Science.gov

Sample records for adenocarcinoma dld-1 cells

  1. Down-regulation of telomerase activity in DLD-1 human colorectal adenocarcinoma cells by tocotrienol

    SciTech Connect

    Eitsuka, Takahiro; Nakagawa, Kiyotaka; Miyazawa, Teruo . E-mail: miyazawa@biochem.tohoku.ac.jp

    2006-09-15

    As high telomerase activity is detected in most cancer cells, inhibition of telomerase by drug or dietary food components is a new strategy for cancer prevention. Here, we investigated the inhibitory effect of vitamin E, with particular emphasis on tocotrienol (unsaturated vitamin E), on human telomerase in cell-culture study. As results, tocotrienol inhibited telomerase activity of DLD-1 human colorectal adenocarcinoma cells in time- and dose-dependent manner, interestingly, with {delta}-tocotrienol exhibiting the highest inhibitory activity. Tocotrienol inhibited protein kinase C activity, resulting in down-regulation of c-myc and human telomerase reverse transcriptase (hTERT) expression, thereby reducing telomerase activity. In contrast to tocotrienol, tocopherol showed very weak telomerase inhibition. These results provide novel evidence for First time indicating that tocotrienol acts as a potent candidate regulator of telomerase and supporting the anti-proliferative function of tocotrienol.

  2. Reactive oxygen species mediate arsenic induced cell transformation and tumorigenesis through Wnt/{beta}-catenin pathway in human colorectal adenocarcinoma DLD1 cells

    SciTech Connect

    Zhang Zhuo; Wang Xin; Cheng Senping; Sun Lijuan; Son, Young-Ok; Yao Hua; Li Wenqi; Budhraja, Amit; Li Li; Shelton, Brent J.; Tucker, Thomas; Arnold, Susanne M.; Shi Xianglin

    2011-10-15

    Long term exposure to arsenic can increase incidence of human cancers, such as skin, lung, and colon rectum. The mechanism of arsenic induced carcinogenesis is still unclear. It is generally believed that reactive oxygen species (ROS) may play an important role in this process. In the present study, we investigate the possible linkage between ROS, {beta}-catenin and arsenic induced transformation and tumorigenesis in human colorectal adenocarcinoma cell line, DLD1 cells. Our results show that arsenic was able to activate p47{sup phox} and p67{sup phox}, two key proteins for activation of NADPH oxidase. Arsenic was also able to generate ROS in DLD1 cells. Arsenic increased {beta}-catenin expression level and its promoter activity. ROS played a major role in arsenic-induced {beta}-catenin activation. Treatment of DLD1 cells by arsenic enhanced both transformation and tumorigenesis of these cells. The tumor volumes of arsenic treated group were much larger than those without arsenic treatment. Addition of either superoxide dismutase (SOD) or catalase reduced arsenic induced cell transformation and tumor formation. The results indicate that ROS are involved in arsenic induced cell transformation and tumor formation possible through Wnt/{beta}-catenin pathway in human colorectal adenocarcinoma cell line DLD1 cells. - Highlights: > Arsenic activates NADPH oxidase and increases reactive oxygen species generation in DLD1 cells. > Arsenic increases {beta}-catenin expression. > Inhibition of ROS induced by arsenic reduce {beta}-catenin expression. > Arsenic increases cell transformation in DLD1 cells and tumorigenesis in nude mice. > Blockage of ROS decrease cell transformation and tumorigenesis induced by arsenic.

  3. Estrogen receptor-β mediates the inhibition of DLD-1 human colon adenocarcinoma cells by soy isoflavones.

    PubMed

    Bielecki, Agnieszka; Roberts, Jennifer; Mehta, Rekha; Raju, Jayadev

    2011-01-01

    To understand the relationship between the role of soy isoflavones and estrogen receptor (ER)-β in colon tumorigenesis, we investigated the cellular effects of soy isoflavones (composed of genistein, daidzein, and glycitein) in DLD-1 human colon adenocarcinoma cells with or without ER-β gene silencing by RNA interference (RNAi). Soy isoflavones decreased the expression of proliferating cell nuclear antigen (PCNA), extracellular signal-regulated kinase (ERK)-1/2, AKT, and nuclear factor (NF)-κB. Soy isoflavones dose-dependently caused G2/M cell cycle arrest and downregulated the expression of cyclin A. This was associated with inhibition of cyclin dependent kinase (CDK)-4 and up-regulation of its inhibitor p21(cip1) expressions. ER-β gene silencing lowered soy isoflavone-mediated suppression of cell viability and proliferation. ERK-1/2 and AKT expressions were unaltered and NF-κB was modestly upregulated by soy isoflavones after transient knockdown of ER-β expression. Soy isoflavone-mediated arrest of cells at G2/M phase and upregulation of p21(cip1) expression were not observed when ER-β gene was silenced. These findings suggest that maintaining the expression of ER-β is crucial in mediating the growth-suppressive effects of soy isoflavones against colon tumors. Thus upregulation of ER-β status by specific food-borne ER-ligands such as soy isoflavones could potentially be a dietary prevention or therapeutic strategy for colon cancer. PMID:21161820

  4. Metronidazole Decreases Viability of DLD-1 Colorectal Cancer Cell Line

    PubMed Central

    Sadowska, Anna; Krętowski, Rafał; Szynaka, Beata; Cechowska-Pasko, Marzanna

    2013-01-01

    Abstract The aim of our study was to evaluate the impact of metronidazole (MTZ) on DLD-1 colorectal cancer cell (CRC) line. Toxicity of MTZ was determined by MTT test. Cells were incubated with MTZ used in different concentrations for 24, 48, and 72 hours. The effect of MTZ on DNA synthesis was measured as [3H]-thymidine incorporation. The morphological changes in human DLD-1 cell line were defined by transmission electron microscope OPTON 900. The influence of MTZ on the apoptosis of DLD-1 cell lines was detected by flow cytometry and fluorescence microscopy, while cell concentration, volume, and diameter were displayed by Scepter Cell Counter from Millipore. Our results show that cell viability was diminished in all experimental groups in comparison with the control, and the differences were statistically significant. We did not find any significant differences in [3H]-thymidine incorporation in all experimental groups and times of observation. Cytofluorimetric assays demonstrated a statistically significant increase of apoptotic rate in MTZ concentrations 10 and 50 μg/mL after 24 hours; 0.1, 10, 50, and 250 μg/mL after 48 hours; and in all concentrations after 72 hours compared with control groups. In the ultrastructural studies, necrotic or apoptotic cells were occasionally seen. In conclusion, MTZ affects human CRC cell line viability. The reduction of cell viability was consistent with the apoptotic test. PMID:23777253

  5. Accelerated degradation of caspase-8 protein correlates with TRAIL resistance in a DLD1 human colon cancer cell line.

    PubMed

    Zhang, Lidong; Zhu, Hongbo; Teraishi, Fuminori; Davis, John J; Guo, Wei; Fan, Zhen; Fang, Bingliang

    2005-06-01

    The tumor-selective cytotoxic effect of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) makes TRAIL an attractive candidate as an anticancer agent. However, resistance to TRAIL poses a challenge in anticancer therapy with TRAIL. Therefore, characterizing the mechanisms of resistance and developing strategies to overcome the resistance are important steps toward successful TRAIL-mediated cancer therapy. In this study, we investigated mechanisms of acquired TRAIL resistance in a colon cancer DLD1 cell line. Compared with the TRAIL-susceptible DLD1 cell line, TRAIL-resistant DLD1/TRAIL-R cells have a low level of caspase-8 protein, but not its mRNA. Suppression of caspase-8 expression by siRNA in parental DLD1 cells led to TRAIL resistance. Restoration of caspase-8 protein expression by stable transfection rendered the DLD1/TRAIL-R cell line fully sensitive to TRAIL protein, suggesting that the low level of caspase-8 protein expression might be the culprit in TRAIL resistance in DLD1/TRAIL-R cells. Sequencing analysis of the caspase-8 coding region revealed a missense mutation that is present in both TRAIL-sensitive and TRAIL-resistant DLD1 cells. Subsequent study showed that the degradation of caspase-8 protein was accelerated in DLD1/TRAIL-R cells compared to parental DLD1 cells. Thus, accelerated degradation of caspase-8 protein is one of the mechanisms that lead to TRAIL resistance. PMID:16036110

  6. Silencing NPAS2 promotes cell growth and invasion in DLD-1 cells and correlated with poor prognosis of colorectal cancer

    SciTech Connect

    Xue, Xiaofeng; Liu, Fei; Han, Ye; Li, Pu; Yuan, Bin; Wang, Xu; Chen, Yan; Kuang, Yuting; Zhi, Qiaoming; Zhao, Hong

    2014-07-25

    Highlights: • NPAS2 mRNA was down-regulated in clinical colorectal cancer tissues. • Low NPAS2 level was associated with the tumor size, TNM stage and distance metastasis in CRC. • Silencing NPAS2 promoted cell proliferation, the wound healing and cell invasion abilities. - Abstract: Emerging evidences show that circadian rhythm disorder is an important factor of tumor initiation and development. Neuronal PAS domain protein2 (NPAS2), which is the largest circadian gene, has been proved to be a novel prognostic biomarker in breast cancer and non-Hodgkin’s lymphoma. However, the potential functions of NPAS2 in colorectal cancer are still unknown. In our present study, we detected the mRNA expressions of NPAS2 in 108 CRC patients by RT-PCR, and found that NPAS2 expression was significantly down-regulated in tumor tissues than that in NATs. Clinicopathologic analysis revealed that low expression of NPAS2 was associated with the tumor size, TNM stage and tumor distance metastasis in colorectal cancer (p < 0.05). Furthermore, we effectively down-regulated NPAS2 mRNA expression by transfecting RNA interfere fragments into DLD-1 cells, and our results in vitro demonstrated that silencing NPAS2 expression could promote cell proliferation, cell invasion and increase the wound healing ability (p < 0.05). However, down-regulating NPAS2 expression did not influence the apoptotic rate in DLD-1 cells (p > 0.05). In conclusion, our study suggested that NPAS2, functioned as a potential tumor suppressor gene, could serve as a promising target and potential prognostic indicator for colorectal cancer.

  7. ERβ-dependent neuroglobin up-regulation impairs 17β-estradiol-induced apoptosis in DLD-1 colon cancer cells upon oxidative stress injury.

    PubMed

    Fiocchetti, Marco; Camilli, Giulia; Acconcia, Filippo; Leone, Stefano; Ascenzi, Paolo; Marino, Maria

    2015-05-01

    Besides other mechanism(s) 17β-estradiol (E2) facilitates neuronal survival by increasing, via estrogen receptor β (ERβ), the levels of neuroglobin (NGB) an anti-apoptotic protein. In contrast, E2 could exert protective effects in cancer cells by activating apoptosis when the ERβ level prevails on that of ERα as in colon cancer cell lines. These apparently contrasting results raise the possibility that E2-induced NGB up-regulation could regulate the ERβ activities shunning this receptor subtype to trigger an apoptotic cascade in neurons but not in non-neuronal cells. Here, human colorectal adenocarcinoma cell line (DLD-1) that only expresses ERβ and HeLa cells transiently transfected with ERβ encoding vector has been used to verify this hypothesis. In addition, neuroblastoma SK-N-BE cells were used as positive control. Surprisingly, E2 also induced NGB up-regulation, in a dose- and time-dependent manner, in DLD-1 cells. The ERβ-mediated activation of p38/MAPK was necessary for this E2 effect. E2 induced NGB re-allocation in mitochondria where, subsequently to an oxidative stress injury (i.e., 100μM H2O2), NGB interacted with cytochrome c preventing its release into the cytosol and the activation of an apoptotic cascade. As a whole, these results demonstrate that E2-induced NGB up-regulation could act as an oxidative stress sensor, which does not oppose to the pro-apoptotic E2 effect in ERβ-containing colon cancer cells unless a rise of oxidative stress occurs. These results support the concept that oxidative stress plays a critical role in E2-induced carcinogenesis and further open an important scenario to develop novel therapeutic strategies that target NGB against E2-related cancers. PMID:25683270

  8. Perfluorooctanoic acid enhances colorectal cancer DLD-1 cells invasiveness through activating NF-κB mediated matrix metalloproteinase-2/-9 expression

    PubMed Central

    Miao, Chen; Ma, Jun; Zhang, Yajie; Chu, Yimin; Li, Ji; Kuai, Rong; Wang, Saiyu; Peng, Haixia

    2015-01-01

    Objective: Perfluorooctanoic acid (PFOA) is widely used in consumer products and detected in human serum. Our study meant to elucidate the uncovered molecular mechanisms underlying the PFOA induced colorectal cancer cell DLD-1 invasion and matrix metalloproteinases (MMP) expression. Methods and results: Trans-well filter assay appeared that PFOA treatment stimulated DLD-1 cells invasion significantly. Meanwhile, the results of luciferase reporter, quantitative real-time PCR, western blotting, and gelatin zymography showed that PFOA induced MMP-2/-9 expression and enzyme activation levels consistently (P < 0.05 each). Subsequently, western blotting and immunofluorescence assay demonstrated that PFOA could enhance nuclear factor kappaB (NF-κB) activity by stimulating NF-κB translocation into nuclear in DLD-1 cells. Furthermore, JSH-23, a well-known NF-κB inhibitor, could reverse the PFOA induced colorectal cancer cell invasion and MMP-2/-9 expression. Conclusions: Our study confirmed that PFOA could induce colorectal cancer cell DLD-1 invasive ability and MMP-2/-9 expression through activating NF-κB, which deserves more concerns on environmental pollutant-resulted public health risk. PMID:26617761

  9. Aqueous extracts of Fructus Ligustri Lucidi enhance the sensitivity of human colorectal carcinoma DLD-1 cells to doxorubicin-induced apoptosis via Tbx3 suppression.

    PubMed

    Zhang, Jin-fang; He, Ming-liang; Qi Dong; Xie, Wei-dong; Chen, Yang-chao; Lin, Marie C M; Leung, Ping-chung; Zhang, Ya-ou; Kung, Hsiang-fu

    2011-03-01

    Chemoresistance has imposed a great challenge for cancer therapy. Fructus Ligustri Lucidi (FLL) is one of the commonest Chinese herbs that has been used for thousand years. This study shows that the aqueous extract of FLL (AFLL) enhanced the sensitivity of DLD-1 colon cancer cells to doxorubicin-induced apoptosis. Furthermore, Tbx3 expression was found to be suppressed by AFLL when the expression of tumor suppressor genes p14 and p53 were activated. Therefore, reduction of Tbx3 rescued the dysregulated P14(ARF)-P53 signaling, which in turn contributed to the sensitivity of DLD-1 cells to doxorubicin-induced apoptosis. As a conclusion, the findings suggest that FLL has a potential of being an appealing agent for auxiliary chemotherapy in treatment of human colorectal carcinoma. PMID:20702496

  10. Epithelial DLD-1 Cells with Disrupted E-cadherin Gene Retain the Ability to Form Cell Junctions and Apico-basal Polarity.

    PubMed

    Fujiwara, Miwako; Fujimura, Kihito; Obata, Shuichi; Yanagibashi, Ryo; Sakuma, Tetsushi; Yamamoto, Takashi; Suzuki, Shintaro T

    2015-01-01

    Gene editing methods were applied to the study of E-cadherin function in epithelial cells. The E-cadherin gene in epithelial DLD-1 cells was ablated using TALEN. The resultant cells showed round fibroblast-like morphology and had almost no Ca(2+)-dependent cell aggregation activity. E-cadherin re-expression in the knockout cells restored epithelial cell morphology and strong Ca(2+)-dependent cell-cell adhesion activity, indicating that the knockout cells retained the ability to support cadherin function. The knockout cells showed partial localization of desmoplakin and ZO-1 at intercellular contact sites. The transfectants expressing mutant E-cadherin lacking the cytoplasmic domain showed clear localization of desmoplakin and ZO-1 at cell-cell contact sites, although the cells had only weak Ca(2+)-dependent cell adhesion activity. Electron microscopy revealed the formation of intercellular junctions and apico-basal polarity in these cells. A portion of these cells occasionally formed an epithelial-like structure after prolonged culture. When the cells were treated with blebbistatin, the localization was enhanced. However, the localization was incomplete and contained defects. Double-knockout MDCK cells for the E-cadherin and cadherin-6 genes showed similar results, suggesting that the above properties were general. The present results showed that an epithelial-like structure could be formed without E-cadherin, but that the construction of mature epithelia requires E-cadherin. PMID:26289297

  11. Inhibition of inducible nitric oxide synthase in the human intestinal epithelial cell line, DLD-1, by the inducers of heme oxygenase 1, bismuth salts, heme, and nitric oxide donors

    PubMed Central

    Cavicchi, M; Gibbs, L; Whittle, B

    2000-01-01

    BACKGROUND—The inducible isoform of nitric oxide synthase (iNOS) may be involved in the mucosal injury associated with inflammatory bowel disease (IBD). In contrast with iNOS, the inducible heme oxygenase 1 (HO-1) is considered to act as a protective antioxidant system.
AIMS—To evaluate the effects of the known HO-1 inducers, cadmium and bismuth salts, heme, and nitric oxide (NO) donors, on iNOS activity, and expression in the human intestinal epithelial cell line DLD-1.
METHODS—iNOS activity was assessed by the Griess reaction and the radiochemical L-arginine conversion assay. iNOS mRNA and iNOS protein expression were determined by northern and western blotting, respectively.
RESULTS—Cytokine exposure led to induction of iNOS activity, iNOS mRNA, and iNOS protein expression. Preincubation of DLD-1 cells with heme (1-50 µM) inhibited cytokine induced iNOS activity in a concentration dependent manner. This inhibitory effect was abolished by the HO-1 specific inhibitor tin protoporphyrin. Preincubation with NO donors sodium nitroprusside (SNP 1-1000 µM) or S-nitroso-acetyl-penicillamine (SNAP 1-1000 µM), or with the heavy metals cadmium chloride (10-40 µM), bismuth citrate, or ranitidine bismuth citrate (10-3000 µM) inhibited iNOS activity in a concentration dependent manner. Moreover, SNP and heme abolished cytokine induced iNOS protein as well as iNOS mRNA expression, whereas cadmium chloride did not modify iNOS protein expression.
CONCLUSIONS—Heme, the heavy metals cadmium and bismuth, as well as NO donors, are potent inhibitors of cytokine induced iNOS activity. Heme and NO donors act at the transcriptional level inhibiting iNOS mRNA expression. Such findings suggest the potential for interplay between the iNOS and HO-1 systems, which may modulate the progress of IBD.


Keywords: inducible nitric oxide synthase; nitric oxide; colonic epithelial cells; cytokines; heme oxygenase-1; bismuth citrate PMID:11076874

  12. A human gallbladder adenocarcinoma cell line.

    PubMed

    Johzaki, H; Iwasaki, H; Nishida, T; Isayama, T; Kikuchi, M

    1989-12-01

    A cell strain (FU-GBC-1) was established from cancerous ascites of a 68-year-old male patient with well-differentiated adenocarcinoma of the gallbladder. By light and electron microscopy, the cultured cells showed the morphologic features of adenocarcinoma characterized by gland-like structures, intracellular microcystic spaces, and mucous production. Immunoperoxidase stains showed that FU-GBC-1 cells expressed several epithelial tumor antigens including CA 19-9, carcinoembryonic antigen (CEA), and epithelial membrane antigen (EMA). The cell strain has been in continuous culture up to passage 44 for 1 1/2 years, with the population doubling time of 120 hours. The cytogenetic analysis by a G-band technique showed a constant loss of chromosome Y in FU-GBC-1 cells. The modal chromosome number at passage 12 was 82 with a range of 77 to 85. Flow cytometry with an ethidium bromide technique additionally confirmed aneuploid DNA content (4C) in the cultured cells at passage 12 and 35. Inoculation of FU-GBC-1 cells into the dermis of BALB/c nude mice produced transplantable adenocarcinoma identical to the original tumor. Because no continuous cell lines of the well-differentiated type of gallbladder adenocarcinoma have been reported in the literature currently, the newly established cell strain we report may yield a useful system for studying the morphologic and biologic characteristics of gallbladder adenocarcinoma. PMID:2680052

  13. A human gallbladder adenocarcinoma cell line.

    PubMed

    Morgan, R T; Woods, L K; Moore, G E; McGavran, L; Quinn, L A; Semple, T U

    1981-06-01

    A continuous cell line, COLO 346, was established from a liver metastasis in a patient with adenocarcinoma of the gallbladder. COLO 346 grew as an adherent monolayer of pleomorphic epithelioid cells. COLO 346 cells produced esterone, but no estradiol, progesterone, or cortisol. No adrenocorticotropic hormones, beta-subunit of human chorionic gonadotropin, carcinoembryonic antigen, or alpha-fetoprotein production by the cells was detected. Cell doubling time was 36 h. Seven allelic isozymes were assayed. COLO 346 had a chromosome mode of 74 at 21 months postestablishment with 6 marker chromosomes present in 100% of the cells analyzed. COLO 346 has been in continuous culture for over 2 yr and is available to other investigators for their studies. PMID:7262900

  14. Targeting cancer cell metabolism in pancreatic adenocarcinoma

    PubMed Central

    Cohen, Romain; Neuzillet, Cindy; Tijeras-Raballand, Annemilaï; Faivre, Sandrine; de Gramont, Armand; Raymond, Eric

    2015-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is expected to become the second leading cause of cancer death by 2030. Current therapeutic options are limited, warranting an urgent need to explore innovative treatment strategies. Due to specific microenvironment constraints including an extensive desmoplastic stroma reaction, PDAC faces major metabolic challenges, principally hypoxia and nutrient deprivation. Their connection with oncogenic alterations such as KRAS mutations has brought metabolic reprogramming to the forefront of PDAC therapeutic research. The Warburg effect, glutamine addiction, and autophagy stand as the most important adaptive metabolic mechanisms of cancer cells themselves, however metabolic reprogramming is also an important feature of the tumor microenvironment, having a major impact on epigenetic reprogramming and tumor cell interactions with its complex stroma. We present a comprehensive overview of the main metabolic adaptations contributing to PDAC development and progression. A review of current and future therapies targeting this range of metabolic pathways is provided. PMID:26164081

  15. Effect of anthralin on cell viability in human prostate adenocarcinoma.

    PubMed

    Raevskaya, A A; Gorbunova, S L; Savvateeva, M V; Severin, S E; Kirpichnikov, M P

    2012-07-01

    The study revealed the key role of serine protease hepsin activity in transition of in situ prostate adenocarcinoma into the metastasizing form. Inhibition of hepsin activity suppresses the invasive growth of the tumor. Hepsin is an convenient target for pharmacological agents, so the study of its inhibitory mechanisms is a promising avenue in drug development. Assay of proteolytic activity in various tumor cell lines in vitro showed that this activity in prostate adenocarcinoma cells significantly surpasses proteolytic activity in other examined tumor cell lines. Selective cytotoxic action of anthralin, an inhibitor of hepsin activity, on human adenocarcinoma cells was demonstrated in comparison with other tumor cell lines. PMID:22866312

  16. Clear cell adenocarcinoma arising from adenomyosis.

    PubMed

    Hirabayashi, Kenichi; Yasuda, Masanori; Kajiwara, Hiroshi; Nakamura, Naoya; Sato, Shigeru; Nishijima, Yoshihiro; Mikami, Mikio; Osamura, Robert Yoshiyuki

    2009-05-01

    A 73-year-old postmenopausal Japanese woman presented with a complaint of slight fever and weight loss. An elevated level of CA125 in the blood favored a diagnosis of malignant uterine body tumor, but was not confirmed by endometrial cytology and biopsy. Resection of the uterus revealed a solid whitish tumor in the myometrium that was diagnosed as clear cell adenocarcinoma (CCA) arising from adenomyosis. There were transitions between endometrial epithelium of adenomyosis, noninvasive CCA, and invasive CCA. Immunohistochemical expression of hepatocyte nuclear factor-1beta supported the diagnosis of CCA. Only one other English language document pertaining to CCA arising from adenomyosis exists. Malignant tumor arising from adenomyosis should be considered as a differential diagnosis when the serum level of tumor markers such as CA125 is high and when the tumor is intramyometrial. PMID:19620944

  17. [Gastric signet ring cell adenocarcinoma: A distinct entity].

