Science.gov

Sample records for adenocarcinoma cells astc-a-1

  1. Artemisinin induces caspase-8/9-mediated and Bax/Bak-independent apoptosis in human lung adenocarcinoma (ASTC-a-1) cells.

    PubMed

    Xiao, Feng-Lian; Gao, Wei-Jie; Liu, Cheng-Yi; Wang, Xiao-Ping; Chen, Tong-Sheng

    2011-01-01

    Artemisinin (ARTE), an antimalarial phytochemical component from the sweet wormwood plant, has been shown a potential anticancer activity by inducing cell apoptosis. The aim of this report is to explore the mechanism of ARTE-induced human lung adenocarcinoma (ASTC-a-1) cell apoptosis. Cell counting kit (CCK-8) assay showed that ARTE induced cytotoxcity in a dose- and time-dependent manner. Confocal microscopy fluorescence imaging of cells stained with Hoechst 33258 and flow cytometry (FCM) analysis of cells stained with Annexin V-FITC/propidium iodide (PI) showed that ARTE induced reactive oxygen species (ROS)-dependent apoptosis. Confocal fluorescence resonance energy transfer (FRET) imaging of single living cells expressing SCAT3, SCAT9 or CFP-Bid-YFP and fluorometic substrate assay showed that ARTE induced the activation of caspase-3, -8 and -9. Moreover, inhibition of caspase-8 or -9 completely blocked ARTE-induced apoptosis which was only partially attenuated by caspase-3 inhibitor. Interestingly, silencing Bax and Bak by RNA interference (RNAi) did not attenuate ARTE-induced apoptosis. Collectively, ARTE induces caspase-dependent but Bax/Bak-independent apoptosis in ASTC-a-1 cells.

  2. Analysis of caspase3 activation in ChanSu-induced apoptosis of ASTC-a-1 cells by fluorescence techniques

    NASA Astrophysics Data System (ADS)

    Sun, Lei; Chen, Tongsheng; Wang, Longxiang; Wang, Huiying

    2008-02-01

    ChanSu(CS), a traditional Chinese medicine, is composed of many chemical compoments. It is isolated from the dried white secretion of the auricular and skin glands of toads, and it has been widely used for treating the heart diseases and other systemic illnesses. However, it is difficult to judge antitumor effect of agents derived from ChanSu and the underlying mechanism of ChanSu inducing cell apoptosis is still unclear. This report was performed to explore the inhibitory effect and mechanism of ChanSu on human lung adenocarcinoma cells (ASTC-a-1). Fluorescence emission spectra and fluorescence resonance energy transfer (FRET) were used to study the caspase-3 activation during the ChanSu-induced human lung adenocarcinoma (ASTC-a-1) cell apoptosis. CCK-8 was used to assay the inhibition of ChanSu on the cell viability. The cells expressing stably with SCAT3 was used to examine if caspase-3 was activated by ChanSu using acceptor photobleaching technique. Our data showed that treatment of ASTC-a-1 cell with ChanSu resulted in the inhibition of viability and induction of apoptosis in a dose-dependent manner and the SCAT3 was almost cleaved 24 h after ChanSu treatment, implying that ChanSu induced cell apoptosis via a caspase-3-dependent death pathway. Our findings extend the knowledge about the cellular signaling mechanisms mediating ChanSu-induced apoptosis.

  3. Taxol induces concentration-dependent phosphatidylserine (PS) externalization and cell cycle arrest in ASTC-a-1 cells

    NASA Astrophysics Data System (ADS)

    Guo, Wen-jing; Chen, Tong-sheng

    2010-02-01

    Taxol (Paclitaxel) is an important natural product for the treatment of solid tumors. Different concentrations of taxol can trigger distinct effects on both the cellular microtubule network and biochemical pathways. Apoptosis induced by low concentrations (5-30 nM) of taxol was associated with mitotic arrest, alteration of microtubule dynamics and/or G2/M cell cycle arrest, whereas high concentrations of this drug (0.2-30 μM) caused significant microtubule damage, and was found recently to induce cytoplasm vacuolization in human lung adenocarcinoma (ASTC-a-1) cells. In present study, cell counting kit (CCK-8) assay, confocal microscope, and flow cytometry analysis were used to analyze the cell death form induced by 35 nM and 70 μM of taxol respectively in human lung adenocarcinoma (ASTC-a-1) cells. After treatment of 35 nM taxol for 48 h, the OD450 value was 0.80, and 35 nM taxol was found to induce dominantly cell death in apoptotic pathway such as phosphatidylserine (PS) externalization, G2/M phase arrest after treatment for 24 h, and nuclear fragmentation after treatment for 48 h. After 70 μM taxol treated the cell for 24 h, the OD450 value was 1.01, and 70 μM taxol induced cytoplasm vacuolization programmed cell death (PCD) and G2/M phase as well as the polyploidy phase arrest in paraptotic-like cell death. These findings imply that the regulated signaling pathway of cell death induced by taxol is dependent on taxol concentration in ASTC-a-1 cells.

  4. Artemisinin induces ROS-mediated caspase3 activation in ASTC-a-1 cells

    NASA Astrophysics Data System (ADS)

    Xiao, Feng-Lian; Chen, Tong-Sheng; Qu, Jun-Le; Liu, Cheng-Yi

    2010-02-01

    Artemisinin (ART), an antimalarial phytochemical from the sweet wormwood plant or a naturally occurring component of Artemisia annua, has been shown a potential anticancer activity by apoptotic pathways. In our report, cell counting kit (CCK-8) assay showed that treatment of human lung adenocarcinoma (ASTC-a-1) cells with ART effectively increase cell death by inducing apoptosis in a time- and dose-dependent fashion. Hoechst 33258 staining was used to detect apoptosis as well. Reactive oxygen species (ROS) generation was observed in cells exposed to ART at concentrations of 400 μM for 48 h. N-acetyl-L-cysteine (NAC), an oxygen radical scavenger, suppressed the rate of ROS generation and inhibited the ART-induced apoptosis. Moreover, AFC assay (Fluorometric assay for Caspase3 activity) showed that ROS was involved in ART-induced caspase3 acitvation. Taken together, our data indicate that ART induces ROS-mediated caspase3 activation in a time-and dose-dependent way in ASCT-a-1 cells.

  5. Analysis of caspase-3 in ASTC-a-1 cells treated with mitomycin C using acceptor photobleaching techniques

    NASA Astrophysics Data System (ADS)

    Wang, Huiying; Chen, Tongsheng; Sun, Lei

    2008-02-01

    Caspase-3 is a key activated death protease, which catalyzes the specific cleavage of many cellular proteins and induces DNA cleavage eventually. In this report, cells were treated with mitomycin C (MMC) at different concentration and its activity was detected by cell counting kit (CCK-8). Based on results of CCK-8, cells were treated with 10μg/mL MMC and Hoechst 33258 has been used to observe cell apoptosis. Fluorescence resonance energy transfer (FRET) and confocal microscopy have been used to the effect of MMC on the caspase3 activation in living cells. Human lung adenocarcinoma cells (ASTC-a-1) was transfected with plasmid SCAT3 (pSCAT3)/CKAR FRET receptor. Acceptor photobleaching techniques of FRET plasmid has been used to destruct fluorophore of cells stably expressing SCAT3 reporter on a fluorescence confocal microscope. The activity of caspase3 can be analyzed by FRET dynamics of SCAT3 in living cells. Our results show that MM C can induce ASTC-a-1 cell apoptosis through activation of caspase3.

  6. Amplification activation loop between caspase-8 and -9 dominates artemisinin-induced apoptosis of ASTC-a-1 cells.

    PubMed

    Xiao, Fenglian; Gao, Weijie; Wang, Xiaoping; Chen, Tongsheng

    2012-06-01

    Although caspases have been demonstrated to be involved in artemisinin (ARTE)-induced apoptosis, their exact functions are not well understood. The aim of this report is to explore the roles of caspase-8, -9 and -3 during ARTE-induced apoptosis in human lung adenocarcinoma (ASTC-a-1) cells. ARTE treatment induces a rapid generation of reactive oxygen species (ROS), and ROS-dependent apoptosis as well as the activation of caspase-8, -9 and -3 via time- and dose-dependent fashion. Of upmost importance, inhibition of caspase-8 or -9, but not caspase-3, almost completely blocks the ARTE-induced not only activation of the caspase-8, -9 and -3 but also apoptosis. In addition, the apoptotic process triggered by ARTE does not involve the Bid cleavage, tBid translocation, significant loss of mitochondrial membrane potential and cytochrome c release from mitochondria. Moreover, silencing Bax/Bak does not prevent the ATRE-induced cell death as well as the activation of caspase-8, -9 and -3. Collectively, our data firstly demonstrate that ARTE triggers a ROS-mediated positive feedback amplification activation loop between caspase-8 and -9 independent of mitochondria, which dominantly mediated the ARTE-induced apoptosis via a caspase-3-independent apoptotic pathway in ASTC-a-1 cells. Our findings imply a potential to develop new derivatives from artemisinin to effectively initiate the amplification activation loop of caspases.

  7. Single-cell analysis of dihydroartemisinin-induced apoptosis through reactive oxygen species-mediated caspase-8 activation and mitochondrial pathway in ASTC-a-1 cells using fluorescence imaging techniques

    NASA Astrophysics Data System (ADS)

    Lu, Ying-Ying; Chen, Tong-Sheng; Wang, Xiao-Ping; Li, Li

    2010-07-01

    Dihydroartemisinin (DHA), a front-line antimalarial herbal compound, has been shown to possess promising anticancer activity with low toxicity. We have previously reported that DHA induced caspase-3-dependent apoptosis in human lung adenocarcinoma cells. However, the cellular target and molecular mechanism of DHA-induced apoptosis is still poorly defined. We use confocal fluorescence microscopy imaging, fluorescence resonance energy transfer, and fluorescence recovery after photobleaching techniques to explore the roles of DHA-elicited reactive oxygen species (ROS) in the DHA-induced Bcl-2 family proteins activation, mitochondrial dysfunction, caspase cascade, and cell death. Cell Counting Kit-8 assay and flow cytometry analysis showed that DHA induced ROS-mediated apoptosis. Confocal imaging analysis in a single living cell and Western blot assay showed that DHA triggered ROS-dependent Bax translocation, mitochondrial membrane depolarization, alteration of mitochondrial morphology, cytochrome c release, caspase-9, caspase-8, and caspase-3 activation, indicating the coexistence of ROS-mediated mitochondrial and death receptor pathway. Collectively, our findings demonstrate for the first time that DHA induces cell apoptosis by triggering ROS-mediated caspase-8/Bid activation and the mitochondrial pathway, which provides some novel insights into the application of DHA as a potential anticancer drug and a new therapeutic strategy by targeting ROS signaling in lung adenocarcinoma therapy in the future.

  8. Bax is not involved in the resveratrol-induced apoptosis in human lung adenocarcinoma cells

    NASA Astrophysics Data System (ADS)

    Zhang, Wei-wei; Wang, Zhi-ping; Chen, Tong-sheng

    2010-02-01

    Resveratrol (RV) is a natural plant polyphenol widely present in foods such as grapes, wine, and peanuts. Previous studies indicate that RV has an ability to inhibit various stages of carcinogenesis and eliminate preneoplastic cells in vitro and in vivo. However, little is known about the molecular mechanism of RV-induced apoptosis in human lung adenocarcinoma (ASTC-a-1) cell. In this report, we analyzed whether Bax translocation from cytoplasm to mitochondria during RV-induced apoptosis in single living cell using onfocal microscopey. Cells were transfected with GFP-Bax plasmid. Cell counting kit (CCK-8) assay was used to assess the inhibition of RV on the cells viability. Apoptotic activity of RV was detected by Hoechst 33258 and propidium iodide (PI) staining. Our results showed that RV induced a dose-dependent apoptosis in which Bax did not translocate to mitochondrias.

  9. Bax translocation into mitochondria during dihydroartemisinin(DHA)-induced apoptosis in human lung adenocarcinoma cells

    NASA Astrophysics Data System (ADS)

    Lu, Ying-ying; Chen, Tong-sheng; Qu, Jun-Le

    2009-02-01

    Dihydroartemisinin (DHA), a semi-synthetic derivative of artemisinin, isolated from the traditional Chinese herb Artemisia annua, has been shown to possess promising anticancer activities and induce cancer cell death through apoptotic pathways. However, the molecular mechanisms are not well understood. This study was investigated in human lung adenocarconoma ASTC-a-1 cell line and aimed to determine whether the apoptotic process was mediated by Bax activation and translocation during DHA-induced apoptosis. In this study, DHA induced a time-dependent apoptotic cell death, which was assayed by Cell Counting Kit (CCK-8) and Hoechst 33258 staining. Detection of Bax aggregation and translocation to mitochondria was observed in living cells which were co-transfected with GFP-Bax and Dsred-mito plasmid using confocal fluorescence microscope technique. Overall, these results demonstrated that Bax activation and translocation to mitochondria occurred during DHA-induced apoptosis.

  10. [Gastric signet ring cell adenocarcinoma: A distinct entity].

    PubMed

    Tabouret, Tessa; Dhooge, Marion; Rouquette, Alexandre; Brezault, Catherine; Beuvon, Frédéric; Chaussade, Stanislas; Coriat, Romain

    2014-04-01

    Gastric signet ring cell carcinoma (GSRC) is a distinct entity. Their incidence is increasing. The pathologist plays a central role in the identification of this entity. Diagnosis is based on an adenocarcinoma containing a majority of signet ring cells (above 50 %). The prognosis of GSRC is the same as gastric adenocarcinoma while GSRC appeared more aggressive. Signet ring cells present a low sensitivity to chemotherapy. This review aimed to discuss the histological, the prognostic and the therapeutic aspect of this entity.

  11. Signet cell adenocarcinoma of the rectum metastatic to the orbit.

    PubMed

    Charles, Norman C; Ng, Diana D; Zoumalan, Christopher I

    2012-01-01

    A 24-year-old man developed abdominal carcinomatosis from signet cell carcinoma of the rectum. His only distal metastasis involved the superior orbit. Orbital pathology showed signet cells with a characteristic immunopathologic pattern. No hereditary syndrome was found. The authors identified only 5 cases in the literature describing colorectal adenocarcinoma metastatic to the orbit, with 2 showing histopathology. The authors believe that this rare case represents the first illustrating bona fide signet cell colorectal cancer involving the orbit.

  12. Isolation, cultivation and identification of human lung adenocarcinoma stem cells

    PubMed Central

    ZHANG, DE-GENG; JIANG, AI-GUI; LU, HUI-YU; ZHANG, LI-XIN; GAO, XIAO-YAN

    2015-01-01

    Recently, an increasing number of studies have demonstrated that lung cancer is a stem cell disease. However, ideal cell surface markers for isolating stem cells in lung cancer are yet to be identified. In the present study, a cell population with a cluster of differentiation (CD)133+ phenotype was successfully isolated from a single cell suspension of lung adenocarcinoma tissue using magnetic-activated cell sorting (MACS) and enriched in a serum-free culture. In comparison to CD133− cells, the CD133+ cells exhibited an enhanced capacity for self-renewal and differentiation, and a greater potential for in vivo tumor formation, in non-obese diabetic/severe combined immunodeficient (NOD/SCID) mice. Tumors could be induced in NOD/SCID mice by the transplantation of 102 stem-like cells per mouse. The results of the present study demonstrated that CD133 may serve as a specific cell surface marker for lung adenocarcinoma stem cells, and that MACS combined with serum-free culture is an effective method for isolating and enriching lung cancer stem cells. PMID:25435932

  13. Molecular Analysis of Motility in Metastatic Mammary Adenocarcinoma Cells

    DTIC Science & Technology

    1996-09-01

    Culture MTLn3 cells were clonally derived from a lung metastasis of the 13762NF rat mammary adenocarcinoma ( Neri et al., 1982) (kindly provided by Dr...MTLn3 cells were plated on collagen I coated MATTEK tissue culture dishes for 24 hours. Cells were plated at a density of 5000 cells/sq cm and...mM KOH; 4 mM MgC12 ; 10 mM EGTA pH 6.5 with 20 mM KOH; 5 1M phallacidin; 0.025 % saponin) was added to the culture well. After 15 seconds of extraction

  14. 5-Fluorouracil-radiation interactions in human colon adenocarcinoma cells

    SciTech Connect

    Buchholz, D.J.; Lepek, K.J.; Rich, T.A.

    1995-07-15

    The purpose of this investigation was to determine the effect of cellular proliferation and cell cycle stage on the ability of postirradiation 5-fluorouracil (5-FU) to radiosensitize cultured human colon adenocarcinoma Clone A cells. Cell survival curves were generated for irradiated: (a) log- and plateau-phase Clone A cells; and (b) Clone A cells separated by centrifugal elutriation into the various phases of the cell cycle; with and without postirradiation treatment with 100 {mu}g/ml 5-FU. Postirradiation treatment with 5-FU sensitized proliferating cells to a greater degree than it sensitized cells growing in plateau phase. The {beta} component of cell kill in log-phase cells was increased by a factor of 1.5 with a sensitizer enhancement ratio of 1.21 at the 0.01 survival level. Plateau-phase cells showed less radiosensitization (sensitizer enhancement ratio of 1.13 at the 0.01 survival level); however, there was a mild increase in both {alpha} and {beta} kill in plateau-phase cells. Elutriated G{sub 1} cells were the most radiosensitive, independent of treatment with 5-FU. The phase of the cell cycle had little effect on the ability of fluorouracil to radiosensitize Clone A cells. Proliferating cells are more susceptible to radiosensitization with 5-FU than plateau-phase cells are, but this effect appears to be independent of the phase of the cell cycle. 18 refs., 4 figs., 3 tabs.

  15. Nucleoplasmic viscosity of living cells investigated by fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Liang, Lifang; Xing, Da; Chen, Tongshen; Pei, Yihui

    2007-11-01

    Fluorescence correlation spectroscopy (FCS) is a new kind of real-time, high-speed and single-molecule technique. It is used to detect the kinetic characteristics of fluorescent dye such as diffusion coefficient in the aqueous solution. Combined with confocal microscope optics, it has been now widely applied in cell biological research. Through a time correlation analysis of spontaneous intensity fluctuations, this technique with EGFP as a probe is capable of determining viscosity of fluids according to Stokes-Einstein equation. Nucleoplasmic viscosity is an important physical parameter to quantify the rheological characteristics of the nucleoplasm. Investigation on nucleoplasmic viscosity plays an important role in further understanding intranuclear environment. In this paper, FCS is introduced to noninvasively investigate nucleoplasmic viscosity of living cells. The results show that nucleoplasmic viscosity of lung adenocarcinoma (ASTC-a-1) cells is 2.55+/-0.61 cP and nucleoplasmic viscosity is larger than cytoplasmic viscosity at 37 °C (pH 7.4). In addition, significant changes in nucleoplasmic viscosity are detected by FCS when cells are exposed to hyper or hypotonic medium. Our study suggests that FCS can be used to detect the kinetic characteristics of biomolecules in living cells and thus helps to investigate the dynamic changes of the microenvironment in the cell.

  16. Effect of gyromagnetic fields on human prostatic adenocarcinoma cells

    PubMed Central

    Lei, Hongen; Xu, Yongde; Guan, Ruili; Li, Meng; Hui, Yu; Gao, Zhezhu; Yang, Bicheng; Xin, Zhongcheng

    2015-01-01

    Purpose To investigate the biological effect of gyromagnetic fields (GMFs) on cell proliferation and apoptosis of human prostatic adenocarcinoma cells and explore the underlying mechanisms. Methods PC-3 cells were grouped into normal control (NC) and GMF treatment groups. Cell proliferation was analyzed with kit-8 and Ki67 immunofluorescence staining, while cell apoptosis was analyzed with flow cytometry double staining of Annexin V-PE/7-AAD. The Akt and p38 MAPK/Caspase signaling pathways were analyzed by western blotting and immunofluorescence staining, and cell polarization was analyzed with PARD3. Results Cell proliferation and activity of the Akt pathway were significantly decreased by the GMF, while cell apoptosis, activity of p38 MAPK, and PARD3-positive cell number were significantly increased in the GMF group compared to the NC group. Conclusion GMFs inhibit cell proliferation, induce apoptosis, and regulate tumor cell polarity conditions, potentially through down-regulating Akt, activating the p38 MAPK/Caspase pathway, and promoting PARD3 expression in PC-3 cells. PMID:26648740

  17. Sulphamoylated 2-Methoxyestradiol Analogues Induce Apoptosis in Adenocarcinoma Cell Lines

    PubMed Central

    Visagie, Michelle; Theron, Anne; Mqoco, Thandi; Vieira, Warren; Prudent, Renaud; Martinez, Anne; Lafanechère, Laurence; Joubert, Annie

    2013-01-01

    2-Methoxyestradiol (2ME2) is a naturally occurring estradiol metabolite which possesses antiproliferative, antiangiogenic and antitumor properties. However, due to its limited biological accessibility, synthetic analogues have been synthesized and tested in attempt to develop drugs with improved oral bioavailability and efficacy. The aim of this study was to evaluate the antiproliferative effects of three novel in silico-designed sulphamoylated 2ME2 analogues on the HeLa cervical adenocarcinoma cell line and estrogen receptor-negative breast adenocarcinoma MDA-MB-231 cells. A dose-dependent study (0.1–25 μM) was conducted with an exposure time of 24 hours. Results obtained from crystal violet staining indicated that 0.5 μM of all 3 compounds reduced the number of cells to 50%. Lactate dehydrogenase assay was used to assess cytotoxicity, while the mitotracker mitochondrial assay and caspase-6 and -8 activity assays were used to investigate the possible occurrence of apoptosis. Tubulin polymerization assays were conducted to evaluate the influence of these sulphamoylated 2ME2 analogues on tubulin dynamics. Double immunofluorescence microscopy using labeled antibodies specific to tyrosinate and detyrosinated tubulin was conducted to assess the effect of the 2ME2 analogues on tubulin dynamics. An insignificant increase in the level of lactate dehydrogenase release was observed in the compounds-treated cells. These sulphamoylated compounds caused a reduction in mitochondrial membrane potential, cytochrome c release and caspase 3 activation indicating apoptosis induction by means of the intrinsic pathway in HeLa and MDA-MB-231 cells. Microtubule depolymerization was observed after exposure to these three sulphamoylated analogues. PMID:24039728

  18. Visualization of early prostatic adenocarcinoma as a stem cell disease

    PubMed Central

    Jiang, Maggie Y.; Lee, Tammy L.; Hao, Su-Shin; Mahooti, Sepi; Baird, Stephen M.; Donoghue, Daniel J.; Haas, Martin

    2016-01-01

    Prostate Cancer represents the second leading cause of cancer death among men in the United States, and the third leading cause of cancer death among men in Europe. We have previously shown that cells possessing Cancer Stem Cell (CSC) characteristics can be grown from human PrCa tissue harvested at the time of prostatectomy. However, the cellular origin of these CSCs was not previously known. In most cases, simple hematoxylin and eosin (H&E) stained sections are sufficient to make a definitive diagnosis of prostatic adenocarcinoma (PrCa) in needle biopsy samples. We utilized six different antibodies specific for stem cell antigens to examine paraffin sections of PrCa taken at the time of needle-biopsy diagnosis. These antisera were specific for CD44, CD133, ALDH7A1, LGR-5, Oct-4 and NANOG. We demonstrate specific staining of tumor cells with all six antisera specific for stem cell antigens. Some of these antibodies also react with cells of hyperplastic glands, but the patterns of reactivity differ from those of malignant glands. These findings demonstrate that at the time of diagnosis, PrCa consists of cells exhibiting properties of CSCs and consistent with the possibility that PrCa is a stem cell disease. PMID:27764770

  19. Visualization of early prostatic adenocarcinoma as a stem cell disease.

    PubMed

    Jiang, Maggie Y; Lee, Tammy L; Hao, Su-Shin; Mahooti, Sepi; Baird, Stephen M; Donoghue, Daniel J; Haas, Martin

    2016-11-15

    Prostate Cancer represents the second leading cause of cancer death among men in the United States, and the third leading cause of cancer death among men in Europe. We have previously shown that cells possessing Cancer Stem Cell (CSC) characteristics can be grown from human PrCa tissue harvested at the time of prostatectomy. However, the cellular origin of these CSCs was not previously known. In most cases, simple hematoxylin and eosin (H&E) stained sections are sufficient to make a definitive diagnosis of prostatic adenocarcinoma (PrCa) in needle biopsy samples. We utilized six different antibodies specific for stem cell antigens to examine paraffin sections of PrCa taken at the time of needle-biopsy diagnosis. These antisera were specific for CD44, CD133, ALDH7A1, LGR-5, Oct-4 and NANOG. We demonstrate specific staining of tumor cells with all six antisera specific for stem cell antigens. Some of these antibodies also react with cells of hyperplastic glands, but the patterns of reactivity differ from those of malignant glands. These findings demonstrate that at the time of diagnosis, PrCa consists of cells exhibiting properties of CSCs and consistent with the possibility that PrCa is a stem cell disease.

  20. Stem cells as the root of pancreatic ductal adenocarcinoma

    SciTech Connect

    Balic, Anamaria; Dorado, Jorge; Alonso-Gomez, Mercedes; Heeschen, Christopher

    2012-04-01

    Emerging evidence suggests that stem cells play a crucial role not only in the generation and maintenance of different tissues, but also in the development and progression of malignancies. For the many solid cancers, it has now been shown that they harbor a distinct subpopulation of cancer cells that bear stem cell features and therefore, these cells are termed cancer stem cells (CSC) or tumor-propagating cells. CSC are exclusively tumorigenic and essential drivers for tumor progression and metastasis. Moreover, it has been shown that pancreatic ductal adenocarcinoma does not only contain one homogeneous population of CSC rather than diverse subpopulations that may have evolved during tumor progression. One of these populations is called migrating CSC and can be characterized by CXCR4 co-expression. Only these cells are capable of evading the primary tumor and traveling to distant sites such as the liver as the preferred site of metastatic spread. Clinically even more important, however, is the observation that CSC are highly resistant to chemo- and radiotherapy resulting in their relative enrichment during treatment and rapid relapse of disease. Many laboratories are now working on the further in-depth characterization of these cells, which may eventually allow for the identification of their Achilles heal and lead to novel treatment modalities for fighting this deadly disease.

  1. Nuclear distribution of claudin-2 increases cell proliferation in human lung adenocarcinoma cells.

    PubMed

    Ikari, Akira; Watanabe, Ryo; Sato, Tomonari; Taga, Saeko; Shimobaba, Shun; Yamaguchi, Masahiko; Yamazaki, Yasuhiro; Endo, Satoshi; Matsunaga, Toshiyuki; Sugatani, Junko

    2014-09-01

    Claudin-2 is expressed in human lung adenocarcinoma tissue and cell lines, although it is absent in normal lung tissue. However, the role of claudin-2 in cell proliferation and the regulatory mechanism of intracellular distribution remain undefined. Proliferation of human adenocarcinoma A549 cells was decreased by claudin-2 knockdown together with a decrease in the percentage of S phase cells. This knockdown decreased the expression levels of ZONAB and cell cycle regulators. Claudin-2 was distributed in the nucleus in human adenocarcinoma tissues and proliferating A549 cells. The nuclear distribution of ZONAB and percentage of S phase cells were higher in cells exogenously expressing claudin-2 with a nuclear localization signal than in cells expressing claudin-2 with a nuclear export signal. Nuclear claudin-2 formed a complex with ZO-1, ZONAB, and cyclin D1. Nuclear distribution of S208A mutant, a dephosphorylated form of claudin-2, was higher than that of wild type. We suggest that nuclear distribution of claudin-2 is up-regulated by dephosphorylation and claudin-2 serves to retain ZONAB and cyclin D1 in the nucleus, resulting in the enhancement of cell proliferation in lung adenocarcinoma cells.

  2. NFAT5 promotes proliferation and migration of lung adenocarcinoma cells in part through regulating AQP5 expression

    SciTech Connect

    Guo, Kai; Jin, Faguang

    2015-09-25

    The osmoregulated transcription factor nuclear factor of activated T-cells 5(NFAT5), has been found to play important roles in the development of many kinds of human cancers, including breast cancer, colon carcinoma, renal cell carcinoma and melanoma. The aim of the present study was to determine whether NFAT5 is involved in the proliferation and migration of lung adenocarcinoma cells. We found that NFAT5 was upregulated in lung adenocarcinoma cells and knockdown of NFAT5 decreased proliferation and migration of the cells, accompanied by a significant reduction in the expression of AQP5. AQP5 was upregulated in lung adenocarcinoma cells and knockdown of AQP5 also inhibited proliferation and migration of the cells as knockdown of NFAT5 did. Moreover, overexpression of NFAT5 promoted proliferation and migration of lung adenocarcinoma cells, accompanied by a significant increase in the expression of AQP5. These results indicate that NFAT5 plays important roles in proliferation and migration of human lung adenocarcinoma cells through regulating AQP5 expression, providing a new therapeutic option for lung adenocarcinoma therapy. - Highlights: • NFAT5 expression is higher in lung adenocarcinoma cells compared with normal cells. • NFAT5 knockdown decreases proliferation and migration of lung adenocarcinoma cells. • Knockdown of NFAT5 reduces AQP5 expression in human lung adenocarcinoma cells. • Overexpression of NFAT5 promotes proliferation and migration of lung adenocarcinoma cells. • Overexpression of NFAT5 increases AQP5 expression in human lung adenocarcinoma cells.

  3. Proton Pump Inhibitors Display Antitumor Effects in Barrett's Adenocarcinoma Cells

    PubMed Central

    Chueca, Eduardo; Apostolova, Nadezda; Esplugues, Juan V.; García-González, María A.; Lanas, Ángel; Piazuelo, Elena

    2016-01-01

    Recent evidence has reported that proton pump inhibitors (PPIs) can exert antineoplastic effects through the disruption of pH homeostasis by inhibiting vacuolar ATPase (H+-VATPase), a proton pump overexpressed in several tumor cells, but this aspect has not been deeply investigated in EAC yet. In the present study, the expression of H+-VATPase was assessed through the metaplasia-dysplasia-adenocarcinoma sequence in Barrett's esophagus (BE) and the antineoplastic effects of PPIs and cellular mechanisms involved were evaluated in vitro. H+-VATPase expression was assessed by immunohistochemistry in paraffined-embedded samples or by immunofluorescence in cultured BE and EAC cell lines. Cells were treated with different concentrations of PPIs and parameters of citotoxicity, oxidative stress, and autophagy were evaluated. H+-VATPase expression was found in all biopsies and cell lines evaluated, showing differences in the location of the pump between the cell lines. Esomeprazole inhibited proliferation and cell invasion and induced apoptosis of EAC cells. Production of reactive oxygen species (ROS) seemed to be involved in the cytotoxic effects observed since the addition of N-acetylcysteine significantly reduced esomeprazole-induced apoptosis in EAC cells. Esomeprazole also reduced intracellular pH of tumor cells, whereas only disturbed the mitochondrial membrane potential in OE33 cells. Esomeprazole induced autophagy in both EAC cells, but also triggered a blockade in autophagic flux in the metastatic cell line. These data provide in vitro evidence supporting the potential use of PPIs as novel antineoplastic drugs for EAC and also shed some light on the mechanisms that trigger PPIs cytotoxic effects, which differ upon the cell line evaluated. PMID:27932981

  4. Polystyrene nanoparticles internalization in human gastric adenocarcinoma cells.

    PubMed

    Forte, Maurizio; Iachetta, Giuseppina; Tussellino, Margherita; Carotenuto, Rosa; Prisco, Marina; De Falco, Maria; Laforgia, Vincenza; Valiante, Salvatore

    2016-03-01

    The increase in the use of nanoparticles, as a promising tool for drug delivery or as a food additive, raises questions about their interaction with biological systems, especially in terms of evoked responses. In this work, we evaluated the kinetics of uptake of 44 nm (NP44) and 100 nm (NP100) unmodified polystyrene nanoparticles (PS-NPs) in gastric adenocarcinoma (AGS) cells, as well as the endocytic mechanism involved, and the effect on cell viability and gene expression of genes involved in cell cycle regulation and inflammation processes. We showed that NP44 accumulate rapidly and more efficiently in the cytoplasm of AGS compared to NP100; both PS-NPs showed an energy dependent mechanism of internalization and a clathrin-mediated endocytosis pathway. Dose response treatments revealed a non-linear curve. PS-NPs also affected cell viability, inflammatory gene expression and cell morphology. NP44 strongly induced an up-regulation of IL-6 and IL-8 genes, two of the most important cytokines involved in gastric pathologies. Our study suggests that parameters such as time, size and concentration of NPs must be taken carefully into consideration during the development of drug delivery systems based on NPs and for the management of nanoparticles associated risk factors.

  5. Cytotoxicity of selected magnetic fluids on human adenocarcinoma cells

    NASA Astrophysics Data System (ADS)

    Hilger, Ingrid; Frühauf, Sylvia; Linß, Werner; Hiergeist, Robert; Andrä, Wilfried; Hergt, Rudolf; Kaiser, Werner A.

    2003-04-01

    Based on the knowledge that the magnetite particles seem to be well tolerated by the human body, the cytotoxic potential of coated particles was investigated, which had been selected for potential applications regarding the minimal-invasive elimination of breast tumors by magnetic thermoablation. Human adenocarcinoma cells (BT-20) were exposed (24, 48 and 72 h) to different magnetite particles with diverging total size (8, 10 and 220 nm) and coating (cationic and anionic). One sample contained only non-coated magnetite particles. The magnetite concentration ranged between 0.2 and 20 ng/cell. Cytotoxicity was estimated by measuring the succinate dehydrogenase activity. The morphologic features resulting from the interaction of magnetic fluids with BT-20 cells was determined by transmission electron microscopy. As opposed to the non-coated magnetic particles, cationic particles induced the strongest decrease in cell survival rates depending on time and concentration. Morphologically, the cationic particle samples exerted a strong binding to cellular membranes. Changes in the subcellular structure were found in relation to the coated magnetic particles. In conclusion, our results show that the coated prototype magnetic particles, particularly those with a cationic surfactant, are cytotoxic to BT-20 cells. The cytotoxicity is attributed to electrostatic bindings with cellular membranes, influences of chemical components or non-physiologic pH. Considering the in vivo applications, adverse systemic effects are conceivable and more biocompatible coatings for the selected magnetic particles should be elaborated.

  6. Whole-genome sequencing of nine esophageal adenocarcinoma cell lines

    PubMed Central

    Contino, Gianmarco; Eldridge, Matthew D.; Secrier, Maria; Bower, Lawrence; Fels Elliott, Rachael; Weaver, Jamie; Lynch, Andy G.; Edwards, Paul A.W.; Fitzgerald, Rebecca C.

    2016-01-01

    Esophageal adenocarcinoma (EAC) is highly mutated and molecularly heterogeneous. The number of cell lines available for study is limited and their genome has been only partially characterized. The availability of an accurate annotation of their mutational landscape is crucial for accurate experimental design and correct interpretation of genotype-phenotype findings. We performed high coverage, paired end whole genome sequencing on eight EAC cell lines—ESO26, ESO51, FLO-1, JH-EsoAd1, OACM5.1 C, OACP4 C, OE33, SK-GT-4—all verified against original patient material, and one esophageal high grade dysplasia cell line, CP-D. We have made available the aligned sequence data and report single nucleotide variants (SNVs), small insertions and deletions (indels), and copy number alterations, identified by comparison with the human reference genome and known single nucleotide polymorphisms (SNPs). We compare these putative mutations to mutations found in primary tissue EAC samples, to inform the use of these cell lines as a model of EAC. PMID:27594985

  7. 25-Hydroxycholesterol promotes migration and invasion of lung adenocarcinoma cells.

    PubMed

    Chen, Li; Zhang, Lishan; Xian, Guozhe; Lv, Yinping; Lin, Yanliang; Wang, Yibing

    2017-03-18

    25-hydroxycholesterol (25-HC) is enzymatically produced by cholesterol 25-hydorxylase in various organs and is involved in many processes, including lipid metabolism, inflammation and the immune response. However, the role of 25-HC in the migration and invasion of lung adenocarcinoma (ADC) cells remains largely unknown. In this study, we demonstrated that 0.1 μM 25-HC promoted ADC cell migration and invasion without affecting cell proliferation, especially after coculture with THP1-derived macrophages. Further investigation showed that 0.1 μM 25-HC significantly stimulated interleukin-1β (IL-1β) secretion in a coculture system and increased the expression of LXR and Snail. IL-1β also mimicked the effect of 25-HC. LXR knockdown notably blocked the 25-HC-induced Snail expression, migration and invasion in both the monoculture system and the coculture system, but it did not impact the effect of IL-1β, which suggested that IL-1β functioned in an LXR-independent manner. These results suggested that 25-HC promoted ADC cell migration and invasion in an LXR-dependent manner in the monoculture system but that in the coculture system, the 25-HC-induced IL-1β secretion enhanced the effect of 25-HC in an LXR-independent manner.

  8. The HSP90 Inhibitor Ganetespib Radiosensitizes Human Lung Adenocarcinoma Cells

    PubMed Central

    Gomez-Casal, Roberto; Bhattacharya, Chitralekha; Epperly, Michael W.; Basse, Per H.; Wang, Hong; Wang, Xinhui; Proia, David A.; Greenberger, Joel S.; Socinski, Mark A.; Levina, Vera

    2015-01-01

    The molecular chaperone HSP90 is involved in stabilization and function of multiple client proteins, many of which represent important oncogenic drivers in NSCLC. Utilization of HSP90 inhibitors as radiosensitizing agents is a promising approach. The antitumor activity of ganetespib, HSP90 inhibitor, was evaluated in human lung adenocarcinoma (AC) cells for its ability to potentiate the effects of IR treatment in both in vitro and in vivo. The cytotoxic effects of ganetespib included; G2/M cell cycle arrest, inhibition of DNA repair, apoptosis induction, and promotion of senescence. All of these antitumor effects were both concentration- and time-dependent. Both pretreatment and post-radiation treatment with ganetespib at low nanomolar concentrations induced radiosensitization in lung AC cells in vitro. Ganetespib may impart radiosensitization through multiple mechanisms: such as down regulation of the PI3K/Akt pathway; diminished DNA repair capacity and promotion of cellular senescence. In vivo, ganetespib reduced growth of T2821 tumor xenografts in mice and sensitized tumors to IR. Tumor irradiation led to dramatic upregulation of β-catenin expression in tumor tissues, an effect that was mitigated in T2821 xenografts when ganetespib was combined with IR treatments. These data highlight the promise of combining ganetespib with IR therapies in the treatment of AC lung tumors. PMID:26010604

  9. Imaging of activated caspase-3 in living cell by fluorescence resonance energy transfer during photosensitization-induced apoptosis

    NASA Astrophysics Data System (ADS)

    Wu, Yunxia; Xing, Da; Chen, Qun; Tang, Yonghong

    2005-01-01

    Photodynamic therapy (PDT) is a novel and promising cancer treatment that employs a combination of a photosensitizing chemical and visible light, induces apoptosis in cell, and activation of caspase-3 is considered to be the final step in many apoptosis pathways. The changes of caspase-3 activation in cell during TNFα- and photodynamic therapy-induced apoptosis was measured by fluorescence resonance energy transfer (FRET) analysis. FRET probe consisting of fusions of an enhanced cyan fluorescent protein (ECFP), Venus and a linker peptide containing the caspase-3 cleavage sequence DEVD was utilized. Therefore, activated caspase-3 cleaved the linker peptide of FRET probe and disrupted the FRET signal. Human lung adenocarcinoma cell line (ASTC-a-1) were stably transfected with the plasmid (ECFP-DEVD-Venus) and then were treated by TNF-α and PDT, respectively. Experimental results indicated that caspase-3 activation resulted in cleavage of linker peptide and subsequent disruption of the FRET signal during TNFα- and photodynamic therapy-induced apoptosis, and that the activation of caspase-3 induced by photodynamic therapy was faster than that induce by TNF-α. The study supports that using FRET technique and different recombinant substrates as FRET probes could be used to detect the process of PDT-induced apoptosis and provide a new means to investigate apoptotic mechanism of PDT.

  10. Hypoxia induced CCL28 promotes angiogenesis in lung adenocarcinoma by targeting CCR3 on endothelial cells.

    PubMed

    Huang, Guichun; Tao, Leilei; Shen, Sunan; Chen, Longbang

    2016-06-02

    Tumor hypoxia is one of the important features of lung adenocarcinoma. Chemokines might mediate the effects caused by tumor hypoxia. As confirmed in tumor tissue and serum of patients, CC chemokine 28 (CCL28) was the only hypoxia induced chemokine in lung adenocarcinoma cells. CCL28 could promote tube formation, migration and proliferation of endothelial cells. In addition, angiogenesis was promoted by CCL28 in the chick chorioallantoic membrane and matrigel implanted in dorsal back of athymic nude mice (CByJ.Cg-Foxn1(nu)/J). Tumors formed by lung adenocarcinoma cells with high expression of CCL28 grew faster and had a higher vascular density, whereas tumor formation rate of lung adenocarcinoma cells with CCL28 expression knockdown was quite low and had a lower vascular density. CCR3, receptor of CCL28, was highly expressed in vascular endothelial cells in lung adenocarcinoma when examining by immunohistochemistry. Further signaling pathways in endothelial cells, modulated by CCL28, were analyzed by Phosphorylation Antibody Array. CCL28/CCR3 signaling pathway could bypass that of VEGF/VEGFR on the levels of PI3K-Akt, p38 MAPK and PLC gamma. The effects could be neutralized by antibody against CCR3. In conclusion, CCL28, as a chemokine induced by tumor hypoxia, could promote angiogenesis in lung adenocarcinoma through targeting CCR3 on microvascular endothelial cells.

  11. Cell-surface markers for colon adenoma and adenocarcinoma.

    PubMed

    Sewda, Kamini; Coppola, Domenico; Enkemann, Steven; Yue, Binglin; Kim, Jongphil; Lopez, Alexis S; Wojtkowiak, Jonathan W; Stark, Valerie E; Morse, Brian; Shibata, David; Vignesh, Shivakumar; Morse, David L

    2016-04-05

    Early detection of colorectal cancer (CRC) is crucial for effective treatment. Among CRC screening techniques, optical colonoscopy is widely considered the gold standard. However, it is a costly and invasive procedure with a low rate of compliance. Our long-term goal is to develop molecular imaging agents for the non-invasive detection of CRC by molecular imaging-based colonoscopy using CT, MRI or fluorescence. To achieve this, cell surface targets must be identified and validated. Here, we report the discovery of cell-surface markers that distinguish CRC from surrounding tissues that could be used as molecular imaging targets. Profiling of mRNA expression microarray data from patient tissues including adenoma, adenocarcinoma, and normal gastrointestinal tissues was used to identify potential CRC specific cell-surface markers. Of the identified markers, six were selected for further validation (CLDN1, GPR56, GRM8, LY6G6D/F, SLCO1B3 and TLR4). Protein expression was confirmed by immunohistochemistry of patient tissues. Except for SLCO1B3, diffuse and low expression was observed for each marker in normal colon tissues. The three markers with the greatest protein overexpression were CLDN1, LY6G6D/F and TLR4, where at least one of these markers was overexpressed in 97% of the CRC samples. GPR56, LY6G6D/F and SLCO1B3 protein expression was significantly correlated with the proximal tumor location and with expression of mismatch repair genes. Marker expression was further validated in CRC cell lines. Hence, three cell-surface markers were discovered that distinguish CRC from surrounding normal tissues. These markers can be used to develop imaging or therapeutic agents targeted to the luminal surface of CRC.

  12. Regulation of cholesterol synthesis in four colonic adenocarcinoma cell lines.

    PubMed

    Cerda, S R; Wilkinson, J; Broitman, S A

    1995-12-01

    Colon tumor cells, unlike normal human fibroblasts, exhibited an uncoupling of low density lipoprotein (LDL)-derived cholesterol from cellular growth, when endogenous cholesterol synthesis was inhibited by mevinolin, a hydroxymethylglutaryl-CoA reductase (HMG-CoAR) competitive inhibitor [Fabricant, M., and Broitman, S.A. (1990) Cancer Res. 50, 632-636]. Further evaluation of cholesterol metabolism was conducted in two undifferentiated (SW480, SW1417) and two differentiated (HT29, CACO2) colonic adenocarcinoma (adeno-CA) cell lines and an untransformed human fibroblast, AG1519A. Cells grown in monolayer culture to near subconfluency were used to assess endogenous cholesterol synthesis by 14C-acetate incorporation, in response to the following treatments in lipoprotein-deficient serum (LPDS)-supplemented minimum essential medium (MEM): LPDS alone, LDL, mevinolin, mevinolin with LDL, and 25-hydroxy-cholesterol (25-OH-CH). Complete fetal bovine serum (FBS)-supplemented MEM was used as control. All colon tumor lines exhibited similarly high endogenous cholesterol synthesis in both FBS and LPDS relative to the fibroblasts which demonstrated low basal levels in FBS and maximal synthesis in LPDS. LDL treatment did not inhibit cholesterol synthesis in colon tumor cells, but suppressed that in the fibroblast by 70%. Sterol repression of cholesterol synthesis mediated by 25-OH-CH occurred in all cells. Mevinolin caused a reduction in cholesterol synthesis in the colonic cancer cell lines, which was not further decreased by concurrent addition of LDL. In contrast, in mevinolin-treated fibroblasts, LDL further inhibited cholesterol synthesis. When the effect of cell density on cholesterol synthesis regulation was evaluated under conditions of sparse density in SW480 and SW147, results indicated that (i) basal rates of cholesterol synthesis were higher, (ii) LDL inhibited cholesterol synthesis more effectively, and (iii) mevinolin or 25-OH-CH had a more pronounced effect than in

  13. Circulating Tumor Cells in the Adenocarcinoma of the Esophagus

    PubMed Central

    Gallerani, Giulia; Fabbri, Francesco

    2016-01-01

    Circulating tumor cells (CTCs) are elements of indisputable significance as they seem to be responsible for the onset of metastasis. Despite this, research into CTCs and their clinical application have been hindered by their rarity and heterogeneity at the molecular and cellular level, and also by a lack of technical standardization. Esophageal adenocarcinoma (EAC) is a highly aggressive cancer that is often diagnosed at an advanced stage. Its incidence has increased so much in recent years that new diagnostic, prognostic and predictive biomarkers are urgently needed. Preliminary findings suggest that CTCs could represent an effective, non-invasive, real-time assessable biomarker in all stages of EAC. This review provides an overview of EAC and CTC characteristics and reports the main research results obtained on CTCs in this setting. The need to carry out further basic and translational research in this area to confirm the clinical usefulness of CTCs and to provide oncologists with a tool to improve therapeutic strategies for EAC patients was herein highlighted. PMID:27527155

  14. A case of signet ring cell adenocarcinoma of the bladder with spontaneous urinary extravasation

    PubMed Central

    Shringarpure, Sanish S.; Thachil, Joseph V.; Raja, T. `; Mani, Rama

    2011-01-01

    Primary signet ring cell adenocarcinoma (PSRCC) of the bladder is a relatively rare variant of adenocarcinoma of the bladder with poor prognosis. Also PSRCC of the bladder presenting with spontaneous urinary extravasation is very rare. We present the case of a 48-year male who presented with spontaneous urinary extravasation and was diagnosed to have PSRCC of the urinary bladder on evaluation. He was treated with radical cystectomy and adjuvant chemotherapy. This report emphasizes the need to rule out other primary sites of adenocarcinoma in the body, which may metastasize to the urinary bladder. PMID:22022068

  15. Modulation of prostaglandin biosynthesis in murine mammary adenocarcinoma tumor cells

    SciTech Connect

    Shalinsky, D.R.

    1988-01-01

    In efforts to exploit the differential oxygen levels within the subcompartments of solid neoplasms, this project has focused on modulating prostaglandin (PG) biosynthesis under aerobic and hypoxic conditions. Mammary adenocarcinoma tumor cells (Line 4526), either intact or sonicated, were incubated with either 2.0 uM {sup 14}C-arachidonic acid (AA) or 20.0 uM {sup 14}C-PGH{sub 2}, respectively. Following metabolism, products were extracted, separated by thin layer chromatography and analyzed by radiochromatographic scan. PGE{sub 2} was predominantly formed with minimal amounts of PGF{sub 2a} or PGD{sub 2}. Indomethacin and ibuprofen inhibited the PGE{sub 2} formation from AA with an IC{sub 50} value of 6.3 {times} 10{sup {minus}8} and 9.6 {times} 10{sup {minus}5}M, respectively. Suspended cells in glass vials were made hypoxic by flushing with N{sub 2} for varying time intervals to study AA metabolism. A time-dependent inhibition of PG biosynthesis was observed under hypoxia, and by 30 min, the PGE{sub 2} synthesis was reduced by 50% which was further inhibited by indomethacin. Misonidazole, a 2-nitroimidazole analogue, partially reversed the inhibition of PGE{sub 2} synthesis under hypoxia by 49% at 100 uM. However, misonidazole did not affect PG biosynthesis under aerobic conditions. The stimulation of PGE{sub 2} biosynthesis by misonidazole under hypoxia was blocked by indomethacin, suggesting that misonidazole can not act independently of the cyclooxygenase.

  16. Absorption spectra of adenocarcinoma and squamous cell carcinoma cervical tissues

    NASA Astrophysics Data System (ADS)

    Ivashko, Pavlo; Peresunko, Olexander; Zelinska, Natalia; Alonova, Marina

    2014-08-01

    We studied a methods of assessment of a connective tissue of cervix in terms of specific volume of fibrous component and an optical density of staining of connective tissue fibers in the stroma of squamous cancer and cervix adenocarcinoma. An absorption spectra of blood plasma of the patients suffering from squamous cancer and cervix adenocarcinoma both before the surgery and in postsurgical periods were obtained. Linear dichroism measurements transmittance in polarized light at different orientations of the polarization plane relative to the direction of the dominant orientation in the structure of the sample of biotissues of stroma of squamous cancer and cervix adenocarcinoma were carried. Results of the investigation of the tumor tissues showed that the magnitude of the linear dichroism Δ is insignificant in the researched spectral range λ=280-840 nm and specific regularities in its change observed short-wave ranges.

  17. Dynamics of regulatory networks in gastrin-treated adenocarcinoma cells.

    PubMed

    Doni Jayavelu, Naresh; Bar, Nadav

    2014-01-01

    Understanding gene transcription regulatory networks is critical to deciphering the molecular mechanisms of different cellular states. Most studies focus on static transcriptional networks. In the current study, we used the gastrin-regulated system as a model to understand the dynamics of transcriptional networks composed of transcription factors (TFs) and target genes (TGs). The hormone gastrin activates and stimulates signaling pathways leading to various cellular states through transcriptional programs. Dysregulation of gastrin can result in cancerous tumors, for example. However, the regulatory networks involving gastrin are highly complex, and the roles of most of the components of these networks are unknown. We used time series microarray data of AR42J adenocarcinoma cells treated with gastrin combined with static TF-TG relationships integrated from different sources, and we reconstructed the dynamic activities of TFs using network component analysis (NCA). Based on the peak expression of TGs and activity of TFs, we created active sub-networks at four time ranges after gastrin treatment, namely immediate-early (IE), mid-early (ME), mid-late (ML) and very late (VL). Network analysis revealed that the active sub-networks were topologically different at the early and late time ranges. Gene ontology analysis unveiled that each active sub-network was highly enriched in a particular biological process. Interestingly, network motif patterns were also distinct between the sub-networks. This analysis can be applied to other time series microarray datasets, focusing on smaller sub-networks that are activated in a cascade, allowing better overview of the mechanisms involved at each time range.

  18. Prognostic significance of tumor budding and single cell invasion in gastric adenocarcinoma

    PubMed Central

    Che, Keying; Zhao, Yang; Qu, Xiao; Pang, Zhaofei; Ni, Yang; Zhang, Tiehong; Du, Jiajun; Shen, Hongchang

    2017-01-01

    Purpose Gastric carcinoma (GC) is a highly aggressive cancer and one of the leading causes of cancer-related deaths worldwide. Histopathological evaluation pertaining to invasiveness is likely to provide additional information in relation to patient outcome. In this study, we aimed to evaluate the prognostic significance of tumor budding and single cell invasion in gastric adenocarcinoma. Materials and methods Hematoxylin and eosin-stained slides generated from 296 gastric adenocarcinoma patients with full clinical and pathological and follow-up information were systematically reviewed. The patients were grouped on the basis of tumor budding, single cell invasion, large cell invasion, mitotic count, and fibrosis. The association between histopathological parameters, different classification systems, and overall survival (OS) was statistically analyzed. Results Among the 296 cases that were analyzed, high-grade tumor budding was observed in 49.0% (145) of them. Single cell invasion and large cell invasion were observed in 62.8% (186) and 16.9% (50) of the cases, respectively. Following univariate analysis, patients with high-grade tumor budding had shorter OS than those with low-grade tumor budding (hazard ratio [HR]: 2.260, P<0.001). Similarly, the OS of patients with single cell invasion and large cell invasion was reduced (single cell invasion, HR: 3.553, P<0.001; large cell invasion, HR: 2.466, P<0.001). Following multivariate analysis, tumor budding and single cell invasion were observed to be independent risk factors for gastric adenocarcinoma (P<0.05). According to the Lauren classification, patients with intestinal-type adenocarcinoma had better outcomes than those with diffuse-type adenocarcinoma (HR: 2.563, P<0.001). Conclusion Tumor budding and single cell invasion in gastric adenocarcinoma are associated with an unfavorable prognosis. PMID:28255247

  19. Migration and invasion of drug-resistant lung adenocarcinoma cells are dependent on mitochondrial activity

    PubMed Central

    Jeon, Ji Hoon; Kim, Dong Keon; Shin, Youngmi; Kim, Hee Yeon; Song, Bomin; Lee, Eun Young; Kim, Jong Kwang; You, Hye Jin; Cheong, Heesun; Shin, Dong Hoon; Kim, Seong-Tae; Cheong, Jae-Ho; Kim, Soo Youl; Jang, Hyonchol

    2016-01-01

    A small proportion of cancer cells have stem-cell-like properties, are resistant to standard therapy and are associated with a poor prognosis. The metabolism of such drug-resistant cells differs from that of nearby non-resistant cells. In this study, the metabolism of drug-resistant lung adenocarcinoma cells was investigated. The expression of genes associated with oxidative phosphorylation in the mitochondrial membrane was negatively correlated with the prognosis of lung adenocarcinoma. Because the mitochondrial membrane potential (MMP) reflects the functional status of mitochondria and metastasis is the principal cause of death due to cancer, the relationship between MMP and metastasis was evaluated. Cells with a higher MMP exhibited greater migration and invasion than those with a lower MMP. Cells that survived treatment with cisplatin, a standard chemotherapeutic drug for lung adenocarcinoma, exhibited increased MMP and enhanced migration and invasion compared with parental cells. Consistent with these findings, inhibition of mitochondrial activity significantly impeded the migration and invasion of cisplatin-resistant cells. RNA-sequencing analysis indicated that the expression of mitochondrial complex genes was upregulated in cisplatin-resistant cells. These results suggested that drug-resistant cells have a greater MMP and that inhibition of mitochondrial activity could be used to prevent metastasis of drug-resistant lung adenocarcinoma cells. PMID:27932791

  20. Clear cell adenocarcinoma of the renal pelvis: an extremely rare neoplasm of the upper urinary tract.

    PubMed

    Liu, K-W; Lin, V C-H; Chang, I-W

    2013-12-01

    Clear cell adenocarcinoma (CCA) in the urinary tract is a rare neoplasm morphologically identical to the Müllerian counterpart. Clear cell adenocarcinoma is extremely rare in the upper urinary tract. We present a case with CCA of the renal pelvis. Microscopically, the tumor exhibited exophytic growth with predominantly tubulocystic structures, as well as solid and papillary patterns. The neoplastic cells were cuboidal with clear to pale eosinophilic cytoplasm and abundant intracellular and extracellular eosinophilic hyaline globules. By immunohistochemically, the tumor was labeled by cytokeratins and hepatocyte nuclear factor-1β. The patient was still alive without evidence of recurrence in the follow-up period of nineteen months after diagnosis.

  1. Single cell analysis of low-power laser irradiation-induced activation of signaling pathway in cell proliferation

    NASA Astrophysics Data System (ADS)

    Xing, Da; Gao, Xuejuan

    2007-02-01

    Low-power laser irradiation (LPLI) has been shown to promote cell proliferation in various cell types, yet the mechanism of which has not been fully clarified. Investigating the signaling pathways involved in the laser irradiation is important for understanding these processes. The small G protein Ras works as a binary switch in many important intracellular signaling pathways and, therefore, has been one of the focal targets of signal-transduction investigations and drug development. The Ras/Raf/MEK/ERK (extracellular-signal-regulated kinase) signaling pathway is a network that governs proliferation, differentiation and cell survival. Recent studies suggest that Ras/Raf signaling pathway is involved in the LPLI-induced cell proliferation. On the other hand, Protein kinase Cs (PKCs), the Ca 2+ activated, phospholipid-dependent serine/threonine protein kinases, have been recently presumed to be involved in the regulation of cell proliferation induced by LPLI. In this report, to monitor the direct activations of Ras and PKCs after LPLI treatment in living cells in real time, Raichu-Ras reporter and C kinase activity reporter (CKAR) were utilized, both of which were constructed based on fluorescence resonance energy transfer (FRET) technique. The direct activation of Ras is predominantly initiated from the different microdomains of the plasma membrane. The results are monitored during cell proliferation induced by LPLI (0.8 J/cm2) in serum-starved COS-7 cells expressing Raichu-Ras reporter using FRET imaging on laser scanning confocal microscope. Furthermore, the increasing activation of PKCs is also monitored during cell proliferation induced by LPLI (0.8 J/cm2) in serum-starved human lung adenocarcinoma cells (ASTC-a-1) expressing CKAR reporter using the similar way. Taken together, the dynamic increases of H-Ras and PKCs activities are observed during the processes of cell proliferation induced by LPLI.

  2. Aryl hydrocarbon receptor protects lung adenocarcinoma cells against cigarette sidestream smoke particulates-induced oxidative stress

    SciTech Connect

    Cheng, Ya-Hsin; Huang, Su-Chin; Lin, Chun-Ju; Cheng, Li-Chuan; Li, Lih-Ann

    2012-03-15

    Environmental cigarette smoke has been suggested to promote lung adenocarcinoma progression through aryl hydrocarbon receptor (AhR)-signaled metabolism. However, whether AhR facilitates metabolic activation or detoxification in exposed adenocarcinoma cells remains ambiguous. To address this question, we have modified the expression level of AhR in two human lung adenocarcinoma cell lines and examined their response to an extract of cigarette sidestream smoke particulates (CSSP). We found that overexpression of AhR in the CL1-5 cell line reduced CSSP-induced ROS production and oxidative DNA damage, whereas knockdown of AhR expression increased ROS level in CSSP-exposed H1355 cells. Oxidative stress sensor Nrf2 and its target gene NQO1 were insensitive to AhR expression level and CSSP treatment in human lung adenocarcinoma cells. In contrast, induction of AhR expression concurrently increased mRNA expression of xenobiotic-metabolizing genes CYP1B1, UGT1A8, and UGT1A10 in a ligand-independent manner. It appeared that AhR accelerated xenobiotic clearing and diminished associated oxidative stress by coordinate regulation of a set of phase I and II metabolizing genes. However, the AhR-signaled protection could not shield cells from constant oxidative stress. Prolonged exposure to high concentrations of CSSP induced G0/G1 cell cycle arrest via the p53–p21–Rb1 signaling pathway. Despite no effect on DNA repair rate, AhR facilitated the recovery of cells from growth arrest when CSSP exposure ended. AhR-overexpressing lung adenocarcinoma cells exhibited an increased anchorage-dependent and independent proliferation when recovery from exposure. In summary, our data demonstrated that AhR protected lung adenocarcinoma cells against CSSP-induced oxidative stress and promoted post-exposure clonogenicity. -- Highlights: ► AhR expression level influences cigarette sidestream smoke-induced ROS production. ► AhR reduces oxidative stress by coordinate regulation of

  3. NR4A2 Is Regulated by Gastrin and Influences Cellular Responses of Gastric Adenocarcinoma Cells

    PubMed Central

    Misund, Kristine; Selvik, Linn-Karina Myrland; Rao, Shalini; Nørsett, Kristin; Bakke, Ingunn; Sandvik, Arne K.; Lægreid, Astrid; Bruland, Torunn; Prestvik, Wenche S.; Thommesen, Liv

    2013-01-01

    The peptide hormone gastrin is known to play a role in differentiation, growth and apoptosis of cells in the gastric mucosa. In this study we demonstrate that gastrin induces Nuclear Receptor 4A2 (NR4A2) expression in the adenocarcinoma cell lines AR42J and AGS-GR, which both possess the gastrin/CCK2 receptor. In vivo, NR4A2 is strongly expressed in the gastrin responsive neuroendocrine ECL cells in normal mucosa, whereas gastric adenocarcinoma tissue reveals a more diffuse and variable expression in tumor cells. We show that NR4A2 is a primary early transient gastrin induced gene in adenocarcinoma cell lines, and that NR4A2 expression is negatively regulated by inducible cAMP early repressor (ICER) and zinc finger protein 36, C3H1 type-like 1 (Zfp36l1), suggesting that these gastrin regulated proteins exert a negative feedback control of NR4A2 activated responses. FRAP analyses indicate that gastrin also modifies the nucleus-cytosol shuttling of NR4A2, with more NR4A2 localized to cytoplasm upon gastrin treatment. Knock-down experiments with siRNA targeting NR4A2 increase migration of gastrin treated adenocarcinoma AGS-GR cells, while ectopically expressed NR4A2 increases apoptosis and hampers gastrin induced invasion, indicating a tumor suppressor function of NR4A2. Collectively, our results uncover a role of NR4A2 in gastric adenocarcinoma cells, and suggest that both the level and the localization of NR4A2 protein are of importance regarding the cellular responses of these cells. PMID:24086717

  4. NR4A2 is regulated by gastrin and influences cellular responses of gastric adenocarcinoma cells.

    PubMed

    Misund, Kristine; Selvik, Linn-Karina Myrland; Rao, Shalini; Nørsett, Kristin; Bakke, Ingunn; Sandvik, Arne K; Lægreid, Astrid; Bruland, Torunn; Prestvik, Wenche S; Thommesen, Liv

    2013-01-01

    The peptide hormone gastrin is known to play a role in differentiation, growth and apoptosis of cells in the gastric mucosa. In this study we demonstrate that gastrin induces Nuclear Receptor 4A2 (NR4A2) expression in the adenocarcinoma cell lines AR42J and AGS-GR, which both possess the gastrin/CCK2 receptor. In vivo, NR4A2 is strongly expressed in the gastrin responsive neuroendocrine ECL cells in normal mucosa, whereas gastric adenocarcinoma tissue reveals a more diffuse and variable expression in tumor cells. We show that NR4A2 is a primary early transient gastrin induced gene in adenocarcinoma cell lines, and that NR4A2 expression is negatively regulated by inducible cAMP early repressor (ICER) and zinc finger protein 36, C3H1 type-like 1 (Zfp36l1), suggesting that these gastrin regulated proteins exert a negative feedback control of NR4A2 activated responses. FRAP analyses indicate that gastrin also modifies the nucleus-cytosol shuttling of NR4A2, with more NR4A2 localized to cytoplasm upon gastrin treatment. Knock-down experiments with siRNA targeting NR4A2 increase migration of gastrin treated adenocarcinoma AGS-GR cells, while ectopically expressed NR4A2 increases apoptosis and hampers gastrin induced invasion, indicating a tumor suppressor function of NR4A2. Collectively, our results uncover a role of NR4A2 in gastric adenocarcinoma cells, and suggest that both the level and the localization of NR4A2 protein are of importance regarding the cellular responses of these cells.

  5. The different functions and clinical significances of caveolin-1 in human adenocarcinoma and squamous cell carcinoma

    PubMed Central

    Fu, Pin; Chen, Fuchun; Pan, Qi; Zhao, Xianda; Zhao, Chen; Cho, William Chi-Shing; Chen, Honglei

    2017-01-01

    Caveolin-1 (Cav-1), a major structural protein of caveolae, is an integral membrane protein which plays an important role in the progression of carcinoma. However, whether Cav-1 acts as a tumor promoter or a tumor suppressor still remains controversial. For example, the tumor-promoting function of Cav-1 has been found in renal cancer, prostate cancer, tongue squamous cell carcinoma (SCC), lung SCC and bladder SCC. In contrast, Cav-1 also plays an inhibitory role in esophagus adenocarcinoma, lung adenocarcinoma and cutaneous SCC. The role of Cav-1 is still controversial in thyroid cancer, hepatocellular carcinoma, gastric adenocarcinoma, colon adenocarcinoma, breast cancer, pancreas cancer, oral SCC, laryngeal SCC, head and neck SCC, esophageal SCC and cervical SCC. Besides, it has been reported that the loss of stromal Cav-1 might predict poor prognosis in breast cancer, gastric cancer, pancreas cancer, prostate cancer, oral SCC and esophageal SCC. However, the accumulation of stromal Cav-1 has been found to be promoted by the progression of tongue SCC. Taken together, Cav-1 seems playing a different role in different cancer subtypes even of the same organ, as well as acting differently in the same cancer subtype of different organs. Thus, we hereby explore the functions of Cav-1 in human adenocarcinoma and SCC from the perspective of clinical significances and pathogenesis. We envision that novel targets may come with the further investigation of Cav-1 in carcinogenesis. PMID:28243118

  6. Immunohistochemical characterization of endometrial carcinomas: endometrioid, serous and clear cell adenocarcinomas in association with genetic analysis.

    PubMed

    Yasuda, Masanori

    2014-12-01

    Developments in immunohistochemistry, which are closely linked with the advances in the analyses of genetic abnormalities and their associated molecular disorders as early and late histogenetic events, have contributed greatly to the improvement of pathological diagnostic confirmation and validation. Immunohistochemistry has also generated great benefit to the innovation of therapeutic strategies for various kinds of cancers. In this article, the three representative histological types of corpus cancer, namely, endometrioid adenocarcinoma, serous adenocarcinoma and clear cell adenocarcinoma, will be histologically approached in association with their immunohistochemical profiles as well as genetic disorders. First, the focus will be on 'Conventional/prototypic features,' followed by 'Controversy over conventional histological subclassification,' and subsequently 'Tumorigenesis and re-subclassification'.

  7. MicroRNA-29a suppresses the growth, migration, and invasion of lung adenocarcinoma cells by targeting carcinoembryonic antigen-related cell adhesion molecule 6.

    PubMed

    Han, Hye Sook; Son, Seung-Myoung; Yun, Jieun; Jo, Yeong Nang; Lee, Ok-Jun

    2014-10-16

    Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) is an important regulator of cell adhesion, invasion, and metastasis. The aim of this study was to evaluate the functional roles of CEACAM6 in lung adenocarcinoma and to identify miRNAs that inhibit the growth, migration, and invasion of lung adenocarcinoma cells by targeting CEACAM6. CEACAM6 expression is associated with poor prognosis of patients with lung adenocarcinoma, and CEACAM6 has important functional roles in controlling the growth, migration, and invasion of lung adenocarcinoma cells in vitro and in vivo. Furthermore, miR-29a can suppress the growth, migration, and invasion of lung adenocarcinoma cells by targeting CEACAM6. Therefore, miR-29a/CEACAM6 axis represents a potential therapeutic target for treatment of lung adenocarcinoma.

  8. Subcellular localization of the human papillomavirus 16 E7 oncoprotein in CaSki cells and its detection in cervical adenocarcinoma and adenocarcinoma in situ.

    PubMed

    Dreier, Kerstin; Scheiden, René; Lener, Barbara; Ehehalt, Daniela; Pircher, Haymo; Müller-Holzner, Elisabeth; Rostek, Ursula; Kaiser, Andreas; Fiedler, Marc; Ressler, Sigrun; Lechner, Stefan; Widschwendter, Andreas; Even, Jos; Capesius, Catherine; Jansen-Dürr, Pidder; Zwerschke, Werner

    2011-01-05

    E7 is the major oncoprotein of high-risk human papillomaviruses (HPV) which causes cervical cancer. To date E7 oncoproteins have not been investigated in cervical adenocarcinoma. In this study we generated a rabbit monoclonal anti-HPV-16 E7 antibody, RabMab42-3, which recognizes a conformational epitope in the E7 carboxy-terminal zinc-finger resulting in a strong increase in the sensitivity for the detection of cell-associated HPV-16 E7 protein relative to conventional polyclonal anti-HPV-16 E7 antibodies. Using RabMab42-3, we show that the subcellular localization of endogenous HPV-16 E7 oncoprotein varies during the cell cycle in cervical cancer cells. Moreover, we demonstrate for the first time that the HPV-16 E7 oncoprotein is abundantly expressed in cervical adenocarcinoma in situ and adenocarcinoma, suggesting an important role of HPV-16 E7 for the development of these tumors. Our findings suggest that the HPV-16 E7 oncoprotein could be a useful marker for the detection of cervical adenocarcinoma and their precursors.

  9. Identification of CCDC6-RET fusion in the human lung adenocarcinoma cell line, LC-2/ad.

    PubMed

    Matsubara, Daisuke; Kanai, Yoshihiko; Ishikawa, Shumpei; Ohara, Shiori; Yoshimoto, Taichiro; Sakatani, Takashi; Oguni, Sachiko; Tamura, Tomoko; Kataoka, Hiroaki; Endo, Shunsuke; Murakami, Yoshinori; Aburatani, Hiroyuki; Fukayama, Masashi; Niki, Toshiro

    2012-12-01

    Rearranged during transfection (RET) fusions have been newly identified in approximately 1% of patients with primary lung tumors. However, patient-derived lung cancer cell lines harboring RET fusions have not yet been established or identified, and therefore, the effectiveness of an RET inhibitor on lung tumors with endogenous RET fusion has not yet been studied. In this study, we report identification of CCDC6-RET fusion in the human lung adenocarcinoma cell line LC-2/ad. LC-2/ad showed distinctive sensitivity to the RET inhibitor, vandetanib, among 39 non-small lung cancer cell lines. The xenograft tumor of LC-2/ad showed cribriform acinar structures, a morphologic feature of primary RET fusion-positive lung adenocarcinomas. LC-2/ad cells could provide useful resources to analyze molecular functions of RET-fusion protein and its response to RET inhibitors.

  10. Cryptolepine, isolated from Sida acuta, sensitizes human gastric adenocarcinoma cells to TRAIL-induced apoptosis.

    PubMed

    Ahmed, Firoj; Toume, Kazufumi; Ohtsuki, Takashi; Rahman, Mahmudur; Sadhu, Samir Kumar; Ishibashi, Masami

    2011-01-01

    Bioassay guided separation of Sida acuta whole plants led to the isolation of an alkaloid, cryptolepine (1), along with two kaempferol glycosides (2-3). Compound 1 showed strong activity in overcoming TRAIL-resistance in human gastric adenocarcinoma (AGS) cells at 1.25, 2.5 and 5 μm. Combined treatment of 1 and TRAIL sensitized AGS cells to TRAIL-induced apoptosis at the aforementioned concentrations.

  11. Paracrine influence of human perivascular cells on the proliferation of adenocarcinoma alveolar epithelial cells

    PubMed Central

    Kim, Eunbi; Na, Sunghun; An, Borim; Yang, Se-Ran; Kim, Woo Jin; Ha, Kwon-Soo; Han, Eun-Taek; Park, Won Sun; Lee, Chang-Min; Lee, Ji Yoon

    2017-01-01

    Understanding the crosstalk mechanisms between perivascular cells (PVCs) and cancer cells might be beneficial in preventing cancer development and metastasis. In this study, we investigated the paracrine influence of PVCs derived from human umbilical cords on the proliferation of lung adenocarcinoma epithelial cells (A549) and erythroleukemia cells (TF-1α and K562) in vitro using Transwell® co-culture systems. PVCs promoted the proliferation of A549 cells without inducing morphological changes, but had no effect on the proliferation of TF-1α and K562 cells. To identify the factors secreted from PVCs, conditioned media harvested from PVC cultures were analyzed by antibody arrays. We identified a set of cytokines, including persephin (PSPN), a neurotrophic factor, and a key regulator of oral squamous cell carcinoma progression. Supplementation with PSPN significantly increased the proliferation of A549 cells. These results suggested that PVCs produced a differential effect on the proliferation of cancer cells in a cell-type dependent manner. Further, secretome analyses of PVCs and the elucidation of the molecular mechanisms could facilitate the discovery of therapeutic target(s) for lung cancer. PMID:28280409

  12. Cell death in cancer therapy of lung adenocarcinoma.

    PubMed

    Zagryazhskaya, Anna; Gyuraszova, Katarina; Zhivotovsky, Boris

    2015-01-01

    Lung cancer is the main cause of all cancer-related deaths in the world, with lung adenocarcinoma (ADC) being the most common subtype of this fatal disease. Lung ADC is often diagnosed at advanced stages involving disseminated metastatic tumors. This is particularly important for the successful development of new cancer therapy approaches. The high resistance of lung ADC to conventional radio- and chemotherapies represents a major challenge to treatment effectiveness. Here we discuss recent progress in understanding the mechanisms of ADC's broad resistance to treatment and its possible therapeutic implications. A number of driving oncogenic alterations were identified in a subset of lung ADCs, making them suitable for targeted therapies directed towards specific cancer-associated molecular changes. In addition, we discuss the molecular aberrations common in lung ADC that are currently being exploited or are potentially important for targeted cancer therapy, as well as limitations of this type of therapy. Furthermore, we highlight possible treatment modalities that hold promise for overcoming resistance to targeted therapies as well as alternative treatment options such as immunotherapies that are potentially promising for improving the clinical outcome of lung ADC patients.

  13. Roles of histamine on the expression of aldehyde dehydrogenase 1 in endometrioid adenocarcinoma cell line.

    PubMed

    Wang, Yi; Jiang, Yang; Ikeda, Jun-Ichiro; Tian, Tian; Sato, Atsushi; Ohtsu, Hiroshi; Morii, Eiichi

    2014-10-01

    Cancer-initiating cells (CICs) are a limited number of cells that are essential for maintenance, recurrence, and metastasis of tumors. Aldehyde dehydrogenase 1 (ALDH1) has been recognized as a marker of CICs. We previously reported that ALDH1-high cases of uterine endometrioid adenocarcinoma showed poor prognosis, and that ALDH1 high population was more tumorigenic, invasive, and resistant to apoptosis than ALDH1 low population. Histamine plays a critical role in cancer cell proliferation, migration, and invasion. Here, we examined the effect of histamine on ALDH1 expression in endometrioid adenocarcinoma cell line. The addition of histamine increased ALDH1 high population, which was consistent with the result that histamine enhanced the invasive ability and the resistance to anticancer drug. Among 4 types of histamine receptors, histamine H1 and H2 receptor (H1R and H2R) were expressed in endometrioid adenocarcinoma cell line. The addition of H1R agonist but not H2R agonist increased ALDH1. The antagonist H1R but not H2R inhibited the effect of histamine on ALDH1 expression. These results indicated that histamine increased the expression of ALDH1 via H1R but not H2R. These findings may provide the evidence for exploring a new strategy to suppress CICs by inhibiting ALDH1 expression with histamine.

  14. Assessment of cytotoxicity of Portulaca oleracea Linn. against human colon adenocarcinoma and vero cell line

    PubMed Central

    Mali, Prashant Y.

    2015-01-01

    Background: Portulaca oleracea Linn. (Portulacaceae) is commonly known as purslane in English. In traditional system it is used to cure diarrhea, dysentery, leprosy, ulcers, asthma, and piles, reduce small tumors and inflammations. Aim: To assess cytotoxic potential of chloroform extract of P. oleracea whole plant against human colon adenocarcinoma (HCT-15) and normal (Vero) cell line. Materials and Methods: Characterization of chloroform extract of P. oleracea by Fourier transform infrared (FTIR) spectroscopy was performed. Cytotoxicity (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay was used for assessment of cytotoxic potential of chloroform extract of P. oleracea. The concentrations of 1000–0.05 μg/ml were used in the experiment. Doxorubicin was considered as standard reference drug. Results: FTIR spectrum showed the peak at 1019.52 and 1396.21 center. The 50% cell growth inhibition (IC50) of chloroform extract of P. oleracea and doxorubicin was 1132.02 μg/ml and 460.13 μg/ml against human colon adenocarcinoma and 767.60 μg/ml and 2392.71 μg/ml against Vero cell line, respectively. Conclusion: Chloroform extract of P. oleracea whole plant was less efficient or does not have cytotoxic activity against human colon adenocarcinoma cell line. It was not safe to normal Vero cell line. But, there is a need to isolate, identify, and confirm the phytoconstituents present in extract by sophisticated analytical techniques. PMID:27833374

  15. Mammalian mediator 19 mediates H1299 lung adenocarcinoma cell clone conformation, growth, and metastasis.

    PubMed

    Xu, Lu-Lu; Guo, Shu-Liang; Ma, Su-Ren; Luo, Yong-Ai

    2012-01-01

    Mammalian mediator (MED) is a multi-protein coactivator that has been identified by several research groups. The involvement of the MED complex subunit 19 (MED 19) in the metastasis of lung adenocarcinoma cell line (H1299), which expresses the MED 19 subunit, was here investigated. When MED 19 expression was decreased by RNA interference H1299 cells demonstrated reduced clone formation, arrest in the S phase of the cell cycle, and lowered metastatic capacity. Thus, MED 19 appears to play important roles in the biological behavior of non-small cell lung carcinoma cells. These findings may be important for the development of novel lung carcinoma treatments.

  16. PVM/MA-shelled selol nanocapsules promote cell cycle arrest in A549 lung adenocarcinoma cells

    PubMed Central

    2014-01-01

    Background Selol is an oily mixture of selenitetriacylglycerides that was obtained as a semi-synthetic compound containing selenite. Selol is effective against cancerous cells and less toxic to normal cells compared with inorganic forms of selenite. However, Selol’s hydrophobicity hinders its administration in vivo. Therefore, the present study aimed to produce a formulation of Selol nanocapsules (SPN) and to test its effectiveness against pulmonary adenocarcinoma cells (A549). Results Nanocapsules were produced through an interfacial nanoprecipitation method. The polymer shell was composed of poly(methyl vinyl ether-co-maleic anhydride) (PVM/MA) copolymer. The obtained nanocapsules were monodisperse and stable. Both free Selol (S) and SPN reduced the viability of A549 cells, whereas S induced a greater reduction in non-tumor cell viability than SPN. The suppressor effect of SPN was primarily associated to the G2/M arrest of the cell cycle, as was corroborated by the down-regulations of the CCNB1 and CDC25C genes. Apoptosis and necrosis were induced by Selol in a discrete percentage of A549 cells. SPN also increased the production of reactive oxygen species, leading to oxidative cellular damage and to the overexpression of the GPX1, CYP1A1, BAX and BCL2 genes. Conclusions This study presents a stable formulation of PVM/MA-shelled Selol nanocapsules and provides the first demonstration that Selol promotes G2/M arrest in cancerous cells. PMID:25149827

  17. A Rare Case of an Adult with Untreated Bladder Exstrophy Presenting with Signet-Ring Cell Adenocarcinoma of Urinary Bladder

    PubMed Central

    Kumar, Vikash; Kasat, Gaurav; Sawant, Ajit

    2016-01-01

    Untreated bladder exstrophy in an adult is rare, as the defect is obvious and primary reconstruction is usually done in infancy. There are less than 90 reported cases of primary adenocarcinoma in an untreated bladder exstrophy in literature and only two such case reports from India. Of these, only one case was of signet-ring cell type of mucinous adenocarcinoma. Here we report the second case of signet-ring cell adenocarcinoma in a 63 year old male with untreated bladder exstrophy (oldest patient in literature), to highlight the extreme rarity, yet distinct possibility and challenges faced in surgical management of such cases. PMID:28050437

  18. Cell division cycle 20 overexpression predicts poor prognosis for patients with lung adenocarcinoma.

    PubMed

    Shi, Run; Sun, Qi; Sun, Jing; Wang, Xin; Xia, Wenjie; Dong, Gaochao; Wang, Anpeng; Jiang, Feng; Xu, Lin

    2017-03-01

    The cell division cycle 20, a key component of spindle assembly checkpoint, is an essential activator of the anaphase-promoting complex. Aberrant expression of cell division cycle 20 has been detected in various human cancers. However, its clinical significance has never been deeply investigated in non-small-cell lung cancer. By analyzing The Cancer Genome Atlas database and using some certain online databases, we validated overexpression of cell division cycle 20 in both messenger RNA and protein levels, explored its clinical significance, and evaluated the prognostic role of cell division cycle 20 in non-small-cell lung cancer. Cell division cycle 20 expression was significantly correlated with sex (p = 0.003), histological classification (p < 0.0001), and tumor size (p = 0.0116) in non-small-cell lung cancer patients. In lung adenocarcinoma patients, overexpression of cell division cycle 20 was significantly associated with bigger primary tumor size (p = 0.0023), higher MKI67 level (r = 0.7618, p < 0.0001), higher DNA ploidy level (p < 0.0001), and poor prognosis (hazard ratio = 2.39, confidence interval: 1.87-3.05, p < 0.0001). However, in lung squamous cell carcinoma patients, no significant association of cell division cycle 20 expression was observed with any clinical parameter or prognosis. Overexpression of cell division cycle 20 is associated with poor prognosis in lung adenocarcinoma patients, and its overexpression can also be used to identify high-risk groups. In conclusion, cell division cycle 20 might serve as a potential biomarker for lung adenocarcinoma patients.

