basic research and therapeutic applications.

  16. In vivo adeno-associated viral vector-mediated genetic engineering of white and brown adipose tissue in adult mice.

    PubMed

    Jimenez, Veronica; Muñoz, Sergio; Casana, Estefania; Mallol, Cristina; Elias, Ivet; Jambrina, Claudia; Ribera, Albert; Ferre, Tura; Franckhauser, Sylvie; Bosch, Fatima

    2013-12-01

    Adipose tissue is pivotal in the regulation of energy homeostasis through the balance of energy storage and expenditure and as an endocrine organ. An inadequate mass and/or alterations in the metabolic and endocrine functions of adipose tissue underlie the development of obesity, insulin resistance, and type 2 diabetes. To fully understand the metabolic and molecular mechanism(s) involved in adipose dysfunction, in vivo genetic modification of adipocytes holds great potential. Here, we demonstrate that adeno-associated viral (AAV) vectors, especially serotypes 8 and 9, mediated efficient transduction of white (WAT) and brown adipose tissue (BAT) in adult lean and obese diabetic mice. The use of short versions of the adipocyte protein 2 or uncoupling protein-1 promoters or micro-RNA target sequences enabled highly specific, long-term AAV-mediated transgene expression in white or brown adipocytes. As proof of concept, delivery of AAV vectors encoding for hexokinase or vascular endothelial growth factor to WAT or BAT resulted in increased glucose uptake or increased vessel density in targeted depots. This method of gene transfer also enabled the secretion of stable high levels of the alkaline phosphatase marker protein into the bloodstream by transduced WAT. Therefore, AAV-mediated genetic engineering of adipose tissue represents a useful tool for the study of adipose pathophysiology and, likely, for the future development of new therapeutic strategies for obesity and diabetes.

  17. Identification of Adeno-Associated Viral Vectors That Target Neonatal and Adult Mammalian Inner Ear Cell Subtypes.

    PubMed

    Shu, Yilai; Tao, Yong; Wang, Zhengmin; Tang, Yong; Li, Huawei; Dai, Pu; Gao, Guangping; Chen, Zheng-Yi

    2016-09-01

    The mammalian inner ear consists of diverse cell types with important functions. Gene mutations in these diverse cell types have been found to underlie different forms of genetic hearing loss. Targeting these mutations for gene therapy development represents a future therapeutic strategy to treat hearing loss. Adeno-associated viral (AAV) vectors have become the vector of choice for gene delivery in animal models in vivo. To identify AAV vectors that target inner ear cell subtypes, we systemically screened 12 AAV vectors with different serotypes (AAV1, 2, 5, 6, 6.2, 7, 8, 9, rh.8, rh.10, rh.39, and rh.43) that carry a reporter gene GFP in neonatal and adult mice by microinjection in vivo. We found that most AAVs infect both neonatal and adult inner ear, with different specificities and expression levels. The inner ear cochlear sensory epithelial region, which includes auditory hair cells and supporting cells, is most frequently targeted for gene delivery. Expression of the transgene is sustained, and neonatal inner ear delivery does not adversely affect hearing. Adult inner ear injection of AAV has a similar infection pattern as the younger inner ear, with the exception that outer hair cell death caused by the injection procedure can lead to hearing loss. In the adult, more so than in the neonatal mice, cell types infected and efficiency of infection are correlated with the site of injection. Most infected cells survive in neonatal and adult inner ears. The study adds to the list of AAV vectors that transduce the mammalian inner ear efficiently, providing the tools that are important to study inner ear gene function and for the development of gene therapy to treat hearing loss. PMID:27342665

  18. Optimized adeno-associated viral vector-mediated striatal DOPA delivery restores sensorimotor function and prevents dyskinesias in a model of advanced Parkinson's disease.

    PubMed

    Björklund, Tomas; Carlsson, Thomas; Cederfjäll, Erik Ahlm; Carta, Manolo; Kirik, Deniz

    2010-02-01

    Viral vector-mediated gene transfer utilizing adeno-associated viral vectors has recently entered clinical testing as a novel tool for delivery of therapeutic agents to the brain. Clinical trials in Parkinson's disease using adeno-associated viral vector-based gene therapy have shown the safety of the approach. Further efforts in this area will show if gene-based approaches can rival the therapeutic efficacy achieved with the best pharmacological therapy or other, already established, surgical interventions. One of the strategies under development for clinical application is continuous 3,4-dihydroxyphenylalanine delivery. This approach has been shown to be efficient in restoring motor function and reducing established dyskinesias in rats with a partial lesion of the nigrostriatal dopamine projection. Here we utilized high purity recombinant adeno-associated viral vectors serotype 5 coding for tyrosine hydroxylase and its co-factor synthesizing enzyme guanosine-5'-triphosphate cyclohydrolase-1, delivered at an optimal ratio of 5 : 1, to show that the enhanced 3,4-dihydroxyphenylalanine production obtained with this optimized delivery system results in robust recovery of function in spontaneous motor tests after complete dopamine denervation. We found that the therapeutic efficacy was substantial and could be maintained for at least 6 months. The tyrosine hydroxylase plus guanosine-5'-triphosphate cyclohydrolase-1 treated animals were resistant to developing dyskinesias upon peripheral l-3,4-dihydroxyphenylalanine drug challenge, which is consistent with the interpretation that continuous dopamine stimulation resulted in a normalization of the post-synaptic response. Interestingly, recovery of forelimb use in the stepping test observed here was maintained even after a second lesion depleting the serotonin input to the forebrain, suggesting that the therapeutic efficacy was not solely dependent on dopamine synthesis and release from striatal serotonergic terminals

  19. Development of a rapid, robust, and universal picogreen-based method to titer adeno-associated vectors.

    PubMed

    Piedra, Jose; Ontiveros, Maria; Miravet, Susana; Penalva, Cristina; Monfar, Mercè; Chillon, Miguel

    2015-02-01

    Recombinant adeno-associated viruses (rAAVs) are promising vectors in preclinical and clinical assays for the treatment of diseases with gene therapy strategies. Recent technological advances in amplification and purification have allowed the production of highly purified rAAV vector preparations. Although quantitative polymerase chain reaction (qPCR) is the current method of choice for titrating rAAV genomes, it shows high variability. In this work, we report a rapid and robust rAAV titration method based on the quantitation of encapsidated DNA with the fluorescent dye PicoGreen®. This method allows detection from 3×10(10) viral genome/ml up to 2.4×10(13) viral genome/ml in a linear range. Contrasted with dot blot or qPCR, the PicoGreen-based assay has less intra- and interassay variability. Moreover, quantitation is rapid, does not require specific primers or probes, and is independent of the rAAV pseudotype analyzed. In summary, development of this universal rAAV-titering method may have substantive implications in rAAV technology.

  20. Targeted CNS delivery using human MiniPromoters and demonstrated compatibility with adeno-associated viral vectors

    PubMed Central

    de Leeuw, Charles N; Dyka, Frank M; Boye, Sanford L; Laprise, Stéphanie; Zhou, Michelle; Chou, Alice Y; Borretta, Lisa; McInerny, Simone C; Banks, Kathleen G; Portales-Casamar, Elodie; Swanson, Magdalena I; D’Souza, Cletus A; Boye, Shannon E; Jones, Steven JM; Holt, Robert A; Goldowitz, Daniel; Hauswirth, William W; Wasserman, Wyeth W; Simpson, Elizabeth M

    2014-01-01

    Critical for human gene therapy is the availability of small promoters tools to drive gene expression in a highly specific and reproducible manner. We tackled this challenge by developing human DNA MiniPromoters (MiniPs) using computational biology and phylogenetic conservation. MiniPs were tested in mouse as single-copy knock-ins at the Hprt locus on the X chromosome and evaluated for lacZ reporter expression in central nervous system (CNS) and non–CNS tissue. Eighteen novel MiniPs driving expression in mouse brain were identified, 2 MiniPs for driving pan-neuronal expression and 17 MiniPs for the mouse eye. Key areas of therapeutic interest were represented in this set: the cerebral cortex, embryonic hypothalamus, spinal cord, bipolar and ganglion cells of the retina, and skeletal muscle. We also demonstrated that three retinal ganglion cell MiniPs exhibit similar cell type specificity when delivered via adeno-associated virus vectors intravitreally. We conclude that our methodology and characterization has resulted in desirable expression characteristics that are intrinsic to the MiniPromoter, not dictated by copy-number effects or genomic location, and results in constructs predisposed to success in adeno-associated virus. These MiniPs are immediately applicable for preclinical studies toward gene therapy in humans and are publicly available to facilitate basic and clinical research, and human gene therapy. PMID:24761428

  1. Toxicity and Biodistribution of the Serotype 2 Recombinant Adeno-Associated Viral Vector, Encoding Aquaporin-1, after Retroductal Delivery to a Single Mouse Parotid Gland

    PubMed Central

    Yin, Hongen; Elbekai, Reem H.; Vallant, Molly; Chiorini, John A.

    2014-01-01

    In preparation for testing the safety of using serotype 2 recombinant adeno-associated vector, encoding Aquaporin-1 to treat radiation-induced salivary gland damage in a phase 1 clinical trial, we conducted a 13 week GLP biodistribution and toxicology study using Balb/c mice. To best assess the safety of rAAV2hAQP1 as well as resemble clinical delivery, vector (108, 109, 1010, or 4.4×1010 vector particles/gland) or saline was delivered to the right parotid gland of mice via retroductal cannulation. Very mild surgically induced inflammation was caused by this procedure, seen in 3.6% of animals for the right parotid gland, and 5.3% for the left parotid gland. Long term distribution of vector appeared to be localized to the site of cannulation as well as the right and left draining submandibular lymph nodes at levels >50 copies/μg in some animals. As expected, there was a dose-related increase in neutralizing antibodies produced by day 29. Overall, animals appeared to thrive, with no differences in mean body weight, food or water consumption between groups. There were no significant adverse effects due to treatment noted by clinical chemistry and pathology evaluations. Hematology assessment of serum demonstrated very limited changes to the white blood cell, segmented neutrophils, and hematocrit levels and were concluded to not be vector-associated. Indicators for liver, kidney, cardiac functions and general tissue damage showed no changes due to treatment. All of these indicators suggest the treatment is clinically safe. PMID:24667436

  2. Robust Lentiviral Gene Delivery But Limited Transduction Capacity of Commonly Used Adeno-Associated Viral Serotypes in Xenotransplanted Human Skin.

    PubMed

    Jakobsen, Maria; Askou, Anne Louise; Stenderup, Karin; Rosada, Cecilia; Dagnæs-Hansen, Frederik; Jensen, Thomas G; Corydon, Thomas J; Mikkelsen, Jacob Giehm; Aagaard, Lars

    2015-08-01

    Skin is an easily accessible organ, and therapeutic gene transfer to skin remains an attractive alternative for the treatment of skin diseases. Although we have previously documented potent lentiviral gene delivery to human skin, vectors based on adeno-associated virus (AAV) rank among the most promising gene delivery tools for in vivo purposes. Thus, we compared the potential usefulness of various serotypes of recombinant AAV vectors and lentiviral vectors for gene transfer to human skin in a xenotransplanted mouse model. Vector constructs encoding firefly luciferase were packaged in AAV capsids of serotype 1, 2, 5, 6, 8, and 9 and separately administered by intradermal injection in human skin transplants. For all serotypes, live bioimaging demonstrated low levels of transgene expression in the human skin graft, and firefly luciferase expression was observed primarily in neighboring tissue outside of the graft. In contrast, gene delivery by intradermally injected lentiviral vectors was efficient and led to extensive and persistent firefly luciferase expression within the human skin graft only. The study demonstrates the limited capacity of single-stranded AAV vectors of six commonly used serotypes for gene delivery to human skin in vivo. PMID:26204415

  3. Comparative Analysis of Cesium Chloride- and Iodixanol-Based Purification of Recombinant Adeno-Associated Viral Vectors for Preclinical Applications.

    PubMed

    Strobel, Benjamin; Miller, Felix D; Rist, Wolfgang; Lamla, Thorsten

    2015-08-01

    Cesium chloride (CsCl)- and iodixanol-based density gradients represent the core step in most protocols for serotype-independent adeno-associated virus (AAV) purification established to date. However, despite controversial reports about the purity and bioactivity of AAV vectors derived from each of these protocols, systematic comparisons of state-of-the-art variants of these methods are sparse. To define exact conditions for such a comparison, we first fractionated both gradients to analyze the distribution of intact, bioactive AAVs and contaminants, respectively. Moreover, we tested four different polishing methods (ultrafiltration, size-exclusion chromatography, hollow-fiber tangential flow filtration, and polyethylene glycol precipitation) implemented after the iodixanol gradient for their ability to deplete iodixanol and protein contaminations. Last, we conducted a side-by-side comparison of the CsCl and iodixanol/ultrafiltration protocol. Our results demonstrate that iodixanol-purified AAV preparations show higher vector purity but harbor more (∼20%) empty particles as compared with CsCl-purified vectors (<1%). Using mass spectrometry, we analyzed prominent protein impurities in the AAV vector product, thereby identifying known and new, possibly AAV-interacting proteins as major contaminants. Thus, our study not only provides a helpful guide for the many laboratories entering the AAV field, but also builds a basis for further investigation of cellular processes involved in AAV vector assembly and trafficking.

  4. Comparative Analysis of Cesium Chloride- and Iodixanol-Based Purification of Recombinant Adeno-Associated Viral Vectors for Preclinical Applications.

    PubMed

    Strobel, Benjamin; Miller, Felix D; Rist, Wolfgang; Lamla, Thorsten

    2015-08-01

    Cesium chloride (CsCl)- and iodixanol-based density gradients represent the core step in most protocols for serotype-independent adeno-associated virus (AAV) purification established to date. However, despite controversial reports about the purity and bioactivity of AAV vectors derived from each of these protocols, systematic comparisons of state-of-the-art variants of these methods are sparse. To define exact conditions for such a comparison, we first fractionated both gradients to analyze the distribution of intact, bioactive AAVs and contaminants, respectively. Moreover, we tested four different polishing methods (ultrafiltration, size-exclusion chromatography, hollow-fiber tangential flow filtration, and polyethylene glycol precipitation) implemented after the iodixanol gradient for their ability to deplete iodixanol and protein contaminations. Last, we conducted a side-by-side comparison of the CsCl and iodixanol/ultrafiltration protocol. Our results demonstrate that iodixanol-purified AAV preparations show higher vector purity but harbor more (∼20%) empty particles as compared with CsCl-purified vectors (<1%). Using mass spectrometry, we analyzed prominent protein impurities in the AAV vector product, thereby identifying known and new, possibly AAV-interacting proteins as major contaminants. Thus, our study not only provides a helpful guide for the many laboratories entering the AAV field, but also builds a basis for further investigation of cellular processes involved in AAV vector assembly and trafficking. PMID:26222983

  5. Super-resolution imaging of nuclear import of adeno-associated virus in live cells

    PubMed Central

    Kelich, Joseph M; Ma, Jiong; Dong, Biao; Wang, Qizhao; Chin, Mario; Magura, Connor M; Xiao, Weidong; Yang, Weidong

    2015-01-01

    Adeno-associated virus (AAV) has been developed as a promising human gene therapy vector. Particularly, recombinant AAV vector (rAAV) achieves its transduction of host cells by crossing at least three physiological barriers including plasma membrane, endosomal membrane, and nuclear envelope (NE). So far, the AAV transduction mechanism has not been explored thoroughly at the single viral particle level. In this study, we employed high-speed super-resolution single-point edge-excitation sub-diffraction (SPEED) microscopy to map the events of single rAAV2 particles infecting live human cells with an unprecedented spatiotemporal resolution of 9–12 nm and 2–20 ms. Data reveal that rAAV2 particles are imported through nuclear pore complexes (NPCs) rather than nuclear membrane budding into the nucleus. Moreover, approximately 17% of the rAAV2 molecules starting from the cytoplasm successfully transverse the NPCs to reach the nucleoplasm, revealing that the NPCs act as a strict selective step for AAV delivery. This study lastly suggests a new pathway to improve AAV vectors for human gene therapy. PMID:26665132

  6. Super-resolution imaging of nuclear import of adeno-associated virus in live cells.

    PubMed

    Kelich, Joseph M; Ma, Jiong; Dong, Biao; Wang, Qizhao; Chin, Mario; Magura, Connor M; Xiao, Weidong; Yang, Weidong

    2015-01-01

    Adeno-associated virus (AAV) has been developed as a promising human gene therapy vector. Particularly, recombinant AAV vector (rAAV) achieves its transduction of host cells by crossing at least three physiological barriers including plasma membrane, endosomal membrane, and nuclear envelope (NE). So far, the AAV transduction mechanism has not been explored thoroughly at the single viral particle level. In this study, we employed high-speed super-resolution single-point edge-excitation sub-diffraction (SPEED) microscopy to map the events of single rAAV2 particles infecting live human cells with an unprecedented spatiotemporal resolution of 9-12 nm and 2-20 ms. Data reveal that rAAV2 particles are imported through nuclear pore complexes (NPCs) rather than nuclear membrane budding into the nucleus. Moreover, approximately 17% of the rAAV2 molecules starting from the cytoplasm successfully transverse the NPCs to reach the nucleoplasm, revealing that the NPCs act as a strict selective step for AAV delivery. This study lastly suggests a new pathway to improve AAV vectors for human gene therapy. PMID:26665132

  7. Enhanced selective gene delivery to neural stem cells in vivo by an adeno-associated viral variant.

    PubMed

    Kotterman, Melissa A; Vazin, Tandis; Schaffer, David V

    2015-05-15

    Neural stem cells (NSCs) are defined by their ability to self-renew and to differentiate into mature neuronal and glial cell types. NSCs are the subject of intense investigation, owing to their crucial roles in neural development and adult brain function and because they present potential targets for gene and cell replacement therapies following injury or disease. Approaches to specifically genetically perturb or modulate NSC function would be valuable for either motivation. Unfortunately, most gene delivery vectors are incapable of efficient or specific gene delivery to NSCs in vivo. Vectors based on adeno-associated virus (AAV) present a number of advantages and have proven increasingly successful in clinical trials. However, natural AAV variants are inefficient in transducing NSCs. We previously engineered a novel AAV variant (AAV r3.45) capable of efficient transduction of adult NSCs in vitro. Here, to build upon the initial promise of this variant, we investigated its in vitro and in vivo infectivity. AAV r3.45 was more selective for NSCs than mature neurons in a human embryonic stem cell-derived culture containing a mixture of cell types, including NSCs and neurons. It was capable of more efficient and selective transduction of rat and mouse NSCs in vivo than natural AAV serotypes following intracranial vector administration. Delivery of constitutively active β-catenin yielded insights into mechanisms by which this key regulator modulates NSC function, indicating that this engineered AAV variant can be harnessed for preferential modulation of adult NSCs in the hippocampus. The capacity to rapidly genetically modify these cells might greatly accelerate in vivo investigations of adult neurogenesis. PMID:25968319

  8. Enhanced selective gene delivery to neural stem cells in vivo by an adeno-associated viral variant

    PubMed Central

    Kotterman, Melissa A.; Vazin, Tandis; Schaffer, David V.

    2015-01-01

    Neural stem cells (NSCs) are defined by their ability to self-renew and to differentiate into mature neuronal and glial cell types. NSCs are the subject of intense investigation, owing to their crucial roles in neural development and adult brain function and because they present potential targets for gene and cell replacement therapies following injury or disease. Approaches to specifically genetically perturb or modulate NSC function would be valuable for either motivation. Unfortunately, most gene delivery vectors are incapable of efficient or specific gene delivery to NSCs in vivo. Vectors based on adeno-associated virus (AAV) present a number of advantages and have proven increasingly successful in clinical trials. However, natural AAV variants are inefficient in transducing NSCs. We previously engineered a novel AAV variant (AAV r3.45) capable of efficient transduction of adult NSCs in vitro. Here, to build upon the initial promise of this variant, we investigated its in vitro and in vivo infectivity. AAV r3.45 was more selective for NSCs than mature neurons in a human embryonic stem cell-derived culture containing a mixture of cell types, including NSCs and neurons. It was capable of more efficient and selective transduction of rat and mouse NSCs in vivo than natural AAV serotypes following intracranial vector administration. Delivery of constitutively active β-catenin yielded insights into mechanisms by which this key regulator modulates NSC function, indicating that this engineered AAV variant can be harnessed for preferential modulation of adult NSCs in the hippocampus. The capacity to rapidly genetically modify these cells might greatly accelerate in vivo investigations of adult neurogenesis. PMID:25968319

  9. The X gene of adeno-associated virus 2 (AAV2) is involved in viral DNA replication.

    PubMed

    Cao, Maohua; You, Hong; Hermonat, Paul L

    2014-01-01

    Adeno-associated virus (AAV) (type 2) is a popular human gene therapy vector with a long active transgene expression period and no reported vector-induced adverse reactions. Yet the basic molecular biology of this virus has not been fully addressed. One potential gene at the far 3' end of the AAV2 genome, previously referred to as X (nt 3929 to 4393), overlapping the 3' end of the cap gene, has never been characterized, although we did previously identify a promoter just up-stream (p81). Computer analysis suggested that X was involved in replication and transcription. The X protein was identified during active AAV2 replication using a polyclonal antibody against a peptide starting at amino acid 98. Reagents for the study of X included an AAV2 deletion mutant (dl78-91), a triple nucleotide substitution mutant that destroys all three 5' AUG-initiation products of X, with no effect on the cap coding sequence, and X-positive-293 cell lines. Here, we found that X up-regulated AAV2 DNA replication in differentiating keratinocytes (without helper virus, autonomous replication) and in various forms of 293 cell-based assays with help from wild type adenovirus type 5 (wt Ad5) or Ad5 helper plasmid (pHelper). The strongest contribution by X was seen in increasing wt AAV2 DNA replication in keratinocytes and dl78-91 in Ad5-infected X-positive-293 cell lines (both having multi-fold effects). Mutating the X gene in pAAV-RC (pAAV-RC-3Xneg) yielded approximately a ∼33% reduction in recombinant AAV vector DNA replication and virion production, but a larger effect was seen when using this same X-knockout AAV helper plasmid in X-positive-293 cell lines versus normal 293 cells (again, multi-fold). Taken together these data strongly suggest that AAV2 X encodes a protein involved in the AAV life cycle, particularly in increasing AAV2 DNA replication, and suggests that further studies are warranted.

  10. Large-Scale Production of Adeno-Associated Viral Vector Serotype-9 Carrying the Human Survival Motor Neuron Gene.

    PubMed

    Rashnonejad, Afrooz; Chermahini, Gholamhossein Amini; Li, Shaoyong; Ozkinay, Ferda; Gao, Guangping

    2016-01-01

    Recombinant AAV (rAAV) vectors are a suitable vector for gene therapy studies because of desired characteristics such as low immunogenicity, transfection of non-dividing and dividing cells, and long-term expression of the transgene. In this study, the large-scale production of single stranded (ss) and self-complementary (sc) AAV9 carrying the human survival motor neuron (SMN) gene (AAV9-SMN) suitable for in vivo gene therapy studies of SMA was described. SMN cDNA has been cloned into pAAV-CB6-PI and pAAVsc-CB6-PI with and without its specific UTRs, respectively. Both plasmids bear CMV enhancer/beta-actin (CB) promoter, CMV IE enhancer, and polyadenylation signal sequences. 2.5 μg of constructed pAAV-CB6-PI-SMN and pAAVsc-CB6-PI-SMN cause to, respectively, 4.853- and 2.321-fold increases in SMN protein levels in transfected cells compared to untransfected cells. Ss and scAAV9-SMN vectors were also produced from these plasmids by transient transfection of HEK293 cells using CaCl2 solution. The silver staining and electron microscopy analysis demonstrated good quality of both isolated vectors, ssAAV9-SMN and scAAV9-SMN, with the titers of 2.00E+13 and 1.00E+13 GC/ml. The results of this study show that, the plasmid containing UTR elements causes to twice more SMN gene expression in transfected cells. The quality control results show that both produced ss and scAAV9-SMN are suitable for in vivo studies.

  11. Fast and reliable titration of recombinant adeno-associated virus type-2 using quantitative real-time PCR.

    PubMed

    Rohr, Ulrich-Peter; Wulf, Marc-Andre; Stahn, Susanne; Steidl, Ulrich; Haas, Rainer; Kronenwett, Ralf

    2002-10-01

    In this study, a quantitative real-time PCR (qPCR) was developed to determine genomic rAAV-2 titers using the Light-Cycler technology. Since the CMV promoter is the most commonly used promoter in gene therapeutic approaches, primers were designed which hybridize with the human CMV promoter sequence. PCR products were detected by the addition of SYBR green. qPCR of a 5 log spanning serial dilution of the vector plasmid containing one CMV promoter per plasmid molecule yielded a high amplification efficiency of 1.99 per cycle. To quantify the copy number of viral genomes, the qPCR curves of adeno-associated virus type 2 (AAV-2) samples were related to a standard curve assessed by the 5 log spanning serial vector plasmid dilution (0.01-100 pg DNA). For validation of the method, rAAV-2 preparations were analyzed by a standard method and qPCR in parallel. As standard method, flow cytometry was used for titration of infectious viral particles on HeLa cells using the Enhanced Green Fluorescent Protein as a marker. A significant correlation was found between the results obtained by flow cytometry and the results from the qPCR over a 5 log range (r=0.85, P<0.0001). The mean ratio between infectious rAAV-2 particles titrated via flow cytometry and genomic copies of rAAV-2 measured by qPCR of the same sample was 1:253. The higher titers found by qPCR might be due to multiple transduction of a single cell or to non-infectious particles generated during rAAV-2 preparation. In conclusion, qPCR is a fast and reliable method for determination of rAAV-2 titers and might be a powerful tool for standardization of rAAV-2 preparations particularly in the context of clinical studies.

  12. Adeno-associated-virus-mediated transduction of the mammary gland enables sustained production of recombinant proteins in milk

    PubMed Central

    Wagner, Stefan; Thresher, Rosemary; Bland, Ross; Laible, Götz

    2015-01-01

    Biopharming for the production of recombinant pharmaceutical proteins in the mammary gland of transgenic animals is an attractive but laborious alternative compared to mammalian cell fermentation. The disadvantage of the lengthy process of genetically modifying an entire animal could be circumvented with somatic transduction of only the mammary epithelium with recombinant, replication-defective viruses. While other viral vectors offer very limited scope for this approach, vectors based on adeno-associated virus (AAV) appear to be ideal candidates because AAV is helper-dependent, does not induce a strong immune response and has no association with disease. Here, we sought to test the suitability of recombinant AAV (rAAV) for biopharming. Using reporter genes, we showed that injected rAAV efficiently transduced mouse mammary cells. When rAAV encoding human myelin basic protein (hMBP) was injected into the mammary glands of mice and rabbits, this resulted in the expression of readily detectable protein levels of up to 0.5 g/L in the milk. Furthermore we demonstrated that production of hMBP persisted over extended periods and that protein expression could be renewed in a subsequent lactation by re-injection of rAAV into a previously injected mouse gland. PMID:26463440

  13. Rapid, scalable, and low-cost purification of recombinant adeno-associated virus produced by baculovirus expression vector system

    PubMed Central

    Buclez, Pierre-Olivier; Dias Florencio, Gabriella; Relizani, Karima; Beley, Cyriaque; Garcia, Luis; Benchaouir, Rachid

    2016-01-01

    Recombinant adeno-associated viruses (rAAV) are largely used for gene transfer in research, preclinical developments, and clinical trials. Their broad in vivo biodistribution and long-term efficacy in postmitotic tissues make them good candidates for numerous gene transfer applications. Upstream processes able to produce large amounts of rAAV were developed, particularly those using baculovirus expression vector system. In parallel, downstream processes present a large panel of purification methods, often including multiple and time consuming steps. Here, we show that simple tangential flow filtration, coupled with an optimized iodixanol-based isopycnic density gradient, is sufficient to purify several liters of crude lysate produced by baculovirus expression vector system in only one working day, leading to high titers and good purity of rAAV products. Moreover, we show that the viral vectors retain their in vitro and in vivo functionalities. Our results demonstrate that simple, rapid, and relatively low-cost methods can easily be implemented for obtaining a high-quality grade of gene therapy products based on rAAV technology. PMID:27226971

  14. Adeno-associated-virus-mediated transduction of the mammary gland enables sustained production of recombinant proteins in milk.

    PubMed

    Wagner, Stefan; Thresher, Rosemary; Bland, Ross; Laible, Götz

    2015-01-01

    Biopharming for the production of recombinant pharmaceutical proteins in the mammary gland of transgenic animals is an attractive but laborious alternative compared to mammalian cell fermentation. The disadvantage of the lengthy process of genetically modifying an entire animal could be circumvented with somatic transduction of only the mammary epithelium with recombinant, replication-defective viruses. While other viral vectors offer very limited scope for this approach, vectors based on adeno-associated virus (AAV) appear to be ideal candidates because AAV is helper-dependent, does not induce a strong immune response and has no association with disease. Here, we sought to test the suitability of recombinant AAV (rAAV) for biopharming. Using reporter genes, we showed that injected rAAV efficiently transduced mouse mammary cells. When rAAV encoding human myelin basic protein (hMBP) was injected into the mammary glands of mice and rabbits, this resulted in the expression of readily detectable protein levels of up to 0.5 g/L in the milk. Furthermore we demonstrated that production of hMBP persisted over extended periods and that protein expression could be renewed in a subsequent lactation by re-injection of rAAV into a previously injected mouse gland. PMID:26463440

  15. Adeno-associated-virus-mediated transduction of the mammary gland enables sustained production of recombinant proteins in milk.

    PubMed

    Wagner, Stefan; Thresher, Rosemary; Bland, Ross; Laible, Götz

    2015-10-14

    Biopharming for the production of recombinant pharmaceutical proteins in the mammary gland of transgenic animals is an attractive but laborious alternative compared to mammalian cell fermentation. The disadvantage of the lengthy process of genetically modifying an entire animal could be circumvented with somatic transduction of only the mammary epithelium with recombinant, replication-defective viruses. While other viral vectors offer very limited scope for this approach, vectors based on adeno-associated virus (AAV) appear to be ideal candidates because AAV is helper-dependent, does not induce a strong immune response and has no association with disease. Here, we sought to test the suitability of recombinant AAV (rAAV) for biopharming. Using reporter genes, we showed that injected rAAV efficiently transduced mouse mammary cells. When rAAV encoding human myelin basic protein (hMBP) was injected into the mammary glands of mice and rabbits, this resulted in the expression of readily detectable protein levels of up to 0.5 g/L in the milk. Furthermore we demonstrated that production of hMBP persisted over extended periods and that protein expression could be renewed in a subsequent lactation by re-injection of rAAV into a previously injected mouse gland.

  16. Determination of Anti-Adeno-Associated Viral Vector Neutralizing Antibodies in Patients With Heart Failure in the Cardiovascular Foundation of Colombia (ANVIAS): Study Protocol

    PubMed Central

    Prada, Carlos E; Lopez, Marcos; Castillo, Victor; Echeverria, Luis Eduardo; Serrano, Norma

    2016-01-01

    Background Recent progress in the pathophysiology of heart failure (HF) has led to the development of new therapeutic options such as gene therapy and the use of adeno-associated viral (AAV) vectors. Despite the promising results in early clinical trials of gene therapy for HF, various obstacles have been faced, such as the presence of neutralizing antibodies (NAbs) against the capsid vectors. NAb activity limits vector transduction levels and therefore diminishes the final therapeutic response. Recent studies evaluating the prevalence of NAbs in various populations found considerable geographic variability for each AAV serotype. However, the levels of NAbs in Latin American populations are unknown, becoming a limiting factor to conducting AAV vector therapeutic trials in this population. Objective The goal of this study is to determine for the first time, the prevalence of anti-AAV NAbs for the serotypes 1, 2, and 9 in HF patients from the city of Bucaramanga, Colombia, using the in vitro transduction inhibition assay. Methods We will conduct a cross-sectional study with patients who periodically attend the HF clinic of the Cardiovascular Foundation of Colombia and healthy volunteers matched for age and sex. For all participants, we will evaluate the NAb levels against serotypes AAV1, AAV2, and AAV9. We will determine NAb levels using the in vitro transduction inhibition assay. In addition, participants will answer a survey to evaluate their epidemiological and socioeconomic variables. Participation in the study will be voluntary and all participants will sign an informed consent document before any intervention. Results The project is in the first phase: elaboration of case report forms and the informed consent form, and design of the recruitment strategy. Patient recruitment is expected to begin in the spring of 2016. We expect to have preliminary results, including the titer of the viral vectors, multiplicity of infections that we will use for each serotype

  17. Absolute determination of single-stranded and self-complementary adeno-associated viral vector genome titers by droplet digital PCR.

    PubMed

    Lock, Martin; Alvira, Mauricio R; Chen, Shu-Jen; Wilson, James M

    2014-04-01

    Accurate titration of adeno-associated viral (AAV) vector genome copies is critical for ensuring correct and reproducible dosing in both preclinical and clinical settings. Quantitative PCR (qPCR) is the current method of choice for titrating AAV genomes because of the simplicity, accuracy, and robustness of the assay. However, issues with qPCR-based determination of self-complementary AAV vector genome titers, due to primer-probe exclusion through genome self-annealing or through packaging of prematurely terminated defective interfering (DI) genomes, have been reported. Alternative qPCR, gel-based, or Southern blotting titering methods have been designed to overcome these issues but may represent a backward step from standard qPCR methods in terms of simplicity, robustness, and precision. Droplet digital PCR (ddPCR) is a new PCR technique that directly quantifies DNA copies with an unparalleled degree of precision and without the need for a standard curve or for a high degree of amplification efficiency; all properties that lend themselves to the accurate quantification of both single-stranded and self-complementary AAV genomes. Here we compare a ddPCR-based AAV genome titer assay with a standard and an optimized qPCR assay for the titration of both single-stranded and self-complementary AAV genomes. We demonstrate absolute quantification of single-stranded AAV vector genomes by ddPCR with up to 4-fold increases in titer over a standard qPCR titration but with equivalent readout to an optimized qPCR assay. In the case of self-complementary vectors, ddPCR titers were on average 5-, 1.9-, and 2.3-fold higher than those determined by standard qPCR, optimized qPCR, and agarose gel assays, respectively. Droplet digital PCR-based genome titering was superior to qPCR in terms of both intra- and interassay precision and is more resistant to PCR inhibitors, a desirable feature for in-process monitoring of early-stage vector production and for vector genome biodistribution

  18. Mutants at the 2-Fold Interface of Adeno-associated Virus Type 2 (AAV2) Structural Proteins Suggest a Role in Viral Transcription for AAV Capsids

    PubMed Central

    Aydemir, Fikret; Salganik, Maxim; Resztak, Justyna; Singh, Jasbir; Bennett, Antonette; Agbandje-McKenna, Mavis

    2016-01-01

    ABSTRACT We previously reported that an amino acid substitution, Y704A, near the 2-fold interface of adeno-associated virus (AAV) was defective for transcription of the packaged genome (M. Salganik, F. Aydemir, H. J. Nam, R. McKenna, M. Agbandje-McKenna, and N. Muzyczka, J Virol 88:1071–1079, 2013, doi: http://dx.doi.org/10.1128/JVI.02093-13). In this report, we have characterized the defect in 6 additional capsid mutants located in a region ∼30 Å in diameter on the surface of the AAV type 2 (AAV2) capsid near the 2-fold interface. These mutants, which are highly conserved among primate serotypes, displayed a severe defect (3 to 6 logs) in infectivity. All of the mutants accumulated significant levels of uncoated DNA in the nucleus, but none of the mutants were able to accumulate significant amounts of genomic mRNA postinfection. In addition, wild-type (wt) capsids that were bound to the conformational antibody A20, which is known to bind the capsid surface in the region of the mutants, were also defective for transcription. In all cases, the mutant virus particles, as well as the antibody-bound wild-type capsids, were able to enter the cell, travel to the nucleus, uncoat, and synthesize a second strand but were unable to transcribe their genomes. Taken together, the phenotype of these mutants provides compelling evidence that the AAV capsid plays a role in the transcription of its genome, and the mutants map this functional region on the surface of the capsid near the 2-fold interface. This appears to be the first example of a viral structural protein that is also involved in the transcription of the viral genome that it delivers to the nucleus. IMPORTANCE Many viruses package enzymes within their capsids that assist in expressing their genomes postinfection, e.g., retroviruses. A number of nonenveloped viruses, including AAV, carry proteases that are needed for capsid maturation or for capsid modification during infection. We describe here what appears to

  19. Characterizing clearance of helper adenovirus by a clinical rAAV1 manufacturing process.

    PubMed

    Thorne, Barbara A; Quigley, Paulene; Nichols, Gina; Moore, Christine; Pastor, Eric; Price, David; Ament, Jon W; Takeya, Ryan K; Peluso, Richard W

    2008-01-01

    Recombinant adeno-associated viral vectors (rAAV) are being developed as gene therapy delivery vehicles and as genetic vaccines, and some of the most scaleable manufacturing methods for rAAV use live adenovirus to induce production. One aspect of establishing safety of rAAV products is therefore demonstrating adequate and reliable clearance of this helper virus by the vector purification process. The ICH Q5A regulatory guidance on viral safety provides recommendations for process design and characterization of viral clearance for recombinant proteins, and these principles were adapted to a rAAV serotype 1 purification process for clinical vectors. Specific objectives were to achieve overall adenovirus clearance factors significantly greater than input levels by using orthogonal separation and inactivation methods, and to segregate adenovirus from downstream operations by positioning a robust clearance step early in the process. Analytical tools for process development and characterization addressed problematic in-process samples, and a viral clearance validation study was performed using adenovirus and two non-specific model viruses. Overall clearance factors determined were >23 LRV for adenovirus, 11 LRV for BVDV, and >23 LRV for AMuLV.

  20. Advanced Characterization of DNA Molecules in rAAV Vector Preparations by Single-stranded Virus Next-generation Sequencing

    PubMed Central

    Lecomte, Emilie; Tournaire, Benoît; Cogné, Benjamin; Dupont, Jean-Baptiste; Lindenbaum, Pierre; Martin-Fontaine, Mélanie; Broucque, Frédéric; Robin, Cécile; Hebben, Matthias; Merten, Otto-Wilhelm; Blouin, Véronique; François, Achille; Redon, Richard; Moullier, Philippe; Léger, Adrien

    2015-01-01

    Recent successful clinical trials with recombinant adeno-associated viral vectors (rAAVs) have led to a renewed interest in gene therapy. However, despite extensive developments to improve vector-manufacturing processes, undesirable DNA contaminants in rAAV preparations remain a major safety concern. Indeed, the presence of DNA fragments containing antibiotic resistance genes, wild-type AAV, and packaging cell genomes has been found in previous studies using quantitative polymerase chain reaction (qPCR) analyses. However, because qPCR only provides a partial view of the DNA molecules in rAAV preparations, we developed a method based on next-generation sequencing (NGS) to extensively characterize single-stranded DNA virus preparations (SSV-Seq). In order to validate SSV-Seq, we analyzed three rAAV vector preparations produced by transient transfection of mammalian cells. Our data were consistent with qPCR results and showed a quasi-random distribution of contaminants originating from the packaging cells genome. Finally, we found single-nucleotide variants (SNVs) along the vector genome but no evidence of large deletions. Altogether, SSV-Seq could provide a characterization of DNA contaminants and a map of the rAAV genome with unprecedented resolution and exhaustiveness. We expect SSV-Seq to pave the way for a new generation of quality controls, guiding process development toward rAAV preparations of higher potency and with improved safety profiles. PMID:26506038

  1. Novel strategy for generation and titration of recombinant adeno-associated virus vectors.

    PubMed

    Shiau, Ai-Li; Liu, Pu-Ste; Wu, Chao-Liang

    2005-01-01

    Recombinant adeno-associated virus (rAAV) vectors have many advantages for gene therapeutic applications compared with other vector systems. Several methods that use plasmids or helper viruses have been reported for the generation of rAAV vectors. Unfortunately, the preparation of large-scale rAAV stocks is labor-intensive. Moreover, the biological titration of rAAV is still difficult, which may limit its preclinical and clinical applications. For this study, we developed a novel strategy to generate and biologically titrate rAAV vectors. A recombinant pseudorabies virus (PrV) with defects in its gD, gE, and thymidine kinase genes was engineered to express the AAV rep and cap genes, yielding PS virus, which served as a packaging and helper virus for the generation of rAAV vectors. PS virus was useful not only for generating high-titer rAAV vectors by cotransfection with an rAAV vector plasmid, but also for amplifying rAAV stocks. Notably, the biological titration of rAAV vectors was also feasible when cells were coinfected with rAAV and PS virus. Based on this strategy, we produced an rAAV that expresses prothymosin alpha (ProT). Expression of the ProT protein in vitro and in vivo mediated by rAAV/ProT gene transfer was detected by immunohistochemistry and a bioassay. Taken together, our results demonstrate that the PrV vector-based system is useful for generating rAAV vectors carrying various transgenes.

  2. Convection Enhanced Delivery of Recombinant Adeno-associated Virus into the Mouse Brain.

    PubMed

    Nash, Kevin R; Gordon, Marcia N

    2016-01-01

    Recombinant adeno-associated virus (rAAV) has become an extremely useful tool for the study of gene over expression or knockdown in the central nervous system of experimental animals. One disadvantage of intracranial injections of rAAV vectors into the brain parenchyma has been restricted distribution to relatively small volumes of the brain. Convection enhanced delivery (CED) is a method for delivery of clinically relevant amounts of therapeutic agents to large areas of the brain in a direct intracranial injection procedure. CED uses bulk flow to increase the hydrostatic pressure and thus improve volume distribution. The CED method has shown robust gene transfer and increased distribution within the CNS and can be successfully used for different serotypes of rAAV for increased transduction of the mouse CNS. This chapter details the surgical injection of rAAV by CED into a mouse brain.

  3. Fluorescent Calcium Indicator Protein Expression in the Mouse Brain Using Recombinant Adeno-Associated Viruses.

    PubMed

    Heindorf, Matthias; Hasan, Mazahir T

    2015-07-01

    One method for gene delivery and long-term fluorescent calcium indicator protein (FCIP) expression in mammalian neurons in vivo involves the introduction of FCIPs via recombinant adeno-associated virus (rAAV) vectors using constitutive and cell type-specific promoters. This protocol describes the use of rAAVs to express FCIPs in the brain for imaging. Human embryonic kidney 293 cells are first transfected using calcium phosphate. rAAV is then prepared using either an iodixanol gradient or a heparin column. After the virus is purified, its quality is assessed by sodium dodecyl sulfate polyacrylamide gel electrophoresis, estimation of genomic and functional virus titers by quantitative polymerase chain reaction, and expression in dissociated neurons. Mice are injected with rAAV using a stereotactic instrument and can be imaged ∼3 wk later. PMID:26134910

  4. Retinal gene delivery by rAAV and DNA electroporation

    PubMed Central

    Venkatesh, Aditya; Ma, Shan; Langellotto, Fernanda; Gao, Guangping; Punzo, Claudio

    2013-01-01

    Ocular gene therapy is a fast growing area of research. The eye is an ideal organ for gene therapy since it is immune privileged, easily accessible, and direct viral delivery results primarily in local infection. Because the eye is not a vital organ, mutations in eye specific genes tend to be more common. To date, over 40 eye specific genes have been identified which harbor mutations that lead to blindness. Gene therapy with recombinant Adeno Associated Virus (rAAV) holds the promise to treat patients with such mutations. However, proof-of-concept and safety evaluation for gene therapy remains to be established for most of these diseases. This unit describes the in vivo delivery of genes to the mouse eye by rAAV-mediated gene transfer and plasmid DNA electroporation. Advantages and limitations of these methods are discussed, and detailed protocols for gene delivery, required materials, as well as subsequent tissue processing methods are described. PMID:23408132

  5. Good manufacturing practice production of self-complementary serotype 8 adeno-associated viral vector for a hemophilia B clinical trial.

    PubMed

    Allay, James A; Sleep, Susan; Long, Scott; Tillman, David M; Clark, Rob; Carney, Gael; Fagone, Paolo; McIntosh, Jenny H; Nienhuis, Arthur W; Davidoff, Andrew M; Nathwani, Amit C; Gray, John T

    2011-05-01

    To generate sufficient clinical-grade vector to support a phase I/II clinical trial of adeno-associated virus serotype 8 (AAV8)-mediated factor IX (FIX) gene transfer for hemophilia B, we have developed a large-scale, good manufacturing practice (GMP)-compatible method for vector production and purification. We used a 293T-based two-plasmid transient transfection system coupled with a three-column chromatography purification process to produce high-quality self-complementary AAV2/8 FIX clinical-grade vector. Two consecutive production campaigns using a total of 432 independent 10-stack culture chambers produced a total of ∼2 × 10(15) vector genomes (VG) by dot-blot hybridization. Benzonase-treated microfluidized lysates generated from pellets of transfected cells were purified by group separation on Sepharose beads followed by anion-exchange chromatography. The virus-containing fractions were further processed by gel filtration and ultrafiltration, using a 100-kDa membrane. The vector was formulated in phosphate-buffered saline plus 0.25% human serum albumin. Spectrophotometric analysis suggested ∼20% full particles, with only low quantities of nonviral proteins were visible on silver-stained sodium dodecyl sulfate-polyacrylamide gels. A sensitive assay for the detection of replication-competent AAV was developed, which did reveal trace quantities of such contaminants in the final product. Additional studies have confirmed the long-term stability of the vector at -80°C for at least 24 months and for at least 24 hr formulated in the clinical diluent and stored at room temperature within intravenous bags. This material has been approved for use in clinical trials in the United States and the United Kingdom.

  6. Successful transgene expression with serial doses of aerosolized rAAV2 vectors in rhesus macaques.

    PubMed

    Fischer, Anne C; Beck, Suzanne E; Smith, Carolina I; Laube, Beth L; Askin, Frederic B; Guggino, Sandra E; Adams, Robert J; Flotte, Terence R; Guggino, William B

    2003-12-01

    Bronchoscopic microspraying of recombinant adeno-associated viral (rAAV) vectors targets high doses of vector directly to pulmonary epithelium. Single-dose endobronchial gene therapy trials have been accomplished in cystic fibrosis patients; however, repeated dosing strategies are likely essential for lifetime correction. These studies address whether serial redosing with rAAV2 vectors results in an antiserotypic response and, furthermore, whether it triggers an inflammatory response prohibitive to transgene expression. Serial redosing of 9 x 10(11) infectious units of aerosolized rAAV2 vectors to rhesus macaques resulted in successful gene transfer by quantitative PCR (1.43 x 10(9) copies/g tissue) and transgene expression. Additionally, confocal microscopy and immunohistochemical analysis demonstrated in situ expression localized to the pulmonary epithelium. Although serial redosing did induce a heightened anti-neutralizing antibody response in sera, gene transfer prevailed with resultant expression. This study is the first to demonstrate successful gene transfer subsequent to repeated aerosolized doses of rAAV2 in immunocompetent nonhuman primates without associated inflammatory responses prohibitive to transgene expression. PMID:14664794

  7. Recombinant adeno-associated virus targets passenger gene expression to cones in primate retina

    NASA Astrophysics Data System (ADS)

    Mancuso, Katherine; Hendrickson, Anita E.; Connor, Thomas B., Jr.; Mauck, Matthew C.; Kinsella, James J.; Hauswirth, William W.; Neitz, Jay; Neitz, Maureen

    2007-05-01

    Recombinant adeno-associated virus (rAAV) is a promising vector for gene therapy of photoreceptor-based diseases. Previous studies have demonstrated that rAAV serotypes 2 and 5 can transduce both rod and cone photoreceptors in rodents and dogs, and it can target rods, but not cones in primates. Here we report that using a human cone-specific enhancer and promoter to regulate expression of a green fluorescent protein (GFP) reporter gene in an rAAV-5 vector successfully targeted expression of the reporter gene to primate cones, and the time course of GFP expression was able to be monitored in a living animal using the RetCam II digital imaging system.

  8. Cross-dressing the virion: the transcapsidation of adeno-associated virus serotypes functionally defines subgroups.

    PubMed

    Rabinowitz, Joseph E; Bowles, Dawn E; Faust, Susan M; Ledford, Julie G; Cunningham, Scott E; Samulski, R Jude

    2004-05-01

    For all adeno-associated virus (AAV) serotypes, 60 monomers of the Vp1, Vp2, and Vp3 structural proteins assemble via an unknown mechanism to form an intact capsid. In an effort to better understand the properties of the capsid monomers and their role in viral entry and infection, we evaluated whether monomers from distinct serotypes can be mixed to form infectious particles with unique phenotypes. This transcapsidation approach consisted of the transfection of pairwise combinations of AAV serotype 1 to 5 helper plasmids to produce mosaic capsid recombinant AAV (rAAV). All ratios (19:1, 3:1, 1:1, 1:3, and 1:19) of these mixtures were able to replicate the green fluorescent protein transgene and to produce capsid proteins. A high-titer rAAV was obtained with mixtures that included either serotype 1, 2, or 3, whereas an rAAV of intermediate titer was obtained from serotype 5 mixtures. Only mixtures containing the AAV4 capsid exhibited reduced packaging capacity. The binding profiles of the mixed-virus preparations to either heparin sulfate (HS) or mucin agarose revealed that only AAV3-AAV5 mixtures at the 3:1 ratio exhibited duality in binding. All other mixtures displayed either an abrupt shift or a gradual alteration in the binding profile to the respective ligand upon increase of a capsid component that conferred either HS or mucin binding. The transduction of cell lines was used to further evaluate the phenotypes of these transcapsidated virions. Three transduction profiles were observed: (i) small to no change regardless of ratio, (ii) a gradual increase in transduction consistent with titration of a second capsid component, or (iii) an abrupt increase in transduction (threshold effect) dependent on the specific ratios used. Interestingly, an unexpected synergistic effect in transduction was observed when AAV1 helper constructs were combined with type 2 or type 3 recipient helpers. Further studies determined that at least two components contributed to this

  9. Tissue-Specific Expression of Herpes Simplex Virus Thymidine Kinase Gene Delivered by Adeno-Associated Virus Inhibits the Growth of Human Hepatocellular Carcinoma in Athymic Mice

    NASA Astrophysics Data System (ADS)

    Su, Hua; Lu, Ronghua; Chang, Judy C.; Kan, Yuet Wai

    1997-12-01

    About 70% of hepatocellular carcinomas are known to express α -fetoprotein, which is normally expressed in fetal but not in adult livers. To induce herpes simplex virus-thymidine kinase expression in these cancer cells, we constructed an adeno-associated viral vector containing the HSV-TK gene under the control of the α -fetoprotein enhancer and albumin promoter. We previously demonstrated in vitro that although this vector can transduce a variety of human cells, only transduced AFP and albumin-expressing hepatocellular carcinoma cell lines were sensitive to killing by ganciclovir (GCV). In the present study, we explored the effect of this vector on hepatocellular carcinoma cells in vivo. Subcutaneous tumors generated in nude mice by implanting hepatocellular carcinoma cells previously transduced with this vector shrank dramatically after treatment with GCV. Bystander effect was also observed on the tumors generated by mixing transduced and untransduced cells. To test whether the tumor cells can be transduced by the virus in vivo, we injected the recombinant adeno-associated virus into tumors generated by untransduced hepatocarcinoma cell line. Tumor growth were retarded after treatment with GCV. These experiments demonstrate the feasibility of in vivo transduction of tumor cell with rAAV.

  10. Immunological Ignorance Allows Long-Term Gene Expression After Perinatal Recombinant Adeno-Associated Virus-Mediated Gene Transfer to Murine Airways

    PubMed Central

    Carlon, Marianne S.; Vidović, Dragana; Dooley, James; da Cunha, Marina Mori; Maris, Michael; Lampi, Youlia; Toelen, Jaan; Van den Haute, Chris; Baekelandt, Veerle; Deprest, Jan; Verbeken, Erik; Liston, Adrian; Gijsbers, Rik

    2014-01-01

    Abstract Gene therapy of the lung has the potential to treat life-threatening diseases such as cystic fibrosis and α1-antitrypsin or surfactant deficiencies. A major hurdle for successful gene therapy is the development of an immune response against the transgene and/or viral vector. We hypothesized that by targeting the airways in the perinatal period, induction of an immune response against the vector particle could be prevented because of immaturity of the immune system, in turn allowing repeated gene transfer later in adult life to ensure long-term gene expression. Therefore, we readministered recombinant adeno-associated viral vector serotype 5 (rAAV2/5) to mouse airways 3 and 6 months after initial perinatal gene transfer. Our findings demonstrate that perinatal rAAV2/5-mediated gene transfer to the airways avoids a strong immune response. This immunological ignorance allows the readministration of an autologous vector later in adult life, resulting in efficient and stable gene transfer up to 7 months, without evidence of a decrease in transgene expression. Together, these data provide a basis to further explore perinatal gene therapy for pulmonary conditions with adequate gene expression up to 7 months. PMID:24548076

  11. Transduction with recombinant adeno-associated virus for gene therapy is limited by leading-strand synthesis.

    PubMed Central

    Fisher, K J; Gao, G P; Weitzman, M D; DeMatteo, R; Burda, J F; Wilson, J M

    1996-01-01

    Adeno-associated virus is an integrating DNA parvovirus with the potential to be an important vehicle for somatic gene therapy. A potential barrier, however, is the low transduction efficiencies of recombinant adeno-associated virus (rAAV) vectors. We show in this report that adenovirus dramatically enhances rAAV transduction in vitro in a way that is dependent on expression of early region 1 and 4 (E1 and E4, respectively) genes and directly proportional to the appearance of double-stranded replicative forms of the rAAV genome. Expression of the open reading frame 6 protein from E4 in the absence of E1 accomplished a similar but attenuated effect. The helper activity of adenovirus E1 and E4 for rAAV gene transfer was similarly demonstrated in vivo by using murine models of liver- and lung-directed gene therapy. Our data indicate that conversion of a single-stranded rAAV genome to a duplex intermediate limits transduction and usefulness for gene therapy. PMID:8523565

  12. Engineering adeno-associated viruses for clinical gene therapy.

    PubMed

    Kotterman, Melissa A; Schaffer, David V

    2014-07-01

    Clinical gene therapy has been increasingly successful owing both to an enhanced molecular understanding of human disease and to progressively improving gene delivery technologies. Among these technologies, delivery vectors based on adeno-associated viruses (AAVs) have emerged as safe and effective and, in one recent case, have led to regulatory approval. Although shortcomings in viral vector properties will render extension of such successes to many other human diseases challenging, new approaches to engineer and improve AAV vectors and their genetic cargo are increasingly helping to overcome these barriers.

  13. Generation and characterization of anti-Adeno-associated virus serotype 8 (AAV8) and anti-AAV9 monoclonal antibodies.

    PubMed

    Tseng, Yu-Shan; Vliet, Kim Van; Rao, Lavanya; McKenna, Robert; Byrne, Barry J; Asokan, Aravind; Agbandje-McKenna, Mavis

    2016-10-01

    Adeno-associated viruses (AAVs) are promising viral vectors for therapeutic gene delivery, and the approval of an AAV1 vector for the treatment of lipoprotein lipase deficiency has heralded a new and exciting era for this system. However, preclinical and clinical studies show that neutralization from pre-existing antibodies is detrimental for medical application and this hurdle must be overcome before full clinical realization can be achieved. Thus the binding sites for capsid antibodies must be identified and eliminated through capsid engineering. Towards this goal and to recapitulate patient polyclonal responses, a panel of six new mouse monoclonal antibodies (MAbs) has been generated against AAV8 and AAV9 capsids, two vectors being developed for therapeutic application. Native (capsid) dot blot assays confirmed the specificity of these antibodies for their parental serotypes, with the exception of one MAb, HL2372, selected to cross-react against both capsids. Furthermore, in vitro assays showed that these MAbs are capable of neutralizing virus infection. These MAbs will be utilized for structural mapping of antigenic footprints on their respective capsids to inform development of the next generation of rAAV vectors capable of evading antibody neutralization while retaining parental tropism. PMID:27424005

  14. Expressing Transgenes That Exceed the Packaging Capacity of Adeno-Associated Virus Capsids.

    PubMed

    Chamberlain, Kyle; Riyad, Jalish Mahmud; Weber, Thomas

    2016-02-01

    Recombinant adeno-associated virus vectors (rAAV) are being explored as gene delivery vehicles for the treatment of various inherited and acquired disorders. rAAVs are attractive vectors for several reasons: wild-type AAVs are nonpathogenic, and rAAVs can trigger long-term transgene expression even in the absence of genome integration-at least in postmitotic tissues. Moreover, rAAVs have a low immunogenic profile, and the various AAV serotypes and variants display broad but distinct tropisms. One limitation of rAAVs is that their genome-packaging capacity is only ∼5 kb. For most applications this is not of major concern because the median human protein size is 375 amino acids. Excluding the ITRs, for a protein of typical length, this allows the incorporation of ∼3.5 kb of DNA for the promoter, polyadenylation sequence, and other regulatory elements into a single AAV vector. Nonetheless, for certain diseases the packaging limit of AAV does not allow the delivery of a full-length therapeutic protein by a single AAV vector. Hence, approaches to overcome this limitation have become an important area of research for AAV gene therapy. Among the most promising approaches to overcome the limitation imposed by the packaging capacity of AAV is the use of dual-vector approaches, whereby a transgene is split across two separate AAV vectors. Coinfection of a cell with these two rAAVs will then-through a variety of mechanisms-result in the transcription of an assembled mRNA that could not be encoded by a single AAV vector because of the DNA packaging limits of AAV. The main purpose of this review is to assess the current literature with respect to dual-AAV-vector design, to highlight the effectiveness of the different methodologies and to briefly discuss future areas of research to improve the efficiency of dual-AAV-vector transduction. PMID:26757051

  15. Infectious Entry Pathway of Adeno-Associated Virus and Adeno-Associated Virus Vectors

    PubMed Central

    Bartlett, Jeffrey S.; Wilcher, Rose; Samulski, R. Jude

    2000-01-01

    We have investigated the infectious entry pathway of adeno-associated virus (AAV) and recombinant AAV vectors by assessing AAV-mediated gene transfer and by covalently conjugating fluorophores to AAV and monitoring entry by fluorescence microscopy. We examined AAV entry in HeLa cells and in HeLa cell lines which inducibly expressed a dominant interfering mutant of dynamin. The data demonstrate that AAV internalizes rapidly by standard receptor-mediated endocytosis from clathrin-coated pits (half-time <10 min). The lysosomotropic agents ammonium chloride and bafilomycin A1 prevent AAV-mediated gene transfer when present during the first 30 min after the onset of endocytosis, indicating that AAV escapes from early endosomes yet requires an acidic environment for penetration into the cytosol. Following release from the endosome, AAV rapidly moves to the cell nucleus and accumulates perinuclearly beginning within 30 min after the onset of endocytosis. We present data indicating that escape of AAV from the endosome and trafficking of viral particles to the nucleus are unaffected by the presence of adenovirus, the primary helper virus for a productive AAV infection. Within 2 h, viral particles could be detected within the cell nucleus, suggesting that AAV enters the nucleus prior to uncoating. Interestingly, the majority of the intracellular virus particles remain in a stable perinuclear compartment even though gene expression from nuclear AAV genomes can be detected. This suggests that the process of nuclear entry is rate limiting or that AAV entry involves multiple pathways. Nevertheless, these data establish specific points in the AAV infectious entry process and have allowed the generation of a model for future expansion to specific cell types and AAV vector analysis in vivo. PMID:10684294

  16. Adeno-Associated Virus-Mediated Correction of a Canine Model of Glycogen Storage Disease Type Ia

    PubMed Central

    Weinstein, David A.; Correia, Catherine E.; Conlon, Thomas; Specht, Andrew; Verstegen, John; Onclin-Verstegen, Karine; Campbell-Thompson, Martha; Dhaliwal, Gurmeet; Mirian, Layla; Cossette, Holly; Falk, Darin J.; Germain, Sean; Clement, Nathalie; Porvasnik, Stacy; Fiske, Laurie; Struck, Maggie; Ramirez, Harvey E.; Jordan, Juan; Andrutis, Karl; Chou, Janice Y.; Byrne, Barry J.

    2010-01-01

    Abstract Glycogen storage disease type Ia (GSDIa; von Gierke disease; MIM 232200) is caused by a deficiency in glucose-6-phosphatase-α. Patients with GSDIa are unable to maintain glucose homeostasis and suffer from severe hypoglycemia, hepatomegaly, hyperlipidemia, hyperuricemia, and lactic acidosis. The canine model of GSDIa is naturally occurring and recapitulates almost all aspects of the human form of disease. We investigated the potential of recombinant adeno-associated virus (rAAV) vector-based therapy to treat the canine model of GSDIa. After delivery of a therapeutic rAAV2/8 vector to a 1-day-old GSDIa dog, improvement was noted as early as 2 weeks posttreatment. Correction was transient, however, and by 2 months posttreatment the rAAV2/8-treated dog could no longer sustain normal blood glucose levels after 1 hr of fasting. The same animal was then dosed with a therapeutic rAAV2/1 vector delivered via the portal vein. Two months after rAAV2/1 dosing, both blood glucose and lactate levels were normal at 4 hr postfasting. With more prolonged fasting, the dog still maintained near-normal glucose concentrations, but lactate levels were elevated by 9 hr, indicating that partial correction was achieved. Dietary glucose supplementation was discontinued starting 1 month after rAAV2/1 delivery and the dog continues to thrive with minimal laboratory abnormalities at 23 months of age (18 months after rAAV2/1 treatment). These results demonstrate that delivery of rAAV vectors can mediate significant correction of the GSDIa phenotype and that gene transfer may be a promising alternative therapy for this disease and other genetic diseases of the liver. PMID:20163245

  17. Recombinant adeno-associated virus-delivered anginex inhibits angiogenesis and growth of HUVECs by regulating the Akt, JNK and NF-κB signaling pathways.

    PubMed

    Ma, Ke; Wang, Chuying; Geng, Qianqian; Fan, Yangwei; Ning, Jing; Yang, Haixia; Dong, Xuyuan; Dong, Danfeng; Guo, Yuyan; Wei, Xin; Li, Enxiao; Wu, Yinying

    2016-06-01

    Anginex is an artificial synthetic small molecule β-sheet-forming peptide shown to have anti-angiogenesis and antitumor effects in various solid tumors. However, its molecular mechanism remains largely unclear and efficient delivery methods for anginex remains to be developed. We report on the development of recombinant adeno-associated virus (rAAV2)-delivered anginex and the underlying mechanism of anti-angiogenesis and antitumor effects of anginex. We have successfully developed the rAAV2 vector to efficiently express anginex (rAAV2‑anginex). Transduction of rAAV2-anginex significantly induced apoptosis, and inhibited the proliferation, migration, invasion and tube formation of human umbilical vein endothelial cells in vitro. Western blot analysis revealed that rAAV2‑anginex inhibited the phosphorylation of Akt, while inducing the phosphorylation of JNK and activation of the NF-κB signaling pathway. In an in vivo CAM assay and xenograft model of SKOV3, rAAV2-anginex significantly reduced microvessel density (MVD) and vascular endothelial growth factor 165 (VEGF165), as demonstrated by immunohistochemistry analysis. Importantly, rAAV2-anginex inhibited tumor growth in an ovarian cancer SKOV3 cell nude mouse xenograft model. Our results suggest that rAAV2-anginex may inhibit tumor angiogenesis and growth through regulating Akt, JNK and NF-κB signaling pathways. PMID:27035232

  18. Adeno-associated virus vectors and neurological gene therapy.

    PubMed

    Ojala, David S; Amara, Dominic P; Schaffer, David V

    2015-02-01

    Gene therapy has strong potential for treating a variety of genetic disorders, as demonstrated in recent clinical trials. There is unfortunately no scarcity of disease targets, and the grand challenge in this field has instead been the development of safe and efficient gene delivery platforms. To date, approximately two thirds of the 1800 gene therapy clinical trials completed worldwide have used viral vectors. Among these, adeno-associated virus (AAV) has emerged as particularly promising because of its impressive safety profile and efficiency in transducing a wide range of cell types. Gene delivery to the CNS involves both considerable promise and unique challenges, and better AAV vectors are thus needed to translate CNS gene therapy approaches to the clinic. This review discusses strategies for vector design, potential routes of administration, immune responses, and clinical applications of AAV in the CNS.

  19. Adeno-associated Virus as a Mammalian DNA Vector

    PubMed Central

    SALGANIK, MAX; HIRSCH, MATTHEW L.; SAMULSKI, RICHARD JUDE

    2015-01-01

    In the nearly five decades since its accidental discovery, adeno-associated virus (AAV) has emerged as a highly versatile vector system for both research and clinical applications. A broad range of natural serotypes, as well as an increasing number of capsid variants, has combined to produce a repertoire of vectors with different tissue tropisms, immunogenic profiles and transduction efficiencies. The story of AAV is one of continued progress and surprising discoveries in a viral system that, at first glance, is deceptively simple. This apparent simplicity has enabled the advancement of AAV into the clinic, where despite some challenges it has provided hope for patients and a promising new tool for physicians. Although a great deal of work remains to be done, both in studying the basic biology of AAV and in optimizing its clinical application, AAV vectors are currently the safest and most efficient platform for gene transfer in mammalian cells. PMID:26350320

  20. Targeted modifications in adeno-associated virus serotype 8 capsid improves its hepatic gene transfer efficiency in vivo.

    PubMed

    Sen, Dwaipayan; Gadkari, Rupali A; Sudha, Govindarajan; Gabriel, Nishanth; Kumar, Yesupatham Sathish; Selot, Ruchita; Samuel, Rekha; Rajalingam, Sumathi; Ramya, V; Nair, Sukesh C; Srinivasan, Narayanaswamy; Srivastava, Alok; Jayandharan, Giridhara R

    2013-04-01

    Recombinant adeno-associated virus vectors based on serotype 8 (AAV8) have shown significant promise for liver-directed gene therapy. However, to overcome the vector dose dependent immunotoxicity seen with AAV8 vectors, it is important to develop better AAV8 vectors that provide enhanced gene expression at significantly low vector doses. Since it is known that AAV vectors during intracellular trafficking are targeted for destruction in the cytoplasm by the host-cellular kinase/ubiquitination/proteasomal machinery, we modified specific serine/threonine kinase or ubiquitination targets on the AAV8 capsid to augment its transduction efficiency. Point mutations at specific serine (S)/threonine (T)/lysine (K) residues were introduced in the AAV8 capsid at the positions equivalent to that of the effective AAV2 mutants, generated successfully earlier. Extensive structure analysis was carried out subsequently to evaluate the structural equivalence between the two serotypes. scAAV8 vectors with the wild-type (WT) and each one of the S/T→Alanine (A) or K-Arginine (R) mutant capsids were evaluated for their liver transduction efficiency in C57BL/6 mice in vivo. Two of the AAV8-S→A mutants (S279A and S671A), and a K137R mutant vector, demonstrated significantly higher enhanced green fluorescent protein (EGFP) transcript levels (~9- to 46-fold) in the liver compared to animals that received WT-AAV8 vectors alone. The best performing AAV8 mutant (K137R) vector also had significantly reduced ubiquitination of the viral capsid, reduced activation of markers of innate immune response, and a concomitant two-fold reduction in the levels of neutralizing antibody formation in comparison to WT-AAV8 vectors. Vector biodistribution studies revealed that the K137R mutant had a significantly higher and preferential transduction of the liver (106 vs. 7.7 vector copies/mouse diploid genome) when compared to WT-AAV8 vectors. To further study the utility of the K137R-AAV8 mutant in

  1. Reproducible High Yields of Recombinant Adeno-Associated Virus Produced Using Invertebrate Cells in 0.02- to 200-Liter Cultures

    PubMed Central

    Cecchini, Sylvain; Virag, Tamas

    2011-01-01

    Abstract The large amounts of recombinant adeno-associated virus (rAAV) vector needed for clinical trials and eventual commercialization require robust, economical, reproducible, and scalable production processes compatible with current good manufacturing practice. rAAV produced using baculovirus and insect cells satisfies these conditions; however, recovering rAAV particles from 200-liter bioreactors is more complicated than bench-scale vector preparations. Using a variety of processing media, we developed a reliable and routine downstream procedure for rAAV production that is scalable from 0.02- to 200-liter cultures. To facilitate the upstream process, we adapted the titerless infected-cell preservation and scale-up process for rAAV production. Single-use aliquots of cryopreserved baculovirus-infected insect cells (BIIC) are thawed and added to the suspension culture to achieve the desired ratio of BIIC to rAAV-producer cells. By using conditions established with small-scale cultures, rAAV was produced in larger volume cultures. Strikingly consistent rAAV yields were attained in cultures ranging from 10 liters to 200 liters. Based on the final yield, each cell produced 18,000 ± 6,800 particles of purified rAAV in 10-, 20-, 100-, and 200-liter cultures. Thus, with an average cell density of 4.32 × 106 cells/ml, ≥1016 purified rAAV particles are produced from 100 to 200 liters. The downstream process resulted in about 20% recovery estimated from comparing the quantities of capsid protein antigen in the crude bioreactor material and in the final, purified product. The ease and reproducibility of rAAV production in 200-liter bioreactors suggest that the limit has not been reached, and 500-liter productions are planned. PMID:21381980

  2. Optimization of Recombinant Adeno-Associated Virus-Mediated Expression for Large Transgenes, Using a Synthetic Promoter and Tandem Array Enhancers

    PubMed Central

    Yan, Ziying; Sun, Xingshen; Feng, Zehua; Li, Guiying; Fisher, John T.; Stewart, Zoe A.

    2015-01-01

    Abstract The packaging capacity of recombinant adeno-associated viral (rAAV) vectors limits the size of the promoter that can be used to express the 4.43-kb cystic fibrosis transmembrane conductance regulator (CFTR) cDNA. To circumvent this limitation, we screened a set of 100-mer synthetic enhancer elements, composed of ten 10-bp repeats, for their ability to augment CFTR transgene expression from a short 83-bp synthetic promoter in the context of an rAAV vector designed for use in the cystic fibrosis (CF) ferret model. Our initial studies assessing transcriptional activity in monolayer (nonpolarized) cultures of human airway cell lines and primary ferret airway cells revealed that three of these synthetic enhancers (F1, F5, and F10) significantly promoted transcription of a luciferase transgene in the context of plasmid transfection. Further analysis in polarized cultures of human and ferret airway epithelia at an air–liquid interface (ALI), as well as in the ferret airway in vivo, demonstrated that the F5 enhancer produced the highest level of transgene expression in the context of an AAV vector. Furthermore, we demonstrated that increasing the size of the viral genome from 4.94 to 5.04 kb did not significantly affect particle yield of the vectors, but dramatically reduced the functionality of rAAV-CFTR vectors because of small terminal deletions that extended into the CFTR expression cassette of the 5.04-kb oversized genome. Because rAAV-CFTR vectors greater than 5 kb in size are dramatically impaired with respect to vector efficacy, we used a shortened ferret CFTR minigene with a 159-bp deletion in the R domain to construct an rAAV vector (AV2/2.F5tg83-fCFTRΔR). This vector yielded an ∼17-fold increase in expression of CFTR and significantly improved Cl– currents in CF ALI cultures. Our study has identified a small enhancer/promoter combination that may have broad usefulness for rAAV-mediated CF gene therapy to the airway. PMID:25763813

  3. Production, purification and preliminary X-ray crystallographic studies of adeno-associated virus serotype 7

    SciTech Connect

    Quesada, Odayme; Gurda, Brittney; Govindasamy, Lakshmanan; McKenna, Robert; Kohlbrenner, Erik; Aslanidi, George; Zolotukhin, Sergei; Muzyczka, Nicholas; Agbandje-McKenna, Mavis

    2007-12-01

    Crystals of baculovirus-expressed adeno-associated virus serotype 7 capsids have been produced which diffract X-rays to ∼3.0 Å resolution. Crystals of baculovirus-expressed adeno-associated virus serotype 7 capsids diffract X-rays to ∼3.0 Å resolution. The crystals belong to the rhombohedral space group R3, with unit-cell parameters a = 252.4, c = 591.2 Å in the hexagonal setting. The diffraction data were processed and reduced to an overall completeness of 79.0% and an R{sub merge} of 12.0%. There are three viral capsids in the unit cell. The icosahedral threefold axis is coincident with the crystallographic threefold axis, resulting in one third of a capsid (20 monomers) per crystallographic asymmetric unit. The orientation of the viral capsid has been determined by rotation-function searches and is positioned at (0, 0, 0) by packing considerations.

  4. Biosafety of recombinant adeno-associated virus vectors.

    PubMed

    Dismuke, David J; Tenenbaum, Liliane; Samulski, R Jude

    2013-12-01

    It is hoped that the use of gene transfer technology to treat both monogenetic and acquired diseases may soon become a common therapy option in medicine. For gene therapy to achieve this objective, any gene delivery method will have to meet several criteria, including ease of manufacturing, efficient gene transfer to target tissue, long-term gene expression to alleviate the disease, and most importantly safety in patients. Viral vectors are an attractive choice for use in gene therapy protocols due to their relative efficiency in gene delivery. Since there is inherent risk in using viruses, investigators in the gene therapy community have devoted extensive efforts toward reengineering viral vectors for enhance safety. Here we review the approaches and technologies that are being evaluated for the use of recombinant vectors based upon adeno-associated virus (AAV) in the treatment of a variety of human diseases. AAV is currently the only known human DNA virus that is non-pathogenic and AAV-based vectors are classified as Risk Group 1 agents for all laboratory and animal studies carried out in the US. Although its apparent safety in natural infection and animals appears well documented, we examine the accumulated knowledge on the biology and vectorology of AAV, lessons learned from gene therapy clinical trials, and how this information is impacting current vector design and manufacturing with an overall emphasis on biosafety. PMID:24195602

  5. Recombinant adeno-associated virus type 2 replication and packaging is entirely supported by a herpes simplex virus type 1 amplicon expressing Rep and Cap.

    PubMed Central

    Conway, J E; Zolotukhin, S; Muzyczka, N; Hayward, G S; Byrne, B J

    1997-01-01

    Recombinant adeno-associated virus (AAV) type 2 (rAAV) vectors have recently been shown to have great utility as gene transfer agents both in vitro and in vivo. One of the problems associated with the use of rAAV vectors has been the difficulty of large-scale vector production. Low-efficiency plasmid transfection of the rAAV vector and complementing AAV type 2 (AAV-2) functions (rep and cap) followed by superinfection with adenovirus has been the standard approach to rAAV production. The objectives of this study were to demonstrate the ability of a recombinant herpes simplex virus type 1 (HSV-1) amplicon expressing AAV-2 Rep and Cap to support replication and packaging of rAAV vectors. HSV-1 amplicon vectors were constructed which contain the AAV-2 rep and cap genes under control of their native promoters (p5, p19, and p40). An HSV-1 amplicon vector, HSV-RC/KOS or HSV-RC/d27, was generated by supplying helper functions with either wild-type HSV-1 (KOS strain) or the ICP27-deleted mutant of HSV-1, d27-1, respectively. Replication of the amplicon stocks is not inhibited by the presence of AAV-2 Rep proteins, which highlights important differences between HSV-1 and adenovirus replication and the mechanism of providing helper function for productive AAV infection. Coinfection of rAAV and HSV-RC/KOS resulted in the replication and amplification of rAAV genomes. Similarly, rescue and replication of rAAV genomes occurred when rAAV vector plasmids were transfected into cells followed by HSV-RC/KOS infection and when two rAAV proviral cell lines were infected with HSV-RC/KOS or HSV-RC/d27. Production of infectious rAAV by rescue from two rAAV proviral cell lines has also been achieved with HSV-RC/KOS and HSV-RC/d27. The particle titer of rAAV produced with HSV-RC/d27 is equal to that achieved by supplying rep and cap by transfection followed by adenovirus superinfection. Importantly, no detectable wild-type AAV-2 is generated with this approach. These results demonstrate

  6. High-titer recombinant adeno-associated virus production utilizing a recombinant herpes simplex virus type I vector expressing AAV-2 Rep and Cap.