    PubMed

    Tabouret, Tessa; Dhooge, Marion; Rouquette, Alexandre; Brezault, Catherine; Beuvon, Frédéric; Chaussade, Stanislas; Coriat, Romain

    2014-04-01

    Gastric signet ring cell carcinoma (GSRC) is a distinct entity. Their incidence is increasing. The pathologist plays a central role in the identification of this entity. Diagnosis is based on an adenocarcinoma containing a majority of signet ring cells (above 50 %). The prognosis of GSRC is the same as gastric adenocarcinoma while GSRC appeared more aggressive. Signet ring cells present a low sensitivity to chemotherapy. This review aimed to discuss the histological, the prognostic and the therapeutic aspect of this entity. PMID:24440764

  18. Clear cell adenocarcinoma of the bladder with intravesical cervical invasion.

    PubMed

    Marchalik, Daniel; Krishnan, Jayashree; Verghese, Mohan; Venkatesan, Krishnan

    2015-01-01

    A 26-year-old woman with a complicated urological and gynecological history with uterine didelphys with bilaterally inserting intravesical cervical oses presented with cyclical haematuria. Work up revealed a mass in the ectopic cervical os and adjacent bladder wall. Subsequent resection confirmed a clear cell adenocarcinoma of urological origin with invasion into neighbouring os. PMID:26109625

  19. Antiproliferative activity of New Zealand propolis and phenolic compounds vs human colorectal adenocarcinoma cells.

    PubMed

    Catchpole, Owen; Mitchell, Kevin; Bloor, Stephen; Davis, Paul; Suddes, Amanda

    2015-10-01

    New Zealand propolis is a "European" type propolis obtained by honey bees mainly from exudates of poplar. European type propolis is known to have anti-inflammatory and anti-cancer properties and this activity has been attributed to some of the main constituents such as chrysin and CAPE (caffeic acid phenethyl ester). As part of our studies on how New Zealand propolis might benefit gastro-intestinal health, we carried out in vitro bioactivity-guided fractionation of "Bio30™" propolis using both anti-inflammatory (TNF-α, COX-1, COX-2) and anti-colon cancer (DLD-1 colon cancer cell viability) assays; and determined the phenolic compounds responsible for the activity. The New Zealand wax-free Bio30™ propolis tincture solids had very high levels of the dihydroflavonoids pinocembrin and pinobanksin-3-O-acetate, and high levels of the dimethylallyl, benzyl and 3-methyl-3-butenyl caffeates relative to CAPE. The DLD-1 assays identified strong anti-proliferative activity associated with these components as well as chrysin, galangin and CAPE and a number of lesser known or lower concentration compounds including benzyl ferulate, benzyl isoferulate, pinostrobin, 5-phenylpenta-2,4-dienoic acid and tectochrysin. The phenolic compounds pinocembrin, pinobanksin-3-O-acetate, tectochrysin, dimethylallyl caffeate, 3-methyl-3-butenyl caffeate, benzyl ferulate and benzyl isoferulate also showed good broad spectrum activity in anti-proliferative assays against three other gastro-intestinal cancer cell lines; HCT-116 colon carcinoma, KYSE-30 oesophageal squamous cancer, and NCI-N87 gastric carcinoma. Activity is also observed in anti-inflammatory assays although it appears to be limited to one of the first cytokines in the inflammatory cascade, TNF-α. PMID:26347954

  20. Vitamin D inhibition of lung adenocarcinoma cell proliferation in vitro.

    PubMed

    Li, Rong; Lou, Yuqing; Zhang, Weiyan; Dong, Qianggang; Han, Baohui

    2014-11-01

    Vitamin D has the capability to inhibit tumor cell proliferation and promote tumor cell apoptosis but whether this mechanism exists in lung adenocarcinoma cells remains to be studied. Our objective is to explore whether vitamin D has the capability to inhibit lung adenocarcinoma cell proliferation and synergize with cisplatin. Our method was to explore the effect of different concentrations of 1,25(OH)2D3 with or without cisplatin on lung adenocarcinoma cells by detecting cell proliferation rates at different time points. 1,25(OH)2D3 was capsulated with nanomaterial before acting on lung adenocarcinoma cells, and cell proliferation rates at different time points were detected with the CCK-8 method. When vitamin D was applied at a concentration of 1 × 10(-7) and 1 × 10(-6) mol/L on A549, PC9, SPC-A1, and H1650 cells for 72 h, no inhibition occurred on cell proliferation. Between the concentrations of 1 × 10(-5) and 0.5 × 10(-5) mol/L, inhibition on cell proliferation increased with drug action time. Between the concentration of 2.5 × 10(-5) and 0.03 × 10(-5) mol/L, inhibition on cell proliferation increased with increasing drug concentration. Analysis using bivariate correlations showed that the correlation coefficient of the proliferation inhibition rate and drug content was 0.580 (p < 0.0001). The correlation coefficient of proliferation inhibition rate and the drug action time was 0.379 (p = 0.01). The combined use of vitamin D and dichlorodiammine-platinum(II) (DDP) significantly increased the inhibition rate on A549 cell proliferation, which peaked after culturing for 96 h (Table 4). Further analysis using bivariate correlations showed that the correlation coefficient between proliferation inhibition rate and DDP concentration was 0.319 (p < 0.0001). The correlation coefficient of the proliferation inhibition rate and vitamin D concentration was 0.269 (p < 0.0001). The correlation coefficient of proliferation inhibition and drug action time was 0.221(p

  1. Silencing Aurora-A with siRNA inhibits cell proliferation in human lung adenocarcinoma cells.

    PubMed

    Zhong, Ning; Shi, Shunbin; Wang, Hongzhen; Wu, Guangzhou; Wang, Yunliang; Ma, Qiang; Wang, Hongwei; Liu, Yuanhua; Wang, Jinzhi

    2016-09-01

    Aurora kinase A (AURKA) is an oncogenic serine/threonine kinase, it plays important roles in tumorigenesis and chemoresistance. In this study, we investigated the expression of AURKA in lung adenocarcinoma tissues, the role of small interference RNA targeting AURKA on growth, cell cycle, and apoptosis of lung adenocarcinoma cell lines in vitro. The AURKA is highly expressed in lung adenocarcinoma tissues and human lung adenocarcinoma cell lines. Lentivirus-mediated short hairpin RNA (shRNA) was used to knock down AURKA expression in human lung adenocarcinoma cell lines H1299 and A549. The results indicated that depletion of AURKA could inhibit cell growth, cause cell cycle arrest and apoptosis. The potential mechanisms of AURKA inhibition induced cell cycle arrest and apoptosis are associated with downregulated RAF-1, CCND2, CCND3, CDK4, PAK4, EGFR and upregulated WEE1 expression. Furthermore, AURKA knockdown cooperated with vincristine (VCR) to repress A549 cell proliferation. Therefore, AURKA plays important roles in the proliferation of human lung adenocarcinoma cells, which suggests that AURKA could be a promising tool for lung adenocarcinoma therapy. PMID:27571708

  2. Epithelial-Mesenchymal Transition Protein Expression in Basal Cell Adenomas and Basal Cell Adenocarcinomas.

    PubMed

    Tesdahl, Brennan A; Wilson, Thomas C; Hoffman, Henry T; Robinson, Robert A

    2016-06-01

    Basal cell adenomas and basal cell adenocarcinomas show marked histomorphologic similarity and are separated microscopically primarily by the invasive characteristics of the adenocarcinomas. We wished to explore potential differences in the expression of epithelial-mesenchymal transition associated proteins in these two tumor types. A tissue microarray was constructed utilizing 29 basal cell adenomas and 16 basal cell adenocarcinomas. Immunohistochemical expression of E-cadherin, beta-catenin, Twist 1 and vimentin were investigated. Both tumors expressed all proteins in a relatively similar manner. Nuclear beta-catenin was essentially limited to the abluminal cell populations in both tumor types. E-cadherin was limited largely to luminal locations but was more prevalent in the adenocarcinomas as compared to the adenomas. Primarily abluminal expression for vimentin was seen, sometimes present in an apical dot-like pattern. Distinct populations of cellular expression of these four markers of epithelial mesenchymal transition were present but were similar in locations in both tumors with no patterns discerned to separate basal cell adenoma from basal cell adenocarcinoma. Given these findings, the mechanisms by which basal cell adenocarcinoma is able to invade while its counterpart, basal cell adenoma can not, may be more complex than in other tumor types. PMID:26442856

  3. Biological and clinical relevance of stem cells in pancreatic adenocarcinoma

    PubMed Central

    Rasheed, Zeshaan A; Matsui, William

    2013-01-01

    Cancer stem cells (CSC) have been identified in a growing number of human malignancies. CSC are functionally defined by their ability to self-renew and recapitulate tumors in the ectopic setting, and a growing number of studies have shown that they display other functional characteristics, such as invasion and drug resistance. These unique functional properties implicate a role for CSC in clinical consequences, such as initial tumor formation, relapse following treatment, metastasis, and resistance, suggesting they are a major factor in directing clinical outcomes. Pancreatic adenocarcinoma is a highly-aggressive disease with a propensity for early metastasis and drug resistance. Tumorigenic pancreatic cancer cells have been identified using the cell surface antigens CD44, CD24, and CD133, as well as the high expression of aldehyde dehydrogenase (ALDH). In vitro and in vivo studies have shown that ALDH- and CD133-expressing pancreatic CSC have a greater propensity for metastasis, and ALDH-expressing CSC have been shown to be resistant to conventional chemotherapy. In clinical samples from patients with resected pancreatic adenocarcinoma, the presence of ALDH-expressing CSC was associated with worse overall survival. The development of CSC-targeting therapies might be important in changing the clinical outcomes of patients with this disease, and others and we have begun to identify novel compounds that block CSC function. This review will discuss the biological and clinical relevance of CSC in pancreatic cancer, and will discuss novel therapeutic strategies to target them. PMID:22320910

  4. Trefoil factor 3 as a novel biomarker to distinguish between adenocarcinoma and squamous cell carcinoma.

    PubMed

    Wang, Xiao-Nan; Wang, Shu-Jing; Pandey, Vijay; Chen, Ping; Li, Qing; Wu, Zheng-Sheng; Wu, Qiang; Lobie, Peter E

    2015-05-01

    In carcinoma, such as of the lung, the histological subtype is important to select an appropriate therapeutic strategy for patients. However, carcinomas with poor differentiation cannot always be distinguished on the basis of morphology alone nor on clinical findings. Hence, delineation of poorly differentiated adenocarcinoma and squamous cell carcinoma, the 2 most common epithelial-origin carcinomas, is pivotal for selection of optimum therapy. Herein, we explored the potential utility of trefoil factor 3 (TFF3) as a biomarker for primary lung adenocarcinoma and extrapulmonary adenocarcinomas derived from different organs. We observed that 90.9% of lung adenocarcinomas were TFF3-positive, whereas no expression of TFF3 was observed in squamous cell carcinomas. The subtype of lung carcinoma was confirmed by four established biomarkers, cytokeratin 7 and thyroid transcription factor 1 for adenocarcinoma and P63 and cytokeratin 5/6 for squamous cell carcinoma. Furthermore, expression of TFF3 mRNA was observed by quantitative PCR in all of 11 human lung adenocarcinoma cell lines and highly correlated with markers of the adenocarcinomatous lineage. In contrast, little or no expression of TFF3 was observed in 4 lung squamous cell carcinoma cell lines. By use of forced expression, or siRNA-mediated depletion of TFF3, we determined that TFF3 appeared to maintain rather than promote glandular differentiation of lung carcinoma cells. In addition, TFF3 expression was also determined in adenocarcinomas from colorectum, stomach, cervix, esophagus, and larynx. Among all these extrapulmonary carcinomas, 93.7% of adenocarcinomas exhibited TFF3 positivity, whereas only 2.9% of squamous cell carcinomas were TFF3-positive. Totally, 92.9% of both pulmonary and extrapulmonary adenocarcinomas exhibited TFF3 positivity, whereas only 1.5% of squamous cell carcinomas were TFF3-positive. In conclusion, TFF3 is preferentially expressed in adenocarcinoma and may function as an additional

  5. Clear Cell Adenocarcinoma of the Urethra: Review of the Literature

    PubMed Central

    Venyo, Anthony Kodzo-Grey

    2015-01-01

    Background. Clear cell adenocarcinoma of the urethra (CCAU) is extremely rare and a number of clinicians may be unfamiliar with its diagnosis and biological behaviour. Aims. To review the literature on CCAU. Methods. Various internet databases were used. Results/Literature Review. (i) CCAU occurs in adults and in women in the great majority of cases. (ii) It has a particular association with urethral diverticulum, which has been present in 56% of the patients; is indistinguishable from clear cell adenocarcinoma of the female genital tract but is not associated with endometriosis; and probably does not arise by malignant transformation of nephrogenic adenoma. (iii) It is usually, readily distinguished from nephrogenic adenoma because of greater cytological a-typicality and mitotic activity and does not stain for prostate-specific antigen or prostatic acid phosphatase. (iv) It has been treated by anterior exenteration in women and cystoprostatectomy in men and at times by radiotherapy; chemotherapy has rarely been given. (v) CCAU is aggressive with low 5-year survival rates. (vi) There is no consensus opinion of treatment options that would improve the prognosis. Conclusions. Few cases of CCAU have been reported. Urologists, gynaecologists, pathologists, and oncologists should report cases of CCAU they encounter and enter them into a multicentric trial to determine the best treatment options that would improve the prognosis. PMID:25685552

  6. Early Human Prostate Adenocarcinomas Harbor Androgen-Independent Cancer Cells

    PubMed Central

    Fiñones, Rita R.; Yeargin, Jo; Lee, Melissa; Kaur, Aman Preet; Cheng, Clari; Sun, Paulina; Wu, Christopher; Nguyen, Catherine; Wang-Rodriguez, Jessica; Meyer, April N.; Baird, Stephen M.; Donoghue, Daniel J.; Haas, Martin

    2013-01-01

    Although blockade of androgen receptor (AR) signaling represents the main treatment for advanced prostate cancer (PrCa), many patients progress to a lethal phenotype of “Castration-Resistant” prostate cancer (CR-PrCa). With the hypothesis that early PrCa may harbor a population of androgen-unresponsive cancer cells as precursors to CR-recurrent disease, we undertook the propagation of androgen-independent cells from PrCa-prostatectomy samples of early, localized (Stage-I) cases. A collection of 120 surgical specimens from prostatectomy cases was established, among which 54 were adenocarcinomas. Hormone-free cell culture conditions were developed allowing routine propagation of cells expressing prostate basal cell markers and stem/progenitor cell markers, and which proliferated as spheres/spheroids in suspension cultures. Colonies of androgen-independent epithelial cells grew out from 30/43 (70%) of the adenocarcinoma cases studied in detail. Fluorescence microscopy and flow cytometry showed that CR-PrCa cells were positive for CD44, CD133, CK5/14, c-kit, integrin α2β1, SSEA4, E-Cadherin and Aldehyde Dehydrogenase (ALDH). All 30 CR-PrCa cell cultures were also TERT-positive, but negative for TMPRSS2-ERG. Additionally, a subset of 22 of these CR-PrCa cell cultures was examined by orthotopic xenografting in intact and castrated SCID mice, generating histologically typical locally-invasive human PrCa or undifferentiated cancers, respectively, in 6–8 weeks. Cultured PrCa cells and orthotopically-induced in vivo cancers lacked PSA expression. We report here the propagation of Cancer Initiating Cells (CIC) directly from Stage I human PrCa tissue without selection or genetic manipulation. The propagation of stem/progenitor-like CR-PrCa cells derived from early human prostate carcinomas suggests the existence of a subpopulation of cells resistant to androgen-deprivation therapy and which may drive the subsequent emergence of disseminated CR-PrCa. PMID:24086346

  7. Stem cells as the root of pancreatic ductal adenocarcinoma

    SciTech Connect

    Balic, Anamaria; Dorado, Jorge; Alonso-Gomez, Mercedes; Heeschen, Christopher

    2012-04-01

    Emerging evidence suggests that stem cells play a crucial role not only in the generation and maintenance of different tissues, but also in the development and progression of malignancies. For the many solid cancers, it has now been shown that they harbor a distinct subpopulation of cancer cells that bear stem cell features and therefore, these cells are termed cancer stem cells (CSC) or tumor-propagating cells. CSC are exclusively tumorigenic and essential drivers for tumor progression and metastasis. Moreover, it has been shown that pancreatic ductal adenocarcinoma does not only contain one homogeneous population of CSC rather than diverse subpopulations that may have evolved during tumor progression. One of these populations is called migrating CSC and can be characterized by CXCR4 co-expression. Only these cells are capable of evading the primary tumor and traveling to distant sites such as the liver as the preferred site of metastatic spread. Clinically even more important, however, is the observation that CSC are highly resistant to chemo- and radiotherapy resulting in their relative enrichment during treatment and rapid relapse of disease. Many laboratories are now working on the further in-depth characterization of these cells, which may eventually allow for the identification of their Achilles heal and lead to novel treatment modalities for fighting this deadly disease.

  8. Napsin A is a specific marker for ovarian clear cell adenocarcinoma.

    PubMed

    Yamashita, Yoriko; Nagasaka, Tetsuro; Naiki-Ito, Aya; Sato, Shinya; Suzuki, Shugo; Toyokuni, Shinya; Ito, Masafumi; Takahashi, Satoru

    2015-01-01

    Ovarian clear cell adenocarcinoma has a relatively poor prognosis among the ovarian cancer subtypes because of its high chemoresistance. Differential diagnosis of clear cell adenocarcinoma from other ovarian surface epithelial tumors is important for its treatment. Napsin A is a known diagnostic marker for lung adenocarcinoma, and expression of napsin A is reported in a certain portion of thyroid and renal carcinomas. However, napsin A expression in ovarian surface epithelial tumors has not previously been examined. In this study, immunohistochemical analysis revealed that in 71 of 86 ovarian clear cell adenocarcinoma patients (83%) and all of the 13 patients with ovarian clear cell adenofibroma, positive napsin A staining was evident. No expression was observed in 30 serous adenocarcinomas, 11 serous adenomas or borderline tumors, 19 endometrioid adenocarcinomas, 22 mucinous adenomas or borderline tumors, 10 mucinous adenocarcinomas, or 3 yolk sac tumors of the ovary. Furthermore, expression of napsin A was not observed in the normal surface epithelium of the ovary, epithelia of the fallopian tubes, squamous epithelium, endocervical epithelium, or the endometrium of the uterus. Therefore, we propose that napsin A is another sensitive and specific marker for distinguishing ovarian clear cell tumors (especially adenocarcinomas) from other ovarian tumors. PMID:24721826

  9. NFAT5 promotes proliferation and migration of lung adenocarcinoma cells in part through regulating AQP5 expression

    SciTech Connect

    Guo, Kai; Jin, Faguang

    2015-09-25

    The osmoregulated transcription factor nuclear factor of activated T-cells 5(NFAT5), has been found to play important roles in the development of many kinds of human cancers, including breast cancer, colon carcinoma, renal cell carcinoma and melanoma. The aim of the present study was to determine whether NFAT5 is involved in the proliferation and migration of lung adenocarcinoma cells. We found that NFAT5 was upregulated in lung adenocarcinoma cells and knockdown of NFAT5 decreased proliferation and migration of the cells, accompanied by a significant reduction in the expression of AQP5. AQP5 was upregulated in lung adenocarcinoma cells and knockdown of AQP5 also inhibited proliferation and migration of the cells as knockdown of NFAT5 did. Moreover, overexpression of NFAT5 promoted proliferation and migration of lung adenocarcinoma cells, accompanied by a significant increase in the expression of AQP5. These results indicate that NFAT5 plays important roles in proliferation and migration of human lung adenocarcinoma cells through regulating AQP5 expression, providing a new therapeutic option for lung adenocarcinoma therapy. - Highlights: • NFAT5 expression is higher in lung adenocarcinoma cells compared with normal cells. • NFAT5 knockdown decreases proliferation and migration of lung adenocarcinoma cells. • Knockdown of NFAT5 reduces AQP5 expression in human lung adenocarcinoma cells. • Overexpression of NFAT5 promotes proliferation and migration of lung adenocarcinoma cells. • Overexpression of NFAT5 increases AQP5 expression in human lung adenocarcinoma cells.

  10. Increased expression of S100A4, a metastasis-associated gene, in human colorectal adenocarcinomas.

    PubMed

    Takenaga, K; Nakanishi, H; Wada, K; Suzuki, M; Matsuzaki, O; Matsuura, A; Endo, H

    1997-12-01

    The S100A4 gene (also known as pEL98/mts1/p9Ka/18A2/42A/calvasculin /FSP1/CAPL) encoding an S100-related calcium-binding protein is implied to be involved in the invasion and metastasis of murine tumor cells. In the present study, the expression of S100A4 in human colorectal adenocarcinoma cell lines (SW837, LoVo, DLD-1, HT-29, SW480, SW620, WiDr, and Colo201) and surgically resected neoplastic tissues was examined to investigate whether S100A4 plays a role in the invasion and metastasis of human tumor cells. Northern blot analysis using total RNA isolated from the adenocarcinoma cell lines revealed that five of the eight cell lines expressed substantial amounts of S100A4 mRNA. Normal colon fibroblasts (CCD-18Co) expressed little of the RNA. Using surgically resected specimens, it seemed that the amount of S100A4 mRNA in adenomas was nearly equal to that in normal colonic mucosa, whereas adenocarcinomas expressed a significantly higher amount of the RNA than did the adjacent normal colonic mucosa. Immunohistochemical analysis using formalin-fixed paraffin-embedded surgical specimens and monoclonal anti-S100A4 antibody demonstrated that none of 12 adenoma specimens were immunopositive, whereas 8 of 18 (44%) focal carcinomas in carcinoma in adenoma specimens and 50 of 53 (94%) adenocarcinoma specimens were immunopositive. Interestingly, the incidence of immunopositive cells increased according to the depth of invasion, and nearly all of the carcinoma cells in 14 metastases in the liver were positive. These results suggest that S100A4 may be involved in the progression and the metastatic process of human colorectal neoplastic cells. PMID:9815629

  11. A case of simultaneous esophageal squamous cell carcinoma and Barrett's adenocarcinoma.

    PubMed

    Yamazaki, Tomoo; Iwaya, Yugo; Iwaya, Mai; Watanabe, Takayuki; Seki, Ayako; Ochi, Yasuhide; Hara, Etsuo; Sekiguchi, Tomohiro; Hosaka, Noriko; Arakura, Norikazu; Tanaka, Eiji; Hasebe, Osamu

    2016-08-01

    A 77-year-old male with a long history of alcohol consumption and smoking was admitted for hoarseness and dysphagia. Computed tomography revealed thickening of the middle intrathoracic esophageal wall and multiple mediastinal lymph node swellings. Esophagogastroduodenoscopic examination disclosed an advanced-stage squamous cell carcinoma lesion in the middle intrathoracic esophagus with synchronous early stage Barrett's adenocarcinoma. The patient underwent endoscopic submucosal dissection for the adenocarcinoma followed by chemoradiation therapy for the squamous cell carcinoma. In spite of their common risk factors, the simultaneous manifestation of esophageal squamous cell carcinoma and Barrett's adenocarcinoma is extremely rare and requires further study. PMID:27220657

  12. Whole-genome sequencing of nine esophageal adenocarcinoma cell lines.

    PubMed

    Contino, Gianmarco; Eldridge, Matthew D; Secrier, Maria; Bower, Lawrence; Fels Elliott, Rachael; Weaver, Jamie; Lynch, Andy G; Edwards, Paul A W; Fitzgerald, Rebecca C

    2016-01-01

    Esophageal adenocarcinoma (EAC) is highly mutated and molecularly heterogeneous. The number of cell lines available for study is limited and their genome has been only partially characterized. The availability of an accurate annotation of their mutational landscape is crucial for accurate experimental design and correct interpretation of genotype-phenotype findings. We performed high coverage, paired end whole genome sequencing on eight EAC cell lines-ESO26, ESO51, FLO-1, JH-EsoAd1, OACM5.1 C, OACP4 C, OE33, SK-GT-4-all verified against original patient material, and one esophageal high grade dysplasia cell line, CP-D. We have made available the aligned sequence data and report single nucleotide variants (SNVs), small insertions and deletions (indels), and copy number alterations, identified by comparison with the human reference genome and known single nucleotide polymorphisms (SNPs). We compare these putative mutations to mutations found in primary tissue EAC samples, to inform the use of these cell lines as a model of EAC. PMID:27594985

  13. Whole-genome sequencing of nine esophageal adenocarcinoma cell lines

    PubMed Central

    Contino, Gianmarco; Eldridge, Matthew D.; Secrier, Maria; Bower, Lawrence; Fels Elliott, Rachael; Weaver, Jamie; Lynch, Andy G.; Edwards, Paul A.W.; Fitzgerald, Rebecca C.

    2016-01-01

    Esophageal adenocarcinoma (EAC) is highly mutated and molecularly heterogeneous. The number of cell lines available for study is limited and their genome has been only partially characterized. The availability of an accurate annotation of their mutational landscape is crucial for accurate experimental design and correct interpretation of genotype-phenotype findings. We performed high coverage, paired end whole genome sequencing on eight EAC cell lines—ESO26, ESO51, FLO-1, JH-EsoAd1, OACM5.1 C, OACP4 C, OE33, SK-GT-4—all verified against original patient material, and one esophageal high grade dysplasia cell line, CP-D. We have made available the aligned sequence data and report single nucleotide variants (SNVs), small insertions and deletions (indels), and copy number alterations, identified by comparison with the human reference genome and known single nucleotide polymorphisms (SNPs). We compare these putative mutations to mutations found in primary tissue EAC samples, to inform the use of these cell lines as a model of EAC.

  14. The HSP90 Inhibitor Ganetespib Radiosensitizes Human Lung Adenocarcinoma Cells

    PubMed Central

    Gomez-Casal, Roberto; Bhattacharya, Chitralekha; Epperly, Michael W.; Basse, Per H.; Wang, Hong; Wang, Xinhui; Proia, David A.; Greenberger, Joel S.; Socinski, Mark A.; Levina, Vera

    2015-01-01

    The molecular chaperone HSP90 is involved in stabilization and function of multiple client proteins, many of which represent important oncogenic drivers in NSCLC. Utilization of HSP90 inhibitors as radiosensitizing agents is a promising approach. The antitumor activity of ganetespib, HSP90 inhibitor, was evaluated in human lung adenocarcinoma (AC) cells for its ability to potentiate the effects of IR treatment in both in vitro and in vivo. The cytotoxic effects of ganetespib included; G2/M cell cycle arrest, inhibition of DNA repair, apoptosis induction, and promotion of senescence. All of these antitumor effects were both concentration- and time-dependent. Both pretreatment and post-radiation treatment with ganetespib at low nanomolar concentrations induced radiosensitization in lung AC cells in vitro. Ganetespib may impart radiosensitization through multiple mechanisms: such as down regulation of the PI3K/Akt pathway; diminished DNA repair capacity and promotion of cellular senescence. In vivo, ganetespib reduced growth of T2821 tumor xenografts in mice and sensitized tumors to IR. Tumor irradiation led to dramatic upregulation of β-catenin expression in tumor tissues, an effect that was mitigated in T2821 xenografts when ganetespib was combined with IR treatments. These data highlight the promise of combining ganetespib with IR therapies in the treatment of AC lung tumors. PMID:26010604

  15. The HSP90 Inhibitor Ganetespib Radiosensitizes Human Lung Adenocarcinoma Cells.

    PubMed

    Gomez-Casal, Roberto; Bhattacharya, Chitralekha; Epperly, Michael W; Basse, Per H; Wang, Hong; Wang, Xinhui; Proia, David A; Greenberger, Joel S; Socinski, Mark A; Levina, Vera

    2015-01-01

    The molecular chaperone HSP90 is involved in stabilization and function of multiple client proteins, many of which represent important oncogenic drivers in NSCLC. Utilization of HSP90 inhibitors as radiosensitizing agents is a promising approach. The antitumor activity of ganetespib, HSP90 inhibitor, was evaluated in human lung adenocarcinoma (AC) cells for its ability to potentiate the effects of IR treatment in both in vitro and in vivo. The cytotoxic effects of ganetespib included; G2/M cell cycle arrest, inhibition of DNA repair, apoptosis induction, and promotion of senescence. All of these antitumor effects were both concentration- and time-dependent. Both pretreatment and post-radiation treatment with ganetespib at low nanomolar concentrations induced radiosensitization in lung AC cells in vitro. Ganetespib may impart radiosensitization through multiple mechanisms: such as down regulation of the PI3K/Akt pathway; diminished DNA repair capacity and promotion of cellular senescence. In vivo, ganetespib reduced growth of T2821 tumor xenografts in mice and sensitized tumors to IR. Tumor irradiation led to dramatic upregulation of β-catenin expression in tumor tissues, an effect that was mitigated in T2821 xenografts when ganetespib was combined with IR treatments. These data highlight the promise of combining ganetespib with IR therapies in the treatment of AC lung tumors. PMID:26010604

  16. Cell-surface markers for colon adenoma and adenocarcinoma

    PubMed Central

    Sewda, Kamini; Coppola, Domenico; Enkemann, Steven; Yue, Binglin; Kim, Jongphil; Lopez, Alexis S.; Wojtkowiak, Jonathan W.; Stark, Valerie E.; Morse, Brian; Shibata, David; Vignesh, Shivakumar; Morse, David L.