  19. Genetic and Epigenetic Determinants of Lung Cancer Subtype: Adenocarcinoma to Small Cell Conversion

    DTIC Science & Technology

    2015-08-01

    AWARD NUMBER: W81XWH-14-1-0223 TITLE: Genetic and Epigenetic Determinants of Lung Cancer Subtype: Adenocarcinoma to Small Cell Conversion...COVERED 1Aug2014 - 31Jul2015 4. TITLE AND SUBTITLE Genetic and Epigenetic Determinants of Lung Cancer Subtype: 5a. CONTRACT NUMBER W81XWH-14-1-0223...histologies of lung cancer is made difficult in part because of the extensive genetic and epigenetic changes that occur in lung carcinogenesis, the

  20. Isolation and biological analysis of tumor stem cells from pancreatic adenocarcinoma

    PubMed Central

    Huang, Peng; Wang, Chun-You; Gou, Shan-Miao; Wu, He-Shui; Liu, Tao; Xiong, Jiang-Xin

    2008-01-01

    AIM: To explore the method of isolation and biological analysis of tumor stem cells from pancreatic adenocarcinoma cell line PANC-1. METHODS: The PANC-1 cells were cultured in Dulbecco modified eagle medium F12 (1:1 volume) (DMEM-F12) supplemented with 20% fetal bovine serum (FBS). Subpopulation cells with properties of tumor stem cells were isolated from pancreatic adenocarcinoma cell line PANC-1 according to the cell surface markers CD44 and CD24 by flow cytometry. The proliferative capability of these cells in vitro were estimated by 3-[4,5-dimehyl-2-thiazolyl]-2, 5-diphenyl-2H-tetrazolium bromide (MTT) method. And the tumor growth of different subpopulation cells which were injected into the hypodermisof right and left armpit of nude mice was studied, and expression of CD44 and CD24 of the CD44+CD24+ cell-formed nodules and PANC-1 cells were detected by avidin-biotin-peroxidase complex (ABC) immunohistochemical staining. RESULTS: The 5.1%-17.5% of sorted PANC-1 cells expressed the cell surface marker CD44, 57.8% -70.1% expressed CD24, only 2.1%-3.5% of cells were CD44+ CD24+. Compared with CD44-CD24- cells, CD44+CD24+ cells had a lower growth rate in vitro. Implantation of 104 CD44-CD24- cells in nude mice showed no evident tumor growth at wk 12. In contrast, large tumors were found in nude mice implanted with 103 CD44+CD24+ cells at wk 4 (2/8), a 20-fold increase in tumorigenic potential (P < 0.05 or P < 0.01). There was no obvious histological difference between the cells of the CD44+CD24+ cell-formed nodules and PANC-1 cells. CONCLUSION: CD44 and CD24 may be used as the cell surface markers for isolation of pancreatic cancer stem cells from pancreatic adenocarcinoma cell line PANC-1. Subpopulation cells CD44+CD24+ have properties of tumor stem cells. Because cancer stem cells are thought to be responsible for tumor initiation and its recurrence after an initial response to chemotherapy, it may be a very promising target for new drug development. PMID

  1. A clear cell adenocarcinoma of the gallbladder with hepatoid differentiation: case report and review of literature

    PubMed Central

    Zhang, Chengsheng; Zhang, Wei; Mu, Dianbin; Shi, Xuetao; Zhao, Lei

    2016-01-01

    An 80-year-old male was referred to our department for a gallbladder mass. He denied any history of alcohol consumption or cholecystitis and smoking. Hepatitis B surface antigen test and antihepatitis C antibody test were found to be negative. Serum carbohydrate antigen 19-9 (CA19-9) and carcinoembryonic antigen were elevated (CA19-9 was 59.92 U/mL and carcinoembryonic antigen was 12.64 ng/mL), whereas alpha-fetoprotein was below the normal limit (2.46 ng/mL). Computed tomography scan revealed a solid mass with measurements of 4.6×5.6×7.1 cm, which nearly filled the whole gallbladder space. Radical cholecystectomy, including segments IV B and V of the liver and lymphadenectomy, was performed. The neoplasm in gallbladder was completely resected, and the patient obtained a negative margin. Histological and immunohistochemical profile suggested a clear cell adenocarcinoma of the gallbladder with hepatoid differentiation. After reviewing the literature, we reported that this case is the first identified case of cell adenocarcinoma of the gallbladder with extensive hepatoid differentiation. However, clinical features of clear cell adenocarcinoma with hepatoid differentiation remain unclear due to the extremely rare incidence. There was no indication of adjuvant chemotherapy and no literature has been reported on the application of chemotherapy. This case showed a promising clinical outcome after curative resection, which indicated that surgical treatment could be potentially considered for suitable patients. PMID:27703378

  2. Cell surface glycopeptides from human intestinal epithelial cell lines derived from normal colon and colon adenocarcinomas

    SciTech Connect

    Youakim, A.; Herscovics, A.

    1985-11-01

    The cell surface glycopeptides from an epithelial cell line (CCL 239) derived from normal human colon were compared with those from three cell lines (HCT-8R, HCT-15, and CaCo-2) derived independently from human colonic adenocarcinomas. Cells were incubated with D-(2-TH)mannose or L-(5,6-TH)fucose for 24 h and treated with trypsin to release cell surface components which were then digested exhaustively with Pronase and fractionated on Bio-Gel P-6 before and after treatment with endo-beta-N-acetylglucosaminidase H. The most noticeable difference between the labeled glycopeptides from the tumor and CCL 239 cells was the presence in the former of an endo-beta-N-acetylglucosaminidase H-resistant high molecular weight glycopeptide fraction which was eluted in the void volume of Bio-Gel P-6. This fraction was obtained with both labeled mannose and fucose as precursors. However, acid hydrolysis of this fraction obtained after incubation with (2-TH)mannose revealed that as much as 60-90% of the radioactivity was recovered as fucose. Analysis of the total glycopeptides (cell surface and cell pellet) obtained after incubation with (2-TH)mannose showed that from 40-45% of the radioactivity in the tumor cells and less than 10% of the radioactivity in the CCL 239 cells was recovered as fucose. After incubation of the HCT-8R cells with D-(1,6-TH)glucosamine and L-(1- UC)fucose, strong acid hydrolysis of the labeled glycopeptide fraction excluded from Bio-Gel P-6 produced TH-labeled N-acetylglucosamine and N-acetylgalactosamine.

  3. Fucan-coated silver nanoparticles synthesized by a green method induce human renal adenocarcinoma cell death.

    PubMed

    Rocha Amorim, Monica Oliveira; Lopes Gomes, Dayanne; Dantas, Larisse Araujo; Silva Viana, Rony Lucas; Chiquetti, Samanta Cristina; Almeida-Lima, Jailma; Silva Costa, Leandro; Oliveira Rocha, Hugo Alexandre

    2016-12-01

    Polysaccharides containing sulfated L-fucose are often called fucans. The seaweed Spatoglossum schröederi synthesizes three fucans, among which fucan A is the most abundant. This polymer is not cytotoxic against various normal cell lines and is non-toxic to rats when administered at high doses. In addition, it exhibits low toxicity against tumor cells. With the aim of increasing the toxicity of fucan A, silver nanoparticles containing this polysaccharide were synthesized using a green chemistry method. The mean size of these nanoparticles was 210nm. They exhibited a spherical shape and negative surface charge and were stable for 14 months. When incubated with cells, these nanoparticles did not show any toxic effects against various normal cell lines; however, they decreased the viability of various tumor cells, especially renal adenocarcinoma cells 786-0. Flow cytometry analyses showed that the nanoparticles induced cell death responses of 786-0 cells through necrosis. Assays performed with several renal cell lines (HEK, VERO, MDCK) showed that these nanoparticles only induce death of 786-0 cells. The data obtained herein leads to the conclusion that fucan A nanoparticles are promising agents against renal adenocarcinoma.

  4. Characterization of spheres derived from canine mammary gland adenocarcinoma cell lines.

    PubMed

    Michishita, Masaki; Akiyoshi, Rui; Yoshimura, Hisashi; Katsumoto, Takuo; Ichikawa, Hitoshi; Ohkusu-Tsukada, Kozo; Nakagawa, Takayuki; Sasaki, Nobuo; Takahashi, Kimimasa

    2011-10-01

    There is increasing evidence for the presence of cancer stem cells in several solid tumors, and these cancer stem cells have a potential role in tumor initiation, aggression, and recurrence. The stem cell-like properties of spheres derived from canine mammary tumors remain largely elusive. We attempted to induce sphere formation using four cell lines of canine mammary adenocarcinoma, and characterized the spheres derived from a CHMp line in vitro and in vivo. The CHMp-derived spheres showed predominantly CD44+CD24- population, higher expression of stem cell-related genes, such as CD133, Notch3 and MDR, and higher resistance to doxorubicin compared with the CHMp-derived adherent cells. Xenograft transplantations in nude mice demonstrated that only 1 × 10(4)sphere cells were sufficient for tumor formation. Use of the sphere assay on these sphere-derived tumors showed that sphere-forming cells were present in the tumors, and were maintained in serial transplantation. We propose that spheres derived from canine mammary adenocarcinoma cell lines possess a potential characteristic of cancer stem cells. Spheres derived from canine mammary tumors could be a powerful tool with which to investigate novel therapeutic drugs and to elucidate the molecular and cellular mechanisms that underlie tumorigenesis.

  5. Effect of silencing SATB1 on proliferation, invasion and apoptosis of A549 human lung adenocarcinoma cells

    PubMed Central

    Huang, Bo; Zhou, Hongli; Wang, Siwang; Lang, Xian Ping; Wang, Xiaodong

    2016-01-01

    The present study aimed to explore the clinical characteristics of special adenine-thymine-rich sequence-binding protein 1 (SATB1) in lung adenocarcinoma and its role in the proliferation, invasion, migration and apoptosis of the lung adenocarcinoma cell line A549. The expression of SATB1 was first studied in tumor tissues of lung adenocarcinoma and adjacent non-tumor tissues. The siRNA green fluorescent protein expression vector of SATB1 was constructed and transfected into the lung adenocarcinoma cell line A549, then a fluorescence microscope was used to study the transfection efficiency. Western blot analysis was adopted to measure the silencing efficiency. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), Transwell and scratch assays were used to study cell proliferation, invasion and migration activity, and the apoptosis rate was tested by flow cytometry. SATB1 expression was low in the adjacent non-tumor tissues but high in lung adenocarcinoma tissues, and it was reversely proportional to the differentiation degree. Following transfection with SATB1-siRNA, the expression of SATB1 in A549 cells was blocked (P<0.01). In addition, the proliferation, invasion and migration abilities of cells decreased significantly while the apoptosis rate increased significantly (P<0.01). In conclusion SATB1 is closely associated with the pathogenesis and development of lung adenocarcinoma. PMID:27895736

  6. Goblet cells carcinoid with mucinous adenocarcinoma of the vermiform appendix: a step towards the unitary intestinal stem cell theory?

    PubMed

    Gravante, G; Yahia, S; Gopalakrishnan, K; Mathew, G

    2014-06-01

    Associations of various histotypes in appendiceal neoplasms may help elucidate the histogenesis of such uncommon tumors. We present the fourth published case of Goblet Cell Carcinoid (GCC) associated with mucinous adenocarcinoma of the appendix. This association has been described only for GCC and not for classic appendix carcinoids which are thought to originate from neuroendocrine-committed cells. The GCC-mucinous association adds more towards the theory of a pluripotent intestinal stem cell with amphicrine possibilities of differentiation.

  7. CXCR2 expression in tumor cells is a poor prognostic factor and promotes invasion and metastasis in lung adenocarcinoma

    PubMed Central

    Saintigny, Pierre; Massarelli, Erminia; Lin, Steven; Chen, Yulong; Goswami, Sangeeta; Erez, Baruch; O’Reilly, Michael S.; Liu, Diane; Lee, J. Jack; Zhang, Li; Ping, Yuan; Behrens, Carmen; Soto, Luisa M. Solis; Heymach, John V.; Kim, Edward S.; Herbst, Roy S.; Lippman, Scott M.; Wistuba, Ignacio I.; Hong, Waun Ki; Kurie, Jonathan M.; Koo, Ja Seok

    2012-01-01

    CXCR2 in non-small cell lung cancer (NSCLC) has been studied mainly in stromal cells and is known to increase tumor inflammation and angiogenesis. Here, we examined the prognostic importance of CXCR2 in NSCLC and the role of CXCR2 and its ligands in lung cancer cells. The effect of CXCR2 expression on tumor cells was studied using stable knockdown clones derived from a murine KRAS/p53-mutant lung adenocarcinoma cell line with high metastatic potential and an orthotopic syngeneic mouse model and in vitro using a CXCR2 small molecule antagonist (SB225002). CXCR2 protein expression was analyzed in tumor cells from 262 NSCLC. Gene expression profiles for CXCR2 and its ligands (CXCR2 axis) were analyzed in 52 human NSCLC cell lines and 442 human lung adenocarcinomas. Methylation of CXCR2 axis promoters was determined in 70 human NSCLC cell lines. Invasion and metastasis were decreased in CXCR2 knockdown clones in vitro and in vivo. SB225002 decreased invasion in vitro. In lung adenocarcinomas, CXCR2 expression in tumor cells was associated with smoking and poor prognosis. CXCR2 axis gene expression profiles in human NSCLC cell lines and lung adenocarcinomas defined a cluster driven by CXCL5 and associated with smoking, poor prognosis and RAS pathway activation. Expression of CXCL5 was regulated by promoter methylation. The CXCR2 axis may be an important target in smoking-related lung adenocarcinoma. PMID:23204236

  8. Per2 participates in AKT-mediated drug resistance in A549/DDP lung adenocarcinoma cells.

    PubMed

    Chen, Bo; Tan, Yaoxi; Liang, Yan; Li, Yan; Chen, Lei; Wu, Shuangshuang; Xu, Wei; Wang, Yan; Zhao, Weihong; Wu, Jianqing

    2017-01-01

    Period2 (Per2) is a key mammalian circadian clock protein, and additionally has a tumor suppressive function. The present study aimed to investigate its role in drug resistance in A549/cisplatin (DDP) lung adenocarcinoma cells. Per2 knockdown and overexpression in A549/DDP cells were used to compare cell proliferation (by MTT assay), apoptosis (active-caspase 3 western blot) and clone forming assay. The activation of AKT/mechanistic target of rapamycin (mTOR) was investigated by a western blot assay. The Per2 expression level was decreased in A549/DDP cells compared with A549 cells. Per2 knockdown by short hairpin RNA protects A549/DDP cells from apoptosis, and promotes proliferation and migration. Per2 knockdown results in increased activation of the phosphoinositide 3-kinase (PI3K)/AKT/mTOR signaling pathway. Overexpression of Per2 in A549/DDP cells may reduce the activity of the PI3K/AKT/mTOR signaling pathway, and promote apoptosis of A549 cells. The results of the present study suggest that Per2 participates in AKT-mediated drug resistance in A549/DDP lung adenocarcinoma cells.

  9. Per2 participates in AKT-mediated drug resistance in A549/DDP lung adenocarcinoma cells

    PubMed Central

    Chen, Bo; Tan, Yaoxi; Liang, Yan; Li, Yan; Chen, Lei; Wu, Shuangshuang; Xu, Wei; Wang, Yan; Zhao, Weihong; Wu, Jianqing

    2017-01-01

    Period2 (Per2) is a key mammalian circadian clock protein, and additionally has a tumor suppressive function. The present study aimed to investigate its role in drug resistance in A549/cisplatin (DDP) lung adenocarcinoma cells. Per2 knockdown and overexpression in A549/DDP cells were used to compare cell proliferation (by MTT assay), apoptosis (active-caspase 3 western blot) and clone forming assay. The activation of AKT/mechanistic target of rapamycin (mTOR) was investigated by a western blot assay. The Per2 expression level was decreased in A549/DDP cells compared with A549 cells. Per2 knockdown by short hairpin RNA protects A549/DDP cells from apoptosis, and promotes proliferation and migration. Per2 knockdown results in increased activation of the phosphoinositide 3-kinase (PI3K)/AKT/mTOR signaling pathway. Overexpression of Per2 in A549/DDP cells may reduce the activity of the PI3K/AKT/mTOR signaling pathway, and promote apoptosis of A549 cells. The results of the present study suggest that Per2 participates in AKT-mediated drug resistance in A549/DDP lung adenocarcinoma cells. PMID:28123577

  10. Primary cell culture of human adenocarcinomas--practical considerations.

    PubMed

    Lerescu, Lucian; Tucureanu, Cătălin; Caraş, Iuliana; Neagu, Stefan; Melinceanu, Laura; Sălăgeanu, Aurora

    2008-01-01

    Cell culture is one of the major tools for oncology research, being an excellent system in which to study the biochemistry and molecular biology associated with individual cancer types and to understand cancer cell physiology. Progress in understanding the biology of any type of carcinoma has been impeded by the inability to culture adequately malignant cells from most epithelial tissues. The ultimate in vitro tumor model would completely reflect the in vivo tumor microenvironment in function and mechanism. Unfortunately, such a model does not currently exist. Homogeneous cell lines that can be continuously propagated on plastic surfaces have been extensively used as a surrogate for tumor environment; however they are very different from the in vivo tumor cells. Model systems involving primary culture represent the situation most closely related to the original tissue although they have a number of disadvantages over cell lines, such as the limited ability to repeat studies with a well characterized culture system that can be used in multiple laboratories. The primary culture may contain many types of stromal and infiltrating cell types potentially complicating the interpretation of data. Yet, their properties better reflect the cellular interactions present in intact tissue. The present article reviews the critical steps in obtaining, routine maintenance and cryopreservation of primary tumor cell cultures, based on information from literature and personal experience on the subject. The article also includes an updated protocol for primary tumor cell isolation and culture.

  11. Ultrastructural Assessment of 2-(acridin-9-ylmethylene)-N-phenylhydrazinecarbothioamide activity on human breast adenocarcinoma cells.

    PubMed

    de Almeida, Sinara Mônica Vitalino; da Silva, Lúcia Patrícia Bezerra Gomes; de Lima, Luiza Rayanna Amorim; Longato, Giovanna Barbarini; Padilha, Rafael José Ribeiro; Alves, Luiz Carlos; Brayner, Fábio André; Ruiz, Ana Lucia Tasca Gois; de Carvalho, João Ernesto; Beltrão, Eduardo Isidoro Carneiro; de Lima, Maria do Carmo Alves; de Carvalho Júnior, Luiz Bezerra

    2016-11-01

    The aim of the present study was to investigate ultrastructural changes induced by (Z)-2-(acridin-9-ylmethylene)-N-phenylhydrazinecarbothioamide (APHCA) treatment on human breast adenocarcinoma cancer cells MCF-7, besides the evaluation of phosphatidylserine externalization and DNA fragmentation in treated cells. Cell viability analysis demonstrated concentration and time-manner cytotoxicity. Treated MCF-7 cells did not expose phosphatidylserine residues to the external plasma membrane surface and DNA fragmentation was not visualized by electrophoresis. Light microscopy showed compromised cell density and presence of vacuolization after APHCA treatment with 60μM. Scanning and transmission electron microscopies revealed hallmarks of autophagy, namely the presence of membrane bebbling and autophagosomes, besides shrunken cells and cell debris in treated MCF-7 cells. However, more specific tests such as the quantification of mammalian autophagy proteins are necessary to determine the kind of death that is trigged by APHCA.

  12. Adenocarcinoma of the urinary bladder.

    PubMed

    Dadhania, Vipulkumar; Czerniak, Bogdan; Guo, Charles C

    2015-01-01

    Adenocarcinoma is an uncommon malignancy in the urinary bladder which may arise primarily in the bladder as well as secondarily from a number of other organs. Our aim is to provide updated information on primary and secondary bladder adenocarcinomas, with focus on pathologic features, differential diagnosis, and clinical relevance. Primary bladder adenocarcinoma exhibits several different growth patterns, including enteric, mucinous, signet-ring cell, not otherwise specified, and mixed patterns. Urachal adenocarcinoma demonstrates similar histologic features but it can be distinguished from bladder adenocarcinoma on careful pathologic examination. Secondary bladder adenocarcinomas may arise from the colorectum, prostate, endometrium, cervix and other sites. Immunohistochemical study is valuable in identifying the origin of secondary adenocarcinomas. Noninvasive neoplastic glandular lesions, adenocarcinoma in situ and villous adenoma, are frequently associated with bladder adenocarcinoma. It is also important to differentiate bladder adenocarcinoma from a number of nonneoplastic lesions in the bladder. Primary bladder adenocarcinoma has a poor prognosis largely because it is usually diagnosed at an advanced stage. Urachal adenocarcinoma shares similar histologic features with bladder adenocarcinoma, but it has a more favorable prognosis than bladder adenocarcinoma, partly due to the relative young age of patients with urachal adenocarcinoma.

  13. Adenocarcinoma of the urinary bladder

    PubMed Central

    Dadhania, Vipulkumar; Czerniak, Bogdan; Guo, Charles C

    2015-01-01

    Adenocarcinoma is an uncommon malignancy in the urinary bladder which may arise primarily in the bladder as well as secondarily from a number of other organs. Our aim is to provide updated information on primary and secondary bladder adenocarcinomas, with focus on pathologic features, differential diagnosis, and clinical relevance. Primary bladder adenocarcinoma exhibits several different growth patterns, including enteric, mucinous, signet-ring cell, not otherwise specified, and mixed patterns. Urachal adenocarcinoma demonstrates similar histologic features but it can be distinguished from bladder adenocarcinoma on careful pathologic examination. Secondary bladder adenocarcinomas may arise from the colorectum, prostate, endometrium, cervix and other sites. Immunohistochemical study is valuable in identifying the origin of secondary adenocarcinomas. Noninvasive neoplastic glandular lesions, adenocarcinoma in situ and villous adenoma, are frequently associated with bladder adenocarcinoma. It is also important to differentiate bladder adenocarcinoma from a number of nonneoplastic lesions in the bladder. Primary bladder adenocarcinoma has a poor prognosis largely because it is usually diagnosed at an advanced stage. Urachal adenocarcinoma shares similar histologic features with bladder adenocarcinoma, but it has a more favorable prognosis than bladder adenocarcinoma, partly due to the relative young age of patients with urachal adenocarcinoma. PMID:26309895

  14. Boletus edulis biologically active biopolymers induce cell cycle arrest in human colon adenocarcinoma cells.

    PubMed

    Lemieszek, Marta Kinga; Cardoso, Claudia; Ferreira Milheiro Nunes, Fernando Hermínio; Ramos Novo Amorim de Barros, Ana Isabel; Marques, Guilhermina; Pożarowski, Piotr; Rzeski, Wojciech

    2013-04-25

    The use of biologically active compounds isolated from edible mushrooms against cancer raises global interest. Anticancer properties are mainly attributed to biopolymers including mainly polysaccharides, polysaccharopeptides, polysaccharide proteins, glycoproteins and proteins. In spite of the fact that Boletus edulis is one of the widely occurring and most consumed edible mushrooms, antitumor biopolymers isolated from it have not been exactly defined and studied so far. The present study is an attempt to extend this knowledge on molecular mechanisms of their anticancer action. The mushroom biopolymers (polysaccharides and glycoproteins) were extracted with hot water and purified by anion-exchange chromatography. The antiproliferative activity in human colon adenocarcinoma cells (LS180) was screened by means of MTT and BrdU assays. At the same time fractions' cytotoxicity was examined on the human colon epithelial cells (CCD 841 CoTr) by means of the LDH assay. Flow cytometry and Western blotting were applied to cell cycle analysis and protein expression involved in anticancer activity of the selected biopolymer fraction. In vitro studies have shown that fractions isolated from Boletus edulis were not toxic against normal colon epithelial cells and in the same concentration range elicited a very prominent antiproliferative effect in colon cancer cells. The best results were obtained in the case of the fraction designated as BE3. The tested compound inhibited cancer cell proliferation which was accompanied by cell cycle arrest in the G0/G1-phase. Growth inhibition was associated with modulation of the p16/cyclin D1/CDK4-6/pRb pathway, an aberration of which is a critical step in the development of many human cancers including colon cancer. Our results indicate that a biopolymer BE3 from Boletus edulis possesses anticancer potential and may provide a new therapeutic/preventive option in colon cancer chemoprevention.

  15. Downregulation of cytochrome c oxidase subunit 7A1 expression is important in enhancing cell proliferation in adenocarcinoma cells.

    PubMed

    Mishra, Nawneet; Timilsina, Uddhav; Ghimire, Dibya; Dubey, Ravi C; Gaur, Ritu

    2017-01-22

    Mitochondrial Dysfunction has been implicated in multiple human diseases, including cancer. Among all cancer, lung cancer is the most common type of cancer worldwide with low survival rates. Mammals possess multiple subunits of the mitochondrial enzyme Cytochrome C oxidase (COX). The COX subunits are expressed in a tissue specific manner and have been implicated in cancer cell metabolism although their molecular and regulatory mechanisms are not clearly understood. In this study, we aimed at identifying novel gene signatures in lung cancer. We performed extensive analysis of seven different Gene Expression Omnibus (GEO) datasets pertaining to different stages of lung adenocarcinoma and identified that multiple subunits of COX genes are differentially expressed in these patients. Amongst all COX genes, the expression of COX7A1 gene was observed to be highly down regulated in these patients. In order to validate the GEO datasets, we looked at the expression of multiple COX genes using quantitative real time PCR (qPCR) using human lung adenocarcinoma cell line A549. Our results confirmed that COX 7A1 gene expression was indeed highly reduced in these cells. Overexpression of COX7A1 in human lung cancer cells led to inhibition of cell proliferation and increase in cell death via apoptosis. These results indicated that low level of COX7A1 gene expression is essential to regulate cell viability and inhibit cell death in lung adenocarcinoma. Our study has identified COX7A1 as a novel gene that might play a crucial role in the etiology of lung adenocarcinoma and can serve as a biomarker for lung cancer disease progression.

  16. Different muscarinc receptors are involved in the proliferation of murine mammary adenocarcinoma cell lines.

    PubMed

    Español, Alejandro J; Sales, María E

    2004-02-01

    We described that two different murine mammary adenocarcinoma cell lines, LM3 and LM2 constitutively expressed muscarinic acetylcholine receptors (mAchR). We here demonstrate, by competitive binding experiments with the tritiated muscarinic antagonist quinuclidinyl benzilate that M2 subtype predominates in both tumor cell lines. Concordantly immunoblotting assays indicate that mAchR exhibit the following order of expression: M2 > M4 > M3 > M1 > M5 in both tumor cell lines. Activation of mAchR with carbachol (CARB) increased proliferation in both tumor cell lines in a concentration dependent manner. In LM3 cells CARB promoted proliferation via M3 receptor activation via inositol 1,4,5-triphosphate and nitric oxide production. CARB-induced LM2 cells proliferation needed both M2 and M1 receptor activation, promoting prostaglandin E2 liberation and arginase catabolism respectively, both of them involved in tumor cell growth.

  17. Combined neuroendocrine cell carcinoma and adenocarcinoma of the gallbladder: report of a case.

    PubMed

    Shimizu, Tetsuya; Tajiri, Takashi; Akimaru, Koho; Arima, Yasuo; Yoshida, Hiroshi; Yokomuro, Shigeki; Mamada, Yasuhiro; Taniai, Nobuhiko; Mizuguchi, Yoshiaki; Kawahigashi, Yutaka; Naito, Zenya

    2006-04-01

    A 58-year-old man with a chief complaint of epigastralgia was admitted to our hospital. Physical examination disclosed a large, firm mass in the right hypochondrium. Abdominal computed tomography confirmed thickening of the gallbladder wall and a 15 x 8 cm mass occupying almost all of the right lobe and medial segment of the liver. With a preoperative diagnosis of malignant gallbladder tumor infiltrating the liver, right hepatic trisegmentectomy was performed. Histopathologic examination showed atypical cells with small round to oval nuclei and sparse eosinophilic cytoplasm, proliferating in a solid and focal nesting pattern. Near this small cell proliferation was a focus of tubular adenocarcinoma that showed a zone of transition from the small cell neuroendocrine pattern. The small cells demonstrated immunohistochemical reactivity for chromogranin A. Electron microscopy disclosed neurosecretory granules 150 nm in diameter, representing dense round core vesicles, confirming a neuroendocrine cell lineage. The patient was diagnosed with neuroendocrine cell carcinoma combined with adenocarcinoma of the gallbladder. Tumor recurrence became evident 3 months after surgery, and he died 4 months after surgery.

  18. Aptamers Selected to Postoperative Lung Adenocarcinoma Detect Circulating Tumor Cells in Human Blood

    PubMed Central

    Zamay, Galina S; Kolovskaya, Olga S; Zamay, Tatiana N; Glazyrin, Yury E; Krat, Alexey V; Zubkova, Olga; Spivak, Ekaterina; Wehbe, Mohammed; Gargaun, Ana; Muharemagic, Darija; Komarova, Mariia; Grigorieva, Valentina; Savchenko, Andrey; Modestov, Andrey A; Berezovski, Maxim V; Zamay, Anna S

    2015-01-01

    Circulating tumor cells (CTCs) are rare cells and valuable clinical markers of prognosis of metastasis formation and prediction of patient survival. Most CTC analyses are based on the antibody-based detection of a few epithelial markers; therefore miss an important portion of mesenchymal cancer cells circulating in blood. In this work, we selected and identified DNA aptamers as specific affinity probes that bind to lung adenocarcinoma cells derived from postoperative tissues. The unique feature of our selection strategy is that aptamers are produced for lung cancer cell biomarkers in their native state and conformation without previous knowledge of the biomarkers. The aptamers did not bind to normal lung cells and lymphocytes, and had very low affinity to A549 lung adenocarcinoma culture. We applied these aptamers to detect CTCs, apoptotic bodies, and microemboli in clinical samples of peripheral blood of lung cancer and metastatic lung cancer patients. We identified aptamer-associated protein biomarkers for lung cancer such as vimentin, annexin A2, annexin A5, histone 2B, neutrophil defensin, and clusterin. Tumor-specific aptamers can be produced for individual patients and synthesized many times during anticancer therapy, thereby opening up the possibility of personalized diagnostics. PMID:26061649

  19. In vivo gene transfer targeting in pancreatic adenocarcinoma with cell surface antigens

    PubMed Central

    2012-01-01

    Background Pancreatic ductal adenocarcinoma is a deadly malignancy resistant to current therapies. It is critical to test new strategies, including tumor-targeted delivery of therapeutic agents. This study tested the possibility to target the transfer of a suicide gene in tumor cells using an oncotropic lentiviral vector. Results Three cell surface markers were evaluated to target the transduction of cells by lentiviruses pseudotyped with a modified glycoprotein from Sindbis virus. Only Mucin-4 and the Claudin-18 proteins were found efficient for targeted lentivirus transductions in vitro. In subcutaneous xenografts of human pancreatic cancer cells models, Claudin-18 failed to achieve efficient gene transfer but Mucin-4 was found very potent. Human pancreatic tumor cells were modified to express a fluorescent protein detectable in live animals by bioimaging, to perform a direct non invasive and costless follow up of the tumor growth. Targeted gene transfer of a bicistronic transgene bearing a luciferase gene and the herpes simplex virus thymidine kinase gene into orthotopic grafts was carried out with Mucin-4 oncotropic lentiviruses. By contrast to the broad tropism VSV-G carrying lentivirus, this oncotropic lentivirus was found to transduce specifically tumor cells, sparing normal pancreatic cells in vivo. Transduced cells disappeared after ganciclovir treatment while the orthotopic tumor growth was slowed down. Conclusion This work considered for the first time three aspect of pancreatic adenocarcinoma targeted therapy. First, lentiviral transduction of human pancreatic tumor cells was possible when cells were grafted orthotopically. Second, we used a system targeting the tumor cells with cell surface antigens and sparing the normal cells. Finally, the TK/GCV anticancer system showed promising results in vivo. Importantly, the approach presented here appeared to be a safer, much more specific and an as efficient way to perform gene delivery in pancreatic tumors

  20. Prognostic significance of stem cell-related marker expression and its correlation with histologic subtypes in lung adenocarcinoma

    PubMed Central

    Park, Eunhyang; Park, Soo Young; Sun, Ping-Li; Jin, Yan; Kim, Ji Eun; Jheon, Sanghoon; Kim, Kwhanmien; Lee, Choon Taek

    2016-01-01

    Cancer stem cells (CSCs) are a small subset of tumor cells that exhibit stem cell-like properties and contribute in treatment failure. To clarify the expression and prognostic significance of several CSC markers in non-small cell lung cancer, we retrospectively analyzed 368 patients with adenocarcinoma (n = 226) or squamous cell carcinoma (n = 142). We correlated the expression of six CSC markers – CD133, CD44, aldehyde dehydrogenase 1 (ALDH1), sex determining region Y-box 2 (SOX2), octamer binding transcription factor 4 (OCT4), and Nanog – with clinicopathologic and molecular variables and survival outcomes. In adenocarcinoma, CD133, ALDH1 and CD44 expression was associated with low pathologic stage and absence of lymphovascular invasion, while Nanog expression correlated with high histologic grade, lymphatic invasion and increased expression of Snail-1, a transcription factor associated with epithelial-mesenchymal transition. CSC marker expression was also associated with histologic subtypes in adenocarcinoma. Multivariate analysis showed that high Nanog expression was an independent factor associated with a poor prognosis in adenocarcinoma. CSC markers had no prognostic value in squamous cell carcinoma. These results suggest that Nanog is an independent negative prognostic factor that may be associated with epithelial-mesenchymal transition in lung adenocarcinoma. PMID:27285762

  1. Therapeutic effects of sorafenib on the A549/DDP human lung adenocarcinoma cell line in vitro.

    PubMed

    Chen, Xiang-Qi; Wang, Yu-Lan; Li, Zhi-Ying; Lin, Ting-Yan

    2014-07-01

    The aim of the present study was to observe the effects of sorafenib on the proliferation, apoptosis and invasion of A549/DDP cisplatin-resistant lung adenocarcinoma cells cultured in vitro. The A549/DDP cisplatin-resistant lung adenocarcinoma cell strain was cultured in vitro, the cell culture group incubated in culture medium only was set as the control group (Group S0) and the four concentration gradients of sorafenib were added to the culture groups as the experimental groups: S1, 2 µmol/l; S2, 4 µmol/l; S3, 8 µmol/l; and S4, 16 µmol/l. The MTT assay was used to determine the growth inhibition rate of the cells, which were respectively subjected to sorafenib treatment for 24, 48 and 72 h. Flow cytometry was used to determine the rate of apoptosis of cells in each group following sorafenib treatment for 72 h. Furthermore, the Transwell invasion experiment was used to determine the effect on A549/DDP cell invasion following sorafenib treatment for 24 h. Based on the MTT assay, it was found that the inhibition rates of A549/DDP cisplatin-resistant lung adenocarcinoma cells in groups S1-4 following sorafenib treatment for 24 h were 4.58±2.82, 14.93±2.62, 37.58±7.13 and 58.39±8.15%, respectively. For 48 h, inhibition rates in S1-4 were 14.98±2.93, 26.28±7.31, 63.00±3.05 and 78.84±3.96%, respectively, and for 72 h, inhibition rates were 18.80±2.82, 32.71±2.55, 75.51±4.73 and 87.50±3.36%, respectively. The difference in the inhibition rates of cells among the experimental groups for the same incubation time showed statistical significance (P<0.05). Flow cytometric analysis indicated that the rate of apoptosis in the control group was 8.88±0.81% following sorafenib treatment for 72 h, and the rates of apoptosis in groups S1-4 were, 12.84±0.24, 17.27±0.78, 21.98±0.75 and 49.67±1.38%, respectively. The rate of apoptosis in each experimental group was higher compared with that in the control group (P<0.05). The difference in the rate of apoptosis

  2. Sulforaphane‐induced apoptosis in Xuanwei lung adenocarcinoma cell line XWLC‐05

    PubMed Central

    Zhou, Lan; Yao, Qian; Huang, Yun‐chao; Jiang, Hua; Wang, Chuan‐qiong; Fan, Lei

    2016-01-01

    Background Xuanwei district in Yunnan Province has the highest incidence of lung cancer in China, especially among non‐smoking women. Cruciferous vegetables can reduce lung cancer risk by prompting a protective mechanism against respiratory tract inflammation caused by air pollution, and are rich in sulforaphane, which can induce changes in gene expression. We investigated the effect of sulforaphane‐induced apoptosis in Xuanwei lung adenocarcinoma cell line (XWCL‐05) to explore the value of sulforaphane in lung cancer prevention and treatment. Methods Cell growth inhibition was determined by methyl thiazolyl tetrazolium assay; cell morphology and apoptosis were observed under transmission electron microscope; cell cycle and apoptosis rates were detected using flow cytometry; B‐cell lymphoma 2 (Bcl‐2) and Bcl‐2‐like protein 4 (Bax) messenger RNA expression were determined by quantitative PCR; and p53, p73, p53 upregulated modulator of apoptosis (PUMA), Bax, Bcl‐2, and caspase‐9 protein expression were detected by Western blotting. Results Sulforaphane inhibited XWLC‐05 cell growth with inhibitory concentration (IC)50 of 4.04, 3.38, and 3.02 μg/mL at 24, 48, and 72 hours, respectively. Sulforaphane affected the XWLC‐05 cell cycle as cells accumulated in the G2/M phase. The proportion of apoptotic cells observed was 27.6%. Compared with the control, the sulforaphane group showed decreased Bcl‐2 and p53 expression, and significantly increased p73, PUMA, Bax, and caspase‐9 protein expression (P < 0.05). Conclusion Sulforaphane induces Xuanwei lung adenocarcinoma cell apoptosis. Its possible mechanism may involve the upregulation of p73 expression and its effector target genes PUMA and Bax in lung cancer cells, downregulation of the anti‐apoptotic gene B cl ‐2, and activation of caspase‐9. It may also involve downregulation of the mutant p53 protein. PMID:27878984

  3. Chromosomal and Genetic Analysis of a Human Lung Adenocarcinoma Cell Line OM

    PubMed Central

    Li, Yong-Wu; Bai, Lin; Dai, Lyu-Xia; He, Xu; Zhou, Xian-Ping

    2016-01-01

    Background: Lung cancer has become the leading cause of death in many regions. Carcinogenesis is caused by the stepwise accumulation of genetic and chromosomal changes. The aim of this study was to investigate the chromosome and gene alterations in the human lung adenocarcinoma cell line OM. Methods: We used Giemsa banding and multiplex fluorescence in situ hybridization focusing on the human lung adenocarcinoma cell line OM to analyze its chromosome alterations. In addition, the gains and losses in the specific chromosome regions were identified by comparative genomic hybridization (CGH) and the amplifications of cancer-related genes were also detected by polymerase chain reaction (PCR). Results: We identified a large number of chromosomal numerical alterations on all chromosomes except chromosome X and 19. Chromosome 10 is the most frequently involved in translocations with six different interchromosomal translocations. CGH revealed the gains on chromosome regions of 3q25.3-28, 5p13, 12q22-23.24, and the losses on 3p25-26, 6p25, 6q26-27, 7q34-36, 8p22-23, 9p21-24, 10q25-26.3, 12p13.31-13.33 and 17p13.1-13.3. And PCR showed the amplification of genes: Membrane metalloendopeptidase (MME), sucrase-isomaltase (SI), butyrylcholinesterase (BCHE), and kininogen (KNG). Conclusions: The lung adenocarcinoma cell line OM exhibited multiple complex karyotypes, and chromosome 10 was frequently involved in chromosomal translocation, which may play key roles in tumorigenesis. We speculated that the oncogenes may be located at 3q25.3-28, 5p13, 12q22-23.24, while tumor suppressor genes may exist in 3p25-26, 6p25, 6q26-27, 7q34-36, 8p22-23, 9p21-24, 10q25-26.3, 12p13.31-13.33, and 17p13.1-13.3. Moreover, at least four genes (MME, SI, BCHE, and KNG) may be involved in the human lung adenocarcinoma cell line OM. PMID:26879013

  4. Crinane alkaloids of the amaryllidaceae with cytotoxic effects in human cervical adenocarcinoma (HeLa) cells.

    PubMed

    Nair, Jerald J; Rárová, Lucie; Strnad, Miroslav; Bastida, Jaume; Cheesman, Lee; van Staden, Johannes

    2014-04-01

    The family Amaryllidaceae has a long history of usage in the traditional medicinal practices of the indigenous peoples of South Africa, with three of its species known to be used for cancer treatment. Furthermore, the Amaryllidaceae is widely recognized for its unique alkaloid constituents, several of which exhibit potent and selective cytotoxic activities. In this study, several crinane alkaloids derived from local Amaryllidaceae species were examined for cytotoxic effects against the human cervical adenocarcinoma cell line, of which distichamine was the most potent (IC50 2.2 microM).

  5. Role of coagulation in the recruitment of colon adenocarcinoma cells to thrombus under shear

    PubMed Central

    Itakura, Asako; Gruber, András; McCarty, Owen J. T.

    2013-01-01

    Colorectal cancer metastases can appear on the peritoneum and in lymph nodes, liver, and lungs, suggesting both hematogenous and lymphatic spreading of the primary tumor. While antithrombotic agents have been shown to reduce both long-term incidence and metastasis, the role of coagulation in facilitating metastasis is ill defined. We investigated the kinetics and molecular mechanisms of metastatic colon adenocarcinoma cell recruitment to thrombi under shear flow, ex vivo. Platelet aggregates were formed by perfusing citrated anticoagulated whole blood over immobilized fibrinogen or fibrillar collagen. Thrombi were formed by perfusing recalcified whole blood over fibrinogen or fibrillar collagen in the presence of coagulation. Cultured colon adenocarcinoma cells (SW620) were perfused either during or following platelet aggregate or thrombus formation. The degree of transient tumor cell interactions (recruitment, rolling, and release) and the number of firmly adhered tumor cells were quantified using fluorescence microscopy. Platelet aggregates and thrombi formed on either fibrinogen- or fibrillar-collagen supported SW620 cell interactions and adhesion under shear. Thrombi or fibrin supported a greater degree of SW620 cell interactions and adhesion compared with platelet aggregates or fibrinogen, respectively, demonstrating that coagulation promoted SW620 cell recruitment under shear. Interestingly, in the absence of anticoagulation, we observed SW620 preferentially binding to thrombus-bound polymorphonuclear leukocytes (PMNs). The addition of purified PMNs to thrombi resulted in a doubling of the number of interacting and bound SW620 cells. Since thrombi often accumulate and activate leukocytes, our findings suggest that leukocytes may play a role in localizing metastases to sites of thrombogenesis. PMID:23903698

  6. siRNA targeting of Trop2 suppresses the proliferation and invasion of lung adenocarcinoma H460 cells.

    PubMed

    Gao, Xiao-Yan; Zhu, Ye-Han; Zhang, Li-Xin; Lu, Hui-Yu; Jiang, Ai-Gui

    2015-08-01

    The aim of the present study was to investigate the effect of the small interfering RNA (siRNA)-induced inhibition of the Trop2 gene on the proliferation and invasion of lung adenocarcinoma H460 cells. A recombinant adenovirus expression vector, which contained siRNA targeting open reading frames for Trop2 (rAd5-siTrop2), was transfected into lung adenocarcinoma H460 cells. Three groups were included in the study, namely the Ctrl (non-transfected control), rAd5-siCtrl (native control) and rAd5-siTrop2 (knockdown Trop2 gene) groups. The mRNA and protein expression levels of Trop2 were detected using quantitative polymerase chain reaction and western blot analysis, respectively. In addition, the expression levels of cyclin Dl and phospho-extracellular signal regulated kinase (p-ERK)-1 were detected using western blot analysis. The effects of Trop2 inhibition on the proliferation and invasion of lung adenocarcinoma H460 cells were investigated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and Transwell assay. Trop2-targeted siRNA recombinant plasmids were successfully constructed. The recombinant adenovirus vector, rAd5-siTrop2, significantly downregulated the mRNA and protein expression levels of Trop2 in the lung adenocarcinoma H460 cells, with cyclin D1 and p-ERK-1 expression downregulated simultaneously. In addition, following the silencing of Trop2, the proliferation and invasion rates of the lung adenocarcinoma H460 cells were reduced. Therefore, the results indicated that Trop2 serves a key function in the proliferation and invasion of lung adenocarcinoma H460 cells in vitro.

  7. Data for comparative proteomics analysis of the antitumor effect of CIGB-552 peptide in HT-29 colon adenocarcinoma cells

    PubMed Central

    Núñez de Villavicencio-Díaz, Teresa; Ramos Gómez, Yassel; Oliva Argüelles, Brizaida; Fernández Masso, Julio R.; Rodríguez-Ulloa, Arielis; Cruz García, Yiliam; Guirola-Cruz, Osmany; Perez-Riverol, Yasset; Javier González, Luis; Tiscornia, Inés; Victoria, Sabina; Bollati-Fogolín, Mariela; Besada Pérez, Vladimir; Guerra Vallespi, Maribel

    2015-01-01

    CIGB-552 is a second generation antitumor peptide that displays potent cytotoxicity in lung and colon cancer cells. The nuclear subproteome of HT-29 colon adenocarcinoma cells treated with CIGB-552 peptide was identified and analyzed [1]. This data article provides supporting evidence for the above analysis. PMID:26306321

  8. MiR-205 functions as a tumor suppressor in adenocarcinoma and an oncogene in squamous cell carcinoma of esophagus.

    PubMed

    Hezova, Renata; Kovarikova, Alena; Srovnal, Josef; Zemanova, Milada; Harustiak, Tomas; Ehrmann, Jiri; Hajduch, Marian; Sachlova, Milana; Svoboda, Marek; Slaby, Ondrej

    2016-06-01

    Esophageal cancer is a malignant disease with poor prognosis, increasing incidence, and ineffective treatment options. MicroRNAs are post-transcriptional regulators of gene expression involved in many biological processes including carcinogenesis. We determined miR-205 expression levels in tumor/non-tumor tissues of 45 esophageal cancer patients using qPCR and found that decreased level of miR-205 in tumor tissue correlates with poor overall survival in esophageal adenocarcinoma patients. Further, we observed significantly higher levels of miR-205 in tumor tissue of esophageal squamous cell carcinoma. Ectopic overexpression of miR-205 in adenocarcinoma cell line SK-GT-4 led to decreased cell proliferation, cell cycle arrest in G1, and decreased migration ability. Conversely, in squamous cell line KYSE-150, same effects like inhibition of proliferation, migration, and colony-forming potential and cell cycle arrest in G2 were observed after silencing of miR-205. We performed global gene expression profiling and revealed that suppressive functioning of miR-205 in adenocarcinoma could be realized through regulation of epithelial-mesenchymal transition (EMT), whereas oncogenic in squamous cell carcinoma by regulation of metalloproteinase 10. Our results suggest that miR-205 could serve as biomarker in esophageal cancer and acts as a tumor suppressor in esophageal adenocarcinoma and oncogene in esophageal squamous cell carcinoma.

  9. Two-stage induced differentiation of OCT4+/Nanog+ stem-like cells in lung adenocarcinoma

    PubMed Central

    Ma, Meili; Lou, Yuqing; Zhang, Yanwei; Wu, Lixia; Chang, David W.; Zhao, Picheng; Dong, Qianggang; Wu, Xifeng; Han, Baohui

    2016-01-01

    Stem-like cells in solid tumors are purported to contribute to cancer development and poor treatment outcome. The abilities to self-renew, differentiate, and resist anticancer therapies are hallmarks of these rare cells, and steering them into lineage commitment may be one strategy to curb cancer development or progression. Vitamin D is a prohormone that can alter cell growth and differentiation and may induce the differentiation cancer stem-like cells. In this study, octamer-binding transcription factor 4 (OCT4)-positive/Nanog homeobox (Nanog)- positive lung adenocarcinoma stem-like cells (LACSCs) were enriched from spheroid cultured SPC-A1 cells and differentiated by a two-stage induction (TSI) method, which involved knockdown of hypoxia-inducible factor 1-alpha (HIF1α) expression (first stage) followed by sequential induction with 1alpha,25-dihydroxyvitamin D3 (1,25(OH)2D3, VD3) and suberoylanilide hydroxamic acid (SAHA) treatment (second stage). The results showed the HIF1α-knockdowned cells displayed diminished cell invasion and clonogenic activities. Moreover, the TSI cells highly expressed tumor suppressor protein p63 (P63) and forkhead box J1 (FOXJ1) and lost stem cell characteristics, including absent expression of OCT4 and Nanog. These cells regained sensitivity to cisplatin in vitro while losing tumorigenic capacity and decreased tumor cell proliferation in vivo. Our results suggest that induced transdifferentiation of LACSCs by vitamin D and SAHA may become novel therapeutic avenue to alter tumor cell phenotypes and improve patient outcome. SIGNIFICANCE STATEMENT The development and progression of lung cancer may involve rare population of stem-like cells that have the ability to grow, differentiate, and resist drug treatment. However, current therapeutic strategies have mostly focused on tumor characteristics and neglected the potential source of cells that may contribute to poor clinical outcome. We generated lung adenocarcinoma stem-like cells from

  10. Protective autophagy is involved in resistance towards MET inhibitors in human gastric adenocarcinoma cells.

    PubMed

    Humbert, Magali; Medová, Michaela; Aebersold, Daniel M; Blaukat, Andree; Bladt, Friedhelm; Fey, Martin F; Zimmer, Yitzhak; Tschan, Mario P

    2013-02-08

    MET, also known as hepatocyte growth factor receptor (HGFR), is a receptor tyrosine kinase with an important role, both in normal cellular function as well as in oncogenesis. In many cancer types, abnormal activation of MET is related to poor prognosis and various strategies to inhibit its function, including small molecule inhibitors, are currently in preclinical and clinical evaluation. Autophagy, a self-digesting recycling mechanism with cytoprotective functions, is induced by cellular stress. This process is also induced upon cytotoxic drug treatment of cancer cells and partially allows these cells to escape cell death. Thus, since autophagy protects different tumor cells from chemotherapy-induced cell death, current clinical trials aim at combining autophagy inhibitors with different cancer treatments. We found that in a gastric adenocarcinoma cell line GTL-16, where MET activity is deregulated due to receptor overexpression, two different MET inhibitors PHA665752 and EMD1214063 lead to cell death paralleled by the induction of autophagy. A combined treatment of MET inhibitors together with the autophagy inhibitor 3-MA or genetically impairing autophagy by knocking down the key autophagy gene ATG7 further decreased cell viability of gastric cancer cells. In general, we observed the induction of cytoprotective autophagy in MET expressing cells upon MET inhibition and a combination of MET and autophagy inhibition resulted in significantly decreased cell viability in gastric cancer cells.

  11. Platelet factors induce chemotactic migration of murine mammary adenocarcinoma cells with different metastatic capabilities.

    PubMed Central

    Sarach, M. A.; Rovasio, R. A.; Eynard, A. R.

    1993-01-01

    The chemotactic response of neoplastic cells (NC) induced by soluble platelet factors was investigated. NC suspensions isolated from murine mammary gland adenocarcinomas having different metastatic capabilities were incubated in Boyden's chambers and challenged with (1) 'Early Platelet Factors' (EP), obtained from the soluble fraction of recently collagen-activated human platelets, and (2) 'Late Platelet Factors' (LP), isolated after 24 hours incubation of the platelet aggregates. Chemotaxis was expressed as the distance travelled by NC through nitrocellulose filters. NC isolated from M3, the tumour line having the stronger metastatic potential, showed a significant chemotactic response towards LP factors, whereas NC from the M2 line exhibiting the lower metastatic behaviour, showed a chemotactic response towards EP factors. Both tumour cell lines lacked motion capability towards the well known chemoattractant peptide N-f-Met-Leu-Phe-Phe as well as to serum, plasma, collagen type I or culture medium. The different chemotactic response of both tumour lines when they were challenged by concentration gradients of factors released by early or late collagen-activated human platelets, confirm a relationship between platelet activity and metastatic capabilities and suggests that platelet chemoattractants might play a role in the metastatic dissemination of these mammary gland adenocarcinomas. Images Figure 1 PMID:8217786

  12. Increased Tim-3 expression in peripheral NK cells predicts a poorer prognosis and Tim-3 blockade improves NK cell-mediated cytotoxicity in human lung adenocarcinoma.

    PubMed

    Xu, Liyun; Huang, Yanyan; Tan, Linlin; Yu, Wei; Chen, Dongdong; Lu, ChangChang; He, Jianying; Wu, Guoqing; Liu, Xiaoguang; Zhang, Yongkui

    2015-12-01

    T cell immunoglobulin- and mucin-domain-containing molecule-3 (Tim-3) has been shown to play an important role in mediating NK-cell function in human diseases. However, the relationship between Tim-3 expression in natural killer (NK) cells and human lung adenocarcinoma remains unclear. We therefore investigated the expression of Tim-3 in NK cells and explored the effect of Tim-3 blockade on NK cell-mediated activity in human lung adenocarcinoma. Upregulated expression of Tim-3 on CD3-CD56+ cells (P<0.05) and CD3-CD56(dim) cells (P<0.05) of patients with lung adenocarcinoma was detected by flow cytometry. Moreover, Tim-3 expression in CD3-CD56+ NK cells was higher in patients with lung adenocarcinoma with lymph node metastasis (LNM) (P<0.05) or with tumor stage T3-T4 (P<0.05). Tim-3 expression in CD56(dim) NK-cell subset was higher in patients with tumor size ≥3cm (P<0.05), or LNM (P<0.05) or with tumor stage T3-T4 (P<0.05). Further analysis showed that higher expressions of Tim-3 on both CD3-CD56+ NK cells and CD56(dim) NK-cell subset were independently correlated with shorter overall survival of patients with lung adenocarcinoma (log-rank test, P=0.0418, 0.0406, respectively). Importantly, blockade of Tim-3 signaling with anti-Tim-3 antibodies resulted in the increased cytotoxicity and IFN-γ production of peripheral NK cells from patients with lung adenocarcinoma. Our data indicate that Tim-3 expression in NK cells can function as a prognostic biomarker in human lung adenocarcinoma and support that Tim-3 could be a new target for an immunotherapeutic strategy.

  13. [Endometrial adenocarcinoma and clear cell carcinoma in a young woman with polycystic ovarian syndrome: a case report].

    PubMed

    Niu, Jing; Liu, Nan; Liu, Guo-Bing

    2016-05-01

    A 26-year-old unmarried woman with irregular menstruation for 4 years was admitted for an intrauterine space-occupying mass. Pathological examination before surgery showed moderately to poorly differentiated endometrial adenocarcinoma. The patient underwent laparoscopically assisted epifascial panhysterectomy with bilateral salpingo-oophorectomy. Pathological examination of the surgical specimens reported moderately to poorly differentiated endometrial adenocarcinoma and stage II clear cell carcinoma. The patient then received chemotherapy and remained alive without evidence of recurrence. Young women with polycystic ovarian syndrome are at high risk of developing endometrial carcinoma, but concurrent clear cell carcinoma is rare. Careful evaluation before and after treatment are essential to improve the patients prognosis.

  14. Transdifferentiation of lung adenocarcinoma in mice with Lkb1 deficiency to squamous cell carcinoma

    PubMed Central

    Han, Xiangkun; Li, Fuming; Fang, Zhaoyuan; Gao, Yijun; Li, Fei; Fang, Rong; Yao, Shun; Sun, Yihua; Li, Li; Zhang, Wenjing; Ma, Huimin; Xiao, Qian; Ge, Gaoxiang; Fang, Jing; Wang, Hongda; Zhang, Lei; Wong, Kwok-kin; Chen, Haiquan; Hou, Yingyong; Ji, Hongbin

    2014-01-01

    Lineage transition in adenocarcinoma (ADC) and squamous cell carcinoma (SCC) of non-small cell lung cancer, as implicated by clinical observation of mixed ADC and SCC pathologies in adenosquamous cell carcinoma, remains a fundamental yet unsolved question. Here we provide in vivo evidence showing the transdifferentiation of lung cancer from ADC to SCC in mice: Lkb1-deficient lung ADC progressively transdifferentiates into SCC, via a pathologically mixed mAd-SCC intermediate. We find that reduction of lysyl oxidase (Lox) in Lkb1-deficient lung ADC decreases collagen disposition and triggers extracellular matrix remodelling and upregulates p63 expression, a SCC lineage survival oncogene. Pharmacological Lox inhibition promotes the transdifferentiation, whereas ectopic Lox expression significantly inhibits this process. Notably, ADC and SCC show differential responses to Lox inhibition. Collectively, our findings demonstrate the de novo transdifferentiation of lung ADC to SCC in mice and provide mechanistic insight that may have important implications for lung cancer treatment. PMID:24531128

  15. Down-regulation of telomerase activity in DLD-1 human colorectal adenocarcinoma cells by tocotrienol

    SciTech Connect

    Eitsuka, Takahiro; Nakagawa, Kiyotaka; Miyazawa, Teruo . E-mail: miyazawa@biochem.tohoku.ac.jp

    2006-09-15

    As high telomerase activity is detected in most cancer cells, inhibition of telomerase by drug or dietary food components is a new strategy for cancer prevention. Here, we investigated the inhibitory effect of vitamin E, with particular emphasis on tocotrienol (unsaturated vitamin E), on human telomerase in cell-culture study. As results, tocotrienol inhibited telomerase activity of DLD-1 human colorectal adenocarcinoma cells in time- and dose-dependent manner, interestingly, with {delta}-tocotrienol exhibiting the highest inhibitory activity. Tocotrienol inhibited protein kinase C activity, resulting in down-regulation of c-myc and human telomerase reverse transcriptase (hTERT) expression, thereby reducing telomerase activity. In contrast to tocotrienol, tocopherol showed very weak telomerase inhibition. These results provide novel evidence for First time indicating that tocotrienol acts as a potent candidate regulator of telomerase and supporting the anti-proliferative function of tocotrienol.

  16. Adrenomedullin promotes the growth of pancreatic ductal adenocarcinoma through recruitment of myelomonocytic cells

    PubMed Central

    Zhang, Shaosen; Ma, Xuhui; Wang, Shan; Wang, Chunying; Fu, Yan; Luo, Yongzhang

    2016-01-01

    Stromal infiltration of myelomonocytic cells is a hallmark of pancreatic ductal adenocarcinoma (PDAC) and is related to a poor prognosis. However, the detailed mechanism for the recruitment of myelomonocytic cells to pancreatic cancer tissue remains unclear. In the present study, pancreatic cancer cells secreted high levels of adrenomedullin (ADM), and CD11b+ myelomonocytic cells expressed all components of ADM receptors, including GPR182, CRLR, RAMP2 and RAMP3. ADM enhanced the migration and invasion of myelomonocytic cells through activation of the MAPK, PI3K/Akt and eNOS signaling pathways, as well as the expression and activity of MMP-2. ADM also promoted the adhesion and trans-endothelial migration of myelomonocytic cells by increasing expression of VCAM-1 and ICAM-1 in endothelial cells. In addition, ADM induced macrophages and myeloid-derived suppressor cells (MDSCs) to express pro-tumor phenotypes. ADM knockdown in tumor-bearing mice or administration of AMA, an ADM antagonist, significantly inhibited the recruitment of myelomonocytic cells and tumor angiogenesis. Moreover, in vivo depletion of myelomonocytic cells using clodronate liposomes suppressed the progression of PDAC. These results reveal a novel function of ADM in PDAC, and suggest ADM is a promising target in the treatment of PDAC. PMID:27391260

  17. Enhanced autophagy is required for survival in EGFR-independent EGFR-mutant lung adenocarcinoma cells.

    PubMed

    Sakuma, Yuji; Matsukuma, Shoichi; Nakamura, Yoshiyasu; Yoshihara, Mitsuyo; Koizume, Shiro; Sekiguchi, Hironobu; Saito, Haruhiro; Nakayama, Haruhiko; Kameda, Yoichi; Yokose, Tomoyuki; Oguni, Sachiko; Niki, Toshiro; Miyagi, Yohei

    2013-10-01

    Lung cancers harboring epidermal growth factor receptor (EGFR) mutations depend on constitutive activation of the kinase for survival. Although most EGFR-mutant lung cancers are sensitive to EGFR tyrosine kinase inhibitors (TKIs) and shrink in response to treatment, acquired resistance to TKI therapy is common. We demonstrate here that two EGFR-mutated lung adenocarcinoma cell lines, HCC827 and HCC4006, contain a subpopulation of cells that have undergone epithelial-to-mesenchymal transition and survive independent of activated EGFR. These EGFR-independent cancer cells, herein termed gefitinib-resistant (GR) cells, demonstrate higher levels of basal autophagy than their parental cells and thrive under hypoxic, reduced-serum conditions in vitro; this somewhat simulates the hypoxic environment common to cancerous tissues. We show that depletion of the essential autophagy gene, ATG5, by small interfering RNA (siRNA) or chloroquine, an autophagy inhibitor, markedly reduces GR cell viability under hypoxic conditions. Moreover, we show a significant elevation in caspase activity in GR cells following knockdown of ATG5. These results suggest that GR cells can evade apoptosis and survive in hostile, hypoxic environments with constant autophagic flux. We also show the presence of autophagosomes in some cancer cells from patient samples, even in untreated EGFR-mutant lung cancer tissue samples. Together, our results indicate that autophagy inhibitors alone or in combination with EGFR TKIs may be an effective approach for the treatment of EGFR-mutant lung cancers, where basal autophagy of some cancer cells is upregulated.

  18. miR-200 Inhibits Lung Adenocarcinoma Cell Invasion and Metastasis by Targeting Flt1/VEGFR1

    PubMed Central

    Roybal, Jonathon D.; Zang, Yi; Ahn, Young-Ho; Yang, Yanan; Gibbons, Don L.; Baird, Brandi N.; Alvarez, Cristina; Thilaganathan, Nishan; Liu, Diane D.; Saintigny, Pierre; Heymach, John V.; Creighton, Chad J.; Kurie, Jonathan M.

    2011-01-01

    The microRNA-200 (miR-200) family is part of a gene expression signature that predicts poor prognosis in lung cancer patients. In a mouse model of K-ras/p53-mutant lung adenocarcinoma, miR-200 levels are suppressed in metastasis-prone tumor cells, and forced miR-200 expression inhibits tumor growth and metastasis, but the miR-200 target genes that drive lung tumorigenesis have not been fully elucidated. Here, we scanned the genome for putative miR-200 binding sites and found them in the 3′-untranslated region (3′-UTR) of 35 genes that are amplified in human cancer. Mining of a database of resected human lung adenocarcinomas revealed that the levels of one of these genes, Flt1/VEGFR1, correlate inversely with duration of survival. Forced miR-200 expression suppressed Flt1 levels in metastasis-prone lung adenocarcinoma cells derived from K-ras/p53-mutant mice, and negatively regulated the Flt1 3′-UTR in reporter assays. Cancer-associated fibroblasts (CAFs) isolated from murine lung adenocarcinomas secreted abundant VEGF and enhanced tumor cell invasion in coculture studies. CAF-induced tumor cell invasion was abrogated by VEGF neutralization or Flt1 knockdown in tumor cells. Flt1 knockdown decreased the growth and metastasis of tumor cells in syngeneic mice. We conclude that miR-200 suppresses lung tumorigenesis by targeting Flt1. PMID:21115742

  19. Paget cells in the esophagus: assessment of their histopathologic features and near-universal association with underlying esophageal adenocarcinoma.

    PubMed

    Abraham, Susan C; Wang, Huamin; Wang, Kenneth K; Wu, Tsung-Teh

    2008-07-01

    Pagetoid spread of primary esophageal melanomas and several cases of pagetoid esophageal squamous cell carcinoma are known. However, true esophageal Paget disease (intraepithelial growth of neoplastic cells with glandular differentiation) has only rarely been reported. We encountered 3 endoscopic biopsy specimens containing Paget cells in squamous epithelium associated with adenocarcinomas in Barrett esophagus (BE) and in the esophagogastric junction. To determine the prevalence of Paget cells in the esophagus, we studied 81 endoscopic mucosal resections and 27 esophagectomies from patients with invasive or intramucosal adenocarcinoma, and compared the findings to a control group of 47 endoscopic mucosal resections and 25 esophagectomies from patients with high-grade dysplasia in BE. Paget cells were present in squamous epithelium overlying 5 (4.9%) of 108 adenocarcinomas but in none (0%) of 72 BE with high-grade dysplasia (P=0.16). A computerized search for primary Paget disease using the terms "Paget's and esophagus" or "pagetoid and esophagus" from 1994 to 2007 did not yield any additional cases. Among the 8 patients with Paget cells (including the 2 index biopsies) there were no differences in either sex distribution (7M:1F) or age (mean 62.4 y) as compared with 103 adenocarcinomas without Paget cells (93M:10F, P=0.58; mean age 69.2 y, P=0.78). Morphologically, all adenocarcinomas with Paget cells contained at least a component of diffuse, poorly differentiated adenocarcinoma, and 1 was a signet ring cell carcinoma. Paget cells involved only squamous epithelium directly above the poorly differentiated tumor foci. Histochemistry for periodic acid-Schiff with diastase (PAS-D) and mucicarmine, and immunohistochemistry for CK7, CK20, p53, and E-cadherin, were performed on 7 Paget cases with the following results: PAS-D+ (7 of 7, 100%), mucicarmine+ (6 of 7, 86%), CK7+ (7 of 7, 100%), CK20+ (5 of 7, 71%), p53 overexpression (3 of 7, 43%), and E-cadherin loss

  20. Tumor cell and connective tissue cell interactions in human colorectal adenocarcinoma. Transfer of platelet-derived growth factor-AB/BB to stromal cells.

    PubMed Central

    Sundberg, C.; Branting, M.; Gerdin, B.; Rubin, K.

    1997-01-01

    Mechanisms underlying stimulation of platelet-derived growth factor (PDGF) beta-receptors expressed on connective tissue cells in human colorectal adenocarcinoma were investigated in this study. PDGF-AB/BB, but not PDGF receptors, was expressed by tumor cells in situ, as well as in tumor cell isolates of low passage from human colorectal adenocarcinoma. In an experimental co-culture system, conditioned medium from tumor cells only marginally activated PDGF beta-receptors expressed on fibroblasts. In contrast, co-culturing of the two cell types led to a marked PDGF beta-receptor activation. Functional PDGF-AB/BB was found to be associated with heparinase-I-sensitive components on the tumor cell surface. PDGF-AB/BB, isolated from heparinase-I-sensitive cell surface components, induced a marked activation of PDGF beta-receptors. Furthermore, co-culturing tumor cells together with fibroblasts led to a sustained activation of PDGF beta-receptors expressed on fibroblasts. Double immunofluorescence staining of tissue sections from human colorectal adenocarcinoma, combined with computer-aided image analysis, revealed that nonproliferating tumor cells were the predominant cellular source of PDGF-AB/BB in the tumor stroma. In addition, PDGF-AB/BB-expressing tumor cells were found juxtapositioned to microvascular cells expressing activated PDGF beta-receptors. Confocal microscopy revealed a cytoplasmic and cell-membrane-associated expression of PDGF-AB/BB in tumor cells situated in the stroma. In contrast, epithelial cells situated in normal or tumorous acinar structures revealed only a cell-membrane-associated PDGF-AB/BB expression. The is vitro and in situ results demonstrate that tumor cells not only facilitate but also have the ability to modulate connective tissue cell responsiveness to PDGF-AB/BB in a paracrine fashion, through direct cell-cell interactions in human colorectal adenocarcinoma. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:9250160

  1. Signet ring cell-type adenocarcinoma arising in a mature teratoma of the testis

    PubMed Central

    HA, HONG KOO; LEE, WAN; LEE, SANG DON; LEE, JEONG ZOO; CHUNG, MOON KEE

    2010-01-01

    A 48-year-old male who presented with an enlarged right scrotum was diagnosed with malignant transformation of testicular teratoma. Physical examination revealed a right scrotal mass of hard consistency with no inguinal lymphadenopathy. Since prepuberty, his right testis had been larger than the left one, with no pain or tenderness. Computed tomography and bone scan revealed retroperitoneal lymphadenopathy and multiple bone metastases. Right orchiectomy was performed immediately, and a pathological examination revealed a mature teratoma associated with adenocarcinoma, showing signet ring cell differentiation. Cisplatin-based combination chemotherapy was administered; however, the metastatic lesions progressed, and the patient succumbed to the disease after 15 months. Only a few cases of primary malignant transformation of teratoma in the testis have been reported, and this is the first case report of primary malignant transformation of teratoma in the testis with signet ring cell-type differentiation. PMID:22966298

  2. Pulmonary mixed squamous cell and glandular papilloma mimicking adenocarcinoma: a case study and literature review.

    PubMed

    Lin, Dongliang; Jiang, Yanxia; Wang, Jigang; Ding, Li; Xin, Fangjie; Zhao, Han; Li, Yujun

    2013-08-01

    Mixed squamous cell and glandular papilloma of the lung is an extremely rare benign neoplasm. Here we present another case of mixed squamous cell and glandular papilloma in a 64-year-old female nonsmoker. Histologically, the tumor was composed of mainly papillary structures covered with squamous, glandular and transitional epithelium. Some glandular structures extending into adjacent bronchiolar and alveolar spaces with mucus were similar to adenocarcinoma. Immunohistochemical analysis showed the different kinds of epithelia had similar immunophenotype. The different components were positive for cytokeratin (CK)7, CK19, CAM5.2, CK5/6, CK34βE12, and TTF-1, but negative for CK20. The transitional morphology and immunohistochemistry indicate the different components likely come from a same kind of progenitor in the bronchiolar wall.

  3. Targeting the cell cycle in esophageal adenocarcinoma: an adjunct to anticancer treatment.

    PubMed

    Dibb, Martyn; Ang, Yeng S

    2011-04-28

    Esophageal adenocarcinoma is a major cause of cancer death in men in the developed world. Continuing poor outcomes with conventional therapies that predominantly target apoptosis pathways have lead to increasing interest in treatments that target the cell cycle. A large international effort has led to the development of a large number of inhibitors, which target cell cycle kinases, including cyclin-dependent kinases, Aurora kinases and polo-like kinase. Initial phase I/II trials in solid tumors have often demonstrated only modest clinical benefits of monotherapy. This may relate in part to a failure to identify the patient populations that will gain the most clinical benefit. Newer compounds lacking the side effect profile of first-generation compounds may show utility as adjunctive treatments targeted to an individual's predicted response to treatment.

  4. Targeting the cell cycle in esophageal adenocarcinoma: An adjunct to anticancer treatment

    PubMed Central

    Dibb, Martyn; Ang, Yeng S

    2011-01-01

    Esophageal adenocarcinoma is a major cause of cancer death in men in the developed world. Continuing poor outcomes with conventional therapies that predominantly target apoptosis pathways have lead to increasing interest in treatments that target the cell cycle. A large international effort has led to the development of a large number of inhibitors, which target cell cycle kinases, including cyclin-dependent kinases, Aurora kinases and polo-like kinase. Initial phase I/II trials in solid tumors have often demonstrated only modest clinical benefits of monotherapy. This may relate in part to a failure to identify the patient populations that will gain the most clinical benefit. Newer compounds lacking the side effect profile of first-generation compounds may show utility as adjunctive treatments targeted to an individual’s predicted response to treatment. PMID:21547123

  5. Monoclonal antibodies to an epithelial ovarian adenocarcinoma: distinctive reactivity with xenografts of the original tumor and a cultured cell line.

    PubMed

    Baumal, R; Law, J; Buick, R N; Kahn, H; Yeger, H; Sheldon, K; Colgan, T; Marks, A

    1986-08-01

    Four monoclonal antibodies (mAb) (8C, 10B, M2A, and M2D) were produced against the human epithelial ovarian adenocarcinoma cell line, HEY. The affinity constants of binding of the mAb to cultured HEY cells were 8 X 10(8) M-1 (M2D) and 10(9) M-1 (8C and 10B). mAb 8C reacted with a major glycoprotein of Mr 90,000 on the surface of HEY cells. The four mAb differed from previously reported mAb to epithelial ovarian adenocarcinomas on the basis of their reactivity with cultured ovarian adenocarcinoma cell lines using a cell-binding radioimmunoassay, and their staining of cryostat sections of various human normal and tumor tissues using an immunoperoxidase reaction. All four mAb reacted with s.c. tumors derived by injecting cultured HEY cells into thymectomized CBA/CJ mice. However, only two of the four mAb (8C and 10B) also reacted with s.c. tumors of the original HEY xenograft from which the cultured cell line was derived. In addition, mAb 8C and 10B reacted by immunoperoxidase staining with 2 and 4 different cases, respectively, of 11 epithelial ovarian adenocarcinomas examined. Cultured HEY cells were adapted to grow i.p. in BALB/c-nu/nu mice and the i.p. tumors retained their reactivity with the monoclonal antibodies. These tumor-bearing mice offer a useful model system for studying the potential of mAb, especially 8C and 10B, for the diagnosis and treatment of patients with peritoneal extension of epithelial ovarian adenocarcinomas.

  6. SMAC mimetic Debio 1143 synergizes with taxanes, topoisomerase inhibitors and bromodomain inhibitors to impede growth of lung adenocarcinoma cells

    PubMed Central

    Held, Matthew A.; Mamillapalli, Ramanaiah; Iyidogan, Pinar; Theodosakis, Nicholas; Platt, James T.; Levy, Frederic; Vuagniaux, Gregoire; Wang, Shaomeng; Bosenberg, Marcus W.; Stern, David F.

    2015-01-01

    Targeting anti-apoptotic proteins can sensitize tumor cells to conventional chemotherapies or other targeted agents. Antagonizing the Inhibitor of Apoptosis Proteins (IAPs) with mimetics of the pro-apoptotic protein SMAC is one such approach. We used sensitization compound screening to uncover possible agents with the potential to further sensitize lung adenocarcinoma cells to the SMAC mimetic Debio 1143. Several compounds in combination with Debio 1143, including taxanes, topoisomerase inhibitors, and bromodomain inhibitors, super-additively inhibited growth and clonogenicity of lung adenocarcinoma cells. Co-treatment with Debio 1143 and the bromodomain inhibitor JQ1 suppresses the expression of c-IAP1, c-IAP2, and XIAP. Non-canonical NF-κB signaling is also activated following Debio 1143 treatment, and Debio 1143 induces the formation of the ripoptosome in Debio 1143-sensitive cell lines. Sensitivity to Debio 1143 and JQ1 co-treatment was associated with baseline caspase-8 expression. In vivo treatment of lung adenocarcinoma xenografts with Debio 1143 in combination with JQ1 or docetaxel reduced tumor volume more than either single agent alone. As Debio 1143-containing combinations effectively inhibited both in vitro and in vivo growth of lung adenocarcinoma cells, these data provide a rationale for Debio 1143 combinations currently being evaluated in ongoing clinical trials and suggest potential utility of other combinations identified here. PMID:26485762

  7. Effect of caffeic acid esters on carcinogen-induced mutagenicity and human colon adenocarcinoma cell growth.

    PubMed

    Rao, C V; Desai, D; Kaul, B; Amin, S; Reddy, B S

    1992-11-16

    Propolis, a honey bee hive product, is thought to exhibit a broad spectrum of activities including antibiotic, antiviral, anti-inflammatory and tumor growth inhibition; some of the observed biological activities may be due to caffeic acid (cinnamic acid) esters that are present in propolis. In the present study we synthesized three caffeic acid esters, namely methyl caffeate (MC), phenylethyl caffeate (PEC) and phenylethyl dimethylcaffeate (PEDMC) and tested them against the 3,2'-dimethyl-4-aminobiphenyl, (DMAB, a colon and mammary carcinogen)-induced mutagenicity in Salmonella typhimurium strains TA 98 and TA 100. Also, the effect of these agents on the growth of human colon adenocarcinoma, HT-29 cells and activities of ornithine decarboxylase (ODC) and protein tyrosine kinase (PTK) was studied. Mutagenicity was induced in Salmonella typhimurium strains TA 98 and TA 100 plus S9 activation using 5 and 10 micrograms DMAB and antimutagenic activities of 0-150 microM MC, 0-60 microM PEC and 0-80 microM PEDMC were determined. The results indicate that MC, PEC and PEDMC were not mutagenic in the Salmonella tester system. DMAB-induced mutagenicity was significantly inhibited with 150 microM MC, 40-60 microM PEC and 40-80 microM PEDMC in both tester systems. Treatment of HT-29 colon adenocarcinoma cells with > 150 microM MC, 30 microM PEC and 20 microM PEDMC significantly inhibited the cell growth and syntheses of RNA, DNA and protein. ODC and PTK activities were also inhibited in HT-29 cells treated with different concentrations of MC, PEC and PEDMC. These results demonstrate that caffeic acid esters which are present in Propolis possess chemopreventive properties when tested in short-term assay systems.

  8. Xanthohumol inhibits the extracellular signal regulated kinase (ERK) signalling pathway and suppresses cell growth of lung adenocarcinoma cells.

    PubMed

    Sławińska-Brych, Adrianna; Zdzisińska, Barbara; Dmoszyńska-Graniczka, Magdalena; Jeleniewicz, Witold; Kurzepa, Jacek; Gagoś, Mariusz; Stepulak, Andrzej

    2016-05-16

    Aberrant activation of the Ras/MEK/ERK signaling pathway has been frequently observed in non-small-cell lung carcinoma (NSCLC) and its important role in cancer progression and malignant transformation has been documented. Hence, the ERK1/2 kinase cascade becomes a potential molecular target in cancer treatment. Xanthohumol (XN, a prenylated chalcone derived from hope cones) is known to possess a broad spectrum of chemopreventive and anticancer activities. In our studies, the MTT and BrdU assays revealed that XN demonstrated greater antiproliferative activity against A549 lung adenocarcinoma cells than against the lung adenocarcinoma H1563 cell line. We observed that XN was able to suppress the activities of ERK1/2 and p90RSK kinases, followed by inhibition of phosphorylation and activation of the CREB protein. Additionally, the XN treatment of the cancer cells caused upregulation of key cell cycle regulators p53 and p21 as well as downregulation of cyclin D1. As a result, the cytotoxic effect of XN was attributed to the cell cycle arrest at G1 phase and induction of apoptosis indicated by increased caspase-3 activity. Thus, XN might be a promising anticancer drug candidate against lung carcinomas.

  9. Doxorubicin delivery enhanced by electroporation to gastrointestinal adenocarcinoma cells with P-gp overexpression.

    PubMed

    Kulbacka, Julita; Daczewska, Małgorzata; Dubińska-Magiera, Magda; Choromańska, Anna; Rembiałkowska, Nina; Surowiak, Paweł; Kulbacki, Marek; Kotulska, Małgorzata; Saczko, Jolanta

    2014-12-01

    Electroporation (EP) can effectively support the penetration of macromolecules from the extracellular space into cells. Electropores induced by the influence of electromagnetic field generate additional paths of transport for macromolecules. The aim of this study was evaluation of the electroporation effect on doxorubicin transport efficiency to human colon (LoVo and LoVo/DX) and gastric (EPG85-257/P and EPG85-257/RDB) adenocarcinoma cells with overexpression of P-glycoprotein and murine macrophage cell line (P388/D1). In our EP experiments cells were placed into a cuvette with aluminum electrodes and pulsed with five square electric pulses of 1300 V/cm and duration of 50 μs each. Cells were also treated with low doxorubicin concentration ([DOX]=1.7 μM). The ultrastructure (TEM) and changes of P-glycoprotein expression of tumor cells subjected to electric field were monitored. The mitochondrial cell function and trypan blue staining were evaluated after 24h. Our results indicate the most pronounced effect of EP with DOX and disturbed ultrastructure in resistant gastric and colon cells with decrease of P-gp expression. Electroporation may be an attractive delivery method of cytostatic drugs in chemotherapy, enabling reduction of drug dose, exposure time and side effects.

  10. Previous heat shock treatment inhibits Mayaro virus replication in human lung adenocarcinoma (A549) cells.

    PubMed

    Virgilio, P L; Godinho-Netto, M C; Carvalho Mda, G

    1997-01-01

    Human lung adenocarcinoma cells (A549) were submitted to mild or severe heat shock (42 degrees C or 44 degrees C) for 1 h, while another group of cells was double-heat-shocked (submitted to 42 degrees C for 1 h, returned to 37 degrees C for 3 h, then exposed to 44 degrees C for 1 h). After each heat treatment, the cells were infected with Mayaro virus for 24 h and incubated at 37 degrees C. The results showed that the double-heat-shocked thermotolerant cells exhibited a 10(4)-fold virus titre inhibition, despite the recovery of protein synthesis and original morphology 24 h post-infection. In contrast, cells submitted to mild or severe heat shock exhibited weaker inhibition of Mayaro virus titre (10(2)-fold). The mildly heat-shocked cells also presented a full recovery in protein synthesis, which was not observed in severely heat-shocked cells. These results indicate that exposure of A549 cells to a mild or to a double heat shock treatment before Mayaro virus infection induces an antiviral state.

  11. Apoptotic effect of sodium acetate on a human gastric adenocarcinoma epithelial cell line.

    PubMed

    Xia, Y; Zhang, X L; Jin, F; Wang, Q X; Xiao, R; Hao, Z H; Gui, Q D; Sun, J

    2016-10-05

    The objective of this study was to investigate the effect of sodium acetate on the viability of the human gastric adenocarcinoma (AGS) epithelial cell line. AGS cells were exposed to a range of concentrations of sodium acetate for different periods of time, and the sodium acetate-induced cytotoxic effects, including cell viability, DNA fragmentation, apoptotic gene expression, and caspase activity, were assessed. The changes in these phenotypes were quantified by performing a lactate dehydrogenase cell viability assay, annexin V staining, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL), and several caspase activity assays. In vitro studies demonstrated that the cytotoxicity of sodium acetate on the AGS cell line were dose- and time-dependent manners. No differences were found between the negative control and sodium acetate-treated cells stained with annexin V and subjected to the TUNEL assay. However, caspase-3 activity was increased in AGS cells exposed to sodium acetate. Overall, it was concluded that sodium acetate exerted an apoptotic effect in AGS cells via a caspase-dependent apoptotic pathway.

  12. Rab27A regulates exosome secretion from lung adenocarcinoma cells A549: involvement of EPI64.

    PubMed

    Li, Wenhai; Hu, Yunsheng; Jiang, Tao; Han, Yong; Han, Guoliang; Chen, Jiakuan; Li, Xiaofei

    2014-11-01

    Exosomes are small membrane vesicles secreted into the extracellular compartment by exocytosis. The unique composition of exosomes can be transported to other cells which allow cells to exert biological functions at distant sites. However, in lung cancer, the regulation of exosome secretion was poorly understood. In this study, we employed human lung adenocarcinoma A549 cells to determine the exosome secretion and involved regulation mechanism. We found that Rab27A was expressed in A549 cells and the reduction of Rab27A by Rab27A-specific shRNA could significantly decrease the secretion of exosome by A549 cells. EPI64, a candidate GAP that is specific for Rab27, was also detected in A549 cells. By pull-down assay, we found that EPI64 participated in the exosome secretion of A549 cells by acting as a specific GAP for Rab27A, not Rab27B. Overexpression of EPI64 enhanced exosome secretion. Taken together, in A549 cells, EPI64 could regulate the exosome secretion by functioning as a GAP specific for Rab27A.

  13. Mechanism of arctigenin-mediated specific cytotoxicity against human lung adenocarcinoma cell lines.

    PubMed

    Susanti, Siti; Iwasaki, Hironori; Inafuku, Masashi; Taira, Naoyuki; Oku, Hirosuke

    2013-12-15

    The lignan arctigenin (ARG) from the herb Arctium lappa L. possesses anti-cancer activity, however the mechanism of action of ARG has been found to vary among tissues and types of cancer cells. The current study aims to gain insight into the ARG mediated mechanism of action involved in inhibiting proliferation and inducing apoptosis in lung adenocarcinoma cells. This study also delineates the cancer cell specificity of ARG by comparison with its effects on various normal cell lines. ARG selectively arrested the proliferation of cancer cells at the G0/G1 phase through the down-regulation of NPAT protein expression. This down-regulation occurred via the suppression of either cyclin E/CDK2 or cyclin H/CDK7, while apoptosis was induced through the modulation of the Akt-1-related signaling pathway. Furthermore, a GSH synthase inhibitor specifically enhanced the cytotoxicity of ARG against cancer cells, suggesting that the intracellular GSH content was another factor influencing the susceptibility of cancer cells to ARG. These findings suggest that specific cytotoxicity of ARG against lung cancer cells was explained by its selective modulation of the expression of NPAT, which is involved in histone biosynthesis. The cytotoxicity of ARG appeared to be dependent on the intracellular GSH level.

  14. Resistance of cervical adenocarcinoma cells (HeLa) to venom from the scorpion Centruroides limpidus limpidus

    PubMed Central

    2013-01-01

    Background The venom of Centruroides limpidus limpidus (Cll) is a mixture of pharmacologically active principles. The most important of these are toxic proteins that interact both selectively and specifically with different cellular targets such as ion channels. Recently, anticancer properties of the venom from other scorpion species have been described. Studies in vitro have shown that scorpion venom induces cell death, inhibits proliferation and triggers the apoptotic pathway in different cancer cell lines. Herein, after treating human cervical adenocarcinoma (HeLa) cells with Cll crude venom, their cytotoxic activity and apoptosis induction were assessed. Results Cll crude venom induced cell death in normal macrophages in a dose-dependent manner. However, through viability assays, HeLa cells showed high survival rates after exposure to Cll venom. Also, Cll venom did not induce apoptosis after performing ethidium bromide/acridine orange assays, nor was there any evidence of chromatin condensation or DNA fragmentation. Conclusions Crude Cll venom exposure was not detrimental to HeLa cell cultures. This may be partially attributable to the absence of specific HeLa cell membrane targets for molecules present in the venom of Centruroides limpidus limpidus. Although these results might discourage additional studies exploring the potential of Cll venom to treat human papilloma cervical cancer, further research is required to explore positive effects of crude Cll venom on other cancer cell lines. PMID:24004568

  15. Different effects of bile acids, ursodeoxycholic acid and deoxycholic acid, on cell growth and cell death in human colonic adenocarcinoma cells.