    PubMed

    Conway, J E; Rhys, C M; Zolotukhin, I; Zolotukhin, S; Muzyczka, N; Hayward, G S; Byrne, B J

    1999-06-01

    Recombinant adeno-associated virus type 2 (rAAV) vectors have recently been used to achieve long-term, high level transduction in vivo. Further development of rAAV vectors for clinical use requires significant technological improvements in large-scale vector production. In order to facilitate the production of rAAV vectors, a recombinant herpes simplex virus type I vector (rHSV-1) which does not produce ICP27, has been engineered to express the AAV-2 rep and cap genes. The optimal dose of this vector, d27.1-rc, for AAV production has been determined and results in a yield of 380 expression units (EU) of AAV-GFP produced from 293 cells following transfection with AAV-GFP plasmid DNA. In addition, d27.1-rc was also efficient at producing rAAV from cell lines that have an integrated AAV-GFP provirus. Up to 480 EU/cell of AAV-GFP could be produced from the cell line GFP-92, a proviral, 293 derived cell line. Effective amplification of rAAV vectors introduced into 293 cells by infection was also demonstrated. Passage of rAAV with d27. 1-rc results in up to 200-fold amplification of AAV-GFP with each passage after coinfection of the vectors. Efficient, large-scale production (>109 cells) of AAV-GFP from a proviral cell line was also achieved and these stocks were free of replication-competent AAV. The described rHSV-1 vector provides a novel, simple and flexible way to introduce the AAV-2 rep and cap genes and helper virus functions required to produce high-titer rAAV preparations from any rAAV proviral construct. The efficiency and potential for scalable delivery of d27.1-rc to producer cell cultures should facilitate the production of sufficient quantities of rAAV vectors for clinical application.

  7. Lentiviral and adeno-associated vector-based therapy for motor neuron disease through RNAi.

    PubMed

    Towne, Chris; Aebischer, Patrick

    2009-01-01

    RNAi holds promise for neurodegenerative disorders caused by gain-of-function mutations. We and others have demonstrated proof-of-principle for viral-mediated RNAi in a mouse model of motor neuron disease. Lentivirus and adeno-associated virus have been used to knockdown levels of mutated superoxide dismutase 1 (SOD1) in the G93A SOD1 mouse model of familial amyotrophic lateral sclerosis (fALS) to result in beneficial therapeutic outcomes. This chapter describes the design, production, and titration of lentivirus and adeno-associated virus capable of mediating SOD1 knockdown in vivo. The delivery of the virus to the spinal cord directly, through intraspinal injection, or indirectly, through intramuscular injection, is also described, as well as the methods pertaining to the analysis of spinal cord transduction, SOD1 silencing, and determination of motor neuron protection.

  8. Heavy and Light Particles of Adeno-Associated Virus

    PubMed Central

    de la Maza, Luis M.; Carter, Barrie J.

    1980-01-01

    KB cells coinfected with adenovirus and adeno-associated virus (AAV) yielded two kinds of infectious AAV particles that banded in CsCl at densities of 1.45 and 1.41 g/cm2, respectively. The 1.45 band was found to be composed of a heterogeneous group of viral particles that could be subfractionated by velocity sedimentation. The main component from this band had a smaller S value (109) than the main component from the 1.41 band (111S), although both had the same DNA/protein ratio and the same density in metrizamide gradients. Continuous-label experiments showed that early after infection, both components (1.45 and 1.41) were generated in the same amounts, but this was followed by a relative increase in the proportion of the 1.41 component over the 1.45 particles. Pulse-chase analysis failed to demonstrate a precursor-product relationship between these two bands. The slower-sedimenting components from the 1.45 band were unstable in CsCl and were present in a greater proportion early after infection. These particles contained DNA that was enriched for the terminal sequences of the AAV genomes and was accessible to digestion with micrococcal nuclease. Images PMID:6245263

  9. Safety and liver transduction efficacy of rAAV5-cohPBGD in nonhuman primates: a potential therapy for acute intermittent porphyria.

    PubMed

    Pañeda, Astrid; Lopez-Franco, Esperanza; Kaeppel, Christine; Unzu, Carmen; Gil-Royo, Ana Gloria; D'Avola, Delia; Beattie, Stuart G; Olagüe, Cristina; Ferrero, Roberto; Sampedro, Ana; Mauleon, Itsaso; Hermening, Stephan; Salmon, Florence; Benito, Alberto; Gavira, Juan Jose; Cornet, María Eugenia; del Mar Municio, María; von Kalle, Christof; Petry, Harald; Prieto, Jesus; Schmidt, Manfred; Fontanellas, Antonio; González-Aseguinolaza, Gloria

    2013-12-01

    Acute intermittent porphyria (AIP) results from haplo-insufficient activity of porphobilinogen deaminase (PBGD) and is characterized clinically by life-threatening, acute neurovisceral attacks. To date, liver transplantation is the only curative option for AIP. The aim of the present preclinical nonhuman primate study was to determine the safety and transduction efficacy of an adeno-associated viral vector encoding PBGD (recombinant AAV serotype 5-codon-optimized human porphobilinogen deaminase, rAAV5-cohPBGD) administered intravenously as part of a safety program to start a clinical study in patients with AIP. Macaques injected with either 1 × 10(13) or 5 × 10(13) vector genomes/kg of clinical-grade rAAV5-cohPBGD were monitored by standardized clinical parameters, and vector shedding was analyzed. Liver transduction efficacy, biodistribution, vector integration, and histopathology at day 30 postvector administration were determined. There was no evidence of acute toxicity, and no adverse effects were observed. The vector achieved efficient and homogenous hepatocellular transduction, reaching transgenic PBGD expression levels equivalent to 50% of the naturally expressed PBGD mRNA. No cellular immune response was detected against the human PBGD or AAV capsid proteins. Integration site analysis in transduced liver cells revealed an almost random integration pattern supporting the good safety profile of rAAV5-cohPBGD. Together, data obtained in nonhuman primates indicate that rAAV5-cohPBGD represents a safe therapy to correct the metabolic defect present in AIP patients. PMID:24070415

  10. A scalable method for the production of high-titer and high-quality adeno-associated type 9 vectors using the HSV platform

    PubMed Central

    Adamson-Small, Laura; Potter, Mark; Falk, Darin J; Cleaver, Brian; Byrne, Barry J; Clément, Nathalie

    2016-01-01

    Recombinant adeno-associated vectors based on serotype 9 (rAAV9) have demonstrated highly effective gene transfer in multiple animal models of muscular dystrophies and other neurological indications. Current limitations in vector production and purification have hampered widespread implementation of clinical candidate vectors, particularly when systemic administration is considered. In this study, we describe a complete herpes simplex virus (HSV)-based production and purification process capable of generating greater than 1 × 1014 rAAV9 vector genomes per 10-layer CellSTACK of HEK 293 producer cells, or greater than 1 × 105 vector genome per cell, in a final, fully purified product. This represents a 5- to 10-fold increase over transfection-based methods. In addition, rAAV vectors produced by this method demonstrated improved biological characteristics when compared to transfection-based production, including increased infectivity as shown by higher transducing unit-to-vector genome ratios and decreased total capsid protein amounts, shown by lower empty-to-full ratios. Together, this data establishes a significant improvement in both rAAV9 yields and vector quality. Further, the method can be readily adapted to large-scale good laboratory practice (GLP) and good manufacturing practice (GMP) production of rAAV9 vectors to enable preclinical and clinical studies and provide a platform to build on toward late-phases and commercial production. PMID:27222839

  11. Purification of recombinant adeno-associated virus by iodixanol gradient ultracentrifugation allows rapid and reproducible preparation of vector stocks for gene transfer in the nervous system.

    PubMed

    Hermens, W T; ter Brake, O; Dijkhuizen, P A; Sonnemans, M A; Grimm, D; Kleinschmidt, J A; Verhaagen, J

    1999-07-20

    Recombinant adeno-associated virus (rAAV) vectors have become attractive tools for in vivo gene transfer. The production and purification of high-titer rAAV vector stocks for experimental and therapeutic gene transfer continue to undergo improvement. Standard rAAV vector purification protocols include the purification of the vector by cesium chloride (CsCl)-density gradient centrifugation followed by extensive desalination via dialysis against a physiological buffer for in vivo use. These procedures are extremely time consuming and frequently result in a substantial loss of the infectious vector titer. As an alternative to CsCl we have investigated the use of Iodixanol, an X-ray contrast solution, as the density-gradient medium. Purification of rAAV vectors by Iodixanol shortened the centrifugation period to 3 hr and resulted in reproducible concentration and purification of rAAV-vector stocks. We show that injection of rAAV derived from an Iodixanol gradient can be used for in vivo gene transfer applications in the brain and spinal cord without detectable cytopathic effects and directing stable transgene expression for at least 2 months.

  12. An Adenovirus Type 5 Mutant with the Preterminal Protein Gene Deleted Efficiently Provides Helper Functions for the Production of Recombinant Adeno-Associated Virus

    PubMed Central

    Maxwell, Ian H.; Maxwell, Francoise; Schaack, Jerome

    1998-01-01

    Production of recombinant adeno-associated virus (rAAV) requires helper functions that have routinely been provided by infection of the producer cells with adenovirus. Complete removal and/or inactivation of progeny adenovirus, present in such rAAV preparations, presents significant difficulty. Here, we report that an adenovirus type 5 (Ad5) mutant with the preterminal protein (pTP) gene deleted can provide helper function for the growth of rAAV. At high multiplicity, Ad5dl308ΔpTP was as efficient as the phenotypically wild-type Ad5dl309 in permitting growth of rAAV. Use of Ad5dl308ΔpTP, which is incapable of replication in the absence of complementation for pTP, as a helper avoids the need to remove contaminating adenovirus infectious activity by heat inactivation or by purification. Comparison of the transducing ability of rAAV generated with either Ad5dl308ΔpTP or Ad5dl309 as a helper demonstrated that the heat inactivation protocol generally used does not remove all of the helper Ad5dl309 function. PMID:9733887

  13. Structural Insights into Adeno-Associated Virus Serotype 5

    PubMed Central

    Govindasamy, Lakshmanan; DiMattia, Michael A.; Gurda, Brittney L.; Halder, Sujata; McKenna, Robert; Chiorini, John A.; Muzyczka, Nicholas; Zolotukhin, Sergei

    2013-01-01

    The adeno-associated viruses (AAVs) display differential cell binding, transduction, and antigenic characteristics specified by their capsid viral protein (VP) composition. Toward structure-function annotation, the crystal structure of AAV5, one of the most sequence diverse AAV serotypes, was determined to 3.45-Å resolution. The AAV5 VP and capsid conserve topological features previously described for other AAVs but uniquely differ in the surface-exposed HI loop between βH and βI of the core β-barrel motif and have pronounced conformational differences in two of the AAV surface variable regions (VRs), VR-IV and VR-VII. The HI loop is structurally conserved in other AAVs despite amino acid differences but is smaller in AAV5 due to an amino acid deletion. This HI loop is adjacent to VR-VII, which is largest in AAV5. The VR-IV, which forms the larger outermost finger-like loop contributing to the protrusions surrounding the icosahedral 3-fold axes of the AAVs, is shorter in AAV5, creating a smoother capsid surface topology. The HI loop plays a role in AAV capsid assembly and genome packaging, and VR-IV and VR-VII are associated with transduction and antigenic differences, respectively, between the AAVs. A comparison of interior capsid surface charge and volume of AAV5 to AAV2 and AAV4 showed a higher propensity of acidic residues but similar volumes, consistent with comparable DNA packaging capacities. This structure provided a three-dimensional (3D) template for functional annotation of the AAV5 capsid with respect to regions that confer assembly efficiency, dictate cellular transduction phenotypes, and control antigenicity. PMID:23926356

  14. Structure of Neurotropic Adeno-Associated Virus AAVrh.8

    PubMed Central

    Halder, Sujata; Van Vliet, Kim; Smith, J Kennon; Duong, Thao Thi Phuong; McKenna, Robert; Wilson, James M.; Agbandje-McKenna, Mavis

    2015-01-01

    Adeno-associated virus rhesus isolate 8 (AAVrh.8) is a leading vector for the treatment of neurological diseases due to its efficient transduction of neuronal cells and reduced peripheral tissue tropism. Toward identification of the capsid determinants for these properties, the structure of AAVrh.8 was determined by X-ray crystallography to 3.5 Å resolution and compared to those of other AAV isolates. The capsid viral protein (VP) structure consists of an αA helix and an eight-stranded anti-parallel β-barrel core conserved in parvoviruses, and large insertion loop regions between the β-strands form the capsid surface topology. The AAVrh.8 capsid exhibits the surface topology conserved in all AAVs: depressions at the icosahedral twofold axis and surrounding the cylindrical channel at the fivefold axis, and three protrusions around the threefold axis. A structural comparison to serotypes AAV2, AAV8, and AAV9, to which AAVrh.8 shares ~84, ~91, and ~87% VP sequence identity, respectively, revealed differences in the surface loops known to affect receptor binding, transduction efficiency, and antigenicity. Consistent with this observation, biochemical assays showed that AAVrh.8 is unable to bind heparin and does not cross-react with conformational monoclonal antibodies directed against the other AAVs compared. This structure of AAVrh.8 thus identified capsid surface differences which can serve as template regions for rational design of vectors with enhanced transduction for specific tissues and escape pre-existing antibody recognition. These features are essential for the creation of an AAV vector toolkit that is amenable to personalized disease treatment. PMID:26334681

  15. Multiple human papillomavirus genes affect the adeno-associated virus life cycle.

    PubMed

    You, Hong; Liu, Yong; Prasad, C Krishna; Agrawal, Nalini; Zhang, Dazhi; Bandyopadhyay, Sarmistha; Liu, Hongmei; Kay, Helen H; Mehta, Jawahar L; Hermonat, Paul L

    2006-01-20

    The risk of cervical cancer, one of the most prevalent cancers in the world, is determined by two viruses. Human papillomavirus (HPV) is the main risk factor for developing cervical cancer. However, although little known, it is well substantiated that the human Parvovirus adeno-associated virus type 2 (AAV), and its encoded Rep78 protein, interacts with HPV and lowers the risk of cervical cancer. HPV also contributes to AAV inhibition by serving as a helper virus for AAV and stimulating higher AAV replication levels. Here we surveyed four HPV-16 early genes, E1, E2, E6 and E7, for their ability to increase/decrease the basal level of AAV replication in stratifying squamous epithelium (the epithelial raft culture system). It was found that the HPV-16 E1, E2 and E6 genes were able to help/enhance AAV-2 replication in epithelial raft cultures. Under these conditions, with all the HPV genes being expressed from the AAV p5 promoter, E1 appeared to have the strongest enhancing effect on AAV DNA replication (Southern blot), RNA expression (RT-PCR), protein expression (Western blot) and AAV virion production (2 plate-Southern blot). Further study of E1 mutants showed that the carboxy-half of E1, the putative helicase/ATPase domain, was the main contributor of helper activity. These data are important for understanding the HPV-AAV interaction and its effect on modifying cervical cancer risk. These data also suggest the possibility that the identified HPV helper genes may be useful in the generation of recombinant (r)AAV virions for gene therapy, as rAAV is increasing in popularity for such purposes.

  16. Recombinant adeno-associated virus-mediated high-efficiency, transient expression of the murine cationic amino acid transporter (ecotropic retroviral receptor) permits stable transduction of human HeLa cells by ecotropic retroviral vectors.

    PubMed Central

    Bertran, J; Miller, J L; Yang, Y; Fenimore-Justman, A; Rueda, F; Vanin, E F; Nienhuis, A W

    1996-01-01

    Adeno-associated virus has a broad host range, is nonpathogenic, and integrates into a preferred location on chromosome 19, features that have fostered development of recombinant adeno-associated viruses (rAAV) as gene transfer vectors for therapeutic applications. We have used an rAAV to transfer and express the murine cationic amino acid transporter which functions as the ecotropic retroviral receptor, thereby rendering human cells conditionally susceptible to infection by an ecotropic retroviral vector. The proportion of human HeLa cells expressing the receptor at 60 h varied as a function of the multiplicity of infection (MOI) with the rAAV. Cells expressing the ecotropic receptor were efficiently transduced with an ecotropic retroviral vector encoding a nucleus-localized form of beta-galactosidase. Cells coexpressing the ecotropic receptor and nucleus-localized beta-galactosidase were isolated by fluorescence-activated cell sorting, and cell lines were recovered by cloning at limiting dilution. After growth in culture, all clones contained the retroviral vector genome, but fewer than 10% (3 of 47) contained the rAAV genome and continued to express the ecotropic receptor. The ecotropic receptor coding sequences in the rAAV genome were under the control of a tetracycline-modulated promoter. In the presence of tetracycline, receptor expression was low and the proportion of cells transduced by the ecotropic retroviral vector was decreased. Modulation of receptor expression was achieved with both an episomal and an integrated form of the rAAV genome. These data establish that functional gene expression from an rAAV genome can occur transiently without genome integration. PMID:8794313

  17. Recombinant Adeno-associated virus (rAAV)-mediated transduction and optogenetic manipulation of cortical neurons in vitro

    NASA Astrophysics Data System (ADS)

    Lange, Wienke; Jin, Lei; Maybeck, Vanessa; Meisenberg, Annika; Baumann, Arnd; Offenhäusser, Andreas

    2014-03-01

    Genetically encoded light-sensitive proteins can be used to manipulate and observe cellular functions. According to different modes of action, these proteins are divided into actuators like the blue-light gated cation channel Channelrhodopsin-2 (ChR2) and detectors like the calcium sensor GCaMP. In order to optogenetically control and study the activity of rat primary cortical neurons, we established a transduction procedure using recombinant Adeno-associated viruses (rAAVs) as gene-ferries. Thereby, we achieved high transduction rates of these neurons with ChR2. In ChR2 expressing neurons, action potentials could be repeatedly and precisely elicited with laser pulses and measured via patch clamp recording.

  18. Serotype-specific Binding Properties and Nanoparticle Characteristics Contribute to the Immunogenicity of rAAV1 Vectors.

    PubMed

    Ferrand, Maxime; Da Rocha, Sylvie; Corre, Guillaume; Galy, Anne; Boisgerault, Florence

    2015-06-01

    The immunogenic properties of recombinant adeno-associated virus (rAAV) gene transfer vectors remain incompletely characterized in spite of their usage as gene therapy vectors or as vaccines. Molecular interactions between rAAV and various types of antigen-presenting cells (APCs), as well as the impact of these interactions on transgene or capsid-specific immunization remain unclear. We herein show that binding motifs recognized by the capsid and which determine the vector tissue tropism are also critical for key immune activation processes. Using rAAV capsid serotype 1 (rAAV1) vectors which primary receptors on target cells are α2,3 and α2,6 N-linked sialic acids, we show that sialic acid-dependent binding of rAAV1 on APCs is essential to trigger CD4(+) T-cell responses by increasing rAAV1 uptake and contributing to antigenic presentation of both the capsid and transgene product although this involves different APCs. In addition, the nanoparticulate structure of the vector in itself appears to be sufficient to trigger mobilization and activation of some APCs. Therefore, combinations of structural and of serotype-specific cell-targeting properties of rAAV1 determine its complex immunogenicity. These findings may be useful to guide a selection of rAAV variants depending on the intended level of immunogenicity for either gene therapy or vaccination applications.

  19. Treatment of retinitis pigmentosa due to MERTK mutations by ocular subretinal injection of adeno-associated virus gene vector: results of a phase I trial.

    PubMed

    Ghazi, Nicola G; Abboud, Emad B; Nowilaty, Sawsan R; Alkuraya, Hisham; Alhommadi, Abdulrahman; Cai, Huimin; Hou, Rui; Deng, Wen-Tao; Boye, Sanford L; Almaghamsi, Abdulrahman; Al Saikhan, Fahad; Al-Dhibi, Hassan; Birch, David; Chung, Christopher; Colak, Dilek; LaVail, Matthew M; Vollrath, Douglas; Erger, Kirsten; Wang, Wenqiu; Conlon, Thomas; Zhang, Kang; Hauswirth, William; Alkuraya, Fowzan S

    2016-03-01

    MERTK is an essential component of the signaling network that controls phagocytosis in retinal pigment epithelium (RPE), the loss of which results in photoreceptor degeneration. Previous proof-of-concept studies have demonstrated the efficacy of gene therapy using human MERTK (hMERTK) packaged into adeno-associated virus (AAV2) in treating RCS rats and mice with MERTK deficiency. The purpose of this study was to assess the safety of gene transfer via subretinal administration of rAAV2-VMD2-hMERTK in subjects with MERTK-associated retinitis pigmentosa (RP). After a preclinical phase confirming the safety of the study vector in monkeys, six patients (aged 14 to 54, mean 33.3 years) with MERTK-related RP and baseline visual acuity (VA) ranging from 20/50 to <20/6400 were entered in a phase I open-label, dose-escalation trial. One eye of each patient (the worse-seeing eye in five subjects) received a submacular injection of the viral vector, first at a dose of 150 µl (5.96 × 10(10)vg; 2 patients) and then 450 µl (17.88 × 10(10)vg; 4 patients). Patients were followed daily for 10 days at 30, 60, 90, 180, 270, 365, 540, and 730 days post-injection. Collected data included (1) full ophthalmologic examination including best-corrected VA, intraocular pressure, color fundus photographs, macular spectral domain optical coherence tomography and full-field stimulus threshold test (FST) in both the study and fellow eyes; (2) systemic safety data including CBC, liver and kidney function tests, coagulation profiles, urine analysis, AAV antibody titers, peripheral blood PCR and ASR measurement; and (3) listing of ophthalmological or systemic adverse effects. All patients completed the 2-year follow-up. Subretinal injection of rAAV2-VMD2-hMERTK was associated with acceptable ocular and systemic safety profiles based on 2-year follow-up. None of the patients developed complications that could be attributed to the gene vector with certainty. Postoperatively, one patient developed

  20. Developing protocols for recombinant adeno-associated virus-mediated gene therapy in space.

    PubMed

    Ohi, S

    2000-07-01

    With the advent of the era of International Space Station (ISS) and Mars exploration, it is important more than ever to develop means to cure genetic and acquired diseases, which include cancer and AIDS, for these diseases hamper human activities. Thus, our ultimate goal is to develop protocols for gene therapy, which are suitable to humans on the earth as well as in space. Specifically, we are trying to cure the hemoglobinopathies, beta-thalassemia (Cooley's anemia) and sickle cell anemia, by gene therapy. These well-characterized molecular diseases serve as models for developing ex vivo gene therapy, which would apply to other disorders as well. For example, the procedure may become directly relevant to treating astronauts for space-anemia, immune suppression and bone marrow derived tumors, e.g. leukemia. The adeno-associated virus serotype 2 (AAV2) is a non-pathogenic human parvovirus with broad host-range and tissue specificity. Exploiting these characteristics we have been developing protocols for recombinant AAV2 (rAAV)-based gene therapy. With the rAAV constructs and hematopoietic stem cell (HSC) culture systems in hand, we are currently attempting to cure the mouse model of beta-thalassemia [C57BL/6- Hbbth/Hbbth, Hb(d-minor)] by HSC transplantation (HST) as well as by gene therapy. This paper describes the current status of our rAAV-gene therapy research.

  1. Short-lived recombinant adeno-associated virus transgene expression in dystrophic muscle is associated with oxidative damage to transgene mRNA

    PubMed Central

    Dupont, Jean-Baptiste; Tournaire, Benoit; Georger, Christophe; Marolleau, Béatrice; Jeanson-Leh, Laurence; Ledevin, Mireille; Lindenbaum, Pierre; Lecomte, Emilie; Cogné, Benjamin; Dubreil, Laurence; Larcher, Thibaut; Gjata, Bernard; Van Wittenberghe, Laetitia; Le Guiner, Caroline; Penaud-Budloo, Magalie; Snyder, Richard O; Moullier, Philippe; Léger, Adrien

    2015-01-01

    Preclinical gene therapy strategies using recombinant adeno-associated virus (AAV) vectors in animal models of Duchenne muscular dystrophy have shown dramatic phenotype improvements, but long-lasting efficacy remains questionable. It is believed that in dystrophic muscles, transgene persistence is hampered, notably by the progressive loss of therapeutic vector genomes resulting from muscle fibers degeneration. Intracellular metabolic perturbations resulting from dystrophin deficiency could also be additional factors impacting on rAAV genomes and transgene mRNA molecular fate. In this study, we showed that rAAV genome loss is not the only cause of reduced transgene mRNA level and we assessed the contribution of transcriptional and post-transcriptional factors. We ruled out the implication of transgene silencing by epigenetic mechanisms and demonstrated that rAAV inhibition occurred mostly at the post-transcriptional level. Since Duchenne muscular dystrophy (DMD) physiopathology involves an elevated oxidative stress, we hypothesized that in dystrophic muscles, transgene mRNA could be damaged by oxidative stress. In the mouse and dog dystrophic models, we found that rAAV-derived mRNA oxidation was increased. Interestingly, when a high expression level of a therapeutic transgene is achieved, oxidation is less pronounced. These findings provide new insights into rAAV transductions in dystrophic muscles, which ultimately may help in the design of more effective clinical trials. PMID:26029721

  2. Enhancement of Recombinant Adeno-Associated Virus Type 2-Mediated Transgene Expression in a Lung Epithelial Cell Line by Inhibition of the Epidermal Growth Factor Receptor

    PubMed Central

    Smith, Andrew D.; Collaco, Roy F.; Trempe, James P.

    2003-01-01

    Recombinant adeno-associated viruses (rAAVs) have attracted considerable interest as gene delivery systems because they show long-term expression in vivo and transduce numerous cell types. Limitations to successful gene transduction from rAAVs have prompted investigations of a variety of treatments to enhance transgene expression from rAAV vectors. Tyrphostin-1, an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, dramatically enhances rAAV transgene expression. Elegant studies have demonstrated that a single-strand D-sequence-binding protein (ssDBP) is phosphorylated by EGFR and binds to the D sequence element in the AAV terminal repeat (TR). Binding of the Tyr-phosphorylated ssDBP prevents conversion of single-stranded vector DNA to a double-strand conformation. We observed dramatic increases in transgene expression in lung epithelial cells (IB3) with tyrphostin treatment. Gel shift analysis of ssDBP revealed that its DNA binding characteristics were unchanged after tyrphostin treatment or adenovirus infection. Tyrphostin stimulated rAAV transgene expression to a greater extent than adenovirus coinfection. Southern hybridizations revealed that the vector DNA remained in the single-strand conformation in tyrphostin-treated cells but double-stranded replicative form monomer DNA was most abundant in adenovirus-infected cells. Northern analyses revealed that tyrphostin treatment enhanced mRNA accumulation more than in adenovirus-infected cultures even though replicative form DNA was undetectable. Analysis of the JNK, ERK, and p38K mitogen-activated protein kinase pathways revealed that tyrphostin treatment stimulated the activity of JNK and p38K. Our data suggest that tyrphostin-induced alteration of stress response pathways results in dramatic enhancement of transcription on linear vector DNA templates in the IB3 cell line. These results expand the downstream targets of the EGFR in regulating rAAV transduction. PMID:12743297

  3. Adeno-associated virus mediated gene transfer of Shepherdin inhibits gallbladder carcinoma growth in vitro and in vivo.

    PubMed

    Zhu, Aijun; Ren, Yu; Wang, Ning; Jin, Qiuyue; Zhang, Dongchang; Yang, Guangxiao; Wang, Quanying

    2015-11-01

    Gene therapy, a significantly crucial strategy for treatment of malignancies, has been gradually accepted in recent years. However, this therapeutic approach has being facing great challenges concerning problems which include complicated development of cancer with multiple gene control, effective target shortage, low efficiency of gene transferring and safety of the vector delivery system. Shepherdin, a novel peptidomimetic molecule designed from Lys-79 to Leu-87 of survivin, has been identified as a tumor suppressor with the function that can not only competitively interfere with the interaction between survivin and Hsp90 (heat shock protein-90) leading to the degradation of survivin to anti-tumor, but also competitively target the ATP-dependent binding pocket of Hsp90 resulting in the dysfunction of Hsp90 chaperone to cell apoptosis via a mitochondrial dependent or independent pathway. In the present study, we designed and constructed a recombinant Adeno-associated virus (rAAV) loading fusion gene NT4-TAT-6His-Shepherdin. The expression of Shepherdin in gallbladder carcinoma (GBC) cells was detected and its strong inhibitory effects against GBC growth were evaluated after AAV mediated gene transfer of Shepherdin into GBC cells and xenograft tumors. MTT assay and flow cytometric analysis demonstrated that rAAV containing Shepherdin gene could significantly inhibit the growth of GBC and this effect was closely associated with apoptosis. These results indicated that rAAV-NT4-TAT-6His-Shepherdin may be considered a novel therapeutic strategy in the gene therapy for gallbladder carcinoma.

  4. Recombinant Adeno-Associated Virus Vector Genomes Take the Form of Long-Lived, Transcriptionally Competent Episomes in Human Muscle.

    PubMed

    Schnepp, Bruce C; Chulay, Jeffrey D; Ye, Guo-Jie; Flotte, Terence R; Trapnell, Bruce C; Johnson, Philip R

    2016-01-01

    Gene augmentation therapy as a strategy to treat alpha-1 antitrypsin (AAT) deficiency has reached phase 2 clinical testing in humans. Sustained serum levels of AAT have been observed beyond one year after intramuscular administration of a recombinant adeno-associated virus (rAAV) vector expressing the AAT gene. In this study, sequential muscle biopsies obtained at 3 and 12 months after vector injection were examined for the presence of rAAV vector genomes. Each biopsy sample contained readily detectable vector DNA, the majority of which existed as double-stranded supercoiled and open circular episomes. Episomes persisted through 12 months, although at slightly lower levels than observed at 3 months. There was a clear dose response when comparing the low- and mid-vector-dose groups to the high-dose group. The highest absolute copy numbers were found in a high-dose subject, and serum AAT levels at 12 months confirmed that the high-dose group also had the highest sustained serum AAT levels. Sequence analysis revealed that the vast majority of episomes contained double-D inverted terminal repeats ranging from fully intact to severely deleted. Molecular clones of vector genomes derived directly from the biopsies were transcriptionally active, potentially identifying them as the source of serum AAT in the trial subjects.

  5. Adeno-associated virus mediated gene transfer of Shepherdin inhibits gallbladder carcinoma growth in vitro and in vivo.

    PubMed

    Zhu, Aijun; Ren, Yu; Wang, Ning; Jin, Qiuyue; Zhang, Dongchang; Yang, Guangxiao; Wang, Quanying

    2015-11-01

    Gene therapy, a significantly crucial strategy for treatment of malignancies, has been gradually accepted in recent years. However, this therapeutic approach has being facing great challenges concerning problems which include complicated development of cancer with multiple gene control, effective target shortage, low efficiency of gene transferring and safety of the vector delivery system. Shepherdin, a novel peptidomimetic molecule designed from Lys-79 to Leu-87 of survivin, has been identified as a tumor suppressor with the function that can not only competitively interfere with the interaction between survivin and Hsp90 (heat shock protein-90) leading to the degradation of survivin to anti-tumor, but also competitively target the ATP-dependent binding pocket of Hsp90 resulting in the dysfunction of Hsp90 chaperone to cell apoptosis via a mitochondrial dependent or independent pathway. In the present study, we designed and constructed a recombinant Adeno-associated virus (rAAV) loading fusion gene NT4-TAT-6His-Shepherdin. The expression of Shepherdin in gallbladder carcinoma (GBC) cells was detected and its strong inhibitory effects against GBC growth were evaluated after AAV mediated gene transfer of Shepherdin into GBC cells and xenograft tumors. MTT assay and flow cytometric analysis demonstrated that rAAV containing Shepherdin gene could significantly inhibit the growth of GBC and this effect was closely associated with apoptosis. These results indicated that rAAV-NT4-TAT-6His-Shepherdin may be considered a novel therapeutic strategy in the gene therapy for gallbladder carcinoma. PMID:26143116

  6. Inexpensive, serotype-independent protocol for native and bioengineered recombinant adeno-associated virus purification

    PubMed Central

    Arden, Erik; Metzger, Joseph M.

    2016-01-01

    Recombinant adeno-associated virus (AAV) is a valuable and often used gene therapy vector. With increased demand for highly purified virus comes the need for a standardized purification procedure that is applicable across many serotypes and includes bioengineered viruses. Currently cesium chloride banding or affinity chromatography are the predominate forms of purification. These approaches expose the final purified virus to toxic contaminants or are highly capsid dependent and may require significant optimization to isolate purified AAV. These methods may also limit crude viral lysate processing volume resulting in a significant loss of viral titer. To circumvent these issues, we have developed an AAV purification protocol independent of toxic compounds, supernatant volume and capsid moiety. This purification method standardizes virus purification across native serotype and bioengineered mosaic capsids. PMID:27294171

  7. Effective genetic modification and differentiation of hMSCs upon controlled release of rAAV vectors using alginate/poloxamer composite systems.

    PubMed

    Díaz-Rodríguez, P; Rey-Rico, A; Madry, H; Landin, M; Cucchiarini, M

    2015-12-30

    Viral vectors are common tools in gene therapy to deliver foreign therapeutic sequences in a specific target population via their natural cellular entry mechanisms. Incorporating such vectors in implantable systems may provide strong alternatives to conventional gene transfer procedures. The goal of the present study was to generate different hydrogel structures based on alginate (AlgPH155) and poloxamer PF127 as new systems to encapsulate and release recombinant adeno-associated viral (rAAV) vectors. Inclusion of rAAV in such polymeric capsules revealed an influence of the hydrogel composition and crosslinking temperature upon the vector release profiles, with alginate (AlgPH155) structures showing the fastest release profiles early on while over time vector release was more effective from AlgPH155+PF127 [H] capsules crosslinked at a high temperature (50°C). Systems prepared at room temperature (AlgPH155+PF127 [C]) allowed instead to achieve a more controlled release profile. When tested for their ability to target human mesenchymal stem cells, the different systems led to high transduction efficiencies over time and to gene expression levels in the range of those achieved upon direct vector application, especially when using AlgPH155+PF127 [H]. No detrimental effects were reported on either cell viability or on the potential for chondrogenic differentiation. Inclusion of PF127 in the capsules was also capable of delaying undesirable hypertrophic cell differentiation. These findings are of promising value for the further development of viral vector controlled release strategies.

  8. Recombinant adeno-associated virus (rAAV)-mediated expression of a human gamma-globin gene in human progenitor-derived erythroid cells.

    PubMed

    Miller, J L; Donahue, R E; Sellers, S E; Samulski, R J; Young, N S; Nienhuis, A W

    1994-10-11

    Effective gene therapy for the severe hemoglobin (Hb) disorders, sickle-cell anemia and thalassemia, will require an efficient method to transfer, integrate, and express a globin gene in primary erythroid cells. To evaluate recombinant adeno-associated virus (rAAV) for this purpose, we constructed a rAAV vector encoding a human gamma-globin gene (pJM24/vHS432A gamma). Its 4725-nucleotide genome consists of two 180-bp AAV inverted terminal repeats flanking the core elements of hypersensitive sites 2, 3, and 4 from the locus control region of the beta-globin gene cluster, linked to a mutationally marked A gamma-globin gene (A gamma) containing native promoter and RNA processing signals. CD34+ human hematopoietic cells were exposed to rAAV particles at a multiplicity of infection of 500-1000 and cultured in semisolid medium containing several cytokines. A reverse transcriptase polymerase chain reaction assay distinguished mRNA signals derived from transduced and endogenous human gamma-globin genes. Twenty to 40% of human erythroid burst-forming unit-derived colonies expressed the rAAV-transduced A gamma-globin gene at levels 4-71% that of the endogenous gamma-globin genes. The HbF content of pooled control colonies was 26%, whereas HbF was 40% of the total in pooled colonies derived from rAAV transduced progenitors. These data establish that rAAV containing elements from the locus control region linked to a gamma-globin gene are capable of transferring and expressing that gene in primary human hematopoietic cells resulting in a substantial increase in HbF content.

  9. A single injection of recombinant adeno-associated virus into the lumbar cistern delivers transgene expression throughout the whole spinal cord

    PubMed Central

    Guo, Yansu; Wang, Dan; Qiao, Tao; Yang, Chunxing; Su, Qin; Gao, Guangping; Xu, Zuoshang

    2015-01-01

    The lack of methods to deliver transgene expression in spinal cord has hampered investigation of gene function and therapeutic targets for spinal cord diseases. Here we report that a single intrathecal injection of recombinant adeno-associated virus rhesus-10 (rAAVrh10) into the lumbar cistern led to transgene expression in sixty to ninety percent of the cells in the spinal cord. The transgene was expressed in all cell types, including neurons, glia, ependymal cells and endothelial cells. Additionally, the transgene was expressed in some brain areas up to the frontal cortex and the olfactory bulb. The rAAV was distributed predominantly in the spinal cord, where its genome copy was over ten times that of the peripheral organs. Compared with intravenous injection, another method for rAAV delivery to the broad CNS, the intrathecal injection reduced the dosage of rAAV required to achieve similar or higher levels of transgene expression in the CNS by ∼100 fold. Finally, the transduced areas were colocalized with the perivascular spaces of Virchow-Robin, from which the rAAV spreads further into the CNS parenchyma, thus suggesting that rAAV penetrated the CNS parenchyma through this pathway. Taken together, we have defined a fast and efficient method to deliver widespread transgene expression in mature spinal cord in mice. This method can be applied to stably overexpress or silence gene expression in the spinal cord to investigate gene functions in mammalian CNS. Additionally, this method can be applied to validate therapeutic targets for spinal cord diseases. PMID:26050084

  10. Recombinant adeno-associated virus (rAAV)-mediated expression of a human gamma-globin gene in human progenitor-derived erythroid cells.

    PubMed Central

    Miller, J L; Donahue, R E; Sellers, S E; Samulski, R J; Young, N S; Nienhuis, A W

    1994-01-01

    Effective gene therapy for the severe hemoglobin (Hb) disorders, sickle-cell anemia and thalassemia, will require an efficient method to transfer, integrate, and express a globin gene in primary erythroid cells. To evaluate recombinant adeno-associated virus (rAAV) for this purpose, we constructed a rAAV vector encoding a human gamma-globin gene (pJM24/vHS432A gamma). Its 4725-nucleotide genome consists of two 180-bp AAV inverted terminal repeats flanking the core elements of hypersensitive sites 2, 3, and 4 from the locus control region of the beta-globin gene cluster, linked to a mutationally marked A gamma-globin gene (A gamma) containing native promoter and RNA processing signals. CD34+ human hematopoietic cells were exposed to rAAV particles at a multiplicity of infection of 500-1000 and cultured in semisolid medium containing several cytokines. A reverse transcriptase polymerase chain reaction assay distinguished mRNA signals derived from transduced and endogenous human gamma-globin genes. Twenty to 40% of human erythroid burst-forming unit-derived colonies expressed the rAAV-transduced A gamma-globin gene at levels 4-71% that of the endogenous gamma-globin genes. The HbF content of pooled control colonies was 26%, whereas HbF was 40% of the total in pooled colonies derived from rAAV transduced progenitors. These data establish that rAAV containing elements from the locus control region linked to a gamma-globin gene are capable of transferring and expressing that gene in primary human hematopoietic cells resulting in a substantial increase in HbF content. Images PMID:7524085

  11. Enhancing gene delivery of adeno-associated viruses by cell-permeable peptides

    PubMed Central

    Liu, Yarong; Kim, Young Joo; Ji, Man; Fang, Jinxu; Siriwon, Natnaree; Zhang, Li I; Wang, Pin

    2014-01-01

    Adeno-associated virus type 2 (AAV2) is considered a promising gene delivery vector and has been extensively applied in several disease models; however, inefficient transduction in various cells and tissues has limited its widespread application in many areas of gene therapy. In this study, we have developed a general, but efficient, strategy to enhance viral transduction, both in vitro and in vivo, by incubating viral particles with cell-permeable peptides (CPPs). We show that CPPs increase internalization of viral particles into cells by facilitating both energy-independent and energy-dependent endocytosis. Moreover, CPPs can significantly enhance the endosomal escape process of viral particles, thus enhancing viral transduction to those cells that have exhibited very low permissiveness to AAV2 infection as a result of impaired intracellular viral processing. We also demonstrated that this approach could be applicable to other AAV serotypes. Thus, the membrane-penetrating ability of CPPs enables us to generate an efficient method for enhanced gene delivery of AAV vectors, potentially facilitating its applicability to human gene therapy. PMID:26015948

  12. Self-Complementary Adeno-Associated Virus Vectors Improve Transduction Efficiency of Corneal Endothelial Cells

    PubMed Central

    Gruenert, Anja K.; Czugala, Marta; Mueller, Chris; Schmeer, Marco; Schleef, Martin; Kruse, Friedrich E.; Fuchsluger, Thomas A.

    2016-01-01

    Transplantation of a donor cornea to restore vision is the most frequently performed transplantation in the world. Corneal endothelial cells (CEC) are crucial for the outcome of a graft as they maintain corneal transparency and avoid graft failure due to corneal opaqueness. Given the characteristic of being a monolayer and in direct contact with culture medium during cultivation in eye banks, CEC are specifically suitable for gene therapeutic approaches prior to transplantation. Recombinant adeno-associated virus 2 (rAAV2) vectors represent a promising tool for gene therapy of CEC. However, high vector titers are needed to achieve sufficient gene expression. One of the rate-limiting steps for transgene expression is the conversion of single-stranded (ss-) DNA vector genome into double-stranded (ds-) DNA. This step can be bypassed by using self-complementary (sc-) AAV2 vectors. Aim of this study was to compare for the first time transduction efficiencies of ss- and scAAV2 vectors in CEC. For this purpose AAV2 vectors containing enhanced green fluorescent protein (GFP) as transgene were used. Both in CEC and in donor corneas, transduction with scAAV2 resulted in significantly higher transgene expression compared to ssAAV2. The difference in transduction efficiency decreased with increasing vector titer. In most cases, only half the vector titer of scAAV2 was required for equal or higher gene expression rates than those of ssAAV2. In human donor corneas, GFP expression was 64.7±11.3% (scAAV) and 38.0±8.6% (ssAAV) (p<0.001), respectively. Furthermore, transduced cells maintained their viability and showed regular morphology. Working together with regulatory authorities, a translation of AAV2 vector-mediated gene therapy to achieve a temporary protection of corneal allografts during cultivation and transplantation could therefore become more realistic. PMID:27023329

  13. Adeno-associated virus type 2 enhances goose parvovirus replication in embryonated goose eggs

    SciTech Connect

    Malkinson, Mertyn . E-mail: malkins@agri.huji.ac.il; Winocour, Ernest . E-mail: ernest.winocour@weizmann.ac.il

    2005-06-05

    The autonomous goose parvovirus (GPV) and the human helper-dependent adeno-associated virus type 2 (AAV2) share a high degree of homology. To determine if this evolutionary relationship has a biological impact, we studied viral replication in human 293 cells and in embryonated goose eggs coinfected with both viruses. Similar experiments were performed with the minute virus of mice (MVM), an autonomous murine parvovirus with less homology to AAV2. In human 293 cells, both GPV and MVM augmented AAV2 replication. In contrast, AAV2 markedly enhanced GPV replication in embryonated goose eggs under conditions where a similar effect was not observed with MVM. AAV2 did not replicate in embryonated goose eggs and AAV2 inactivated by UV-irradiation also enhanced GPV replication. To our knowledge, this is the first report that a human helper-dependent member of the Parvoviridae can provide helper activity for an autonomous parvovirus in a natural host.

  14. Muscle-specific promoters may be necessary for adeno-associated virus-mediated gene transfer in the treatment of muscular dystrophies.

    PubMed

    Cordier, L; Gao, G P; Hack, A A; McNally, E M; Wilson, J M; Chirmule, N; Sweeney, H L

    2001-01-20

    Recombinant adeno-associated virus (rAAV) vectors allow efficient gene transfer and expression in the muscle; therefore, rAAVs represent a potential gene therapy vector for muscular dystrophies. For further investigations, we used a mouse muscular dystrophy model (gsg(-/-) mice) gamma-sarcoglycan, a subunit of the dystrophin-glycoprotein complex, is missing. gsg(-/-) mice develop progressive dystrophy representative of a severe human phenotype disease. We previously showed high levels and stable expression of gamma-sarcoglycan in myofibers after direct muscle injection into gsg(-/-) mice of a recombinant AAV vector (AAV.dMCK.gSG) carrying the gamma-sarcoglycan cDNA driven by a muscle-specific promoter (truncated version of muscle creatine kinase). Here, we show that when gamma-sarcoglycan expression is driven by the ubiquitous cytomegalovirus (CMV) promoter (AAV.CMV.gSG), lower levels of transgene expression are observed and are associated with a humoral response to gamma-sarcoglycan. When using an rAAV vector, expressing the highly immunogenic product gamma-galactosidase under the CMV promoter (AAV.CMV.LacZ), we measured a strong cellular and humoral immune response to the transgene after intramuscular injection into gsg(-/-) mice. This study suggests that restriction of transgene expression to the muscle is an important criterion for the treatment of muscular dystrophies and will aid in the design of protocols for gene therapy.

  15. Recombinant adeno-associated virus serotype 4 mediates unique and exclusive long-term transduction of retinal pigmented epithelium in rat, dog, and nonhuman primate after subretinal delivery.

    PubMed

    Weber, Michel; Rabinowitz, Joseph; Provost, Nathalie; Conrath, Hervé; Folliot, Sébastien; Briot, Delphine; Chérel, Yan; Chenuaud, Pierre; Samulski, Jude; Moullier, Philippe; Rolling, Fabienne

    2003-06-01

    We previously described chimeric recombinant adeno-associated virus (rAAV) vectors 2/4 and 2/5 as the most efficient vectors in rat retina. We now characterize these two vectors carrying the CMV.gfp genome following subretinal injection in the Wistar rat, beagle dog, and cynomolgus macaque. Both serotypes displayed stable GFP expression for the duration of the experiment (6 months) in all three animal models. Similar to the AAV-2 serotype, AAV-2/5 transduced both RPE and photoreceptor cells, with higher level of transduction in photoreceptors, whereas rAAV-2/4 transduction was unambiguously restricted to RPE cells. This unique specificity found conserved among all three species makes AAV-2/4-derived vectors attractive for retinal diseases originating in RPE such as Leber congenital amaurosis (RPE65) or retinitis pigmentosa due to a mutated mertk gene. To provide further important preclinical data, vector shedding was monitored by PCR in various biological fluids for 2 months post-rAAV administration. Following rAAV-2/4 and -5 subretinal delivery in dogs (n = 6) and in nonhuman primates (n = 2), vector genome was found in lacrymal and nasal fluids for up to 3-4 days and in the serum for up to 15-20 days. Overall, these findings will have a practical impact on the development of future gene therapy trials of retinal diseases.

  16. Successful target cell transduction of capsid-engineered rAAV vectors requires clathrin-dependent endocytosis.

    PubMed

    Uhrig, S; Coutelle, O; Wiehe, T; Perabo, L; Hallek, M; Büning, H

    2012-02-01

    Cell surface targeting of recombinant adeno-associated virus (rAAV) vectors is an attractive strategy to modify AAV's natural tropism. As modification of the capsid surface is likely to affect the mechanism of vector internalization and consequently the vector's intracellular fate, we investigated early steps in cell transduction of rAAV capsid insertion mutants. Mutants displaying peptides with neutral overall charge at position 587 transduced cells independently of AAV2's primary receptor heparan sulfate proteoglycan (HSPG), whereas mutants carrying positively charged insertions were capable of HSPG binding with affinities correlating with their net positive charge. Whereas rAAV2 is internalized via an HSPG- and clathrin-dependent pathway, HSPG-binding mutants used a clathrin- and caveolin-independent mechanism. Surprisingly, although this pathway was as efficient in mediating vector entry as the one used by rAAV2, successful cell transduction was hampered at a post-entry step, presumably caused by inefficient endosomal escape. In contrast, HSPG-independent, clathrin-dependent internalization used by non-HSPG-binding mutants correlated with efficient nuclear delivery of vector genomes and robust transgene expression. These findings indicate that cell surface targeting strategies should direct uptake of rAAV targeting vectors to clathrin-mediated endocytosis, the naturally evolved entry route of AAV, to promote successful intracellular processing and re-targeting of rAAV's tropism.

  17. Production, purification, crystallization and preliminary X-ray structural studies of adeno-associated virus serotype 5

    SciTech Connect

    DiMattia, Michael; Govindasamy, Lakshmanan; Levy, Hazel C.; Gurda-Whitaker, Brittney; Kalina, Amy; Kohlbrenner, Erik; Chiorini, John A.; McKenna, Robert; Muzyczka, Nicholas; Zolotukhin, Sergei; Agbandje-McKenna, Mavis

    2005-10-01

    The production, purification, crystallization and preliminary crystallographic analysis of empty adeno-associated virus serotype 5 capsids are reported. Adeno-associated virus serotype 5 (AAV5) is under development for gene-therapy applications for the treatment of cystic fibrosis. To elucidate the structural features of AAV5 that control its enhanced transduction of the apical surface of airway epithelia compared with other AAV serotypes, X-ray crystallographic studies of the viral capsid have been initiated. The production, purification, crystallization and preliminary crystallographic analysis of empty AAV5 viral capsids are reported. The crystals diffract X-rays to beyond 3.2 Å resolution using synchrotron radiation and belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 264.7, b = 447.9, c = 629.7 Å. There is one complete T = 1 viral capsid per asymmetric unit. The orientation and position of the viral capsid in the asymmetric unit have been determined by rotation and translation functions, respectively, and the AAV5 structure determination is in progress.

  18. The use of a viral 2A sequence for the simultaneous over-expression of both the vgf gene and enhanced green fluorescent protein (eGFP) in vitro and in vivo

    PubMed Central

    Lewis, Jo E.; Brameld, John M.; Hill, Phil; Barrett, Perry; Ebling, Francis J.P.; Jethwa, Preeti H.

    2015-01-01

    Introduction The viral 2A sequence has become an attractive alternative to the traditional internal ribosomal entry site (IRES) for simultaneous over-expression of two genes and in combination with recombinant adeno-associated viruses (rAAV) has been used to manipulate gene expression in vitro. New method To develop a rAAV construct in combination with the viral 2A sequence to allow long-term over-expression of the vgf gene and fluorescent marker gene for tracking of the transfected neurones in vivo. Results Transient transfection of the AAV plasmid containing the vgf gene, viral 2A sequence and eGFP into SH-SY5Y cells resulted in eGFP fluorescence comparable to a commercially available reporter construct. This increase in fluorescent cells was accompanied by an increase in VGF mRNA expression. Infusion of the rAAV vector containing the vgf gene, viral 2A sequence and eGFP resulted in eGFP fluorescence in the hypothalamus of both mice and Siberian hamsters, 32 weeks post infusion. In situ hybridisation confirmed that the location of VGF mRNA expression in the hypothalamus corresponded to the eGFP pattern of fluorescence. Comparison with old method The viral 2A sequence is much smaller than the traditional IRES and therefore allowed over-expression of the vgf gene with fluorescent tracking without compromising viral capacity. Conclusion The use of the viral 2A sequence in the AAV plasmid allowed the simultaneous expression of both genes in vitro. When used in combination with rAAV it resulted in long-term over-expression of both genes at equivalent locations in the hypothalamus of both Siberian hamsters and mice, without any adverse effects. PMID:26300182

  19. Adeno-associated virus serotypes for gene therapeutics.

    PubMed

    Lisowski, Leszek; Tay, Szun Szun; Alexander, Ian Edward

    2015-10-01

    Gene transfer vectors based on adeno-associated virus (AAV) are showing exciting therapeutic promise in early phase clinical trials. The ability to cross-package the prototypic AAV2 vector genome into different capsids is a powerful way of conferring novel tropism and biology, with evolving capsid engineering technologies and directed evolution approaches further enhancing the utility and flexibility of these vectors. Novel properties of specific capsids show unpredictable species and cell-type specificity. Therefore, full realisation of the therapeutic potential of AAV vectors requires the development of more therapeutically predictive preclinical methods for evaluating capsid performance. This will strongly complement an iterative approach to the evaluation of capsid variants in the clinic and, should wherever possible, include the determination of gene transfer efficiencies.

  20. Intraparenchymal Stereotaxic Delivery of rAAV and Special Considerations in Vector Handling.

    PubMed

    Benskey, Matthew J; Manfredsson, Fredric P

    2016-01-01

    Stereotaxic surgery enables precise and consistent microinjections to discrete neural nuclei. Using stereotaxic surgery to deliver viral vectors is a powerful tool that provides the ability to manipulate gene expression in specific regions, or even specific cell types in the brain. Here, we describe the proper handling and stereotaxic delivery of recombinant adeno-associated virus to various neuroanatomical structures of the rodent brain.

  1. Adeno-associated virus type 2 binding study on model heparan sulfate surface

    NASA Astrophysics Data System (ADS)

    Negishi, Atsuko; Liu, Jian; McCarty, Douglas; Samulski, Jude; Superfine, Richard

    2003-11-01

    Understanding the mechanisms involved in virus infections is useful in its application in areas such as gene therapy, drug development and delivery, and biosensors. In collaboration with UNC Gene Therapy Center and School of Pharmacy, we are specifically looking at the interaction between human parvovirus adeno-associated virus type 2 (AAV2), a potential viral vector, and heparan sulfate proteoglycan (HSPG), a known cell surface receptor for AAV2. Recent development in glycobiology has shown that some protein-polysaccharide binding is sugar sequence dependent. Heparan sulfate (HS) is a polysaccharide chain of sulfated iduronic/glucuronic and sulfate glucosamine residues and can be differentiated into sequence specific structures by enzymes. These enzymatic modifications, known as heparan sulfate sulfotransferase modified modifications, have been shown to change the biological nature of heparan sulfate such as specific binding to proteins and viruses. For understanding HS-assisted viral infection mechanisms, we are interested in investigating the binding affinity and stability of AAV to different HS structures. We have developed a model heparan sulfate surface in which AAV adsorption studies are done and analyzed using the atomic force microscope (AFM). In addition, a miniArray assay has been created to facilitate to this study. Adsorption studies are done in 4 white LED wells with approximately 3 mm2 reaction areas which minimize sample use and waste.

  2. Identification of a Functionally Relevant Adeno-Associated Virus Rep68 Oligomeric Interface

    PubMed Central

    Bardelli, Martino; Zárate-Pérez, Francisco; Agúndez, Leticia; Linden, R. Michael

    2016-01-01

    ABSTRACT The life cycle of the human parvovirus adeno-associated virus (AAV) is orchestrated by four Rep proteins. The large Rep proteins, Rep78 and Rep68, are remarkably multifunctional and display a range of biochemical activities, including DNA binding, nicking, and unwinding. Functionally, Rep78 and Rep68 are involved in transcriptional regulation, DNA replication, and genomic integration. Structurally, the Rep proteins share an AAA+ domain characteristic of superfamily 3 helicases, with the large Rep proteins additionally containing an N-terminal origin-binding domain (OBD) that specifically binds and nicks DNA. The combination of these domains, coupled with dynamic oligomerization properties, is the basis for the remarkable multifunctionality displayed by Rep68 and Rep78 during the AAV life cycle. In this report, we describe an oligomeric interface formed by Rep68 and demonstrate how disruption of this interface has drastic effects on both the oligomerization and functionality of the Rep proteins. Our results support a role for the four-helix bundle in the helicase domain of Rep68 as a bona fide oligomerization domain (OD). We have identified key residues in the OD that are critical for the stabilization of the Rep68-Rep68 interface; mutation of these key residues disrupts the enzymatic activities of Rep68, including DNA binding and nicking, and compromises viral DNA replication and transcriptional regulation of the viral promoters. Taken together, our data contribute to our understanding of the dynamic and substrate-responsive Rep78/68 oligomerization that is instrumental in the regulation of the DNA transitions that take place during the AAV life cycle. IMPORTANCE The limited genome size of small viruses has driven the evolution of highly multifunctional proteins that integrate different domains and enzymatic activities within a single polypeptide. The Rep68 protein from adeno-associated virus (AAV) combines a DNA binding and endonuclease domain with a

  3. Analysis of adeno-associated virus and HPV interaction.

    PubMed

    Hermonat, Paul L; You, Hong; Chiriva-Internati, C Maurizio; Liu, Yong

    2005-01-01

    It is slowly becoming accepted that adeno-associated virus (AAV) is another significant factor involved in cervical carcinogenesis. However, unlike human papillomavirus (HPV), which is positively associated with cervical cancer, AAV is negatively associated with this cancer. This negative association appears to be through a direct and complex bi-directional interaction between AAV and HPV. Essentially all assays used for studying HPV can be used for studying the AAV-HPV interaction. This is because both viruses are productive in the same tissue, the stratified squamous epithelium (skin). Their relationship can be studied on the level of the complete virus and their complete life cycle using the organotypic epithelial raft culture system, which generates a stratified squamous epithelium. Their relationship can be studied in various other tissue-culture models measuring oncogenic potential. Their interaction can also be studied on the component level, as both protein-protein and protein-DNA interactions are known. Their relationship has even been studied using transgenic animals. The AAV-HPV relationship can be broken down into two halves--AAV-encoded products, which affect HPV biology, and HPV-encoded products, which affect AAV biology. To date, the former are much better studied than the latter. The rep gene and its largest product, Rep78, are responsible for most of AAV's effects upon HPV. This chapter largely focuses on AAV's effect on the HPV life cycle.

  4. A stable cell line carrying adenovirus-inducible rep and cap genes allows for infectivity titration of adeno-associated virus vectors.

    PubMed

    Clark, K R; Voulgaropoulou, F; Johnson, P R

    1996-12-01

    Adeno-associated virus (AAV) vectors are being developed for in vivo and ex vivo gene transfer to human cells. At present, widespread usage of AAV vectors is limited primarily by difficulties in generating recombinant virions on a scale sufficient for in-depth preclinical and clinical trials. However, recent work in several laboratories suggests that this technical obstacle should be overcome in the near future. As a result, it can be anticipated that the interest in AAV vectors will expand, Thus, it becomes important to develop assay systems that will permit accurate quantification of the infectivity of AAV vectors derived from a variety of sources. We have developed an assay using a cell line that expresses AAV helper functions (rep and cap) upon induction by adenovirus infection. This assay system is based on the replication of input rAAV genomes rather than transgene expression (transduction). Thus, infectivity titrations in this system yield an estimation of rAAV infectious particles irrespective of the promoter or transgene present in the vector genome. Moreover, this assay method is more sensitive than conventional methods being used in other laboratories.

  5. Evaluation of Readministration of a Recombinant Adeno-Associated Virus Vector Expressing Acid Alpha-Glucosidase in Pompe Disease: Preclinical to Clinical Planning

    PubMed Central

    Corti, Manuela; Cleaver, Brian; Clément, Nathalie; Conlon, Thomas J.; Faris, Kaitlyn J.; Wang, Gensheng; Benson, Janet; Tarantal, Alice F.; Fuller, Davis; Herzog, Roland W.; Byrne, Barry J.

    2015-01-01

    A recombinant serotype 9 adeno-associated virus (rAAV9) vector carrying a transgene that expresses codon-optimized human acid alpha-glucosidase (hGAA, or GAA) driven by a human desmin (DES) promoter (i.e., rAAV9-DES-hGAA) has been generated as a clinical candidate vector for Pompe disease. The rAAV9-DES-hGAA vector is being developed as a treatment for both early- and late-onset Pompe disease, in which patients lack sufficient lysosomal alpha-glucosidase leading to glycogen accumulation. In young patients, the therapy may need to be readministered after a period of time to maintain therapeutic levels of GAA. Administration of AAV-based gene therapies is commonly associated with the production of neutralizing antibodies that may reduce the effectiveness of the vector, especially if readministration is required. Previous studies have demonstrated the ability of rAAV9-DES-hGAA to correct cardiac and skeletal muscle pathology in Gaa−/− mice, an animal model of Pompe disease. This article describes the IND-enabling preclinical studies supporting the program for a phase I/II clinical trial in adult patients with Pompe. These studies were designed to evaluate the toxicology, biodistribution, and potential for readministration of rAAV9-DES-hGAA injected intramuscularly into the tibialis anterior muscle using an immune modulation strategy developed for this study. In the proposed clinical study, six adult participants with late-onset Pompe disease will be enrolled. The goal of the immune modulation strategy is to ablate B-cells before the initial exposure of the study agent in one leg and the subsequent exposure of the same vector to the contralateral leg four months after initial dosing. The dosing of the active agent is accompanied by a control injection of excipient dosing in the contralateral leg to allow for blinding and randomization of dosing, which may also strengthen the evidence generated from gene therapy studies in the future. Patients will act as their own

  6. Recombinant adeno-associated virus vectors in the treatment of rare diseases

    PubMed Central

    Hastie, Eric; Samulski, R. Jude

    2016-01-01

    Introduction An estimated 25 million Americans are living with rare diseases. Adeno-associated virus (AAV)-mediated gene therapy is an emerging therapeutic option for the more than 7,000 identified rare diseases. This paper highlights the benefits of AAV therapy compared to conventional small molecules, discusses current pre-clinical and clinical applications of AAV-mediated gene therapy, and offers insights into cutting edge research that will shape the future of AAV for broad therapeutic use. Areas covered In this review the biology of AAV and our ability to generate disease-specific variants is summarized. Limitations of current therapy are reviewed, with an emphasis on immune detection of virus, viral tropism and tissue targeting, and limitations of gene expression. Information for this review was found using PubMed and clinicaltrials.gov. Expert opinion Currently the scope of clinical trials of AAV gene therapy is concentrated in an array of phase I/II safety trials with less than two dozen rare diseases featured. Pre-clinical, translational studies are expanding in number as developments within the last decade have made generation of improved AAV vectors available to more researchers. Further, one bottleneck that is being overcome is the availability of disease models, which will allow for improved preclinical testing and advancement of AAV to more clinical applications.

  7. Comparative Analysis of Adeno-Associated Virus Capsid Stability and Dynamics

    PubMed Central

    Rayaprolu, Vamseedhar; Kruse, Shannon; Kant, Ravi; Venkatakrishnan, Balasubramanian; Movahed, Navid; Brooke, Dewey; Lins, Bridget; Bennett, Antonette; Potter, Timothy; McKenna, Robert; Agbandje-McKenna, Mavis

    2013-01-01

    Icosahedral viral capsids are obligated to perform a thermodynamic balancing act. Capsids must be stable enough to protect the genome until a suitable host cell is encountered yet be poised to bind receptor, initiate cell entry, navigate the cellular milieu, and release their genome in the appropriate replication compartment. In this study, serotypes of adeno-associated virus (AAV), AAV1, AAV2, AAV5, and AAV8, were compared with respect to the physical properties of their capsids that influence thermodynamic stability. Thermal stability measurements using differential scanning fluorimetry, differential scanning calorimetry, and electron microscopy showed that capsid melting temperatures differed by more than 20°C between the least and most stable serotypes, AAV2 and AAV5, respectively. Limited proteolysis and peptide mass mapping of intact particles were used to investigate capsid protein dynamics. Active hot spots mapped to the region surrounding the 3-fold axis of symmetry for all serotypes. Cleavages also mapped to the unique region of VP1 which contains a phospholipase domain, indicating transient exposure on the surface of the capsid. Data on the biophysical properties of the different AAV serotypes are important for understanding cellular trafficking and is critical to their production, storage, and use for gene therapy. The distinct differences reported here provide direction for future studies on entry and vector production. PMID:24067976

  8. Perspective on Adeno-Associated Virus Capsid Modification for Duchenne Muscular Dystrophy Gene Therapy.

    PubMed

    Nance, Michael E; Duan, Dongsheng

    2015-12-01

    Duchenne muscular dystrophy (DMD) is a X-linked, progressive childhood myopathy caused by mutations in the dystrophin gene, one of the largest genes in the genome. It is characterized by skeletal and cardiac muscle degeneration and dysfunction leading to cardiac and/or respiratory failure. Adeno-associated virus (AAV) is a highly promising gene therapy vector. AAV gene therapy has resulted in unprecedented clinical success for treating several inherited diseases. However, AAV gene therapy for DMD remains a significant challenge. Hurdles for AAV-mediated DMD gene therapy include the difficulty to package the full-length dystrophin coding sequence in an AAV vector, the necessity for whole-body gene delivery, the immune response to dystrophin and AAV capsid, and the species-specific barriers to translate from animal models to human patients. Capsid engineering aims at improving viral vector properties by rational design and/or forced evolution. In this review, we discuss how to use the state-of-the-art AAV capsid engineering technologies to overcome hurdles in AAV-based DMD gene therapy.

  9. Retargeting transposon insertions by the adeno-associated virus Rep protein

    PubMed Central

    Ammar, Ismahen; Gogol-Döring, Andreas; Miskey, Csaba; Chen, Wei; Cathomen, Toni; Izsvák, Zsuzsanna; Ivics, Zoltán

    2012-01-01

    The Sleeping Beauty (SB), piggyBac (PB) and Tol2 transposons are promising instruments for genome engineering. Integration site profiling of SB, PB and Tol2 in human cells showed that PB and Tol2 insertions were enriched in genes, whereas SB insertions were randomly distributed. We aimed to introduce a bias into the target site selection properties of the transposon systems by taking advantage of the locus-specific integration system of adeno-associated virus (AAV). The AAV Rep protein binds to Rep recognition sequences (RRSs) in the human genome, and mediates viral integration into nearby sites. A series of fusion constructs consisting of the N-terminal DNA-binding domain of Rep and the transposases or the N57 domain of SB were generated. A plasmid-based transposition assay showed that Rep/SB yielded a 15-fold enrichment of transposition at a particular site near a targeted RRS. Genome-wide insertion site analysis indicated that an approach based on interactions between the SB transposase and Rep/N57 enriched transgene insertions at RRSs. We also provide evidence of biased insertion of the PB and Tol2 transposons. This study provides a comparative insight into target site selection properties of transposons, as well as proof-of-principle for targeted chromosomal transposition by composite protein–protein and protein–DNA interactions. PMID:22523082

  10. Adeno-associated virus protects the retinoblastoma family of proteins from adenoviral-induced functional inactivation.

    PubMed

    Batchu, Ramesh B; Shammas, Masood A; Wang, Jing Yi; Freeman, John; Rosen, Nancy; Munshi, Nikhil C

    2002-05-15

    Adeno-associated virus type 2 (AAV) is known to inhibit virally mediated oncogenic transformation. One of the early events of adenovirus (Ad) infection is the functional inactivation of cell cycle regulatory retinoblastoma (RB) family of proteins, which consists of retinoblastoma protein (pRB), p107, and p130. In an effort to understand the molecular basis of anti-oncogenic properties of AAV, we studied the effects of AAV expression on these proteins in cells infected with Ad. Western blot analysis showed that AAV interferes with the adenoviral-induced degradation and hyperphosphorylation of the pRB family of proteins in normal human fibroblasts as well as in HeLa and 293 cell lines. RNase protection assay showed enhanced expression of pocket protein gene by AAV expression. We also demonstrate that Rep proteins, the major AAV regulatory proteins, bind to E1A, the immediate early gene of Ad responsible for hyperphosphorylation and dissociation of pRB-E2F complex. This binding of AAV Rep proteins to E1A leads to decreased association between E1A and pRB leading to protection of pocket proteins from degradation, decreased expression of S phase genes and inhibition of cell cycle progression. These results suggest that the antiproliferative activity of AAV against Ad is mediated, at least in part, by effects of AAV Rep proteins on the Rb family of proteins.

  11. Comparative analysis of adeno-associated virus capsid stability and dynamics.

    PubMed

    Rayaprolu, Vamseedhar; Kruse, Shannon; Kant, Ravi; Venkatakrishnan, Balasubramanian; Movahed, Navid; Brooke, Dewey; Lins, Bridget; Bennett, Antonette; Potter, Timothy; McKenna, Robert; Agbandje-McKenna, Mavis; Bothner, Brian

    2013-12-01

    Icosahedral viral capsids are obligated to perform a thermodynamic balancing act. Capsids must be stable enough to protect the genome until a suitable host cell is encountered yet be poised to bind receptor, initiate cell entry, navigate the cellular milieu, and release their genome in the appropriate replication compartment. In this study, serotypes of adeno-associated virus (AAV), AAV1, AAV2, AAV5, and AAV8, were compared with respect to the physical properties of their capsids that influence thermodynamic stability. Thermal stability measurements using differential scanning fluorimetry, differential scanning calorimetry, and electron microscopy showed that capsid melting temperatures differed by more than 20°C between the least and most stable serotypes, AAV2 and AAV5, respectively. Limited proteolysis and peptide mass mapping of intact particles were used to investigate capsid protein dynamics. Active hot spots mapped to the region surrounding the 3-fold axis of symmetry for all serotypes. Cleavages also mapped to the unique region of VP1 which contains a phospholipase domain, indicating transient exposure on the surface of the capsid. Data on the biophysical properties of the different AAV serotypes are important for understanding cellular trafficking and is critical to their production, storage, and use for gene therapy. The distinct differences reported here provide direction for future studies on entry and vector production. PMID:24067976

  12. Recombinant adeno-associated virus vectors in the treatment of rare diseases

    PubMed Central

    Hastie, Eric; Samulski, R. Jude

    2016-01-01

    Introduction An estimated 25 million Americans are living with rare diseases. Adeno-associated virus (AAV)-mediated gene therapy is an emerging therapeutic option for the more than 7,000 identified rare diseases. This paper highlights the benefits of AAV therapy compared to conventional small molecules, discusses current pre-clinical and clinical applications of AAV-mediated gene therapy, and offers insights into cutting edge research that will shape the future of AAV for broad therapeutic use. Areas covered In this review the biology of AAV and our ability to generate disease-specific variants is summarized. Limitations of current therapy are reviewed, with an emphasis on immune detection of virus, viral tropism and tissue targeting, and limitations of gene expression. Information for this review was found using PubMed and clinicaltrials.gov. Expert opinion Currently the scope of clinical trials of AAV gene therapy is concentrated in an array of phase I/II safety trials with less than two dozen rare diseases featured. Pre-clinical, translational studies are expanding in number as developments within the last decade have made generation of improved AAV vectors available to more researchers. Further, one bottleneck that is being overcome is the availability of disease models, which will allow for improved preclinical testing and advancement of AAV to more clinical applications. PMID:27668135

  13. Adeno-Associated Virus 2-Mediated Hepatocellular Carcinoma is Very Rare in Korean Patients

    PubMed Central

    Park, Kyoung-Jin; Lee, Jongan; Park, June-Hee; Joh, Jae-Won; Kwon, Choon Hyuck David

    2016-01-01

    Background The incidence and etiology of hepatocellular carcinoma (HCC) vary widely according to race and geographic regions. The insertional mutagenesis of adeno-associated virus 2 (AAV2) has recently been considered a new viral etiology of HCC. The aim of this study was to investigate the frequency and clinical characteristics of AAV2 in Korean patients with HCC. Methods A total of 289 unrelated Korean patients with HCC, including 159 Hepatitis-B-related cases, 16 Hepatitis-C-related cases, and 114 viral serology-negative cases, who underwent surgery at the Samsung Medical Center in Korea from 2009 to 2014 were enrolled in this study. The presence of AAV2 in fresh-frozen tumor tissues was investigated by DNA PCR and Sanger sequencing. The clinical and pathological characteristics of AAV2-associated HCC in these patients were compared with previous findings in French patients. Results The AAV2 detection rate in Korean patients (2/289) was very low compared with that in French patients (11/193). Similar to the French patients, the Korean patients with AAV2-related HCC showed no signs of liver cirrhosis. The Korean patients were younger than the French patients with the same AAV2-associated HCC; the ages at diagnosis of the two Korean patients were 47 and 39 yr, while the median age of the 11 French patients was 55 yr (range 43-90 yr). Conclusions AAV2-associated HCC was very rare in Korean patients with HCC. Despite a limited number of cases, this study is the first to report the clinical characteristics of Korean patients with AAV2-associated HCC. These findings suggest epidemiologic differences in viral hepatocarcinogenesis between Korean and European patients. PMID:27374713

  14. Differential Cellular Tropism of Lentivirus and Adeno-Associated Virus in the Brain of Cynomolgus Monkey

    PubMed Central

    An, Heeyoung; Cho, Doo-Wan; Lee, Seung Eun; Yang, Young-Su

    2016-01-01

    Many researchers are using viruses to deliver genes of interest into the brains of laboratory animals. However, certain target brain cells are not easily infected by viruses. Moreover, the differential tropism of different viruses in monkey brain is not well established. We investigated the cellular tropism of lentivirus and adeno-associated virus (AAV) toward neuron and glia in the brain of cynomolgus monkeys (Macaca fascularis). Lentivirus and AAV were injected into putamen of the monkey brain. One month after injection, monkeys were sacrificed, and then the presence of viral infection by expression of reporter fluorescence proteins was examined. Tissues were sectioned and stained with NeuN and GFAP antibodies for identifying neuronal cells or astrocytes, respectively, and viral reporter GFP-expressing cells were counted. We found that while lentivirus infected mostly astrocytes, AAV infected neurons at a higher rate than astrocytes. Moreover, astrocytes showed reactiveness when cells were infected by virus, likely due to virus-mediated neuroinflammation. The Sholl analysis was done to compare the hypertrophy of infected and uninfected astrocytes by virus. The lentivirus infected astrocytes showed negligible hypertrophy whereas AAV infected astrocytes showed significant changes in morphology, compared to uninfected astrocytes. In the brain of cynomolgus monkey, lentivirus shows tropism for astrocytes over neurons without much reactivity in astrocytes, whereas AAV shows tropism for neurons over glial cells with a significant reactivity in astrocytes. We conclude that AAV is best-suited for gene delivery to neurons, whereas lentivirus is the best choice for gene delivery to astrocytes in the brain of cynomolgus monkeys. PMID:26924933

  15. Identification of the heparin binding site on adeno-associated virus serotype 3B (AAV-3B)

    SciTech Connect

    Lerch, Thomas F.; Chapman, Michael S.