    2016-01-01

    Early detection of colorectal cancer (CRC) is crucial for effective treatment. Among CRC screening techniques, optical colonoscopy is widely considered the gold standard. However, it is a costly and invasive procedure with a low rate of compliance. Our long-term goal is to develop molecular imaging agents for the non-invasive detection of CRC by molecular imaging-based colonoscopy using CT, MRI or fluorescence. To achieve this, cell surface targets must be identified and validated. Here, we report the discovery of cell-surface markers that distinguish CRC from surrounding tissues that could be used as molecular imaging targets. Profiling of mRNA expression microarray data from patient tissues including adenoma, adenocarcinoma, and normal gastrointestinal tissues was used to identify potential CRC specific cell-surface markers. Of the identified markers, six were selected for further validation (CLDN1, GPR56, GRM8, LY6G6D/F, SLCO1B3 and TLR4). Protein expression was confirmed by immunohistochemistry of patient tissues. Except for SLCO1B3, diffuse and low expression was observed for each marker in normal colon tissues. The three markers with the greatest protein overexpression were CLDN1, LY6G6D/F and TLR4, where at least one of these markers was overexpressed in 97% of the CRC samples. GPR56, LY6G6D/F and SLCO1B3 protein expression was significantly correlated with the proximal tumor location and with expression of mismatch repair genes. Marker expression was further validated in CRC cell lines. Hence, three cell-surface markers were discovered that distinguish CRC from surrounding normal tissues. These markers can be used to develop imaging or therapeutic agents targeted to the luminal surface of CRC. PMID:26894861

  17. Hypoxia induced CCL28 promotes angiogenesis in lung adenocarcinoma by targeting CCR3 on endothelial cells.

    PubMed

    Huang, Guichun; Tao, Leilei; Shen, Sunan; Chen, Longbang

    2016-01-01

    Tumor hypoxia is one of the important features of lung adenocarcinoma. Chemokines might mediate the effects caused by tumor hypoxia. As confirmed in tumor tissue and serum of patients, CC chemokine 28 (CCL28) was the only hypoxia induced chemokine in lung adenocarcinoma cells. CCL28 could promote tube formation, migration and proliferation of endothelial cells. In addition, angiogenesis was promoted by CCL28 in the chick chorioallantoic membrane and matrigel implanted in dorsal back of athymic nude mice (CByJ.Cg-Foxn1(nu)/J). Tumors formed by lung adenocarcinoma cells with high expression of CCL28 grew faster and had a higher vascular density, whereas tumor formation rate of lung adenocarcinoma cells with CCL28 expression knockdown was quite low and had a lower vascular density. CCR3, receptor of CCL28, was highly expressed in vascular endothelial cells in lung adenocarcinoma when examining by immunohistochemistry. Further signaling pathways in endothelial cells, modulated by CCL28, were analyzed by Phosphorylation Antibody Array. CCL28/CCR3 signaling pathway could bypass that of VEGF/VEGFR on the levels of PI3K-Akt, p38 MAPK and PLC gamma. The effects could be neutralized by antibody against CCR3. In conclusion, CCL28, as a chemokine induced by tumor hypoxia, could promote angiogenesis in lung adenocarcinoma through targeting CCR3 on microvascular endothelial cells. PMID:27250766

  18. Hypoxia induced CCL28 promotes angiogenesis in lung adenocarcinoma by targeting CCR3 on endothelial cells

    PubMed Central

    Huang, Guichun; Tao, Leilei; Shen, Sunan; Chen, Longbang

    2016-01-01

    Tumor hypoxia is one of the important features of lung adenocarcinoma. Chemokines might mediate the effects caused by tumor hypoxia. As confirmed in tumor tissue and serum of patients, CC chemokine 28 (CCL28) was the only hypoxia induced chemokine in lung adenocarcinoma cells. CCL28 could promote tube formation, migration and proliferation of endothelial cells. In addition, angiogenesis was promoted by CCL28 in the chick chorioallantoic membrane and matrigel implanted in dorsal back of athymic nude mice (CByJ.Cg-Foxn1nu/J). Tumors formed by lung adenocarcinoma cells with high expression of CCL28 grew faster and had a higher vascular density, whereas tumor formation rate of lung adenocarcinoma cells with CCL28 expression knockdown was quite low and had a lower vascular density. CCR3, receptor of CCL28, was highly expressed in vascular endothelial cells in lung adenocarcinoma when examining by immunohistochemistry. Further signaling pathways in endothelial cells, modulated by CCL28, were analyzed by Phosphorylation Antibody Array. CCL28/CCR3 signaling pathway could bypass that of VEGF/VEGFR on the levels of PI3K-Akt, p38 MAPK and PLC gamma. The effects could be neutralized by antibody against CCR3. In conclusion, CCL28, as a chemokine induced by tumor hypoxia, could promote angiogenesis in lung adenocarcinoma through targeting CCR3 on microvascular endothelial cells. PMID:27250766

  19. TGM2 A Cell Surface Marker in Esophageal Adenocarcinomas

    PubMed Central

    Leicht, Deborah T.; Kausar, Tasneem; Wang, Zhuwen; Ferrer-Torres, Daysha; Wang, Thomas D.; Thomas, Dafydd G.; Lin, Jules; Chang, Andrew C.; Lin, Lin; Beer, David G.

    2014-01-01

    Introduction Esophageal adenocarcinomas (EAC) are aggressive cancers that are increasing in incidence and associated with a poor prognosis. The identification of highly expressed genes in EAC relative to metaplastic Barrett’s esophagus (BE) may provide new targets for novel early cancer detection strategies using endoscopically administered, fluorescently labeled peptides. Methods Gene expression analysis of BE and EACs were used to identify the cell surface marker transglutaminase 2 (TGM2) as overexpressed in cancer. The expression of two major isoforms of TGM2 was determined by qRT-polymerase chain reaction in an independent cohort of 128 EACs. Protein expression was confirmed by tissue microarrays and immunoblot analysis of EAC cell lines. TGM2 DNA copy number was assessed using single nucleotide polymorphism microarrays and confirmed by qPCR. TGM2 expression in neoadjuvantly treated EACs and following small interfering RNA-mediated knockdown in cisplatin-treated EAC cells was used to determine its possible role in chemoresistance. Results TGM2 is overexpressed in 15 EACs relative to 26 BE samples. Overexpression of both TGM2 isoforms was confirmed in 128 EACs and associated with higher tumor stage, poor differentiation, and increased inflammatory and desmoplastic response. Tissue microarrays and immunohistochemistry confirmed elevated TGM2 protein expression in EAC. Single nucleotide polymorphism and qPCR analysis revealed increased TGM2 gene copy number as one mechanism underlying elevated TGM2 expression. TGM2 was highly expressed in resistant EAC after patient treatment with neoadjuvant chemotherapy/radiation suggesting a role for TGM2 in chemoresistance. Conclusion TGM2 may be a useful cell surface biomarker for early detection of EAC. PMID:24828664

  20. Circulating Tumor Cells in the Adenocarcinoma of the Esophagus

    PubMed Central

    Gallerani, Giulia; Fabbri, Francesco

    2016-01-01

    Circulating tumor cells (CTCs) are elements of indisputable significance as they seem to be responsible for the onset of metastasis. Despite this, research into CTCs and their clinical application have been hindered by their rarity and heterogeneity at the molecular and cellular level, and also by a lack of technical standardization. Esophageal adenocarcinoma (EAC) is a highly aggressive cancer that is often diagnosed at an advanced stage. Its incidence has increased so much in recent years that new diagnostic, prognostic and predictive biomarkers are urgently needed. Preliminary findings suggest that CTCs could represent an effective, non-invasive, real-time assessable biomarker in all stages of EAC. This review provides an overview of EAC and CTC characteristics and reports the main research results obtained on CTCs in this setting. The need to carry out further basic and translational research in this area to confirm the clinical usefulness of CTCs and to provide oncologists with a tool to improve therapeutic strategies for EAC patients was herein highlighted. PMID:27527155

  1. HDAC6 promotes cell proliferation and confers resistance to gefitinib in lung adenocarcinoma.

    PubMed

    Wang, Zhihao; Tang, Fang; Hu, Pengchao; Wang, Ying; Gong, Jun; Sun, Shaoxing; Xie, Conghua

    2016-07-01

    Histone deacetylases (HDACs) are promising targets for cancer therapy, and first-generation HDAC inhibitors are currently in clinical trials for the treatment of cancer patients. HDAC6, which is a key regulator of many signaling pathways that are linked to cancer, has recently emerged as an attractive target for the treatment of cancer. In the present study, HDAC6 was found to be overexpressed in lung adenocarcinoma cell lines and was negatively correlated with the prognosis of patients with lung adenocarcinoma. Overexpression of HDAC6 promoted the proliferation of lung adenocarcinoma cells in a deacetylase activity-dependent manner. HDAC6 overexpression conferred resistance to gefitinib via the stabilization of epidermal growth factor receptor (EGFR). The inhibition of HDAC6 by CAY10603, a potent and selective inhibitor of HDAC6, inhibited the proliferation of lung adenocarcinoma cells and induced apoptosis. CAY10603 downregulated the levels of EGFR protein, which in turn inhibited activation of the EGFR signaling pathway. Moreover, CAY10603 synergized with gefitinib to induce apoptosis of the lung adenocarcinoma cell lines via the destabilization of EGFR. Taken together, our results suggest that the inhibition of HDAC6 may be a promising strategy for the treatment of lung adenocarcinoma. PMID:27221381

  2. Mesotheliomas show higher hyaluronan positivity around tumor cells than metastatic pulmonary adenocarcinomas.

    PubMed

    Törrönen, Kari; Soini, Ylermi; Pääkkö, Paavo; Parkkinen, Jyrki; Sironen, Reijo; Rilla, Kirsi

    2016-10-01

    Hyaluronan is a unique glycosaminoglycan of the extracellular matrix, abundant in normal connective tissues but highly increased in many pathological conditions like cancer. Mesothelioma, one of the most malignant cancer types, is associated with high content of hyaluronan, with elevated levels of hyaluronan in pleural effusions and serum of the patients. Metastatic lung adenocarcinomas are typically less aggressive and have a better prognosis as compared to mesotheliomas, a reason why it is highly important to find reliable tools to differentiate these cancer types. The main purpose of this study was to evaluate the amount of hyaluronan, hyaluronan producing synthases (HAS's) and hyaluronan receptor CD44, in mesothelioma and metastatic lung adenocarcinomas. Furthermore, we wanted to clarify the role of hyaluronan, CD44 and HAS's as putative markers for differentiating malignant mesothelioma from metastatic lung adenocarcinomas. The main finding of this study was that mesotheliomas are significantly more positive for hyaluronan staining than metastatic adenocarcinomas. Unexceptionally, a trend of CD44 positivity of stromal cells was higher in adenocarcinomas as compared to mesotheliomas. However, no statistically significant differences were found between the staining of any of the HAS isoenzymes either in tumor cells or stromal cells of different groups of cases. The results show that there are significant differences in hyaluronan content between metastatic lung adenocarcinomas and mesotheliomas. However, as previous studies have suggested, hyaluronan alone is not a sufficient independent marker for diagnostic differentiation of these cancer types, but could be utilized as a combination together with other specific markers. PMID:26912058

  3. Absorption spectra of adenocarcinoma and squamous cell carcinoma cervical tissues

    NASA Astrophysics Data System (ADS)

    Ivashko, Pavlo; Peresunko, Olexander; Zelinska, Natalia; Alonova, Marina

    2014-08-01

    We studied a methods of assessment of a connective tissue of cervix in terms of specific volume of fibrous component and an optical density of staining of connective tissue fibers in the stroma of squamous cancer and cervix adenocarcinoma. An absorption spectra of blood plasma of the patients suffering from squamous cancer and cervix adenocarcinoma both before the surgery and in postsurgical periods were obtained. Linear dichroism measurements transmittance in polarized light at different orientations of the polarization plane relative to the direction of the dominant orientation in the structure of the sample of biotissues of stroma of squamous cancer and cervix adenocarcinoma were carried. Results of the investigation of the tumor tissues showed that the magnitude of the linear dichroism Δ is insignificant in the researched spectral range λ=280-840 nm and specific regularities in its change observed short-wave ranges.

  4. Gene expression profiling of cancer stem cell in human lung adenocarcinoma A549 cells

    PubMed Central

    Seo, Dong-Cheol; Sung, Ji-Min; Cho, Hee-Jung; Yi, Hee; Seo, Kun-Ho; Choi, In-Soo; Kim, Dong-Ku; Kim, Jin-Suk; El-Aty AM, Abd; Shin, Ho-Chul

    2007-01-01

    Background The studies on cancer-stem-cells (CSCs) have attracted so much attention in recent years as possible therapeutic implications. This study was carried out to investigate the gene expression profile of CSCs in human lung adenocarcinoma A549 cells. Results We isolated CSCs from A549 cell line of which side population (SP) phenotype revealed several stem cell properties. After staining the cell line with Hoechst 33342 dye, the SP and non-side population (non-SP) cells were sorted using flow cytometric analysis. The mRNA expression profiles were measured using an Affymetrix GeneChip® oligonucleotide array. Among the sixty one differentially expressed genes, the twelve genes inclusive three poor prognostic genes; Aldo-keto reductase family 1, member C1/C2 (AKR1C1/C2), Transmembrane 4 L six family member 1 nuclear receptor (TM4SF1), and Nuclear receptor subfamily 0, group B, member 1 (NR0B1) were significantly up-regulated in SP compared to non-SP cells. Conclusion This is the first report indicating the differences of gene expression pattern between SP and non-SP cells in A549 cells. We suggest that the up-regulations of the genes AKR1C1/C2, TM4SF1 and NR0B1 in SP of human adenocarcinoma A549 cells could be a target of poor prognosis in anti-cancer therapy. PMID:18034892

  5. Cytotoxic effects of four aescin types on human colon adenocarcinoma cell lines.

    PubMed

    Seweryn, Ewa; Gleńsk, Michal; Sroda-Pomianek, Kamila; Ceremuga, Ireneusz; Wlodarczyk, Maciej; Gamian, Andrzej

    2014-03-01

    Four types of aescin that are available on the pharmaceutical market, beta-aescin crystalline, beta-aescin amorphous, beta-aescin sodium and aescin polysulfate, have been analyzed for their cytotoxic effects on human colon adenocarcinoma (LoVo) and doxorubicin-resistant human colon adenocarcinoma cell lines (LoVo/Dx). Their cytotoxic activities were evaluated by sulforhodamine B (SRB) and methyl tetrazolium (MTT) assays. All four types of aescin exerted strong dose-dependent cytotoxicity to LoVo and, to a lesser degree, LoVo/Dx cell lines. The IC50 value for the LoVo/Dx cell line was higher, but still dose-dependent. Results from both assays demonstrated that p-aescin crystalline has the most cytotoxic activity toward human colon adenocarcinoma cell lines. PMID:24689224

  6. Clear cell adenocarcinoma of the renal pelvis: an extremely rare neoplasm of the upper urinary tract.

    PubMed

    Liu, K-W; Lin, V C-H; Chang, I-W

    2013-12-01

    Clear cell adenocarcinoma (CCA) in the urinary tract is a rare neoplasm morphologically identical to the Müllerian counterpart. Clear cell adenocarcinoma is extremely rare in the upper urinary tract. We present a case with CCA of the renal pelvis. Microscopically, the tumor exhibited exophytic growth with predominantly tubulocystic structures, as well as solid and papillary patterns. The neoplastic cells were cuboidal with clear to pale eosinophilic cytoplasm and abundant intracellular and extracellular eosinophilic hyaline globules. By immunohistochemically, the tumor was labeled by cytokeratins and hepatocyte nuclear factor-1β. The patient was still alive without evidence of recurrence in the follow-up period of nineteen months after diagnosis. PMID:24375047

  7. miR-873 induces lung adenocarcinoma cell proliferation and migration by targeting SRCIN1

    PubMed Central

    Gao, Yushun; Xue, Qi; Wang, Dali; Du, Minjun; Zhang, Yanjiao; Gao, Shugeng

    2015-01-01

    microRNAs (miRNAs) are endogenously expressed, conserved and small noncoding RNA that regulate gene expression by the post-transcriptional level. In this study, we aim to examine the role of miR-873 in lung adenocarcinoma. We found that the expression of miR-873 was upregulated in four lung adenocarcinoma cell lines and tissues. In addition, the expression levels of SRCIN1 were inversely correlated with the expression levels of miR-873 in lung adenocarcinoma tissues. Furthermore, SRCIN1 was confirmed asthe direct target of miR-873 by luciferase reporter assay and Western blotting. Overexpression of miR-873 promoted the proliferation and migration of lung adenocarcinoma cells, while SRCIN1 upregulation inhibited their proliferation and migration. Restoration of SRCIN1 could significantly reverse the proliferation and migration promotion imposed by miR-873. In summary, this study reveals for the first time that miR-873 increase the lung adenocarcinoma cell proliferation and migration through directly inhibiting SRCIN1 expression. PMID:26807196

  8. Sex Differences in Estrogen Receptor Subcellular Location and Activity in Lung Adenocarcinoma Cells

    PubMed Central

    Ivanova, Margarita M.; Mazhawidza, Williard; Dougherty, Susan M.; Klinge, Carolyn M.

    2010-01-01

    The role of estrogens in the increased risk of lung adenocarcinoma in women remains uncertain. We reported that lung adenocarcinoma cell lines from female, but not male, patients with non–small cell lung cancer respond proliferatively and transcriptionally to estradiol (E2), despite equal protein expression of estrogen receptors (ER) α and β. To test the hypothesis that nuclear localization of ERα corresponds to genomic E2 activity in lung adenocarcinoma cells from females, cell fractionation, immunoblot, and confocal immunohistochemical microscopy were performed. We report for the first time that E2 increases phospho-serine-118-ERα (P-ser118-ERα) and cyclin D1 (CCND1) nuclear colocalization in H1793, but not A549 lung adenocarcinoma cells, derived from a female and male patient, respectively. ERβ was primarily in the cytoplasm and mitochondria, independent of E2 treatment, and showed no difference between H1793 and A549 cells. E2 induced higher transcription of endogenous ERα-regulated CCND1 in H1793 than in A549 cells. Likewise, higher rapid, non-genomic E2-induced extracellular signal–regulated kinase 1/2 activation was detected in H1793 compared with A549 cells, linking extracellular signal–regulated kinase activation to increased P-ser118-ERα. Furthermore, E2 increased cyclin D1 and P-ser118-ERα nuclear localization in H1793, but not A549 cells. Together, our results indicate that nuclear localization of P-ser118-ERα provides one explanation for sex-dependent differences in E2-genomic responses in lung adenocarcinoma cell lines. PMID:19556604

  9. Aryl hydrocarbon receptor protects lung adenocarcinoma cells against cigarette sidestream smoke particulates-induced oxidative stress

    SciTech Connect

    Cheng, Ya-Hsin; Huang, Su-Chin; Lin, Chun-Ju; Cheng, Li-Chuan; Li, Lih-Ann

    2012-03-15

    Environmental cigarette smoke has been suggested to promote lung adenocarcinoma progression through aryl hydrocarbon receptor (AhR)-signaled metabolism. However, whether AhR facilitates metabolic activation or detoxification in exposed adenocarcinoma cells remains ambiguous. To address this question, we have modified the expression level of AhR in two human lung adenocarcinoma cell lines and examined their response to an extract of cigarette sidestream smoke particulates (CSSP). We found that overexpression of AhR in the CL1-5 cell line reduced CSSP-induced ROS production and oxidative DNA damage, whereas knockdown of AhR expression increased ROS level in CSSP-exposed H1355 cells. Oxidative stress sensor Nrf2 and its target gene NQO1 were insensitive to AhR expression level and CSSP treatment in human lung adenocarcinoma cells. In contrast, induction of AhR expression concurrently increased mRNA expression of xenobiotic-metabolizing genes CYP1B1, UGT1A8, and UGT1A10 in a ligand-independent manner. It appeared that AhR accelerated xenobiotic clearing and diminished associated oxidative stress by coordinate regulation of a set of phase I and II metabolizing genes. However, the AhR-signaled protection could not shield cells from constant oxidative stress. Prolonged exposure to high concentrations of CSSP induced G0/G1 cell cycle arrest via the p53–p21–Rb1 signaling pathway. Despite no effect on DNA repair rate, AhR facilitated the recovery of cells from growth arrest when CSSP exposure ended. AhR-overexpressing lung adenocarcinoma cells exhibited an increased anchorage-dependent and independent proliferation when recovery from exposure. In summary, our data demonstrated that AhR protected lung adenocarcinoma cells against CSSP-induced oxidative stress and promoted post-exposure clonogenicity. -- Highlights: ► AhR expression level influences cigarette sidestream smoke-induced ROS production. ► AhR reduces oxidative stress by coordinate regulation of

  10. Effect of recombinant Newcastle disease virus transfection on lung adenocarcinoma A549 cells in vivo

    PubMed Central

    YAN, YULAN; JIA, LIJUAN; ZHANG, JIN; LIU, YANG; BU, XUEFENG

    2014-01-01

    Newcastle disease virus (NDV) has been reported to selectively duplicate in and then destroy tumor cells, whilst sparing normal cells. However, the effect of NDV on lung cancer has yet to be elucidated. In the present study, recombinant NDV (rl-RVG) was applied to lung adenocarcinoma A549 cell tumor-bearing mice to explore its effect on the proliferation of the cells and the immune response of the mice. Following rl-RVG transfection, RVG and NDV gene expression, decreased tumor growth, subcutaneous tumor necrosis, tumor apoptosis and an increased number of cluster of differentiation (CD)3−/CD49+ natural killer cells were more evident in the rl-RVG group. The present study demonstrated that rl-RVG transfection effectively restrained lung adenocarcinoma A549 cell growth in vivo, which may have been accomplish by inducing tumor cell apoptosis and regulating the cell immune response. PMID:25364430

  11. Conversion of Prostate Adenocarcinoma to Small Cell Carcinoma-Like by Reprogramming.

    PubMed

    Borges, Gisely T; Vêncio, Eneida F; Quek, Sue-Ing; Chen, Adeline; Salvanha, Diego M; Vêncio, Ricardo Z N; Nguyen, Holly M; Vessella, Robert L; Cavanaugh, Christopher; Ware, Carol B; Troisch, Pamela; Liu, Alvin Y

    2016-09-01

    The lineage relationship between prostate adenocarcinoma and small cell carcinoma was studied by using the LuCaP family of xenografts established from primary neoplasm to metastasis. Expression of four stem cell transcription factor (TF) genes, LIN28A, NANOG, POU5F1, SOX2, were analyzed in the LuCaP lines. These genes, when force expressed in differentiated cells, can reprogram the recipients into stem-like induced pluripotent stem (iPS) cells. Most LuCaP lines expressed POU5F1, while LuCaP 145.1, representative of small cell carcinoma, expressed all four. Through transcriptome database query, many small cell carcinoma genes were also found in stem cells. To test the hypothesis that prostate cancer progression from "differentiated" adenocarcinoma to "undifferentiated" small cell carcinoma could involve re-expression of stem cell genes, the four TF genes were transduced via lentiviral vectors into five adenocarcinoma LuCaP lines-70CR, 73CR, 86.2, 92, 105CR-as done in iPS cell reprogramming. The resultant cells from these five transductions displayed a morphology of small size and dark appearing unlike the parentals. Transcriptome analysis of LuCaP 70CR* ("*" to denote transfected progeny) revealed a unique gene expression close to that of LuCaP 145.1. In a prostate principal components analysis space based on cell-type transcriptomes, the different LuCaP transcriptome datapoints were aligned to suggest a possible ordered sequence of expression changes from the differentiated luminal-like adenocarcinoma cell types to the less differentiated, more stem-like small cell carcinoma types, and LuCaP 70CR*. Prostate cancer progression can thus be molecularly characterized by loss of differentiation with re-expression of stem cell genes. J. Cell. Physiol. 231: 2040-2047, 2016. © 2016 Wiley Periodicals, Inc. PMID:26773436

  12. Gender difference in the activity but not expression of estrogen receptors α and β in human lung adenocarcinoma cells

    PubMed Central

    Dougherty, Susan M; Mazhawidza, Williard; Bohn, Aimee R; Robinson, Krista A; Mattingly, Kathleen A; Blankenship, Kristy A; Huff, Mary O; McGregor, William G; Klinge, Carolyn M

    2006-01-01

    The higher frequency of lung adenocarcinoma in women smokers than in men smokers suggests a role for gender-dependent factors in the etiology of lung cancer. We evaluated estrogen receptor (ER) α and β expression and activity in human lung adenocarcinoma cell lines and normal lung fibroblasts. Full-length ERα and ERβ proteins were expressed in all cell lines with higher ERβ than ERα. Although estradiol (E2) binding was similar, E2 stimulated proliferation only in cells from females, and this response was inhibited by anti-estrogens 4-hydroxytamoxifen (4-OHT) and ICI 182,780. In contrast, E2 did not stimulate replication of lung adenocarcinoma cells from males and 4-OHT or ICI did not block cell proliferation. Similarly, transcription of an estrogen response element-driven reporter gene was stimulated by E2 in lung adenocarcinoma cells from females, but not males. Progesterone receptor (PR) expression was increased by E2 in two out of five adenocarcinoma cell lines from females, but none from males. E2 decreased E-cadherin protein expression in some of the cell lines from females, as it did in MCF-7 breast cancer cells, but not in the cell lines from males. Thus, ERα and ERβ expression does not correlate with the effect of ER ligands on cellular activities in lung adenocarcinoma cells. On the other hand, coactivator DRIP205 expression was higher in lung adenocarcinoma cells from females versus males and higher in adenocarcinoma cells than in normal human bronchial epithelial cells. DRIP205 and other ER coregulators may contribute to differences in estrogen responsiveness between lung adenocarcinoma cells in females and males. PMID:16601283

  13. Surgical removal of a mammary adenocarcinoma and a granulosa cell tumor in an African pygmy hedgehog

    PubMed Central

    Wellehan, James F.X.; Southorn, Erin; Smith, Dale A.; Taylor, Michael

    2003-01-01

    A 3-year-old, female African pygmy hedgehog (Atelerix albiventris) was referred with a history of hematuria. Hyperglycemia and glucosuria were found at presentation. Mammary adenocarcinoma and a granulosa cell tumor were found and removed surgically. Glucosuria and hematuria resolved, and the hedgehog has done well for 10 mo postoperatively. PMID:12677695

  14. Surgical removal of a mammary adenocarcinoma and a granulosa cell tumor in an African pygmy hedgehog.

    PubMed

    Wellehan, James F X; Southorn, Erin; Smith, Dale A; Taylor, W Michael

    2003-03-01

    A 3-year-old, female African pygmy hedgehog (Atelerix albiventris) was referred with a history of hematuria. Hyperglycemia and glucosuria were found at presentation. Mammary adenocarcinoma and a granulosa cell tumor were found and removed surgically. Glucosuria and hematuria resolved, and the hedgehog has done well for 10 mo postoperatively. PMID:12677695

  15. Clear Cell Adenocarcinoma Arising from Adenofibroma in a Patient with Endometriosis of the Ovary.

    PubMed

    Cho, Inju; Lim, Sung-Chul

    2016-03-01

    Ovarian clear cell adenocarcinomas (CCACs) are frequently associated with endometriosis and, less often with clear cell adenofibromas (CCAFs). We encountered a case of ovarian CCAC arising from benign and borderline adenofibromas of the clear cell and endometrioid types with endometriosis in a 53-year-old woman. Regions of the adenofibromas showed transformation to CCAC and regions of the endometriosis showed atypical endometriotic cysts. This case demonstrates that CCAC can arise from CCAF or endometriosis. PMID:26498012

  16. Neu proto-oncogene amplification and expression in ovarian adenocarcinoma cell lines.

    PubMed Central

    King, B. L.; Carter, D.; Foellmer, H. G.; Kacinski, B. M.