    PubMed

    Shiraki, Katsuya; Ito, Takeshi; Sugimoto, Kazushi; Fuke, Hiroyuki; Inoue, Tomoko; Miyashita, Kazumi; Yamanaka, Takenari; Suzuki, Masahiro; Nabeshima, Kazuo; Nakano, Takeshi; Takase, Koujiro

    2005-10-01

    Secondary bile acids have been implicated as an important etiological factor in colorectal cancer. We investigated the effects of ursodeoxycholic acid (UDCA) and deoxycholic acid (DCA) on the growth and cytotoxicity in HT29 human colonic adenocarcinoma cells. Proliferation assay, cell cycle analysis and cell death characterization by bile acids were performed. Both UDCA and DCA reduced their proliferation rate of HT29 over 48 h in a concentration- and time-dependent manner compared with control cultures. In terms of cell cycle effects, however, UDCA induced G2/M arrest, while DCA induced G1 arrest in a concentration- and time-dependent manner. As for the effects of each bile acid on cell toxicity, UDCA induced early apoptosis and DCA induced both early apoptosis and necrosis. Bile acids play an important role in regulating cell survival and cell death in colon adenocarcinoma cells.

  16. Oncolytic Activity of Avian Influenza Virus in Human Pancreatic Ductal Adenocarcinoma Cell Lines

    PubMed Central

    Pizzuto, Matteo S.; Silic-Benussi, Micol; Pavone, Silvia; Ciminale, Vincenzo; Capua, Ilaria

    2014-01-01

    ABSTRACT Pancreatic ductal adenocarcinoma (PDA) is the most lethal form of human cancer, with dismal survival rates due to late-stage diagnoses and a lack of efficacious therapies. Building on the observation that avian influenza A viruses (IAVs) have a tropism for the pancreas in vivo, the present study was aimed at testing the efficacy of IAVs as oncolytic agents for killing human PDA cell lines. Receptor characterization confirmed that human PDA cell lines express the alpha-2,3- and the alpha-2,6-linked glycan receptor for avian and human IAVs, respectively. PDA cell lines were sensitive to infection by human and avian IAV isolates, which is consistent with this finding. Growth kinetic experiments showed preferential virus replication in PDA cells over that in a nontransformed pancreatic ductal cell line. Finally, at early time points posttreatment, infection with IAVs caused higher levels of apoptosis in PDA cells than gemcitabine and cisplatin, which are the cornerstone of current therapies for PDA. In the BxPC-3 PDA cell line, apoptosis resulted from the engagement of the intrinsic mitochondrial pathway. Importantly, IAVs did not induce apoptosis in nontransformed pancreatic ductal HPDE6 cells. Using a model based on the growth of a PDA cell line as a xenograft in SCID mice, we also show that a slightly pathogenic avian IAV significantly inhibited tumor growth following intratumoral injection. Taken together, these results are the first to suggest that IAVs may hold promise as future agents of oncolytic virotherapy against pancreatic ductal adenocarcinomas. IMPORTANCE Despite intensive studies aimed at designing new therapeutic approaches, PDA still retains the most dismal prognosis among human cancers. In the present study, we provide the first evidence indicating that avian IAVs of low pathogenicity display a tropism for human PDA cells, resulting in viral RNA replication and a potent induction of apoptosis in vitro and antitumor effects in vivo. These

  17. Preferential metabolism of N-nitrosodiethylamine by two cell lines derived from human pulmonary adenocarcinomas

    SciTech Connect

    Falzon, M.; McMahon, J.B.; Gazdar, A.F.; Schuller, H.M.

    1986-01-01

    Diethylnitrosamine (DEN), in common with other nitrosamines, is a carcinogenic agent which produces tumors in a wide variety of tissues in experimental animals. The pulmonary Clara cell is a major target of N-nitrosamine-induced carcinogenesis in hamsters and rats. DEN is believed to require metabolic activation to elicit its carcinogenic effects. The metabolism of (/sup 14/C)DEN was studied in two cell lines derived from human lung adenocarcinomas and two cell lines derived from human small cell lung cancers by monitoring /sup 14/CO/sub 2/ production and covalent binding of radiolabel from (/sup 14/C)DEN to the cell protein and DNA fractions. (/sup 14/C)DEN was metabolized by adenocarcinoma-derived NCI-H322 (with Clara cell features) and NCI-H358 (with features of alveolar type II cells) but not by NCI-H69 and NCI-H128 (derived from small cell carcinoma). Metabolism was markedly inhibited by heat denaturation of the cell protein. (/sup 14/C)DEN metabolism by NCI-H322 was greatly decreased when the incubation was carried out under anaerobic conditions and in the presence of a carbon monoxide enriched atmosphere. These results suggested the involvement of the cytochrome P-450-dependent monooxygenase enzyme system. Metabolism by NCI-H358 was also decreased in the absence of oxygen or presence of carbon monoxide although the effects were relatively small compared with the results with NCI-H322. On the other hand, aspirin or indomethacin, which are inhibitors of the fatty acid cyclooxygenase component of prostaglandin endoperoxide synthetase, preferentially inhibited (/sup 14/C)DEN metabolism by NIC-H358. There were little or no effects of these inhibitors on the metabolism of DEN in NCI-H322. The data suggest that DEN metabolism in different lung cell types may be carried out by different enzyme systems which in turn may contribute to the selective effect of DEN in the lung.

  18. Photodynamic action of palmatine hydrochloride on colon adenocarcinoma HT-29 cells.

    PubMed

    Wu, Juan; Xiao, Qicai; Zhang, Na; Xue, Changhu; Leung, Albert Wingnang; Zhang, Hongwei; Xu, Chuanshan; Tang, Qing-Juan

    2016-09-01

    Palmatine hydrochloride (PaH) is a natural active compound from a traditional Chinese medicine (TCM). The present study aims to evaluate the effect of PaH as a new photosensitizer on colon adenocarcinoma HT-29 cells upon light irradiation. Firstly, the absorption and fluorescence spectra of PaH were measured using a UV-vis spectrophotometer and RF-1500PC spectrophotometer, respectively. Singlet oxygen ((1)O2) production of PaH was determined using 1, 3-diphenylisobenzofuran (DPBF). Dark toxicity of PaH was estimated using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Cellular uptake of PaH in HT-29 cells was detected at different time intervals. Subellular localization of PaH in HT-29 cells was observed using confocal laser fluorescence microscopy. For photodynamic treatment, HT-29 cells were incubated with PaH and then irradiated by visible light (470nm) from a LED light source. Photocytotoxicity was investigated 24h after photodynamic treatment using MTT assay. Cell apoptosis was observed 18h after photodynamic treatment using a flow cytometry with Annexin V/PI staining. Results showed that PaH has an absorption peak in the visible region from 400nm to 500nm and a fluorescence emission peak at 406nm with an excitation wavelength of 365nm. PaH was activated by the 470nm visible light from a LED light source to produce (1)O2. Dark toxicity showed that PaH alone treatment had no cytotoxicity to HT-29 cancer cells and NIH-3T3 normal cells after incubation for 24h. After incubation for 40min, the cellular uptake of PaH reached to the maximum and PaH was located in mitochondria. Photodynamic treatment of PaH demonstrated a significant photocytotoxicity on HT-29 cells. The rate of cell death increased significantly in a PaH concentration-dependent and light dose-dependent manner. Further evaluation revealed that the early and late apoptotic rate of HT-29 cells increased remarkably up to 21.54% and 5.39% after photodynamic treatment of

  19. Sinomenine inhibits proliferation of SGC-7901 gastric adenocarcinoma cells via suppression of cyclooxygenase-2 expression

    PubMed Central

    LV, YIFEI; LI, CHANGSHUN; LI, SHUANG; HAO, ZHIMING

    2011-01-01

    Sinomenine (SIN) is a bioactive alkaloid extracted from the Chinese medicinal plant Sinomenium acutum. Results of studies have shown that the anti-inflammatory, immunosuppressive and anti-arthritic effects of SIN are partially attributed to the inhibition of cyclooxygenase-2 (COX-2) expression. COX-2 overexpression is associated with enhanced proliferation and angiogenesis of gastric cancer (GC). SGC-7901 cells were treated with different concentrations of SIN in order to observe its effect on the proliferation of human gastric adenocarcinoma cells and to explore the potential underlying molecular mechanism via the detection of COX-2 expression. Celecoxib was used as the positive control. Morphological alterations of the cells were observed microscopically. Cell proliferation was evaluated using MTT assay. COX-2 expression was detected using semi-quantitative RT-PCR and Western blotting. The results showed that SIN inhibited the proliferation of SGC-7901 cells in a time- and dose-dependent manner. In the presence of SIN or celecoxib, SGC-7901 cells became round and detached morphologically, indicating cell apoptosis. The expression of COX-2 was inhibited by SIN in a dose-dependent manner at both the mRNA and protein levels. Our findings indicate that the protective effects of SIN are mediated through the inhibition of COX-2 expression. These findings suggest a novel therapy to treat inflammation-mediated gastric adenocarcinomata. PMID:22848259

  20. Primula auriculata Extracts Exert Cytotoxic and Apoptotic Effects against HT-29 Human Colon Adenocarcinoma Cells

    PubMed Central

    Behzad, Sahar; Ebrahim, Karim; Mosaddegh, Mahmoud; Haeri, Ali

    2016-01-01

    Primula auriculata (Tootia) is one of the most important local medicinal plants in Hamedan district, Iran. To investigate cytotoxicity and apoptosis induction of crude methanolic extract and different fraction of it, we compared several methods on HT-29 human colon Adenocarcinoma cells. Cancer cell proliferation was measured by 3-(4, 5‑dimethylthiazolyl)2, 5‑diphenyl‑tetrazolium bromide (MTT) assay and apoptosis induction was analyzed by fluorescence microscopy (acridin orange/ethidium bromide, annexin V/propidium iodide staining, TUNEL assay and Caspase-3 activity assay). Crude methanolic extract (CM) inhibited the growth of malignant cells in a dose-dependent manner. Among solvent fractions, the dichloromethane fraction (CF) was found to be the most toxic compared to other fractions. With double staining methods, high percentage of 40 µg/mL of (CM) and (CF) treated cells exhibited typical characteristics of apoptotic cells. Apoptosis induction was also revealed by apoptotic fragmentation of nuclear DNA and activation of caspas-3 in treated cells. These findings indicate that crude methanolic extract and dichloromethan fraction of P.auriculata induced apoptosis and inhibited proliferation in colon cancer cells and could be used as a source for new lead structures in drug design to combat colon cancer. PMID:27610172

  1. Evaluation of interacellular tamoxifen-induced fluorescence in tamoxifen-resistant human breast adenocarcinoma cells

    NASA Astrophysics Data System (ADS)

    Bachmann, Nathalie; Barberi-Heyob, Muriel; Gramain, Marie-Pierre; Bour, Corinne; Marchal, Sophie; Parache, Robert M.; Guillemin, Francois H.; Merlin, Jean-Louis

    1997-12-01

    A tamoxifen resistant cell line (MCF7TAM) was established from tamoxifen sensitive MCF-7 human adenocarcinoma cells expressing estrogen receptors. The resistant cell line was found to express estrogen receptors to similar level as the parent cell line but the receptors were found to be altered, having lost their ability to bind estradiol or tamoxifen. The fluorescence of eosin-tamoxifen ionic association was used to investigate intracellular location of tamoxifen in both sensitive and resistant cell lines. Fluorescence emission spectra of eosin, tamoxifen and eosin-tamoxifen complex ((lambda) exc equals 480 nm) were analyzed and showed that maximal fluorescence intensity of the complex ((lambda) em equals 540 nm) was four times higher than that of eosin alone while tamoxifen alone did not emit any fluorescence in this spectral range. In MCF-7 cells, tamoxifen was found to be diffusively located in the cytoplasm and nuclear fluorescence intensity was significantly lower. No difference was observed in fluorescence intensity or location in tamoxifen resistant cells, although it has been previously correlated with clinical responsiveness. Improvement of this fluorescence microscopy methodology appears necessary to provide accurate results taking into account the complexity of tamoxifen resistance molecular pathways.

  2. Identification of Distinct Tumor Subpopulations in Lung Adenocarcinoma via Single-Cell RNA-seq.

    PubMed

    Min, Jae-Woong; Kim, Woo Jin; Han, Jeong A; Jung, Yu-Jin; Kim, Kyu-Tae; Park, Woong-Yang; Lee, Hae-Ock; Choi, Sun Shim

    2015-01-01

    Single-cell sequencing, which is used to detect clinically important tumor subpopulations, is necessary for understanding tumor heterogeneity. Here, we analyzed transcriptomic data obtained from 34 single cells from human lung adenocarcinoma (LADC) patient-derived xenografts (PDXs). To focus on the intrinsic transcriptomic signatures of these tumors, we filtered out genes that displayed extensive expression changes following xenografting and cell culture. Then, we performed clustering analysis using co-regulated gene modules rather than individual genes to minimize read drop-out errors associated with single-cell sequencing. This combined approach revealed two distinct intra-tumoral subgroups that were primarily distinguished by the gene module G64. The G64 module was predominantly composed of cell-cycle genes. E2F1 was found to be the transcription factor that most likely mediates the expression of the G64 module in single LADC cells. Interestingly, the G64 module also indicated inter-tumoral heterogeneity based on its association with patient survival and other clinical variables such as smoking status and tumor stage. Taken together, these results demonstrate the feasibility of single-cell RNA sequencing and the strength of our analytical pipeline for the identification of tumor subpopulations.

  3. Salt-inducible kinase 1 (SIK1) is induced by gastrin and inhibits migration of gastric adenocarcinoma cells.

    PubMed

    Selvik, Linn-Karina M; Rao, Shalini; Steigedal, Tonje S; Haltbakk, Ildri; Misund, Kristine; Bruland, Torunn; Prestvik, Wenche S; Lægreid, Astrid; Thommesen, Liv

    2014-01-01

    Salt-inducible kinase 1 (SIK1/Snf1lk) belongs to the AMP-activated protein kinase (AMPK) family of kinases, all of which play major roles in regulating metabolism and cell growth. Recent studies have shown that reduced levels of SIK1 are associated with poor outcome in cancers, and that this involves an invasive cellular phenotype with increased metastatic potential. However, the molecular mechanism(s) regulated by SIK1 in cancer cells is not well explored. The peptide hormone gastrin regulates cellular processes involved in oncogenesis, including proliferation, apoptosis, migration and invasion. The aim of this study was to examine the role of SIK1 in gastrin responsive adenocarcinoma cell lines AR42J, AGS-GR and MKN45. We show that gastrin, known to signal through the Gq/G11-coupled CCK2 receptor, induces SIK1 expression in adenocarcinoma cells, and that transcriptional activation of SIK1 is negatively regulated by the Inducible cAMP early repressor (ICER). We demonstrate that gastrin-mediated signalling induces phosphorylation of Liver Kinase 1B (LKB1) Ser-428 and SIK1 Thr-182. Ectopic expression of SIK1 increases gastrin-induced phosphorylation of histone deacetylase 4 (HDAC4) and enhances gastrin-induced transcription of c-fos and CRE-, SRE-, AP1- and NF-κB-driven luciferase reporter plasmids. We also show that gastrin induces phosphorylation and nuclear export of HDACs. Next we find that siRNA mediated knockdown of SIK1 increases migration of the gastric adenocarcinoma cell line AGS-GR. Evidence provided here demonstrates that SIK1 is regulated by gastrin and influences gastrin elicited signalling in gastric adenocarcinoma cells. The results from the present study are relevant for the understanding of molecular mechanisms involved in gastric adenocarcinomas.

  4. Detection of Human Papillomavirus in Chronic Cervicitis, Cervical Adenocarcinoma, Intraepithelial Neoplasia and Squamus Cell Carcinoma

    PubMed Central

    Mirzaie-Kashani, Elahe; Bouzari, Majid; Talebi, Ardeshir; Arbabzadeh-Zavareh, Farahnaz

    2014-01-01

    Background: Cervical cancer is the second most common cancer in women worldwide. Recent studies show that human papillomavirus (HPV) DNA is present in all cervical carcinomas and in some cervicitis cases, with some geographical variation in viral subtypes. Therefore determination of the presence of HPV in the general population of each region can help reveal the role of these viruses in tumors. Objectives: This study aimed to estimate the frequency of infection with HPV in cervicitis, cervical adenocarcinoma, intraepithelial neoplasia and squamus cell carcinoma samples from the Isfahan Province, Iran. Patients and Methods: One hundred and twenty two formalin fixed paraffin embedded tissue samples of crevicitis cases and different cervix tumors including cervical intraepithelial neoplasia (CIN) (I, II, III), squamus cell carcinoma (SCC) and adenocarcinoma were collected from histopathological files of Al-Zahra Hospital in Isfahan. Data about histopathological changes were collected by reexamination of the hematoxylin and eosin stained sections. DNA was extracted and subjected to Nested PCR using consensus primers, MY09/MY11 and GP5+/GP6+, designed for amplification of a conserved region of the genome coding for L1 protein. Results: In total 74.5% of the tested samples were positive for HPV. Amongst the tested tumors 8 out of 20 (40%) of CIN (I, II, III), 5 out of 21 (23.8%) of adenocarcinoma cases and 78 out of 79 chronic cervicitis cases were positive for HPV. Conclusions: The rate of different carcinomas and also the rate of HPV infection in each case were lower than other reports from different countries. This could be correlated with the social behavior of women in the area, where they mostly have only one partner throughout their life, and also the rate of smoking behavior of women in the studied population. On the other hand the rate of HPV infection in chronic cervicitis cases was much higher than cases reported by previous studies. This necessitates more

  5. Metformin inhibits salivary adenocarcinoma growth through cell cycle arrest and apoptosis

    PubMed Central

    Guo, Yuqi; Yu, Tao; Yang, Jian; Zhang, Tianqing; Zhou, Yang; He, Fan; Kurago, Zoya; Myssiorek, David; Wu, Yingjie; Lee, Peng; Li, Xin

    2015-01-01

    The inhibitory effects of metformin have been observed in many types of cancer. However, its effect on human salivary gland carcinoma is unknown. The effect of metformin alone or in combination with pp242 (an mTOR inhibitor) on salivary adenocarcinoma cells growth were determined in vitro and in vivo. We found that metformin suppressed HSY cell growth in vitro in a time and dose dependent manner associated with a reduced expression of MYC onco-protein, and the same inhibitory effect of metformin was also confirmed in HSG cells. In association with the reduction of MYC onco-protein, metformin significantly restored p53 tumor suppressor gene expression. The distinctive effects of metformin and PP242 on MYC reduction and P53 restoration suggested that metformin inhibited cell growth through a different pathway from PP242 in salivary carcinoma cells. Furthermore, the anti-tumor efficacy of metformin was confirmed in vivo as indicated by the increases of tumor necrosis and reduced proliferation in xenograft tumors from metformin treated group. For the first time, the inhibitory effect of metformin on human salivary gland tumor cells was documented. Moreover, metformin inhibitory effects were enhanced by mTOR inhibitor suggesting that metformin and mTOR inhibitor utilize distinctive signaling pathways to suppress salivary tumor growth. PMID:26885449

  6. Characterization of binding of four monoclonal antibodies to the human ovarian adenocarcinoma cell line HEY.

    PubMed

    Sheldon, K; Marks, A; Baumal, R

    1987-05-01

    Four mouse monoclonal antibodies (mAb) (10B, IgG1; 8C, IgG2a; M2A, IgG2a; M2D, IgG2b) were characterized with respect to their binding to the ovarian adenocarcinoma cell line HEY, using displacement assays and Scatchard plot analyses. The four mAb reacted with different antigens on the surface of HEY cells, with affinity constants ranging from 1 X 10(9) to 3 X 10(9) M-1. The number of binding sites per cell for each antibody was approximately 2 X 10(4). mAb 8C and M2D remained associated with the cell surface following binding to their respective antigens, while mAb 10B was rapidly internalized, with 50% of the bound mAb being lost from the cell surface during 4 h of incubation at 37 degrees C. These different binding characteristics of the mAb may influence their ability to target radioactivity and cytotoxic drugs to HEY cells.

  7. Antiproliferative effects and mechanisms of liver X receptor ligands in pancreatic ductal adenocarcinoma cells.

    PubMed

    Candelaria, Nicholes R; Addanki, Sridevi; Zheng, Jine; Nguyen-Vu, Trang; Karaboga, Husna; Dey, Prasenjit; Gabbi, Chiara; Vedin, Lise-Lotte; Liu, Ka; Wu, Wanfu; Jonsson, Philip K; Lin, Jean Z; Su, Fei; Bollu, Lakshmi Reddy; Hodges, Sally E; McElhany, Amy L; Issazadeh, Mehdi A; Fisher, William E; Ittmann, Michael M; Steffensen, Knut R; Gustafsson, Jan-Åke; Lin, Chin-Yo

    2014-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is difficult to detect early and is often resistant to standard chemotherapeutic options, contributing to extremely poor disease outcomes. Members of the nuclear receptor superfamily carry out essential biological functions such as hormone signaling and are successfully targeted in the treatment of endocrine-related malignancies. Liver X receptors (LXRs) are nuclear receptors that regulate cholesterol homeostasis, lipid metabolism, and inflammation, and LXR agonists have been developed to regulate LXR function in these processes. Intriguingly, these compounds also exhibit antiproliferative activity in diverse types of cancer cells. In this study, LXR agonist treatments disrupted proliferation, cell-cycle progression, and colony-formation of PDAC cells. At the molecular level, treatments downregulated expression of proteins involved in cell cycle progression and growth factor signaling. Microarray experiments further revealed changes in expression profiles of multiple gene networks involved in biological processes and pathways essential for cell growth and proliferation following LXR activation. These results establish the antiproliferative effects of LXR agonists and potential mechanisms of action in PDAC cells and provide evidence for their potential application in the prevention and treatment of PDAC.

  8. Clinicopathologic and Molecular Features of Colorectal Adenocarcinoma with Signet-Ring Cell Component

    PubMed Central

    Gao, Jing; Li, Jian; Li, Jie; Qi, Changsong; Li, Yanyan; Li, Zhongwu; Shen, Lin

    2016-01-01

    Background We performed a retrospective study to assess the clinicopathological characters, molecular alterations and multigene mutation profiles in colorectal cancer patients with signet-ring cell component. Methods Between November 2008 and January 2015, 61 consecutive primary colorectal carcinomas with signet-ring cell component were available for pathological confirmation. RAS/BRAF status was performed by direct sequencing. 14 genes associated with hereditary cancer syndromes were analyzed by targeted gene sequencing. Results A slight male predominance was detected in these patients (59.0%). Colorectal carcinomas with signet-ring cell component were well distributed along the large intestine. A frequently higher TNM stage at the time of diagnosis was observed, compared with the conventional adenocarcinoma. Family history of malignant tumor was remarkable with 49.2% in 61 cases. The median OS time of stage IV patients in our study was 14 months. RAS mutations were detected in 22.2% (12/54) cases with KRAS mutations in 16.7% (9/54) cases and Nras mutations in 5.4%(3/54) cases. BRAF V600E mutation was detected in 3.7% (2/54) cases. As an exploration, we analyzed 14 genes by targeted gene sequencing. These genes were selected based on their biological role in association with hereditary cancer syndromes. 79.6% cases carried at least one pathogenic mutation. Finally, the patients were classified by the percentage of signet-ring cell. 39 (63.9%) cases were composed of ≥50% signet-ring cells; 22 (36.1%) cases were composed of <50% signet-ring cells. We compared clinical parameters, molecular and genetic alterations between the two groups and found no significant differences. Conclusions Colorectal adenocarcinoma with signet-ring cell component is characterized by advanced stage at diagnosis with remarkable family history of malignant tumor. It is likely a negative prognostic factor and tends to affect male patients with low rates of RAS /BRAF mutation. Colorectal

  9. Atypical squamous cells in the urine revealing endometrioid adenocarcinoma of the endometrium with squamous cell differentiation: a case report.

    PubMed

    Wang, Yinong; Otis, Christopher N; Florence, Roxanne R

    2015-01-01

    Urine cytology is mainly used to detect urothelial carcinoma (UC), especially for high-grade lesions including urothelial carcinoma in situ. Benign squamous cells are often seen in the urine specimens of women, they are either exfoliated from the trigone area of the bladder, the urethra, or the cervicovaginal region. However, abnormal squamous cells in the urine raise concerns of abnormalities of the urinary tract and cervicovaginal area which range from squamous metaplasia of the urothelium, a cervicovaginal squamous intraepithelial lesion, condyloma acuminatum of the bladder, UC with squamous differentiation, and squamous cell carcinoma. We present here a unique case of atypical squamous cells (ASCs) in the urine subsequently leading to the diagnosis of endometrioid adenocarcinoma of the endometrium with squamous differentiation. The presence of ASCs in voided urine is a rare finding that may indicate an underlying malignancy. Careful evaluation of squamous cells in the urine is an important part of our daily cytopathology practice.

  10. Effects of NVP-BEZ235 on the proliferation, migration, apoptosis and autophagy in HT-29 human colorectal adenocarcinoma cells.

    PubMed

    Yu, Yang; Yu, Xiaofeng; Ma, Jianxia; Tong, Yili; Yao, Jianfeng

    2016-07-01

    The phosphoinositide 3 kinase (PI3K)/Akt/mammalian target of the rapamycin (mTOR) pathway plays a significant role in colorectal adenocarcinoma. NVP-BEZ235 (dactolisib) is a novel dual inhibitor of PI3K/mTOR. The effects of NVP-BEZ235 in human colorectal adenocarcinoma are still unclear. In the present study, we aimed to explore the proliferation, migration, apoptosis and autophagy in HT-29 human colorectal adenocarcinoma cells. HT-29 human colorectal adenocarcinoma cells were treated with NVP-BEZ235 (0, 0.001, 0.01, 0.1, 1 and 3 µM) for 24 and 48 h, respectively. Cells were also treated with NVP-BEZ235 (0.1 µM), DDP (100, 300 and 1,000 µM), and NVP-BEZ235 (0.1 µM) combined with DDP (100, 300 and 1,000 µM) respectively, and cultured for 24 h after treatment. MTT assay was utilized to evaluate the effects of NVP-BEZ235 alone or NVP-BEZ235 combined with cis-diamminedichloroplatinum (DDP) on proliferation of HT-29 cells. Cell wound-scratch assay was used detect cell migration. In addition, expression of microtubule-associated proteins 1A/1B light chain 3B (MAP1LC3B and LC3B) in HT-29 cells was detected by immunofluorescence at 48 h after NVP-BEZ235 (1 µM) treatment. Expression of proteins involved in cell cycle and proliferation (p-Akt, p-mTOR and cyclin D1), apoptosis (cleaved caspase-3), and autophagy (cleaved LC3B and Beclin-1) were detected by western blot analysis. NVP-BEZ235 inhibited the proliferation and migration of HT-29 human colorectal adenocarcinoma cells. NVP-BEZ235 decreased protein expression of p-Akt, p-mTOR and cyclin D1, and increased protein expression of cleaved caspase-3, cleaved LC3B and Beclin-1 as the concentrations and the incubation time of NVP-BEZ235 increased. In addition, NVP-BEZ235 and DDP had synergic effects in inhibiting cell proliferation and migration. The expression of protein involved in apoptosis (cleaved caspase-3) was higher in drug combination group compared to the NVP-BEZ235 single treatment group. NVP-BEZ235

  11. Radiation induced esophageal adenocarcinoma in a woman previously treated for breast cancer and renal cell carcinoma

    PubMed Central

    2012-01-01

    Background Secondary radiation-induced cancers are rare but well-documented as long-term side effects of radiation in large populations of breast cancer survivors. Multiple neoplasms are rare. We report a case of esophageal adenocarcinoma in a patient treated previously for breast cancer and clear cell carcinoma of the kidney. Case presentation A 56 year-old non smoking woman, with no alcohol intake and no familial history of cancer; followed in the National Institute of Oncology of Rabat Morocco since 1999 for breast carcinoma, presented on consultation on January 2011 with dysphagia. Breast cancer was treated with modified radical mastectomy, 6 courses of chemotherapy based on CMF regimen and radiotherapy to breast, inner mammary chain and to pelvis as castration. Less than a year later, a renal right mass was discovered incidentally. Enlarged nephrectomy realized and showed renal cell carcinoma. A local and metastatic breast cancer recurrence occurred in 2007. Patient had 2 lines of chemotherapy and 2 lines of hormonotherapy with Letrozole and Tamoxifen assuring a stable disease. On January 2011, the patient presented dysphagia. Oesogastric endoscopy showed middle esophagus stenosing mass. Biopsy revealed adenocarcinoma. No evidence of metastasis was noticed on computed tomography and breast disease was controlled. Palliative brachytherapy to esophagus was delivered. Patient presented dysphagia due to progressive disease 4 months later. Jejunostomy was proposed but the patient refused any treatment. She died on July 2011. Conclusion We present here a multiple neoplasm in a patient with no known family history of cancers. Esophageal carcinoma is most likely induced by radiation. However the presence of a third malignancy suggests the presence of genetic disorders. PMID:22873795

  12. A rare case of metastatic germ cell tumor to stomach and duodenum masquerading as signet ring cell adenocarcinoma

    PubMed Central

    Sundaram, Sridhar; Patil, Prachi; Mehta, Shaesta; Ramadwar, Mukta

    2016-01-01

    Adenocarcinomas are the most common cancers affecting stomach. However gastrointestinal stromal tumors (GIST), lymphomas and neuroendocrine tumors (NETs) can also affect the stomach. But stomach is relatively rare site of involvement by metastasis. In this case report a rare metastasis of germ cell tumor (GCT) into stomach is described which clinically and endoscopically masquerade as primary gastric cancers. But detailed clinical examination and vigilant histopathological reporting proves the origin of tumor distant from stomach and thereby change the whole approach of management. PMID:27668229

  13. Liposome uptake into human colon adenocarcinoma cells in monlayer, spinner, and trypsinized cultures

    SciTech Connect

    Tom, B.H.; Macek, C.M.; Raphael, L.; Sengupta, J.; Cerny, E.A.; Jonah, M.M.; Rahman, Y.E.

    1983-01-01

    The nature of liposome interactions with colon tumor cells was investigated. Thus, experiments were performed to study the uptake and incorporation of multilamellar and of reverse-phase evaporation liposomes of neutral charge into monolayers, suspended spinner cultures, and trypsinized cells of a human colon adenocarcinoma cell line, LS174T. The results showed that the same tumor cells cultured under each condition exhibited a distinct pattern of vesicle uptake as determined at 0, 15, 30, 60, and 120 min. In monolayer cultures of LS174T cells, the uptake of liposomes bearing (/sup 3/H)actinomycin D in the lipid bilayers was linear throughout the incubation period. In contrast, in trypsinized and spinner suspension cultures, uptake of liposomes was biphasic. There was a proportional uptake of both liposome (labeled with (/sup 3/H)phosphantidylcholine or (/sup 14/C)cholesterol) and of actinomycin D (trace labeled with /sup 3/H) into the cells under all culture conditions, indicating quantitative delivery of the drug with the intact lipid vesicle. Although the amount of actinomycin D presented to tumor cells by the two liposomes was equivalent, reverse-phase evaporation liposomes were more effectve than multilamellar vesicles in inhibiting uridine uptake. In the presence of excess liposomes (10 times the uptake studies), saturation of the tumor cell surface occurred by 120 min. However, the liposomes remained accessible to enzymatic removal for 60 min. Liposome-saturated tumor cells remained refractory to further binding of liposomes for at least 2 hr. The results thus revealed that differences in cell uptake were due to the state of the target cells and not the liposome types, or their differential leakage of labels.

  14. RelB/NF-κB links cell cycle transition and apoptosis to endometrioid adenocarcinoma tumorigenesis

    PubMed Central

    Ge, Qiu-Lin; Liu, San-Hong; Ai, Zhi-Hong; Tao, Min-Fang; Ma, Li; Wen, Shan-Yun; Dai, Miao; Liu, Fei; Liu, Han-Shao; Jiang, Rong-Zhen; Xue, Zhuo-Wei; Jiang, Yu-Hang; Sun, Xiao-Hua; Hu, Yi-Ming; Zhao, Yong-Xu; Chen, Xi; Tao, Yu; Zhu, Xiao-Lu; Ding, Wen-Jing; Yang, Bing-Qing; Liu, Dan-Dan; Zhang, Xiao-Ren; Teng, Yin-Cheng

    2016-01-01

    Dysfunction of nuclear factor-κB (NF-κB) signaling has been causally associated with numerous human malignancies. Although the NF-κB family of genes has been implicated in endometrial carcinogenesis, information regarding the involvement of central regulators of NF-κB signaling in human endometrial cancer (EC) is limited. Here, we investigated the specific roles of canonical and noncanonical NF-κB signaling in endometrial tumorigenesis. We found that NF-κB RelB protein, but not RelA, displayed high expression in EC samples and cell lines, with predominant elevation in endometrioid adenocarcinoma (EEC). Moreover, tumor cell-intrinsic RelB was responsible for the abundant levels of c-Myc, cyclin D1, Bcl-2 and Bcl-xL, which are key regulators of cell cycle transition, apoptosis and proliferation in EEC. In contrast, p27 expression was enhanced by RelB depletion. Thus, increased RelB in human EC is associated with enhanced EEC cell growth, leading to endometrial cell tumorigenicity. Our results reveal that regulatory RelB in noncanonical NF-κB signaling may serve as a therapeutic target to block EC initiation. PMID:27711077

  15. Evidence, Mechanism, and Clinical Relevance of the Transdifferentiation from Lung Adenocarcinoma to Squamous Cell Carcinoma.

    PubMed

    Hou, Shenda; Zhou, Shiyu; Qin, Zhen; Yang, Liu; Han, Xiangkun; Yao, Shun; Ji, Hongbin

    2017-03-08

    Lung adenocarcinoma (ADC) and squamous cell carcinoma (SCC) are two distinct subtypes of non-small-cell lung carcinoma. Interestingly, approximately 4% to 9% of human non-small-cell lung carcinoma tumors contain mixed adenomatous and squamous pathologies in a single lesion, clinically termed adenosquamous cell carcinoma. More important, these two different pathological components frequently share identical oncogenic mutations, indicative of a potential transition. Indeed, recent data have provided convincing evidence in supporting the ADC to SCC transdifferentiation in lungs. In the liver kinase B1 (official name STK11)-deficient mouse model, lung ADC can progressively transdifferentiate to SCC through pathologically mixed adenosquamous cell carcinoma as the intermediate status. Mechanistic studies further identify essential roles of extracellular matrix remodeling and metabolic reprogramming during this phenotypic transition. Small molecular compounds, including lysyl oxidase inhibitors and reactive oxygen species-inducing reagents such as phenformin, significantly accelerate the transition from lung ADC to SCC and thus confer lung tumors with drug resistance. Consistent with these findings, recent clinical studies have shown that epidermal growth factor receptor-mutant lung ADC can transdifferentiate to SCC in relapsed cancer patients. Together, these data support that this phenotypic transition from lung ADC to SCC might represent a novel mechanism for drug resistance. This review will summarize our current understanding of the transdifferentiation from lung ADC to SCC.

  16. Proapoptotic effects of new pentabromobenzylisothiouronium salts in a human prostate adenocarcinoma cell line.

    PubMed

    Koronkiewicz, Mirosława; Kazimierczuk, Zygmunt; Szarpak, Kinga; Chilmonczyk, Zdzisław

    2012-01-01

    Prostate cancer is the second most common cancer in elderly men worldwide and its incidence rate is rising continuously. Agents capable of inducing apoptosis in prostate cancer cells seem a promising approach to treat this malignancy. In this study we describe the synthesis of a number of novel N- and N,N'-substituted S-2,3,4,5,6-pentabromobenzylisothiouronium bromides and their activity against the human prostate adenocarcinoma PC3 cell line. All the compounds produced changes in mitochondrial transmembrane potential and cell cycle progression, showed a cytostatic effect and induced apoptosis in the tested cancer line in a concentration- and time-dependent manner. The most effective compounds ZKK-3, ZKK-9 and ZKK-13 produced, at 20 microM concentration, apoptosis in 42, 46, and 66% of the cells, respectively, after 48 h incubation. Two selected S-2,3,4,5,6-pentabromobenzylisothiouronium bromides (ZKK-3, ZKK-9) showed also a synergic proapoptotic effect with the new casein kinase II inhibitor 2-(4-methylpiperazin-1-yl)-4,5,6,7-tetrabromo-1H-benzimidazole (TBIPIP) in the PC3 cell line.

  17. Nickel nanowires induced and reactive oxygen species mediated apoptosis in human pancreatic adenocarcinoma cells

    PubMed Central

    Hossain, Md. Zakir; Kleve, Maurice G

    2011-01-01

    Background The ability to evade apoptosis is one of the key properties of cancer. The apoptogenic effect of nickel nanowires (Ni NWs) on cancer cell lines has never been adequately addressed. Due to the unique physicochemical characteristics of Ni NWs, we envision the development of a novel anticancer therapeutics specifically for pancreatic cancer. Thus, we investigated whether Ni NWs induce ROS-mediated apoptosis in human pancreatic adenocarcinoma (Panc-1) cells. Methods In this study Ni NWs were fabricated using the electrodeposition method. Synthesized Ni NWs were physically characterized by energy dispersive X-ray analysis, UV-Vis spectroscopy of NanoDrop 2000 (UV-Vis), magnetization study, scanning electron microscopy, and transmission electron microscopy. Assessment of morphological apoptotic characteristics by phase contrast microscopy (PCM), Ni-NWs-induced apoptosis staining with ethidium bromide (EB) and acridine orange (AO) followed by fluorescence microscopy (FM) was performed. For molecular biological and biochemical characterization, Panc-1 cell culture and cytotoxic effect of Ni NWs were determined by using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay. Quantitative apoptosis was analyzed by flow cytometry staining with propidium iodide through cell cycle arrest and generation of ROS using 2′, 7′-dichlorofluorescein diacetate fluorescence intensity. In all experiments, Panc-1 cancer cells without any treatment were used as the negative controls. Results The intracellular uptake of Ni NWs through endocytosis by Panc-1 cells was observed by PCM. EB and AO staining of FM and MTT assay qualitatively and quantitatively confirmed the extent of apoptosis. Flow cytometric cell cycle arrest and ROS generation indicated Ni NWs as inducers of apoptotic cell death. Conclusion We investigated the role of Ni NWs as inducers of ROS-mediated apoptosis in Panc-1 cells. These results suggested that Ni NWs could be an effective

  18. Apoptosis of AGS human gastric adenocarcinoma cells by methanolic extract of Dictamnus

    PubMed Central

    Park, Hyun Soo; Hong, Noo Ri; Ahn, Tae Seok; Kim, Hyungwoo; Jung, Myeong Ho; Kim, Byung Joo

    2015-01-01

    Background: The root bark of Dictamnus dasycarpus Turcz has traditionally been used in East Asia to treat skin diseases such as eczema, atopic dermatitis, and psoriasis. However, it has also been reported to exhibit an anti-proliferative effect on cancer cells. Objective: To investigate the anti-cancer effects of a methanol extract of Dictamnus dasycarpus root bark (MEDD) on AGS cells (a human gastric adenocarcinoma cell-line). Materials and Methods: An 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium assay, a caspase activity assay, cell cycle analysis, mitochondrial membrane potential (MMP) measurements, and western blotting were used to investigate the anti-cancer effects of MEDD on AGS cells. Results: Treatment with MEDD significantly and concentration-dependently inhibited AGS cell growth. MEDD treatment in AGS cells led to increased accumulation of apoptotic sub-G1 phase cells in a concentration-dependent manner. Also, MEDD reduced the expressions of pro-caspase-3, -8 and -9, and increased the active form of caspase-3. Furthermore, subsequent Western blotting revealed elevated levels of poly (ADP-ribose) polymerase protein. MEDD treatment reduced levels of MMP and anti-apoptotic Bcl-2 and Bcl-xL proteins. Pretreatment with SB203580 (a specific inhibitor of p38 mitogen-activated protein kinases), SP600125 (a potent inhibitor of C-Jun N-terminal kinases), or PD98059 (a potent inhibitor of extracellular signal-regulated kinases) did not modify the effects of MEDD treatment. However, pretreatment with LY294002 (a specific inhibitor of Akt) significantly enhanced MEDD-induced cell death. Conclusion: These results suggest that MEDD-mediated cell death is associated with the intrinsic apoptotic pathway and that inhibition of Akt signaling contributes to apoptosis induction by MEDD. PMID:26664023

  19. Detection of circulating tumor cells in patients with esophagogastric or pancreatic adenocarcinoma using the CellSearch® system: An observational feasibility study

    PubMed Central

    Piegeler, Tobias; Winder, Thomas; Kern, Sabine; Pestalozzi, Bernhard; Schneider, Paul Magnus; Beck-Schimmer, Beatrice

    2016-01-01

    Circulating tumor cells (CTCs) in the blood of cancer patients have been demonstrated to be of prognostic value regarding metastasis and survival. The CellSearch® system has been certified for the detection of CTCs and as a prognostic tool in patients with metastatic breast, colon and prostate cancer. Few studies have evaluated the detection of CTCs originating from esophagogastric or pancreatic cancer with the CellSearch® system. In the present small pilot study, a total of 16 patients with either esophagogastric (n=8) or pancreatic (n=8) adenocarcinomas at various disease stages were randomly screened and included. A total of 7.5 ml of blood was drawn from each patient and analyzed for CTCs using the CellSearch® device. CTCs could be detected in 1 out of 8 patients (12.5%) with esophagogastric and in 7 out of 8 patients (87.5%) with pancreatic cancer. The preliminary data obtained from this observational feasibility study suggested that the CellSearch® system may become a valuable tool for the detection of CTCs in patients with pancreatic adenocarcinoma, whereas the usefulness in patients with early-stage esophagogastric adenocarcinoma may be limited. This study clearly points towards a requirement for larger studies focusing on patients with pancreatic adenocarcinoma at various disease stages and assessing CTCs, whereas patients with esophagogastric adenocarcinomas should be part of further pilot studies. PMID:27446462

  20. Detection of circulating tumor cells in patients with esophagogastric or pancreatic adenocarcinoma using the CellSearch(®) system: An observational feasibility study.

    PubMed

    Piegeler, Tobias; Winder, Thomas; Kern, Sabine; Pestalozzi, Bernhard; Schneider, Paul Magnus; Beck-Schimmer, Beatrice

    2016-08-01

    Circulating tumor cells (CTCs) in the blood of cancer patients have been demonstrated to be of prognostic value regarding metastasis and survival. The CellSearch(®) system has been certified for the detection of CTCs and as a prognostic tool in patients with metastatic breast, colon and prostate cancer. Few studies have evaluated the detection of CTCs originating from esophagogastric or pancreatic cancer with the CellSearch(®) system. In the present small pilot study, a total of 16 patients with either esophagogastric (n=8) or pancreatic (n=8) adenocarcinomas at various disease stages were randomly screened and included. A total of 7.5 ml of blood was drawn from each patient and analyzed for CTCs using the CellSearch(®) device. CTCs could be detected in 1 out of 8 patients (12.5%) with esophagogastric and in 7 out of 8 patients (87.5%) with pancreatic cancer. The preliminary data obtained from this observational feasibility study suggested that the CellSearch(®) system may become a valuable tool for the detection of CTCs in patients with pancreatic adenocarcinoma, whereas the usefulness in patients with early-stage esophagogastric adenocarcinoma may be limited. This study clearly points towards a requirement for larger studies focusing on patients with pancreatic adenocarcinoma at various disease stages and assessing CTCs, whereas patients with esophagogastric adenocarcinomas should be part of further pilot studies.

  1. Apoptotic effect of imatinib on human colon adenocarcinoma cells: influence on actin cytoskeleton organization and cell migration.

    PubMed

    Popow-Woźniak, Agnieszka; Woźniakowska, Aleksandra; Kaczmarek, Lukasz; Malicka-Błaszkiewicz, Maria; Nowak, Dorota

    2011-09-30

    Imatinib mesylate (STI571) is the first member of a new class of agents that act by inhibiting specific tyrosine kinases, rather than killing all rapidly dividing cells. This drug is usually used in the treatment of chronic myelogenous leukemia and gastrointestinal stromal tumors. It was recognized to inhibit activity of kinases such as Bcr/Abl, platelet-derived growth factor receptor, and c-kit. These proteins play important roles in cell growth, motility, and survival. Therefore, studies on the biological effects of imatinib on different cellular models are very important. Human colon adenocarcinoma LS180 cell line was used in the studies presented. Cells were exposed to 0.1-100 μM imatinib for 24 and 48 h. Dose-dependent decreases in cell viability and morphological changes were observed. Moreover, the apoptotic effect of imatinib (10 μM, 50 μM) after 24 h of exposure was demonstrated as evaluated by translocation of phosphatidylserine to external membrane leaflet and by increased activity of caspase-3. Special attention was focused on imatinib influence on actin cytoskeleton organization and migration ability of LS180 cells. Distinct alterations in actin cytoskeleton architecture occurred in response to drug treatment, accompanied by appearance of filamentous actin aggregates and decrease in actin polymerization state. These changes were correlated with remarkable decrease in cell migration capacity. In summary, our data clearly demonstrate that imatinib induces apoptosis and inhibits human colon adenocarcinoma cell migration. Therefore, this drug may have potential in colon cancer therapy in the future.

  2. Tomatidine inhibits invasion of human lung adenocarcinoma cell A549 by reducing matrix metalloproteinases expression.

    PubMed

    Yan, Kun-Huang; Lee, Liang-Ming; Yan, Shao-Han; Huang, Hsiang-Ching; Li, Chia-Chen; Lin, Hui-Ting; Chen, Pin-Shern

    2013-05-25

    Tomatidine is an aglycone of glycoalkaloid tomatine in tomato. Tomatidine is found to possess anti-inflammatory properties and may serve as a chemosensitizer in multidrug-resistant tumor cells. However, the effect of tomatidine on cancer cell metastasis remains unclear. This study examines the effect of tomatidine on the migration and invasion of human lung adenocarcinoma A549 cell in vitro. The data demonstrates that tomatidine does not effectively inhibit the viability of A549 cells. When treated with non-toxic doses of tomatidine, cell invasion is markedly suppressed by Boyden chamber invasion assay, while cell migration is not affected. Tomatidine reduces the mRNA level of matrix metalloproteinase-2 (MMP-2), MMP-9 and increases the expression of reversion-inducing cysteine-rich protein with kazal motifs (RECK), as well as tissue inhibitor of metalloproteinase-1 (TIMP-1). The immunoblotting assays indicate that tomatidine is very effective in suppressing the phosphorylation of Akt and extracellular signal regulating kinase (ERK). In addition, tomatidine significantly decreases the nuclear level of nuclear factor kappa B (NF-κB), which suggests that tomatidine inhibits NF-κB activity. Furthermore, the treatment of inhibitors specific for PI3K/Akt (LY294002), ERK (U0126), or NF-κB (pyrrolidine dithiocarbamate) to A549 cells reduced cell invasion and MMP-2/9 expression. The results suggest that tomatidine inhibits the invasion of A549 cells by reducing the expression of MMPs. It also inhibits ERK and Akt signaling pathways and NF-κB activity. These findings demonstrate a new therapeutic potential for tomatidine in anti-metastatic therapy.

  3. High and low dose radiation effects on mammary adenocarcinoma cells - an epigenetic connection.

    PubMed

    Luzhna, Lidia; Filkowski, Jody; Kovalchuk, Olga

    2016-01-01

    The successful treatment of cancer, including breast cancer, depends largely on radiation therapy and proper diagnostics. The effect of ionizing radiation on cells and tissues depends on the radiation dose and energy level, but there is insufficient evidence concerning how tumor cells respond to the low and high doses of radiation that are often used in medical diagnostic and treatment modalities. The purpose of this study was to investigate radiation-induced gene expression changes in the MCF-7 breast adenocarcinoma cell line. Using microarray technology tools, we were able to screen the differential gene expressions profiles between various radiation doses applied to MCF-7 cells. Here, we report the substantial alteration in the expression level of genes after high-dose treatment. In contrast, no dramatic gene expression alterations were noticed after the application of low and medium doses of radiation. In response to a high radiation dose, MCF-7 cells exhibited down-regulation of biological pathways such as cell cycle, DNA replication, and DNA repair and activation of the p53 pathway. Similar dose-dependent responses were seen on the epigenetic level, which was tested by a microRNA expression analysis. MicroRNA analysis showed dose-dependent radiation-induced microRNA expression alterations that were associated with cell cycle arrest and cell death. An increased rate of apoptosis was determined by an Annexin V assay. The results of this study showed that high doses of radiation affect gene expression genetically and epigenetically, leading to alterations in cell cycle, DNA replication, and apoptosis.

  4. High and low dose radiation effects on mammary adenocarcinoma cells – an epigenetic connection

    PubMed Central

    Luzhna, Lidia; Filkowski, Jody; Kovalchuk, Olga

    2016-01-01

    The successful treatment of cancer, including breast cancer, depends largely on radiation therapy and proper diagnostics. The effect of ionizing radiation on cells and tissues depends on the radiation dose and energy level, but there is insufficient evidence concerning how tumor cells respond to the low and high doses of radiation that are often used in medical diagnostic and treatment modalities. The purpose of this study was to investigate radiation-induced gene expression changes in the MCF-7 breast adenocarcinoma cell line. Using microarray technology tools, we were able to screen the differential gene expressions profiles between various radiation doses applied to MCF-7 cells. Here, we report the substantial alteration in the expression level of genes after high-dose treatment. In contrast, no dramatic gene expression alterations were noticed after the application of low and medium doses of radiation. In response to a high radiation dose, MCF-7 cells exhibited down-regulation of biological pathways such as cell cycle, DNA replication, and DNA repair and activation of the p53 pathway. Similar dose-dependent responses were seen on the epigenetic level, which was tested by a microRNA expression analysis. MicroRNA analysis showed dose-dependent radiation-induced microRNA expression alterations that were associated with cell cycle arrest and cell death. An increased rate of apoptosis was determined by an Annexin V assay. The results of this study showed that high doses of radiation affect gene expression genetically and epigenetically, leading to alterations in cell cycle, DNA replication, and apoptosis. PMID:27226982

  5. Macrophage subtype predicts lymph node metastasis in oesophageal adenocarcinoma and promotes cancer cell invasion in vitro

    PubMed Central

    Cao, Wenqing; Peters, Jeffrey H; Nieman, Dylan; Sharma, Meenal; Watson, Thomas; Yu, JiangZhou

    2015-01-01

    Background: Currently, there is a lack of ideal biomarkers for predicting nodal status in preoperative stage of oesophageal adenocarcinoma (EAC) to aid optimising therapeutic options. We studied the potential of applying subtype macrophages to predict lymph node metastasis and prognosis in EAC. Material and Methods: Fifty-three EAC resection specimens were immunostained with CD68, CD40 (M1), and CD163 (M2). Lymphatic vessel density (LVD) was estimated with the staining of D2-40. Subsequently, we tested if M2d macrophage could promote EAC cell migration and invasion. Results: In EAC without neoadjuvant treatment, an increase in M2-like macrophage was associated with poor patient survival, independent of the locations of macrophages in tumour. The M2/M1 ratio that represented the balance between M2- and M1-like macrophages was significantly higher in nodal-positive EACs than that in nodal-negative EACs, and inversely correlated with patient overall survival. The M2/M1 ratio was not related to LVD. EAC cell polarised THP1 cell into M2d-like macrophage, which promoted EAC cell migration and invasion. Neoadjuvant therapy appeared to diminish the correlation between the M2/M1 ratio and survival. Conclusions: The ratio of M2/M1 macrophage may serve as a sensitive marker to predict lymph node metastasis and poor prognosis in EAC without neoadjuvant therapy. M2d macrophage may have important roles in EAC metastasis. PMID:26263481

  6. p, p′-Dichlorodiphenyldichloroethylene Induces Colorectal Adenocarcinoma Cell Proliferation through Oxidative Stress

    PubMed Central

    Song, Li; Liu, Jianxin; Jin, Xiaoting; Li, Zhuoyu; Zhao, Meirong; Liu, Weiping

    2014-01-01

    p, p′-Dichlorodiphenyldichloroethylene (DDE), the major metabolite of Dichlorodiphenyltrichloroethane (DDT), is an organochlorine pollutant and associated with cancer progression. The present study investigated the possible effects of p,p′-DDE on colorectal cancer and the involved molecular mechanism. The results indicated that exposure to low concentrations of p,p′-DDE from 10−10 to 10−7 M for 96 h markedly enhanced proliferations of human colorectal adenocarcinoma cell lines. Moreover, p,p′-DDE exposure could activate Wnt/β-catenin and Hedgehog/Gli1 signaling cascades, and the expression level of c-Myc and cyclin D1 was significantly increased. Consistently, p,p′-DDE-induced cell proliferation along with upregulated c-Myc and cyclin D1 were impeded by β-catenin siRNA or Gli1 siRNA. In addition, p,p′-DDE was able to activate NADPH oxidase, generate reactive oxygen species (ROS) and reduce GSH content, superoxide dismutase (SOD) and calatase (CAT) activities. Treatment with antioxidants prevented p,p′-DDE-induced cell proliferation and signaling pathways of Wnt/β-catenin and Hedgehog/Gli1. These results indicated that p,p′-DDE promoted colorectal cancer cell proliferation through Wnt/β-catenin and Hedgehog/Gli1 signalings mediated by oxidative stress. The finding suggests an association between p,p′-DDE exposure and the risk of colorectal cancer progression. PMID:25386960

  7. Comparative evaluation of cancer stem cell markers in normal pancreas and pancreatic ductal adenocarcinoma.

    PubMed

    Vizio, Barbara; Mauri, Francesco A; Prati, Adriana; Trivedi, Pritesh; Giacobino, Alice; Novarino, Anna; Satolli, Maria Antonietta; Ciuffreda, Libero; Camandona, Michele; Gasparri, Guido; Bellone, Graziella

    2012-01-01

    Chemoresistance and self-renewal of cancer stem cells (CSC), found in many tumors including pancreatic ductal adenocarcinoma (PDAC), are believed to underlie tumor mass regrowth. The distribution of cells carrying the putative stem-cell markers CD133, Nestin, Notch1-4, Jagged1 and 2, ABCG2 and aldehyde dehydrogenase (ALDH1) was assessed immunohistochemically using PDAC and normal pancreas tissue microarrays. The immunoreactivity was semi-quantitatively graded against the normal pancreas and was correlated with the differentiation grade and disease stage. No statistical significant differences were found between normal pancreas and PDAC in the expression of Nestin, Notch1, 3 and 4, ABCG2 or ALDH1. Notch2 and Jagged1 and 2 expression were increased in PDAC. CD133-positive cells were above-normal in PDAC, but the difference was not statistically significant. Nestin, Notch1-4, Jagged1, ABCG2 and ALDH1 immunostaining scores were not correlated with tumor grade or disease stage. CD133 and Notch2 expression was significantly inversely correlated with tumor grade, but not disease stage. Notch3 immunostaining positively correlated with tumor stage, but not with differentiation grade. Jagged2 protein expression correlated inversely with disease stage, but not with tumor grade. From the clinical standpoint, improved delineation of the tumor CSC signature, putatively responsible for tumor initiation and recurrence after initial response to chemotherapy, may offer novel therapeutic targets for this highly lethal cancer.

  8. Fisetin, a dietary phytochemical, overcomes Erlotinib-resistance of lung adenocarcinoma cells through inhibition of MAPK and AKT pathways.

    PubMed

    Zhang, Liang; Huang, Yi; Zhuo, Wenlei; Zhu, Yi; Zhu, Bo; Chen, Zhengtang

    2016-01-01

    Erlotinib (Tarceva) is a selective epidermal growth factor receptor tyrosine kinase inhibitor for treatment of non-small cell lung cancer (NSCLC). However, its efficacy is usually reduced by the occurrence of drug resistance. Our recent study showed that a flavonoid found in many plants, Fisetin, might have a potential to reverse the acquired Cisplatin-resistance of lung adenocarcinoma. In the present study, we aimed to test whether Fisetin could have the ability to reverse Erlotinib-resistance of lung cancer cells. Erlotinib-resistant lung adenocarcinoma cells, HCC827-ER, were cultured from the cell line HCC827, and the effects of Fisetin and Erlotinib on the cell viability and apoptosis were evaluated. The possible signaling pathways in this process were also detected. As expected, the results showed that Fisetin effectively increased sensitivity of Erlotinib-resistant lung cancer cells to Erlotinib, possibly by inhibiting aberrant activation of MAPK and AKT signaling pathways resulted from AXL suppression. In conclusion, Fisetin was a potential agent for reversing acquired Erlotinib-resistance of lung adenocarcinoma. Inactivation of AXL, MAPK and AKT pathways might play a partial role in this process.

  9. Fisetin, a dietary phytochemical, overcomes Erlotinib-resistance of lung adenocarcinoma cells through inhibition of MAPK and AKT pathways

    PubMed Central

    Zhang, Liang; Huang, Yi; Zhuo, Wenlei; Zhu, Yi; Zhu, Bo; Chen, Zhengtang

    2016-01-01

    Erlotinib (Tarceva) is a selective epidermal growth factor receptor tyrosine kinase inhibitor for treatment of non-small cell lung cancer (NSCLC). However, its efficacy is usually reduced by the occurrence of drug resistance. Our recent study showed that a flavonoid found in many plants, Fisetin, might have a potential to reverse the acquired Cisplatin-resistance of lung adenocarcinoma. In the present study, we aimed to test whether Fisetin could have the ability to reverse Erlotinib-resistance of lung cancer cells. Erlotinib-resistant lung adenocarcinoma cells, HCC827-ER, were cultured from the cell line HCC827, and the effects of Fisetin and Erlotinib on the cell viability and apoptosis were evaluated. The possible signaling pathways in this process were also detected. As expected, the results showed that Fisetin effectively increased sensitivity of Erlotinib-resistant lung cancer cells to Erlotinib, possibly by inhibiting aberrant activation of MAPK and AKT signaling pathways resulted from AXL suppression. In conclusion, Fisetin was a potential agent for reversing acquired Erlotinib-resistance of lung adenocarcinoma. Inactivation of AXL, MAPK and AKT pathways might play a partial role in this process. PMID:27904686

  10. TGFβ upregulates PAR-1 expression and signalling responses in A549 lung adenocarcinoma cells

    PubMed Central

    Smoktunowicz, Natalia; Platé, Manuela; Stern, Alejandro Ortiz; D'Antongiovanni, Vanessa; Robinson, Eifion; Chudasama, Vijay; Caddick, Stephen; Scotton, Chris J.; Jarai, Gabor; Chambers, Rachel C.

    2016-01-01

    The major high-affinity thrombin receptor, proteinase activated receptor-1 (PAR-1) is expressed at low levels by the normal epithelium but is upregulated in many types of cancer, including lung cancer. The thrombin-PAR-1 signalling axis contributes to the activation of latent TGFβ in response to tissue injury via an αvβ6 integrin-mediated mechanism. TGFβ is a pleiotropic cytokine that acts as a tumour suppressor in normal and dysplastic cells but switches into a tumour promoter in advanced tumours. In this study we demonstrate that TGFβ is a positive regulator of PAR-1 expression in A549 lung adenocarcinoma cells, which in turn increases the sensitivity of these cells to thrombin signalling. We further demonstrate that this effect is Smad3-, ERK1/2- and Sp1-dependent. We also show that TGFβ-mediated PAR-1 upregulation is accompanied by increased expression of integrin αv and β6 subunits. Finally, TGFβ pre-stimulation promotes increased migratory potential of A549 to thrombin. These data have important implications for our understanding of the interplay between coagulation and TGFβ signalling responses in lung cancer. PMID:27566553

  11. Deoxycholic and chenodeoxycholic bile acids induce apoptosis via oxidative stress in human colon adenocarcinoma cells.

    PubMed

    Ignacio Barrasa, Juan; Olmo, Nieves; Pérez-Ramos, Pablo; Santiago-Gómez, Angélica; Lecona, Emilio; Turnay, Javier; Antonia Lizarbe, M

    2011-10-01

    The continuous exposure of the colonic epithelium to high concentrations of bile acids may exert cytotoxic effects and has been related to pathogenesis of colon cancer. A better knowledge of the mechanisms by which bile acids induce toxicity is still required and may be useful for the development of new therapeutic strategies. We have studied the effect of deoxycholic acid (DCA) and chenodeoxycholic acid (CDCA) treatments in BCS-TC2 human colon adenocarcinoma cells. Both bile acids promote cell death, being this effect higher for CDCA. Apoptosis is detected after 30 min-2 h of treatment, as observed by cell detachment, loss of membrane asymmetry, internucleosomal DNA degradation, appearance of mitochondrial transition permeability (MPT), and caspase and Bax activation. At longer treatment times, apoptosis is followed in vitro by secondary necrosis due to impaired mitochondrial activity and ATP depletion. Bile acid-induced apoptosis is a result of oxidative stress with increased ROS generation mainly by activation of plasma membrane enzymes, such as NAD(P)H oxidases and, to a lower extent, PLA2. These effects lead to a loss of mitochondrial potential and release of pro-apoptotic factors to the cytosol, which is confirmed by activation of caspase-9 and -3, but not caspase-8. This initial apoptotic steps promote cleavage of Bcl-2, allowing Bax activation and formation of additional pores in the mitochondrial membrane that amplify the apoptotic signal.

  12. Authentication and characterisation of a new oesophageal adenocarcinoma cell line: MFD-1.

    PubMed

    Garcia, Edwin; Hayden, Annette; Birts, Charles; Britton, Edward; Cowie, Andrew; Pickard, Karen; Mellone, Massimiliano; Choh, Clarisa; Derouet, Mathieu; Duriez, Patrick; Noble, Fergus; White, Michael J; Primrose, John N; Strefford, Jonathan C; Rose-Zerilli, Matthew; Thomas, Gareth J; Ang, Yeng; Sharrocks, Andrew D; Fitzgerald, Rebecca C; Underwood, Timothy J

    2016-09-07

    New biological tools are required to understand the functional significance of genetic events revealed by whole genome sequencing (WGS) studies in oesophageal adenocarcinoma (OAC). The MFD-1 cell line was isolated from a 55-year-old male with OAC without recombinant-DNA transformation. Somatic genetic variations from MFD-1, tumour, normal oesophagus, and leucocytes were analysed with SNP6. WGS was performed in tumour and leucocytes. RNAseq was performed in MFD-1, and two classic OAC cell lines FLO1 and OE33. Transposase-accessible chromatin sequencing (ATAC-seq) was performed in MFD-1, OE33, and non-neoplastic HET1A cells. Functional studies were performed. MFD-1 had a high SNP genotype concordance with matched germline/tumour. Parental tumour and MFD-1 carried four somatically acquired mutations in three recurrent mutated genes in OAC: TP53, ABCB1 and SEMA5A, not present in FLO-1 or OE33. MFD-1 displayed high expression of epithelial and glandular markers and a unique fingerprint of open chromatin. MFD-1 was tumorigenic in SCID mouse and proliferative and invasive in 3D cultures. The clinical utility of whole genome sequencing projects will be delivered using accurate model systems to develop molecular-phenotype therapeutics. We have described the first such system to arise from the oesophageal International Cancer Genome Consortium project.

  13. Authentication and characterisation of a new oesophageal adenocarcinoma cell line: MFD-1

    PubMed Central

    Garcia, Edwin; Hayden, Annette; Birts, Charles; Britton, Edward; Cowie, Andrew; Pickard, Karen; Mellone, Massimiliano; Choh, Clarisa; Derouet, Mathieu; Duriez, Patrick; Noble, Fergus; White, Michael J.; Primrose, John N.; Strefford, Jonathan C.; Rose-Zerilli, Matthew; Thomas, Gareth J.; Ang, Yeng; Sharrocks, Andrew D.; Fitzgerald, Rebecca C.; Underwood, Timothy J.; MacRae, Shona; Grehan, Nicola; Abdullahi, Zarah; de la Rue, Rachel; Noorani, Ayesha; Elliott, Rachael Fels; de Silva, Nadeera; Bornschein, Jan; O’Donovan, Maria; Contino, Gianmarco; Yang, Tsun-Po; Chettouh, Hamza; Crawte, Jason; Nutzinger, Barbara; Edwards, Paul A. W.; Smith, Laura; Miremadi, Ahmad; Malhotra, Shalini; Cluroe, Alison; Hardwick, Richard; Davies, Jim; Ford, Hugo; Gilligan, David; Safranek, Peter; Hindmarsh, Andy; Sujendran, Vijayendran; Carroll, Nick; Turkington, Richard; Hayes, Stephen J.; Ang, Yeng; Preston, Shaun R.; Oakes, Sarah; Bagwan, Izhar; Save, Vicki; Skipworth, Richard J. E.; Hupp, Ted R.; O’Neill, J. Robert; Tucker, Olga; Taniere, Philippe; Owsley, Jack; Crichton, Charles; Schusterreiter, Christian; Barr, Hugh; Shepherd, Neil; Old, Oliver; Lagergren, Jesper; Gossage, James; Davies, Andrew; Chang, Fuju; Zylstra, Janine; Sanders, Grant; Berrisford, Richard; Harden, Catherine; Bunting, David; Lewis, Mike; Cheong, Ed; Kumar, Bhaskar; Parsons, Simon L.; Soomro, Irshad; Kaye, Philip; Saunders, John; Lovat, Laurence; Haidry, Rehan; Eneh, Victor; Igali, Laszlo; Welch, Ian; Scott, Michael; Sothi, Shamila; Suortamo, Sari; Lishman, Suzy; Beardsmore, Duncan; Anderson, Charlotte; Smith, Mike L.; Secrier, Maria; Eldridge, Matthew D.; Bower, Lawrence; Achilleos, Achilleas; Lynch, Andy G.; Tavare, Simon

    2016-01-01

    New biological tools are required to understand the functional significance of genetic events revealed by whole genome sequencing (WGS) studies in oesophageal adenocarcinoma (OAC). The MFD-1 cell line was isolated from a 55-year-old male with OAC without recombinant-DNA transformation. Somatic genetic variations from MFD-1, tumour, normal oesophagus, and leucocytes were analysed with SNP6. WGS was performed in tumour and leucocytes. RNAseq was performed in MFD-1, and two classic OAC cell lines FLO1 and OE33. Transposase-accessible chromatin sequencing (ATAC-seq) was performed in MFD-1, OE33, and non-neoplastic HET1A cells. Functional studies were performed. MFD-1 had a high SNP genotype concordance with matched germline/tumour. Parental tumour and MFD-1 carried four somatically acquired mutations in three recurrent mutated genes in OAC: TP53, ABCB1 and SEMA5A, not present in FLO-1 or OE33. MFD-1 displayed high expression of epithelial and glandular markers and a unique fingerprint of open chromatin. MFD-1 was tumorigenic in SCID mouse and proliferative and invasive in 3D cultures. The clinical utility of whole genome sequencing projects will be delivered using accurate model systems to develop molecular-phenotype therapeutics. We have described the first such system to arise from the oesophageal International Cancer Genome Consortium project. PMID:27600491

  14. Pancreatic adenocarcinoma upregulated factor serves as adjuvant by activating dendritic cells through stimulation of TLR4

    PubMed Central

    Yang, Benjamin; Lee, Je-Jung; Lee, Hyun-Ju; Lee, Jaemin; Jung, In Duk; Han, Hee Dong; Lee, Seung-Hyun; Koh, Sang Seok; Wu, T.-C.; Park, Yeong-Min

    2015-01-01

    Dendritic cell (DC) based cancer vaccines represent a promising immunotherapeutic strategy against cancer. To enhance the modest immunogenicity of DC vaccines, various adjuvants are often incorporated. Particularly, most of the common adjuvants are derived from bacteria. In the current study, we evaluate the use of a human pancreatic cancer derived protein, pancreatic adenocarcinoma upregulated factor (PAUF), as a novel DC vaccine adjuvant. We show that PAUF can induce activation and maturation of DCs and activate NFkB by stimulating the Toll-like receptor signaling pathway. Furthermore, vaccination with PAUF treated DCs pulsed with E7 or OVA peptides leads to generation of E7 or OVA-specific CD8+ T cells and memory T cells, which correlate with long term tumor protection and antitumor effects against TC-1 and EG.7 tumors in mice. Finally, we demonstrated that PAUF mediated DC activation and immune stimulation are dependent on TLR4. Our data provides evidence supporting PAUF as a promising adjuvant for DC based therapies, which can be applied in conjunction with other cancer therapies. Most importantly, our results serve as a reference for future investigation of human based adjuvants. PMID:26336989

  15. A Concurrence of Adenocarcinoma with Micropapillary Features and Composite Glandular-Endocrine Cell Carcinoma in the Stomach

    PubMed Central

    Kim, Ji-Hoon; Park, Cheon-Soo; Kwak, Jae-Young; Park, Eun-Hwa; Kwak, Jin-Ho; Jang, Hyuk-Jae; Choi, Kun-Moo; Han, Myung-Sik

    2016-01-01

    We report a unique case of synchronous double primary gastric cancer consisting of adenocarcinoma components with micropapillary features and composite glandular-endocrine cell carcinoma components. The patient was a 53-year-old man presenting with a 6-month history of epigastric pain and diarrhea. A subtotal gastrectomy was performed. Histologically, one tumor was composed of micropapillary carcinoma components (50%) with tight clusters of micropapillary aggregates lying in the empty spaces, admixed with moderately differentiated adenocarcinoma components. MUC-1 was expressed at the stromal edge of the micropapillary component. The other tumor was composed of atypical carcinoid-like neuroendocrine carcinoma (50%), adenocarcinoid (30%), and adenocarcinoma components (20%). The neuroendocrine components were positive for CD56, synaptophysin, chromogranin, and creatine kinase. The adenocarcinoid components were positive for both carcinoembryonic antigen and neuroendocrine markers (amphicrine differentiation). This case is unique, due to the peculiar histologic micropapillary pattern and the histologic spectrum of adenocarcinoma adenocarcinoid-neuroendocrine carcinoma of the synchronous composite tumor. PMID:28053814

  16. Iron overload of human colon adenocarcinoma cells studied by synchrotron-based X-ray techniques.

    PubMed

    Mihucz, Victor G; Meirer, Florian; Polgári, Zsófia; Réti, Andrea; Pepponi, Giancarlo; Ingerle, Dieter; Szoboszlai, Norbert; Streli, Christina

    2016-04-01

    Fast- and slow-proliferating human adenocarcinoma colorectal cells, HT-29 and HCA-7, respectively, overloaded with transferrin (Tf), Fe(III) citrate, Fe(III) chloride and Fe(II) sulfate were studied by synchrotron radiation total-reflection X-ray spectrometry (TXRF), TXRF-X-ray absorption near edge structure (TXRF-XANES), and micro-X-ray fluorescence imaging to obtain information on the intracellular storage of overloaded iron (Fe). The determined TfR1 mRNA expression for the investigated cells correlated with their proliferation rate. In all cases, the Fe XANES of cells overloaded with inorganic Fe was found to be similar to that of deliquescent Fe(III) sulfate characterized by a distorted octahedral geometry. A fitting model using a linear combination of the XANES of Tf and deliquescent Fe(III) sulfate allowed to explain the near edge structure recorded for HT-29 cells indicating that cellular overload with inorganic Fe results in a non-ferritin-like fast Fe storage. Hierarchical cluster analysis of XANES spectra recorded for Fe overloaded HT-29 and HCA-7 cells was able to distinguish between Fe treatments performed with different Fe species with a 95% hit rate, indicating clear differences in the Fe storage system. Micro-X-ray fluorescence imaging of Fe overloaded HT-29 cells revealed that Fe is primarily located in the cytosol of the cells. By characterizing the cellular Fe uptake, Fe/S content ratios were calculated based on the X-ray fluorescence signals of the analytes. These Fe/S ratios were dramatically lower for HCA-7 treated with organic Fe(III) treatments suggesting dissimilarities from the Tf-like Fe uptake.

  17. Novel monoclonal antibody against beta 1 integrin enhances cisplatin efficacy in human lung adenocarcinoma cells.

    PubMed

    Kim, Min-Young; Cho, Woon-Dong; Hong, Kwon Pyo; Choi, Da Bin; Hong, Jeong Won; Kim, Soseul; Moon, Yoo Ri; Son, Seung-Myoung; Lee, Ok-Jun; Lee, Ho-Chang; Song, Hyung Geun

    2016-05-01

    The use of anti-beta 1 integrin monoclonal antibody in lung cancer treatment has proven beneficial. Here, we developed a novel monoclonal antibody (mAb), called P5, by immunizing mice with human peripheral blood mononuclear cells (PBMC). Its anti-tumor effect is now being tested, in a clinical phase III trial, in combinatorial treatments with various chemical drugs. To confirm that P5 indeed binds to beta 1 integrin, cell lysates were immunoprecipitated with commercial anti-beta 1 integrin mAb (TS2/16) and immunoblotted against P5 to reveal a 140 kDa molecular weight band, as expected. Immunoprecipitation with P5 followed by LC/MS protein sequence analysis further verified P5 antigen to be beta 1 integrin. Cisplatin treatment upregulated cell surface expression of beta 1 integrin in A549 cells, while causing inhibition of cell growth. When cells were co-treated with different concentrations of P5 mAb, the cisplatin-mediated inhibitory effect was enhanced in a dose-dependent manner. Our findings show that a combinatorial treatment of P5 mAb and cisplatin in A549 cells resulted in a 30% increase in apoptosis, compared to baseline, and significantly more when compared to either the cisplatin or P5 alone group. The entire peptide sequences in CDR from variable region of Ig heavy and light chain gene for P5 mAb are also disclosed. Together, these results provide evidence of the beneficial effect of P5 mAb in combinatorial treatment of human lung adenocarcinoma.

  18. Mapping of homozygous deletions in verified esophageal adenocarcinoma cell lines and xenografts.

    PubMed

    Boonstra, Jurjen J; van Marion, Ronald; Douben, Hannie J C W; Lanchbury, Jerry S; Timms, Kirsten M; Abkevich, Victor; Tilanus, Hugo W; de Klein, Annelies; Dinjens, Winand N M

    2012-03-01

    Human esophageal adenocarcinoma (EAC) cell lines and xenografts are powerful tools in the search for genetic alterations because these models are composed of pure human cancer cell populations without admixture of normal human cells. In particular detection of homozygous deletions (HDs) is easier using these pure populations of cancer cells. Identification of HDs could potentially lead to the subsequent identification of new tumor suppressor genes (TSGs) involved in esophageal adenocarcinogenesis. Genome wide single nucleotide polymorphism (SNP) arrays were used to identify HDs in 10 verified EAC cell lines and nine EAC xenografts. In total, 61 HDs (range 1-6 per sample) were detected and confirmed by polymerase chain reaction. Besides HDs observed in common fragile genomic regions (n = 26), and gene deserts (n = 8), 27 HDs were located in gene-containing regions. HDs were noted for known TSGs, including CDKN2A, SMAD4 and CDH3/CDH1. Twenty-two new chromosomal regions were detected harboring potentially new TSGs involved in EAC carcinogenesis. Two of these regions of homozygous loss, encompassing the ITGAV and RUNX1 gene, were detected in multiple samples indicating a potential role in the carcinogenesis of EAC. To exclude culturing artifacts, these last two deletions were confirmed by fluorescent in situ hybridization in the primary tumors of which the involved cell lines and xenografts were derived. In summary, in this report we describe the identification of HDs in a series of verified EAC cell lines and xenografts. The deletions documented here are a step forward identifying the key genes involved in EAC development.

  19. Pioglitazone protects against cisplatin induced nephrotoxicity in rats and potentiates its anticancer activity against human renal adenocarcinoma cell lines.

    PubMed

    Mahmoud, Mona F; El Shazly, Shimaa M

    2013-01-01

    Cisplatin-induced nephrotoxicity is a serious problem that limits its use in cancer treatment. The present study aimed to investigate the renal protective capacity of pioglitazone to reduce the cisplatin- induced nephrotoxicity. The underlying suggested mechanism(s) and whether this nephroprotective effect (if any) interferes with the cytotoxic effect of cisplatin on cancer cells were also investigated. Pioglitazone, Bisphenol A diglycidyl ether, BADGE, IP injected (Peroxisome proliferator- activated receptor gamma (PPAR-γ) antagonist), or their combination were administered to rats one hour before cisplatin injection. Moreover, their effects on the cell viability of human renal adenocarcinoma cell models (ACHN) were studied. The obtained results showed that pioglitazone improved the renal function, structural changes, renal malondialdehyde (MDA), tumor necrosis factor alpha (TNF-α), nuclear factor kappa B (NF-κB) genes expression in cisplatin injected rats. It increased both renal reduced glutathione (GSH) content and PPAR-γ gene expression. In contrast to the data obtained by prior administration of BADGE. Pioglitazone also potentiated the cytotoxic effect of cisplatin on human renal adenocarcinoma cells and this effect was abolished by BADGE co administration. In conclusion, these results suggested that pioglitazone protected against cisplatin- induced nephrotoxicity through its interaction with PPAR-γ receptors and antioxidant effects. Furthermore, pioglitazone did not interfere but rather potentiated the cytotoxic effects of cisplatin on human renal adenocarcinoma cells.

  20. Interfacing polymeric scaffolds with primary pancreatic ductal adenocarcinoma cells to develop 3D cancer models

    PubMed Central

    Ricci, Claudio; Mota, Carlos; Moscato, Stefania; D’Alessandro, Delfo; Ugel, Stefano; Sartoris, Silvia; Bronte, Vincenzo; Boggi, Ugo; Campani, Daniela; Funel, Niccola; Moroni, Lorenzo; Danti, Serena

    2014-01-01

    We analyzed the interactions between human primary cells from pancreatic ductal adenocarcinoma (PDAC) and polymeric scaffolds to develop 3D cancer models useful for mimicking the biology of this tumor. Three scaffold types based on two biocompatible polymeric formulations, such as poly(vinyl alcohol)/gelatin (PVA/G) mixture and poly(ethylene oxide terephthalate)/poly(butylene terephthalate) (PEOT/PBT) copolymer, were obtained via different techniques, namely, emulsion and freeze-drying, compression molding followed by salt leaching, and electrospinning. In this way, primary PDAC cells interfaced with different pore topographies, such as sponge-like pores of different shape and size or nanofiber interspaces. The aim of this study was to investigate the influence played by the scaffold architecture over cancerous cell growth and function. In all scaffolds, primary PDAC cells showed good viability and synthesized tumor-specific metalloproteinases (MMPs) such as MMP-2, and MMP-9. However, only sponge-like pores, obtained via emulsion-based and salt leaching-based techniques allowed for an organized cellular aggregation very similar to the native PDAC morphological structure. Differently, these cell clusters were not observed on PEOT/PBT electrospun scaffolds. MMP-2 and MMP-9, as active enzymes, resulted to be increased in PVA/G and PEOT/PBT sponges, respectively. These findings suggested that spongy scaffolds supported the generation of pancreatic tumor models with enhanced aggressiveness. In conclusion, primary PDAC cells showed diverse behaviors while interacting with different scaffold types that can be potentially exploited to create stage-specific pancreatic cancer models likely to provide new knowledge on the modulation and drug susceptibility of MMPs. PMID:25482337

  1. Interfacing polymeric scaffolds with primary pancreatic ductal adenocarcinoma cells to develop 3D cancer models.

    PubMed

    Ricci, Claudio; Mota, Carlos; Moscato, Stefania; D'Alessandro, Delfo; Ugel, Stefano; Sartoris, Silvia; Bronte, Vincenzo; Boggi, Ugo; Campani, Daniela; Funel, Niccola; Moroni, Lorenzo; Danti, Serena

    2014-01-01

    We analyzed the interactions between human primary cells from pancreatic ductal adenocarcinoma (PDAC) and polymeric scaffolds to develop 3D cancer models useful for mimicking the biology of this tumor. Three scaffold types based on two biocompatible polymeric formulations, such as poly(vinyl alcohol)/gelatin (PVA/G) mixture and poly(ethylene oxide terephthalate)/poly(butylene terephthalate) (PEOT/PBT) copolymer, were obtained via different techniques, namely, emulsion and freeze-drying, compression molding followed by salt leaching, and electrospinning. In this way, primary PDAC cells interfaced with different pore topographies, such as sponge-like pores of different shape and size or nanofiber interspaces. The aim of this study was to investigate the influence played by the scaffold architecture over cancerous cell growth and function. In all scaffolds, primary PDAC cells showed good viability and synthesized tumor-specific metalloproteinases (MMPs) such as MMP-2, and MMP-9. However, only sponge-like pores, obtained via emulsion-based and salt leaching-based techniques allowed for an organized cellular aggregation very similar to the native PDAC morphological structure. Differently, these cell clusters were not observed on PEOT/PBT electrospun scaffolds. MMP-2 and MMP-9, as active enzymes, resulted to be increased in PVA/G and PEOT/PBT sponges, respectively. These findings suggested that spongy scaffolds supported the generation of pancreatic tumor models with enhanced aggressiveness. In conclusion, primary PDAC cells showed diverse behaviors while interacting with different scaffold types that can be potentially exploited to create stage-specific pancreatic cancer models likely to provide new knowledge on the modulation and drug susceptibility of MMPs.

  2. Oxidative stress mediated cytotoxicity of biologically synthesized silver nanoparticles in human lung epithelial adenocarcinoma cell line

    PubMed Central

    2014-01-01

    The goal of the present study was to investigate the toxicity of biologically prepared small size of silver nanoparticles in human lung epithelial adenocarcinoma cells A549. Herein, we describe a facile method for the synthesis of silver nanoparticles by treating the supernatant from a culture of Escherichia coli with silver nitrate. The formation of silver nanoparticles was characterized using various analytical techniques. The results from UV-visible (UV-vis) spectroscopy and X-ray diffraction analysis show a characteristic strong resonance centered at 420 nm and a single crystalline nature, respectively. Fourier transform infrared spectroscopy confirmed the possible bio-molecules responsible for the reduction of silver from silver nitrate into nanoparticles. The particle size analyzer and transmission electron microscopy results suggest that silver nanoparticles are spherical in shape with an average diameter of 15 nm. The results derived from in vitro studies showed a concentration-dependent decrease in cell viability when A549 cells were exposed to silver nanoparticles. This decrease in cell viability corresponded to increased leakage of lactate dehydrogenase (LDH), increased intracellular reactive oxygen species generation (ROS), and decreased mitochondrial transmembrane potential (MTP). Furthermore, uptake and intracellular localization of silver nanoparticles were observed and were accompanied by accumulation of autophagosomes and autolysosomes in A549 cells. The results indicate that silver nanoparticles play a significant role in apoptosis. Interestingly, biologically synthesized silver nanoparticles showed more potent cytotoxicity at the concentrations tested compared to that shown by chemically synthesized silver nanoparticles. Therefore, our results demonstrated that human lung epithelial A549 cells could provide a valuable model to assess the cytotoxicity of silver nanoparticles. PMID:25242904

  3. Oxidative stress mediated cytotoxicity of biologically synthesized silver nanoparticles in human lung epithelial adenocarcinoma cell line

    NASA Astrophysics Data System (ADS)

    Han, Jae Woong; Gurunathan, Sangiliyandi; Jeong, Jae-Kyo; Choi, Yun-Jung; Kwon, Deug-Nam; Park, Jin-Ki; Kim, Jin-Hoi

    2014-09-01

    The goal of the present study was to investigate the toxicity of biologically prepared small size of silver nanoparticles in human lung epithelial adenocarcinoma cells A549. Herein, we describe a facile method for the synthesis of silver nanoparticles by treating the supernatant from a culture of Escherichia coli with silver nitrate . The formation of silver nanoparticles was characterized using various analytical techniques. The results from UV-visible (UV-vis) spectroscopy and X-ray diffraction analysis show a characteristic strong resonance centered at 420 nm and a single crystalline nature, respectively. Fourier transform infrared spectroscopy confirmed the possible bio-molecules responsible for the reduction of silver from silver nitrate into nanoparticles. The particle size analyzer and transmission electron microscopy results suggest that silver nanoparticles are spherical in shape with an average diameter of 15 nm. The results derived from in vitro studies showed a concentration-dependent decrease in cell viability when A549 cells were exposed to silver nanoparticles. This decrease in cell viability corresponded to increased leakage of lactate dehydrogenase (LDH), increased intracellular reactive oxygen species generation (ROS), and decreased mitochondrial transmembrane potential (MTP). Furthermore, uptake and intracellular localization of silver nanoparticles were observed and were accompanied by accumulation of autophagosomes and autolysosomes in A549 cells. The results indicate that silver nanoparticles play a significant role in apoptosis. Interestingly, biologically synthesized silver nanoparticles showed more potent cytotoxicity at the concentrations tested compared to that shown by chemically synthesized silver nanoparticles. Therefore, our results demonstrated that human lung epithelial A549 cells could provide a valuable model to assess the cytotoxicity of silver nanoparticles.