    2012-02-05

    Adeno-associated virus is a promising vector for gene therapy. In the current study, the binding site on AAV serotype 3B for the heparan sulfate proteoglycan (HSPG) receptor has been characterized. X-ray diffraction identified a disaccharide binding site at the most positively charged region on the virus surface. The contributions of basic amino acids at this and other sites were characterized using site-directed mutagenesis. Both heparin and cell binding are correlated to positive charge at the disaccharide binding site, and transduction is significantly decreased in AAV-3B vectors mutated at this site to reduce heparin binding. While the receptor attachment sites of AAV-3B and AAV-2 are both in the general vicinity of the viral spikes, the exact amino acids that participate in electrostatic interactions are distinct. Diversity in the mechanisms of cell attachment by AAV serotypes will be an important consideration for the rational design of improved gene therapy vectors.

  16. Identification of the heparin binding site on adeno-associated virus serotype 3B (AAV-3B)

    SciTech Connect

    Lerch, Thomas F.; Chapman, Michael S.

    2012-05-24

    Adeno-associated virus is a promising vector for gene therapy. In the current study, the binding site on AAV serotype 3B for the heparan sulfate proteoglycan (HSPG) receptor has been characterized. X-ray diffraction identified a disaccharide binding site at the most positively charged region on the virus surface. The contributions of basic amino acids at this and other sites were characterized using site-directed mutagenesis. Both heparin and cell binding are correlated to positive charge at the disaccharide binding site, and transduction is significantly decreased in AAV-3B vectors mutated at this site to reduce heparin binding. While the receptor attachment sites of AAV-3B and AAV-2 are both in the general vicinity of the viral spikes, the exact amino acids that participate in electrostatic interactions are distinct. Diversity in the mechanisms of cell attachment by AAV serotypes will be an important consideration for the rational design of improved gene therapy vectors.

  17. Structural studies of adeno-associated virus serotype 8 capsid transitions associated with endosomal trafficking.

    PubMed

    Nam, Hyun-Joo; Gurda, Brittney L; McKenna, Robert; Potter, Mark; Byrne, Barry; Salganik, Maxim; Muzyczka, Nicholas; Agbandje-McKenna, Mavis

    2011-11-01

    The single-stranded DNA (ssDNA) parvoviruses enter host cells through receptor-mediated endocytosis, and infection depends on processing in the early to late endosome as well as in the lysosome prior to nuclear entry for replication. However, the mechanisms of capsid endosomal processing, including the effects of low pH, are poorly understood. To gain insight into the structural transitions required for this essential step in infection, the crystal structures of empty and green fluorescent protein (GFP) gene-packaged adeno-associated virus serotype 8 (AAV8) have been determined at pH values of 6.0, 5.5, and 4.0 and then at pH 7.5 after incubation at pH 4.0, mimicking the conditions encountered during endocytic trafficking. While the capsid viral protein (VP) topologies of all the structures were similar, significant amino acid side chain conformational rearrangements were observed on (i) the interior surface of the capsid under the icosahedral 3-fold axis near ordered nucleic acid density that was lost concomitant with the conformational change as pH was reduced and (ii) the exterior capsid surface close to the icosahedral 2-fold depression. The 3-fold change is consistent with DNA release from an ordering interaction on the inside surface of the capsid at low pH values and suggests transitions that likely trigger the capsid for genome uncoating. The surface change results in disruption of VP-VP interface interactions and a decrease in buried surface area between VP monomers. This disruption points to capsid destabilization which may (i) release VP1 amino acids for its phospholipase A2 function for endosomal escape and nuclear localization signals for nuclear targeting and (ii) trigger genome uncoating.

  18. Structurally Mapping the Diverse Phenotype of Adeno-Associated Virus Serotype 4▿

    PubMed Central

    Govindasamy, Lakshmanan; Padron, Eric; McKenna, Robert; Muzyczka, Nicholas; Kaludov, Nikola; Chiorini, John A.; Agbandje-McKenna, Mavis

    2006-01-01

    The adeno-associated viruses (AAVs) can package and deliver foreign DNA into cells for corrective gene delivery applications. The AAV serotypes have distinct cell binding, transduction, and antigenic characteristics that have been shown to be dictated by the capsid viral protein (VP) sequence. To understand the contribution of capsid structure to these properties, we have determined the crystal structure of AAV serotype 4 (AAV4), one of the most diverse serotypes with respect to capsid protein sequence and antigenic reactivity. Structural comparison of AAV4 to AAV2 shows conservation of the core β strands (βB to βI) and helical (αA) secondary structure elements, which also exist in all other known parvovirus structures. However, surface loop variations (I to IX), some containing compensating structural insertions and deletions in adjacent regions, result in local topological differences on the capsid surface. These include AAV4 having a deeper twofold depression, wider and rounder protrusions surrounding the threefold axes, and a different topology at the top of the fivefold channel from that of AAV2. Also, the previously observed “valleys” between the threefold protrusions, containing AAV2's heparin binding residues, are narrower in AAV4. The observed differences in loop topologies at subunit interfaces are consistent with the inability of AAV2 and AAV4 VPs to combine for mosaic capsid formation in efforts to engineer novel tropisms. Significantly, all of the surface loop variations are associated with amino acids reported to affect receptor recognition, transduction, and anticapsid antibody reactivity for AAV2. This observation suggests that these capsid regions may also play similar roles in the other AAV serotypes. PMID:16971437

  19. Structural Studies of Adeno-Associated Virus Serotype 8 Capsid Transitions Associated with Endosomal Trafficking

    SciTech Connect

    Nam, Hyun-Joo; Gurda, Brittney L.; McKenna, Robert; Potter, Mark; Byrne, Barry; Salganik, Maxim; Muzyczka, Nicholas; Agbandje-McKenna, Mavis

    2012-09-17

    The single-stranded DNA (ssDNA) parvoviruses enter host cells through receptor-mediated endocytosis, and infection depends on processing in the early to late endosome as well as in the lysosome prior to nuclear entry for replication. However, the mechanisms of capsid endosomal processing, including the effects of low pH, are poorly understood. To gain insight into the structural transitions required for this essential step in infection, the crystal structures of empty and green fluorescent protein (GFP) gene-packaged adeno-associated virus serotype 8 (AAV8) have been determined at pH values of 6.0, 5.5, and 4.0 and then at pH 7.5 after incubation at pH 4.0, mimicking the conditions encountered during endocytic trafficking. While the capsid viral protein (VP) topologies of all the structures were similar, significant amino acid side chain conformational rearrangements were observed on (i) the interior surface of the capsid under the icosahedral 3-fold axis near ordered nucleic acid density that was lost concomitant with the conformational change as pH was reduced and (ii) the exterior capsid surface close to the icosahedral 2-fold depression. The 3-fold change is consistent with DNA release from an ordering interaction on the inside surface of the capsid at low pH values and suggests transitions that likely trigger the capsid for genome uncoating. The surface change results in disruption of VP-VP interface interactions and a decrease in buried surface area between VP monomers. This disruption points to capsid destabilization which may (i) release VP1 amino acids for its phospholipase A2 function for endosomal escape and nuclear localization signals for nuclear targeting and (ii) trigger genome uncoating.

  20. Oligomeric Properties of Adeno-Associated Virus Rep68 Reflect Its Multifunctionality

    PubMed Central

    Zarate-Perez, Francisco; Mansilla-Soto, Jorge; Bardelli, Martino; Burgner, John W.; Villamil-Jarauta, Maria; Kekilli, Demet; Samso, Monserrat

    2013-01-01

    The adeno-associated virus (AAV) encodes four regulatory proteins called Rep. The large AAV Rep proteins Rep68 and Rep78 are essential factors required in almost every step of the viral life cycle. Structurally, they share two domains: a modified version of the AAA+ domain that characterizes the SF3 family of helicases and an N-terminal domain that binds DNA specifically. The combination of these two domains imparts extraordinary multifunctionality to work as initiators of DNA replication and regulators of transcription, in addition to their essential role during site-specific integration. Although most members of the SF3 family form hexameric rings in vitro, the oligomeric nature of Rep68 is unclear due to its propensity to aggregate in solution. We report here a comprehensive study to determine the oligomeric character of Rep68 using a combination of methods that includes sedimentation velocity ultracentrifugation, electron microscopy, and hydrodynamic modeling. We have determined that residue Cys151 induces Rep68 to aggregate in vitro. We show that Rep68 displays a concentration-dependent dynamic oligomeric behavior characterized by the presence of two populations: one with monomers and dimers in slow equilibrium and a second one consisting of a mixture of multiple-ring structures of seven and eight members. The presence of either ATP or ADP induces formation of larger complexes formed by the stacking of multiple rings. Taken together, our results support the idea of a Rep68 molecule that exhibits the flexible oligomeric behavior needed to perform the wide range of functions occurring during the AAV life cycle. PMID:23152528

  1. Evidence for pH-Dependent Protease Activity in the Adeno-Associated Virus Capsid

    PubMed Central

    Salganik, Maxim; Venkatakrishnan, Balasubramanian; Bennett, Antonette; Lins, Bridget; Yarbrough, Joseph; Agbandje-McKenna, Mavis

    2012-01-01

    Incubation of highly purified adeno-associated virus (AAV) capsids in vitro at pH 5.5 induced significant autocleavage of capsid proteins at several amino acid positions. No autocleavage was seen at pH 7.5. Examination of other AAV serotypes showed at least two different pH-induced cleavage patterns, suggesting that different serotypes have evolved alternative protease cleavage sites. In contrast, incubation of AAV serotypes with an external protease substrate showed that purified AAV capsid preparations have robust protease activity at neutral pH but not at pH 5.5, opposite to what is seen with capsid protein autocleavage. Several lines of evidence suggested that protease activity is inherent in AAV capsids and is not due to contaminating proteins. Control virus preparations showed no protease activity on external substrates, and filtrates of AAV virus preparations also showed no protease activity contaminating the capsids. Further, N-terminal Edman sequencing identified unique autocleavage sites in AAV1 and AAV9, and mutagenesis of amino acids adjacent to these sites eliminated cleavage. Finally, mutation of an amino acid in AAV2 (E563A) that is in a conserved pH-sensitive structural region eliminated protease activity on an external substrate but did not seem to affect autocleavage. Taken together, our data suggested that AAV capsids have one or more protease active sites that are sensitive to pH induction. Further, it appears that acidic pHs comparable to those seen in late endosomes induce a structural change in the capsid that induces autolytic protease activity. The pH-dependent protease activity may have a role in viral infection. PMID:22915820

  2. Humoral and Cell-Mediated Immune Response, and Growth Factor Synthesis After Direct Intraarticular Injection of rAAV2-IGF-I and rAAV5-IGF-I in the Equine Middle Carpal Joint

    PubMed Central

    Wagner, Bettina; Calcedo, Roberto; Wilson, James; Schaefer, Deanna; Nixon, Alan

    2015-01-01

    Abstract Intraarticular (IA) administration of viral vectors expressing a therapeutic transgene is an attractive treatment modality for osteoarthritis (OA) as the joint can be treated as a contained unit. Humoral and cell-mediated immune responses in vivo can limit vector effectiveness. Transduction of articular tissues has been investigated; however, the immune response to IA vectors remains largely unknown. We hypothesized that IA rAAV2 and rAAV5 overexpressing insulin-like growth factor-I (IGF-I) would result in long-term IGF-I formation but would also induce neutralizing antibodies (NAb) and anti-capsid effector T cells. Twelve healthy horses were assigned to treatment (rAAV2 or rAAV5) or control (saline) groups. Middle carpal joints were injected with 5×1011 vector genomes/joint. Synovial fluid was analyzed for changes in composition, NAb titers, immunoglobulin isotypes, proinflammatory cytokines, and IGF-I. Serum was analyzed for antibody titers and cytokines. A T cell restimulation assay was used to assess T cell responses. Injection of rAAV2- or rAAV5-IGF-I did not induce greater inflammation compared with saline. Synovial fluid IGF-I was significantly increased in both rAAV2- and rAAV5-IGF-I joints by day 14 and remained elevated until day 56; however, rAAV5 achieved the highest concentrations. A capsid-specific T cell response was not noted although all virus-treated horses had increased NAbs in serum and synovial fluid after treatment. Taken together, our data show that IA injection of rAAV2- or rAAV5-IGF-I does not incite a clinically detectable inflammatory or cell-mediated immune response and that IA gene therapy using minimally immunogenic vectors represents a clinically relevant tool for treating articular disorders including OA. PMID:25705927

  3. Production, Purification, Crystallization and Preliminary X-ray Structural Studies of Adeno-Associated Virus Serotype 5

    SciTech Connect

    DiMattia,M.; Govindasamy, L.; Levy, H.; Whitaker-Gurda, B.; Kohlbrenner, E.; Chiorini, J.; McKenna, R.; Muzyczka, N.; Zolotukhin, S.; Agbandje-McKenna, M.

    2005-01-01

    Adeno-associated virus serotype 5 (AAV5) is under development for gene-therapy applications for the treatment of cystic fibrosis. To elucidate the structural features of AAV5 that control its enhanced transduction of the apical surface of airway epithelia compared with other AAV serotypes, X-ray crystallographic studies of the viral capsid have been initiated. The production, purification, crystallization and preliminary crystallographic analysis of empty AAV5 viral capsids are reported. The crystals diffract X-rays to beyond 3.2 Angstroms resolution using synchrotron radiation and belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 264.7, b = 447.9, c = 629.7 Angstroms. There is one complete T = 1 viral capsid per asymmetric unit. The orientation and position of the viral capsid in the asymmetric unit have been determined by rotation and translation functions, respectively, and the AAV5 structure determination is in progress.

  4. The Threefold Protrusions of Adeno-Associated Virus Type 8 Are Involved in Cell Surface Targeting as Well as Postattachment Processing

    PubMed Central

    Raupp, Christina; Naumer, Matthias; Müller, Oliver J.; Gurda, Brittney L.; Agbandje-McKenna, Mavis

    2012-01-01

    Adeno-associated virus (AAV) has attracted considerable interest as a vector for gene therapy owing its lack of pathogenicity and the wealth of available serotypes with distinct tissue tropisms. One of the most promising isolates for vector development, based on its superior gene transfer efficiency to the liver in small animals compared to AAV type 2 (AAV2), is AAV8. Comparison of the in vivo gene transduction of rAAV2 and rAAV8 in mice showed that single amino acid exchanges in the 3-fold protrusions of AAV8 in the surface loops comprised of residues 581 to 584 and 589 to 592 to the corresponding amino acids of AAV2 and vice versa had a strong influence on transduction efficiency and tissue tropism. Surprisingly, not only did conversion of AAV8 to AAV2 cap sequences increase the transduction efficiency and change tissue tropism but so did the reciprocal conversion of AAV2 to AAV8. Insertion of new peptide motifs at position 590 in AAV8 also enabled retargeting of AAV8 capsids to specific tissues, suggesting that these sequences can interact with receptors on the cell surface. However, a neutralizing monoclonal antibody that binds to amino acids 588QQNTA592 of AAV8 does not prevent cell binding and virus uptake, indicating that this region is not necessary for receptor binding but rather that the antibody interferes with an essential step of postattachment processing in which the 3-fold protrusion is also involved. This study supports a multifunctional role of the 3-fold region of AAV capsids in the infection process. PMID:22718833

  5. Adeno-Associated Virus Type 2 (AAV2) Capsid-Specific Cytotoxic T Lymphocytes Eliminate Only Vector-Transduced Cells Coexpressing the AAV2 Capsid In Vivo▿

    PubMed Central

    Li, Chengwen; Hirsch, Matthew; Asokan, Aravind; Zeithaml, Brian; Ma, Hong; Kafri, Tal; Samulski, R. Jude

    2007-01-01

    A recent clinical trial has suggested that recombinant adeno-associated virus (rAAV) vector transduction in humans induces a cytotoxic T-lymphocyte (CTL) response against the AAV2 capsid. To directly address the ability of AAV capsid-specific CTLs to eliminate rAAV-transduced cells in vitro and in vivo in mice, we first demonstrated that AAV2 capsid-specific CTLs could be induced by dendritic cells with endogenous AAV2 capsid expression or pulsed with AAV2 vectors. These CTLs were able to kill a cell line stable for capsid expression in vitro and also in a mouse tumor xenograft model in vivo. Parent colon carcinoma (CT26) cells transduced with a large amount of AAV2 vectors in vitro were also destroyed by these CTLs. To determine the effect of CTLs on the elimination of target cells transduced by AAV2 vectors in vivo, we carried out adoptive transfer experiments. CTLs eliminated liver cells with endogenous AAV2 capsid expression but not liver cells transduced by AAV2 vectors, regardless of the reporter genes. Similar results were obtained for rAAV2 transduction in muscle. Our data strongly suggest that AAV vector-transduced cells are rarely eliminated by AAV2 capsid-specific CTLs in vivo, even though the AAV capsid can induce a CTL response. In conclusion, AAV capsid-specific CTLs do not appear to play a role in elimination of rAAV-transduced cells in a mouse model. In addition, our data suggest that the mouse model may not mimic the immune response noted in humans and additional modification to AAV vectors may be required for further study in order to elicit a similar cellular immune response. PMID:17475652

  6. Adeno-associated virus type 2 (AAV2) capsid-specific cytotoxic T lymphocytes eliminate only vector-transduced cells coexpressing the AAV2 capsid in vivo.

    PubMed

    Li, Chengwen; Hirsch, Matthew; Asokan, Aravind; Zeithaml, Brian; Ma, Hong; Kafri, Tal; Samulski, R Jude

    2007-07-01

    A recent clinical trial has suggested that recombinant adeno-associated virus (rAAV) vector transduction in humans induces a cytotoxic T-lymphocyte (CTL) response against the AAV2 capsid. To directly address the ability of AAV capsid-specific CTLs to eliminate rAAV-transduced cells in vitro and in vivo in mice, we first demonstrated that AAV2 capsid-specific CTLs could be induced by dendritic cells with endogenous AAV2 capsid expression or pulsed with AAV2 vectors. These CTLs were able to kill a cell line stable for capsid expression in vitro and also in a mouse tumor xenograft model in vivo. Parent colon carcinoma (CT26) cells transduced with a large amount of AAV2 vectors in vitro were also destroyed by these CTLs. To determine the effect of CTLs on the elimination of target cells transduced by AAV2 vectors in vivo, we carried out adoptive transfer experiments. CTLs eliminated liver cells with endogenous AAV2 capsid expression but not liver cells transduced by AAV2 vectors, regardless of the reporter genes. Similar results were obtained for rAAV2 transduction in muscle. Our data strongly suggest that AAV vector-transduced cells are rarely eliminated by AAV2 capsid-specific CTLs in vivo, even though the AAV capsid can induce a CTL response. In conclusion, AAV capsid-specific CTLs do not appear to play a role in elimination of rAAV-transduced cells in a mouse model. In addition, our data suggest that the mouse model may not mimic the immune response noted in humans and additional modification to AAV vectors may be required for further study in order to elicit a similar cellular immune response.

  7. Adeno-Associated Virus Type 2 Wild-Type and Vector-Mediated Genomic Integration Profiles of Human Diploid Fibroblasts Analyzed by Third-Generation PacBio DNA Sequencing

    PubMed Central

    Hüser, Daniela; Gogol-Döring, Andreas; Chen, Wei

    2014-01-01

    ABSTRACT Genome-wide analysis of adeno-associated virus (AAV) type 2 integration in HeLa cells has shown that wild-type AAV integrates at numerous genomic sites, including AAVS1 on chromosome 19q13.42. Multiple GAGY/C repeats, resembling consensus AAV Rep-binding sites are preferred, whereas rep-deficient AAV vectors (rAAV) regularly show a random integration profile. This study is the first study to analyze wild-type AAV integration in diploid human fibroblasts. Applying high-throughput third-generation PacBio-based DNA sequencing, integration profiles of wild-type AAV and rAAV are compared side by side. Bioinformatic analysis reveals that both wild-type AAV and rAAV prefer open chromatin regions. Although genomic features of AAV integration largely reproduce previous findings, the pattern of integration hot spots differs from that described in HeLa cells before. DNase-Seq data for human fibroblasts and for HeLa cells reveal variant chromatin accessibility at preferred AAV integration hot spots that correlates with variant hot spot preferences. DNase-Seq patterns of these sites in human tissues, including liver, muscle, heart, brain, skin, and embryonic stem cells further underline variant chromatin accessibility. In summary, AAV integration is dependent on cell-type-specific, variant chromatin accessibility leading to random integration profiles for rAAV, whereas wild-type AAV integration sites cluster near GAGY/C repeats. IMPORTANCE Adeno-associated virus type 2 (AAV) is assumed to establish latency by chromosomal integration of its DNA. This is the first genome-wide analysis of wild-type AAV2 integration in diploid human cells and the first to compare wild-type to recombinant AAV vector integration side by side under identical experimental conditions. Major determinants of wild-type AAV integration represent open chromatin regions with accessible consensus AAV Rep-binding sites. The variant chromatin accessibility of different human tissues or cell types will

  8. My Life with Adeno-Associated Virus: A Long Time Spent Studying a Short Genome

    PubMed Central

    2013-01-01

    My 45 years of studying the molecular biology of adeno-associated virus are recounted. Additional activities as a mentor, department chair, and medical school administrator are described, as are my activities in the public sphere, which involved national issues related to science policy and medical education. PMID:23781880

  9. Formation of newly synthesized adeno-associated virus capsids in the cell nucleus.

    PubMed

    Bell, Peter; Vandenberghe, Luk H; Wilson, James M

    2014-06-01

    Adeno-associated virus (AAV) particles inside the nucleus of a HEK 293 cell are shown by electron microscopy. Cells have been triple-transfected for vector production and were analyzed for capsid formation three days later. Newly assembled particle are visible as seemingly unstructured conglomerates or crystal-like arrays.

  10. Efficacy and Safety of rAAV2-ND4 Treatment for Leber's Hereditary Optic Neuropathy.

    PubMed

    Wan, Xing; Pei, Han; Zhao, Min-jian; Yang, Shuo; Hu, Wei-kun; He, Heng; Ma, Si-qi; Zhang, Ge; Dong, Xiao-yan; Chen, Chen; Wang, Dao-wen; Li, Bin

    2016-02-19

    Leber's hereditary optic neuropathy (LHON) is a mitochondrially inherited disease leading to blindness. A mitochondrial DNA point mutation at the 11778 nucleotide site of the NADH dehydrogenase subunit 4 (ND4) gene is the most common cause. The aim of this study was to evaluate the efficacy and safety of a recombinant adeno-associated virus 2 (AAV2) carrying ND4 (rAAV2-ND4) in LHON patients carrying the G11778A mutation. Nine patients were administered rAAV2-ND4 by intravitreal injection to one eye and then followed for 9 months. Ophthalmologic examinations of visual acuity, visual field, and optical coherence tomography were performed. Physical examinations included routine blood and urine. The visual acuity of the injected eyes of six patients improved by at least 0.3 log MAR after 9 months of follow-up. In these six patients, the visual field was enlarged but the retinal nerve fibre layer remained relatively stable. No other outcome measure was significantly changed. None of the nine patients had local or systemic adverse events related to the vector during the 9-month follow-up period. These findings support the feasible use of gene therapy for LHON.

  11. Efficacy and Safety of rAAV2-ND4 Treatment for Leber's Hereditary Optic Neuropathy.

    PubMed

    Wan, Xing; Pei, Han; Zhao, Min-jian; Yang, Shuo; Hu, Wei-kun; He, Heng; Ma, Si-qi; Zhang, Ge; Dong, Xiao-yan; Chen, Chen; Wang, Dao-wen; Li, Bin

    2016-01-01

    Leber's hereditary optic neuropathy (LHON) is a mitochondrially inherited disease leading to blindness. A mitochondrial DNA point mutation at the 11778 nucleotide site of the NADH dehydrogenase subunit 4 (ND4) gene is the most common cause. The aim of this study was to evaluate the efficacy and safety of a recombinant adeno-associated virus 2 (AAV2) carrying ND4 (rAAV2-ND4) in LHON patients carrying the G11778A mutation. Nine patients were administered rAAV2-ND4 by intravitreal injection to one eye and then followed for 9 months. Ophthalmologic examinations of visual acuity, visual field, and optical coherence tomography were performed. Physical examinations included routine blood and urine. The visual acuity of the injected eyes of six patients improved by at least 0.3 log MAR after 9 months of follow-up. In these six patients, the visual field was enlarged but the retinal nerve fibre layer remained relatively stable. No other outcome measure was significantly changed. None of the nine patients had local or systemic adverse events related to the vector during the 9-month follow-up period. These findings support the feasible use of gene therapy for LHON. PMID:26892229

  12. Production of CFTR-null and CFTR-ΔF508 heterozygous pigs by adeno-associated virus–mediated gene targeting and somatic cell nuclear transfer

    PubMed Central

    Rogers, Christopher S.; Hao, Yanhong; Rokhlina, Tatiana; Samuel, Melissa; Stoltz, David A.; Li, Yuhong; Petroff, Elena; Vermeer, Daniel W.; Kabel, Amanda C.; Yan, Ziying; Spate, Lee; Wax, David; Murphy, Clifton N.; Rieke, August; Whitworth, Kristin; Linville, Michael L.; Korte, Scott W.; Engelhardt, John F.; Welsh, Michael J.; Prather, Randall S.

    2008-01-01

    Progress toward understanding the pathogenesis of cystic fibrosis (CF) and developing effective therapies has been hampered by lack of a relevant animal model. CF mice fail to develop the lung and pancreatic disease that cause most of the morbidity and mortality in patients with CF. Pigs may be better animals than mice in which to model human genetic diseases because their anatomy, biochemistry, physiology, size, and genetics are more similar to those of humans. However, to date, gene-targeted mammalian models of human genetic disease have not been reported for any species other than mice. Here we describe the first steps toward the generation of a pig model of CF. We used recombinant adeno-associated virus (rAAV) vectors to deliver genetic constructs targeting the CF transmembrane conductance receptor (CFTR) gene to pig fetal fibroblasts. We generated cells with the CFTR gene either disrupted or containing the most common CF-associated mutation (ΔF508). These cells were used as nuclear donors for somatic cell nuclear transfer to porcine oocytes. We thereby generated heterozygote male piglets with each mutation. These pigs should be of value in producing new models of CF. In addition, because gene-modified mice often fail to replicate human diseases, this approach could be used to generate models of other human genetic diseases in species other than mice. PMID:18324337

  13. Recombinant adeno-associated virus mediates a high level of gene transfer but less efficient integration in the K562 human hematopoietic cell line.

    PubMed Central

    Malik, P; McQuiston, S A; Yu, X J; Pepper, K A; Krall, W J; Podsakoff, G M; Kurtzman, G J; Kohn, D B

    1997-01-01

    We tested the ability of a recombinant adeno-associated virus (rAAV) vector to express and integrate exogenous DNA into human hematopoietic cells in the absence of selection. We developed an rAAV vector, AAV-tNGFR, carrying a truncated rat nerve growth factor receptor (tNGFR) cDNA as a cell surface reporter under the control of the Moloney murine leukemia virus (MoMuLV) long terminal repeat. An analogous MoMuLV-based retroviral vector (L-tNGFR) was used in parallel, and gene transfer and expression in human hematopoietic cells were assessed by flow cytometry and DNA analyses. Following gene transfer into K562 cells with AAV-tNGFR at a multiplicity of infection (MOI) of 13 infectious units (IU), 26 to 38% of cells expressed tNGFR on the surface early after transduction, but the proportion of tNGFR expressing cells steadily declined to 3.0 to 3.5% over 1 month of culture. At an MOI of 130 IU, nearly all cells expressed tNGFR immediately posttransduction, but the proportion of cells expressing tNGFR declined to 62% over 2 months of culture. The decline in the proportion of AAV-tNGFR-expressing cells was associated with ongoing losses of vector genomes. In contrast, K562 cells transduced with the retroviral vector L-tNGFR expressed tNGFR in a constant fraction. Integration analyses on clones showed that integration occurred at different sites. Integration frequencies were estimated at about 49% at an MOI of 130 and 2% at an MOI of 1.3. Transduction of primary human CD34+ progenitor cells by AAV-tNGFR was less efficient than with K562 cells and showed a declining percentage of cells expressing tNGFR over 2 weeks of culture. Thus, purified rAAV caused very high gene transfer and expression in human hematopoietic cells early after transduction, which steadily declined during cell passage in the absence of selection. Although the efficiency of integration was low, overall integration was markedly improved at a high MOI. While prolonged episomal persistence may be adequate

  14. Adeno-Associated Virus-2 and its Primary Cellular Receptor – Cryo-EM Structure of a Heparin Complex

    PubMed Central

    O'Donnell, Jason; Taylor, Kenneth A.; Chapman, Michael S.

    2009-01-01

    Adeno-associated virus serotype 2 (AAV-2) is a leading candidate vector for gene therapy. Cell entry starts with attachment to a primary receptor, Heparan Sulfate Proteoglycan (HSPG) before binding to a co-receptor. Here, cryo-electron microscopy provides direct visualization of the virus–HSPG interactions. Single particle analysis was performed on AAV-2 complexed with a 17kDa heparin fragment at 8.3Å resolution. Heparin density covers the shoulder of spikes surrounding viral 3-fold symmetry axes. Previously implicated, positively charged residues R448/585, R451/588 and R350/487 from another subunit cluster at the center of the heparin footprint. The footprint is much more extensive than apparent through mutagenesis, including R347/484, K395/532 and K390/527 that are more conserved, but whose roles have been controversial. It also includes much of a region proposed as a co-receptor site, because prior studies had not revealed heparin interactions. Heparin density bridges over the viral 3-fold axes, indicating multivalent attachment to symmetry-related binding sites. PMID:19144372

  15. Adeno-associated virus-2 and its primary cellular receptor-Cryo-EM structure of a heparin complex

    SciTech Connect

    O'Donnell, Jason; Taylor, Kenneth A.; Chapman, Michael S.

    2009-03-15

    Adeno-associated virus serotype 2 (AAV-2) is a leading candidate vector for gene therapy. Cell entry starts with attachment to a primary receptor, Heparan Sulfate Proteoglycan (HSPG) before binding to a co-receptor. Here, cryo-electron microscopy provides direct visualization of the virus-HSPG interactions. Single particle analysis was performed on AAV-2 complexed with a 17 kDa heparin fragment at 8.3 A resolution. Heparin density covers the shoulder of spikes surrounding viral 3-fold symmetry axes. Previously implicated, positively charged residues R{sub 448/585}, R{sub 451/588} and R{sub 350/487} from another subunit cluster at the center of the heparin footprint. The footprint is much more extensive than apparent through mutagenesis, including R{sub 347/484}, K{sub 395/532} and K{sub 390/527} that are more conserved, but whose roles have been controversial. It also includes much of a region proposed as a co-receptor site, because prior studies had not revealed heparin interactions. Heparin density bridges over the viral 3-fold axes, indicating multi-valent attachment to symmetry-related binding sites.

  16. Syntaxin 5-Dependent Retrograde Transport to the trans-Golgi Network Is Required for Adeno-Associated Virus Transduction

    PubMed Central

    Nonnenmacher, Mathieu E.; Cintrat, Jean-Christophe; Gillet, Daniel

    2014-01-01

    ABSTRACT Intracellular transport of recombinant adeno-associated virus (AAV) is still incompletely understood. In particular, the trafficking steps preceding the release of incoming AAV particles from the endosomal system into the cytoplasm, allowing subsequent nuclear import and the initiation of gene expression, remain to be elucidated fully. Others and we previously showed that a significant proportion of viral particles are transported to the Golgi apparatus and that Golgi apparatus disruption caused by the drug brefeldin A efficiently blocks AAV serotype 2 (AAV2) transduction. However, because brefeldin A is known to exert pleiotropic effects on the entire endosomal system, the functional relevance of transport to the Golgi apparatus for AAV transduction remains to be established definitively. Here, we show that AAV2 trafficking toward the trans-Golgi network (TGN) and the Golgi apparatus correlates with transduction efficiency and relies on a nonclassical retrograde transport pathway that is independent of the retromer complex, late endosomes, and recycling endosomes. AAV2 transduction is unaffected by the knockdown of syntaxins 6 and 16, which are two major effectors in the retrograde transport of both exogenous and endogenous cargo. On the other hand, inhibition of syntaxin 5 function by small interfering RNA silencing or treatment with cyclized Retro-2 strongly decreases AAV2 transduction and transport to the Golgi apparatus. This inhibition of transduction is observed with several AAV serotypes and a number of primary and immortalized cells. Together, our data strongly suggest that syntaxin 5-mediated retrograde transport to the Golgi apparatus is a broadly conserved feature of AAV trafficking that appears to be independent of the identity of the receptors used for viral attachment. IMPORTANCE Gene therapy constitutes a promising approach for the treatment of life-threatening conditions refractory to any other form of remedy. Adeno-associated virus (AAV

  17. Detection of adeno-associated virus type 2 genome in cervical carcinoma

    PubMed Central

    Zheng, B Y; Li, X D; Wiklund, F; Chowdhry, S; Ångstrom, T; Hallmans, G; Dillner, J; Wallin, K L

    2006-01-01

    Adeno-associated virus (AAV) can impair the replication of other viruses. Adeno-associated virus seroprevalences have been reported to be lower among women with cervical cancer. In-vitro, AAV can interfere with the production of human papillomavirus virions. Adeno-associated virus-2 DNA has also been detected in cervical cancer tissue, although not consistently. To evaluate the role of AAV infection in relation to invasive cervical cancer, we performed a nested case–control study within a retrospectively followed population-based cohort. A total of 104 women who developed invasive cervical cancer on average 5.6 years of follow-up (range: 0.5 months–26.2 years) and 104 matched control-women who did not develop cervical cancer during the same follow-up time were tested for AAV and human papillomavirus by polymerase chain reaction. At baseline, two (2%) case-women and three (3%) control-women were positive for AAV-2 DNA. At the time of cancer diagnosis, 12 (12%) case-women and 3 (3%) matched control-women were positive for AAV-2 DNA. Persisting AAV infection was not evident. In conclusion, AAV-2 DNA was present in a low proportion of cervical cancers and we found no evidence that the presence of AAV in cervical smears of healthy women would be associated with reduced risk of cervical cancer. PMID:16736006

  18. Adeno-associated virus vectors as therapeutic and investigational tools in the cardiovascular system.

    PubMed

    Zacchigna, Serena; Zentilin, Lorena; Giacca, Mauro

    2014-05-23

    The use of vectors based on the small parvovirus adeno-associated virus has gained significant momentum during the past decade. Their high efficiency of transduction of postmitotic tissues in vivo, such as heart, brain, and retina, renders these vectors extremely attractive for several gene therapy applications affecting these organs. Besides functional correction of different monogenic diseases, the possibility to drive efficient and persistent transgene expression in the heart offers the possibility to develop innovative therapies for prevalent conditions, such as ischemic cardiomyopathy and heart failure. Therapeutic genes are not only restricted to protein-coding complementary DNAs but also include short hairpin RNAs and microRNA genes, thus broadening the spectrum of possible applications. In addition, several spontaneous or engineered variants in the virus capsid have recently improved vector efficiency and expanded their tropism. Apart from their therapeutic potential, adeno-associated virus vectors also represent outstanding investigational tools to explore the function of individual genes or gene combinations in vivo, thus providing information that is conceptually similar to that obtained from genetically modified animals. Finally, their single-stranded DNA genome can drive homology-directed gene repair at high efficiency. Here, we review the main molecular characteristics of adeno-associated virus vectors, with a particular view to their applications in the cardiovascular field.

  19. Hepatocyte Heparan Sulfate Is Required for Adeno-Associated Virus 2 but Dispensable for Adenovirus 5 Liver Transduction In Vivo

    PubMed Central

    Zaiss, Anne K.; Foley, Erin M.; Lawrence, Roger; Schneider, Lina S.; Hoveida, Hamidreza; Secrest, Patrick; Catapang, Arthur B.; Yamaguchi, Yu; Alemany, Ramon; Shayakhmetov, Dmitry M.; Esko, Jeffrey D.

    2015-01-01

    ABSTRACT Adeno-associated virus 2 (AAV2) and adenovirus 5 (Ad5) are promising gene therapy vectors. Both display liver tropism and are currently thought to enter hepatocytes in vivo through cell surface heparan sulfate proteoglycans (HSPGs). To test directly this hypothesis, we created mice that lack Ext1, an enzyme required for heparan sulfate biosynthesis, in hepatocytes. Ext1HEP mutant mice exhibit an 8-fold reduction of heparan sulfate in primary hepatocytes and a 5-fold reduction of heparan sulfate in whole liver tissue. Conditional hepatocyte Ext1 gene deletion greatly reduced AAV2 liver transduction following intravenous injection. Ad5 transduction requires blood coagulation factor X (FX); FX binds to the Ad5 capsid hexon protein and bridges the virus to HSPGs on the cell surface. Ad5.FX transduction was abrogated in primary hepatocytes from Ext1HEP mice. However, in contrast to the case with AAV2, Ad5 transduction was not significantly reduced in the livers of Ext1HEP mice. FX remained essential for Ad5 transduction in vivo in Ext1HEP mice. We conclude that while AAV2 requires HSPGs for entry into mouse hepatocytes, HSPGs are dispensable for Ad5 hepatocyte transduction in vivo. This study reopens the question of how adenovirus enters cells in vivo. IMPORTANCE Our understanding of how viruses enter cells, and how they can be used as therapeutic vectors to manage disease, begins with identification of the cell surface receptors to which viruses bind and which mediate viral entry. Both adeno-associated virus 2 and adenovirus 5 are currently thought to enter hepatocytes in vivo through heparan sulfate proteoglycans (HSPGs). However, direct evidence for these conclusions is lacking. Experiments presented herein, in which hepatic heparan sulfate synthesis was genetically abolished, demonstrated that HSPGs are not likely to function as hepatocyte Ad5 receptors in vivo. The data also demonstrate that HSPGs are required for hepatocyte transduction by AAV2. These

  20. Adeno-associated virus activates an innate immune response in normal human cells but not in osteosarcoma cells.

    PubMed

    Laredj, Leila N; Beard, Peter

    2011-12-01

    Adeno-associated virus (AAV) is a small, DNA-containing dependovirus with promising potential as a gene delivery vehicle. Given the variety of applications of AAV-based vectors in the treatment of genetic disorders, numerous studies have focused on the immunogenicity of recombinant AAV. In general, AAV vectors appear not to induce strong inflammatory responses. We have found that AAV2, when it infects the osteosarcoma cells U2OS, can initiate part of its replicative cycle in the absence of helper virus. This does not occur in untransformed cells. We set out to test whether the cellular innate antiviral defenses control this susceptibility and found that, in nonimmune normal human fibroblasts, AAV2 induces type I interferon production and release and the accumulation of nuclear promyelocytic leukemia bodies. AAV fails to mobilize this defense pathway in the U2OS cells. This permissiveness is in large part due to impairment of the viral sensing machinery in these cells. Our investigations point to Toll-like receptor 9 as a potential intracellular sensor that detects AAV2 and triggers the antiviral state in AAV-infected untransformed cells. Efficient sensing of the AAV genome and the ensuing activation of an innate antiviral response are thus crucial cellular events dictating the parvovirus infectivity in host cells.

  1. Intracellular route and biological activity of exogenously delivered Rep proteins from the adeno-associated virus type 2

    SciTech Connect

    Awedikian, Rafi; Francois, Achille; Guilbaud, Mickael; Moullier, Philippe; Salvetti, Anna . E-mail: anna.salvetti@univ-nantes.fr

    2005-05-10

    The two large Rep proteins, Rep78 and Rep68, from the adeno-associated virus type 2 (AAV-2) are required for AAV-2 DNA replication, site-specific integration, and for the regulation of viral gene expression. The study of their activities is dependent on the ability to deliver these proteins to the cells in a time and dose-dependent manner. We evaluated the ability of a protein transduction domain (PTD) derived from the human immunodeficiency virus 1 (HIV-1) TAT protein to drive the cellular internalization of exogenously delivered PTD-fused Rep68 proteins. This analysis unexpectedly revealed that recombinant Rep68 alone, in the absence of any PTD, could be endocytosed by the cells. Rep68 as the chimeric TAT-Rep68 proteins were internalized through endocytosis in clathrin-coated vesicles and retained in late endosomes/lysosomes with no detectable nuclear localization. In the presence of adenovirus, the Rep proteins could translocate into the nucleus where they displayed a biological activity. These findings support recent reports on the mechanism of entry of TAT-fused proteins and also revealed a new property of Rep68.

  2. Safe and bodywide muscle transduction in young adult Duchenne muscular dystrophy dogs with adeno-associated virus.

    PubMed

    Yue, Yongping; Pan, Xiufang; Hakim, Chady H; Kodippili, Kasun; Zhang, Keqing; Shin, Jin-Hong; Yang, Hsiao T; McDonald, Thomas; Duan, Dongsheng

    2015-10-15

    The ultimate goal of muscular dystrophy gene therapy is to treat all muscles in the body. Global gene delivery was demonstrated in dystrophic mice more than a decade ago using adeno-associated virus (AAV). However, translation to affected large mammals has been challenging. The only reported attempt was performed in newborn Duchenne muscular dystrophy (DMD) dogs. Unfortunately, AAV injection resulted in growth delay, muscle atrophy and contracture. Here we report safe and bodywide AAV delivery in juvenile DMD dogs. Three ∼2-m-old affected dogs received intravenous injection of a tyrosine-engineered AAV-9 reporter or micro-dystrophin (μDys) vector at the doses of 1.92-6.24 × 10(14) viral genome particles/kg under transient or sustained immune suppression. DMD dogs tolerated injection well and their growth was not altered. Hematology and blood biochemistry were unremarkable. No adverse reactions were observed. Widespread muscle transduction was seen in skeletal muscle, the diaphragm and heart for at least 4 months (the end of the study). Nominal expression was detected in internal organs. Improvement in muscle histology was observed in μDys-treated dogs. In summary, systemic AAV gene transfer is safe and efficient in young adult dystrophic large mammals. This may translate to bodywide gene therapy in pediatric patients in the future. PMID:26264580

  3. Safe and bodywide muscle transduction in young adult Duchenne muscular dystrophy dogs with adeno-associated virus.

    PubMed

    Yue, Yongping; Pan, Xiufang; Hakim, Chady H; Kodippili, Kasun; Zhang, Keqing; Shin, Jin-Hong; Yang, Hsiao T; McDonald, Thomas; Duan, Dongsheng

    2015-10-15

    The ultimate goal of muscular dystrophy gene therapy is to treat all muscles in the body. Global gene delivery was demonstrated in dystrophic mice more than a decade ago using adeno-associated virus (AAV). However, translation to affected large mammals has been challenging. The only reported attempt was performed in newborn Duchenne muscular dystrophy (DMD) dogs. Unfortunately, AAV injection resulted in growth delay, muscle atrophy and contracture. Here we report safe and bodywide AAV delivery in juvenile DMD dogs. Three ∼2-m-old affected dogs received intravenous injection of a tyrosine-engineered AAV-9 reporter or micro-dystrophin (μDys) vector at the doses of 1.92-6.24 × 10(14) viral genome particles/kg under transient or sustained immune suppression. DMD dogs tolerated injection well and their growth was not altered. Hematology and blood biochemistry were unremarkable. No adverse reactions were observed. Widespread muscle transduction was seen in skeletal muscle, the diaphragm and heart for at least 4 months (the end of the study). Nominal expression was detected in internal organs. Improvement in muscle histology was observed in μDys-treated dogs. In summary, systemic AAV gene transfer is safe and efficient in young adult dystrophic large mammals. This may translate to bodywide gene therapy in pediatric patients in the future.

  4. Role of cellular FKBP52 protein in intracellular trafficking of recombinant adeno-associated virus 2 vectors

    SciTech Connect

    Zhao Weihong; Wu Jianqing ||; Zhong Li; Chen Linyuan; Weigel-Kelley, Kirsten A. |; Qing Keyun; Larsen, Steven H.; Shou Weinian; Warrington, Kenneth H. |; Srivastava, Arun |. E-mail: asrivastava@gtc.ufl.edu

    2006-09-30

    We have reported that tyrosine-phosphorylated forms of a cellular protein, FKBP52, inhibit the second-strand DNA synthesis of adeno-associated virus 2 (AAV), leading to inefficient transgene expression from recombinant AAV vectors. To further explore the role of FKBP52 in AAV-mediated transduction, we established murine embryo fibroblasts (MEFs) cultures from FKBP52 wild-type (WT), heterozygous (HE), and knockout (KO) mice. Conventional AAV vectors failed to transduce WT MEFs efficiently, and the transduction efficiency was not significantly increased in HE or KO MEFs. AAV vectors failed to traffic efficiently to the nucleus in these cells. Treatment with hydroxyurea (HU) increased the transduction efficiency of conventional AAV vectors by {approx}25-fold in WT MEFs, but only by {approx}4-fold in KO MEFs. The use of self-complementary AAV (scAAV) vectors, which bypass the requirement of viral second-strand DNA synthesis, revealed that HU treatment increased the transduction efficiency {approx}23-fold in WT MEFs, but only {approx}4-fold in KO MEFs, indicating that the lack of HU treatment-mediated increase in KO MEFs was not due to failure of AAV to undergo viral second-strand DNA synthesis. Following HU treatment, {approx}59% of AAV genomes were present in the nuclear fraction from WT MEFs, but only {approx}28% in KO MEFs, indicating that the pathway by which HU treatment mediates nuclear transport of AAV was impaired in KO MEFs. When KO MEFs were stably transfected with an FKBP52 expression plasmid, HU treatment-mediated increase in the transduction efficiency was restored in these cells, which correlated directly with improved intracellular trafficking. Intact AAV particles were also shown to interact with FKBP52 as well as with dynein, a known cellular protein involved in AAV trafficking. These studies suggest that FKBP52, being a cellular chaperone protein, facilitates intracellular trafficking of AAV, which has implications in the optimal use of recombinant

  5. Adeno-associated virus Rep78 protein and terminal repeats enhance integration of DNA sequences into the cellular genome.

    PubMed Central

    Balagúe, C; Kalla, M; Zhang, W W

    1997-01-01

    Two adeno-associated virus (AAV) elements are necessary for the integration of the AAV genome: Rep78/68 proteins and inverted terminal repeats (ITRs). To study the contribution of the Rep proteins and the ITRs in the process of integration, we have compared the integration efficiencies of three different plasmids containing a green fluorescent protein (GFP) expression cassette. In one plasmid, no viral sequences were present; a second plasmid contained AAV ITRs flanking the reporter gene (integration cassette), and a third plasmid consisted of an integration cassette plus a Rep78 expression cassette. One day after transfection of 293 cells, fluorescent cells were sorted by flow cytometry and plated at 1 cell per well. Two weeks after sorting, colonies were monitored for stable expression of GFP. Transfection with the GFP plasmid containing no viral sequences resulted in no stable fluorescent colonies. Transfection with the plasmid containing the integration cassette alone (GFP flanked by ITRs) produced stable fluorescent colonies at a frequency of 5.3% +/- 1.0% whereas transfection with the plasmid containing both the integration cassette and Rep78 expression cassette produced stable fluorescent colonies at a frequency of 47% +/- 7.5%. Southern blot analysis indicated that in the presence of Rep78, integration is targeted to the AAVSI site in more than 50% of the clones analyzed. Some clones also showed tandem arrays of the integrated GFP cassette. Both head-to-head and head-to-tail orientations were detected. These findings indicate that the presence of AAV ITRs and the Rep78 protein enhance the integration of DNA sequences into the cellular genome and that the integration cassette is targeted to AAVS1 in the presence of Rep78. PMID:9060699

  6. Suppressing tumor growth of nasopharyngeal carcinoma by hTERTC27 polypeptide delivered through adeno-associated virus plus adenovirus vector cocktail

    PubMed Central

    Liu, Xiong; Li, Xiang-Ping; Peng, Ying; Ng, Samuel S.; Yao, Hong; Wang, Zi-Feng; Wang, Xiao-Mei; Kung, Hsiang-Fu; Lin, Marie C.M.

    2012-01-01

    Nasopharyngeal carcinoma (NPC) is a metastatic carcinoma that is highly prevalent in Southeast Asia. Our laboratory has previously demonstrated that the C-terminal 27-kDa polypeptide of human telomerase reverse transcriptase (hTERTC27) inhibits the growth and tumorigenicity of human glioblastoma and melanoma cells. In this study, we investigated the antitumor effect of hTERTC27 in human C666-1 NPC cells xenografted in a nude mouse model. A cocktail of vectors comprising recombinant adeno-associated virus (rAAV) and recombinant adenovirus (rAdv) that each carry hTERTC27 (rAAV-hTERTC27 and rAdv-hTERTC27; the cocktail was abbreviated to rAAV/rAdv-hTERTC27) was more effective than either rAAV-hTERTC27 or rAdv-hTERTC27 alone in inhibiting the growth of C666-1 NPC xenografts. Furthermore, we established three tumors on each mouse and injected rAAV/rAdv-hTERTC27 into one tumor per mouse. Although hTERTC27 expression could only be detected in the injected tumors, reduced tumor growth was observed in the injected tumor as well as the uninjected tumors, demonstrating that the vector cocktail could provoke an antitumor effect on distant, metastasized tumors. Further studies showed the observed antitumor effects included inducing necrosis and apoptosis and reducing microvessel density. Together, our data suggest that the rAAV/rAdv-hTERTC27 cocktail can potently inhibit NPC tumor growth in both local and metastasized tumors and should be further developed as a novel gene therapy strategy for NPC. PMID:23149313

  7. A Rapid, Cost-Effective Method to Prepare Recombinant Adeno-Associated Virus for Efficient Gene Transfer to the Developing Mouse Inner Ear.

    PubMed

    Gomes, Michelle M; Wang, Lingyan; Jiang, Han; Kahl, Christoph A; Brigande, John V

    2016-01-01

    There is keen interest to define gene therapies aimed at restoration of auditory and vestibular function in the diseased or damaged mammalian inner ear. A persistent limitation of regenerative medical strategies that seek to correct or modify gene expression in the sensory epithelia of the inner ear involves efficacious delivery of a therapeutic genetic construct. Our approach is to define methodologies that enable fetal gene transfer to the developing mammalian inner ear in an effort to correct defective gene expression during formation of the sensory epithelia or during early postnatal life. Conceptually, the goal is to atraumatically introduce the genetic construct into the otocyst-staged mouse inner ear and transfect otic progenitors that give rise to sensory hair cells and supporting cells. Our long-term goal is to define therapeutic interventions for congenital deafness and balance disorders with the expectation that the approach may also be exploited for therapeutic intervention postnatally.In the inaugural volume of this series, we introduced electroporation-mediated gene transfer to the developing mouse inner ear that encompassed our mouse survival surgery and transuterine microinjection protocols (Brigande et al., Methods Mol Biol 493:125-139, 2009). In this chapter, we first briefly update our use of sodium pentobarbital anesthesia, our preferred anesthetic for mouse ventral laparotomy, in light of its rapidly escalating cost. Next, we define a rapid, cost-effective method to produce recombinant adeno-associated virus (rAAV) for efficient gene transfer to the developing mouse inner ear. Our immediate goal is to provide a genetic toolkit that will permit the definition and validation of gene therapies in mouse models of human deafness and balance disorders. PMID:27259920

  8. Triple trans-splicing adeno-associated virus vectors capable of transferring the coding sequence for full-length dystrophin protein into dystrophic mice.

    PubMed

    Koo, Taeyoung; Popplewell, Linda; Athanasopoulos, Takis; Dickson, George

    2014-02-01

    Recombinant adeno-associated virus (rAAV) vectors have been shown to permit very efficient widespread transgene expression in skeletal muscle after systemic delivery, making these increasingly attractive as vectors for Duchenne muscular dystrophy (DMD) gene therapy. DMD is a severe muscle-wasting disorder caused by DMD gene mutations leading to complete loss of dystrophin protein. One of the major issues associated with delivery of the DMD gene, as a therapeutic approach for DMD, is its large open reading frame (ORF; 11.1 kb). A series of truncated microdystrophin cDNAs (delivered via a single AAV) and minidystrophin cDNAs (delivered via dual-AAV trans-spliced/overlapping reconstitution) have thus been extensively tested in DMD animal models. However, critical rod and hinge domains of dystrophin required for interaction with components of the dystrophin-associated protein complex, such as neuronal nitric oxide synthase, syntrophin, and dystrobrevin, are missing; these dystrophin domains may still need to be incorporated to increase dystrophin functionality and stabilize membrane rigidity. Full-length DMD gene delivery using AAV vectors remains elusive because of the limited single-AAV packaging capacity (4.7 kb). Here we developed a novel method for the delivery of the full-length DMD coding sequence to skeletal muscles in dystrophic mdx mice using a triple-AAV trans-splicing vector system. We report for the first time that three independent AAV vectors carrying "in tandem" sequential exonic parts of the human DMD coding sequence enable the expression of the full-length protein as a result of trans-splicing events cojoining three vectors via their inverted terminal repeat sequences. This method of triple-AAV-mediated trans-splicing could be applicable to the delivery of any large therapeutic gene (≥11 kb ORF) into postmitotic tissues (muscles or neurons) for the treatment of various inherited metabolic and genetic diseases.

  9. Progress with Recombinant Adeno-Associated Virus Vectors for Gene Therapy of Alpha-1 Antitrypsin Deficiency.

    PubMed

    Gruntman, Alisha M; Flotte, Terence R

    2015-06-01

    The pathway to a clinical gene therapy product often involves many changes of course and strategy before obtaining successful results. Here we outline the methodologies, both clinical and preclinical, that went into developing a gene therapy approach to the treatment of alpha-1 antitrypsin deficiency lung disease using muscle-targeted recombinant adeno-associated virus. From initial gene construct development in mouse models through multiple rounds of safety and biodistribution studies in rodents, rabbits, and nonhuman primates to ultimate human trials, this review seeks to provide insight into what clinical translation entails and could thereby inform the process for future investigators.

  10. Adeno-Associated Virus-Based Gene Therapy for CNS Diseases

    PubMed Central

    Hocquemiller, Michaël; Giersch, Laura; Audrain, Mickael; Parker, Samantha; Cartier, Nathalie

    2016-01-01

    Gene therapy is at the cusp of a revolution for treating a large spectrum of CNS disorders by providing a durable therapeutic protein via a single administration. Adeno-associated virus (AAV)-mediated gene transfer is of particular interest as a therapeutic tool because of its safety profile and efficiency in transducing a wide range of cell types. The purpose of this review is to describe the most notable advancements in preclinical and clinical research on AAV-based CNS gene therapy and to discuss prospects for future development based on a new generation of vectors and delivery. PMID:27267688

  11. Identification and Characterization of Novel Adeno-Associated Virus Isolates in ATCC Virus Stocks

    PubMed Central

    Schmidt, Michael; Grot, Emmanuelle; Cervenka, Peter; Wainer, Sandra; Buck, Charles; Chiorini, John A.

    2006-01-01

    Adeno-associated viruses (AAVs) depend on a helper virus for efficient replication. To identify novel AAV isolates, we screened a diverse set of virus isolates for the presence of AAV DNA. AAVs found in 10 simian adenovirus isolates showed greater than 96% homology to AAV1 and AAV6 but had distinct biological properties. Two representatives of this group, AAV(VR-195) and AAV(VR-355), were studied in more detail. While the novel AAVs had high sequence homologies and required sialic acid for cell binding and transduction, differences were observed in lectin competition, resulting in distinct tropisms in human cancer cell lines. PMID:16641301

  12. Identification and characterization of novel adeno-associated virus isolates in ATCC virus stocks.

    PubMed

    Schmidt, Michael; Grot, Emmanuelle; Cervenka, Peter; Wainer, Sandra; Buck, Charles; Chiorini, John A

    2006-05-01

    Adeno-associated viruses (AAVs) depend on a helper virus for efficient replication. To identify novel AAV isolates, we screened a diverse set of virus isolates for the presence of AAV DNA. AAVs found in 10 simian adenovirus isolates showed greater than 96% homology to AAV1 and AAV6 but had distinct biological properties. Two representatives of this group, AAV(VR-195) and AAV(VR-355), were studied in more detail. While the novel AAVs had high sequence homologies and required sialic acid for cell binding and transduction, differences were observed in lectin competition, resulting in distinct tropisms in human cancer cell lines.

  13. Characterization of a nuclear localization signal in the C-terminus of the adeno-associated virus Rep68/78 proteins

    SciTech Connect

    Cassell, Geoffrey D.; Weitzman, Matthew D. . E-mail: weitzman@salk.edu

    2004-10-01

    Adeno-associated virus (AAV) replicates in the nucleus of infected cells, and therefore multiple nuclear import events are required for productive infection. We analyzed nuclear import of the viral Rep proteins and characterized a nuclear localization signal (NLS) in the C-terminus. We demonstrate that basic residues in this region constitute an NLS that is transferable and mediates interaction with the nuclear import receptor importin {alpha} in vitro. Mutant Rep proteins are predominantly cytoplasmic and are severely compromised for interactions with importin {alpha}, but retain their enzymatic functions in vitro. Interestingly, mutations of the NLS had significantly less effect on importin {alpha} interaction and replication in the context of Rep78 than when incorporated into the Rep68 protein. Together, our results demonstrate that a bipartite NLS exists in the shared part of Rep68 and Rep78, and suggest that an alternate entry mechanism may also contribute to nuclear localization of the Rep78 protein.

  14. Efficacy and Safety of rAAV2-ND4 Treatment for Leber’s Hereditary Optic Neuropathy

    PubMed Central

    Wan, Xing; Pei, Han; Zhao, Min-jian; Yang, Shuo; Hu, Wei-kun; He, Heng; Ma, Si-qi; Zhang, Ge; Dong, Xiao-yan; Chen, Chen; Wang, Dao-wen; Li, Bin

    2016-01-01

    Leber’s hereditary optic neuropathy (LHON) is a mitochondrially inherited disease leading to blindness. A mitochondrial DNA point mutation at the 11778 nucleotide site of the NADH dehydrogenase subunit 4 (ND4) gene is the most common cause. The aim of this study was to evaluate the efficacy and safety of a recombinant adeno-associated virus 2 (AAV2) carrying ND4 (rAAV2-ND4) in LHON patients carrying the G11778A mutation. Nine patients were administered rAAV2-ND4 by intravitreal injection to one eye and then followed for 9 months. Ophthalmologic examinations of visual acuity, visual field, and optical coherence tomography were performed. Physical examinations included routine blood and urine. The visual acuity of the injected eyes of six patients improved by at least 0.3 log MAR after 9 months of follow-up. In these six patients, the visual field was enlarged but the retinal nerve fibre layer remained relatively stable. No other outcome measure was significantly changed. None of the nine patients had local or systemic adverse events related to the vector during the 9-month follow-up period. These findings support the feasible use of gene therapy for LHON. PMID:26892229

  15. A survey of ex vivo/in vitro transduction efficiency of mammalian primary cells and cell lines with Nine natural adeno-associated virus (AAV1-9) and one engineered adeno-associated virus serotype

    PubMed Central

    2013-01-01

    Background The ability to deliver a gene of interest into a specific cell type is an essential aspect of biomedical research. Viruses can be a useful tool for this delivery, particularly in difficult to transfect cell types. Adeno-associated virus (AAV) is a useful gene transfer vector because of its ability to mediate efficient gene transduction in numerous dividing and quiescent cell types, without inducing any known pathogenicity. There are now a number of natural for that designed AAV serotypes that each has a differential ability to infect a variety of cell types. Although transduction studies have been completed, the bulk of the studies have been done in vivo, and there has never been a comprehensive study of transduction ex vivo/in vitro. Methods Each cell type was infected with each serotype at a multiplicity of infection of 100,000 viral genomes/cell and transduction was analyzed by flow cytometry + . Results We found that AAV1 and AAV6 have the greatest ability to transduce a wide range of cell types, however, for particular cell types, there are specific serotypes that provide optimal transduction. Conclusions In this work, we describe the transduction efficiency of ten different AAV serotypes in thirty-four different mammalian cell lines and primary cell types. Although these results may not be universal due to numerous factors such as, culture conditions and/ or cell growth rates and cell heterogeneity, these results provide an important and unique resource for investigators who use AAV as an ex vivo gene delivery vector or who work with cells that are difficult to transfect. PMID:23497173

  16. Glycan binding avidity determines the systemic fate of adeno-associated virus type 9.

    PubMed

    Shen, Shen; Bryant, Kelli D; Sun, Junjiang; Brown, Sarah M; Troupes, Andrew; Pulicherla, Nagesh; Asokan, Aravind

    2012-10-01

    Glycans are key determinants of host range and transmissibility in several pathogens. In the case of adeno-associated viruses (AAV), different carbohydrates serve as cellular receptors in vitro; however, their contributions in vivo are less clear. A particularly interesting example is adeno-associated virus serotype 9 (AAV9), which displays systemic tropism in mice despite low endogenous levels of its primary receptor (galactose) in murine tissues. To understand this further, we studied the effect of modulating glycan binding avidity on the systemic fate of AAV9 in mice. Intravenous administration of recombinant sialidase increased tissue levels of terminally galactosylated glycans in several murine tissues. These conditions altered the systemic tropism of AAV9 into a hepatotropic phenotype, characterized by markedly increased sequestration within the liver sinusoidal endothelium and Kupffer cells. In contrast, an AAV9 mutant with decreased glycan binding avidity displayed a liver-detargeted phenotype. Altering glycan binding avidity also profoundly affected AAV9 persistence in blood circulation. Our results support the notion that high glycan receptor binding avidity appears to impart increased liver tropism, while decreased avidity favors systemic spread of AAV vectors. These findings may not only help predict species-specific differences in tropism for AAV9 on the basis of tissue glycosylation profiles, but also provide a general approach to tailor AAV vectors for systemic or hepatic gene transfer by reengineering capsid-glycan interactions. PMID:22787229

  17. Effective inhibition of infectious bursal disease virus replication by recombinant avian adeno-associated virus-delivered microRNAs.

    PubMed

    Wang, Yongjuan; Sun, Huaichang; Shen, Pengpeng; Zhang, Xinyu; Xia, Xiaoli

    2009-06-01

    RNA interference (RNAi) is a novel antiviral strategy against a variety of virus infections. Infectious bursal disease virus (IBDV) causes an economically important disease in young chickens. This study demonstrated efficient inhibition of IBDV replication by recombinant avian adeno-associated virus (rAAAV)-delivered anti-VP1 and anti-VP2 microRNAs (miRNAs). In the viral vector-transduced cells, sequence-specific miRNA expression was detected by poly(A)-tailed RT-PCR. Reporter assays using a pVP2-EGFP vector showed significant and long-lasting inhibition of VP2-EGFP expression in cells transduced with anti-VP2 miRNA-expressing rAAAV-RFPmiVP2E, but not with the control miRNA-expressing rAAAV-RFPmiVP2con or anti-VP1 miRNA-expressing rAAAV-RFPmiVP1. Semi-quantitative RT-PCR and/or virus titration assays showed a significant inhibitory effect on homologous IBDV replication in cells transduced with rAAAV-RFPmiVP1 or rAAAV-RFPmiVP2E. For two heterologous IBDV isolates, transduction with rAAAV-RFPmiVP1 led to slightly weaker but similar inhibitory effects, whereas transduction with rAAAV-RFPmiVP2E resulted in significantly weaker and different inhibitory effects. These results suggest that rAAAV could act as an efficient vector for miRNA delivery into avian cells and that VP1 is the more suitable target for interfering with IBDV replication using RNAi technology.

  18. In vivo evaluation of adeno-associated virus gene transfer in airways of mice with acute or chronic respiratory infection.

    PubMed

    Myint, Melissa; Limberis, Maria P; Bell, Peter; Somanathan, Suryanarayan; Haczku, Angela; Wilson, James M; Diamond, Scott L

    2014-11-01

    Patients with cystic fibrosis (CF) often suffer chronic lung infection with concomitant inflammation, a setting that may reduce the efficacy of gene transfer. While gene therapy development for CF often involves viral-based vectors, little is known about gene transfer in the context of an infected airway. In this study, three mouse models were established to evaluate adeno-associated virus (AAV) gene transfer in such an environment. Bordetella bronchiseptica RB50 was used in a chronic, nonlethal respiratory infection in C57BL/6 mice. An inoculum of ∼10(5) CFU allowed B. bronchiseptica RB50 to persist in the upper and lower respiratory tracts for at least 21 days. In this infection model, administration of an AAV vector on day 2 resulted in 2.8-fold reduction of reporter gene expression compared with that observed in uninfected controls. Postponement of AAV administration to day 14 resulted in an even greater (eightfold) reduction of reporter gene expression, when compared with uninfected controls. In another infection model, Pseudomonas aeruginosa PAO1 was used to infect surfactant protein D (SP-D) or surfactant protein A (SP-A) knockout (KO) mice. With an inoculum of ∼10(5) CFU, infection persisted for 2 days in the nasal cavity of either mouse model. Reporter gene expression was approximately ∼2.5-fold lower compared with uninfected mice. In the SP-D KO model, postponement of AAV administration to day 9 postinfection resulted in only a two fold reduction in reporter gene expression, when compared with expression seen in uninfected controls. These results confirm that respiratory infections, both ongoing and recently resolved, decrease the efficacy of AAV-mediated gene transfer. PMID:25144316

  19. In Vivo Evaluation of Adeno-Associated Virus Gene Transfer in Airways of Mice with Acute or Chronic Respiratory Infection

    PubMed Central

    Myint, Melissa; Limberis, Maria P.; Bell, Peter; Somanathan, Suryanarayan; Haczku, Angela; Wilson, James M.

    2014-01-01

    Abstract Patients with cystic fibrosis (CF) often suffer chronic lung infection with concomitant inflammation, a setting that may reduce the efficacy of gene transfer. While gene therapy development for CF often involves viral-based vectors, little is known about gene transfer in the context of an infected airway. In this study, three mouse models were established to evaluate adeno-associated virus (AAV) gene transfer in such an environment. Bordetella bronchiseptica RB50 was used in a chronic, nonlethal respiratory infection in C57BL/6 mice. An inoculum of ∼105 CFU allowed B. bronchiseptica RB50 to persist in the upper and lower respiratory tracts for at least 21 days. In this infection model, administration of an AAV vector on day 2 resulted in 2.8-fold reduction of reporter gene expression compared with that observed in uninfected controls. Postponement of AAV administration to day 14 resulted in an even greater (eightfold) reduction of reporter gene expression, when compared with uninfected controls. In another infection model, Pseudomonas aeruginosa PAO1 was used to infect surfactant protein D (SP-D) or surfactant protein A (SP-A) knockout (KO) mice. With an inoculum of ∼105 CFU, infection persisted for 2 days in the nasal cavity of either mouse model. Reporter gene expression was approximately ∼2.5-fold lower compared with uninfected mice. In the SP-D KO model, postponement of AAV administration to day 9 postinfection resulted in only a two fold reduction in reporter gene expression, when compared with expression seen in uninfected controls. These results confirm that respiratory infections, both ongoing and recently resolved, decrease the efficacy of AAV-mediated gene transfer. PMID:25144316

  20. Cloning of adeno-associated virus type 4 (AAV4) and generation of recombinant AAV4 particles.

    PubMed Central

    Chiorini, J A; Yang, L; Liu, Y; Safer, B; Kotin, R M

    1997-01-01

    We have cloned and characterized the full-length genome of adeno-associated virus type 4 (AAV4). The genome of AAV4 is 4,767 nucleotides in length and contains an expanded p5 promoter region compared to AAV2 and AAV3. Within the inverted terminal repeat (ITR), several base changes were identified with respect to AAV2. However, these changes did not affect the ability of this region to fold into a hairpin structure. Within the ITR, the terminal resolution site and Rep binding sites were conserved; however, the Rep binding site was expanded from three GAGC repeats to four. The Rep gene product of AAV4 shows greater than 90% homology to the Rep products of serotypes 2 and 3, with none of the changes occurring in regions which had previously been shown to affect the known functions of Rep68 or Rep78. Most of the differences in the capsid proteins lie in regions which are thought to be on the exterior surface of the viral capsid. It is these unique regions which are most likely to be responsible for the lack of cross-reacting antibodies and the altered tissue tropism compared to AAV2. The results of our studies, performed with a recombinant version of AAV4 carrying a lacZ reporter gene, suggest that AAV4 can transduce human, monkey, and rat cells. Furthermore, comparison of transduction efficiencies in a number of cell lines, competition cotransduction experiments, and the effect of trypsin on transduction efficiency all suggest that the cellular receptor for AAV4 is distinct from that of AAV2. PMID:9261407

  1. Constitutive GABA expression via a recombinant adeno-associated virus consistently attenuates neuropathic pain.

    PubMed

    Lee, Boyoung; Kim, Jaehyung; Kim, Sung Jin; Lee, Heuiran; Chang, Jin Woo

    2007-06-15

    Peripheral neuropathic pain is a common clinical problem with few existing treatments. Previously, we constructed rAAV bearing GAD65 and demonstrated that GAD65 and GABA can be constitutively produced in the CNS. To investigate the beneficial effects of GAD65 produced by rAAV and resulting GABA release in peripheral neuropathic pain, we established a neuropathic pain rat model. The direct administration of rAAV-GAD65 to dorsal root ganglion induced constitutive GAD65 expression, which was readily detected by immunohistochemistry. Both allodynic and hyperalgeic behavior tests suggested that neuropathic pain was noticeably reduced, along with the transgenic GAD65 expression. Moreover, the magnitude of pain relief was maintained during the entire experimental period. Concomitantly, the significant enhancement in GABA release following transgenic GAD65 expression was identified in vivo. Taken all together, these results provide evidence that persistent GAD65 and subsequent GABA expression in DRGs via rAAV effectively attenuates peripheral neuropathic pain for long period of time.

  2. Effective and durable genetic modification of human mesenchymal stem cells via controlled release of rAAV vectors from self-assembling peptide hydrogels with a maintained differentiation potency.

    PubMed

    Rey-Rico, Ana; Venkatesan, Jagadeesh K; Frisch, Janina; Schmitt, Gertrud; Monge-Marcet, Amália; Lopez-Chicon, Patricia; Mata, Alvaro; Semino, Carlos; Madry, Henning; Cucchiarini, Magali

    2015-05-01

    Controlling the release of recombinant adeno-associated virus (rAAV) vectors from biocompatible materials is a novel, attractive approach to increase the residence time and effectiveness of a gene carrier at a defined target site. Self-assembling peptides have an ability to form stable hydrogels and encapsulate cells upon exposure to physiological pH and ionic strength. Here, we examined the capacity of the peptide hydrogel RAD16-I in a pure (RAD) form or combined with hyaluronic acid (RAD-HA) to release rAAV vectors as a means to genetically modify primary human bone marrow-derived mesenchymal stem cells (hMSCs), a potent source of cells for regenerative medicine. Specifically, we demonstrate the ability of the systems to efficiently encapsulate and release rAAV vectors in a sustained, controlled manner for the effective transduction of hMSCs (up to 80%) without deleterious effects on cell viability (up to 100%) or on their potential for chondrogenic differentiation over time (up to 21days). The present study demonstrates that RAD16-I is an advantageous material with tunable properties to control the release of rAAV vectors as a promising tool to develop new, improved therapeutic approaches for tissue engineering in vivo.

  3. Efficient PRNP gene targeting in bovine fibroblasts by adeno-associated virus vectors.

    PubMed

    Hirata, Roli K; Xu, Cong; Dong, Rong; Miller, Daniel G; Ferguson, Stacy; Russell, David W

    2004-01-01

    Gene-targeted livestock can be created by combining ex vivo manipulation of cultured nuclear donor cells with cloning by nuclear transfer. However, this process can be limited by the low gene targeting frequencies obtained by transfection methods, and the limited ex vivo life span of the normal nuclear donor cells. We have developed an alternative gene targeting method based on the delivery of linear, single-stranded DNA molecules by adeno-associated virus (AAV) vectors, which can be used to introduce a variety of different mutations at single copy loci in normal human cells. Here we show that AAV vectors can efficiently target the PRNP gene encoding the prion protein PrP in bovine fetal fibroblasts, which can be used as nuclear donors to clone cattle. Cattle with both PRNP genes disrupted should be resistant to bovine spongiform encephalopathy.

  4. Targeting adeno-associated virus and adenoviral gene therapy for hepatocellular carcinoma.

    PubMed

    Wang, Yi-Gang; Huang, Pan-Pan; Zhang, Rong; Ma, Bu-Yun; Zhou, Xiu-Mei; Sun, Yan-Fang

    2016-01-01

    Human hepatocellular carcinoma (HCC) heavily endangers human heath worldwide. HCC is one of most frequent cancers in China because patients with liver disease, such as chronic hepatitis, have the highest cancer susceptibility. Traditional therapeutic approaches have limited efficacy in advanced liver cancer, and novel strategies are urgently needed to improve the limited treatment options for HCC. This review summarizes the basic knowledge, current advances, and future challenges and prospects of adeno-associated virus (AAV) and adenoviruses as vectors for gene therapy of HCC. This paper also reviews the clinical trials of gene therapy using adenovirus vectors, immunotherapy, toxicity and immunological barriers for AAV and adenoviruses, and proposes several alternative strategies to overcome the therapeutic barriers to using AAV and adenoviruses as vectors. PMID:26755879

  5. Systemic gene delivery to the central nervous system using Adeno-associated virus

    PubMed Central

    Bourdenx, Mathieu; Dutheil, Nathalie; Bezard, Erwan; Dehay, Benjamin

    2014-01-01

    Adeno-associated virus (AAV)-mediated gene delivery has emerged as an effective and safe tool for both preclinical and clinical studies of neurological disorders. The recent discovery that several serotypes are able to cross the blood–brain barrier when administered systemically has been a real breakthrough in the field of neurodegenerative diseases. Widespread transgene expression after systemic injection could spark interest as a therapeutic approach. Such strategy will avoid invasive brain surgery and allow non-focal gene therapy promising for CNS diseases affecting large portion of the brain. Here, we will review the recent results achieved through different systemic routes of injection generated in the last decade using systemic AAV-mediated delivery and propose a brief assessment of their values. In particular, we emphasize how the methods used for virus engineering could improve brain transduction after peripheral delivery. PMID:24917785

  6. Adeno-Associated Virus Enhances Wild-Type and Oncolytic Adenovirus Spread

    PubMed Central

    Laborda, Eduardo; Puig-Saus, Cristina; Cascalló, Manel; Chillón, Miguel

    2013-01-01

    Abstract The contamination of adenovirus (Ad) stocks with adeno-associated viruses (AAV) is usually unnoticed, and it has been associated with lower Ad yields upon large-scale production. During Ad propagation, AAV contamination needs to be detected routinely by polymerase chain reaction without symptomatic suspicion. In this study, we describe that the coinfection of either Ad wild type 5 or oncolytic Ad with AAV results in a large-plaque phenotype associated with an accelerated release of Ad from coinfected cells. This accelerated release was accompanied with the expected decrease in Ad yields in two out of three cell lines tested. Despite this lower Ad yield, coinfection with AAV accelerated cell death and enhanced the cytotoxicity mediated by Ad propagation. Intratumoral coinjection of Ad and AAV in two xenograft tumor models improved antitumor activity and mouse survival. Therefore, we conclude that accidental or intentional AAV coinfection has important implications for Ad-mediated virotherapy. PMID:24020980

  7. Targeting adeno-associated virus and adenoviral gene therapy for hepatocellular carcinoma

    PubMed Central

    Wang, Yi-Gang; Huang, Pan-Pan; Zhang, Rong; Ma, Bu-Yun; Zhou, Xiu-Mei; Sun, Yan-Fang

    2016-01-01

    Human hepatocellular carcinoma (HCC) heavily endangers human heath worldwide. HCC is one of most frequent cancers in China because patients with liver disease, such as chronic hepatitis, have the highest cancer susceptibility. Traditional therapeutic approaches have limited efficacy in advanced liver cancer, and novel strategies are urgently needed to improve the limited treatment options for HCC. This review summarizes the basic knowledge, current advances, and future challenges and prospects of adeno-associated virus (AAV) and adenoviruses as vectors for gene therapy of HCC. This paper also reviews the clinical trials of gene therapy using adenovirus vectors, immunotherapy, toxicity and immunological barriers for AAV and adenoviruses, and proposes several alternative strategies to overcome the therapeutic barriers to using AAV and adenoviruses as vectors. PMID:26755879

  8. Adeno-associated viruses undergo substantial evolution in primates during natural infections.

    PubMed

    Gao, Guangping; Alvira, Mauricio R; Somanathan, Suryanarayan; Lu, You; Vandenberghe, Luk H; Rux, John J; Calcedo, Roberto; Sanmiguel, Julio; Abbas, Zahra; Wilson, James M

    2003-05-13

    Adeno-associated viruses (AAVs) are single-stranded DNA viruses that are endemic in human populations without known clinical sequelae and are being evaluated as vectors for human gene therapy. To better understand the biology of this virus, we examined a number of nonhuman primate species for the presence of previously uncharacterized AAVs and characterized their structure and distribution. AAV genomes were widely disseminated throughout multiple tissues of a variety of nonhuman primate species. Surprising diversity of sequence, primarily localized to hypervariable regions of the capsid protein, was detected. This diversity of sequence is caused, in part, by homologous recombination of co-infecting parental viruses that modify the serologic reactivity and tropism of the virus. This is an example of rapid molecular evolution of a DNA virus in a way that was formerly thought to be restricted to RNA viruses.