    1992-01-01

    In this communication, the authors summarize their characterization of eight ovarian adenocarcinoma-derived cell lines for level of neu gene amplification, expression of neu transcripts and protein, and intraperitoneal tumorigenicity in nude mice. Two of the eight cell lines in our study (SKOV3 and YAOVBIX1) exhibited five- to ninefold neu DNA sequence amplification, accompanied by up to 200-fold overexpression of transcripts and protein (p185). Both of these cell lines expressed a major approximately 7.5 kb neu-complementary transcript not previously reported in other neu-positive tumor cell lines. One pair of cell lines (YAOVBIX1 and YAOVBIX3), isolated from a single ovarian carcinoma patient's ascites sample differed dramatically in regard to level of neu gene amplification and expression. Immunohistochemical staining of the primary ovarian tumor from which these two lines were derived demonstrated populations of both neu-positive and neu-negative malignant epithelial cells. Seven of the eight ovarian carcinoma lines produced intra-abdominal tumors after intraperitoneal injection into nude mice, irrespective of level of neu gene expression. This study demonstrates tumor cell heterogeneity with regard to neu gene amplification and expression in an ovarian adenocarcinoma, reveals the overexpression of novel neu-complementary transcripts in two independently isolated ovarian adenocarcinoma cell lines, and suggests that neu gene expression is not required for intraperitoneal tumorigenicity of ovarian carcinoma xenografts in a nude mouse model system. Images Figure 4 Figure 1 Figure 2 Figure 3 PMID:1346236

  17. Newly identified biomarkers for detecting circulating tumor cells in lung adenocarcinoma.

    PubMed

    Man, Yingchun; Cao, Jingyan; Jin, Shi; Xu, Gang; Pan, Bo; Shang, Lihua; Che, Dehai; Yu, Qin; Yu, Yan

    2014-01-01

    Circulating tumor cells (CTCs) have been implicated in cancer prognosis and follow up. Detection of CTCs was considered significant in cancer evaluation. However, due to the heterogeneity and rareness of CTCs, detecting them with a single maker is usually challenged with low specificity and sensitivity. Previous studies concerning CTCs detection in lung cancer mainly focused on non-small cell lung carcinoma. Currently, there is no report yet describing the CTC detection with multiple markers in lung adenocarcinoma. In this study, by employing quantitative real-time PCR, we identified four candidate genes (mRNA) that were significantly elevated in peripheral blood mononuclear cells and biopsy tissue samples from patients with lung adenocarcinoma: cytokeratin 7 (CK7), Ca(2+)-activated chloride channel-2 (CLCA2), hyaluronan-mediated motility receptor (HMMR), and human telomerase catalytic subunit (hTERT). Then, the four markers were used for CTC detection; namely, positive detection was defined if at least one of the four markers was elevated. The positive CTC detection rate was 74.0% in patients with lung adenocarcinoma while 2.2% for healthy controls, 6.3% for benign lung disease, and 48.0% for non-adenocarcinoma non-small cell lung carcinoma. Furthermore, in a three-year follow-up study, patients with an increase in the detection markers of CTCs (CK7, CLCA2, HMMR or hTERT) on day 90 after first detection had shorter survival time compared to those with a decrease. These results demonstrate that the combination of the four markers with specificity and sensitivity is of great value in lung adenocarcinoma prognosis and follow up. PMID:25175030

  18. Transformation to Small Cell Lung Cancer of Pulmonary Adenocarcinoma: Clinicopathologic Analysis of Six Cases

    PubMed Central

    Ahn, Soomin; Hwang, Soo Hyun; Han, Joungho; Choi, Yoon-La; Lee, Se-Hoon; Ahn, Jin Seok; Park, Keunchil; Ahn, Myung-Ju; Park, Woong-Yang

    2016-01-01

    Background: Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are considered the first line treatment for a subset of EGFR-mutated non-small cell lung cancer (NSCLC) patients. Although transformation to small cell lung cancer (SCLC) is one of the known mechanisms of resistance to EGFR TKIs, it is not certain whether transformation to SCLC is exclusively found as a mechanism of TKI resistance in EGFR-mutant tumors. Methods: We identified six patients with primary lung adenocarcinoma that showed transformation to SCLC on second biopsy (n = 401) during a 6-year period. Clinicopathologic information was analyzed and EGFR mutation results were compared between initial and second biopsy samples. Results: Six patients showed transformation from adenocarcinoma to SCLC, of which four were pure SCLCs and two were combined adenocarcinoma and SCLCs. Clinically, four cases were EGFR-mutant tumors from non-smoking females who underwent TKI treatment, and the EGFR mutation was retained in the transformed SCLC tumors. The remaining two adenocarcinomas were EGFR wild-type, and one of these patients received EGFR TKI treatment. Conclusions: NSCLC can acquire a neuroendocrine phenotype with or without EGFR TKI treatment. PMID:27160687

  19. Distinctive Patterns of CTNNB1 (β-Catenin) Alterations in Salivary Gland Basal Cell Adenoma and Basal Cell Adenocarcinoma.

    PubMed

    Jo, Vickie Y; Sholl, Lynette M; Krane, Jeffrey F

    2016-08-01

    Salivary gland basaloid neoplasms are diagnostically challenging. Limited publications report that some basal cell adenomas harbor CTNNB1 mutations, and nuclear β-catenin expression is prevalent. We evaluated β-catenin expression in basal cell adenomas and adenocarcinomas in comparison with salivary tumors in the differential diagnosis and performed targeted genetic analysis on a subset of cases. β-catenin immunohistochemistry was performed on formalin-fixed, paraffin-embedded whole sections from 73 tumors. Nuclear staining was scored semiquantitatively by extent and intensity. DNA was extracted from 6 formalin-fixed, paraffin-embedded samples (5 basal cell adenomas, 1 basal cell adenocarcinoma) for next-generation sequencing. Nuclear β-catenin staining was present in 18/22 (82%) basal cell adenomas; most were diffuse and strong and predominant in the basal component. Two of 3 basal cell adenocarcinomas were positive (1 moderate focal; 1 moderate multifocal). All adenoid cystic carcinomas (0/20) and pleomorphic adenomas (0/20) were negative; 2/8 epithelial-myoepithelial carcinomas showed focal nuclear staining. Most β-catenin-negative tumors showed diffuse membranous staining in the absence of nuclear staining. Four of 5 basal cell adenomas had exon 3 CTNNB1 mutations, all c.104T>C (p.I35T). Basal cell adenocarcinoma showed a more complex genomic profile, with activating mutations in PIK3CA, biallelic inactivation of NFKBIA, focal CYLD deletion, and without CTNNB1 mutation despite focal β-catenin expression. Nuclear β-catenin expression has moderate sensitivity (82%) for basal cell adenoma but high specificity (96%) in comparison with its morphologic mimics. CTNNB1 mutation was confirmed in most basal cell adenomas tested, and findings in basal cell adenocarcinoma suggest possible tumorigenic mechanisms, including alterations in PI3K and NF-κB pathways and transcriptional regulation. PMID:27259009

  20. Intratumoral neutrophil granulocytes contribute to epithelial-mesenchymal transition in lung adenocarcinoma cells.

    PubMed

    Hu, Pingping; Shen, Meixiao; Zhang, Ping; Zheng, Chunlong; Pang, Zhaofei; Zhu, Linhai; Du, Jiajun

    2015-09-01

    We previously demonstrated that haemoptysis as a prognostic factor in lung adenocarcinoma and haemoptysis was associated with severe vascular invasion and high circulating white blood cell count. Epithelial-mesenchymal transition (EMT) plays an important role in tumor invasion. We hypothesized there was some relationship between tumor-associated inflammatory cells, tumor invasion, EMT, and haemoptysis. Immunohistochemistry (IHC) was used to detect CD66b and E-cadherin expression in tumor tissue. By co-culture tumor cells with polymorphonuclear neutrophils (PMNs), the expressions of EMT markers were assessed by western blotting. TGF-β1 concentrations in the supernatant and the migration activities of tumor cells were performed by ELISA and migration assays. Intratumoral CD66b(+) PMN expression was negatively associated with E-cadherin expression. Haemoptysis was significantly associated with neutrophil infiltration (OR = 4.25, 95 % CI 1.246-14.502). Neutrophils promoted EMT of tumor cells in vitro and enhanced the migration activity of tumor cells. In addition, TGF-β1 was up-regulated and Smad4 translocated into nucleus, indicating that TGF-β/Smad signaling pathway was initiated during the process. We indicated that lung adenocarcinoma with haemoptysis was associated with more PMN infiltration and PMNs promoted EMT, partly via TGF-β/Smad signal pathway. This may provide mechanistic reasons for why haemoptysis was associated with poor outcome in lung adenocarcinoma. PMID:25944163

  1. Metabolism and effects of progesterone in the human endometrial adenocarcinoma cell line HEC-1.

    PubMed

    Satyaswaroop, P G; Frost, A; Gurpide, E

    1980-01-01

    Human endometrial adenocarcinoma cells (HEC-1 line) were incubated with 14C-progesterone. Four major labeled metabolites, 3 beta-hydroxy 5 alpha-pregnan-20-one, 5 alpha-pregnane-3 beta, 20 alpha-diol, 20 alpha-hydroxy-4-pregnen-3-one and 5 alpha-pregnane-3, 20-dione were separated by thin layer chromatography, further purified by high pressure liquid chromatography, and finally identified by addition of carriers and crystallization to constant specific activity. Among these metabolites, 5 alpha-pregnane-3 beta, 20 alpha-diol seems characteristic of this cell line since its formation from labeled progesterone was not detected in normal endometrium or in 2 specimens of endometrial adenocarcinoma. The growth of HEC cells was unaffected by either progesterone or medroxyprogesterone acetate, a slowly metabolized progestin, at about 10(-6) M levels but was inhibited by about 10(-5) M concentrations of these compounds. PMID:7376209

  2. PVM/MA-shelled selol nanocapsules promote cell cycle arrest in A549 lung adenocarcinoma cells

    PubMed Central

    2014-01-01

    Background Selol is an oily mixture of selenitetriacylglycerides that was obtained as a semi-synthetic compound containing selenite. Selol is effective against cancerous cells and less toxic to normal cells compared with inorganic forms of selenite. However, Selol’s hydrophobicity hinders its administration in vivo. Therefore, the present study aimed to produce a formulation of Selol nanocapsules (SPN) and to test its effectiveness against pulmonary adenocarcinoma cells (A549). Results Nanocapsules were produced through an interfacial nanoprecipitation method. The polymer shell was composed of poly(methyl vinyl ether-co-maleic anhydride) (PVM/MA) copolymer. The obtained nanocapsules were monodisperse and stable. Both free Selol (S) and SPN reduced the viability of A549 cells, whereas S induced a greater reduction in non-tumor cell viability than SPN. The suppressor effect of SPN was primarily associated to the G2/M arrest of the cell cycle, as was corroborated by the down-regulations of the CCNB1 and CDC25C genes. Apoptosis and necrosis were induced by Selol in a discrete percentage of A549 cells. SPN also increased the production of reactive oxygen species, leading to oxidative cellular damage and to the overexpression of the GPX1, CYP1A1, BAX and BCL2 genes. Conclusions This study presents a stable formulation of PVM/MA-shelled Selol nanocapsules and provides the first demonstration that Selol promotes G2/M arrest in cancerous cells. PMID:25149827

  3. Adenocarcinoma cells isolated from patients in the presence of cerium and transferrin in vitro

    PubMed Central

    Zende-Del, A; Gholami, MR; Abdollahpour, F; Ahmadvand, H

    2015-01-01

    Aim: Cerium as a trace element in the periodic table is a member of the lanthanide group. Cerium ionic radius and its binding properties are similar to ferric ions, which may be bound to transferrin. So it can be considered as a competitive element to iron and can interfere with iron absorption. The aim of this study was to investigate the inhibitory effect of Cerium in presence of transferrin on gastric adenocarcinoma cells in vitro. Methods: The adenocarcinoma cells were obtained from patients after a pathological confirmation, then they were cultured in DMEM environment and cytotoxic effect of different concentrations of cerium were measured (0.1, 1, 10 and 100 µM) in the presence and absence of transferrin, on periods 24 and 48 hours by MTT and LDH cytotoxic assay. Results: The results of MTT and LDH measurements showed that Cerium itself has a cytotoxic effect on cancer cells isolated from the patient as well as it increases significantly in the presence of transferrin carrying a mortality rate of cancer cells (P <.05). Conclusion: Cerium is competitive element in the mechanism of iron absorption and can interfere and inhibit the growth of adenocarcinoma cancer cells; also, the use of Cerium and transferrin simultaneously may cause a greater inhibitory effect. PMID:26664465

  4. Gastric mucous neck cell and intestinal goblet cell phenotypes in gastric adenocarcinoma.

    PubMed Central

    Hughes, N R; Bhathal, P S

    1997-01-01

    AIM: To investigate the phenotype of cells comprising diffuse and intestinal-type gastric cancers using monoclonal antibodies to two antigens. One antigen (designated D10) is characteristic of gastric mucous neck cells, cardiac glands, pyloric glands, and Brunner's glands. The second antigen (designated 17NM) is specific to the mucous vacuole of intestinal goblet cells. METHODS: Thirty two gastrectomy specimens with adenocarcinoma were studied. Serial paraffin sections were stained immunohistochemically for D10 and 17NM and histochemically for acid and neutral mucins. The cancers were classified histologically as of either diffuse or intestinal type according to Lauren. RESULTS: Of 15 diffuse-type gastric carcinomas, 11 showed the majority of cancer cells staining for D10 while four were typical signet ring cell cancers staining predominantly for 17NM; five tumours displayed both phenotypes with the two phenotypes segregated in different areas of the tumours. In contrast, of 16 intestinal-type cancers, six expressed 17NM, three D10, five neither antigen, and two expressed both antigens. One indeterminate-type cancer expressed both antigens. The staining of individual cells for D10 and 17NM was mutually exclusive in both diffuse and intestinal types. In contrast to the diffuse cancers, intestinal-type cancers typically expressed either antigen only in occasional small groups of cells and individual cells. CONCLUSIONS: In disease, the gastric stem cell can assume the capacity of the duodenal stem cell for divergent differentiation into either intestinal goblet cells (for example, as in intestinal metaplasia) or Brunner's gland cells (for example, as in pyloric gland/Brunner's gland metaplasia). With neoplastic transformation, this potential for divergent differentiation is maintained and gives rise to diffuse-type cancers that display either the D10 phenotype, the 17NM phenotype, or the clonal expression of both phenotypes. In the more cell cohesive (intestinal

  5. miR-99a regulates ROS-mediated invasion and migration of lung adenocarcinoma cells by targeting NOX4.

    PubMed

    Sun, Mei; Hong, Shunming; Li, Wenhan; Wang, Pengfei; You, Jinqiang; Zhang, Xuebin; Tang, Fan; Wang, Ping; Zhang, Chunzhi

    2016-05-01

    miR-99a is frequently downregulated in various types of human malignancies including lung adenocarcinoma. Recent studies have reported that miR-99a regulates cell growth and cell cycle progression by targeting mTOR, AKT1 and FGFR3. However, the underlying mechanisms involved in the modulation of invasion and migration by miR-99a remain elusive. In this study, we analyzed the relationship between the expression of miR-99a and clinical stage or metastasis in 90 matched lung adenocarcinoma and adjacent non-tumor lung tissues. Downregulation of miR-99a was significantly associated with advanced stage and tumor metastasis in lung adenocarcinoma patients, and it was found to be a poor prognostic factor in lung adenocarcinoma. Furthermore, functional experiments found that overexpression of miR-99a inhibited the proliferation, migration and invasion of lung adenocarcinoma A549 and Calu3 cells in vitro. We then identified NOX4 as a target gene of miR-99a and NOX4 mediated the inhibition of invasion and migration of lung adenocarcinoma cells by miR-99a. By targeting NOX4-mediated ROS production, miR-99a regulated the invasion and migration of lung adenocarcinoma cells. Moreover, overexpression of miR-99a significantly inhibited tumor growth in vivo. Immunohistochemical staining analysis of the mouse tumor tissues revealed that NOX4 levels were downregulated in the miR-99a treatment group, confirming the in vitro data of NOX4 as a direct target gene of miR-99a. Taken together, these data indicate for the first time that miR-99a directly regulates the invasion and migration in lung adenocarcinoma by targeting NOX4 and that overexpression of miR-99a may become a therapeutic strategy for lung adenocarcinoma. PMID:26986073

  6. Drug sensitivity profiling and molecular characteristics of cells from pleural effusions of patients with lung adenocarcinoma

    PubMed Central

    Hillerdal, Carl-Olof; Celep, Aytekin; Yousef-Fadhel, Eviane; Skribek, Henriette; Hjerpe, Anders; Székely, László; Dobra, Katalin

    2015-01-01

    We propose to assess the therapeutic value of biomarker-guided individualized chemotherapy in patients with metastasizing lung adenocarcinoma. In this study, we used primary cells from pleural effusions from sixteen patients diagnosed with adenocarcinomas originating in the lung and from four patients with no malignant diagnosis. The ex vivo drug sensitivity of primary cells was assessed for 32 chemotherapeutical drugs. Linear regression analyses were performed to examine possible correlations between the drug sensitivity, overall survival and expression of ERCC1 and RRM1. The ex vivo drug sensitivity profiles of the patients revealed considerable heterogeneity in drug response. Vinblastine, vinorelbine, paclitaxel and actinomycin D showed high efficiency against 50% of the tested primary cells. Significant correlation was detected between the ex vivo sensitivity to platinum based drugs and gemcitabine and the level of ERCC1 and RRM1. No significant correlation was however seen between overall survival and drug sensitivity. The heterogeneity of the drug response suggests that optimal care of the adenocarcinoma patients should include the determination of drug sensitivity of the primary cells and would benefit to use personalized therapy. PMID:26000095

  7. Clear cell adenocarcinoma arising from adenomyotic cyst: A case report and literature review.

    PubMed

    Baba, Akira; Yamazoe, Shinji; Dogru, Murat; Ogawa, Mariko; Takamatsu, Kiyoshi; Miyauchi, Jun

    2016-02-01

    Ovaries are the primary sites of cancerous disease that is derived from endometriosis. Uterine cancer originating from endometriosis is very rare. The most frequent histological subtype of cancer derived from endometriosis is endometrioid adenocarcinoma, a subtype of clear cell carcinoma which is exceedingly rare. We report a case of a 40-year-old Japanese woman with a six year history of uterine leiomyoma. The patient was clinically and radiologically suspected to have degenerative uterine myoma with a possible malignant association and underwent a transabdominal total hysterectomy. Histopathological examination of the specimens revealed clear cell adenocarcinoma arising from the adenomyotic cyst. A literature review of clear cell adenocarcinomas arising from uterine adenomyotic cysts (cystic adenomyosis), emphasizes the clinically and radiologically important features of this very rare entity. Clear cell carcinoma association should be suspected in patients who are under follow-up for uterine myomas and present with cystic uterine changes with solid component on magnetic resonance imaging or computed tomography scans. PMID:26530432

  8. Activin a signaling regulates cell invasion and proliferation in esophageal adenocarcinoma

    PubMed Central

    Le Bras, Gregoire F.; Koumangoye, Rainelli B.; Romero-Morales, Alejandra I.; Quast, Laura L.; Zaika, Alexander I.; El-Rifai, Wael; Andl, Thomas; Andl, Claudia D.

    2015-01-01

    TGFβ signaling has been implicated in the metaplasia from squamous epithelia to Barrett's esophagus and, ultimately, esophageal adenocarcinoma. The role of the family member Activin A in Barrett's tumorigenesis is less well established. As tumorigenesis is influenced by factors in the tumor microenvironment, such as fibroblasts and the extracellular matrix, we aimed to determine if epithelial cell-derived Activin affects initiation and progression differently than Activin signaling stimulation from a mimicked stromal source. Using Barrett's esophagus cells, CPB, and the esophageal adenocarcinoma cell lines OE33 and FLO-1, we showed that Activin reduces colony formation only in CPB cells. Epithelial cell overexpression of Activin increased cell migration and invasion in Boyden chamber assays in CPB and FLO-1 cells, which exhibited mesenchymal features such as the expression of the CD44 standard form, vimentin, and MT1-MMP. When grown in organotypic reconstructs, OE33 cells expressed E-cadherin and Keratin 8. As mesenchymal characteristics have been associated with the acquisition of stem cell-like features, we analyzed the expression and localization of SOX9, showing nuclear localization of SOX9 in esophageal CPB and FLO-1 cells. In conclusion, we show a role for autocrine Activin signaling in the regulation of colony formation, cell migration and invasion in Barrett's tumorigenesis. PMID:26447543

  9. Activin a signaling regulates cell invasion and proliferation in esophageal adenocarcinoma.

    PubMed

    Taylor, Chase; Loomans, Holli A; Le Bras, Gregoire F; Koumangoye, Rainelli B; Romero-Morales, Alejandra I; Quast, Laura L; Zaika, Alexander I; El-Rifai, Wael; Andl, Thomas; Andl, Claudia D

    2015-10-27

    TGFβ signaling has been implicated in the metaplasia from squamous epithelia to Barrett's esophagus and, ultimately, esophageal adenocarcinoma. The role of the family member Activin A in Barrett's tumorigenesis is less well established. As tumorigenesis is influenced by factors in the tumor microenvironment, such as fibroblasts and the extracellular matrix, we aimed to determine if epithelial cell-derived Activin affects initiation and progression differently than Activin signaling stimulation from a mimicked stromal source. Using Barrett's esophagus cells, CPB, and the esophageal adenocarcinoma cell lines OE33 and FLO-1, we showed that Activin reduces colony formation only in CPB cells. Epithelial cell overexpression of Activin increased cell migration and invasion in Boyden chamber assays in CPB and FLO-1 cells, which exhibited mesenchymal features such as the expression of the CD44 standard form, vimentin, and MT1-MMP. When grown in organotypic reconstructs, OE33 cells expressed E-cadherin and Keratin 8. As mesenchymal characteristics have been associated with the acquisition of stem cell-like features, we analyzed the expression and localization of SOX9, showing nuclear localization of SOX9 in esophageal CPB and FLO-1 cells.In conclusion, we show a role for autocrine Activin signaling in the regulation of colony formation, cell migration and invasion in Barrett's tumorigenesis. PMID:26447543

  10. Cell surface glycopeptides from human intestinal epithelial cell lines derived from normal colon and colon adenocarcinomas

    SciTech Connect

    Youakim, A.; Herscovics, A.

    1985-11-01

    The cell surface glycopeptides from an epithelial cell line (CCL 239) derived from normal human colon were compared with those from three cell lines (HCT-8R, HCT-15, and CaCo-2) derived independently from human colonic adenocarcinomas. Cells were incubated with D-(2-TH)mannose or L-(5,6-TH)fucose for 24 h and treated with trypsin to release cell surface components which were then digested exhaustively with Pronase and fractionated on Bio-Gel P-6 before and after treatment with endo-beta-N-acetylglucosaminidase H. The most noticeable difference between the labeled glycopeptides from the tumor and CCL 239 cells was the presence in the former of an endo-beta-N-acetylglucosaminidase H-resistant high molecular weight glycopeptide fraction which was eluted in the void volume of Bio-Gel P-6. This fraction was obtained with both labeled mannose and fucose as precursors. However, acid hydrolysis of this fraction obtained after incubation with (2-TH)mannose revealed that as much as 60-90% of the radioactivity was recovered as fucose. Analysis of the total glycopeptides (cell surface and cell pellet) obtained after incubation with (2-TH)mannose showed that from 40-45% of the radioactivity in the tumor cells and less than 10% of the radioactivity in the CCL 239 cells was recovered as fucose. After incubation of the HCT-8R cells with D-(1,6-TH)glucosamine and L-(1- UC)fucose, strong acid hydrolysis of the labeled glycopeptide fraction excluded from Bio-Gel P-6 produced TH-labeled N-acetylglucosamine and N-acetylgalactosamine.

  11. Multiple cells-of-origin of mutant K-Ras-induced mouse lung adenocarcinoma.

    PubMed

    Sutherland, Kate D; Song, Ji-Ying; Kwon, Min Chul; Proost, Natalie; Zevenhoven, John; Berns, Anton

    2014-04-01

    Much controversy surrounds the cell-of-origin of mutant K-Ras (K-RasG12D)-induced lung adenocarcinoma. To shed light on this issue, we have used technology that enables us to conditionally target K-RasG12D expression in Surfactant Protein C (SPC)(+) alveolar type 2 cells and in Clara cell antigen 10 (CC10)(+) Clara cells by use of cell-type-restricted recombinant Adeno-Cre viruses. Experiments were performed both in the presence and absence of the tumor suppressor gene p53, enabling us to assess what effect the cell-of-origin and the introduced genetic lesions have on the phenotypic characteristics of the resulting adenocarcinomas. We conclude that both SPC-expressing alveolar type 2 cells and CC10-expressing Clara cells have the ability to initiate malignant transformation following the introduction of these genetic alterations. The lungs of K-Ras(lox-Stop-lox-G12D/+) and K-Ras(lox-Stop-lox-G12D/+);tumor suppressor gene Trp53(F/F) mice infected with Adeno5-SPC-Cre and Adeno5-CC10-Cre viruses displayed differences in their tumor spectrum, indicating distinct cellular routes of tumor initiation. Moreover, using a multicolor Cre reporter line, we demonstrate that the resulting tumors arise from a clonal expansion of switched cells. Taken together, these results indicate that there are multiple cellular paths to K-RasG12D-induced adenocarcinoma and that the initiating cell influences the histopathological phenotype of the tumors that arise. PMID:24586047

  12. Mixed squamous cell and glandular papilloma of the lung resembling early adenocarcinoma: A case report

    PubMed Central

    Abe, Jiro; Ito, Shigemi; Takahashi, Satomi; Sato, Ikuro; Tanaka, Ryota; Sato, Taku; Okazaki, Toshimasa

    2016-01-01

    Introduction An extremely rare case of mixed squamous cell and glandular papilloma of the lung is reported. The correlation between the radiological and the pathological features as well as the clinical pitfall in making a diagnosis is discussed. Presentation of case An asymptomatic 68-year-old female with a cigarette smoking habit presented with a small nodule in her peripheral lung. A wedge resection was performed though it failed on-site diagnosis which was instead obtained following pathological scrutiny. The postsurgical course was excellent with no recurrence of disease. Discussion A small ground glass nodule gradually enlarged and transformed to a partially solid nodule a year and a half later. This transformation falsely made us suspect an early adenocarcinoma development. Eventually, the extremely rare subtype of pulmonary papilloma, with biphasic glandular and squamous cells, had been demonstrated to obstruct the peripheral bronchiole; and the adjoining alveoli had filled with a large volume of mucus. These pathological features seemed to have constituted the inner solid portion and the marginal ground glass portion respectively in the CT images, mimicking invasive lepidic adenocarcinoma. Conclusion Both pre- and intra-operative diagnoses are difficult mainly because of the rareness of the disease, however, mixed squamous cell and glandular papilloma may be considered in case the presence of primary adenocarcinoma is not validated. PMID:27141302

  13. Antidiabetic drug metformin inhibits esophageal adenocarcinoma cell proliferation in vitro and in vivo.

    PubMed

    Fujihara, Shintaro; Kato, Kiyohito; Morishita, Asahiro; Iwama, Hisakazu; Nishioka, Tomoko; Chiyo, Taiga; Nishiyama, Noriko; Miyoshi, Hisaaki; Kobayashi, Mitsuyoshi; Kobara, Hideki; Mori, Hirohito; Okano, Keiichi; Suzuki, Yasuyuki; Masaki, Tsutomu

    2015-05-01

    Esophageal carcinoma is the eighth most common cancer worldwide and the sixth leading cause of cancer-related deaths, with one of the worst prognoses of any form of cancer. Treatment with the anti-diabetic drug metformin has been associated with reduced cancer incidence in patients with type 2 diabetes. This study therefore evaluated the effects of metformin on the proliferation, in vitro and in vivo, of human esophageal adenocarcinoma cells, as well as the microRNAs associated with the antitumor effects of metformin. Metformin inhibited the proliferation of the esophageal adenocarcinoma cell lines OE19, OE33, SK-GT4 and OACM 5.1C, blocking the G0 to G1 transition in the cell cycle. This was accompanied by strong reductions in G1 cyclins, especially cyclin D1, cyclin-dependent kinase (Cdk)4, and Cdk6, and decreases in retinoblastoma protein phosphorylation. In addition, metformin reduced the phosphorylation of epidermal growth factor receptor and insulin-like growth factor and insulin-like growth factor-1 receptor, as well as angiogenesis-related proteins, such as vascular endothelial growth factor, tissue inhibitor of metalloproteinases (TIMP)-1, and TIMP-2. Metformin also markedly altered microRNA expression. Treatment with metformin of athymic nude mice bearing xenograft tumors reduced tumor proliferation. These findings suggest that metformin may have clinical use in the treatment of esophageal adenocarcinoma. PMID:25709052

  14. Enhancement of Thermal Damage to Adenocarcinoma Cells by Iron Nanoparticles Modified with MUC1 Aptamer.

    PubMed

    Guo, Fangqin; Hu, Yan; Yu, Lianyuan; Deng, Xiaoyuan; Meng, Jie; Wang, Chen; Yang, Xian-Da

    2016-03-01

    Hyperthermia cancer treatment is an adjunctive therapy that aims at killing the tumor cells with excessive heat that is usually generated by metal contrasts exposed to alternating magnetic field. The efficacy of hyperthermia is often limited by the heat damage to normal tissue due to indiscriminate distribution of the metal contrasts within the body. Tumor-targeting metal contrasts may reduce the toxicity of hyperthermia and improve the efficacy of thermotherapy against cancer. MUC1 is a glycoprotein over expressed in most adenocarcinomas, and represents an attractive therapeutic target. In this study, a MUC1 aptamer is conjugated with iron nanoparticles to construct adenocarcinoma-targeting metal contrasts. DNA hybridization studies confirmed that the aptamers were conjugated to the iron nanoparticles. Importantly, more aptamer-modified nanoparticles attached to the MUC1-positive cancer cells compared with the unmodified nanoparticles. Moreover, aptamer-modified nanoparticles significantly enhanced the targeted hyperthermia damage to MUC1-positive cancer cells in vitro (p < 0.05). The results suggest that MUC1 aptamer-modified metal particles may have potential in development of targeted hyperthermia therapy against adenocarcinomas. PMID:27455625

  15. [Linitis plastica type of primary signet cell adenocarcinoma of the bladder].