  4. Mutant p53 stimulates chemoresistance of pancreatic adenocarcinoma cells to gemcitabine.

    PubMed

    Fiorini, Claudia; Cordani, Marco; Padroni, Chiara; Blandino, Giovanni; Di Agostino, Silvia; Donadelli, Massimo

    2015-01-01

    Pancreatic adenocarcinoma (PDAC) is the fourth leading cause of cancer-related deaths worldwide; PDAC is characterized by poor prognosis, resistance to conventional chemotherapy and high mortality rate. TP53 tumor suppressor gene is frequently mutated in PDAC, resulting in the accumulation of mutated protein with potential gain-of-function (GOF) activities, such as genomic instability, hyperproliferation and chemoresistance. The purpose of this study was to assess the relevance of the p53 status on the PDAC cells response to the standard drug gemcitabine. We also examined the potential therapeutic effect of p53-reactivating molecules to restore the mutant p53 function in GEM treated PDAC cells. We showed that gemcitabine stabilized mutant p53 protein in the nuclei and induced chemoresistance, concurrent with the mutant p53-dependent expression of Cdk1 and CCNB1 genes, resulting in a hyperproliferation effect. Despite the adverse activation of mutant p53 by gemcitabine, simultaneous treatment of PDAC cells with gemcitabine and p53-reactivating molecules (CP-31398 and RITA) reduced growth rate and induced apoptosis. This synergistic effect was observed in both wild-type and mutant p53 cell lines and was absent in p53-null cells. The combination drug treatment induced p53 phosphorylation on Ser15, apoptosis and autophagosome formation. Furthermore, pharmacological inhibition of autophagy further increased apoptosis stimulated by gemcitabine/CP-31398 treatment. Together, our results show that gemcitabine aberrantly stimulates mutant p53 activity in PDAC cells identifying key processes with potential for therapeutic targeting. Our data also support an anti-tumoral strategy based on inhibition of autophagy combined with p53 activation and standard chemotherapy for both wild-type and mutant p53 expressing PDACs.

  5. β-catenin signaling pathway regulates cisplatin resistance in lung adenocarcinoma cells by upregulating Bcl-xl

    PubMed Central

    ZHANG, JIN; LIU, JIE; LI, HUI; WANG, JUN

    2016-01-01

    The Wnt/β-catenin signaling pathway has been reported to regulate cisplatin resistance in several types of cancer cell. The present study aimed to investigate the role and underlying mechanism of Wnt/β-catenin signaling in cisplatin resistance of lung adenocarcinoma cells. Wild-type and cisplatin-resistant A549 human lung adenocarcinoma cells (A549/WT and A549/CDDP, respectively) were cultured in vitro and exposed to different cisplatin concentrations. Cells were incubated with 10 mM lithium chloride (LiCl) to activate β-catenin signaling. Cell proliferation was determined using the MTS assay. Cell apoptosis was evaluated using Annexin V/propidium iodide double staining, followed by flow cytometry. β-catenin was knocked down using small interfering RNA (siRNA). The intracellular distribution of β-catenin was determined by immunocytochemistry, and the mRNA and protein expressions of target genes were examined by reverse transcription-quantitative polymerase chain reaction and western zblotting, respectively. β-catenin and B-cell lymphoma-extra large (Bcl-xl) were significantly upregulated in A549/CDDP cells compared with A549/WT cells (P<0.05). LiCl reduced the sensitivity of A549/WT cells to cisplatin (P<0.01); and upregulated, increased phosphorylation (P<0.05) and enhanced nuclear translocation of β-catenin. LiCl also significantly elevated the mRNA and protein expression levels of Bcl-xl (P<0.05). Notably, silencing of β-catenin with siRNA decreased the mRNA and protein expression of Bcl-xl, and sensitized A549/WT cells to cisplatin (P<0.01). The findings of the current study suggest that upregulation of β-catenin signaling may contribute to cisplatin resistance in lung adenocarcinoma cells by upregulating Bcl-xl. Therefore, molecular targeting of Wnt/β-catenin signaling may sensitize lung cancer cells to cisplatin. PMID:26860078

  6. Enhancement of Radiation Effects by Ursolic Acid in BGC-823 Human Adenocarcinoma Gastric Cancer Cell Line.

    PubMed

    Yang, Yang; Jiang, Man; Hu, Jing; Lv, Xin; Yu, Lixia; Qian, Xiaoping; Liu, Baorui

    2015-01-01

    Recent research has suggested that certain plant-derived polyphenols, i.e., ursolic acid (UA), which are reported to have antitumor activities, might be used to sensitize tumor cells to radiation therapy by inhibiting pathways leading to radiation therapy resistance. This experiment was designed to investigate the effects and possible mechanism of radiosensitization by UA in BGC-823 cell line from human adenocarcinoma gastric cancer in vitro. UA caused cytotoxicity in a dose-dependent manner, and we used a sub-cytotoxicity concentration of UA to test radioenhancement efficacy with UA in gastric cancer. Radiosensitivity was determined by clonogenic survival assay. Surviving fraction of the combined group with irradiation and sub-cytotoxicity UA significantly decreased compared with the irradiation group. The improved radiosensitization efficacy was associated with enhanced G2/M arrest, increased reactive oxygen species (ROS), down-regulated Ki-67 level and improved apoptosis. In conclusion, as UA demonstrated potent antiproliferation effect and synergistic effect, it could be used as a potential drug sensitizer for the application of radiotherapy.

  7. INOSITOL HEXAKISPHOSPHATE MEDIATES APOPTOSIS IN HUMAN BREAST ADENOCARCINOMA MCF-7 CELL LINE VIA INTRINSIC PATHWAY

    SciTech Connect

    Agarwal, Rakhee; Ali, Nawab

    2010-04-12

    Inositol polyphosphates (InsP{sub s}) are naturally occurring compounds ubiquitously present in plants and animals. Inositol hexakisphosphate (InsP{sub 6}) is the most abundant among all InsP{sub s} and constitutes the major portion of dietary fiber in most cereals, legumes and nuts. Certain derivatives of InsP{sub s} also regulate cellular signaling mechanisms. InsP{sub s} have also been shown to reduce tumor formation and induce apoptosis in cancerous cells. Therefore, in this study, the effects of InsPs on apoptosis were studied in an attempt to investigate their potential anti-cancer therapeutic application and understand their mechanism of action. Acridine orange and ethidium bromide staining suggested that InsP{sub 6} dose dependently induced apoptosis in human breast adenocarcinoma MCF-7 cells. Among InsP{sub s} tested (InsP{sub 3}, InsP{sub 4}, InsP{sub 5}, and InsP{sub 6}), InsP{sub 6} was found to be the most effective in inducing apoptosis. Furthermore, effects of InsP{sub 6} were found most potent inducing apoptosis. Etoposide, the drug known to induce apoptosis in both in vivo and in vitro, was used as a positive control. Western blotting experiments using specific antibodies against known apoptotic markers suggested that InsP{sub 6} induced apoptotic changes were mediated via an intrinsic apoptotic pathway.

  8. Rewiring of human lung cell lineage and mitotic networks in lung adenocarcinomas

    PubMed Central

    Kim, Il-Jin; Quigley, David; To, Minh D.; Pham, Patrick; Lin, Kevin; Jo, Brian; Jen, Kuang-Yu; Raz, Dan; Kim, Jae; Mao, Jian-Hua; Jablons, David; Balmain, Allan

    2015-01-01

    Analysis of gene expression patterns in normal tissues and their perturbations in tumors can help to identify the functional roles of oncogenes or tumor suppressors and identify potential new therapeutic targets. Here, gene expression correlation networks were derived from 92 normal human lung samples and patient-matched adenocarcinomas. The networks from normal lung show that NKX2-1 is linked to the alveolar type 2 lineage, and identify PEBP4 as a novel marker expressed in alveolar type 2 cells. Differential correlation analysis shows that the NKX2-1 network in tumors includes pathways associated with glutamate metabolism, and identifies Vaccinia-related kinase (VRK1) as a potential drug target in a tumor-specific mitotic network. We show that VRK1 inhibition cooperates with inhibition of PARP signaling to inhibit growth of lung tumor cells. Targeting of genes that are recruited into tumor mitotic networks may provide a wider therapeutic window than that seen by inhibition of known mitotic genes. PMID:23591868

  9. Cytotoxicity of a Quinone-containing Cockroach Sex Pheromone in Human Lung Adenocarcinoma Cells.

    PubMed

    Ma, Bennett; Carr, Brian A; Krolikowski, Paul; Chang, Frank N

    2007-01-01

    The cytotoxic effects of blattellaquinone (BTQ), a sex pheromone produced by adult female German cockroaches, have been studied using human lung adenocarcinoma A549 cells. 1,4-Benzoquinone (BQ), a toxic chemical implicated in benzene toxicity, was used as a reference compound. Both BQ and BTQ showed comparable toxicity toward A549 cells, with LD50 values estimated to be 14 and 19 microM, respectively. These two compounds increased the formation of an oxidized fluorescent probe, 2',7'-dichlorofluorescein, but had no effect on the cellular GSSG level. Interestingly, BTQ increased the level of 8-epi-prostaglandin F2alpha and was 4-fold more efficient in depleting cellular GSH content than BQ. Of the five GSH adducts of BTQ isolated, three were identified as mono-GSH conjugates, and the other two were di-conjugates. Mass spectrometric and NMR analyses of the di-conjugates showed that the second GSH molecule displaced the isovaleric acid moiety, potentially via a nucleophilic substitution reaction. The ability of BTQ to conjugate a second GSH molecule without quinone regeneration indicated that it may be a more effective cross-linking agent than BQ. Future experiments may be needed to evaluate the overall safety of BTQ before the commercialization of the compound as a cockroach attractant.

  10. Inositol Hexakisphosphate Mediates Apoptosis in Human Breast Adenocarcinoma MCF-7 Cell Line via Intrinsic Pathway

    NASA Astrophysics Data System (ADS)

    Agarwal, Rakhee; Ali, Nawab

    2010-04-01

    Inositol polyphosphates (InsPs) are naturally occurring compounds ubiquitously present in plants and animals. Inositol hexakisphosphate (InsP6) is the most abundant among all InsPs and constitutes the major portion of dietary fiber in most cereals, legumes and nuts. Certain derivatives of InsPs also regulate cellular signaling mechanisms. InsPs have also been shown to reduce tumor formation and induce apoptosis in cancerous cells. Therefore, in this study, the effects of InsPs on apoptosis were studied in an attempt to investigate their potential anti-cancer therapeutic application and understand their mechanism of action. Acridine orange and ethidium bromide staining suggested that InsP6 dose dependently induced apoptosis in human breast adenocarcinoma MCF-7 cells. Among InsPs tested (InsP3, InsP4, InsP5, and InsP6), InsP6 was found to be the most effective in inducing apoptosis. Furthermore, effects of InsP6 were found most potent inducing apoptosis. Etoposide, the drug known to induce apoptosis in both in vivo and in vitro, was used as a positive control. Western blotting experiments using specific antibodies against known apoptotic markers suggested that InsP6 induced apoptotic changes were mediated via an intrinsic apoptotic pathway.

  11. ROCK signalling induced gene expression changes in mouse pancreatic ductal adenocarcinoma cells

    PubMed Central

    Rath, Nicola; Kalna, Gabriela; Clark, William; Olson, Michael F.

    2016-01-01

    The RhoA and RhoC GTPases act via the ROCK1 and ROCK2 kinases to promote actomyosin contraction, resulting in directly induced changes in cytoskeleton structures and altered gene transcription via several possible indirect routes. Elevated activation of the Rho/ROCK pathway has been reported in several diseases and pathological conditions, including disorders of the central nervous system, cardiovascular dysfunctions and cancer. To determine how increased ROCK signalling affected gene expression in pancreatic ductal adenocarcinoma (PDAC) cells, we transduced mouse PDAC cell lines with retroviral constructs encoding fusion proteins that enable conditional activation of ROCK1 or ROCK2, and subsequently performed RNA sequencing (RNA-Seq) using the Illumina NextSeq 500 platform. We describe how gene expression datasets were generated and validated by comparing data obtained by RNA-Seq with RT-qPCR results. Activation of ROCK1 or ROCK2 signalling induced significant changes in gene expression that could be used to determine how actomyosin contractility influences gene transcription in pancreatic cancer. PMID:27824338

  12. Upregulation of FAM83D promotes malignant phenotypes of lung adenocarcinoma by regulating cell cycle

    PubMed Central

    Shi, Run; Sun, Jing; Sun, Qi; Zhang, Quanli; Xia, Wenjie; Dong, Gaochao; Wang, Anpeng; Jiang, Feng; Xu, Lin

    2016-01-01

    The family with sequence similarity 83, member D (FAM83D) gene is upregulated in hepatocellular carcinoma and ovarian cancer, and its overexpression has been reported to positively correlate with tumor progression. However, the clinical significance and biological function of FAM83D in lung adenocarcinoma has not been investigated. We determined the expression profile and clinical significance of FAM83D using The Cancer Genome Atlas (TCGA) and immunohistochemistry (IHC) analysis. Considerable upregulation of FAM83D was observed in LUAD tissues compared with adjacent normal tissues, and its overexpression was significantly associated with more advanced clinicopathological characteristics. Importantly, multivariate Cox regression analysis indicated that a high level of FAM83D expression was an independent risk factor for worse overall survival in LUAD patients (HR = 1.692, P = 0.006). Inhibition of FAM83D suppressed the proliferation of LUAD cells via G1 phase arrest by downregulating cyclin D1 (CCND1) and cyclin E1 (CCNE1). The oncogenic role of FAM83D was also confirmed in vivo. In conclusion, our study demonstrated that FAM83D might exert its oncogenic activity in LUAD by regulating cell cycle, and that it could serve as a novel biomarker and a potential therapeutic target for LUAD. PMID:27904773

  13. Adenocarcinoma ex-goblet cell carcinoid (appendiceal-type crypt cell adenocarcinoma) is a morphologically distinct entity with highly aggressive behavior and frequent association with peritoneal/intra-abdominal dissemination: an analysis of 77 cases

    PubMed Central

    Reid, Michelle D; Basturk, Olca; Shaib, Walid L; Xue, Yue; Balci, Serdar; Choi, Hye-Jeong; Akkas, Gizem; Memis, Bahar; Robinson, Brian S; El-Rayes, Bassel F; Staley, Charles A; Staley, Christopher A; Winer, Joshua H; Russell, Maria C; Knight, Jessica H; Goodman, Michael; Krasinskas, Alyssa M; Adsay, Volkan

    2016-01-01

    High-grade versions of appendiceal goblet cell carcinoids (‘adenocarcinoma ex-goblet cell carcinoids’) are poorly characterized. We herein document 77 examples. Tumors occurred predominantly in females (74%), mean age 55 years (29–84), most with disseminated abdominal (77% peritoneal, 58% gynecologic tract involvement) and stage IV (65%) disease. Many presented to gynecologic oncologists, and nine had a working diagnosis of ovarian carcinoma. Metastases to liver (n =3) and lung (n =1) were uncommon and none arose in adenomatous lesions. Tumors had various histologic patterns, in variable combinations, most of which were fairly specific, making them recognizable as appendiceal in origin, even at metastatic sites: I: Ordinary goblet cell carcinoid/crypt pattern (rounded, non-luminal acini with well-oriented goblet cells), in variable amounts in all cases. II: Poorly cohesive goblet cell pattern (diffusely infiltrative cords/single files of signet ring-like/goblet cells). III: Poorly cohesive non-mucinous cell (diffuse-infiltrative growth of non-mucinous cells). IV: Microglandular (rosette-like glandular) pattern without goblet cells. V: Mixed ‘other’ carcinoma foci (including ordinary intestinal/mucinous). VI: goblet cell carcinoid pattern with high-grade morphology (marked nuclear atypia). VII: Solid sheet-like pattern punctuated by goblet cells/microglandular units. Ordinary nested/trabecular (‘carcinoid pattern’) was very uncommon. In total, 33(52%) died of disease, with median overall survival 38 months and 5-year survival 32%. On multivariate analysis perineural invasion and younger age (<55) were independently associated with worse outcome while lymph-vascular invasion, stage, and nodal status trended toward, but failed to reach, statistical significance. Worse behavior in younger patients combined with female predilection and ovarian-affinity raise the possibility of hormone-assisted tumor progression. In conclusion, ‘adenocarcinoma ex

  14. Adenocarcinoma ex-goblet cell carcinoid (appendiceal-type crypt cell adenocarcinoma) is a morphologically distinct entity with highly aggressive behavior and frequent association with peritoneal/intra-abdominal dissemination: an analysis of 77 cases.

    PubMed

    Reid, Michelle D; Basturk, Olca; Shaib, Walid L; Xue, Yue; Balci, Serdar; Choi, Hye-Jeong; Akkas, Gizem; Memis, Bahar; Robinson, Brian S; El-Rayes, Bassel F; Staley, Charles A; Staley, Christopher A; Winer, Joshua H; Russell, Maria C; Knight, Jessica H; Goodman, Michael; Krasinskas, Alyssa M; Adsay, Volkan

    2016-10-01

    High-grade versions of appendiceal goblet cell carcinoids ('adenocarcinoma ex-goblet cell carcinoids') are poorly characterized. We herein document 77 examples. Tumors occurred predominantly in females (74%), mean age 55 years (29-84), most with disseminated abdominal (77% peritoneal, 58% gynecologic tract involvement) and stage IV (65%) disease. Many presented to gynecologic oncologists, and nine had a working diagnosis of ovarian carcinoma. Metastases to liver (n=3) and lung (n=1) were uncommon and none arose in adenomatous lesions. Tumors had various histologic patterns, in variable combinations, most of which were fairly specific, making them recognizable as appendiceal in origin, even at metastatic sites: I: Ordinary goblet cell carcinoid/crypt pattern (rounded, non-luminal acini with well-oriented goblet cells), in variable amounts in all cases. II: Poorly cohesive goblet cell pattern (diffusely infiltrative cords/single files of signet ring-like/goblet cells). III: Poorly cohesive non-mucinous cell (diffuse-infiltrative growth of non-mucinous cells). IV: Microglandular (rosette-like glandular) pattern without goblet cells. V: Mixed 'other' carcinoma foci (including ordinary intestinal/mucinous). VI: goblet cell carcinoid pattern with high-grade morphology (marked nuclear atypia). VII: Solid sheet-like pattern punctuated by goblet cells/microglandular units. Ordinary nested/trabecular ('carcinoid pattern') was very uncommon. In total, 33(52%) died of disease, with median overall survival 38 months and 5-year survival 32%. On multivariate analysis perineural invasion and younger age (<55) were independently associated with worse outcome while lymph-vascular invasion, stage, and nodal status trended toward, but failed to reach, statistical significance. Worse behavior in younger patients combined with female predilection and ovarian-affinity raise the possibility of hormone-assisted tumor progression. In conclusion, 'adenocarcinoma ex-goblet cell carcinoid' is

  15. Pancreatic Satellite Cells Derived Galectin-1 Increase the Progression and Less Survival of Pancreatic Ductal Adenocarcinoma

    PubMed Central

    Gao, Jun; Wang, Sen; Ye, Nianyuan; Li, Ping; Gao, Sujun; Miao, Yi; Wang, Daorong; Jiang, Kuirong

    2014-01-01

    Background Galectin-1, a member of carbohydrate-binding proteins with a polyvalent function on tumor progression, was found strongly expressed in pancreatic satellite cells (PSCs), which partner in crime with cancer cells and promote the development of pancreatic ductal adenocarcinoma (PDAC). We evaluated the effects of PSCs derived Galectin-1 on the progression of PDAC, as well as the tumor establishment and development in mouse xenografts. Methods The relationship between immunohistochemistry staining intensity of Galectin-1 and clinicopathologic variables were assessed in 66 PDAC tissues, 18 chronic pancreatitis tissues and 10 normal controls. The roles of PSCs isolated from PDAC and normal pancreas on the proliferative activity, MMP2 and MMP9 expression, and the invasion of CFPAC-1 in the co-cultured system, as well as on the tumor establishment and development in mouse xenografts by mixed implanting with CFPAC-1 subcutaneously were evaluated. Results Galectin-1 expression was gradually increased from normal pancreas (negative), chronic pancreatitis (weak) to PDAC (strong), in which Galectin-1 expression was also increased from well, moderately to poorly differentiated PDAC. Galectin-1 staining intensity of pancreatic cancer tissue was associated with increase in tumor size, lymph node metastasis, perineural invasion and differentiation and UICC stage, and served as the independent prognostic indicator of poor survival of pancreatic cancer. In vitro and in vivo experiments indicated that TGF-β1 upregulated Galectin-1 expression in PSCs, which could further promotes the proliferative activity, MMP2 and MMP9 expression, and invasion of pancreatic cancer cells, as well as the tumor establishment and growth. Conclusion Galectin-1 expression in stromal cells of pancreatic cancer suggests that this protein plays a role in the promotion of cancer cells invasion and metastasis and provides a therapeutic target for the treatment of pancreatic cancer. PMID:24595374

  16. Glucocorticoids regulate surfactant protein synthesis in a pulmonary adenocarcinoma cell line

    SciTech Connect

    O'Reilly, M.A.; Gazdar, A.F.; Clark, J.C.; Pilot-Matias, T.J.; Wert, S.E.; Hull, W.M.; Whitsett, J.A. )

    1989-12-01

    Synthesis of pulmonary surfactant proteins SP-A, SP-B, and SP-C was demonstrated in a cell line derived from a human adenocarcinoma of the lung. The cells contained numerous lamellar inclusion bodies and formed organized groups of cells containing well-developed junctional complexes and apical microvillous membranes. Synthesis of SP-A was detected in the cells by enzyme-linked immunoabsorbent assay and by immunoprecipitation of (35S)methionine-labeled protein. SP-A was identified as an Mr 31,000-36,000 polypeptide containing asparagine-linked carbohydrate. Northern blot analysis detected SP-A mRNA of 2.2 kb. Dexamethasone (1-10 nM) enhanced the relative abundance of SP-A mRNA. Despite stimulation of SP-A mRNA, intracellular SP-A content was unaltered or inhibited by dexamethasone. SP-B and SP-C mRNAs and synthesis of the SP-B and SP-C precursors were markedly induced by dexamethasone. ProSP-B was synthesized and secreted primarily as an Mr 42,000-46,000 polypeptide. Proteolysis of the proSP-B resulted in the generation of endoglycosidase F-sensitive Mr = 19,000-21,000 and 25,000-27,000 peptides, which were detected both intra- and extracellularly. SP-C proprotein of Mr = 22,000 and smaller SP-C fragments were detected intracellularly but were not detected in the media. Mature forms of SP-B (Mr = 8,000) and SP-C (Mr = 4,000) were not detected. Glucocorticoids directly enhance the relative synthesis and mRNA of the surfactant proteins SP-A, SP-B, and SP-C. Discrepancies among SP-A mRNA, its de novo synthesis, and cell content suggest that glucocorticoid may alter both pre- and posttranslational factors modulating SP-A expression.

  17. Early-Onset Signet-Ring Cell Adenocarcinoma of the Colon: A Case Report and Review of the Literature

    PubMed Central

    Khan, Maliha; Korphaisarn, Krittiya; Saif, Aneeqa; Foo, Wai C.

    2017-01-01

    Colorectal cancer (CRC) remains the second leading cause of cancer-related deaths in the United States. While a decline has been observed in the older population, the occurrence of CRC in the adolescent and young adult (AYA) population has increased over the past two decades. The histopathologic characteristics and clinical behavior of CRC in AYA patients have been shown to be distinct from those of CRC in older adults. The rarer subtypes of CRC such as mucinous adenocarcinoma and signet-ring cell carcinoma are associated with a poorer prognosis compared to the more common subtypes. Here we report a case of a 20-year-old man who was diagnosed with stage IVB (T4 N2 M1, with peritoneal carcinomatosis) signet-ring cell adenocarcinoma of the colon. The scarcity of information on these rarer subtypes merits further study and investigation. PMID:28326211

  18. Hepatocyte nuclear factor-1β expression in clear cell adenocarcinomas of the bladder and urethra: diagnostic utility and implications for histogenesis.

    PubMed

    Brimo, Fadi; Herawi, Mehsati; Sharma, Rajni; Netto, Georges J; Epstein, Jonathan I; Illei, Peter B

    2011-11-01

    The histogenesis of clear cell adenocarcinoma of the bladder/urethra is uncertain. Hepatocyte nuclear factor-1β is a homeodomain protein that has been reported to be frequently overexpressed in ovarian clear cell adenocarcinoma in comparison with rare or no expression in other types of epithelial ovarian tumors. We assessed the expression of hepatocyte nuclear factor-1β in a series of 18 clear cell adenocarcinomas of the bladder and urethra and compared it with that of invasive high-grade transitional/urothelial carcinoma (n = 35); adenocarcinomas of the bladder, urethra, and paraurethral glands (n = 21); as well as nephrogenic adenomas of the bladder (n = 8). Staining intensity and extent were evaluated using a 4-tiered grading system (0-3). A case was considered positive for hepatocyte nuclear factor-1β if 10% or more of tumor cells showed at least weak nuclear staining or if any moderate or strong nuclear staining was observed. All 18 clear cell adenocarcinomas exhibited nuclear staining in at least 50% of tumor cells (16 strong, 1 moderate, and 1 weak with focal strong nuclear staining) in comparison with positive nuclear staining (moderate) in 1 of 21 bladder adenocarcinoma, 1 of 35 invasive high-grade transitional/urothelial carcinoma (weak to moderate staining), and 2 of 8 nephrogenic adenomas (1 weak and 1 moderate to strong staining). We concluded that hepatocyte nuclear factor-1β is a useful marker in differentiating clear cell adenocarcinomas of the bladder/urethra from invasive high-grade transitional/urothelial carcinoma and other types of bladder adenocarcinomas and to a lesser extent from nephrogenic adenomas. Hepatocyte nuclear factor-1β is of no diagnostic utility in discriminating primary bladder/urethral clear cell adenocarcinomas from metastatic clear cell adenocarcinomas of the female genital tract to the bladder/urethra. From a histogenesis standpoint, although the expression of hepatocyte nuclear factor-1β in both gynecologic and

  19. Multiple KRAS mutations in pancreatic adenocarcinoma: molecular features of neoplastic clones indicate the selection of divergent populations of tumor cells.

    PubMed

    Visani, Michela; de Biase, Dario; Baccarini, Paola; Fabbri, Carlo; Polifemo, Anna Maria; Zanini, Nicola; Pession, Annalisa; Tallini, Giovanni

    2013-12-01

    KRAS is one of the most common genes mutated in pancreatic adenocarcinoma. Multiple KRAS mutations may be detected within the same pancreatic adenocarcinoma, but it is usually unclear whether the different mutations represent biologically irrelevant molecular events or whether they indicate the coexistence of distinct sizable neoplastic clones within a given tumor. We identified a case of pancreatic adenocarcinoma with 5 different mutations in the KRAS gene and have been able to characterize the allelic distribution of the KRAS mutations and the size of the neoplastic clones using allele-specific locked nucleic acid polymerase chain reaction and next-generation sequencing (454 GS-Junior). The results indicate that the tumor is composed of 5 distinct cell populations: one is KRAS G12V mutated (~38% of neoplastic cells), the second is KRAS G12V in one allele and KRAS G12D in the other (~32%), the third is KRAS G12V in one allele and KRAS G12R in the other (~24%), and the fourth is KRAS G12V in one allele and KRAS G12C in the other (~6%). The fifth clone, representing a minority of neoplastic cells, has a KRAS Q61H mutation in addition to one of the above alterations. Microsatellite analysis identified mutation of the NR21 marker out of the 13 tested, indicating that the tumor has a defect in maintaining DNA integrity different from loss of conventional DNA mismatch repair. These results are consistent with the successive selection of divergent populations of tumor cells and underscore the relevance of nucleotide instability in pancreatic adenocarcinoma.

  20. Targeting gemcitabine containing liposomes to CD44 expressing pancreatic adenocarcinoma cells causes an increase in the antitumoral activity.

    PubMed

    Dalla Pozza, Elisa; Lerda, Carlotta; Costanzo, Chiara; Donadelli, Massimo; Dando, Ilaria; Zoratti, Elisa; Scupoli, Maria Teresa; Beghelli, Stefania; Scarpa, Aldo; Fattal, Elias; Arpicco, Silvia; Palmieri, Marta

    2013-05-01

    Pancreatic adenocarcinoma is often diagnosed when metastatic events have occurred. The early spread of circulating cancer cells expressing the CD44 receptor may play a crucial role in this process. In this study, we have investigated the cellular delivery ability and both in vitro and in vivo anti-tumoral activity of liposomes conjugated with two different low molecular weight hyaluronic acids (HA 4.8kDa and HA 12kDa), the primary ligand of CD44, and containing a lipophilic gemcitabine (GEM) pro-drug. By confocal microscopy and flow cytometry analyses, we demonstrate that the cellular uptake into a highly CD44-expressing pancreatic adenocarcinoma cell line is higher with HA-conjugated (12kDa>4.8kDa) than non-conjugated liposomes. Consistently, in vitro cytotoxic assays display an increased sensitivity towards GEM containing HA-liposomes, compared to non-conjugated liposomes. Conversely, CD44 non-expressing normal cells show a similar uptake and in vitro cytotoxicity with both HA-conjugated and non-conjugated liposomes. Furthermore, we demonstrate that the HA-liposomes are taken up into the cells via lipid raft-mediated endocytosis. All the liposome formulations containing GEM show a higher antitumoral activity than free GEM in a mouse xenograft tumor model of human pancreatic adenocarcinoma. The 12kDa HA-liposomes have the strongest efficiency, while non-conjugated liposomes and the 4.8kDa HA-liposomes are similarly active. Taken together, our results provide a strong rationale for further development of HA-conjugated liposomes to treat pancreatic adenocarcinoma.

  1. Human pancreatic stellate cells modulate 3D collagen alignment to promote the migration of pancreatic ductal adenocarcinoma cells.

    PubMed

    Drifka, Cole R; Loeffler, Agnes G; Esquibel, Corinne R; Weber, Sharon M; Eliceiri, Kevin W; Kao, W John

    2016-12-01

    A hallmark of pancreatic ductal adenocarcinoma (PDAC) is the ability for cancer cells to aggressively infiltrate and navigate through a dense stroma during the metastatic process. Key features of the PDAC stroma include an abundant population of activated pancreatic stellate cells (PSCs) and highly aligned collagen fibers; however, important questions remain regarding how collagen becomes aligned and what the biological manifestations are. To better understand how PSCs, aligned collagen, and PDAC cells might cooperate during the transition to invasion, we utilized a microchannel-based in vitro tumor model and advanced imaging technologies to recreate and examine in vivo-like heterotypic interactions. We found that PSCs participate in a collaborative process with cancer cells by orchestrating the alignment of collagen fibers that, in turn, are permissive to enhanced cell migration. Additionally, direct contact between PSCs, collagen, and PDAC cells is critical to invasion and co-migration of both cell types. This suggests PSCs may accompany and assist in navigating PDAC cells through the stromal terrain. Together, our data provides a new role for PSCs in stimulating the metastatic process and underscores the importance of collagen alignment in cancer progression.

  2. Differential DNA sequence deletions from chromosomes 3, 11, 13, and 17 in squamous-cell carcinoma, large-cell carcinoma, and adenocarcinoma of the human lung

    SciTech Connect

    Weston, A.; Willey, J.C.; Modali, R.; Sugimura, H.; McDowell, E.M.; Resau, J.; Light, B.; Haugen, A.; Mann, D.L.; Trump, B.F.; Harris, C.C. )

    1989-07-01

    Activation of protooncogens and inactivation of putative tumor suppressor genes are genetic lesions considered to be important in lung carcinogenesis. Fifty-four cases of non-small-cell lung cancer (23 adenocarcinomas, 23 squamous-cell carcinomas, and 8 large-cell carcinomas) were examined for loss of DNA sequences at 13 polymorphic genetic loci. Loss of heterozygosity was seen more frequently in squamous-cell carcinoma than in adenocarcinoma. The loss of DNA sequences from the short arm of chromosome 17 (D17S1 locus) was detected in 8 of 9 heterozygous cases of squamous-cell carcinoma and in only 2 of 11 heterozygous cases of adenocarcinomas. Loss of DNA sequences from chromosome 3 was seen in 16 of 31 cases where the constitutive DNA was heterozygous-i.e., informative. Loss of heterozygosity at the chromosome 13q locus, D13S3, was seen in 9 of 21 informative cases, and in 2 cases, both adenocarcinomas, duplication of the intact DNA sequences suggested the possibility that mitotic recombination had occurred. Frequent DNA sequence deletions, including those from chromosome 17, in squamous-cell carcinomas may reflect the extensive mutagenic and clastogenic effects of tobacco smoke that may lead to inactivation of putative tumor-suppressor genes.

  3. Characterization of vectorial chloride transport pathways in the human pancreatic duct adenocarcinoma cell line HPAF.

    PubMed

    Fong, Peying; Argent, Barry E; Guggino, William B; Gray, Michael A

    2003-08-01

    Pancreatic duct cells express a Ca2+-activated Cl- conductance (CaCC), upregulation of which may be beneficial to patients with cystic fibrosis. Here, we report that HPAF, a human pancreatic ductal adenocarcinoma cell line that expresses CaCC, develops into a high-resistance, anion-secreting epithelium. Mucosal ATP (50 microM) caused a fourfold increase in short-circuit current (Isc), a hyperpolarization of transepithelial potential difference (from -4.9 +/- 0.73 to -8.5 +/- 0.84 mV), and a fall in resistance to less than one-half of resting values. The effects of ATP were inhibited by mucosal niflumic acid (100 microM), implicating an apical CaCC in the response. RT-PCR indicated expression of hClC-2, hClC-3, and hClC-5, but surprisingly not hCLCA-1 or hCLCA-2. K+ channel activity was necessary to maintain the ATP-stimulated Isc. Using a pharmacological approach, we found evidence for two types of K+ channels in the mucosal and serosal membranes of HPAF cells, one activated by chlorzoxazone (500 microM) and sensitive to clotrimazole (30 microM), as well as one blocked by clofilium (100 microM) but not chromanol 293B (5 microM). RT-PCR indicated expression of the Ca2+-activated K+ channel KCNN4, as well as the acid-sensitive, four transmembrane domain, two pore K+ channel, KCNK5 (hTASK-2). Western blot analysis verified the expression of CLC channels, as well as KCNK5. We conclude that HPAF will be a useful model system for studying channels pertinent to anion secretion in human pancreatic duct cells.

  4. The possible molecular regulation mechanism of CIK cells inhibiting the proliferation of Human Lung Adenocarcinoma NCL-H157 Cells

    PubMed Central

    Li, Dengrui; Yang, Yonghui; Gao, Li; Guo, Sumin; Hui, Li; Zhu, Guiyun; Hou, Hongwei

    2016-01-01

    Abstract Cytokine-induced killer (CIK) cells were isolated and proliferation from human peripheral blood and cultured in appropriate growth medium. The biological characteristics of CIK cells were further determined by the characterization of surface markers by flow cytometry. CIK cells inhibited the proliferation of human lung adenocarcinoma NCL-H157 cells. Vascular endothelial growth factor (VEGF) expression was down-regulated in CIK cells co-cultured with NCL-H157 cells by western blotting analysis. Furthermore, in comparison with cells untreated by CIK, the NCL-H157 had a lower proliferation capacity. We proposed that the pharmacological mechanisms of NCL-H157 promoted by CIK can be estimated possibly with different biological significance that can be ascribed to down-regulated VEGF expression in vitro. The results suggest that the VEGF pathway guides developmental inhibiting of NCL-H157, and we speculate that the function of VEGF pathways is to guide NCL-H157 to inhibition by abundant CIK. PMID:28352757

  5. Frequency of brain metastasis in adenocarcinoma and large cell carcinoma of the lung: correlation with survival

    SciTech Connect

    Komaki, R.; Cox, J.D.; Stark, R.

    1983-10-01

    From January 1970 through December 1981, 469 patients with histologically or cytologically proven adenocarcinoma (AC) (349) and large cell carcinoma (LC) (120) of the lung were seen at the Department of Radiation Oncology, Medical College of Wisconsin Affiliated Hospitals. One quarter (126/469) of these patients had brain metastasis: 48 patients presented with brain metastasis and 78 patients subsequently developed brain metastasis. Brain was the dominant site of metastasis in 82 patients who received only cranial + thoracic irradiation; 37 patients (17 simultaneous, 20 metachronous) also required irradiation of other sites of metastasis. All 17 patients with LC, and 47/61 (77%) with AC who developed metachronous brain metastasis did so within one year. The cumulative probability of brain metastasis increased with survival to the levels predicted by autopsy studies. Therapeutic brain irradiation may result in long-term survival in patients with single organ brain metastasis. Since patients with AC and LC so frequently develop brain metastasis and the brain may be the only site of metastasis, prophylactic cranial irradiation may significantly reduce morbidity and mortality from these diseases.

  6. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas.

    PubMed

    Campbell, Joshua D; Alexandrov, Anton; Kim, Jaegil; Wala, Jeremiah; Berger, Alice H; Pedamallu, Chandra Sekhar; Shukla, Sachet A; Guo, Guangwu; Brooks, Angela N; Murray, Bradley A; Imielinski, Marcin; Hu, Xin; Ling, Shiyun; Akbani, Rehan; Rosenberg, Mara; Cibulskis, Carrie; Ramachandran, Aruna; Collisson, Eric A; Kwiatkowski, David J; Lawrence, Michael S; Weinstein, John N; Verhaak, Roel G W; Wu, Catherine J; Hammerman, Peter S; Cherniack, Andrew D; Getz, Gad; Artyomov, Maxim N; Schreiber, Robert; Govindan, Ramaswamy; Meyerson, Matthew

    2016-06-01

    To compare lung adenocarcinoma (ADC) and lung squamous cell carcinoma (SqCC) and to identify new drivers of lung carcinogenesis, we examined the exome sequences and copy number profiles of 660 lung ADC and 484 lung SqCC tumor-normal pairs. Recurrent alterations in lung SqCCs were more similar to those of other squamous carcinomas than to alterations in lung ADCs. New significantly mutated genes included PPP3CA, DOT1L, and FTSJD1 in lung ADC, RASA1 in lung SqCC, and KLF5, EP300, and CREBBP in both tumor types. New amplification peaks encompassed MIR21 in lung ADC, MIR205 in lung SqCC, and MAPK1 in both. Lung ADCs lacking receptor tyrosine kinase-Ras-Raf pathway alterations had mutations in SOS1, VAV1, RASA1, and ARHGAP35. Regarding neoantigens, 47% of the lung ADC and 53% of the lung SqCC tumors had at least five predicted neoepitopes. Although targeted therapies for lung ADC and SqCC are largely distinct, immunotherapies may aid in treatment for both subtypes.

  7. ROCK signaling promotes collagen remodeling to facilitate invasive pancreatic ductal adenocarcinoma tumor cell growth.

    PubMed

    Rath, Nicola; Morton, Jennifer P; Julian, Linda; Helbig, Lena; Kadir, Shereen; McGhee, Ewan J; Anderson, Kurt I; Kalna, Gabriela; Mullin, Margaret; Pinho, Andreia V; Rooman, Ilse; Samuel, Michael S; Olson, Michael F

    2017-02-01

    Pancreatic ductal adenocarcinoma (PDAC) is a major cause of cancer death; identifying PDAC enablers may reveal potential therapeutic targets. Expression of the actomyosin regulatory ROCK1 and ROCK2 kinases increased with tumor progression in human and mouse pancreatic tumors, while elevated ROCK1/ROCK2 expression in human patients, or conditional ROCK2 activation in a Kras(G12D)/p53(R172H) mouse PDAC model, was associated with reduced survival. Conditional ROCK1 or ROCK2 activation promoted invasive growth of mouse PDAC cells into three-dimensional collagen matrices by increasing matrix remodeling activities. RNA sequencing revealed a coordinated program of ROCK-induced genes that facilitate extracellular matrix remodeling, with greatest fold-changes for matrix metalloproteinases (MMPs) Mmp10 and Mmp13 MMP inhibition not only decreased collagen degradation and invasion, but also reduced proliferation in three-dimensional contexts. Treatment of Kras(G12D)/p53(R172H) PDAC mice with a ROCK inhibitor prolonged survival, which was associated with increased tumor-associated collagen. These findings reveal an ancillary role for increased ROCK signaling in pancreatic cancer progression to promote extracellular matrix remodeling that facilitates proliferation and invasive tumor growth.

  8. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas

    PubMed Central

    Campbell, Joshua D.; Alexandrov, Anton; Kim, Jaegil; Wala, Jeremiah; Berger, Alice H.; Pedamallu, Chandra Sekhar; Shukla, Sachet A.; Guo, Guangwu; Brooks, Angela N.; Murray, Bradley A.; Imielinski, Marcin; Hu, Xin; Ling, Shiyun; Akbani, Rehan; Rosenberg, Mara; Cibulskis, Carrie; Ramachandran, Aruna; Collisson, Eric A.; Kwiatkowski, David J.; Lawrence, Michael S.; Weinstein, John N.; Verhaak, Roel G. W.; Wu, Catherine J.; Hammerman, Peter S.; Cherniack, Andrew D.; Getz, Gad; Artyomov, Maxim N.; Schreiber, Robert; Govindan, Ramaswamy; Meyerson, Matthew

    2016-01-01

    To compare lung adenocarcinoma (ADC) and lung squamous cell carcinoma (SqCC) and to identify new drivers of lung carcinogenesis, we examined exome sequences and copy number profiles of 660 lung ADC and 484 lung SqCC tumor/normal pairs. Recurrent alterations in lung SqCCs were more similar to other squamous carcinomas than to lung ADCs. Novel significantly mutated genes included PPP3CA, DOT1L, and FTSJD1 in lung ADC, RASA1 in lung SqCC, and KLF5, EP300, and CREBBP in both tumor types. Novel amplification peaks encompassed MIR21 in lung ADC, MIR205 in lung SqCC, and MAPK1 in both. Lung ADCs lacking receptor tyrosine kinase/Ras/Raf alterations revealed mutations in SOS1, VAV1, RASA1, and ARHGAP35. Regarding neoantigens, 47% of the lung ADC and 53% of the lung SqCC tumors had at least 5 predicted neoepitopes. While targeted therapies for lung ADC and lung SqCC are largely distinct, immunotherapies may aid in treatment for both subtypes. PMID:27158780

  9. Glutaraldehyde-Mediated Synthesis of Asparaginase-Bound Maghemite Nanocomposites: Cytotoxicity against Human Colon Adenocarcinoma Cells.

    PubMed

    Baskar, G; George, Garrick Bikku

    2016-01-01

    Drugs processed using nanobiotechnology may be more biocompatible, with sustainable and stabilised release or action. L-asparaginase produced from fungi has many advantages for treatment of lymphocytic leukemia with lesser side effect. In the present work, maghemite nanobiocomposites of fungal asparaginase were produced using glutaraldehyde-pretreated colloidal magnetic nanoparticles. Formation of nanobiocomposites was observed using laser light scattering and confirmed by UV-visible spectrophotometry with the absorption peak at 497 nm. The specific asparaginase activity was increased from 320 U/mg with crude asparaginase to 481.5 U/mg. FTIR analysis confirmed that primary amines are the functional groups involved in binding of asparaginase on magnetic nanoparticles. The average size of the produced nanobiocomposite was found in the range of 30 nm to 40 nm using histogram analysis. The magnetic nanobiocomposite of asparaginase synthesised using glutaraldehyde showed 90.75% cytotoxicity against human colon adenocarcinoma cell lines. Hence it can be used as an active anticancer drug with an augmented level of bioavailability.

  10. Whole exome sequencing of independent lung adenocarcinoma, lung squamous cell carcinoma, and malignant peritoneal mesothelioma

    PubMed Central

    Vanni, Irene; Coco, Simona; Bonfiglio, Silvia; Cittaro, Davide; Genova, Carlo; Biello, Federica; Mora, Marco; Rossella, Valeria; Dal Bello, Maria Giovanna; Truini, Anna; Banelli, Barbara; Lazarevic, Dejan; Alama, Angela; Rijavec, Erika; Barletta, Giulia; Grossi, Francesco

    2016-01-01

    Abstract The presence of multiple primary tumors (MPT) in a single patient has been identified with an increasing frequency. A critical issue is to establish if the second tumor represents an independent primary cancer or a metastasis. Therefore, the assessment of MPT clonal origin might help understand the disease behavior and improve the management/prognosis of the patient. Herein, we report a 73-year-old male smoker who developed 2 primary lung cancers (adenocarcinoma and squamous cell carcinoma) and a malignant peritoneal mesothelioma (PM). Whole exome sequencing (WES) of the 3 tumors and of germline DNA was performed to determine the clonal origin and identify genetic cancer susceptibility. Both lung cancers were characterized by a high mutational rate with distinct mutational profiles and activation of tumor-specific pathways. Conversely, the PM harbored a relative low number of genetic variants and a novel mutation in the WT1 gene that might be involved in the carcinogenesis of nonasbestos-related mesothelioma. Finally, WES of the germinal DNA displayed several single nucleotide polymorphisms in DNA repair genes likely conferring higher cancer susceptibility. Overall, WES did not disclose any somatic genetic variant shared across the 3 tumors, suggesting their clonal independency; however, the carcinogenic effect of smoke combined with a deficiency in DNA repair genes and the patient advanced age might have been responsible for the MPT development. This case highlights the WES importance to define the clonal origin of MPT and susceptibility to cancer. PMID:27902597

  11. Circulating Tumor Cell Phenotype Predicts Recurrence and Survival in Pancreatic Adenocarcinoma

    PubMed Central

    Poruk, Katherine E.; Valero, Vicente; Saunders, Tyler; Blackford, Amanda L.; Griffin, James F.; Poling, Justin; Hruban, Ralph H.; Anders, Robert A.; Herman, Joseph; Zheng, Lei; Rasheed, Zeshaan A.; Laheru, Daniel A.; Ahuja, Nita; Weiss, Matthew J.; Cameron, John L.; Goggins, Michael; Iacobuzio-Donahue, Christine A.; Wood, Laura D.; Wolfgang, Christopher L.

    2016-01-01

    Objective We assessed circulating tumor cells (CTCs) with epithelial and mesenchymal phenotypes as a potential prognostic biomarker for patients with pancreatic adenocarcinoma (PDAC). Background PDAC is the fourth leading cause of cancer death in the United States. There is an urgent need to develop biomarkers that predict patient prognosis and allow for better treatment stratification. Methods Peripheral and portal blood samples were obtained from 50 patients with PDAC before surgical resection and filtered using the Isolation by Size of Epithelial Tumor cells method. CTCs were identified by immunofluorescence using commercially available antibodies to cytokeratin, vimentin, and CD45. Results Thirty-nine patients (78%) had epithelial CTCs that expressed cytokeratin but not CD45. Twenty-six (67%) of the 39 patients had CTCs which also expressed vimentin, a mesenchymal marker. No patients had cytokeratin-negative and vimentin-positive CTCs. The presence of cytokeratin-positive CTCs (P < 0.01), but not mesenchymal-like CTCs (P = 0.39), was associated with poorer survival. The presence of cytokeratin-positive CTCs remained a significant independent predictor of survival by multi-variable analysis after accounting for other prognostic factors (P < 0.01). The detection of CTCs expressing both vimentin and cytokeratin was predictive of recurrence (P = 0.01). Among patients with cancer recurrence, those with vimentin-positive and cytokeratin-expressing CTCs had decreased median time to recurrence compared with patients without CTCs (P = 0.02). Conclusions CTCs are an exciting potential strategy for understanding the biology of metastases, and provide prognostic utility for PDAC patients. CTCs exist as heterogeneous populations, and assessment should include phenotypic identification tailored to characterize cells based on epithelial and mesenchymal markers. PMID:26756760

  12. Advanced lung adenocarcinomas with ROS1-rearrangement frequently show hepatoid cell

    PubMed Central

    Kong, Mei; Zhou, Jianya; Ding, Wei; Zhou, Jianying

    2016-01-01

    Defining distinctive histologic characteristics of ROS1-rearranged non-small-cell lung carcinomas (NSCLCs) may help identify cases that merit molecular testing. However, the majority of previous reports have focused on surgical specimens but only limited studies assessed histomorphology of advanced NSCLCs. In order to identify the clinical and histological characteristics of ROS1-rearranged advanced NSCLCs, we examined five hundred sixteen Chinese patients with advanced NSCLCs using ROS1 fluorescence in situ hybridization and real-time polymerase chain reaction and then analyzed for clinical and pathological features. We performed univariate and multivariate analyses to identify predictive factors associated with ROS1 rearrangement. 19 tumors were identified with ROS1 rearrangement (3.7% of adenocarcinomas). 16 ROS1+ and 122 ROS1- samples with available medical records and enough tumor cells were included for histological analysis. Compared with ROS1-negative advanced NSCLCs, ROS1-rearranged advanced NSCLCs were associated with a younger age at presentation. ROS1 rearrangements were not significantly associated with sex, smoking history, drinking history and metastatic sites. The most common histological pattern was solid growth (12/16), followed by acinar (4/16) growth. 66.7% cases with solid growth pattern showed hepatoid cytology (8/12) and 75% cases with acinar growth pattern showed a cribriform structure (3/4). 18.8% cases were found to have abundant extracellular mucus or signet-ring cells (3/16). Only one case with solid growth pattern showed psammomatous calcifications. In conclusion, age, hepatoid cytology and cribriform structure are the independent predictors for ROS1-rearranged advanced NSCLCs, recognizing these may be helpful in finding candidates for genomic alterations, especially when available tissue samples are limited. PMID:27708233

  13. Signet-ring cell carcinoma coexisting with adenocarcinoma arising in a choledochal cyst: report of a case.

    PubMed

    Hua, Rong; Zhang, Jun-feng; Liu, Wei; Huo, Yan-miao; Sun, Yong-wei

    2015-08-01

    Signet-ring cell carcinoma (SRCC) is rare in the biliary system. We report a case of SRCC coexisting with adenocarcinoma, arising in a choledochal cyst of the extrahepatic bile duct. The patient was a 52-year-old man, hospitalized for the investigation of jaundice and pruritus. Abdominal computed tomography and magnetic resonance cholangiopancreatography showed a huge choledochal cyst and distal common bile duct cancer. The patient underwent a pancreaticoduodenectomy with extended lymph node dissection. Histologic examination confirmed an SRCC coexisting with adenocarcinoma arising in a choledochal cyst. Postoperative chemotherapy had to be discontinued after only two cycles because the patient suffered serious side effects. Recurrence was detected in the bilioenteric anastomosis 4 months after surgery, and he died 6 months after surgery. To our knowledge, this represents the first case of SRCC arising in a choledochal cyst of the extrahepatic bile duct ever to be reported.

  14. Wheat germ extract decreases glucose uptake and RNA ribose formation but increases fatty acid synthesis in MIA pancreatic adenocarcinoma cells.

    PubMed

    Boros, L G; Lapis, K; Szende, B; Tömösközi-Farkas, R; Balogh, A; Boren, J; Marin, S; Cascante, M; Hidvégi, M

    2001-08-01

    The fermented wheat germ extract with standardized benzoquinone composition has potent tumor propagation inhibitory properties. The authors show that this extract induces profound metabolic changes in cultured MIA pancreatic adenocarcinoma cells when the [1,2-13C2]glucose isotope is used as the single tracer with biologic gas chromatography-mass spectrometry. MIA cells treated with 0.1, 1, and 10 mg/mL wheat germ extract showed a dose-dependent decrease in cell glucose consumption. uptake of isotope into ribosomal RNA (2.4%, 9.4%, and 28.0%), and release of 13CO2. Conversely, direct glucose oxidation and ribose recycling in the pentose cycle showed a dose-dependent increase of 1.2%, 20.7%, and 93.4%. The newly synthesized fraction of cell palmitate and the 13C enrichment of acetyl units were also significantly increased with all doses of wheat germ extract. The fermented wheat germ extract controls tumor propagation primarily by regulating glucose carbon redistribution between cell proliferation-related and cell differentiation-related macromolecules. Wheat germ extract treatment is likely associated with the phosphorylation and transcriptional regulation of metabolic enzymes that are involved in glucose carbon redistribution between cell proliferation-related structural and functional macromolecules (RNA, DNA) and the direct oxidative degradation of glucose, which have devastating consequences for the proliferation and survival of pancreatic adenocarcinoma cells in culture.

  15. LAP TGF-Beta Subset of CD4(+)CD25(+)CD127(-) Treg Cells is Increased and Overexpresses LAP TGF-Beta in Lung Adenocarcinoma Patients.

    PubMed

    Islas-Vazquez, Lorenzo; Prado-Garcia, Heriberto; Aguilar-Cazares, Dolores; Meneses-Flores, Manuel; Galicia-Velasco, Miriam; Romero-Garcia, Susana; Camacho-Mendoza, Catalina; Lopez-Gonzalez, Jose Sullivan

    2015-01-01

    Lung cancer is the leading cause of cancer death worldwide. Adenocarcinoma, the most commonly diagnosed histologic type of lung cancer, is associated with smoking. Cigarette smoke promotes inflammation on the airways, which might be mediated by Th17 cells. This inflammatory environment may contribute to tumor development. In contrast, some reports indicate that tumors may induce immunosuppressive Treg cells to dampen immune reactivity, supporting tumor growth and progression. Thus, we aimed to analyze whether chronic inflammation or immunosuppression predominates at the systemic level in lung adenocarcinoma patients, and several cytokines and Th17 and Treg cells were studied. Higher proportions of IL-17-producing CD4(+) T-cells were found in smoking control subjects and in lung adenocarcinoma patients compared to nonsmoking control subjects. In addition, lung adenocarcinoma patients increased both plasma concentrations of IL-2, IL-4, IL-6, and IL-10, and proportions of Latency Associated Peptide (LAP) TGF-β subset of CD4(+)CD25(+)CD127(-) Treg cells, which overexpressed LAP TGF-β. This knowledge may lead to the development of immunotherapies that could inhibit the suppressor activity mediated by the LAP TGF-β subset of CD4(+)CD25(+)CD127(-) Treg cells to promote reactivity of immune cells against lung adenocarcinoma cells.

  16. LAP TGF-Beta Subset of CD4+CD25+CD127− Treg Cells is Increased and Overexpresses LAP TGF-Beta in Lung Adenocarcinoma Patients

    PubMed Central

    Islas-Vazquez, Lorenzo; Prado-Garcia, Heriberto; Aguilar-Cazares, Dolores; Meneses-Flores, Manuel; Galicia-Velasco, Miriam; Romero-Garcia, Susana; Camacho-Mendoza, Catalina; Lopez-Gonzalez, Jose Sullivan

    2015-01-01

    Lung cancer is the leading cause of cancer death worldwide. Adenocarcinoma, the most commonly diagnosed histologic type of lung cancer, is associated with smoking. Cigarette smoke promotes inflammation on the airways, which might be mediated by Th17 cells. This inflammatory environment may contribute to tumor development. In contrast, some reports indicate that tumors may induce immunosuppressive Treg cells to dampen immune reactivity, supporting tumor growth and progression. Thus, we aimed to analyze whether chronic inflammation or immunosuppression predominates at the systemic level in lung adenocarcinoma patients, and several cytokines and Th17 and Treg cells were studied. Higher proportions of IL-17-producing CD4+ T-cells were found in smoking control subjects and in lung adenocarcinoma patients compared to nonsmoking control subjects. In addition, lung adenocarcinoma patients increased both plasma concentrations of IL-2, IL-4, IL-6, and IL-10, and proportions of Latency Associated Peptide (LAP) TGF-β subset of CD4+CD25+CD127− Treg cells, which overexpressed LAP TGF-β. This knowledge may lead to the development of immunotherapies that could inhibit the suppressor activity mediated by the LAP TGF-β subset of CD4+CD25+CD127− Treg cells to promote reactivity of immune cells against lung adenocarcinoma cells. PMID:26582240

  17. Relative binding affinity does not predict biological response to xenoestrogens in rat endometrial adenocarcinoma cells.

    PubMed

    Strunck, E; Stemmann, N; Hopert, A; Wünsche, W; Frank, K; Vollmer, G

    2000-10-01

    The possible adverse effects of the so-called environmental estrogens have raised considerable concern. Developmental, endocrine and reproductive disorders in wildlife animals have been linked to high exposure to persistent environmental chemicals with estrogen-like activity (xenoestrogens); yet, the potential impact of environmental estrogens on human health is currently under debate also due to lack of data. A battery of in vitro assays exist for identifying compounds with estrogenic activity, but only a few models are available to assess estrogenic potency in a multiparametric analysis. We have recently established the endometrial adenocarcinoma cell line RUCA-I; it enables us to compare estrogenic effects both in vitro and in vivo as these cells are estrogen responsive in vitro and grow estrogen sensitive tumors if inoculated in syngeneic animals in vivo. Here we report in vitro data concerning (a) the relative binding affinity of the selected synthetic chemicals Bisphenol A, nonylphenol, p-tert-octylphenol, and o,p-DDT to the estrogen receptor of RUCA-I cells and (b) the relative potency of these compounds in inducing increased production of complement C3, an endogenous estrogen-responsive gene. Competitive Scatchard analysis revealed that xenoestrogens bound with an at least 1000-fold lower affinity to the estrogen receptor of RUCA-I cells than estradiol itself, thereby exhibiting the following affinity ranking, estradiol>nonylphenol>bisphenol A approximately p-tert-octylphenol>o,p-DDT. Despite these low binding affinities, bisphenol A, nonylphenol and p-tert-octylphenol increased production of complement C3 in a dose dependent manner. Compared with estradiol, only 100-fold higher concentrations were needed for all the compounds to achieve similar levels of induction, except o,p-DDT which was by far less potent. Northern blot analyses demonstrated that the increased production of complement C3 was mediated by an increased transcription. In summary, cultured

  18. Comparison of absorption spectra of adenocarcinoma and squamous cell carcinoma cervical tissue

    NASA Astrophysics Data System (ADS)

    Peresunko, O. P.; Zelinska, N. V.; Prydij, O. G.; Zymnyakov, D. A.; Ushakova, O. V.

    2013-12-01

    We studied a methods of assessment of a connective tissue of cervix in terms of specific volume of fibrous component and an optical density of staining of connective tissue fibers in the stroma of squamous cancer and cervix adenocarcinoma. An absorption spectra of blood plasma of the patients suffering from squamous cancer and cervix adenocarcinoma both before the surgery and in postsurgical periods were obtained. Linear dichroism measurements transmittance in polarized light at different orientations of the polarization plane relative to the direction of the dominant orientation in the structure of the sample of biotissues of stroma of squamous cancer and cervix adenocarcinoma were carried. Results of the investigation of the tumor tissues showed that the magnitude of the linear dichroism Δ is insignificant in the researched spectral range λ=280-840 nm and specific regularities in its change observed short-wave ranges.

  19. Transcriptome Sequencing Reveals Key Pathways and Genes Associated with Cisplatin Resistance in Lung Adenocarcinoma A549 Cells

    PubMed Central

    Fang, Yani; Zhang, Cheng; Wu, Tong; Wang, Qi; Liu, Jinhui; Dai, Penggao

    2017-01-01

    Acquired resistance to cisplatin-based chemotherapy frequently occurs in patients with non-small cell lung cancer, and the underlying molecular mechanisms are not well understood. The aim of this study was to investigate whether a distinct gene expression pattern is associated with acquired resistance to cisplatin in human lung adenocarcinoma. Whole-transcriptome sequencing was performed to compare the genome-wide gene expression patterns of the human lung adenocarcinoma A549 cisplatin-resistant cell line A549/DDP with those of its progenitor cell line A549. A total of 1214 differentially expressed genes (DEGs) were identified, 656 of which were upregulated and 558 were downregulated. Functional annotation of the DEGs in the Kyoto Encyclopedia of Genes and Genomes database revealed that most of the identified genes were enriched in the PI3K/AKT, mitogen-activated protein kinase, actin cytoskeleton regulation, and focal adhesion pathways in A549/DDP cells. These results support previous studies demonstrating that the pathways regulating cell proliferation and invasion confer resistance to chemotherapy. Furthermore, the results proved that cell adhesion and cytoskeleton regulation is associated with cisplatin resistance in human lung cancer. Our study provides new promising biomarkers for lung cancer prognosis and potential therapeutic targets for lung cancer treatment. PMID:28114404

  20. Mounting Pressure in the Microenvironment: Fluids, Solids, and Cells in Pancreatic Ductal Adenocarcinoma.

    PubMed

    DuFort, Christopher C; DelGiorno, Kathleen E; Hingorani, Sunil R

    2016-06-01

    The microenvironment influences the pathogenesis of solid tumors and plays an outsized role in some. Our understanding of the stromal response to cancers, particularly pancreatic ductal adenocarcinoma, has evolved from that of host defense to tumor offense. We know that most, although not all, of the factors and processes in the microenvironment support tumor epithelial cells. This reappraisal of the roles of stromal elements has also revealed potential vulnerabilities and therapeutic opportunities to exploit. The high concentration in the stroma of the glycosaminoglycan hyaluronan, together with the large gel-fluid phase and pressures it generates, were recently identified as primary sources of treatment resistance in pancreas cancer. Whereas the relatively minor role of free interstitial fluid in the fluid mechanics and perfusion of tumors has been long appreciated, the less mobile, gel-fluid phase has been largely ignored for historical and technical reasons. The inability of classic methods of fluid pressure measurement to capture the gel-fluid phase, together with a dependence on xenograft and allograft systems that inaccurately model tumor vascular biology, has led to an undue emphasis on the role of free fluid in impeding perfusion and drug delivery and an almost complete oversight of the predominant role of the gel-fluid phase. We propose that a hyaluronan-rich, relatively immobile gel-fluid phase induces vascular collapse and hypoperfusion as a primary mechanism of treatment resistance in pancreas cancers. Similar properties may be operant in other solid tumors as well, so revisiting and characterizing fluid mechanics with modern techniques in other autochthonous cancers may be warranted.

  1. Eriocalyxin B induces apoptosis and cell cycle arrest in pancreatic adenocarcinoma cells through caspase- and p53-dependent pathways

    SciTech Connect

    Li, Lin; Yue, Grace G.L.; Lau, Clara B.S.; Sun, Handong; Fung, Kwok Pui; Leung, Ping Chung; Han, Quanbin; Leung, Po Sing

    2012-07-01

    Pancreatic cancer is difficult to detect early and responds poorly to chemotherapy. A breakthrough in the development of new therapeutic agents is urgently needed. Eriocalyxin B (EriB), isolated from the Isodon eriocalyx plant, is an ent-kaurane diterpenoid with promise as a broad-spectrum anti-cancer agent. The anti-leukemic activity of EriB, including the underlying mechanisms involved, has been particularly well documented. In this study, we demonstrated for the first time EriB's potent cytotoxicity against four pancreatic adenocarcinoma cell lines, namely PANC-1, SW1990, CAPAN-1, and CAPAN-2. The effects were comparable to that of the chemotherapeutic camptothecin (CAM), but with much lower toxicity against normal human liver WRL68 cells. EriB's cytoxicity against CAPAN-2 cells was found to involve caspase-dependent apoptosis and cell cycle arrest at the G2/M phase. Moreover, the p53 pathway was found to be activated by EriB in these cells. Furthermore, in vivo studies showed that EriB inhibited the growth of human pancreatic tumor xenografts in BALB/c nude mice without significant secondary adverse effects. These results suggest that EriB should be considered a candidate for pancreatic cancer treatment. -- Highlights: ► We study Eriocalyxin B (EriB)'s cytotoxic effects on pancreatic cancer cell lines. ► EriB inhibits cell proliferation via mediation of apoptosis and cell cycle arrest. ► The effects are involved in caspase-dependent apoptosis and p53 pathway. ► In vivo study also shows EriB inhibits the growth of human pancreatic tumor. ► EriB can be a good candidate for chemotherapy in pancreatic cancer.

  2. Clinicopathologic and molecular features of sporadic early-onset colorectal adenocarcinoma: an adenocarcinoma with frequent signet ring cell differentiation, rectal and sigmoid involvement, and adverse morphologic features.

    PubMed

    Chang, Daniel T; Pai, Rish K; Rybicki, Lisa A; Dimaio, Michael A; Limaye, Maneesha; Jayachandran, Priya; Koong, Albert C; Kunz, Pamela A; Fisher, George A; Ford, James M; Welton, Mark; Shelton, Andrew; Ma, Lisa; Arber, Daniel A; Pai, Reetesh K

    2012-08-01

    Recent literature suggests an increasing incidence of colorectal carcinoma in young patients. We performed a histologic, molecular, and immunophenotypic analysis of patients with sporadic early-onset (≤40 years of age) colorectal carcinoma seen at our institution from the years 2000-2010 and compared these tumors to a cohort of consecutively resected colorectal carcinomas seen in patients >40 years of age. A total of 1160 primary colorectal adenocarcinomas were surgically resected for the years 2000 through 2010. Of these, 75 (6%) were diagnoses in patients ≤40 years of age of which 13 (17%) demonstrated abnormalities in DNA mismatch repair, 4 (5%) were in patients with known germline genetic disorders (two patients with familial adenomatous polyposis, one patient with juvenile polyposis, and one patient with Li-Fraumeni syndrome), and three patients (4%) had long-standing chronic inflammatory bowel disease. The sporadic early-onset colorectal carcinoma group comprised a total of 55 patients (55/1160, 5%) and were compared with a control group comprising 73 consecutively resected colorectal carcinomas with proficient DNA mismatch repair in patients >40 years of age. For the early-onset colorectal carcinoma group, most cases (33/55, 60%) were diagnosed between the age of 35 and 40 years of age. Compared with the control group, the early-onset colorectal carcinoma group was significantly different with respect to tumor location (P<0.007) with 80% (44/55 cases) identified in either the sigmoid colon (24/55, 44%) or rectum (20/55, 36%). Morphologically, early-onset colorectal carcinomas more frequently displayed adverse histologic features compared with the control colorectal carcinoma group such as signet ring cell differentiation (7/55, 13% vs 1/73, 1%, P=0.021), perineural invasion (16/55, 29% vs 8/73, 11%, P=0.009) and venous invasion (12/55, 22% vs 4/73, 6%, P=0.006). A precursor adenomatous lesion was less frequently identified in the early-onset colorectal

  3. Epigenetic downregulation of RUNX3 by DNA methylation induces docetaxel chemoresistance in human lung adenocarcinoma cells by activation of the AKT pathway.

    PubMed

    Zheng, Yun; Wang, Rui; Song, Hai-Zhu; Pan, Ban-Zhou; Zhang, You-Wei; Chen, Long-Bang

    2013-11-01

    The RUNX3 gene has been shown to function as a tumor suppressor gene implicated in various cancers, but its association with tumor chemoresistance has not been fully understood. Here, we investigated the effect of epigenetic downregulation of RUNX3 in docetaxel resistance of human lung adenocarcinoma and its possible molecular mechanisms. RUNX3 was found to be downregulated by hypermethylation in docetaxel-resistant lung adenocarcinoma cells. Its overexpression could resensitize cells to docetaxel both in vitro and in vivo by growth inhibition, enhancement of apoptosis and G1 phase arrest. Conversely, knockdown of RUNX3 could lead to the decreased sensitivity of parental human lung adenocarcinoma cells to docetaxel by enhancing proliferative capacity. Furthermore, we showed that overexpression of RUNX3 could inactivate the AKT/GSK3β/β-catenin signaling pathway in the docetaxel-resistant cells. Importantly, co-transfection of RUNX3 and constitutively active Akt1 could reverse the effects of RUNX3 overexpression, while treatment with the MK-2206 (AKT inhibitor) mimicked the effects of RUNX3 overexpression in docetaxel-resistant human lung adenocarcinoma cells. Immunohistochemical analysis revealed that decreased RUNX3 expression was correlated with high expression of Akt1 and decreased sensitivity of patients to docetaxel-based chemotherapy. Taken together, our results suggest that epigenetic downregulation of RUNX3 can induce docetaxel resistance in human lung adenocarcinoma cells by activating AKT signaling and increasing expression of RUNX3 may represent a promising strategy for reversing docetaxel resistance in the future.

  4. cAMP-activated chloride channels in a CFTR-transfected pancreatic adenocarcinoma-derived cell line, pANS6.

    PubMed

    Smith, A N; Wardle, C J; Winpenny, J P; Verdon, B; Gray, M A; Argent, B E; Harris, A

    1995-06-09

    Pancreatic adenocarcinoma cell lines rarely express the CFTR gene, despite the high levels of CFTR protein that are present in primary pancreatic duct cells. We have attempted to generate a non-CF pancreatic adenocarcinoma cell line that stably produces high levels of CFTR mRNA and protein by transfecting a vector containing the CFTR cDNA, driven by a strong mammalian promoter, into the poorly differentiated pancreatic adenocarcinoma cell line, Panc-1. The pANS6 pancreatic duct cell line expresses substantial levels of CFTR mRNA, but little CFTR protein. Despite this we were able to detect low conductance chloride channels in 40% of patches, stimulated with cAMP, that have similar biophysical properties to CFTR.

  5. Cuminaldehyde from Cinnamomum verum Induces Cell Death through Targeting Topoisomerase 1 and 2 in Human Colorectal Adenocarcinoma COLO 205 Cells

    PubMed Central

    Tsai, Kuen-daw; Liu, Yi-Heng; Chen, Ta-Wei; Yang, Shu-Mei; Wong, Ho-Yiu; Cherng, Jonathan; Chou, Kuo-Shen; Cherng, Jaw-Ming

    2016-01-01

    Cinnamomum verum, also called true cinnamon tree, is employed to make the seasoning cinnamon. Furthermore, the plant has been used as a traditional Chinese herbal medication. We explored the anticancer effect of cuminaldehyde, an ingredient of the cortex of the plant, as well as the molecular biomarkers associated with carcinogenesis in human colorectal adenocarcinoma COLO 205 cells. The results show that cuminaldehyde suppressed growth and induced apoptosis, as proved by depletion of the mitochondrial membrane potential, activation of both caspase-3 and -9, and morphological features of apoptosis. Moreover, cuminaldehyde also led to lysosomal vacuolation with an upregulated volume of acidic compartment and cytotoxicity, together with inhibitions of both topoisomerase I and II activities. Additional study shows that the anticancer activity of cuminaldehyde was observed in the model of nude mice. Our results suggest that the anticancer activity of cuminaldehyde in vitro involved the suppression of cell proliferative markers, topoisomerase I as well as II, together with increase of pro-apoptotic molecules, associated with upregulated lysosomal vacuolation. On the other hand, in vivo, cuminaldehyde diminished the tumor burden that would have a significant clinical impact. Furthermore, similar effects were observed in other tested cell lines. In short, our data suggest that cuminaldehyde could be a drug for chemopreventive or anticancer therapy. PMID:27231935

  6. Germ Cell Tumor Targeting Chemotherapy in Gastric Adenocarcinoma with an Endodermal Sinus Tumor Component: A Case Report.

    PubMed

    Choi, Jung Eun; Choe, A Reum; Yoon, Sang Eun; Nam, Eun Mi; Park, Heejung; Lee, Kyoung Eun

    2017-01-01

    The most common sites for extragonadal germ cell tumors are the midline mediastinum, retroperitoneum and, much less frequently, the stomach. The stomach-originated primary germ cell tumor carries a poor prognosis, especially when metastasis occurs to the liver, with a mean survival time of 1 month. We describe the case of a 77-year-old male who presented with usual symptoms of gastric malignancy. Gastrectomy was performed. Histopathology of surgically resected tissue revealed a mixture of adenocarcinoma and endodermal sinus tumor components with α-fetoprotein production. After liver metastasis was identified, oxaliplatin and capecitabine were administered as palliative chemotherapy. The response was poor. For the second-line therapy, bleomycin, etoposide, and cisplatin (BEP) therapy was initiated. The overall response to these drugs was a partial response and the residual liver lesion was considered to be resectable. The patient died of pneumonia 11 months following the BEP session, representing an overall survival time of 22 months. Gastric adenocarcinoma with a germ cell tumor component is uncommon and an effective combination of chemotherapeutic agents is not yet clear. In this case, the patient received germ cell tumor-targeting chemotherapy and showed a durable response. Hence, germ cell-targeting cytotoxic agents have potential as the 'front-line regimen'.

  7. Silencing of Receptor Tyrosine Kinase ROR1 Inhibits Tumor-Cell Proliferation via PI3K/AKT/mTOR Signaling Pathway in Lung Adenocarcinoma

    PubMed Central

    Liu, Yanchun; Yang, Hui; Chen, Tianxing; Luo, Yongbin; Xu, Zheyuan; Li, Ying; Yang, Jiahui

    2015-01-01

    Receptor tyrosine kinase ROR1, an embryonic protein involved in organogenesis, is expressed in certain hematological malignancies and solid tumors, but is generally absent in adult tissues. This makes the protein an ideal drug target for cancer therapy. In order to assess the suitability of ROR1 as a cell surface antigen for targeted therapy of lung adenocarcinoma, we carried out a comprehensive analysis of ROR1 protein expression in human lung adenocarcinoma tissues and cell lines. Our data show that ROR1 protein is selectively expressed on lung adenocarcinoma cells, but do not support the hypothesis that expression levels of ROR1 are associated with aggressive disease. However silencing of ROR1 via siRNA treatment significantly down-regulates the activity of the PI3K/AKT/mTOR signaling pathway. This is associated with significant apoptosis and anti-proliferation of tumor cells. We found ROR1 protein expressed in lung adenocarcinoma but almost absent in tumor-adjacent tissues of the patients. The finding of ROR1-mediated proliferation signals in both tyrosine kinase inhibitor (TKI)-sensitive and -resistant tumor cells provides encouragement to develop ROR1-directed targeted therapy in lung adenocarcinoma, especially those with TKI resistance. PMID:25978653

  8. Establishment and characterization of a cisplatin-resistant cell line (IGSK-1) from a poorly differentiated gastric adenocarcinoma.

    PubMed

    Ohi, Satoshi; Takahashi, Naoto; Ninomiya, Kouzou; Nakajima, Masako; Hashimoto, Hisashi; Tachibana, Toshiaki; Yanaga, Katsuhiko; Ishikawa, Hiroshi

    2007-02-01

    We successfully established a spontaneously cisplatin-resistant tumor cell line (designated as IGSK-1) derived from original gastric carcinoma. The patient was a 75-year-old Japanese woman. The histopathological diagnosis was gastric poorly differentiated adenocarcinoma accompanied with metastatic foci in lymph nodes, pT3, N2 M0, stage IIIB. The IGSK-1 cells grew as adhesive and monolayered cultures on the bottom of dishes. The susceptibility of the IGSK-1 cells to anti-cancer drugs was examined using oxygen electrode apparatus (Daikin, Tsukuba, JPN), and the results suggested TXL was effective, and CDDP, CPT-11 and 5-FU were not effective. Gastrin and somatostatin secretions were confirmed by immunohistochemical staining and also radioimmunoassay. Immunohistochemistry and radioimmunoassay for serotonin suggested the IGSK-1 cells might incorporate serotonin from the growth media. Spontaneously cisplatin-resistant gastric carcinoma cell line secreted gastrin and somatostatin is very important material for chemotherapy.

  9. Tumor-infiltrating regulatory T cells inhibit endogenous cytotoxic T cell responses to lung adenocarcinoma

    PubMed Central

    Ganesan, Anusha-Preethi; Johansson, Magnus; Ruffell, Brian; Beltran, Adam; Lau, Jonathan; Jablons, David M.; Coussens, Lisa M.

    2013-01-01

    Immune cells comprise a substantial proportion of the tumor mass in human non-small cell lung cancers (NSCLC), but the precise composition and significance of this infiltration is unclear. Herein we examined immune complexity of human NSCLC as well as NSCLC developing in CC10-TAg transgenic mice, and revealed that CD4+ T lymphocytes represent the dominant population of CD45+ immune cells, and relative to normal lung tissue, CD4+FoxP3+ regulatory T cells (Tregs) were significantly increased as a proportion of total CD4+ cells. To assess the functional significance of increased Treg cells, we evaluated CD8+ T cell-deficient/CC10-TAg mice and revealed that CD8+ T cells significantly controlled tumor growth with anti-tumor activity that was partially repressed by Treg cells. However, while treatment with anti-CD25 depleting mAb as monotherapy preferentially depleted Tregs and improved CD8+ T cell-mediated control of tumor progression during early tumor development, similar monotherapy was ineffective at later stages. Since mice bearing early NSCLC treated with anti-CD25 mAb exhibited increased tumor cell death associated with infiltration by CD8+ T cells expressing elevated levels of granzyme A, granzyme B, perforin and interferon-γ, we therefore evaluated carboplatin combination therapy resulting in a significantly extended survival beyond that observed with chemotherapy alone, indicating that Treg depletion in combination with cytotoxic therapy may be beneficial as a treatment strategy for advanced NSCLC. PMID:23851682

  10. Cancer cell chemokines direct chemotaxis of activated stellate cells in pancreatic ductal adenocarcinoma.

    PubMed

    Roy, Ishan; Boyle, Kathleen A; Vonderhaar, Emily P; Zimmerman, Noah P; Gorse, Egal; Mackinnon, A Craig; Hwang, Rosa F; Franco-Barraza, Janusz; Cukierman, Edna; Tsai, Susan; Evans, Douglas B; Dwinell, Michael B

    2017-03-01

    The mechanisms by which the extreme desmoplasia observed in pancreatic tumors develops remain unknown and its role in pancreatic cancer progression is unsettled. Chemokines have a key role in the recruitment of a wide variety of cell types in health and disease. Transcript and protein profile analyses of human and murine cell lines and human tissue specimens revealed a consistent elevation in the receptors CCR10 and CXCR6, as well as their respective ligands CCL28 and CXCL16. Elevated ligand expression was restricted to tumor cells, whereas receptors were in both epithelial and stromal cells. Consistent with its regulation by inflammatory cytokines, CCL28 and CCR10, but not CXCL16 or CXCR6, were upregulated in human pancreatitis tissues. Cytokine stimulation of pancreatic cancer cells increased CCL28 secretion in epithelial tumor cells but not an immortalized activated human pancreatic stellate cell line (HPSC). Stellate cells exhibited dose- and receptor-dependent chemotaxis in response to CCL28. This functional response was not linked to changes in activation status as CCL28 had little impact on alpha smooth muscle actin levels or extracellular matrix deposition or alignment. Co-culture assays revealed CCL28-dependent chemotaxis of HPSC toward cancer but not normal pancreatic epithelial cells, consistent with stromal cells being a functional target for the epithelial-derived chemokine. These data together implicate the chemokine CCL28 in the inflammation-mediated recruitment of cancer-associated stellate cells into the pancreatic cancer parenchyma.

  11. Claudin-6 enhances cell invasiveness through claudin-1 in AGS human adenocarcinoma gastric cancer cells.

    PubMed

    Torres-Martínez, A C; Gallardo-Vera, J F; Lara-Holguin, A N; Montaño, L F; Rendón-Huerta, E P

    2017-01-01

    Claudins participate in tissue barrier function. The loss of this barrier is associated to metalloproteases-related extracellular matrix and basal membranes degradation. Claudin-1 is a pro-MMP-2 activator and claudin-6 transfected AGS (AGS-Cld6) cells are highly invasive. Our aim was to determine if claudin-6 was direct or indirectly associated with MMP-2 activation and cell invasiveness. Cytofluorometry, cell fractioning, immunoprecipitation, gelatin-zymography, cell migration and invasiveness assays were performed, claudin-2, -6, -7 and -9 transfected AGS cells, anti-MMP-2, -9 and -14, anti-claudins specific antibodies and claudin-1 small interfering RNA were used. The results showed a significant (p<0.001) overexpression of claudin-1 in AGS-Cld6 cell membranes. A strong MMP-2 activity was identified in culture supernatants of AGS-Cld6. Claudin-1 co-localized with MMP-2 and MMP-14; interestingly a significant increase in cell membrane and cytosol MMP-14 expression was detected in AGS-Cld6 cells (p<0.05). Silencing of claudin-1 in AGS-Cld6 cells showed a 60% MMP-2 activity decrease in culture supernatants and a significant decrease (p<0.05) in cell migration and invasiveness. Our results suggest that claudin-6 induces MMP-2 activation through claudin-1 membrane expression, which in turn promotes cell migration and invasiveness.

  12. Establishment and characterization of a singaporean chinese lung adenocarcinoma cell line with four copies of the epidermal growth factor receptor gene.

    PubMed

    Choong, Meng Ling; Yong, Jacklyn; Wang, Yu; Lee, May Ann

    2014-08-01

    We have established a lung adenocarcinoma cell line, ETCC016, from lung pleural effusion of a male Singaporean Chinese with advanced lung adenocarcinoma. The subject smoked 20 cigarettes per day for more than 30 years. The cell line arose from spontaneous transformation of cells grown in a collagen-coated culture dish. Transformed characteristics of the cell line include the ability to reach high confluency in a culture dish, low cell doubling time, ability to form colonies in soft agar, and ability to form solid tumor in immune-compromised SCID mice. Immunostaining showed that the cells originated from lung epithelial cells. Genomic analysis revealed a large amount of chromosomal aberrations (gain and loss of genetic materials, and loss of heterozygosity [LOH]), indicative of a long history of smoking. The cells have four copies of epidermal growth factor receptor (EGFR) and three copies of MYC, but have lost one copy of the RB1 gene. LOH was detected in TP53 and BRAF genes. There is no anaplastic lymphoma kinase (ALK) gene rearrangement. The ETCC016 lung adenocarcinoma cell line has demonstrated susceptibility towards inhibitors specific for EGFR/HER2 and ALK targets, but resistance to MYC-specific inhibitor. This cell line will be a useful model for further understanding of lung adenocarcinoma.