  9. Determination of adeno-associated virus Rep68 and Rep78 binding sites by random sequence oligonucleotide selection.

    PubMed Central

    Chiorini, J A; Yang, L; Safer, B; Kotin, R M

    1995-01-01

    To further define the canonical binding site for the P5-promoted Rep proteins of the adeno-associated virus, a modified random oligonucleotide selection procedure was performed, using purified recombinant Rep protein. These results may explain the effects of Rep on cellular gene expression. PMID:7474165

  10. Immobilization of FLAG-Tagged Recombinant Adeno-Associated Virus 2 onto Tissue Engineering Scaffolds for the Improvement of Transgene Delivery in Cell Transplants.

    PubMed

    Li, Hua; Zhang, Feng-Lan; Shi, Wen-Jie; Bai, Xue-Jia; Jia, Shu-Qin; Zhang, Chen-Guang; Ding, Wei

    2015-01-01

    The technology of virus-based genetic modification in tissue engineering has provided the opportunity to produce more flexible and versatile biomaterials for transplantation. Localizing the transgene expression with increased efficiency is critical for tissue engineering as well as a challenge for virus-based gene delivery. In this study, we tagged the VP2 protein of type 2 adeno-associated virus (AAV) with a 3×FLAG plasmid at the N-terminus and packaged a FLAG-tagged recombinant AAV2 chimeric mutant. The mutant AAVs were immobilized onto the tissue engineering scaffolds with crosslinked anti-FLAG antibodies by N-succinimidyl-3-(2-pyridyldithiol) propionate (SPDP). Cultured cells were seeded to scaffolds to form 3D transplants, and then tested for viral transduction both in vitro and in vivo. The results showed that our FLAG-tagged AAV2 exerted similar transduction efficiency compared with the wild type AAV2 when infected cultured cells. Following immobilization onto the scaffolds of PLGA or gelatin sponge with anti-FLAG antibodies, the viral mediated transgene expression was significantly improved and more localized. Our data demonstrated that the mutation of AAV capsid targeted for antibody-based immobilization could be a practical approach for more efficient and precise transgene delivery. It was also suggested that the immobilization of AAV might have attractive potentials in applications of tissue engineering involving the targeted gene manipulation in 3D tissue cultures.

  11. CD8+ T cell recognition of epitopes within the capsid of adeno-associated virus 8-based gene transfer vectors depends on vectors' genome.

    PubMed

    Wu, Te-Lang; Li, Hua; Faust, Susan M; Chi, Emily; Zhou, Shangzhen; Wright, Fraser; High, Katherine A; Ertl, Hildegund C J

    2014-01-01

    Self-complementary adeno-associated viral (AAV) vectors expressing human factor IX (hF.IX) have achieved transient or sustained correction of hemophilia B in human volunteers. High doses of AAV2 or AAV8 vectors delivered to the liver caused in several patients an increase in transaminases accompanied by a rise in AAV capsid-specific T cells and a decrease in circulating hF.IX levels suggesting immune-mediated destruction of vector-transduced cells. Kinetics of these adverse events differed in patients receiving AAV2 or AAV8 vectors causing rise in transaminases at 3 versus 8 weeks after vector injection, respectively. To test if CD8+ T cells to AAV8 vectors, which are similar to AAV2 vectors are fully-gutted vectors and thereby fail to encode structural viral proteins, could cause damage at this late time point, we tested in a series of mouse studies how long major histocompatibility (MHC) class I epitopes within AAV8 capsid can be presented to CD8+ T cells. Our results clearly show that depending on the vectors' genome, CD8+ T cells can detect such epitopes on AAV8's capsid for up to 6 months indicating that the capsid of AAV8 degrades slowly in mice.

  12. Delivery of Human EV71 Receptors by Adeno-Associated Virus Increases EV71 Infection-Induced Local Inflammation in Adult Mice

    PubMed Central

    Hsiao, Hung-Bo; Chou, Ai-Hsiang; Lin, Su-I; Lien, Shu-Pei; Tao, Mi-Hua

    2014-01-01

    Enterovirus71 (EV71) is now recognized as an emerging neurotropic virus in Asia and one major causative agent of hand-foot-mouth diseases (HFMD). However potential animal models for vaccine development are limited to young mice. In this study, we used an adeno-associated virus (AAV) vector to introduce the human EV71 receptors P-selectin glycoprotein ligand-1 (hPSGL1) or a scavenger receptor class-B member-2 (hSCARB2) into adult ICR mice to change their susceptibility to EV71 infection. Mice were administered AAV-hSCARB2 or AAV-hPSGL1 through intravenous and oral routes. After three weeks, expression of human SCARB2 and PSGL1 was detected in various organs. After infection with EV71, we found that the EV71 viral load in AAV-hSCARB2- or AAV-hPSGL1-transduced mice was higher than that of the control mice in both the brain and intestines. The presence of EV71 viral particles in tissues was confirmed using immunohistochemistry analysis. Moreover, inflammatory cytokines were induced in the brain and intestines of AAV-hSCARB2- or AAV-hPSGL1-transduced mice after EV71 infection but not in wild-type mice. However, neurological disease was not observed in these animals. Taken together, we successfully infected adult mice with live EV71 and induced local inflammation using an AAV delivery system. PMID:25243194

  13. Delivery of human EV71 receptors by adeno-associated virus increases EV71 infection-induced local inflammation in adult mice.

    PubMed

    Hsiao, Hung-Bo; Chou, Ai-Hsiang; Lin, Su-I; Lien, Shu-Pei; Liu, Chia-Chyi; Chong, Pele; Chen, Chih-Yeh; Tao, Mi-Hua; Liu, Shih-Jen

    2014-01-01

    Enterovirus71 (EV71) is now recognized as an emerging neurotropic virus in Asia and one major causative agent of hand-foot-mouth diseases (HFMD). However potential animal models for vaccine development are limited to young mice. In this study, we used an adeno-associated virus (AAV) vector to introduce the human EV71 receptors P-selectin glycoprotein ligand-1 (hPSGL1) or a scavenger receptor class-B member-2 (hSCARB2) into adult ICR mice to change their susceptibility to EV71 infection. Mice were administered AAV-hSCARB2 or AAV-hPSGL1 through intravenous and oral routes. After three weeks, expression of human SCARB2 and PSGL1 was detected in various organs. After infection with EV71, we found that the EV71 viral load in AAV-hSCARB2- or AAV-hPSGL1-transduced mice was higher than that of the control mice in both the brain and intestines. The presence of EV71 viral particles in tissues was confirmed using immunohistochemistry analysis. Moreover, inflammatory cytokines were induced in the brain and intestines of AAV-hSCARB2- or AAV-hPSGL1-transduced mice after EV71 infection but not in wild-type mice. However, neurological disease was not observed in these animals. Taken together, we successfully infected adult mice with live EV71 and induced local inflammation using an AAV delivery system.

  14. Immobilization of FLAG-Tagged Recombinant Adeno-Associated Virus 2 onto Tissue Engineering Scaffolds for the Improvement of Transgene Delivery in Cell Transplants

    PubMed Central

    Shi, Wen-Jie; Bai, Xue-Jia; Jia, Shu-Qin; Zhang, Chen-Guang; Ding, Wei

    2015-01-01

    The technology of virus-based genetic modification in tissue engineering has provided the opportunity to produce more flexible and versatile biomaterials for transplantation. Localizing the transgene expression with increased efficiency is critical for tissue engineering as well as a challenge for virus-based gene delivery. In this study, we tagged the VP2 protein of type 2 adeno-associated virus (AAV) with a 3×FLAG plasmid at the N-terminus and packaged a FLAG-tagged recombinant AAV2 chimeric mutant. The mutant AAVs were immobilized onto the tissue engineering scaffolds with crosslinked anti-FLAG antibodies by N-succinimidyl-3-(2-pyridyldithiol) propionate (SPDP). Cultured cells were seeded to scaffolds to form 3D transplants, and then tested for viral transduction both in vitro and in vivo. The results showed that our FLAG-tagged AAV2 exerted similar transduction efficiency compared with the wild type AAV2 when infected cultured cells. Following immobilization onto the scaffolds of PLGA or gelatin sponge with anti-FLAG antibodies, the viral mediated transgene expression was significantly improved and more localized. Our data demonstrated that the mutation of AAV capsid targeted for antibody-based immobilization could be a practical approach for more efficient and precise transgene delivery. It was also suggested that the immobilization of AAV might have attractive potentials in applications of tissue engineering involving the targeted gene manipulation in 3D tissue cultures. PMID:26035716

  15. Adeno-associated virus-mediated gene transfer targeting normal and traumatized mouse utricle.

    PubMed

    Wang, G-P; Guo, J-Y; Peng, Z; Liu, Y-Y; Xie, J; Gong, S-S

    2014-11-01

    Balance dysfunction is closely associated with loss of vestibular hair cells (HCs). Gene therapy shows promise when used to protect or regenerate vestibular HCs to preserve or restore adequate vestibular function. Adeno-associated virus (AAV) vectors allow long-term gene expression in the absence of toxicity. To noninvasively define an AAV serotype exhibiting favorable tropism toward the vestibular sensory epithelium, we characterized the transgene expression potential of AAV vectors (serotypes 1, 2, 5, 6 and 8) inoculated into adult mouse utricle via canalostomy. We found that AAV8 was the most effective AAV vector in utricular gene transfer. Swim tests and measurements of auditory brainstem response revealed minimal loss of vestibular function and hearing after canalostomy. In the normal utricle after AAV8 infusion, transduction efficiency peaked at 7 days, and was maintained thereafter, in vestibular HCs, and at 3 days in supporting cells (SCs). In the streptomycin-lesioned utricle, the SC transduction efficiency peaked at 7 days and decreased at 30 days. In conclusion, AAV8-mediated gene transfer via canalostomy facilitates efficient and safe transduction in mouse vestibular sensory epithelium, and may in the future become clinically relevant for human vestibular gene therapy. PMID:25119376

  16. Structure of adeno-associated virus-2 in complex with neutralizing monoclonal antibody A20

    SciTech Connect

    McCraw, Dustin M.; O'Donnell, Jason K.; Taylor, Kenneth A.; Stagg, Scott M.; Chapman, Michael S.

    2012-09-15

    The use of adeno-associated virus (AAV) as a gene therapy vector is limited by the host neutralizing immune response. The cryo-electron microscopy (EM) structure at 8.5 A resolution is determined for a complex of AAV-2 with the Fab' fragment of monoclonal antibody (MAb) A20, the most extensively characterized AAV MAb. The binding footprint is determined through fitting the cryo-EM reconstruction with a homology model following sequencing of the variable domain, and provides a structural basis for integrating diverse prior epitope mappings. The footprint extends from the previously implicated plateau to the side of the spike, and into the conserved canyon, covering a larger area than anticipated. Comparison with structures of binding and non-binding serotypes indicates that recognition depends on a combination of subtle serotype-specific features. Separation of the neutralizing epitope from the heparan sulfate cell attachment site encourages attempts to develop immune-resistant vectors that can still bind to target cells.

  17. A Precise Chemical Strategy To Alter the Receptor Specificity of the Adeno-Associated Virus.

    PubMed

    Kelemen, Rachel E; Mukherjee, Raja; Cao, Xiaofu; Erickson, Sarah B; Zheng, Yunan; Chatterjee, Abhishek

    2016-08-26

    The ability to target the adeno-associated virus (AAV) to specific types of cells, by altering the cell-surface receptor it binds, is desirable to generate safe and efficient therapeutic vectors. Chemical attachment of receptor-targeting agents onto the AAV capsid holds potential to alter its tropism, but is limited by the lack of site specificity of available conjugation strategies. The development of an AAV production platform is reported that enables incorporation of unnatural amino acids (UAAs) into specific sites on the virus capsid. Incorporation of an azido-UAA enabled site-specific attachment of a cyclic-RGD peptide onto the capsid, retargeting the virus to the αv β3 integrin receptors, which are overexpressed in tumor vasculature. Retargeting ability was site-dependent, underscoring the importance of achieving site-selective capsid modification. This work provides a general chemical approach to introduce various receptor binding agents onto the AAV capsid with site selectivity to generate optimized vectors with engineered infectivity. PMID:27483453

  18. Translational Data from Adeno-Associated Virus-Mediated Gene Therapy of Hemophilia B in Dogs

    PubMed Central

    Whitford, Margaret H.; Arruda, Valder R.; Stedman, Hansell H.; Kay, Mark A.; High, Katherine A.

    2015-01-01

    Abstract Preclinical testing of new therapeutic strategies in relevant animal models is an essential part of drug development. The choice of animal models of disease that are used in these studies is driven by the strength of the translational data for informing about safety, efficacy, and success or failure of human clinical trials. Hemophilia B is a monogenic, X-linked, inherited bleeding disorder that results from absent or dysfunctional coagulation factor IX (FIX). Regarding preclinical studies of adeno-associated virus (AAV)-mediated gene therapy for hemophilia B, dogs with severe hemophilia B (<1% FIX) provide well-characterized phenotypes and genotypes in which a species-specific transgene can be expressed in a mixed genetic background. Correction of the hemophilic coagulopathy by sustained expression of FIX, reduction of bleeding events, and a comprehensive assessment of the humoral and cell-mediated immune responses to the expressed transgene and recombinant AAV vector are all feasible end points in these dogs. This review compares the preclinical studies of AAV vectors used to treat dogs with hemophilia B with the results obtained in subsequent human clinical trials using muscle- and liver-based approaches. PMID:25675273

  19. Improved transduction efficiencies of adeno-associated virus vectors by synthetic cell-permeable peptides.

    PubMed

    Tabata, Kitako; Sugano, Eriko; Murakami, Fumika; Yamashita, Tetsuro; Ozaki, Taku; Tomita, Hiroshi

    2016-09-30

    Various serotypes of adeno-associated virus (AAV) vectors have been used for gene therapy and as research tools. Among these serotypes, the AAV type 2 vector has been used successfully in human gene therapies. However, the transduction efficiency of AAV2 depends on the cell type, and this poses a problem in the efficacy of gene therapy. To improve the transduction efficiency of AAV2, we designed a small peptide consisting of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor peptide and the HIV-Tat sequence Tat-Y1068. Pre- or co-treatment of CYNOM-K1 cells from cynomolgus monkey embryo skin with Tat-Y1068 increased the transduction efficiencies in a dose-dependent manner and caused p38 phosphorylation. The transduction efficiency of AAV2 into the rat fibroblast cell line RAT-1 highly expressing EGFR was less than the transduction efficiency of AAV2 into CYNOM-K1 cells. Tat-Y1068 increased the transduction efficiency in RAT-1 cells in the same manner as in CYNOM-K1 cells. In conclusion, cell-permeable peptides possessing the EGFR tyrosine kinase inhibitor function might serve as a useful ingredient of AAV2 vector solution for increasing the transduction efficiency of gene therapies.

  20. Adeno-associated virus vector serotypes mediate sustained correction of bilirubin UDP glucuronosyltransferase deficiency in rats.

    PubMed

    Seppen, Jurgen; Bakker, Conny; de Jong, Berry; Kunne, Cindy; van den Oever, Karin; Vandenberghe, Kristin; de Waart, Rudi; Twisk, Jaap; Bosma, Piter

    2006-06-01

    Crigler-Najjar (CN) patients have no bilirubin UDP glucuronosyltransferase (UGT1A1) activity and suffer brain damage because of bilirubin toxicity. Vectors based on adeno-associated virus (AAV) serotype 2 transduce liver cells with relatively low efficiency. Recently, AAV serotypes 1, 6, and 8 have been shown to be more efficient for liver cell transduction. We compared AAV serotypes 1, 2, 6, and 8 for correction of UGT1A1 deficiency in the Gunn rat model of CN disease. Adult Gunn rats were injected with CMV-UGT1A1 AAV vectors. Serum bilirubin was decreased over the first year by 64% for AAV1, 16% for AAV2, 25% for AAV6, and 35% for AAV8. Antibodies to UGT1A1 were detected after injection of all AAV serotypes. An AAV1 UGT1A1 vector with the liver-specific albumin promoter corrected serum bilirubin levels but did not induce UGT1A1 antibodies. Two years after injection of AAV vectors all animals had large lipid deposits in the liver. These lipid deposits were not seen in age-matched control animals. AAV1 vectors are promising candidates for CN gene therapy because they can mediate a reduction in serum bilirubin levels in Gunn rats that would be therapeutic in humans. PMID:16581301

  1. The SUMOylation Pathway Restricts Gene Transduction by Adeno-Associated Viruses.

    PubMed

    Hölscher, Christina; Sonntag, Florian; Henrich, Katharina; Chen, Qingxin; Beneke, Jürgen; Matula, Petr; Rohr, Karl; Kaderali, Lars; Beil, Nina; Erfle, Holger; Kleinschmidt, Jürgen A; Müller, Martin

    2015-12-01

    Adeno-associated viruses are members of the genus dependoviruses of the parvoviridae family. AAV vectors are considered promising vectors for gene therapy and genetic vaccination as they can be easily produced, are highly stable and non-pathogenic. Nevertheless, transduction of cells in vitro and in vivo by AAV in the absence of a helper virus is comparatively inefficient requiring high multiplicity of infection. Several bottlenecks for AAV transduction have previously been described, including release from endosomes, nuclear transport and conversion of the single stranded DNA into a double stranded molecule. We hypothesized that the bottlenecks in AAV transduction are, in part, due to the presence of host cell restriction factors acting directly or indirectly on the AAV-mediated gene transduction. In order to identify such factors we performed a whole genome siRNA screen which identified a number of putative genes interfering with AAV gene transduction. A number of factors, yielding the highest scores, were identified as members of the SUMOylation pathway. We identified Ubc9, the E2 conjugating enzyme as well as Sae1 and Sae2, enzymes responsible for activating E1, as factors involved in restricting AAV. The restriction effect, mediated by these factors, was validated and reproduced independently. Our data indicate that SUMOylation targets entry of AAV capsids and not downstream processes of uncoating, including DNA single strand conversion or DNA damage signaling. We suggest that transiently targeting SUMOylation will enhance application of AAV in vitro and in vivo.

  2. A Precise Chemical Strategy To Alter the Receptor Specificity of the Adeno-Associated Virus.

    PubMed

    Kelemen, Rachel E; Mukherjee, Raja; Cao, Xiaofu; Erickson, Sarah B; Zheng, Yunan; Chatterjee, Abhishek

    2016-08-26

    The ability to target the adeno-associated virus (AAV) to specific types of cells, by altering the cell-surface receptor it binds, is desirable to generate safe and efficient therapeutic vectors. Chemical attachment of receptor-targeting agents onto the AAV capsid holds potential to alter its tropism, but is limited by the lack of site specificity of available conjugation strategies. The development of an AAV production platform is reported that enables incorporation of unnatural amino acids (UAAs) into specific sites on the virus capsid. Incorporation of an azido-UAA enabled site-specific attachment of a cyclic-RGD peptide onto the capsid, retargeting the virus to the αv β3 integrin receptors, which are overexpressed in tumor vasculature. Retargeting ability was site-dependent, underscoring the importance of achieving site-selective capsid modification. This work provides a general chemical approach to introduce various receptor binding agents onto the AAV capsid with site selectivity to generate optimized vectors with engineered infectivity.

  3. Phenotypic correction of a mouse model for primary hyperoxaluria with adeno-associated virus gene transfer.

    PubMed

    Salido, Eduardo; Rodriguez-Pena, Marisol; Santana, Alfredo; Beattie, Stuart G; Petry, Harald; Torres, Armando

    2011-05-01

    Primary hyperoxaluria type I (PH1) is an inborn error of metabolism caused by deficiency of the hepatic enzyme alanine-glyoxylate aminotransferase (AGXT or AGT) which leads to overproduction of oxalate by the liver and subsequent urolithiasis and renal failure. The current therapy largely depends on liver transplantation, which is associated with significant morbidity and mortality. To explore an alternative treatment, we used somatic gene transfer in a mouse genetic model for PH1 (Agxt1KO). Recombinant adeno-associated virus (AAV) vectors containing the human AGXT complementary DNA (cDNA) were pseudotyped with capsids from either serotype 8 or 5, and delivered to the livers of Agxt1KO mice via the tail vein. Both AAV8-AGXT and AAV5-AGXT vectors were able to reduce oxaluria to normal levels. In addition, treated mice showed blunted increase of oxaluria after challenge with ethylene glycol (EG), a glyoxylate precursor. In mice, AGT enzyme activity in whole liver extracts were restored to normal without hepatic toxicity nor immunogenicity for the 50 day follow-up. In summary, this study demonstrates the correction of primary hyperoxaluria in mice treated with either AAV5 or AAV8 vectors. PMID:21119625

  4. Interaction of adeno-associated virus Rep78 with p53: implications in growth inhibition.

    PubMed

    Batchu, R B; Shammas, M A; Wang, J Y; Munshi, N C

    1999-08-01

    Adeno-associated virus (AAV) is a nonpathogenic, single-stranded DNA virus belonging to the parvoviridae family. Onco-suppressive properties of AAV against adenovirus, a DNA tumor virus, have been well documented. Rep78, a major regulatory protein of AAV, is believed to be responsible for its antioncogenic properties. Most DNA tumor viruses disturb the cell cycle pathways by essentially abrogating the functions of p53. Here we present evidence that AAV acts as an antiproliferative agent against adenovirus by protecting the adenoviral-mediated degradation of p53 as confirmed by both Western blot analysis and immunoprecipitation analysis with anti-p53 antibody. Coimmunoprecipitation experiments revealed that the AAV Rep78 is physically bound to p53 in vivo. Furthermore, the binding of purified p53 to the AAV Rep78 affinity column confirms their interaction. These results document for the first time that the antiproliferative effects of AAV against adenovirus are mediated, at least in part, by the interaction of AAV Rep78 with p53.

  5. Dual level inhibition of E2F-1 activity by adeno-associated virus Rep78.

    PubMed

    Batchu, R B; Shammas, M A; Wang, J Y; Munshi, N C

    2001-06-29

    E2F-1, a major cellular transcription factor, plays a pivotal role in regulating the cell cycle. The activity of E2F-1 is negatively regulated by its interaction with retinoblastoma protein (pRB), and disruption of the pRB-E2F-1 complex, a hallmark of cellular transformation by DNA tumor viruses, leads to cell proliferation. Adeno-associated virus-2 (AAV) is known to have onco-suppressive properties against DNA tumor viruses. Here we provide, for the first time, the molecular basis for antioncogenic activity of AAV. Rep78, a major regulatory protein of AAV, interacts at the protein level with E2F-1 and stabilizes the pRB-E2F-1 complex. At the DNA level, Rep78 binds to a putative site on the E2F-1 promoter and down-regulates the adenovirus-induced E2F-1 transcription. This dual level of Rep78 activity leads to decreased cellular levels of free E2F-1, leading to its onco-suppressive properties.

  6. Improved transduction efficiencies of adeno-associated virus vectors by synthetic cell-permeable peptides.

    PubMed

    Tabata, Kitako; Sugano, Eriko; Murakami, Fumika; Yamashita, Tetsuro; Ozaki, Taku; Tomita, Hiroshi

    2016-09-30

    Various serotypes of adeno-associated virus (AAV) vectors have been used for gene therapy and as research tools. Among these serotypes, the AAV type 2 vector has been used successfully in human gene therapies. However, the transduction efficiency of AAV2 depends on the cell type, and this poses a problem in the efficacy of gene therapy. To improve the transduction efficiency of AAV2, we designed a small peptide consisting of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor peptide and the HIV-Tat sequence Tat-Y1068. Pre- or co-treatment of CYNOM-K1 cells from cynomolgus monkey embryo skin with Tat-Y1068 increased the transduction efficiencies in a dose-dependent manner and caused p38 phosphorylation. The transduction efficiency of AAV2 into the rat fibroblast cell line RAT-1 highly expressing EGFR was less than the transduction efficiency of AAV2 into CYNOM-K1 cells. Tat-Y1068 increased the transduction efficiency in RAT-1 cells in the same manner as in CYNOM-K1 cells. In conclusion, cell-permeable peptides possessing the EGFR tyrosine kinase inhibitor function might serve as a useful ingredient of AAV2 vector solution for increasing the transduction efficiency of gene therapies. PMID:27614311

  7. Viral single-strand DNA induces p53-dependent apoptosis in human embryonic stem cells.

    PubMed

    Hirsch, Matthew L; Fagan, B Matthew; Dumitru, Raluca; Bower, Jacquelyn J; Yadav, Swati; Porteus, Matthew H; Pevny, Larysa H; Samulski, R Jude

    2011-01-01

    Human embryonic stem cells (hESCs) are primed for rapid apoptosis following mild forms of genotoxic stress. A natural form of such cellular stress occurs in response to recombinant adeno-associated virus (rAAV) single-strand DNA genomes, which exploit the host DNA damage response for replication and genome persistence. Herein, we discovered a unique DNA damage response induced by rAAV transduction specific to pluripotent hESCs. Within hours following rAAV transduction, host DNA damage signaling was elicited as measured by increased gamma-H2AX, ser15-p53 phosphorylation, and subsequent p53-dependent transcriptional activation. Nucleotide incorporation assays demonstrated that rAAV transduced cells accumulated in early S-phase followed by the induction of apoptosis. This lethal signaling sequalae required p53 in a manner independent of transcriptional induction of Puma, Bax and Bcl-2 and was not evident in cells differentiated towards a neural lineage. Consistent with a lethal DNA damage response induced upon rAAV transduction of hESCs, empty AAV protein capsids demonstrated no toxicity. In contrast, DNA microinjections demonstrated that the minimal AAV origin of replication and, in particular, a 40 nucleotide G-rich tetrad repeat sequence, was sufficient for hESC apoptosis. Our data support a model in which rAAV transduction of hESCs induces a p53-dependent lethal response that is elicited by a telomeric sequence within the AAV origin of replication.

  8. Viral Single-Strand DNA Induces p53-Dependent Apoptosis in Human Embryonic Stem Cells

    PubMed Central

    Hirsch, Matthew L.; Fagan, B. Matthew; Dumitru, Raluca; Bower, Jacquelyn J.; Yadav, Swati; Porteus, Matthew H.; Pevny, Larysa H.; Samulski, R. Jude

    2011-01-01

    Human embryonic stem cells (hESCs) are primed for rapid apoptosis following mild forms of genotoxic stress. A natural form of such cellular stress occurs in response to recombinant adeno-associated virus (rAAV) single-strand DNA genomes, which exploit the host DNA damage response for replication and genome persistence. Herein, we discovered a unique DNA damage response induced by rAAV transduction specific to pluripotent hESCs. Within hours following rAAV transduction, host DNA damage signaling was elicited as measured by increased gamma-H2AX, ser15-p53 phosphorylation, and subsequent p53-dependent transcriptional activation. Nucleotide incorporation assays demonstrated that rAAV transduced cells accumulated in early S-phase followed by the induction of apoptosis. This lethal signaling sequalae required p53 in a manner independent of transcriptional induction of Puma, Bax and Bcl-2 and was not evident in cells differentiated towards a neural lineage. Consistent with a lethal DNA damage response induced upon rAAV transduction of hESCs, empty AAV protein capsids demonstrated no toxicity. In contrast, DNA microinjections demonstrated that the minimal AAV origin of replication and, in particular, a 40 nucleotide G-rich tetrad repeat sequence, was sufficient for hESC apoptosis. Our data support a model in which rAAV transduction of hESCs induces a p53-dependent lethal response that is elicited by a telomeric sequence within the AAV origin of replication. PMID:22114676

  9. Production and characterization of novel recombinant adeno-associated virus replicative-form genomes: a eukaryotic source of DNA for gene transfer.

    PubMed

    Li, Lina; Dimitriadis, Emilios K; Yang, Yu; Li, Juan; Yuan, Zhenhua; Qiao, Chunping; Beley, Cyriaque; Smith, Richard H; Garcia, Luis; Kotin, Robert M

    2013-01-01

    Conventional non-viral gene transfer uses bacterial plasmid DNA containing antibiotic resistance genes, cis-acting bacterial sequence elements, and prokaryotic methylation patterns that may adversely affect transgene expression and vector stability in vivo. Here, we describe novel replicative forms of a eukaryotic vector DNA that consist solely of an expression cassette flanked by adeno-associated virus (AAV) inverted terminal repeats. Extensive structural analyses revealed that this AAV-derived vector DNA consists of linear, duplex molecules with covalently closed ends (termed closed-ended, linear duplex, or "CELiD", DNA). CELiD vectors, produced in Sf9 insect cells, require AAV rep gene expression for amplification. Amounts of CELiD DNA produced from insect cell lines stably transfected with an ITR-flanked transgene exceeded 60 mg per 5 × 10(9) Sf9 cells, and 1-15 mg from a comparable number of parental Sf9 cells in which the transgene was introduced via recombinant baculovirus infection. In mice, systemically delivered CELiD DNA resulted in long-term, stable transgene expression in the liver. CELiD vectors represent a novel eukaryotic alternative to bacterial plasmid DNA.

  10. Efficient Gene Suppression in Dorsal Root Ganglia and Spinal Cord Using Adeno-Associated Virus Vectors Encoding Short-Hairpin RNA.

    PubMed

    Enomoto, Mitsuhiro; Hirai, Takashi; Kaburagi, Hidetoshi; Yokota, Takanori

    2016-01-01

    RNA interference is a powerful tool used to induce loss-of-function phenotypes through post-transcriptional gene silencing. Small interfering RNA (siRNA) molecules have been used to target the central nervous system (CNS) and are expected to have clinical utility against refractory neurodegenerative diseases. However, siRNA is characterized by low transduction efficiency, insufficient inhibition of gene expression, and short duration of therapeutic effects, and is thus not ideal for treatment of neural tissues and diseases. To address these problems, viral delivery of short-hairpin RNA (shRNA) expression cassettes that support more efficient and long-lasting transduction into target tissues is expected to be a promising delivery tool. Various types of gene therapy vectors have been developed, such as adenovirus, adeno-associated virus (AAV), herpes simplex virus and lentivirus; however, AAV is particularly advantageous because of its relative lack of immunogenicity and lack of chromosomal integration. In human clinical trials, recombinant AAV vectors are relatively safe and well-tolerated. In particular, serotype 9 of AAV (AAV9) vectors show the highest tropism for neural tissue and can cross the blood-brain barrier, and we have shown that intrathecal delivery of AAV9 yields relatively high gene transduction into dorsal root ganglia or spinal cord. This chapter describes how to successfully use AAV vectors encoding shRNA in vivo, particularly for RNA interference in the central and peripheral nervous system. PMID:26472458

  11. A high-capacity, capsid-modified hybrid adenovirus/adeno-associated virus vector for stable transduction of human hematopoietic cells.

    PubMed

    Shayakhmetov, Dmitry M; Carlson, Cheryl A; Stecher, Hartmut; Li, Qiliang; Stamatoyannopoulos, George; Lieber, André

    2002-02-01

    To achieve stable gene transfer into human hematopoietic cells, we constructed a new vector, DeltaAd5/35.AAV. This vector has a chimeric capsid containing adenovirus type 35 fibers, which conferred efficient infection of human hematopoietic cells. The DeltaAd5/35.AAV vector genome is deleted for all viral genes, allowing for infection without virus-associated toxicity. To generate high-capacity DeltaAd5/35.AAV vectors, we employed a new technique based on recombination between two first-generation adenovirus vectors. The resultant vector genome contained an 11.6-kb expression cassette including the human gamma-globin gene and the HS2 and HS3 elements of the beta-globin locus control region. The expression cassette was flanked by adeno-associated virus (AAV) inverted terminal repeats (ITRs). Infection with DeltaAd5/35.AAV allowed for stable transgene expression in a hematopoietic cell line after integration into the host genome through the AAV ITR(s). This new vector exhibits advantages over existing integrating vectors, including an increased insert capacity and tropism for hematopoietic cells. It has the potential for stable ex vivo transduction of hematopoietic stem cells in order to treat sickle cell disease.

  12. Efficient Gene Suppression in Dorsal Root Ganglia and Spinal Cord Using Adeno-Associated Virus Vectors Encoding Short-Hairpin RNA.

    PubMed

    Enomoto, Mitsuhiro; Hirai, Takashi; Kaburagi, Hidetoshi; Yokota, Takanori

    2016-01-01

    RNA interference is a powerful tool used to induce loss-of-function phenotypes through post-transcriptional gene silencing. Small interfering RNA (siRNA) molecules have been used to target the central nervous system (CNS) and are expected to have clinical utility against refractory neurodegenerative diseases. However, siRNA is characterized by low transduction efficiency, insufficient inhibition of gene expression, and short duration of therapeutic effects, and is thus not ideal for treatment of neural tissues and diseases. To address these problems, viral delivery of short-hairpin RNA (shRNA) expression cassettes that support more efficient and long-lasting transduction into target tissues is expected to be a promising delivery tool. Various types of gene therapy vectors have been developed, such as adenovirus, adeno-associated virus (AAV), herpes simplex virus and lentivirus; however, AAV is particularly advantageous because of its relative lack of immunogenicity and lack of chromosomal integration. In human clinical trials, recombinant AAV vectors are relatively safe and well-tolerated. In particular, serotype 9 of AAV (AAV9) vectors show the highest tropism for neural tissue and can cross the blood-brain barrier, and we have shown that intrathecal delivery of AAV9 yields relatively high gene transduction into dorsal root ganglia or spinal cord. This chapter describes how to successfully use AAV vectors encoding shRNA in vivo, particularly for RNA interference in the central and peripheral nervous system.

  13. Partial correction of sensitivity to oxidant stress in Friedreich ataxia patient fibroblasts by frataxin-encoding adeno-associated virus and lentivirus vectors.

    PubMed

    Fleming, Jane; Spinoulas, Afroditi; Zheng, Maolin; Cunningham, Sharon C; Ginn, Samantha L; McQuilty, Robert C; Rowe, Peter B; Alexander, Ian E

    2005-08-01

    Peripheral nervous system (PNS) sensory neurons are directly involved in the pathophysiology of a number of debilitating inherited and acquired neurological conditions. The lack of effective treatments for many such conditions provides a strong rationale for exploring novel therapeutic approaches, including gene therapy. Friedreich ataxia (FRDA), a sensory neuropathy, is a progressive neurodegenerative disease associated with a loss of large sensory neurons from the dorsal root ganglia. Because a mouse model for this well-characterized disease has been generated, we elected to use FRDA as a model disease. In previous studies we achieved efficient and sustained delivery of a reporter gene to PNS sensory neurons, using recombinant adeno-associated viral (AAV) and lentiviral (LV) vectors. In the current study, AAV and LV vectors encoding the human frataxin cDNA were constructed and assessed for frataxin expression and function in primary FRDA patient fibroblast cell lines. FRDA fibroblasts have been shown to exhibit subtle biochemical changes, including increased mitochondrial iron and sensitivity to oxidant stress. Despite the inherent difficulty in working with primary cells, transduction of patient fibroblasts with either vector resulted in the expression of appropriately localized frataxin and partial reversal of phenotype.

  14. Cloning, expression and purification of full length Rep78 of adeno-associated virus as a fusion protein with maltose binding protein in Escherichia coli.

    PubMed

    Batchu, R B; Miles, D A; Rechtin, T M; Drake, R R; Hermonat, P L

    1995-03-17

    The adeno-associated virus (AAV) Rep78 protein is required for many aspects of AAV's life cycle including its DNA replication and the regulation of its gene expression. Because of increasing utilization of AAV as a gene therapy vector and its possible use as an anti-cancer/anti-viral agent, the complete characterization of its Rep78 regulatory protein is important. In order to study various functional aspects of Rep78, we have cloned and expressed the Rep78 gene in Escherichia coli using an inducible expression plasmid. The entire Rep78 open reading frame (nt 321 to 2185) was cloned into the LacZ inducible expression vector pMALc2. Upon induction of the Ptac promoter with isopropyl thio-beta-D-galactopyranoside (IPTG), Rep78 is produced as a fusion protein with maltose binding protein (MBP). This recombinant MBP-Rep78 protein displayed all the biochemical activities which are described for the wild type protein including binding to the AAV terminal repeats (TR), endonuclease activity, and helicase activity. Furthermore, for the first time, ATP binding by Rep78 is demonstrated.

  15. Adeno-associated virus-mediated knockdown of melanocortin-4 receptor in the paraventricular nucleus of the hypothalamus promotes high-fat diet-induced hyperphagia and obesity

    PubMed Central

    Garza, Jacob C; Kim, Chung Sub; Liu, Jing; Zhang, Wei; Lu, Xin-Yun

    2013-01-01

    Pharmacological and genetic studies have suggested that melanocortin-4 receptor (MC4R) signaling in the paraventricular nucleus of hypothalamus (PVN) regulates appetite and energy balance. However, the specific role of MC4R signaling in PVN neurons in these processes remains to be further elucidated in normally developed animals. In the present study, we employed RNA interference to determine whether MC4R knockdown in the PVN modulates food intake and body weight in adult rats. Adeno-associated viral (AAV) vectors encoding short hairpin RNAs targeting MC4R (AAV-shRNA-MC4R) were generated to induce MC4R knockdown in the PVN. By in situ hybridization, we detected a high-level expression of Dicer, a key enzyme required for shRNA-mediated gene silencing, along the entire rostrocaudal extent of the PVN. Bilateral injection of AAV-shRNA-MC4R vectors into the PVN of the adult rat resulted in significant and specific reduction of MC4R mRNA expression. Animals with MC4R knockdown exhibited an increase in food intake and excessive body weight gain when exposed to a high-fat diet. Our results provide evidence that AAV-mediated silencing of MC4R on PVN neurons promotes hyperphagia and obesity in response to the dietary challenge in the adult animal. PMID:18492813

  16. Structure and Dynamics of Adeno-Associated Virus Serotype 1 VP1-Unique N-Terminal Domain and Its Role in Capsid Trafficking

    PubMed Central

    Venkatakrishnan, Balasubramanian; Yarbrough, Joseph; Domsic, John; Bennett, Antonette; Bothner, Brian; Kozyreva, Olga G.; Samulski, R. Jude; Muzyczka, Nicholas

    2013-01-01

    The importance of the phospholipase A2 domain located within the unique N terminus of the capsid viral protein VP1 (VP1u) in parvovirus infection has been reported. This study used computational methods to characterize the VP1 sequence for adeno-associated virus (AAV) serotypes 1 to 12 and circular dichroism and electron microscopy to monitor conformational changes in the AAV1 capsid induced by temperature and the pHs encountered during trafficking through the endocytic pathway. Circular dichroism was also used to monitor conformational changes in AAV6 capsids assembled from VP2 and VP3 or VP1, VP2, and VP3 at pH 7.5. VP1u was predicted (computationally) and confirmed (in solution) to be structurally ordered. This VP domain was observed to undergo a reversible pH-induced unfolding/refolding process, a loss/gain of α-helical structure, which did not disrupt the capsid integrity and is likely facilitated by its difference in isoelectric point compared to the other VP sequences assembling the capsid. This study is the first to physically document conformational changes in the VP1u region that likely facilitate its externalization from the capsid interior during infection and establishes the order of events in the escape of the AAV capsid from the endosome en route to the nucleus. PMID:23427155

  17. Structure and dynamics of adeno-associated virus serotype 1 VP1-unique N-terminal domain and its role in capsid trafficking.

    PubMed

    Venkatakrishnan, Balasubramanian; Yarbrough, Joseph; Domsic, John; Bennett, Antonette; Bothner, Brian; Kozyreva, Olga G; Samulski, R Jude; Muzyczka, Nicholas; McKenna, Robert; Agbandje-McKenna, Mavis

    2013-05-01

    The importance of the phospholipase A2 domain located within the unique N terminus of the capsid viral protein VP1 (VP1u) in parvovirus infection has been reported. This study used computational methods to characterize the VP1 sequence for adeno-associated virus (AAV) serotypes 1 to 12 and circular dichroism and electron microscopy to monitor conformational changes in the AAV1 capsid induced by temperature and the pHs encountered during trafficking through the endocytic pathway. Circular dichroism was also used to monitor conformational changes in AAV6 capsids assembled from VP2 and VP3 or VP1, VP2, and VP3 at pH 7.5. VP1u was predicted (computationally) and confirmed (in solution) to be structurally ordered. This VP domain was observed to undergo a reversible pH-induced unfolding/refolding process, a loss/gain of α-helical structure, which did not disrupt the capsid integrity and is likely facilitated by its difference in isoelectric point compared to the other VP sequences assembling the capsid. This study is the first to physically document conformational changes in the VP1u region that likely facilitate its externalization from the capsid interior during infection and establishes the order of events in the escape of the AAV capsid from the endosome en route to the nucleus. PMID:23427155

  18. Electron Microscopy Analysis of a Disaccharide Analog complex Reveals Receptor Interactions of Adeno-Associated Virus

    PubMed Central

    Xie, Qing; Spilman, Michael; Meyer, Nancy L.; Lerch, Thomas F.; Stagg, Scott M.; Chapman, Michael S.

    2013-01-01

    Mechanistic studies of macromolecular complexes often feature x-ray structures of complexes with bound ligands. The attachment of Adeno-Associated Virus (AAV) to cell surface glycosaminoglycans (GAGs) is an example that has not proven amenable to crystallography, because the binding of GAG analogs disrupts lattice contacts. The interactions of AAV with GAGs are of interest in mediating the cell specificity of AAV-based gene therapy vectors. Previous electron microscopy led to differing conclusions on the exact binding site and the existence of large ligand-induced conformational changes in the virus. Conformational changes are expected during cell entry, but it has remained unclear whether the electron microscopy provided evidence of their induction by GAG-binding. Taking advantage of automated data collection, careful processing and new methods of structure refinement, the structure of AAV-DJ complexed with sucrose octasulfate is determined by electron microscopy difference map analysis to 4.8 Å resolution. At this higher resolution, individual sulfate groups are discernible, providing a stereochemical validation of map interpretation, and highlighting interactions with two surface arginines that have been implicated in genetic studies. Conformational changes induced by the SOS are modest and limited to the loop most directly interacting with the ligand. While the resolution attainable will depend on sample order and other factors, there are an increasing number of macromolecular complexes that can be studied by cryo-electron microscopy at resolutions beyond 5 Å, for which the approaches used here could be used to characterize the binding of inhibitors and other small molecule effectors when crystallography is not tractable. PMID:24036405

  19. Molecular detection of adeno-associated virus in cases of spontaneous and intentional human abortion.

    PubMed

    Pereira, Christiane Curi; de Freitas, Luciana Bueno; de Vargas, Paulo Roberto Merçon; de Azevedo, Maria Luiza Borges; do Nascimento, Jussara Pereira; Spano, Liliana Cruz

    2010-10-01

    Pregnancy failure is a common event and often of unknown cause. Some viruses are thought to cause abortions including the adeno-associated viruses (AAV), viruses which are regarded as being without any definitive association to any human disease. This study investigated AAV infection in 81 human abortions, both spontaneous and intentional that occurred up to the 23rd week of gestation. Nucleic acid of AAV-2, 3, and 5 types from 118 decidual and chorionic tissues, collected from the patients in this study, was amplified by nested-PCR. In situ hybridization (ISH) was developed with a digoxigenin-labeled AAV probe in paraffin embedded tissues from the AAV positive cases. AAV was observed in 28.4% (23/81) of the cases, of which, 78.3% (18/23) were in the decidua and 21.7% (5/23) in the extravillous trophoblast, the chorionic plate, or chorionic villi fragments. AAV-2, the only type detected, occurred in 32.3% (22/68) and in 7.7% (1/13) of the spontaneous and intentional abortions, respectively. ISH revealed AAV in the decidua, chorionic tissue or chorionic plate and extravillous trophoblast. The detection of only AAV-2 type indicates that it is the most frequent in the population studied and/or shows tissue tropism. The presence of AAV in decidual or trophoblastic cells in cases of abortion, as observed by ISH, implies that the virus could jeopardize the pregnancy. The significant predominance in spontaneous cases suggests possibly a causal association between AAV and abortion. PMID:20827766

  20. ADENO-ASSOCIATED SATELLITE VIRUS INTERFERENCE WITH THE REPLICATION OF ITS HELPER ADENOVIRUS

    PubMed Central

    Parks, Wade P.; Casazza, Anna M.; Alcott, Judith; Melnick, Joseph L.

    1968-01-01

    Adeno-associated satellite virus type 4 interferes with the replication of its helper adenovirus. No interferon-like soluble substance could be detected in satellite-infected cultures and other DNA- and RNA-containing viruses were not inhibited by coinfection with satellite virus under conditions which reduced adenovirus yields by more than 90% in monkey cells. Altering the concentration of adenovirus in the presence of constant amounts of satellite resulted in a constant degree of interference over a wide range of adenovirus inocula and suggested that adenovirus concentration was not a significant factor in the observed interference. The interference with adenovirus replication was abolished by pretreating satellite preparations with specific antiserum, ultraviolet light or heating at 80°C for 30 min. This suggested that infectious satellite virus mediated the interference. Satellite virus concentration was found to be a determinant of interference and studies indicated that the amount of interference with adenovirus was directly proportional to the concentration of satellite virus. 8 hr after adenovirus infection, the replication of adenovirus was no longer sensitive to satellite interference. This was true even though the satellite virus was enhanced as effectively as if the cells were infected simultaneously with both viruses. Interference with adenovirus infectivity was accompanied by reduced yields of complement-fixing antigen and of virus particles which suggested that satellite virus interfered with the formation and not the function of adenovirus products. When cells were infected either with adenovirus alone or with adenovirus plus satellite, the same proportion of cells plated as adenovirus infectious centers. However, the number of plaque-forming units of adenovirus formed per cell in the satellite-infected cultures was reduced by approximately 90%, the same magnitude of reduction noted in whole cultures coinfected with satellite and adenovirus. This

  1. Protection from the toxicity of diisopropylfluorophosphate by adeno-associated virus expressing acetylcholinesterase

    SciTech Connect

    Li Bin; Duysen, Ellen G.; Poluektova, Larisa Y.; Murrin, L. Charles . E-mail: cmurrin@unmc.edu; Lockridge, Oksana . E-mail: olockrid@unmc.edu

    2006-07-15

    Organophosphorus esters (OP) are highly toxic chemicals used as pesticides and nerve agents. Their acute toxicity is attributed to inhibition of acetylcholinesterase (AChE, EC 3.1.1.7) in nerve synapses. Our goal was to find a new therapeutic for protection against OP toxicity. We used a gene therapy vector, adeno-associated virus serotype 2 (AAV-2), to deliver murine AChE to AChE-/- mice that have no endogenous AChE activity. The vector encoded the most abundant form of AChE: exons 2, 3, 4, and 6. Two-day old animals, with an immature immune system, were injected. AChE delivered intravenously was expressed up to 5 months in plasma, liver, heart, and lung, at 5-15% of the level in untreated wild-type mice. A few mice formed antibodies, but antibodies did not block AChE activity. The plasma AChE was a mixture of dimers and tetramers. AChE delivered intramuscularly had 40-fold higher activity levels than in wild-type muscle. None of the AChE was collagen-tailed. No retrograde transport through the motor neurons to the central nervous system was detected. AChE delivered intrastriatally assembled into tetramers. In brain, the AAV-2 vector transduced neurons, but not astrocytes and microglia. Vector-treated AChE-/- mice lived longer than saline-treated controls. AChE-/- mice were protected from diisopropylfluorophosphate-induced respiratory failure when the vector was delivered intravenously, but not intrastriatally. Since vector-treated animals had no AChE activity in diaphragm muscle, protection from respiratory failure came from AChE in other tissues. We conclude that AChE scavenged OP and in this way protected the activity of butyrylcholinesterase (BChE, EC 3.1.1.8) in motor endplates.

  2. In vivo model of adeno-associated virus vector persistence and rescue.

    PubMed Central

    Afione, S A; Conrad, C K; Kearns, W G; Chunduru, S; Adams, R; Reynolds, T C; Guggino, W B; Cutting, G R; Carter, B J; Flotte, T R

    1996-01-01

    Gene therapy vectors based on human DNA viruses could be mobilized or rescued from individuals who are subsequently infected with the corresponding wild-type (wt) helper viruses. This phenomenon has been effectively modeled in vitro with both adenovirus (Ad) and adeno-associated virus (AAV) vectors but has not previously been studied in vivo. In the current study, we have developed an in vivo model to study the interactions of a recombinant AAV vector (AAV-CFTR) with wt AAV type 2 (AAV2) and a host range mutant Ad (Ad2HR405) for which monkey cells are permissive (D.E.Brough, S.A.Rice, S.Sell, and D.F.Klessig, J. Virol. 55:206-212, 1985). AAV-CFTR was administered to the respiratory epithelium of the nose or lung of rhesus macaques. Primary cells were harvested from the infusion site at time points up to 3 months after vector administration to confirm vector DNA persistence. Vector DNA was present in episomal form and could be rescued in vitro only by addition of wt AAV2 and Ad. In in vivo rescue studies, vector was administered before or after wt-AAV2 and Ad2HR405 infection, and the shedding of AAV-CFTR was examined. Ad2HR405 and wt-AAV2 infections were established in the nose with concomitant administration. wt-AAV2 replication occurred in the lung when virus was administered directly at a high titer to the lower respiratory tract. AAV-CFTR vector rescue was also observed in the latter setting. Although these studies were performed with small numbers of animals within each group, it appears that AAV-CFTR DNA persists in the primate respiratory tract and that this model may be useful for studies of recombinant AAV vector rescue. PMID:8627804

  3. An Intrabody Drug (rAAV6-INT41) Reduces the Binding of N-Terminal Huntingtin Fragment(s) to DNA to Basal Levels in PC12 Cells and Delays Cognitive Loss in the R6/2 Animal Model.

    PubMed

    Amaro, I Alexandra; Henderson, Lee A

    2016-01-01

    Huntington's disease (HD) is a fatal progressive disease linked to expansion of glutamine repeats in the huntingtin protein and characterized by the progressive loss of cognitive and motor function. We show that expression of a mutant human huntingtin exon-1-GFP fusion construct results in nonspecific gene dysregulation that is significantly reduced by 50% due to coexpression of INT41, an intrabody specific for the proline-rich region of the huntingtin protein. Using stable PC12 cell lines expressing either inducible human mutant huntingtin (mHtt, Q73) or normal huntingtin (nHtt, Q23), we investigated the effect of rAAV6-INT41, an adeno-associated virus vector with the INT41 coding sequence, on the subcellular distribution of Htt. Compartmental fractionation 8 days after induction of Htt showed a 6-fold increased association of a dominate N-terminal mHtt fragment with DNA compared to N-terminal nHtt. Transduction with rAAV6-INT41 reduced DNA binding of N-terminal mHtt 6.5-fold in the nucleus and reduced nuclear translocation of the detected fragments. Subsequently, when rAAV6-INT41 is delivered to the striatum in the R6/2 mouse model, treated female mice exhibited executive function statistically indistinguishable from wild type, accompanied by reductions in Htt aggregates in the striatum, suggesting that rAAV6-INT41 is promising as a gene therapy for Huntington's disease. PMID:27595037

  4. An Intrabody Drug (rAAV6-INT41) Reduces the Binding of N-Terminal Huntingtin Fragment(s) to DNA to Basal Levels in PC12 Cells and Delays Cognitive Loss in the R6/2 Animal Model

    PubMed Central

    2016-01-01

    Huntington's disease (HD) is a fatal progressive disease linked to expansion of glutamine repeats in the huntingtin protein and characterized by the progressive loss of cognitive and motor function. We show that expression of a mutant human huntingtin exon-1-GFP fusion construct results in nonspecific gene dysregulation that is significantly reduced by 50% due to coexpression of INT41, an intrabody specific for the proline-rich region of the huntingtin protein. Using stable PC12 cell lines expressing either inducible human mutant huntingtin (mHtt, Q73) or normal huntingtin (nHtt, Q23), we investigated the effect of rAAV6-INT41, an adeno-associated virus vector with the INT41 coding sequence, on the subcellular distribution of Htt. Compartmental fractionation 8 days after induction of Htt showed a 6-fold increased association of a dominate N-terminal mHtt fragment with DNA compared to N-terminal nHtt. Transduction with rAAV6-INT41 reduced DNA binding of N-terminal mHtt 6.5-fold in the nucleus and reduced nuclear translocation of the detected fragments. Subsequently, when rAAV6-INT41 is delivered to the striatum in the R6/2 mouse model, treated female mice exhibited executive function statistically indistinguishable from wild type, accompanied by reductions in Htt aggregates in the striatum, suggesting that rAAV6-INT41 is promising as a gene therapy for Huntington's disease.

  5. An Intrabody Drug (rAAV6-INT41) Reduces the Binding of N-Terminal Huntingtin Fragment(s) to DNA to Basal Levels in PC12 Cells and Delays Cognitive Loss in the R6/2 Animal Model

    PubMed Central

    2016-01-01

    Huntington's disease (HD) is a fatal progressive disease linked to expansion of glutamine repeats in the huntingtin protein and characterized by the progressive loss of cognitive and motor function. We show that expression of a mutant human huntingtin exon-1-GFP fusion construct results in nonspecific gene dysregulation that is significantly reduced by 50% due to coexpression of INT41, an intrabody specific for the proline-rich region of the huntingtin protein. Using stable PC12 cell lines expressing either inducible human mutant huntingtin (mHtt, Q73) or normal huntingtin (nHtt, Q23), we investigated the effect of rAAV6-INT41, an adeno-associated virus vector with the INT41 coding sequence, on the subcellular distribution of Htt. Compartmental fractionation 8 days after induction of Htt showed a 6-fold increased association of a dominate N-terminal mHtt fragment with DNA compared to N-terminal nHtt. Transduction with rAAV6-INT41 reduced DNA binding of N-terminal mHtt 6.5-fold in the nucleus and reduced nuclear translocation of the detected fragments. Subsequently, when rAAV6-INT41 is delivered to the striatum in the R6/2 mouse model, treated female mice exhibited executive function statistically indistinguishable from wild type, accompanied by reductions in Htt aggregates in the striatum, suggesting that rAAV6-INT41 is promising as a gene therapy for Huntington's disease. PMID:27595037

  6. Systemic Vascular Transduction by Capsid Mutant Adeno-Associated Virus After Intravenous Injection

    PubMed Central

    Lipinski, Daniel M.; Reid, Chris A.; Boye, Sanford L.; Peterson, James J.; Qi, Xiaoping; Boye, Shannon E.; Boulton, Michael E.; Hauswirth, William W.

    2015-01-01

    The ability to effectively deliver genetic material to vascular endothelial cells remains one of the greatest unmet challenges facing the development of gene therapies to prevent diseases with underlying vascular etiology, such as diabetes, atherosclerosis, and age-related macular degeneration. Herein, we assess the effectiveness of an rAAV2-based capsid mutant vector (Y272F, Y444F, Y500F, Y730F, T491V; termed QuadYF+TV) with strong endothelial cell tropism at transducing the vasculature after systemic administration. Intravenous injection of QuadYF+TV resulted in widespread transduction throughout the vasculature of several major organ systems, as assessed by in vivo bioluminescence imaging and postmortem histology. Robust transduction of lung tissue was observed in QuadYF+TV-injected mice, indicating a role for intravenous gene delivery in the treatment of chronic diseases presenting with pulmonary complications, such as α1-antitrypsin deficiency. The QuadYF+TV vector cross-reacted strongly with AAV2 neutralizing antibodies, however, indicating that a targeted delivery strategy may be required to maximize clinical translatability. PMID:26359319

  7. Light-Activated Nuclear Translocation of Adeno-Associated Virus Nanoparticles Using Phytochrome B for Enhanced, Tunable, and Spatially Programmable Gene Delivery.

    PubMed

    Gomez, Eric J; Gerhardt, Karl; Judd, Justin; Tabor, Jeffrey J; Suh, Junghae

    2016-01-26

    Gene delivery vectors that are activated by external stimuli may allow improved control over the location and the degree of gene expression in target populations of cells. Light is an attractive stimulus because it does not cross-react with cellular signaling networks, has negligible toxicity, is noninvasive, and can be applied in space and time with unparalleled precision. We used the previously engineered red (R)/far-red (FR) light-switchable protein phytochrome B (PhyB) and its R light dependent interaction partner phytochrome interacting factor 6 (PIF6) from Arabidopsis thaliana to engineer an adeno-associated virus (AAV) platform whose gene delivery efficiency is controlled by light. Upon exposure to R light, AAV engineered to display PIF6 motifs on the capsid bind to PhyB tagged with a nuclear localization sequence (NLS), resulting in significantly increased translocation of viruses into the host cell nucleus and overall gene delivery efficiency. By modulating the ratio of R to FR light, the gene delivery efficiency can be tuned to as little as 35% or over 600% of the unengineered AAV. We also demonstrate spatial control of gene delivery using projected patterns of codelivered R and FR light. Overall, our successful use of light-switchable proteins in virus capsid engineering extends these important optogenetic tools into the adjacent realm of nucleic acid delivery and enables enhanced, tunable, and spatially controllable regulation of viral gene delivery. Our current light-triggered viral gene delivery prototype may be broadly useful for genetic manipulation of cells ex vivo or in vivo in transgenic model organisms, with the ultimate prospect of achieving dose- and site-specific gene expression profiles for either therapeutic (e.g., regenerative medicine) or fundamental discovery research efforts.

  8. Light-Activated Nuclear Translocation of Adeno-Associated Virus Nanoparticles Using Phytochrome B for Enhanced, Tunable, and Spatially Programmable Gene Delivery.

    PubMed

    Gomez, Eric J; Gerhardt, Karl; Judd, Justin; Tabor, Jeffrey J; Suh, Junghae

    2016-01-26

    Gene delivery vectors that are activated by external stimuli may allow improved control over the location and the degree of gene expression in target populations of cells. Light is an attractive stimulus because it does not cross-react with cellular signaling networks, has negligible toxicity, is noninvasive, and can be applied in space and time with unparalleled precision. We used the previously engineered red (R)/far-red (FR) light-switchable protein phytochrome B (PhyB) and its R light dependent interaction partner phytochrome interacting factor 6 (PIF6) from Arabidopsis thaliana to engineer an adeno-associated virus (AAV) platform whose gene delivery efficiency is controlled by light. Upon exposure to R light, AAV engineered to display PIF6 motifs on the capsid bind to PhyB tagged with a nuclear localization sequence (NLS), resulting in significantly increased translocation of viruses into the host cell nucleus and overall gene delivery efficiency. By modulating the ratio of R to FR light, the gene delivery efficiency can be tuned to as little as 35% or over 600% of the unengineered AAV. We also demonstrate spatial control of gene delivery using projected patterns of codelivered R and FR light. Overall, our successful use of light-switchable proteins in virus capsid engineering extends these important optogenetic tools into the adjacent realm of nucleic acid delivery and enables enhanced, tunable, and spatially controllable regulation of viral gene delivery. Our current light-triggered viral gene delivery prototype may be broadly useful for genetic manipulation of cells ex vivo or in vivo in transgenic model organisms, with the ultimate prospect of achieving dose- and site-specific gene expression profiles for either therapeutic (e.g., regenerative medicine) or fundamental discovery research efforts. PMID:26618393

  9. Adeno-associated virus transfer of a gene encoding SNAP-25 resistant to botulinum toxin A attenuates neuromuscular paralysis associated with botulism.

    PubMed

    Raghunath, Arvind; Perez-Branguli, Francesc; Smith, Leonard; Dolly, J Oliver

    2008-04-01

    Advances in viral gene therapy have opened new possibilities for treating a range of motor neuron diseases, but these have not yet been translated into clinically applicable therapies because of difficulties in delivery to susceptible/damaged neurons, ambiguities in the identity of gene(s) implicated, and a paucity of means to quantify any physiological improvement. Most of these hurdles can be overcome by using the neuromuscular paralysis induced by botulinum neurotoxin type A (BoNT/A) as a prototype disease. Furthermore, because human botulism, occasionally fatal, causes prolonged muscle disablement as a result of the intraneuronal persistence of the toxin's SNAP-25 (S25)-cleaving protease, development of a genetic approach could lead to a potential treatment for this debilitating disease. Adeno-associated viral delivery of a cleavage-resistant S25 gene (S25-R198T) to chromaffin cells in vitro yielded exocytotically active S25-R198T that diminished subsequent blockade by BoNT/A of evoked catecholamine release. Evaluation in vivo, by administering this virus into rat spinal cord before injecting BoNT/A, showed a decreased inhibition of acetylcholine release as reflected in elevated retention of neuromuscular transmission. A similar, although smaller, protection of synaptic transmission from the toxin was seen after peripherally injecting the therapeutic virus. Such therapy also curtailed nerve sprouting normally induced by BoNT/A. This first demonstration of the utility of a DNA-based therapy for botulism paves the way for further advances in its treatment and for application to genetic disorders of motor neurons.

  10. The Rep78 gene product of adeno-associated virus (AAV) self-associates to form a hexameric complex in the presence of AAV ori sequences.

    PubMed Central

    Smith, R H; Spano, A J; Kotin, R M

    1997-01-01

    The Rep78 and Rep68 proteins of adeno-associated virus (AAV) are replication initiator proteins that bind the viral replicative-form origin of replication, nick the origin in a site- and strand-specific fashion, and mediate vectorial unwinding of the DNA duplex via an ATP-dependent helicase activity, thus initiating a strand displacement mechanism of viral DNA replication. Genetic and biochemical studies have identified Rep mutants that demonstrate a trans-dominant negative phenotype in vitro and in vivo, suggesting the possibility that multimerization of Rep is essential for certain replicative functions. In this study, we have investigated the ability of the largest of the Rep proteins, Rep78, to self-associate in vitro and in vivo. Self-association of Rep78 in vivo was demonstrated through the use of a mammalian two-hybrid system. Rep-Rep protein interaction was confirmed in vitro through coimmunoprecipitation experiments with a bacterially expressed maltose-binding protein-Rep78 fusion protein in combination with [35S]methionine-labeled Rep78 synthesized in a coupled in vitro transcription-translation system. Mapping studies with N- and C-terminal truncation mutant forms of Rep indicate that amino acid sequences required for maximal self-association occur between residues 164 and 484. Site-directed mutagenesis identified two essential motifs within this 321-amino-acid region: (i) a putative alpha-helix bearing a 3,4-hydrophobic heptad repeat reminiscent of those found in coiled-coil domains and (ii) a previously recognized nucleoside triphosphate-binding motif. Deletion of either of these regions from the full-length polypeptide resulted in severe impairment of Rep-Rep interaction. In addition, gel filtration chromatography and protein cross-linking experiments indicated that Rep78 forms a hexameric complex in the presence of AAV ori sequences. PMID:9151837

  11. Nonstructural Protein NP1 of Human Bocavirus 1 Plays a Critical Role in the Expression of Viral Capsid Proteins

    PubMed Central

    Zou, Wei; Cheng, Fang; Shen, Weiran; Engelhardt, John F.; Yan, Ziying

    2016-01-01

    ABSTRACT A novel chimeric parvoviral vector, rAAV2/HBoV1, in which the recombinant adeno-associated virus 2 (rAAV2) genome is pseudopackaged by the human bocavirus 1 (HBoV1) capsid, has been shown to be highly efficient in gene delivery to human airway epithelia (Z. Yan et al., Mol Ther 21:2181–2194, 2013, http://dx.doi.org/10.1038/mt.2013.92). In this vector production system, we used an HBoV1 packaging plasmid, pHBoV1NSCap, that harbors HBoV1 nonstructural protein (NS) and capsid protein (Cap) genes. In order to simplify this packaging plasmid, we investigated the involvement of the HBoV1 NS proteins in capsid protein expression. We found that NP1, a small NS protein encoded by the middle open reading frame, is required for the expression of the viral capsid proteins (VP1, VP2, and VP3). We also found that the other NS proteins (NS1, NS2, NS3, and NS4) are not required for the expression of VP proteins. We performed systematic analyses of the HBoV1 mRNAs transcribed from the pHBoV1NSCap packaging plasmid and its derivatives in HEK 293 cells. Mechanistically, we found that NP1 is required for both the splicing and the read-through of the proximal polyadenylation site of the HBoV1 precursor mRNA, essential functions for the maturation of capsid protein-encoding mRNA. Thus, our study provides a unique example of how a small viral nonstructural protein facilitates the multifaceted regulation of capsid gene expression. IMPORTANCE A novel chimeric parvoviral vector, rAAV2/HBoV1, expressing a full-length cystic fibrosis transmembrane conductance regulator (CFTR) gene, is capable of correcting CFTR-dependent chloride transport in cystic fibrosis human airway epithelium. Previously, an HBoV1 nonstructural and capsid protein-expressing plasmid, pHBoV1NSCap, was used to package the rAAV2/HBoV1 vector, but yields remained low. In this study, we demonstrated that the nonstructural protein NP1 is required for the expression of capsid proteins. However, we found that the

  12. Adeno-associated virus Rep-mediated targeting of integrase-defective retroviral vector DNA circles into human chromosome 19

    SciTech Connect

    Huang, Shuohao; Kawabe, Yoshinori; Ito, Akira; Kamihira, Masamichi

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Adeno-associated virus (AAV) is capable of targeted integration in human cells. Black-Right-Pointing-Pointer Integrase-defective retroviral vector (IDRV) enables a circular DNA delivery. Black-Right-Pointing-Pointer A targeted integration system of IDRV DNA using the AAV integration mechanism. Black-Right-Pointing-Pointer Targeted IDRV integration ameliorates the safety concerns for retroviral vectors. -- Abstract: Retroviral vectors have been employed in clinical trials for gene therapy owing to their relative large packaging capacity, alterable cell tropism, and chromosomal integration for stable transgene expression. However, uncontrollable integrations of transgenes are likely to cause safety issues, such as insertional mutagenesis. A targeted transgene integration system for retroviral vectors, therefore, is a straightforward way to address the insertional mutagenesis issue. Adeno-associated virus (AAV) is the only known virus capable of targeted integration in human cells. In the presence of AAV Rep proteins, plasmids possessing the p5 integration efficiency element (p5IEE) can be integrated into the AAV integration site (AAVS1) in the human genome. In this report, we describe a system that can target the circular DNA derived from non-integrating retroviral vectors to the AAVS1 site by utilizing the Rep/p5IEE integration mechanism. Our results showed that after G418 selection 30% of collected clones had retroviral DNA targeted at the AAVS1 site.

  13. Activation of the NF-kappaB pathway by adeno-associated virus (AAV) vectors and its implications in immune response and gene therapy.

    PubMed

    Jayandharan, Giridhara R; Aslanidi, George; Martino, Ashley T; Jahn, Stephan C; Perrin, George Q; Herzog, Roland W; Srivastava, Arun

    2011-03-01

    Because our in silico analysis with a human transcription factor database demonstrated the presence of several binding sites for NF-κB, a central regulator of cellular immune and inflammatory responses, in the adeno-associated virus (AAV) genome, we investigated whether AAV uses NF-κB during its life cycle. We used small molecule modulators of NF-κB in HeLa cells transduced with recombinant AAV vectors. VP16, an NF-κB activator, augmented AAV vector-mediated transgene expression up to 25-fold. Of the two NF-κB inhibitors, Bay11, which blocks both the canonical and the alternative NF-κB pathways, totally ablated transgene expression, whereas pyrrolidone dithiocarbamate, which interferes with the classical NF-κB pathway, had no effect. Western blot analyses confirmed the abundance of the nuclear p52 protein component of the alternative NF-κB pathway in the presence of VP16, which was ablated by Bay11, suggesting that AAV transduction activates the alternative NF-κB pathway. In vivo, hepatic AAV gene transfer activated the canonical NF-κB pathway within 2 h, resulting in expression of proinflammatory cytokines and chemokines (likely reflecting the sensing of viral particles by antigen-presenting cells), whereas the alternative pathway was activated by 9 h. Bay11 effectively blocked activation of both pathways without interfering with long-term transgene expression while eliminating proinflammatory cytokine expression. These studies suggest that transient immunosuppression with NF-κB inhibitors before transduction with AAV vectors should lead to a dampened immune response, which has significant implications in the optimal use of AAV vectors in human gene therapy.

  14. Temporal acceleration of the human papillomavirus life cycle by adeno-associated virus (AAV) type 2 superinfection in natural host tissue.

    PubMed

    Agrawal, Nalini; Mane, Michael; Chiriva-Internati, Maurizio; Roman, Juan J; Hermonat, Paul L

    2002-06-01

    Epidemiologically, certain human papillomaviruses are positively associated with cervical cancer, while adeno-associated viruses (AAV-2) are negatively associated with this same cancer. Both HPV and AAV productively replicate in differentiating keratinocytes of the skin and interact with each other. However, AAV has a relatively fast life cycle, generating infectious progeny by the third to fourth day of an organotypic epithelial raft culture. In contrast, HPV is slow, generating infectious progeny only after 10-12 days. As earlier studies indicated that these two skin-tropic virus types significantly affect each other's life cycle, we investigated if the temporal kinetics of the slow HPV life cycle was affected by the fast AAV in raft cultures. Here it is shown that the presence of AAV-2 at a variety of multiplicities of infection (m.o.i.) resulted in early onset HPV-31b DNA replication. Using plasmids which each expressed only one of the four rep proteins, an enhancement affect was seen for all four rep proteins of AAV, with Rep40 having the highest activity. Furthermore, AAV (m.o.i. of 5) also resulted in a temporally accelerated production of HPV infectious units, seen as early as Day 4, with high levels of viral progeny being produced by Day 6.5. Like earlier studies at Day 12, histological differences were seen at Day 6.5 between AAV-infected and mock-infected HPV/rafts. These data suggest that under specific conditions the AAV rep trans-factors can positively regulate HPV gene expression in addition to the usual negative regulation that has been consistently observed by the rep proteins. These data also suggest that AAV has a significant effect upon the temporal kinetics of the HPV life cycle in natural host tissue. However, it is unclear if or how this AAV-induced fast HPV life cycle mechanistically correlates with lower rates of HPV-associated cervical disease.

  15. Real-Time Single-Molecule Imaging of the Infection Pathway of an Adeno-Associated Virus

    NASA Astrophysics Data System (ADS)

    Seisenberger, Georg; Ried, Martin U.; Endreß, Thomas; Büning, Hildegard; Hallek, Michael; Bräuchle, Christoph

    2001-11-01

    We describe a method, based on single-molecule imaging, that allows the real-time visualization of the infection pathway of single viruses in living cells, each labeled with only one fluorescent dye molecule. The tracking of single viruses removes ensemble averaging. Diffusion trajectories with high spatial and time resolution show various modes of motion of adeno-associated viruses (AAV) during their infection pathway into living HeLa cells: (i) consecutive virus touching at the cell surface and fast endocytosis; (ii) free and anomalous diffusion of the endosome and the virus in the cytoplasm and the nucleus; and (iii) directed motion by motor proteins in the cytoplasm and in nuclear tubular structures. The real-time visualization of the infection pathway of single AAVs shows a much faster infection than was generally observed so far.

  16. Efficient transduction and optogenetic stimulation of retinal bipolar cells by a synthetic adeno-associated virus capsid and promoter

    PubMed Central

    Cronin, Therese; Vandenberghe, Luk H; Hantz, Péter; Juttner, Josephine; Reimann, Andreas; Kacsó, Ágota–Enikő; Huckfeldt, Rachel M; Busskamp, Volker; Kohler, Hubertus; Lagali, Pamela S; Roska, Botond; Bennett, Jean

    2014-01-01

    In this report, we describe the development of a modified adeno-associated virus (AAV) capsid and promoter for transduction of retinal ON-bipolar cells. The bipolar cells, which are post-synaptic to the photoreceptors, are important retinal targets for both basic and preclinical research. In particular, a therapeutic strategy under investigation for advanced forms of blindness involves using optogenetic molecules to render ON-bipolar cells light-sensitive. Currently, delivery of adequate levels of gene expression is a limiting step for this approach. The synthetic AAV capsid and promoter described here achieves high level of optogenetic transgene expression in ON-bipolar cells. This evokes high-frequency (∼100 Hz) spiking responses in ganglion cells of previously blind, rd1, mice. Our vector is a promising vehicle for further development toward potential clinical use. PMID:25092770

  17. Adeno-Associated Virus at 50: A Golden Anniversary of Discovery, Research, and Gene Therapy Success—A Personal Perspective

    PubMed Central

    Hastie, Eric

    2015-01-01

    Abstract Fifty years after the discovery of adeno-associated virus (AAV) and more than 30 years after the first gene transfer experiment was conducted, dozens of gene therapy clinical trials are in progress, one vector is approved for use in Europe, and breakthroughs in virus modification and disease modeling are paving the way for a revolution in the treatment of rare diseases, cancer, as well as HIV. This review will provide a historical perspective on the progression of AAV for gene therapy from discovery to the clinic, focusing on contributions from the Samulski lab regarding basic science and cloning of AAV, optimized large-scale production of vectors, preclinical large animal studies and safety data, vector modifications for improved efficacy, and successful clinical applications. PMID:25807962

  18. Productive life cycle of adeno-associated virus serotype 2 in the complete absence of a conventional polyadenylation signal

    PubMed Central

    Wang, Lina; Yin, Zifei; Wang, Yuan; Lu, Yuan; Zhang, Daniel; Srivastava, Arun; Ling, Changquan

    2015-01-01

    We showed that WT adeno-associated virus serotype 2 (AAV2) genome devoid of a conventional polyadenylation [poly(A)] signal underwent complete genome replication, encapsidation and progeny virion production in the presence of adenovirus. The infectivity of the progeny virion was also retained. Using recombinant AAV2 vectors devoid of a human growth hormone poly(A) signal, we also demonstrated that a subset of mRNA transcripts contained the inverted terminal repeat (ITR) sequence at the 3′ end, which we designated ITR in RNA (ITRR). Furthermore, AAV replication (Rep) proteins were able to interact with the ITRR. Taken together, our studies suggest a new function of the AAV2 ITR as an RNA element to mediate transgene expression from poly(A)-deleted mRNA. PMID:26297494

  19. Adeno-associated virus at 50: a golden anniversary of discovery, research, and gene therapy success--a personal perspective.