    PubMed

    el Sandid, Marwan; Peraldi, Renaud; Pernin, François

    2002-04-01

    Primary adenocarcinoma represent 0.5 to 2% of all bladder tumours and are classified according to whether or not they are derived from the urachus, although, histologically, this classification now appears to be obsolete. The authors report a very rare case of linitis plastica type of primary signet cell adenocarcinoma of the bladder in a 53-year-old patient. This carcinoma, with very unusual histological features, needs to be distinguished. Due to the delayed diagnosis, it has a poor prognosis despite the most aggressive treatment modalities, as reported in the literature. The elevated CA 19-9 observed in the present case may be a useful marker for follow-up. PMID:12108351

  16. MiR-374a suppresses lung adenocarcinoma cell proliferation and invasion by targeting TGFA gene expression.

    PubMed

    Wu, Haijian; Liu, Yan; Shu, Xiao Ou; Cai, Qiuyin

    2016-06-01

    Aberrant expression of miR-374a has been reported in several types of human cancers, including lung cancer. However, the functional significance and molecular mechanisms underlying the role of miR-374a in lung cancer remain largely unknown. We found that the expression of miR-374a was significantly downregulated in lung adenocarcinoma tissues compared to adjacent normal lung tissues in samples included in The Cancer Genome Atlas. Functional studies revealed that overexpression of miR-374a led to inhibition of lung adenocarcinoma cell proliferation, migration and invasion and that miR-374a negatively regulated transforming growth factor-alpha (TGFA) gene expression by directly targeting the 3'-UTR of TGFA mRNA. Treating lung adenocarcinoma cells with TGF-α neutralizing antibody resulted in suppression of cell proliferation and invasion, which mimicked the action of miR-374a. Additionally, TGFA gene expression was significantly higher in tumor tissues compared to adjacent normal tissue and high TGFA gene expression strongly correlated with poor survival in patients with lung adenocarcinoma. Taken together, our studies suggest that miR-374a suppresses lung adenocarcinoma cell proliferation and invasion via targeting TGFA gene expression. Our findings may provide novel treatment strategies for lung adenocarcinoma patients. PMID:27207663

  17. Verification and unmasking of widely used human esophageal adenocarcinoma cell lines.

    PubMed

    Boonstra, Jurjen J; van Marion, Ronald; Beer, David G; Lin, Lin; Chaves, Paula; Ribeiro, Catarina; Pereira, A Dias; Roque, Lúcia; Darnton, S Jane; Altorki, Nasser K; Schrump, David S; Klimstra, David S; Tang, Laura H; Eshleman, James R; Alvarez, Hector; Shimada, Yutaka; van Dekken, Herman; Tilanus, Hugo W; Dinjens, Winand N M

    2010-02-24

    For decades, hundreds of different human tumor type-specific cell lines have been used in experimental cancer research as models for their respective tumors. The veracity of experimental results for a specific tumor type relies on the correct derivation of the cell line. In a worldwide effort, we verified the authenticity of all available esophageal adenocarcinoma (EAC) cell lines. We proved that the frequently used cell lines SEG-1 and BIC-1 and the SK-GT-5 cell line are in fact cell lines from other tumor types. Experimental results based on these contaminated cell lines have led to ongoing clinical trials recruiting EAC patients, to more than 100 scientific publications, and to at least three National Institutes of Health cancer research grants and 11 US patents, which emphasizes the importance of our findings. Widespread use of contaminated cell lines threatens the development of treatment strategies for EAC. PMID:20075370

  18. Trophoblast glycoprotein promotes pancreatic ductal adenocarcinoma cell metastasis through Wnt/planar cell polarity signaling.

    PubMed

    He, Ping; Jiang, Shuheng; Ma, Mingze; Wang, Yang; Li, Rongkun; Fang, Fang; Tian, Guangang; Zhang, Zhigang

    2015-07-01

    Trophoblast glycoprotein (TPBG), a 72 kDa glycoprotein was identified using a monoclonal antibody, which specifically binds human trophoblast. The expression of TPBG in normal tissues is limited; however, it is upregulated in numerous types of cancer. When TPBG is expressed at a high level, this usually indicates a poor clinical outcome. In the present study, it was demonstrated that TPBG was more commonly observed in human pancreatic ductal adenocarcinoma (PDAC) compared with normal pancreatic tissue. Immunohistochemical analysis of PDAC tissue microarrays indicated that the expression of TPBG in PDAC tissues was closely correlated with the tumor-node-metastasis stage of the tumor. Silencing of TPBG in PDAC cell lines resulted in a decreased ability of cancer cell migration and invasion. Further investigation demonstrated that the Wnt/planar cell polarity signaling pathway was suppressed, as the expression of Wnt5a and the activation of c-Jun N-terminal kinase was inhibited following TPBG knockdown. In conclusion, the present study provided evidence that TPBG is involved in PDAC metastasis, and that TPBG and its associated signaling pathways may be a suitable target for PDAC therapy. PMID:25738465

  19. Mixed Large Cell Neuroendocrine Carcinoma and Adenocarcinoma with Spindle Cell and Clear Cell Features in the Extrahepatic Bile Duct

    PubMed Central

    Agarwal, Rishi; Nguyen, Jeremy; Weidenhaft, Mandy Crause; Shores, Nathan; Kimbrell, Hillary Z.

    2014-01-01

    Mixed adenoneuroendocrine carcinomas, spindle cell carcinomas, and clear cell carcinomas are all rare tumors in the biliary tract. We present the first case, to our knowledge, of an extrahepatic bile duct carcinoma composed of all three types. A 65-year-old man with prior cholecystectomy presented with painless jaundice, vomiting, and weight loss. CA19-9 and alpha-fetoprotein (AFP) were elevated. Cholangioscopy revealed a friable mass extending from the middle of the common bile duct to the common hepatic duct. A bile duct excision was performed. Gross examination revealed a 3.6 cm intraluminal polypoid tumor. Microscopically, the tumor had foci of conventional adenocarcinoma (CK7-positive and CA19-9-postive) surrounded by malignant-appearing spindle cells that were positive for cytokeratins and vimentin. Additionally, there were separate areas of large cell neuroendocrine carcinoma (LCNEC). Foci of clear cell carcinoma merged into both the LCNEC and the adenocarcinoma. Tumor invaded through the bile duct wall with extensive perineural and vascular invasion. Circumferential margins were positive. The patient's poor performance status precluded adjuvant therapy and he died with recurrent and metastatic disease 5 months after surgery. This is consistent with the reported poor survival rates of biliary mixed adenoneuroendocrine carcinomas. PMID:24804133

  20. Low-Dose Cadmium Upregulates VEGF Expression in Lung Adenocarcinoma Cells

    PubMed Central

    Liu, Fuhong; Wang, Bei; Li, Liqun; Dong, Fengyun; Chen, Xiaocui; Li, Yan; Dong, Xiuzhen; Wada, Youichiro; Kapron, Carolyn M.; Liu, Ju

    2015-01-01

    Cadmium (Cd) is a heavy metal and environmental toxin. Exposure to Cd has been associated with a variety of human cancers. In this study, we performed in vitro assays to examine the effects of cadmium chloride (CdCl2) on A549 cells, a human lung adenocarcinoma cell line. Cd does not affect proliferation, migration, or apoptosis of A549 cells at concentrations of 0.1–10 μM. At 0.5 and 1 μM, Cd increases the expression of vascular endothelial growth factor (VEGF) (p < 0.05, p < 0.01, respectively), but not basic fibroblast growth factor (b-FGF) in A549 cells. The conditioned media were collected from the A549 cells treated with 1 μM Cd and were co-cultured with human umbilical vein endothelial cells (HUVECs). Upon treatment with the conditioned media, the proliferation and migration of HUVECs significantly increased (p < 0.01, p < 0.05, respectively), while apoptosis remained unchanged. In addition, 1 μM Cd increases the level of hypoxia inducible factor 1-α (HIF1-α), which is a positive regulator of VEGF expression. Although low-dose Cd does not directly affect the growth of lung adenocarcinoma cells, it might facilitate the development of tumors through its pro-angiogenic effects. PMID:26343694

  1. Morphological evidence of neutrophil-tumor cell phagocytosis (cannibalism) in human gastric adenocarcinomas.

    PubMed

    Caruso, R A; Muda, A O; Bersiga, A; Rigoli, L; Inferrera, C

    2002-01-01

    The phenomenon of neutrophil-tumor cell emperipolesis or phagocytosis has been documented by light microscopy in various human carcinomas, but little is known about the cellular pathological processes and the morphological changes involved. In an attempt to clarify the nature of this phenomenon, the authors' ultrastructural studies on the relationships among neutrophils and tumor cells in human gastric carcinomas are reviewed and analyzed. At the electron microscopy level, apoptotic neutrophils were found within vacuoles of adenocarcinoma cells in 2 cases. They showed either early apoptotic morphology with perinuclear chromatin aggregation but cytoplasm integrity or late apoptotic morphology with uniform, collapsed nucleus and tightly packed cytoplasmic granules. A light microscopy review of 200 cases of resected gastric carcinomas identified 22 cases (11%) that were characterized by neutrophil-tumor cell phagocytosis (cannibalism). TUNEL staining confirmed the presence of apoptotic neutrophils within the cytoplasm of the tumor cells. This study provides light and electron microscopic evidence of apoptotic neutrophils phagocytosed by gastric adenocarcinoma cells. The morphological features of neutrophil-tumor cell phagocytosis (cannibalism) would suggest a particular mechanism of tumor-immune escape in human gastric carcinoma. PMID:12396242

  2. Aptamers Selected to Postoperative Lung Adenocarcinoma Detect Circulating Tumor Cells in Human Blood

    PubMed Central

    Zamay, Galina S; Kolovskaya, Olga S; Zamay, Tatiana N; Glazyrin, Yury E; Krat, Alexey V; Zubkova, Olga; Spivak, Ekaterina; Wehbe, Mohammed; Gargaun, Ana; Muharemagic, Darija; Komarova, Mariia; Grigorieva, Valentina; Savchenko, Andrey; Modestov, Andrey A; Berezovski, Maxim V; Zamay, Anna S

    2015-01-01

    Circulating tumor cells (CTCs) are rare cells and valuable clinical markers of prognosis of metastasis formation and prediction of patient survival. Most CTC analyses are based on the antibody-based detection of a few epithelial markers; therefore miss an important portion of mesenchymal cancer cells circulating in blood. In this work, we selected and identified DNA aptamers as specific affinity probes that bind to lung adenocarcinoma cells derived from postoperative tissues. The unique feature of our selection strategy is that aptamers are produced for lung cancer cell biomarkers in their native state and conformation without previous knowledge of the biomarkers. The aptamers did not bind to normal lung cells and lymphocytes, and had very low affinity to A549 lung adenocarcinoma culture. We applied these aptamers to detect CTCs, apoptotic bodies, and microemboli in clinical samples of peripheral blood of lung cancer and metastatic lung cancer patients. We identified aptamer-associated protein biomarkers for lung cancer such as vimentin, annexin A2, annexin A5, histone 2B, neutrophil defensin, and clusterin. Tumor-specific aptamers can be produced for individual patients and synthesized many times during anticancer therapy, thereby opening up the possibility of personalized diagnostics. PMID:26061649

  3. Aptamers Selected to Postoperative Lung Adenocarcinoma Detect Circulating Tumor Cells in Human Blood.

    PubMed

    Zamay, Galina S; Kolovskaya, Olga S; Zamay, Tatiana N; Glazyrin, Yury E; Krat, Alexey V; Zubkova, Olga; Spivak, Ekaterina; Wehbe, Mohammed; Gargaun, Ana; Muharemagic, Darija; Komarova, Mariia; Grigorieva, Valentina; Savchenko, Andrey; Modestov, Andrey A; Berezovski, Maxim V; Zamay, Anna S

    2015-09-01

    Circulating tumor cells (CTCs) are rare cells and valuable clinical markers of prognosis of metastasis formation and prediction of patient survival. Most CTC analyses are based on the antibody-based detection of a few epithelial markers; therefore miss an important portion of mesenchymal cancer cells circulating in blood. In this work, we selected and identified DNA aptamers as specific affinity probes that bind to lung adenocarcinoma cells derived from postoperative tissues. The unique feature of our selection strategy is that aptamers are produced for lung cancer cell biomarkers in their native state and conformation without previous knowledge of the biomarkers. The aptamers did not bind to normal lung cells and lymphocytes, and had very low affinity to A549 lung adenocarcinoma culture. We applied these aptamers to detect CTCs, apoptotic bodies, and microemboli in clinical samples of peripheral blood of lung cancer and metastatic lung cancer patients. We identified aptamer-associated protein biomarkers for lung cancer such as vimentin, annexin A2, annexin A5, histone 2B, neutrophil defensin, and clusterin. Tumor-specific aptamers can be produced for individual patients and synthesized many times during anticancer therapy, thereby opening up the possibility of personalized diagnostics. PMID:26061649

  4. Histogenesis of hollow cell ball structure of ovarian and endometrial adenocarcinoma cells in vivo and in vitro.

    PubMed

    Ishiwata, I; Kiguchi, K; Ishiwata, C; Soma, M; Nakaguchi, T; Ono, I; Tachibana, T; Hashimoto, H; Ishikawa, H; Nozawa, S

    1997-09-01

    Hollow cell ball structure is often found in the ascites of adenocarcinoma patients. How to form a hollow cell ball structure was studied in vivo and in vitro, using the human cell lines derived from ovarian and endometrial adenocarcinomas. The hollow cell ball structure was formed by horizontal rotation culture of 1 x 10(7) single-suspended cells for 24 hours or by transplanting 1 x 10(6) single-suspended cells into the peritoneal cavity of nude mouse for 24 hours. At one month after transplantation hemi-cyst and hollow cell ball structure were formed in the outermost layer of the grafted tumor on the intraperitoneal serous membrane in the nude mouse. And also great number of floating hollow cell ball structure in the ascites were observed. These results suggest that mechanisms of formation of hollow cell ball structure found in the ascites; one by cell aggregate of single cells, sometimes inner cells of cell aggregate fall into necrosis or secretes mucus inside and make a hollow cell ball structure and another by the removed as the hollow cell ball structure grown from hemi-cyst on the surface of intraperitoneal grafted tumor. PMID:9436041

  5. Bax is not involved in the resveratrol-induced apoptosis in human lung adenocarcinoma cells

    NASA Astrophysics Data System (ADS)

    Zhang, Wei-wei; Wang, Zhi-ping; Chen, Tong-sheng

    2010-02-01

    Resveratrol (RV) is a natural plant polyphenol widely present in foods such as grapes, wine, and peanuts. Previous studies indicate that RV has an ability to inhibit various stages of carcinogenesis and eliminate preneoplastic cells in vitro and in vivo. However, little is known about the molecular mechanism of RV-induced apoptosis in human lung adenocarcinoma (ASTC-a-1) cell. In this report, we analyzed whether Bax translocation from cytoplasm to mitochondria during RV-induced apoptosis in single living cell using onfocal microscopey. Cells were transfected with GFP-Bax plasmid. Cell counting kit (CCK-8) assay was used to assess the inhibition of RV on the cells viability. Apoptotic activity of RV was detected by Hoechst 33258 and propidium iodide (PI) staining. Our results showed that RV induced a dose-dependent apoptosis in which Bax did not translocate to mitochondrias.

  6. Effect of TRAF6 on the biological behavior of human lung adenocarcinoma cell.

    PubMed

    Zhong, Lou; Cao, Fei; You, Qingsheng

    2013-02-01

    Tumor necrosis factor receptor-associated factor 6 (TRAF6) is a unique adaptor protein of the tumor necrosis factor receptor-associated factor family that mediates both tumor necrosis factor receptor and interleukin-1 receptor/Toll-like receptor signaling. A recent study showed that TRAF6 played an important role in tumorigenesis and invasion through activation of nuclear factor kappa B (NF-κB). However, the biological role of TRAF6 remains unknown in lung cancer up to now. To address the expression of TRAF6 in lung cancer cells, four lung cancer cell lines (A549, HCC827, NCI-H292, and 95-D) and human bronchial epithelial cells were used to detect the expression of TRAF6 protein by western blotting. Results indicated that TRAF6 displayed an upregulation in human lung cancer cell lines. To investigate the effects of TRAF6 on the biological behavior of human lung adenocarcinoma cell, we generated human lung adenocarcinoma A549 cell line in which TRAF6 was depleted. The results showed that downregulation of TRAF6 could decrease cell viability, suppress cell proliferation and invasion, and promote cell apoptosis. At the same time, we explored the effects of TRAF6 on the expression of the following proteins: phosphor-NF-κB (p-p65), cyclin D1, caspase-3, and matrix metalloproteinase 9 (MMP9). Downregulation of TRAF6 could decrease the expression of p-p65, cyclin D1, and MMP9 and increase the expression of caspase-3. All these results suggested that TRAF6 might be involved in the potentiation of growth, proliferation, and invasion of A549 cell line, as well as the inhibition of A549 cell apoptosis by the activation of NF-κB. To make a long story short, the overexpression of TRAF6 might be related to the tumorigenesis and invasion of lung cancer. PMID:23055197

  7. A Case of von Hippel–Lindau Disease with Colorectal Adenocarcinoma, Renal Cell Carcinoma and Hemangioblastomas

    PubMed Central

    Heo, Su Jin; Lee, Choong-kun; Hahn, Kyu Yeon; Kim, Gyuri; Hur, Hyuk; Choi, Sung Hoon; Han, Kyung Seok; Cho, Arthur; Jung, Minkyu

    2016-01-01

    von Hippel–Lindau (VHL) disease is an autosomal dominant inherited tumor syndrome associated with mutations of the VHL tumor suppressor gene located on chromosome 3p25. The loss of functional VHL protein contributes to tumorigenesis. This condition is characterized by development of benign and malignant tumors in the central nervous system (CNS) and the internal organs, including kidney, adrenal gland, and pancreas. We herein describe the case of a 74-year-old man carrying the VHL gene mutation who was affected by simultaneous colorectal adenocarcinoma, renal clear cell carcinoma, and hemangioblastomas of CNS. PMID:25715769

  8. Chromosomal and Genetic Analysis of a Human Lung Adenocarcinoma Cell Line OM

    PubMed Central

    Li, Yong-Wu; Bai, Lin; Dai, Lyu-Xia; He, Xu; Zhou, Xian-Ping

    2016-01-01

    Background: Lung cancer has become the leading cause of death in many regions. Carcinogenesis is caused by the stepwise accumulation of genetic and chromosomal changes. The aim of this study was to investigate the chromosome and gene alterations in the human lung adenocarcinoma cell line OM. Methods: We used Giemsa banding and multiplex fluorescence in situ hybridization focusing on the human lung adenocarcinoma cell line OM to analyze its chromosome alterations. In addition, the gains and losses in the specific chromosome regions were identified by comparative genomic hybridization (CGH) and the amplifications of cancer-related genes were also detected by polymerase chain reaction (PCR). Results: We identified a large number of chromosomal numerical alterations on all chromosomes except chromosome X and 19. Chromosome 10 is the most frequently involved in translocations with six different interchromosomal translocations. CGH revealed the gains on chromosome regions of 3q25.3-28, 5p13, 12q22-23.24, and the losses on 3p25-26, 6p25, 6q26-27, 7q34-36, 8p22-23, 9p21-24, 10q25-26.3, 12p13.31-13.33 and 17p13.1-13.3. And PCR showed the amplification of genes: Membrane metalloendopeptidase (MME), sucrase-isomaltase (SI), butyrylcholinesterase (BCHE), and kininogen (KNG). Conclusions: The lung adenocarcinoma cell line OM exhibited multiple complex karyotypes, and chromosome 10 was frequently involved in chromosomal translocation, which may play key roles in tumorigenesis. We speculated that the oncogenes may be located at 3q25.3-28, 5p13, 12q22-23.24, while tumor suppressor genes may exist in 3p25-26, 6p25, 6q26-27, 7q34-36, 8p22-23, 9p21-24, 10q25-26.3, 12p13.31-13.33, and 17p13.1-13.3. Moreover, at least four genes (MME, SI, BCHE, and KNG) may be involved in the human lung adenocarcinoma cell line OM. PMID:26879013

  9. Radiological Findings of Malignant Tumors of External Auditory Canal: A Cross-Sectional Study Between Squamous Cell Carcinoma and Adenocarcinoma.

    PubMed

    Xia, Shuang; Yan, Shuo; Zhang, Mengjie; Cheng, Yan; Noel, Jacinth; Chong, Vincent; Shen, Wen

    2015-09-01

    The primary malignant tumors of external auditory canal (EAC) are rare. The purpose of this study is to compare the imaging features of growth and recurrence pattern between 2 most common carcinomas namely squamous cell carcinoma (SCC) and adenocarcinoma of the EAC.This is a retrospective study involving 41 patients with primary EAC carcinomas of which 22 are SCC and 19 are adenocarcinoma. They were all scanned with high resolution computer tomography (HRCT) and magnetic resonance imaging. Follow-up clinical and imaging studies have also been collected and compared with a median follow-up time of 43 months (range 5-192 months). Necrosis was presented as hypodensity on computed tomography images, hyper-intense on T2WI and heterogeneous enhancement.Eighteen patients were diagnosed to be in T1 and T2 stage, it was found that SCC involved both the cartilaginous part and the bony part of the EAC (11/12), whereas adenocarcinoma involved only the cartilaginous part (6/6) (P < 0.01). Twenty-three patients were diagnosed to be in T3 and T4 stage showed bony involvement and adjacent tissue involvement for both SCC and adenocarcinoma. Parapharyngeal space involvement is much more common in recurrent SCC (P = 0.02). Lymph node metastasis was seen in 6 out of 22 patients with SCC, while 5 out of 19 patients of adenocarcinoma had lung metastasis, even at early stage (1/6; 1/5). Necrosis is more likely to occur in the patients with SCC (9/10) than that of adenocarcinoma (3/13) (P = 0.02).SCC and adenocarcinoma is seen to have different growth pattern at early stage but share similar patterns in the advanced stage. Lymph node metastasis is commonly seen in patients with SCC while adenocarcinoma shows lung metastasis even at early stage. PMID:26334907

  10. Programmed cell death 4 (Pdcd4) expression in colorectal adenocarcinoma: Association with clinical stage

    PubMed Central

    LIM, SUNG-CHUL; HONG, RAN

    2011-01-01

    The aim of this study was to examine the role of Programmed cell death 4 (Pdcd4) in colorectal adenocarcinoma (CRA). Pdcd4 expression was observed in both the nucleus and cytoplasm in colorectal adenocarcinoma, whereas Pdcd4 was expressed in the nucleus in normal colonic epithelial cells. Loss or weak expression of Pdcd4 was identified in 44 cases (40.7%) of cancer cells. Pdcd4 expression was associated with an increase in the nodal and clinical stage (p=0.022 and p=0.016, respectively). Nuclear staining was identified in 66 cases (61.15%), with no correlation with clinicopathological factors. Conversely, cytoplasmic staining for Pdcd4 was observed in 45 cases (41.7%), and increased according to nodal and clinical stage (p=0.011 and p=0.009, respectively), indicating that aberrant Pdcd4 expression leads to tumor progression. However, Pdcd4 expression was not correlated to disease-free survival time. This study demonstrated that during the tumorigenesis of CRA, loss of nuclear Pdcd4 expression occurs, and during tumor progression, aberrant cytoplasmic expression is present, suggesting a higher clinical stage. Although loss of Pdcd4 was not significantly correlated with survival time, as the prognosis of colorectal cancer varies depending on clinical stage including invasion depth, nodal status and metastatic status, cytoplasmic Pdcd4 expression may be a favorable prognostic marker in CRA. PMID:23049623

  11. Identification of differentially expressed genes between lung adenocarcinoma and lung squamous cell carcinoma by gene expression profiling.

    PubMed

    Lu, Chaojing; Chen, Hezhong; Shan, Zhengxiang; Yang, Lixin

    2016-08-01

    The present study aimed to identify the differentially expressed genes (DEGs) between lung adenocarcinoma and normal lung tissues, and between lung squamous cell carcinoma and normal lung tissues, with the purpose of identifying potential biomarkers for the treatment of lung cancer. The gene expression profile (GSE6044) was downloaded from the Gene Expression Omnibus database, which included data from 10 lung adenocarcinoma samples, 10 lung squamous cell carcinoma samples, and five matched normal lung tissue samples. After data processing, DEGs were identified using the Student's t‑test adjusted via the Benjamini‑Hochberg method. Subsequently, Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of the DEGs was performed using the Database for Annotation, Visualization and Integrated Discovery, and a global network was constructed. A total of 95 upregulated and 241 downregulated DEGs were detected in lung adenocarcinoma samples, and 204 upregulated and 285 downregulated DEGs were detected in lung squamous cell carcinoma samples, as compared with the normal lung tissue samples. The DEGs in the lung squamous cell carcinoma group were enriched in the following three pathways: Hsa04110, Cell cycle; hsa03030, DNA replication; and hsa03430, mismatch repair. However, the DEGs in the lung adenocarcinoma group were not significantly enriched in any specific pathway. Subsequently, a global network of lung cancer was constructed, which consisted of 341 genes and 1,569 edges, of which the top five genes were HSP90AA1, BCL2, CDK2, KIT and HDAC2. The expression trends of the above genes were different in lung adenocarcinoma and lung squamous cell carcinoma when compared with normal tissues. Therefore, these genes were suggested to be crucial genes for differentiating lung adenocarcinoma and lung squamous cell carcinoma. PMID:27356570

  12. Identification of differentially expressed genes between lung adenocarcinoma and lung squamous cell carcinoma by gene expression profiling

    PubMed Central

    Lu, Chaojing; Chen, Hezhong; Shan, Zhengxiang; Yang, Lixin

    2016-01-01

    The present study aimed to identify the differentially expressed genes (DEGs) between lung adenocarcinoma and normal lung tissues, and between lung squamous cell carcinoma and normal lung tissues, with the purpose of identifying potential biomarkers for the treatment of lung cancer. The gene expression profile (GSE6044) was downloaded from the Gene Expression Omnibus database, which included data from 10 lung adenocarcinoma samples, 10 lung squamous cell carcinoma samples, and five matched normal lung tissue samples. After data processing, DEGs were identified using the Student's t-test adjusted via the Benjamini-Hochberg method. Subsequently, Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of the DEGs was performed using the Database for Annotation, Visualization and Integrated Discovery, and a global network was constructed. A total of 95 upregulated and 241 downregulated DEGs were detected in lung adenocarcinoma samples, and 204 upregulated and 285 downregulated DEGs were detected in lung squamous cell carcinoma samples, as compared with the normal lung tissue samples. The DEGs in the lung squamous cell carcinoma group were enriched in the following three pathways: Hsa04110, Cell cycle; hsa03030, DNA replication; and hsa03430, mismatch repair. However, the DEGs in the lung adenocarcinoma group were not significantly enriched in any specific pathway. Subsequently, a global network of lung cancer was constructed, which consisted of 341 genes and 1,569 edges, of which the top five genes were HSP90AA1, BCL2, CDK2, KIT and HDAC2. The expression trends of the above genes were different in lung adenocarcinoma and lung squamous cell carcinoma when compared with normal tissues. Therefore, these genes were suggested to be crucial genes for differentiating lung adenocarcinoma and lung squamous cell carcinoma. PMID:27356570

  13. DNA Damage in CD133-Positive Cells in Barrett's Esophagus and Esophageal Adenocarcinoma

    PubMed Central

    Thanan, Raynoo; Ma, Ning; Hiraku, Yusuke; Iijima, Katsunori; Koike, Tomoyuki; Shimosegawa, Tooru

    2016-01-01

    Barrett's esophagus (BE) caused by gastroesophageal reflux is a major risk factor of Barrett's esophageal adenocarcinoma (BEA), an inflammation-related cancer. Chronic inflammation and following tissue damage may activate progenitor cells under reactive oxygen/nitrogen species-rich environment. We previously reported the formation of oxidative/nitrative stress-mediated mutagenic DNA lesions, 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) and 8-nitroguanine, in columnar epithelial cells of BE tissues and cancer cells of BEA tissues. We investigated the mechanisms of BEA development in relation to oxidative/nitrative DNA damage and stem cell hypothesis. We examined 8-nitroguanine and 8-oxodG formation and the expression of stem cell marker (CD133) in biopsy specimens of patients with BE and BEA by immunohistochemical analysis in comparison with those of normal subjects. CD133 was detected at apical surface of columnar epithelial cells of BE and BEA tissues, and the cytoplasm and cell membrane of cancer cells in BEA tissues. DNA lesions and CD133 were colocalized in columnar epithelial cells and cancer cells. Their relative staining intensities in these tissues were significantly higher than those in normal subjects. Our results suggest that BE columnar epithelial cells with CD133 expression in apical surface undergo inflammation-mediated DNA damage, and mutated cells acquire the property of cancer stem cells with cytoplasmic CD133 expression. PMID:27069317

  14. Poly-lactic-glycolic-acid surface nanotopographies selectively decrease breast adenocarcinoma cell functions

    NASA Astrophysics Data System (ADS)

    Zhang, Lijuan; Webster, Thomas J.