  13. Inhibitory effects of prostaglandin E2 on collagen synthesis and cell proliferation in human stellate cells from pancreatic head adenocarcinoma

    PubMed Central

    2014-01-01

    Background Several studies have described an increased cyclooxygenase-2 (COX-2) expression in pancreatic cancer, but the role of COX-2 in tumour development and progression is not clear. The aim of the present study was to examine expression of COX-2 in cancer cells and stromal cells in pancreatic cancer specimens, and to explore the role of PGE2 in pancreatic stellate cell proliferation and collagen synthesis. Methods Immunohistochemistry and immunofluorescence was performed on slides from whole sections of tissue blocks using antibodies against COX-2 and α-smooth muscle actin (αSMA). Pancreatic stellate cells (PSC) were isolated from surgically resected tumour tissue by the outgrowth method. Cells were used between passages 4 and 8. Collagen synthesis was determined by [3H]-proline incorporation, or by enzyme immunoassay measurement of collagen C-peptide. DNA synthesis was measured by incorporation of [3H]-thymidine in DNA. Cyclic AMP (cAMP) was determined by radioimmunoassay. Collagen 1A1 mRNA was determined by RT-qPCR. Results Immunohistochemistry staining showed COX-2 in pancreatic carcinoma cells, but not in stromal cells. All tumours showed positive staining for αSMA in the fibrotic stroma. Cultured PSC expressed COX-2, which could be further induced by interleukin-1β (IL-1β), epidermal growth factor (EGF), thrombin, and PGE2, but not by transforming growth factor-β1 (TGFβ). Indirect coculture with the adenocarcinoma cell line BxPC-3, but not HPAFII or Panc-1, induced COX-2 expression in PSC. Treatment of PSC with PGE2 strongly stimulated cAMP accumulation, mediated by EP2 receptors, and also stimulated phosphorylation of extracellular signal-regulated kinase (ERK). Treatment of PSC with PGE2 or forskolin suppressed both TGFβ-stimulated collagen synthesis and PDGF-stimulated DNA synthesis. Conclusions The present results show that COX-2 is mainly produced in carcinoma cells and suggest that the cancer cells are the main source of PGE2 in pancreatic

  14. Collision tumor of low-grade B-cell lymphoma and adenocarcinoma with tuberculosis in the colon: a case report and literature review.

    PubMed

    Lin, Hung-Hsin; Jiang, Jeng-Kai; Lin, Jen-Kou

    2014-05-11

    This report presents a case of collision tumors of low-grade B-cell lymphoma and adenocarcinoma in the sigmoid colon of an 81-year-old man. All surgically resected regional mesenteric lymph nodes were found to be occupied by low-grade B-cell lymphoma, and one lymph node showed the presence of adenocarcinoma. Low-grade B-cell lymphoma was also observed in the resected spleen. Moreover, concurrent tuberculosis infection in the resected colon was proven by the presence of positive results obtained with polymerase chain reaction analysis of the mycobacterial DNA. Systemic chemotherapy was administered for advanced colon cancer with lung metastasis, and anti-tuberculosis treatment was also prescribed. The occurrence of synchronous lymphoma and adenocarcinoma of the colorectal region is rare. Furthermore, collisions of these different entities are also extremely unusual. The accurate clinical determination of the dominant tumor and a timely follow-up are required for the proper treatment of these cases.

  15. Use of the human colorectal adenocarcinoma (Caco-2) cell line for isolating respiratory viruses from nasopharyngeal aspirates.

    PubMed

    Chan, K H; Yan, M K; To, K K W; Lau, S K; Woo, P C; Cheng, V C C; Li, W S; Chan, J F W; Tse, H; Yuen, K Y

    2013-05-01

    The human colorectal adenocarcinoma-derived Caco-2 cell line was evaluated as a means isolating common respiratory viruses from nasopharyngeal aspirates for the diagnosis of respiratory diseases. One hundred eighty-nine direct immunofluorescence positive nasopharyngeal aspirates obtained from patients with various viral respiratory diseases were cultured in the presence of Caco-2 cells or the following conventional cell lines: LLC-MK2, MDCK, HEp-2, and A549. Caco-2 cell cultures effectively propagated the majority (84%) of the viruses present in nasopharyngeal aspirate samples compared with any positive cultures obtained using the panel cells (78%) or individual cell line MDCK (38%), HEp-2 (21%), LLC-MK2 (27%), or A549 (37%) cell lines. The differences against individual cell line were statistically significant (P = < 0.000001). Culture in Caco-2 cells resulted in the isolation of 85% (36/42) of viruses which were not cultivated in conventional cell lines. By contrast, 80% (24/30) of viruses not cultivated in Caco-2 cells were isolated using the conventional panel. The findings indicated that Caco-2 cells were sensitive to a wide range of viruses and can be used to culture a broad range of respiratory viruses.

  16. The cornerstone K-RAS mutation in pancreatic adenocarcinoma: From cell signaling network, target genes, biological processes to therapeutic targeting.

    PubMed

    Jonckheere, Nicolas; Vasseur, Romain; Van Seuningen, Isabelle

    2017-03-01

    RAS belongs to the super family of small G proteins and plays crucial roles in signal transduction from membrane receptors in the cell. Mutations of K-RAS oncogene lead to an accumulation of GTP-bound proteins that maintains an active conformation. In the pancreatic ductal adenocarcinoma (PDAC), one of the most deadly cancers in occidental countries, mutations of the K-RAS oncogene are nearly systematic (>90%). Moreover, K-RAS mutation is the earliest genetic alteration occurring during pancreatic carcinogenetic sequence. In this review, we discuss the central role of K-RAS mutations and their tremendous diversity of biological properties by the interconnected regulation of signaling pathways (MAPKs, NF-κB, PI3K, Ral…). In pancreatic ductal adenocarcinoma, transcriptome analysis and preclinical animal models showed that K-RAS mutation alters biological behavior of PDAC cells (promoting proliferation, migration and invasion, evading growth suppressors, regulating mucin pattern, and miRNA expression). K-RAS also impacts tumor microenvironment and PDAC metabolism reprogramming. Finally we discuss therapeutic targeting strategies of K-RAS that have been developed without significant clinical success so far. As K-RAS is considered as the undruggable target, targeting its multiple effectors and target genes should be considered as potential alternatives.

  17. Expression of RNA-binding motif 10 is associated with advanced tumor stage and malignant behaviors of lung adenocarcinoma cancer cells.

    PubMed

    Guan, Guofang; Li, Ranwei; Tang, Wenfang; Liu, Tiecheng; Su, Zhenzhong; Wang, Yan; Tan, Jingjin; Jiang, Shan; Wang, Ke

    2017-03-01

    This study assessed RNA-binding motif 10 expression in lung adenocarcinoma tissues and examined the role and mechanism of RNA-binding motif 10 in the regulation of lung adenocarcinoma malignancy. Lung adenocarcinoma and corresponding adjacent non-tumor lung tissues from 41 patients were subjected to reverse transcription-polymerase chain reaction and Western blot assessment to detect RNA-binding motif 10 expression. Recombinant lentivirus carrying RNA-binding motif 10 complementary DNA was used to infect lung adenocarcinoma cell lines, A549 and H1299 cells. Complementary DNA microarray was used to profile RNA-binding motif 10-regulated genes. Levels of RNA-binding motif 10 messenger RNA and protein were significantly lower in lung adenocarcinoma tissues than those in paired non-tumor tissues (p < 0.001). Reduced RNA-binding motif 10 expression was found to be associated with an advanced tumor stage. RNA-binding motif 10 overexpression inhibited viability and colony formation capacity of lung adenocarcinoma cell lines and induced cell-cycle arrest at G0/G1 phase in A549 cells and at S phase in H1299 cells. Complementary DNA microarray analysis identified 304 upregulated and 386 downregulated genes induced by RNA-binding motif 10 overexpression, which may be involved in cancer, focal adhesion, peroxisome proliferator-activated receptor-regulated gene pathway, cytokine-cytokine receptor interaction, mitogen-activated protein kinase signaling, complement and coagulation cascades, platelet amyloid precursor protein pathway, extracellular matrix-receptor interaction, and small cell lung cancer-related genes. Expression of FGF2, EGFR, WNT5A, NF-κB, and RAP1A was downregulated, whereas expression of AKT2, BIRC3, and JUN was upregulated. RNA-binding motif 10 messenger RNA and protein were reduced in lung adenocarcinoma tissues, and RNA-binding motif 10 overexpression inhibited lung adenocarcinoma cancer cell malignant behavior in vitro. Molecularly, RNA-binding motif

  18. Cardenolide glycosides from the seeds of Digitalis purpurea exhibit carcinoma-specific cytotoxicity toward renal adenocarcinoma and hepatocellular carcinoma cells.

    PubMed

    Fujino, Tomofumi; Kuroda, Minpei; Matsuo, Yukiko; Kubo, Satoshi; Tamura, Chikako; Sakamoto, Nami; Mimaki, Yoshihiro; Hayakawa, Makio

    2015-01-01

    Four cardenolide glycosides, glucodigifucoside (2), 3'-O-acetylglucoevatromonoside (9), digitoxigenin 3-O-β-D-glucopyranosyl-(1 → 4)-β-D-glucopyranosyl-(1 → 4)-3-O-acetyl-β-D-digitoxopyranoside (11), and purpureaglycoside A (12), isolated from the seeds of Digitalis purpurea, exhibited potent cytotoxicity against human renal adenocarcinoma cell line ACHN. These compounds exhibited significantly lower IC50 values against ACHN than that against normal human renal proximal tubule-derived cell line HK-2. In particular, 2 exhibited the most potent and carcinoma-specific cytotoxicity, with a sixfold lower IC50 value against ACHN than that against HK-2. Measurement of cyclin-dependent kinase inhibitor levels revealed that upregulation of p21/Cip1 expression was involved in the carcinoma-specific cytotoxicity of 2. Further, compound 2 also exhibited the carcinoma-specific cytotoxicity toward hepatocellular carcinoma cell line.

  19. Pantoprazole inhibits human gastric adenocarcinoma SGC-7901 cells by downregulating the expression of pyruvate kinase M2

    PubMed Central

    SHEN, YONGHUA; CHEN, MIN; HUANG, SHULING; ZOU, XIAOPING

    2016-01-01

    The Warburg effect is important in tumor growth. The human M2 isoform of pyruvate kinase (PKM2) is a key enzyme that regulates aerobic glycolysis in tumor cells. Recent studies have demonstrated that PKM2 is a potential target for cancer therapy. The present study investigated the effects of pantoprazole (PPZ) treatment and PKM2 transfection on human gastric adenocarcinoma SGC-7901 cells in vitro. The present study revealed that PPZ inhibited the proliferation of tumor cells, induced apoptosis and downregulated the expression of PKM2, which contributes to the current understanding of the functional association between PPZ and PKM2. In summary, PPZ may suppress tumor growth as a PKM2 protein inhibitor. PMID:26870273

  20. Evaluating the effect of four extracts of avocado fruit on esophageal squamous carcinoma and colon adenocarcinoma cell lines in comparison with peripheral blood mononuclear cells.

    PubMed

    Vahedi Larijani, Laleh; Ghasemi, Maryam; AbedianKenari, Saeid; Naghshvar, Farshad

    2014-01-01

    Most patients with gastrointestinal cancers refer to the health centers at advanced stages of the disease and conventional treatments are not significantly effective for these patients. Therefore, using modern therapeutic approaches with lower toxicity bring higher chance for successful treatment and reduced adverse effects in such patients. The aim of this study is to evaluate the effect of avocado fruit extracts on inhibition of the growth of cancer cells in comparison with normal cells. In an experimental study, ethanol, chloroform, ethyl acetate, and petroleum extracts of avocado (Persea americana) fruit were prepared. Then, the effects if the extracts on the growth of esophageal squamous cell carcinoma and colon adenocarcinoma cell lines were evaluated in comparison with the control group using the MTT test in the cell culture medium. Effects of the four extracts of avocado fruit on three cells lines of peripheral blood mononuclear cells, esophageal squamous cell carcinoma, and colon adenocarcinoma were tested. The results showed that avocado fruit extract is effective in inhibition of cancer cell growth in comparison with normal cells (P<0.05). Avocado fruit is rich in phytochemicals, which play an important role in inhibition of growth of cancer cells. The current study for the first time demonstrates the anti-cancer effect of avocado fruit extracts on two cancers common in Iran. Therefore, it is suggested that the fruit extracts can be considered as appropriate complementary treatments in treatment of esophageal and colon cancers.

  1. Curcumin inhibits growth potential by G1 cell cycle arrest and induces apoptosis in p53-mutated COLO 320DM human colon adenocarcinoma cells.

    PubMed

    Dasiram, Jade Dhananjay; Ganesan, Ramamoorthi; Kannan, Janani; Kotteeswaran, Venkatesan; Sivalingam, Nageswaran

    2017-02-01

    Curcumin, a natural polyphenolic compound and it is isolated from the rhizome of Curcuma longa, have been reported to possess anticancer effect against stage I and II colon cancer. However, the effect of curcumin on colon cancer at Dukes' type C metastatic stage III remains still unclear. In the present study, we have investigated the anticancer effects of curcumin on p53 mutated COLO 320DM human colon adenocarcinoma cells derived from Dukes' type C metastatic stage. The cellular viability and proliferation were assessed by trypan blue exclusion assay and MTT assay, respectively. The cytotoxicity effect was examined by lactate dehydrogenase (LDH) cytotoxicity assay. Apoptosis was analyzed by DNA fragmentation analysis, Hoechst and propidium iodide double fluorescent staining and confocal microscopy analysis. Cell cycle distribution was performed by flow cytometry analysis. Here we have observed that curcumin treatment significantly inhibited the cellular viability and proliferation potential of p53 mutated COLO 320DM cells in a dose- and time-dependent manner. In addition, curcumin treatment showed no cytotoxic effects to the COLO 320DM cells. DNA fragmentation analysis, Hoechst and propidium iodide double fluorescent staining and confocal microscopy analysis revealed that curcumin treatment induced apoptosis in COLO 320DM cells. Furthermore, curcumin caused cell cycle arrest at the G1 phase, decreased the cell population in the S phase and induced apoptosis in COLO 320DM colon adenocarcinoma cells. Together, these data suggest that curcumin exerts anticancer effects and induces apoptosis in p53 mutated COLO 320DM human colon adenocarcinoma cells derived from Dukes' type C metastatic stage.

  2. Gastric adenocarcinoma of the fundic gland (chief cell-predominant type): A review of endoscopic and clinicopathological features

    PubMed Central

    Miyazawa, Masaki; Matsuda, Mitsuru; Yano, Masaaki; Hara, Yasumasa; Arihara, Fumitaka; Horita, Yosuke; Matsuda, Koichiro; Sakai, Akito; Noda, Yatsugi

    2016-01-01

    Gastric adenocarcinoma of the fundic gland (chief cell-predominant type, GA-FG-CCP) is a rare variant of well-differentiated adenocarcinoma, and has been proposed to be a novel disease entity. GA-FG-CCP originates from the gastric mucosa of the fundic gland region without chronic gastritis or intestinal metaplasia. The majority of GA-FG-CCPs exhibit either a submucosal tumor-like superficial elevated shape or a flat shape on macroscopic examination. Narrow-band imaging with endoscopic magnification may reveal a regular or an irregular microvascular pattern, depending on the degree of tumor exposure to the mucosal surface. Pathological analysis of GA-FG-CCPs is characterized by a high frequency of submucosal invasion, rare occurrences of lymphatic and venous invasion, and low-grade malignancy. Detection of diffuse positivity for pepsinogen-I by immunohistochemistry is specific for GA-FG-CCP. Careful endoscopic examination and detailed pathological evaluation are essential for early and accurate diagnosis of GA-FG-CCP. Nearly all GA-FG-CCPs are treated by endoscopic resection due to their small tumor size and low risk of recurrence or metastasis. PMID:28082804

  3. Two-dimensional culture of human pancreatic adenocarcinoma cells results in an irreversible transition from epithelial to mesenchymal phenotype.

    PubMed

    Kang, Ya'an; Zhang, Ran; Suzuki, Rei; Li, Shao-qiang; Roife, David; Truty, Mark J; Chatterjee, Deyali; Thomas, Ryan M; Cardwell, James; Wang, Yu; Wang, Huamin; Katz, Matthew H; Fleming, Jason B

    2015-02-01

    Many commercially available cell lines have been in culture for ages, acquiring phenotypes that differ from the original cancers from which these cell lines were derived. Therefore, research on new cell lines could improve the success rates of translational research in cancer. We have developed methods for the isolation and culture of human pancreatic ductal adenocarcinoma (PDAC) cells from murine xenografts of human PDAC. We hypothesize that phenotypes of PDAC cells are modified by in vitro culture conditions over time and by in vivo implantation. Patient-derived xenografts were created in immunodeficient mice using surgically resected tumor specimens. These murine xenografts were then used to establish human PDAC cell lines in culture. Earlier (<5) passage and later (>20) passage cell lines were evaluated separately regarding proliferation, cell cycle, genetic mutations, invasiveness, chemosensitivity, tumorigenesis, epithelial-mesenchymal transition (EMT) status, and proteomics. Later passage cells accelerated their doubling time and colony formation, and were more concentrated in the G0/G1 phase and less in the G2/M checkpoint phase. Later passage cells were more sensitive to gemcitabine and 5-fluorouracil than earlier passage cells, but all four new cell lines were more chemo-resistant compared with commercial ATCC cell lines. EMT induction was observed when establishing and passaging cell lines in vitro and furthermore by growing them as subcutaneous tumors in vivo. This study demonstrates a novel approach to the establishment of PDAC cell lines and observes a process by which newly established cell lines undergo phenotypic changes during in vitro culture and in vivo tumorigenesis. This may help explain differences of treatment effects often observed between experiments conducted in vitro, in vivo, and in human clinical trials.

  4. Role of YAP and TAZ in pancreatic ductal adenocarcinoma and in stellate cells associated with cancer and chronic pancreatitis.

    PubMed

    Morvaridi, Susan; Dhall, Deepti; Greene, Mark I; Pandol, Stephen J; Wang, Qiang

    2015-11-16

    Pancreatic ductal adenocarcinoma (PDAC) is characterized by a fibrotic and inflammatory microenvironment that is formed primarily by activated, myofibroblast-like, stellate cells. Although the stellate cells are thought to contribute to tumorigenesis, metastasis and drug resistance of PDAC, the signaling events involved in activation of the stellate cells are not well defined. Functioning as transcription co-factors, Yes-associated protein (YAP) and its homolog transcriptional co-activator with PDZ-binding motif (TAZ) modulate the expression of genes involved in various aspects of cellular functions, such as proliferation and mobility. Using human tissues we show that YAP and TAZ expression is restricted to the centroacinar and ductal cells of normal pancreas, but is elevated in cancer cells. In particular, YAP and TAZ are expressed at high levels in the activated stellate cells of both chronic pancreatitis and PDAC patients as well as in the islets of Langerhans in chronic pancreatitis tissues. Of note, YAP is up regulated in both acinar and ductal cells following induction of acute and chronic pancreatitis in mice. These findings indicate that YAP and TAZ may play a critical role in modulating pancreatic tissue regeneration, neoplastic transformation, and stellate cell functions in both PDAC and pancreatitis.

  5. Monitoring of TGF-β 1-Induced Human Lung Adenocarcinoma A549 Cells Epithelial-Mesenchymal Transformation Process by Measuring Cell Adhesion Force with a Microfluidic Device.

    PubMed

    Li, Yuan; Gao, AnXiu; Yu, Ling

    2016-01-01

    The epithelial-mesenchymal transition (EMT) is a process in which epithelial cells lose their cell polarity and cell-cell adhesion, and gain migratory and invasive properties. It is believed that EMT is associated with initiation and completion of the invasion-metastasis cascade. In this study, an economic approach was developed to fabricate a microfluidic device with less instrumentation requirement for the investigation of EMT by quantifying cell adhesion force. Fluid shear force was precisely controlled by a homemade microfluidic perfusion apparatus and interface. The adhesion capability of the human lung adenocarcinoma cell line A549 on different types of extracellular matrix protein was studied. In addition, effects of transforming growth factor-β (TGF-β) on EMT in A549 cells were investigated by characterizing the adhesion force changes and on-chip fluorescent staining. The results demonstrate that the microfluidic device is a potential tool to characterize the epithelial-mesenchymal transition process by measuring cell adhesion force.

  6. Adamantinoma-like Ewing sarcoma mimicking basal cell adenocarcinoma of the parotid gland: a case report and review of the literature.

    PubMed

    Lezcano, Cecilia; Clarke, Martha R; Zhang, Lei; Antonescu, Cristina R; Seethala, Raja R

    2015-06-01

    Adamantinoma-like Ewing sarcoma (AES) is a rare variant of the Ewing family of tumors that resembles classic adamantinoma of bone. AES shows epithelial differentiation and a more complex immunohistochemical expression profile with keratin and basal marker immunoreactivity and can resemble a variety of carcinomas. We report an unusual case of an AES of the parotid gland that mimicked a basal cell adenocarcinoma. Like basal cell adenocarcinoma, this AES showed a nested basaloid proliferation with peripheral palisading in tumor nests with 'basaloid' epithelial differentiation as highlighted by cytokeratin AE1/3 and p40 positivity. However, unlike most basal cell adenocarcinomas, this tumor demonstrated high grade morphology, showed no true ductal or myoepithelial component, and also showed a tendency towards neuroectodermal phenotype with focal rosette formation, CD99 and weak synaptophysin immunoreactivity. EWSR1 and FLI1 fluorescence in situ hybridization confirmed the presence of a translocation supporting the diagnosis of AES. This is the first case of AES presenting as a primary parotid mass highlighting the potential to be mistaken for primary salivary gland carcinomas, which in addition to basal cell adenocarcinoma include other basaloid tumors such as adenoid cystic carcinoma.

  7. Schisandrin B inhibits the proliferation of human lung adenocarcinoma A549 cells by inducing cycle arrest and apoptosis

    PubMed Central

    Lv, Xue-Jiao; Zhao, Li-Jing; Hao, Yu-Qiu; Su, Zhen-Zhong; Li, Jun-Yao; Du, Yan-Wei; Zhang, Jie

    2015-01-01

    Lung cancer is the leading cause of cancer death in the world. Schizandrin B (Sch B) is one of the main dibenzocyclooctadiene lignans present in the fruit of Schisandra chinensis (Schisandraceae). Sch B has multiple functions against cancer. The aim of this study was to determine the effect of Sch B on the proliferation, cell cycling, apoptosis and invasion of lung adenocarcinoma A549 cells by MTT, flow cytometry, wound healing and transwell invasion assays. Treatment with Sch B inhibited the proliferation of A549 cells in a dose-dependent manner. Sch B induced cell cycle arrest at G0/G1 phase by down-regulating the expression of cyclin D1, cyclin-dependent kinase (CDK)4, and CDK6, but up-regulating p53 and p21 expression in A549 cells. Furthermore, Sch B triggered A549 cell apoptosis by increasing Bax, cleaved caspase-3, 9, Cyto C, but decreasing Bcl-2 and PCNA expression. In addition, Sch B inhibited the invasion and migration of A549 cells by down-regulating the expressions of HIF-1, VEGF, MMP-9 and MMP-2. Therefore, Sch B has potent anti-tumor activity and may be a promising traditional Chinese medicine for human lung carcinoma. PMID:26221229

  8. Integrin {beta}1-dependent invasive migration of irradiation-tolerant human lung adenocarcinoma cells in 3D collagen matrix

    SciTech Connect

    Ishihara, Seiichiro; Haga, Hisashi; Yasuda, Motoaki; Mizutani, Takeomi; Kawabata, Kazushige; Shirato, Hiroki; Nishioka, Takeshi

    2010-06-04

    Radiotherapy is one of the effective therapies used for treating various malignant tumors. However, the emergence of tolerant cells after irradiation remains problematic due to their high metastatic ability, sometimes indicative of poor prognosis. In this study, we showed that subcloned human lung adenocarcinoma cells (A549P-3) that are irradiation-tolerant indicate high invasive activity in vitro, and exhibit an integrin {beta}1 activity-dependent migratory pattern. In collagen gel overlay assay, majority of the A549P-3 cells displayed round morphology and low migration activity, whereas a considerable number of A549P-3IR cells surviving irradiation displayed a spindle morphology and high migration rate. Blocking integrin {beta}1 activity reduced the migration rate of A549P-3IR cells and altered the cell morphology allowing them to assume a round shape. These results suggest that the A549P-3 cells surviving irradiation acquire a highly invasive integrin {beta}1-dependent phenotype, and integrin {beta}1 might be a potentially effective therapeutic target in combination with radiotherapy.

  9. Benzo(a)pyrene induces p73 mRNA expression and necrosis in human lung adenocarcinoma H1299 cells.

    PubMed

    Jiang, Ying; Rao, Kaimin; Yang, Guangtao; Chen, Xi; Wang, Qian; Liu, Ailin; Zheng, Hongyan; Yuan, Jing

    2012-03-01

    p53 can mediate DNA damage-induced apoptosis in various cell lines treated with Benzo(a)pyrene (BaP). However, the potential role of p73, one of the p53 family members, in BaP-induced apoptotic cell death remains to be determined. In this study, normal fetal lung fibroblasts (MRC-5) and human lung adenocarcinoma cells (H1299, p53-null) were treated with BaP at concentrations of 8, 16, 32, 64, and 128 μM for 4 and 12 h. The oxidative stress status, extent of DNA damage, expression of p53, p73, mdm2, bcl-2, and bax at the mRNA and protein levels, and the percentages of apoptosis and/or necrosis were assessed. In the two BaP-treated cell lines, we observed increased malondialdehyde (MDA) formation and decreased superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity at 4 h after the treatment; furthermore, at the time points of 4 and 12 h, we observed extremely high levels of DNA damage. In addition, at 4 h after the treatment, BaP had induced necrosis in MRC-5 and H1299 cells, but it had inhibited apoptosis in MRC-5 cells (P < 0.01 for all). Furthermore, in BaP-treated H1299 cells, only the p73 mRNA level was up-regulated. The results suggested that BaP-induced DNA damage could trigger a shift from apoptotic cell death toward necrotic cell death and that necrotic cell death is independent of p53 and p73 in these cell lines. Future studies are needed to investigate the time course of changes in the type of BaP-induced cell death in more cell lines.

  10. Differentiation-associated decrease in the proportion of fucosylated polylactosaminoglycans of CaCo-2 human colonic adenocarcinoma cells.

    PubMed Central

    Youakim, A; Herscovics, A

    1987-01-01

    CaCo-2 cells are human colonic adenocarcinoma cells which can differentiate spontaneously into enterocytes when maintained confluent for extended periods of time. Cells kept in culture for 4 days (rapidly growing), 7-9 days (early confluence) and 19-22 days (late confluence) were incubated for 24 h with L-[5,6-3H]fucose or D-[6-3H]glucosamine in order to examine the changes in glycoprotein carbohydrate structure that occur during this differentiation. Labelled glycopeptides obtained by exhaustive Pronase digestion of the cell-surface and cell-pellet fractions were fractionated on Bio-Gel P-6. A high-Mr glycopeptide fraction which was excluded from Bio-Gel P-6 was present in all cases. These glycopeptides were then fractionated by affinity chromatography on Datura stramonium agglutinin-agarose. The glycopeptides which were specifically bound to the lectin column were largely degraded by endo-beta-galactosidase, thereby indicating that they consisted of fucosylated polylactosaminoglycans. The proportion of labelled polylactosaminoglycans decreased with increasing time in culture, whereas sucrase activity, which is characteristic of differentiated enterocytes, increased. These results demonstrate that a relatively large decrease in the proportion of fucosylated polylactosaminoglycans occurs with differentiation of CaCo-2 cells. PMID:3122722

  11. Bone morphogenetic protein-4 is overexpressed in colonic adenocarcinomas and promotes migration and invasion of HCT116 cells

    SciTech Connect

    Deng Haiyun; Makizumi, Ryouji; Ravikumar, T.S.; Dong Huali; Yang Wancai; Yang, W.-L. . E-mail: wlyang@nshs.edu

    2007-03-10

    Bone morphogenetic protein (BMP), a member of the TGF-{beta} superfamily, is involved in development, morphogenesis, cell proliferation and apoptosis. Dysregulation of BMP signaling has been suggested in tumorigenesis. In an analysis of human colon normal mucosa and tumors at different stages by immunohistochemistry, we observed that the intensity of BMP-4 staining in late-adenocarcinomas was stronger than that in normal mucosa and adenomas, while there was no difference in the staining of its receptors (BMPR-IA and BMPR-II) at all stages. The up-regulation of BMP-4 was further validated in another panel of tumor tissues by real-time RT-PCR, showing that BMP-4 mRNA levels in primary colonic carcinomas with liver metastasis were significantly higher than that in the matched normal mucosa. In order to understand the functional relevance of BMP-4 expression in colon cancer progression, BMP-4-overexpressing cell clones were generated from HCT116 cells. Overexpression of BMP-4 did not affect the HCT116 cell growth. The cells overexpressing BMP-4 became resistant to serum-starvation-induced apoptosis and exhibited enhanced migration and invasion characteristics. Overexpression of BMP-4 changed cell morphology to invasive spindle phenotype and induced the expression and activity of urokinase plasminogen activator (uPA). These results indicate that BMP-4 confers invasive phenotype during progression of colon cancer.

  12. Anticancer function of α-solanine in lung adenocarcinoma cells by inducing microRNA-138 expression.

    PubMed

    Zhang, Furui; Yang, Rui; Zhang, Guojun; Cheng, Ruirui; Bai, Yong; Zhao, Huasi; Lu, Xinhua; Li, Hui; Chen, Shanshan; Li, Juan; Wu, Shujun; Li, Ping; Chen, Xiaonan; Sun, Qianqian; Zhao, Guoqiang

    2016-05-01

    Currently, lung cancer is still a main cause of malignancy-associated death worldwide. Even though various methods for prevention and treatment of lung cancer have been improved in recent decades, the 5-year survival rate has remained very low. Insights into the anticancer function of small-molecule anticancer compounds have opened our visual field about cancer therapy. α-Solanine has been well studied for its antitumor properties, but its effect in lung cancer and associated molecular mechanisms have not yet been evaluated. To explore the anticancer function of α-solanine, we performed an MTT assay, Transwell arrays, colony-forming survival assay, quantitative reverse transcription PCR (qRT-PCR), Western blotting, and dual luciferase reporter assays in A549 and H1299 cells. We found that α-solanine not only inhibited cell migration and invasion ability but also enhanced the chemosensitivity and radiosensitivity of A549 and H1299 cells. Moreover, we discovered that α-solanine could affect the expression of miR-138 and focal adhesion kinase (FAK), both of which were also found to affect the chemosensitivity and radiosensitivity of A549 and H1299 cells. In conclusion, α-solanine could affect miR-138 and FAK expression to restrict cell migration and invasion and enhance the chemosensitivity and radiosensitivity of A549 and H1299 cells. The α-solanine/miR-138/FAK cascade can probably be a potential therapy target against lung adenocarcinoma.

  13. The effect of magnetic targeting on the uptake of magnetic-fluid-loaded liposomes by human prostatic adenocarcinoma cells.

    PubMed

    Martina, Marie-Sophie; Wilhelm, Claire; Lesieur, Sylviane

    2008-10-01

    Interactions of magnetic-fluid-loaded liposomes (MFL) with human adenocarcinoma prostatic cell line PC3 were investigated in vitro. MFL consisted of unilamellar phosphatidylcholine vesicles (mean hydrodynamic diameter close to 180 nm) encapsulating 8-nm nanocrystals of maghemite (gamma-Fe(2)O(3)) and sterically stabilized by introducing 5 mol.% of distearylphosphatidylcholine poly(ethylene glycol)(2000) (DSPE-PEG(2000)) in the vesicle bilayer. The association processes with living cells, including binding and effective internalization, were followed versus time at two levels. On one hand, the lipid vesicles labeled by 1 mol.% of rhodamine-marked phosphatidylethanolamine were imaged by confocal fluorescence microscopy. On the other hand, the iron oxide particles associated with cells were independently quantified by magnetophoresis. This allowed modeling of MFL uptake kinetics as a two-step process involving first binding adsorption onto the outer cell membrane followed by subsequent internalization. Capture efficiency was significantly improved by guiding MFL in the near vicinity of the cells by means of a 0.29-T external magnet developing a magnetic field gradient close to 30 mT/mm. Double detection of lipids by fluorescence tracking and of iron oxide by magnetophoresis showed excellent correlation. This demonstrated that MFL associate with tumor cells as intact vesicle structures which conserve their internal content.

  14. Long noncoding RNA CCAT1 acts as an oncogene and promotes chemoresistance in docetaxel-resistant lung adenocarcinoma cells

    PubMed Central

    Wang, Rui; Chu, Xiaoyuan; Chen, Longbang

    2016-01-01

    Chemoresistance remains one of the major obstacles in clinical treatment of lung adenocarcinoma (LAD). Indeed, docetaxel-resistant LAD cells present chemoresistance and epithelial-to-mesenchymal transition phenotypes. Long non-coding RNAs (lncRNAs) are known to promote tumorigenesis in many cancer types. Here, we showed that the lncRNA colon cancer-associated transcript-1 (CCAT1) was upregulated in docetaxel-resistant LAD cells. Furthermore, downregulation of CCAT1 decreased chemoresistance, inhibited proliferation, enhanced apoptosis and reversed the epithelial-to-mesenchymal transition phenotype of docetaxel-resistant LAD cells. We also found that the oncogenic function of CCAT1 in docetaxel-resistant LAD cells depended on the sponging of let-7c. In turn, the sponging of let-7c by CCAT1 released Bcl-xl (a let-7c target), thereby promoting the acquisition of chemoresistance and epithelial-to-mesenchymal transition phenotypes in docetaxel-resistant LAD cells. Our data reveal a novel pathway underlying chemoresistance and the epithelial-to-mesenchymal transition in docetaxel-resistant LAD cells. PMID:27566568

  15. Radioresistant human lung adenocarcinoma cells that survived multiple fractions of ionizing radiation are sensitive to HSP90 inhibition

    PubMed Central

    Gomez-Casal, Roberto; Epperly, Michael W.; Wang, Hong; Proia, David A.; Greenberger, Joel S.; Levina, Vera

    2015-01-01

    Despite the common usage of radiotherapy for the treatment of NSCLC, outcomes for these cancers when treated with ionizing radiation (IR) are still unsatisfactory. A better understanding of the mechanisms underlying resistance to IR is needed to design approaches to eliminate the radioresistant cells and prevent tumor recurrence and metastases. Using multiple fractions of IR we generated radioresistant cells from T2821 and T2851 human lung adenocarcinoma cells. The radioresistant phenotypes present in T2821/R and T2851/R cells include multiple changes in DNA repair genes and proteins expression, upregulation of EMT markers, alterations of cell cycle distribution, upregulation of PI3K/AKT signaling and elevated production of growth factors, cytokines, important for lung cancer progression, such as IL-6, PDGFB and SDF-1 (CXCL12). In addition to being radioresistant these cells were also found to be resistant to cisplatin. HSP90 is a molecular chaperone involved in stabilization and function of multiple client proteins implicated in NSCLC cell survival and radioresistance. We examined the effect of ganetespib, a novel HSP90 inhibitor, on T2821/R and T2851/R cell survival, migration and radioresistance. Our data indicates that ganetespib has cytotoxic activity against parental T2821 and T2851 cells and radioresistant T2821/R and T2851/R lung tumor cells. Ganetespib does not affect proliferation of normal human lung fibroblasts. Combining IR with ganetespib completely abrogates clonogenic survival of radioresistant cells. Our data show that HSP90 inhibition can potentiate the effect of radiotherapy and eliminate radioresistant and cisplatin -resistant residual cells, thus it may aid in reducing NSCLC tumor recurrence after fractionated radiotherapy. PMID:26517240

  16. Carob fibre compounds modulate parameters of cell growth differently in human HT29 colon adenocarcinoma cells than in LT97 colon adenoma cells.

    PubMed

    Klenow, S; Glei, M; Haber, B; Owen, R; Pool-Zobel, B L

    2008-04-01

    An extract of the Mediterranean carob (Ceratonia siliqua L.) pod (carob fibre extract), products formed after its fermentation by the gut flora and the major phenolic ingredient gallic acid (GA), were comparatively investigated for their influence on survival and growth parameters of colon adenocarcinoma HT29 cells and adenoma LT97 cells. Hydrogen peroxide (H2O2) formation in the cell culture media was quantified. After 1h 97+/-4 microM or 70+/-15 microM were found in HT29 medium and 6+/-1 microM or 3+/-3 microM in LT97 medium for carob fibre extract or GA, respectively. After 72 h carob fibre extract reduced survival of rapidly proliferating HT29 cells (by 76.4+/-12.9%) whereas metabolic activity and DNA-synthesis were only transiently impaired. Survival of slower growing LT97 cells was less decreased (by 21.5+/-12.9%), but there were marked effects on DNA-synthesis (reduction by 95.6+/-7%, 72 h). GA and fermented carob fibre did not have comparable effects. Thus, carob fibre extract resulted in H2O2 formation, which, however, could not explain impairment of cell growth. The differently modulated growth of human colon cell lines was more related to proliferation rates and impairment of DNA-synthesis than to H2O2 formation.

  17. Reactive oxygen species mediate arsenic induced cell transformation and tumorigenesis through Wnt/{beta}-catenin pathway in human colorectal adenocarcinoma DLD1 cells

    SciTech Connect

    Zhang Zhuo; Wang Xin; Cheng Senping; Sun Lijuan; Son, Young-Ok; Yao Hua; Li Wenqi; Budhraja, Amit; Li Li; Shelton, Brent J.; Tucker, Thomas; Arnold, Susanne M.; Shi Xianglin

    2011-10-15

    Long term exposure to arsenic can increase incidence of human cancers, such as skin, lung, and colon rectum. The mechanism of arsenic induced carcinogenesis is still unclear. It is generally believed that reactive oxygen species (ROS) may play an important role in this process. In the present study, we investigate the possible linkage between ROS, {beta}-catenin and arsenic induced transformation and tumorigenesis in human colorectal adenocarcinoma cell line, DLD1 cells. Our results show that arsenic was able to activate p47{sup phox} and p67{sup phox}, two key proteins for activation of NADPH oxidase. Arsenic was also able to generate ROS in DLD1 cells. Arsenic increased {beta}-catenin expression level and its promoter activity. ROS played a major role in arsenic-induced {beta}-catenin activation. Treatment of DLD1 cells by arsenic enhanced both transformation and tumorigenesis of these cells. The tumor volumes of arsenic treated group were much larger than those without arsenic treatment. Addition of either superoxide dismutase (SOD) or catalase reduced arsenic induced cell transformation and tumor formation. The results indicate that ROS are involved in arsenic induced cell transformation and tumor formation possible through Wnt/{beta}-catenin pathway in human colorectal adenocarcinoma cell line DLD1 cells. - Highlights: > Arsenic activates NADPH oxidase and increases reactive oxygen species generation in DLD1 cells. > Arsenic increases {beta}-catenin expression. > Inhibition of ROS induced by arsenic reduce {beta}-catenin expression. > Arsenic increases cell transformation in DLD1 cells and tumorigenesis in nude mice. > Blockage of ROS decrease cell transformation and tumorigenesis induced by arsenic.

  18. Metastatic adenocarcinoma of unknown primary origin.

    PubMed

    Hammar, S P

    1998-12-01

    Adenocarcinomas account for up to 60% of all metastatic neoplasms of unknown primary origin. In general, adenocarcinomas are the most difficult metastatic tumor to accurately identify the primary site. Some metastatic adenocarcinomas have distinctive histological features that allow for their site determination (eg, colonic adenocarcinoma, bronchioloalveolar cell carcinoma), although the majority of metastatic adenocarcinomas have histological features that are not distinctive enough to allow for a specific diagnosis of their origin. For this reason, electron microscopy and immunohistochemistry have been used to help identify the exact type (origin) of metastatic adenocarcinomas. Relatively specific ultrastructural features used to diagnose metastatic adenocarcinomas of unknown primary origin include tubular myelin, intranuclear surfactant apoprotein tubular inclusions, Clara cell granules, uniform short microvilli with filamentous cores and core rootlets, Langerhans cells associated with neoplastic cells, cytoplasmic hyaline globules, lipid droplets, glycogen, and cytoplasmic crystals. Only a few of these ultrastructural features are absolutely specific. Relatively specific immunohistochemical tests used to diagnose metastatic adenocarcinomas of unknown primary origin include prostate-specific antigen, thyroglobulin, estrogen and progesterone receptor proteins, thyroid transcription factor-I, and surfactant apoproteins. Of these, prostate-specific antigen and thyroglobulin are the most specific. The purpose of this article is to discuss the use of electron microscopy and immunohistochemistry in the site-specific diagnosis of metastatic adenocarcinomas of unknown primary origin.

  19. Production and radioimmunoimaging of novel fully human phage display recombinant antibodies and growth inhibition of lung adenocarcinoma cell line overexpressing Prx I.

    PubMed

    Luo, Yi; Pang, Hua; Li, Shujie; Cao, Hui; Peng, Zhiping; Fan, Chunbo; Li, Shaolin

    2009-07-01

    The Peroxiredoxin I (Prx I) is a member of the Peroxiredoxin family, which is overexpressed in many diverse tumor types and is an anti-apoptosis protein for tumor cell proliferation and survival. Therapeutic strategies targeting the Prx I may therefore be effective broad-spectrum anticancer agents. We constructed a phage display single-chain variable fragment (scFv) antibody library and sieve out the fully human, lung adenocarcinoma-sepcific monoclonal antibodies. The selection on Prx I was performed using above-mentioned lung adenocarcinoma-sepcific monoclonal antibodies with high affinity to Prx I overexpressing lung adenocarcinoma cells. The candidate scFv sequences, based on enzyme-linked immunosorbent assay (ELISA) screening data, were chosen for soluble expression, and a 30 kDa band was observed on polyacrylamide gel electrophoresis as predicted. The purified antibodies were characterized by immunoblotting and showed high specificity to Prx I-overexpressing lung adenocarcinoma cells A549. Radioimmunoimaging was taken to evaluate specificity and distribution of antibodies in vivo. The radiolocalization index (RI) of tumor/serum and tumor/muscle gradually increased, reaching its peak (4.06 +/- 0.13 and 5.17 +/- 0.97, respectively) at 48 h postadministration. Single photon emission computed tomography (SPECT) imaging showed the radioactivity was aggregated in tumor locations and tumor imaging was clearly observed. The internalized scFv resulted in antibody-mediated cell apoptosis and downregulation of Prx I expression. These results demonstrate that the scFv possesses strong antitumor activity on lung adenocarcinoma and may therefore be an effective therapeutic candidate for the treatment of cancers that are dependent on Prx I for growth and survival.

  20. SIRT 1 Overexpression is Associated with Metastasis of Pancreatic Ductal Adenocarcinoma (PDAC) and Promotes Migration and Growth of PDAC Cells.

    PubMed

    Li, Siqin; Hong, Hua; Lv, Huicheng; Wu, Guozhu; Wang, Zhigang

    2016-05-12

    BACKGROUND SIRT 1, as a class III histone deacetylase (HDAC), is implicated in the initiation and progression of malignancies. However, the association of SIRT 1 with tumorigenesis or progression of pancreatic ductal adenocarcinoma (PDAC) is not clear. MATERIAL AND METHODS In our study we investigated SIRT 1 expression in PDAC samples and evaluated the association of SIRT 1 level with the clinical and pathological characteristics of PDAC patients. We investigated the role of SIRT 1 in the migration and growth of PDAC PANC-1 or BxPC-3 cells using gain-of-function and loss-of-function approach. RESULTS We demonstrated that SIRT 1 mRNA level was significantly promoted in intra-tumor tissues compared to peri-tumor tissues of PDAC; and SIRT 1 overexpression was markedly associated with distant or lymph node (LN) metastasis of these PDAC tissues. Moreover, the in vitro wound healing assay demonstrated that SIRT 1 overexpression with lentivirus vector markedly promoted the migration of PANC-1 or BxPC-3 cells, whereas SIRT 1 knockdown using SIRT 1 specific siRNA transfection significantly inhibited the migration of PDAC cells. The colony forming assay confirmed SIRT 1 promotion of the growth of PANC-1 or BxPC-3 cells. CONCLUSIONS In summary, SIRT 1 overexpression is significantly associated with metastasis of PDAC, and overexpressed SIRT 1 plays an important role in pancreatic cancer cell migration and growth. Our data warrants further studies on SIRT 1 as a novel chemotherapeutic target in PDAC.

  1. Synchrotron FTIR shows evidence of DNA damage and lipid accumulation in prostate adenocarcinoma PC-3 cells following proton irradiation

    NASA Astrophysics Data System (ADS)

    Lipiec, Ewelina; Bambery, Keith R.; Heraud, Phil; Hirschmugl, Carol; Lekki, Janusz; Kwiatek, Wojciech M.; Tobin, Mark J.; Vogel, Christian; Whelan, Donna; Wood, Bayden R.

    2014-09-01

    Synchrotron Radiation Fourier Transform Infrared (SR-FTIR) spectra of single human prostate adenocarcinoma PC-3 cells, irradiated with a defined number of 2 MeV protons generated by a proton microbeam along with non-irradiated control cells, were analysed using multivariate methods. A number of different Principal Component Analysis (PCA) models were tested and the spectral ranges associated with nucleic acids, proteins and lipids were analysed separately. The results show a dose dependent shift of the Osbnd Psbnd O asymmetric stretching mode from 1234 cm-1 to 1237 cm-1, consistent with local disorder in the B-DNA conformation along with a change in intensity of the Osbnd Psbnd O symmetric stretching band at 1083 cm-1 indicative of chromatin fragmentation - the natural consequence of a high number of DNA Double Strand Breaks (DSBs). 2D mapping of characteristic functional groups at the diffraction limit shows evidence of lipid deposition and chromatin condensation in cells exposed to protons indicative of cell apoptosis following irradiation. These studies lay the foundation for understanding the macromolecular changes that occur to cells in response to radiation therapy, which has important implications in the treatment of tumours.

  2. Interference of Ca²⁺ with the proliferation of SCCOHT-1 and ovarian adenocarcinoma cells.

    PubMed

    Otte, Anna; Rauprich, Finn; von der Ohe, Juliane; Hillemanns, Peter; Hass, Ralf

    2014-09-01

    A recently established cellular model for the rare small cell carcinoma of the ovary hypercalcemic type (SCCOHT-1) was characterized in comparison to ovarian adenocarcinoma cells (NIH:OVCAR-3 and SK-OV-3). The different cancer populations exhibited a common sensitivity in acidic pH milieu and a continuous proliferation in alkaline medium of pH 8.0-9.0. In the presence of elevated Ca2+ concentrations, the ovarian cancer cells demonstrated a progressively reduced proliferation within 72 h in contrast to other tumor types such as breast cancer cells. This significant growth inhibition was calcium-specific since the proliferation was unaffected after culture of the ovarian cancer cells in the presence of similar concentrations of other cations. The Ca2+ effects on the ovarian cancer cells were associated with marked differences in the activation of intracellular signaling pathways including enhanced phosphorylation of the p42/44 MAP kinase (Thr202/Tyr204). Further analysis of the signaling pathway revealed a significantly enhanced Ca2+-dependent and p42/44 MAP kinase activation-mediated prostaglandin E2 (PGE2) production in SK-OV-3 and SCCOHT-1 and to a lesser extent in NIH:OVCAR-3 cells. Vice versa, exogenous PGE2 did not affect the proliferative capacity of the ovarian cancer cells and inhibition of the Ca2+-mediated MAP kinase activation did not abolish the Ca2+-mediated cytotoxicity. Collectively, these data suggest that multiple pathways are activated by exogenous Ca2+ in the different ovarian cancer cells, including a specific MAP kinase signaling cascade with subsequent PGE2 production and a parallel pathway for the induction of cell death.

  3. Close relation of large cell carcinoma to adenocarcinoma by hierarchical cluster analysis: implications for histologic typing of lung cancer on biopsies.

    PubMed

    Hammer, Stephan H; Prall, Friedrich

    2015-09-01

    Determining histologic types of lung cancer on biopsies can be difficult. This study addresses the role of immunohistochemistry in histologic typing, using a tissue microarray (TMA) as "model biopsies," and presents a classification generated by an unsupervised hierarchical cluster analysis. A TMA was made from resection specimens of a consecutive series of 165 lung tumors. In a "tissue-spot review" with hematoxylin and eosin sections all the large cell carcinomas (N=22) were assigned to the noncommittal class of non-small cell lung cancer (NSCLC), as were an additional 37 tumors of defined histologic types. Adenocarcinomas and squamous cell carcinomas included with these NSCLC could be diagnosed by immunohistochemistry with antibodies against TTF-1, Napsin A, cytokeratin (CK)7, p40, p63, and CK5/6 with moderate to good sensitivities and specificities. Unsupervised hierarchical clustering was done with these data and additional high-molecular-weight cytokeratins, CD56, synaptophysin, and chromogranin immunohistochemistry. This delineated separate clusters for adenocarcinomas, large cell carcinomas, neuroendocrine tumors, and squamous cell carcinomas. Notably, adenocarcinoma and large cell carcinoma clusters were closely related and clearly set off from the squamous cell carcinoma cluster. As would be expected for a clinically well-staged series CDX2, GATA3, estrogen, and progesterone receptor immunohistochemistry remained negative in the vast majority of the tumors and, if positive, were restricted to very few cells. These results, the clustering data in particular, underpin the pragmatic recommendation canvassed with the IASLC/ATS/ERS classification of lung cancers that adenocarcinoma-type molecular studies should include NSCLC with a nonsquamous cell carcinoma immunophenotype.

  4. The impact of autophagy on cell death modalities in CRL-5876 lung adenocarcinoma cells after their exposure to γ-rays and/or erlotinib.

    PubMed

    Keta, Otilija; Bulat, Tanja; Golić, Igor; Incerti, Sebastien; Korać, Aleksandra; Petrović, Ivan; Ristić-Fira, Aleksandra

    2016-04-01

    In most patients with lung cancer radiation treatment is used either as single agent or in combination with radiosensitizing drugs. However, the mechanisms underlying combined therapy and its impact on different modes of cell death have not yet been fully elucidated. We aimed to examine effects of single and combined treatments with γ-rays and erlotinib on radioresistant CRL-5876 human lung adenocarcinoma cells with particular emphasis on cell death. CRL-5876 cells were treated with γ-rays and/or erlotinib and changes in cell cycle, DNA repair dynamics, ultrastructure, nuclear morphology and protein expression were monitored at different time points. To reveal the relationship between types of cell death that arise after these treatments, autophagy was blocked with chloroquine. We found that higher dose of γ-rays causes G2/M arrest while adding of erlotinib to this treatment decreases the number of cells in S phase. Impact of erlotinib on kinetics of disappearance of irradiation-induced DNA double strand breaks is reflected in the increase of residual γ-H2AX foci after 24 h. γ-rays provoke cytoprotective autophagy which precedes development of senescence. Erlotinib predominantly induces apoptosis and enlarges the number of apoptotic cells in the irradiated CRL-5876 cells. Chloroquine improved cytotoxicity induced by radiation and erlotinib, increased apoptosis and decreased senescence in the CRL-5876 cells. The results obtained on CRL-5876 cells indicate significant radiosensitizing effect of erlotinib and suggest that chloroquine in the combination with the above treatments may have an additional antitumor effect in lung adenocarcinoma.

  5. Evaluation of EGFR and RTK signaling in the electrotaxis of lung adenocarcinoma cells under direct-current electric field stimulation.

    PubMed

    Tsai, Hsieh-Fu; Huang, Ching-Wen; Chang, Hui-Fang; Chen, Jeremy J W; Lee, Chau-Hwang; Cheng, Ji-Yen

    2013-01-01

    Physiological electric field (EF) plays a pivotal role in tissue development and regeneration. In vitro, cells under direct-current electric field (dcEF) stimulation may demonstrate directional migration (electrotaxis) and long axis reorientation (electro-alignment). Although the biophysical models and biochemical signaling pathways behind cell electrotaxis have been investigated in numerous normal cells and cancer cells, the molecular signaling mechanisms in CL1 lung adenocarcinoma cells have not been identified. Two subclones of CL1 cells, the low invasive CL1-0 cells and the highly invasive CL 1-5 cells, were investigated in the present study. CL1-0 cells are non-electrotactic while the CL 1-5 cells are anodally electrotactic and have high expression level of epidermal growth factor receptor (EGFR), in this study, we investigated the generally accepted hypothesis of receptor tyrosine kinase (RTK) activation in the two cell lines under dcEF stimulation. Erbitux, a therapeutic drug containing an anti-EGFR monoclonal antibody, cetuximab, was used to investigate the EGFR signaling in the electrotaxis of CL 1-5 cells. To investigate RTK phosphorylation and intracellular signaling in the CL1 cells, large amount of cellular proteins were collected in an airtight dcEF stimulation device, which has advantages of large culture area, uniform EF distribution, easy operation, easy cell collection, no contamination, and no medium evaporation. Commercial antibody arrays and Western blotting were used to study the phosphorylation profiles of major proteins in CL1 cells under dcEF stimulation. We found that electrotaxis of CL 1-5 cells is serum independent and EGFR independent. Moreover, the phosphorylation of Akt and S6 ribosomal protein (rpS6) in dcEF-stimulated CL1 cells are different from that in EGF-stimulated cells. This result suggests that CL1 cells' response to dcEF stimulation is not through EGFR-triggered pathways. The new large-scale dcEF stimulation device developed

  6. Effect of RhoC on the epithelial-mesenchymal transition process induced by TGF-β1 in lung adenocarcinoma cells

    PubMed Central

    Lu, Xiaoxiao; Guo, Honglan; Chen, Xi; Xiao, Jian; Zou, Yong; Wang, Wei; Chen, Qiong

    2016-01-01

    According to recent research, Ras homolog gene family member C (RhoC) is confirmed to have a powerful regulatory effect on cell motility mediated by the cytoskeleton, and this process is closely associated with tumor invasion and metastasis. In addition, the epithelial-mesenchymal transition (EMT) process which causes cytoskeleton rearrangement, also plays a pivotal role in tumor invasion and metastasis. Consequently, in the present study, we aimed to ascertain whether RhoC has an effect on the EMT process induced by TGF-β1 in lung adenocarcinoma cells and whether RhoC promotes tumor invasion by mediating the occurrence of EMT. Based on the findings, we demonstrated that RhoC was an essential mediator of the EMT process in lung adenocarcinoma cell line A549 which was evaluated by observing the morphological characteristics of the cells and by assessing the expression levels of two EMT marker proteins: E-cadherin and vimentin. During the process of EMT in the A549 cells induced by TGF-β1 (5 ng/ml), upregulated RhoC protein and RhoC activity were detected, which was associated with the enhanced invasive capability of the cells in vitro. Conversely, downregulation of the expression of RhoC by shRNA markedly impeded EMT progression as well as the invasion of A549 cells. Our results may provide a novel target towards the prevention of metastasis in advanced lung adenocarcinoma. PMID:27748883

  7. EGFR mutation in squamous cell carcinoma of the lung: does it carry the same connotation as in adenocarcinomas?

    PubMed Central

    Joshi, Amit; Zanwar, Saurabh; Noronha, Vanita; Patil, Vijay M; Chougule, Anuradha; Kumar, Rajiv; Janu, Amit; Mahajan, Abhishek; Kapoor, Akhil; Prabhash, Kumar

    2017-01-01

    Background EGFR tyrosine kinase inhibitors (TKIs) have greatly improved the outcomes of EGFR mutation-positive adenocarcinomas of the lung. In contrast, the significance of EGFR mutation in metastatic squamous cell carcinoma (SCC) of the lung has been debated. Methods All patients with metastatic SCC who underwent EGFR mutation testing at our center from 2010 to 2015 were included for analysis. EGFR kinase domain mutations were tested using Taqman-based real-time polymerase chain reaction (PCR). Response assessment was done using Response Evaluation Criteria In Solid Tumors (RECIST) 1.1. Kaplan–Meier method was used for calculating progression-free survival (PFS) and overall survival (OS). Results EGFR mutation was detected in 29 out of 639 patients with SCC. Furthermore, 19 out of the 29 patients received TKIs at some point during their treatment. TKI therapy led to a partial response in 5 out of 19 patients and stable disease in 4 out of 19 patients. The median PFS of patients treated with TKIs was 5.0 months. The median OS of the whole EGFR-positive SCC cohort was 6.6 months. On univariate analysis, patients having received TKI therapy was the only factor associated with a significantly better OS of 13.48 months versus 2.58 months (P=0.000). On multivariate analysis, patients receiving TKI therapy, Eastern Cooperative Oncology Group–Performance Scale (ECOG-PS) score <2, EGFR exon 19 mutation and nonsmoking status were associated with significantly better OS. Conclusion EGFR mutation in SCC of the lung predicts a better outcome if the patient is given TKI, but it may be inferior to the outcomes seen in EGFR-positive adenocarcinomas treated with TKI.

  8. Cancer-FOXP3 directly activated CCL5 to recruit FOXP3(+)Treg cells in pancreatic ductal adenocarcinoma.

    PubMed

    Wang, X; Lang, M; Zhao, T; Feng, X; Zheng, C; Huang, C; Hao, J; Dong, J; Luo, L; Li, X; Lan, C; Yu, W; Yu, M; Yang, S; Ren, H

    2016-12-19

    Forkheadbox protein 3 (FOXP3), initially identified as a key transcription factor for regulatory T cells (Treg cells), was also expressed in many tumors including pancreatic ductal adenocarcinoma (PDAC). However, its role in PDAC progression remains elusive. In this study, we utilized 120 PDAC tissues after radical resection to detect cancer-FOXP3 and Treg cells by immunohistochemistry and evaluated clinical and pathological features of these patients. Cancer-FOXP3 was positively correlated with Treg cells accumulation in tumor tissues derived from PDAC patients. In addition, high cancer-FOXP3 expression was associated with increased tumor volumes and poor prognosis in PDAC especially combined with high levels of Treg cells. Overexpression of cancer-FOXP3 promoted the tumor growth in immunocompetent syngeneic mice but not in immunocompromised or Treg cell-depleted mice. Furthermore, CCL5 was directly trans-activated by cancer-FOXP3 and promoted the recruitment of Treg cells from peripheral blood to the tumor site in vitro and in vivo. This finding has been further reinforced by the evidence that Treg cells recruitment by cancer-FOXP3 was impaired by neutralization of CCL5, thereby inhibiting the growth of PDAC. In conclusion, cancer-FOXP3 serves as a prognostic biomarker and a crucial determinant of immunosuppressive microenvironment via recruiting Treg cells by directly trans-activating CCL5. Therefore, cancer-FOXP3 could be used to select patients with better response to CCL5/CCR5 blockade immunotherapy.Oncogene advance online publication, 19 December 2016; doi:10.1038/onc.2016.458.

  9. Synergistic effects of tea polyphenols and ascorbic acid on human lung adenocarcinoma SPC-A-1 cells.

    PubMed

    Li, Wei; Wu, Jian-xiang; Tu, You-ying

    2010-06-01

    Tea polyphenols have been shown to have anticancer activity in many studies. In the present study, we investigated effects of theaflavin-3-3'-digallate (TF(3)), one of the major theaflavin monomers in black tea, in combination with ascorbic acid (AA), a reducing agent, and (-)-epigallocatechin-3-gallate (EGCG), the main polyphenol presented in green tea, in combination with AA on cellular viability and cell cycles of the human lung adenocarcinoma SPC-A-1 cells. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay showed that the 50% inhibition concentrations (IC(50)) of TF(3), EGCG, and AA on SPC-A-1 cells were 4.78, 4.90, and 30.62 micromol/L, respectively. The inhibitory rates of TF(3) combined with AA (TF(3)+AA) and EGCG combined with AA (EGCG+AA) at a molar ratio of 1:6 on SPC-A-1 cells were 54.4% and 45.5%, respectively. Flow cytometry analysis showed that TF(3)+AA and EGCG+AA obviously increased the cell population in the G(0)/G(1) phase of the SPC-A-1 cell cycle from 53.9% to 62.8% and 60.0%, respectively. TF(3)-treated cells exhibited 65.3% of the G(0)/G(1) phase at the concentration of its IC(50). Therefore, TF(3)+AA and EGCG+AA had synergistic inhibition effects on the proliferation of SPC-A-1 cells, and significantly held SPC-A-1 cells in G(0)/G(1) phase. The results suggest that the combination of TF(3) with AA or EGCG with AA enhances their anticancer activity.

  10. A Distinct Slow-Cycling Cancer Stem-like Subpopulation of Pancreatic Adenocarcinoma Cells is maintained in Vivo

    PubMed Central

    Dembinski, Jennifer L.; Krauss, Stefan

    2010-01-01

    Pancreatic adenocarcinoma has the worst prognosis of any major malignancy, with <5% of patients surviving five years. This can be contributed to the often late diagnosis, lack of sufficient treatment and metastatic spread. Heterogeneity within tumors is increasingly becoming a focus in cancer research, as novel therapies are required to target the most aggressive subpopulations of cells that are frequently termed cancer stem cells (CSCs). In the current study, we describe the identification of a slow-cycling cancer stem-like population of cells in vivo in BxPC-3 and Panc03.27 xenografts. A distinct slow-cycling label-retaining population of cells (DiI+/SCC) was found both at the edge of tumors, and in small circumscribed areas within the tumors. DiI+/SCC in these areas display an epithelial-to-mesenchymal transition (EMT) fingerprint, including an upregulation of the mesenchymal markers vimentin and N-cadherin and a loss of the epithelial marker E-cadherin. DiI+/SCC also displayed a critical re-localization of beta-catenin from the membrane to the nucleus. Additionally, the DiI+/SCC population was found to express the developmental signaling molecule sonic hedgehog. This study represents a novel step in defining the biological activities of a tumorigenic subpopulation within the heterogeneous tumor microenvironment in vivo. Understanding the interactions and functions of a CSC population within the context of the tumor microenvironment is critical to design targeted therapeutics. PMID:24281215

  11. In vitro anti-inflammatory effect of apigenin in the Helicobacter pylori-infected gastric adenocarcinoma cells.

    PubMed

    Wang, Yuan-Chuen; Huang, Kai-Ming

    2013-03-01

    Infection with Helicobacter pylori causes extensive gastric epithelial cell inflammation which may progress to atrophic gastritis, intestinal metaplasia, and even gastric adenocarcinoma. Apigenin (4',5,7-trihydroxyflavone) is widely distributed in fruits and vegetables, and is a well-known antiinflammatory supplement with low cytotoxicity. In this study, we investigated the anti-inflammatory effects of apigenin in H. pylori-infected MKN45 cells, for which IκBα, cyclooxygenase-2 (COX-2), intercellular adhesion molecule-1 (ICAM-1), reactive oxygen species (ROS), interleukin-8 (IL-8), IL-6, IL-1β, and mucin-2 (MUC-2) expressions were examined. Apigenin treatments (9.3-74 μM) significantly increased the IκBα expression, and thus inhibited nuclear factor kappa B (NF-κB) activation, and the inflammatory factor (COX-2, ICAM-1, ROS, IL-6, and IL-8) expressions decreased. The ROS levels decreased partially based on the intrinsic scavenging property of apigenin. In summary, apigenin treatments effectively inhibited NF-κB activation and the related inflammatory factor expressions, as well as increased MUC-2 expression in the H. pylori-infected MKN45 cells. The compound shows great potential as a candidate agent for the inhibition of H. pylori-induced extensive gastric epithelial cell inflammation.

  12. Clathrin-dependent endocytosis of claudin-2 by DFYSP peptide causes lysosomal damage in lung adenocarcinoma A549 cells.

    PubMed

    Ikari, Akira; Taga, Saeko; Watanabe, Ryo; Sato, Tomonari; Shimobaba, Shun; Sonoki, Hiroyuki; Endo, Satoshi; Matsunaga, Toshiyuki; Sakai, Hideki; Yamaguchi, Masahiko; Yamazaki, Yasuhiro; Sugatani, Junko

    2015-10-01

    Claudins are tight junctional proteins and comprise a family of over 20 members. Abnormal expression of claudins is reported to be involved in tumor progression. Claudin-2 is highly expressed in lung adenocarcinoma tissues and increases cell proliferation, whereas it is not expressed in normal tissues. Claudin-2-targeting molecules such as peptides and small molecules may be novel anti-cancer drugs. The short peptide with the sequence DFYSP, which mimics the second extracellular loop of claudin-2, decreased claudin-2 content in the cytoplasmic fraction of A549 cells. In contrast, it did not affect the content in the nuclear fraction. The decrease in claudin-2 content was inhibited by chloroquine (CQ), a lysosomal inhibitor, but not by MG-132, a proteasome inhibitor. In the presence of DFYSP peptide and CQ, claudin-2 was co-localized with LAMP-1, a lysosomal marker. The DFYSP peptide-induced decrease in claudin-2 content was inhibited by monodancylcadaverine (MDC), an inhibitor of clathrin-dependent endocytosis. DFYSP peptide increased lysosome content and cathepsin B release, and induced cellular injury, which were inhibited by MDC. Cellular injury induced by DFYSP peptide was inhibited by necrostatin-1, an inhibitor of necrotic cell death, but not by Z-VAD-FMK, an inhibitor of apoptotic cell death. Our data indicate that DFYSP peptide increases the accumulation of the peptide and claudin-2 into the lysosome, resulting in lysosomal damage. Claudin-2 may be a new target for lung cancer therapy.

  13. The uptake of hydroxypropyl methacrylamide based homo, random and block copolymers by human multi-drug resistant breast adenocarcinoma cells

    PubMed Central

    Barz, Matthias; Luxenhofer, Robert; Zentel, Rudolf; Kabanov, Alexander V.

    2011-01-01

    A series of well defined, fluorescently labelled homopolymers, random and block copolymers based on N-(2-hydroxypropyl)-methacrylamide was prepared by reversible addition-fragmentation chain transfer polymerization (RAFT-polymerization). The polydispersity indexes for all polymers were in the range of 1.2 to 1.3 and the number average of the molar mass (Mn) for each polymer was set to be in the range of 15 kDa to 30 kDa. The cellular uptake of these polymers was investigated in the human multi-drug resistant breast adenocarcinoma cell line MCF7/ADR. The uptake greatly depended on the polymer molecular mass and structure. Specifically, smaller polymers (approx. 15 kDa) were taken up by the cells at much lower concentrations than larger polymers (approx. 30 kDa). Furthermore, for polymers of the same molar mass, the random copolymers were more easily internalized in cells than block copolymers or homopolymers. This is attributed to the fact that random copolymers form micelle-like aggregates by intra- and interchain interactions, which are smaller and less stable than the block copolymer structures in which the hydrophobic domain is buried and thus prevented from unspecific interaction with the cell membrane. Our findings underline the need for highly defined polymeric carriers and excipients for future applications in the field of nanomedicine. PMID:19631373

  14. Evaluation of EGFR and RTK Signaling in the Electrotaxis of Lung Adenocarcinoma Cells under Direct-Current Electric Field Stimulation

    PubMed Central

    Tsai, Hsieh-Fu; Huang, Ching-Wen; Chang, Hui-Fang; Chen, Jeremy J. W.; Lee, Chau-Hwang; Cheng, Ji-Yen

    2013-01-01

    Physiological electric field (EF) plays a pivotal role in tissue development and regeneration. In vitro, cells under direct-current electric field (dcEF) stimulation may demonstrate directional migration (electrotaxis) and long axis reorientation (electro-alignment). Although the biophysical models and biochemical signaling pathways behind cell electrotaxis have been investigated in numerous normal cells and cancer cells, the molecular signaling mechanisms in CL1 lung adenocarcinoma cells have not been identified. Two subclones of CL1 cells, the low invasive CL1-0 cells and the highly invasive CL 1-5 cells, were investigated in the present study. CL1-0 cells are non-electrotactic while the CL 1-5 cells are anodally electrotactic and have high expression level of epidermal growth factor receptor (EGFR), in this study, we investigated the generally accepted hypothesis of receptor tyrosine kinase (RTK) activation in the two cell lines under dcEF stimulation. Erbitux, a therapeutic drug containing an anti-EGFR monoclonal antibody, cetuximab, was used to investigate the EGFR signaling in the electrotaxis of CL 1-5 cells. To investigate RTK phosphorylation and intracellular signaling in the CL1 cells, large amount of cellular proteins were collected in an airtight dcEF stimulation device, which has advantages of large culture area, uniform EF distribution, easy operation, easy cell collection, no contamination, and no medium evaporation. Commercial antibody arrays and Western blotting were used to study the phosphorylation profiles of major proteins in CL1 cells under dcEF stimulation. We found that electrotaxis of CL 1-5 cells is serum independent and EGFR independent. Moreover, the phosphorylation of Akt and S6 ribosomal protein (rpS6) in dcEF-stimulated CL1 cells are different from that in EGF-stimulated cells. This result suggests that CL1 cells’ response to dcEF stimulation is not through EGFR-triggered pathways. The new large-scale dcEF stimulation device

  15. Doublecortin-Like Kinase 1 Is Elevated Serologically in Pancreatic Ductal Adenocarcinoma and Widely Expressed on Circulating Tumor Cells

    PubMed Central

    Weygant, Nathaniel; May, Randal; Aiello, Nicole; Rhim, Andrew; Zhao, Lichao; Zheng, Wei; Lightfoot, Stanley; Pant, Shubham; Irvan, Jeremy; Postier, Russell; Hocker, James; Hanas, Jay S.; Ali, Naushad; Sureban, Sripathi M.; An, Guangyu; Schlosser, Michael J.; Stanger, Ben; Houchen, Courtney W.

    2015-01-01

    Doublecortin-like kinase 1 (DCLK1) is a putative pancreatic stem cell marker and is upregulated in pancreatic cancer, colorectal cancer, and many other solid tumors. It marks tumor stem cells in mouse models of intestinal neoplasia. Here we sought to determine whether DCLK1 protein can be detected in the bloodstream and if its levels in archived serum samples could be quantitatively assessed in pancreatic cancer patients. DCLK1 specific ELISA, western blotting, and immunohistochemical analyses were used to determine expression levels in the serum and staining intensity in archived tumor tissues of pancreatic ductal adenocarcinoma (PDAC) patients and in pancreatic cancer mouse models. DCLK1 levels in the serum were elevated in early stages of PDAC (stages I and II) compared to healthy volunteers (normal controls). No differences were observed between stages III/IV and normal controls. In resected surgical tissues, DCLK1 expression intensity in the stromal cells was significantly higher than that observed in tumor epithelial cells. Circulating tumor cells were isolated from KPCY mice and approximately 52% of these cells were positive for Dclk1 staining. Dclk1 levels in the serum of KPC mice were also elevated. We have previously demonstrated that DCLK1 plays a potential role in regulating epithelial mesenchymal transition (EMT). Given the increasingly recognized role of EMT derived stem cells in cancer progression and metastasis, we hypothesize that DCLK1 may contribute to the metastatic process. Taken together, our results suggest that DCLK1 serum levels and DCLK1 positive circulating tumor cells should be further assessed for their potential diagnostic and prognostic significance. PMID:25723399

  16. Doublecortin-like kinase 1 is elevated serologically in pancreatic ductal adenocarcinoma and widely expressed on circulating tumor cells.

    PubMed

    Qu, Dongfeng; Johnson, Jeremy; Chandrakesan, Parthasarathy; Weygant, Nathaniel; May, Randal; Aiello, Nicole; Rhim, Andrew; Zhao, Lichao; Zheng, Wei; Lightfoot, Stanley; Pant, Shubham; Irvan, Jeremy; Postier, Russell; Hocker, James; Hanas, Jay S; Ali, Naushad; Sureban, Sripathi M; An, Guangyu; Schlosser, Michael J; Stanger, Ben; Houchen, Courtney W

    2015-01-01

    Doublecortin-like kinase 1 (DCLK1) is a putative pancreatic stem cell marker and is upregulated in pancreatic cancer, colorectal cancer, and many other solid tumors. It marks tumor stem cells in mouse models of intestinal neoplasia. Here we sought to determine whether DCLK1 protein can be detected in the bloodstream and if its levels in archived serum samples could be quantitatively assessed in pancreatic cancer patients. DCLK1 specific ELISA, western blotting, and immunohistochemical analyses were used to determine expression levels in the serum and staining intensity in archived tumor tissues of pancreatic ductal adenocarcinoma (PDAC) patients and in pancreatic cancer mouse models. DCLK1 levels in the serum were elevated in early stages of PDAC (stages I and II) compared to healthy volunteers (normal controls). No differences were observed between stages III/IV and normal controls. In resected surgical tissues, DCLK1 expression intensity in the stromal cells was significantly higher than that observed in tumor epithelial cells. Circulating tumor cells were isolated from KPCY mice and approximately 52% of these cells were positive for Dclk1 staining. Dclk1 levels in the serum of KPC mice were also elevated. We have previously demonstrated that DCLK1 plays a potential role in regulating epithelial mesenchymal transition (EMT). Given the increasingly recognized role of EMT derived stem cells in cancer progression and metastasis, we hypothesize that DCLK1 may contribute to the metastatic process. Taken together, our results suggest that DCLK1 serum levels and DCLK1 positive circulating tumor cells should be further assessed for their potential diagnostic and prognostic significance.

  17. Chemotherapy resistance in diffuse type gastric adenocarcinoma is mediated by RhoA activation in cancer stem-like cells

    PubMed Central

    Yoon, Changhwan; Cho, Soo-Jeong; Aksoy, Bülent Arman; Park, Do Joong; Schultz, Nikolaus; Ryeom, Sandra W.; Yoon, Sam S.

    2016-01-01

    Purpose The Lauren diffuse type of gastric adenocarcinoma (DGA), as opposed to the intestinal type (IGA), often harbor mutations in RHOA but little is known about the role of RhoA in DGA. Experimental Design We examined RhoA activity and RhoA pathway inhibition in DGA cell lines and in two mouse xenograft models. RhoA activity was also assessed in patient tumor samples. Results RhoA activity was higher in DGA compared to IGA cell lines, and was further increased when grown as spheroids to enrich for cancer stem-like cells (CSC) or when sorted using the gastric CSC marker CD44. RhoA shRNA or the RhoA inhibitor Rhosin decreased expression of the stem cell transcription factor, Sox2, and decreased spheroid formation by 78–81%. DGA spheroid cells had 3–5 fold greater migration and invasion than monolayer cells, and this activity was Rho-dependent. Diffuse GA spheroid cells were resistant in a cytotoxicity assay to 5-fluorouracil and cisplatin chemotherapy, and this resistance could be reversed with RhoA pathway inhibition. In two xenograft models, cisplatin inhibited tumor growth by 40–50%, RhoA inhibition by 32–60%, and the combination by 77–83%. In 288 patient tumors, increased RhoA activity correlated with worse OS in DGA patients (p=0.017) but not in IGA patients (p=0.612). Conclusions RhoA signaling promotes CSC phenotypes in DGA cells. Increased RhoA activity is correlated with worse OS in DGA patients and RhoA inhibition can reverse chemotherapy resistance in DGA CSC and in tumor xenografts. Thus the RhoA pathway is a promising new target in DGA patients. PMID:26482039

  18. Anti-proliferative effect on a colon adenocarcinoma cell line exerted by a membrane disrupting antimicrobial peptide KL15

    PubMed Central

    Chen, Yu-Ching; Tsai, Tsung-Lin; Ye, Xin-Hong; Lin, Thy-Hou

    2015-01-01

    The antimicrobial and anticancer activities of an antimicrobial peptide (AMP) KL15 obtained through in silico modification on the sequences of 2 previously identified bacteriocins m2163 and m2386 from Lactobacillus casei ATCC 334 by us have been studied. While significant bactericidal effect on the pathogenic bacteria Listeria, Escherichia, Bacillus, Staphylococcus, Enterococcus is exerted by KL15, the AMP can also kill 2 human adenocarcinoma cells SW480 and Caco-2 with measured IC50 as 50 μg/ml or 26.3 μM. However, the IC50 determined for KL15 on killing the normal human mammary epithelial cell H184B5F5/M10 is 150 μg/ml. The conformation of KL15 dissolved in 50% 2,2,2-trifluroroethanol or in 2 large unilamellar vesicle systems determined by circular dichroism spectroscopy appears to be helical. Further, the cell membrane permeability of treated SW480 cells by KL15 appears to be significantly enhanced as studied by both flow cytometry and confocal microscopy. As observed under a scanning electron microscope, the morphology of treated SW480 cells is also significantly changed as treating time by 80 μg/ml KL15 is increased. KL15 appears to be able to pierce the cell membrane of treated SW480 cells so that numerous porous structures are generated and observable. Therefore, KL15 is likely to kill the treated SW480 cells through the necrotic pathway similar to some recently identified AMPs by others. PMID:26147829

  19. NF-{kappa}B signaling is activated and confers resistance to apoptosis in three-dimensionally cultured EGFR-mutant lung adenocarcinoma cells

    SciTech Connect

    Sakuma, Yuji; Yamazaki, Yukiko; Nakamura, Yoshiyasu; Yoshihara, Mitsuyo; Matsukuma, Shoichi; Koizume, Shiro; Miyagi, Yohei

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer EGFR-mutant cells in 3D culture resist EGFR inhibition compared with suspended cells. Black-Right-Pointing-Pointer Degradation of I{kappa}B and activation of NF-{kappa}B are observed in 3D-cultured cells. Black-Right-Pointing-Pointer Inhibiting NF-{kappa}B enhances the efficacy of the EGFR inhibitor in 3D-cultured cells. -- Abstract: Epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma cells in suspension undergo apoptosis to a greater extent than adherent cells in a monolayer when EGFR autophosphorylation is inhibited by EGFR tyrosine kinase inhibitors (TKIs). This suggests that cell adhesion to a culture dish may activate an anti-apoptotic signaling pathway other than the EGFR pathway. Since the microenvironment of cells cultured in a monolayer are substantially different to that of cells existing in three-dimension (3D) in vivo, we assessed whether two EGFR-mutant lung adenocarcinoma cell lines, HCC827 and H1975, were more resistant to EGFR TKI-induced apoptosis when cultured in a 3D extracellular matrix (ECM) as compared with in suspension. The ECM-adherent EGFR-mutant cells in 3D were significantly less sensitive to treatment with WZ4002, an EGFR TKI, than the suspended cells. Further, a marked degradation of I{kappa}B{alpha}, the inhibitor of nuclear factor (NF)-{kappa}B, was observed only in the 3D-cultured cells, leading to an increase in the activation of NF-{kappa}B. Moreover, the inhibition of NF-{kappa}B with pharmacological inhibitors enhanced EGFR TKI-induced apoptosis in 3D-cultured EGFR-mutant cells. These results suggest that inhibition of NF-{kappa}B signaling would render ECM-adherent EGFR-mutant lung adenocarcinoma cells in vivo more susceptible to EGFR TKI-induced cell death.

  20. Invasive mouse gastric adenocarcinomas arising from Lgr5+ stem cells are dependent on crosstalk between the Hedgehog/GLI2 and mTOR pathways

    PubMed Central

    Syu, Li-Jyun; Zhao, Xinyi; Zhang, Yaqing; Grachtchouk, Marina; Demitrack, Elise; Ermilov, Alexandre; Wilbert, Dawn M.; Zheng, Xinlei; Kaatz, Ashley; Greenson, Joel K.; Gumucio, Deborah L.; Merchant, Juanita L.; di Magliano, Marina Pasca; Samuelson, Linda C.; Dlugosz, Andrzej A.

    2016-01-01

    Gastric adenocarcinoma is the third most common cause of cancer-related death worldwide. Here we report a novel, highly-penetrant mouse model of invasive gastric cancer arising from deregulated Hedgehog/Gli2 signaling targeted to Lgr5-expressing stem cells in adult stomach. Tumor development progressed rapidly: three weeks after inducing the Hh pathway oncogene GLI2A, 65% of mice harbored in situ gastric cancer, and an additional 23% of mice had locally invasive tumors. Advanced mouse gastric tumors had multiple features in common with human gastric adenocarcinomas, including characteristic histological changes, expression of RNA and protein markers, and the presence of major inflammatory and stromal cell populations. A subset of tumor cells underwent epithelial-mesenchymal transition, likely mediated by focal activation of canonical Wnt signaling and Snail1 induction. Strikingly, mTOR pathway activation, based on pS6 expression, was robustly activated in mouse gastric adenocarcinomas from the earliest stages of tumor development, and treatment with rapamycin impaired tumor growth. GLI2A-expressing epithelial cells were detected transiently in intestine, which also contains Lgr5+ stem cells, but they did not give rise to epithelial tumors in this organ. These findings establish that deregulated activation of Hedgehog/Gli2 signaling in Lgr5-expressing stem cells is sufficient to drive gastric adenocarcinoma development in mice, identify a critical requirement for mTOR signaling in the pathogenesis of these tumors, and underscore the importance of tissue context in defining stem cell responsiveness to oncogenic stimuli. PMID:26859571

  1. Tumour-derived Interleukin 35 promotes pancreatic ductal adenocarcinoma cell extravasation and metastasis by inducing ICAM1 expression

    PubMed Central

    Huang, Chongbiao; Li, Na; Li, Zengxun; Chang, Antao; Chen, Yanan; Zhao, Tiansuo; Li, Yang; Wang, Xiuchao; Zhang, Wei; Wang, Zhimin; Luo, Lin; Shi, Jingjing; Yang, Shengyu; Ren, He; Hao, Jihui

    2017-01-01

    Interleukin 35 (IL-35) is a novel member of the IL-12 family, consisting of an EBV-induced gene 3 (EBI3) subunit and a P35 subunit. IL-35 is an immune-suppressive cytokine mainly produced by regulatory T cells. However, the role of IL-35 in cancer metastasis and progression is not well understood. Here we demonstrate that IL-35 is overexpressed in human pancreatic ductal adenocarcinoma (PDAC) tissues, and that IL-35 overexpression is associated with poor prognosis in PDAC patients. IL-35 has critical roles in PDAC cell extravasation and metastasis by facilitating the adhesion to endothelial cells and transendothelial extravasation. Mechanistically, IL-35 promotes ICAM1 overexpression through a GP130-STAT1 signalling pathway, which facilitates endothelial adhesion and transendothelial migration via an ICAM1–fibrinogen–ICAM1 bridge. In an orthotopic xenograft model, IL-35 promotes spontaneous pancreatic cancer metastasis in an ICAM1-dependent manner. Together, our results indicate additional functions of IL-35 in promoting PDAC metastasis through mediating ICAM1 expression. PMID:28102193

  2. Cyto- and genotoxicity assessment of Gold nanoparticles obtained by laser ablation in A549 lung adenocarcinoma cells

    NASA Astrophysics Data System (ADS)

    Di Bucchianico, Sebastiano; Migliore, Lucia; Marsili, Paolo; Vergari, Chiara; Giammanco, Francesco; Giorgetti, Emilia

    2015-05-01

    Gold nanoparticles have attracted enormous interest in biomedical applications, based on their unique optical properties. However, their toxicity on human tissues is still an open issue. Beyond the potential intrinsic toxicity of nanostructured gold, a non-negligible contribution of stabilizers or reaction by-products related to current wet chemical synthesis procedures can be expected. Aimed at isolating gold contribution from that of any other contaminant, we produced colloidal suspensions of Gold nanoparticles having average size <10 nm in deionized water or acetone by pulsed laser ablation, that permits preparation of uncoated and highly stable Gold nanoparticles in pure solvents. Subsequently, we investigated the role of surface chemistry, size, and dispersivity of synthesized Gold nanoparticles in exerting toxicity in a cell model system of deep respiratory tract, representing the main route of exposure to NPs, namely adenocarcinoma epithelial A549 cells. Gold nanoparticles prepared in water showed no particular signs of cytotoxicity, cytostasis, and/or genotoxicity as assessed by MTT colorimetric viability test and Cytokinesis-block micronucleus cytome assay up to concentrations of the order of 5 μg/mL. In contrast, Gold nanoparticles produced in pure acetone and then transferred into deionized water showed impaired cell viability, apoptosis responses, micronuclei, and dicentric chromosomes induction as well as nuclear budding, as a function of the amount of surface contaminants like amorphous carbon and enolate ions.