    PubMed

    Hastie, Eric; Samulski, R Jude

    2015-05-01

    Fifty years after the discovery of adeno-associated virus (AAV) and more than 30 years after the first gene transfer experiment was conducted, dozens of gene therapy clinical trials are in progress, one vector is approved for use in Europe, and breakthroughs in virus modification and disease modeling are paving the way for a revolution in the treatment of rare diseases, cancer, as well as HIV. This review will provide a historical perspective on the progression of AAV for gene therapy from discovery to the clinic, focusing on contributions from the Samulski lab regarding basic science and cloning of AAV, optimized large-scale production of vectors, preclinical large animal studies and safety data, vector modifications for improved efficacy, and successful clinical applications.

  20. Interference Between Two Adeno-associated Satellite Viruses: a Three-Component System

    PubMed Central

    Torikai, K.; Mayor, H. D.

    1969-01-01

    Adenovirus-associated satellite viruses interfere with the replication of their helper adenoviruses. According to a previous report, this interference is not mediated by interferon. A three-component system comprising simian adenovirus SV15 and satellites types 1 and 4 was studied to determine whether satellite viruses also interfere with one another. Satellite type 1 interfered with the replication of type 4 and vice versa. The degree of interference was directly proportional to the dose of interfering satellite. The events leading to mutual satellite interference were operative during the first 12 hr of replication, the period associated with active synthesis of viral deoxyribonucleic acid. PMID:5786177

  1. Safety and Biodistribution Evaluation in CNGB3-Deficient Mice of rAAV2tYF-PR1.7-hCNGB3, a Recombinant AAV Vector for Treatment of Achromatopsia.

    PubMed

    Ye, Guo-jie; Budzynski, Ewa; Sonnentag, Peter; Nork, T Michael; Miller, Paul E; McPherson, Leslie; Ver Hoeve, James N; Smith, Leia M; Arndt, Tara; Mandapati, Savitri; Robinson, Paulette M; Calcedo, Roberto; Knop, David R; Hauswirth, William W; Chulay, Jeffrey D

    2016-03-01

    Applied Genetic Technologies Corporation (AGTC) is developing rAAV2tYF-PR1.7-hCNGB3, a recombinant adeno-associated virus (rAAV) vector expressing the human CNGB3 gene, for treatment of achromatopsia, an inherited retinal disorder characterized by markedly reduced visual acuity, extreme light sensitivity, and absence of color discrimination. We report here results of a study evaluating safety and biodistribution of rAAV2tYF-PR1.7-hCNGB3 in CNGB3-deficient mice. Three groups of animals (n = 35 males and 35 females per group) received a subretinal injection in one eye of 1 μl containing either vehicle or rAAV2tYF-PR1.7-hCNGB3 at one of two dose concentrations (1 × 10(12) or 4.2 × 10(12) vg/ml) and were euthanized 4 or 13 weeks later. There were no test-article-related changes in clinical observations, body weights, food consumption, ocular examinations, clinical pathology parameters, organ weights, or macroscopic observations at necropsy. Cone-mediated electroretinography (ERG) responses were detected after vector administration in the treated eyes in 90% of animals in the higher dose group and 31% of animals in the lower dose group. Rod-mediated ERG responses were reduced in the treated eye for all groups, with the greatest reduction in males given the higher dose of vector, but returned to normal by the end of the study. Microscopic pathology results demonstrated minimal mononuclear cell infiltrates in the retina and vitreous of some animals at the interim euthanasia and in the vitreous of some animals at the terminal euthanasia. Serum anti-AAV antibodies developed in most vector-injected animals. No animals developed antibodies to hCNGB3. Biodistribution studies demonstrated high levels of vector DNA in vector-injected eyes but little or no vector DNA in nonocular tissue. These results support the use of rAAV2tYF-PR1.7-hCNGB3 in clinical studies in patients with achromatopsia caused by CNGB3 mutations. PMID:27003752

  2. Novel Vector Design and Hexosaminidase Variant Enabling Self-Complementary Adeno-Associated Virus for the Treatment of Tay-Sachs Disease.

    PubMed

    Karumuthil-Melethil, Subha; Nagabhushan Kalburgi, Sahana; Thompson, Patrick; Tropak, Michael; Kaytor, Michael D; Keimel, John G; Mark, Brian L; Mahuran, Don; Walia, Jagdeep S; Gray, Steven J

    2016-07-01

    GM2 gangliosidosis is a family of three genetic neurodegenerative disorders caused by the accumulation of GM2 ganglioside (GM2) in neuronal tissue. Two of these are due to the deficiency of the heterodimeric (α-β), "A" isoenzyme of lysosomal β-hexosaminidase (HexA). Mutations in the α-subunit (encoded by HEXA) lead to Tay-Sachs disease (TSD), whereas mutations in the β-subunit (encoded by HEXB) lead to Sandhoff disease (SD). The third form results from a deficiency of the GM2 activator protein (GM2AP), a substrate-specific cofactor for HexA. In their infantile, acute forms, these diseases rapidly progress with mental and psychomotor deterioration resulting in death by approximately 4 years of age. After gene transfer that overexpresses one of the deficient subunits, the amount of HexA heterodimer formed would empirically be limited by the availability of the other endogenous Hex subunit. The present study used a new variant of the human HexA α-subunit, μ, incorporating critical sequences from the β-subunit that produce a stable homodimer (HexM) and promote functional interactions with the GM2AP- GM2 complex. We report the design of a compact adeno-associated viral (AAV) genome using a synthetic promoter-intron combination to allow self-complementary (sc) packaging of the HEXM gene. Also, a previously published capsid mutant, AAV9.47, was used to deliver the gene to brain and spinal cord while having restricted biodistribution to the liver. The novel capsid and cassette design combination was characterized in vivo in TSD mice for its ability to efficiently transduce cells in the central nervous system when delivered intravenously in both adult and neonatal mice. This study demonstrates that the modified HexM is capable of degrading long-standing GM2 storage in mice, and it further demonstrates the potential of this novel scAAV vector design to facilitate widespread distribution of the HEXM gene or potentially other similar-sized genes to the nervous system.

  3. Novel Vector Design and Hexosaminidase Variant Enabling Self-Complementary Adeno-Associated Virus for the Treatment of Tay-Sachs Disease.

    PubMed

    Karumuthil-Melethil, Subha; Nagabhushan Kalburgi, Sahana; Thompson, Patrick; Tropak, Michael; Kaytor, Michael D; Keimel, John G; Mark, Brian L; Mahuran, Don; Walia, Jagdeep S; Gray, Steven J

    2016-07-01

    GM2 gangliosidosis is a family of three genetic neurodegenerative disorders caused by the accumulation of GM2 ganglioside (GM2) in neuronal tissue. Two of these are due to the deficiency of the heterodimeric (α-β), "A" isoenzyme of lysosomal β-hexosaminidase (HexA). Mutations in the α-subunit (encoded by HEXA) lead to Tay-Sachs disease (TSD), whereas mutations in the β-subunit (encoded by HEXB) lead to Sandhoff disease (SD). The third form results from a deficiency of the GM2 activator protein (GM2AP), a substrate-specific cofactor for HexA. In their infantile, acute forms, these diseases rapidly progress with mental and psychomotor deterioration resulting in death by approximately 4 years of age. After gene transfer that overexpresses one of the deficient subunits, the amount of HexA heterodimer formed would empirically be limited by the availability of the other endogenous Hex subunit. The present study used a new variant of the human HexA α-subunit, μ, incorporating critical sequences from the β-subunit that produce a stable homodimer (HexM) and promote functional interactions with the GM2AP- GM2 complex. We report the design of a compact adeno-associated viral (AAV) genome using a synthetic promoter-intron combination to allow self-complementary (sc) packaging of the HEXM gene. Also, a previously published capsid mutant, AAV9.47, was used to deliver the gene to brain and spinal cord while having restricted biodistribution to the liver. The novel capsid and cassette design combination was characterized in vivo in TSD mice for its ability to efficiently transduce cells in the central nervous system when delivered intravenously in both adult and neonatal mice. This study demonstrates that the modified HexM is capable of degrading long-standing GM2 storage in mice, and it further demonstrates the potential of this novel scAAV vector design to facilitate widespread distribution of the HEXM gene or potentially other similar-sized genes to the nervous system

  4. MRI-Guided Delivery of Viral Vectors.

    PubMed

    Salegio, Ernesto A; Bringas, John; Bankiewicz, Krystof S

    2016-01-01

    Gene therapy has emerged as a potential avenue of treatment for many neurological disorders. Technological advances in imaging techniques allow for the monitoring of real-time infusions into the brain of rodents, nonhuman primates, and humans. Here, we discuss the use of magnetic resonance imaging (MRI) as a tool in the delivery of adeno-associated viral (AAV) particles into brain of nonhuman primates.

  5. Adeno-Associated Virus-Mediated Gene Transfer to Renal Tubule Cells via a Retrograde Ureteral Approach

    PubMed Central

    Chung, Daniel C.; Fogelgren, Ben; Park, Kwon Moo; Heidenberg, Jessica; Zuo, Xiaofeng; Huang, Liwei; Bennett, Jean; Lipschutz, Joshua H.

    2011-01-01

    Background/Aims Gene therapy involves delivery of exogenous DNA to provide a therapeutic protein. Ideally, a gene therapy vector should be non-toxic, non-immunogenic, easy to produce, and efficient in protecting and delivering DNA into target cells. Methods Adeno-associated virus (AAV) offers these advantages and few, if any, disadvantages, and over 100 isolates exist. We previously showed that AAV-mediated gene therapy can be used to restore vision to patients with Leber's congenital amaurosis, a disease of childhood blindness. Results Here we show that novel recombinant AAV2/8 and AAV2/9 transduce kidney tubule cells with high efficiency both in vitroin cell culture and in vivoin mice. In addition, we adapted and modified a retrograde approach to allow for optimal transgene delivery to renal tubular cells that further minimizes the risk of an immunogenic reaction. Conclusions We believe that recombinant AAV2, especially AAV2/8, gene delivery to renal tubule cells via a retrograde approach represents a viable method for gene therapy for a multitude of renal disorders ranging from autosomal dominant polycystic kidney disease to acute kidney injury. PMID:22470395

  6. Rescue of skeletal muscles of gamma-sarcoglycan-deficient mice with adeno-associated virus-mediated gene transfer.

    PubMed

    Cordier, L; Hack, A A; Scott, M O; Barton-Davis, E R; Gao, G; Wilson, J M; McNally, E M; Sweeney, H L

    2000-02-01

    In humans, a subset of cases of Limb-girdle muscular dystrophy (LGMD) arise from mutations in the genes encoding one of the sarcoglycan (alpha, beta, gamma, or delta) subunits of the dystrophin-glycoprotein complex. While adeno-associated virus (AAV) is a potential gene therapy vector for these dystrophies, it is unclear if AAV can be used if a diseased muscle is undergoing rapid degeneration and necrosis. The skeletal muscles of mice lacking gamma-sarcoglycan (gsg-/- mice) differ from the animal models that have been evaluated to date in that the severity of the skeletal muscle pathology is much greater and more representative of that of humans with muscular dystrophy. Following direct muscle injection of a recombinant AAV [in which human gamma-sarcoglycan expression is driven by a truncated muscle creatine kinase (MCK) promoter/enhancer], we observed significant numbers of muscle fibers expressing gamma-sarcoglycan and an overall improvement of the histologic pattern of dystrophy. However, these results could be achieved only if injections into the muscle were prior to the development of significant fibrosis in the muscle. The results presented in this report show promise for AAV gene therapy for LGMD, but underscore the need for intervention early in the time course of the disease process.

  7. Efficacy and safety of myocardial gene transfer of adenovirus, adeno-associated virus and lentivirus vectors in the mouse heart.

    PubMed

    Merentie, M; Lottonen-Raikaslehto, L; Parviainen, V; Huusko, J; Pikkarainen, S; Mendel, M; Laham-Karam, N; Kärjä, V; Rissanen, R; Hedman, M; Ylä-Herttuala, S

    2016-03-01

    Gene therapy is a promising new treatment option for cardiac diseases. For finding the most suitable and safe vector for cardiac gene transfer, we delivered adenovirus (AdV), adeno-associated virus (AAV) and lentivirus (LeV) vectors into the mouse heart with sophisticated closed-chest echocardiography-guided intramyocardial injection method for comparing them with regards to transduction efficiency, myocardial damage, effects on the left ventricular function and electrocardiography (ECG). AdV had the highest transduction efficiency in cardiomyocytes followed by AAV2 and AAV9, and the lowest efficiency was seen with LeV. The local myocardial inflammation and fibrosis in the left ventricle (LV) was proportional to transduction efficiency. AdV caused LV dilatation and systolic dysfunction. Neither of the locally injected AAV serotypes impaired the LV systolic function, but AAV9 caused diastolic dysfunction to some extent. LeV did not affect the cardiac function. We also studied systemic delivery of AAV9, which led to transduction of cardiomyocytes throughout the myocardium. However, also diffuse fibrosis was present leading to significantly impaired LV systolic and diastolic function and pathological ECG changes. Compared with widely used AdV vector, AAV2, AAV9 and LeV were less effective in transducing cardiomyocytes but also less harmful. Local administration of AAV9 was safer and more efficient compared with systemic administration.

  8. Thymosin Beta-4 Recombinant Adeno-associated Virus Enhances Human Nucleus Pulposus Cell Proliferation and Reduces Cell Apoptosis and Senescence

    PubMed Central

    Wang, Yuan-Yi; Zhu, Qing-San; Wang, Yi-Wei; Yin, Ruo-Feng

    2015-01-01

    Background: Thymosin beta-4 (TB-4) is considered key roles in tissue development, maintenance and pathological processes. The study aimed to prove TB-4 positive biological function on nucleus pulposus (NP) cell apoptosis and slowing the process of cell aging while increasing the cell proliferation. Methods: TB-4 recombinant adeno-associated virus (AAV) was constructed and induced to human NP cells. Cell of same group were cultured without gene modification as controlled group. Proliferation capacity and cell apoptosis were observed during 6 passages of the cells. Morphology and expression of the TB-4 gene were documented as parameter of cell activity during cell passage. Results: NP cells with TB-4 transfection has normal TB-4 expression and exocytosis. NP cells with TB-4 transfection performed significantly higher cell activity than that at the control group in each generation. TB-4 recombinant AAV-transfected human NP cells also show slower cell aging, lower cell apoptosis and higher cell proliferation than control group. Conclusions: TB-4 can prevent NP cell apoptosis, slow NP cell aging and promote NP cell proliferation. AAV transfection technique was able to highly and stably express TB-4 in human NP cells, which may provide a new pathway for innovation in the treatment of intervertebral disc degenerative diseases. PMID:26021512

  9. Long-Term Sex-Biased Correction of Circulating Propionic Acidemia Disease Markers by Adeno-Associated Virus Vectors

    PubMed Central

    Guenzel, Adam J.; Collard, Renata; Kraus, Jan P.; Matern, Dietrich

    2015-01-01

    Abstract Propionic academia (PA) occurs because of mutations in the PCCA or PCCB genes encoding the two subunits of propionyl-CoA carboxylase, a pivotal enzyme in the breakdown of certain amino acids and odd-chain fatty acids. There is no cure for PA, but dietary protein restriction and liver transplantation can attenuate its symptoms. We show here that a single intravenous injection of adeno-associated virus 2/8 (AAV8) or AAVrh10 expressing PCCA into PA hypomorphic mice decreased systemic propionylcarnitine and methyl citrate for up to 1.5 years. However, long-term phenotypic correction was always better in male mice. AAV-mediated PCCA expression was similar in most tissues in males and females at early time points and differed only in the liver. Over 1.5 years, luciferase and PCCA expression remained elevated in cardiac tissue for both sexes. In contrast, transgene expression in the liver and skeletal muscles of female, but not male, mice waned—suggesting that these tissues were major sinks for systemic phenotypic correction. These data indicate that single systemic intravenous therapy by AAV vectors can mediate long-term phenotype correction for PA. However, tissue-specific loss of expression in females reduces efficacy when compared with males. Whether similar sex-biased AAV effects occur in human gene therapy remains to be determined. PMID:25654275

  10. Enhanced gene delivery in porcine vasculature tissue following incorporation of adeno-associated virus nanoparticles into porous silicon microparticles.

    PubMed

    McConnell, Kellie I; Rhudy, Jessica; Yokoi, Kenji; Gu, Jianhua; Mack, Aaron; Suh, Junghae; La Francesca, Saverio; Sakamoto, Jason; Serda, Rita E

    2014-11-28

    There is an unmet clinical need to increase lung transplant successes, patient satisfaction and to improve mortality rates. We offer the development of a nanovector-based solution that will reduce the incidence of lung ischemic reperfusion injury (IRI) leading to graft organ failure through the successful ex vivo treatment of the lung prior to transplantation. The innovation is in the integrated application of our novel porous silicon (pSi) microparticles carrying adeno-associated virus (AAV) nanoparticles, and the use of our ex vivo lung perfusion/ventilation system for the modulation of pro-inflammatory cytokines initiated by ischemic pulmonary conditions prior to organ transplant that often lead to complications. Gene delivery of anti-inflammatory agents to combat the inflammatory cascade may be a promising approach to prevent IRI following lung transplantation. The rationale for the device is that the microparticle will deliver a large payload of virus to cells and serve to protect the AAV from immune recognition. The microparticle-nanoparticle hybrid device was tested both in vitro on cell monolayers and ex vivo using either porcine venous tissue or a pig lung transplantation model, which recapitulates pulmonary IRI that occurs clinically post-transplantation. Remarkably, loading AAV vectors into pSi microparticles increases gene delivery to otherwise non-permissive endothelial cells.

  11. Long-term sex-biased correction of circulating propionic acidemia disease markers by adeno-associated virus vectors.

    PubMed

    Guenzel, Adam J; Collard, Renata; Kraus, Jan P; Matern, Dietrich; Barry, Michael A

    2015-03-01

    Propionic academia (PA) occurs because of mutations in the PCCA or PCCB genes encoding the two subunits of propionyl-CoA carboxylase, a pivotal enzyme in the breakdown of certain amino acids and odd-chain fatty acids. There is no cure for PA, but dietary protein restriction and liver transplantation can attenuate its symptoms. We show here that a single intravenous injection of adeno-associated virus 2/8 (AAV8) or AAVrh10 expressing PCCA into PA hypomorphic mice decreased systemic propionylcarnitine and methyl citrate for up to 1.5 years. However, long-term phenotypic correction was always better in male mice. AAV-mediated PCCA expression was similar in most tissues in males and females at early time points and differed only in the liver. Over 1.5 years, luciferase and PCCA expression remained elevated in cardiac tissue for both sexes. In contrast, transgene expression in the liver and skeletal muscles of female, but not male, mice waned—suggesting that these tissues were major sinks for systemic phenotypic correction. These data indicate that single systemic intravenous therapy by AAV vectors can mediate long-term phenotype correction for PA. However, tissue-specific loss of expression in females reduces efficacy when compared with males. Whether similar sex-biased AAV effects occur in human gene therapy remains to be determined. PMID:25654275

  12. Transient suppression of hepatocellular replication in the mouse liver following transduction with recombinant adeno-associated virus.

    PubMed

    Dane, A P; Cunningham, S C; Kok, C Y; Logan, G J; Alexander, I E

    2015-11-01

    Recombinant vectors based on adeno-associated virus (AAV) are proving to be powerful tools for genetic manipulation of the liver, for both discovery and therapeutic purposes. The system can be used to deliver transgene cassettes for expression or, alternatively, DNA templates for genome editing via homologous recombination. The replicative state of target cells is known to influence the efficiency of these processes and knowledge of the host-vector interactions involved is required for optimally effective vector deployment. Here we show, for the first time in vivo, that in addition to the known effects of hepatocellular replication on AAV-mediated gene transfer, the vector itself exerts a potent, albeit transient suppressive effect on cell cycle progression that is relieved on a time course that correlates with the known rate of clearance of input single-stranded vector DNA. This finding requires further mechanistic investigation, delineates an excellent model system for such studies and further deepens our insight into the complexity of interactions between AAV vectors and the cell cycle in a clinically promising target tissue.

  13. Regulation of adeno-associated virus gene expression in 293 cells: control of mRNA abundance and translation

    SciTech Connect

    Trempe, J.P.; Carter, B.J.

    1988-01-01

    The authors studied the effects of the adeno-associated virus (AAV) rep gene on the control of gene expression from the AAV p/sub 40/ promoter in 293 cells in the absence of an adenovirus coinfection. AAV vectors containing the chloramphenicol acetyltransferase (cat) gene were used to measure the levels of cat expression and steady-state mRNA from p/sub 40/. When the rep gene was present in cis or in trans, cat expression from p/sub 40/ was decreased 3- to 10-fold, but there was a 2- to 10-fold increase in the level of p/sub 40/ mRNA. Conversely, cat expression increased and the p/sub 40/ mRNA level decreased in the absence of the rep gene. Both wild-type and carboxyl-terminal truncated Rep proteins were capable of eliciting both effects. These data suggest two roles for the pleiotropic AAV rep gene: as a translational inhibitor and as a positive regulator of p/sub 40/ mRNA levels. They also provide additional evidence for a cis-acting negative regulatory region which decreases RNA from the AAV p/sub 5/ promoter in a fashion independent of rep.

  14. Attenuation of vesicular stomatitis virus infection of brain using antiviral drugs and an adeno-associated virus-interferon vector

    PubMed Central

    Wollmann, Guido; Paglino, Justin C.; Maloney, Patrick R; Ahmadi, Sebastian A; van den Pol, Anthony N

    2015-01-01

    Vesicular stomatitis virus (VSV) shows promise as vaccine-vector and oncolytic virus. However, reports of neurotoxicity of VSV remain a concern. We compared 12 antiviral compounds to control infection of VSV-CT9-M51 and VSV-rp30 using murine and human brain cultures, and in vivo mouse models. Inhibition of replication, cytotoxicity and infectivity was strongest with ribavirin and IFN-α and to some extent with mycophenolic acid, chloroquine, and adenine 9-β-D-arabinofuranoside. To generate continuous IFN exposure, we made an adeno-associated virus vector expressing murine IFN; AAV-mIFN-β protected mouse brain cells from VSV, as did a combination of ribavirin and chloroquine. Intracranial AAV-mIFN-β protected the brain against VSV-CT9-M51. In SCID mice bearing human glioblastoma, AAV-mIFN-β moderately enhanced survival. VSV-CT9-M51 doubled median survival when administered after AAV-mIFN-β; some surviving mice showed complete tumor destruction. Together, these data suggest that AAV-IFN or IFN with ribavirin and chloroquine provide an optimal anti-virus combination against VSV in the brain. PMID:25462341

  15. Modification of some biological properties of HeLa cells containing adeno-associated virus DNA integrated into chromosome 17.

    PubMed Central

    Walz, C; Schlehofer, J R

    1992-01-01

    Parvoviruses are known to interfere with cellular transformation and carcinogenesis. Since infecting adeno-associated virus (AAV) frequently integrates its DNA into the cellular genome, we analyzed whether this integration influences the transformed phenotype of the human tumor cell line HeLa. Analysis of three independent HeLa cell clones with integrated AAV DNA (HA-3x, HA-16, and HA-28) revealed the following phenotypic changes of these cells: (i) reduced growth rate, (ii) increased serum requirement, (iii) reduced capacity for colony formation in soft agar, (iv) reduced cloning efficiency on plastic, (v) elevated sensitivity to genotoxic agents (N-methyl-N'-nitro-N-nitrosoguanidine, 7,12-dimethylbenz[a]anthracene, human tumor necrosis factor alpha, UV irradiation [256 nm], and heat [42 degrees C]), and (vi) reduced sensitivity to the cytolytic effect of parvovirus H-1. Reduced growth rate and enhanced sensitivity to gamma irradiation were also observed in vivo when tumors from AAV DNA-containing HeLa cells were transplanted into nude mice. This alteration of the biological properties of HeLa cells was independent of the number of AAV genomes integrated, the physical structure of integrated AAV DNA, and the transcription of AAV genes. Integration of AAV DNA was found to occur preferentially on the long arm of chromosome 17 in the three HeLa cell clones analyzed. These findings demonstrate that genomic integration of AAV DNA can alter the biological properties of human tumor cells. Images PMID:1313913

  16. Treatment of congenital neurotransmitter deficiencies by intracerebral ventricular injection of an adeno-associated virus serotype 9 vector.

    PubMed

    Lee, Ni-Chung; Chien, Yin-Hsiu; Hu, Min-Hsiu; Liu, Wen-Shin; Chen, Pin-Wen; Wang, Wei-Hua; Tzen, Kai-Yuan; Byrne, Barry J; Hwu, Wuh-Liang

    2014-03-01

    Dopamine and serotonin are produced by distinct groups of neurons in the brain, and gene therapies other than direct injection have not been attempted to correct congenital deficiencies in such neurotransmitters. In this study, we performed gene therapy to treat knock-in mice with dopamine and serotonin deficiencies caused by a mutation in the aromatic L-amino acid decarboxylase (AADC) gene (Ddc(KI) mice). Intracerebral ventricular injection of neonatal mice with an adeno-associated virus (AAV) serotype 9 (AAV9) vector expressing the human AADC gene (AAV9-hAADC) resulted in widespread AADC expression in the brain. Without treatment, 4-week-old Ddc(KI) mice exhibited whole-brain homogenate dopamine and serotonin levels of 25% and 15% of normal, respectively. After gene therapy, the levels rose to 100% and 40% of normal, respectively. The gene therapy improved the growth rate and survival of Ddc(KI) mice and normalized their hindlimb clasping and cardiovascular dysfunctions. The behavioral abnormalities of the Ddc(KI) mice were partially corrected, and the treated Ddc(KI) mice were slightly more active than normal mice. No immune reactions resulted from the treatment. Therefore, a congenital neurotransmitter deficiency can be treated safely through inducing widespread expression of the deficient gene in neonatal mice. PMID:24251946

  17. Topoisomerase inhibition accelerates gene expression after adeno-associated virus-mediated gene transfer to the mammalian heart.

    PubMed

    Prasad, Konkal-Matt R; Xu, Yaqin; Yang, Zequan; Toufektsian, Marie-Claire; Berr, Stuart S; French, Brent A

    2007-04-01

    Utility of adeno-associated virus 2 (AAV2) vectors for cardiac gene therapy is limited by the prolonged lag phase before maximal gene expression. Topoisomerase inhibition can induce AAV2-mediated gene expression in vivo, but with variable success in different tissues. In this study, we demonstrate that topoisomerase inhibition can accelerate AAV2-mediated gene expression in the mouse heart. We used an AAV2 vector expressing firefly luciferase and monitored expression kinetics using non-invasive bioluminescence imaging. In the group receiving vector alone, cardiac luciferase activity was evident from week 2 onward and increased progressively to reach a steady plateau by 9 weeks postinjection. In the group receiving vector and camptothecine (CPT), luciferase expression was evident from days 2 to 4 onward and increased rapidly to reach a steady plateau by 3-4 weeks postinjection, nearly three times faster than in the absence of CPT (P<0.05). Southern blot analysis of AAV2 genomes in cardiac tissue showed rapid conversion of the AAV2 genome from its single-stranded to double-stranded form in CPT-treated mice. Non-invasive determinations of luciferase expression correlated well with in vitro luciferase assays. Direct injection of the AAV2 vector and long-term luciferase gene expression had no detectable effects on normal cardiac function as assessed by magnetic resonance imaging.

  18. Adeno-associated virus-mediated rescue of the cognitive defects in a mouse model for Angelman syndrome.

    PubMed

    Daily, Jennifer L; Nash, Kevin; Jinwal, Umesh; Golde, Todd; Rogers, Justin; Peters, Melinda M; Burdine, Rebecca D; Dickey, Chad; Banko, Jessica L; Weeber, Edwin J

    2011-01-01

    Angelman syndrome (AS), a genetic disorder occurring in approximately one in every 15,000 births, is characterized by severe mental retardation, seizures, difficulty speaking and ataxia. The gene responsible for AS was discovered to be UBE3A and encodes for E6-AP, an ubiquitin ligase. A unique feature of this gene is that it undergoes maternal imprinting in a neuron-specific manner. In the majority of AS cases, there is a mutation or deletion in the maternally inherited UBE3A gene, although other cases are the result of uniparental disomy or mismethylation of the maternal gene. While most human disorders characterized by severe mental retardation involve abnormalities in brain structure, no gross anatomical changes are associated with AS. However, we have determined that abnormal calcium/calmodulin-dependent protein kinase II (CaMKII) regulation is seen in the maternal UBE3A deletion AS mouse model and is responsible for the major phenotypes. Specifically, there is an increased αCaMKII phosphorylation at the autophosphorylation sites Thr(286) and Thr(305/306), resulting in an overall decrease in CaMKII activity. CaMKII is not produced until after birth, indicating that the deficits associated with AS are not the result of developmental abnormalities. The present studies are focused on exploring the potential to rescue the learning and memory deficits in the adult AS mouse model through the use of an adeno-associated virus (AAV) vector to increase neuronal UBE3A expression. These studies show that increasing the levels of E6-AP in the brain using an exogenous vector can improve the cognitive deficits associated with AS. Specifically, the associative learning deficit was ameliorated in the treated AS mice compared to the control AS mice, indicating that therapeutic intervention may be possible in older AS patients.

  19. TrkB gene therapy by adeno-associated virus enhances recovery after cervical spinal cord injury.

    PubMed

    Martínez-Gálvez, Gabriel; Zambrano, Juan M; Diaz Soto, Juan C; Zhan, Wen-Zhi; Gransee, Heather M; Sieck, Gary C; Mantilla, Carlos B

    2016-02-01

    Unilateral cervical spinal cord hemisection at C2 (C2SH) interrupts descending bulbospinal inputs to phrenic motoneurons, paralyzing the diaphragm muscle. Recovery after C2SH is enhanced by brain derived neurotrophic factor (BDNF) signaling via the tropomyosin-related kinase subtype B (TrkB) receptor in phrenic motoneurons. The role for gene therapy using adeno-associated virus (AAV)-mediated delivery of TrkB to phrenic motoneurons is not known. The present study determined the therapeutic efficacy of intrapleural delivery of AAV7 encoding for full-length TrkB (AAV-TrkB) to phrenic motoneurons 3 days post-C2SH. Diaphragm EMG was recorded chronically in male rats (n=26) up to 21 days post-C2SH. Absent ipsilateral diaphragm EMG activity was verified 3 days post-C2SH. A greater proportion of animals displayed recovery of ipsilateral diaphragm EMG activity during eupnea by 14 and 21 days post-SH after AAV-TrkB (10/15) compared to AAV-GFP treatment (2/11; p=0.031). Diaphragm EMG amplitude increased over time post-C2SH (p<0.001), and by 14 days post-C2SH, AAV-TrkB treated animals displaying recovery achieved 48% of the pre-injury values compared to 27% in AAV-GFP treated animals. Phrenic motoneuron mRNA expression of glutamatergic AMPA and NMDA receptors revealed a significant, positive correlation (r(2)=0.82), with increased motoneuron NMDA expression evident in animals treated with AAV-TrkB and that displayed recovery after C2SH. Overall, gene therapy using intrapleural delivery of AAV-TrkB to phrenic motoneurons is sufficient to promote recovery of diaphragm activity, adding a novel potential intervention that can be administered after upper cervical spinal cord injury to improve impaired respiratory function. PMID:26607912

  20. Correction of Multiple Striated Muscles in Murine Pompe Disease Through Adeno-associated Virus-Mediated Gene Therapy

    PubMed Central

    Sun, Baodong; Young, Sarah P.; Li, Ping; Di, Chunhui; Brown, Talmage; Salva, Maia Z.; Li, Songtao; Bird, Andrew; Yan, Zhen; Auten, Richard; Hauschka, Stephen D.; Koeberl, Dwight D.

    2009-01-01

    Glycogen storage disease type II (GSD-II; Pompe disease; MIM 232300) stems from the deficiency of acid-α-glucosidase (GAA; acid maltase; EC 3.2.1.20), which primarily involves cardiac and skeletal muscles. We hypothesized that systemic administration of an adeno-associated virus (AAV) vector containing a muscle specific regulatory cassette could drive efficacious transgene expression in GAA-knockout (GAA-KO) mice. AAV2/8 vectors containing the muscle creatine kinase (CK1) or hybrid α-myosin heavy chain enhancer-/muscle creatine kinase enhancer-promoter (MHCK7) cassettes were compared. The CK1 reduced glycogen content by approximately 50% in the heart and quadriceps, in comparison to untreated GAA-KO mice, whereas the MHCK7 containing vector reduced glycogen content even further: >95% in heart and >75% in the diaphragm and quadriceps. Administration of the MHCK7-containing vector significantly increased striated muscle function as assessed by increased Rotarod times at 18 weeks post-injection, whereas the CK1-containing vector did not increase Rotarod performance. Transduction efficiency was evaluated with an AAV2/8 vector in which MHCK7 drives alkaline-phosphatase, revealing that many more myofibers were transduced in the quadriceps than in the gastrocnemius. An AAV2/9 vector containing the MHCK7 cassette corrected GAA deficiency in the skeletal muscles of the distal limb, including the gastrocnemius, extensor digitalis longus, and soleus; furthermore, glycogen accumulations were substantially cleared by hGAA expression therein. Importantly, type IIb myofibers in the extensor digitalis longus were transduced, thereby correcting a myofiber type that is unresponsive to enzyme replacement therapy. In summary, AAV8 and AAV9-pseudotyped vectors containing the MHCK7 regulatory cassette achieved enhanced efficacy in Pompe disease mice. PMID:18560415

  1. Avian Adeno-Associated Virus Vector Efficiently Transduces Neurons in the Embryonic and Post-Embryonic Chicken Brain

    PubMed Central

    Matsui, Ryosuke; Tanabe, Yasuto; Watanabe, Dai

    2012-01-01

    The domestic chicken is an attractive model system to explore the development and function of brain circuits. Electroporation-mediated and retrovirus (including lentivirus) vector-mediated gene transfer techniques have been widely used to introduce genetic material into chicken cells. However, it is still challenging to efficiently transduce chicken postmitotic neurons without harming the cells. To overcome this problem, we searched for a virus vector suitable for gene transfer into chicken neurons, and report here a novel recombinant virus vector derived from avian adeno-associated virus (A3V). A3V vector efficiently transduces neuronal cells, but not non-neuronal cells in the brain. A single A3V injection into a postembryonic chick brain allows gene expression selectively in neuronal cells within 24 hrs. Such rapid and neuron-specific gene transduction raises the possibility that A3V vector can be utilized for studies of memory formation in filial imprinting, which occurs during the early postnatal days. A3V injection into the neural tube near the ear vesicle at early embryonic stage resulted in persistent and robust gene expression until E20.5 in the auditory brainstem. We further devised an A3V-mediated tetracycline (Tet) dependent gene expression system as a tool for studying the auditory circuit, consisting of the nucleus magnocellularis (NM) and nucleus laminaris (NL), that primarily computes interaural time differences (ITDs). Using this Tet system, we can transduce NM neurons without affecting NL neurons. Thus, the A3V technology complements current gene transfer techniques in chicken studies and will contribute to better understanding of the functional organization of neural circuits. PMID:23144948

  2. Effects of adeno-associated virus serotype and tissue-specific expression on circulating biomarkers of propionic acidemia.

    PubMed

    Guenzel, Adam J; Hillestad, Matthew L; Matern, Dietrich; Barry, Michael A

    2014-09-01

    Propionic acidemia (PA) is an autosomal recessive inborn error of metabolism caused by deficiency of propionyl-CoA carboxylase (PCC). This enzyme is composed of six PCCA and six PCCB subunits and mediates a critical step in catabolism of odd chain fatty acids and certain amino acids. Current treatment options for PA are limited to stringent dietary restriction of protein consumption and some patients undergo elective liver transplantation. We previously generated a hypomorphic model of PA, designated Pcca(-/-)(A138T), with 2% of wild-type enzyme activity that mimics many aspects of the human disease. In this study, we used the differing tissue tropisms of adeno-associated virus (AAV) to probe the ability of liver or muscle-directed gene therapy to treat systemic aspects of this disease that affects many cell types. Systemic therapy with muscle-biased AAV1, liver-biased AAV8, and broadly tropic AAVrh10 mediated significant biochemical corrections in circulating propionylcarnitine (C3) and methyl citrate by all vectors. The innate tissue bias of AAV1 and AAV8 gene expression was made more specific by the use of muscle-specific muscle creatine kinase (specifically MCK6) and hepatocyte-specific transthyretin (TTR) promoters, respectively. Under these targeted conditions, both vectors mediated significant long-term correction of circulating metabolites, demonstrating that correction of muscle and likely other tissue types in addition to liver is necessary to fully correct pathology caused by PA. Liver-specific AAV8-TTR-PCCA mediated better correction than AAV1-MCK-PCCA. These data suggest that targeted gene therapy may be a viable alternative to liver transplantation for PA. They also demonstrate the effects of tissue-specific and broad gene therapy on a cell autonomous systemic genetic disease. PMID:25046265

  3. Adeno-associated virus-mediated expression of apolipoprotein (a) kringles suppresses hepatocellular carcinoma growth in mice.

    PubMed

    Lee, Kyuhyun; Yun, Sung-Tae; Kim, Young-Gun; Yoon, Yeup; Jo, Eui-Cheol

    2006-05-01

    Hepatocellular carcinoma (HCC) constitutes more than 90% of all primary liver cancers. HCC is a hypervascular tumor that develops from dedifferentiation of small avascular HCC and is therefore a good target for anti-angiogenic gene therapy. Recent studies have identified apolipoprotein(a) [apo(a)] kringles LK68 and LK8 (LKs) as having a potential antiangiogenic and anti-tumor activity, and the current study evaluates the therapeutic potential of gene therapy with recombinant adeno-associated virus carrying genes encoding LKs (rAAV-LK) in the treatment of hypervascular HCC. We generated rAAV-LK to obtain persistent transgene expression in vivo, which is essential for anti-angiogenic therapy. The rAAV-produced LKs substantially inhibited proliferation and migration of human umbilical vein endothelial cells (HUVECs) in vitro, validating their anti-angiogenic potential. Intramuscular administration of rAAV-LK gave 60% to 84% suppression (P < .05) of tumor growth in mice bearing subcutaneously transplanted HCC derived from Huh-7 and Hep3B cells, respectively. Histological and immunohistochemical analyses of HCC tumor sections showed that a single administration of rAAV-LK gave rise to persistent expression of LKs that inhibited tumor angiogenesis and triggered tumor apoptosis, and, thus, significantly suppressed tumor growth. The administration of rAAV-LK provided a significant survival benefit (P < .05), and 3 of 10 rAAV-LK-treated mice were still alive without visible tumors and without clinical symptoms 188 days after treatment. In conclusion, rAAV-LK is a potential candidate for anti-angiogenic gene therapy in the treatment of HCC.

  4. The adeno-associated virus major regulatory protein Rep78-c-Jun-DNA motif complex modulates AP-1 activity.

    PubMed

    Prasad, C Krishna; Meyers, Craig; Zhan, De-Jin; You, Hong; Chiriva-Internati, Maurizio; Mehta, Jawahar L; Liu, Yong; Hermonat, Paul L

    2003-09-15

    Multiple epidemiologic studies show that adeno-associated virus (AAV) is negatively associated with cervical cancer (CX CA), a cancer which is positively associated with human papillomavirus (HPV) infection. Mechanisms for this correlation may be by Rep78's (AAV's major regulatory protein) ability to bind the HPV-16 p97 promoter DNA and inhibit transcription, to bind and interfere with the functions of the E7 oncoprotein of HPV-16, and to bind a variety of HPV-important cellular transcription factors such as Sp1 and TBP. c-Jun is another important cellular factor intimately linked to the HPV life cycle, as well as keratinocyte differentiation and skin development. Skin is the natural host tissue for both HPV and AAV. In this article it is demonstrated that Rep78 directly interacts with c-Jun, both in vitro and in vivo, as analyzed by Western blot, yeast two-hybrid cDNA, and electrophoretic mobility shift-supershift assay (EMSA supershift). Addition of anti-Rep78 antibodies inhibited the EMSA supershift. Investigating the biological implications of this interaction, Rep78 inhibited the c-Jun-dependent c-jun promoter in transient and stable chloramphenicol acetyl-transferase (CAT) assays. Rep78 also inhibited c-Jun-augmented c-jun promoter as well as the HPV-16 p97 promoter activity (also c-Jun regulated) in in vitro transcription assays in T47D nuclear extracts. Finally, the Rep78-c-Jun interaction mapped to the amino-half of Rep78. The ability of Rep78 to interact with c-Jun and down-regulate AP-1-dependent transcription suggests one more mechanism by which AAV may modulate the HPV life cycle and the carcinogenesis process.

  5. A retrograde adeno-associated virus for collecting ribosome-bound mRNA from anatomically defined projection neurons

    PubMed Central

    Cook-Snyder, Denise R.; Jones, Alexander; Reijmers, Leon G.

    2015-01-01

    The brain contains a large variety of projection neurons with different functional properties. The functional properties of projection neurons arise from their connectivity with other neurons and their molecular composition. We describe a novel tool for obtaining the gene expression profiles of projection neurons that are anatomically defined by the location of their soma and axon terminals. Our tool utilizes adeno-associated virus serotype 9 (AAV9), which we found to retrogradely transduce projection neurons after injection at the site of the axon terminals. We used AAV9 to express Enhanced Green Fluorescent Protein (EGFP)-tagged ribosomal protein L10a (EGFP-L10a), which enables the immunoprecipitation of EGFP-tagged ribosomes and associated mRNA with a method known as Translating Ribosome Affinity Purification (TRAP). To achieve high expression of the EGFP-L10a protein in projection neurons, we placed its expression under control of a 1.3 kb alpha-calcium/calmodulin-dependent protein kinase II (Camk2a) promoter. We injected the AAV9-Camk2a-TRAP virus in either the hippocampus or the bed nucleus of the stria terminalis (BNST) of the mouse brain. In both brain regions the 1.3 kb Camk2a promoter did not confer complete cell-type specificity around the site of injection, as EGFP-L10a expression was observed in Camk2a-expressing neurons as well as in neuronal and non-neuronal cells that did not express Camk2a. In contrast, cell-type specific expression was observed in Camk2a-positive projection neurons that were retrogradely transduced by AAV9-Camk2a-TRAP. Injection of AAV9-Camk2a-TRAP into the BNST enabled the use of TRAP to collect ribosome-bound mRNA from basal amygdala projection neurons that innervate the BNST. AAV9-Camk2a-TRAP provides a single-virus system that can be used for the molecular profiling of anatomically defined projection neurons in mice and other mammalian model organisms. In addition, AAV9-Camk2a-TRAP may enable the discovery of protein synthesis

  6. Mutational analysis of adeno-associated virus Rep protein-mediated inhibition of heterologous and homologous promoters.

    PubMed Central

    Hörer, M; Weger, S; Butz, K; Hoppe-Seyler, F; Geisen, C; Kleinschmidt, J A

    1995-01-01

    The four Rep proteins encoded by adeno-associated virus type 2 (AAV-2) inhibit transcription of their own promoters and of several heterologous promoters. To gain insight into the molecular mechanism of Rep-mediated transcription repression, we studied the effects of the four Rep proteins on the accumulation of mRNA transcribed from the human papillomavirus type 18 upstream regulatory region HPV18 URR, the human immunodeficiency virus long terminal repeat, and the AAV-2 p5 and p19 promoters by transient transfection experiments in HeLa cells. We observed a distinct contribution of the C- and N-terminal sequences in which the four Rep proteins (Rep78, Rep68, Rep52, and Rep40) differ from each other. While Rep78 showed a more than 10-fold inhibition of the four promoters studied, transcriptional repression mediated by Rep68 and Rep52 was reduced and nearly completely abolished for Rep40. The contribution of the C terminus of Rep78 was reduced with respect to the inhibition of the AAV-2 p5 and p19 promoters. Point mutations and deletions showed that a C-terminal zinc binding motif is required for zinc binding in vitro but plays no obvious role in the inhibition of homologous and heterologous promoters. Overall, inhibition of the four different promoters was dependent on the identical Rep protein domains with the exception of the AAV-2 p5 promoter. Expression of the AAV-2 p5 promoter was inhibited by a Rep78 protein with a mutation in the nucleotide binding motif, whereas expression of the AAV-2 p19 promoter, the human immunodeficiency virus long terminal repeat, and the HPV18 URR was not. Mutational analysis of the HPV18 URR showed that several, but not a single, cis regulatory elements are involved in the inhibition process. This finding suggests that transcriptional repression is mediated by protein-protein interactions of the Rep proteins either with multiple transcription factors or with target proteins of sequence-specific transcription factors of the basal

  7. Adeno-Associated Virus Capsid Proteins May Play a Role in Transcription and Second-Strand Synthesis of Recombinant Genomes

    PubMed Central

    Salganik, Maxim; Aydemir, Fikret; Nam, Hyun-Joo; McKenna, Robert; Agbandje-McKenna, Mavis

    2014-01-01

    A group of four interacting amino acids in adeno-associated virus type 8 (AAV8) called the pH quartet has been shown to undergo a structural change when subjected to acidic pH comparable to that seen in endosomal compartments. We examined the phenotypes of mutants with mutations in these amino acids as well as several nearby residues in the background of AAV2. We found that three of the mutations in this region (Y704A, E562A, and E564A) produce normal titers of mature capsids but are extremely defective for transduction (>107-fold). The remaining mutants were also defective for transduction, but the defect in these mutants (E563A, E561A, H526A, and R389A) is not as severe (3- to 22-fold). Two other mutants (Y700A and Y730A) were found to be defective for virus assembly. One of the extremely defective mutants (Y704A) was found to enter the cell, traffic to the nucleus, and uncoat its DNA nearly as efficiently as the wild type. This suggested that some step after nuclear entry and uncoating was defective. To see if the extremely defective mutants were impaired in second-strand synthesis, the Y704A, E562A, and E564A mutants containing self-complementary DNA were compared with virus containing single-stranded genomes. Two of the mutants (Y704A and E564A) showed 1-log and 3-log improvements in infectivity, respectively, while the third mutant (E562A) showed no change. This suggested that inhibition of second-strand synthesis was responsible for some but not most of the defect in these mutants. Comparison of Y704A mRNA synthesis with that of the wild-type capsid showed that accumulation of steady-state mRNA in the Y704A mutant was reduced 450-fold, even though equal genome numbers were uncoated. Our experiments have identified a novel capsid function. They suggest that AAV capsids may play a role in the initiation of both second-strand synthesis and transcription of the input genome. PMID:24198419

  8. Adeno-associated viruses serotype 2-mediated RNA interference efficiently inhibits rabies virus replication in vitro and in vivo.

    PubMed

    Wu, Hong-Xia; Wang, Hua-Lei; Guo, Xiao-Feng; Yang, Yu-Jiao; Ma, Jin-Zhu; Wang, Tie-Cheng; Gao, Yu-Wei; Zhao, Yong-Kun; Yang, Song-Tao; Xia, Xian-Zhu

    2013-10-01

    To investigate the potential of adeno-associated viruses serotype 2 (AAV2)-mediated RNA interference (RNAi) as an antiviral agent against rabies, recombinant AAV2 vectors expressing siRNA targeting the nucleoprotein (N) gene of rabies virus (RABV) (rAAV-N796) were constructed and evaluated. When NA cells pretreated with rAAV-N796 were challenged with RABV, there was a 37.8 ± 3.4% to 55.1 ± 5.3% reduction in RABV virus titer. When cells pre-challenged with RABV were treated with rAAV-N796, there was a 4.4 ± 1.4 to 28.8 ± 3.2% reduction in RABV virus titer. Relative quantification of RABV transcripts using real-time PCR and Western blot revealed that the knockdown of RABV-N gene transcripts was based on the rAAV-N796 inoculation titer. When any NA cells were treated with rAAV-N796 before or after challenged with RABV, significant reduction in virus titer was observed in both administrations. Mice treated intracerebrally with rAAV-N796 exhibited 50 ± 5.3 and 62.5 ± 4.7% protection when challenged intracerebrally or intramuscally, respectively, with lethal RABV. When mice treated intramuscularly with rAAV-N796 were challenged intramuscularly with lethal RABV, they exhibited 37.5 ± 3.7% protection. When mice were intracerebrally and intramuscularly with rAAV-N796 24 hr after exposure to RABV infection, they exhibited 25 ± 4.1% protection The N gene mRNA levels in the brains of challenged mice with three different administrations were reduced (55, 68, 32 and 25%, respectively). These results indicated that AAV2 vector-mediated siRNA delivery in vitro in NA cells inhibited RABV multiplication, inhibited RABV multiplication in vivo in the mice brain and imparted partial protection against lethal rabies. So, it may have a potential to be used as an alternative antiviral approach against rabies.

  9. Comprehensive Small RNA-Seq of Adeno-Associated Virus (AAV)-Infected Human Cells Detects Patterns of Novel, Non-Coding AAV RNAs in the Absence of Cellular miRNA Regulation.

    PubMed

    Stutika, Catrin; Mietzsch, Mario; Gogol-Döring, Andreas; Weger, Stefan; Sohn, Madlen; Chen, Wei; Heilbronn, Regine

    2016-01-01

    Most DNA viruses express small regulatory RNAs, which interfere with viral or cellular gene expression. For adeno-associated virus (AAV), a small ssDNA virus with a complex biphasic life cycle miRNAs or other small regulatory RNAs have not yet been described. This is the first comprehensive Illumina-based RNA-Seq analysis of small RNAs expressed by AAV alone or upon co-infection with helper adenovirus or HSV. Several hotspots of AAV-specific small RNAs were detected mostly close to or within the AAV-ITR and apparently transcribed from the newly identified anti-p5 promoter. An additional small RNA hotspot was located downstream of the p40 promoter, from where transcription of non-coding RNAs associated with the inhibition of adenovirus replication were recently described. Parallel detection of known Ad and HSV miRNAs indirectly validated the newly identified small AAV RNA species. The predominant small RNAs were analyzed on Northern blots and by human argonaute protein-mediated co-immunoprecipitation. None of the small AAV RNAs showed characteristics of bona fide miRNAs, but characteristics of alternative RNA processing indicative of differentially regulated AAV promoter-associated small RNAs. Furthermore, the AAV-induced regulation of cellular miRNA levels was analyzed at different time points post infection. In contrast to other virus groups AAV infection had virtually no effect on the expression of cellular miRNA, which underscores the long-established concept that wild-type AAV infection is apathogenic. PMID:27611072

  10. Comprehensive Small RNA-Seq of Adeno-Associated Virus (AAV)-Infected Human Cells Detects Patterns of Novel, Non-Coding AAV RNAs in the Absence of Cellular miRNA Regulation

    PubMed Central

    Stutika, Catrin; Mietzsch, Mario; Gogol-Döring, Andreas; Weger, Stefan; Sohn, Madlen; Chen, Wei; Heilbronn, Regine

    2016-01-01

    Most DNA viruses express small regulatory RNAs, which interfere with viral or cellular gene expression. For adeno-associated virus (AAV), a small ssDNA virus with a complex biphasic life cycle miRNAs or other small regulatory RNAs have not yet been described. This is the first comprehensive Illumina-based RNA-Seq analysis of small RNAs expressed by AAV alone or upon co-infection with helper adenovirus or HSV. Several hotspots of AAV-specific small RNAs were detected mostly close to or within the AAV-ITR and apparently transcribed from the newly identified anti-p5 promoter. An additional small RNA hotspot was located downstream of the p40 promoter, from where transcription of non-coding RNAs associated with the inhibition of adenovirus replication were recently described. Parallel detection of known Ad and HSV miRNAs indirectly validated the newly identified small AAV RNA species. The predominant small RNAs were analyzed on Northern blots and by human argonaute protein-mediated co-immunoprecipitation. None of the small AAV RNAs showed characteristics of bona fide miRNAs, but characteristics of alternative RNA processing indicative of differentially regulated AAV promoter-associated small RNAs. Furthermore, the AAV-induced regulation of cellular miRNA levels was analyzed at different time points post infection. In contrast to other virus groups AAV infection had virtually no effect on the expression of cellular miRNA, which underscores the long-established concept that wild-type AAV infection is apathogenic. PMID:27611072

  11. Adeno-associated virus-like particles as new carriers for B-cell vaccines: testing immunogenicity and safety in BALB/c mice.

    PubMed

    Manzano-Szalai, Krisztina; Thell, Kathrin; Willensdorfer, Anna; Weghofer, Margit; Pfanzagl, Beatrix; Singer, Josef; Ritter, Mirko; Stremnitzer, Caroline; Flaschberger, Ingo; Michaelis, Uwe; Jensen-Jarolim, Erika

    2014-11-01

    Adeno-associated viruses (AAVs) are established vectors for gene therapy of different human diseases. AAVs are assembled of 60 capsomers, which can be genetically modified, allowing high-density display of short peptide sequences at their surface. The aim of our study was to evaluate the immunogenicity and safety of an adeno-associated virus-like particle (AAVLP)-displayed B-cell peptide epitope taking ovalbumin (OVA) as a model antigen or allergen from egg, respectively. An OVA-derived B-cell epitope was expressed as fusion protein with the AAV-2 capsid protein of VP3 (AAVLP-OVA) and for control, with the nonrelated peptide TP18 (AAVLP-TP18). Cellular internalization studies revealed an impaired uptake of AAVLP-OVA by mouse BMDC, macrophages, and human HeLa cells. Nevertheless, BALB/c mice immunized subcutaneously with AAVLP-OVA formed similarly high titers of OVA-specific IgG1 compared to mice immunized with the native OVA. The extent of the immune response was independent whether aluminum hydroxide or water in oil emulsion was used as adjuvant. Furthermore, in mice immunized with native OVA, high OVA-specific IgE levels were observed, which permitted OVA-specific mast-cell degranulation in a β-hexosaminidase release assay, whereas immunizations with AAVLP-OVA rendered background IgE levels only. Accordingly, OVA-immunized mice, but not AAVLP-OVA immunized mice, displayed an anaphylactic reaction with a significant drop of body temperature upon intravenous OVA challenge. From this mouse model, we conclude that AAVLPs that display B-cell epitope peptides on their surface are suitable vaccine candidates, especially in the field of allergy. PMID:25247267

  12. High density recombinant AAV particles are competent vectors for in vivo transduction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recombinant adeno-associated viral (rAAV) vectors have recently achieved clinical successes in human gene therapy. However, the commonly observed heavier particles found in AAV preparations have traditionally been ignored due to its low in vitro infectivity. In this study, we systemically compared t...

  13. Development of hybrid viral vectors for gene therapy.

    PubMed

    Huang, Shuohao; Kamihira, Masamichi

    2013-01-01

    Adenoviral, retroviral/lentiviral, adeno-associated viral, and herpesviral vectors are the major viral vectors used in gene therapy. Compared with non-viral methods, viruses are highly-evolved, natural delivery agents for genetic materials. Despite their remarkable transduction efficiency, both clinical trials and laboratory experiments have suggested that viral vectors have inherent shortcomings for gene therapy, including limited loading capacity, immunogenicity, genotoxicity, and failure to support long-term adequate transgenic expression. One of the key issues in viral gene therapy is the state of the delivered genetic material in transduced cells. To address genotoxicity and improve the therapeutic transgene expression profile, construction of hybrid vectors have recently been developed. By adding new abilities or replacing certain undesirable elements, novel hybrid viral vectors are expected to outperform their conventional counterparts with improved safety and enhanced therapeutic efficacy. This review provides a comprehensive summary of current achievements in hybrid viral vector development and their impact on the field of gene therapy.

  14. Systemic errors in quantitative polymerase chain reaction titration of self-complementary adeno-associated viral vectors and improved alternative methods.

    PubMed

    Fagone, Paolo; Wright, J Fraser; Nathwani, Amit C; Nienhuis, Arthur W; Davidoff, Andrew M; Gray, John T

    2012-02-01

    Self-complementary AAV (scAAV) vector genomes contain a covalently closed hairpin derived from a mutated inverted terminal repeat that connects the two monomer single-stranded genomes into a head-to-head or tail-to-tail dimer. We found that during quantitative PCR (qPCR) this structure inhibits the amplification of proximal amplicons and causes the systemic underreporting of copy number by as much as 10-fold. We show that cleavage of scAAV vector genomes with restriction endonuclease to liberate amplicons from the covalently closed terminal hairpin restores quantitative amplification, and we implement this procedure in a simple, modified qPCR titration method for scAAV vectors. In addition, we developed and present an AAV genome titration procedure based on gel electrophoresis that requires minimal sample processing and has low interassay variability, and as such is well suited for the rigorous quality control demands of clinical vector production facilities.

  15. Adeno-associated virus (AAV) Rep proteins mediate complex formation between AAV DNA and its integration site in human DNA.

    PubMed Central

    Weitzman, M D; Kyöstiö, S R; Kotin, R M; Owens, R A

    1994-01-01

    AAV is unique among eukaryotic viruses in the ability of its DNA to integrate preferentially into a specific region of the human genome. Understanding AAV integration may aid in developing gene therapy systems with predictable integration sites. Using a gel mobility-shift assay, we have identified a DNA sequence within the AAV integration locus on human chromosome 19 which is specifically bound by the AAV Rep78 and Rep68 proteins. This Rep recognition sequence is a GCTC repeating motif very similar to sequences within the inverted terminal repeats of the AAV genome which are also bound by Rep78 and Rep68. Cloned oligonucleotides containing the recognition sequence can direct specific binding by Rep proteins. Binding assays with mutant Rep proteins show that the amino-terminal portion of Rep78 and Rep68 can direct binding to either the AAV terminal repeat hairpin DNA or chromosome 19. This human genomic DNA can be complexed with AAV DNA by Rep proteins as demonstrated by a dual-label (32P/biotin) assay. These results suggest a role for Rep in targeting viral integration. Images PMID:8016070

  16. A chimeric human APOBEC3A protein with a three amino acid insertion confers differential HIV-1 and adeno-associated virus restriction.

    PubMed

    Wang, Yaqiong; Wang, Zekun; Pramanik, Ankita; Santiago, Mario L; Qiu, Jianming; Stephens, Edward B

    2016-11-01

    Old World monkey (OWM) and hominid APOBEC3Aproteins exhibit differential restriction activities against lentiviruses and DNA viruses. Human APOBEC3A(hA3A)has weak restriction activity against HIV-1Δvifbut is efficiently restricted by an artificially generated chimeric from mandrills (mndA3A/G). We show that a chimeric hA3Acontaining the "WVS" insertion (hA3A[(27)WVS(29)]) conferred potent HIV-1restriction activity. Analysis of each amino acid of the "WVS" motif show that the length and not necessarily the charge or hydrophobicity of the amino acids accounted for restriction activity. Our results suggest that hA3A[(27)WVS(29)]restricts HIV-1at the level of reverse transcription in target cells. Finally, our results suggest that insertion of "WVS" into hA3Amodestly reduces restriction of adeno-associated virus 2(AAV-2)while insertion of the AC Loop1region of the mndA3A/G into hA3A abolished AAV-2 restriction, strengthening the role of this molecular interface in the functional evolution of primate A3A. PMID:27584592

  17. Ex vivo intracoronary gene transfer of adeno-associated virus 2 leads to superior transduction over serotypes 8 and 9 in rat heart transplants.

    PubMed

    Raissadati, Alireza; Jokinen, Janne J; Syrjälä, Simo O; Keränen, Mikko A I; Krebs, Rainer; Tuuminen, Raimo; Arnaudova, Ralica; Rouvinen, Eeva; Anisimov, Andrey; Soronen, Jarkko; Pajusola, Katri; Alitalo, Kari; Nykänen, Antti I; Lemström, Karl

    2013-11-01

    Heart transplant gene therapy requires vectors with long-lasting gene expression, high cardiotropism, and minimal pathological effects. Here, we examined transduction properties of ex vivo intracoronary delivery of adeno-associated virus (AAV) serotype 2, 8, and 9 in rat syngenic and allogenic heart transplants. Adult Dark Agouti (DA) rat hearts were intracoronarily perfused ex vivo with AAV2, AAV8, or AAV9 encoding firefly luciferase and transplanted heterotopically into the abdomen of syngenic DA or allogenic Wistar-Furth (WF) recipients. Serial in vivo bioluminescent imaging of syngraft and allograft recipients was performed for 6 months and 4 weeks, respectively. Grafts were removed for PCR-, RT-PCR, and luminometer analysis. In vivo bioluminescent imaging of recipients showed that AAV9 induced a prominent and stable luciferase activity in the abdomen, when compared with AAV2 and AAV8. However, ex vivo analyses revealed that intracoronary perfusion with AAV2 resulted in the highest heart transplant transduction levels in syngrafts and allografts. Ex vivo intracoronary delivery of AAV2 resulted in efficient transgene expression in heart transplants, whereas intracoronary AAV9 escapes into adjacent tissues. In terms of cardiac transduction, these results suggest AAV2 as a potential vector for gene therapy in preclinical heart transplants studies, and highlight the importance of delivery route in gene transfer studies.

  18. Effect of recombinant adeno-associated virus mediated transforming growth factor-beta1 on corneal allograft survival after high-risk penetrating keratoplasty.

    PubMed

    Zhou, Lianhong; Zhu, Xiangxiang; Tan, Jinquan; Wang, Jiong; Xing, Yiqiao

    2013-06-01

    Corneal transplantation is one of the most common and successful transplant surgeries performed around the world. However, the high-risk corneal transplantation remains a high level of corneal graft failure. Gene transfer of immunomodulatory molecules is considered as one potential strategy in preventing allograft rejection. It is worthy evaluating the effects of the immunemodulating agent on corneal allograft rejection. The purpose of this paper is to investigate the effects and mechanisms of recombinant adeno-associated virus mediated transforming growth factor-beta1 (rAAV-TGF-beta1) on corneal allograft survival using a high-risk rat model after penetrating keratoplasty (PKP). The mean survival time (MST) of corneal grafts was observed and immuno-histochemical staining of TGF-beta1 and Ox-62 was performed in the study. The MST showed significant prolongation in the rAAV-TGF-beta1 group compared to the allograft group. The rejection index (RI) at day 10 revealed was significantly greater in the allograft group than that of the other two groups. Besides the increase of TGF-beta1, the expression of Ox-62 decreasing in rAAV-TGF-beta1 transplanted recipients was detected after transplantation. In short, treatment with rAAV-TGF-beta1 prolongs corneal allograft survival and inhibits the Ox-62 expression in grafts after high-risk PKP.

  19. HoxD10 gene delivery using adenovirus/adeno-associate hybrid virus inhibits the proliferation and tumorigenicity of GH4 pituitary lactotrope tumor cells

    SciTech Connect

    Cho, Mi Ae; Yashar, Parham; Kim, Suk Kyoung; Noh, Taewoong; Gillam, Mary P.; Lee, Eun Jig Jameson, J. Larry

    2008-07-04

    Prolactinoma is one of the most common types of pituitary adenoma. It has been reported that a variety of growth factors and cytokines regulating cell growth and angiogenesis play an important role in the growth of prolactinoma. HoxD10 has been shown to impair endothelial cell migration, block angiogenesis, and maintain a differentiated phenotype of cells. We investigated whether HoxD10 gene delivery could inhibit the growth of prolactinoma. Rat GH4 lactotrope tumor cells were infected with adenovirus/adeno-associated virus (Ad/AAV) hybrid vectors carrying the mouse HoxD10 gene (Hyb-HoxD10) or the {beta}-galactosidase gene (Hyb-Gal). Hyb-HoxD10 expression inhibited GH4 cell proliferation in vitro. The expression of FGF-2 and cyclin D2 was inhibited in GH4 cells infected with Hyb-HoxD10. GH4 cells transduced with Hyb-HoxD10 did not form tumors in nude mice. These results indicate that the delivery of HoxD10 could potentially inhibit the growth of PRL-secreting tumors. This approach may be a useful tool for targeted therapy of prolactinoma and other neoplasms.

  20. Transduction of the choroid plexus and ependyma in neonatal mouse brain by vesicular stomatitis virus glycoprotein-pseudotyped lentivirus and adeno-associated virus type 5 vectors.

    PubMed

    Watson, Deborah J; Passini, Marco A; Wolfe, John H

    2005-01-01

    Evaluation of gene transfer into the developing mouse brain has shown that when adeno-associated virus serotype 1 (AAV1) or AAV2 vectors are injected into the cerebral lateral ventricles at birth, widespread parenchymal transduction occurs. Lentiviral vectors have not been tested by this route. In this study, we found that injection of lentiviral vectors pseudotyped with vesicular stomatitis virus glycoprotein (VSV-G) resulted in targeted transduction of the ependymal cells lining the ventricular system and the choroid plexus along the entire rostrocaudal axis of the brain, whereas a Mokola pseudotype transduced only a few cells after injection into the neonatal ventricle. In contrast, when lentiviral vectors pseudotyped with either VSV-G or Mokola glycoprotein are injected into the adult mouse brain, they transduce similar patterns of cells. An Ebola-Zaire-pseudotyped vector did not transduce any neonatal CNS cells, as was also the case for adult parenchymal injections. Long-term gene expression (12 months) occurred with a constitutively active mammalian promoter and a self-inactivating long terminal repeat (LTR), whereas the cytomegalovirus promoter in a vector with an intact LTR was expressed only in short-term experiments. We found that an AAV5 vector also targeted the ependymal and choroid plexus cells throughout the ventricular system. This vector exhibited limited penetration from the ventricle to other structures, which was significantly different from the previously reported patterns of transduction after intraventricular injection of AAV1 and AAV2 vectors. PMID:15703488

  1. Efficient and sustained gene expression in primary T lymphocytes and primary and cultured tumor cells mediated by adeno-associated virus plasmid DNA complexed to cationic liposomes.

    PubMed

    Philip, R; Brunette, E; Kilinski, L; Murugesh, D; McNally, M A; Ucar, K; Rosenblatt, J; Okarma, T B; Lebkowski, J S

    1994-04-01

    We have used cationic liposomes to facilitate adeno-associated virus (AAV) plasmid transfections of primary and cultured cell types. AAV plasmid DNA complexed with liposomes showed levels of expression several fold higher than those of complexes with standard plasmids. In addition, long-term expression (> 30 days) of the gene, unlike the transient expression demonstrated by typical liposome-mediated transfection with standard plasmids, was observed. Southern analysis of chromosomal DNA further substantiated the hypothesis that the long-term expression was due to the presence of the transgene in the AAV plasmid-transfected group and not in the standard plasmid-transfected group. AAV plasmid-liposome complexes induced levels of transgene expression comparable to those obtained by recombinant AAV transduction. Primary breast, ovarian, and lung tumor cells were transfectable with the AAV plasmid DNA-liposome complexes. Transfected primary and cultured tumor cells were able to express transgene product even after lethal irradiation. High-level gene expression was also observed in freshly isolated CD3+, CD4+, and CD8+ T cells from normal human peripheral blood. Transfection efficiency ranged from 10 to 50% as assessed by intracellular interleukin-2 levels in interleukin-2-transfected cells. The ability to express transgenes in primary tumor and lymphoid cells may be applied toward tumor vaccine studies and protocols which may eventually permit highly specific modulation of the cellular immune response in cancer and AIDS.

  2. Efficient and sustained gene expression in primary T lymphocytes and primary and cultured tumor cells mediated by adeno-associated virus plasmid DNA complexed to cationic liposomes.

    PubMed Central

    Philip, R; Brunette, E; Kilinski, L; Murugesh, D; McNally, M A; Ucar, K; Rosenblatt, J; Okarma, T B; Lebkowski, J S

    1994-01-01

    We have used cationic liposomes to facilitate adeno-associated virus (AAV) plasmid transfections of primary and cultured cell types. AAV plasmid DNA complexed with liposomes showed levels of expression several fold higher than those of complexes with standard plasmids. In addition, long-term expression (> 30 days) of the gene, unlike the transient expression demonstrated by typical liposome-mediated transfection with standard plasmids, was observed. Southern analysis of chromosomal DNA further substantiated the hypothesis that the long-term expression was due to the presence of the transgene in the AAV plasmid-transfected group and not in the standard plasmid-transfected group. AAV plasmid-liposome complexes induced levels of transgene expression comparable to those obtained by recombinant AAV transduction. Primary breast, ovarian, and lung tumor cells were transfectable with the AAV plasmid DNA-liposome complexes. Transfected primary and cultured tumor cells were able to express transgene product even after lethal irradiation. High-level gene expression was also observed in freshly isolated CD3+, CD4+, and CD8+ T cells from normal human peripheral blood. Transfection efficiency ranged from 10 to 50% as assessed by intracellular interleukin-2 levels in interleukin-2-transfected cells. The ability to express transgenes in primary tumor and lymphoid cells may be applied toward tumor vaccine studies and protocols which may eventually permit highly specific modulation of the cellular immune response in cancer and AIDS. Images PMID:8139545

  3. Human α7 Integrin Gene (ITGA7) Delivered by Adeno-Associated Virus Extends Survival of Severely Affected Dystrophin/Utrophin-Deficient Mice

    PubMed Central

    Heller, Kristin N.; Montgomery, Chrystal L.; Shontz, Kimberly M.; Clark, K. Reed; Mendell, Jerry R.; Rodino-Klapac, Louise R.

    2015-01-01

    Duchenne muscular dystrophy (DMD) is caused by mutations in the DMD gene. It is the most common, severe childhood form of muscular dystrophy. We investigated an alternative to dystrophin replacement by overexpressing ITGA7 using adeno-associated virus (AAV) delivery. ITGA7 is a laminin receptor in skeletal muscle that, like the dystrophin–glycoprotein complex, links the extracellular matrix to the internal actin cytoskeleton. ITGA7 is expressed in DMD patients and overexpression does not elicit an immune response to the transgene. We delivered rAAVrh.74.MCK.ITGA7 systemically at 5–7 days of age to the mdx/utrn−/− mouse deficient for dystrophin and utrophin, a severe mouse model of DMD. At 8 weeks postinjection, widespread expression of ITGA7 was observed at the sarcolemma of multiple muscle groups following gene transfer. The increased expression of ITGA7 significantly extended longevity and reduced common features of the mdx/utrn−/− mouse, including kyphosis. Overexpression of α7 expression protected against loss of force following contraction-induced damage and increased specific force in the diaphragm and EDL muscles 8 weeks after gene transfer. Taken together, these results further support the use of α7 integrin as a potential therapy for DMD. PMID:26076707

  4. Adeno-associated virus and lentivirus vectors mediate efficient and sustained transduction of cultured mouse and human dorsal root ganglia sensory neurons.

    PubMed

    Fleming, J; Ginn, S L; Weinberger, R P; Trahair, T N; Smythe, J A; Alexander, I E

    2001-01-01

    Peripheral nervous system (PNS) sensory neurons are directly involved in the pathophysiology of numerous inherited and acquired neurological conditions. Therefore, efficient and stable gene delivery to these postmitotic cells has significant therapeutic potential. Among contemporary vector systems capable of neuronal transduction, only those based on herpes simplex virus have been extensively evaluated in PNS neurons. We therefore investigated the transduction performance of recombinant adeno-associated virus type 2 (AAV) and VSV-G-pseudotyped lentivirus vectors derived from human immunodeficiency virus (HIV-1) in newborn mouse and fetal human dorsal root ganglia (DRG) sensory neurons. In dissociated mouse DRG cultures both vectors achieved efficient transduction of sensory neurons at low multiplicities of infection (MOIs) and sustained transgene expression within a 28-day culture period. Interestingly, the lentivirus vector selectively transduced neurons in murine cultures, in contrast to human cultures, in which Schwann and fibroblast-like cells were also transduced. Recombinant AAV transduced all three cell types in both mouse and human cultures. After direct microinjection of murine DRG explants, maximal transduction efficiencies of 20 and 200 transducing units per neuronal transductant were achieved with AAV and lentivirus vectors, respectively. Most importantly, both vectors achieved efficient and sustained transduction of human sensory neurons in dissociated cultures, thereby directly demonstrating the exciting potential of these vectors for gene therapy applications in the PNS.

  5. Adeno-associated virus Rep78/Rep68 promotes localized melting of the rep binding element in the absence of adenosine triphosphate.

    PubMed

    Lou, Hua Jane; Brister, J Rodney; Li, Jianwei Jeffery; Chen, Weijun; Muzyczka, Nicholas; Tan, Weihong

    2004-03-01

    We have applied fluorescence anisotropy and molecular beacon fluorescence methods to study the interactions between the Adeno-associated virus Rep78/Rep68 protein and the 23-bp Rep binding element (RBE). Rep78/Rep68 stably interacted with both the single- and double-stranded conformations of the RBE, but the interaction mechanisms of single- and double-stranded DNA appeared to be fundamentally different. The stoichiometry of Rep78 association with both the separate top and bottom strands of the RBE was 1:1, and the relative dissociation constant (K(D)) values of these associations were calculated to be 2.3x10(-8) and 3.2x10(-8) M, respectively. In contrast, the stoichiometry of Rep78 association with the double-stranded RBE was 2:1, and the dissociation constant was determined to be 4.2x10(-15) M(2). Moreover, Rep78/Rep68 interaction with the 23-bp duplex RBE appeared to cause localized melting of the double-stranded DNA substrate in the absence of adenosine triphosphate (ATP). This melting activity showed slower kinetics than binding and may contribute to the initiation of ATP-dependent Rep78 helicase activity.

  6. The trans-inhibitory Rep78 protein of adeno-associated virus binds to TAR region DNA of the human immunodeficiency virus type 1 long terminal repeat.

    PubMed

    Batchu, R B; Hermonat, P L

    1995-07-01

    The large rep gene products, Rep78 and Rep68, of adeno-associated virus (AAV) are pleiotropic effector proteins which are required for AAV DNA replication and the trans-regulation of AAV gene expression. Apart from these essential functions prerequisite for the life cycle of AAV, these rep products are able to inhibit the replication and gene expression of human immunodeficiency virus type 1 (HIV-1) and a number of DNA viruses. Here, it is demonstrated that Rep78, as a chimeric with the maltose binding protein, directly binds the full-length HIV-1 long terminal repeat (LTR), and to a subset of these sequences containing the trans-activation response (TAR) sequence as DNA. These interactions, an effector protein physically binding a target promoter, suggest a direct mechanism of action for Rep78 inhibition. Furthermore, competitive binding studies between the TAR region and the full-length HIV-LTR, strongly suggested that another site(s) within the LTR was also bound by Rep78. Finally, as Rep78 binding is also believed to be affected by secondary structure within the DNA, it was found that Rep78 preferentially binds with HIV-LTR sequences with promoted secondary structure generated by heat denaturation and rapid cooling.