    2012-04-01

    The ability of poly(lactic-co-glycolic acid) (PLGA, 50:50 PLG/PGA, wt%) nanotopographies to decrease lung epithelial carcinoma cell functions (including adhesion, proliferation, apoptosis and vascular endothelial growth factor (VEGF) secretion) has been previously reported. Specifically, results demonstrated decreased lung epithelial carcinoma cell VEGF synthesis on 23 nm surface-featured PLGA compared to traditional nanosmooth PLGA. However, clearly, different cell lines could have different behaviors on similar biomaterials. Thus, to investigate the universality of nanopatterned PLGA substrates to inhibit numerous cancer cell functions, here, breast epithelial adenocarcinoma cell (MCF-7) adhesion, proliferation, apoptosis and VEGF secretion were determined on different PLGA nanometer surface topographies. To isolate surface nanotopographical effects from all other surface properties, PLGA surfaces with various nanotopographies but similar chemistry and hydrophobicity were fabricated here. Atomic force microscopy (AFM) verified the varied nanotopographies on the PLGA surfaces prepared in this study. Importantly, results demonstrated for the first time significantly decreased breast adenocarcinoma cell functions (including decreased proliferation rate, increased apoptosis and decreased VEGF synthesis) on 23 nm featured PLGA surfaces compared to all other PLGA surface topographies fabricated (specifically, nanosmooth, 300 and 400 nm surface-featured PLGA surfaces). In contrast, healthy breast epithelial cells proliferated more (24%) on the 23 nm featured PLGA surfaces compared to all other PLGA samples. In summary, these results provided further insights into understanding the role PLGA surface nanotopographies can have on cancer cell functions and, more importantly, open the possibility of using polymer nanotopographies for a wide range of anticancer regenerative medicine applications (without resorting to the use of chemotherapeutics).

  15. A human natural antibody to adenocarcinoma that inhibits tumour cell migration.

    PubMed Central

    Koda, K.; Nakajima, N.; Saito, N.; Yasutomi, J.; McKnight, M. E.; Glassy, M. C.

    1998-01-01

    We characterized a natural human antibody to adenocarcinomas and investigated the biological role of this Ab/Ag complex in cancer expansion. Human monoclonal antibodies (HuMAbs) were generated with hybridoma fusion methods using regional nodal lymphocytes of colon carcinoma patients. Among 1036 HuMAbs, only one, termed SK1, an IgM, was adenocarcinoma specific in the immunohistochemical study. The antigen recognized by SK1 (Ag-SK1) was a glycoprotein with a molecular weight of 42-46 kDa. The expression of Ag-SK1 on carcinoma cells varied according to the cell growth periods but was independent of cell cycle state as elucidated by two-colour fluorescence-activated cell sorter (FACS) analysis. A dot-blot analysis showed that the concentration of Ag-SK1 per total protein differed considerably among eight colon carcinoma cells examined and that the difference was closely correlated with the invasion capacity of the cells as assessed by a microchemotaxis assay. Furthermore, up to 87% of cell migration was inhibited by SK1 in a dose-dependent manner. These data suggested that Ag-SK1 is metabolized and expressed on highly invasive carcinoma cells. In addition, it appears that, although rare, some patients do mount an anti-cancer antigen response in their draining lymph nodes. A HuMAb such as SK1 may be a good candidate for the treatment of cancer invasion and metastasis. Images Figure 1 Figure 3 Figure 2 Figure 4 Figure 5 Figure 6 Figure 7 PMID:9823972

  16. Data for comparative proteomics analysis of the antitumor effect of CIGB-552 peptide in HT-29 colon adenocarcinoma cells.

    PubMed

    Núñez de Villavicencio-Díaz, Teresa; Ramos Gómez, Yassel; Oliva Argüelles, Brizaida; Fernández Masso, Julio R; Rodríguez-Ulloa, Arielis; Cruz García, Yiliam; Guirola-Cruz, Osmany; Perez-Riverol, Yasset; Javier González, Luis; Tiscornia, Inés; Victoria, Sabina; Bollati-Fogolín, Mariela; Besada Pérez, Vladimir; Guerra Vallespi, Maribel

    2015-09-01

    CIGB-552 is a second generation antitumor peptide that displays potent cytotoxicity in lung and colon cancer cells. The nuclear subproteome of HT-29 colon adenocarcinoma cells treated with CIGB-552 peptide was identified and analyzed [1]. This data article provides supporting evidence for the above analysis. PMID:26306321

  17. Cranberry proanthocyanidins modulate reactive oxygen species in Barrett’s and esophageal adenocarcinoma cell lines

    PubMed Central

    Weh, Katherine M.; Aiyer, Harini S.; Howell, Amy B.; Kresty, Laura A.

    2016-01-01

    BACKGROUND We recently reported that a cranberry proanthocyanidin rich extract (C-PAC) induces autophagic cell death in apoptotic resistant esophageal adenocarcinoma (EAC) cells and necrosis in autophagy resistant cells. EAC is characterized by high morbidity and mortality rates supporting development of improved preventive interventions. OBJECTIVE The current investigation sought to investigate the role of reactive oxygen species (ROS) in the context of C-PAC induced cell death. METHODS A panel of human esophageal cell lines of EAC or BE (Barrett’s esophagus) origin were treated with C-PAC and assessed for ROS modulation using CellROX® Green reagent and the Amplex Red assay to specifically measure hydrogen peroxide levels. RESULTS C-PAC significantly increased ROS levels in EAC cells, but significantly reduced ROS levels in CP-C BE cells. Increased hydrogen peroxide levels were also detected in C-PAC treated EAC cells and supernatant; however, hydrogen peroxide levels were significantly increased in medium alone, without cells, suggesting that C-PAC interferes or directly acts on the substrate. Hydrogen peroxide levels did not change in C-PAC treated CP-C BE cells. CONCLUSION These experiments provide additional mechanistic insight regarding C-PAC induced cancer cell death through modulation of ROS. Additional research is warranted to identify specific ROS species associated with C-PAC exposure.

  18. δ-Tocotrienol treatment is more effective against hypoxic tumor cells than normoxic cells: potential implications for cancer therapy.

    PubMed

    Shibata, Akira; Nakagawa, Kiyotaka; Tsuduki, Tsuyoshi; Miyazawa, Teruo

    2015-08-01

    Tocotrienols, unsaturated forms of vitamin E, inhibit the proliferation of a variety of cancer cells and suppress angiogenesis. However, the mechanisms underlying those effects on cancer cell growth remain unclear especially under hypoxic conditions. In this study, we demonstrated that δ-tocotrienol (δ-T3) could be used as a novel anticancer agent against human colorectal adenocarcinoma (DLD-1) cells under both normoxic and hypoxic conditions. δ-T3 inhibited the growth of DLD-1 cells in a dose-dependent fashion by inducing cell cycle arrest and apoptosis. This effect was more potent under hypoxic than normoxic conditions. The anticancer effect of δ-T3 was achieved by its up-regulation of cyclin-dependent kinase inhibitors (p21 and p27), the activation of caspases and the suppression of phosphorylation of protein kinase B (Akt) at Thr(308) and Ser(473). In in vivo studies, oral administration of rice bran tocotrienol (RBT3, mainly γ-T3) (10 mg/mouse/day) significantly inhibited tumor growth in nude mice. In tumor analyses, RBT3 activated p21, p27, caspase-3 and caspase-9 and decreased Akt phosphorylation. Furthermore, immunostaining revealed that RBT3 decreased the number of cells positive for CD31/platelet endothelial cell adhesion molecule-1 in microvessels in the tumor. Taken together, these data suggest that tocotrienols are potent antitumor agents capable of inducing apoptosis and inhibiting angiogenesis under both hypoxic and normoxic conditions. Tocotrienols could have significant therapeutic potential in the clinical treatment of tumors. PMID:25979648

  19. Layered Double Hydroxide as a Vehicle to Increase Toxicity of Gallate Ions against Adenocarcinoma Cells.

    PubMed

    Arratia-Quijada, Jenny; Rivas-Fuentes, Selma; Saavedra, Karina J Parra; Lamas, Adriana M Macías; Carbajal Arízaga, Gregorio Guadalupe

    2016-01-01

    The antineoplasic activity of gallic acid has been reported. This compound induces apoptosis and inhibits the growth of several neoplasic cells. However, this molecule is easily oxidized and degraded in the body. The aim of this work was to intercalate gallate ions into layered double hydroxide (LDH) nanoparticles under controlled conditions to reduce oxidation of gallate and to evaluate its toxicity against the A549 adenocarcinoma cell line. An isopropanol medium under nitrogen atmosphere was adequate to intercalate gallate ions with a lesser oxidation degree as detected by electron spin resonance spectroscopy. Concentrations of the hybrid LDH-gallate nanoparticles between 0.39 and 25 µg/mL reduced the cell viability to 67%, while the value reached with the pure gallic acid and LDH was 90% and 78%, respectively, thus proving that the combination of gallate ions with the inorganic nanoparticles increases the toxicity potential within this dose range. PMID:27438820

  20. [Endometrial adenocarcinoma and clear cell carcinoma in a young woman with polycystic ovarian syndrome: a case report].

    PubMed

    Niu, Jing; Liu, Nan; Liu, Guo-Bing

    2016-05-20

    A 26-year-old unmarried woman with irregular menstruation for 4 years was admitted for an intrauterine space-occupying mass. Pathological examination before surgery showed moderately to poorly differentiated endometrial adenocarcinoma. The patient underwent laparoscopically assisted epifascial panhysterectomy with bilateral salpingo-oophorectomy. Pathological examination of the surgical specimens reported moderately to poorly differentiated endometrial adenocarcinoma and stage II clear cell carcinoma. The patient then received chemotherapy and remained alive without evidence of recurrence. Young women with polycystic ovarian syndrome are at high risk of developing endometrial carcinoma, but concurrent clear cell carcinoma is rare. Careful evaluation before and after treatment are essential to improve the patients prognosis. PMID:27222196

  1. Ocimum gratissimum Aqueous Extract Induces Apoptotic Signalling in Lung Adenocarcinoma Cell A549

    PubMed Central

    Chen, Han-Min; Lee, Mu-Jang; Kuo, Cheng-Yi; Tsai, Pei-Lin; Liu, Jer-Yuh; Kao, Shao-Hsuan

    2011-01-01

    Ocimum gratissimum (OG) is widely used as a traditional herb for its antibacterial activity in Taiwan. Recently, antitumor effect of OG on breast cancer cell is also reported; however, the effects of OG on human pulmonary adenocarcinoma cell A549 remain unclear. Therefore, we aimed to investigate whether aqueous OG extract (OGE) affects viability of A549 cells and the signals induced by OGE in A549 cells. Cell viability assays revealed that OGE significantly and dose-dependently decreased the viability of A549 cell but not that of BEAS-2B cell. Morphological examination and DAPI staining indicated that OGE induced cell shrinkage and DNA condensation for A549 cells. Further investigation showed that OGE enhanced activation of caspase-3, caspase-9 and caspase-8 and increased protein level of Apaf-1 and Bak, but diminished the level of Bcl-2. Additionally, OGE inhibited the phosphorylation of extracellular signal-regulated kinase (ERK) yet enhanced the phosphorylation of c-Jun N-terminal kinase (JNK) and p38 MAP kinase (p38). In conclusion, our findings indicate that OGE suppressed the cell viability of A549 cells, which may result from the activation of apoptotic signaling and the inhibition of anti-apoptotic signaling, suggesting that OGE might be beneficial to lung carcinoma treatment. PMID:20953389

  2. Osteopontin (OPN/SPP1) isoforms collectively enhance tumor cell invasion and dissemination in esophageal adenocarcinoma

    PubMed Central

    Lin, Jules; Myers, Amy L.; Wang, Zhuwen; Nancarrow, Derek J.; Ferrer-Torres, Daysha; Handlogten, Amy; Leverenz, Kimmy; Bao, Julia; Thomas, Dafydd G.; Wang, Thomas D.; Orringer, Mark B.; Reddy, Rishindra M.; Chang, Andrew C.; Beer, David G.; Lin, Lin

    2015-01-01

    Esophageal adenocarcinoma (EAC) is often diagnosed at an advanced stage, thus understanding the molecular basis for EAC invasion and metastasis is critical. Here we report that SPP1/OPN was highly overexpressed in primary EACs and intracellularly localized to tumor cells. We further demonstrate that all known OPN isoforms (OPNa, b, c, 4 and 5) were frequently co-overexpressed in primary EACs. Distinct pro-invasion and dissemination phenotypes of isoform-specific OPNb and OPNc stable transfectants were observed. Expression of OPNb significantly enhanced cell migration and adhesion to laminin. In contrast, OPNc cells showed significantly decreased cell migration yet increased cell detachment. Enhanced invasion, both in vitro and in vivo, was observed for OPNb- but not OPNc-expressing cells. Inhibition of RGD integrins, one family of OPN receptors, attenuated OPNb cell migration, abrogated OPNb cell adhesion and significantly reduced OPNb cell clonogenic survival but did not affect OPNc phenotypes, indicating that OPNb but not OPNc acts through integrin-dependent signaling. Differential expression of vimentin, E-cadherin and β-catenin in OPN stable cells may account for the variation in cell adhesion and detachment between these isoforms. We conclude that while all OPN isoforms are frequently co-overexpressed in primary EACs, isoforms OPNb and OPNc enhance invasion and dissemination through collective yet distinct mechanisms. PMID:26068949

  3. Intratumoral distribution of EGFR-amplified and EGFR-mutated cells in pulmonary adenocarcinoma.

    PubMed

    Soma, Shingo; Tsuta, Koji; Takano, Toshimi; Hatanaka, Yutaka; Yoshida, Akihiko; Suzuki, Kenji; Asamura, Hisao; Tsuda, Hitoshi

    2014-03-01

    Alterations in the epidermal growth factor receptor (EGFR) gene are associated with carcinogenesis in non-small cell lung cancer. However, the intratumoral distribution of these abnormalities has not been elucidated. This study included patients with surgically resected lung adenocarcinoma. The predominant histological growth pattern was determined. Chromogenic in situ hybridization (CISH) and EGFR-mutation specific-antibodies were used for analysis of changes in gene copy number and EGFR mutations, respectively. EGFR mutation detected immunohistochemistry (IHC) and amplification were identified in 31 (53%) and 30 (52%) cases, respectively. The predominant growth patterns in the 58 tumors evaluated were papillary (28, 48%), lepidic (8, 14%), acinar (15, 26%), and solid (7, 12%). EGFR mutations were the least common in cases with a solid predominant pattern. The incidence of EGFR amplification did not differ among predominant patterns. Analyzing each histological subtype, no differences were noted between the prevalence of EGFR-IHC positive and CISH-positive rates. In the analysis of EGFR amplification, CISH-positive status was more prevalent in IHC-positive cases than in IHC-negative cases. All 19 cases that were both IHC and CISH positive were analyzed. In 17 cases (90%), the IHC-positive area was equal to or larger than the CISH-positive area. Among the histological subtypes of lung adenocarcinoma, the solid predominant subtype was distinguishable by its infrequent EGFR mutations. EGFR gene mutations preceded changes in oncogenic drive, more so than did EGFR gene number alterations during the developmental process of lung adenocarcinoma. PMID:24355440

  4. (-)-β-hydrastine suppresses the proliferation and invasion of human lung adenocarcinoma cells by inhibiting PAK4 kinase activity.

    PubMed

    Guo, Bingyu; Li, Xiaodong; Song, Shuai; Chen, Meng; Cheng, Maosheng; Zhao, Dongmei; Li, Feng

    2016-04-01

    (-)-β-hydrastine is one of the main active components of the medicinal plant, Hydrastis canadensis, which is used in many dietary supplements intended to enhance the immune system. However, whether (-)-β-hydrastine affects the tumor signaling pathway remains unexplored. In the present study, we found that (-)-β-hydrastine inhibited the kinase activity of p21-activated kinase 4 (PAK4), which is involved in the regulation of cytoskeletal reorganization, cell proliferation, gene transcription, oncogenic transformation and cell invasion. In the present study, (-)-β-hydrastine suppressed lung adenocarcinoma cell proliferation by inhibiting expression of cyclin D1/D3 and CDK2/4/6, leading to cell cycle arrest at the G1 phase, in a PAK4 kinase-dependent manner. Moreover, inhibition of PAK4 kinase activity by (-)-β-hydrastine also promoted the early apoptosis of lung adenocarcinoma cells through the mitochondrial apoptosis pathway. In addition, (-)-β-hydrastine significantly suppressed the migration and invasion of human lung adenocarcinoma cells in conjunction with concomitant blockage of the PAK4/LIMK1/cofilin, PAK4/SCG10 and PAK4/MMP2 pathways. All of these data indicate that (-)-β-hydrastine, as a novel PAK4 inhibitor, suppresses the proliferation and invasion of lung adenocarcinoma cells. Taken together, these results provide novel insight into the development of a PAK4 kinase inhibitor and a potential therapeutic strategy for lung cancer. PMID:26821251

  5. The limited difference between keratin patterns of squamous cell carcinomas and adenocarcinomas is explicable by both cell lineage and state of differentiation of tumour cells.

    PubMed Central

    van Dorst, E B; van Muijen, G N; Litvinov, S V; Fleuren, G J

    1998-01-01

    AIM: To study the differentiation of epithelial tissues within their histological context, and to identify hypothetically, on the basis of keratin pattern, the putative tissue origin of a (metastatic) carcinoma. METHODS: Using well characterised monoclonal antibodies against individual keratins 7, 8, 18, and 19, which are predominantly found in columnar epithelia, and keratins 4, 10, 13, and 14, predominantly expressed in (non)-keratinising squamous epithelia, the keratin patterns for a series of 45 squamous cell carcinomas and 44 adenocarcinomas originating from various epithelial tissues were characterised. RESULTS: The predominant keratins in all adenocarcinomas proved to be 8, 18, and 19. In addition, these keratins were also abundantly present in squamous cell carcinomas of the lung, cervix, and rectum and, to a lesser extent, of the larynx, oesophagus, and tongue, but not in those of the vulva and skin. Keratins 4, 10, 13, and 14 were present in almost all squamous cell carcinomas, but also focally in some of the adenocarcinomas studied. CONCLUSIONS: There is a limited differential expression of distinctive keratin filaments between squamous cell carcinomas and adenocarcinomas. Apparently, squamous cell carcinomas that originate from columnar epithelium by squamous metaplasia gain the keratins of squamous cells but retain the keratins of columnar epithelial cells. However, the simultaneous expression of two of three squamous keratins (4, 10, and 13) identifies a squamous cell carcinoma, and thus might be useful in solving differential diagnostic problems. Images PMID:9930073

  6. TIMP-1 Inhibits Apoptosis in Lung Adenocarcinoma Cells via Interaction with Bcl-2

    PubMed Central

    Kutiyanawalla, Ammar; Gayatri, Sitaram; Lee, Byung Rho; Jiwani, Shahanawaz; Rojiani, Amyn M.; Rojiani, Mumtaz V.

    2015-01-01

    Tissue inhibitors of metalloproteinases (TIMPs) are multifaceted molecules that exhibit properties beyond their classical proteinase inhibitory function. Although TIMP-1 is a known inhibitor of apoptosis in mammalian cells, the mechanisms by which it exerts its effects are not well-established. Our earlier studies using H2009 lung adenocarcinoma cells, implanted in the CNS, showed that TIMP-1 overexpressing H2009 cells (HB-1), resulted in more aggressive tumor kinetics and increased vasculature. The present study was undertaken to elucidate the role of TIMP-1 in the context of apoptosis, using the same lung cancer cell lines. Overexpressing TIMP-1 in a lung adenocarcinoma cell line H2009 resulted in an approximately 3-fold increased expression of Bcl-2, with a marked reduction in apoptosis upon staurosporine treatment. This was an MMP-independent function as a clone expressing TIMP-1 mutant T2G, lacking MMP inhibition activity, inhibited apoptosis as strongly as TIMP1 overexpressing clones, as determined by inhibition of PARP cleavage. Immunoprecipitation of Bcl-2 from cell lysates also co-immunoprecipitated TIMP-1, indicative of an interaction between these two proteins. This interaction was specific for TIMP-1 as TIMP-2 was not present in the Bcl-2 pull-down. Additionally, we show a co-dependency of TIMP-1 and Bcl-2 RNA and protein levels, such that abrogating Bcl-2 causes a downregulation of TIMP-1 but not TIMP-2. Finally, we demonstrate that TIMP-1 dependent inhibition of apoptosis occurs through p90RSK, with phosphorylation of the pro-apoptotic protein BAD at serine 112, ultimately reducing Bax levels and increasing mitochondrial permeability. Together, these studies define TIMP-1 as an important cancer biomarker and demonstrate the potential TIMP-1 as a crucial therapeutic target. PMID:26366732

  7. Effects of acetaldehyde on brush border enzyme activities in human colon adenocarcinoma cell line Caco-2.

    PubMed

    Koivisto, T; Salaspuro, M

    1997-12-01

    The treatment of Caco-2 cells, a human colon adenocarcinoma cell line that closely resembles normal human small intestinal epithelial cells, with acetaldehyde resulted in significantly decreased activities of brush border enzymes sucrase, maltase, lactase, and gamma-glutamyltransferase; alkaline phosphatase activity was not affected. In the case of sucrase and maltase, the activities were also decreased by a combination of acetaldehyde and ethanol, although ethanol alone markedly increased them. The possibility that intraintestinal acetaldehyde, formed by intestinal microbes, might play a role in some small intestinal enzyme deficiencies observed earlier in alcoholics should therefore be considered. The mechanism by which acetaldehyde alters these enzyme activities remains unclear. The observation that acetaldehyde also disturbed cell polarization, an initial step in the process of differentiation in Caco-2 cells, indicates that acetaldehyde might decrease these enzyme activities by interfering with cell differentiation. Because ethanol and acetaldehyde metabolizing enzymes have not been previously studied from Caco-2 cells, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) activities were also measured from these cells, and their ALDH isoenzyme pattern was characterized. Like many cancerous cell lines, Caco-2 cells were found to express no ADH. They, however, possessed ALDH activity that was comparable with normal colonic mucosal activity and also expressed the same ALDH classes (ALDHs 1 to 3) than normal human colonic mucosa. PMID:9438518

  8. Identification of crucial microRNAs and genes in hypoxia-induced human lung adenocarcinoma cells

    PubMed Central

    Geng, Ying; Deng, Lili; Su, Dongju; Xiao, Jinling; Ge, Dongjie; Bao, Yongxia; Jing, Hui

    2016-01-01

    Background Variations of microRNA (miRNA) expression profile in hypoxic lung cancer cells have not been studied so far. Therefore, using miRNA microarray technology, this study aimed to study the miRNA expression profile and investigate the potential crucial miRNAs and their target genes in hypoxia-induced human lung adenocarcinoma cells. Materials and methods Based on miRNA microarray, miRNA expression profiling of hypoxia-induced lung adenocarcinoma A549 cells was obtained. After identification of differentially expressed miRNAs (DE-miRNAs) in hypoxic cells, target genes of DE-miRNAs were predicted, and functional enrichment analysis of targets was conducted. Furthermore, the expression levels of DE-miRNAs and their target genes were validated by real-time quantitative polymerase chain reaction. In addition, using miRNA mimics, the effect of overexpressed DE-miRNAs on A549 cell behaviors (cell proliferation, cell cycle, and apoptosis) was evaluated. Results In total, 14 DE-miRNAs (nine upregulated miRNAs and five downregulated miRNAs) were identified in hypoxic cells, compared with normoxic cells. Target genes of both upregulated and downregulated miRNAs were enriched in the functions such as chromatin modification, and pathways such as Wnt signaling pathway and transforming growth factor (TGF)-β signaling pathway. The expression levels of several miRNAs and their target genes were confirmed, including hsa-miR-301b/FOXF2, hsa-miR-148b-3p/WNT10B, hsa-miR-769-5p/(SMAD2, ARID1A), and hsa-miR-622. Among them, hsa-miR-301b was verified to regulate FOXF2, and hsa-miR-769-5p was verified to modulate ARID1A. In addition, the overexpression of hsa-miR-301b and hsa-miR-769-5p significantly affected the cell cycle of A549 cells, but not cell proliferation and apoptosis. Conclusion miRNA expression profile was changed in hypoxia-induced lung cancer cells. Those validated miRNAs and genes may play crucial roles in the response of lung cancer cells to hypoxia. PMID:27524914

  9. Hinokitiol Induces DNA Damage and Autophagy followed by Cell Cycle Arrest and Senescence in Gefitinib-Resistant Lung Adenocarcinoma Cells

    PubMed Central

    Li, Lan-Hui; Wu, Ping; Lee, Jen-Yi; Li, Pei-Rong; Hsieh, Wan-Yu; Ho, Chao-Chi; Ho, Chen-Lung; Chen, Wan-Jiun; Wang, Chien-Chun; Yen, Muh-Yong; Yang, Shun-Min; Chen, Huei-Wen

    2014-01-01

    Despite good initial responses, drug resistance and disease recurrence remain major issues for lung adenocarcinoma patients with epidermal growth factor receptor (EGFR) mutations taking EGFR-tyrosine kinase inhibitors (TKI). To discover new strategies to overcome this issue, we investigated 40 essential oils from plants indigenous to Taiwan as alternative treatments for a wide range of illnesses. Here, we found that hinokitiol, a natural monoterpenoid from the heartwood of Calocedrus formosana, exhibited potent anticancer effects. In this study, we demonstrated that hinokitiol inhibited the proliferation and colony formation ability of lung adenocarcinoma cells as well as the EGFR-TKI-resistant lines PC9-IR and H1975. Transcriptomic analysis and pathway prediction algorithms indicated that the main implicated pathways included DNA damage, autophagy, and cell cycle. Further investigations confirmed that in lung cancer cells, hinokitiol inhibited cell proliferation by inducing the p53-independent DNA damage response, autophagy (not apoptosis), S-phase cell cycle arrest, and senescence. Furthermore, hinokitiol inhibited the growth of xenograft tumors in association with DNA damage and autophagy but exhibited fewer effects on lung stromal fibroblasts. In summary, we demonstrated novel mechanisms by which hinokitiol, an essential oil extract, acted as a promising anticancer agent to overcome EGFR-TKI resistance in lung cancer cells via inducing DNA damage, autophagy, cell cycle arrest, and senescence in vitro and in vivo. PMID:25105411

  10. Denbinobin induces apoptosis in human lung adenocarcinoma cells via Akt inactivation, Bad activation, and mitochondrial dysfunction.