  3. Avarol Induces Apoptosis in Pancreatic Ductal Adenocarcinoma Cells by Activating PERK–eIF2α–CHOP Signaling

    PubMed Central

    Namba, Takushi; Kodama, Rika

    2015-01-01

    Avarol is a sesquiterpenoid hydroquinone with potent cytotoxicity. Although resolving endoplasmic reticulum (ER) stress is essential for intracellular homeostasis, erratic or excessive ER stress can lead to apoptosis. Here, we reported that avarol selectively induces cell death in pancreatic ductal adenocarcinomas (PDAC), which are difficult to treat owing to the availability of few chemotherapeutic agents. Analyses of the molecular mechanisms of avarol-induced apoptosis indicated upregulation of ER stress marker BiP and ER stress-dependent apoptosis inducer CHOP in PDAC cells but not in normal cells, suggesting that avarol selectively induces ER stress responses. We also showed that avarol activated the PERK–eIF2α pathway but did not affect the IRE1 and ATF6 pathways. Moreover, CHOP downregulation was significantly suppressed by avarol-induced apoptosis. Thus, the PERK–eIF2α–CHOP signaling pathway may be a novel molecular mechanism of avarol-induced apoptosis. The present data indicate that avarol has potential as a chemotherapeutic agent for PDAC and induces apoptosis by activating the PERK–eIF2α pathway. PMID:25894488

  4. Effect of combined 5-aza-2'deoxycytidine and cisplatin treatment on the P15 lung adenocarcinoma cell line.

    PubMed

    Liu, Kaishan; Huang, Wenyan; Gao, Weisong; He, Wenfang

    2015-05-01

    Aberrant promoter hypermethylation resulting in the epigenetic silencing of apoptosis-associated genes is a key process in the chemotherapeutic treatment of cancer. The nucleoside analog, 5-aza-2'deoxycytidine (DAC), inhibits the activity of DNA methyltransferase enzymes and is able to restore the expression levels of genes that have been silenced by aberrant DNA methylation. The aim of the present study was to investigate the effect of combined treatment with DAC and cisplatin (CDDP) on the lung adenocarcinoma cell line, P15. Growth inhibition was examined using a clone formation assay and growth inhibitory activities by cell counting during treatment with DAC alone, CDDP alone or DAC followed by CDDP. In addition, changes in the mRNA expression levels of various apoptosis-associated genes following treatment with increasing concentrations of DAC were determined using reverse transcription-polymerase chain reaction. Furthermore, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) analysis was used to detect the number of apoptotic P15 tumor cells following treatment with DAC and/or CDDP. The results indicated that DAC treatment alone restored the mRNA expression levels of p73, p16(INK4a) , B-cell lymphoma (Bcl)-2-associated agonist of cell death and Bcl-2-associated X protein. In addition, combined therapy with DAC and CDDP was found to significantly suppress the growth of P15 tumor cells compared with DAC or CDDP treatment alone. In conclusion, DAC may enhance the chemosensitivity of the P15 cell line to treatment with CDDP.

  5. Tumor Cell-derived MMP-3 Orchestrates Rac1b and Tissue Alterations that Promote Pancreatic Adenocarcinoma

    PubMed Central

    Mehner, Christine; Miller, Erin; Khauv, Davitte; Nassar, Aziza; Oberg, Ann L.; Bamlet, William R.; Zhang, Lizhi; Waldmann, Jens; Radisky, Evette S.; Crawford, Howard C.; Radisky, Derek C.

    2014-01-01

    Pancreatic ductal adenocarcinoma (PDA) arises at the convergence of genetic alterations in KRAS with a fostering microenvironment shaped by immune cell influx and fibrotic changes; identification of the earliest tumorigenic molecular mediators evokes the proverbial chicken and egg problem. Matrix metalloproteinases (MMPs) are key drivers of tumor progression that originate primarily from stromal cells activated by the developing tumor. Here matrix metalloproteinase-3 (MMP3), known to be expressed in PDA, was found to be associated with expression of Rac1b, a tumorigenic splice isoform of Rac1, in all stages of pancreatic cancer. Using a large cohort of human PDA tissue biopsies specimens, both MMP3 and Rac1b are expressed in PDA cells, that the expression levels of the two markers are highly correlated, and that the subcellular distribution of Rac1b in PDA is significantly associated with patient outcome. Using transgenic mouse models, co-expression of MMP3 with activated KRAS in pancreatic acinar cells stimulates metaplasia and immune cell infiltration, priming the stromal microenvironment for early tumor development. Finally, exposure of cultured pancreatic cancer cells to recombinant MMP3 stimulates expression of Rac1b, increases cellular invasiveness, and activation of tumorigenic transcriptional profiles. Implications MMP3 acts as a co-conspirator of oncogenic KRAS in pancreatic cancer tumorigenesis and progression, both through Rac1b-mediated phenotypic control of pancreatic cancer cells themselves, and by giving rise to the tumorigenic microenvironment; these findings also point to inhibition of this pathway as a potential therapeutic strategy for pancreatic cancer. PMID:24850902

  6. Effect of combined 5-aza-2′deoxycytidine and cisplatin treatment on the P15 lung adenocarcinoma cell line

    PubMed Central

    LIU, KAISHAN; HUANG, WENYAN; GAO, WEISONG; HE, WENFANG

    2015-01-01

    Aberrant promoter hypermethylation resulting in the epigenetic silencing of apoptosis-associated genes is a key process in the chemotherapeutic treatment of cancer. The nucleoside analog, 5-aza-2′deoxycytidine (DAC), inhibits the activity of DNA methyltransferase enzymes and is able to restore the expression levels of genes that have been silenced by aberrant DNA methylation. The aim of the present study was to investigate the effect of combined treatment with DAC and cisplatin (CDDP) on the lung adenocarcinoma cell line, P15. Growth inhibition was examined using a clone formation assay and growth inhibitory activities by cell counting during treatment with DAC alone, CDDP alone or DAC followed by CDDP. In addition, changes in the mRNA expression levels of various apoptosis-associated genes following treatment with increasing concentrations of DAC were determined using reverse transcription-polymerase chain reaction. Furthermore, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) analysis was used to detect the number of apoptotic P15 tumor cells following treatment with DAC and/or CDDP. The results indicated that DAC treatment alone restored the mRNA expression levels of p73, p16INK4a, B-cell lymphoma (Bcl)-2-associated agonist of cell death and Bcl-2-associated X protein. In addition, combined therapy with DAC and CDDP was found to significantly suppress the growth of P15 tumor cells compared with DAC or CDDP treatment alone. In conclusion, DAC may enhance the chemosensitivity of the P15 cell line to treatment with CDDP. PMID:26137003

  7. Expansion of quiescent lung adenocarcinoma CD8+ T cells by MUC1-8-mer peptide-T2 cell-β2 microglobulin complexes

    PubMed Central

    ATZIN-MÉNDEZ, J.A.; LÓPEZ-GONZÁLEZ, J.S.; BÁEZ, R.; ARENAS-DEL ANGEL, M.C.; MONTAÑO, L.F.; SILVA-ADAYA, D.; LASCURAIN, R.; GOROCICA, P.

    2016-01-01

    Adoptive immunotherapy requires the isolation of CD8+ T cells specific for tumor-associated antigens, their expansion in vitro and their transfusion to the patient to mediate a therapeutic effect. MUC1 is an important adenocarcinoma antigen immunogenic for T cells. The MUC1-derived SAPDTRPA (MUC1-8-mer) peptide is a potent epitope recognized by CD8+ T cells in murine models. Likewise, the T2 cell line has been used as an antigen-presenting cell to activate CD8+ T cells, but so far MUC1 has not been assessed in this context. We evaluated whether the MUC1-8-mer peptide can be presented by T2 cells to expand CD25+CD8+ T cells isolated from HLA-A2+ lung adenocarcinoma patients with stage III or IV tumors. The results showed that MUC1-8-mer peptide-loaded T2 cells activated CD8+ T cells from cancer HLA-A2+ patients when anti-CD2, anti-CD28 antibodies and IL-2 were added. The percentage of CD25+CD8+ T cells was 3-fold higher than those in the non-stimulated cells (P=0.018). HLA-A2+ patient cells showed a significant difference (2.3-fold higher) in activation status than HLA-A2+ healthy control cells (P=0.04). Moreover, 77.6% of MUC1-8-mer peptide-specific CD8+ T cells proliferated following a second stimulation with MUC1-8-mer peptide-loaded T2 cells after 10 days of cell culture. There were significant differences in the percentage of basal CD25+CD8+ T cells in relation to the cancer stage; this difference disappeared after MUC1-8-mer peptide stimulation. In conclusion, expansion of CD25+CD8+ T cells by MUC1-8 peptide-loaded T2 cells plus costimulatory signals via CD2, CD28 and IL-2 can be useful in adoptive immunotherapy. PMID:26498650

  8. In vitro and in vivo studies on antitumor effects of gossypol on human stomach adenocarcinoma (AGS) cell line and MNNG induced experimental gastric cancer

    SciTech Connect

    Gunassekaran, G.R.; Kalpana Deepa Priya, D.; Gayathri, R.; Sakthisekaran, D.

    2011-08-12

    Highlights: {yields} Gossypol is a well known polyphenolic compound used for anticancer studies but we are the first to report that gossypol has antitumor effect on MNNG induced gastric cancer in experimental animal models. {yields} Our study shows that gossypol inhibits the proliferation of AGS (human gastric adenocarcinoma) cell line. {yields} In animal models, gossypol extends the survival of cancer bearing animals and also protects the cells from carcinogenic effect. {yields} So we suggest that gossypol would be a potential chemotherapeutic and chemopreventive agent for gastric cancer. -- Abstract: The present study has evaluated the chemopreventive effects of gossypol on N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced gastric carcinogenesis and on human gastric adenocarcinoma (AGS) cell line. Gossypol, C{sub 30}H{sub 30}O{sub 8}, is a polyphenolic compound that has anti proliferative effect and induces apoptosis in various cancer cells. The aim of this work was to delineate in vivo and in vitro anti-initiating mechanisms of orally administered gossypol in target (stomach) tissues and in human gastric adenocarcinoma (AGS) cell line. In vitro results prove that gossypol has potent cytotoxic effect and inhibit the proliferation of adenocarcinoma (AGS) cell line. In vivo results prove gossypol to be successful in prolonging the survival of MNNG induced cancer bearing animals and in delaying the onset of tumor in animals administrated with gossypol and MNNG simultaneously. Examination of the target (stomach) tissues in sacrificed experimental animals shows that administration of gossypol significantly reduces the level of tumor marker enzyme (carcino embryonic antigen) and pepsin. The level of Nucleic acid contents (DNA and RNA) significantly reduces, and the membrane damage of glycoprotein subsides, in the target tissues of cancer bearing animals, with the administration of gossypol. These data suggest that gossypol may create a beneficial effect in patients

  9. Characterization of the cell of origin and propagation potential of the fibroblast growth factor 9-induced mouse model of lung adenocarcinoma.

    PubMed

    Arai, Daisuke; Hegab, Ahmed E; Soejima, Kenzo; Kuroda, Aoi; Ishioka, Kota; Yasuda, Hiroyuki; Naoki, Katsuhiko; Kagawa, Shizuko; Hamamoto, Junko; Yin, Yongjun; Ornitz, David M; Betsuyaku, Tomoko

    2015-03-01

    Fibroblast growth factor 9 (FGF9) is essential for lung development and is highly expressed in a subset of human lung adenocarcinomas. We recently described a mouse model in which FGF9 expression in the lung epithelium caused proliferation of the airway epithelium at the terminal bronchioles and led to rapid development of adenocarcinoma. Here, we used this model to characterize the effects of prolonged FGF9 induction on the proximal and distal lung epithelia, and examined the propagation potential of FGF9-induced lung tumours. We showed that prolonged FGF9 over-expression in the lung resulted in the development of adenocarcinomas arising from both alveolar type II and airway secretory cells in the lung parenchyma and airways, respectively. We found that tumour cells harboured tumour-propagating cells that were able to form secondary tumours in recipient mice, regardless of FGF9 expression. However, the highest degree of tumour propagation was observed when unfractionated tumour cells were co-administered with autologous, tumour-associated mesenchymal cells. Although the initiation of lung adenocarcinomas was dependent on activation of the FGF9-FGF receptor 3 (FGFR3) signalling axis, maintenance and propagation of the tumour was independent of this signalling. Activation of an alternative FGF-FGFR axis and the interaction with tumour stromal cells is likely to be responsible for the development of this independence. This study demonstrates the complex role of FGF-FGFR signalling in the initiation, growth and propagation of lung cancer. Our findings suggest that analysing the expressions of FGF-FGFRs in human lung cancer will be a useful tool for guiding customized therapy.

  10. Circulating Tumor Cells as a Biomarker of Response to Treatment in Patient-Derived Xenograft Mouse Models of Pancreatic Adenocarcinoma

    PubMed Central

    Torphy, Robert J.; Tignanelli, Christopher J.; Kamande, Joyce W.; Moffitt, Richard A.; Herrera Loeza, Silvia G.; Soper, Steven A.; Yeh, Jen Jen

    2014-01-01

    Circulating tumor cells (CTCs) are cells shed from solid tumors into circulation and have been shown to be prognostic in the setting of metastatic disease. These cells are obtained through a routine blood draw and may serve as an easily accessible marker for monitoring treatment effectiveness. Because of the rapid progression of pancreatic ductal adenocarcinoma (PDAC), early insight into treatment effectiveness may allow for necessary and timely changes in treatment regimens. The objective of this study was to evaluate CTC burden as a biomarker of response to treatment with a oral phosphatidylinositol-3-kinase inhibitor, BKM120, in patient-derived xenograft (PDX) mouse models of PDAC. PDX mice were randomized to receive vehicle or BKM120 treatment for 28 days and CTCs were enumerated from whole blood before and after treatment using a microfluidic chip that selected for EpCAM (epithelial cell adhesion molecule) positive cells. This microfluidic device allowed for the release of captured CTCs and enumeration of these cells via their electrical impedance signatures. Median CTC counts significantly decreased in the BKM120 group from pre- to post-treatment (26.61 to 2.21 CTCs/250 µL, p = 0.0207) while no significant change was observed in the vehicle group (23.26 to 11.89 CTCs/250 µL, p = 0.8081). This reduction in CTC burden in the treatment group correlated with tumor growth inhibition indicating CTC burden is a promising biomarker of response to treatment in preclinical models. Mutant enriched sequencing of isolated CTCs confirmed that they harbored KRAS G12V mutations, identical to the matched tumors. In the long-term, PDX mice are a useful preclinical model for furthering our understanding of CTCs. Clinically, mutational analysis of CTCs and serial monitoring of CTC burden may be used as a minimally invasive approach to predict and monitor treatment response to guide therapeutic regimens. PMID:24586805

  11. The CD24/P-selectin binding pathway initiates lung arrest of human A125 adenocarcinoma cells.

    PubMed

    Friederichs, J; Zeller, Y; Hafezi-Moghadam, A; Gröne, H J; Ley, K; Altevogt, P

    2000-12-01

    Carbohydrates on tumor cells have been shown to play an important role in tumor metastasis. We demonstrated before that CD24, a Mr 35,000-60,000 mucine-type glycosylphosphatidylinositol-linked cell surface molecule, can function as ligand for P-selectin and that the sialylLex carbohydrate is essential for CD24-mediated rolling of tumor cells on P-selectin. To investigate the role of both antigens more closely, we transfected human A125 adenocarcinoma cells with CD24 and/or fucosyltransferase VII (Fuc TVII) cDNAs. Stable transfectants expressed CD24 and/or sialylLex. Biochemical analysis confirmed that in A125-CD24/FucTVII double transfectants, CD24 was modified with sialylLex. Only double transfectants showed rolling on P-selectin in vivo. When injected into mice, double transfectants arrested in the lungs, and this step was P-selectin dependent because it was strongly enhanced in lipopolysaccharide (LPS) pretreated wild-type mice but not in P-selectin knockout mice. CD24 modified by sialylLex was required on the tumor cells because the LPS-induced lung arrest was abolished by removal of CD24 from the cell surface by phosphatidylinositol-specific phospholipase C. A125-FucTVII single transfectants expressing sialylLex but not CD24 did not show P-selectin-mediated lung arrest. The sialylLex epitope is abundantly expressed on human carcinomas, and significant correlations between sialylLex expression and clinical prognosis exist. Our data suggest an important role for sialylLex-modified CD24 in the lung colonization of human tumors.

  12. Gastrin upregulates the prosurvival factor secretory clusterin in adenocarcinoma cells and in oxyntic mucosa of hypergastrinemic rats.

    PubMed

    Fjeldbo, Christina Sæten; Bakke, Ingunn; Erlandsen, Sten Even; Holmseth, Jannicke; Lægreid, Astrid; Sandvik, Arne K; Thommesen, Liv; Bruland, Torunn

    2012-01-01

    We show that the gastric hormone gastrin induces the expression of the prosurvival secretory clusterin (sCLU) in rat adenocarcinoma cells. Clusterin mRNA was still upregulated in the presence of the protein synthesis inhibitor cycloheximide, although at a lower level. This indicates that gastrin induces clusterin transcription independently of de novo protein synthesis but requires de novo protein synthesis of signal transduction pathway components to achieve maximal expression level. Luciferase reporter assay indicates that the AP-1 transcription factor complex is involved in gastrin-mediated activation of the clusterin promoter. Gastrin-induced clusterin expression and subsequent secretion is dependent on sustained treatment, because removal of gastrin after 1-2 h abolished the response. Neutralization of secreted clusterin by a specific antibody abolished the antiapoptotic effect of gastrin on serum starvation-induced apoptosis, suggesting that extracellular clusterin is involved in gastrin-mediated inhibition of apoptosis. The clusterin response to gastrin was validated in vivo in hypergastrinemic rats, showing increased clusterin expression in the oxyntic mucosa, as well as higher levels of clusterin in plasma. In normal rat oxyntic mucosa, clusterin protein was strongly expressed in chromogranin A-immunoreactive neuroendocrine cells, of which the main cell type was the histidine decarboxylase-immunoreactive enterochromaffin-like (ECL) cell. The association of clusterin with neuroendocrine differentiation was further confirmed in human gastric ECL carcinoids. Interestingly, in hypergastrinemic rats, clusterin-immunoreactive cells formed distinct groups of diverse cells at the base of many glands. Our results suggest that clusterin may contribute to gastrin's growth-promoting effect on the oxyntic mucosa.

  13. Antigenotoxicity of probiotics and prebiotics on faecal water-induced DNA damage in human colon adenocarcinoma cells.

    PubMed

    Burns, Anthony J; Rowland, Ian R

    2004-07-13

    Six strains of lactic acid producing bacteria (LAB) were incubated (1 x 10(8)cfu/ml) with genotoxic faecal water from a human subject. HT29 human adenocarcinoma cells were then challenged with the resultant samples and DNA damage measured using the single cell gel electrophoresis (comet) assay. The LAB strains investigated were Bifidobacterium sp. 420, Bifidobacterium Bb12, Lactobacillus plantarum, Streptococcus thermophilus, Lactobacillus bulgaricus and Enterococcus faecium. DNA damage was significantly decreased by all bacteria used with the exception of Strep. thermophilus. Bif. Bb12 and Lact. plantarum showed the greatest protective effect against DNA damage. Incubation of faecal water with different concentrations of Bif. Bb12 and Lact. plantarum revealed that the decrease in genotoxicity was related to cell density. Non-viable (heat treated) probiotic cells had no effect on faecal water genotoxicity. In a second study, HT29 cells were cultured in the presence of supernatants of incubations of probiotics with various carbohydrates including known prebiotics; the HT29 cells were then exposed to faecal water. Overall, incubations involving Lact. plantarum with the fructooligosaccharide (FOS)-based prebiotics Inulin, Raftiline, Raftilose and Actilight were the most effective in increasing the cellular resistance to faecal water genotoxicity, whereas fermentations with Elixor (a galactooligosaccharide) and Fibersol (a maltodextrin) were less effective. Substantial reductions in faecal water-induced DNA damage were also seen with supernatants from incubation of prebiotics with Bif. Bb12. The supernatant of fermentations involving Ent. faecium and Bif. sp. 420 generally had less potent effects on genotoxicity although some reductions with Raftiline and Elixor fermentations were apparent.

  14. Claudin-18 inhibits cell proliferation and motility mediated by inhibition of phosphorylation of PDK1 and Akt in human lung adenocarcinoma A549 cells.

    PubMed

    Shimobaba, Shun; Taga, Saeko; Akizuki, Risa; Hichino, Asami; Endo, Satoshi; Matsunaga, Toshiyuki; Watanabe, Ryo; Yamaguchi, Masahiko; Yamazaki, Yasuhiro; Sugatani, Junko; Ikari, Akira

    2016-06-01

    Abnormal expression of claudin subtypes has been reported in various cancers. However, the pathological role of each claudin has not been clarified in detail. Claudin-18 was absent in human non-small cell and small cell lung cancers, although it is expressed in normal lung tissues. Here, we examined the effect of claudin-18 expression on the expression of junctional proteins, cell proliferation, and cell motility using human lung adenocarcinoma A549 cells. Real-time PCR and western blotting showed that exogenous expression of claudin-18 had no effect on the expression of junctional proteins including claudin-1, zonula occludens-1 (ZO-1), occludin, and E-cadherin. Claudin-18 was mainly distributed in cell-cell contact areas concomitant with ZO-1. Cell proliferation was significantly decreased at 48 and 72h after seeding of claudin 18-expressing cells. Claudin-18 suppressed cell motility, whereas it increased cell death in anoikis. Claudin-18 decreased phosphorylated (p)-3-phosphoinositide-dependent protein kinase-1 (PDK1) and p-Akt levels without affecting p-epidermal growth factor receptor and p-phosphatidylinositol-3 kinase (PI3K) levels. Furthermore, claudin-18 was bound with PDK1 and suppressed the nuclear localization of PDK1. We suggest that claudin-18 suppresses the abnormal proliferation and motility of lung epithelial cells mediated by inhibition of the PI3K/PDK1/Akt signaling pathway.

  15. Epithelial-to-mesenchymal transition in pancreatic ductal adenocarcinoma: Characterization in a 3D-cell culture model

    PubMed Central

    Gagliano, Nicoletta; Celesti, Giuseppe; Tacchini, Lorenza; Pluchino, Stefano; Sforza, Chiarella; Rasile, Marco; Valerio, Vincenza; Laghi, Luigi; Conte, Vincenzo; Procacci, Patrizia

    2016-01-01

    AIM: To analyze the effect of three-dimensional (3D)-arrangement on the expression of epithelial-to-mesenchymal transition markers in pancreatic adenocarcinoma (PDAC) cells. METHODS: HPAF-II, HPAC, and PL45 PDAC cells were cultured in either 2D-monolayers or 3D-spheroids. Ultrastructure was analyzed by transmission electron microscopy. The expression of E-cadherin, β-catenin, N-cadherin, collagen type I (COL-I), vimentin, α-smooth muscle actin (αSMA), and podoplanin was assayed by confocal microscopy in cells cultured on 12-mm diameter round coverslips and in 3D-spheroids. Gene expression for E-cadherin, Snail, Slug, Twist, Zeb1, and Zeb2 was quantified by real-time PCR. E-cadherin protein level and its electrophoretic pattern were studied by Western blot in cell lysates obtained from cells grown in 2D-monolayers and 3D-spheroids. RESULTS: The E-cadherin/β-catenin complex was expressed in a similar way in plasma membrane cell boundaries in both 2D-monolayers and 3D-spheroids. E-cadherin increased in lysates obtained from 3D-spheroids, while cleavage fragments were more evident in 2D-monolayers. N-cadherin expression was observed in very few PDAC cells grown in 2D-monolayers, but was more evident in 3D-spheroids. Some cells expressing COL-I were observed in 3D-spheroids. Podoplanin, expressed in collectively migrating cells, and αSMA were similarly expressed in both experimental conditions. The concomitant maintenance of the E-cadherin/β-catenin complex at cell boundaries supports the hypothesis of a collective migration for these cells, which is consistent with podoplanin expression. CONCLUSION: We show that a 3D-cell culture model could provide deeper insight into understanding the biology of PDAC and allow for the detection of marked differences in the phenotype of PDAC cells grown in 3D-spheroids. PMID:27182158

  16. The in vitro photodynamic effect of laser activated gallium, indium and iron phthalocyanine chlorides on human lung adenocarcinoma cells.

    PubMed

    Maduray, K; Odhav, B

    2013-11-05

    Metal-based phthalocyanines currently are utilized as a colorant for industrial applications but their unique properties also make them prospective photosensitizers. Photosensitizers are non-toxic drugs, which are commonly used in photodynamic therapy (PDT), for the treatment of various cancers. PDT is based on the principle that, exposure to light shortly after photosensitizer administration predominately leads to the production of reactive oxygen species for the eradication of cancerous cells and tissue. This in vitro study investigated the photodynamic effect of gallium (GaPcCl), indium (InPcCl) and iron (FePcCl) phthalocyanine chlorides on human lung adenocarcinoma cells (A549). Experimentally, 2 × 10(4)cells/ml were seeded in 24-well tissue culture plates and allowed to attach overnight, after which cells were treated with different concentrations of GaPcCl, InPcCl and FePcCl ranging from 2 μg/ml to 100 μg/ml. After 2h, cells were irradiated with constant light doses of 2.5 J/cm(2), 4.5 J/cm(2) and 8.5 J/cm(2) delivered from a diode laser (λ = 661 nm). Post-irradiated cells were incubated for 24h before cell viability was measured using the MTT Assay. At 24h after PDT, irradiation with a light dose of 2.5 J/cm(2) for each photosensitizing concentration of GaPcCl, InPcCl and FePcCl produced a significant decrease in cell viability, but when the treatment light dose was further increased to 4.5 J/cm(2) and 8.5 J/cm(2) the cell survival was less than 40%. Results also showed that photoactivated FePcCl decreased cell survival of A549 cells to 0% with photosensitizing concentrations of 40 μg/ml and treatment light dose of 2.5 J/cm(2). A 20 μg/ml photosensitizing concentration of FePcCl in combination with an increased treatment light dose of either 4.5 J/cm(2) or 8.5 J/cm(2) also resulted in 0% cell survival. This PDT study concludes that low concentrations on GaPcCl, InPcCl and FePcCl activated with low level light doses can be used for the effective in

  17. Effect of salivary gland adenocarcinoma cell-derived alpha-N-acetylgalactosaminidase on the bioactivity of macrophage activating factor.

    PubMed

    Matsuura, Takashi; Uematsu, Takashi; Yamaoka, Minoru; Furusawa, Kiyofumi

    2004-03-01

    The aim of this study was to clarify the effects of alpha-N-acetylgalactosaminidase (alpha-NaGalase) produced by human salivary gland adenocarcinoma (SGA) cells on the bioactivity of macrophage-activating factor (GcMAF). High exo-alpha-NaGalase activity was detected in the SGA cell line HSG. HSG alpha-NaGalase had both exo- and endo-enzyme activities, cleaving the Gal-GalNAc and GalNAc residues linked to Thr/Ser but not releasing the [NeuAc2-6]GalNac residue. Furthermore, GcMAF enzymatically prepared from the Gc protein enhanced the superoxide-generation capacity and phagocytic activity of monocytes/macrophages. However, GcMAF treated with purified alpha-NaGalase did not exhibit these effects. Thus, HSG possesses the capacity to produce larger quantities of alpha-NaGalase, which inactivates GcMAF produced from Gc protein, resulting in reduced phagocytic activity and superoxide-generation capacity of monocytes/macrophages. The present data strongly suggest that HSG alpha-NaGalase acts as an immunodeficiency factor in cancer patients.

  18. Scaffold-Free Coculture Spheroids of Human Colonic Adenocarcinoma Cells and Normal Colonic Fibroblasts Promote Tumorigenicity in Nude Mice123

    PubMed Central

    Park, Jong-il; Lee, Jisu; Kwon, Ju-Lee; Park, Hong-Bum; Lee, Su-Yel; Kim, Ji-Yeon; Sung, Jaekye; Kim, Jin Man; Song, Kyu Sang; Kim, Kyung-Hee

    2016-01-01

    The aim of this study was to form a scaffold-free coculture spheroid model of colonic adenocarcinoma cells (CACs) and normal colonic fibroblasts (NCFs) and to use the spheroids to investigate the role of NCFs in the tumorigenicity of CACs in nude mice. We analysed three-dimensional (3D) scaffold-free coculture spheroids of CACs and NCFs. CAC Matrigel invasion assays and tumorigenicity assays in nude mice were performed to examine the effect of NCFs on CAC invasive behaviour and tumorigenicity in 3D spheroids. We investigated the expression pattern of fibroblast activation protein-α (FAP-α) by immunohistochemical staining. CAC monocultures did not form densely-packed 3D spheroids, whereas cocultured CACs and NCFs formed 3D spheroids. The 3D coculture spheroids seeded on a Matrigel extracellular matrix showed higher CAC invasiveness compared to CACs alone or CACs and NCFs in suspension. 3D spheroids injected into nude mice generated more and faster-growing tumors compared to CACs alone or mixed suspensions consisting of CACs and NCFs. FAP-α was expressed in NCFs-CACs cocultures and xenograft tumors, whereas monocultures of NCFs or CACs were negative for FAP-α expression. Our findings provide evidence that the interaction between CACs and NCFs is essential for the tumorigenicity of cancer cells as well as for tumor propagation. PMID:26947885

  19. Role of ATM in bystander signaling between human monocytes and lung adenocarcinoma cells.

    PubMed

    Ghosh, Somnath; Ghosh, Anu; Krishna, Malini

    2015-12-01

    The response of a cell or tissue to ionizing radiation is mediated by direct damage to cellular components and indirect damage mediated by radiolysis of water. Radiation affects both irradiated cells and the surrounding cells and tissues. The radiation-induced bystander effect is defined by the presence of biological effects in cells that were not themselves in the field of irradiation. To establish the contribution of the bystander effect in the survival of the neighboring cells, lung carcinoma A549 cells were exposed to gamma-irradiation, 2Gy. The medium from the irradiated cells was transferred to non-irradiated A549 cells. Irradiated A549 cells as well as non-irradiated A549 cells cultured in the presence of medium from irradiated cells showed decrease in survival and increase in γ-H2AX and p-ATM foci, indicating a bystander effect. Bystander signaling was also observed between different cell types. Phorbol-12-myristate-13-acetate (PMA)-stimulated and gamma-irradiated U937 (human monocyte) cells induced a bystander response in non-irradiated A549 (lung carcinoma) cells as shown by decreased survival and increased γ-H2AX and p-ATM foci. Non-stimulated and/or irradiated U937 cells did not induce such effects in non-irradiated A549 cells. Since ATM protein was activated in irradiated cells as well as bystander cells, it was of interest to understand its role in bystander effect. Suppression of ATM with siRNA in A549 cells completely inhibited bystander effect in bystander A549 cells. On the other hand suppression of ATM with siRNA in PMA stimulated U937 cells caused only a partial inhibition of bystander effect in bystander A549 cells. These results indicate that apart from ATM, some additional factor may be involved in bystander effect between different cell types.

  20. Comparison of the Effects of Carbon Ion and Photon Irradiation on the Angiogenic Response in Human Lung Adenocarcinoma Cells

    SciTech Connect

    Kamlah, Florentine; Haenze, Joerg; Arenz, Andrea; Seay, Ulrike; Hasan, Diya; Gottschald, Oana R.; Seeger, Werner; Rose, Frank

    2011-08-01

    Purpose: Radiotherapy resistance is a commonly encountered problem in cancer treatment. In this regard, stabilization of endothelial cells and release of angiogenic factors by cancer cells contribute to this problem. In this study, we used human lung adenocarcinoma (A549) cells to compare the effects of carbon ion and X-ray irradiation on the cells' angiogenic response. Methods and Materials: A549 cells were irradiated with biologically equivalent doses for cell survival of either carbon ions (linear energy transfer, 170 keV/{mu}m; energy of 9.8 MeV/u on target) or X-rays and injected with basement membrane matrix into BALB/c nu/nu mice to generate a plug, allowing quantification of angiogenesis by blood vessel enumeration. The expression of angiogenic factors (VEGF, PlGF, SDF-1, and SCF) was assessed at the mRNA and secreted protein levels by using real-time reverse transcription-PCR and enzyme-linked immunosorbent assay. Signal transduction mediated by stem cell factor (SCF) was assessed by phosphorylation of its receptor c-Kit. For inhibition of SCF/c-Kit signaling, a specific SCF/c-Kit inhibitor (ISCK03) was used. Results: Irradiation of A549 cells with X-rays (6 Gy) but not carbon ions (2 Gy) resulted in a significant increase in blood vessel density (control, 20.71 {+-} 1.55; X-ray, 36.44 {+-} 3.44; carbon ion, 16.33 {+-} 1.03; number per microscopic field). Concordantly, irradiation with X-rays but not with carbon ions increased the expression of SCF and subsequently caused phosphorylation of c-Kit in endothelial cells. ISCK03 treatment of A549 cells irradiated with X-rays (6 Gy) resulted in a significant decrease in blood vessel density (X-ray, 36.44 {+-} 3.44; X-ray and ISCK03, 4.33 {+-} 0.71; number of microscopic field). These data indicate that irradiation of A549 cells with X-rays but not with carbon ions promotes angiogenesis. Conclusions: The present study provides evidence that SCF is an X-ray-induced mediator of angiogenesis in A549 cells, a

  1. c-Myc targeted regulators of cell metabolism in a transgenic mouse model of papillary lung adenocarcinoma

    PubMed Central

    Ciribilli, Yari; Singh, Prashant; Inga, Alberto; Borlak, Jürgen

    2016-01-01

    c-Myc's role in pulmonary cancer metabolism is uncertain. We therefore investigated c-Myc activity in papillary lung adenocarcinomas (PLAC). Genomics revealed 90 significantly regulated genes (> 3-fold) coding for cell growth, DNA metabolism, RNA processing and ribosomal biogenesis and bioinformatics defined c-Myc binding sites (TFBS) at > 95% of up-regulated genes. EMSA assays at 33 novel TFBS evidenced DNA binding activity and ChIP-seq data retrieved from public repositories confirmed these to be c-Myc bound. Dual-luciferase gene reporter assays developed for RNA-Terminal-Phosphate-Cyclase-Like-1(RCL1), Ribosomal-Protein-SA(RPSA), Nucleophosmin/Nucleoplasmin-3(NPM3) and Hexokinase-1(HK1) confirmed c-Myc functional relevance and ChIP assays with HEK293T cells over-expressing ectopic c-Myc demonstrated enriched c-Myc occupancy at predicted TFBS for RCL1, NPM3, HK1 and RPSA. Note, c-Myc recruitment on chromatin was comparable to the positive controls CCND2 and CDK4. Computational analyses defined master regulators (MR), i.e. heterogeneous nuclear ribonucleoprotein A1, nucleolin, the apurinic/apyrimidinic endonuclease 1, triosephosphate-isomerase 1, folate transporter (SLC19A1) and nucleophosmin to influence activity of up to 90% of PLAC-regulated genes. Their expression was induced by 3-, 3-, 6-, 3-, 11- and 7-fold, respectively. STRING analysis confirmed protein-protein-interactions of regulated genes and Western immunoblotting of fatty acid synthase, serine hydroxyl-methyltransferase 1, arginine 1 and hexokinase 2 showed tumor specific induction. Published knock down studies confirmed these proteins to induce apoptosis by disrupting neoplastic lipogenesis, by endorsing uracil accumulation and by suppressing arginine metabolism and glucose-derived ribonucleotide biosynthesis. Finally, translational research demonstrated high expression of MR and of 47 PLAC up-regulated genes to be associated with poor survival in lung adenocarcinoma patients (HR 3.2 p < 0.001) thus

  2. SIRT 1 Overexpression is Associated with Metastasis of Pancreatic Ductal Adenocarcinoma (PDAC) and Promotes Migration and Growth of PDAC Cells

    PubMed Central

    Li, Siqin; Hong, Hua; Lv, Huicheng; Wu, Guozhu; Wang, Zhigang

    2016-01-01

    Background SIRT 1, as a class III histone deacetylase (HDAC), is implicated in the initiation and progression of malignancies. However, the association of SIRT 1 with tumorigenesis or progression of pancreatic ductal adenocarcinoma (PDAC) is not clear. Material/Methods In our study we investigated SIRT 1 expression in PDAC samples and evaluated the association of SIRT 1 level with the clinical and pathological characteristics of PDAC patients. We investigated the role of SIRT 1 in the migration and growth of PDAC PANC-1 or BxPC-3 cells using gain-of-function and loss-of-function approach. Results We demonstrated that SIRT 1 mRNA level was significantly promoted in intra-tumor tissues compared to peri-tumor tissues of PDAC; and SIRT 1 overexpression was markedly associated with distant or lymph node (LN) metastasis of these PDAC tissues. Moreover, the in vitro wound healing assay demonstrated that SIRT 1 overexpression with lentivirus vector markedly promoted the migration of PANC-1 or BxPC-3 cells, whereas SIRT 1 knockdown using SIRT 1 specific siRNA transfection significantly inhibited the migration of PDAC cells. The colony forming assay confirmed SIRT 1 promotion of the growth of PANC-1 or BxPC-3 cells. Conclusions In summary, SIRT 1 overexpression is significantly associated with metastasis of PDAC, and overexpressed SIRT 1 plays an important role in pancreatic cancer cell migration and growth. Our data warrants further studies on SIRT 1 as a novel chemotherapeutic target in PDAC. PMID:27170223

  3. Modulation of T Cell Tolerance in a Murine Model for Immunotheraphy of Prostatic Adenocarcinoma

    DTIC Science & Technology

    2006-09-01

    does not reverse tolerance of the previously-tolerized CD8+ cells. The suppressive nature of these CD8+ T cells was also studied and we present...encountered antigen. TheTcR-I cells are TUNEL (+), inidicating they are undergoing apoptosis . The residual, tumor-infiltrating cells persist as...continues. TcR-II cells undergo 3-5 rounds of proliferation after which time they undergo apoptosis and disappear from the peripheral lymph nodes

  4. Successful Salvage Chemotherapy with FOLFIRINOX for Recurrent Mixed Acinar Cell Carcinoma and Ductal Adenocarcinoma of the Pancreas in an Adolescent Patient.

    PubMed

    Pfrommer, Sarah; Weber, Achim; Dutkowski, Philipp; Schäfer, Niklaus G; Müllhaupt, Beat; Bourquin, Jean-Pierre; Breitenstein, Stefan; Pestalozzi, Bernhard C; Stenner, Frank; Renner, Christoph; D'Addario, Giannicola; Graf, Hans-Jörg; Knuth, Alexander; Clavien, Pierre-Alain; Samaras, Panagiotis

    2013-01-01

    Pancreatic tumors are rare in children and adolescents. Here, we report the case of a 15-year-old boy who presented with a mixed acinar cell carcinoma/ductal adenocarcinoma with blastomatous components. He received multimodal treatment including various chemotherapy regimens and multistep surgery including liver transplantation. Introduction of FOLFIRINOX after relapse repeatedly achieved a durable metabolic and clinical response with good quality of life.

  5. Successful Salvage Chemotherapy with FOLFIRINOX for Recurrent Mixed Acinar Cell Carcinoma and Ductal Adenocarcinoma of the Pancreas in an Adolescent Patient

    PubMed Central

    Pfrommer, Sarah; Weber, Achim; Dutkowski, Philipp; Schäfer, Niklaus G.; Müllhaupt, Beat; Bourquin, Jean-Pierre; Breitenstein, Stefan; Pestalozzi, Bernhard C.; Stenner, Frank; Renner, Christoph; D'Addario, Giannicola; Graf, Hans-Jörg; Knuth, Alexander; Clavien, Pierre-Alain; Samaras, Panagiotis

    2013-01-01

    Pancreatic tumors are rare in children and adolescents. Here, we report the case of a 15-year-old boy who presented with a mixed acinar cell carcinoma/ductal adenocarcinoma with blastomatous components. He received multimodal treatment including various chemotherapy regimens and multistep surgery including liver transplantation. Introduction of FOLFIRINOX after relapse repeatedly achieved a durable metabolic and clinical response with good quality of life. PMID:24163668

  6. Primary Mucinous Adenocarcinoma of the Urinary Bladder with Signet-Ring Cells: Description of an Uncommon Case and Critical Points in Its Management

    PubMed Central

    Amorim Aita, Giuliano; Amorim Aita, Daniele

    2016-01-01

    We present an uncommon case of mucinous adenocarcinoma of the bladder (MAB) with signet-ring cells extensively infiltrating prostate gland and pelvic/retroperitoneal lymph node stations and not responsive to usual systemic chemotherapy regimens. This case highlights the important features of MAB including the pattern of tumor spread, the tendency for initial misdiagnosis, and the importance of immunohistochemical study in order to define its primary origin from the bladder and choose the most appropriate treatment since the beginning. PMID:28078160

  7. Chlorpyrifos promotes colorectal adenocarcinoma H508 cell growth through the activation of EGFR/ERK1/2 signaling pathway but not cholinergic pathway.

    PubMed

    Suriyo, Tawit; Tachachartvanich, Phum; Visitnonthachai, Daranee; Watcharasit, Piyajit; Satayavivad, Jutamaad

    2015-12-02

    Aside from the effects on neuronal cholinergic system, epidemiological studies suggest an association between chlorpyrifos (CPF) exposure and cancer risk. This in vitro study examined the effects of CPF and its toxic metabolite, chlorpyrifos oxon (CPF-O), on the growth of human colorectal adenocarcinoma H508, colorectal adenocarcinoma HT-29, normal colon epithelial CCD841, liver hepatocellular carcinoma HepG2, and normal liver hepatocyte THLE-3 cells. The results showed that CPF (5-100 μM) concentration-dependently increased viability of H508 and CCD841 cells in serum-free conditions. This increasing trend was not found in HT-29, HepG2 and THLE-3 cells. In contrast, CPF-O (50-100 μM) reduced the viability of all cell lines. Cell cycle analysis showed the induction of cells in the S phase, and EdU incorporation assay revealed the induction of DNA synthesis in CPF-treated H508 cells indicating that CPF promotes cell cycle progression. Despite the observation of acetylcholinesterase activity inhibition and reactive oxygen species (ROS) generation, atropine (a non-selective muscarinic acetylcholine receptor antagonist) and N-acetylcysteine (a potent antioxidant) failed to inhibit the growth-promoting effect of CPF. CPF increased the phosphorylation of epidermal growth factor receptor (EGFR) and its downstream effector, extracellular signal regulated kinase (ERK1/2), in H508 cells. AG-1478 (a specific EGFR tyrosine kinase inhibitor) and U0126 (a specific MEK inhibitor) completely mitigated the growth promoting effect of CPF. Altogether, these results suggest that EGFR/ERK1/2 signaling pathway but not cholinergic pathway involves in CPF-induced colorectal adenocarcinoma H508 cell growth.

  8. Inhibitory and Cytotoxic Activities of Chrysin on Human Breast Adenocarcinoma Cells by Induction of Apoptosis

    PubMed Central

    Samarghandian, Saeed; Azimi-Nezhad, Mohsen; Borji, Abasalt; Hasanzadeh, Malihe; Jabbari, Farahzad; Farkhondeh, Tahereh; Samini, Mohammad

    2016-01-01

    Objectives: Chrysin, an active natural bioflavonoid found in honey and many plant extracts, was first known for its antioxidant and anti-inflammatory effects. The fact that antioxidants have several inhibitory effects against different diseases, such as cancer, led to search for food rich in antioxidants. In this study, we investigated the antiproliferative and apoptotic effects of chrysin on the cultured human breast cancer cells (MCF-7). Materials and Methods: Cells were cultured in Roswell Park Memorial Institute medium and treated with different chrysin concentrations for three consecutive days. Cell viability was quantitated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The percentage of apoptotic cells was determined by flow cytometry using Annexin V-fluorescein isothiocyanate. Results: The MTT assay showed that chrysin had an antiproliferative effect on MCF-7 cells in a dose- and time-dependent manner. The 50% cell growth inhibition values for chrysin against MCF-7 cells were 19.5 and 9.2 μM after 48 and 72 h, respectively. Chrysin induced apoptosis in MCF-7 cells as determined by flow cytometry. Chrysin inhibits the growth of the breast cancer cells by inducing cancer cell apoptosis which may, in part, explain its anticancer activity. Conclusion: This study shows that chrysin could also be considered as a promising chemotherapeutic agent and anticancer activity in treatment of the breast cancer cells in future. SUMMARY Chrysin had an antiproliferative effect on human breast cancer cells (MCF-7) cells in a dose- and time-dependent mannerChrysin induced apoptosis in MCF-7 cells, as determined by flow cytometryChrysin inhibits the growth of the breast cancer cells by inducing cancer cell apoptosisChrysin may have anticancer activity. Abbreviations used: Human breast cancer cells (MCF-7), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), phosphate-buffered saline (PBS), normal fibroblast mouse (L929). PMID

  9. Overexpression of miR-30a in lung adenocarcinoma A549 cell line inhibits migration and invasion via targeting EYA2

    PubMed Central

    Yuan, Yuncang; Zheng, Shangyong; Li, Qian; Xiang, Xudong; Gao, Tangxin; Ran, Pengzhan; Sun, Lijuan; Huang, Qionglin; Xie, Fei; Du, Jing; Xiao, Chunjie

    2016-01-01

    MicroRNAs (miRNAs) are a class of small non-coding RNAs and closely related to the pathogenesis of cancers. Increasing evidence indicates that miR-30a plays a profound role during the development of cancers. However, the functions of miR-30a in non-small-cell lung cancer (NSCLC) are still ambiguous. Here we found that miR-30a was decreased in lung adenocarcinoma A549 cells and in tissue samples from 14 patients by qRT-PCR, and also found that overexpression of miR-30a in A549 cells inhibited migration and invasion but not cell proliferation and cell cycle progression by wound-healing assay, matrigel invasion assay, MTS-based cell proliferation assay, and flow cytometry-based cell cycle analysis, respectively. We further explored the potential mechanism of miR-30a-mediated gene regulation in lung adenocarcinoma cell lines. EYA2 is a predicted target of miR-30a, and it has been found that EYA2 expression is inhibited by miR-30a in breast cancer cells. We demonstrated that EYA2 is a direct target of miR-30a by using the dual-luciferase reporter assay in A549 cells and showed that EYA2 protein levels are inversely correlated with miR-30a expression in A549 and BEAS-2B cells. In addition, we also confirmed the rescue effects of EYA2 overexpression in A549 cells by cotransfection with EYA2 expression vector and miR-30a mimics. Taken together, our results demonstrate that overexpression of miR-30a in lung adenocarcinoma A549 cells can inhibit cell migration and invasion, which is partially attributed to the decrease of EYA2 expression. Our findings suggest that miR-30a may be used as a new potential target for the treatment of lung adenocarcinoma in the future. PMID:26837415

  10. Overexpression of miR-519d in lung adenocarcinoma inhibits cell proliferation and invasion via the association of eIF4H.

    PubMed

    Bai, Yong; Lu, Chunya; Zhang, Guojun; Hou, Yu; Guo, Yanjie; Zhou, Heqi; Ma, Xiaojingnan; Zhao, Guoqiang

    2017-03-01

    Lung cancer is one of the deadliest types of cancer worldwide due to its high mortality rate. Adenocarcinoma constitutes 20%-30% of all lung cancers. In recent years, studies on the mechanisms of lung tumorigenesis and development have in part focused on the microRNAs for their crucial role in the progress of different cancers. As for our study, we demonstrated that miR-519d was differently downregulated and eIF4H was significantly overexpressed in lung adenocarcinoma via the detection of quantitative real-time polymerase chain reaction compared with the adjacent normal tissues. Furthermore, Cell Counting Kit-8 assay, colony formation assay, xenograft tumor experiment, Ki67 immunohistochemistry assay and transwell assay were performed to explain that the upregulated miR-519d could inhibit the proliferation and invasion of A549 and H1299 cells. To further advance our understanding of the mechanisms of miR-519d, we performed the bioinformatics analysis and the luciferase report assay. The results from these procedures revealed eIF4H to be one of the targets of miR-519d. Downregulated eIF4H was analogous to the overexpressed miR-519d obtained from miR-519d agomir and si-eIF4H transfection. In summary, it can be concluded that miR-519d targets eIF4H in lung adenocarcinoma to inhibit cell proliferation and invasion. This mechanism may offer new insights into the tumorigenesis and development of lung adenocarcinoma.

  11. Differential role of gene hypermethylation in adenocarcinomas, squamous cell carcinomas and cervical intraepithelial lesions of the uterine cervix.

    PubMed

    Blanco-Luquin, Idoia; Guarch, Rosa; Ojer, Amaya; Pérez-Janices, Noemí; Martín-Sánchez, Esperanza; Maria-Ruiz, Sergio; Monreal-Santesteban, Iñaki; Blanco-Fernandez, Laura; Pernaut-Leza, Eduardo; Escors, David; Guerrero-Setas, David

    2015-09-01

    Cervical cancer is the third most common cancer in women worldwide. The hypermethylation of P16, TSLC-1 and TSP-1 genes was analyzed in squamous cell carcinomas (SCC), cervical intraepithelial lesions (CIN) and adenocarcinomas (ADC) of the uterine cervix (total 181 lesions). Additionally human papillomavirus (HPV) type, EPB41L3, RASSF1 and RASSF2 hypermethylation were tested in ADC and the results were compared with those obtained previously by our group in SCC. P16, TSLC-1 and TSP-1 hypermethylation was more frequent in SCCs than in CINs. These percentages and the corresponding ones for EPB41L3, RASSF1 and RASSF2 genes were also higher in SCCs than in ADCs, except for P16. The presence of HPV in ADCs was lower than reported previously in SCC and CIN. Patients with RASSF1A hypermethylation showed significantly longer disease-free survival (P = 0.015) and overall survival periods (P = 0.009) in ADC patients. To our knowledge, this is the first description of the EPB41L3 and RASSF2 hypermethylation in ADCs. These results suggest that the involvement of DNA hypermethylation in cervical cancer varies depending on the histological type, which might contribute to explaining the different prognosis of patients with these types of tumors.

  12. Whole exome sequencing of independent lung adenocarcinoma, lung squamous cell carcinoma, and malignant peritoneal mesothelioma: A case report.

    PubMed

    Vanni, Irene; Coco, Simona; Bonfiglio, Silvia; Cittaro, Davide; Genova, Carlo; Biello, Federica; Mora, Marco; Rossella, Valeria; Dal Bello, Maria Giovanna; Truini, Anna; Banelli, Barbara; Lazarevic, Dejan; Alama, Angela; Rijavec, Erika; Barletta, Giulia; Grossi, Francesco

    2016-11-01

    The presence of multiple primary tumors (MPT) in a single patient has been identified with an increasing frequency. A critical issue is to establish if the second tumor represents an independent primary cancer or a metastasis. Therefore, the assessment of MPT clonal origin might help understand the disease behavior and improve the management/prognosis of the patient.Herein, we report a 73-year-old male smoker who developed 2 primary lung cancers (adenocarcinoma and squamous cell carcinoma) and a malignant peritoneal mesothelioma (PM).Whole exome sequencing (WES) of the 3 tumors and of germline DNA was performed to determine the clonal origin and identify genetic cancer susceptibility.Both lung cancers were characterized by a high mutational rate with distinct mutational profiles and activation of tumor-specific pathways. Conversely, the PM harbored a relative low number of genetic variants and a novel mutation in the WT1 gene that might be involved in the carcinogenesis of nonasbestos-related mesothelioma. Finally, WES of the germinal DNA displayed several single nucleotide polymorphisms in DNA repair genes likely conferring higher cancer susceptibility.Overall, WES did not disclose any somatic genetic variant shared across the 3 tumors, suggesting their clonal independency; however, the carcinogenic effect of smoke combined with a deficiency in DNA repair genes and the patient advanced age might have been responsible for the MPT development. This case highlights the WES importance to define the clonal origin of MPT and susceptibility to cancer.

  13. Extracts of Opuntia humifusa Fruits Inhibit the Growth of AGS Human Gastric Adenocarcinoma Cells

    PubMed Central

    Hahm, Sahng-Wook; Park, Jieun; Park, Kun-Young; Son, Yong-Suk; Han, Hyungchul

    2016-01-01

    Opuntia humifusa (OHF) has been used as a nutraceutical source for the prevention of chronic diseases. In the present study, the inhibitory effects of ethyl acetate extracts of OHF on the proliferation of AGS human gastric cancer cells and the mode of action were investigated. To elucidate the antiproliferative mechanisms of OHF in cancer cells, the expression of genes related to apoptosis and cell cycle arrest were determined with real-time PCR and western blot. The cytotoxic effect of OHF on AGS cells was observed in a dose-dependent manner. Exposure to OHF (100 μg/mL) significantly induced (P<0.05) the G1 phase cell cycle arrest. Additionally, the apoptotic cell population was greater (P<0.05) in OHF (200 μg/mL) treated AGS cells when compared to the control. The expression of genes associated with cell cycle progression (Cdk4, Cdk2, and cyclin E) was significantly downregulated (P<0.05) by the OHF treatment. Moreover, the expression of Bax and caspase-3 in OHF treated cells was higher (P<0.05) than in the control. These findings suggest that OHF induces the G1 phase cell cycle arrest and activation of mitochondria-mediated apoptosis pathway in AGS human gastric cancer cells. PMID:27069903

  14. Immunohistochemical Markers Distinguishing Cholangiocellular Carcinoma (CCC) from Pancreatic Ductal Adenocarcinoma (PDAC) Discovered by Proteomic Analysis of Microdissected Cells*

    PubMed Central

    Padden, Juliet; Ahrens, Maike; Kälsch, Julia; Bertram, Stefanie; Megger, Dominik A.; Bracht, Thilo; Eisenacher, Martin; Kocabayoglu, Peri; Meyer, Helmut E.; Sipos, Bence; Baba, Hideo A.; Sitek, Barbara

    2016-01-01

    Cholangiocellular carcinoma (CCC) and pancreatic ductal adenocarcinoma (PDAC) are two highly aggressive cancer types that arise from epithelial cells of the pancreatobiliary system. Owing to their histological and morphological similarity, differential diagnosis between CCC and metastasis of PDAC located in the liver frequently proves an unsolvable issue for pathologists. The detection of biomarkers with high specificity and sensitivity for the differentiation of these tumor types would therefore be a valuable tool. Here, we address this problem by comparing microdissected CCC and PDAC tumor cells from nine and eleven cancer patients, respectively, in a label-free proteomics approach. The novel biomarker candidates were subsequently verified by immunohistochemical staining of 73 CCC, 78 primary, and 18 metastatic PDAC tissue sections. In the proteome analysis, we found 180 proteins with a significantly differential expression between CCC and PDAC cells (p value < 0.05, absolute fold change > 2). Nine candidate proteins were chosen for an immunohistochemical verification out of which three showed very promising results. These were the annexins ANXA1, ANXA10, and ANXA13. For the correct classification of PDAC, ANXA1 showed a sensitivity of 84% and a specificity of 85% and ANXA10 a sensitivity of 90% at a specificity of 66%. ANXA13 was higher abundant in CCC. It presented a sensitivity of 84% at a specificity of 55%. In metastatic PDAC tissue ANXA1 and ANXA10 showed similar staining behavior as in the primary PDAC tumors (13/18 and 17/18 positive, respectively). ANXA13, however, presented positive staining in eight out of eighteen secondary PDAC tumors and was therefore not suitable for the differentiation of these from CCC. We conclude that ANXA1 and ANXA10 are promising biomarker candidates with high diagnostic values for the differential diagnosis of intrahepatic CCC and metastatic liver tumors deriving from PDAC. PMID:26644413

  15. The cytotoxic effects of titanium oxide and zinc oxide nanoparticles oh Human Cervical Adenocarcinoma cell membranes

    NASA Astrophysics Data System (ADS)

    Mironava, Tatsiana; Applebaum, Ariella; Applebaum, Eliana; Guterman, Shoshana; Applebaum, Kayla; Grossman, Daniel; Gordon, Chris; Brink, Peter; Wang, H. Z.; Rafailovich, Miriam

    2013-03-01

    The importance of titanium dioxide (TiO2) and zinc oxide (ZnO), inorganic metal oxides nanoparticles (NPs) stems from their ubiquitous applications in personal care products, solar cells and food whitening agents. Hence, these NPs come in direct contact with the skin, digestive tracts and are absorbed into human tissues. Currently, TiO2 and ZnO are considered safe commercial ingredients by the material safety data sheets with no reported evidence of carcinogenicity or ecotoxicity, and do not classify either NP as a toxic substance. This study examined the direct effects of TiO2 and ZnO on HeLa cells, a human cervical adenocarcinonma cell line, and their membrane mechanics. The whole cell patch-clamp technique was used in addition to immunohistochemistry staining, TEM and atomic force microscopy (AFM). Additionally, we examined the effects of dexamethasone (DXM), a glucocorticoid steroid known to have an effect on cell membrane mechanics. Overall, TiO2 and ZnO seemed to have an adverse effect on cell membrane mechanics by effecting cell proliferation, altering cellular structure, decreasing cell-cell adhesion, activating existing ion channels, increasing membrane permeability, and possibly disrupting cell signaling.

  16. Aldehyde dehydrogenase activity selects for lung adenocarcinoma stem cells dependent on notch signaling.

    PubMed

    Sullivan, James P; Spinola, Monica; Dodge, Michael; Raso, Maria G; Behrens, Carmen; Gao, Boning; Schuster, Katja; Shao, Chunli; Larsen, Jill E; Sullivan, Laura A; Honorio, Sofia; Xie, Yang; Scaglioni, Pier P; DiMaio, J Michael; Gazdar, Adi F; Shay, Jerry W; Wistuba, Ignacio I; Minna, John D

    2010-12-01

    Aldehyde dehydrogenase (ALDH) is a candidate marker for lung cancer cells with stem cell-like properties. Immunohistochemical staining of a large panel of primary non-small cell lung cancer (NSCLC) samples for ALDH1A1, ALDH3A1, and CD133 revealed a significant correlation between ALDH1A1 (but not ALDH3A1 or CD133) expression and poor prognosis in patients including those with stage I and N0 disease. Flow cytometric analysis of a panel of lung cancer cell lines and patient tumors revealed that most NSCLCs contain a subpopulation of cells with elevated ALDH activity, and that this activity is associated with ALDH1A1 expression. Isolated ALDH(+) lung cancer cells were observed to be highly tumorigenic and clonogenic as well as capable of self-renewal compared with their ALDH(-) counterparts. Expression analysis of sorted cells revealed elevated Notch pathway transcript expression in ALDH(+) cells. Suppression of the Notch pathway by treatment with either a γ-secretase inhibitor or stable expression of shRNA against NOTCH3 resulted in a significant decrease in ALDH(+) lung cancer cells, commensurate with a reduction in tumor cell proliferation and clonogenicity. Taken together, these findings indicate that ALDH selects for a subpopulation of self-renewing NSCLC stem-like cells with increased tumorigenic potential, that NSCLCs harboring tumor cells with ALDH1A1 expression have inferior prognosis, and that ALDH1A1 and CD133 identify different tumor subpopulations. Therapeutic targeting of the Notch pathway reduces this ALDH(+) component, implicating Notch signaling in lung cancer stem cell maintenance.

  17. Altered expression of glycosaminoglycans in metastatic 13762NF rat mammary adenocarcinoma cells

    SciTech Connect

    Steck, P.A.; Cheong, P.H.; Nakajima, M.; Yung, W.K.A.; Moser, R.P.; Nicolson, G.L.

    1987-02-24

    A difference in the expression and metabolism of (/sup 35/S)sulfated glycosaminoglycans between rat mammary tumor cells derived from a primary tumor and those from its metastatic lesions has been observed. Cells from the primary tumor possessed about equal quantities of chondroitin sulfate and heparan sulfate on their cell surfaces but released fourfold more chondroitin sulfate than heparan sulfate into their medium. In contrast, cells from distal metastatic lesions expressed approximately 5 times more heparan sulfate than chondroitin sulfate in both medium and cell surface fractions. This was observed to be the result of differential synthesis of the glycosaminoglycans and not of major structural alterations of the individual glycosaminoglycans. The degree of sulfation and size of heparan sulfate were similar for all cells examined. However, chondroitin sulfate, observed to be only chondroitin 4-sulfate, from the metastases-derived cells had a smaller average molecular weight on gel filtration chromatography and showed a decreased quantity of sulfated disaccharides upon degradation with chondroitin ABC lyase compared to the primary tumor derived cells. Major qualitative or quantitative alterations were not observed for hyaluronic acid among the various 13762NF cells. The metabolism of newly synthesized sulfated glycosaminoglycans was also different between cells from primary tumor and metastases. A pulse-chase kinetics study demonstrated that both heparan sulfate and chondroitin sulfate were degraded by the metastases-derived cells, whereas the primary tumor derived cells degraded only heparan sulfate and degraded it at a slower rate. These results suggested that altered glycosaminoglycan expression and metabolism may be associated with the metastatic process in 13762NF rat mammary tumor cells.

  18. Glycosaminoglycan synthesis by subpopulations of epithelial cells from a mammary adenocarcinoma

    SciTech Connect

    Angello, J.C.; Danielson, K.G.; Anderson, L.W.; Hosick, H.L.

    1982-06-01

    Glycosaminoglycan synthesis by two subpopulations of a mouse mammary tumor cell line was compared. The two sublines express distinctly different growth characteristics in vitro and in vivo which indicate differences in growth regulation. Newly made glycosaminoglycans were recovered from the culture media, the cell surfaces, and residual cellular material. The cell population which grows more aggressively in vivo (+SA subline, a subline that grows in soft agarose) incorporated about 8 times more (/sup 14/C)glucosamine per cell into total glycosaminoglycans than did the slower-growing population (-SA subline, which does not grow in soft agarose). Appropriate control experiments indicated that the apparent difference in rates of synthesis was not due to discrepancies in glucosamine uptake. The main residual cellular molecule labeled was heparan sulfate, but the predominant molecule at the cell surface and in the culture fluid was hyaluronic acid. Overall, +SA cells synthesized more hyaluronic acid and -SA cells synthesized more heparan sulfate; in both cell populations, these two molecules accounted for about 90% of total glycosaminoglycans produced.

  19. Cellular uptake and cytotoxicity of positively charged chitosan gold nanoparticles in human lung adenocarcinoma cells

    NASA Astrophysics Data System (ADS)

    Choi, Seon Young; Jang, Soo Hwa; Park, Jin; Jeong, Saeromi; Park, Jin Ho; Ock, Kwang Su; Lee, Kangtaek; Yang, Sung Ik; Joo, Sang-Woo; Ryu, Pan Dong; Lee, So Yeong

    2012-12-01

    Cellular uptake, cytotoxicity, and mechanisms of cytotoxicity of the positively charged Au nanoparticles (NPs) were examined in A549 cells, which are one of the most characterized pulmonary cellular systems. Positively charged Au NPs were prepared by chemical reduction using chitosan. The dimension and surface charge of Au NPs were examined by transmission electron microscopy (TEM), dynamic light scattering, and zeta potential measurements. The uptake of Au NPs into A549 cells was also monitored using TEM and dark-field microscopy (DFM) and z-stack confocal microRaman spectroscopy. DFM live cell imaging was also performed to monitor the entry of chitosan Au NPs in real time. The cytotoxic assay, using both methylthiazol tetrazolium and lactate dehydrogenase assays revealed that positively charged Au NPs decreased cell viability. Flow cytometry, DNA fragmentation, real-time PCR, and western blot analysis suggest that positively charged chitosan Au NPs provoke cell damage through both apoptotic and necrotic pathways.

  20. Epithelial cell adhesion molecule aptamer functionalized PLGA-lecithin-curcumin-PEG nanoparticles for targeted drug delivery to human colorectal adenocarcinoma cells

    PubMed Central

    Li, Lei; Xiang, Dongxi; Shigdar, Sarah; Yang, Wenrong; Li, Qiong; Lin, Jia; Liu, Kexin; Duan, Wei

    2014-01-01

    To improve the efficacy of drug delivery, active targeted nanotechnology-based drug delivery systems are gaining considerable attention as they have the potential to reduce side effects, minimize toxicity, and improve efficacy of anticancer treatment. In this work CUR-NPs (curcumin-loaded lipid-polymer-lecithin hybrid nanoparticles) were synthesized and functionalized with ribonucleic acid (RNA) Aptamers (Apts) against epithelial cell adhesion molecule (EpCAM) for targeted delivery to colorectal adenocarcinoma cells. These CUR-encapsulated bioconjugates (Apt-CUR-NPs) were characterized for particle size, zeta potential, drug encapsulation, stability, and release. The in vitro specific cell binding, cellular uptake, and cytotoxicity of Apt-CUR-NPs were also studied. The Apt-CUR-NP bioconjugates exhibited increased binding to HT29 colon cancer cells and enhancement in cellular uptake when compared to CUR-NPs functionalized with a control Apt (P<0.01). Furthermore, a substantial improvement in cytotoxicity was achieved toward HT29 cells with Apt-CUR-NP bioconjugates. The encapsulation of CUR in Apt-CUR-NPs resulted in the increased bioavailability of delivered CUR over a period of 24 hours compared to that of free CUR in vivo. These results show that the EpCAM Apt-functionalized CUR-NPs enhance the targeting and drug delivery of CUR to colorectal cancer cells. Further development of CUR-encapsulated, nanosized carriers will lead to improved targeted delivery of novel chemotherapeutic agents to colorectal cancer cells. PMID:24591829

  1. Epithelial cell adhesion molecule aptamer functionalized PLGA-lecithin-curcumin-PEG nanoparticles for targeted drug delivery to human colorectal adenocarcinoma cells.

    PubMed

    Li, Lei; Xiang, Dongxi; Shigdar, Sarah; Yang, Wenrong; Li, Qiong; Lin, Jia; Liu, Kexin; Duan, Wei

    2014-01-01

    To improve the efficacy of drug delivery, active targeted nanotechnology-based drug delivery systems are gaining considerable attention as they have the potential to reduce side effects, minimize toxicity, and improve efficacy of anticancer treatment. In this work CUR-NPs (curcumin-loaded lipid-polymer-lecithin hybrid nanoparticles) were synthesized and functionalized with ribonucleic acid (RNA) Aptamers (Apts) against epithelial cell adhesion molecule (EpCAM) for targeted delivery to colorectal adenocarcinoma cells. These CUR-encapsulated bioconjugates (Apt-CUR-NPs) were characterized for particle size, zeta potential, drug encapsulation, stability, and release. The in vitro specific cell binding, cellular uptake, and cytotoxicity of Apt-CUR-NPs were also studied. The Apt-CUR-NP bioconjugates exhibited increased binding to HT29 colon cancer cells and enhancement in cellular uptake when compared to CUR-NPs functionalized with a control Apt (P<0.01). Furthermore, a substantial improvement in cytotoxicity was achieved toward HT29 cells with Apt-CUR-NP bioconjugates. The encapsulation of CUR in Apt-CUR-NPs resulted in the increased bioavailability of delivered CUR over a period of 24 hours compared to that of free CUR in vivo. These results show that the EpCAM Apt-functionalized CUR-NPs enhance the targeting and drug delivery of CUR to colorectal cancer cells. Further development of CUR-encapsulated, nanosized carriers will lead to improved targeted delivery of novel chemotherapeutic agents to colorectal cancer cells.

  2. Hierridin B Isolated from a Marine Cyanobacterium Alters VDAC1, Mitochondrial Activity, and Cell Cycle Genes on HT-29 Colon Adenocarcinoma Cells

    PubMed Central

    Freitas, Sara; Martins, Rosário; Costa, Margarida; Leão, Pedro N.; Vitorino, Rui; Vasconcelos, Vitor; Urbatzka, Ralph

    2016-01-01

    Background: Hierridin B was isolated from a marine cyanobacterium Cyanobium sp. strain and induced cytotoxicity selectively in HT-29 adenocarcinoma cells. The underlying molecular mechanism was not yet elucidated. Methods: HT-29 cells were exposed to the IC50 concentration of hierridin B (100.2 μM) for 48 h. Non-targeted proteomics was performed using 2D gel electrophoresis and MALDI-TOF/TOF mass spectrometry. The mRNA expression of apoptotic and cell cycle genes were analyzed by real-time PCR. Automated quantification of 160 cytoplasm and mitochondrial parameter was done by fluorescence microscopy using CellProfiler software. Results: Proteomics identified 21 significant different proteins, which belonged to protein folding/synthesis and cell structure amongst others. Increase of VDAC1 protein responsible for formation of mitochondrial channels was confirmed by mRNA expression. A 10-fold decrease of cytoskeleton proteins (STMN1, TBCA) provided a link to alterations of the cell cycle. CCNB1 and CCNE mRNA were decreased two-fold, and P21CIP increased 10-fold, indicative of cell cycle arrest. Morphological analysis of mitochondrial parameter confirmed a reduced mitochondrial activity. Conclusion: Hierridin B is a potential anticancer compound that targets mitochondrial activity and function. PMID:27589771

  3. Transglutaminase 2 Inhibitor KCC009 Induces p53-Independent Radiosensitization in Lung Adenocarcinoma Cells

    PubMed Central

    Huayin, Sheng; Dong, Yao; Chihong, Zhu; Xiaoqian, Qian; Danying, Wan; Jianguo, Feng

    2016-01-01

    Background The expression of transglutaminase 2 (TG2) is correlated to DNA damage repair and apoptosis through the p53 pathway. The present study aimed to investigate the potential radiosensitization effect and possible mechanisms of the TG2 inhibitor KCC009 in lung cancer in vitro. Material/Methods A single hit multi-target model was used to plot survival curves and to calculate the sensitizing enhancement ratios in lung cancer wild-type or mutant p53 of H1299 cells. We performed analyses for changes of cell cycling and apoptotic responses of cells; Western blot analysis and real-time SYBR Green PCR assay were used to determine the changes of mRNA/protein expressions; ELISA assay was used for examination of cytochrome c release in cytoplasm. Results Our results showed that KCC009 induced radiosensitization in both H1299/WT-p53 and H1299/M175H-p53 cells. KCC009+IR induced G0/G1 arrest in H1299/WT cells and G2/M arrest in H1299/M175H-p53 cells. KCC009+IR also induced apoptosis in both cell lines. In addition, KCC009+IR decreased the TG2 expression, and increased the p53 expression in H1299/WT cells but not in H1299/M175H-p53 cells. KCC009+IR also increased the expression of p21, Bax, p-caspase-3, and decreased Bcl-2 and CyclinD expression in H1299/WT cells. While KCC009+IR induced phosphorylation of caspase-3 and increase Cyt-C level in the cytoplasm of, and decreased CyclinB, Bcl-2 expression in H1299/M175H-p53 cells, we noticed that Cyt-C level in the nucleus decreased in the H1299/WT cells. Conclusions KCC009, a TG2 inhibitor, exhibits potent radiosensitization effects in human lung cancer cells expressing wild-type or mutant p53 with different mechanisms. PMID:28002389

  4. Transglutaminase 2 Inhibitor KCC009 Induces p53-Independent Radiosensitization in Lung Adenocarcinoma Cells.

    PubMed

    Huaying, Sheng; Dong, Yao; Chihong, Zhu; Xiaoqian, Qian; Danying, Wan; Jianguo, Feng

    2016-12-21

    BACKGROUND The expression of transglutaminase 2 (TG2) is correlated to DNA damage repair and apoptosis through the p53 pathway. The present study aimed to investigate the potential radiosensitization effect and possible mechanisms of the TG2 inhibitor KCC009 in lung cancer in vitro. MATERIAL AND METHODS A single hit multi-target model was used to plot survival curves and to calculate the sensitizing enhancement ratios in lung cancer wild-type or mutant p53 of H1299 cells. We performed analyses for changes of cell cycling and apoptotic responses of cells; Western blot analysis and real-time SYBR Green PCR assay were used to determine the changes of mRNA/protein expressions; ELISA assay was used for examination of cytochrome c release in cytoplasm. RESULTS Our results showed that KCC009 induced radiosensitization in both H1299/WT-p53 and H1299/M175H-p53 cells. KCC009+IR induced G0/G1 arrest in H1299/WT cells and G2/M arrest in H1299/M175H-p53 cells. KCC009+IR also induced apoptosis in both cell lines. In addition, KCC009+IR decreased the TG2 expression, and increased the p53 expression in H1299/WT cells but not in H1299/M175H-p53 cells. KCC009+IR also increased the expression of p21, Bax, p-caspase-3, and decreased Bcl-2 and CyclinD expression in H1299/WT cells. While KCC009+IR induced phosphorylation of caspase-3 and increase Cyt-C level in the cytoplasm of, and decreased CyclinB, Bcl-2 expression in H1299/M175H-p53 cells, we noticed that Cyt-C level in the nucleus decreased in the H1299/WT cells. CONCLUSIONS KCC009, a TG2 inhibitor, exhibits potent radiosensitization effects in human lung cancer cells expressing wild-type or mutant p53 with different mechanisms.

  5. Semi Mature Blood Dendritic Cells Exist in Patients with Ductal Pancreatic Adenocarcinoma Owing to Inflammatory Factors Released from the Tumor

    PubMed Central

    Tjomsland, Vegard; Spångeus, Anna; Sandström, Per; Borch, Kurt; Messmer, Davorka; Larsson, Marie

    2010-01-01

    Background Much evidence exists regarding the fact that blood DCs, both myeloid DCs (MDCs) and plasmacytoid DCs (PDCs), are negatively affected in different types of cancer, with both reduced numbers and impaired functionality. Functional impairment of DCs in patients with pancreatic ductal adenocarcinoma (PDAC), may contribute to the poor clinical outcome. The aim of this study was to examine the effects PDAC had on blood DCs and elucidate the underlying mechanism responsible for the DC impairment. Methodology/Principal Findings We examined the systemic influence PDAC exerted on blood DCs by ex vivo measuring numerous activation and maturation markers expressed on these cells. Furthermore, the effect patient plasma and the inflammatory factors CXCL8 and PGE2 had on purified MDCs and PDCs from healthy donors was assessed and compared to the DCs existing in PDAC patients. We found a partial maturation of the blood MDCs and PDCs in PDAC patients with significantly enhanced expression of CD83, CD40, B7H3, PDL-1, CCR6, and CCR7 and decreased expression of ICOSL, and DCIR. These changes lead to impairment in their immunostimulatory function. Furthermore, chronic pancreatitis gave rise to DCs with similar semi-mature phenotype as seen in PDAC. Low expression of ICOSL was associated with poor prognosis. We found that the mechanism underlying this semi-maturation of DCs was inflammatory factors existing in the PDAC patients' plasma. Of note, PGE2, which is elevated PDAC patient plasma, was one contributing factor to the changes seen in MDCs and PDCs phenotype. Conclusion/Significance Our findings point to a role for the systemic inflammation in transforming blood MDCs and PDCs into semi-mature cells in PDAC patients and we show a correlation between maturation status and clinical outcome. Thus, means to preserve a functional blood DC compartment in PDAC patients by diminishing the inflammation could facilitate their ability to control the disease and improve survival. PMID

  6. ASSOCIATION BETWEEN HUMAN PAPILLOMAVIRUS AND COLORECTAL ADENOCARCINOMA AND ITS INFLUENCE ON TUMOR STAGING AND DEGREE OF CELL DIFFERENTIATION

    PubMed Central

    PICANÇO-JUNIOR, Olavo Magalhães; OLIVEIRA, Andre Luiz Torres; FREIRE, Lucia Thereza Mascarenhas; BRITO, Rosangela Baia; VILLA, Luisa Lina; MATOS, Délcio

    2014-01-01

    Background Colorectal cancer is one of the most common types of neoplasia among the worldwide adult population. Among neoplasms of the gastrointestinal tract, it is ranked second in relation to prevalence and mortality, but its etiology is only known in around 5% of the cases. It is believed that 15% of malignant diseases are related to viral oncogenesis. Aim To correlate the presence of HPV with the staging and degree of cell differentiation among patients with colorectal adenocarcinoma. Methods A retrospective case-control study was conducted on 144 patients divided between a test group of 79 cases of colorectal cancer and a control group to analyze 144 patients aged 25 to 85 years (mean, 57.85 years; standard deviation, 15.27 years and median, 58 years). Eighty-six patients (59.7%) were male. For both groups, tissue samples from paraffin blocks were subjected to DNA extraction followed by the polymerase chain reaction using generic and specific primers for HPV 16 and 18. Dot blot hybridization was also performed with the aim of identifying HPV DNA. Results The groups were shown to be homogenous regarding sex, age and site of HPV findings in the samples analyzed. Out of the 41 patients with HPV, 36 (45.6%) were in the cases and five (7.7%) were in the control group (p<0.001). All the HPV cases observed comprised HPV 16, and HPV 18 was not shown in any of the cases studied. There were no significant differences in comparisons of sex, age and site regarding the presence of HPV in either of the groups. It was not observe any significant difference in relation to staging or degree of cell differentiation among the patients with colorectal cancer. Conclusion Human papillomavirus type 16 is present in individuals with colorectal carcinoma. However, its presence was unrelated to staging or degree of differentiation. PMID:25184765

  7. Best immunohistochemical panel in distinguishing adenocarcinoma from squamous cell carcinoma of lung: tissue microarray assay in resected lung cancer specimens.

    PubMed

    Kim, Mi Jin; Shin, Hyeong Chan; Shin, Kyeong Cheol; Ro, Jae Y

    2013-02-01

    The emergence of the targeted therapies for non-small cell lung carcinoma (NSCLC) has generated a need for accurate histologic subtyping of NSCLC. In this study, we assessed the utility of immunohistochemical markers that could be helpful in distinction between adenocarcinoma (ADC) and squamous cell carcinoma (SCC). We performed a battery of immunohistochemistry using tissue microarray for napsin-A, Thyroid transcription factor 1 (TTF-1), p63, cytokeratin (CK) 5/6, thrombomodulin (CD141), Epithelial-related antigen (MOC-31), carcinoembryonic antigen (CEA), Cyclooxygenase 2 (COX-2), high-molecular-weight CK (HMWCK), p27kip1 (p27), and Rb protein in 129 resected primary NSCLC with 81 ADCs and 48 SCCs and 10 metastatic ADC to the lung (primary in colon, 7 cases; stomach, 2 cases; vagina, 1 case). Cases of ADC and SCC were morphologically unequivocal and solid tumors with no definite squamous or glandular differentiation were excluded for this analysis. Napsin-A and TTF-1 were positive in 81% and 70% of ADC and in 0% and 2% of SCC, respectively, whereas P63 and CK5/6 were positive in 91% and 90% of SCC and in 9% and 4% of ADC, respectively (P < .001). CD141 stained significantly higher in SCC over ADC (positive in 2% of ADC and 46% of SCC. MOC-31, CEA, COX-2, HMWCK, p27, and Rb appeared to be not useful markers in distinction between ADC and SCC because of their low specificity. None of metastatic ADC to the lung showed positive for napsin-A and TTF-1. It was evident that combination of napsin-A, TTF-1, CK5/6, and p63 was the best immunohistochemical panel in differentiating ADC from SCC of the lung in this study. CD141 appeared to be a potential new marker for SCC with high specificity. Cyclooxygenase 2, MOC-31, CEA, HMWCK, p27, and Rb showed less specificity for differentiation ADC from SCC.

  8. Trans- and cis-2-phenylindole platinum(II) complexes as cytotoxic agents against human breast adenocarcinoma cell lines

    NASA Astrophysics Data System (ADS)

    Tomé, Maria; López, Concepción; González, Asensio; Ozay, Bahadir; Quirante, Josefina; Font-Bardía, Mercè; Calvet, Teresa; Calvis, Carme; Messeguer, Ramon; Baldomá, Laura; Badía, Josefa

    2013-09-01

    The synthesis and characterization of the new 2-phenylindole derivative: C8H3N-2-C6H5-3NOMe-5OMe (3c) and the trans- and cis-isomers of [Pt(3c)Cl2(DMSO)] complexes (4c and 5c, respectively) are described. The crystal structures of 4c·CH2Cl2 and 5c confirm: (a) the existence of a Pt-Nindole bond, (b) the relative arrangement of the Cl- ligands [trans- (in 4c) or cis- (in 5c)] and (c) the anti-(E) configuration of the oxime. The cytotoxic assessment of C8H3N-2-(C6H4-4‧R1)-3NOMe-5R2 [with R1 = R2 = H (3a); R1 = Cl, R2 = H (3b) and R1 = H, R2 = OMe (3c)] and the geometrical isomers of [Pt(L)Cl2(DMSO)] with L = 3a-3c [trans- (4a-4c) and cis- (5a-5c), respectively] against human breast adenocarcinoma cell lines (MDA-MB231 and MCF-7) is also reported and reveals that all the platinum(II) complexes (except 4a) are more cytotoxic than cisplatin in front of the MCF7 cell line. Electrophoretic DNA migration studies of the synthesized compounds in the absence and in the presence of topoisomerase-I have been performed, in order to get further insights into their mechanism of action.

  9. The anti-cancer effects of poi (Colocasia esculenta) on colonic adenocarcinoma cells In vitro.

    PubMed

    Brown, Amy C; Reitzenstein, Jonathan E; Liu, Jessie; Jadus, Martin R

    2005-09-01

    Hawaiians tend to have lower incidence rates of colorectal cancer and it was hypothesized that this may be due to ethnic differences in diet, specifically, their consumption of poi, a starchy paste made from the taro (Colocasia esulenta L.) plant corm. Soluble extracts of poi were incubated at 100 mg/mL in vitro for antiproliferative activity against the rat YYT colon cancer cell line. (3)H-thymidine incorporation studies were conducted to demonstrate that the poi inhibited the proliferation of these cancer cells in a dose-dependent manner. The greatest suppression of YYT colon cancer growth occurred when 25% concentration was used. When poi was incubated with the YYT cells after 2 days, the YYT cells underwent apoptotic changes as evidenced by a positive terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) stain. Poi enhanced the proliferation of normal mouse splenocyte control cells, suggesting that poi is not simply toxic to all cells but even has a positive immunostimulatory role. By flow cytometry, T cells (CD4+ and CD8+) were predominantly activated by the poi. Although numerous factors can contribute to the risk of colon cancer, perhaps poi consumption may contribute to the lower colon cancer rates among Hawaiians by two distinct mechanisms. First, by inducing apoptosis within colon cancer cells; second, by non-specifically activating lymphocytes, which in turn can lyse cancerous cells. Our results suggest for the first time that poi may have novel tumor specific anti-cancer activities and future research is suggested with animal studies and human clinical trials.

  10. Inhibition of NF-kappaB by combination therapy with parthenolide and hyperthermia and kinetics of apoptosis induction and cell cycle arrest in human lung adenocarcinoma cells.

    PubMed

    Hayashi, Sachiko; Sakurai, Hiroaki; Hayashi, Akio; Tanaka, Yukie; Hatashita, Masanori; Shioura, Hiroki

    2010-01-01

    We investigated the mechanisms of thermosensitization related to combination therapy with sesquiterpene lactone parthenolide (PTL), a nuclear factor-kappaB (NF-kappaB) inhibitor, and hyperthermia using human lung adenocarcinoma cells A549. The kinetics of apoptosis induction and cell cycle of cells treated with PTL, heating, and combined treatment were examined by flow cytometric analysis. The flow cytometric distribution was calculated and expressed as a percentage. The ratios of the sub-G1 division, used to determine the induction of apoptosis, increased significantly with the combination therapy. Furthermore, the ratios of G2/M division increased and the ratios of G0/G1 division decreased, indicating cell cycle arrest in G2/M. The cell phase response to PTL by A549 cells synchronized in the G1/S border with hydroxyurea was also analyzed. PTL showed remarkable cytotoxicity at the S phase of the cell cycle in A549 cells at all concentrations as well as with hyperthermia, thus PTL reduced the number of cells in the proliferation phase. Inhibition of intracellular transcription factor NF-kappaB activation in A549 cells with various incubation periods after treatments with PTL, heating and combined treatment was examined by Western blot analysis. Unexpectedly, PTL alone did not inhibit NF-kappaB activation in cells stimulated with TNF-alpha, while heating alone inhibited NF-kappaB early after treatment and that effect faded over time. In contrast, PTL combined with heating completely inhibited NF-kappaB activation. Our results demonstrated that PTL and heating in combination cause significant thermosensitization of A549 cells via induction of apoptosis or cell cycle arrest in G2/M by inhibiting NF-kappaB activation in a synergistic manner.