  7. Construction and gene expression analysis of a single-stranded DNA minivector based on an inverted terminal repeat of adeno-associated virus.

    PubMed

    Ping, Han; Liu, Xiaomei; Zhu, Dongqin; Li, Taiming; Zhang, Chun

    2015-04-01

    The plasmid vectors currently used for nonviral gene transfer have the disadvantage of carrying a bacterial backbone and an antibiotic resistance gene, which may cause side effects. The adeno-associated virus (AAV) genome is a linear single-stranded DNA (ssDNA) molecule with palindromic inverted terminal repeat (ITR) sequences forming double-stranded DNA (dsDNA) hairpin (HP) structures at each end. Based on the AAV genome, we constructed an AAV-ITR ssDNA minivector that consists of a GFP expression cassette flanked by both ITR sequences of 125 nucleotides. The minivectors were produced by digestion of the parental plasmids followed by denaturation. The self-complementary inverted T-shaped HP structure of the minivector was automatically formed. The HEK 293T cells were transfected with the AAV-ITR ssDNA minivector, plasmid, and dsDNA expression cassette. The results showed that AAV-ITR ssDNA minivector had relatively low gene expression efficiency in vitro. However, we found that the GFP expression efficiency of the D sequence-deleted AAV-ITR ssDNA minivector was significantly increased and was similar to those obtained with the plasmid and dsDNA expression cassette. Our data suggest that the AAV-ITR ssDNA minivector may be a new type of gene expression vector for gene therapy besides the virus and plasmid.

  8. Delivery of the 7-dehydrocholesterol reductase gene to the central nervous system using adeno-associated virus vector in a mouse model of Smith-Lemli-Opitz Syndrome

    PubMed Central

    Pasta, Saloni; Akhile, Omoye; Tabron, Dorothy; Ting, Flora; Shackleton, Cedric; Watson, Gordon

    2015-01-01

    Smith Lemli Opitz syndrome (SLOS) is an inherited malformation and mental retardation metabolic disorder with no cure. Mutations in the last enzyme of the cholesterol biosynthetic pathway, 7-dehydrocholesterol reductase (DHCR7), lead to cholesterol insufficiency and accumulation of its dehyrdocholesterol precursors, and contribute to its pathogenesis. The central nervous system (CNS) constitutes a major pathophysiological component of this disorder and remains unamenable to dietary cholesterol therapy due to the impenetrability of the blood brain barrier (BBB). The goal of this study was to restore sterol homeostasis in the CNS. To bypass the BBB, gene therapy using an adeno-associated virus (AAV-8) vector carrying a functional copy of the DHCR7 gene was administered by intrathecal (IT) injection directly into the cerebrospinal fluid of newborn mice. Two months post-treatment, vector DNA and DHCR7 expression was observed in the brain and a corresponding improvement of sterol levels seen in the brain and spinal cord. Interestingly, sterol levels in the peripheral nervous system also showed a similar improvement. This study shows that IT gene therapy can have a positive biochemical effect on sterol homeostasis in the central and peripheral nervous systems in a SLOS animal model. A single dose delivered three days after birth had a sustained effect into adulthood, eight weeks post-treatment. These observations pave the way for further studies to understand the effect of biochemical improvement of sterol levels on neuronal function, to provide a greater understanding of neuronal cholesterol homeostasis, and to develop potential therapies. PMID:26347274

  9. In vitro and ex vivo delivery of short hairpin RNAs for control of hepatitis C viral transcript expression.

    PubMed

    Lonze, Bonnie E; Holzer, Horatio T; Knabel, Matthew K; Locke, Jayme E; DiCamillo, Gregory A; Karhadkar, Sunil S; Montgomery, Robert A; Sun, Zhaoli; Warren, Daniel S; Cameron, Andrew M

    2012-04-01

    Recurrent hepatitis C virus (HCV) infection is the most common cause of graft loss and patient death after transplantation for HCV cirrhosis. Transplant surgeons have access to uninfected explanted livers before transplantation and an opportunity to deliver RNA interference-based protective gene therapy to uninfected grafts. Conserved HCV sequences were used to design short interfering RNAs and test their ability to knockdown HCV transcript expression in an in vitro model, both by transfection and when delivered via an adeno-associated viral vector. In a rodent model of liver transplantation, portal venous perfusion of explanted grafts with an adeno-associated viral vector before transplantation produced detectable short hairpin RNA transcript expression after transplantation. The ability to deliver anti-HCV short hairpin RNAs to uninfected livers before transplantation and subsequent exposure to HCV offers hope for the possibility of preventing the currently inevitable subsequent infection of liver grafts with HCV.

  10. Adeno-Associated Virus Serotype 1 (AAV1)- and AAV5-Antibody Complex Structures Reveal Evolutionary Commonalities in Parvovirus Antigenic Reactivity

    PubMed Central

    Tseng, Yu-Shan; Gurda, Brittney L.; Chipman, Paul; McKenna, Robert; Afione, Sandra; Chiorini, John A.; Muzyczka, Nicholas; Olson, Norman H.; Baker, Timothy S.; Kleinschmidt, Jürgen

    2014-01-01

    ABSTRACT The clinical utility of the adeno-associated virus (AAV) gene delivery system has been validated by the regulatory approval of an AAV serotype 1 (AAV1) vector for the treatment of lipoprotein lipase deficiency. However, neutralization from preexisting antibodies is detrimental to AAV transduction efficiency. Hence, mapping of AAV antigenic sites and engineering of neutralization-escaping vectors are important for improving clinical efficacy. We report the structures of four AAV-monoclonal antibody fragment complexes, AAV1-ADK1a, AAV1-ADK1b, AAV5-ADK5a, and AAV5-ADK5b, determined by cryo-electron microscopy and image reconstruction to a resolution of ∼11 to 12 Å. Pseudoatomic modeling mapped the ADK1a epitope to the protrusions surrounding the icosahedral 3-fold axis and the ADK1b and ADK5a epitopes, which overlap, to the wall between depressions at the 2- and 5-fold axes (2/5-fold wall), and the ADK5b epitope spans both the 5-fold axis-facing wall of the 3-fold protrusion and portions of the 2/5-fold wall of the capsid. Combined with the six antigenic sites previously elucidated for different AAV serotypes through structural approaches, including AAV1 and AAV5, this study identified two common AAV epitopes: one on the 3-fold protrusions and one on the 2/5-fold wall. These epitopes coincide with regions with the highest sequence and structure diversity between AAV serotypes and correspond to regions determining receptor recognition and transduction phenotypes. Significantly, these locations overlap the two dominant epitopes reported for autonomous parvoviruses. Thus, rather than the amino acid sequence alone, the antigenic sites of parvoviruses appear to be dictated by structural features evolved to enable specific infectious functions. IMPORTANCE The adeno-associated viruses (AAVs) are promising vectors for in vivo therapeutic gene delivery, with more than 20 years of intense research now realized in a number of successful human clinical trials that

  11. More than chemotaxis: a new anti-tumor DC vaccine modified by rAAV2-SLC.

    PubMed

    Liang, Chun-min; Ye, Sheng-long; Zhong, Cui-ping; Zheng, Ning; Bian, Wei; Sun, Rui-xia; Chen, Jun; Li, Ri-lun; Zhou, Shuang; Liu, Yin-kun

    2007-07-01

    Secondary lymphoid tissue chemokine (SLC) is strongly expressed in secondary lymphoid organs. Its ability to facilitate chemotaxis of both dendritic cells (DC) and T cells makes it a promising candidate for cancer therapy. In this study, we modified a BMDC vaccine by incorporating the SLC mature peptide gene. The efficacy of this vaccine was evaluated using a mouse hepatocellular carcinoma (HCC) model, with rAAV2 as the gene delivery vector. The rAAV2 encoding SLC (rAAV2-SLC) transfected immature BMDCs at high efficiency and the anti-tumor effects of SLC gene modified BMDCs (rAAV2-SLC/BMDC) were evaluated. In addition, rAAV2-SLC/BMDC vaccine injected directly into tumors attracted more CD4(+) and CD8(+) T lymphocytes into tumors and showed stronger anti-tumor effects than footpad delivery. Moreover, we found that the phenotypic expression of MHC II, the secretion of IL-12 and IFN-gamma, and T cell stimulation were increased in vitro following treatment with rAAV2-SLC/BMDC vaccine and these responses were inhibited by PTX. In vivo, PTX also inhibited the anti-tumor effects of the vaccine. The results suggest that the expression of SLC by rAAV2-SLC/BMDC plays more than a chemotactic role in anti-tumor responses, thus these studies further demonstrate that SLC has potential to be valuable in cancer therapy.

  12. Host Anti-antibody Responses Following Adeno-associated Virus-mediated Delivery of Antibodies Against HIV and SIV in Rhesus Monkeys.

    PubMed

    Martinez-Navio, José M; Fuchs, Sebastian P; Pedreño-López, Sònia; Rakasz, Eva G; Gao, Guangping; Desrosiers, Ronald C

    2016-02-01

    Long-term delivery of antibodies against the human immunodeficiency virus (HIV) using adeno-associated virus (AAV) vectors is a promising approach for the prevention or treatment of HIV infection. However, host antibody responses to the delivered antibody are a serious concern that could significantly limit the applicability of this approach. Here, we describe the dynamics and characteristics of the anti-antibody responses in monkeys that received either rhesus anti-simian immunodeficiency virus (SIV) antibodies (4L6 or 5L7) in prevention trials or a combination of rhesusized human anti-HIV antibodies (1NC9/8ANC195/3BNC117 or 10-1074/10E8/3BNC117) in therapy trials, all employing AAV1 delivery of IgG1. Eight out of eight monkeys that received the anti-HIV antibodies made persisting antibody responses to all three antibodies in the mix. Six out of six uninfected monkeys that received the anti-SIV antibody 4L6 and three out of six of those receiving anti-SIV antibody 5L7 also generated anti-antibodies. Both heavy and light chains were targeted, predominantly or exclusively to variable regions, and reactivity to complementarity-determining region (CDR)-H3 peptide could be demonstrated. There was a highly significant correlation of the magnitude of anti-antibody responses with the degree of sequence divergence of the delivered antibody from germline. Our results suggest the need for effective strategies to counteract the problem of antibody responses to AAV-delivered antibodies.

  13. Adeno-Associated Virus Mediated Delivery of An Engineered Protein that Combines the Complement Inhibitory Properties of CD46, CD55 and CD59

    PubMed Central

    Leaderer, Derek; Cashman, Siobhan M.; Kumar-Singh, Rajendra

    2015-01-01

    Background A variety of disorders are associated with the activation of complement. CD46, CD55 and CD59 are the major membrane associated regulators of complement on human cells. Previously, we have found that independent expression of CD55, CD46 or CD59 through gene transfer protects murine tissues against human complement mediated attack. Herein we investigated the potential of combining the complement regulatory properties of CD46, CD55 and CD59 into single gene products expressed from an adeno-associated virus (AAV) vector in a soluble non-membrane anchored form. Methods Minigenes encoding the complement regulatory domains from CD46, CD55 and CD59 (SACT) or CD55 and CD59 (DTAC) were cloned into an AAV vector. The specific regulatory activity of each component of SACT and DTAC was measured in vitro. The recombinant AAV vectors were injected into the peritoneum of mice and the efficacy of the transgene products for being able to protect murine liver vasculature against human complement, specifically the membrane attack complex (MAC) was measured. Results SACT and DTAC exhibited properties similar to CD46, CD55 and CD59 or CD55 and CD59 respectively in vitro. AAV mediated delivery of SACT or DTAC protected murine liver vasculature from human MAC deposition by 63.2% and 56.7% respectively. Conclusions When delivered to mice in vivo via an AAV vector, SACT and DTAC are capable of limiting human complement mediated damage. SACT and DTAC merit further study as potential therapies for complement mediated disorders when delivered via a gene therapy approach. PMID:25917932

  14. Adeno-associated virus serotype 8 gene therapy leads to significant lowering of plasma cholesterol levels in humanized mouse models of homozygous and heterozygous familial hypercholesterolemia.

    PubMed

    Kassim, Sadik H; Li, Hui; Bell, Peter; Somanathan, Suryanarayan; Lagor, William; Jacobs, Frank; Billheimer, Jeffrey; Wilson, James M; Rader, Daniel J

    2013-01-01

    Familial hypercholesterolemia (FH) is a life-threatening genetic disease caused by mutations in the gene encoding low-density lipoprotein receptor (LDLR). As a bridge to clinical trials, we generated a "humanized" mouse model lacking LDLR and apolipoprotein B (ApoB) mRNA editing catalytic polypeptide-1 (APOBEC-1) expression and expressing a human ApoB100 transgene in order to permit more authentic simulation of in vivo interactions between the clinical transgene product, human LDLR (hLDLR), and its endogenous ligand, human ApoB100. On a chow diet, the humanized LDLR-deficient mice have substantial hypercholesterolemia and a lipoprotein phenotype more closely resembling human homozygous FH (hoFH) than in previous mouse models of FH. On injection of an adeno-associated virus serotype 8 (AAV8) vector encoding the human LDLR cDNA, significant correction of hypercholesterolemia was realized at doses as low as 1.5 × 10(11) genome copies (GC)/kg. Given that some patients with heterozygous FH (heFH) cannot be adequately treated with current therapy, we then extended our studies to similarly "humanized" mice that were heterozygous for LDLR deficiency, and that have a lipoprotein phenotype resembling heterozygous FH. Injection of AAV8-hLDLR brought about significant reduction in total and LDL cholesterol at doses as low as 5 × 10(11) GC/kg. Collectively, these data demonstrate the safety and efficacy of the liver-specific AAV8-hLDLR vector in the treatment of humanized mice modeling both hoFH and heFH. PMID:22985273

  15. Adeno-Associated Virus Serotype 8 Gene Therapy Leads to Significant Lowering of Plasma Cholesterol Levels in Humanized Mouse Models of Homozygous and Heterozygous Familial Hypercholesterolemia

    PubMed Central

    Kassim, Sadik H.; Li, Hui; Bell, Peter; Somanathan, Suryanarayan; Lagor, William; Jacobs, Frank; Billheimer, Jeffrey; Rader, Daniel J.

    2013-01-01

    Abstract Familial hypercholesterolemia (FH) is a life-threatening genetic disease caused by mutations in the gene encoding low-density lipoprotein receptor (LDLR). As a bridge to clinical trials, we generated a “humanized” mouse model lacking LDLR and apolipoprotein B (ApoB) mRNA editing catalytic polypeptide-1 (APOBEC-1) expression and expressing a human ApoB100 transgene in order to permit more authentic simulation of in vivo interactions between the clinical transgene product, human LDLR (hLDLR), and its endogenous ligand, human ApoB100. On a chow diet, the humanized LDLR-deficient mice have substantial hypercholesterolemia and a lipoprotein phenotype more closely resembling human homozygous FH (hoFH) than in previous mouse models of FH. On injection of an adeno-associated virus serotype 8 (AAV8) vector encoding the human LDLR cDNA, significant correction of hypercholesterolemia was realized at doses as low as 1.5×1011 genome copies (GC)/kg. Given that some patients with heterozygous FH (heFH) cannot be adequately treated with current therapy, we then extended our studies to similarly “humanized” mice that were heterozygous for LDLR deficiency, and that have a lipoprotein phenotype resembling heterozygous FH. Injection of AAV8-hLDLR brought about significant reduction in total and LDL cholesterol at doses as low as 5×1011 GC/kg. Collectively, these data demonstrate the safety and efficacy of the liver-specific AAV8-hLDLR vector in the treatment of humanized mice modeling both hoFH and heFH. PMID:22985273

  16. Recombinant adeno-associated virus serotype 9 with p65 ribozyme protects H9c2 cells from oxidative stress through inhibiting NF-κB signaling pathway

    PubMed Central

    SUN, Zhan; MA, Yi-Tong; CHEN, Bang-Dang; LIU, Fen

    2014-01-01

    Background Oxidative stress is a major mechanism underlying the pathogenesis of cardiovascular disease. It can trigger inflammatory cascades which are primarily mediated via nuclear factor-κB (NF-κB). The NF-κB transcription factor family includes several subunits (p50, p52, p65, c-Rel, and Rel B) that respond to myocardial ischemia. It has been proved that persistent myocyte NF-κB p65 activation in heart failure exacerbates cardiac remodeling. Mechods A recombinant adeno-associated virus serotype 9 carrying enhanced green fluorescent protein and anti-NF-κB p65 ribozyme (AAV9-R65-CMV-eGFP) was constructed. The cells were assessed by MTT assay, Annexin V–propidium iodide dual staining to study apoptosis. The expression of P65 and P50 were assessed by Western blot to investigate the underlying molecular mechanisms. Results After stimulation with H2O2 for 6 h, H9c2 cells viability decreased significantly, a large fraction of cells underwent apoptosis. We observed a rescue of H9c2 cells from H2O2-induced apoptosis in pretreatment with AAV9-R65-CMV-eGFP. Moreover, AAV9-R65-CMV-eGFP decreased H2O2-induced P65 expression. Conclusions AAV9-R65-CMV-eGFP protects H9c2 cells from oxidative stress induced apoptosis through down-regulation of P65 expression. These observations indicate that AAV9-R65-CMV-eGFP has the potential to exert cardioprotective effects against oxidative stress, which might be of great importance to clinical efficacy for cardiovascular disease. PMID:25593580

  17. A human parvovirus, adeno-associated virus, as a eucaryotic vector: Transient expression and encapsidation of the procaryotic gene for chloramphenicol acetyltransferase

    SciTech Connect

    Tratschin, J.D.; West, M.H.P.; Sandbank, T.; Carter, B.J.

    1984-10-01

    The authors have used the defective human parvovirus adeno-associated virus (AAV) as a novel eurocaryotic vector (parvector) for the expression of a foreign gene in human cells. The recombinant, pAV2, contains the AAV genome in a pBR322-derived bacterial plasmid. When pAV2 is transfected into human cells together with helper adenovirus particles, the AAV genome is rescued from the recombinant plasmid and replicated to produce infectious AAV particles at high efficiency. To create a vector, we inserted a procaryotic sequence coding for chloramphenicol acetyltransferase (CAT) into derivatives of pAV2 following either of the AAV promoters p/sub 40/ (pAVHiCAT) and p/sub 19/ (pAVBcCAT). When transfected into human 293 cells or HeLa cells, pAVHiCAT expressed CAT activity in the absence of adenovirus. In the presence of adenovirus, this vector produced increased amounts of CAT activity and the recombinant AAV-CAT genome was replicated. In 293 cells, pAVBcCAT expressed a similar amount of CAT activity in the absence or presence of adenovirus and the recombinant AAV-CAT genome was not replicated. In HeLa cells, pAVBcCAT expressed low levels of CAT activity, but this level was elevated by coinfection with adenovirus particles or by cotransfection with a plasmid which expressed the adenovirus early region 1A (E1A) product. The E1A product is a transcriptional activator and is expressed in 293 cells. Thus, expression from two AAV promoters is differentially regulated: expression from p/sub 19/ is increased by E1A, whereas p/sub 40/ yields high levels of constitutive expression in the absence of E1A. Both AAV vectors were packaged into AAV particles by complementation with wild-type AAV and yielded CAT activity when subsequently infected into cells in the presence of adenovirus.

  18. Evolutionary Relationships among Parvoviruses: Virus-Host Coevolution among Autonomous Primate Parvoviruses and Links between Adeno-Associated and Avian Parvoviruses

    PubMed Central

    Lukashov, Vladimir V.; Goudsmit, Jaap

    2001-01-01

    The current classification of parvoviruses is based on virus host range and helper virus dependence, while little data on evolutionary relationships among viruses are available. We identified and analyzed 472 sequences of parvoviruses, among which there were (virtually) full-length genomes of all 41 viruses currently recognized as individual species within the family Parvoviridae. Our phylogenetic analysis of full-length genomes as well as open reading frames distinguished three evolutionary groups of parvoviruses from vertebrates: (i) the human helper-dependent adeno-associated virus (AAV) serotypes 1 to 6 and the autonomous avian parvoviruses; (ii) the bovine, chipmunk, and autonomous primate parvoviruses, including human viruses B19 and V9; and (iii) the parvoviruses from rodents (except for chipmunks), carnivores, and pigs. Each of these three evolutionary groups could be further subdivided, reflecting both virus-host coevolution and multiple cross-species transmissions in the evolutionary history of parvoviruses. No parvoviruses from invertebrates clustered with vertebrate parvoviruses. Our analysis provided evidence for negative selection among parvoviruses, the independent evolution of their genes, and recombination among parvoviruses from rodents. The topology of the phylogenetic tree of autonomous human and simian parvoviruses matched exactly the topology of the primate family tree, as based on the analysis of primate mitochondrial DNA. Viruses belonging to the AAV group were not evolutionarily linked to other primate parvoviruses but were linked to the parvoviruses of birds. The two lineages of human parvoviruses may have resulted from independent ancient zoonotic infections. Our results provide an argument for reclassification of Parvovirinae based on evolutionary relationships among viruses. PMID:11222696

  19. An siRNA Screen Identifies the U2 snRNP Spliceosome as a Host Restriction Factor for Recombinant Adeno-associated Viruses

    PubMed Central

    Schreiber, Claire A.; Sakuma, Toshie; Izumiya, Yoshihiro; Holditch, Sara J.; Hickey, Raymond D.; Bressin, Robert K.; Basu, Upamanyu; Koide, Kazunori; Asokan, Aravind; Ikeda, Yasuhiro

    2015-01-01

    Adeno-associated viruses (AAV) have evolved to exploit the dynamic reorganization of host cell machinery during co-infection by adenoviruses and other helper viruses. In the absence of helper viruses, host factors such as the proteasome and DNA damage response machinery have been shown to effectively inhibit AAV transduction by restricting processes ranging from nuclear entry to second-strand DNA synthesis. To identify host factors that might affect other key steps in AAV infection, we screened an siRNA library that revealed several candidate genes including the PHD finger-like domain protein 5A (PHF5A), a U2 snRNP-associated protein. Disruption of PHF5A expression selectively enhanced transgene expression from AAV by increasing transcript levels and appears to influence a step after second-strand synthesis in a serotype and cell type-independent manner. Genetic disruption of U2 snRNP and associated proteins, such as SF3B1 and U2AF1, also increased expression from AAV vector, suggesting the critical role of U2 snRNP spliceosome complex in this host-mediated restriction. Notably, adenoviral co-infection and U2 snRNP inhibition appeared to target a common pathway in increasing expression from AAV vectors. Moreover, pharmacological inhibition of U2 snRNP by meayamycin B, a potent SF3B1 inhibitor, substantially enhanced AAV vector transduction of clinically relevant cell types. Further analysis suggested that U2 snRNP proteins suppress AAV vector transgene expression through direct recognition of intact AAV capsids. In summary, we identify U2 snRNP and associated splicing factors, which are known to be affected during adenoviral infection, as novel host restriction factors that effectively limit AAV transgene expression. Concurrently, we postulate that pharmacological/genetic manipulation of components of the spliceosomal machinery might enable more effective gene transfer modalities with recombinant AAV vectors. PMID:26244496

  20. Viral vectors: from virology to transgene expression

    PubMed Central

    Bouard, D; Alazard-Dany, N; Cosset, F-L

    2009-01-01

    In the late 1970s, it was predicted that gene therapy would be applied to humans within a decade. However, despite some success, gene therapy has still not become a routine practise in medicine. In this review, we will examine the problems, both experimental and clinical, associated with the use of viral material for transgenic insertion. We shall also discuss the development of viral vectors involving the most important vector types derived from retroviruses, adenoviruses, herpes simplex viruses and adeno-associated viruses. This article is part of a themed section on Vector Design and Drug Delivery. For a list of all articles in this section see the end of this paper, or visit: http://www3.interscience.wiley.com/journal/121548564/issueyear?year=2009 PMID:18776913

  1. Construction and biological characterization of an interleukin-12 fusion protein (Flexi-12): delivery to acute myeloid leukemic blasts using adeno-associated virus.

    PubMed

    Anderson, R; Macdonald, I; Corbett, T; Hacking, G; Lowdell, M W; Prentice, H G

    1997-06-10

    Interleukin-12 (IL-12) is a cytokine that exhibits pleiotropic effects on lymphocytes and natural killer cells and has been shown to have promise for the immunotherapy of cancer. The combination of the immune costimulatory molecule B7.1 and IL-12 has been shown to be synergistic for T cell activation. By transfecting tumor cells with both IL-12 and B7.1 cDNAs, it may be possible to use these modified targets as vaccines. A major obstacle in designing a vector to deliver these genes results from the structure of IL-12. Functional IL-12 is a heterodimer composed of two distinct subunits that are encoded by separate genes on different chromosomes. Production of functional IL-12 requires the coordinated expression of both genes. This presents several problems in vectors, particularly those in which additional genes, either a co-stimulatory gene or a selectable marker, are inserted. Therefore, we have constructed a single cDNA that encodes a single-chain protein, called Flexi-12, which retains all of the biological characteristics of recombinant IL-12 (rIL-12). The monomeric polypeptide Flexi-12 is able to induce the proliferation of phytohemagglutinin (PHA) blasts, induce PHA blasts to secrete interferon-gamma (IFN-gamma) and additionally, by preincubation, enhance the killing of K562 targets by PBLs. These phenomena are in a dose-dependent manner comparable to that seen with rIL-12. We have also shown that tyrosine phosphorylation of the STAT 4 transcription factor, which has been shown to be unique to the IL-12 signaling pathway, occurs with Flexi-12 at levels similar to those seen with rIL-12. We have packaged Flexi-12 into a recombinant adeno-associated virus (AAV) and used this vector to infect acute myeloid leukemic (AML) blasts. Infected AML blasts produced between 2 and 6 ng of IL-12/10(6) cells per ml per 48 hr. These studies also confirm that AAV is an efficient delivery vehicle for cytokines to leukemic cells. Direct analysis of these modified cells acting

  2. Durable immunity to oncogenic human papillomaviruses elicited by adjuvanted recombinant Adeno-associated virus-like particle immunogen displaying L2 17-36 epitopes.

    PubMed

    Jagu, Subhashini; Karanam, Balusubramanyam; Wang, Joshua W; Zayed, Hatem; Weghofer, Margit; Brendle, Sarah A; Balogh, Karla K; Tossi, Kerstin Pino; Roden, Richard B S; Christensen, Neil D

    2015-10-13

    Vaccination with the minor capsid protein L2, notably the 17-36 neutralizing epitope, induces broadly protective antibodies, although the neutralizing titers attained in serum are substantially lower than for the licensed L1 VLP vaccines. Here we examine the impact of other less reactogenic adjuvants upon the induction of durable neutralizing serum antibody responses and protective immunity after vaccination with HPV16 and HPV31 L2 amino acids 17-36 inserted at positions 587 and 453 of VP3, respectively, for surface display on Adeno-Associated Virus 2-like particles [AAVLP (HPV16/31L2)]. Mice were vaccinated three times subcutaneously with AAVLP (HPV16/31L2) at two week intervals at several doses either alone or formulated with alum, alum and MPL, RIBI adjuvant or Cervarix. The use of adjuvant with AAVLP (HPV16/31L2) was necessary in mice for the induction of L2-specific neutralizing antibody and protection against vaginal challenge with HPV16. While use of alum was sufficient to elicit durable protection (>3 months after the final immunization), antibody titers were increased by addition of MPL and RIBI adjuvants. To determine the breadth of immunity, rabbits were immunized three times with AAVLP (HPV16/31L2) either alone, formulated with alum±MPL, or RIBI adjuvants, and after serum collection, the animals were concurrently challenged with HPV16/31/35/39/45/58/59 quasivirions or cottontail rabbit papillomavirus (CRPV) at 6 or 12 months post-immunization. Strong protection against all HPV types was observed at both 6 and 12 months post-immunization, including robust protection in rabbits receiving the vaccine without adjuvant. In summary, vaccination with AAVLP presenting HPV L2 17-36 epitopes at two sites on their surface induced cross-neutralizing serum antibody, immunity against HPV16 in the genital tract, and long-term protection against skin challenge with the 7 most common oncogenic HPV types when using a clinically relevant adjuvant.

  3. Durable immunity to oncogenic human papillomaviruses elicited by adjuvanted recombinant Adeno-associated virus-like particle immunogen displaying L2 17-36 epitopes.

    PubMed

    Jagu, Subhashini; Karanam, Balusubramanyam; Wang, Joshua W; Zayed, Hatem; Weghofer, Margit; Brendle, Sarah A; Balogh, Karla K; Tossi, Kerstin Pino; Roden, Richard B S; Christensen, Neil D

    2015-10-13

    Vaccination with the minor capsid protein L2, notably the 17-36 neutralizing epitope, induces broadly protective antibodies, although the neutralizing titers attained in serum are substantially lower than for the licensed L1 VLP vaccines. Here we examine the impact of other less reactogenic adjuvants upon the induction of durable neutralizing serum antibody responses and protective immunity after vaccination with HPV16 and HPV31 L2 amino acids 17-36 inserted at positions 587 and 453 of VP3, respectively, for surface display on Adeno-Associated Virus 2-like particles [AAVLP (HPV16/31L2)]. Mice were vaccinated three times subcutaneously with AAVLP (HPV16/31L2) at two week intervals at several doses either alone or formulated with alum, alum and MPL, RIBI adjuvant or Cervarix. The use of adjuvant with AAVLP (HPV16/31L2) was necessary in mice for the induction of L2-specific neutralizing antibody and protection against vaginal challenge with HPV16. While use of alum was sufficient to elicit durable protection (>3 months after the final immunization), antibody titers were increased by addition of MPL and RIBI adjuvants. To determine the breadth of immunity, rabbits were immunized three times with AAVLP (HPV16/31L2) either alone, formulated with alum±MPL, or RIBI adjuvants, and after serum collection, the animals were concurrently challenged with HPV16/31/35/39/45/58/59 quasivirions or cottontail rabbit papillomavirus (CRPV) at 6 or 12 months post-immunization. Strong protection against all HPV types was observed at both 6 and 12 months post-immunization, including robust protection in rabbits receiving the vaccine without adjuvant. In summary, vaccination with AAVLP presenting HPV L2 17-36 epitopes at two sites on their surface induced cross-neutralizing serum antibody, immunity against HPV16 in the genital tract, and long-term protection against skin challenge with the 7 most common oncogenic HPV types when using a clinically relevant adjuvant. PMID:26382603

  4. A Comprehensive RNA Sequencing Analysis of the Adeno-Associated Virus (AAV) Type 2 Transcriptome Reveals Novel AAV Transcripts, Splice Variants, and Derived Proteins

    PubMed Central

    Stutika, Catrin; Gogol-Döring, Andreas; Botschen, Laura; Mietzsch, Mario; Weger, Stefan; Feldkamp, Mirjam; Chen, Wei

    2015-01-01

    ABSTRACT Adeno-associated virus (AAV) is recognized for its bipartite life cycle with productive replication dependent on coinfection with adenovirus (Ad) and AAV latency being established in the absence of a helper virus. The shift from latent to Ad-dependent AAV replication is mostly regulated at the transcriptional level. The current AAV transcription map displays highly expressed transcripts as found upon coinfection with Ad. So far, AAV transcripts have only been characterized on the plus strand of the AAV single-stranded DNA genome. The AAV minus strand is assumed not to be transcribed. Here, we apply Illumina-based RNA sequencing (RNA-Seq) to characterize the entire AAV2 transcriptome in the absence or presence of Ad. We find known and identify novel AAV transcripts, including additional splice variants, the most abundant of which leads to expression of a novel 18-kDa Rep/VP fusion protein. Furthermore, we identify for the first time transcription on the AAV minus strand with clustered reads upstream of the p5 promoter, confirmed by 5ˈ rapid amplification of cDNA ends and RNase protection assays. The p5 promoter displays considerable activity in both directions, a finding indicative of divergent transcription. Upon infection with AAV alone, low-level transcription of both AAV strands is detectable and is strongly stimulated upon coinfection with Ad. IMPORTANCE Next-generation sequencing (NGS) allows unbiased genome-wide analyses of transcription profiles, used here for an in depth analysis of the AAV2 transcriptome during latency and productive infection. RNA-Seq analysis led to the discovery of novel AAV transcripts and splice variants, including a derived, novel 18-kDa Rep/VP fusion protein. Unexpectedly, transcription from the AAV minus strand was discovered, indicative of divergent transcription from the p5 promoter. This finding opens the door for novel concepts of the switch between AAV latency and productive replication. In the absence of a suitable

  5. Adeno-associated virus 2-mediated high efficiency gene transfer into immature and mature subsets of hematopoietic progenitor cells in human umbilical cord blood

    PubMed Central

    1994-01-01

    Recombinant adeno-associated virus 2 (AAV) virions were constructed containing a gene for resistance to neomycin (neoR), under the control of either the herpesvirus thymidine kinase (TK) gene promoter (vTK- Neo), or the human parvovirus B19 p6 promoter (vB19-Neo), as well as those containing an upstream erythroid cell-specific enhancer (HS-2) from the locus control region of the human beta-globin gene cluster (vHS2-TK-Neo; vHS2-B19-Neo). These recombinant virions were used to infect either low density or highly enriched populations of CD34+ cells isolated from human umbilical cord blood. In clonogenic assays initiated with cells infected with the different recombinant AAV-Neo virions, equivalent high frequency transduction of the neoR gene into slow-cycling multipotential, erythroid, and granulocyte/macrophage (GM) progenitor cells, including those with high proliferative potential, was obtained without prestimulation with growth factors, indicating that these immature and mature hematopoietic progenitor cells were susceptible to infection by the recombinant AAV virions. Successful transduction did not require and was not enhanced by prestimulation of these cell populations with cytokines. The functional activity of the transduced neo gene was evident by the development of resistance to the drug G418, a neomycin analogue. Individual high and low proliferative colony-forming unit (CFU)-GM, burst-forming unit-erythroid, and CFU- granulocyte erythroid macrophage megakaryocyte colonies from mock- infected, or the recombinant virus-infected cultures were subjected to polymerase chain reaction analysis using a neo-specific synthetic oligonucleotide primer pair. A 276-bp DNA fragment that hybridized with a neo-specific DNA probe on Southern blots was only detected in those colonies cloned from the recombinant virus-infected cells, indicating stable integration of the transduced neo gene. These studies suggest that parvovirus-based vectors may prove to be a useful

  6. Durable immunity to oncogenic human papillomaviruses elicited by adjuvanted recombinant Adeno-associated virus-like particle immunogen displaying L2 17–36 epitopes

    PubMed Central

    Jagu, Subhashini; Karanam, Balusubramanyam; Wang, Joshua W.; Zayed, Hatem; Weghofer, Margit; Brendle, Sarah A.; Balogh, Karla K.; Tossi, Kerstin Pino; Roden, Richard B.S.; Christensen, Neil D.

    2016-01-01

    Vaccination with the minor capsid protein L2, notably the 17–36 neutralizing epitope, induces broadly protective antibodies, although the neutralizing titers attained in serum are substantially lower than for the licensed L1 VLP vaccines. Here we examine the impact of other less reactogenic adjuvants upon the induction of durable neutralizing serum antibody responses and protective immunity after vaccination with HPV16 and HPV31 L2 amino acids 17–36 inserted at positions 587 and 453 of VP3, respectively, for surface display on Adeno-Associated Virus 2-like particles [AAVLP (HPV16/31L2)]. Mice were vaccinated three times subcutaneously with AAVLP (HPV16/31L2) at two week intervals at several doses either alone or formulated with alum, alum and MPL, RIBI adjuvant or Cervarix. The use of adjuvant with AAVLP (HPV16/31L2) was necessary in mice for the induction of L2-specific neutralizing antibody and protection against vaginal challenge with HPV16. While use of alum was sufficient to elicit durable protection (>3 months after the final immunization), antibody titers were increased by addition of MPL and RIBI adjuvants. To determine the breadth of immunity, rabbits were immunized three times with AAVLP (HPV16/31L2) either alone, formulated with alum ± MPL, or RIBI adjuvants, and after serum collection, the animals were concurrently challenged with HPV16/31/35/39/45/58/59 quasivirions or cottontail rabbit papillomavirus (CRPV) at 6 or 12 months post-immunization. Strong protection against all HPV types was observed at both 6 and 12 months post-immunization, including robust protection in rabbits receiving the vaccine without adjuvant. In summary, vaccination with AAVLP presenting HPV L2 17–36 epitopes at two sites on their surface induced cross-neutralizing serum antibody, immunity against HPV16 in the genital tract, and long-term protection against skin challenge with the 7 most common oncogenic HPV types when using a clinically relevant adjuvant. PMID:26382603

  7. Viral vectors and delivery strategies for CNS gene therapy

    PubMed Central

    Gray, Steven J; Woodard, Kenton T; Samulski, R Jude

    2015-01-01

    This review aims to provide a broad overview of the targets, challenges and potential for gene therapy in the CNS, citing specific examples. There are a broad range of therapeutic targets, with very different requirements for a suitable viral vector. By utilizing different vector tropisms, novel routes of administration and engineered promoter control, transgenes can be targeted to specific therapeutic applications. Viral vectors have proven efficacious in preclinical models for several disease applications, spurring several clinical trials. While the field has pushed the limits of existing adeno-associated virus-based vectors, a next generation of vectors based on rational engineering of viral capsids should expand the application of gene therapy to be more effective in specific therapeutic applications. PMID:22833965

  8. Methods of treating Parkinson's disease using viral vectors

    DOEpatents

    Bankiewicz, Krys; Cunningham, Janet

    2012-11-13

    Methods of delivering viral vectors, particularly recombinant AAV virions, to the central nervous system (CNS) are provided for the treatment of CNS disorders, particularly those disorders which involve the neurotransmitter dopamine. The methods entail providing rAAV virions that comprise a transgene encoding aromatic amino acid decarboxylase (AADC) and administering the virions to the brain of a mammal using a non-manual pump.

  9. Phase I/II trial of adeno-associated virus-mediated alpha-glucosidase gene therapy to the diaphragm for chronic respiratory failure in Pompe disease: initial safety and ventilatory outcomes.

    PubMed

    Smith, Barbara K; Collins, Shelley W; Conlon, Thomas J; Mah, Cathryn S; Lawson, Lee Ann; Martin, Anatole D; Fuller, David D; Cleaver, Brian D; Clément, Nathalie; Phillips, Dawn; Islam, Saleem; Dobjia, Nicole; Byrne, Barry J

    2013-06-01

    Pompe disease is an inherited neuromuscular disease caused by deficiency of lysosomal acid alpha-glucosidase (GAA) leading to glycogen accumulation in muscle and motoneurons. Cardiopulmonary failure in infancy leads to early mortality, and GAA enzyme replacement therapy (ERT) results in improved survival, reduction of cardiac hypertrophy, and developmental gains. However, many children have progressive ventilatory insufficiency and need additional support. Preclinical work shows that gene transfer restores phrenic neural activity and corrects ventilatory deficits. Here we present 180-day safety and ventilatory outcomes for five ventilator-dependent children in a phase I/II clinical trial of AAV-mediated GAA gene therapy (rAAV1-hGAA) following intradiaphragmatic delivery. We assessed whether rAAV1-hGAA results in acceptable safety outcomes and detectable functional changes, using general safety measures, immunological studies, and pulmonary functional testing. All subjects required chronic, full-time mechanical ventilation because of respiratory failure that was unresponsive to both ERT and preoperative muscle-conditioning exercises. After receiving a dose of either 1×10(12) vg (n=3) or 5×10(12) vg (n=2) of rAAV1-hGAA, the subjects' unassisted tidal volume was significantly larger (median [interquartile range] 28.8% increase [15.2-35.2], p<0.05). Further, most patients tolerated appreciably longer periods of unassisted breathing (425% increase [103-851], p=0.08). Gene transfer did not improve maximal inspiratory pressure. Expected levels of circulating antibodies and no T-cell-mediated immune responses to the vector (capsids) were observed. One subject demonstrated a slight increase in anti-GAA antibody that was not considered clinically significant. These results indicate that rAAV1-hGAA was safe and may lead to modest improvements in volitional ventilatory performance measures. Evaluation of the next five patients will determine whether earlier intervention can

  10. Portal Vein Delivery of Viral Vectors for Gene Therapy for Hemophilia

    PubMed Central

    Sherman, Alexandra; Schlachterman, Alexander; Cooper, Mario; Merricks, Elizabeth P.; Raymer, Robin A.; Bellinger, Dwight A.; Herzog, Roland W.; Nichols, Timothy C.

    2014-01-01

    The liver is a very complex organ with a large variety of functions, making it an attractive organ for gene replacement therapy. Many genetic disorders can be corrected by delivering gene products directly into the liver using viral vectors. In this chapter, we will describe gene delivery via portal vein administration in mice and dogs to correct the blood coagulation disorder hemophilia B. Although there are multiple delivery routes for both viral and non-viral vectors in animals, portal vein administration delivers vectors directly and efficiently into the liver. Complete correction of murine hemophilia B and multi-year near-correction of canine hemophilia B have been achieved following portal vein delivery of adeno-associated viral (AAV) vectors expressing factor IX from hepatocyte-specific promoters. Peripheral vein injection can lead to increased vector dissemination to off-target organ such as the lung and spleen. Below, we will describe portal vein injection delivery route via laparotomy. PMID:24557919

  11. PAX6 MiniPromoters drive restricted expression from rAAV in the adult mouse retina.

    PubMed

    Hickmott, Jack W; Chen, Chih-Yu; Arenillas, David J; Korecki, Andrea J; Lam, Siu Ling; Molday, Laurie L; Bonaguro, Russell J; Zhou, Michelle; Chou, Alice Y; Mathelier, Anthony; Boye, Sanford L; Hauswirth, William W; Molday, Robert S; Wasserman, Wyeth W; Simpson, Elizabeth M

    2016-01-01

    Current gene therapies predominantly use small, strong, and readily available ubiquitous promoters. However, as the field matures, the availability of small, cell-specific promoters would be greatly beneficial. Here we design seven small promoters from the human paired box 6 (PAX6) gene and test them in the adult mouse retina using recombinant adeno-associated virus. We chose the retina due to previous successes in gene therapy for blindness, and the PAX6 gene since it is: well studied; known to be driven by discrete regulatory regions; expressed in therapeutically interesting retinal cell types; and mutated in the vision-loss disorder aniridia, which is in need of improved therapy. At the PAX6 locus, 31 regulatory regions were bioinformatically predicted, and nine regulatory regions were constructed into seven MiniPromoters. Driving Emerald GFP, these MiniPromoters were packaged into recombinant adeno-associated virus, and injected intravitreally into postnatal day 14 mice. Four MiniPromoters drove consistent retinal expression in the adult mouse, driving expression in combinations of cell-types that endogenously express Pax6: ganglion, amacrine, horizontal, and Müller glia. Two PAX6-MiniPromoters drive expression in three of the four cell types that express PAX6 in the adult mouse retina. Combined, they capture all four cell types, making them potential tools for research, and PAX6-gene therapy for aniridia. PMID:27556059

  12. PAX6 MiniPromoters drive restricted expression from rAAV in the adult mouse retina

    PubMed Central

    Hickmott, Jack W; Chen, Chih-yu; Arenillas, David J; Korecki, Andrea J; Lam, Siu Ling; Molday, Laurie L; Bonaguro, Russell J; Zhou, Michelle; Chou, Alice Y; Mathelier, Anthony; Boye, Sanford L; Hauswirth, William W; Molday, Robert S; Wasserman, Wyeth W; Simpson, Elizabeth M

    2016-01-01

    Current gene therapies predominantly use small, strong, and readily available ubiquitous promoters. However, as the field matures, the availability of small, cell-specific promoters would be greatly beneficial. Here we design seven small promoters from the human paired box 6 (PAX6) gene and test them in the adult mouse retina using recombinant adeno-associated virus. We chose the retina due to previous successes in gene therapy for blindness, and the PAX6 gene since it is: well studied; known to be driven by discrete regulatory regions; expressed in therapeutically interesting retinal cell types; and mutated in the vision-loss disorder aniridia, which is in need of improved therapy. At the PAX6 locus, 31 regulatory regions were bioinformatically predicted, and nine regulatory regions were constructed into seven MiniPromoters. Driving Emerald GFP, these MiniPromoters were packaged into recombinant adeno-associated virus, and injected intravitreally into postnatal day 14 mice. Four MiniPromoters drove consistent retinal expression in the adult mouse, driving expression in combinations of cell-types that endogenously express Pax6: ganglion, amacrine, horizontal, and Müller glia. Two PAX6-MiniPromoters drive expression in three of the four cell types that express PAX6 in the adult mouse retina. Combined, they capture all four cell types, making them potential tools for research, and PAX6-gene therapy for aniridia. PMID:27556059

  13. A Novel Adeno-Associated Virus–Based Genetic Vaccine Encoding the Hepatitis C Virus NS3/4 Protein Exhibits Immunogenic Properties in Mice Superior to Those of an NS3-Protein-Based Vaccine

    PubMed Central

    Zhu, Fengqin; Chen, Tian; Zhang, Yeqiong; Sun, Haixia; Cao, Hong; Lu, Jianxi; Zhao, Linshan; Li, Gang

    2015-01-01

    More than 170 million individuals worldwide are infected with hepatitis C virus (HCV), and up to an estimated 30% of chronically infected individuals will go on to develop progressive liver disease. Despite the recent advances in antiviral treatment of HCV infection, it remains a major public health problem. Thus, development of an effective vaccine is urgently required. In this study, we constructed novel adeno-associated virus (AAV) vectors expressing the full-length NS3 or NS3/4 protein of HCV genotype 1b. The expression of the NS3 or NS3/4 protein in HepG2 cells was confirmed by western blotting. C57BL/6 mice were intramuscularly immunised with a single injection of AAV vectors, and the resultant immune response was investigated. The AAV2/rh32.33.NS3/4 vaccine induced stronger humoral and cellular responses than did the AAV2/rh32.33.NS3 vaccine. Our results demonstrate that AAV-based vaccines exhibit considerable potential for the development of an effective anti-HCV vaccine. PMID:26556235

  14. Pancreatic cell tracing, lineage tagging and targeted genetic manipulations in multiple cell types using pancreatic ductal infusion of adeno-associated viral vectors and/or cell-tagging dyes.

    PubMed

    Xiao, Xiangwei; Guo, Ping; Prasadan, Krishna; Shiota, Chiyo; Peirish, Lauren; Fischbach, Shane; Song, Zewen; Gaffar, Iljana; Wiersch, John; El-Gohary, Yousef; Husain, Sohail Z; Gittes, George K

    2014-12-01

    Genetic manipulations, with or without lineage tracing for specific pancreatic cell types, are very powerful tools for studying diabetes, pancreatitis and pancreatic cancer. Nevertheless, the use of Cre/loxP systems to conditionally activate or inactivate the expression of genes in a cell type- and/or temporal-specific manner is not applicable to cell tracing and/or gene manipulations in more than one lineage at a time. Here we report a technique that allows efficient delivery of dyes for cell tagging into the mouse pancreas through the duct system, and that also delivers viruses carrying transgenes or siRNA under a specific promoter. When this technique is applied in genetically modified mice, it enables the investigator to perform either double lineage tracing or cell lineage tracing combined with gene manipulation in a second lineage. The technique requires <40 min.

  15. Selective In Vivo Targeting of Human Liver Tumors by Optimized AAV3 Vectors in a Murine Xenograft Model

    PubMed Central

    Wang, Yuan; Zhang, Yuanhui; Ejjigani, Anila; Yin, Zifei; Lu, Yuan; Wang, Lina; Wang, Meng; Li, Jun; Hu, Zhongbo; Aslanidi, George V.; Zhong, Li; Gao, Guangping

    2014-01-01

    Abstract Current challenges for recombinant adeno-associated virus (rAAV) vector–based cancer treatment include the low efficiency and the lack of specificity in vivo. rAAV serotype 3 (rAAV3) vectors have previously been shown to be ineffective in normal mouse tissues following systemic administration. In the present study, we report that rAAV3 vectors can efficiently target and transduce various human liver cancer cells in vivo. Elimination of specific surface-exposed serine and threonine residues on rAAV3 capsids results in further augmentation in the transduction efficiency of these vectors, without any change in the viral tropism and cellular receptor interactions. In addition, we have identified a potential chemotherapy drug, shikonin, as a multifunctional compound to inhibit liver tumor growth as well as to significantly enhance the efficacy of rAAV vector-based gene therapy in vivo. Furthermore, we also document that suppression of tumorigenesis in a human liver cancer xenograft model can be achieved through systemic administration of the optimized rAAV3 vectors carrying a therapeutic gene, and shikonin at a dose that does not lead to liver damage. Our research provides a novel means to achieve not only targeted delivery but also the potential for gene therapy of human liver cancer. PMID:25296041

  16. Selective in vivo targeting of human liver tumors by optimized AAV3 vectors in a murine xenograft model.

    PubMed

    Ling, Chen; Wang, Yuan; Zhang, Yuanhui; Ejjigani, Anila; Yin, Zifei; Lu, Yuan; Wang, Lina; Wang, Meng; Li, Jun; Hu, Zhongbo; Aslanidi, George V; Zhong, Li; Gao, Guangping; Srivastava, Arun; Ling, Changquan

    2014-12-01

    Current challenges for recombinant adeno-associated virus (rAAV) vector-based cancer treatment include the low efficiency and the lack of specificity in vivo. rAAV serotype 3 (rAAV3) vectors have previously been shown to be ineffective in normal mouse tissues following systemic administration. In the present study, we report that rAAV3 vectors can efficiently target and transduce various human liver cancer cells in vivo. Elimination of specific surface-exposed serine and threonine residues on rAAV3 capsids results in further augmentation in the transduction efficiency of these vectors, without any change in the viral tropism and cellular receptor interactions. In addition, we have identified a potential chemotherapy drug, shikonin, as a multifunctional compound to inhibit liver tumor growth as well as to significantly enhance the efficacy of rAAV vector-based gene therapy in vivo. Furthermore, we also document that suppression of tumorigenesis in a human liver cancer xenograft model can be achieved through systemic administration of the optimized rAAV3 vectors carrying a therapeutic gene, and shikonin at a dose that does not lead to liver damage. Our research provides a novel means to achieve not only targeted delivery but also the potential for gene therapy of human liver cancer.

  17. Antitumor activity and inhibitory effects on cancer stem cell-like properties of Adeno-associated virus (AAV) -mediated Bmi-1 interference driven by Bmi-1 promoter for gastric cancer

    PubMed Central

    Wang, Xiaofeng; Liu, Xinyang; Huang, Mingzhu; Gan, Lu; Cheng, Yufan; Li, Jin

    2016-01-01

    Bmi-1 is aberrantly activated in various cancers and plays a vital role in maintaining the self-renewal of stem cells. Our previous research revealed that Bmi-1 was overexpressed in gastric cancer (GC) and it's overexpression was an independent negative prognostic factor, suggesting it can be a therapeutic target. The main purpose of this investigation was to explore the antitumor activity of Bmi-1 interference driven by its own promoter (Ad-Bmi-1i) for GC. In this study, we used adenoviral vector to deliver Bmi-1 shRNA driven by its own promoter to treat GC. Our results revealed that Ad-Bmi-1i could selectively silence Bmi-1 in GC cells which overexpress Bmi-1 and suppress the malignant phenotypes and stem-like properties of GC cells in vitro and in vivo. Moreover, direct injection of Ad-Bmi-1i into xenografts suppressed tumor growth and destroyed cancer cells in vivo. Ad-Bmi-1i inhibited the proliferation of GC cells mainly via inducing senescence in vitro, but it suppressed tumor through inducing senescence and apoptosis, and inhibiting angiogenesis in vivo. Bmi-1 knockdown by Ad-Bmi-1i downregulated VEGF via inhibiting AKT activity. These results suggest that Ad-Bmi-1i not only inhibits tumor growth and stem cell-like phenotype by inducing cellular senescence directly, but also has an indirect anti-tumor activity by anti-angiogenesis effects via regulating PTEN/AKT/VEGF pathway. Transfer of gene interference guided by its own promoter by an adeno-associated virus (AAV) vector might be a potent antitumor approach for cancer therapy. PMID:27009837

  18. Comparative Efficacy and Safety of Multiple Routes of Direct CNS Administration of Adeno-Associated Virus Gene Transfer Vector Serotype rh.10 Expressing the Human Arylsulfatase A cDNA to Nonhuman Primates

    PubMed Central

    Rosenberg, Jonathan B.; Sondhi, Dolan; Rubin, David G.; Monette, Sébastien; Chen, Alvin; Cram, Sara; De, Bishnu P.; Kaminsky, Stephen M.; Sevin, Caroline; Aubourg, Patrick

    2014-01-01

    Abstract Metachromatic leukodystrophy (MLD), a fatal disorder caused by deficiency of the lysosomal enzyme arylsulfatase A (ARSA), is associated with an accumulation of sulfatides, causing widespread demyelination in both central and peripheral nervous systems. On the basis of prior studies demonstrating that adeno-associated virus AAVrh.10 can mediate widespread distribution in the CNS of a secreted lysosomal transgene, and as a prelude to human trials, we comparatively assessed the optimal CNS delivery route of an AAVrh.10 vector encoding human ARSA in a large animal model for broadest distribution of ARSA enzyme. Five routes were tested (each total dose, 1.5×1012 genome copies of AAVrh.10hARSA-FLAG): (1) delivery to white matter centrum ovale; (2) deep gray matter delivery (putamen, thalamus, and caudate) plus overlying white matter; (3) convection-enhanced delivery to same deep gray matter locations; (4) lateral cerebral ventricle; and (5) intraarterial delivery with hyperosmotic mannitol to the middle cerebral artery. After 13 weeks, the distribution of ARSA activity subsequent to each of the three direct intraparenchymal administration routes was significantly higher than in phosphate-buffered saline-administered controls, but administration by the intraventricular and intraarterial routes failed to demonstrate measurable levels above controls. Immunohistochemical staining in the cortex, white matter, deep gray matter of the striatum, thalamus, choroid plexus, and spinal cord dorsal root ganglions confirmed these results. Of the five routes studied, administration to the white matter generated the broadest distribution of ARSA, with 80% of the brain displaying more than a therapeutic (10%) increase in ARSA activity above PBS controls. No significant toxicity was observed with any delivery route as measured by safety parameters, although some inflammatory changes were seen by histopathology. We conclude that AAVrh.10-mediated delivery of ARSA via CNS

  19. Adeno-associated virus mediated SOD gene therapy protects the retinal ganglion cells from chronic intraocular pressure elevation induced injury via attenuating oxidative stress and improving mitochondrial dysfunction in a rat model

    PubMed Central

    Jiang, Wenmin; Tang, Luosheng; Zeng, Jun; Chen, Baihua

    2016-01-01

    Purpose: This study aimed to determine whether chronic intraocular pressure (IOP) elevation induces retinal oxidative stress and alters mitochondrial morphology and function of retinal ganglion cells (RGC) and to explore the effects of AAV-SOD2 gene therapy on the RGC survival and mitochondrial dysfunction. Methods: Chronic experimental glaucoma was induced unilaterally in adult male Sprague-Dawley rats by laser burns at trabecular meshwork and episcleral veins 2 times with an interval of one week. One eye of each rat was intravitreally pretreated with recombinant adeno-associated virus expressing SOD2 (AAV-SOD2) or recombinant AAV expressing GFP (AAV-GFP) 21 days before glaucoma induction. RGCs counting, morphometric analysis of retina and optic nerve, and detection of activities of retinal SOD2 and catalase, MDA, mitochondrial morphology, mitochondrial dynamin protein OPA1 and DRP-1 expressions were conducted at 4, 8, 12 and 24 weeks. Results: Severe RGC loss, degeneration of optic nerve, reduced thickness of RGC layer and nerve fiber layer, significant decrease in total SOD and catalase activities, mitochondrial dysfunction and increased MDA were observed at 4, 8, 12 and 24 weeks after glaucoma. Pretreatment with AAV-SOD2 significantly reduced MDA and attenuated the damage to RGCs through a mitochondria-related pathway. Conclusion: AAV mediated pre-treatment with SOD2 is able to attenuate oxidative stress and improve mitochondrial dysfunction of RGC and optic nerve secondary to glaucoma. Thus, SOD2 may be used to prevent the retinal RGCs from glaucoma, which provides a promising strategy for glaucoma therapy. PMID:27158370

  20. In silico reconstruction of the viral evolutionary lineage yields a potent gene therapy vector

    PubMed Central

    Zinn, Eric; Pacouret, Simon; Khaychuk, Vadim; Turunen, Heikki T.; Carvalho, Livia S.; Andres-Mateos, Eva; Shah, Samiksha; Shelke, Rajani; Maurer, Anna C.; Plovie, Eva; Xiao, Ru; Vandenberghe, Luk H.

    2015-01-01

    SUMMARY Adeno-associated viral vectors (AAV) have emerged as a gene delivery platform with demonstrated safety and efficacy in a handful of clinical trials for monogenic disorders. However, limitations of the current generation vectors often prevent broader application of AAV gene therapy. Efforts to engineer AAV have been hampered by a limited understanding of the structure-function relationship of the complex multimeric icosahedral architecture of the particle. To develop additional reagents pertinent to further our insight into AAV, we inferred evolutionary intermediates of the viral capsid using ancestral sequence reconstruction. In silico derived sequences were synthesized de novo and characterized for biological properties relevant to clinical applications. This effort led to the generation of 9 functional putative ancestral AAVs and the identification of Anc80, the predicted ancestor of the widely studied AAV serotypes 1, 2, 8 and 9 as a highly potent in vivo gene therapy vector for targeting liver, muscle, and retina. PMID:26235624

  1. Viral Vectors for In Vivo Gene Transfer in Parkinson’s disease: Properties and Clinical Grade Production

    PubMed Central

    Burger, Corinna; Snyder, Richard O.

    2009-01-01

    Because Parkinson’s disease is a progressive degenerative disorder that is mainly confined to the basal ganglia, gene transfer to deliver therapeutic molecules is an attractive treatment avenue. The present review focuses on direct in vivo gene transfer vectors that have been developed to a degree that they have been successfully used in animal model of Parkinson’s disease. Accordingly, the properties of recombinant adenovirus, recombinant adeno-associated virus, herpes simplex virus, and lentivirus are described and contrasted. In order for viral vectors to be developed into clinical grade reagents, they must be manufactured and tested to precise regulatory standards. Indeed, clinical lots of viral vectors can be produced in compliance with current Good Manufacturing Practices (cGMPs) regulations using industry accepted manufacturing methodologies, manufacturing controls, and quality systems. The viral vector properties themselves combined with physiological product formulations facilitate long-term storage and direct in vivo administration. PMID:17916354

  2. Viral Hepatitis

    MedlinePlus

    ... Public Home » For Veterans and the Public Viral Hepatitis Menu Menu Viral Hepatitis Viral Hepatitis Home For ... the Public Veterans and Public Home How is Hepatitis C Treated? Find the facts about the newest ...

  3. Partial Correction of the CNS Lysosomal Storage Defect in a Mouse Model of Juvenile Neuronal Ceroid Lipofuscinosis by Neonatal CNS Administration of an Adeno-Associated Virus Serotype rh.10 Vector Expressing the Human CLN3 Gene

    PubMed Central

    Sondhi, Dolan; Scott, Emma C.; Chen, Alvin; Hackett, Neil R.; Wong, Andrew M.S.; Kubiak, Agnieszka; Nelvagal, Hemanth R.; Pearse, Yewande; Cotman, Susan L.; Cooper, Jonathan D.

    2014-01-01

    Abstract Juvenile neuronal ceroid lipofuscinosis (JNCL or CLN3 disease) is an autosomal recessive lysosomal storage disease resulting from mutations in the CLN3 gene that encodes a lysosomal membrane protein. The disease primarily affects the brain with widespread intralysosomal accumulation of autofluorescent material and fibrillary gliosis, as well as the loss of specific neuronal populations. As an experimental treatment for the CNS manifestations of JNCL, we have developed a serotype rh.10 adeno-associated virus vector expressing the human CLN3 cDNA (AAVrh.10hCLN3). We hypothesized that administration of AAVrh.10hCLN3 to the Cln3Δex7/8 knock-in mouse model of JNCL would reverse the lysosomal storage defect, as well as have a therapeutic effect on gliosis and neuron loss. Newborn Cln3Δex7/8 mice were administered 3×1010 genome copies of AAVrh.10hCLN3 to the brain, with control groups including untreated Cln3Δex7/8 mice and wild-type littermate mice. After 18 months, CLN3 transgene expression was detected in various locations throughout the brain, particularly in the hippocampus and deep anterior cortical regions. Changes in the CNS neuronal lysosomal accumulation of storage material were assessed by immunodetection of subunit C of ATP synthase, luxol fast blue staining, and periodic acid-Schiff staining. For all parameters, Cln3Δex7/8 mice exhibited abnormal lysosomal accumulation, but AAVrh.10hCLN3 administration resulted in significant reductions in storage material burden. There was also a significant decrease in gliosis in AAVrh.10hCLN3-treated Cln3Δex7/8 mice, and a trend toward improved neuron counts, compared with their untreated counterparts. These data demonstrate that AAVrh.10 delivery of a wild-type cDNA to the CNS is not harmful and instead provides a partial correction of the neurological lysosomal storage defect of a disease caused by a lysosomal membrane protein, indicating that this may be an effective therapeutic strategy for JNCL and

  4. Employing a gain-of-function factor IX variant R338L to advance the efficacy and safety of hemophilia B human gene therapy: preclinical evaluation supporting an ongoing adeno-associated virus clinical trial.

    PubMed

    Monahan, Paul E; Sun, Junjiang; Gui, Tong; Hu, Genlin; Hannah, William B; Wichlan, David G; Wu, Zhijian; Grieger, Joshua C; Li, Chengwen; Suwanmanee, Thipparat; Stafford, Darrel W; Booth, Carmen J; Samulski, Jade J; Kafri, Tal; McPhee, Scott W J; Samulski, R Jude

    2015-02-01

    Vector capsid dose-dependent inflammation of transduced liver has limited the ability of adeno-associated virus (AAV) factor IX (FIX) gene therapy vectors to reliably convert severe to mild hemophilia B in human clinical trials. These trials also identified the need to understand AAV neutralizing antibodies and empty AAV capsids regarding their impact on clinical success. To address these safety concerns, we have used a scalable manufacturing process to produce GMP-grade AAV8 expressing the FIXR338L gain-of-function variant with minimal (<10%) empty capsid and have performed comprehensive dose-response, biodistribution, and safety evaluations in clinically relevant hemophilia models. The scAAV8.FIXR338L vector produced greater than 6-fold increased FIX specific activity compared with wild-type FIX and demonstrated linear dose responses from doses that produced 2-500% FIX activity, associated with dose-dependent hemostasis in a tail transection bleeding challenge. More importantly, using a bleeding model that closely mimics the clinical morbidity of hemophilic arthropathy, mice that received the scAAV8.FIXR338L vector developed minimal histopathological findings of synovitis after hemarthrosis, when compared with mice that received identical doses of wild-type FIX vector. Hemostatically normal mice (n=20) and hemophilic mice (n=88) developed no FIX antibodies after peripheral intravenous vector delivery. No CD8(+) T cell liver infiltrates were observed, despite the marked tropism of scAAV8.FIXR338L for the liver in a comprehensive biodistribution evaluation (n=60 animals). With respect to the role of empty capsids, we demonstrated that in vivo FIXR338L expression was not influenced by the presence of empty AAV particles, either in the presence or absence of various titers of AAV8-neutralizing antibodies. Necropsy of FIX(-/-) mice 8-10 months after vector delivery revealed no microvascular or macrovascular thrombosis in mice expressing FIXR338L (plasma FIX activity

  5. Analysis of adeno-associated virus (AAV) wild-type and mutant Rep proteins for their abilities to negatively regulate AAV p5 and p19 mRNA levels.

    PubMed Central

    Kyöstiö, S R; Owens, R A; Weitzman, M D; Antoni, B A; Chejanovsky, N; Carter, B J

    1994-01-01

    The rep gene of adeno-associated virus type 2 (AAV) encodes four overlapping Rep proteins that are involved in gene regulation and replication of the virus. We studied here the regulation of mRNA transcribed from the AAV p5 and p19 promoters, using transient expression in human 293 cells followed by Northern (RNA) blot analysis of the mRNA. The p5 transcript encodes the larger Rep proteins, Rep78 and Rep68, while the p19 transcript encodes the smaller proteins, Rep52 and Rep40. A plasmid (pNTC3) containing the entire AAV genome with an amber mutation in the rep gene accumulated higher levels of p5 and p19 mRNA than a plasmid containing the wild-type AAV genome. Addition of increasing amounts of the wild-type rep gene in trans from a heterologous promoter inhibited p5 and p19 mRNA accumulation from pNTC3, indicating that the levels of both transcripts were decreased by the Rep proteins. Cotransfections with plasmids producing individual wild-type Rep proteins in trans showed that p5 and p19 mRNA accumulation was inhibited 5- to 10-fold by Rep78 and Rep68 and 2- to 3-fold by Rep52 and Rep40. Analysis of carboxyl-terminal truncation mutants of Rep78 showed that the ability of Rep78 to decrease p5 and p19 mRNA levels was lost when 159 or more amino acids were deleted. Rep78 and Rep68 mutants deleted for the methionine at residue 225 showed decreased abilities to down-regulate both p5 and p19 transcript levels, while mutants containing a substitution of glycine for the methionine resembled the wild-type Rep78. A Rep78 protein with a mutation in the putative nucleoside triphosphate binding site inhibited expression from p5 but not from p19, suggesting that the regulation of p5 transcript levels by Rep78 and Rep68 differs from that of p19. A deletion analysis of AAV cis sequences revealed that an intact terminal repeat was not required for negative regulation of p5 and p19 transcript levels and that the regulation of p19 mRNA levels by Rep78 did not require the presence

  6. Viral Vectors for Gene Delivery to the Central Nervous System

    PubMed Central

    Lentz, Thomas B.; Gray, Steven J.; Samulski, R. Jude

    2011-01-01

    The potential benefits of gene therapy for neurological diseases such as Parkinson’s, Amyotrophic Lateral Sclerosis (ALS), Epilepsy, and Alzheimer’s are enormous. Even a delay in the onset of severe symptoms would be invaluable to patients suffering from these and other diseases. Significant effort has been placed in developing vectors capable of delivering therapeutic genes to the CNS in order to treat neurological disorders. At the forefront of potential vectors, viral systems have evolved to efficiently deliver their genetic material to a cell. The biology of different viruses offers unique solutions to the challenges of gene therapy, such as cell targeting, transgene expression and vector production. It is important to consider the natural biology of a vector when deciding whether it will be the most effective for a specific therapeutic function. In this review, we outline desired features of the ideal vector for gene delivery to the CNS and discuss how well available viral vectors compare to this model. Adeno-associated virus, retrovirus, adenovirus and herpesvirus vectors are covered. Focus is placed on features of the natural biology that have made these viruses effective tools for gene delivery with emphasis on their application in the CNS. Our goal is to provide insight into features of the optimal vector and which viral vectors can provide these features. PMID:22001604

  7. Successful attenuation of humoral immunity to viral capsid and transgenic protein following AAV mediated gene transfer with a non-depleting CD4 antibody and cyclosporine

    PubMed Central

    McIntosh, Jenny; Cochrane, Melanie; Cobbold, Stephen; Waldmann, Herman; Davidoff, Andrew M.; Nathwani, Amit C.

    2012-01-01

    The ability of transient immunosuppression with a combination of a nondepleting anti-CD4 (NDCD4) antibody and Cyclosporine (CyA) to abrogate immune reactivity to both adeno-associated virus vector (AAV) and its transgene product was evaluated. This combination of immunosuppressants resulted in a 20-fold reduction in the resulting anti-AAV8 antibody titres, to levels in naïve mice, following intravenous administration of 2×1012 AAV8 vector particles/kg to immunocompetent mice. This allowed efficient transduction upon secondary challenge with vector pseudotyped with the same capsid. Persistent tolerance did not result, however, as an anti-AAV8 antibody response was elicited upon rechallenge with AAV8 without immunosuppression. The route of vector administration, vector dose, AAV serotype or the concomitant administration of adenoviral vector appeared to have little impact on the ability of the NDCD4 antibody and CyA combination to moderate the primary humoral response to AAV capsid proteins. The combination of NDCD4 and CyA also abrogated the humoral response to the transgene product, that otherwise invariably would occur, following intramuscular injection of AAV5, leading to stable transgene expression. These observations could significantly improve the prospects of using rAAV vectors for chronic disorders by allowing for repeated vector administration and avoiding the development of antibodies to the transgene product. PMID:21716299

  8. Viral pneumonia.

    PubMed

    Greenberg, S B

    1991-09-01

    Viral pneumonias are common in infants and young children but rare in adults. Respiratory syncytial virus (RSV) and para-influenza viruses are the most frequent viral pathogens in infants and children. Influenza virus types A and B account for over one half of viral pneumonias in adults. Immunocompromised hosts are susceptible to pneumonias caused by cytomegalovirus (CMV) and other herpesviruses, as well as rubeola and adenovirus. Diagnosis of viral pneumonia depends on appropriate viral cultures and acute and convalescent sera for specific antibodies. Superinfection with bacteria is common in adults. Anti-viral therapy is available for several respiratory viruses. Ribavirin, amantadine/rimantadine, interferon alpha, and acyclovir are antiviral drugs that may be of benefit in treatment and prophylaxis. Prevention of viral pneumonia will depend upon improved viral immunization practices.

  9. Viral pneumonia

    MedlinePlus

    ... Names Pneumonia - viral; "Walking pneumonia" - viral Images Lungs Respiratory system References Lee FE, Treanor J. Viral infections. In: Mason RJ, VC Broaddus, Martin TR, et al, eds. Murray and Nadel’s Textbook of Respiratory Medicine . 5th ed. Philadelphia, PA: Saunders Elsevier; 2010: ...

  10. Viral and nonviral delivery systems for gene delivery.

    PubMed

    Nayerossadat, Nouri; Maedeh, Talebi; Ali, Palizban Abas

    2012-01-01

    Gene therapy is the process of introducing foreign genomic materials into host cells to elicit a therapeutic benefit. Although initially the main focus of gene therapy was on special genetic disorders, now diverse diseases with different patterns of inheritance and acquired diseases are targets of gene therapy. There are 2 major categories of gene therapy, including germline gene therapy and somatic gene therapy. Although germline gene therapy may have great potential, because it is currently ethically forbidden, it cannot be used; however, to date human gene therapy has been limited to somatic cells. Although numerous viral and nonviral gene delivery systems have been developed in the last 3 decades, no delivery system has been designed that can be applied in gene therapy of all kinds of cell types in vitro and in vivo with no limitation and side effects. In this review we explain about the history of gene therapy, all types of gene delivery systems for germline (nuclei, egg cells, embryonic stem cells, pronuclear, microinjection, sperm cells) and somatic cells by viral [retroviral, adenoviral, adeno association, helper-dependent adenoviral systems, hybrid adenoviral systems, herpes simplex, pox virus, lentivirus, Epstein-Barr virus)] and nonviral systems (physical: Naked DNA, DNA bombardant, electroporation, hydrodynamic, ultrasound, magnetofection) and (chemical: Cationic lipids, different cationic polymers, lipid polymers). In addition to the above-mentioned, advantages, disadvantages, and practical use of each system are discussed. PMID:23210086

  11. Viral Vectors for Gene Therapy: Translational and Clinical Outlook.

    PubMed

    Kotterman, Melissa A; Chalberg, Thomas W; Schaffer, David V

    2015-01-01

    In a range of human trials, viral vectors have emerged as safe and effective delivery vehicles for clinical gene therapy, particularly for monogenic recessive disorders, but there has also been early work on some idiopathic diseases. These successes have been enabled by research and development efforts focusing on vectors that combine low genotoxicity and immunogenicity with highly efficient delivery, including vehicles based on adeno-associated virus and lentivirus, which are increasingly enabling clinical success. However, numerous delivery challenges must be overcome to extend this success to many diseases; these challenges include developing techniques to evade preexisting immunity, to ensure more efficient transduction of therapeutically relevant cell types, to target delivery, and to ensure genomic maintenance. Fortunately, vector-engineering efforts are demonstrating promise in the development of next-generation gene therapy vectors that can overcome these barriers. This review highlights key historical trends in clinical gene therapy, the recent clinical successes of viral-based gene therapy, and current research that may enable future clinical application.

  12. Retinal transduction profiles by high-capacity viral vectors.

    PubMed

    Puppo, A; Cesi, G; Marrocco, E; Piccolo, P; Jacca, S; Shayakhmetov, D M; Parks, R J; Davidson, B L; Colloca, S; Brunetti-Pierri, N; Ng, P; Donofrio, G; Auricchio, A

    2014-10-01

    Retinal gene therapy with adeno-associated viral (AAV) vectors is safe and effective in humans. However, the limited cargo capacity of AAV prevents their use for therapy of those inherited retinopathies (IRs) due to mutations in large (>5 kb) genes. Viral vectors derived from adenovirus (Ad), lentivirus (LV) and herpes virus (HV) can package large DNA sequences, but do not target efficiently retinal photoreceptors (PRs) where the majority of genes responsible for IRs are expressed. Here, we have evaluated the mouse retinal transduction profiles of vectors derived from 16 different Ad serotypes, 7 LV pseudotypes and from a bovine HV. Most of the vectors tested transduced efficiently the retinal pigment epithelium. We found that LV-GP64 tends to transduce more PRs than the canonical LV-VSVG, albeit this was restricted to a narrow region. We observed more extensive PR transduction with HdAd1, 2 and 5/F35++ than with LV, although none of them outperformed the canonical HdAd5 or matched the extension of PR transduction achieved with AAV2/8.