    PubMed

    Kuo, Chen-Tzu; Hsu, Ming-Jen; Chen, Bing-Chang; Chen, Chien-Chih; Teng, Che-Ming; Pan, Shiow-Lin; Lin, Chien-Huang

    2008-02-28

    Increasing evidence demonstrated that denbinobin, isolated from Ephemerantha lonchophylla, exert cytotoxic effects in cancer cells. The purpose of this study was to investigate whether denbinobin induces apoptosis and the apoptotic mechanism of denbinobin in human lung adenocarcinoma cells (A549). Denbinobin (1-20microM) caused cell death in a concentration-dependent manner. Flow cytometric analysis and annexin V labeling demonstrated that denbinobin increased the percentage of apoptotic cells. A549 cells treated with denbinobin showed typical characteristics of apoptosis including morphological changes and DNA fragmentation. Denbinobin induced caspase 3 activation, and N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD-fmk), a broad-spectrum caspase inhibitor, prevented denbinobin-induced cell death. Denbinobin induced the loss of the mitochondrial membrane potential and the release of mitochondrial apoptotic proteins including cytochrome c, second mitochondria derived activator of caspase (Smac), and apoptosis-inducing factor (AIF). In addition, denbinobin-induced Bad activation was accompanied by the dissociation of Bad with 14-3-3 and the association of Bad with Bcl-xL. Furthermore, denbinobin induced Akt inactivation in a time-dependent manner. Transfection of A549 cells with both wild-type and constitutively active Akt significantly suppressed denbinobin-induced Bad activation and cell apoptosis. These results suggest that Akt inactivation, followed by Bad activation, mitochondrial dysfunction, caspase 3 activation, and AIF release, contributes to denbinobin-induced cell apoptosis. PMID:18262737

  11. In vitro cytotoxicity screening of wild plant extracts from Saudi Arabia on human breast adenocarcinoma cells.

    PubMed

    Ali, M A; Abul Farah, M; Al-Hemaid, F M; Abou-Tarboush, F M

    2014-01-01

    This study investigated the in vitro anticancer activities of a total of 14 wild angiosperms collected in Saudi Arabia. The cytotoxic activity of each extract was assessed against human breast adenocarcinoma (MCF-7) cell lines by using the MTT assay. Among the plants screened, the potential cytotoxic activity exhibited by the extract of Lavandula dentata (Lamiaceae) was identified, and we analyzed its anticancer potential by testing antiproliferative and apoptotic activity. Our results clearly show that ethanolic extract of L. dentata exhibits promising cytotoxic activity with an IC50 value of 39 μg/mL. Analysis of cell morphological changes, DNA fragmentation and apoptosis (using an Annexin V assay) also confirmed the apoptotic effect of L. dentata extract, and thus, our data call for further investigations to determine the active chemical constituent(s) and their mechanisms of inducing apoptosis. PMID:24938609

  12. SMAC mimetic Debio 1143 synergizes with taxanes, topoisomerase inhibitors and bromodomain inhibitors to impede growth of lung adenocarcinoma cells

    PubMed Central

    Held, Matthew A.; Mamillapalli, Ramanaiah; Iyidogan, Pinar; Theodosakis, Nicholas; Platt, James T.; Levy, Frederic; Vuagniaux, Gregoire; Wang, Shaomeng; Bosenberg, Marcus W.; Stern, David F.

    2015-01-01

    Targeting anti-apoptotic proteins can sensitize tumor cells to conventional chemotherapies or other targeted agents. Antagonizing the Inhibitor of Apoptosis Proteins (IAPs) with mimetics of the pro-apoptotic protein SMAC is one such approach. We used sensitization compound screening to uncover possible agents with the potential to further sensitize lung adenocarcinoma cells to the SMAC mimetic Debio 1143. Several compounds in combination with Debio 1143, including taxanes, topoisomerase inhibitors, and bromodomain inhibitors, super-additively inhibited growth and clonogenicity of lung adenocarcinoma cells. Co-treatment with Debio 1143 and the bromodomain inhibitor JQ1 suppresses the expression of c-IAP1, c-IAP2, and XIAP. Non-canonical NF-κB signaling is also activated following Debio 1143 treatment, and Debio 1143 induces the formation of the ripoptosome in Debio 1143-sensitive cell lines. Sensitivity to Debio 1143 and JQ1 co-treatment was associated with baseline caspase-8 expression. In vivo treatment of lung adenocarcinoma xenografts with Debio 1143 in combination with JQ1 or docetaxel reduced tumor volume more than either single agent alone. As Debio 1143-containing combinations effectively inhibited both in vitro and in vivo growth of lung adenocarcinoma cells, these data provide a rationale for Debio 1143 combinations currently being evaluated in ongoing clinical trials and suggest potential utility of other combinations identified here. PMID:26485762

  13. Adenocarcinoma of the rete testis with prominent papillary structure and clear neoplastic cells: morphologic and immunohistochemical findings and differential diagnosis.

    PubMed

    Huang, Pei-Wen; Chang, Kuo-Ming

    2015-01-01

    Adenocarcinoma of the rete testis is rare, and its etiology is unknown. The definite diagnosis merely depends on the exclusion of other tumors and histological features. We first describe a 38-year-old man with a carcinoma arising in the rete testis. The tumor was characterized by clear neoplastic cells and branching papillary growth. Focal stromal invasion and transition of normal rete epithelium to neoplastic cells were seen. The neoplastic cells were positive for epithelial membrane antigen, Ber-Ep4, vimentin, renal cell carcinoma marker, and CD10, while negative for Wilms' tumor 1, thyroid transcription factor-1, estrogen receptor, prostate specific antigen, placental alkaline phosphate, CD117, and alpha-1-fetoprotein. According to the above features, we diagnosed this tumor as adenocarcinoma of the rete testis. To our best knowledge, this is the first reported case of adenocarcinoma of the rete testis with prominently papillary structure and clear neoplastic cells. The rarity of adenocarcinoma of the rete testis and the unique features in our case cause diagnostic pitfalls. A complete clinicopathological study and thorough differential diagnosis are crucial for the correct result. PMID:25885143

  14. Identification of a Novel Subpopulation of Tumor-Initiating Cells from Gemcitabine-Resistant Pancreatic Ductal Adenocarcinoma Patients

    PubMed Central

    Shimizu, Kazuya; Chiba, Sachie; Hori, Yuichi

    2013-01-01

    Pancreatic ductal adenocarcinoma is highly resistant to systemic chemotherapy. Although there are many reports using pancreatic cancer cells derived from patients who did not receive chemotherapy, characteristics of pancreatic cancer cells from chemotherapy-resistant patients remain unclear. In this study, we set out to establish a cancer cell line in disseminated cancer cells derived from gemcitabine-resistant pancreatic ductal adenocarcinoma patients. By use of in vitro co-culture system with stromal cells, we established a novel pancreatic tumor-initiating cell line. The cell line required its direct interaction with stromal cells for its in vitro clonogenic growth and passaging. Their direct interaction induced basal lamina-like extracellular matrix formation that maintained colony formation. The cell line expressed CD133 protein, which expression level changed autonomously and by culture conditions. These results demonstrated that there were novel pancreatic tumor-initiating cells that required direct interactions with stromal cells for their in vitro cultivation in gemcitabine-resistant pancreatic ductal adenocarcinoma. This cell line would help to develop novel therapies that enhance effects of gemcitabine or novel anti-cancer drugs. PMID:24278411

  15. Mechanism of arctigenin-mediated specific cytotoxicity against human lung adenocarcinoma cell lines.

    PubMed

    Susanti, Siti; Iwasaki, Hironori; Inafuku, Masashi; Taira, Naoyuki; Oku, Hirosuke

    2013-12-15

    The lignan arctigenin (ARG) from the herb Arctium lappa L. possesses anti-cancer activity, however the mechanism of action of ARG has been found to vary among tissues and types of cancer cells. The current study aims to gain insight into the ARG mediated mechanism of action involved in inhibiting proliferation and inducing apoptosis in lung adenocarcinoma cells. This study also delineates the cancer cell specificity of ARG by comparison with its effects on various normal cell lines. ARG selectively arrested the proliferation of cancer cells at the G0/G1 phase through the down-regulation of NPAT protein expression. This down-regulation occurred via the suppression of either cyclin E/CDK2 or cyclin H/CDK7, while apoptosis was induced through the modulation of the Akt-1-related signaling pathway. Furthermore, a GSH synthase inhibitor specifically enhanced the cytotoxicity of ARG against cancer cells, suggesting that the intracellular GSH content was another factor influencing the susceptibility of cancer cells to ARG. These findings suggest that specific cytotoxicity of ARG against lung cancer cells was explained by its selective modulation of the expression of NPAT, which is involved in histone biosynthesis. The cytotoxicity of ARG appeared to be dependent on the intracellular GSH level. PMID:24021157

  16. Anacardic acid induces mitochondrial-mediated apoptosis in the A549 human lung adenocarcinoma cells.

    PubMed

    Seong, Yeong-Ae; Shin, Pyung-Gyun; Kim, Gun-Do

    2013-03-01

    Anacardic acid (AA) is a constituent of the cashew nut shell and is known as an inhibitor of nuclear factor-κB (NF-κB). We investigated the cytotoxicity of AA on cancer cells and more experiments to reveal the cell death mechanism focused on A549 lung adenocarcinoma cells for our interest in lung cancer. To examine the molecular mechanism of cell death in AA treated A549 cells, we performed experiments such as transmission electron microscopy (TEM), western blot analysis, fluorescence-activated cell sorting (FACS), genomic DNA extraction and staining with 4',6-diamidino-2-phenylindole (DAPI). For the first time we revealed that AA induces caspase-independent apoptosis with no inhibition of cytotoxicity by pan-caspase inhibitor, Z-VAD-fmk, in A549 cells. Our results showed the possibility of mitochondrial-mediated apoptosis through the activation of apoptosis-inducing factor (AIF) and an intrinsic pathway executioner such as cytochrome c. This study will be helpful in revealing the cell death mechanisms and in developing potential drugs for lung cancer using AA. PMID:23314312

  17. Resistance of cervical adenocarcinoma cells (HeLa) to venom from the scorpion Centruroides limpidus limpidus

    PubMed Central

    2013-01-01

    Background The venom of Centruroides limpidus limpidus (Cll) is a mixture of pharmacologically active principles. The most important of these are toxic proteins that interact both selectively and specifically with different cellular targets such as ion channels. Recently, anticancer properties of the venom from other scorpion species have been described. Studies in vitro have shown that scorpion venom induces cell death, inhibits proliferation and triggers the apoptotic pathway in different cancer cell lines. Herein, after treating human cervical adenocarcinoma (HeLa) cells with Cll crude venom, their cytotoxic activity and apoptosis induction were assessed. Results Cll crude venom induced cell death in normal macrophages in a dose-dependent manner. However, through viability assays, HeLa cells showed high survival rates after exposure to Cll venom. Also, Cll venom did not induce apoptosis after performing ethidium bromide/acridine orange assays, nor was there any evidence of chromatin condensation or DNA fragmentation. Conclusions Crude Cll venom exposure was not detrimental to HeLa cell cultures. This may be partially attributable to the absence of specific HeLa cell membrane targets for molecules present in the venom of Centruroides limpidus limpidus. Although these results might discourage additional studies exploring the potential of Cll venom to treat human papilloma cervical cancer, further research is required to explore positive effects of crude Cll venom on other cancer cell lines. PMID:24004568

  18. Hedgehog pathway maintains cell survival under stress conditions, and drives drug resistance in lung adenocarcinoma.

    PubMed

    Lin, Erh-Hsuan; Kao, Yu-Rung; Lin, Chih-An; Kuo, Ting-Yu; Yang, Sheng-Ping; Hsu, Chiung-Fang; Chou, Teh-Ying; Ho, Chao-Chi; Wu, Cheng-Wen

    2016-04-26

    Hedgehog (HH) pathway plays an important role in embryonic development, but is largely inactive in adult except for tissue repair. Aberrant activation of HH pathway has been found in a variety of cancer types. In non-small cell lung cancer, however, the role and importance of HH pathway remain controversial. In the current study, we found that HH pathway was maintained in low activity in lung adenocarcinoma (LAC) cells under normal culture condition, but was highly induced in response to stress conditions. Activation of HH pathway promoted cell survival, growth, and invasion partially through HGF and MET signaling. Hedgehog-Interacting Protein (HHIP), a cell-surface negative regulator of HH pathway, was epigenetically silenced in LAC. Overexpression of HHIP blocked the activation of HH and HGF/MET pathways, and made cells significantly more susceptible to stress conditions. In LAC cells with acquired resistance to Epidermal Growth Factor Receptor Tyrosin Kinase Inhibitor (EGFR-TKI), we found that a part of tumor cells were much more sensitive to HH or HGF/MET inhibitors, suggesting an oncogenic addiction shift from EGFR to HH and HGF/MET pathways. In conclusion, this study showed that HH pathway is a survival signaling that drives LAC cell growth under stress conditions, and HHIP is a key regulator to block the induction of HH pathway. Targeting the HH pathway through inhibitors or HHIP thus holds promise to address EGFR-TKI resistance in LAC in clinic. PMID:27015549

  19. Preferential metabolism of N-nitrosodiethylamine by two cell lines derived from human pulmonary adenocarcinomas

    SciTech Connect

    Falzon, M.; McMahon, J.B.; Gazdar, A.F.; Schuller, H.M.

    1986-01-01

    Diethylnitrosamine (DEN), in common with other nitrosamines, is a carcinogenic agent which produces tumors in a wide variety of tissues in experimental animals. The pulmonary Clara cell is a major target of N-nitrosamine-induced carcinogenesis in hamsters and rats. DEN is believed to require metabolic activation to elicit its carcinogenic effects. The metabolism of (/sup 14/C)DEN was studied in two cell lines derived from human lung adenocarcinomas and two cell lines derived from human small cell lung cancers by monitoring /sup 14/CO/sub 2/ production and covalent binding of radiolabel from (/sup 14/C)DEN to the cell protein and DNA fractions. (/sup 14/C)DEN was metabolized by adenocarcinoma-derived NCI-H322 (with Clara cell features) and NCI-H358 (with features of alveolar type II cells) but not by NCI-H69 and NCI-H128 (derived from small cell carcinoma). Metabolism was markedly inhibited by heat denaturation of the cell protein. (/sup 14/C)DEN metabolism by NCI-H322 was greatly decreased when the incubation was carried out under anaerobic conditions and in the presence of a carbon monoxide enriched atmosphere. These results suggested the involvement of the cytochrome P-450-dependent monooxygenase enzyme system. Metabolism by NCI-H358 was also decreased in the absence of oxygen or presence of carbon monoxide although the effects were relatively small compared with the results with NCI-H322. On the other hand, aspirin or indomethacin, which are inhibitors of the fatty acid cyclooxygenase component of prostaglandin endoperoxide synthetase, preferentially inhibited (/sup 14/C)DEN metabolism by NIC-H358. There were little or no effects of these inhibitors on the metabolism of DEN in NCI-H322. The data suggest that DEN metabolism in different lung cell types may be carried out by different enzyme systems which in turn may contribute to the selective effect of DEN in the lung.

  20. Oncolytic Activity of Avian Influenza Virus in Human Pancreatic Ductal Adenocarcinoma Cell Lines

    PubMed Central

    Pizzuto, Matteo S.; Silic-Benussi, Micol; Pavone, Silvia; Ciminale, Vincenzo; Capua, Ilaria

    2014-01-01

    ABSTRACT Pancreatic ductal adenocarcinoma (PDA) is the most lethal form of human cancer, with dismal survival rates due to late-stage diagnoses and a lack of efficacious therapies. Building on the observation that avian influenza A viruses (IAVs) have a tropism for the pancreas in vivo, the present study was aimed at testing the efficacy of IAVs as oncolytic agents for killing human PDA cell lines. Receptor characterization confirmed that human PDA cell lines express the alpha-2,3- and the alpha-2,6-linked glycan receptor for avian and human IAVs, respectively. PDA cell lines were sensitive to infection by human and avian IAV isolates, which is consistent with this finding. Growth kinetic experiments showed preferential virus replication in PDA cells over that in a nontransformed pancreatic ductal cell line. Finally, at early time points posttreatment, infection with IAVs caused higher levels of apoptosis in PDA cells than gemcitabine and cisplatin, which are the cornerstone of current therapies for PDA. In the BxPC-3 PDA cell line, apoptosis resulted from the engagement of the intrinsic mitochondrial pathway. Importantly, IAVs did not induce apoptosis in nontransformed pancreatic ductal HPDE6 cells. Using a model based on the growth of a PDA cell line as a xenograft in SCID mice, we also show that a slightly pathogenic avian IAV significantly inhibited tumor growth following intratumoral injection. Taken together, these results are the first to suggest that IAVs may hold promise as future agents of oncolytic virotherapy against pancreatic ductal adenocarcinomas. IMPORTANCE Despite intensive studies aimed at designing new therapeutic approaches, PDA still retains the most dismal prognosis among human cancers. In the present study, we provide the first evidence indicating that avian IAVs of low pathogenicity display a tropism for human PDA cells, resulting in viral RNA replication and a potent induction of apoptosis in vitro and antitumor effects in vivo. These

  1. Identification of Distinct Tumor Subpopulations in Lung Adenocarcinoma via Single-Cell RNA-seq

    PubMed Central

    Min, Jae-Woong; Kim, Woo Jin; Han, Jeong A.; Jung, Yu-Jin; Kim, Kyu-Tae; Park, Woong-Yang; Lee, Hae-Ock; Choi, Sun Shim

    2015-01-01

    Single-cell sequencing, which is used to detect clinically important tumor subpopulations, is necessary for understanding tumor heterogeneity. Here, we analyzed transcriptomic data obtained from 34 single cells from human lung adenocarcinoma (LADC) patient-derived xenografts (PDXs). To focus on the intrinsic transcriptomic signatures of these tumors, we filtered out genes that displayed extensive expression changes following xenografting and cell culture. Then, we performed clustering analysis using co-regulated gene modules rather than individual genes to minimize read drop-out errors associated with single-cell sequencing. This combined approach revealed two distinct intra-tumoral subgroups that were primarily distinguished by the gene module G64. The G64 module was predominantly composed of cell-cycle genes. E2F1 was found to be the transcription factor that most likely mediates the expression of the G64 module in single LADC cells. Interestingly, the G64 module also indicated inter-tumoral heterogeneity based on its association with patient survival and other clinical variables such as smoking status and tumor stage. Taken together, these results demonstrate the feasibility of single-cell RNA sequencing and the strength of our analytical pipeline for the identification of tumor subpopulations. PMID:26305796

  2. Primula auriculata Extracts Exert Cytotoxic and Apoptotic Effects against HT-29 Human Colon Adenocarcinoma Cells.

    PubMed

    Behzad, Sahar; Ebrahim, Karim; Mosaddegh, Mahmoud; Haeri, Ali

    2016-01-01

    Primula auriculata (Tootia) is one of the most important local medicinal plants in Hamedan district, Iran. To investigate cytotoxicity and apoptosis induction of crude methanolic extract and different fraction of it, we compared several methods on HT-29 human colon Adenocarcinoma cells. Cancer cell proliferation was measured by 3-(4, 5‑dimethylthiazolyl)2, 5‑diphenyl‑tetrazolium bromide (MTT) assay and apoptosis induction was analyzed by fluorescence microscopy (acridin orange/ethidium bromide, annexin V/propidium iodide staining, TUNEL assay and Caspase-3 activity assay). Crude methanolic extract (CM) inhibited the growth of malignant cells in a dose-dependent manner. Among solvent fractions, the dichloromethane fraction (CF) was found to be the most toxic compared to other fractions. With double staining methods, high percentage of 40 µg/mL of (CM) and (CF) treated cells exhibited typical characteristics of apoptotic cells. Apoptosis induction was also revealed by apoptotic fragmentation of nuclear DNA and activation of caspas-3 in treated cells. These findings indicate that crude methanolic extract and dichloromethan fraction of P.auriculata induced apoptosis and inhibited proliferation in colon cancer cells and could be used as a source for new lead structures in drug design to combat colon cancer. PMID:27610172

  3. Evaluation of interacellular tamoxifen-induced fluorescence in tamoxifen-resistant human breast adenocarcinoma cells

    NASA Astrophysics Data System (ADS)

    Bachmann, Nathalie; Barberi-Heyob, Muriel; Gramain, Marie-Pierre; Bour, Corinne; Marchal, Sophie; Parache, Robert M.; Guillemin, Francois H.; Merlin, Jean-Louis

    1997-12-01

    A tamoxifen resistant cell line (MCF7TAM) was established from tamoxifen sensitive MCF-7 human adenocarcinoma cells expressing estrogen receptors. The resistant cell line was found to express estrogen receptors to similar level as the parent cell line but the receptors were found to be altered, having lost their ability to bind estradiol or tamoxifen. The fluorescence of eosin-tamoxifen ionic association was used to investigate intracellular location of tamoxifen in both sensitive and resistant cell lines. Fluorescence emission spectra of eosin, tamoxifen and eosin-tamoxifen complex ((lambda) exc equals 480 nm) were analyzed and showed that maximal fluorescence intensity of the complex ((lambda) em equals 540 nm) was four times higher than that of eosin alone while tamoxifen alone did not emit any fluorescence in this spectral range. In MCF-7 cells, tamoxifen was found to be diffusively located in the cytoplasm and nuclear fluorescence intensity was significantly lower. No difference was observed in fluorescence intensity or location in tamoxifen resistant cells, although it has been previously correlated with clinical responsiveness. Improvement of this fluorescence microscopy methodology appears necessary to provide accurate results taking into account the complexity of tamoxifen resistance molecular pathways.

  4. Identification of Distinct Tumor Subpopulations in Lung Adenocarcinoma via Single-Cell RNA-seq.

    PubMed

    Min, Jae-Woong; Kim, Woo Jin; Han, Jeong A; Jung, Yu-Jin; Kim, Kyu-Tae; Park, Woong-Yang; Lee, Hae-Ock; Choi, Sun Shim

    2015-01-01

    Single-cell sequencing, which is used to detect clinically important tumor subpopulations, is necessary for understanding tumor heterogeneity. Here, we analyzed transcriptomic data obtained from 34 single cells from human lung adenocarcinoma (LADC) patient-derived xenografts (PDXs). To focus on the intrinsic transcriptomic signatures of these tumors, we filtered out genes that displayed extensive expression changes following xenografting and cell culture. Then, we performed clustering analysis using co-regulated gene modules rather than individual genes to minimize read drop-out errors associated with single-cell sequencing. This combined approach revealed two distinct intra-tumoral subgroups that were primarily distinguished by the gene module G64. The G64 module was predominantly composed of cell-cycle genes. E2F1 was found to be the transcription factor that most likely mediates the expression of the G64 module in single LADC cells. Interestingly, the G64 module also indicated inter-tumoral heterogeneity based on its association with patient survival and other clinical variables such as smoking status and tumor stage. Taken together, these results demonstrate the feasibility of single-cell RNA sequencing and the strength of our analytical pipeline for the identification of tumor subpopulations. PMID:26305796

  5. Primula auriculata Extracts Exert Cytotoxic and Apoptotic Effects against HT-29 Human Colon Adenocarcinoma Cells

    PubMed Central

    Behzad, Sahar; Ebrahim, Karim; Mosaddegh, Mahmoud; Haeri, Ali

    2016-01-01

    Primula auriculata (Tootia) is one of the most important local medicinal plants in Hamedan district, Iran. To investigate cytotoxicity and apoptosis induction of crude methanolic extract and different fraction of it, we compared several methods on HT-29 human colon Adenocarcinoma cells. Cancer cell proliferation was measured by 3-(4, 5‑dimethylthiazolyl)2, 5‑diphenyl‑tetrazolium bromide (MTT) assay and apoptosis induction was analyzed by fluorescence microscopy (acridin orange/ethidium bromide, annexin V/propidium iodide staining, TUNEL assay and Caspase-3 activity assay). Crude methanolic extract (CM) inhibited the growth of malignant cells in a dose-dependent manner. Among solvent fractions, the dichloromethane fraction (CF) was found to be the most toxic compared to other fractions. With double staining methods, high percentage of 40 µg/mL of (CM) and (CF) treated cells exhibited typical characteristics of apoptotic cells. Apoptosis induction was also revealed by apoptotic fragmentation of nuclear DNA and activation of caspas-3 in treated cells. These findings indicate that crude methanolic extract and dichloromethan fraction of P.auriculata induced apoptosis and inhibited proliferation in colon cancer cells and could be used as a source for new lead structures in drug design to combat colon cancer. PMID:27610172

  6. Differential Matrix Metalloproteinase Levels in Adenocarcinoma and Squamous Cell Carcinoma of the Lung

    PubMed Central

    Shah, Sonam A; Spinale, Francis G; Ikonomidis, John S; Stroud, Robert E; Chang, Eileen I; Reed, Carolyn E

    2010-01-01

    Objective The matrix metalloproteinases (MMPs) have been implicated in the aggressive course of non-small cell lung cancer (NSCLC). However, there are a large number of MMP subtypes with diverse proteolytic substrates and different induction pathways. This study tested the hypothesis that a differential MMP profile would exist between NSCLC and normal lung and that MMP patterns would differ between NSCLC histologic type. Methods NSCLC samples and remote normal samples were obtained from patients with stage I or II NSCLC with either squamous cell (n=22) or adenocarcinoma (n=19) histology. Absolute concentrations for each of the MMP subclasses; collagenases (MMP-1, 8, -13), gelatinases (MMP-2,-9), lysins (MMP-2, -7) and elastase (MMP-12) were determined by a calibrated and validated multiplex suspension array. Results Overall, MMP levels were significantly increased in NSCLC compared to normal. For example, MMP-1 and MMP-7 increased by approximately 10 fold in NSCLC (p<0.05). Moreover, a different MMP portfolio was observed between NSCLC histologic types. For example MMP-1,-8,-9 and -12 increased by over 4-fold in squamous cell versus adenocarcinoma (p<0.05). In those patients who recurred within 3 years of resection, 3-fold higher levels of MMP-8 and -9 were observed (p<0.05). Conclusion Increased levels of a number of MMP types occur with NSCLC, but the MMP profile was distinctly different between histologic types and in those patients with recurrence. These different MMP profiles may be important in the mechanistic basis for the natural history of different NSCLC types, as well as identifying potential prognostic and therapeutic targets. PMID:20304142

  7. Salt-Inducible Kinase 1 (SIK1) Is Induced by Gastrin and Inhibits Migration of Gastric Adenocarcinoma Cells

    PubMed Central

    Selvik, Linn-Karina M.; Rao, Shalini; Steigedal, Tonje S.; Haltbakk, Ildri; Misund, Kristine; Bruland, Torunn; Prestvik, Wenche S.; Lægreid, Astrid; Thommesen, Liv

    2014-01-01

    Salt-inducible kinase 1 (SIK1/Snf1lk) belongs to the AMP-activated protein kinase (AMPK) family of kinases, all of which play major roles in regulating metabolism and cell growth. Recent studies have shown that reduced levels of SIK1 are associated with poor outcome in cancers, and that this involves an invasive cellular phenotype with increased metastatic potential. However, the molecular mechanism(s) regulated by SIK1 in cancer cells is not well explored. The peptide hormone gastrin regulates cellular processes involved in oncogenesis, including proliferation, apoptosis, migration and invasion. The aim of this study was to examine the role of SIK1 in gastrin responsive adenocarcinoma cell lines AR42J, AGS-GR and MKN45. We show that gastrin, known to signal through the Gq/G11-coupled CCK2 receptor, induces SIK1 expression in adenocarcinoma cells, and that transcriptional activation of SIK1 is negatively regulated by the Inducible cAMP early repressor (ICER). We demonstrate that gastrin-mediated signalling induces phosphorylation of Liver Kinase 1B (LKB1) Ser-428 and SIK1 Thr-182. Ectopic expression of SIK1 increases gastrin-induced phosphorylation of histone deacetylase 4 (HDAC4) and enhances gastrin-induced transcription of c-fos and CRE-, SRE-, AP1- and NF-κB-driven luciferase reporter plasmids. We also show that gastrin induces phosphorylation and nuclear export of HDACs. Next we find that siRNA mediated knockdown of SIK1 increases migration of the gastric adenocarcinoma cell line AGS-GR. Evidence provided here demonstrates that SIK1 is regulated by gastrin and influences gastrin elicited signalling in gastric adenocarcinoma cells. The results from the present study are relevant for the understanding of molecular mechanisms involved in gastric adenocarcinomas. PMID:25384047

  8. Epithelial-mesenchymal transition in patients of pulmonary adenocarcinoma: correlation with cancer stem cell markers and prognosis.