  11. Inhibition of the Hedgehog pathway induces autophagy in pancreatic ductal adenocarcinoma cells.

    PubMed

    Xu, Yonghua; An, Yong; Wang, Xuehao; Zha, Wenzhang; Li, Xiangcheng

    2014-02-01

    The HH signaling pathway is a 'core' signal transduction pathway in pancreatic cancer that promotes the tumorigenesis of pancreatic cancers via enhancing cell proliferation, increasing invasion and metastasis and protecting against apoptosis. In the present study, we found that HH signaling regulates autophagy in pancreatic cancer cells. Activation of HH signaling inhibits autophagy, while inhibition of the HH pathway induces autophagy. Although the role of autophagy in cell survival and apoptosis may depend on tumor type and the microenvironment, our data clearly demonstrated that GANT61-induced autophagy contributed to reduced viability and increased apoptosis in pancreatic cancer cells both in vivo and in vitro, and these effects were reversed by the autophagy inhibitor, 3-MA. We propose that HH signaling by regulating autophagy plays an important role in determining the cellular response to HH-targeted therapy in pancreatic cancer and further investigation of the interaction between autophagy and HH signaling is particularly important.

  12. Reversal of Doxorubicin Resistance in Human Breast Adenocarcinoma (MCF-7) Cells by Liposomal Monensin

    DTIC Science & Technology

    2005-06-01

    drugs. J. Pharin. Pharinacal. 53: 617--627 lial Caco - 2 cell layers and everted gut sacs of rats. Biocheja. Shaik, M. S., Kanikkasnnan, N.. Singh. M. (201...Intralipid on the transport of cpirubicin in Caco - 2 cells throwugh stealth nanoparticles and liposomrcs. .4APS Pliarin and rat intestines. J. Conitrolled...PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2 . REPORT TYPE 3. DATES COVERED (From - To) 01-06-2005 Annual Summary

  13. Ciliated adenocarcinomas of the lung: a tumor of non-terminal respiratory unit origin.

    PubMed

    Park, Won Young; Kim, Mi Hyun; Shin, Dong Hoon; Lee, Jung Hee; Choi, Kyung Un; Kim, Jee Yeon; Park, Do Youn; Lee, Chang Hun; Sol, Mee Young

    2012-09-01

    Whereas most carcinomas occur through a sequential step, atypical adenomatous hyperplasia and bronchioloalveolar carcinoma pathway is known for pulmonary adenocarcinoma. This type is known as terminal respiratory unit adenocarcinoma. Based on our observation of transitions from normal ciliated columnar cells to adenocarcinoma via dysplastic mucous columnar cells, we reviewed our archive of pulmonary adenocarcinoma. Terminal respiratory unit type adenocarcinoma was defined as adenocarcinoma with type II pneumocyte, Clara cell, or bronchiolar cell morphology according to previous reports. Among 157 cases, 121 cases have been identified as terminal respiratory unit type adenocarcinoma and 36 cases as non-terminal respiratory unit type adenocarcinoma. Among non-terminal respiratory unit type adenocarcinoma, 24 cases revealed mucous columnar cell changes that were continuous with bronchial ciliated columnar cells. The mucous columnar cells became dysplastic showing loss of cilia, disorientation, and enlarged nuclei. Adenocarcinoma arose from these dysplastic mucous columnar cells and, characteristically, this type of adenocarcinoma showed acute inflammation, and honeycombing changes in the background. TTF1 immunostaining was consistently negative. In a case study with 14 males and 10 females, including 12 smokers or ex-smokers, EGFR and KRAS mutations were detected in 3 and 6 patients, respectively. We think that this kind of adenocarcinoma arising through mucous columnar cell change belongs to non-terminal respiratory unit type adenocarcinoma, and mucous columnar cell change is a precursor lesion of pulmonary adenocarcinoma.

  14. Primary male neuroendocrine adenocarcinoma involving the nipple simulating Merkel cell carcinoma - a diagnostic pitfall.

    PubMed

    Mecca, Patricia; Busam, Klaus

    2008-02-01

    Male breast cancer is a rare entity accounting for < 1% of all breast cancer cases in the United States, but with a rate that has been rising over the last 25 years. Nipple skin/subcutaneous tumors in men are even rarer. Likewise, true neuroendocrine carcinoma of the breast, defined as > 50% of tumor cells staining for either chromogranin or synaptophysin, is not a common entity, usually occurring in older women. We present the case of a 70-year-old man with a slowly growing nipple mass that had enlarged over the previous 1.5 years. The histology consisted of nests, trabeculae and sheets of basaloid cells with rare abortive gland formation and a pushing edge. The case was originally misdiagnosed as a Merkel cell carcinoma, based largely on histologic morphology. Strong staining for synaptophysin (in greater than 50% of cells), CD56, keratins AE1 : AE3 and Cam 5.2, as well as estrogen receptor and progesterone receptor was noted. Myoepithelial cells within in situ areas were identified using stains for calponin and 4A4, supporting a primary mammary duct origin. Additionally, a substantial portion of cells stained for Gross Cystic Disease Fluid Protein-15 (GCDFP-15), confirming some overlap with sweat duct differentiation. To the best of our knowledge, although reported in the male breast, no case of primary nipple neuroendocrine carcinoma in a male patient has been reported in the literature. The gender of the patient and association with the skin of the chest wall probably contributed to the original misdiagnosis of Merkel cell carcinoma in this patient.

  15. Nitrophenols isolated from diesel exhaust particles promote the growth of MCF-7 breast adenocarcinoma cells

    SciTech Connect

    Furuta, Chie; Suzuki, Akira K.; Watanabe, Gen; Li, ChunMei; Taneda, Shinji; Taya, Kazuyoshi

    2008-08-01

    Diesel exhaust particles (DEPs) cause many adverse health problems, and reports indicate increased risk of breast cancer in men and women through exposure to gasoline and vehicle exhaust. However, DEPs include vast numbers of compounds, and the specific compound(s) responsible for these actions are not clear. We recently isolated two nitrophenols from DEPs-3-methyl-4-nitrophenol (4-nitro-m-cresol; PNMC) and 4-nitro-3-phenylphenol (PNMPP)-and showed that they had estrogenic and anti-androgenic activities. Here, we tried to clarify the involvement of these two nitrophenols in promoting the growth of the MCF-7 breast cancer cell line. First, comet assay was used to detect the genotoxicity of PNMC and PNMPP in a CHO cell line. At all doses tested, PNMC and PNMPP showed negative genotoxicity, indicating that they had no tumor initiating activity. Next, the estrogen-responsive breast cancer cell line MCF-7 was used to assess cell proliferation. Proliferation of MCF-7 cells was stimulated by PNMC, PNMPP, and estradiol-17{beta} and the anti-estrogens 4-hydroxytamoxifen and ICI 182,780 inhibited the proliferation. To further investigate transcriptional activity through the estrogen receptor, MCF-7 cells were transfected with a receptor gene that allowed expression of luciferase enzyme under the control of the estrogen regulatory element. PNMC and PNMPP induced luciferase activity in a dose-dependent manner at submicromolar concentrations. ICI 182,780 inhibited the luciferase activity induced by PNMC and PNMPP. These results clearly indicate that PNMC and PNMPP do not show genotoxicity but act as tumor promoters in an estrogen receptor {alpha}-predominant breast cancer cell line.

  16. Curcuminoids and ω-3 fatty acids with anti-oxidants potentiate cytotoxicity of natural killer cells against pancreatic ductal adenocarcinoma cells and inhibit interferon γ production.

    PubMed

    Halder, Ramesh C; Almasi, Anasheh; Sagong, Bien; Leung, Jessica; Jewett, Anahid; Fiala, Milan

    2015-01-01

    Pancreatic cancer has a poor prognosis attributed in part to immune suppression and deactivation of natural killer (NK) cells. Curcuminoids have a potential for improving the therapy of pancreatic cancer given promising results in cancer models and a clinical trial, but their oral absorption is limited. Our objective in this study is to show curcuminoid anti-oncogenic effects alone and together with human NK cells. We tested curcuminoids in an emulsion of ω-3 fatty acids and anti-oxidants ("Smartfish") regarding their direct cytocidal effect and enhancement of the cytocidal activity of NK cells in pancreatic ductal adenocarcinoma (PDAC) cells (Mia Paca 2 and L3.6). Curcuminoids (at ≥10 μM) with ω-3 fatty acids and anti-oxidants or with the lipidic mediator resolvin D1 (RvD1) (26 nM) induced high caspase-3 activity in PDAC cells. Importantly, curcuminoids with ω-3 fatty acids and anti-oxidants or with RvD1 significantly potentiated NK cell cytocidal function and protected them against degradation. In a co-culture of cancer cells with NK cells, interferon-γ (IFN-γ) production by NK cells was not altered by ω-3 fatty acids with anti-oxidants or by RvD1 but was inhibited by curcuminoids. The inhibition was not eliminated by ω-3 fatty acids or RvD1 but was relieved by removing curcuminoids after adding NK cells. In conclusion, curcuminoids with ω-3 fatty acids and anti-oxidants or with RvD1 have increased cytotoxic activity on PDAC cells alone and with NK cells. The effects of curcuminoids with ω-3 fatty acids and anti-oxidants on pancreatic cancer will be investigated in a mouse model with humanized immune system.

  17. RB loss in resistant EGFR mutant lung adenocarcinomas that transform to small-cell lung cancer

    PubMed Central

    Niederst, Matthew J.; Sequist, Lecia V.; Poirier, John T.; Mermel, Craig H.; Lockerman, Elizabeth L.; Garcia, Angel R.; Katayama, Ryohei; Costa, Carlotta; Ross, Kenneth N.; Moran, Teresa; Howe, Emily; Fulton, Linnea E.; Mulvey, Hillary E.; Bernardo, Lindsay A.; Mohamoud, Farhiya; Miyoshi, Norikatsu; VanderLaan, Paul A.; Costa, Daniel B.; Jänne, Pasi A.; Borger, Darrell R.; Ramaswamy, Sridhar; Shioda, Toshi; Iafrate, Anthony J.; Getz, Gad; Rudin, Charles M.; Mino-Kenudson, Mari; Engelman, Jeffrey A.

    2015-01-01

    Tyrosine kinase inhibitors are effective treatments for non-small-cell lung cancers (NSCLCs) with epidermal growth factor receptor (EGFR) mutations. However, relapse typically occurs after an average of 1 year of continuous treatment. A fundamental histological transformation from NSCLC to small-cell lung cancer (SCLC) is observed in a subset of the resistant cancers, but the molecular changes associated with this transformation remain unknown. Analysis of tumour samples and cell lines derived from resistant EGFR mutant patients revealed that Retinoblastoma (RB) is lost in 100% of these SCLC transformed cases, but rarely in those that remain NSCLC. Further, increased neuroendocrine marker and decreased EGFR expression as well as greater sensitivity to BCL2 family inhibition are observed in resistant SCLC transformed cancers compared with resistant NSCLCs. Together, these findings suggest that this subset of resistant cancers ultimately adopt many of the molecular and phenotypic characteristics of classical SCLC. PMID:25758528

  18. A Signaling Network Controlling Androgenic Repression of c-Fos Protein in Prostate Adenocarcinoma Cells*

    PubMed Central

    Shankar, Eswar; Song, Kyung; Corum, Sarah L.; Bane, Kara L.; Wang, Hui; Kao, Hung-Ying; Danielpour, David

    2016-01-01

    The transcription factor c-Fos controls many important cellular processes, including cell growth and apoptosis. c-Fos expression is rapidly elevated in the prostate upon castration-mediated androgen withdrawal through an undefined mechanism. Here we show that androgens (5α-dihydrotestosterone and R1881) suppress c-Fos protein and mRNA expression induced by 12-O-tetradecanoylphorbol-13-acetate (TPA) or EGF in human prostate cancer (PCa) cell lines. Such suppression transpires through a transcriptional mechanism, predominantly at the proximal serum response element of the c-fos promoter. We show that androgen signaling suppresses TPA-induced c-Fos expression through repressing a PKC/MEK/ERK/ELK-1 signaling pathway. Moreover, our results support the hypothesis that p38MAPK, PI3K, and PKCδ are involved in the androgenic regulation of c-Fos through controlling MEK/ERK. Stable silencing of c-Fos and PKCδ with shRNAs suggests that R1881 promotes cell death induced by low-dose TPA through a mechanism that is dependent on both PKCδ and loss of c-Fos expression. Reciprocally, loss of either PKCδ or c-Fos activates p38MAPK while suppressing the activation of ERK1/2. We also provide the first demonstration that R1881 permits cell death induced by low-dose TPA in the LNCaP androgen-dependent PCa cell line and that TPA-induced cell death is independent of exogenous androgen in the castration-resistant variants of LNCaP, C4-2 and C4-2B. Acquisition of androgen-independent killing by TPA correlates with activation of p38MAPK, suppression of ERK1/2, and loss of c-Fos. These results provide new insights into androgenic control of c-Fos and use of PKC inhibitors in PCa therapy. PMID:26786102

  19. Signet-ring cell (mucin-producing) adenocarcinomas of minor salivary glands.

    PubMed

    Ghannoum, Julien E; Freedman, Paul D

    2004-01-01

    We report seven cases of minor salivary gland carcinomas characterized by the marked presence of mucin-containing signet-ring cells. These tumors were distinctive in their microscopic appearance and displayed features not seen in any other type of salivary gland malignancy. They typically exhibited invasive growth by narrow parallel strands, randomly scattered small nests, or individually infiltrating cells. Solid, cribriform, or targetoid areas were absent, as well as papillary components. Ductal differentiation was minimal, and seen in only four cases. Degrees of cellularity varied from one area to another. The tumors were cytologically bland. We think that these tumors represent a unique subset of intraoral minor salivary gland carcinomas.

  20. Increased expression of the Th17-IL-6R/pSTAT3/BATF/RorγT-axis in the tumoural region of adenocarcinoma as compared to squamous cell carcinoma of the lung.

    PubMed

    Balabko, Ljubov; Andreev, Katerina; Burmann, Nadine; Schubert, Melanie; Mathews, Martina; Trufa, Denis I; Reppert, Sarah; Rau, Tilmann; Schicht, Martin; Sirbu, Horia; Hartmann, Arndt; Finotto, Susetta

    2014-12-10

    Here we describe increased expression of IL6R in the tumoural region of lung tissue from patients affected by lung adenocarcinoma as compared to squamous cell lung carcinoma. Moreover, here we found increased IL6R in the tumour free part of the lung. By using a murine model of lung adenocarcinoma, we discovered that few lung tumour cells expressed IL-6R and CD4+CD25+Foxp-3+ T regulatory cells down-regulated IL-6R in the tumour bearing lungs. Downstream of IL-6R, the Th17 lineage-specification factors: Signal transducer and activator of transcription 3 (STAT3), Basic leucine zipper transcription factor, BATF and a protein encoded by the RORC in human (RAR-related orphan receptor C) (RORγT), were also found induced in the tumoural region of lung tissue from patients affected by lung adenocarcinoma as compared to those carrying squamous cell carcinoma. Moreover, pSTAT3 protein was found phosphorylated and auto-phosphorylated in the tumoural region of patients with adeno cell carcinoma of the lung as compared to the tumoural region of patients with squamous cell carcinoma of the lung. Intranasal application of anti-IL-6R antibodies in a murine model of lung adenocarcinoma, induced T regulatory cell markers such as Foxp3, Ctla4, Icos, Il10, Il21, Folr4 and Lag3 and inhibited Rorc in lung adenocarcinoma.

  1. Increased expression of the Th17-IL-6R/pSTAT3/BATF/RorγT-axis in the tumoural region of adenocarcinoma as compared to squamous cell carcinoma of the lung

    PubMed Central

    Balabko, Ljubov; Andreev, Katerina; Burmann, Nadine; Schubert, Melanie; Mathews, Martina; Trufa, Denis I.; Reppert, Sarah; Rau, Tilmann; Schicht, Martin; Sirbu, Horia; Hartmann, Arndt; Finotto, Susetta

    2014-01-01

    Here we describe increased expression of IL6R in the tumoural region of lung tissue from patients affected by lung adenocarcinoma as compared to squamous cell lung carcinoma. Moreover, here we found increased IL6R in the tumour free part of the lung. By using a murine model of lung adenocarcinoma, we discovered that few lung tumour cells expressed IL-6R and CD4+CD25+Foxp-3+ T regulatory cells down-regulated IL-6R in the tumour bearing lungs. Downstream of IL-6R, the Th17 lineage-specification factors: Signal transducer and activator of transcription 3 (STAT3), Basic leucine zipper transcription factor, BATF and a protein encoded by the RORC in human (RAR-related orphan receptor C) (RORγT), were also found induced in the tumoural region of lung tissue from patients affected by lung adenocarcinoma as compared to those carrying squamous cell carcinoma. Moreover, pSTAT3 protein was found phosphorylated and auto-phosphorylated in the tumoural region of patients with adeno cell carcinoma of the lung as compared to the tumoural region of patients with squamous cell carcinoma of the lung. Intranasal application of anti-IL-6R antibodies in a murine model of lung adenocarcinoma, induced T regulatory cell markers such as Foxp3, Ctla4, Icos, Il10, Il21, Folr4 and Lag3 and inhibited Rorc in lung adenocarcinoma. PMID:25491772

  2. Ajwa Date (Phoenix dactylifera L.) Extract Inhibits Human Breast Adenocarcinoma (MCF7) Cells In Vitro by Inducing Apoptosis and Cell Cycle Arrest

    PubMed Central

    Khan, Fazal; Ahmed, Farid; Pushparaj, Peter Natesan; Abuzenadah, Adel; Kumosani, Taha; Barbour, Elie; AlQahtani, Mohammed; Gauthaman, Kalamegam

    2016-01-01

    Introduction Phoenix dactylifera L (Date palm) is a native plant of the Kingdom of Saudi Arabia (KSA) and other Middle Eastern countries. Ajwa date has been described in the traditional and alternative medicine to provide several health benefits including anticholesteremic, antioxidant, hepatoprotective and anticancer effects, but most remains to be scientifically validated. Herein, we evaluated the anticancer effects of the Methanolic Extract of Ajwa Date (MEAD) on human breast adenocarcinoma (MCF7) cells in vitro. Methods MCF7 cells were treated with various concentrations (5, 10, 15, 20 and 25 mg/ml) of MEAD for 24, 48 and 72 h and changes in cell morphology, cell cycle, apoptosis related protein and gene expression were studied. Results Phase contrast microscopy showed various morphological changes such as cell shrinkage, vacuolation, blebbing and fragmentation. MTT (2-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay demonstrated statistically significant dose-dependent inhibitions of MCF7 cell proliferation from 35% to 95%. Annexin V-FITC and TUNEL assays showed positive staining for apoptosis of MCF7 cells treated with MEAD (15 mg and 25 mg for 48 h). Flow cytometric analyses of MCF7 cells with MEAD (15 mg/ml and 20 mg/ml) for 24 h demonstrated cell cycle arrest at 'S' phase; increased p53, Bax protein expression; caspase 3activation and decreased the mitochondrial membrane potential (MMP). Quantitative real time PCR (qRT-PCR) analysis showed up-regulation of p53, Bax, Fas, and FasL and down-regulation of Bcl-2. Conclusions MEAD inhibited MCF7 cells in vitro by the inducing cell cycle arrest and apoptosis. Our results indicate the anticancer effects of Ajwa dates, which therefore may be used as an adjunct therapy with conventional chemotherapeutics to achieve a synergistic effect against breast cancer. PMID:27441372

  3. R-(+)-perillyl alcohol-induced cell cycle changes, altered actin cytoskeleton, and decreased ras and p34(cdc2) expression in colonic adenocarcinoma SW480 cells.

    PubMed

    Cerda, S R; Wilkinson, J; Thorgeirsdottir, S; Broitman, S A

    1999-01-01

    Monoterpenes as S-(-)-perillyl alcohol (PA) have been shown to inhibit the isoprenylation of such growth regulatory proteins as ras. In this study, we investigated the effects of the R-(+) enantiomer of PA on cell cycle, signaling, and cytoskeletal control in the colonic adenocarcinoma cell line SW480, which carries a K-ras mutation. Cell cycle analysis by flow cytometry of SW480 cells treated with 1 mM PA for 24 hours demonstrated an increase in the number of cells in G0/G1 with a decrease in S phase, compared with untreated control cells. These cell cycle changes correlated with an inhibition of protein isoprenylation from (14)C-mevalonate and decreased expression of the cell cycle regulatory kinase p34(cdc2). Additionally, PA-treated cells acquired a flattened morphology with a condensation of cytoskeletal actin spikes to the periphery. This was in contrast to treatment with 15 microM mevinolin (MVN), a direct mevalonate synthesis inhibitor, which imparted to SW480 cells a more rounded and spindly morphology, associated with the depolymerization of actin microfilaments. Together, these data suggest that fluctuations in mevalonate and isoprenoid pools may involve different morphologic phenomenon. Because ras mediated signaling is related to the organization of the actin cytoskeleton, we investigated the effects of PA on the isoprenylation of ras. Although MVN treatment inhibited ras farnesylation, PA treatment decreased the expression of total ras protein. In summary, R-(+)-PA-induced cell signaling events correlated with alterations in the organization of cytoskeletal actin and decreased protein expression of growth regulatory proteins, such as ras and cdc2 kinase. These effects may contribute to the growth inhibitory activity of R-(+)-PA.

  4. Curcumin promotes apoptosis in A549/DDP multidrug-resistant human lung adenocarcinoma cells through an miRNA signaling pathway

    SciTech Connect

    Zhang, Jian; Zhang, Tao; Ti, Xinyu; Shi, Jieran; Wu, Changgui; Ren, Xinling; Yin, Hong

    2010-08-13

    Research highlights: {yields} Curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells {yields} Curcumin promotes apoptosis in A549/DDP cells through a miRNA signaling pathway {yields} Curcumin induces A549/DDP cell apoptosis by downregulating miR-186* {yields} miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin -- Abstract: Curcumin extracted from the rhizomes of Curcuma longa L. has been shown to have inhibitory effects on cancers through its anti-proliferative and pro-apoptotic activities. Emerging evidence demonstrates that curcumin can overcome drug resistance to classical chemotherapies. Thus, the mechanisms underlying the anti-tumor activities of curcumin require further study. In our study, we first demonstrated that curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells. Further studies showed that curcumin altered miRNA expression; in particular, significantly downregulated the expression of miR-186* in A549/DDP. In addition, transfection of cells with a miR-186* inhibitor promoted A549/DDP apoptosis, and overexpression of miR-186* significantly inhibited curcumin-induced apoptosis in A549/DDP cells. These observations suggest that miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin.

  5. Role of Mammary Adenocarcinoma Cell Transterrin Response In Breast Cancer Metastasis

    DTIC Science & Technology

    1995-09-21

    for identifying dividing cells. Int. J. Cancer, 27::329-334. 13. Wrba, F., Ritzinger, E., Reiner, A., and Holzner , J.H. Transferrin receptor (TrfR...A., and Holzner , J.H. Transferrin receptor (TrfR) expression in breast carcinoma and its possible relationship to prognosis. An immunohistochemical

  6. Proteasome inhibitor MG-132 lowers gastric adenocarcinoma TMK1 cell proliferation via bone morphogenetic protein signaling

    SciTech Connect

    Wu, William Ka Kei; Sung, Joseph Jao Yiu; Yu Le; Cho, C.H.

    2008-06-27

    Proteasome inhibitor is a novel class of cancer therapeutics, of which the mechanism of action is not fully understood. It is reported that proteasome inhibitor enhances bone morphogenetic protein (BMP) signaling in osteoblasts to stimulate bone formation. BMP signaling is also an important tumor-suppressing pathway in gastric carcinogenesis. We therefore sought to determine the anti-mitogenic effect of proteasome inhibition in relation to BMP signaling in gastric cancer cells. Results showed that proteasome inhibitor MG-132 significantly suppressed the proliferation and the colony-forming ability of gastric cancer TMK1 cells. In this connection, MG-132 activated BMP signaling, manifested as an increase in Smad1/5/8 phosphorylation and up-regulation of p21{sup Waf1/Cip1} mRNA and protein expression. Knockdown of BMP receptor II by RNA interference abolished Smad1/5/8 phosphorylation, p21{sup Waf1/Cip1} induction, and the inhibition of cell proliferation induced by MG-132. Further analysis revealed that MG-132 up-regulated the expression of BMP1 and BMP4 and suppressed the expression of Smad6. Knockdown of Smad6 also mimicked the effect of MG-132 on BMP signaling. Collectively, these findings suggest that inhibition of proteasome suppresses gastric cancer cell proliferation via activation of BMP signaling. This discovery may open up a novel therapeutic avenue to proteasome inhibitors for the management of gastric cancer.

  7. Clinical significance of immunogenic cell death biomarker rage and early growth response 1 in human primary gastric adenocarcinoma.

    PubMed

    Xu, X-C; Gao, H; Zhang, W-B; Abuduhadeer, X; Wang, Y-H

    2013-01-01

    The receptor for advanced glycation end products (RAGE), a pattern recognition receptor that binds multiple ligands derived from a damaged cell environment, contributes to multiple pathologies including cancer. Early growth response 1 (EGR1) is a tumor suppressor gene or a tumor promoter involved in tumorigenesis and progression of some cancers. However, there is some lack of knowledge about the expression and clinical significance of RAGE and EGR1 in human primary gastric adenocarcinoma (GAC). The present study was aimed to investigate the expression and clinical significance of RAGE and EGR1 in human GAC. One hundred and twenty cases of GAC tissues, adjacent non-cancer tissues (ANCT) and metastatic lymph node (MLN) tissues were collected. The expression of RAGE and EGR1 was assessed using immunohistochemistry (IHC) through tissue microarray procedure. The clinicopathologic characteristics of all patients were analyzed. As a result, the expression of RAGE in GAC and MLN tissues showed the positive staining mainly in the cytoplasm, with lower reactivity rate compared with the ANCT (P less than 0.001), while EGR1 expression had no significant difference between GAC, MLN tissues and ANCT (P=0.565). Moreover, the positive expression of RAGE was closely associated with the N stage of GAC patients, but did not correlate with their age, gender, tumor size, tumor sites, T stage, and metastatic lymph node (each P>0.05). In addition, Spearman Rank correlation analysis showed the positive correlation of RAGE expression with EGR1 in GAC tissues (r=0.658). Taken together, the expression of RAGE is decreased in GAC and MLN tissues, and is associated with the N stage of GAC patients, suggesting that RAGE may represent a potential therapeutic target for the treatment of GAC.

  8. MCM2 and TIP30 are prognostic markers in squamous cell/adenosquamous carcinoma and adenocarcinoma of the gallbladder

    PubMed Central

    Liu, Ziru; Yang, Zhulin; Jiang, Song; Zou, Qiong; Yuan, Yuan; Li, Jinghe; Li, Daiqiang; Liang, Lufeng; Chen, Meigui; Chen, Senlin

    2016-01-01

    The clinicopathological and biological characteristics of squamous cell/adenosquamous carcinoma (SC/ASC) of the gallbladder remain to be fully elucidated, due to the fact that it is a rare gallbladder cancer subtype. In the current study, the expression of minichromosome maintenance complex component 2 (MCM2) and HIV-1 tat interactive protein 2 (TIP30) was measured in 46 cases of SC/ASC and 80 adenocarcinomas (AC) using immunohistochemistry. Positive MCM2 and negative TIP30 expression were significantly associated with large tumor size, high TNM stage, invasion, lymph node metastasis and lack of surgical curability in SC/ASC and AC. Positive MCM2 and negative TIP30 expression were significantly associated with poor differentiation in AC, whereas only MCM2 was correlated with differentiation in SC/ASC. Univariate Kaplan-Meier analysis demonstrated that positive MCM2 and negative TIP30 expression, the degree of differentiation, tumor size, TNM stage, invasion, lymph node metastasis and surgical curability were significantly associated with post-operative survival in patients with SC/ASC and AC. Multivariate Cox regression analysis demonstrated that positive MCM2 and negative TIP30 expression, the degree of differentiation, tumor size, TNM stage, invasion, lymph node metastasis and lack of surgical curability were also independent predictors of poor prognosis in patients with SC/ASC and AC. These data suggest that positive MCM2 and negative TIP30 expression are closely correlated with the clinical, pathological and biological parameters, in addition to poor prognosis in patients with gallbladder cancer. PMID:27748889

  9. Genome-wide DNA methylation profiling of cell-free serum DNA in esophageal adenocarcinoma and Barrett esophagus.

    PubMed

    Zhai, Rihong; Zhao, Yang; Su, Li; Cassidy, Lauren; Liu, Geoffrey; Christiani, David C

    2012-01-01

    Aberrant DNA methylation (DNAm) is a feature of most types of cancers. Genome-wide DNAm profiling has been performed successfully on tumor tissue DNA samples. However, the invasive procedure limits the utility of tumor tissue for epidemiological studies. While recent data indicate that cell-free circulating DNAm (cfDNAm) profiles reflect DNAm status in corresponding tumor tissues, no studies have examined the association of cfDNAm with cancer or precursors on a genome-wide scale. The objective of this pilot study was to evaluate the putative significance of genome-wide cfDNAm profiles in esophageal adenocarcinoma (EA) and Barrett esophagus (BE, EA precursor). We performed genome-wide DNAm profiling in EA tissue DNA (n = 8) and matched serum DNA (n = 8), in serum DNA of BE (n = 10), and in healthy controls (n = 10) using the Infinium HumanMethylation27 BeadChip that covers 27,578 CpG loci in 14,495 genes. We found that cfDNAm profiles were highly correlated to DNAm profiles in matched tumor tissue DNA (r = 0.92) in patients with EA. We selected the most differentially methylated loci to perform hierarchical clustering analysis. We found that 911 loci can discriminate perfectly between EA and control samples, 554 loci can separate EA from BE samples, and 46 loci can distinguish BE from control samples. These results suggest that genome-wide cfDNAm profiles are highly consistent with DNAm profiles detected in corresponding tumor tissues. Differential cfDNAm profiling may be a useful approach for the noninvasive screening of EA and EA premalignant lesions.

  10. Comprehensive Lipidome Profiling of Isogenic Primary and Metastatic Colon Adenocarcinoma Cell Lines

    PubMed Central

    Fhaner, Cassie J.; Liu, Sichang; Ji, Hong; Simpson, Richard J.; Reid, Gavin E.

    2012-01-01

    A ‘shotgun’ lipidomics strategy consisting of sequential functional group selective chemical modification reactions coupled with high-resolution / accurate mass spectrometry and ‘targeted’ tandem mass spectrometry (MS/MS) analysis has been developed and applied toward the comprehensive identification, characterization and quantitative analysis of changes in relative abundances of >600 individual glycerophospholipid, glycerolipid, sphingolipid and sterol lipids between a primary colorectal cancer (CRC) cell line, SW480, and its isogenic lymph node metastasized derivative, SW620. Selective chemical derivatization of glycerophosphoethanolamine and glycerophosphoserine lipids using a ‘fixed charge’ sulfonium ion containing, d6-S,S′-dimethylthiobutanoylhydroxysuccinimide ester (d6-DMBNHS) reagent was used to eliminate the possibility of isobaric mass overlap of these species with the precursor ions of all other lipids in the crude extracts, thereby enabling their unambiguous assignment, while subsequent selective mild acid hydrolysis of plasmenyl (vinyl-ether) containing lipids using formic acid enabled these species to be readily differentiated from isobaric mass plasmanyl (alkyl-ether) containing lipids. Using this approach, statistically significant differences in the abundances of numerous lipid species previously identified as being associated with cancer progression, or that play known roles as mediators in a range of physiological and pathological processes, were observed between the SW480 and SW620 cells. Most notably, these included increased plasmanylcholine and triglyceride lipid levels, decreased plasmenylethanolamine lipids, decreased C-16 containing sphingomyelin and ceramide lipid levels, and a dramatic increase in the abundances of total cholesterol ester and triglyceride lipids in the SW620 cells compared to those in the SW480 cells. PMID:23039336

  11. Gastrointestinal hormone mRNA expression in human colonic adenocarcinomas, hepatic metastases and cell lines

    PubMed Central

    Monges, G; Biagini, P; Cantaloube, J F; De Micco, P; Parriaux, D; Seitz, J F; Delpero, J R; Hassoun, J

    1996-01-01

    Aims—(1) To investigate the expression of the four main hormones of the digestive tract by performing reverse transcription polymerase chain reaction (RT-PCR) on a series of samples, comprising tumoral and healthy colonic tissues, hepatic metastases and colonic cell line samples; and (2) to study the patterns of labelling obtained with serological and morphological markers. Methods—After extraction and reverse transcription, gastrin, somatostatin, cholecystokinin (CCK) and transforming growth factor α (TGFα) mRNAs were detected by PCR and nested PCR using specific primers. The corresponding proteins were detected by immunohistochemistry. Results—The cell lines expressed all four mRNAs. Gastrin mRNA was present in most tumoral and metastatic samples, while the somatostatin transcript was detected in all samples and was frequently overexpressed in the normal colon. TGFα mRNA was expressed systematically in tumours of the right and transverse colon, but not in those located in the left colon; the expression of CCK mRNA was systematically absent in the left colon. Conclusions—The data presented here shed some light on the transcriptional events involved in the production of the various hormones present in the gastrointestinal tract, in both healthy and tumoral tissues. The various mRNAs expressed in cell lines are therefore not systematically expressed in the human pathology. Images PMID:16696065

  12. Identification of novel pancreatic adenocarcinoma cell-surface targets by gene expression profiling and tissue microarray

    PubMed Central

    Morse, David L.; Balagurunathan, Yoga; Hostetter, Galen; Trissal, Maria; Tafreshi, Narges K.; Burke, Nancy; Lloyd, Mark; Enkemann, Steven; Coppola, Domenico; Hruby, Victor; Gillies, Robert J.; Han, Haiyong

    2010-01-01

    Pancreatic cancer has a high mortality rate, which is generally related to the initial diagnosis coming at late stage disease combined with a lack of effective treatment options. Novel agents that selectively detect pancreatic cancer have potential for use in the molecular imaging of cancer, allowing for non-invasive determination of tumor therapeutic response and molecular characterization of the disease. Such agents may also be used for the targeted delivery of therapy to tumor cells while decreasing systemic effects. Using complementary assays of mRNA expression profiling to determine elevated expression in pancreatic cancer tissues relative to normal pancreas tissues, and validation of protein expression by immunohistochemistry on tissue microarray, we have identified cell-surface targets with potential for imaging and therapeutic agent development. Expression profiles of 2177 cell-surface genes for 28 pancreatic tumor specimens and 4 normal pancreas tissue samples were evaluated. Expression in normal tissues was evaluated using array data from 103 samples representing 28 organ sites as well as mining published data. One-hundred seventy unique targets were highly expressed in 2 or more of the pancreatic tumor specimens and were not expressed in the normal pancreas samples. Two targets (TLR2 and ABCC3) were further validated for protein expression by tissue microarray (TMA) based immunohistochemistry. These validated targets have potential for the development of diagnostic imaging and therapeutic agents for pancreatic cancer. PMID:20510208

  13. Cross-talk between E. coli strains and a human colorectal adenocarcinoma-derived cell line

    PubMed Central

    He, Xuan; Mishchuk, Darya O.; Shah, Jigna; Weimer, Bart C.; Slupsky, Carolyn M.

    2013-01-01

    Although there is great interest in the specific mechanisms of how gut microbiota modulate the biological processes of the human host, the extent of host-microbe interactions and the bacteria-specific metabolic activities for survival in the co-evolved gastrointestinal environment remain unclear. Here, we demonstrate a comprehensive comparison of the host epithelial response induced by either a pathogenic or commensal strain of Escherichia coli using a multi-omics approach. We show that Caco-2 cells incubated with E. coli display an activation of defense response genes associated with oxidative stress. Indeed, in the bacteria co-culture system, the host cells experience an altered environment compared with the germ-free system that includes reduced pH, depletion of major energy substrates, and accumulation of fermentation by-products. Measurement of intracellular Caco-2 cell metabolites revealed a significantly increased lactate concentration, as well as changes in TCA cycle intermediates. Our results will lead to a deeper understanding of acute microbial-host interactions. PMID:24301462

  14. hnRNPK inhibits GSK3β Ser9 phosphorylation, thereby stabilizing c-FLIP and contributes to TRAIL resistance in H1299 lung adenocarcinoma cells.

    PubMed

    Gao, Xuejuan; Feng, Junxia; He, Yujiao; Xu, Fengmei; Fan, Xiaoqin; Huang, Wensi; Xiong, Haiting; Liu, Qiuyu; Liu, Wanting; Liu, Xiaohui; Sun, Xuesong; He, Qing-Yu; Zhang, Qihao; Liu, Langxia

    2016-03-14

    c-FLIP (cellular FLICE-inhibitory protein) is the pivotal regulator of TRAIL resistance in cancer cells, It is a short-lived protein degraded through the ubiquitin/proteasome pathway. The discovery of factors and mechanisms regulating its protein stability is important for the comprehension of TRAIL resistance by tumor cells. In this study, we show that, when H1299 lung adenocarcinoma cells are treated with TRAIL, hnRNPK is translocated from nucleus to cytoplasm where it interacts and co-localizes with GSK3β. We find that hnRNPK is able to inhibit the Ser9 phosphorylation of GSK3β by PKC. This has the effect of activating GSK3β and thereby stabilizing c-FLIP protein which contributes to the resistance to TRAIL in H1299 cells. Our immunohistochemical analysis using tissue microarray provides the clinical evidence of this finding by establishing a negative correlation between the level of hnRNPK expression and the Ser9 phosphorylation of GSK3β in both lung adenocarcinoma tissues and normal tissues. Moreover, in all cancer tissues examined, hnRNPK was found in the cytoplasm whereas it is exclusively nuclear in the normal tissues. Our study sheds new insights on the molecular mechanisms governing the resistance to TRAIL in tumor cells, and provides new clues for the combinatorial chemotherapeutic interventions with TRAIL.

  15. Co-expression of autophagic markers following photodynamic therapy in SW620 human colon adenocarcinoma cells

    PubMed Central

    Ziółkowska, Barbara; Woźniak, Marta; Ziółkowski, Piotr

    2016-01-01

    Photodynamic therapy (PDT) is a minimally invasive cancer treatment. It involves the combination of a photosensitizer and light of a specific wavelength to generate singlet oxygen and other reactive oxygen species that lead to tumor cell death. Autophagy is one of the pathways that tumor cells undergo during photodamage and it is common in photodynamic therapy. The aim of this study was to examine the effect of in vitro PDT on the expression of autophagy-related proteins, autophagy related 7 (Atg7), light chain 3 (LC3) and Beclin-1. Human SW620 colon carcinoma cells were treated with 5-aminolevulinic acid (ALA)-based PDT at a dose of 3 mM. The irradiation was performed using 4.5 J/cm2 total light and a fluence rate of 60 mW/cm2. Autophagy was evaluated by immunocytochemistry using specific antibodies to Atg7, Beclin-1 and LC3. The evaluation was repeated at several time points (0, 4, 8 and 24 h) following irradiation. The induction of autophagy was observed directly following the 5-ALA-mediated PDT procedure with the strongest expression of autophagy-related proteins at 4 and 8 h after irradiation as demonstrated using immunocytochemistry. It was characterized by significantly increased expression of Beclin-1, Atg7 and LC3. To the best of our knowledge this is the first study to analyze Beclin-1, Atg7 and LC3 expression in a PDT-related experiment. This study enhances the understanding of the role of autophagy in PDT, which may contribute to better and more effective tumor responses to this therapy. PMID:27485939

  16. NAMPT inhibition sensitizes pancreatic adenocarcinoma cells to tumor-selective, PAR-independent metabolic catastrophe and cell death induced by β-lapachone.

    PubMed

    Moore, Z; Chakrabarti, G; Luo, X; Ali, A; Hu, Z; Fattah, F J; Vemireddy, R; DeBerardinis, R J; Brekken, R A; Boothman, D A

    2015-01-15

    Nicotinamide phosphoribosyltransferase (NAMPT) inhibitors (e.g., FK866) target the most active pathway of NAD(+) synthesis in tumor cells, but lack tumor-selectivity for use as a single agent. Reducing NAD(+) pools by inhibiting NAMPT primed pancreatic ductal adenocarcinoma (PDA) cells for poly(ADP ribose) polymerase (PARP1)-dependent cell death induced by the targeted cancer therapeutic, β-lapachone (β-lap, ARQ761), independent of poly(ADP ribose) (PAR) accumulation. β-Lap is bioactivated by NADPH:quinone oxidoreductase 1 (NQO1) in a futile redox cycle that consumes oxygen and generates high levels of reactive oxygen species (ROS) that cause extensive DNA damage and rapid PARP1-mediated NAD(+) consumption. Synergy with FK866+β-lap was tumor-selective, only occurring in NQO1-overexpressing cancer cells, which is noted in a majority (∼85%) of PDA cases. This treatment strategy simultaneously decreases NAD(+) synthesis while increasing NAD(+) consumption, reducing required doses and treatment times for both drugs and increasing potency. These complementary mechanisms caused profound NAD(P)(+) depletion and inhibited glycolysis, driving down adenosine triphosphate levels and preventing recovery normally observed with either agent alone. Cancer cells died through an ROS-induced, μ-calpain-mediated programmed cell death process that kills independent of caspase activation and is not driven by PAR accumulation, which we call NAD(+)-Keresis. Non-overlapping specificities of FK866 for PDA tumors that rely heavily on NAMPT-catalyzed NAD(+) synthesis and β-lap for cancer cells with elevated NQO1 levels affords high tumor-selectivity. The concept of reducing NAD(+) pools in cancer cells to sensitize them to ROS-mediated cell death by β-lap is a novel strategy with potential application for pancreatic and other types of NQO1+ solid tumors.

  17. Oncostatin m modulates the mesenchymal-epithelial transition of lung adenocarcinoma cells by a mesenchymal stem cell-mediated paracrine effect.

    PubMed

    Wang, Mong-Lien; Pan, Chih-Ming; Chiou, Shih-Hwa; Chen, Wen-Hsin; Chang, Hsiang-Yi; Lee, Oscar Kuang-Sheng; Hsu, Han-Sui; Wu, Cheng-Wen

    2012-11-15

    Mesenchymal stem cells (MSC) are strongly associated with tumor progression and have been used as novel cell-based agents to deliver anticancer drugs to tumors. However, controversies about the direct involvement of MSCs in tumor progression suggest that MSCs mediate tumor progression in a cancer type-dependent manner. In this report, we analyzed the functional interactions between human MSCs and lung adenocarcinoma (LAC) cells to determine the therapeutic potential of MSCs in lung cancer. We showed that MSCs effectively inhibited the migration, invasion, and cell-cycle progression of several LAC cell lines. MSCs also enhanced the mesenchymal-epithelial transition (MET) pathway, as evidenced by the reduction of several epithelial-mesenchymal transition-related markers in LAC cells cocultured with MSCs or in MSC-conditioned medium (MSC-CM). By cytokine array analysis, we determined that Oncostatin M (OSM), a differentiation-promoting cytokine, was elevated in the MSC-CM derived from primary MSC cultures. Furthermore, OSM treatment had the same effects as MSC-CM on LAC, whereas neutralizing antibodies to OSM reversed them. Notably, short hairpin RNAs against STAT1, an important downstream target of OSM, hindered the OSM-dependent induction of MET. In vivo xenograft tumor studies indicated that OSM inhibited tumor formation and metastasis of LAC cells, whereas neutralizing OSM in the MSC-CM hampered its inhibitory effects. In conclusion, this study showed that OSM is a paracrine mediator of MSC-dependent inhibition of tumorigenicity and activation of MET in LAC cells. These effects of OSM may serve as a basis for the development of new drugs and therapeutic interventions targeting cancer cells.

  18. Inhibition of metastasis-associated lung adenocarcinoma transcript 1 in CaSki human cervical cancer cells suppresses cell proliferation and invasion.

    PubMed

    Guo, Fengjie; Li, Yalin; Liu, Yan; Wang, Jiajia; Li, Yuehui; Li, Guancheng

    2010-03-15

    Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is suggested to be a long (~7 kb) non-coding RNA. MALAT1 is overexpressed in many human carcinomas, but its function remains unknown. To investigate the role of MALAT1 in human cervical cancer progression, we designed and used short hairpin RNA to inhibit MALAT1 expression in CaSki cells and validated its effect on cell proliferation and invasion. Changes in gene expression were analyzed by reverse transcriptase- polymerase chain reaction. Our data demonstrated that MALAT1 was involved in cervical cancer cell growth, cell cycle progression, and invasion through the regulation of gene expression, such as caspase-3, -8, Bax, Bcl-2, and BclxL, suggesting that MALAT1 could have important implications in cervical cancer biology. Our findings illustrate the biological significance of MALAT1 in cervical cancer progression and provide novel evidence that MALAT1 may serve as a therapeutic target in the prevention of human cervical cancer.

  19. Antiproliferative activity of New Zealand propolis and phenolic compounds vs human colorectal adenocarcinoma cells.

    PubMed

    Catchpole, Owen; Mitchell, Kevin; Bloor, Stephen; Davis, Paul; Suddes, Amanda

    2015-10-01

    New Zealand propolis is a "European" type propolis obtained by honey bees mainly from exudates of poplar. European type propolis is known to have anti-inflammatory and anti-cancer properties and this activity has been attributed to some of the main constituents such as chrysin and CAPE (caffeic acid phenethyl ester). As part of our studies on how New Zealand propolis might benefit gastro-intestinal health, we carried out in vitro bioactivity-guided fractionation of "Bio30™" propolis using both anti-inflammatory (TNF-α, COX-1, COX-2) and anti-colon cancer (DLD-1 colon cancer cell viability) assays; and determined the phenolic compounds responsible for the activity. The New Zealand wax-free Bio30™ propolis tincture solids had very high levels of the dihydroflavonoids pinocembrin and pinobanksin-3-O-acetate, and high levels of the dimethylallyl, benzyl and 3-methyl-3-butenyl caffeates relative to CAPE. The DLD-1 assays identified strong anti-proliferative activity associated with these components as well as chrysin, galangin and CAPE and a number of lesser known or lower concentration compounds including benzyl ferulate, benzyl isoferulate, pinostrobin, 5-phenylpenta-2,4-dienoic acid and tectochrysin. The phenolic compounds pinocembrin, pinobanksin-3-O-acetate, tectochrysin, dimethylallyl caffeate, 3-methyl-3-butenyl caffeate, benzyl ferulate and benzyl isoferulate also showed good broad spectrum activity in anti-proliferative assays against three other gastro-intestinal cancer cell lines; HCT-116 colon carcinoma, KYSE-30 oesophageal squamous cancer, and NCI-N87 gastric carcinoma. Activity is also observed in anti-inflammatory assays although it appears to be limited to one of the first cytokines in the inflammatory cascade, TNF-α.

  20. Liposome armed with herpes virus-derived gH625 peptide to overcome doxorubicin resistance in lung adenocarcinoma cell lines

    PubMed Central

    Falanga, Annarita; Zappavigna, Silvia; Stiuso, Paola; Tirino, Virginia; Desiderio, Vincenzo; Papaccio, Gianpaolo; Galdiero, Massimiliano; Giordano, Antonio; Galdiero, Stefania; Caraglia, Michele

    2016-01-01

    New delivery systems including liposomes have been developed to circumvent drug resistance. To enhance the antitumor efficacy of liposomes encapsulating anti-cancer agents, we used liposomes externally conjugated to the 20 residue peptide gH625. Physicochemical characterization of the liposome system showed a size of 140 nm with uniform distribution and high doxorubicin encapsulation efficiency. We evaluated the effects of increasing concentrations of liposomes encapsulating Doxo (LipoDoxo), liposomes encapsulating Doxo conjugated to gH625 (LipoDoxo-gH625), empty liposomes (Lipo) or free Doxo on growth inhibition of either wild type (A549) or doxorubicin-resistant (A549 Dx) human lung adenocarcinoma. After 72 h, we found that the growth inhibition induced by LipoDoxo-gH625 was higher than that caused by LipoDoxo with an IC50 of 1 and 0.3 μM in A549 and A549 Dx cells, respectively. The data on cell growth inhibition were paralleled by an higher oxidative stress and an increased uptake of Doxo induced by LipoDoxo-gH625 compared to LipoDoxo, above all in A549 Dx cells. Cytometric analysis showed that the antiproliferative effects of each drug treatment were mainly due to the induction of apoptosis. In conclusion, liposomes armed with gH625 are able to overcome doxorubicin resistance in lung adenocarcinoma cell lines. PMID:26554306

  1. Liposome armed with herpes virus-derived gH625 peptide to overcome doxorubicin resistance in lung adenocarcinoma cell lines.

    PubMed

    Perillo, Emiliana; Porto, Stefania; Falanga, Annarita; Zappavigna, Silvia; Stiuso, Paola; Tirino, Virginia; Desiderio, Vincenzo; Papaccio, Gianpaolo; Galdiero, Massimiliano; Giordano, Antonio; Galdiero, Stefania; Caraglia, Michele

    2016-01-26

    New delivery systems including liposomes have been developed to circumvent drug resistance. To enhance the antitumor efficacy of liposomes encapsulating anti-cancer agents, we used liposomes externally conjugated to the 20 residue peptide gH625. Physicochemical characterization of the liposome system showed a size of 140 nm with uniform distribution and high doxorubicin encapsulation efficiency. We evaluated the effects of increasing concentrations of liposomes encapsulating Doxo (LipoDoxo), liposomes encapsulating Doxo conjugated to gH625 (LipoDoxo-gH625), empty liposomes (Lipo) or free Doxo on growth inhibition of either wild type (A549) or doxorubicin-resistant (A549 Dx) human lung adenocarcinoma. After 72 h, we found that the growth inhibition induced by LipoDoxo-gH625 was higher than that caused by LipoDoxo with an IC50 of 1 and 0.3 μM in A549 and A549 Dx cells, respectively. The data on cell growth inhibition were paralleled by an higher oxidative stress and an increased uptake of Doxo induced by LipoDoxo-gH625 compared to LipoDoxo, above all in A549 Dx cells. Cytometric analysis showed that the antiproliferative effects of each drug treatment were mainly due to the induction of apoptosis. In conclusion, liposomes armed with gH625 are able to overcome doxorubicin resistance in lung adenocarcinoma cell lines.

  2. An Unusual Recurrence of Signet Ring Cell Gastric Adenocarcinoma Treated by Right Hemicolectomy, Pancreaticoduodenectomy, and IVC Resection: Controversies and Dilemmas of Following Standard Treatment Pathways

    PubMed Central

    Brammer, Kirsty; Zentler-Munro, Patrick L; Cunningham, David; Mudan, Satvinder

    2015-01-01

    We present the case of a 67-year-old male patient with a past history of previously resected T3 right adrenocortical carcinoma and T3N1 signet ring cell adenocarcinoma of the stomach who presented with recurrence of gastric cancer in the form of a large solitary mass in the right abdomen. He was treated with ECX (epirubicin, cisplatin and capecitabine) chemotherapy and multivisceral resection. This recurrence pattern is the first such description in the literature, and we discuss the controversies and arguments in favour of offering surgical resection. PMID:26848413

  3. Synchronous occurrence of squamous-cell carcinoma "transformation" and EGFR exon 20 S768I mutation as a novel mechanism of resistance in EGFR-mutated lung adenocarcinoma.

    PubMed

    Longo, Lucia; Mengoli, Maria Cecilia; Bertolini, Federica; Bettelli, Stefania; Manfredini, Samantha; Rossi, Giulio

    2017-01-01

    The occurrence of secondary EGFR mutation T790M in exon 20 and histologic "transformation" are common mechanisms underlying resistance to EGFR first- or second-generation tyrosine kinase inhibitors (TKI). We describe here on a hitherto unreported mechanism of EGFR TKI resistance synchronously combining squamous-cell carcinoma change and occurrence of the EGFR exon 20 S768I secondary mutation in a 43 year-old woman with stage IV adenocarcinoma harbouring EGFR exon 21 L858R mutation. After 8 months of response to gefitinib, the patient experienced EGFR TKI resistance and died of leptomeningeal neoplastic dissemination.

  4. The pro-apoptotic and anti-invasive effects of hypericin-mediated photodynamic therapy are enhanced by hyperforin or aristoforin in HT-29 colon adenocarcinoma cells.

    PubMed

    Šemeláková, Martina; Mikeš, Jaromír; Jendželovský, Rastislav; Fedoročko, Peter

    2012-12-05

    Photodynamic therapy is a rapidly-developing anti-cancer approach for the treatment of various types of malignant as well as non-malignant diseases. In this study, hypericin-mediated photodynamic therapy (HY-PDT) in sub-optimal dose was combined with hyperforin (HP) or its stable derivative aristoforin (AR) in an effort to improve efficacy on the cellular level. The logic of this combination is based on the fact that both bioactive compounds naturally occur in plants of Hypericum sp. At relatively low concentrations up to 5 μM, hyperforin and aristoforin were able to stimulate onset of apoptosis in HT-29 colon adenocarcinoma cells exposed to HY-PDT, inhibit cell cycle progression, suppress expression of matrixmetalloproteinases-2/-9 together with cell adhesivity, thereby affecting the clonogenic potential of the cells. As the action of aristoforin was more pronounced, in line with our assumption, these changes were also linked in this case with hypericin accumulation and increased ROS generation leading to dissipation of mitochondrial membrane potential in a significant portion of the cells, as well as activation of caspase-3. Comparison of HT-29 cells to another colon adenocarcinoma-derived cell line HCT-116 demonstrated significant differences in sensitivity of different cell lines to PDT, however, accumulated effect of HY-PDT with HP/AR proved similar in both tested cell lines. The presented data may help to elucidate the mechanisms of action for different bioactive constituents of St. John's wort, which are increasingly recognized as being able to regulate a variety of pathobiological processes, thus possessing potential therapeutic properties.

  5. Activated Pancreatic Stellate Cells Sequester CD8+ T-Cells to Reduce Their Infiltration of the Juxtatumoral Compartment of Pancreatic Ductal Adenocarcinoma

    PubMed Central

    Ene-Obong, Abasi; Clear, Andrew J.; Watt, Jennifer; Wang, Jun; Fatah, Rewas; Riches, John C.; Marshall, John F.; Chin-Aleong, Joanne; Chelala, Claude; Gribben, John G.; Ramsay, Alan G.; Kocher, Hemant M.

    2013-01-01

    Background & Aims Pancreatic ductal adenocarcinoma (PDAC) is characterized by a prominent desmoplastic microenvironment that contains many different immune cells. Activated pancreatic stellate cells (PSCs) contribute to the desmoplasia. We investigated whether distinct stromal compartments are differentially infiltrated by different types of immune cells. Method We used tissue microarray analysis to compare immune cell infiltration of different pancreatico-biliary diseased tissues (PDAC, ampullary carcinoma, cholangiocarcinoma, mucinous cystic neoplasm, chronic inflammation, and chronic pancreatitis), and juxtatumoral stromal (<100 μm from tumor) and panstromal compartments. We investigated the association between immune infiltrate and patient survival times. We analyzed T-cell migration and tumor infiltration in LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx-1-Cre (KPC) mice, and the effects of all-trans retinoic acid (ATRA) on these processes. Results Juxtatumoral compartments in PDAC samples from 2 independent groups of patients contained increased numbers of myeloperoxidase+ and CD68+ cells, compared with panstromal compartments. However, juxtatumoral compartments of PDACs contained fewer CD8+, FoxP3+, CD56+, or CD20+ cells than panstromal compartments, a distinction absent in ampullary carcinomas and cholangiocarcinomas. Patients with PDACs that had high densities of CD8+ T-cells in the juxtatumoral compartment had longer survival times than patients with lower densities. In KPC mice, administration of ATRA, which renders PSCs quiescent, increased numbers of CD8+ T-cells in juxtatumoral compartments. We found that activated PSCs express cytokines, chemokines, and adhesion molecules that regulate T-cell migration. In vitro migration assays showed that CD8+ T-cells from PDAC patients had increased chemotaxis towards activated PSCs, which secrete CXCL12, compared with quiescent PSC or tumor cells. These effects could be reversed by knockdown of CXCL12 or treatment of

  6. Osthole inhibits the invasive ability of human lung adenocarcinoma cells via suppression of NF-κB-mediated matrix metalloproteinase-9 expression

    SciTech Connect

    Kao, Shang-Jyh; Su, Jen-Liang; Chen, Chi-Kuan; Yu, Ming-Chih; Bai, Kuan-Jen; Chang, Jer-Hua; Bien, Mauo-Ying; Yang, Shun-Fa; Chien, Ming-Hsien

    2012-05-15

    The induction of matrix metalloproteinase (MMP)-9 is particularly important for the invasiveness of various cancer cells. Osthole, a natural coumarin derivative extracted from traditional Chinese medicines, is known to inhibit the proliferation of a variety of tumor cells, but the effect of osthole on the invasiveness of tumor cells is largely unknown. This study determines whether and by what mechanism osthole inhibits invasion in CL1-5 human lung adenocarcinoma cells. Herein, we found that osthole effectively inhibited the migratory and invasive abilities of CL1-5 cells. A zymographic assay showed that osthole inhibited the proteolytic activity of MMP-9 in CL1-5 cells. Inhibition of migration, invasion, and MMP2 and/or MMP-9 proteolytic activities was also observed in other lung adenocarcinoma cell lines (H1299 and A549). We further found that osthole inhibited MMP-9 expression at the messenger RNA and protein levels. Moreover, a chromatin immunoprecipitation assay showed that osthole inhibited the transcriptional activity of MMP-9 by suppressing the DNA binding activity of nuclear factor (NF)-κB in the MMP-9 promoter. Using reporter assays with point-mutated promoter constructs further confirmed that the inhibitory effect of osthole requires an NF-κB binding site on the MMP-9 promoter. Western blot and immunofluorescence assays demonstrated that osthole inhibited NF-κB activity by inhibiting IκB-α degradation and NF-κB p65 nuclear translocation. In conclusion, we demonstrated that osthole inhibits NF-κB-mediated MMP-9 expression, resulting in suppression of lung cancer cell invasion and migration, and osthole might be a potential agent for preventing the invasion and metastasis of lung cancer. -- Highlights: ► Osthole treatment inhibits lung adenocarcinoma cells migration and invasion. ► Osthole reduces the expression and proteolytic activity of MMP-9. ► Osthole inhibits MMP-9 transcription via suppression of NF-κB binding activity. ► Osthole

  7. Induction of cytotoxicity in human lung adenocarcinoma cells by 6-O-carboxypropyl-alpha-tocotrienol, a redox-silent derivative of alpha-tocotrienol.

    PubMed

    Yano, Yoshihisa; Satoh, Haruna; Fukumoto, Keiko; Kumadaki, Itsumaro; Ichikawa, Tomio; Yamada, Kazuhiko; Hagiwara, Kiyokazu; Yano, Tomohiro

    2005-07-10

    Tocotrienols are one of the most potent anticancer agents of all natural compounds and the anticancer property may be related to the inactivation of Ras family molecules. The anticancer potential of tocotrienols, however, is weakened due to its short elimination half life in vivo. To overcome the disadvantage and reinforce the anticancer activity in tocotrienols, we synthesized a redox-silent analogue of alpha-tocotrienol (T3), 6-O-carboxypropyl-alpha-tocotrienol (T3E). We estimated the possibility of T3E as a new anticancer agent against lung adenocarcinoma showing poor prognosis based on the mutation of ras gene. T3E showed cytotoxicity against A549 cells, a human lung adenocarcinoma cell line with a ras gene mutation, in a dose-dependent manner (0-40 microM), whereas T3 and a redox-silent analogue of alpha-tocopherol (T), 6-O-carboxypropyl-alpha-tocopherol (TE), showed much less cytotoxicity in cells within 40 microM. T3E cytotoxicity was based on the accumulation of cells in the G1-phase of the cell-cycle and the subsequent induction of apoptosis. Similar to this event, 24-hr treatment of A549 cells with 40 microM T3E caused the inhibition of Ras farnesylation, and a marked decrease in the levels of cyclin D required for G1/S progression in the cell-cycle and Bcl-xL, a key anti-apoptotic molecule. Moreover, the T3E-dependent inhibition of RhoA geranyl-geranylation is an inducing factor for the occurrence of apoptosis in A549 cells. Our results suggest that T3E suppresses Ras and RhoA prenylation, leading to negative growth control against A549 cells. In conclusion, a redox-silent analogue of T3, T3E may be a new candidate as an anticancer agent against lung adenocarcinoma showing poor prognosis based on the mutation of ras genes.

  8. Overexpression of regulator of G protein signaling 11 promotes cell migration and associates with advanced stages and aggressiveness of lung adenocarcinoma

    PubMed Central

    Yang, Sheng-Huei; Chen, Wan-Wen; Han, Chia-Hung; Lung, Jr-Hau; Shih, Neng-Yao

    2016-01-01

    Regulator of G protein signaling 11 (RGS11), a member of the R7 subfamily of RGS proteins, is a well-characterized GTPase-accelerating protein that is involved in the heterotrimeric G protein regulation of the amplitude and kinetics of receptor-promoted signaling in retinal bipolar and nerve cells. However, the role of RGS11 in cancer is completely unclear. Using subtractive hybridization analysis, we found that RGS11 was highly expressed in the lymph-node metastatic tissues and bone-metastatic tumors obtained from patients with lung adenocarcinoma. Characterization of the clinicopathological features of 91 patients showed that around 57.1% of the tumor samples displayed RGS11 overexpression that was associated with primary tumor status, nodal metastasis and increased disease stages. Its high expression was an independent predictive factor for poor prognosis of these patients. Cotransfection of guanine nucleotide-binding protein beta-5 (GNB5) markedly increased RGS11 expression. Enhancement or attenuation of RGS11 expression pinpointed its specific role in cell migration, but not in cell invasion and proliferation. Signaling events initiated by the RGS11–GNB5 coexpression activated the c-Raf/ERK/FAK-mediated pathway through upregulation of the Rac1 activity. Consistently, increasing the cell invasiveness of the transfectants by additional cotransfection of the exogenous urokinase–plasminogen activator gene caused a significant promotion in cell invasion in vitro and in vivo, confirming that RGS11 functions in cell migration, but requires additional proteolytic activity for cell and tissue invasion. Collectively, overexpression of RGS11 promotes cell migration, participates in tumor metastasis, and correlates the clinicopathological conditions of patients with lung adenocarcinoma. PMID:27105500

  9. Cytoplasmic sequestration of the tumor suppressor p53 by a heat shock protein 70 family member, mortalin, in human colorectal adenocarcinoma cell lines

    SciTech Connect

    Gestl, Erin E.; Anne Boettger, S.

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer Eight human colorectal cell lines were evaluated for p53 and mortalin localization. Black-Right-Pointing-Pointer Six cell lines displayed cytoplasmic sequestration of the tumor suppressor p53. Black-Right-Pointing-Pointer Direct interaction between mortalin and p53 was shown in five cell lines. Black-Right-Pointing-Pointer Cell lines positive for p53 sequestration yielded elevated p53 expression levels. Black-Right-Pointing-Pointer This study yields the first evidence of cytoplasmic sequestration p53 by mortalin. -- Abstract: While it is known that cytoplasmic retention of p53 occurs in many solid tumors, the mechanisms responsible for this retention have not been positively identified. Since heatshock proteins like mortalin have been associated with p53 inactivation in other tumors, the current study sought to characterize this potential interaction in never before examined colorectal adenocarcinoma cell lines. Six cell lines, one with 3 different fractions, were examined to determine expression of p53 and mortalin and characterize their cellular localization. Most of these cell lines displayed punctate p53 and mortalin localization in the cell cytoplasm with the exception of HCT-8 and HCT116 379.2 cells, where p53 was not detected. Nuclear p53 was only observed in HCT-116 40-16, LS123, and HT-29 cell lines. Mortalin was only localized in the cytoplasm in all cell lines. Co-immunoprecipitation and immunohistochemistry revealed that p53 and mortalin were bound and co-localized in the cytoplasmic fraction of four cell lines, HCT-116 (40-16 and 386; parental and heterozygous fractions respectively of the same cell line), HT-29, LS123 and LoVo, implying that p53 nuclear function is limited in those cell lines by being restricted to the cytoplasm. Mortalin gene expression levels were higher than gene expression levels of p53 in all cell lines. Cell lines with cytoplasmic sequestration of p53, however, also displayed elevated p53

  10. Soluble Fas ligand released by colon adenocarcinoma cells induces host lymphocyte apoptosis: an active mode of immune evasion in colon cancer

    PubMed Central

    Song, E; Chen, J; Ouyang, N; Su, F; Wang, M; Heemann, U

    2001-01-01

    Expression of membrane-bound Fas ligand (mFasL) on colon cancer cells serves as a potential mechanism to inhibit host immune function by inducing apoptosis of host lymphocytes. Membrane-bound FasL can be cleaved and released as a soluble mediator (sFasL), which may spread the apoptosis induction effect. Our study examined whether colon adenocarcinoma cells release sFasL, and induce apoptosis of host lymphocytes without direct cell–cell contact. In 12 consecutive patients with colon adenocarcinoma mFasL was identified in the tumours, sFasL was measured in the sera and apoptosis identified in tumour-infiltrating and peripheral blood lymphocytes. To analyse the function of sFasL, colon cancer cells were primarily cultured; sFasL was isolated from supernatants, measured, incubated with Fas-bearing Jurkat cells, and the resulting apoptosis was analysed. Serum levels of sFasL were significantly elevated in all colon cancer patients with mFasL expression in tumour tissues (n = 8). In these patients, the number of apoptotic lymphocytes was significantly increased within tumour and peripheral blood. Furthermore, sFasL was present in the corresponding supernatants and induced apoptosis of Jurkat cells in a dose-dependent manner. These findings suggest that mFasL-positive colon cancer cells release sFasL, and thus may induce apoptosis of host lymphocytes as a potential mechanism for immune evasion. © 2001 Cancer Research Campaignhttp://www.bjcancer.com PMID:11592778

  11. Pancreatic adenocarcinoma upregulated factor (PAUF) confers resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNA receptor-mediated signaling

    SciTech Connect

    Kaowinn, Sirichat; Cho, Il-Rae; Moon, Jeong; Jun, Seung Won; Kim, Chang Seok; Kang, Ho Young; Kim, Manbok; Koh, Sang Seok; Chung, Young-Hwa

    2015-04-03

    Pancreatic adenocarcinoma upregulated factor (PAUF), a novel oncogene, plays a crucial role in the development of pancreatic cancer, including its metastasis and proliferation. Therefore, PAUF-expressing pancreatic cancer cells could be important targets for oncolytic virus-mediated treatment. Panc-1 cells expressing PAUF (Panc-PAUF) showed relative resistance to parvovirus H-1 infection compared with Panc-1 cells expressing an empty vector (Panc-Vec). Of interest, expression of type I IFN-α receptor (IFNAR) was higher in Panc-PAUF cells than in Panc-Vec cells. Increased expression of IFNAR in turn increased the activation of Stat1 and Tyk2 in Panc-PAUF cells compared with that in Panc-Vec cells. Suppression of Tyk2 and Stat1, which are important downstream molecules for IFN-α signaling, sensitized pancreatic cancer cells to parvovirus H-1-mediated apoptosis. Further, constitutive suppression of PAUF sensitized Bxpc3 pancreatic cancer cells to parvovirus H-1 infection. Taken together, these results suggested that PAUF conferred resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNAR-mediated signaling. - Highlights: • PAUF confers resistance against oncolytic parvovirus H-1 infection. • PAUF enhances the expression of IFNAR in Panc-1 cells. • Increased activation of Tyk2 or Stat1 by PAUF provides resistance to parvovirus H-1-mediated apoptosis. • Constitutive inhibition of PAUF enhances parvovirus H-1-mediated oncolysis of Bxpc3 pancreatic cancer cells.

  12. Molecular testing guidelines for lung adenocarcinoma: Utility of cell blocks and concordance between fine-needle aspiration cytology and histology samples

    PubMed Central

    Heymann, Jonas J.; Bulman, William A.; Maxfield, Roger A.; Powell, Charles A.; Halmos, Balazs; Sonett, Joshua; Beaubier, Nike T.; Crapanzano, John P.; Mansukhani, Mahesh M.; Saqi, Anjali

    2014-01-01

    Background: Lung cancer is a leading cause of mortality, and patients often present at a late stage. More recently, advances in screening, diagnosing, and treating lung cancer have been made. For instance, greater numbers of minimally invasive procedures are being performed, and identification of lung adenocarcinoma driver mutations has led to the implementation of targeted therapies. Advances in molecular techniques enable use of scant tissue, including cytology specimens. In addition, per recently published consensus guidelines, cytology-derived cell blocks (CBs) are preferred over direct smears. Yet, limited comparison of molecular testing of fine-needle aspiration (FNA) CBs and corresponding histology specimens has been performed. This study aimed to establish concordance of epidermal growth factor receptor (EGFR) and Kirsten rat sarcoma (KRAS) virus homolog testing between FNA CBs and histology samples from the same patients. Materials and Methods: Patients for whom molecular testing for EGFR or KRAS was performed on both FNA CBs and histology samples containing lung adenocarcinoma were identified retrospectively. Following microdissection, when necessary, concordance of EGFR and KRAS molecular testing results between FNA CBs and histology samples was evaluated. Results: EGFR and/or KRAS testing was performed on samples obtained from 26 patients. Concordant results were obtained for all EGFR (22/22) and KRAS (17/17) mutation analyses performed. Conclusions: Identification of mutations in lung adenocarcinomas affects clinical decision-making, and it is important that results from small samples be accurate. This study demonstrates that molecular testing on cytology CBs is as sensitive and specific as that on histology. PMID:24987443

  13. A Lactose-Binding Lectin from the Marine Sponge Cinachyrella Apion (Cal) Induces Cell Death in Human Cervical Adenocarcinoma Cells

    PubMed Central

    Rabelo, Luciana; Monteiro, Norberto; Serquiz, Raphael; Santos, Paula; Oliveira, Ruth; Oliveira, Adeliana; Rocha, Hugo; Morais, Ana Heloneida; Uchoa, Adriana; Santos, Elizeu

    2012-01-01

    Cancer represents a set of more than 100 diseases, including malignant tumors from different locations. Strategies inducing differentiation have had limited success in the treatment of established cancers. Marine sponges are a biological reservoir of bioactive molecules, especially lectins. Several animal and plant lectins were purified with antitumor activity, mitogenic, anti-inflammatory and antiviral, but there are few reports in the literature describing the mechanism of action of lectins purified from marine sponges to induce apoptosis in human tumor cells. In this work, a lectin purified from the marine sponge Cinachyrella apion (CaL) was evaluated with respect to its hemolytic, cytotoxic and antiproliferative properties, besides the ability to induce cell death in tumor cells. The antiproliferative activity of CaL was tested against HeLa, PC3 and 3T3 cell lines, with highest growth inhibition for HeLa, reducing cell growth at a dose dependent manner (0.5–10 µg/mL). Hemolytic activity and toxicity against peripheral blood cells were tested using the concentration of IC50 (10 µg/mL) for both trials and twice the IC50 for analysis in flow cytometry, indicating that CaL is not toxic to these cells. To assess the mechanism of cell death caused by CaL in HeLa cells, we performed flow cytometry and western blotting. Results showed that lectin probably induces cell death by apoptosis activation by pro-apoptotic protein Bax, promoting mitochondrial membrane permeabilization, cell cycle arrest in S phase and acting as both dependent and/or independent of caspases pathway. These results indicate the potential of CaL in studies of medicine for treating cancer. PMID:22690140

  14. Anticancer effects of cinnamic acid in lung adenocarcinoma cell line h1299-derived stem-like cells.

    PubMed

    Huang, Yanyan; Zeng, Fang; Xu, Liyun; Zhou, Jihang; Liu, Xiaoguang; Le, Hanbo

    2013-01-01

    Lung cancer is a lethal solid tumor with poor prognosis because of its high metastasis and resistance to current therapies. Recently, cancer stem cells (CSCs) were suggested to be major contributors to tumorigenicity and cancer relapse. However, therapeutic targets for lung cancer-related CSCs remain undetermined. The objective of the current study was to investigate whether cinnamic acid (CINN) exerts an antitumor activity against sphere-derived lung CSCs. In this study, CSCs were isolated from the non-small cell lung cancer cell line H1299 as tumor spheres under CSC-selective conditions, and found to have increased tumorigenicity, chemoresistance, and higher expression of both embryonic stem cell-related and drug resistance-related genes compared with parental cells. These observations are consistent with the notion that CSCs are tumorigenic, display the ability to self-renew, and generate differentiated progeny that constitute the majority of cells in tumors. Treatment of sphere-derived stem cells with CINN could diminish their CSC-like abilities by decreasing their proliferation and invasive abilities and facilitating their differentiation into CD133-negative cells. Furthermore, CINN treatment increased the sensitivity of CSCs to chemotherapeutic drugs through apoptosis. Of note, xenotransplantation experiments revealed that CINN combined with cisplatin had a synergistic effect in inhibiting the tumorigenicity of CSCs. In summary, our study clearly revealed the presence of a population of sphere-forming cells with stem-like properties among H1299 cells and CINN can attenuate CSC properties of this stem-like cell population. The potential of CINN should be verified further in future studies of anti-CSC therapy.

  15. Colonic adenocarcinoma with metastasis to the gingiva.

    PubMed

    Alvarez-Alvarez, Carlos; Iglesias-Rodríguez, Begoña; Pazo-Irazu, Susana; Delgado-Sánchez-Gracián, Carlos

    2006-01-01

    Metastatic tumors involve the oral cavity, and the most common primary sites are the breast and lung. Most cases affect the mandible and maxilla in that order, although some of them can be located in the soft perioral tissues. We report the case of a 62-year-old male who had been diagnosed with sigmoid adenocarcinoma with nodal and liver metastasis, who presented 6 months later with a gingival polypoid tumor, at first considered as a primary neoplasm of gingiva, that was diagnosed in a biopsy as metastatic intestinal adenocarcinoma. The histological evaluation is essential to separate adenocarcinoma from the commoner in this site squamous cell carcinoma, and the immunohistochemical techniques are useful to distinguish metastatic tumor versus primary adenocarcinoma from the minor salivary glands of the area. The intraoral spread of a disseminated neoplasm is generally a sign of bad prognosis, although a longer survival can be expected if a radical surgical treatment of a solitary metastasis is carried out.

  16. DAMTC regulates cytoskeletal reorganization and cell motility in human lung adenocarcinoma cell line: an integrated proteomics and transcriptomics approach.

    PubMed

    Goel, A; Chhabra, R; Ahmad, S; Prasad, A K; Parmar, V S; Ghosh, B; Saini, N

    2012-10-11

    DAMTC (7,8-diacetoxy-4-methylcoumarin) is a thioderivative of 4-methyl coumarin, and previously we have shown that DAMTC is a potent inhibitor of cell growth and an inducer of apoptosis in non-small cell lung cancer (A549) cells. It induces apoptosis through mitochondrial pathway by modulating NF-κB, mitogen-activated protein kinase (MAPK) and p53 pathways. Herein, we explored the genome-wide effects of DAMTC in A549 cells using the concerted approach of transcriptomics and proteomics. In addition to apoptotic pathways, which have been validated earlier, the bioinformatic analysis of microarray data identified small GTPase-mediated signal transduction among the significantly altered biological processes. Interestingly, we observed significant downregulation of some members of the Rho family GTPases in the proteomics data too. Downregulation of Rho GTPases (RhoGDIα (Rho GDP dissociation inhibitor-α, also known as ARHGDIA), Ras homolog family member A, Ras-related C3 botulinum toxin substrate 1 and cell division cycle 42) was validated by western blotting. The Rho protein family is implicated in maintaining the actin filament assembly and cell motility, and we also observed that DAMTC treatment causes actin cytoskeletal reorganization, promotes filopodia formation and inhibits cell motility in A549 cells. The effect of DAMTC treatment on cytoskeleton was reversed after the overexpression of RhoGDIα. In addition, DAMTC augmented the apoptotic effect of etoposide, a proapoptotic chemotherapeutic drug. This elucidation of the mechanism behind DAMTC-induced apoptosis and inhibition of cell motility in A549 cells may make it a potential therapeutic for lung cancer.

  17. Fibroblast-led cancer cell invasion is activated by epithelial-mesenchymal transition through platelet-derived growth factor BB secretion of lung adenocarcinoma.

    PubMed

    Neri, Shinya; Miyashita, Tomoyuki; Hashimoto, Hiroko; Suda, Yoshitaka; Ishibashi, Masayuki; Kii, Hiroaki; Watanabe, Hirotada; Kuwata, Takeshi; Tsuboi, Masahiro; Goto, Koichi; Menju, Toshi; Sonobe, Makoto; Date, Hiroshi; Ochiai, Atsushi; Ishii, Genichiro

    2017-06-01

    Cancer-associated fibroblast (CAF)-dependent local invasion is the process by which cancer cells invade the extracellular matrix using tracks that have been physically remodeled by CAFs. In the present study, we investigated the process by which the epithelial-mesenchymal transition (EMT) of cancer cells affect CAF-dependent local invasion. Using an in vitro collagen invasion assay, we showed cancer cells undergoing EMT to promote the matrix-remodeling ability of CAFs and thereby enhance CAF-dependent local cancer cell invasion. Platelet-derived growth factor (PDGF)-BB secretion was significantly elevated in cancer cells undergoing EMT, and this induced an increase in the invasion ability of both CAFs and cancer cells. Conversely, knockdown of PDGF-B expression in cancer cells undergoing EMT, or treatment with a PDGF-receptor inhibitor, decreased the invasion ability of both CAFs and cancer cells. By analyzing the gene expression profiles of 442 patients with lung adenocarcinomas, we established that high expression of PDGF-B and presentation of mesenchymal-like tumors were significantly associated with a high rate of disease recurrence and poor patient prognosis. Thus, cancer cells undergoing EMT may accelerate their own ability to invade local tissues via PDGF-BB secretion to promote CAF matrix remodeling. Therefore, targeting PDGF signaling between cancer cells undergoing EMT and CAFs is a promising therapeutic target to inhibit cancer progression and improve patient prognosis.

  18. Alpha-tomatine inactivates PI3K/Akt and ERK signaling pathways in human lung adenocarcinoma A549 cells: effect on metastasis.

    PubMed

    Shih, Yuan-Wei; Shieh, Jiunn-Min; Wu, Pei-Fen; Lee, Yi-Chieh; Chen, Yi-Zhi; Chiang, Tai-An

    2009-08-01

    This study first investigates the anti-metastatic effect of alpha-tomatine in the human lung adenocarcinoma cell line: A549. In this study, we first noted alpha-tomatine inhibited A549 cells invasion and migration by wound-healing assay and Boyden chamber assay. The data also showed alpha-tomatine could inhibit phosphorylation of Akt and extracellular signal-regulated kinase 1 and 2 (ERK1/2), which is involved in the up-regulating matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9) or urokinase-type plasminogen activator (u-PA), whereas it did not affect phosphorylation of c-Jun N-terminal kinase (JNK) and p38. Next, alpha-tomatine significantly decreased the nuclear levels of nuclear factor kappa B (NF-kappaB), c-Fos, and c-Jun. Also, treating A549 cells with alpha-tomatine also leads to a dose-dependent inhibition on the binding abilities of NF-kappaB and activator protein-1 (AP-1). Further, the treatment of inhibitors specific for PI3K (Wortmannin) or ERK (U0126) to A549 cells could cause reduced activities of MMP-2, MMP-9, and u-PA. These results showed alpha-tomatine could inhibit the metastatic ability of A549 cells by reducing MMP-2, MMP-9, and u-PA activities through suppressing phosphoinositide 3-kinase/Akt (PI3K/Akt) or ERK1/2 signaling pathway and inhibition NF-kappaB or AP-1 binding activities. These findings proved alpha-tomatine might be an anti-metastatic agent against human lung adenocarcinoma.

  19. Expression of cell cycle regulatory proteins in endometrial adenocarcinoma: variations in conventional tumor areas and in microcystic, elongated and fragmented glands.

    PubMed

    Stewart, Colin J R; Crook, Maxine L; Leung, Yee C; Platten, Michael

    2009-05-01

    Endometrial adenocarcinomas may show a distinctive pattern of invasion characterized by the presence of microcystic, elongated and fragmented glands, often most evident along the advancing tumor margin. Earlier, we have shown that these changes appear restricted to low-grade endometrioid carcinomas, many of which show focal mucinous differentiation and lymphovascular space invasion. However, the molecular alterations associated with this morphological alteration are not known. In this study, we have examined immunoreactivity for the cell cycle regulatory proteins cyclin D1, p16 and beta-catenin in 22 endometrial carcinomas, specifically comparing the results in conventional tumor areas and in foci in which the glands exhibited microcystic, elongated and fragmented appearances. The conventional neoplastic glands exhibited cyclin D1 and p16 expression in most cases, with >50% tumor cells positive in 8 cases and 11 tumors, respectively. Membranous expression of beta-catenin was usually preserved, with variable cytoplasmic and nuclear staining. Cyclin D1 and beta-catenin predominantly stained cells at the peripheral or basal aspect of the conventional glands, whereas p16 was more uniformly expressed centrally. Tumor foci composed of microcystic, fragmented and elongated glands showed strong expression of cyclin D1 and p16, sometimes in contrast to unstained contiguous or adjacent conventional neoplastic elements, and there was also loss or fragmentation of membranous beta-catenin staining. Intravascular tumor cells also expressed cyclin D1 and p16 and therefore the immunostains often highlighted subtle foci of lymphovascular invasion. The heterogeneous expression of cell cycle regulatory proteins within endometrial adenocarcinoma illustrates the importance of assessing microanatomical variations in immunoreactivity, particularly at the advancing margin of tumors. The upregulation of cyclin D1 and p16, together with loss of membranous beta-catenin expression in

  20. Aspirin induces cell death and caspase-dependent phosphatidylserine externalization in HT-29 human colon adenocarcinoma cells

    PubMed Central

    Castaño, E; Dalmau, M; Barragán, M; Pueyo, G; Bartrons, R; Gil, J

    1999-01-01

    The induction of cell death by aspirin was analysed in HT-29 colon carcinoma cells. Aspirin induced two hallmarks of apoptosis: nuclear chromatin condensation and increase in phosphatidylserine externalization. However, aspirin did not induce either oligonucleosomal fragmentation of DNA, decrease in DNA content or nuclear fragmentation. The effect of aspirin on Annexin V binding was inhibited by the caspase inhibitor Z-VAD.fmk, indicating the involvement of caspases in the apoptotic action of aspirin. However, aspirin did not induce proteolysis of PARP, suggesting that aspirin does not increase nuclear caspase 3-like activity in HT-29 cells. This finding may be related with the ‘atypical’ features of aspirin-induced apoptosis in HT-29 cells. © 1999 Cancer Research Campaign PMID:10496355

  1. Daucus carota Pentane-Based Fractions Suppress Proliferation and Induce Apoptosis in Human Colon Adenocarcinoma HT-29 Cells by Inhibiting the MAPK and PI3K Pathways.