  13. Retinal transduction profiles by high-capacity viral vectors

    PubMed Central

    Puppo, Agostina; Cesi, Giulia; Marrocco, Elena; Piccolo, Pasquale; Jacca, Sarah; Shayakhmetov, Dmitry M.; Parks, Robin J.; Davidson, Beverly L.; Colloca, Stefano; Brunetti-Pierri, Nicola; Ng, Philip; Donofrio, Gaetano; Auricchio, Alberto

    2014-01-01

    Retinal gene therapy with adeno-associated viral (AAV) vectors is safe and effective in humans. However, the limited cargo capacity of AAV prevents their use for therapy of those inherited retinopathies (IRs) due to mutations in large (>5kb) genes. Viral vectors derived from Adenovirus (Ad), Lentivirus (LV) and Herpesvirus (HV) can package large DNA sequences but do not target efficiently retinal photoreceptors (PRs) where the majority of genes responsible for IRs are expressed. Here, we have evaluated the mouse retinal transduction profiles of vectors derived from 16 different Ad serotypes, 7 LV pseudotypes, and from a bovine HV. Most of the vectors tested transduced efficiently the retinal pigment epithelium (RPE). We found that LV-GP64 tends to transduce more PRs than the canonical LV-VSVG albeit this was restricted to a narrow region. We observed more extensive PR transduction with HdAd1, 2 and 5/F35++ than with LV, although none of them outperformed the canonical HdAd5 or matched the extension of PR transduction achieved with AAV2/8. PMID:24989814

  14. Viral infection

    PubMed Central

    Puigdomènech, Isabel; de Armas-Rillo, Laura; Machado, José-David

    2011-01-01

    Viruses have developed different survival strategies in host cells by crossing cell-membrane compartments, during different steps of their viral life cycle. In fact, the non-regenerative viral membrane of enveloped viruses needs to encounter the dynamic cell-host membrane, during early steps of the infection process, in which both membranes fuse, either at cell-surface or in an endocytic compartment, to promote viral entry and infection. Once inside the cell, many viruses accomplish their replication process through exploiting or modulating membrane traffic, and generating specialized compartments to assure viral replication, viral budding and spreading, which also serve to evade the immune responses against the pathogen. In this review, we have attempted to present some data that highlight the importance of membrane dynamics during viral entry and replicative processes, in order to understand how viruses use and move through different complex and dynamic cell-membrane structures and how they use them to persist. PMID:21966556

  15. Viral meningitis.

    PubMed

    Chadwick, David R

    2005-01-01

    Viruses probably account for most cases of acute meningitis. Viral meningitis is often assumed to be a largely benign disease. For the commonest pathogens causing meningitis, enteroviruses, this is usually the case; however, for many of the other pathogens causing viral meningitis, and for common pathogens in the immunocompromised or infants, viral meningitis is frequently associated with substantial neurological complications and a significant mortality. Diagnostic methods for rapid and accurate identification of pathogens have improved over recent years, permitting more precise and earlier diagnoses. There have been fewer developments in therapies for viral meningitis, and there remain no effective therapies for most pathogens, emphasising the importance of prevention and early diagnosis. This review focuses on the presentation, diagnosis and management of viral meningitis and also covers the prevention of meningitis for pathogens where effective vaccines are available. PMID:16474042

  16. Viral meningitis.

    PubMed

    Chadwick, David R

    2005-01-01

    Viruses probably account for most cases of acute meningitis. Viral meningitis is often assumed to be a largely benign disease. For the commonest pathogens causing meningitis, enteroviruses, this is usually the case; however, for many of the other pathogens causing viral meningitis, and for common pathogens in the immunocompromised or infants, viral meningitis is frequently associated with substantial neurological complications and a significant mortality. Diagnostic methods for rapid and accurate identification of pathogens have improved over recent years, permitting more precise and earlier diagnoses. There have been fewer developments in therapies for viral meningitis, and there remain no effective therapies for most pathogens, emphasising the importance of prevention and early diagnosis. This review focuses on the presentation, diagnosis and management of viral meningitis and also covers the prevention of meningitis for pathogens where effective vaccines are available.

  17. Viral transduction of the neonatal brain delivers controllable genetic mosaicism for visualising and manipulating neuronal circuits in vivo.

    PubMed

    Kim, Ji-Yoen; Ash, Ryan T; Ceballos-Diaz, Carolina; Levites, Yona; Golde, Todd E; Smirnakis, Stelios M; Jankowsky, Joanna L

    2013-04-01

    The neonatal intraventricular injection of adeno-associated virus has been shown to transduce neurons widely throughout the brain, but its full potential for experimental neuroscience has not been adequately explored. We report a detailed analysis of the method's versatility with an emphasis on experimental applications where tools for genetic manipulation are currently lacking. Viral injection into the neonatal mouse brain is fast, easy, and accesses regions of the brain including the cerebellum and brainstem that have been difficult to target with other techniques such as electroporation. We show that viral transduction produces an inherently mosaic expression pattern that can be exploited by varying the titer to transduce isolated neurons or densely-packed populations. We demonstrate that the expression of virally-encoded proteins is active much sooner than previously believed, allowing genetic perturbation during critical periods of neuronal plasticity, but is also long-lasting and stable, allowing chronic studies of aging. We harness these features to visualise and manipulate neurons in the hindbrain that have been recalcitrant to approaches commonly applied in the cortex. We show that viral labeling aids the analysis of postnatal dendritic maturation in cerebellar Purkinje neurons by allowing individual cells to be readily distinguished, and then demonstrate that the same sparse labeling allows live in vivo imaging of mature Purkinje neurons at a resolution sufficient for complete analytical reconstruction. Given the rising availability of viral constructs, packaging services, and genetically modified animals, these techniques should facilitate a wide range of experiments into brain development, function, and degeneration. PMID:23347239

  18. Viral Gastroenteritis

    MedlinePlus

    ... stomach, small intestine, and large intestine. Several different viruses can cause viral gastroenteritis, which is highly contagious ... and last for 1 to 3 days. Some viruses cause symptoms that last longer. [ Top ] What are ...

  19. Viral arthritis

    MedlinePlus

    Infectious arthritis - viral ... Ohl CA, Forster D. Infectious arthritis of native joints. In: Bennett JE, Dolin R, Blaser MJ, eds. Mandell, Douglas, and Bennett's Principles and Practice of Infectious ...

  20. Use of a three-dimensional humanized liver model for the study of viral gene vectors.

    PubMed

    Wagner, Anke; Röhrs, Viola; Materne, Eva-Maria; Hiller, Thomas; Kedzierski, Radoslaw; Fechner, Henry; Lauster, Roland; Kurreck, Jens

    2015-10-20

    Reconstituted three-dimensional (3D) liver models obtained by engrafting hepatic cells into an extracellular matrix (ECM) are valuable tools to study tissue regeneration, drug action and toxicology ex vivo. The aim of the present study was to establish a system for the functional investigation of a viral vector in a 3D liver model composed of human HepG2 cells on a rat ECM. An adeno-associated viral (AAV) vector expressing the Emerald green fluorescent protein (EmGFP) and a short hairpin RNA (shRNA) directed against human cyclophilin b (hCycB) was injected into the portal vein of 3D liver models. Application of the vector did not exert toxic effects, as shown by analysis of metabolic parameters. Six days after transduction, fluorescence microscopy analysis of EmGFP production revealed widespread distribution of the AAV vectors. After optimization of the recellularization and transduction conditions, averages of 55 and 90 internalized vector genomes per cell in two replicates of the liver model were achieved, as determined by quantitative PCR analysis. Functionality of the AAV vector was confirmed by efficient shRNA-mediated knockdown of hCycB by 70-90%. Our study provides a proof-of-concept that a recellularized biological ECM provides a valuable model to study viral vectors ex vivo. PMID:26356676

  1. Hybrid Nonviral/Viral Vector Systems for Improved piggyBac DNA Transposon In Vivo Delivery

    PubMed Central

    Cooney, Ashley L; Singh, Brajesh K; Sinn, Patrick L

    2015-01-01

    The DNA transposon piggyBac is a potential therapeutic agent for multiple genetic diseases such as cystic fibrosis (CF). Recombinant piggyBac transposon and transposase are typically codelivered by plasmid transfection; however, plasmid delivery is inefficient in somatic cells in vivo and is a barrier to the therapeutic application of transposon-based vector systems. Here, we investigate the potential for hybrid piggyBac/viral vectors to transduce cells and support transposase-mediated genomic integration of the transposon. We tested both adenovirus (Ad) and adeno-associated virus (AAV) as transposon delivery vehicles. An Ad vector expressing hyperactive insect piggyBac transposase (iPB7) was codelivered. We show transposase-dependent transposition activity and mapped integrations in mammalian cells in vitro and in vivo from each viral vector platform. We also demonstrate efficient and persistent transgene expression following nasal delivery of piggyBac/viral vectors to mice. Furthermore, using piggyBac/Ad expressing Cystic Fibrosis transmembrane Conductance Regulator (CFTR), we show persistent correction of chloride current in well-differentiated primary cultures of human airway epithelial cells derived from CF patients. Combining the emerging technologies of DNA transposon-based vectors with well-studied adenoviral and AAV delivery provides new tools for in vivo gene transfer and presents an exciting opportunity to increase the delivery efficiency for therapeutic genes such as CFTR. PMID:25557623

  2. Use of a three-dimensional humanized liver model for the study of viral gene vectors.

    PubMed

    Wagner, Anke; Röhrs, Viola; Materne, Eva-Maria; Hiller, Thomas; Kedzierski, Radoslaw; Fechner, Henry; Lauster, Roland; Kurreck, Jens

    2015-10-20

    Reconstituted three-dimensional (3D) liver models obtained by engrafting hepatic cells into an extracellular matrix (ECM) are valuable tools to study tissue regeneration, drug action and toxicology ex vivo. The aim of the present study was to establish a system for the functional investigation of a viral vector in a 3D liver model composed of human HepG2 cells on a rat ECM. An adeno-associated viral (AAV) vector expressing the Emerald green fluorescent protein (EmGFP) and a short hairpin RNA (shRNA) directed against human cyclophilin b (hCycB) was injected into the portal vein of 3D liver models. Application of the vector did not exert toxic effects, as shown by analysis of metabolic parameters. Six days after transduction, fluorescence microscopy analysis of EmGFP production revealed widespread distribution of the AAV vectors. After optimization of the recellularization and transduction conditions, averages of 55 and 90 internalized vector genomes per cell in two replicates of the liver model were achieved, as determined by quantitative PCR analysis. Functionality of the AAV vector was confirmed by efficient shRNA-mediated knockdown of hCycB by 70-90%. Our study provides a proof-of-concept that a recellularized biological ECM provides a valuable model to study viral vectors ex vivo.

  3. Assessment of Tropism and Effectiveness of New Primate-Derived Hybrid Recombinant AAV Serotypes in the Mouse and Primate Retina

    PubMed Central

    Lipinski, Daniel M.; Singh, Mandeep S.; Mouravlev, Alexandre; You, Qisheng; Barnard, Alun R.; Hankins, Mark W.; During, Matthew J.; MacLaren, Robert E.

    2013-01-01

    Adeno-associated viral vectors (AAV) have been shown to be safe in the treatment of retinal degenerations in clinical trials. Thus, improving the efficiency of viral gene delivery has become increasingly important to increase the success of clinical trials. In this study, structural domains of different rAAV serotypes isolated from primate brain were combined to create novel hybrid recombinant AAV serotypes, rAAV2/rec2 and rAAV2/rec3. The efficacy of these novel serotypes were assessed in wild type mice and in two models of retinal degeneration (the Abca4−/− mouse which is a model for Stargardt disease and in the Pde6brd1/rd1 mouse) in vivo, in primate tissue ex-vivo, and in the human-derived SH-SY5Y cell line, using an identical AAV2 expression cassette. We show that these novel hybrid serotypes can transduce retinal tissue in mice and primates efficiently, although no more than AAV2/2 and rAAV2/5 serotypes. Transduction efficiency appeared lower in the Abca4−/− mouse compared to wild type with all vectors tested, suggesting an effect of specific retinal diseases on the efficiency of gene delivery. Shuffling of AAV capsid domains may have clinical applications for patients who develop T-cell immune responses following AAV gene therapy, as specific peptide antigen sequences could be substituted using this technique prior to vector re-treatments. PMID:23593201

  4. Viral arthritis

    PubMed Central

    Marks, Michael; Marks, Jonathan L

    2016-01-01

    Acute-onset arthritis is a common clinical problem facing both the general clinician and the rheumatologist. A viral aetiology is though to be responsible for approximately 1% of all cases of acute arthritis with a wide range of causal agents recognised. The epidemiology of acute viral arthritis continues to evolve, with some aetiologies, such as rubella, becoming less common due to vaccination, while some vector-borne viruses have become more widespread. A travel history therefore forms an important part of the assessment of patients presenting with an acute arthritis. Worldwide, parvovirus B19, hepatitis B and C, HIV and the alphaviruses are among the most important causes of virally mediated arthritis. Targeted serological testing may be of value in establishing a diagnosis, and clinicians must also be aware that low-titre autoantibodies, such as rheumatoid factor and antinuclear antibody, can occur in the context of acute viral arthritis. A careful consideration of epidemiological, clinical and serological features is therefore required to guide clinicians in making diagnostic and treatment decisions. While most virally mediated arthritides are self-limiting some warrant the initiation of specific antiviral therapy. PMID:27037381

  5. Viral Hepatitis

    MedlinePlus

    ... with hepatitis? How does a pregnant woman pass hepatitis B virus to her baby? If I have hepatitis B, what does my baby need so that she ... Can I breastfeed my baby if I have hepatitis B? More information on viral hepatitis What is hepatitis? ...

  6. Viral expression cassette elements to enhance transgene target specificity and expression in gene therapy.

    PubMed

    Powell, Sara Kathleen; Rivera-Soto, Ricardo; Gray, Steven James

    2015-01-01

    Over the last five years, the number of clinical trials involving AAV (adeno-associated virus) and lentiviral vectors continue to increase by about 150 trials each year. For continued success, AAV and lentiviral expression cassettes need to be designed to meet each disease's specific needs. This review discusses how viral vector expression cassettes can be engineered with elements to enhance target specificity and increase transgene expression. The key differences relating to target specificity between ubiquitous and tissue-specific promoters are discussed, as well as how endogenous miRNAs and their target sequences have been used to restrict transgene expression. Specifically, relevant studies indicating how cis-acting elements such as introns, WPRE, polyadenylation signals, and the CMV enhancer are highlighted to show their utility for enhancing transgene expression in gene therapy applications. All discussion bears in mind that expression cassettes have space constraints. In conclusion, this review can serve as a menu of vector genome design elements and their cost in terms of space to thoughtfully engineer viral vectors for gene therapy. PMID:25636961

  7. Viral-mediated Ntf3 overexpression disrupts innervation and hearing in nondeafened guinea pig cochleae

    PubMed Central

    Lee, Min Young; Kurioka, Takaomi; Nelson, Megan M; Prieskorn, Diane M; Swiderski, Donald L; Takada, Yohei; Beyer, Lisa A; Raphael, Yehoash

    2016-01-01

    Synaptopathy in the cochlea occurs when the connection between inner hair cells and the auditory nerve is disrupted, leading to impaired hearing and nerve degeneration. Experiments using transgenic mice have shown that overexpression of NT3 by supporting cells repairs synaptopathy caused by overstimulation. To accomplish such therapy in the clinical setting, it would be necessary to activate the neurotrophin receptor on auditory neurons by other means. Here we test the outcome of NT3 overexpression using viral-mediated gene transfer into the perilymph versus the endolymph of the normal guinea pig cochlea. We inoculated two different Ntf3 viral vectors, adenovirus (Adv) or adeno-associated virus (AAV) into the perilymph, to facilitate transgene expression in the mesothelial cells and cochlear duct epithelium, respectively. We assessed outcomes by comparing Auditory brainstem response (ABR) thresholds prior to that at baseline to thresholds at 1 and 3 weeks after inoculation, and then performed histologic evaluation of hair cells, nerve endings, and synaptic ribbons. We observed hearing threshold shifts as well as disorganization of peripheral nerve endings and disruption of synaptic connections between inner hair cells and peripheral nerve endings with both vectors. The data suggest that elevation of NT3 levels in the cochlear fluids can disrupt innervation and degrade hearing. PMID:27525291

  8. Viral Expression Cassette Elements to Enhance Transgene Target Specificity and Expression in Gene Therapy

    PubMed Central

    Powell, Sara Kathleen; Rivera-Soto, Ricardo; Gray, Steven James

    2015-01-01

    Over the last five years, the number of clinical trials involving AAV (adeno-associated virus) and lentiviral vectors continue to increase by about 150 trials each year. For continued success, AAV and lentiviral expression cassettes need to be designed to meet each disease's specific needs. This review discusses how viral vector expression cassettes can be engineered with elements to enhance target specificity and increase transgene expression. The key differences relating to target specificity between ubiquitous and tissue-specific promoters are discussed, as well as how endogenous miRNAs and their target sequences have been used to restrict transgene expression. Specifically, relevant studies indicating how cis-acting elements such as introns, WPRE, polyadenylation signals, and the CMV enhancer are highlighted to show their utility for enhancing transgene expression in gene therapy applications. All discussion bears in mind that expression cassettes have space constraints. In conclusion, this review can serve as a menu of vector genome design elements and their cost in terms of space to thoughtfully engineer viral vectors for gene therapy. PMID:25636961

  9. Viral-mediated Ntf3 overexpression disrupts innervation and hearing in nondeafened guinea pig cochleae.

    PubMed

    Lee, Min Young; Kurioka, Takaomi; Nelson, Megan M; Prieskorn, Diane M; Swiderski, Donald L; Takada, Yohei; Beyer, Lisa A; Raphael, Yehoash

    2016-01-01

    Synaptopathy in the cochlea occurs when the connection between inner hair cells and the auditory nerve is disrupted, leading to impaired hearing and nerve degeneration. Experiments using transgenic mice have shown that overexpression of NT3 by supporting cells repairs synaptopathy caused by overstimulation. To accomplish such therapy in the clinical setting, it would be necessary to activate the neurotrophin receptor on auditory neurons by other means. Here we test the outcome of NT3 overexpression using viral-mediated gene transfer into the perilymph versus the endolymph of the normal guinea pig cochlea. We inoculated two different Ntf3 viral vectors, adenovirus (Adv) or adeno-associated virus (AAV) into the perilymph, to facilitate transgene expression in the mesothelial cells and cochlear duct epithelium, respectively. We assessed outcomes by comparing Auditory brainstem response (ABR) thresholds prior to that at baseline to thresholds at 1 and 3 weeks after inoculation, and then performed histologic evaluation of hair cells, nerve endings, and synaptic ribbons. We observed hearing threshold shifts as well as disorganization of peripheral nerve endings and disruption of synaptic connections between inner hair cells and peripheral nerve endings with both vectors. The data suggest that elevation of NT3 levels in the cochlear fluids can disrupt innervation and degrade hearing.

  10. Viral-mediated Ntf3 overexpression disrupts innervation and hearing in nondeafened guinea pig cochleae.

    PubMed

    Lee, Min Young; Kurioka, Takaomi; Nelson, Megan M; Prieskorn, Diane M; Swiderski, Donald L; Takada, Yohei; Beyer, Lisa A; Raphael, Yehoash

    2016-01-01

    Synaptopathy in the cochlea occurs when the connection between inner hair cells and the auditory nerve is disrupted, leading to impaired hearing and nerve degeneration. Experiments using transgenic mice have shown that overexpression of NT3 by supporting cells repairs synaptopathy caused by overstimulation. To accomplish such therapy in the clinical setting, it would be necessary to activate the neurotrophin receptor on auditory neurons by other means. Here we test the outcome of NT3 overexpression using viral-mediated gene transfer into the perilymph versus the endolymph of the normal guinea pig cochlea. We inoculated two different Ntf3 viral vectors, adenovirus (Adv) or adeno-associated virus (AAV) into the perilymph, to facilitate transgene expression in the mesothelial cells and cochlear duct epithelium, respectively. We assessed outcomes by comparing Auditory brainstem response (ABR) thresholds prior to that at baseline to thresholds at 1 and 3 weeks after inoculation, and then performed histologic evaluation of hair cells, nerve endings, and synaptic ribbons. We observed hearing threshold shifts as well as disorganization of peripheral nerve endings and disruption of synaptic connections between inner hair cells and peripheral nerve endings with both vectors. The data suggest that elevation of NT3 levels in the cochlear fluids can disrupt innervation and degrade hearing. PMID:27525291

  11. Successful Interference with Cellular Immune Responses to Immunogenic Proteins Encoded by Recombinant Viral Vectors

    PubMed Central

    Sarukhan, Adelaida; Camugli, Sabine; Gjata, Bernard; von Boehmer, Harald; Danos, Olivier; Jooss, Karin

    2001-01-01

    Vectors derived from the adeno-associated virus (AAV) have been successfully used for the long-term expression of therapeutic genes in animal models and patients. One of the major advantages of these vectors is the absence of deleterious immune responses following gene transfer. However, AAV vectors, when used in vaccination studies, can result in efficient humoral and cellular responses against the transgene product. It is therefore important to understand the factors which influence the establishment of these immune responses in order to design safe and efficient procedures for AAV-based gene therapies. We have compared T-cell activation against a strongly immunogenic protein, the influenza virus hemagglutinin (HA), which is synthesized in skeletal muscle following gene transfer with an adenovirus (Ad) or an AAV vector. In both cases, cellular immune responses resulted in the elimination of transduced muscle fibers within 4 weeks. However, the kinetics of CD4+ T-cell activation were markedly delayed when AAV vectors were used. Upon recombinant Ad (rAd) gene transfer, T cells were activated both by direct transduction of dendritic cells and by cross-presentation of the transgene product, while upon rAAV gene transfer T cells were only activated by the latter mechanism. These results suggested that activation of the immune system by the transgene product following rAAV-mediated gene transfer might be easier to control than that following rAd-mediated gene transfer. Therefore, we tested protocols aimed at interfering with either antigen presentation by blocking the CD40/CD40L pathway or with the T-cell response by inducing transgene-specific tolerance. Long-term expression of the AAV-HA was achieved in both cases, whereas immune responses against Ad-HA could not be prevented. These data clearly underline the importance of understanding the mechanisms by which vector-encoded proteins are recognized by the immune system in order to specifically interfere with them and

  12. Titration of AAV-2 particles via a novel capsid ELISA: packaging of genomes can limit production of recombinant AAV-2.

    PubMed

    Grimm, D; Kern, A; Pawlita, M; Ferrari, F; Samulski, R; Kleinschmidt, J

    1999-07-01

    We demonstrate the rapid and reliable quantification of physical AAV-2 (adeno-associated virus type 2) particles via a novel ELISA based on a monoclonal antibody which selectively recognizes assembled AAV-2 capsids. Titration of a variety of recombinant AAV-2 (rAAV) preparations revealed that at least 80+percent of all particles were empty, compared with a maximum of 50percent in wild-type AAV-2 stocks, indicating that the recombinant genomes were less efficiently encapsidated. This finding was confirmed upon titration of CsCl gradient fractions from recombinant and wild-type AAV-2 stocks. ELISA-based measurement of capsid numbers revealed a large number of physical particles with low densities corresponding to empty capsids in the recombinant, but not in the wild-type AAV-2 preparations. Moreover, additional expression of VP proteins during rAAV production was found to result in an excessive capsid formation, whilst yielding only minor increases in DNA-containing or transducing rAAV particles. We conclude that encapsidation of viral genomes rather than capsid assembly can be limiting for rAAV production, provided that a critical level of VP expression is maintained. The feasibility of quantifying AAV-2 capsid numbers via the ELISA allows determination of physical to DNA-containing or infectious particle ratios. These are important parameters which should help to optimize and standardize the production and application of recombinant AAV-2.

  13. Pre-existing interleukin 10 in cerebral arteries attenuates subsequent brain injury caused by ischemia/reperfusion.

    PubMed

    Liang, Qiu-Juan; Jiang, Mei; Wang, Xin-Hong; Le, Li-Li; Xiang, Meng; Sun, Ning; Meng, Dan; Chen, Si-Feng

    2015-09-01

    Recurrent stroke is difficult to treat and life threatening. Transfer of anti-inflammatory gene is a potential gene therapy strategy for ischemic stroke. Using recombinant adeno-associated viral vector 1 (rAAV1)-mediated interleukin 10 (IL-10), we investigated whether transfer of beneficial gene into the rat cerebral vessels during interventional treatment for initial stroke could attenuate brain injury caused by recurrent stroke. Male Wistar rats were administered rAAV1-IL-10, rAAV1-YFP, or saline into the left cerebral artery. Three weeks after gene transfer, rats were subjected to occlusion of the left middle cerebral artery (MCAO) for 45 min followed by reperfusion for 24 h. IL-10 levels in serum were significantly elevated 3 weeks after rAAV1-IL-10 injection, and virus in the cerebral vessels was confirmed by in situ hybridization. Pre-existing IL-10 but not YFP decreased the neurological dysfunction scores, brain infarction volume, and the number of injured neuronal cells. AAV1-IL-10 transduction increased heme oxygenase (HO-1) mRNA and protein levels in the infarct boundary zone of the brain. Thus, transduction of the IL-10 gene in the cerebral artery prior to ischemia attenuates brain injury caused by ischemia/reperfusion in rats. This preventive approach for recurrent stroke can be achieved during interventional treatment for initial stroke.

  14. Virally-expressed connexin26 restores gap junction function in the cochlea of conditional Gjb2 knockout mice

    PubMed Central

    Yu, Qing; Wang, Yunfeng; Chang, Qing; Wang, Jianjun; Gong, Shushen; Li, Huawei; Lin, Xi

    2013-01-01

    Mutations in GJB2, which codes for the gap junction protein connexin26, are the most common causes of human nonsyndromic hereditary deafness. We inoculated modified adeno-associated viral vectors into the scala media of early postnatal conditional Gjb2 knockout mice to drive exogenous connexin26 expression. We found extensive virally-expressed connexin26 in cells lining the scala media, and intercellular gap junction network was re-established in the organ of Corti of mutant mouse cochlea. Widespread ectopic connexin26 expression neither formed ectopic gap junctions nor affected normal hearing thresholds in wild type mice, suggesting that autonomous cellular mechanisms regulate proper membrane trafficking of exogenously-expressed connexin26 and govern the functional manifestation of them. Functional recovery of gap-junction-mediated coupling among the supporting cells was observed. We found that both cell death in the organ of Corti and degeneration of spiral ganglion neurons in the cochlea of mutant mice were substantially reduced, although auditory brainstem responses did not show significant hearing improvement. This is the first report demonstrating that virally-mediated gene therapy restored extensive gap junction intercellular network among cochlear non-sensory cells in vivo. Such a treatment performed at early postnatal stages resulted in a partial rescue of disease phenotypes in the cochlea of the mutant mice. PMID:24225640

  15. Reduced retinal transduction and enhanced transgene-directed immunogenicity with intravitreal delivery of rAAV following posterior vitrectomy in dogs

    PubMed Central

    Boyd, RF; Boye, SL; Conlon, TJ; Erger, KE; Sledge, DG; Langohr, IM; Hauswirth, WW; Komáromy, AM; Boye, SE; Petersen-Jones, SM; Bartoe, JT

    2016-01-01

    Adeno-associated virus (AAV) vector-based gene therapy is a promising treatment strategy for delivery of neurotrophic transgenes to retinal ganglion cells (RGCs) in glaucoma patients. Retinal distribution of transgene expression following intravitreal injection (IVT) of AAV is variable in animal models and the vitreous humor may represent a barrier to initial vector penetration. The primary goal of our study was to investigate the effect of prior core vitrectomy with posterior hyaloid membrane peeling on pattern and efficiency of transduction of a capsid amino acid substituted AAV2 vector, carrying the green fluorescent protein (GFP) reporter transgene following IVT in dogs. When progressive intraocular inflammation developed starting 4 weeks post IVT, the study plan was modified to allow detailed characterization of the etiology as a secondary goal. Unexpectedly, surgical vitrectomy was found to significantly limit transduction, whereas in non-vitrectomized eyes transduction efficiency reached upwards to 37.3% of RGC layer cells. The developing retinitis was characterized by mononuclear cell infiltrates resulting from a delayed-type hypersensitivity reaction, which we suspect was directed at the GFP transgene. Our results, in a canine large animal model, support caution when considering surgical vitrectomy before IVT for retinal gene therapy in patients, as prior vitrectomy appears to significantly reduce transduction efficiency and may predispose the patient to development of vector-induced immune reactions. PMID:27052802

  16. AAV Vectors for Cardiac Gene Transfer: Experimental Tools and Clinical Opportunities

    PubMed Central

    Pacak, Christina A; Byrne, Barry J

    2011-01-01

    Since the first demonstration of in vivo gene transfer into myocardium there have been a series of advancements that have driven the evolution of cardiac gene delivery from an experimental tool into a therapy currently at the threshold of becoming a viable clinical option. Innovative methods have been established to address practical challenges related to tissue-type specificity, choice of delivery vehicle, potency of the delivered material, and delivery route. Most importantly for therapeutic purposes, these strategies are being thoroughly tested to ensure safety of the delivery system and the delivered genetic material. This review focuses on the development of recombinant adeno-associated virus (rAAV) as one of the most valuable cardiac gene transfer agents available today. Various forms of rAAV have been used to deliver “pre-event” cardiac protection and to temper the severity of hypertrophy, cardiac ischemia, or infarct size. Adeno-associated virus (AAV) vectors have also been functional delivery tools for cardiac gene expression knockdown studies and successfully improving the cardiac aspects of several metabolic and neuromuscular diseases. Viral capsid manipulations along with the development of tissue-specific and regulated promoters have greatly increased the utility of rAAV-mediated gene transfer. Important clinical studies are currently underway to evaluate AAV-based cardiac gene delivery in humans. PMID:21792180

  17. Viral Parkinsonism

    PubMed Central

    Jang, Haeman; Boltz, David A.; Webster, Robert G.; Smeyne, Richard Jay

    2015-01-01

    Parkinson's disease is a debilitating neurological disorder characterized that affects 1-2% of the adult population over 55 years of age. For the vast majority of cases, the etiology of this disorder is unknown, although it is generally accepted that there is a genetic susceptibility to any number of environmental agents. One such agent may be viruses. It has been shown that numerous viruses can enter the nervous system, i.e. they are neurotropic, and induce a number of encephalopathies. One of the secondary consequences of these encephalopathies can be parkinsonism, that is both transient as well as permanent. One of the most highlighted and controversial cases of viral parkinsonism is that which followed the 1918 influenza outbreak and the subsequent induction of von Economo's encephalopathy. In this review, we discuss the neurological sequelae of infection by influenza virus as well as that of other viruses known to induce parkinsonism including Coxsackie, Japanese encephalitis B, St. Louis, West Nile and HIV viruses. PMID:18760350

  18. Viral evolution

    PubMed Central

    Nasir, Arshan; Kim, Kyung Mo; Caetano-Anollés, Gustavo

    2012-01-01

    Explaining the origin of viruses remains an important challenge for evolutionary biology. Previous explanatory frameworks described viruses as founders of cellular life, as parasitic reductive products of ancient cellular organisms or as escapees of modern genomes. Each of these frameworks endow viruses with distinct molecular, cellular, dynamic and emergent properties that carry broad and important implications for many disciplines, including biology, ecology and epidemiology. In a recent genome-wide structural phylogenomic analysis, we have shown that large-to-medium-sized viruses coevolved with cellular ancestors and have chosen the evolutionary reductive route. Here we interpret these results and provide a parsimonious hypothesis for the origin of viruses that is supported by molecular data and objective evolutionary bioinformatic approaches. Results suggest two important phases in the evolution of viruses: (1) origin from primordial cells and coexistence with cellular ancestors, and (2) prolonged pressure of genome reduction and relatively late adaptation to the parasitic lifestyle once virions and diversified cellular life took over the planet. Under this evolutionary model, new viral lineages can evolve from existing cellular parasites and enhance the diversity of the world’s virosphere. PMID:23550145

  19. Tyrosine-phosphorylation of AAV2 vectors and its consequences on viral intracellular trafficking and transgene expression

    SciTech Connect

    Zhong Li; Li Baozheng; Jayandharan, Giridhararao; Mah, Cathryn S.; Govindasamy, Lakshmanan; Agbandje-McKenna, Mavis; Herzog, Roland W.

    2008-11-25

    We have documented that epidermal growth factor receptor protein tyrosine kinase (EGFR-PTK) signaling negatively affects intracellular trafficking and transduction efficiency of recombinant adeno-associated virus 2 (AAV2) vectors. Specifically, inhibition of EGFR-PTK signaling leads to decreased ubiquitination of AAV2 capsid proteins, which in turn, facilitates viral nuclear transport by limiting proteasome-mediated degradation of AAV2 vectors. In the present studies, we observed that AAV capsids can indeed be phosphorylated at tyrosine residues by EGFR-PTK in in vitro phosphorylation assays and that phosphorylated AAV capsids retain their structural integrity. However, although phosphorylated AAV vectors enter cells as efficiently as their unphosphorylated counterparts, their transduction efficiency is significantly reduced. This reduction is not due to impaired viral second-strand DNA synthesis since transduction efficiency of both single-stranded AAV (ssAAV) and self-complementary AAV (scAAV) vectors is decreased by {approx} 68% and {approx} 74%, respectively. We also observed that intracellular trafficking of tyrosine-phosphorylated AAV vectors from cytoplasm to nucleus is significantly decreased, which results from ubiquitination of AAV capsids followed by proteasome-mediated degradation, although downstream consequences of capsid ubiquitination may also be affected by tyrosine-phosphorylation. These studies provide new insights into the role of tyrosine-phosphorylation of AAV capsids in various steps in the virus life cycle, which has implications in the optimal use of recombinant AAV vectors in human gene therapy.

  20. Virally mediated optogenetic excitation and inhibition of pain in freely moving non-transgenic mice

    PubMed Central

    Iyer, Shrivats Mohan; Montgomery, Kate L.; Towne, Chris; Lee, Soo Yeun; Ramakrishnan, Charu; Deisseroth, Karl; Delp, Scott L.

    2014-01-01

    Primary nociceptors are the first neurons involved in the complex processing system that regulates normal and pathological pain1. Our ability to excite and inhibit these neurons has been limited by pharmacological and electrical stimulation constraints; non-invasive excitation and inhibition of these neurons in freely moving non-transgenic animals has not been possible. Here we use an optogenetic2 strategy to bidirectionally control nociceptors of non-transgenic mice. Intra-sciatic nerve injection of adeno-associated viruses encoding an excitatory opsin enabled light-inducible stimulation of acute pain, place aversion, and optogenetically mediated reductions in withdrawal thresholds to mechanical and thermal stimuli. In contrast, viral delivery of an inhibitory opsin enabled light-inducible inhibition of acute pain perception, and reversed mechanical allodynia and thermal hyperalgesia in a model of neuropathic pain. Light was delivered transdermally enabling these behaviors to be induced in freely moving animals. This approach may have utility in basic and translational pain research, and enable rapid drug screening and testing of newly engineered opsins. PMID:24531797

  1. Viral/Nonviral Chimeric Nanoparticles To Synergistically Suppress Leukemia Proliferation via Simultaneous Gene Transduction and Silencing.

    PubMed

    Hong, Cheol Am; Cho, Soo Kyung; Edson, Julius A; Kim, Jane; Ingato, Dominique; Pham, Bryan; Chuang, Anthony; Fruman, David A; Kwon, Young Jik

    2016-09-27

    Single modal cancer therapy that targets one pathological pathway often turns out to be inefficient. For example, relapse of chronic myelogenous leukemia (CML) after inhibiting BCR-ABL fusion protein using tyrosine kinase inhibitors (TKI) (e.g., Imatinib) is of significant clinical concern. This study developed a dual modal gene therapy that simultaneously tackles two key BCR-ABL-linked pathways using viral/nonviral chimeric nanoparticles (ChNPs). Consisting of an adeno-associated virus (AAV) core and an acid-degradable polymeric shell, the ChNPs were designed to simultaneously induce pro-apoptotic BIM expression by the AAV core and silence pro-survival MCL-1 by the small interfering RNA (siRNA) encapsulated in the shell. The resulting BIM/MCL-1 ChNPs were able to efficiently suppress the proliferation of BCR-ABL+ K562 and FL5.12/p190 cells in vitro and in vivo via simultaneously expressing BIM and silencing MCL-1. Interestingly, the synergistic antileukemic effects generated by BIM/MCL-1 ChNPs were specific to BCR-ABL+ cells and independent of a proliferative cytokine, IL-3. The AAV core of ChNPs was efficiently shielded from inactivation by anti-AAV serum and avoided the generation of anti-AAV serum, without acute toxicity. This study demonstrates the development of a synergistically efficient, specific, and safe therapy for leukemia using gene carriers that simultaneously manipulate multiple and interlinked pathological pathways. PMID:27472284

  2. Viral hepatitis*

    PubMed Central

    Deinhardt, F.; Gust, I. D.

    1982-01-01

    Three forms of viral hepatitis can be recognized: hepatitis A, hepatitis B, and hepatitis non-A, non-B. Hepatitis A is caused by a picornavirus, is transmitted by the faceal—oral route, does not become chronic, and no chronic virus carriers exist. The virus can be grown in cell cultures, and killed as well as live attenuated virus vaccines are under development. Hepatitis B is caused by an enveloped virus containing a circular, double-stranded form of DNA. The disease is transmitted parenterally through inoculation of blood or blood products containing virus or through close personal contact with a virus-positive person. Hepatitis B becomes chronic in a certain number of cases and can lead to cirrhosis and primary liver cell carcinoma. The blood and certain body secretions of individuals with a persistent or chronic infection may remain infectious for many years. The hepatitis B virus cannot be grown in cell cultures but the entire genome has been sequenced and cloned in bacterial and eukaryotic cells. An inactivated virus vaccine has been prepared from hepatitis B surface antigen present in the plasma of hepatitis B virus carriers and further vaccines are under development. The agents of hepatitis non-A, non-B have not been identified. It is possible to distinguish between a predominantly parenterally transmitted and an orally transmitted form of hepatitis non-A, non-B. The latter is reported to be caused by a picornavirus that does not, however, have any antigenic relationship with hepatitis A virus. PMID:6817933

  3. Broad distribution of ataxin 1 silencing in rhesus cerebella for spinocerebellar ataxia type 1 therapy.

    PubMed

    Keiser, Megan S; Kordower, Jeffrey H; Gonzalez-Alegre, Pedro; Davidson, Beverly L

    2015-12-01

    Spinocerebellar ataxia type 1 is one of nine polyglutamine expansion diseases and is characterized by cerebellar ataxia and neuronal degeneration in the cerebellum and brainstem. Currently, there are no effective therapies for this disease. Previously, we have shown that RNA interference mediated silencing of ATXN1 mRNA provides therapeutic benefit in mouse models of the disease. Adeno-associated viral delivery of an engineered microRNA targeting ATXN1 to the cerebella of well-established mouse models improved motor phenotypes, neuropathy, and transcriptional changes. Here, we test the translatability of this approach in adult rhesus cerebella. Nine adult male and three adult female rhesus macaque were unilaterally injected with our therapeutic vector, a recombinant adeno-associated virus type 1 (rAAV1) expressing our RNAi trigger (miS1) and co-expressing enhanced green fluorescent protein (rAAV1.miS1eGFP) into the deep cerebellar nuclei using magnetic resonance imaging guided techniques combined with a Stealth Navigation system (Medtronics Inc.). Transduction was evident in the deep cerebellar nuclei, cerebellar Purkinje cells, the brainstem and the ventral lateral thalamus. Reduction of endogenous ATXN1 messenger RNA levels were ≥30% in the deep cerebellar nuclei, the cerebellar cortex, inferior olive, and thalamus relative to the uninjected hemisphere. There were no clinical complications, and quantitative and qualitative analyses suggest that this therapeutic intervention strategy and subsequent reduction of ATXN1 is well tolerated. Collectively the data illustrate the biodistribution and tolerability of rAAV1.miS1eGFP administration to the adult rhesus cerebellum and are supportive of clinical application for spinocerebellar ataxia type 1.

  4. [Viral superantigens].

    PubMed

    Us, Dürdal

    2016-07-01

    , expression of endogenous SAgs leads to thymic deletion of responding T cells (bearing Vβ6-9+ TCR) due to self-tolerance induction during the fetal life, and protects the host against future exogenous MMTV infections. The SAg of rabies virus is the N protein found in nucleocapsid structure and stimulates Vβ8+TCR-bearing T cells. The SAg-induced polyclonal activation of T cells leads to turn-off the specific immune response, to enhance the immunopathogenesis and facilitates viral transmission from the initial site of infection (the muscle tissue) to the nerve endings. In case of EBV-associated SAg that activates Vβ13+TCR-bearing T cells, it was detected that the SAg activity was not encoded by EBV itself, but instead was due to the transactivation of HERV-K18 by EBV latent membrane proteins, whose env gene encodes the SAg (Sutkowski, et al. 2001). It has been denoted that EBV-induced SAg expression plays a role in the long-term persistence and latency of virus in memory B cells, in the development of autoimmune diseases and in the oncogenesis mechanisms. The proteins which are identified as SAgs of HIV are Nef and gp120. It is believed that, the massive activation of CD4+ T cells (selectively with Vβ-12+, Vβ-5.3+ and Vβ-18+ TCRs) in early stages of infection and clonal deletion, anergy and apoptosis of bystander T cells in the late stages may be due to SAg property of Nef protein, as well as the other mechanisms. However there are some studies indicating that Nef does not act as a SAg (Lapatschek, et al. 2001). HIV gp120 glycoprotein is a B-cell SAg that binds to VH3-expressing B cell receptors and causes polyclonal B cell activation. In addition, binding of gp120 to IgE on the surface of basophiles and mast cells causes activation of those cells, secretion of high level proinflammatory mediators leading to allergic reactions and tissue damage. In a recent study, the depletion (anergy or deletion) of T cell populations bearing Vβ12+, Vβ13+ and Vβ17+ TCR have been

  5. PEO-PPO-PEO Carriers for rAAV-Mediated Transduction of Human Articular Chondrocytes in Vitro and in a Human Osteochondral Defect Model.

    PubMed

    Rey-Rico, Ana; Frisch, Janina; Venkatesan, Jagadesh Kumar; Schmitt, Gertrud; Rial-Hermida, Isabel; Taboada, Pablo; Concheiro, Angel; Madry, Henning; Alvarez-Lorenzo, Carmen; Cucchiarini, Magali

    2016-08-17

    Gene therapy is an attractive strategy for the durable treatment of human osteoarthritis (OA), a gradual, irreversible joint disease. Gene carriers based on the small human adeno-associated virus (AAV) exhibit major efficacy in modifying damaged human articular cartilage in situ over extended periods of time. Yet, clinical application of recombinant AAV (rAAV) vectors remains complicated by the presence of neutralizing antibodies against viral capsid elements in a majority of patients. The goal of this study was to evaluate the feasibility of delivering rAAV vectors to human OA chondrocytes in vitro and in an experimental model of osteochondral defect via polymeric micelles to protect gene transfer from experimental neutralization. Interaction of rAAV with micelles of linear (poloxamer PF68) or X-shaped (poloxamine T908) poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) copolymers (PEO-PPO-PEO micelles) was characterized by means of isothermal titration calorimetry. Micelle encapsulation allowed an increase in both the stability and bioactivity of rAAV vectors and promoted higher levels of safe transgene (lacZ) expression both in vitro and in experimental osteochondral defects compared with that of free vector treatment without detrimental effects on the biological activity of the cells or their phenotype. Remarkably, protection against antibody neutralization was also afforded when delivering rAAV via PEO-PPO-PEO micelles in all systems evaluated, especially when using T908. Altogether, these findings show the potential of PEO-PPO-PEO micelles as effective tools to improve current gene-based treatments for human OA.

  6. Viral Skin Diseases.

    PubMed

    Ramdass, Priya; Mullick, Sahil; Farber, Harold F

    2015-12-01

    In the vast world of skin diseases, viral skin disorders account for a significant percentage. Most viral skin diseases present with an exanthem (skin rash) and, oftentimes, an accompanying enanthem (lesions involving the mucosal membrane). In this article, the various viral skin diseases are explored, including viral childhood exanthems (measles, rubella, erythema infectiosum, and roseola), herpes viruses (herpes simplex virus, varicella zoster virus, Kaposi sarcoma herpes virus, viral zoonotic infections [orf, monkeypox, ebola, smallpox]), and several other viral skin diseases, such as human papilloma virus, hand, foot, and mouth disease, molluscum contagiosum, and Gianotti-Crosti syndrome.

  7. Viral Skin Diseases.

    PubMed

    Ramdass, Priya; Mullick, Sahil; Farber, Harold F

    2015-12-01

    In the vast world of skin diseases, viral skin disorders account for a significant percentage. Most viral skin diseases present with an exanthem (skin rash) and, oftentimes, an accompanying enanthem (lesions involving the mucosal membrane). In this article, the various viral skin diseases are explored, including viral childhood exanthems (measles, rubella, erythema infectiosum, and roseola), herpes viruses (herpes simplex virus, varicella zoster virus, Kaposi sarcoma herpes virus, viral zoonotic infections [orf, monkeypox, ebola, smallpox]), and several other viral skin diseases, such as human papilloma virus, hand, foot, and mouth disease, molluscum contagiosum, and Gianotti-Crosti syndrome. PMID:26612372

  8. Viral vector-mediated selective and reversible blockade of the pathway for visual orienting in mice

    PubMed Central

    Sooksawate, Thongchai; Isa, Kaoru; Matsui, Ryosuke; Kato, Shigeki; Kinoshita, Masaharu; Kobayashi, Kenta; Watanabe, Dai; Kobayashi, Kazuto; Isa, Tadashi

    2013-01-01

    Recently, by using a combination of two viral vectors, we developed a technique for pathway-selective and reversible synaptic transmission blockade, and successfully induced a behavioral deficit of dexterous hand movements in macaque monkeys by affecting a population of spinal interneurons. To explore the capacity of this technique to work in other pathways and species, and to obtain fundamental methodological information, we tried to block the crossed tecto-reticular pathway, which is known to control orienting responses to visual targets, in mice. A neuron-specific retrograde gene transfer vector with the gene encoding enhanced tetanus neurotoxin (eTeNT) tagged with enhanced green fluorescent protein (EGFP) under the control of a tetracycline responsive element was injected into the left medial pontine reticular formation. 7–17 days later, an adeno-associated viral vector with a highly efficient Tet-ON sequence, rtTAV16, was injected into the right superior colliculus. 5–9 weeks later, the daily administration of doxycycline (Dox) was initiated. Visual orienting responses toward the left side were impaired 1–4 days after Dox administration. Anti-GFP immunohistochemistry revealed that a number of neurons in the intermediate and deep layers of the right superior colliculus were positively stained, indicating eTeNT expression. After the termination of Dox administration, the anti-GFP staining returned to the baseline level within 28 days. A second round of Dox administration, starting from 28 days after the termination of the first Dox administration, resulted in the reappearance of the behavioral impairment. These findings showed that pathway-selective and reversible blockade of synaptic transmission also causes behavioral effects in rodents, and that the crossed tecto-reticular pathway clearly controls visual orienting behaviors. PMID:24130520

  9. Viral vector-mediated downregulation of RhoA increases survival and axonal regeneration of retinal ganglion cells

    PubMed Central

    Koch, Jan Christoph; Tönges, Lars; Michel, Uwe; Bähr, Mathias; Lingor, Paul

    2014-01-01

    The Rho/ROCK pathway is a promising therapeutic target in neurodegenerative and neurotraumatic diseases. Pharmacological inhibition of various pathway members has been shown to promote neuronal regeneration and survival. However, because pharmacological inhibitors are inherently limited in their specificity, shRNA-mediated approaches can add more information on the function of each single kinase involved. Thus, we generated adeno-associated viral vectors (AAV) to specifically downregulate Ras homologous member A (RhoA) via shRNA. We found that specific knockdown of RhoA promoted neurite outgrowth of retinal ganglion cells (RGC) grown on the inhibitory substrate chondroitin sulfate proteoglycan (CSPG) as well as neurite regeneration of primary midbrain neurons (PMN) after scratch lesion. In the rat optic nerve crush (ONC) model in vivo, downregulation of RhoA significantly enhanced axonal regeneration compared to control. Moreover, survival of RGC transduced with AAV expressing RhoA-shRNA was substantially increased at 2 weeks after optic nerve axotomy. Compared to previous data using pharmacological inhibitors to target RhoA, its upstream regulator Nogo or its main downstream target ROCK, the specific effects of RhoA downregulation shown here were most pronounced in regard to promoting RGC survival but neurite outgrowth and axonal regeneration were also increased significantly. Taken together, we show here that specific knockdown of RhoA substantially increases neuronal survival after optic nerve axotomy and modestly increases neurite outgrowth in vitro and axonal regeneration after optic nerve crush. PMID:25249936

  10. Current and future prospects for hemophilia gene therapy.

    PubMed

    Ward, Peter; Walsh, Christopher E

    2016-07-01

    Here we review the recent literature on Hemophilia gene transfer/therapy. Gene therapy is one of several new technologies being developed as a treatment for bleeding disorders. We will discuss current and pending clinical efforts and attempt to relate how the field is trending. In doing so, we will focus on the use of recombinant Adeno-associated viral (rAAV) vector-mediated gene transfer since all currently active trials are using this vector. Recent exciting results embody nearly 20 years of preclinical and translational research. After several early clinical attempts, therapeutic factor levels that can now be achieved reflect several modifications of the original vectors. Patterns of results are slowly starting to emerge as different AAV vectors are being tested. As with any new technology, there are drawbacks, and the potential for immune/inflammatory and oncogenic risks have emerged and will be discussed.

  11. Investigation of viral vectors using atomic force microscopy and microfluidic devices

    NASA Astrophysics Data System (ADS)

    Negishi, Atsuko

    Researchers are modifying viruses into gene delivery vehicles in hope to cure diseases such as muscular dystrophy, hemophilia and cancer. Significant progress has been made toward this end, but further development and success of viral vectors depend on a deeper understanding of viral structure and physiology. Recent advances in microscopy have allowed new approaches to studying viruses that complement existing methodologies. Presented in this dissertation are novel viral studies using the atomic force microscope (AFM), a microscope that provides topographic information at the nanometer scale. As well microfluidic channels were used to study the effect of fluid flow properties on infection. A number of viruses are currently under study as potential vectors. We focus our studies on the adenovirus (Ad) and the adeno-associated virus (AAV) which have numerous attractive properties as vectors. The AFM is used to probe first, the structural aspects of the Ad and second, the virus-receptor interactions between AAV and its cell surface receptor, heparan sulfate proteoglycan (HSPG). The AFM was capable of imaging the capsid facets of intact Ad and DNA strands released from disrupted Ad capsids. In addition, we found that the stability of the capsid depended on the surface chemistry. An AFM-based binding assay was developed to study the binding between AAV and HSPG. The advantage of using the AFM for this purpose is its ability to simultaneously provide structural and quantitative information at the single molecule level. We measured a binding constant of 3.4 +/- 0.3 nM which is consistent with published reports. Microfluidic devices were used to study the dependence of fluid flow on infection. Cells were cultured in microfluidic channels and exposed to AAV vectors at various shear stresses. We found that a lower percentage of the cells were infected at higher shear stress. We also found that fluid forces can indirectly play a role in viral infection by influencing the cell

  12. Viral Entry into Cells

    NASA Astrophysics Data System (ADS)

    D'Orsogna, Maria R.

    2010-09-01

    Successful viral infection of a healthy cell requires complex host-pathogen interactions. In this talk we focus on the dynamics specific to the HIV virus entering a eucaryotic cell. We model viral entry as a stochastic engagement of receptors and coreceptors on the cell surface. We also consider the transport of virus material to the cell nucleus by coupling microtubular motion to the concurrent biochemical transformations that render the viral material competent for nuclear entry. We discuss both mathematical and biological consequences of our model, such as the formulation of an effective integrodifferential boundary condition embodying a memory kernel and optimal timing in maximizing viral probabilities.

  13. The role of doxorubicin in non-viral gene transfer in the lung.

    PubMed

    Griesenbach, Uta; Meng, Cuixiang; Farley, Raymond; Gardner, Aaron; Brake, Maresa A; Frankel, Gad M; Gruenert, Dieter C; Cheng, Seng H; Scheule, Ronald K; Alton, Eric W F W

    2009-04-01

    Proteasome inhibitors have been shown to increase adeno-associated virus (AAV)-mediated transduction in vitro and in vivo. To assess if proteasome inhibitors also increase lipid-mediated gene transfer with relevance to cystic fibrosis (CF), we first assessed the effects of doxorubicin and N-acetyl-l-leucinyl-l-leucinal-l-norleucinal in non-CF (A549) and CF (CFTE29o-) airway epithelial cell lines. CFTE29o- cells did not show a response to Dox or LLnL; however, gene transfer in A549 cells increased in a dose-related fashion (p < 0.05), up to approximately 20-fold respectively at the optimal dose (no treatment: 9.3 x 10(4) +/- 1.5 x 10(3), Dox: 1.6 x 10(6)+/-2.6 x 10(5), LLnL: 1.9 x 10(6) +/- 3.2 x 10(5)RLU/mg protein). As Dox is used clinically in cancer chemotherapy we next assessed the effect of this drug on non-viral lung gene transfer in vivo. CF knockout mice were injected intraperitoneally (IP) with Dox (25-100 mg/kg) immediately before nebulisation with plasmid DNA carrying a luciferase reporter gene under the control of a CMV promoter/enhancer (pCIKLux) complexed to the cationic lipid GL67A. Dox also significantly (p < 0.05) increased expression of a plasmid regulated by an elongation factor 1alpha promoter (hCEFI) approximately 8-fold. Although administration of Dox before lung gene transfer may not be a clinically viable option, understanding how Dox increases lung gene expression may help to shed light on intracellular bottle-necks to gene transfer, and may help to identify other adjuncts that may be more appropriate for use in man. PMID:19152975

  14. Viral Vector-Based Dissection of Marmoset GFAP Promoter in Mouse and Marmoset Brains

    PubMed Central

    Takahashi, Nobutaka; Matsuzaki, Yasunori; Kishi, Shoji; Hirai, Hirokazu

    2016-01-01

    Adeno-associated virus (AAV) vectors are small in diameter, diffuse easily in the brain, and represent a highly efficient means by which to transfer a transgene to the brain of a large animal. A major demerit of AAV vectors is their limited accommodation capacity for transgenes. Thus, a compact promoter is useful when delivering large transgenes via AAV vectors. In the present study, we aimed to identify the shortest astrocyte-specific GFAP promoter region that could be used for AAV-vector-mediated transgene expression in the marmoset brain. The 2.0-kb promoter region upstream of the GFAP gene was cloned from the marmoset genome, and short promoters (1.6 kb, 1.4 kb, 0.6 kb, 0.3 kb and 0.2 kb) were obtained by progressively deleting the original 2.0-kb promoter from the 5’ end. The short promoters were screened in the mouse cerebellum in terms of their strength and astrocyte specificity. We found that the 0.3-kb promoter maintained 40% of the strength of the original 2.0-kb promoter, and approximately 90% of its astrocyte specificity. These properties were superior to those of the 1.4-kb, 0.6-kb (20% promoter strength) and 0.2-kb (70% astrocyte specificity) promoters. Then, we verified whether the 0.3-kb GFAP promoter retained astrocyte specificity in the marmoset cerebral cortex. Injection of viral vectors carrying the 0.3-kb marmoset GFAP promoter specifically transduced astrocytes in both the cerebral cortex and cerebellar cortex of the marmoset. These results suggest that the compact 0.3-kb promoter region serves as an astrocyte-specific promoter in the marmoset brain, which permits us to express a large gene by AAV vectors that have a limited accommodation capacity. PMID:27571575

  15. Gene delivery of a viral anti-inflammatory protein to combat ocular inflammation.

    PubMed

    Ildefonso, Cristhian J; Jaime, Henrique; Rahman, Masmudur M; Li, Qiuhong; Boye, Shannon E; Hauswirth, William W; Lucas, Alexandra R; McFadden, Grant; Lewin, Alfred S

    2015-01-01

    Inflammation of the retina is a contributing factor in ocular diseases such as uveitis, diabetic retinopathy, and age-related macular degeneration (AMD). The M013 immunomodulatory protein from myxoma virus has been shown to interfere with the proinflammatory signaling pathways involving both the NLRP3 inflammasome and NF-κB. We have developed and characterized an adeno-associated viral (AAV) vector that delivers a secretable and cell-penetrating form of the M013 protein (TatM013). The expressed TatM013 protein was secreted and blocked the endotoxin-induced secretion of interleukin (IL)-1β in monocyte-derived cells and the reactive aldehyde-induced secretion of IL-1β in retinal pigment epithelium cells. The local anti-inflammatory effects of AAV-delivered TatM013 were evaluated in an endotoxin-induced uveitis (EIU) mouse model after intravitreal injection of mice with an AAV2-based vector carrying either TatM013 fused to a secreted green fluorescent protein (GFP) tag (sGFP-TatM013) or GFP. Expression of the sGFP-TatM013 transgene was demonstrated by fluorescence funduscopy in living mice. In EIU, the number of infiltrating cells and the concentration of IL-1β in the vitreous body were significantly lower in the eyes injected with AAV-sGFP-TatM013 compared with the eyes injected with control AAV-GFP. These results suggest that a virus-derived inhibitor of the innate immune response, when delivered via AAV, could be a generalized therapy for various inflammatory diseases of the eye.

  16. Exosomes in Viral Disease.

    PubMed

    Anderson, Monique R; Kashanchi, Fatah; Jacobson, Steven

    2016-07-01

    Viruses have evolved many mechanisms by which to evade and subvert the immune system to ensure survival and persistence. However, for each method undertaken by the immune system for pathogen removal, there is a counteracting mechanism utilized by pathogens. The new and emerging role of microvesicles in immune intercellular communication and function is no different. Viruses across many different families have evolved to insert viral components in exosomes, a subtype of microvesicle, with many varying downstream effects. When assessed cumulatively, viral antigens in exosomes increase persistence through cloaking viral genomes, decoying the immune system, and even by increasing viral infection in uninfected cells. Exosomes therefore represent a source of viral antigen that can be used as a biomarker for disease and targeted for therapy in the control and eradication of these disorders. With the rise in the persistence of new and reemerging viruses like Ebola and Zika, exploring the role of exosomes become more important than ever. PMID:27324390

  17. Viral Disease Networks?

    NASA Astrophysics Data System (ADS)

    Gulbahce, Natali; Yan, Han; Vidal, Marc; Barabasi, Albert-Laszlo

    2010-03-01

    Viral infections induce multiple perturbations that spread along the links of the biological networks of the host cells. Understanding the impact of these cascading perturbations requires an exhaustive knowledge of the cellular machinery as well as a systems biology approach that reveals how individual components of the cellular system function together. Here we describe an integrative method that provides a new approach to studying virus-human interactions and its correlations with diseases. Our method involves the combined utilization of protein - protein interactions, protein -- DNA interactions, metabolomics and gene - disease associations to build a ``viraldiseasome''. By solely using high-throughput data, we map well-known viral associated diseases and predict new candidate viral diseases. We use microarray data of virus-infected tissues and patient medical history data to further test the implications of the viral diseasome. We apply this method to Epstein-Barr virus and Human Papillomavirus and shed light into molecular development of viral diseases and disease pathways.

  18. Viral Vector Based Improvement of Optic Nerve Regeneration: Characterization of Individual Axons’ Growth Patterns and Synaptogenesis in a Visual Target

    PubMed Central

    Yungher, Benjamin J.; Luo, Xueting; Salgueiro, Yadira; Blackmore, Murray G.; Park, Kevin K.

    2015-01-01

    Lack of axon growth ability in the central nervous system poses a major barrier to achieving functional connectivity after injury. Thus, a non-transgenic regenerative approach to reinnervating targets has important implications in clinical and research settings. Previous studies using knockout (KO) mice have demonstrated long distance axon regeneration. Using an optic nerve injury model, here we evaluate the efficacy of viral, RNAi and pharmacological approaches that target the PTEN and STAT3 pathways to improve long distance axon regeneration in wild type (WT) mice. Our data show that adeno-associated virus (AAV) expressing short hairpin RNA (shRNA) against PTEN (shPTEN) enhances retinal ganglion cell axon regeneration after crush injury. However, compared to the previous data in PTEN KO mice, AAV-shRNA results in a lesser degree of regeneration, likely due to incomplete gene silencing inherent to RNAi. In comparison, an extensive enhancement in regeneration is seen when AAV-shPTEN is coupled to AAV encoding ciliary neurotrophic factor (CNTF) and to a cyclic adenosine monophosphate (cAMP) analogue, allowing axons to travel long distances and reach their target. We apply whole tissue imaging that facilitates three-dimensional visualization of single regenerating axons and document heterogeneous terminal patterns in the targets. This shows that some axonal populations generate extensive arbors and make synapses with the target neurons. Collectively, we show a combinatorial viral RNAi and pharmacological strategy that improves long distance regeneration in WT animals and provide single fiber projection data that indicates a degree of preservation of target recognition. PMID:26005861

  19. Neuroprotective potential of pleiotrophin overexpression in the striatonigral pathway compared with overexpression in both the striatonigral and nigrostriatal pathways.

    PubMed

    Gombash, S E; Manfredsson, F P; Mandel, R J; Collier, T J; Fischer, D L; Kemp, C J; Kuhn, N M; Wohlgenant, S L; Fleming, S M; Sortwell, C E

    2014-07-01

    Intrastriatal injection of recombinant adeno-associated viral vector serotype 2/1 (rAAV2/1) to overexpress the neurotrophic factor pleiotrophin (PTN) provides neuroprotection for tyrosine hydroxylase immunoreactive (THir) neurons in the substantia nigra pars compacta (SNpc), increases THir neurite density in the striatum (ST) and reverses functional deficits in forepaw use following 6-hydroxydopamine (6-OHDA) toxic insult. Glial cell line-derived neurotrophic factor (GDNF) gene transfer studies suggest that optimal neuroprotection is dependent on the site of nigrostriatal overexpression. The present study was conducted to determine whether enhanced neuroprotection could be accomplished via simultaneous rAAV2/1 PTN injections into the ST and SN compared with ST injections alone. Rats were unilaterally injected in the ST alone or injected in both the ST and SN with rAAV2/1 expressing either PTN or control vector. Four weeks later, all rats received intrastriatal injections of 6-OHDA. Rats were euthanized 6 or 16 weeks relative to 6-OHDA injection. A novel selective total enumeration method to estimate nigral THir neuron survival was validated to maintain the accuracy of stereological assessment. Long-term nigrostriatal neuroprotection and functional benefits were only observed in rats in which rAAV2/1 PTN was injected into the ST alone. Results suggest that superior preservation of the nigrostriatal system is provided by PTN overexpression delivered to the ST and restricted to the ST and SN pars reticulata and is not improved with overexpression of PTN within SNpc neurons.

  20. Viruses and viral proteins

    PubMed Central

    Verdaguer, Nuria; Ferrero, Diego; Murthy, Mathur R. N.

    2014-01-01

    For more than 30 years X-ray crystallography has been by far the most powerful approach for determining the structures of viruses and viral proteins at atomic resolution. The information provided by these structures, which covers many important aspects of the viral life cycle such as cell-receptor recognition, viral entry, nucleic acid transfer and genome replication, has extensively enriched our vision of the virus world. Many of the structures available correspond to potential targets for antiviral drugs against important human pathogens. This article provides an overview of the current knowledge of different structural aspects of the above-mentioned processes. PMID:25485129

  1. The Development of a Viral Mediated CRISPR/Cas9 System with Doxycycline Dependent gRNA Expression for Inducible In vitro and In vivo Genome Editing.

    PubMed

    de Solis, Christopher A; Ho, Anthony; Holehonnur, Roopashri; Ploski, Jonathan E

    2016-01-01

    The RNA-guided Cas9 nuclease, from the type II prokaryotic Clustered Regularly Interspersed Short Palindromic Repeats (CRISPR) adaptive immune system, has been adapted and utilized by scientists to edit the genomes of eukaryotic cells. Here, we report the development of a viral mediated CRISPR/Cas9 system that can be rendered inducible utilizing doxycycline (Dox) and can be delivered to cells in vitro and in vivo utilizing adeno-associated virus (AAV). Specifically, we developed an inducible gRNA (gRNAi) AAV vector that is designed to express the gRNA from a H1/TO promoter. This AAV vector is also designed to express the Tet repressor (TetR) to regulate the expression of the gRNAi in a Dox dependent manner. We show that H1/TO promoters of varying length and a U6/TO promoter can edit DNA with similar efficiency in vitro, in a Dox dependent manner. We also demonstrate that our inducible gRNAi vector can be used to edit the genomes of neurons in vivo within the mouse brain in a Dox dependent manner. Genome editing can be induced in vivo with this system by supplying animals Dox containing food for as little as 1 day. This system might be cross compatible with many existing S. pyogenes Cas9 systems (i.e., Cas9 mouse, CRISPRi, etc.), and therefore it likely can be used to render these systems inducible as well. PMID:27587996

  2. Effects of anti-cocaine vaccine and viral gene transfer of cocaine hydrolase in mice on cocaine toxicity including motor strength and liver damage

    PubMed Central

    Gao, Yang; Geng, Liyi; Orson, Frank; Kinsey, Berma; Kosten, Thomas R; Shen, Xiaoyun; Brimijoin, Stephen

    2012-01-01

    In developing an vivo drug-interception therapy to treat cocaine abuse and hinder relapse into drug seeking provoked by re-encounter with cocaine, two promising agents are: 1) a cocaine hydrolase enzyme (CocH) derived from human butyrylcholinesterase and delivered by gene transfer: 2) an anti-cocaine antibody elicited by vaccination. Recent behavioral experiments showed that antibody and enzyme work in a complementary fashion to reduce cocaine-stimulated locomotor activity in rats and mice. Our present goal was to test protection against liver damage and muscle weakness in mice challenged with massive doses of cocaine at or near the LD50 level (100 to 120 mg/kg, i.p.). We found that, when the interceptor proteins were combined at doses that were only modestly protective in isolation (enzyme, 1 mg/kg; antibody, 8 mg/kg), they provided complete protection of liver tissue and motor function. When the enzyme levels were ~ 400-fold higher, after in vivo transduction by adeno-associated viral vector, similar protection was observed from CocH alone. PMID:22935511

  3. Virally mediated Kcnq1 gene replacement therapy in the immature scala media restores hearing in a mouse model of human Jervell and Lange-Nielsen deafness syndrome

    PubMed Central

    Chang, Qing; Wang, Jianjun; Li, Qi; Kim, Yeunjung; Zhou, Binfei; Wang, Yunfeng; Li, Huawei; Lin, Xi

    2015-01-01

    Mutations in the potassium channel subunit KCNQ1 cause the human severe congenital deafness Jervell and Lange-Nielsen (JLN) syndrome. We applied a gene therapy approach in a mouse model of JLN syndrome (Kcnq1−/− mice) to prevent the development of deafness in the adult stage. A modified adeno-associated virus construct carrying a Kcnq1 expression cassette was injected postnatally (P0–P2) into the endolymph, which resulted in Kcnq1 expression in most cochlear marginal cells where native Kcnq1 is exclusively expressed. We also found that extensive ectopic virally mediated Kcnq1 transgene expression did not affect normal cochlear functions. Examination of cochlear morphology showed that the collapse of the Reissner’s membrane and degeneration of hair cells (HCs) and cells in the spiral ganglia were corrected in Kcnq1−/− mice. Electrophysiological tests showed normal endocochlear potential in treated ears. In addition, auditory brainstem responses showed significant hearing preservation in the injected ears, ranging from 20 dB improvement to complete correction of the deafness phenotype. Our results demonstrate the first successful gene therapy treatment for gene defects specifically affecting the function of the stria vascularis, which is a major site affected by genetic mutations in inherited hearing loss. PMID:26084842

  4. Virally mediated Kcnq1 gene replacement therapy in the immature scala media restores hearing in a mouse model of human Jervell and Lange-Nielsen deafness syndrome.

    PubMed

    Chang, Qing; Wang, Jianjun; Li, Qi; Kim, Yeunjung; Zhou, Binfei; Wang, Yunfeng; Li, Huawei; Lin, Xi

    2015-06-17

    Mutations in the potassium channel subunit KCNQ1 cause the human severe congenital deafness Jervell and Lange-Nielsen (JLN) syndrome. We applied a gene therapy approach in a mouse model of JLN syndrome (Kcnq1(-/-) mice) to prevent the development of deafness in the adult stage. A modified adeno-associated virus construct carrying a Kcnq1 expression cassette was injected postnatally (P0-P2) into the endolymph, which resulted in Kcnq1 expression in most cochlear marginal cells where native Kcnq1 is exclusively expressed. We also found that extensive ectopic virally mediated Kcnq1 transgene expression did not affect normal cochlear functions. Examination of cochlear morphology showed that the collapse of the Reissner's membrane and degeneration of hair cells (HCs) and cells in the spiral ganglia were corrected in Kcnq1(-/-) mice. Electrophysiological tests showed normal endocochlear potential in treated ears. In addition, auditory brainstem responses showed significant hearing preservation in the injected ears, ranging from 20 dB improvement to complete correction of the deafness phenotype. Our results demonstrate the first successful gene therapy treatment for gene defects specifically affecting the function of the stria vascularis, which is a major site affected by genetic mutations in inherited hearing loss.

  5. The Development of a Viral Mediated CRISPR/Cas9 System with Doxycycline Dependent gRNA Expression for Inducible In vitro and In vivo Genome Editing

    PubMed Central

    de Solis, Christopher A.; Ho, Anthony; Holehonnur, Roopashri; Ploski, Jonathan E.

    2016-01-01

    The RNA-guided Cas9 nuclease, from the type II prokaryotic Clustered Regularly Interspersed Short Palindromic Repeats (CRISPR) adaptive immune system, has been adapted and utilized by scientists to edit the genomes of eukaryotic cells. Here, we report the development of a viral mediated CRISPR/Cas9 system that can be rendered inducible utilizing doxycycline (Dox) and can be delivered to cells in vitro and in vivo utilizing adeno-associated virus (AAV). Specifically, we developed an inducible gRNA (gRNAi) AAV vector that is designed to express the gRNA from a H1/TO promoter. This AAV vector is also designed to express the Tet repressor (TetR) to regulate the expression of the gRNAi in a Dox dependent manner. We show that H1/TO promoters of varying length and a U6/TO promoter can edit DNA with similar efficiency in vitro, in a Dox dependent manner. We also demonstrate that our inducible gRNAi vector can be used to edit the genomes of neurons in vivo within the mouse brain in a Dox dependent manner. Genome editing can be induced in vivo with this system by supplying animals Dox containing food for as little as 1 day. This system might be cross compatible with many existing S. pyogenes Cas9 systems (i.e., Cas9 mouse, CRISPRi, etc.), and therefore it likely can be used to render these systems inducible as well. PMID:27587996

  6. Viral infections during pregnancy.

    PubMed

    Silasi, Michelle; Cardenas, Ingrid; Kwon, Ja-Young; Racicot, Karen; Aldo, Paula; Mor, Gil

    2015-03-01

    Viral infections during pregnancy have long been considered benign conditions with a few notable exceptions, such as herpes virus. The recent Ebola outbreak and other viral epidemics and pandemics show how pregnant women suffer worse outcomes (such as preterm labor and adverse fetal outcomes) than the general population and non-pregnant women. New knowledge about the ways the maternal-fetal interface and placenta interact with the maternal immune system may explain these findings. Once thought to be 'immunosuppressed', the pregnant woman actually undergoes an immunological transformation, where the immune system is necessary to promote and support the pregnancy and growing fetus. When this protection is breached, as in a viral infection, this security is weakened and infection with other microorganisms can then propagate and lead to outcomes, such as preterm labor. In this manuscript, we review the major viral infections relevant to pregnancy and offer potential mechanisms for the associated adverse pregnancy outcomes. PMID:25582523

  7. Viral Hemorrhagic Fevers

    MedlinePlus

    ... Related Links About VSPB (Viral Special Pathogens Branch) File Formats Help: How do I view different file formats (PDF, DOC, PPT, MPEG) on this site? Adobe PDF file Microsoft PowerPoint file Microsoft Word file Microsoft Excel ...

  8. VIRAL INFECTIONS DURING PREGNANCY

    PubMed Central

    Silasi, Michelle; Cardenas, Ingrid; Racicot, Karen; Kwon, Ja-Young; Aldo, Paula; Mor, Gil

    2015-01-01

    Viral infections during pregnancy have long been considered benign conditions with a few notable exceptions, such as herpes virus. The recent Ebola outbreak and other viral epidemics and pandemics show how pregnant women suffer worse outcomes (such as preterm labor and adverse fetal outcomes) than the general population and non-pregnant women. New knowledge about the ways the maternal-fetal interface and placenta interact with the maternal immune system may explain these findings. Once thought to be “immunosuppressed”, the pregnant woman actually undergoes an immunological transformation, where the immune system is necessary to promote and support the pregnancy and growing fetus. When this protection is breached, as in a viral infection, this security is weakened and infection with other microorganisms can then propagate and lead to outcomes, such as preterm labor. In this manuscript, we review the major viral infections relevant to pregnancy, and offer potential mechanisms for the associated adverse pregnancy outcomes. PMID:25582523

  9. HIV and Viral Hepatitis

    MedlinePlus

    ... prevalent among blacks as among whites. Viral Hepatitis Transmission People can be infected with the three most ... risk for HAV. • • New data suggest that sexual transmission of HCV among MSM with HIV occurs more ...

  10. Viral miRNAs.

    PubMed

    Plaisance-Bonstaff, Karlie; Renne, Rolf

    2011-01-01

    Since 2004, more than 200 microRNAs (miRNAs) have been discovered in double-stranded DNA viruses, mainly herpesviruses and polyomaviruses (Nucleic Acids Res 32:D109-D111, 2004). miRNAs are short 22  ±  3 nt RNA molecules that posttranscriptionally regulate gene expression by binding to 3'-untranslated regions (3'UTR) of target mRNAs, thereby inducing translational silencing and/or transcript degradation (Nature 431:350-355, 2004; Cell 116:281-297, 2004). Since miRNAs require only limited complementarity for binding, miRNA targets are difficult to determine (Mol Cell 27:91-105, 2007). To date, targets have only been experimentally verified for relatively few viral miRNAs, which either target viral or host cellular gene expression: For example, SV40 and related polyomaviruses encode miRNAs which target viral large T antigen expression (Nature 435:682-686, 2005; J Virol 79:13094-13104, 2005; Virology 383:183-187, 2009; J Virol 82:9823-9828, 2008) and miRNAs of α-, β-, and γ-herpesviruses have been implicated in regulating the transition from latent to lytic gene expression, a key step in the herpesvirus life cycle. Viral miRNAs have also been shown to target various host cellular genes. Although this field is just beginning to unravel the multiple roles of viral miRNA in biology and pathogenesis, the current data strongly suggest that virally encoded miRNAs are able to regulate fundamental biological processes such as immune recognition, promotion of cell survival, angiogenesis, proliferation, and cell differentiation. This chapter aims to summarize our current knowledge of viral miRNAs, their targets and function, and the challenges lying ahead to decipher their role in viral biology, pathogenesis, and for γ-herepsvirus-encoded miRNAs, potentially tumorigenesis. PMID:21431678

  11. NCBI viral genomes resource.

    PubMed

    Brister, J Rodney; Ako-Adjei, Danso; Bao, Yiming; Blinkova, Olga

    2015-01-01

    Recent technological innovations have ignited an explosion in virus genome sequencing that promises to fundamentally alter our understanding of viral biology and profoundly impact public health policy. Yet, any potential benefits from the billowing cloud of next generation sequence data hinge upon well implemented reference resources that facilitate the identification of sequences, aid in the assembly of sequence reads and provide reference annotation sources. The NCBI Viral Genomes Resource is a reference resource designed to bring order to this sequence shockwave and improve usability of viral sequence data. The resource can be accessed at http://www.ncbi.nlm.nih.gov/genome/viruses/ and catalogs all publicly available virus genome sequences and curates reference genome sequences. As the number of genome sequences has grown, so too have the difficulties in annotating and maintaining reference sequences. The rapid expansion of the viral sequence universe has forced a recalibration of the data model to better provide extant sequence representation and enhanced reference sequence products to serve the needs of the various viral communities. This, in turn, has placed increased emphasis on leveraging the knowledge of individual scientific communities to identify important viral sequences and develop well annotated reference virus genome sets.

  12. Immigration and viral hepatitis.

    PubMed

    Sharma, Suraj; Carballo, Manuel; Feld, Jordan J; Janssen, Harry L A

    2015-08-01

    WHO estimates reveal that the global prevalence of viral hepatitis may be as high as 500 million, with an annual mortality rate of up to 1.3 million individuals. The majority of this global burden of disease is borne by nations of the developing world with high rates of vertical and iatrogenic transmission of HBV and HCV, as well as poor access to healthcare. In 2013, 3.2% of the global population (231 million individuals) migrated into a new host nation. Migrants predominantly originate from the developing countries of the south, into the developed economies of North America and Western Europe. This mass migration of individuals from areas of high-prevalence of viral hepatitis poses a unique challenge to the healthcare systems of the host nations. Due to a lack of universal standards for screening, vaccination and treatment of viral hepatitis, the burden of chronic liver disease and hepatocellular carcinoma continues to increase among migrant populations globally. Efforts to increase case identification and treatment among migrants have largely been limited to small outreach programs in urban centers, such that the majority of migrants with viral hepatitis continue to remain unaware of their infection. This review summarizes the data on prevalence of viral hepatitis and burden of chronic liver disease among migrants, current standards for screening and treatment of immigrants and refugees, and efforts to improve the identification and treatment of viral hepatitis among migrants. PMID:25962882

  13. Immigration and viral hepatitis.

    PubMed

    Sharma, Suraj; Carballo, Manuel; Feld, Jordan J; Janssen, Harry L A

    2015-08-01

    WHO estimates reveal that the global prevalence of viral hepatitis may be as high as 500 million, with an annual mortality rate of up to 1.3 million individuals. The majority of this global burden of disease is borne by nations of the developing world with high rates of vertical and iatrogenic transmission of HBV and HCV, as well as poor access to healthcare. In 2013, 3.2% of the global population (231 million individuals) migrated into a new host nation. Migrants predominantly originate from the developing countries of the south, into the developed economies of North America and Western Europe. This mass migration of individuals from areas of high-prevalence of viral hepatitis poses a unique challenge to the healthcare systems of the host nations. Due to a lack of universal standards for screening, vaccination and treatment of viral hepatitis, the burden of chronic liver disease and hepatocellular carcinoma continues to increase among migrant populations globally. Efforts to increase case identification and treatment among migrants have largely been limited to small outreach programs in urban centers, such that the majority of migrants with viral hepatitis continue to remain unaware of their infection. This review summarizes the data on prevalence of viral hepatitis and burden of chronic liver disease among migrants, current standards for screening and treatment of immigrants and refugees, and efforts to improve the identification and treatment of viral hepatitis among migrants.

  14. Bacterial CRISPR/Cas DNA endonucleases: A revolutionary technology that could dramatically impact viral research and treatment

    SciTech Connect

    Kennedy, Edward M.; Cullen, Bryan R.

    2015-05-15

    CRISPR/Cas systems mediate bacterial adaptive immune responses that evolved to protect bacteria from bacteriophage and other horizontally transmitted genetic elements. Several CRISPR/Cas systems exist but the simplest variant, referred to as Type II, has a single effector DNA endonuclease, called Cas9, which is guided to its viral DNA target by two small RNAs, the crRNA and the tracrRNA. Initial efforts to adapt the CRISPR/Cas system for DNA editing in mammalian cells, which focused on the Cas9 protein from Streptococcus pyogenes (Spy), demonstrated that Spy Cas9 can be directed to DNA targets in mammalian cells by tracrRNA:crRNA fusion transcripts called single guide RNAs (sgRNA). Upon binding, Cas9 induces DNA cleavage leading to mutagenesis as a result of error prone non-homologous end joining (NHEJ). Recently, the Spy Cas9 system has been adapted for high throughput screening of genes in human cells for their relevance to a particular phenotype and, more generally, for the targeted inactivation of specific genes, in cell lines and in vivo in a number of model organisms. The latter aim seems likely to be greatly enhanced by the recent development of Cas9 proteins from bacterial species such as Neisseria meningitidis and Staphyloccus aureus that are small enough to be expressed using adeno-associated (AAV)-based vectors that can be readily prepared at very high titers. The evolving Cas9-based DNA editing systems therefore appear likely to not only impact virology by allowing researchers to screen for human genes that affect the replication of pathogenic human viruses of all types but also to derive clonal human cell lines that lack individual gene products that either facilitate or restrict viral replication. Moreover, high titer AAV-based vectors offer the possibility of directly targeting DNA viruses that infect discrete sites in the human body, such as herpes simplex virus and hepatitis B virus, with the hope that the entire population of viral DNA genomes

  15. Nosocomial viral respiratory infections.

    PubMed

    Graman, P S; Hall, C B

    1989-12-01

    Nosocomial infections with respiratory tract viruses, particularly influenza and respiratory syncytial viruses, account for the majority of serious nosocomial viral disease. Chronically ill, immunocompromised, elderly, and very young hosts are especially vulnerable to potentially life-threatening involvement of the lower respiratory tract. Effective preventive strategies are based upon early accurate viral diagnosis and an appreciation of the epidemiology and mechanisms of transmission for each viral agent. Influenza viruses spread via airborne dispersion of small particle aerosols, resulting in explosive outbreaks; control measures emphasize immunization and chemoprophylaxis of susceptible patients and personnel, and isolation of those already infected. Transmission of respiratory syncytial virus, in contrast, seems to require closer contact, with virus passed on hands, fomites, or in large droplets inoculated into the eyes and nose at close range. Strategies for control of nosocomial respiratory syncytial virus are designed to interrupt hand carriage and inoculation of virus onto mucous membranes.

  16. Viral hepatitis: Indian scenario.

    PubMed

    Satsangi, Sandeep; Chawla, Yogesh K

    2016-07-01

    Viral hepatitis is a cause for major health care burden in India and is now equated as a threat comparable to the "big three" communicable diseases - HIV/AIDS, malaria and tuberculosis. Hepatitis A virus and Hepatitis E virus are predominantly enterically transmitted pathogens and are responsible to cause both sporadic infections and epidemics of acute viral hepatitis. Hepatitis B virus and Hepatitis C virus are predominantly spread via parenteral route and are notorious to cause chronic hepatitis which can lead to grave complications including cirrhosis of liver and hepatocellular carcinoma. Around 400 million people all over the world suffer from chronic hepatitis and the Asia-Pacific region constitutes the epicentre of this epidemic. The present article would aim to cover the basic virologic aspects of these viruses and highlight the present scenario of viral hepatitis in India. PMID:27546957

  17. Modeling Viral Capsid Assembly

    PubMed Central

    2014-01-01

    I present a review of the theoretical and computational methodologies that have been used to model the assembly of viral capsids. I discuss the capabilities and limitations of approaches ranging from equilibrium continuum theories to molecular dynamics simulations, and I give an overview of some of the important conclusions about virus assembly that have resulted from these modeling efforts. Topics include the assembly of empty viral shells, assembly around single-stranded nucleic acids to form viral particles, and assembly around synthetic polymers or charged nanoparticles for nanotechnology or biomedical applications. I present some examples in which modeling efforts have promoted experimental breakthroughs, as well as directions in which the connection between modeling and experiment can be strengthened. PMID:25663722

  18. Viral vaccines: selected topics.

    PubMed

    Kańtoch, M

    1996-01-01

    Significant role of viruses in pathology, their dominating position in etiology of infectious diseases point at the special position of active prophylactic procedures based on vaccination. The real role and value of viral vaccines of classic and modern generations, the limitation of immune potency in suppression of defence mechanisms, some problems of immunization against virus vertical transmission are presented in the paper. The reader may find tables which cumulate selected but significant patterns of viral vaccines and vaccinations, and selected papers devoted to topics discussed. PMID:9017153

  19. Viral meningitis and encephalitis.

    PubMed

    Tuppeny, Misti

    2013-09-01

    Meningitis is an inflammation of the meninges, whereas encephalitis is inflammation of the parenchymal brain tissue. The single distinguishing element between the 2 diagnoses is the altered state of consciousness, focal deficits, and seizures found in encephalitis. Consequently meningoencephalitis is a term used when both findings are present in the patient. Viral meningitis is not necessarily reported as it is often underdiagnosed, whereas encephalitis cases are on the increase in various areas of North America. Improved imaging and viral diagnostics, as well as enhanced neurocritical care management, have improved patient outcomes to date.

  20. Viral infections in pigeons.

    PubMed

    Marlier, D; Vindevogel, H

    2006-07-01

    This review provides a current update on the major viral diseases of the domestic pigeon (Columba livia domestica), based on scientific reports and clinical experience. Paramyxovirus 1, adenovirus, rotavirus, herpesvirus 1, poxvirus and circovirus infections are described according to common clinical signs and target tissues. Since pigeons are sometimes treated as if they were poultry, the review also summarises the common viral infections of poultry for which pigeons are considered resistant. It is hoped that the review will provide a useful reference for veterinarians and others and offer advice on the diagnosis, treatment and prevention of the major infectious diseases of pigeons.

  1. Failure of Viral Shells

    NASA Astrophysics Data System (ADS)

    Klug, William S.; Bruinsma, Robijn F.; Michel, Jean-Philippe; Knobler, Charles M.; Ivanovska, Irena L.; Schmidt, Christoph F.; Wuite, Gijs J. L.

    2006-12-01

    We report a combined theoretical and experimental study of the structural failure of viral shells under mechanical stress. We find that discontinuities in the force-indentation curve associated with failure should appear when the so-called Föppl von Kármán (FvK) number exceeds a critical value. A nanoindentation study of a viral shell subject to a soft-mode instability, where the stiffness of the shell decreases with increasing pH, confirms the predicted onset of failure as a function of the FvK number.

  2. Dengue viral infection.

    PubMed

    Sarin, Y K; Singh, S; Singh, T

    1998-02-01

    Dengue viral infection produces a spectrum of disease. For example, mild dengue disease is characterized by biphasic fever, myalgia, arthralgia, leukopenia, and lymphadenopathy, while dengue hemorrhagic fever is an often fatal disease characterized by hemorrhages and shock syndrome. The disease, especially in its severe form, is seen more often among children than among adults. With focus upon India, dengue's etiology, epidemiology, pathology, pathogenesis of dengue hemorrhagic fever, clinical manifestations of both the mild and severe forms of dengue viral infection, diagnosis, differential diagnosis, treatment, prevention, and prognosis are discussed.

  3. Emerging viral infections.

    PubMed

    Bale, James F

    2012-09-01

    Unique disorders appear episodically in human populations and cause life-threatening systemic or neurological disease. Historical examples of such disorders include von Economo encephalitis, a disorder of presumed viral etiology; acquired immune deficiency syndrome, caused by the human immunodeficiency virus; and severe acute respiratory syndrome, caused by a member of the coronavirus family. This article describes the factors that contribute to the emergence of infectious diseases and focuses on selected recent examples of emerging viral infections that can affect the nervous system of infants, children, and adolescents.

  4. Viral apoptotic mimicry.

    PubMed

    Amara, Ali; Mercer, Jason

    2015-08-01

    As opportunistic pathogens, viruses have evolved many elegant strategies to manipulate host cells for infectious entry and replication. Viral apoptotic mimicry, defined by the exposure of phosphatidylserine - a marker for apoptosis - on the pathogen surface, is emerging as a common theme used by enveloped viruses to promote infection. Focusing on the four best described examples (vaccinia virus, dengue virus, Ebola virus and pseudotyped lentivirus), we summarize our current understanding of apoptotic mimicry as a mechanism for virus entry, binding and immune evasion. We also describe recent examples of non-enveloped viruses that use this mimicry strategy, and discuss future directions and how viral apoptotic mimicry could be targeted therapeutically.

  5. Overexpression of the steroidogenic enzyme cytochrome P450 side chain cleavage in the ventral tegmental area increases 3α,5α-THP and reduces long-term operant ethanol self-administration.

    PubMed

    Cook, Jason B; Werner, David F; Maldonado-Devincci, Antoniette M; Leonard, Maggie N; Fisher, Kristen R; O'Buckley, Todd K; Porcu, Patrizia; McCown, Thomas J; Besheer, Joyce; Hodge, Clyde W; Morrow, A Leslie

    2014-04-23

    Neuroactive steroids are endogenous neuromodulators capable of altering neuronal activity and behavior. In rodents, systemic administration of endogenous or synthetic neuroactive steroids reduces ethanol self-administration. We hypothesized this effect arises from actions within mesolimbic brain regions that we targeted by viral gene delivery. Cytochrome P450 side chain cleavage (P450scc) converts cholesterol to pregnenolone, the rate-limiting enzymatic reaction in neurosteroidogenesis. Therefore, we constructed a recombinant adeno-associated serotype 2 viral vector (rAAV2), which drives P450scc expression and neuroactive steroid synthesis. The P450scc-expressing vector (rAAV2-P450scc) or control GFP-expressing vector (rAAV2-GFP) were injected bilaterally into the ventral tegmental area (VTA) or nucleus accumbens (NAc) of alcohol preferring (P) rats trained to self-administer ethanol. P450scc overexpression in the VTA significantly reduced ethanol self-administration by 20% over the 3 week test period. P450scc overexpression in the NAc, however, did not alter ethanol self-administration. Locomotor activity was unaltered by vector administration to either region. P450scc overexpression produced a 36% increase in (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP, allopregnanolone)-positive cells in the VTA, but did not increase 3α,5α-THP immunoreactivity in NAc. These results suggest that P450scc overexpression and the resultant increase of 3α,5α-THP-positive cells in the VTA reduces ethanol reinforcement. 3α,5α-THP is localized to neurons in the VTA, including tyrosine hydroxylase neurons, but not astrocytes. Overall, the results demonstrate that using gene delivery to modulate neuroactive steroids shows promise for examining the neuronal mechanisms of moderate ethanol drinking, which could be extended to other behavioral paradigms and neuropsychiatric pathology.

  6. Bulk regional viral injection in neonatal mice enables structural and functional interrogation of defined neuronal populations throughout targeted brain areas.

    PubMed

    Cheetham, Claire E J; Grier, Bryce D; Belluscio, Leonardo

    2015-01-01

    The ability to label and manipulate specific cell types is central to understanding the structure and function of neuronal circuits. Here, we have developed a simple, affordable strategy for labeling of genetically defined populations of neurons throughout a targeted brain region: Bulk Regional Viral Injection (BReVI). Our strategy involves a large volume adeno-associated virus (AAV) injection in the targeted brain region of neonatal Cre driver mice. Using the mouse olfactory bulb (OB) as a model system, we tested the ability of BReVI to broadly and selectively label tufted cells, one of the two principal neuron populations of the OB, in CCK-IRES-Cre mice. BReVI resulted in labeling of neurons throughout the injected OB, with no spatial bias toward the injection site and no evidence of damage. The specificity of BReVI labeling was strikingly similar to that seen previously using immunohistochemical staining for cholecystokinin (CCK), an established tufted cell marker. Hence, the CCK-IRES-Cre line in combination with BReVI can provide an important tool for targeting and manipulation of OB tufted cells. We also found robust Cre-dependent reporter expression within three days of BReVI, which enabled us to assess developmental changes in the number and laminar distribution of OB tufted cells during the first three postnatal weeks. Furthermore, we demonstrate that BReVI permits structural and functional imaging in vivo, and can be combined with transgenic strategies to facilitate multi-color labeling of neuronal circuit components. BReVI is broadly applicable to different Cre driver lines and can be used to regionally manipulate genetically defined populations of neurons in any accessible brain region. PMID:26594154

  7. Bulk regional viral injection in neonatal mice enables structural and functional interrogation of defined neuronal populations throughout targeted brain areas

    PubMed Central

    Cheetham, Claire E. J.; Grier, Bryce D.; Belluscio, Leonardo

    2015-01-01

    The ability to label and manipulate specific cell types is central to understanding the structure and function of neuronal circuits. Here, we have developed a simple, affordable strategy for labeling of genetically defined populations of neurons throughout a targeted brain region: Bulk Regional Viral Injection (BReVI). Our strategy involves a large volume adeno-associated virus (AAV) injection in the targeted brain region of neonatal Cre driver mice. Using the mouse olfactory bulb (OB) as a model system, we tested the ability of BReVI to broadly and selectively label tufted cells, one of the two principal neuron populations of the OB, in CCK-IRES-Cre mice. BReVI resulted in labeling of neurons throughout the injected OB, with no spatial bias toward the injection site and no evidence of damage. The specificity of BReVI labeling was strikingly similar to that seen previously using immunohistochemical staining for cholecystokinin (CCK), an established tufted cell marker. Hence, the CCK-IRES-Cre line in combination with BReVI can provide an important tool for targeting and manipulation of OB tufted cells. We also found robust Cre-dependent reporter expression within three days of BReVI, which enabled us to assess developmental changes in the number and laminar distribution of OB tufted cells during the first three postnatal weeks. Furthermore, we demonstrate that BReVI permits structural and functional imaging in vivo, and can be combined with transgenic strategies to facilitate multi-color labeling of neuronal circuit components. BReVI is broadly applicable to different Cre driver lines and can be used to regionally manipulate genetically defined populations of neurons in any accessible brain region. PMID:26594154

  8. Gene transfer corrects acute GM2 gangliosidosis--potential therapeutic contribution of perivascular enzyme flow.

    PubMed

    Cachón-González, M Begoña; Wang, Susan Z; McNair, Rosamund; Bradley, Josephine; Lunn, David; Ziegler, Robin; Cheng, Seng H; Cox, Timothy M

    2012-08-01

    The GM2 gangliosidoses are fatal lysosomal storage diseases principally affecting the brain. Absence of β-hexosaminidase A and B activities in the Sandhoff mouse causes neurological dysfunction and recapitulates the acute Tay-Sachs (TSD) and Sandhoff diseases (SD) in infants. Intracranial coinjection of recombinant adeno-associated viral vectors (rAAV), serotype 2/1, expressing human β-hexosaminidase α (HEXA) and β (HEXB) subunits into 1-month-old Sandhoff mice gave unprecedented survival to 2 years and prevented disease throughout the brain and spinal cord. Classical manifestations of disease, including spasticity-as opposed to tremor-ataxia-were resolved by localized gene transfer to the striatum or cerebellum, respectively. Abundant biosynthesis of β-hexosaminidase isozymes and their global distribution via axonal, perivascular, and cerebrospinal fluid (CSF) spaces, as well as diffusion, account for the sustained phenotypic rescue-long-term protein expression by transduced brain parenchyma, choroid plexus epithelium, and dorsal root ganglia neurons supplies the corrective enzyme. Prolonged survival permitted expression of cryptic disease in organs not accessed by intracranial vector delivery. We contend that infusion of rAAV into CSF space and intraparenchymal administration by convection-enhanced delivery at a few strategic sites will optimally treat neurodegeneration in many diseases affecting the nervous system. PMID:22453766

  9. Gene Transfer Corrects Acute GM2 Gangliosidosis—Potential Therapeutic Contribution of Perivascular Enzyme Flow

    PubMed Central

    Cachón-González, M Begoña; Wang, Susan Z; McNair, Rosamund; Bradley, Josephine; Lunn, David; Ziegler, Robin; Cheng, Seng H; Cox, Timothy M

    2012-01-01

    The GM2 gangliosidoses are fatal lysosomal storage diseases principally affecting the brain. Absence of β-hexosaminidase A and B activities in the Sandhoff mouse causes neurological dysfunction and recapitulates the acute Tay–Sachs (TSD) and Sandhoff diseases (SD) in infants. Intracranial coinjection of recombinant adeno-associated viral vectors (rAAV), serotype 2/1, expressing human β-hexosaminidase α (HEXA) and β (HEXB) subunits into 1-month-old Sandhoff mice gave unprecedented survival to 2 years and prevented disease throughout the brain and spinal cord. Classical manifestations of disease, including spasticity—as opposed to tremor-ataxia—were resolved by localized gene transfer to the striatum or cerebellum, respectively. Abundant biosynthesis of β-hexosaminidase isozymes and their global distribution via axonal, perivascular, and cerebrospinal fluid (CSF) spaces, as well as diffusion, account for the sustained phenotypic rescue—long-term protein expression by transduced brain parenchyma, choroid plexus epithelium, and dorsal root ganglia neurons supplies the corrective enzyme. Prolonged survival permitted expression of cryptic disease in organs not accessed by intracranial vector delivery. We contend that infusion of rAAV into CSF space and intraparenchymal administration by convection-enhanced delivery at a few strategic sites will optimally treat neurodegeneration in many diseases affecting the nervous system. PMID:22453766

  10. Combined Paracrine and Endocrine AAV9 mediated Expression of Hepatocyte Growth Factor for the Treatment of Renal Fibrosis

    PubMed Central

    Schievenbusch, Stephanie; Strack, Ingo; Scheffler, Melanie; Nischt, Roswitha; Coutelle, Oliver; Hösel, Marianna; Hallek, Michael; Fries, Jochen WU; Dienes, Hans-Peter; Odenthal, Margarete; Büning, Hildegard

    2010-01-01

    In chronic renal disease, tubulointerstitial fibrosis is a leading cause of renal failure. Here, we made use of one of the most promising gene therapy vector platforms, the adeno-associated viral (AAV) vector system, and the COL4A3-deficient mice, a genetic mouse model of renal tubulointerstitial fibrosis, to develop a novel bidirectional treatment strategy to prevent renal fibrosis. By comparing different AAV serotypes in reporter studies, we identified AAV9 as the most suitable delivery vector to simultaneously target liver parenchyma for endocrine and renal tubular epithelium for paracrine therapeutic expression of the antifibrogenic cytokine human hepatocyte growth factor (hHGF). We used transcriptional targeting to drive hHGF expression from the newly developed CMV-enhancer-Ksp-cadherin-promoter (CMV-Ksp) in renal and hepatic tissue following tail vein injection of rAAV9-CMV-Ksp-hHGF into COL4A3-deficient mice. The therapeutic efficiency of our approach was demonstrated by a remarkable attenuation of tubulointerstitial fibrosis and repression of fibrotic markers such as collagen1α1 (Col1A1), platelet-derived growth factor receptor-β (PDGFR-β), and α-smooth muscle actin (SMA). Taken together, our results show the great potential of rAAV9 as an intravenously applicable vector for the combined paracrine and endocrine expression of antifibrogenic factors in the treatment of renal failure caused by tubulointerstitial fibrosis. PMID:20424598

  11. BIOMARKERS OF VIRAL EXPOSURE

    EPA Science Inventory

    Viral and protozoan pathogens associated with raw sludge can cause encephalitis, gastroenteritis, hepatitis, myocarditis, and a number of other diseases. Raw sludge that has been treated to reduce these pathogens can be used for land application according to the regulations spec...

  12. Viral Space Situational Awareness

    NASA Astrophysics Data System (ADS)

    Gleckler, A.; Butterfield, M. C.

    2012-09-01

    Viral SSA takes advantage of the amateur astronomy community to provide an extremely low-cost and geographically-diverse network of optical SSA sites. In the spirit of programs such as DARPA's Grand Challenge and the National Weather Service's program of providing amateur meteorologists with weather stations linked to a central professional meteorological facility, we form a cooperative bond with a willing community of technically-minded individuals. We term this program "viral" because we will qualify an initial set of astronomers for SSA operation and then use word of mouth in the astronomy community, as well as an outreach program, to pull in new observers. The use of modern remote controlled telescopes allows the incorporation of certified amateur, university, and commercial telescope systems. The availability of the local Viral SSA member for troubleshooting eliminates most significant costs of operating a large network. In this talk, we discuss the key concepts of Viral SSA and the route to a network of 100+ sites in a three year or less timeframe.

  13. Leafhopper viral pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four newly discovered viral pathogens in leafhopper vectors of Pierce’s disease of grapes, have been shown to replicate in sharpshooter leafhoppers; the glassy-winged sharpshooter, GWSS, Homalodisca vitripennis, and Oncometopia nigricans (Hemiptera: Cicadellidae). The viruses were classified as memb...

  14. Bacterial CRISPR/Cas DNA endonucleases: A revolutionary technology that could dramatically impact viral research and treatment.

    PubMed

    Kennedy, Edward M; Cullen, Bryan R

    2015-05-01

    CRISPR/Cas systems mediate bacterial adaptive immune responses that evolved to protect bacteria from bacteriophage and other horizontally transmitted genetic elements. Several CRISPR/Cas systems exist but the simplest variant, referred to as Type II, has a single effector DNA endonuclease, called Cas9, which is guided to its viral DNA target by two small RNAs, the crRNA and the tracrRNA. Initial efforts to adapt the CRISPR/Cas system for DNA editing in mammalian cells, which focused on the Cas9 protein from Streptococcus pyogenes (Spy), demonstrated that Spy Cas9 can be directed to DNA targets in mammalian cells by tracrRNA:crRNA fusion transcripts called single guide RNAs (sgRNA). Upon binding, Cas9 induces DNA cleavage leading to mutagenesis as a result of error prone non-homologous end joining (NHEJ). Recently, the Spy Cas9 system has been adapted for high throughput screening of genes in human cells for their relevance to a particular phenotype and, more generally, for the targeted inactivation of specific genes, in cell lines and in vivo in a number of model organisms. The latter aim seems likely to be greatly enhanced by the recent development of Cas9 proteins from bacterial species such as Neisseria meningitidis and Staphyloccus aureus that are small enough to be expressed using adeno-associated (AAV)-based vectors that can be readily prepared at very high titers. The evolving Cas9-based DNA editing systems therefore appear likely to not only impact virology by allowing researchers to screen for human genes that affect the replication of pathogenic human viruses of all types but also to derive clonal human cell lines that lack individual gene products that either facilitate or restrict viral replication. Moreover, high titer AAV-based vectors offer the possibility of directly targeting DNA viruses that infect discrete sites in the human body, such as herpes simplex virus and hepatitis B virus, with the hope that the entire population of viral DNA genomes

  15. Bacterial CRISPR/Cas DNA endonucleases: A revolutionary technology that could dramatically impact viral research and treatment.

    PubMed

    Kennedy, Edward M; Cullen, Bryan R

    2015-05-01

    CRISPR/Cas systems mediate bacterial adaptive immune responses that evolved to protect bacteria from bacteriophage and other horizontally transmitted genetic elements. Several CRISPR/Cas systems exist but the simplest variant, referred to as Type II, has a single effector DNA endonuclease, called Cas9, which is guided to its viral DNA target by two small RNAs, the crRNA and the tracrRNA. Initial efforts to adapt the CRISPR/Cas system for DNA editing in mammalian cells, which focused on the Cas9 protein from Streptococcus pyogenes (Spy), demonstrated that Spy Cas9 can be directed to DNA targets in mammalian cells by tracrRNA:crRNA fusion transcripts called single guide RNAs (sgRNA). Upon binding, Cas9 induces DNA cleavage leading to mutagenesis as a result of error prone non-homologous end joining (NHEJ). Recently, the Spy Cas9 system has been adapted for high throughput screening of genes in human cells for their relevance to a particular phenotype and, more generally, for the targeted inactivation of specific genes, in cell lines and in vivo in a number of model organisms. The latter aim seems likely to be greatly enhanced by the recent development of Cas9 proteins from bacterial species such as Neisseria meningitidis and Staphyloccus aureus that are small enough to be expressed using adeno-associated (AAV)-based vectors that can be readily prepared at very high titers. The evolving Cas9-based DNA editing systems therefore appear likely to not only impact virology by allowing researchers to screen for human genes that affect the replication of pathogenic human viruses of all types but also to derive clonal human cell lines that lack individual gene products that either facilitate or restrict viral replication. Moreover, high titer AAV-based vectors offer the possibility of directly targeting DNA viruses that infect discrete sites in the human body, such as herpes simplex virus and hepatitis B virus, with the hope that the entire population of viral DNA genomes

  16. Bacterial CRISPR/Cas DNA endonucleases: A revolutionary technology that could dramatically impact viral research and treatment

    PubMed Central

    Kennedy, Edward M.; Cullen, Bryan R.

    2015-01-01

    CRISPR/Cas systems mediate bacterial adaptive immune responses that evolved to protect bacteria from bacteriophage and other horizontally transmitted genetic elements. Several CRISPR/Cas systems exist but the simplest variant, referred to as Type II, has a single effector DNA endonuclease, called Cas9, which is guided to its viral DNA target by two small RNAs, the crRNA and the tracrRNA. Initial efforts to adapt the CRISPR/Cas system for DNA editing in mammalian cells, which focused on the Cas9 protein from Streptococcus pyogenes (Spy), demonstrated that Spy Cas9 can be directed to DNA targets in mammalian cells by tracrRNA:crRNA fusion transcripts called single guide RNAs (sgRNA). Upon binding, Cas9 induces DNA cleavage leading to mutagenesis as a result of error prone non-homologous end joining (NHEJ). Recently, the Spy Cas9 system has been adapted for high throughput screening of genes in human cells for their relevance to a particular phenotype and, more generally, for the targeted inactivation of specific genes, in cell lines and in vivo in a number of model organisms. The latter aim seems likely to be greatly enhanced by the recent development of Cas9 proteins from bacterial species such as Neisseria meningitidis and Staphyloccus aureus that are small enough to be expressed using adeno-associated (AAV)-based vectors that can be readily prepared at very high titers. The evolving Cas9-based DNA editing systems therefore appear likely to not only impact virology by allowing researchers to screen for human genes that affect the replication of pathogenic human viruses of all types but also to derive clonal human cell lines that lack individual gene products that either facilitate or restrict viral replication. Moreover, high titer AAV-based vectors offer the possibility of directly targeting DNA viruses that infect discrete sites in the human body, such as herpes simplex virus and hepatitis B virus, with the hope that the entire population of viral DNA genomes

  17. Viral Membrane Scission

    PubMed Central

    Rossman, Jeremy S.; Lamb, Robert A.

    2014-01-01

    Virus budding is a complex, multistep process in which viral proteins make specific alterations in membrane curvature. Many different viral proteins can deform the membrane and form a budding virion, but very few can mediate membrane scission to complete the budding process. As a result, enveloped viruses have developed numerous ways of facilitating membrane scission, including hijacking host cellular scission machinery and expressing their own scission proteins. These proteins mediate scission in very different ways, though the biophysical mechanics underlying their actions may be similar. In this review, we explore the mechanisms of membrane scission and the ways in which enveloped viruses use these systems to mediate the release of budding virions. PMID:24099087

  18. Viral membrane fusion.

    PubMed

    Harrison, Stephen C

    2015-05-01

    Membrane fusion is an essential step when enveloped viruses enter cells. Lipid bilayer fusion requires catalysis to overcome a high kinetic barrier; viral fusion proteins are the agents that fulfill this catalytic function. Despite a variety of molecular architectures, these proteins facilitate fusion by essentially the same generic mechanism. Stimulated by a signal associated with arrival at the cell to be infected (e.g., receptor or co-receptor binding, proton binding in an endosome), they undergo a series of conformational changes. A hydrophobic segment (a "fusion loop" or "fusion peptide") engages the target-cell membrane and collapse of the bridging intermediate thus formed draws the two membranes (virus and cell) together. We know of three structural classes for viral fusion proteins. Structures for both pre- and postfusion conformations of illustrate the beginning and end points of a process that can be probed by single-virion measurements of fusion kinetics.

  19. Viral membrane fusion

    SciTech Connect

    Harrison, Stephen C.

    2015-05-15

    Membrane fusion is an essential step when enveloped viruses enter cells. Lipid bilayer fusion requires catalysis to overcome a high kinetic barrier; viral fusion proteins are the agents that fulfill this catalytic function. Despite a variety of molecular architectures, these proteins facilitate fusion by essentially the same generic mechanism. Stimulated by a signal associated with arrival at the cell to be infected (e.g., receptor or co-receptor binding, proton binding in an endosome), they undergo a series of conformational changes. A hydrophobic segment (a “fusion loop” or “fusion peptide”) engages the target-cell membrane and collapse of the bridging intermediate thus formed draws the two membranes (virus and cell) together. We know of three structural classes for viral fusion proteins. Structures for both pre- and postfusion conformations of illustrate the beginning and end points of a process that can be probed by single-virion measurements of fusion kinetics. - Highlights: • Viral fusion proteins overcome the high energy barrier to lipid bilayer merger. • Different molecular structures but the same catalytic mechanism. • Review describes properties of three known fusion-protein structural classes. • Single-virion fusion experiments elucidate mechanism.

  20. Optimizing Viral Discovery in Bats

    PubMed Central

    Young, Cristin C. W.; Olival, Kevin J.

    2016-01-01

    Viral discovery studies in bats have increased dramatically over the past decade, yet a rigorous synthesis of the published data is lacking. We extract and analyze data from 93 studies published between 2007–2013 to examine factors that increase success of viral discovery in bats, and specific trends and patterns of infection across host taxa and viral families. Over the study period, 248 novel viruses from 24 viral families have been described. Using generalized linear models, at a study level we show the number of host species and viral families tested best explained number of viruses detected. We demonstrate that prevalence varies significantly across viral family, specimen type, and host taxonomy, and calculate mean PCR prevalence by viral family and specimen type across all studies. Using a logistic model, we additionally identify factors most likely to increase viral detection at an individual level for the entire dataset and by viral families with sufficient sample sizes. Our analysis highlights major taxonomic gaps in recent bat viral discovery efforts and identifies ways to improve future viral pathogen detection through the design of more efficient and targeted sample collection and screening approaches. PMID:26867024

  1. Optimizing Viral Discovery in Bats.

    PubMed

    Young, Cristin C W; Olival, Kevin J

    2016-01-01

    Viral discovery studies in bats have increased dramatically over the past decade, yet a rigorous synthesis of the published data is lacking. We extract and analyze data from 93 studies published between 2007-2013 to examine factors that increase success of viral discovery in bats, and specific trends and patterns of infection across host taxa and viral families. Over the study period, 248 novel viruses from 24 viral families have been described. Using generalized linear models, at a study level we show the number of host species and viral families tested best explained number of viruses detected. We demonstrate that prevalence varies significantly across viral family, specimen type, and host taxonomy, and calculate mean PCR prevalence by viral family and specimen type across all studies. Using a logistic model, we additionally identify factors most likely to increase viral detection at an individual level for the entire dataset and by viral families with sufficient sample sizes. Our analysis highlights major taxonomic gaps in recent bat viral discovery efforts and identifies ways to improve future viral pathogen detection through the design of more efficient and targeted sample collection and screening approaches. PMID:26867024

  2. Intrastriatal rAAV-Mediated Delivery of Anti-huntingtin shRNAs Induces Partial Reversal of Disease Progression in R6/1 Huntington’s Disease Transgenic Mice

    PubMed Central

    Rodriguez-Lebron, Edgardo; Denovan-Wright, Eileen M.; Nash, Kevin; Lewin, Alfred S.; Mandel, Ronald J.

    2008-01-01

    Huntington’s disease (HD) is a fatal neurodegenerative disorder caused by the presence of an abnormally expanded polyglutamine domain in the N-terminus of huntingtin. We developed a recombinant adeno-associated viral serotype 5 (rAAV5) gene transfer strategy to posttranscriptionally suppress the levels of striatal mutant huntingtin (mHtt) in the R6/1 HD transgenic mouse via RNA interference. Transient cotransfection of HEK293 cells with plasmids expressing a portion of human mHtt derived from R6/1 transgenic HD mice and a short-hairpin RNA directed against the 5′ UTR of the mHtt mRNA (siHUNT-1) resulted in reduction in the levels of mHtt mRNA (−75%) and protein (−60%). Long-term in vivo rAAV5-mediated expression of siHUNT-1 in the striatum of R6/1 mice reduced the levels of mHtt mRNA (−78%) and protein (−28%) as determined by quantitative RT-PCR and Western blot analysis, respectively. The reduction in mHtt was concomitant with a reduction in the size and number of neuronal intranuclear inclusions and a small but significant normalization of the steady-state levels of preproenkephalin and dopamine- and cAMP-responsive phosphoprotein 32 kDa mRNA. Finally, bilateral expression of rAAV5-siHUNT-1 resulted in delayed onset of the rear paw clasping phenotype exhibited by the R6/1 mice. These results suggest that a reduction in the levels of striatal mHtt can ameliorate the HD phenotype of R6/1 mice. PMID:16019264

  3. AAV's Anatomy: Roadmap for Optimizing Vectors for Translational Success

    PubMed Central

    Samulski, R. Jude

    2014-01-01

    Adeno-Associated Virus based vectors (rAAV) are advantageous for human gene therapy due to low inflammatory responses, lack of toxicity, natural persistence, and ability to transencapsidate the genome allowing large variations in vector biology and tropism. Over sixty clinical trials have been conducted using rAAV serotype 2 for gene delivery with a number demonstrating success in immunoprivileged sites, including the retina and the CNS. Furthermore, an increasing number of trials have been initiated utilizing other serotypes of AAV to exploit vector tropism, trafficking, and expression efficiency. While these trials have demonstrated success in safety with emerging success in clinical outcomes, one benefit has been identification of issues associated with vector administration in humans (e.g. the role of pre-existing antibody responses, loss of transgene expression in non-immunoprivileged sites, and low transgene expression levels). For these reasons, several strategies are being used to optimize rAAV vectors, ranging from addition of exogenous agents for immune evasion to optimization of the transgene cassette for enhanced therapeutic output. By far, the vast majority of approaches have focused on genetic manipulation of the viral capsid. These methods include rational mutagenesis, engineering of targeting peptides, generation of chimeric particles, library and directed evolution approaches, as well as immune evasion modifications. Overall, these modifications have created a new repertoire of AAV vectors with improved targeting, transgene expression, and immune evasion. Continued work in these areas should synergize strategies to improve capsids and transgene cassettes that will eventually lead to optimized vectors ideally suited for translational success. PMID:20712583

  4. Combating emerging viral threats

    PubMed Central

    Bekerman, Elena; Einav, Shirit

    2015-01-01

    Synopsis Most approved antiviral therapeutics selectively inhibit proteins encoded by a single virus, thereby providing a “one drug-one bug” solution. As a result of this narrow spectrum of coverage and the high cost of drug development, therapies are currently approved for fewer than ten viruses out of the hundreds known to cause human disease. This perspective summarizes progress and challenges in the development of broad-spectrum antiviral therapies. These strategies include targeting enzymatic functions shared by multiple viruses and host cell machinery by newly discovered compounds or by repurposing approved drugs. These approaches offer new practical means for developing therapeutics against existing and emerging viral threats. PMID:25883340

  5. Viral complement regulatory proteins.

    PubMed

    Rosengard, A M; Ahearn, J M

    1999-05-01

    The inactivation of complement provides cells and tissues critical protection from complement-mediated attack and decreases the associated recruitment of other inflammatory mediators. In an attempt to evade the host immune response, viruses have evolved two mechanisms to acquire complement regulatory proteins. They can directly seize the host cell complement regulators onto their outer envelope and/or they can produce their own proteins which are either secreted into the neighboring intercellular space or expressed as membrane-bound proteins on the infected host cell. The following review will concentrate on the viral homologues of the mammalian complement regulatory proteins, specifically those containing complement control protein (CCP) repeats. PMID:10408371

  6. [Viral exanthematic childhood diseases].

    PubMed

    Allwinn, R; Doerr, H W

    1997-01-01

    Exanthem is defined as multiple, inflammatory skin alteration with a hematogenic, lymphogenic or neurogenic origin. Typically, so called exanthematic children's diseases are measles, mumps, rubella, varicella, erythema infectiosum (fifth disease) and in the past small pox. The pathogenesis of the viral-caused diseases primarily occurs in the vascular connective tissue. The cytopathogenetic effects result in inflammatory tissue reactions with activation of defence mechanism and producing of immune complexes. First symptoms are hyperemia, edema and inflammatory infiltrates with itchy swellings. Virological laboratory diagnosis are necessary especially for the progress of atypical infectious diseases, for persons with immunological or chronical illness and under chemotherapeutical or immunosuppressival treatment.

  7. Viral surveillance and discovery

    PubMed Central

    Lipkin, Walter Ian; Firth, Cadhla

    2014-01-01

    The field of virus discovery has burgeoned with the advent of high throughput sequencing platforms and bioinformatics programs that enable rapid identification and molecular characterization of known and novel agents, investments in global microbial surveillance that include wildlife and domestic animals as well as humans, and recognition that viruses may be implicated in chronic as well as acute diseases. Here we review methods for viral surveillance and discovery, strategies and pitfalls in linking discoveries to disease, and identify opportunities for improvements in sequencing instrumentation and analysis, the use of social media and medical informatics that will further advance clinical medicine and public health. PMID:23602435

  8. Equine viral arteritis.

    PubMed

    Balasuriya, Udeni B R

    2014-12-01

    Equine arteritis virus (EAV), the causative agent of equine viral arteritis (EVA), is a respiratory and reproductive disease that occurs throughout the world. EAV infection is highly species-specific and exclusively limited to members of the family Equidae, which includes horses, donkeys, mules, and zebras. EVA is an economically important disease and outbreaks could cause significant losses to the equine industry. The primary objective of this article is to summarize current understanding of EVA, specifically the disease, pathogenesis, epidemiology, host immune response, vaccination and treatment strategies, prevention and control measures, and future directions.

  9. Human viral gastroenteritis.

    PubMed Central

    Christensen, M L

    1989-01-01

    During the last 15 years, several different groups of fastidious viruses that are responsible for a large proportion of acute viral gastroenteritis cases have been discovered by the electron microscopic examination of stool specimens. This disease is one of the most prevalent and serious clinical syndromes seen around the world, especially in children. Rotaviruses, in the family Reoviridae, and fastidious fecal adenoviruses account for much of the viral gastroenteritis in infants and young children, whereas the small caliciviruses and unclassified astroviruses, and possibly enteric coronaviruses, are responsible for significantly fewer cases overall. In addition to electron microscopy, enzyme immunoassays and other rapid antigen detection systems have been developed to detect rotaviruses and fastidious fecal adenoviruses in the stool specimens of both nonhospitalized patients and those hospitalized for dehydration and electrolyte imbalance. Experimental rotavirus vaccines have also been developed, due to the prevalence and seriousness of rotavirus infection. The small, unclassified Norwalk virus and morphologically similar viruses are responsible for large and small outbreaks of acute gastroenteritis in older children, adolescents, and adults. Hospitalization of older patients infected with these viruses is usually not required, and their laboratory diagnoses have been limited primarily to research laboratories. Images PMID:2644024

  10. [Emergent viral infections].

    PubMed

    Galama, J M

    2001-03-31

    The emergence and re-emergence of viral infections is an ongoing process. Large-scale vaccination programmes led to the eradication or control of some viral infections in the last century, but new viruses are always emerging. Increased travel is leading to a rise in the importation of exotic infections such as dengue and hepatitis E, but also of hepatitis A, which is no longer endemic. Apart from import diseases new viruses have appeared (Nipah-virus and transfusion-transmitted virus). Existing viruses may suddenly cause more severe diseases, e.g. infection by enterovirus 71. The distribution area of a virus may change, e.g. in case of West Nile virus, an Egyptian encephalitis virus that appears to have established itself in the USA. Furthermore, there is no such thing as a completely new virus; it is always an existing virus that has adapted itself to another host or that was already present in humans but has only recently been discovered. A number of factors facilitate the emergence of new infectious diseases. These include intensive animal husbandry and the transport of animals. The unexpected appearance of West Nile virus in the western hemisphere was possibly due to animal transportation.

  11. Viral noncoding RNAs: more surprises

    PubMed Central

    Tycowski, Kazimierz T.; Guo, Yang Eric; Lee, Nara; Moss, Walter N.; Vallery, Tenaya K.; Xie, Mingyi

    2015-01-01

    Eukaryotic cells produce several classes of long and small noncoding RNA (ncRNA). Many DNA and RNA viruses synthesize their own ncRNAs. Like their host counterparts, viral ncRNAs associate with proteins that are essential for their stability, function, or both. Diverse biological roles—including the regulation of viral replication, viral persistence, host immune evasion, and cellular transformation—have been ascribed to viral ncRNAs. In this review, we focus on the multitude of functions played by ncRNAs produced by animal viruses. We also discuss their biogenesis and mechanisms of action. PMID:25792595

  12. [Update chronic viral hepatitis].

    PubMed

    Ziegenhagen, D J

    2016-03-01

    More than 500,000 people in Germany have chronic viral hepatitis. The interferon-based treatments formerly used in hepatitis B have been widely replaced by life-long oral medication with nucleoside or nucleotide analogues. Treatment for chronic hepatitis C has been improved substantially by the development of new and very expensive drug combinations. Up to 90% of patients can now be cured with certainty, and one to two years after successful treatment there is no relevant risk of recurrence. These individuals expect to receive insurance cover under appropriate conditions. Vaccination programmes are very efficient at decreasing the incidence of hepatitis B, but no vaccine against hepatitis C is likely to become available in the next decade. PMID:27111951

  13. Dengue viral infections

    PubMed Central

    Malavige, G; Fernando, S; Fernando, D; Seneviratne, S

    2004-01-01

    Dengue viral infections are one of the most important mosquito borne diseases in the world. They may be asymptomatic or may give rise to undifferentiated fever, dengue fever, dengue haemorrhagic fever (DHF), or dengue shock syndrome. Annually, 100 million cases of dengue fever and half a million cases of DHF occur worldwide. Ninety percent of DHF subjects are children less than 15 years of age. At present, dengue is endemic in 112 countries in the world. No vaccine is available for preventing this disease. Early recognition and prompt initiation of appropriate treatment are vital if disease related morbidity and mortality are to be limited. This review outlines aspects of the epidemiology of dengue infections, the dengue virus and its mosquito vector, clinical features and pathogenesis of dengue infections, and the management and control of these infections. PMID:15466994

  14. Viral quasispecies evolution.

    PubMed

    Domingo, Esteban; Sheldon, Julie; Perales, Celia

    2012-06-01

    Evolution of RNA viruses occurs through disequilibria of collections of closely related mutant spectra or mutant clouds termed viral quasispecies. Here we review the origin of the quasispecies concept and some biological implications of quasispecies dynamics. Two main aspects are addressed: (i) mutant clouds as reservoirs of phenotypic variants for virus adaptability and (ii) the internal interactions that are established within mutant spectra that render a virus ensemble the unit of selection. The understanding of viruses as quasispecies has led to new antiviral designs, such as lethal mutagenesis, whose aim is to drive viruses toward low fitness values with limited chances of fitness recovery. The impact of quasispecies for three salient human pathogens, human immunodeficiency virus and the hepatitis B and C viruses, is reviewed, with emphasis on antiviral treatment strategies. Finally, extensions of quasispecies to nonviral systems are briefly mentioned to emphasize the broad applicability of quasispecies theory.

  15. Viral Quasispecies Evolution

    PubMed Central

    Sheldon, Julie; Perales, Celia

    2012-01-01

    Summary: Evolution of RNA viruses occurs through disequilibria of collections of closely related mutant spectra or mutant clouds termed viral quasispecies. Here we review the origin of the quasispecies concept and some biological implications of quasispecies dynamics. Two main aspects are addressed: (i) mutant clouds as reservoirs of phenotypic variants for virus adaptability and (ii) the internal interactions that are established within mutant spectra that render a virus ensemble the unit of selection. The understanding of viruses as quasispecies has led to new antiviral designs, such as lethal mutagenesis, whose aim is to drive viruses toward low fitness values with limited chances of fitness recovery. The impact of quasispecies for three salient human pathogens, human immunodeficiency virus and the hepatitis B and C viruses, is reviewed, with emphasis on antiviral treatment strategies. Finally, extensions of quasispecies to nonviral systems are briefly mentioned to emphasize the broad applicability of quasispecies theory. PMID:22688811

  16. Dengue viral infections.

    PubMed

    Malavige, G N; Fernando, S; Fernando, D J; Seneviratne, S L

    2004-10-01

    Dengue viral infections are one of the most important mosquito borne diseases in the world. They may be asymptomatic or may give rise to undifferentiated fever, dengue fever, dengue haemorrhagic fever (DHF), or dengue shock syndrome. Annually, 100 million cases of dengue fever and half a million cases of DHF occur worldwide. Ninety percent of DHF subjects are children less than 15 years of age. At present, dengue is endemic in 112 countries in the world. No vaccine is available for preventing this disease. Early recognition and prompt initiation of appropriate treatment are vital if disease related morbidity and mortality are to be limited. This review outlines aspects of the epidemiology of dengue infections, the dengue virus and its mosquito vector, clinical features and pathogenesis of dengue infections, and the management and control of these infections.

  17. [Viral hemorrhagic fever].

    PubMed

    Kager, P A

    1998-02-28

    Viral haemorrhagic fevers, such as Lassa fever and yellow fever, cause tens of thousands of deaths annually outside the Netherlands. The viruses are mostly transmitted by mosquitoes, ticks or via excreta of rodents. Important to travellers are yellow fever, dengue and Lassa and Ebola fever. For yellow fever there is an efficacious vaccine. Dengue is frequently observed in travellers; prevention consists in avoiding mosquito bites, the treatment is symptomatic. Lassa and Ebola fever are extremely rare among travellers; a management protocol can be obtained from the Netherlands Ministry of Health, Welfare and Sports. Diagnostics of a patient from the tropics with fever and haemorrhagic diathesis should be aimed at treatable disorders such as malaria, typhoid fever, rickettsiosis or bacterial sepsis, because the probability of such a disease is much higher than that of Lassa or Ebola fever.

  18. Enhancing Transgene Expression from Recombinant AAV8 Vectors in Different Tissues Using Woodchuck Hepatitis Virus Post-Transcriptional Regulatory Element

    PubMed Central

    Wang, Lizheng; Wang, Zixuan; Zhang, Fangfang; Zhu, Rui; Bi, Jinpeng; Wu, Jiaxin; Zhang, Haihong; Wu, Hui; Kong, Wei; Yu, Bin; Yu, Xianghui

    2016-01-01

    Adeno-associated virus (AAV) vectors have been utilized extensively in gene therapy and gene function studies, as strong transgene expression is a prerequisite for positive outcomes. AAV8 was reported as the most efficient AAV serotype for transduction of the liver, brain and muscle compared with other serotypes. However, AAV8-mediated transduction of human hepatocytes is rather poor with approximately 20-fold lower efficiency compared with that of mouse hepatocytes. Therefore, we applied the woodchuck hepatitis virus post-transcriptional regulatory element (WPRE) to enhance AAV8-mediated transgene expression driven by a combination promoter (CAG promoter) with a CMV-IE enhancer and chicken beta-actin promoter for a more efficient viral vector. Transgene expression from recombinant AAV8 (rAAV8) vectors harboring a red fluorescent protein (RFP) reporter gene with or without WPRE were evaluated in vitro and in vivo. The results demonstrated that WPRE improved AAV8-mediated RFP expression in different cell lines with clear increases of transgene expression in the liver, brain or muscle of animals. The findings of this study will help to substantially reduce the quantity of viral particles that must be injected in order to reach a therapeutic level of transgene expression in gene therapy. Consequently, such dose reductions may lessen the potential risks associated with high doses of viral vectors. PMID:27076785

  19. Viral Hepatitis: A through E and Beyond

    MedlinePlus

    Viral Hepatitis: A through E and Beyond NATIONAL INSTITUTES OF HEALTH U.S. Department of Health and Human Services National Digestive Diseases Information Clearinghouse What is viral hepatitis? Viral hepatitis is inflammation of the liver caused ...

  20. Immunization Against Viral Diseases

    PubMed Central

    Wehrle, Paul F.

    1965-01-01

    Means are now at hand, if properly employed, to virtually eliminate clinical poliomyelitis and measles from this country. If such control is to be accomplished, more effective means are required to reach virtually all of the four million infants born each year in this country. Influenza can be suppressed, and improvements in influenza vaccine have been achieved in recent years. It seems likely at this time that at least several of the more important viral diseases can be controlled by utilizing antigens based on the biologic characteristics of the agent, and directed toward the reservoir of infection and the conditions favoring transmission of the infection. The theoretical problem of the effects in man of viruses that are oncogenic in rodents and are derived from various tissue culture systems deserves serious attention. However, this consideration, that of antigenic potency, and other problems reviewed should not be allowed to subvert efforts to solve the real problems that face us, the disability and death resulting from these common infections. PMID:14347979

  1. DENGUE VIRAL INFECTIONS

    PubMed Central

    Gurugama, Padmalal; Garg, Pankaj; Perera, Jennifer; Wijewickrama, Ananda; Seneviratne, Suranjith L

    2010-01-01

    Dengue viral infections are one of the most important mosquito-borne diseases in the world. Presently dengue is endemic in 112 countries in the world. It has been estimated that almost 100 million cases of dengue fever and half a million cases of dengue hemorrhagic fever (DHF) occur worldwide. An increasing proportion of DHF is in children less than 15 years of age, especially in South East and South Asia. The unique structure of the dengue virus and the pathophysiologic responses of the host, different serotypes, and favorable conditions for vector breeding have led to the virulence and spread of the infections. The manifestations of dengue infections are protean from being asymptomatic to undifferentiated fever, severe dengue infections, and unusual complications. Early recognition and prompt initiation of appropriate supportive treatment are often delayed resulting in unnecessarily high morbidity and mortality. Attempts are underway for the development of a vaccine for preventing the burden of this neglected disease. This review outlines the epidemiology, clinical features, pathophysiologic mechanisms, management, and control of dengue infections. PMID:20418983

  2. Dengue viral infections.

    PubMed

    Gurugama, Padmalal; Garg, Pankaj; Perera, Jennifer; Wijewickrama, Ananda; Seneviratne, Suranjith L

    2010-01-01

    Dengue viral infections are one of the most important mosquito-borne diseases in the world. Presently dengue is endemic in 112 countries in the world. It has been estimated that almost 100 million cases of dengue fever and half a million cases of dengue hemorrhagic fever (DHF) occur worldwide. An increasing proportion of DHF is in children less than 15 years of age, especially in South East and South Asia. The unique structure of the dengue virus and the pathophysiologic responses of the host, different serotypes, and favorable conditions for vector breeding have led to the virulence and spread of the infections. The manifestations of dengue infections are protean from being asymptomatic to undifferentiated fever, severe dengue infections, and unusual complications. Early recognition and prompt initiation of appropriate supportive treatment are often delayed resulting in unnecessarily high morbidity and mortality. Attempts are underway for the development of a vaccine for preventing the burden of this neglected disease. This review outlines the epidemiology, clinical features, pathophysiologic mechanisms, management, and control of dengue infections.

  3. Viral BLIP dynamics during HAART.

    SciTech Connect

    Markowitz, M.; Louie, M.; Hurley, A.; Ho, David D.; Perelson, Alan S.,; Di Mascio, M.

    2001-01-01

    Intermittent episodes of low-level viremia (blips) are often observed in well-suppressed, HAART-treated patients. It has been reported that viral blips do not correlate with the emergence of new HAART-related mutations; however, increased frequency of blips correlates with slower decay of latently infected cells. Since blips are transient and unpredictable, detailed knowledge about them is difficult to obtain. We present an analysis of the dynamics of viral blips from viral load (VL) measurements on 123 patients for a period of 809k480d (21-1817d) and sampled every 31{+-}12d for a total of 26{+-}15 samples per patient.

  4. Polycistronic viral vectors.

    PubMed

    de Felipe, P

    2002-09-01

    Traditionally, vectors for gene transfer/therapy experiments were mono- or bicistronic. In the latter case, vectors express the gene of interest coupled with a marker gene. An increasing demand for more complex polycistronic vectors has arisen in recent years to obtain complex gene transfer/therapy effects. In particular, this demand is stimulated by the hope of a more powerful effect from combined gene therapy than from single gene therapy in a process whose parallels lie in the multi-drug combined therapies for cancer or AIDS. In the 1980's we had only splicing signals and internal promoters to construct such vectors: now a new set of biotechnological tools enables us to design new and more reliable bicistronic and polycistronic vectors. This article focuses on the description and comparison of the strategies for co-expression of two genes in bicistronic vectors, from the oldest to the more recently described: internal promoters, splicing, reinitiation, IRES, self-processing peptides (e.g. foot-and-mouth disease virus 2A), proteolytic cleavable sites (e.g. fusagen) and fusion of genes. I propose a classification of these strategies based upon either the use of multiple transcripts (with transcriptional mechanisms), or single transcripts (using translational/post-translational mechanisms). I also examine the different attempts to utilize these strategies in the construction of polycistronic vectors and the main problems encountered. Several potential uses of these polycistronic vectors, both in basic research and in therapy-focused applications, are discussed. The importance of the study of viral gene expression strategies and the need to transfer this knowledge to vector design is highlighted.

  5. Neuroanatomy goes viral!

    PubMed

    Nassi, Jonathan J; Cepko, Constance L; Born, Richard T; Beier, Kevin T

    2015-01-01

    The nervous system is complex not simply because of the enormous number of neurons it contains but by virtue of the specificity with which they are connected. Unraveling this specificity is the task of neuroanatomy. In this endeavor, neuroanatomists have traditionally exploited an impressive array of tools ranging from the Golgi method to electron microscopy. An ideal method for studying anatomy would label neurons that are interconnected, and, in addition, allow expression of foreign genes in these neurons. Fortuitously, nature has already partially developed such a method in the form of neurotropic viruses, which have evolved to deliver their genetic material between synaptically connected neurons while largely eluding glia and the immune system. While these characteristics make some of these viruses a threat to human health, simple modifications allow them to be used in controlled experimental settings, thus enabling neuroanatomists to trace multi-synaptic connections within and across brain regions. Wild-type neurotropic viruses, such as rabies and alpha-herpes virus, have already contributed greatly to our understanding of brain connectivity, and modern molecular techniques have enabled the construction of recombinant forms of these and other viruses. These newly engineered reagents are particularly useful, as they can target genetically defined populations of neurons, spread only one synapse to either inputs or outputs, and carry instructions by which the targeted neurons can be made to express exogenous proteins, such as calcium sensors or light-sensitive ion channels, that can be used to study neuronal function. In this review, we address these uniquely powerful features of the viruses already in the neuroanatomist's toolbox, as well as the aspects of their biology that currently limit their utility. Based on the latter, we consider strategies for improving viral tracing methods by reducing toxicity, improving control of transsynaptic spread, and extending

  6. Neuroanatomy goes viral!

    PubMed Central

    Nassi, Jonathan J.; Cepko, Constance L.; Born, Richard T.; Beier, Kevin T.

    2015-01-01

    The nervous system is complex not simply because of the enormous number of neurons it contains but by virtue of the specificity with which they are connected. Unraveling this specificity is the task of neuroanatomy. In this endeavor, neuroanatomists have traditionally exploited an impressive array of tools ranging from the Golgi method to electron microscopy. An ideal method for studying anatomy would label neurons that are interconnected, and, in addition, allow expression of foreign genes in these neurons. Fortuitously, nature has already partially developed such a method in the form of neurotropic viruses, which have evolved to deliver their genetic material between synaptically connected neurons while largely eluding glia and the immune system. While these characteristics make some of these viruses a threat to human health, simple modifications allow them to be used in controlled experimental settings, thus enabling neuroanatomists to trace multi-synaptic connections within and across brain regions. Wild-type neurotropic viruses, such as rabies and alpha-herpes virus, have already contributed greatly to our understanding of brain connectivity, and modern molecular techniques have enabled the construction of recombinant forms of these and other viruses. These newly engineered reagents are particularly useful, as they can target genetically defined populations of neurons, spread only one synapse to either inputs or outputs, and carry instructions by which the targeted neurons can be made to express exogenous proteins, such as calcium sensors or light-sensitive ion channels, that can be used to study neuronal function. In this review, we address these uniquely powerful features of the viruses already in the neuroanatomist’s toolbox, as well as the aspects of their biology that currently limit their utility. Based on the latter, we consider strategies for improving viral tracing methods by reducing toxicity, improving control of transsynaptic spread, and

  7. Understanding HIV-1 viral load.

    PubMed

    Paxton, W B

    1995-01-01

    HIV viral markers, such as p24 antigen and viral RNA, measure how much virus is present. Studies are showing a relationship between RNA levels and clinical outcomes, which can help doctors evaluate the efficacy of drug therapy. Eventually, it is believed, RNA will replace T-cell counts as the marker of choice. The challenge is to interpret what the results of a viral load test mean for a specific patient. Currently, the two main viral load tests commercially available do not have a one-to-one linear relationship, so tests should not be switched. Doctors are advised not to over-interpret minor changes because of the ten to thirty percent variation in individual test results. These tests are not FDA-approved but are available at commercial reference labs. PMID:11362660

  8. Aseptic meningitis and viral myelitis.

    PubMed

    Irani, David N

    2008-08-01

    Meningitis and myelitis represent common and very infrequent viral infections of the central nervous system, respectively. The number of cases of viral meningitis that occurs annually exceeds the total number of meningitis cases caused by all other etiologies combined. Focal central nervous system infections, such as occur in the spinal cord with viral myelitis, are much less common and may be confused with noninfectious disorders that cause acute flaccid paralysis. This article reviews some of the important clinical features, epidemiology, diagnostic approaches, and management strategies for patients with aseptic meningitis and viral myelitis. Particular focus is placed on the diseases caused by enteroviruses, which as a group account for most aseptic meningitis cases and many focal infections of the spinal cord.

  9. Statistical Mechanics of Viral Entry

    NASA Astrophysics Data System (ADS)

    Zhang, Yaojun; Dudko, Olga K.

    2015-01-01

    Viruses that have lipid-membrane envelopes infect cells by fusing with the cell membrane to release viral genes. Membrane fusion is known to be hindered by high kinetic barriers associated with drastic structural rearrangements—yet viral infection, which occurs by fusion, proceeds on remarkably short time scales. Here, we present a quantitative framework that captures the principles behind the invasion strategy shared by all enveloped viruses. The key to this strategy—ligand-triggered conformational changes in the viral proteins that pull the membranes together—is treated as a set of concurrent, bias field-induced activated rate processes. The framework results in analytical solutions for experimentally measurable characteristics of virus-cell fusion and enables us to express the efficiency of the viral strategy in quantitative terms. The predictive value of the theory is validated through simulations and illustrated through recent experimental data on influenza virus infection.

  10. Viral Control of Mitochondrial Apoptosis

    PubMed Central

    Morselli, Eugenia; Touat, Zahia; Kroemer, Guido

    2008-01-01

    Throughout the process of pathogen–host co-evolution, viruses have developed a battery of distinct strategies to overcome biochemical and immunological defenses of the host. Thus, viruses have acquired the capacity to subvert host cell apoptosis, control inflammatory responses, and evade immune reactions. Since the elimination of infected cells via programmed cell death is one of the most ancestral defense mechanisms against infection, disabling host cell apoptosis might represent an almost obligate step in the viral life cycle. Conversely, viruses may take advantage of stimulating apoptosis, either to kill uninfected cells from the immune system, or to induce the breakdown of infected cells, thereby favoring viral dissemination. Several viral polypeptides are homologs of host-derived apoptosis-regulatory proteins, such as members of the Bcl-2 family. Moreover, viral factors with no homology to host proteins specifically target key components of the apoptotic machinery. Here, we summarize the current knowledge on the viral modulation of mitochondrial apoptosis, by focusing in particular on the mechanisms by which viral proteins control the host cell death apparatus. PMID:18516228

  11. Viral RNAs Are Unusually Compact

    PubMed Central

    Gopal, Ajaykumar; Egecioglu, Defne E.; Yoffe, Aron M.; Ben-Shaul, Avinoam; Rao, Ayala L. N.; Knobler, Charles M.; Gelbart, William M.

    2014-01-01

    A majority of viruses are composed of long single-stranded genomic RNA molecules encapsulated by protein shells with diameters of just a few tens of nanometers. We examine the extent to which these viral RNAs have evolved to be physically compact molecules to facilitate encapsulation. Measurements of equal-length viral, non-viral, coding and non-coding RNAs show viral RNAs to have among the smallest sizes in solution, i.e., the highest gel-electrophoretic mobilities and the smallest hydrodynamic radii. Using graph-theoretical analyses we demonstrate that their sizes correlate with the compactness of branching patterns in predicted secondary structure ensembles. The density of branching is determined by the number and relative positions of 3-helix junctions, and is highly sensitive to the presence of rare higher-order junctions with 4 or more helices. Compact branching arises from a preponderance of base pairing between nucleotides close to each other in the primary sequence. The density of branching represents a degree of freedom optimized by viral RNA genomes in response to the evolutionary pressure to be packaged reliably. Several families of viruses are analyzed to delineate the effects of capsid geometry, size and charge stabilization on the selective pressure for RNA compactness. Compact branching has important implications for RNA folding and viral assembly. PMID:25188030

  12. [Neuropsychiatric sequelae of viral meningitis in adults].

    PubMed

    Damsgaard, Jesper; Hjerrild, Simon; Renvillard, Signe Groth; Leutscher, Peter Derek Christian

    2011-10-10

    Viral meningitis is considered to be a benign illness with only mild symptoms. In contrast to viral encephalitis and bacterial meningitis, the prognosis is usually good. However, retrospective studies have demonstrated that patients suffering from viral meningitis may experience cognitive impairment following the acute course of infection. Larger controlled studies are needed to elucidate the potential neuropsychiatric adverse outcome of viral meningitis.

  13. [Pathology and viral metagenomics, a recent history].

    PubMed

    Bernardo, Pauline; Albina, Emmanuel; Eloit, Marc; Roumagnac, Philippe

    2013-05-01

    Human, animal and plant viral diseases have greatly benefited from recent metagenomics developments. Viral metagenomics is a culture-independent approach used to investigate the complete viral genetic populations of a sample. During the last decade, metagenomics concepts and techniques that were first used by ecologists progressively spread into the scientific field of viral pathology. The sample, which was first for ecologists a fraction of ecosystem, became for pathologists an organism that hosts millions of microbes and viruses. This new approach, providing without a priori high resolution qualitative and quantitative data on the viral diversity, is now revolutionizing the way pathologists decipher viral diseases. This review describes the very last improvements of the high throughput next generation sequencing methods and discusses the applications of viral metagenomics in viral pathology, including discovery of novel viruses, viral surveillance and diagnostic, large-scale molecular epidemiology, and viral evolution.

  14. Cellular sensing of viral DNA and viral evasion mechanisms.

    PubMed

    Orzalli, Megan H; Knipe, David M

    2014-01-01

    Mammalian cells detect foreign DNA introduced as free DNA or as a result of microbial infection, leading to the induction of innate immune responses that block microbial replication and the activation of mechanisms that epigenetically silence the genes encoded by the foreign DNA. A number of DNA sensors localized to a variety of sites within the cell have been identified, and this review focuses on the mechanisms that detect viral DNA and how the resulting responses affect viral infections. Viruses have evolved mechanisms that inhibit these host sensors and signaling pathways, and the study of these antagonistic viral strategies has provided insight into the mechanisms of these host responses. The field of cellular sensing of foreign DNA is in its infancy, but our currently limited knowledge has raised a number of important questions for study.

  15. Computational mechanics of viral capsids.

    PubMed

    Gibbons, Melissa M; Perotti, Luigi E; Klug, William S

    2015-01-01

    Viral capsids undergo significant mechanical deformations during their assembly, maturation, and infective life-span. In order to characterize the mechanics of viral capsids, their response to applied external forces is analyzed in several experimental studies using, for instance, Atomic Force Microscope (AFM) indentation experiments. In recent years, a broader approach to study the mechanics of viral capsids has leveraged the theoretical tools proper of continuum mechanics. Even though the theory of continuum elasticity is most commonly used to study deformable bodies at larger macroscopic length scales, it has been shown that this very rich theoretical field can still offer useful insights into the mechanics of viral structures at the nanometer scale. Here we show the construction of viral capsid continuum mechanics models starting from different forms of experimental data. We will discuss the kinematics assumptions, the issue of the reference configuration, the material constitutive laws, and the numerical discretization necessary to construct a complete Finite Element capsid mechanical model. Some examples in the second part of the chapter will show the predictive capabilities of the constructed models and underline useful practical aspects related to efficiency and accuracy. We conclude each example by collecting several key findings discovered by simulating AFM indentation experiments using the constructed numerical models.

  16. Viral metagenomics and blood safety.

    PubMed

    Sauvage, V; Eloit, M

    2016-02-01

    The characterization of the human blood-associated viral community (also called blood virome) is essential for epidemiological surveillance and to anticipate new potential threats for blood transfusion safety. Currently, the risk of blood-borne agent transmission of well-known viruses (HBV, HCV, HIV and HTLV) can be considered as under control in high-resource countries. However, other viruses unknown or unsuspected may be transmitted to recipients by blood-derived products. This is particularly relevant considering that a significant proportion of transfused patients are immunocompromised and more frequently subjected to fatal outcomes. Several measures to prevent transfusion transmission of unknown viruses have been implemented including the exclusion of at-risk donors, leukocyte reduction of donor blood, and physicochemical treatment of the different blood components. However, up to now there is no universal method for pathogen inactivation, which would be applicable for all types of blood components and, equally effective for all viral families. In addition, among available inactivation procedures of viral genomes, some of them are recognized to be less effective on non-enveloped viruses, and inadequate to inactivate higher viral titers in plasma pools or derivatives. Given this, there is the need to implement new methodologies for the discovery of unknown viruses that may affect blood transfusion. Viral metagenomics combined with High Throughput Sequencing appears as a promising approach for the identification and global surveillance of new and/or unexpected viruses that could impair blood transfusion safety. PMID:26778104

  17. Viral delivery of shRNA to amygdala neurons leads to neurotoxicity and deficits in Pavlovian fear conditioning.

    PubMed

    de Solis, Christopher A; Holehonnur, Roopashri; Banerjee, Anwesha; Luong, Jonathan A; Lella, Srihari K; Ho, Anthony; Pahlavan, Bahram; Ploski, Jonathan E

    2015-10-01

    The use of viral vector technology to deliver short hairpin RNAs (shRNAs) to cells of the nervous system of many model organisms has been widely utilized by neuroscientists to study the influence of genes on behavior. However, there have been numerous reports that delivering shRNAs to the nervous system can lead to neurotoxicity. Here we report the results of a series of experiments where adeno-associated viruses (AAV), that were engineered to express shRNAs designed to target known plasticity associated genes (i.e. Arc, Egr1 and GluN2A) or control shRNAs that were designed not to target any rat gene product for depletion, were delivered to the rat basal and lateral nuclei of the amygdala (BLA), and auditory Pavlovian fear conditioning was examined. In our first set of experiments we found that animals that received AAV (3.16E13-1E13 GC/mL; 1 μl/side), designed to knockdown Arc (shArc), or control shRNAs targeting either luciferase (shLuc), or nothing (shCntrl), exhibited impaired fear conditioning compared to animals that received viruses that did not express shRNAs. Notably, animals that received shArc did not exhibit differences in fear conditioning compared to animals that received control shRNAs despite gene knockdown of Arc. Viruses designed to harbor shRNAs did not induce obvious morphological changes to the cells/tissue of the BLA at any dose of virus tested, but at the highest dose of shRNA virus examined (3.16E13 GC/mL; 1 μl/side), a significant increase in microglia activation occurred as measured by an increase in IBA1 immunoreactivity. In our final set of experiments we infused viruses into the BLA at a titer of (1.60E+12 GC/mL; 1 μl/side), designed to express shArc, shLuc, shCntrl or shRNAs designed to target Egr1 (shEgr1), or GluN2A (shGluN2A), or no shRNA, and found that all groups exhibited impaired fear conditioning compared to the group which received a virus that did not express an shRNA. The shEgr1 and shGluN2A groups exhibited gene

  18. Viral and Cellular Components of AAV2 Replication Compartments

    PubMed Central

    Vogel, Rebecca; Seyffert, Michael; Pereira, Bruna de Andrade; Fraefel, Cornel

    2013-01-01

    Adeno-associated virus 2 (AAV2) is a helpervirus-dependent parvovirus with a bi-phasic life cycle comprising latency in absence and lytic replication in presence of a helpervirus, such as adenovirus (Ad) or herpes simplex virus type 1 (HSV-1). Helpervirus-supported AAV2 replication takes place in replication compartments (RCs) in the cell nucleus where virus DNA replication and transcription occur. RCs consist of a defined set of helper virus-, AAV2-, and cellular proteins. Here we compare the profile of cellular proteins recruited into AAV2 RCs or identified in Rep78-associated complexes when either Ad or HSV-1 is the helpervirus, and we discuss the potential roles of some of these proteins in AAV2 and helpervirus infection. PMID:24222808

  19. Viral and Cellular Components of AAV2 Replication Compartments.

    PubMed

    Vogel, Rebecca; Seyffert, Michael; Pereira, Bruna de Andrade; Fraefel, Cornel

    2013-01-01

    Adeno-associated virus 2 (AAV2) is a helpervirus-dependent parvovirus with a bi-phasic life cycle comprising latency in absence and lytic replication in presence of a helpervirus, such as adenovirus (Ad) or herpes simplex virus type 1 (HSV-1). Helpervirus-supported AAV2 replication takes place in replication compartments (RCs) in the cell nucleus where virus DNA replication and transcription occur. RCs consist of a defined set of helper virus-, AAV2-, and cellular proteins. Here we compare the profile of cellular proteins recruited into AAV2 RCs or identified in Rep78-associated complexes when either Ad or HSV-1 is the helpervirus, and we discuss the potential roles of some of these proteins in AAV2 and helpervirus infection. PMID:24222808

  20. Noncoding RNPs of viral origin.

    PubMed

    Steitz, Joan; Borah, Sumit; Cazalla, Demian; Fok, Victor; Lytle, Robin; Mitton-Fry, Rachel; Riley, Kasandra; Samji, Tasleem

    2011-03-01

    Like their host cells, many viruses produce noncoding (nc)RNAs. These show diversity with respect to time of expression during viral infection, length and structure, protein-binding partners and relative abundance compared with their host-cell counterparts. Viruses, with their limited genomic capacity, presumably evolve or acquire ncRNAs only if they selectively enhance the viral life cycle or assist the virus in combating the host's response to infection. Despite much effort, identifying the functions of viral ncRNAs has been extremely challenging. Recent technical advances and enhanced understanding of host-cell ncRNAs promise accelerated insights into the RNA warfare mounted by this fascinating class of RNPs. PMID:20719877

  1. [Emerging viral diseases in Europe].

    PubMed

    Löbermann, M; Gürtler, L G; Eichler-Löbermann, B; Reisinger, E C

    2012-04-01

    Emergence of viral agents in Europe is influenced by various factors. Climatic changes influencing possible vectors, insufficient vaccination, and travel of man and goods are among the most important reasons to explain these changes. Fever and arthralgia are the leading symptoms in infection with Dengue, Sindbis, or Chikungunya virus. In contrast, tick-born ence