    PubMed

    Shebaby, Wassim N; Bodman-Smith, K B; Mansour, Anthony; Mroueh, Mohamad; Taleb, Robin I; El-Sibai, Mirvat; Daher, Costantine F

    2015-07-01

    Daucus carota L. ssp. carota (Apiacea, wild carrot, Queen Anne's lace) has been used in folk medicine throughout the world and recently was shown to possess anticancer and antioxidant activities. This study aims to determine the anticancer activity of the pentane fraction (F1) and the 1:1 pentane:diethyl ether fraction (F2) of the Daucus Carota oil extract (DCOE) against human colon adenocarcinoma cell lines (HT-29 and Caco-2). Treatment of cells with various concentrations of F1 or F2 fractions produced a dose-dependent inhibition of cell proliferation. Flow cytometric analysis indicated that both fractions induced sub-G1 phase accumulation and increased apoptotic cell death. Western blot revealed the activation of caspase-3, PARP cleavage, and a considerable increase in Bax and p53 levels, and a decrease in Bcl-2 level. Treatment of HT-29 cells with either fraction markedly decreased the levels of both phosphorylated Erk and Akt. Furthermore, the combined treatment of F1 or F2 with wortmannin showed no added inhibition of cell survival suggesting an effect of F1 or F2 through the phosphatidyl inositol 3-kinase (PI3K) pathway. This study proposes that DCOE fractions (F1 and F2) inhibit cell proliferation by inducing cell cycle arrest and apoptosis in HT-29 cells through the suppression of mitogen-activated protein kinase (MAPK)/Erk and PI3K/Akt pathways.

  2. Cytotoxic Activities of Physalis minima L. Chloroform Extract on Human Lung Adenocarcinoma NCI-H23 Cell Lines by Induction of Apoptosis

    PubMed Central

    Leong, Ooi Kheng; Muhammad, Tengku Sifzizul Tengku; Sulaiman, Shaida Fariza

    2011-01-01

    Physalis minima L. is reputed for having anticancer property. In this study, the chloroform extract of this plant exhibited remarkable cytotoxic activities on NCI-H23 (human lung adenocarcinoma) cell line at dose- and time-dependent manners (after 24, 48 and 72 h of incubation). Analysis of cell-death mechanism demonstrated that the extract exerted apoptotic programed cell death in NCI-H23 cells with typical DNA fragmentation, which is a biochemical hallmark of apoptosis. Morphological observation using transmission electron microscope (TEM) also displayed apoptotic characteristics in the treated cells, including clumping and margination of chromatins, followed by convolution of the nuclear and budding of the cells to produce membrane-bound apoptotic bodies. Different stages of apoptotic programed cell death as well as phosphatidylserine externalization were confirmed using annexin V and propidium iodide staining. Furthermore, acute exposure to the extract produced a significant regulation of c-myc, caspase-3 and p53 mRNA expression in this cell line. Due to its apoptotic effect on NCI-H23 cells, it is strongly suggested that the extract could be further developed as an anticancer drug. PMID:19541726

  3. Cytotoxic Activities of Physalis minima L. Chloroform Extract on Human Lung Adenocarcinoma NCI-H23 Cell Lines by Induction of Apoptosis.

    PubMed

    Leong, Ooi Kheng; Muhammad, Tengku Sifzizul Tengku; Sulaiman, Shaida Fariza

    2011-01-01

    Physalis minima L. is reputed for having anticancer property. In this study, the chloroform extract of this plant exhibited remarkable cytotoxic activities on NCI-H23 (human lung adenocarcinoma) cell line at dose- and time-dependent manners (after 24, 48 and 72 h of incubation). Analysis of cell-death mechanism demonstrated that the extract exerted apoptotic programed cell death in NCI-H23 cells with typical DNA fragmentation, which is a biochemical hallmark of apoptosis. Morphological observation using transmission electron microscope (TEM) also displayed apoptotic characteristics in the treated cells, including clumping and margination of chromatins, followed by convolution of the nuclear and budding of the cells to produce membrane-bound apoptotic bodies. Different stages of apoptotic programed cell death as well as phosphatidylserine externalization were confirmed using annexin V and propidium iodide staining. Furthermore, acute exposure to the extract produced a significant regulation of c-myc, caspase-3 and p53 mRNA expression in this cell line. Due to its apoptotic effect on NCI-H23 cells, it is strongly suggested that the extract could be further developed as an anticancer drug.

  4. cAMP inhibits migration, ruffling and paxillin accumulation in focal adhesions of pancreatic ductal adenocarcinoma cells: effects of PKA and EPAC.

    PubMed

    Burdyga, Alex; Conant, Alan; Haynes, Lee; Zhang, Jin; Jalink, Kees; Sutton, Robert; Neoptolemos, John; Costello, Eithne; Tepikin, Alexei

    2013-12-01

    We demonstrated that increasing intracellular cAMP concentrations result in the inhibition of migration of PANC-1 and other pancreatic ductal adenocarcinoma (PDAC) cell types. The rise of cAMP was accompanied by rapid and reversible cessation of ruffling, by inhibition of focal adhesion turnover and by prominent loss of paxillin from focal adhesions. All these phenomena develop rapidly suggesting that cAMP effectors have a direct influence on the cellular migratory apparatus. The role of two primary cAMP effectors, exchange protein activated by cAMP (EPAC) and protein kinase A (PKA), in cAMP-mediated inhibition of PDAC cell migration and migration-associated processes was investigated. Experiments with selective activators of EPAC and PKA demonstrated that the inhibitory effect of cAMP on migration, ruffling, focal adhesion dynamics and paxillin localisation is mediated by PKA, whilst EPAC potentiates migration.

  5. Hepatoid Adenocarcinoma of the Urachus

    PubMed Central

    Jimenez, Carlos Andrés; Carrascal, Edwin

    2016-01-01

    Hepatoid adenocarcinoma of the urachus is a rare condition. We present the case of a 51-year-old female who developed abdominal pain and hematuria. Pelvic magnetic resonance imaging (MRI) reported an urachal mass with invasion to the bladder that was resected by partial cystectomy. On light microscopy the tumor resembled liver architecture, with polygonal atypical cells in nest formation and trabecular structures. Immunochemistry was positive for alfa-fetoprotein (AFP) and serum AFP was elevated. Hepatoid adenocarcinomas have been reported in multiple organs, being most commonly found in the stomach and the ovaries. Bladder compromise has been rarely described in the literature, and it has been associated with poor prognosis, low remission rates, and early metastasis. PMID:27803830

  6. The novel HSP90 inhibitor AT13387 potentiates radiation effects in squamous cell carcinoma and adenocarcinoma cells.

    PubMed

    Spiegelberg, Diana; Dascalu, Adrian; Mortensen, Anja C; Abramenkovs, Andris; Kuku, Gamze; Nestor, Marika; Stenerlöw, Bo

    2015-11-03

    Overexpression of heat shock protein 90 (HSP90) is associated with increased tumor cell survival and radioresistance. In this study we explored the efficacy of the novel HSP90 inhibitor AT13387 and examined its radiosensitizing effects in combination with gamma-radiation in 2D and 3D structures as well as mice-xenografts. AT13387 induced effective cytotoxic activity and radiosensitized cancer cells in monolayer and tumor spheroid models, where low drug doses triggered significant synergistic effects on cell survival together with radiation. Furthermore, AT13387 treatment resulted in G2/M-phase arrest and significantly reduced the migration capacity. The expression of selected client proteins involved in DNA repair, cell-signaling and cell growth was downregulated in vitro, though the expression of most investigated proteins recurred after 8-24 h. These results were confirmed in vivo where AT13387 treated tumors displayed effective downregulation of HSP90 and its oncogenic client proteins.In conclusion, our results demonstrate that AT13387 is a potent new cancer drug and effective radiosensitizer in vitro with an excellent in vivo efficacy. AT13387 treatment has the potential to improve external beam therapy and radionuclide therapy outcomes and restore treatment efficacy in cancers that are resistant to initial therapeutic regimes.

  7. Cell-surface galectin-3 confers resistance to TRAIL by impeding trafficking of death receptors in metastatic colon adenocarcinoma cells.

    PubMed

    Mazurek, N; Byrd, J C; Sun, Y; Hafley, M; Ramirez, K; Burks, J; Bresalier, R S

    2012-03-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis and preferentially kills tumor cells by engaging specific glycosylated death receptors, resulting in the internalization of ligand/receptor complexes and recruitment of the initiator caspase-8 to an activation platform known as the death-inducing signaling complex (DISC). However, emergence of TRAIL-resistant sub-populations may contribute to therapeutic failure. To investigate resistance mechanisms, we isolated a stable TRAIL-resistant sub-population of the metastatic colon cancer cell line LS-LIM6, designated LIM6-TR. LIM6-TR cells are impaired in endocytosis of TRAIL/death receptors complexes and failed to recruit/activate caspase-8 to the DISC upon TRAIL stimulation. Differential activation of Wnt and JNK pathways is not responsible for acquisition of TRAIL resistance. LIM6-TR cells display a marked increase in cell-surface expression of galectin-3, an endogenous lectin, which co-localizes with and binds death receptors. Silencing of galectin-3 restores TRAIL sensitivity and promotes TRAIL-mediated endocytosis of TRAIL/death receptors complexes. Inhibitors of galectin-3 and glycosylation also re-sensitize LIM6-TR to TRAIL and restore internalization of ligand/receptors complexes. These studies identify a novel TRAIL-resistance mechanism in which galectin-3 impedes trafficking of death receptor by anchoring them in glycan nano-clusters, blocking the execution of the apoptosis signal.

  8. Anti-Proliferative and Apoptosis-Inducing Effect of Theabrownin against Non-small Cell Lung Adenocarcinoma A549 Cells

    PubMed Central

    Wu, Feifei; Zhou, Li; Jin, Wangdong; Yang, Weiji; Wang, Ying; Yan, Bo; Du, Wenlin; Zhang, Qiang; Zhang, Lei; Guo, Yonghua; Zhang, Jin; Shan, Letian; Efferth, Thomas

    2016-01-01

    With the highest cancer incidence rate, lung cancer, especially non-small cell lung cancer (NSCLC), is the leading cause of cancer death in the world. Tea (leaves of Camellia sinensis) has been widely used as a traditional beverage beneficial to human health, including anti-NSCLC activity. Theabrownin (TB) is one major kind of tea pigment responsible for the beneficial effects of tea liquor. However, its effect on NSCLC is unknown. The aim of the present study was to evaluate anti-proliferative and apoptosis-inducing effect of TB on NSCLC (A549) cells, using MTT assay, morphological observation (DAPI staining), in situ terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, and annexin-V/PI flow cytometry. Subsequently, the expression of several genes associated with cell proliferation and apoptosis were detected by real time PCR assay to explore its potential underlying mechanism. TB was revealed to inhibit cell proliferation of A549 cells in a concentration-dependent and time-dependent manner. Morphological observation, TUNEL assay and flow cytometric analysis evidenced an apoptosis-inducing effect of TB on A549 cells in a concentration-dependent manner. The real time PCR assay demonstrated that TB down-regulated the expression of TOPO I, TOPO II, and BCL-2, and up-regulated the expression of E2F1, P53, GADD45, BAX, BIM, and CASP 3,7,8,9, which suggests an activation of P53-mediated apoptotic (caspase-dependent) pathway in response to TB treatment. The western blot analysis showed a similar trend for the corresponding protein expression (P53, Bax, Bcl-2, caspase 3,9, and PARP) and further revealed DNA damage as a trigger of the apoptosis (phosphorylation of histone H2A.X). Accordingly, TB can be speculated as a DNA damage inducer and topoisomerase (Topo I and Topo II) inhibitor that can up-regulate P53 expression and subsequently modulate the expression of the downstream genes to induce cell proliferation inhibition and apoptosis of A549 cells

  9. Lupeol, a fruit and vegetable based triterpene, induces apoptotic death of human pancreatic adenocarcinoma cells via inhibition of Ras signaling pathway.

    PubMed

    Saleem, Mohammad; Kaur, Satwinderjeet; Kweon, Mee-Hyang; Adhami, Vaqar Mustafa; Afaq, Farrukh; Mukhtar, Hasan

    2005-11-01

    Pancreatic cancer is an exceptionally aggressive disease, the treatment of which has largely been unsuccessful due to higher resistance offered by pancreatic cancer cells to conventional approaches such as surgery, radiation and/or chemotherapy. The aberration of Ras oncoprotein has been linked to the induction of multiple signaling pathways and to the resistance offered by pancreatic cancer cells to apoptosis. Therefore, there is a need for development of new and effective chemotherapeutic agents which can target multiple pathways to induce responsiveness of pancreatic cancer cells to death signals. In this study, human pancreatic adenocarcinoma cells AsPC-1 were used to investigate the effect of Lupeol on cell growth and its effects on the modulation of multiple Ras-induced signaling pathways. Lupeol caused a dose-dependent inhibition of cell growth as assessed by MTT assay and induction of apoptosis as assessed by flow cytometry, fluorescence microscopy and western blotting. Lupeol treatment to cells was found to significantly reduce the expression of Ras oncoprotein and modulate the protein expression of various signaling molecules involved in PKCalpha/ODC, PI3K/Akt and MAPKs pathways along with a significant reduction in the activation of NFkappaB signaling pathway. Our data suggest that Lupeol can adopt a multi-prong strategy to target multiple signaling pathways leading to induction of apoptosis and inhibition of growth of pancreatic cancer cells. Lupeol could be a potential agent against pancreatic cancer, however, further in-depth in vivo studies are warranted.

  10. Green tea induces annexin-I expression in human lung adenocarcinoma A549 cells: involvement of annexin-I in actin remodeling.

    PubMed

    Lu, Qing-Yi; Jin, Yu Sheng; Zhang, Zuo-Feng; Le, Anh D; Heber, David; Li, Frederick P; Dubinett, Steven M; Rao, Jian Yu

    2007-05-01

    Green tea polyphenols exhibit multiple antitumor activities in various in vitro and in vivo tumor models, and the mechanisms of action are not clear. Previously, we found that green tea extract (GTE) regulates actin remodeling in different cell culture systems. Actin remodeling plays an important role in cancer cell morphology, cell adhesion, motility, and invasion. Using proteomic approaches, we found GTE-induced expression of annexin-I, a multifunctional actin binding protein, in these cell lines. In this study, we aimed to further define the functional role of GTE-induced annexin-I expression in actin remodeling, cell adhesion, and motility in lung adenocarcinoma A549 cells. We found that GTE stimulates the expression of annexin-I in a dose-dependent fashion. The GTE-induced annexin-I expression appears to be at the transcription level, and the increased annexin-I expression mediates actin polymerization, resulting in enhanced cell adhesion and decreased motility. Annexin-I specific interference resulted in loss of GTE-induced actin polymerization and cell adhesion, but not motility. In fact, annexin-I specific interference itself inhibited motility even without GTE. Together, annexin-I plays an important role in GTE-induced actin remodeling, and it may serve as a potential molecular target associated with the anticancer activities of green tea.

  11. Primary appendiceal mucinous adenocarcinoma.

    PubMed

    Behera, Prativa Kumari; Rath, Pramod Kumar; Panda, Rabiratna; Satpathi, Sanghamitra; Behera, Rajan

    2011-04-01

    Primary Adenocarcinomas of the appendix are extremely rare tumor. We report a case of primary mucinous adenocarcinoma in a 40 year old lady misdiagnosed as having acute appendicitis. All the routine investigations were within normal limit. USG of abdomen showed dilated appendix with little fluid collection adjacent to it and no other abnormality was seen which suggested acute appendicitis. Appendicectomy was done and excised appendix was sent for histopathological examination. Mucinous Adenocarcinoma of the appendix was confirmed after histopathological examination. Right hemicolectomy was done as a second stage procedure. As some cases are incidentally discovered, this case emphasizes that histological examination of all appendicectomy specimens is mandatory.

  12. Small Bowel Adenocarcinoma.

    PubMed

    Aparicio, Thomas; Zaanan, Aziz; Mary, Florence; Afchain, Pauline; Manfredi, Sylvain; Evans, Thomas Ronald Jeffry

    2016-09-01

    Small bowel adenocarcinomas (SBAs) are rare tumors, but their incidence is increasing. The most common primary location is the duodenum. Even though SBAs are more often sporadic, some diseases are risk factors. Early diagnosis of small bowel adenocarcinoma remains difficult, despite significant radiologic and endoscopic progress. After R0 surgical resection, the main prognostic factor is lymph node invasion. An international randomized trial (BALLAD [Benefit of Adjuvant Chemotherapy For Small Bowel Adenocarcinoma] study) will evaluate the benefit of adjuvant chemotherapy. For metastatic disease, retrospectives studies suggest that platinum-based chemotherapy is the most effective treatment. Phase II studies are ongoing to evaluate targeted therapy in metastatic SBA.

  13. Deoxyelephantopin impedes mammary adenocarcinoma cell motility by inhibiting calpain-mediated adhesion dynamics and inducing reactive oxygen species and aggresome formation.

    PubMed

    Lee, Wai-Leng; Shyur, Lie-Fen

    2012-04-15

    We previously showed that deoxyelephantopin (DET), a plant sesquiterpene lactone, exhibits more profound suppression than paclitaxel (PTX) of lung metastasis of mammary adenocarcinoma TS/A cells in mice. Proteomics studies suggest that DET affects actin cytoskeletal protein networks and downregulates calpain-mediated proteolysis of several actin-associated proteins, whereas PTX mainly interferes with microtubule proteins. Here, DET was observed to significantly deregulate adhesion formation in TS/A cells, probably through inhibition of m-calpain activity. Epithelial growth factor (EGF)-mediated activation of Rho GTPase Rac1 and formation of lamellipodia in TS/A cells were remarkably suppressed by DET treatment. Further, DET impaired vesicular trafficking of EGF and induced protein carbonylation and formation of centrosomal aggregates in TS/A cells. DET-induced reactive oxygen species were observed to be the upstream stimulus for the formation of centrosomal ubiquitinated protein aggregates that might subsequently restrict cancer cell motility. PTX, however, caused dramatic morphological changes, interfered with microtubule networking, and moderately inhibited calpain-mediated cytoskeletal and focal adhesion protein cleavage in TS/A cells. This study provides novel mechanistic insights into the pharmacological action of DET against metastatic mammary cell migration and suggests that modulation of oxidative stress might be a potential strategy for treatment of metastatic breast cancer.

  14. Micropallet arrays for the capture, isolation and culture of circulating tumor cells from whole blood of mice engrafted with primary human pancreatic adenocarcinoma.

    PubMed

    Gach, Philip C; Attayek, Peter J; Whittlesey, Rebecca L; Yeh, Jen Jen; Allbritton, Nancy L

    2014-04-15

    Circulating tumor cells (CTCs) are important biomarkers of cancer progression and metastatic potential. The rarity of CTCs in peripheral blood has driven the development of technologies to isolate these tumor cells with high specificity; however, there are limited techniques available for isolating target CTCs following enumeration. A strategy is described to capture and isolate viable tumor cells from whole blood using an array of releasable microstructures termed micropallets. Specific capture of nucleated cells or cells expressing epithelial cell adhesion molecules (EpCAM) was achieved by functionalizing micropallet surfaces with either fibronectin, Matrigel or anti-EpCAM antibody. Surface grafting of poly(acrylic acid) followed by covalent binding of protein A/G enabled efficient capture of EpCAM antibody on the micropallet surface. MCF-7 cells, a human breast adenocarcinoma, were retained on the array surface with 90±8% efficiency when using an anti-EpCAM-coated array. To demonstrate the efficiency of tumor cell retention on micropallet arrays in the presence of blood, MCF-7 cells were mixed into whole blood and added to small arrays (71 mm(2)) coated with fibronectin, Matrigel or anti-EpCAM. These approaches achieved MCF-7 cell capture from ≤10 µL of whole blood with efficiencies greater than 85%. Furthermore, MCF-7 cells intermixed with 1 mL blood and loaded onto large arrays (7171 mm(2)) were captured with high efficiencies (≥97%), could be isolated from the array by a laser-based approach and were demonstrated to yield a high rate of colony formation (≥85%) after removal from the array. Clinical utility of this technology was shown through the capture, isolation and successful culture of CTCs from the blood of mice engrafted with primary human pancreatic tumors. Direct capture and isolation of living tumor cells from blood followed by analysis or culture will be a valuable tool for cancer cell characterization.

  15. Prostate Ductal Adenocarcinoma.

    PubMed

    Amin, Ali

    2017-03-30

    Prostate ductal adenocarcinoma (PDA) is a rare subtype of prostate adenocarcinoma that shows more aggressive behavior than conventional prostatic acinar adenocarcinoma. PDA demonstrates similar clinical and paraclinical features such as prostatic acinar adenocarcinoma; therefore, clinical distinction of the 2 entities is very difficult (if not impossible) and histopathology plays an important role in the diagnosis of the disease. This review discusses all the necessary information needed for the diagnosis and prognosis of PDA including the morphologic features of PDA, an introduction about the known variants of PDA with helpful hints in grading of each variant, tips on differential diagnosis of PDA from the common morphologic mimickers, a detailed discussion on the value of immunohistochemistry in the diagnosis of PDA, and pathologic features that are helpful in determining the outcome.

  16. Synchronous Quadruple Primary Neoplasms: Colon Adenocarcinoma, Collision Tumor of Neuroendocrine Tumor and Schwann Cell Hamartoma and Sessile Serrated Adenoma of the Appendix.

    PubMed

    Meeks, Marshall W; Grace, Shane; Chen, Yongxin; Petterchak, James; Bolesta, Edward; Zhou, Yihua; Lai, Jin-Ping

    2016-08-01

    Quadruple synchronous primary neoplasms are very rare with only three cases reported in the English-speaking literature to date. Collision tumors are also rare entities, especially of the appendix. We herein report a case of synchronous quadruple primary neoplasm in a 95-year-old female. She was diagnosed with colon adenocarcinoma, sessile serrated adenoma of the appendix and a collision tumor composed of a well-differentiated neuroendocrine tumor and Schwann cell hamartoma. Histological examination and immunohistochemistry supported these four lesions as separate entities. This case is unique because we report the diagnosis of quadruple synchronous primary, an extremely rare occurrence, in addition to a collision tumor of the appendix. We also provide a review of the literature for synchronous neoplasms and collision tumors.

  17. Luteolin exerts pro-apoptotic effect and anti-migration effects on A549 lung adenocarcinoma cells through the activation of MEK/ERK signaling pathway.

    PubMed

    Meng, Guanmin; Chai, Kequn; Li, Xinda; Zhu, Yongqiang; Huang, Weihua

    2016-09-25

    An increasing amount of evidence suggests that luteolin, a common dietary flavonoid that is widely distributed in plants and foods, has been shown to be protective against cancer. However, the precise underlying mechanisms of its action against lung cancer are still poorly understood. In the present study, we investigated whether luteolin exhibits the anti-cancer effect in lung cancer through the induction of cell apoptosis and inhibition of cell migration, and whether mitogen-activated protein kinases (MAPKs) and Akt signaling pathways are required. Results revealed that luteolin exerted an anti-proliferation effect in a dose- and time-dependent manner in A549 lung adenocarcinoma cells, and induced apoptosis with a concomitant increase in the activation of caspases-3 and -9, diminution of Bcl-2, elevation in Bax expression, and the phosphorylation of MEK and its down-stream kinase ERK, as well as the activation of Akt. Luteolin also dramatically inhibited cell motility and migration in A549 cells. The inhibitor of MEK-ERK pathway protected against luteolin-induced cell death and suppressed the apoptosis-inducing and anti-migratory effects of luteolin, suggesting MEK-ERK signaling pathway plays an important role in mediating the pro-apoptotic effect and anti-migration effects of luteolin. Taken together, this study provides a new insight into the mode of action of luteolin on lung cancer.

  18. A double-negative feedback loop between E2F3b and miR- 200b regulates docetaxel chemosensitivity of human lung adenocarcinoma cells

    PubMed Central

    Gao, Yanping; Chen, Longbang; Song, Haizhu; Chen, Yitian; Wang, Rui; Feng, Bing

    2016-01-01

    MicroRNAs (miRNAs) are non-coding small RNAs which negatively regulate gene expressions mainly through 3′-untranslated region (3′-UTR) binding of target mRNAs. Recent studies have highlighted the feedback loops between miRNAs and their target genes in physiological and pathological processes including chemoresistance of cancers. Our previous study identified miR-200b/E2F3 axis as a chemosensitivity restorer of human lung adenocarcinoma (LAD) cells. Moreover, E2F3b was bioinformatically proved to be a potential transcriptional regulator of pre-miR-200b gene promoter. The existance of this double-negative feedback minicircuitry comprising E2F3b and miR-200b was confirmed by chromatin immunoprecipitation (ChIP) assay, site-specific mutation and luciferase reporter assay. And the underlying regulatory mechanisms of this feedback loop on docetaxel resistance of LAD cells were further investigated by applying in vitro chemosensitivity assay, colony formation assay, flow cytometric analysis of cell cycle and apoptosis, as well as mice xenograft model. In conclusion, our results suggest that the double-negative feedback loop between E2F3b and miR-200b regulates docetaxel chemosensitivity of human LAD cells mainly through cell proliferation, cell cycle distribution and apoptosis. PMID:27027446

  19. OSI-027 inhibits pancreatic ductal adenocarcinoma cell proliferation and enhances the therapeutic effect of gemcitabine both in vitro and in vivo.

    PubMed

    Zhi, Xiao; Chen, Wei; Xue, Fei; Liang, Chao; Chen, Bryan Wei; Zhou, Yue; Wen, Liang; Hu, Liqiang; Shen, Jian; Bai, Xueli; Liang, Tingbo

    2015-09-22

    Despite its relative rarity, pancreatic ductal adenocarcinoma (PDAC) accounts for a large percentage of cancer deaths. In this study, we investigated the in vitro efficacy of OSI-027, a selective inhibitor of mammalian target of rapamycin complex 1 (mTORC1) and mTORC2, to treat PDAC cell lines alone, and in combination with gemcitabine (GEM). Similarly, we tested the efficacy of these two compounds in a xenograft mouse model of PDAC. OSI-027 significantly arrested cell cycle in G0/G1 phase, inhibited the proliferation of Panc-1, BxPC-3, and CFPAC-1 cells, and downregulated mTORC1, mTORC2, phospho-Akt, phospho-p70S6K, phospho-4E-BP1, cyclin D1, and cyclin-dependent kinase 4 (CDK4) in these cells. Moreover, OSI-027 also downregulated multidrug resistance (MDR)-1, which has been implicated in chemotherapy resistance in PDAC cells and enhanced apoptosis induced by GEM in the three PDAC cell lines. When combined, OSI-027 with GEM showed synergistic cytotoxic effects both in vitro and in vivo. This is the first evidence of the efficacy of OSI-027 in PDAC and may provide the groundwork for a new clinical PDAC therapy.

  20. Doxorubicin-resistant LoVo adenocarcinoma cells display resistance to apoptosis induction by some but not all inhibitors of ser/thr phosphatases 1 and 2A.

    PubMed

    Sieder, S; Richter, E; Becker, K; Heins, R; Steinfelder, H J

    1999-06-15

    LoVo adenocarcinoma cells are fairly sensitive to cytostatic drugs, e.g. doxorubicin, but can develop drug resistance by expression of a P-glycoprotein-mediated MDR1 phenotype. LoVo cells respond with apoptosis to nanomolar concentrations of okadaic acid and micromolar concentrations of cantharidic acid. Interestingly, LoVoDx cells which had become about 10-fold less sensitive to doxorubicin by incubation in increasing concentrations of this cytostatic drug were also less sensitive to the toxicity of okadaic acid. Resistance to both agents was lost or significantly reduced by incubation in drug-free medium for about 4 months. On the other hand, LoVoDx cells did not lose responsiveness to the structurally different phosphatase inhibitor cantharidic acid but were about twofold more sensitive to the cytotoxic effect of this agent. Thus, MDR expression protects LoVo cells from the toxicity of phosphatase inhibitors that presumably are substrates of the P-glycoprotein, e.g. okadaic acid and its derivatives but not cantharidic acid, despite the fact that both agents are potent inducers of apoptotic cell death via ser/thr phosphatase inhibition.

  1. Cytotoxicity and intracellular fate of PLGA and chitosan-coated PLGA nanoparticles in Madin-Darby bovine kidney (MDBK) and human colorectal adenocarcinoma (Colo 205) cells.

    PubMed

    Trif, Mihaela; Florian, Paula E; Roseanu, Anca; Moisei, Magdalena; Craciunescu, Oana; Astete, Carlos E; Sabliov, Cristina M

    2015-11-01

    Polymeric nanoparticles (NPs) are known to facilitate intracellular uptake of drugs to improve their efficacy, with minimum bioreactivity. The goal of this study was to assess cellular uptake and trafficking of PLGA NPs and chitosan (Chi)-covered PLGA NPs in Madin-Darby bovine kidney (MDBK) and human colorectal adenocarcinoma (Colo 205) cells. Both PLGA and Chi-PLGA NPs were not cytotoxic to the studied cells at concentrations up to 2500 μg/mL. The positive charge conferred by the chitosan deposition on the PLGA NPs improved NPs uptake by MDBK cells. In this cell line, Chi-PLGA NPs colocalized partially with early endosomes compartment and showed a more consistent perinuclear localization than PLGA NPs. Kinetic uptake of PLGA NPs by Colo 205 was slower than that by MDBK cells, detected only at 24 h, exceeding that of Chi-PLGA NPs. This study offers new insights on NP interaction with target cells supporting the use of NPs as novel nutraceuticals/drug delivery systems in metabolic disorders or cancer therapy. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 3599-3611, 2015.

  2. Downregulation of MDM2 expression by RNAi inhibits LoVo human colorectal adenocarcinoma cells growth and the treatment of LoVo cells with mdm2siRNA3 enhances the sensitivity to cisplatin

    SciTech Connect

    Yu Yan . E-mail: gyfyuyan@hotmail.com; Sun Ping . E-mail: sunny19750502@hotmail.com; Sun Lichun; Liu Guoyi; Chen Guohua . E-mail: olivebranch_82@hotmail.com; Shang Lihua . E-mail: leval1000@sina.com; Wu Hongbo . E-mail: whpwl@sina.com; Hu Jing; Li Yue; Mao Yinling; Sui Guangjie; Sun Xiwen

    2006-01-06

    To investigate the biological effect of mdm2 in human colorectal adenocarcinoma LoVo cells, three mdm2siRNA constructions were recombinated and transient transfected into human colorectal adenocarcinoma LoVo cells with low differentiation character in vitro. The results showed that mdm2siRNA3 reduced mRNA level of mdm2 and protein level of mdm2, leading to proliferation inhibition on LoVo cells, and reduced tumor growth in nude mice. It was found that depletion of MDM2 in this pattern promoted apoptosis of LoVo cells and Cisplatin (DDP) treated in the mdm2siRNA3 transfected cell population would result in a substantial decrease by MTT colorimetry. Decreasing the MDM2 protein level in LoVo cells by RNAi could significantly inhibit tumor growth both in vitro and in vivo, which indicated that mdm2 gene played a definite role in the development and aggressiveness of human colon carcinoma. It also could be a therapeutic target in colorectal carcinoma. The synergistic activation of RNAi and cell toxicity agents indicated that the combination of chemotherapy and gene therapy will be a promising approach in the future.

  3. Efficient T3P(®) mediated synthesis, differential cytotoxicity and apoptosis induction by indolo-triazolo-thiadiazoles in human breast adenocarcinoma cells.

    PubMed

    Kamath, Pooja R; Sunil, Dhanya; Das, Shubhankar; Abdul Salam, Abdul Ajees; Rao, B S Satish

    2017-02-21

    The limited efficacy of marketed anticancer agents demands the design of novel target-specific hybrid molecules incorporating multiple bioactive pharmacores to combat cancer. In the present study, a one-pot simple and efficient T3P(®) mediated procedure for the preparation of twelve new 3-(substituted- [1,2,4]triazolo[3,4-b] [1,3,4]thiadiazolo)-1H-indoles with short reaction times, easy workup procedure, good yields, and purity of products is described. Cytotoxicity assay (MTT), flow-cytometric univariate cell cycle analysis, Annexin V-FITC staining and DNA fragmentation for cell death mechanism suggested that compound 3d with chloro-substituted phenyl ring induced enhanced cytotoxicity by an apoptotic pathway with high differential toxicity to breast adenocarcinoma cells (MCF-7) when compared with normal human dermal fibroblast cells. Additionally, the interaction between the BH3 domain of anti-apoptotic proteins Bcl-2 and Bcl-xL with the pharmacophore 3d was examined by molecular docking simulations to assess its potential to induce apoptosis. The docking solutions were proposed to explain the observed selectivity of 3d to Bcl-xL protein. From the present findings, the lead compound, 3d exhibited better anticancer activity when related to the other synthesized molecules with specific action on MCF-7 cells and hence can be considered as a plausible candidate chemo-therapeutic agent, although this warrants further experimentation.

  4. Alpha-chaconine-reduced metastasis involves a PI3K/Akt signaling pathway with downregulation of NF-kappaB in human lung adenocarcinoma A549 cells.

    PubMed

    Shih, Yuan-Wei; Chen, Pin-Shern; Wu, Cheng-Hsun; Jeng, Ya-Fang; Wang, Chau-Jong

    2007-12-26

    Alpha-chaconine, isolated from Solanum tuberosum Linn., is a naturally occurring steroidal glycoalkaloid in potato sprouts. Some reports demonstrated that alpha-chaconine had various anticarcinogenic properties. The aim of this study is to investigate the inhibitory effect of alpha-chaconine on lung adenocarcinoma cell metastasis in vitro. We chose the highly metastatic A549 cells, which were treated with various concentrations of alpha-chaconine to clarify the potential of inhibiting A549 cells invasion and migration. Data showed that alpha-chaconine inhibited A549 cell invasion/migration according to wound healing assay and Boyden chamber assay. Our results also showed that alpha-chaconine could inhibit phosphorylation of c-Jun N-terminal kinase (JNK) and Akt, whereas it did not affected phosphorylation of extracellular signal regulating kinase (ERK) and p38. In addition, alpha-chaconine significantly decreased the nuclear level of nuclear factor kappa B (NF-kappaB) and the binding ability of NF-kappaB. These results suggested that alpha-chaconine inhibited A549 cell metastasis by a reduction of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) activities involving suppression of phosphoinositide 3-kinase/Akt/NF-kappaB (PI3K/Akt/NF-kappaB) signaling pathway. Inhibiting metastasis by alpha-chaconine might offer a pivotal mechanism for its effective chemotherapeutic action.

  5. RABL6A Promotes Oxaliplatin Resistance in Tumor Cells and Is a New Marker of Survival for Resected Pancreatic Ductal Adenocarcinoma Patients.

    PubMed

    Muniz, Viviane P; Askeland, Ryan W; Zhang, Xuefeng; Reed, Sara M; Tompkins, Van S; Hagen, Jussara; McDowell, Bradley D; Button, Anna; Smith, Brian J; Weydert, Jamie A; Mezhir, James J; Quelle, Dawn E

    2013-07-01

    Pancreatic ductal adenocarcinoma (PDAC) is characterized by early recurrence following pancreatectomy, rapid progression, and chemoresistance. Novel prognostic and predictive biomarkers are urgently needed to both stratify patients for clinical trials and select patients for adjuvant therapy regimens. This study sought to determine the biological significance of RABL6A (RAB, member RAS oncogene family-like protein 6 isoform A), a novel pancreatic protein, in PDAC. Analyses of RABL6A protein expression in PDAC specimens from 73 patients who underwent pancreatic resection showed that RABL6A levels are altered in 74% of tumors relative to adjacent benign ductal epithelium. Undetectable RABL6A expression, found in 7% (5/73) of patients, correlated with improved overall survival (range 41 to 118 months with 3/5 patients still living), while patients with RABL6A expression had a worse outcome (range 3.3 to 100 months, median survival 20.3 months) (P = 0.0134). In agreement with those findings, RABL6A expression was increased in pancreatic cancer cell lines compared to normal pancreatic epithelial cells, and its knockdown inhibited pancreatic cancer cell proliferation and induced apoptosis. Moreover, RABL6A depletion selectively sensitized cells to oxaliplatin-induced arrest and death. This work reveals that RABL6A promotes the proliferation, survival, and oxaliplatin resistance of PDAC cells, whereas its loss is associated with extended survival in patients with resected PDAC. Such data suggest RABL6A is a novel biomarker of PDAC and potential target for anticancer therapy.

  6. Immunohistochemical localization of adenosine deaminase complexing protein in intestinal mucosa and in colorectal adenocarcinoma as a marker for tumour cell heterogeneity.

    PubMed

    Ten Kate, J; Wijnen, J T; Boldewijn, J; Khan, P M; Bosman, F T

    1985-01-01

    Adenosine deaminase complexing protein (ADCP), a dimeric glycoprotein, has been reported to be decreased or deficient in transformed or cancer-derived cell lines, indicating its potential significance as an indicator of malignant transformation. A similar deficiency was reported in total homogenates of tumours of colon, kidney, lung and liver. In previous biochemical studies we failed to confirm the consistent reduction in ADCP concentration in cancer tissues. A possible explanation for our findings was thought to be intercellular heterogeneity in ADCP expression in individual tumour cells. To study ADCP expression in individual cells, we developed an immunohistochemical method which was applied to tissue sections. Paraformaldehyde--lysine--periodate (PLP) solution was found to be a suitable fixative. Fixed tissue samples were paraffin-embedded, sectioned and stained for ADCP, using an indirect peroxidase-labelled antibody procedure. The protein was localized in normal colonic mucosa, mainly in the brush border region of the luminal epithelium and in cytoplasmic granules. Intense ADCP immunoreactivity was found also in the basal part of some cells. In cancer cells, three staining patterns were observed: membranous, diffuse cytoplasmic and granular cytoplasmic. The adenocarcinomas exhibited significant intratumour and intertumour heterogeneity in their staining types. Further studies on ADCP expression in colorectal cancer in relation to clinical and histopathological characteristics are warranted in order to fully evaluate the potential significance of ADCP as a cancer associated antigen.

  7. Do mesothelin/MUC16 interactions facilitate adenocarcinoma metastases to intracranial meningiomas?

    PubMed Central

    Johnson, Mahlon D.

    2016-01-01

    Background: Meningiomas have been shown to express mesothelin, a high affinity binding site for MUC16, a transmembrane protein on adenocarcinoma cells. The mechanisms underlying adenocarcinoma metastases to meningiomas may provide insight into tumor-to-tumor metastases and adenocarcinoma metastases to leptomeningeal cells. Methods: Two meningiomas containing metastases from adenocarcinomas were identified and evaluated immunohistochemically for the expression and localization of mesothelin and MUC16. Results: Both meningiomas show extensive mesothelin immunoreactivity, and the adenocarcinomas metastatic to the meningiomas show mesothelin and MUC16 immunoreactivity at the interface with meningioma. Conclusions: Interactions between MUC16 and/or mesothelin on the cell membrane of adenocarcinoma cells with mesothelin on meningioma cells may facilitate adenocarcinoma metastases to meningiomas and possibly the leptomeninges. PMID:28144481

  8. miRNA-181b increases the sensitivity of pancreatic ductal adenocarcinoma cells to gemcitabine in vitro and in nude mice by targeting BCL-2.

    PubMed

    Cai, Baobao; An, Yong; Lv, Nan; Chen, Jianmin; Tu, Min; Sun, Jie; Wu, Pengfei; Wei, Jishu; Jiang, Kuirong; Miao, Yi

    2013-05-01

    Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease and is usually resistant to chemotherapy. MicroRNA‑181b (miR-181b) has been reported to be associated with chemoresistance in various types of cancer. In this study, we investigated the effects of miR-181b on the chemosensitivity of PDAC cells to gemcitabine and the underlying molecular events. miR-181b mimics and inhibitors were synthesized for transient gene transfection in vitro. Lentivirus carrying miR-181b mimics were used to infect PDAC cells for nude mouse xenograft assays by implanting infected PDAC cells into recipient mice. Cell viability was determined by MTT assays, while gene expression was assessed using qRT-PCR, western blot analysis and enzyme-linked immunosorbent assay (ELISA). miR-181b targeting BCL-2 expression was assessed by a dual-luciferase activity assay. The data showed that miRNA-181b expression sensitized PDAC cells to gemcitabine treatment. Although gemcitabine-resistant PDAC cell sublines (SW1990/GR and CFPAC-1/GR) expressed higher levels of miRNA-181b, gemcitabine induced higher levels of apoptosis in PDAC cells transfected with miRNA-181b mimics. The nude mouse xenograft assay data showed that miR-181b transfection also sensitized the cells to gemcitabine treatment in vivo. Molecularly, bioinformatics data predicted that miR-181b was able to bind to BCL-2 mRNA 3'UTR. The dual luciferase activity assay revealed that miRNA-181b downregulated BCL-2 expression. The results from western blot analysis showed a reduced BCL-2 expression following miR-181b transfection but an enhanced caspase-3 activity in miRNA-181b mimic-transfected PDAC cells. This study demonstrates that miRNA-181b sensitizes PDAC cells to gemcitabine by targeting BCL-2.

  9. Progesterone inhibits proliferation and modulates expression of proliferation-Related genes in classical progesterone receptor-negative human BxPC3 pancreatic adenocarcinoma cells.

    PubMed

    Goncharov, Alexey I; Maslakova, Aitsana A; Polikarpova, Anna V; Bulanova, Elena A; Guseva, Alexandra A; Morozov, Ivan A; Rubtsov, Petr M; Smirnova, Olga V; Shchelkunova, Tatiana A

    2017-01-01

    Recent studies suggest that progesterone may possess anti-tumorigenic properties. However, a growth-modulatory role of progestins in human cancer cells remains obscure. With the discovery of a new class of membrane progesterone receptors (mPRs) belonging to the progestin and adipoQ receptor gene family, it becomes important to study the effect of this hormone on proliferation of tumor cells that do not express classical nuclear progesterone receptors (nPRs). To identify a cell line expressing high levels of mPRs and lacking nPRs, we examined mRNA levels of nPRs and three forms of mPRs in sixteen human tumor cell lines of different origin. High expression of mPR mRNA has been found in pancreatic adenocarcinoma BxPC3 cells, while nPR mRNA has not been detected in these cells. Western blot analysis confirmed these findings at the protein level. We revealed specific binding of labeled progesterone in these cells with affinity constant similar to that of human mPR expressed in yeast cells. Progesterone at high concentration of 20 μM significantly reduced the mRNA levels of proliferation markers Ki67 and PCNA, as well as of cyclin D1, and increased the mRNA levels of cyclin dependent kinase inhibitors p21 and p27. Progesterone (1 μM and 20 μM) significantly inhibited proliferative activity of BxPC3 cells. These results point to anti-proliferative effects of the progesterone high concentrations on BxPC3 cells and suggest that activation of mPRs may mediate this action. Our data are a starting point for further investigations regarding the application of progesterone in pancreatic cancer.

  10. Effector, memory and naïve CD8+ T cells in peripheral blood and pleural effusion from lung adenocarcinoma patients.

    PubMed

    Prado-Garcia, Heriberto; Aguilar-Cazares, Dolores; Flores-Vergara, Hector; Mandoki, Juan Jose; Lopez-Gonzalez, Jose Sullivan

    2005-03-01

    The proportions of naïve, memory and effector CD8+ T cells in peripheral blood and pleural effusion from lung adenocarcinoma patients were studied. CD8+ T subsets were identified by using a combination of the following antibodies: anti-CD45RA, anti-CD45RO, anti-CD27 and anti-CD28, as well as antibodies to other markers. Fas-positive cells were determined in each CD8+ T subset. Also, the intracellular cytokine patterns of CD4+ and CD8+ lymphocytes from pleural effusion were analysed. In naïve, memory and effector CD8+ T subsets no significant differences were observed in peripheral blood between healthy donors and cancer patients. In contrast, a high proportion of cells with memory phenotype (CD45RA-CD45RO+CD27+CD28+) and a low proportion of cells with effector phenotype (CD45RA+CD45RO-CD27-CD28-) were found in pleural effusion with respect to peripheral blood (P<0.001). The altered proportions of CD8+ T subsets in pleural effusion were not mediated by type 2 cytokines produced by CD4+ or CD8+ lymphocytes. In the effector CD8+ T subset, from peripheral blood as well as from pleural effusion, a low percentage of perforin-expressing cells was observed compared to granzyme A-expressing cells. Additionally, a high percentage of naïve CD8+ T cells expressing Fas was found. Our data suggest that: (i) terminal-differentiation process of CD8+ T cells is blocked, and (ii) early Fas-expression in CD8+ T cells, which was reflected even in peripheral blood, may lead to apoptosis of naïve cells when they reach the effector stage. All these processes may contribute to the inadequate antitumour immune response found in lung carcinoma patients.

  11. Determination using synchrotron radiation-based Fourier transform infrared microspectroscopy of putative stem cells in human adenocarcinoma of the intestine: corresponding benign tissue as a template.

    PubMed

    Ahmadzai, Abdullah A; Patel, Imran I; Veronesi, Giulia; Martin-Hirsch, Pierre L; Llabjani, Valon; Cotte, Marine; Stringfellow, Helen F; Martin, Francis L

    2014-01-01

    The epithelial-cell layer lining the two morphologically and functionally distinct segments of the mammalian intestinal tract, small intestine, and colon is constantly being renewed. This renewal is necessitated by a harsh lumen environment and is hypothesized to be driven by a small population of stem cells (SCs) that are believed to reside at the base of intestinal crypts. A lack of specific markers has hampered previous attempts to identify their exact location. We obtained tissue sections containing small intestine and colon crypts derived from normal (benign) or adenocarcinoma (AC) human intestine. The samples were floated onto BaF2 windows and analyzed using synchrotron radiation-based Fourier transform infrared microspectroscopy via an aperture size of 10 × 10 μm. Derived infrared (IR) spectral data was then analyzed using principal component analysis and/or linear discriminant analysis. Hypothesized cell types (as a function of aperture location along the length of individual crypts) within benign crypts were classed based on exploratory unsupervised IR spectral point clustering. Scores plots derived from individual small intestine crypts consistently generated one or two distinct spectra that clustered away from the remaining cell categories; these were retrospectively classed as "distinct base region" spectra. In these plots, a clear progression of locations along crypt lengths designated as from putative stem cells (SCs) to transit-amplifying (TA) cells to terminally differentiated (TD) cells was observed in benign small intestine and colon crypts. This progression of spectral points was crypt specific, pointing away from a unifying cell lineage model in human intestinal crypts. On comparison of AC-derived spectra versus corresponding benign, a subpopulation of AC-derived spectra suggested a putative SC-like spectral fingerprint; remaining IR spectra were classed as exhibiting TA cell-like or TD cell-like spectral characteristics. These observations

  12. CpG-ODN 7909 increases radiation sensitivity of radiation-resistant human lung adenocarcinoma cell line by overexpression of Toll-like receptor 9.

    PubMed

    Yan, Li; Xu, Guoxiong; Qiao, Tiankui; Chen, Wei; Yuan, Sujuan; Li, Xuan

    2013-09-01

    Radioresistance is one of the main reasons for the failure of radiotherapy in lung cancer. The aim of this study was to establish a radiation-resistant lung cancer cell line, to evaluate whether CpG oligodeoxyribonucleotide (CpG-ODN) 7909 could increase its radiosensitivity and to explore the relevant mechanisms. The radioresistant cell line, referred to as R-A549, was generated by reduplicative fractionated irradiation from the human lung adenocarcinoma cell line A549. The radioresistance of R-A549 cells were confirmed by the Cell Counting Kit-8 (CCK-8), cell viability assay, and clonogenic assay. Cell growth kinetics, morphological feature, and radiosensitivity were compared between the original A549 cells and R-A549 cells treated with or without CpG-ODN 7909 or radiation. To further explore the potential mechanisms of radiosensitivity, the cell cycle distributions and the expression of Toll-like receptor 9 (TLR-9) were examined by Western blot and flow cytometry. The R-A549 cell line was generated and its radioresistance was further confirmed. CpG-ODN 7909 was found to increase much more radiosensitivity of R-A549 cells under combined treatments with CpG-ODN 7909 and radiation compared with its control group without any treatments. They presented their respective D0 1.33 ± 0.20 Gy versus 1.76 ± 0.25 Gy with N 3.44 ± 1.01 versus 4.96 ± 0.32. Further, there was a larger cell population of R-A549 cells under combined treatment in the G2/M phase compared with the control group after treatment with CpG-ODN7909 or radiation alone at 24 and 48 hour. The expression level of TLR-9 in R-A549 cells was found higher than in A549 cells. These results suggested that CpG-ODN 7909 increased the radiosensitivity of R-A549 cells, which might be mediated via the upregulated TLR-9 and prolonged cell cycle arrest in the G2/M phase compared with A549 cells.

  13. Reduction in membranous immunohistochemical staining for the intracellular domain of epithelial cell adhesion molecule correlates with poor patient outcome in primary colorectal adenocarcinoma

    PubMed Central

    Wang, A.; Ramjeesingh, R.; Chen, C.H.; Hurlbut, D.; Hammad, N.; Mulligan, L.M.; Nicol, C.; Feilotter, H.E.; Davey, S.

    2016-01-01

    Background Epithelial cell adhesion molecule (epcam) is a multifunctional transmembrane glycoprotein expressed on both normal epithelium and epithelial neoplasms such as gastric, breast, and renal carcinomas. Recent studies have proposed that the proteolytic cleavage of the intracellular domain of epcam (epcam-icd) can trigger signalling cascades leading to aggressive tumour behavior. The expression profile of epcam-icd has not been elucidated for primary colorectal carcinoma. In the present study, we examined epcam-icd immunohistochemical staining in a large cohort of patients with primary colorectal adenocarcinoma and assessed its performance as a potential prognostic marker. Methods Immunohistochemical staining for epcam-icd was assessed on tissue microarrays consisting of 137 primary colorectal adenocarcinoma samples. Intensity of staining for each core was scored by 3 independent pathologists. The membranous epcam-icd staining score was calculated as a weighted average from 3 core samples per tumour. Univariate analysis of the average scores and clinical outcome measures was performed. Results The level of membranous epcam-icd staining was positively associated with well-differentiated tumours (p = 0.01); low preoperative carcinoembryonic antigen (p = 0.001); and several measures of survival, including 2-year (p = 0.02) and 5-year survival (p = 0.05), and length of time post-diagnosis (p = 0.03). A number of other variables—including stage, grade, and lymph node status—showed correlations with epcam staining and markers of poor outcome, but did not reach statistical significance. Conclusions Low membranous epcam-icd staining might be a useful marker to identify tumours with aggressive clinical behavior and potential poor prognosis and might help to select candidates who could potentially benefit from treatment targeting epcam. PMID:27330354

  14. Combination of external beam radiotherapy and Californium (Cf)-252 neutron intracavity brachytherapy is more effective in control of cervical squamous cell carcinoma than that of cervical adenocarcinoma.

    PubMed

    Xiong, Yanli; Liu, Jia; Chen, Shu; Zhou, Qian; Xu, Wenjing; Tang, Chen; Chen, Yonghong; Yang, Mei; Lei, Xin

    2015-09-01

    The objective of this study was to compare the effect of combined external beam radiotherapy (EBRT) and Californium (Cf)-252 neutron intracavity brachytherapy (ICBT) on cervical squamous versus adenocarcinoma. A total of 106 patients with stage IB-IIIB cervical cancer were accrued between January 2005 and May 2011 and divided into squamous cell carcinoma (SCC) and adenocarcinoma (AC) as a pair with 53 patients in each group according to tumor size, stage, age, and hemoglobin level using matched-pair design. The whole pelvic EBRT was performed with 2 Gy/fraction, 4 fractions/week. The total dose was 48-54 Gy (the center of whole pelvic field was blocked by 4 cm in width after 20-36 Gy). Cf-252 neutron ICBT was delivered with 11 and 12 Gy-eq/f with the total dose at point A of 44 and 48 Gy-eq for SCC and AC patients, respectively. The mean follow-up time was 43 months. The 5-year LC, OS, DFS, LAC rates, and mean survival time were 66.0, 56.6, 52.8.0, 17.0%, and 76.4 ± 6.2 months, respectively, for AC patients, whereas they were 81.1, 69.8, 67.9, 11.3%, and 93.3 ± 4.3 months, respectively, for SCC patients. Furthermore, the early treatment toxicity was mild in both groups, the late treatment complications were mainly radiation-induced proctitis and cystitis, and there were no grade 3 or higher complications. Although the combination of Cf-252 neutron ICBT and EBRT was effective in both histology types of cervical cancer, a more aggressive strategy is needed to control cervical AC.

  15. Cytotoxicity of Manganese (III) Complex in Human Breast Adenocarcinoma Cell Line Is Mediated by the Generation of Reactive Oxygen Species Followed by Mitochondrial Damage.

    PubMed

    Al-Anbaky, Qudes; Al-Karakooly, Zeiyad; Kilaparty, Surya P; Agrawal, Megha; Albkuri, Yahya M; RanguMagar, Ambar B; Ghosh, Anindya; Ali, Nawab

    2016-11-01

    Manganese (Mn) complexes are widely studied because of their important catalytic properties in synthetic and biochemical reactions. A Mn (III) complex of an amidoamine ligand was synthesized using a tetradentate amidoamine ligand. In this study, the Mn (III) complex was evaluated for its biological activity by measuring its cytotoxicity in human breast adenocarcinoma cell line (MCF-7). Cytotoxic effects of the Mn (III) complex were determined using established biomarkers in an attempt to delineate the mechanism of action and the utility of the complex as a potential anticancer drug. The Mn (III) complex induces cell death in a dose- and time-dependent manner as shown by microculture tetrazolium assay, a measure of cytotoxic cell death. Our results demonstrated that cytotoxic effects were significantly increased at higher concentrations of Mn (III) complex and with longer time of treatment. The IC50 (Inhibitor concentration that results in 50% cell death) value of Mn (III) complex in MCF-7 cells was determined to be 2.5 mmol/L for 24 hours of treatment. In additional experiments, we determined the Mn (III) complex-mediated cell death was due to both apoptotic and nonspecific necrotic cell death mechanisms. This was assessed by ethidium bromide/acridine orange staining and flow cytometry techniques. The Mn (III) complex produced reactive oxygen species (ROS) triggering the expression of manganese superoxide dismutase 1 and ultimately damaging the mitochondrial function as is evident by a decline in mitochondrial membrane potential. Treatment of the cells with free radical scavenger, N, N-dimethylthiourea decreased Mn (III) complex-mediated generation of ROS and attenuated apoptosis. Together, these results suggest that the Mn (III) complex-mediated MCF-7 cell death utilizes combined mechanism involving apoptosis and necrosis perhaps due to the generation of ROS.

  16. Impact of PTEN on the expression of insulin-like growth factors (IGFs) and IGF-binding proteins in human gastric adenocarcinoma cells

    SciTech Connect

    Yi, Ho-Keun; Kim, Sun-Young; Hwang, Pyoung-Han; Kim, Chan-Young; Yang, Doo-Hyun; Oh, Youngman; Lee, Dae-Yeol . E-mail: leedy@chonbuk.ac.kr

    2005-05-13

    PTEN is a tumor suppressor gene that is frequently mutated or deleted in a variety of human cancers including human gastric cancer. PTEN functions primarily as a lipid phosphatase and plays a key role in the regulation of the PI3 kinase/Akt pathway, thereby modulating cell proliferation and cell survival. On the other hand, the IGF system plays an important role in cell proliferation and cell survival via the PI3 kinase/Akt and MAP kinase pathways in many cancer cells. To characterize the impact of PTEN on the IGF-IGFR-IGFBP axis in gastric cancer, we overexpressed PTEN using an adenovirus gene transfer system in human gastric adenocarcinoma cells, SNU-484 and SNU-663, which lack PTEN. Overexpression of PTEN inhibited serum-induced as well as IGF-I-induced cell proliferation as compared to control cells. PTEN overexpression resulted in a significant decrease in the expression of IGF-I, -II, and IGF-IR. Interestingly, amongst the six IGFBPs, only IGFBP-3 was upregulated by PTEN, whereas IGFBP-4 and -6 were reduced. The IGFBP-3 promoter activity assay and Western immunoblotting demonstrate that PTEN regulates IGFBP-3 at the transcriptional level. In addition, the PI3 kinase inhibitor, LY294002, upregulates IGFBP-3 expression but downregulates IGF-I and IGF-II, indicating that PTEN controls IGFBP-3 and IGFs by an Akt-dependent pathway. These findings suggest that PTEN may inhibit antiapoptotic IGF actions not only by blocking the IGF-IGFR-induced Akt activity, but also by regulating expression of components of the IGF system, in particular, upregulation of IGFBP-3, which is known to exert antiproliferative effects through IGF-dependent and IGF-independent mechanisms in cancer cells.

  17. Suppression of c-Myc is involved in multi-walled carbon nanotubes' down-regulation of ATP-binding cassette transporters in human colon adenocarcinoma cells.

    PubMed

    Wang, Zhaojing; Xu, Yonghong; Meng, Xiangning; Watari, Fumio; Liu, Hudan; Chen, Xiao

    2015-01-01

    Over-expression of ATP-binding cassette (ABC) transporters, a large family of integral membrane proteins that decrease cellular drug uptake and accumulation by active extrusion, is one of the major causes of cancer multi-drug resistance (MDR) that frequently leads to failure of chemotherapy. Carbon nanotubes (CNTs)-based drug delivery devices hold great promise in enhancing the efficacy of cancer chemotherapy. However, CNTs' effects on the ABC transporters remain under-investigated. In this study, we found that multiwalled carbon nanotubes (MWCNTs) reduced transport activity and expression of ABC transporters including ABCB1/Pgp and ABCC4/MRP4 in human colon adenocarcinoma Caco-2 cells. Proto-oncogene c-Myc, which directly regulates ABC gene expression, was concurrently decreased in MWCNT-treated cells and forced over-expression of c-Myc reversed MWCNTs' inhibitory effects on ABCB1 and ABCC4 expression. MWCNT-cell membrane interaction and cell membrane oxidative damage were observed. However, antioxidants such as vitamin C, β-mecaptoethanol and dimethylthiourea failed to antagonize MWCNTs' down-regulation of ABC transporters. These data suggest that MWCNTs may act on c-Myc, but not through oxidative stress, to down-regulate ABC transporter expression. Our findings thus shed light on CNTs' novel cellular effects that may be utilized to develop CNTs-based drug delivery devices to overcome ABC transporter-mediated cancer chemoresistance.

  18. miR-367 promotes epithelial-to-mesenchymal transition and invasion of pancreatic ductal adenocarcinoma cells by targeting the Smad7-TGF-β signalling pathway

    PubMed Central

    Zhu, Z; Xu, Y; Zhao, J; Liu, Q; Feng, W; Fan, J; Wang, P

    2015-01-01

    Background: Aberrant Smad7 expression contributes to the invasion and metastasis of pancreatic cancer cells. However, the potential mechanism underlying aberrant Smad7 expression in human pancreatic ductal adenocarcinoma (PDAC) remains largely unknown. Methods: Bioinformatic prediction programmes and luciferase reporter assay were used to identify microRNAs regulating Smad7. The association between miR-367 expression and the overall survival of PDAC patients was evaluated by Kaplan–Meier analysis. The effects of miR-367 and Smad7 on the invasion and metastasis of pancreatic cancer cells were investigated both in vitro and in vivo. Results: We found that miR-367 downregulated Smad7 expression by directly targeting its 3′-UTR in human pancreatic cancer cells. High level of miR-367 expression correlated with poor prognosis of PDAC patients. Functional studies showed that miR-367 promoted pancreatic cancer invasion in vitro and metastasis in vivo through downregulating Smad7. In addition, we showed that miR-367 promoted epithelial-to-mesenchymal transition by increasing transforming growth factor-β (TGF-β)-induced transcriptional activity. Conclusions: The present study identified and characterised a signalling pathway, the miR-367/Smad7-TGF-β pathway, which is involved in the invasion and metastasis of pancreatic cancer cells. Our results suggest that miR-367 may be a promising therapeutic target for the treatment of human pancreatic cancer. PMID:25867271

  19. Suppression of c-Myc is involved in multi-walled carbon nanotubes' down-regulation of ATP-binding cassette transporters in human colon adenocarcinoma cells

    SciTech Connect

    Wang, Zhaojing; Xu, Yonghong; Meng, Xiangning; Watari, Fumio; Liu, Hudan; Chen, Xiao

    2015-01-01

    Over-expression of ATP-binding cassette (ABC) transporters, a large family of integral membrane proteins that decrease cellular drug uptake and accumulation by active extrusion, is one of the major causes of cancer multi-drug resistance (MDR) that frequently leads to failure of chemotherapy. Carbon nanotubes (CNTs)-based drug delivery devices hold great promise in enhancing the efficacy of cancer chemotherapy. However, CNTs' effects on the ABC transporters remain under-investigated. In this study, we found that multiwalled carbon nanotubes (MWCNTs) reduced transport activity and expression of ABC transporters including ABCB1/Pgp and ABCC4/MRP4 in human colon adenocarcinoma Caco-2 cells. Proto-oncogene c-Myc, which directly regulates ABC gene expression, was concurrently decreased in MWCNT-treated cells and forced over-expression of c-Myc reversed MWCNTs' inhibitory effects on ABCB1 and ABCC4 expression. MWCNT-cell membrane interaction and cell membrane oxidative damage were observed. However, antioxidants such as vitamin C, β-mecaptoethanol and dimethylthiourea failed to antagonize MWCNTs' down-regulation of ABC transporters. These data suggest that MWCNTs may act on c-Myc, but not through oxidative stress, to down-regulate ABC transporter expression. Our findings thus shed light on CNTs' novel cellular effects that may be utilized to develop CNTs-based drug delivery devices to overcome ABC transporter-mediated cancer chemoresistance.

  20. In-vitro cytotoxicity study of methanolic fraction from Ajuga Bracteosa wall ex. benth on MCF-7 breast adenocarcinoma and hep-2 larynx carcinoma cell lines

    PubMed Central

    Pal, Akiriti; Toppo, Fedelic Aahish; Chaurasiya, Pradeep K.; Singour, Pradeep K.; Pawar, Rajesh S.

    2014-01-01

    Objective: Ajuga bracteosa Wall ex Benth (Labiatae) is popularly known in India as Neelkanthi. A decoction of the leaves, flowers, and barks is used in India for the treatment of cancer including diabetes, malaria, and inflammation etc. The main objective of this study is to investigate the cytotoxic potential of Ajuga bracteosa. Materials and Methods: Successive solvent extraction of Ajuga bracteosa in petroleum ether, methanol, and water extracts was done. These extracts were tested against human breast adenocarcinoma (MCF-7) and larynx carcinoma (Hep-2) tumor cell lines, using the thiazolyl blue test (MTT) assay. Results: The methanolic fraction of Ajuga bracteosa had shown the significant results against MCF-7 and Hep-2 tumor cell lines. The methanolic, petroleum ether and aqueous extract from Ajuga bracteosa, presented an IC50 value at 24 h of 10, 65, 70 μg/ml and 5, 30, 15 μg/ml on MCF-7 and Hep-2 cells, respectively. Steroids compounds namely β-sitosterol and unknown constituents were identified in the most active methanol extract of Ajuga bracteosa wall ex Benth. These known and unknown compounds exhibited cytotoxic potential against MCF-7 and Hep-2 cancer cells. Conclusion: Among all the tested extracts, methanolic extract can be considered as potential sources of anti-cancer compounds. Further studies are necessary for more extensive biological evaluations. PMID:24497749

  1. Urinary Bladder Adenocarcinoma Metastatic to the Abdominal Wall: Report of a Case with Cytohistologic Correlation

    PubMed Central

    Baliga, Mithra

    2016-01-01

    We report a case of adenocarcinoma metastatic to the abdominal wall in a 71-year-old man with a history of primary bladder adenocarcinoma. CT-guided core biopsy was performed; imprints and histologic sections showed malignant glands lined by tumor cells with hyperchromatic nuclei and prominent nucleoli, infiltrating through skeletal muscle. Immunohistochemistry revealed positivity for CK7, membranous/cytoplasmic β-catenin, caudal-type homeobox transcription factor 2 (CDX2), and α-methylacyl coenzyme A racemase and negativity for CK20, p63, prostate-specific antigen (PSA), and prostate-specific acid phosphatase (PSAP). These findings were interpreted as metastatic adenocarcinoma, consistent with bladder primary. Primary bladder adenocarcinoma is a rare malignancy arising within glandular metaplasia and is associated with cystitis cystica and cystitis glandularis. Predisposing factors include bladder exstrophy, schistosomiasis, and other causes of chronic bladder irritation. This tumor is divided into intestinal, clear cell, and signet ring cell subtypes. Treatment involves radical cystectomy with pelvic lymph node dissection, and prognosis is unfavorable. Primary bladder adenocarcinoma should be differentiated from urachal adenocarcinoma, which arises from urachal remnants near the bladder dome, and secondary adenocarcinoma, or vesical involvement by adenocarcinoma from a different primary. CK7, CK20, CDX2, thrombomodulin, and β-catenin can help distinguish primary bladder adenocarcinoma from colonic adenocarcinoma; PSA and PSAP can help distinguish primary bladder adenocarcinoma from prostate adenocarcinoma. PMID:27006847

  2. Highly metastatic 13762NF rat mammary adenocarcinoma cell clones stimulate bone marrow by secretion of granulocyte-macrophage colony-stimulating factor/interleukin-3 activity.

    PubMed

    McGary, C T; Miele, M E; Welch, D R

    1995-12-01

    Circulating neutrophil (polymorphonuclear leukocyte levels rise 50-fold in 13762NF tumor-bearing rats in proportion to the tumor's metastatic potential. Purified tumor-elicited neutrophils enhance metastasis of syngeneic tumor cells when co-injected intravenously; however, circulating and phorbol ester-activated polymorphonuclear neutrophils do not. The purpose of this study was to elucidate the source of tumor-elicited neutrophils in metastatic tumor-bearing rats. We examined the bone marrow in rats bearing tumors of poorly, moderately, and highly metastatic cell clones. Marrow from rats with highly metastatic tumors had increased cellularity (100%), myeloid to erythroid ratio (10:1), and megakaryocytes compared with control rats (cellularity, approximately 80%; myeloid to erythroid ratio, 5:1), with marrows from rats with moderately metastatic tumors having intermediate values. This suggested production of a colony-stimulating factor by the metastatic cells. To confirm this, bone marrow colony formation from control and tumor-bearing rats was compared. Colony number increased in proportion to the metastatic potential of the tumor. Conditioned medium from metastatic cells supported growth of the granulocyte-macrophage colony-stimulating factor/interleukin-3-dependent 32Dcl3 cell line, but media from nonmetastatic or moderately metastatic cells did not. Antibodies to murine granulocyte-macrophage colony-stimulating factor neutralized 32Dcl3 growth in tumor cell conditioned medium. These results suggest production of a granulocyte-macrophage colony-stimulating factor or interleukin-3-like activity by highly metastatic 13762NF clones and implicate a possible role for colony-stimulating factors in regulating the metastatic potential of mammary adenocarcinoma cell clones.

  3. Cranberry proanthocyanidins inhibit esophageal adenocarcinoma in vitro and in vivo through pleiotropic cell death induction and PI3K/AKT/mTOR inactivation

    PubMed Central

    Kresty, Laura A.; Weh, Katherine M.; Zeyzus-Johns, Bree; Perez, Laura N.; Howell, Amy B.

    2015-01-01

    Cranberries are rich in bioactive constituents known to improve urinary tract health and more recent evidence supports cranberries possess cancer inhibitory properties. However, mechanisms of cancer inhibition by cranberries remain to be elucidated, particularly in vivo. Properties of a purified cranberry-derived proanthocyanidin extract (C-PAC) were investigated utilizing acid-sensitive and acid-resistant human esophageal adenocarcinoma (EAC) cell lines and esophageal tumor xenografts in athymic NU/NU mice. C-PAC induced caspase-independent cell death mainly via autophagy and low levels of apoptosis in acid-sensitive JHAD1 and OE33 cells, but resulted in cellular necrosis in acid-resistant OE19 cells. Similarly, C-PAC induced necrosis in JHAD1 cells pushed to acid-resistance via repeated exposures to an acidified bile cocktail. C-PAC associated cell death involved PI3K/AKT/mTOR inactivation, pro-apoptotic protein induction (BAX, BAK1, deamidated BCL-xL, Cytochrome C, PARP), modulation of MAPKs (P-P38/P-JNK) and G2-M cell cycle arrest in vitro. Importantly, oral delivery of C-PAC significantly inhibited OE19 tumor xenograft growth via modulation of AKT/mTOR/MAPK signaling and induction of the autophagic form of LC3B supporting in vivo efficacy against EAC for the first time. C-PAC is a potent inducer of EAC cell death and is efficacious in vivo at non-toxic behaviorally achievable concentrations, holding promise for preventive or therapeutic interventions in cohorts at increased risk for EAC, a rapidly rising and extremely deadly malignancy. PMID:26378019

  4. Dual Role of cAMP in the Transcriptional Regulation of Multidrug Resistance-Associated Protein 4 (MRP4) in Pancreatic Adenocarcinoma Cell Lines

    PubMed Central

    Carozzo, Alejandro; Diez, Federico; Gomez, Natalia; Cabrera, Maia; Shayo, Carina; Davio, Carlos; Fernández, Natalia

    2015-01-01

    Cyclic AMP represents one of the most studied signaling molecules and its role in proliferation and differentiation processes has been well established. Intracellular cAMP levels are tightly regulated where the MRP4 transporter plays a major role. In the present study, we sought to establish whether cAMP modulated MRP4 expression in pancreatic adenocarcinoma cell lines. Quantitative PCR and western blot studies showed that cAMP-increasing agents enhanced MRP4 transcripts and protein levels in PANC-1 cells. Reporter luciferase experiments carried out in pancreatic AR42J cells showed that intracellular cAMP up-regulates MRP4 through an Epac2- and Rap1- mediated mechanism whereas extracellular cAMP reduced MRP4 promoter activity by a MEK/ERK-mediated pathway. Present results show that cAMP regulates MRP4 promoter activity, and further indicate that the balance between intracellular and extracellular cAMP levels determines MRP4 expression. PMID:25790437

  5. Expression of the CXCR4 ligand SDF-1/CXCL12 is prognostically important for adenocarcinoma and large cell carcinoma of the lung.

    PubMed

    Sterlacci, William; Saker, Shereen; Huber, Bettina; Fiegl, Michael; Tzankov, Alexandar

    2016-04-01

    The SDF-1/CXCR4 axis is associated with tumor progression and has been reported as a prognostic parameter, although with conflicting data for non-small cell lung cancer (NSCLC). This study examines a large cohort of clinically and pathologically well-characterized NSCLC patients and includes the activated form of CXCR4 (pCXCR4), which has not been studied in this context so far. SDF-1, CXCR4, and pCXCR4 were assessed immunohistochemically in 371 surgically resected NSCLC using a standardized tissue microarray platform. Extensive clinical and pathological data and a postoperative follow-up period of 17 years enabled detailed correlations. CXCR4 and pCXCR4 were frequently expressed on squamous cell carcinoma. Membranous expression of SDF-1 was a marker of poor prognosis and proved to be an independent prognostic parameter for the entire cohort and for patients with adenocarcinoma (ACA) and large cell carcinoma (LCC). Targeted cancer therapies blocking SDF-1/CXCR4 interaction already exist, and our data suggest that expression of SDF-1, especially on poorer prognosis subgroups of LCC and ACA, indicates patients that might benefit more than others. This should be taken into account when assessing the effectiveness of such targeted approaches for NSCLC patients and could lead to important implications.

  6. Activation of p53/miR-34a Tumor Suppressor Axis by Chinese Herbal Formula JP-1 in A549 Lung Adenocarcinoma Cells

    PubMed Central

    Chow, Jyh-Ming; Lin, Pei-Chun; Hu, Tsai-Shu; Kuo, Hui-Ching; Huang, Jhy-Shrian

    2016-01-01

    Lung cancer is the leading cause of cancer death worldwide; the most common pathologic type is lung adenocarcinoma (LADC). In spite of the recent progress in targeted therapy, most LADC patients eventually expired due to the inevitable recurrence and drug resistance. New complementary agent with evidence-based molecular mechanism is urgently needed. MiR-34a is an important p53 downstream tumor suppressor, which regulates apoptosis, cell-cycle, EMT (epithelial mesenchymal transition), and so forth. Its expression is deficient in many types of cancers including LADC. Here, we show that a Chinese herbal formula JP-1 activates p53/miR-34a axis in A549 human LADC cells (p53 wild-type). Treatment with JP-1 induces p53 and its downstream p21 and BAX proteins as well as the miR-34a, resulting in growth inhibition, colony formation reduction, migration repression, and apoptosis induction. Accordingly, the decreases of miR-34a downstream targets such as CDK6, SIRT1, c-Myc, survivin, Snail, and AXL were observed. Moreover, JP-1 activates AMPKα and reduces mTOR activity, implying its inhibitory effect on the energy-sensitive protein synthesis and cell proliferation signaling. Our results show that JP-1 activates p53/miR-34a tumor suppressor axis and decreases proteins related to proliferation, apoptosis resistance, and metastasis, suggesting its potential as a complementary medicine for LADC treatment. PMID:28074102

  7. Development of novel anti-Kv 11.1 antibody-conjugated PEG-TiO2 nanoparticles for targeting pancreatic ductal adenocarcinoma cells

    NASA Astrophysics Data System (ADS)

    Sette, Angelica; Spadavecchia, Jolanda; Landoulsi, Jessem; Casale, Sandra; Haye, Bernard; Crociani, Olivia; Arcangeli, Annarosa

    2013-12-01

    Titanium dioxide (TiO2) has been widely used in many nanotechnology areas including nanomedicine, where it could be proposed for the photodynamic and sonodynamic cancer therapies. However, TiO2 nanoformulations have been shown to be toxic for living cells. In this article, we report the development of a new delivery system, based on nontoxic TiO2 nanoparticles, further conjugated with a monoclonal antibody against a novel and easily accessible tumor marker, e.g., the Kv 11.1 potassium channel. We synthesized, by simple solvothermal method, dicarboxylic acid-terminated PEG TiO2 nanocrystals (PEG-TiO2 NPs). Anti-Kv 11.1 monoclonal antibodies (Kv 11.1-Mab) were further linked to the terminal carboxylic acid groups. Proper conjugation was confirmed by X-ray photoelectron spectroscopy analysis. Kv 11.1-Mab-PEG-TiO2 NPs efficiently recognized the specific Kv 11.1 antigen, both in vitro and in pancreatic ductal adenocarcinoma (PDAC) cells, which express the Kv 11.1 channel onto the plasma membrane. Both PEG TiO2 and Kv 11.1-Mab-PEG-TiO2 NPs were not cytotoxic, but only Kv 11.1-Mab-PEG-TiO2 NPs were efficiently internalized into PDAC cells. Data gathered from this study may have further applications for the chemical design of nanostructures to be applied for therapeutic purposes in pancreatic cancer.

  8. Phyto-synthesis of silver nanoparticles using Alternanthera tenella leaf extract: an effective inhibitor for the migration of human breast adenocarcinoma (MCF-7) cells.

    PubMed

    Sathishkumar, Palanivel; Vennila, Krishnan; Jayakumar, Rajarajeswaran; Yusoff, Abdull Rahim Mohd; Hadibarata, Tony; Palvannan, Thayumanavan

    2016-04-01

    In this study, phyto-synthesis of silver nanoparticles (AgNPs) was achieved using an aqueous leaf extract of Alternanthera tenella. The phytochemical screening results revealed that flavonoids are responsible for the AgNPs formation. The AgNPs were characterised using UV-visible spectrophotometer, field emission scanning microscopy/energy dispersive X-ray, transmission electron microscopy, fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction. The average size of the nanoparticles was found to be ≈48 nm. The EDX results show that strong signals were observed for the silver atoms. The strong band appearing at 1601-1595 cm(-1) correspond to C-C stretching vibration from dienes in FT-IR spectrum indicating the formation of AgNPs. Human breast adenocarcinoma (MCF-7) cells treated with various concentrations of AgNPs showed a dose-dependent increase in cell inhibition. The IC50 value of the AgNPs was calculated to be 42.5 μg mL(-1). The AgNPs showed a significant reduction in the migration of MCF-7 cells.

  9. Secretomic Analysis Identifies Alpha-1 Antitrypsin (A1AT) as a Required Protein in Cancer Cell Migration, Invasion, and Pericellular Fibronectin Assembly for Facilitating Lung Colonization of Lung Adenocarcinoma Cells*

    PubMed Central

    Chang, Ying-Hua; Lee, Shu-Hui; Liao, I-Chuang; Huang, Shin-Huei; Cheng, Hung-Chi; Liao, Pao-Chi

    2012-01-01

    Metastasis is a major obstacle that must be overcome for the successful treatment of lung cancer. Proteins secreted by cancer cells may facilitate the progression of metastasis, particularly within the phases of migration and invasion. To discover metastasis-promoting secretory proteins within cancer cells, we used the label-free quantitative proteomics approach and compared the secretomes from the lung adenocarcinoma cell lines CL1-0 and CL1-5, which exhibit low and high metastatic properties, respectively. By employing quantitative analyses, we identified 660 proteins, 68 of which were considered to be expressed at different levels between the two cell lines. High levels of A1AT were secreted by CL1-5, and the roles of A1AT in the influence of lung adenocarcinoma metastasis were investigated. Molecular and pathological confirmation demonstrated that altered expression of A1AT correlates with the metastatic potential of lung adenocarcinoma. The migration and invasion properties of CL1-5 cells were significantly diminished by reducing the expression and secretion of their A1AT proteins. Conversely, the migration and invasion properties of CL1-0 cells were significantly increased through the overexpression and secretion of A1AT proteins. Furthermore, the assembly levels of the metastasis-promoting pericellular fibronectin (FN1), which facilitates colonization of lung capillary endothelia by adhering to the cell surface receptor dipeptidyl peptidase IV (DPP IV), were higher on the surfaces of suspended CL1-5 cells than on those of the CL1-0 cells. This discovery reflects previous findings in breast cancer. In line with this finding, FN1 assembly and the lung colonization of suspended CL1-5 cells were inhibited when endogenous A1AT protein was knocked down using siRNA. The major thrust of this study is to demonstrate the effects of coupling the label-free proteomics strategy with the secretomes of cancer cells that differentially exhibit invasive and metastatic

  10. The inhibitory effect of flavonoids on interleukin-8 release by human gastric adenocarcinoma (AGS) cells infected with cag PAI (+) Helicobacter pylori

    PubMed Central

    Szendzielorz, Kornelia; Mazur, Bogdan; Król, Wojciech

    2016-01-01

    Introduction It is well known that the presence of Helicobacter pylori in the stomach induces gastritis and causes an immune response. Exposure of gastric epithelial cell lines to this germ induces the secretion of interleukin-8 (IL-8), which is a potent PMN-activating chemotactic cytokine. Interleukin-8 is usually elevated in gastric biopsy samples of patients with H. pylori-associated gastritis and significantly increases in the supernatant of in vitro cultivated biopsy samples of gastric mucosa with active H. pylori gastritis. Interleukin-8 is an activating factor for leucocytes and other pro-inflammatory factors, free radicals, and proteolytic enzymes. That is why natural compounds potentially useful in therapy are still investigated – among them flavonoids. They reveal anti-oxidative and anti-inflammatory activities and significantly inhibit the gastric mucosa damage. The aim of the study Was the estimation of the anti-inflammatory effects of flavonoids on H. pylori-induced activation of human gastric adenocarcinoma cells (AGS). After infection of AGS cells by cag PAI (+) H. pylori in vitro, secretion of IL-8, effects of flavonoids on viability of AGS cells, and effects of flavonoids on increase of H. pylori were determined. Such flavones as chrysin, quercetin, kaemferide, flavanone, galangin, and kaempferol were examined. Results This study has shown an inhibitory effect of flavonoids on the release of IL-8 through infected AGS cells (except chrysin), and no toxic effects to AGS cells were observed. Galangin revealed antibacterial effects against H. pylori. Flavonoids limit the inflammatory process through the inhibition of IL-8 release in infected AGS cells with H. pylori. The strongest inhibitor of IL-8 was galangin. PMID:27833438

  11. Radio-sensitization effect of an mTOR inhibitor, temsirolimus, on lung adenocarcinoma A549 cells under normoxic and hypoxic conditions

    PubMed Central

    Ushijima, Hiroki; Suzuki, Yoshiyuki; Oike, Takahiro; Komachi, Mayumi; Yoshimoto, Yuya; Ando, Ken; Okonogi, Noriyuki; Sato, Hiro; Noda, Shin-ei; Saito, Jun-ichi; Nakano, Takashi

    2015-01-01

    The mammalian target of rapamycin (mTOR) correlates with cell survival under hypoxia and regulates hypoxia-inducible factor-1α (HIF-1α), a key protein in hypoxia-related events. However, the role of mTOR in radio-resistance has not been fully investigated. Therefore, the effect of mTOR on the radio-resistance of cancer cells under hypoxia was evaluated using the mTOR inhibitor temsirolimus. Clonogenic survival was examined in the A549 human lung adenocarcinoma cell line under normoxia or hypoxia, with or without temsirolimus. An oxygen enhancement ratio (OER) was calculated using the D10 values, the doses giving 10% survival. Western blotting was performed to investigate the effect of temsirolimus on mTOR and the HIF-1α pathway under normoxia and hypoxia. A549 cells showed a radio-resistance of 5.1 and 14.2 Gy, as indicated by D10 values under normoxia and hypoxia, respectively; the OER was 2.8. The cell survival rates under hypoxia and with temsirolimus remarkably decreased compared with those under normoxia. The D10 values of the cells under normoxia and hypoxia were 4.8 and 5.4 Gy, respectively (OER = 1.1). mTOR expression was suppressed by temsirolimus under both normoxia and hypoxia. HIF-1α expression decreased under hypoxia in the presence of temsirolimus. These results suggest that temsirolimus can overcome the radio-resistance induced by hypoxia. When the fact that mTOR acts upstream of HIF-1α is considered, our data suggest that the restoration of radiation sensitivity by temsirolimus under hypoxia may be associated with the suppression of the HIF-1α pathway. Temsirolimus could therefore be used as a hypoxic cell radio-sensitizer. PMID:25887043

  12. Antitumor effects of the flavone chalcone: inhibition of invasion and migration through the FAK/JNK signaling pathway in human gastric adenocarcinoma AGS cells.

    PubMed

    Lin, Su-Hsuan; Shih, Yuan-Wei

    2014-06-01

    Chalcones (benzylideneacetophenone) are cancer-preventive food components found in a human diet rich in fruits and vegetables. In this study, we first report the chemopreventive effect of chalcone in human gastric adenocarcinoma cell lines: AGS. The results showed that chalcone could inhibit the abilities of the adhesion, invasion, and migration by cell-matrix adhesion assay, Boyden chamber invasion/migration assay, and wound-healing assay. Molecular data showed that the effect of chalcone in AGS cells might be mediated via sustained inactivation of the phosphorylation of focal adhesion kinase (FAK) and c-Jun N-terminal kinase 1 and 2 (JNK1/2) signal involved in the downregulation of the expressions of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9). Next, chalcone-treated AGS cells showed tremendous decrease in the phosphorylation and degradation of inhibitor of kappaBα (IκBα), the nuclear level of NF-κB, and the binding ability of NF-κB to NF-κB response element. Furthermore, treating FAK small interfering RNA (FAK siRNA) and specific inhibitor for JNK (SP600125) to AGS cells could reduce the phosphorylation of JNK1/2 and the activity of MMP-2 and MMP-9. Our results revealed that chalcone significantly inhibited the metastatic ability of AGS cells by reducing MMP-2 and MMP-9 expressions concomitantly with a marked reduction on cell invasion and migration through suppressing and JNK signaling pathways. We suggest that chalcone may offer the application in clinical medicine.

  13. MV-NIS Infected Mesenchymal Stem Cells in Treating Patients With Recurrent Ovarian Cancer

    ClinicalTrials.gov

    2017-03-14

    Malignant Ovarian Brenner Tumor; Ovarian Clear Cell Adenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mucinous Adenocarcinoma; Ovarian Seromucinous Carcinoma; Ovarian Serous Adenocarcinoma; Ovarian Transitional Cell Carcinoma; Recurrent Ovarian Carcinoma; Recurrent Primary Peritoneal Car