    PubMed

    Sung, Woo Jung; Park, Ki-Sung; Kwak, Sang Gyu; Hyun, Dae-Sung; Jang, Jae Seok; Park, Kwan-Kyu

    2015-01-01

    Adenocarcinoma is the most common histologic type of non-small cell lung carcinomas. The existence of lung cancer stem cells (CSCs) and epithelial-mesenchymal transition (EMT) in human tissue is controversy. The aim of this study is to investigate the expression and clinical significance of CSCs and EMT markers and evaluate the correlation between the two in lung adenocarcinoma. A total of 97 cases comprise the tissue microarray from surgical resection for primary lung adenocarcinoma. Immunohistochemistry for ALDH1 and CD44 as CSC markers and E-cadherin, vimentin, fibronectin, SMA as EMT markers was performed. High ALDH1A1 expression was statistically associated with female gender (P=0.001), smoker (P=0.012), and high pT stages (P=0.046). High CD44 expression was statistically associated with female gender (P=0.008), non-smoker (P=0.000), and no pleural invasion (P=0.039). High expression of ALDH1 was associated with good overall survival (P=0.021). High expression of CD44 was correlated with both good overall survival (P=0.024) and disease-free survival (P=0.000). Vimentin expression was associated with pT stage (P=0.001) and pleural invasion (P=0.028). E-cadherin, fibronectin and SMA were not associated with clinicopathologic correlation and all EMT markers were not correlated with survival of lung adenocarcinoma. CSC markers expression was not related to EMT. Our results showed that the expression of CSCs was associated with a good prognosis in lung adenocarcinoma. The prognostic significance of EMT markers was skeptical in this study. There is a need for more research about CSC, EMT, and the relation between these two in human lung adenocarcinoma. PMID:26464642

  9. Metformin inhibits salivary adenocarcinoma growth through cell cycle arrest and apoptosis

    PubMed Central

    Guo, Yuqi; Yu, Tao; Yang, Jian; Zhang, Tianqing; Zhou, Yang; He, Fan; Kurago, Zoya; Myssiorek, David; Wu, Yingjie; Lee, Peng; Li, Xin

    2015-01-01

    The inhibitory effects of metformin have been observed in many types of cancer. However, its effect on human salivary gland carcinoma is unknown. The effect of metformin alone or in combination with pp242 (an mTOR inhibitor) on salivary adenocarcinoma cells growth were determined in vitro and in vivo. We found that metformin suppressed HSY cell growth in vitro in a time and dose dependent manner associated with a reduced expression of MYC onco-protein, and the same inhibitory effect of metformin was also confirmed in HSG cells. In association with the reduction of MYC onco-protein, metformin significantly restored p53 tumor suppressor gene expression. The distinctive effects of metformin and PP242 on MYC reduction and P53 restoration suggested that metformin inhibited cell growth through a different pathway from PP242 in salivary carcinoma cells. Furthermore, the anti-tumor efficacy of metformin was confirmed in vivo as indicated by the increases of tumor necrosis and reduced proliferation in xenograft tumors from metformin treated group. For the first time, the inhibitory effect of metformin on human salivary gland tumor cells was documented. Moreover, metformin inhibitory effects were enhanced by mTOR inhibitor suggesting that metformin and mTOR inhibitor utilize distinctive signaling pathways to suppress salivary tumor growth. PMID:26885449

  10. Antiproliferative Effects and Mechanisms of Liver X Receptor Ligands in Pancreatic Ductal Adenocarcinoma Cells

    PubMed Central

    Zheng, Jine; Nguyen-Vu, Trang; Karaboga, Husna; Dey, Prasenjit; Gabbi, Chiara; Vedin, Lise-Lotte; Liu, Ka; Wu, Wanfu; Jonsson, Philip K.; Lin, Jean Z.; Su, Fei; Bollu, Lakshmi Reddy; Hodges, Sally E.; McElhany, Amy L.; Issazadeh, Mehdi A.; Fisher, William E.; Ittmann, Michael M.; Steffensen, Knut R.; Gustafsson, Jan-Åke; Lin, Chin-Yo

    2014-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is difficult to detect early and is often resistant to standard chemotherapeutic options, contributing to extremely poor disease outcomes. Members of the nuclear receptor superfamily carry out essential biological functions such as hormone signaling and are successfully targeted in the treatment of endocrine-related malignancies. Liver X receptors (LXRs) are nuclear receptors that regulate cholesterol homeostasis, lipid metabolism, and inflammation, and LXR agonists have been developed to regulate LXR function in these processes. Intriguingly, these compounds also exhibit antiproliferative activity in diverse types of cancer cells. In this study, LXR agonist treatments disrupted proliferation, cell-cycle progression, and colony-formation of PDAC cells. At the molecular level, treatments downregulated expression of proteins involved in cell cycle progression and growth factor signaling. Microarray experiments further revealed changes in expression profiles of multiple gene networks involved in biological processes and pathways essential for cell growth and proliferation following LXR activation. These results establish the antiproliferative effects of LXR agonists and potential mechanisms of action in PDAC cells and provide evidence for their potential application in the prevention and treatment of PDAC. PMID:25184494

  11. p53 mutations cooperate with oncogenic Kras to promote adenocarcinoma from pancreatic ductal cells.

    PubMed

    Bailey, J M; Hendley, A M; Lafaro, K J; Pruski, M A; Jones, N C; Alsina, J; Younes, M; Maitra, A; McAllister, F; Iacobuzio-Donahue, C A; Leach, S D

    2016-08-11

    Pancreatic cancer is one of the most lethal malignancies, with virtually all patients eventually succumbing to their disease. Mutations in p53 have been documented in >50% of pancreatic cancers. Owing to the high incidence of p53 mutations in PanIN 3 lesions and pancreatic tumors, we interrogated the comparative ability of adult pancreatic acinar and ductal cells to respond to oncogenic Kras and mutant Tp53(R172H) using Hnf1b:CreER(T2) and Mist1:CreER(T2) mice. These studies involved co-activation of a membrane-tethered GFP lineage label, allowing for direct visualization and isolation of cells undergoing Kras and mutant p53 activation. Kras activation in Mist1(+) adult acinar cells resulted in brisk PanIN formation, whereas no evidence of pancreatic neoplasia was observed for up to 6 months following Kras activation in Hnf1beta(+) adult ductal cells. In contrast to the lack of response to oncogenic Kras alone, simultaneous activation of Kras and mutant p53 in adult ductal epithelium generated invasive PDAC in 75% of mice as early as 2.5 months after tamoxifen administration. These data demonstrate that pancreatic ductal cells, whereas exhibiting relative resistance to oncogenic Kras alone, can serve as an effective cell of origin for pancreatic ductal adenocarcinoma in the setting of gain-of-function mutations in p53. PMID:26592447

  12. Apoptosis signal-regulating kinase 1 mediates denbinobin-induced apoptosis in human lung adenocarcinoma cells

    PubMed Central

    Kuo, Chen-Tzu; Chen, Bing-Chang; Yu, Chung-Chi; Weng, Chih-Ming; Hsu, Ming-Jen; Chen, Chien-Chih; Chen, Mei-Chieh; Teng, Che-Ming; Pan, Shiow-Lin; Bien, Mauo-Ying; Shih, Chung-Hung; Lin, Chien-Huang

    2009-01-01

    In the present study, we explore the role of apoptosis signal-regulating kinase 1 (ASK1) in denbinobin-induced apoptosis in human lung adenocarcinoma (A549) cells. Denbinobin-induced cell apoptosis was attenuated by an ASK1 dominant-negative mutant (ASK1DN), two antioxidants (N-acetyl-L-cysteine (NAC) and glutathione (GSH)), a c-Jun N-terminal kinase (JNK) inhibitor (SP600125), and an activator protein-1 (AP-1) inhibitor (curcumin). Treatment of A549 cells with denbinobin caused increases in ASK1 activity and reactive oxygen species (ROS) production, and these effects were inhibited by NAC and GSH. Stimulation of A549 cells with denbinobin caused JNK activation; this effect was markedly inhibited by NAC, GSH, and ASK1DN. Denbinobin induced c-Jun phosphorylation, the formation of an AP-1-specific DNA-protein complex, and Bim expression. Bim knockdown using a bim short interfering RNA strategy also reduced denbinobin-induced A549 cell apoptosis. The denbinobin-mediated increases in c-Jun phosphorylation and Bim expression were inhibited by NAC, GSH, SP600125, ASK1DN, JNK1DN, and JNK2DN. These results suggest that denbinobin might activate ASK1 through ROS production to cause JNK/AP-1 activation, which in turn induces Bim expression, and ultimately results in A549 cell apoptosis. PMID:19405983

  13. Clinicopathologic and Molecular Features of Colorectal Adenocarcinoma with Signet-Ring Cell Component

    PubMed Central

    Gao, Jing; Li, Jian; Li, Jie; Qi, Changsong; Li, Yanyan; Li, Zhongwu; Shen, Lin

    2016-01-01

    Background We performed a retrospective study to assess the clinicopathological characters, molecular alterations and multigene mutation profiles in colorectal cancer patients with signet-ring cell component. Methods Between November 2008 and January 2015, 61 consecutive primary colorectal carcinomas with signet-ring cell component were available for pathological confirmation. RAS/BRAF status was performed by direct sequencing. 14 genes associated with hereditary cancer syndromes were analyzed by targeted gene sequencing. Results A slight male predominance was detected in these patients (59.0%). Colorectal carcinomas with signet-ring cell component were well distributed along the large intestine. A frequently higher TNM stage at the time of diagnosis was observed, compared with the conventional adenocarcinoma. Family history of malignant tumor was remarkable with 49.2% in 61 cases. The median OS time of stage IV patients in our study was 14 months. RAS mutations were detected in 22.2% (12/54) cases with KRAS mutations in 16.7% (9/54) cases and Nras mutations in 5.4%(3/54) cases. BRAF V600E mutation was detected in 3.7% (2/54) cases. As an exploration, we analyzed 14 genes by targeted gene sequencing. These genes were selected based on their biological role in association with hereditary cancer syndromes. 79.6% cases carried at least one pathogenic mutation. Finally, the patients were classified by the percentage of signet-ring cell. 39 (63.9%) cases were composed of ≥50% signet-ring cells; 22 (36.1%) cases were composed of <50% signet-ring cells. We compared clinical parameters, molecular and genetic alterations between the two groups and found no significant differences. Conclusions Colorectal adenocarcinoma with signet-ring cell component is characterized by advanced stage at diagnosis with remarkable family history of malignant tumor. It is likely a negative prognostic factor and tends to affect male patients with low rates of RAS /BRAF mutation. Colorectal

  14. Inhibition of the transient receptor potential melastatin-2 channel causes increased DNA damage and decreased proliferation in breast adenocarcinoma cells

    PubMed Central

    HOPKINS, MANDI M.; FENG, XIAOXING; LIU, MENGWEI; PARKER, LAUREN P.; KOH, DAVID W.

    2015-01-01

    Transient receptor potential, melastatin-2 (TRPM2) is a plasma membrane cation channel with important roles in sensory functions and promoting cell death. However, we demonstrated here that TRPM2 was present in the nuclei of MCF-7 and MDA-MB-231 human breast adenocarcinoma cells, and its pharmacologic inhibition or RNAi silencing caused decreased cell proliferation. Neither an effect on proliferation nor a localization of TRPM2 in the nucleus was observed in noncancerous HMEC and MCF-10A human mammary epithelial cells. Investigation of possible effects of TRPM2 function in the nucleus demonstrated that pharmacologic inhibition or RNAi silencing of TRPM2 in MCF-7 and MDA-MB-231 human breast adenocarcinoma cells caused up to 4-fold increases in DNA damage levels, as compared to noncancerous breast cells after equivalent treatments. These results indicate that TRPM2 has a novel nuclear function in human breast adenocarcinoma cells that facilitates the integrity of genomic DNA, a finding that is distinct from its previously reported role as a plasma membrane cation channel in noncancerous cells. In summary, we report here a novel effect promoted by TRPM2, where it functions to minimize DNA damage and thus may have a role in the protection of genomic DNA in breast cancer cells. Our study therefore provides compelling evidence that TRPM2 has a unique role in breast adenocarcinoma cells. Accordingly, these studies suggest that TRPM2 is a potential therapeutic target, where its pharmacologic inhibition may provide an innovative strategy to selectively increase DNA damage levels in breast cancer cells. PMID:25760245

  15. Effects of NVP-BEZ235 on the proliferation, migration, apoptosis and autophagy in HT-29 human colorectal adenocarcinoma cells.

    PubMed

    Yu, Yang; Yu, Xiaofeng; Ma, Jianxia; Tong, Yili; Yao, Jianfeng

    2016-07-01

    The phosphoinositide 3 kinase (PI3K)/Akt/mammalian target of the rapamycin (mTOR) pathway plays a significant role in colorectal adenocarcinoma. NVP-BEZ235 (dactolisib) is a novel dual inhibitor of PI3K/mTOR. The effects of NVP-BEZ235 in human colorectal adenocarcinoma are still unclear. In the present study, we aimed to explore the proliferation, migration, apoptosis and autophagy in HT-29 human colorectal adenocarcinoma cells. HT-29 human colorectal adenocarcinoma cells were treated with NVP-BEZ235 (0, 0.001, 0.01, 0.1, 1 and 3 µM) for 24 and 48 h, respectively. Cells were also treated with NVP-BEZ235 (0.1 µM), DDP (100, 300 and 1,000 µM), and NVP-BEZ235 (0.1 µM) combined with DDP (100, 300 and 1,000 µM) respectively, and cultured for 24 h after treatment. MTT assay was utilized to evaluate the effects of NVP-BEZ235 alone or NVP-BEZ235 combined with cis-diamminedichloroplatinum (DDP) on proliferation of HT-29 cells. Cell wound-scratch assay was used detect cell migration. In addition, expression of microtubule-associated proteins 1A/1B light chain 3B (MAP1LC3B and LC3B) in HT-29 cells was detected by immunofluorescence at 48 h after NVP-BEZ235 (1 µM) treatment. Expression of proteins involved in cell cycle and proliferation (p-Akt, p-mTOR and cyclin D1), apoptosis (cleaved caspase-3), and autophagy (cleaved LC3B and Beclin-1) were detected by western blot analysis. NVP-BEZ235 inhibited the proliferation and migration of HT-29 human colorectal adenocarcinoma cells. NVP-BEZ235 decreased protein expression of p-Akt, p-mTOR and cyclin D1, and increased protein expression of cleaved caspase-3, cleaved LC3B and Beclin-1 as the concentrations and the incubation time of NVP-BEZ235 increased. In addition, NVP-BEZ235 and DDP had synergic effects in inhibiting cell proliferation and migration. The expression of protein involved in apoptosis (cleaved caspase-3) was higher in drug combination group compared to the NVP-BEZ235 single treatment group. NVP-BEZ235

  16. Liposome uptake into human colon adenocarcinoma cells in monlayer, spinner, and trypsinized cultures

    SciTech Connect

    Tom, B.H.; Macek, C.M.; Raphael, L.; Sengupta, J.; Cerny, E.A.; Jonah, M.M.; Rahman, Y.E.

    1983-01-01

    The nature of liposome interactions with colon tumor cells was investigated. Thus, experiments were performed to study the uptake and incorporation of multilamellar and of reverse-phase evaporation liposomes of neutral charge into monolayers, suspended spinner cultures, and trypsinized cells of a human colon adenocarcinoma cell line, LS174T. The results showed that the same tumor cells cultured under each condition exhibited a distinct pattern of vesicle uptake as determined at 0, 15, 30, 60, and 120 min. In monolayer cultures of LS174T cells, the uptake of liposomes bearing (/sup 3/H)actinomycin D in the lipid bilayers was linear throughout the incubation period. In contrast, in trypsinized and spinner suspension cultures, uptake of liposomes was biphasic. There was a proportional uptake of both liposome (labeled with (/sup 3/H)phosphantidylcholine or (/sup 14/C)cholesterol) and of actinomycin D (trace labeled with /sup 3/H) into the cells under all culture conditions, indicating quantitative delivery of the drug with the intact lipid vesicle. Although the amount of actinomycin D presented to tumor cells by the two liposomes was equivalent, reverse-phase evaporation liposomes were more effectve than multilamellar vesicles in inhibiting uridine uptake. In the presence of excess liposomes (10 times the uptake studies), saturation of the tumor cell surface occurred by 120 min. However, the liposomes remained accessible to enzymatic removal for 60 min. Liposome-saturated tumor cells remained refractory to further binding of liposomes for at least 2 hr. The results thus revealed that differences in cell uptake were due to the state of the target cells and not the liposome types, or their differential leakage of labels.

  17. Proapoptotic effects of new pentabromobenzylisothiouronium salts in a human prostate adenocarcinoma cell line.

    PubMed

    Koronkiewicz, Mirosława; Kazimierczuk, Zygmunt; Szarpak, Kinga; Chilmonczyk, Zdzisław

    2012-01-01

    Prostate cancer is the second most common cancer in elderly men worldwide and its incidence rate is rising continuously. Agents capable of inducing apoptosis in prostate cancer cells seem a promising approach to treat this malignancy. In this study we describe the synthesis of a number of novel N- and N,N'-substituted S-2,3,4,5,6-pentabromobenzylisothiouronium bromides and their activity against the human prostate adenocarcinoma PC3 cell line. All the compounds produced changes in mitochondrial transmembrane potential and cell cycle progression, showed a cytostatic effect and induced apoptosis in the tested cancer line in a concentration- and time-dependent manner. The most effective compounds ZKK-3, ZKK-9 and ZKK-13 produced, at 20 microM concentration, apoptosis in 42, 46, and 66% of the cells, respectively, after 48 h incubation. Two selected S-2,3,4,5,6-pentabromobenzylisothiouronium bromides (ZKK-3, ZKK-9) showed also a synergic proapoptotic effect with the new casein kinase II inhibitor 2-(4-methylpiperazin-1-yl)-4,5,6,7-tetrabromo-1H-benzimidazole (TBIPIP) in the PC3 cell line. PMID:23285698

  18. Active transport of glutathione S-conjugate in human colon adenocarcinoma cells.

    PubMed

    Zhang, K; Wong, K P

    1996-11-12

    The formation of the glutathione S-conjugate of monochlorobimane (GSH-bimane) in human colon adenocarcinoma cells was identified by HPLC-fluorimetry and its transport from the cells was found to be temperature-sensitive, saturable and ATP-dependent. The apparent K(m) and Vmax values were 2.4 +/- 0.5 nmol GSH-bimane/10(6) cells and 0.5 +/- 0.1 nmol GSH-bimane/min per 10(6) cells, respectively. This active transport of GSH-bimane was inhibited by low micromolar concentrations of classical uncouplers of oxidative phosphorylation, namely carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP), carbonylcyanide m-chlorophenylhydrazone (CCCP) and 2,4-dinitrophenol (DNP). The efflux of GSH-bimane was competitively inhibited by chlorambucil (CMB) and 1-chloro-2,4-dinitrobenzene (CDNB), two other substrates of GST. This study demonstrates the presence and kinetic measurements of the glutathione S-conjugate export (GS-X) pump in human colon cancer cells, an export pump whose function has been implicated in the phenomenon of multidrug resistance. PMID:8950221

  19. Desmoplastic small round cell tumor with sphere-like clusters mimicking adenocarcinoma.

    PubMed

    Hattori, Yukinori; Yoshida, Akihiko; Sasaki, Naoshi; Shibuki, Yasuo; Tamura, Kenji; Tsuta, Koji

    2015-03-01

    Desmoplastic small round cell tumor (DSRCT) is a rare and aggressive neoplasm that predominantly affects young men. DSRCT often presents as multiple nodules on the serosal surface and is histologically categorized as a small round cell tumor. However, the cytological spectrum of DSRCT is not fully understood because of its rarity. Here, we report an unusual case of DSRCT that showed spheres of cells without stromal cores in pleural fluid cytology material, a finding that is typically associated with metastatic adenocarcinoma and mesothelioma. The specimen from a simultaneous needle biopsy showed the classic histology of DSRCT, comprising nests of small round cells set in desmoplasia. The diagnosis of DSRCT was further supported by immunohistochemical coexpression of cytokeratin and desmin, as well as Ewing sarcoma breakpoint region 1 gene rearrangement, which was determined by fluorescence in situ hybridization. The unusual cytological finding in this case illustrates a potential pitfall of the cytological diagnosis of pleural fluid or ascites. DSRCT should not be excluded from the differential diagnosis when sphere-like round cell clusters are observed in pleural or abdominal effusion, particularly in young male patients. PMID:24819999

  20. Linalool, a plant-derived monoterpene alcohol, reverses doxorubicin resistance in human breast adenocarcinoma cells.

    PubMed

    Ravizza, Raffaella; Gariboldi, Marzia B; Molteni, Roberta; Monti, Elena

    2008-09-01

    Essential oils from various aromatic plants have been reported to exert chemopreventive and/or antitumor effects. In addition, a number of studies have shown the ability of chemopreventive phytochemicals to increase the sensitivity of cancer cells to conventional anticancer drugs. The success of chemotherapeutic agents is often hindered by the development of drug resistance, with multidrug resistant (MDR) phenotypes reported in a number of tumors, generally involving reduced intracellular drug accumulation due to increased drug efflux by membrane transporters. In the present study, the effects of linalool (LIN), a monoterpene alcohol found in the essential oils from many aromatic plants, on the growth of two human breast adenocarcinoma cell lines, MCF7 WT and multidrug resistant MCF7 AdrR, were investigated, both as a single agent and in combination with doxorubicin (DOX). The results reported here show that LIN only moderately inhibits cell proliferation; interestingly, however, subtoxic concentrations of LIN potentiate DOX-induced cytotoxicity and pro-apoptotic effects in both cell lines. A significant synergism can be observed in MCF7 AdrR cells, which may be due, at least in part, to the ability of LIN to increase DOX accumulation and to induce a decrease in Bcl-xL levels. In summary, the results of the present study suggest that LIN may improve the therapeutic index of anthracyclines in the management of breast cancer, especially in MDR tumors. PMID:18695915

  1. Nickel nanowires induced and reactive oxygen species mediated apoptosis in human pancreatic adenocarcinoma cells

    PubMed Central

    Hossain, Md. Zakir; Kleve, Maurice G

    2011-01-01

    Background The ability to evade apoptosis is one of the key properties of cancer. The apoptogenic effect of nickel nanowires (Ni NWs) on cancer cell lines has never been adequately addressed. Due to the unique physicochemical characteristics of Ni NWs, we envision the development of a novel anticancer therapeutics specifically for pancreatic cancer. Thus, we investigated whether Ni NWs induce ROS-mediated apoptosis in human pancreatic adenocarcinoma (Panc-1) cells. Methods In this study Ni NWs were fabricated using the electrodeposition method. Synthesized Ni NWs were physically characterized by energy dispersive X-ray analysis, UV-Vis spectroscopy of NanoDrop 2000 (UV-Vis), magnetization study, scanning electron microscopy, and transmission electron microscopy. Assessment of morphological apoptotic characteristics by phase contrast microscopy (PCM), Ni-NWs-induced apoptosis staining with ethidium bromide (EB) and acridine orange (AO) followed by fluorescence microscopy (FM) was performed. For molecular biological and biochemical characterization, Panc-1 cell culture and cytotoxic effect of Ni NWs were determined by using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay. Quantitative apoptosis was analyzed by flow cytometry staining with propidium iodide through cell cycle arrest and generation of ROS using 2′, 7′-dichlorofluorescein diacetate fluorescence intensity. In all experiments, Panc-1 cancer cells without any treatment were used as the negative controls. Results The intracellular uptake of Ni NWs through endocytosis by Panc-1 cells was observed by PCM. EB and AO staining of FM and MTT assay qualitatively and quantitatively confirmed the extent of apoptosis. Flow cytometric cell cycle arrest and ROS generation indicated Ni NWs as inducers of apoptotic cell death. Conclusion We investigated the role of Ni NWs as inducers of ROS-mediated apoptosis in Panc-1 cells. These results suggested that Ni NWs could be an effective

  2. Liposome uptake into human colon adenocarcinoma cells in monolayer, spinner, and trypsinized cultures

    SciTech Connect

    Tom, B.H.; Macek, C.M.; Raphael, L.; Sengupta, J.; Cerny, E.A.; Jonah, M.M.; Rahman, Y.E.

    1983-01-01

    Experiments were performed to study the uptake and incorporation of multilamellar and of reverse-phase evaporation liposomes of neutral charge into monolayers, suspended spinner cultures, and trypsinized cells of a human colon adenocarcinoma cell line, LS174T. The results showed that the same tumor cells cultured under each condition exhibited a distinct pattern of vesicle uptake as determined at 0, 15, 30, 60, and 120 min. In monolayer cultures of LS174T cells, the uptake of liposomes bearing (/sup 3/H)actinomycin D in the lipid bilayers was linear throughout the incubation period. In contrast, in trypsinized and spinner suspension cultures, uptake of liposomes was biphasic. There was a proportional uptake of both liposome (labeled with (/sup 3/H)phosphatidylcholine or (/sup 14/C)cholesterol) and of actinomycin D (trace labeled with /sup 3/H) into the cells under all culture conditions, indicating quantitative delivery of the drug with the intact lipid vesicle. Although the amount of actinomycin D presented to tumor cells by the two liposomes was equivalent, reverse-phase evaporation liposomes were more effective than multilamellar vesicles in inhibiting uridine uptake. In the presence of excess liposomes (10 times the uptake studies), saturation of the tumor cell surface occurred by 120 min. However, the liposomes remained accessible to enzymatic removal for 60 min. Liposome-saturated tumor cells remained refractory to further binding of liposomes for at least 2 hr. The results thus revealed that differences in cell uptake were due to the state of the target cells and not the liposome types, or their differential leakage of labels.

  3. Detection of circulating tumor cells in patients with esophagogastric or pancreatic adenocarcinoma using the CellSearch® system: An observational feasibility study

    PubMed Central

    Piegeler, Tobias; Winder, Thomas; Kern, Sabine; Pestalozzi, Bernhard; Schneider, Paul Magnus; Beck-Schimmer, Beatrice

    2016-01-01

    Circulating tumor cells (CTCs) in the blood of cancer patients have been demonstrated to be of prognostic value regarding metastasis and survival. The CellSearch® system has been certified for the detection of CTCs and as a prognostic tool in patients with metastatic breast, colon and prostate cancer. Few studies have evaluated the detection of CTCs originating from esophagogastric or pancreatic cancer with the CellSearch® system. In the present small pilot study, a total of 16 patients with either esophagogastric (n=8) or pancreatic (n=8) adenocarcinomas at various disease stages were randomly screened and included. A total of 7.5 ml of blood was drawn from each patient and analyzed for CTCs using the CellSearch® device. CTCs could be detected in 1 out of 8 patients (12.5%) with esophagogastric and in 7 out of 8 patients (87.5%) with pancreatic cancer. The preliminary data obtained from this observational feasibility study suggested that the CellSearch® system may become a valuable tool for the detection of CTCs in patients with pancreatic adenocarcinoma, whereas the usefulness in patients with early-stage esophagogastric adenocarcinoma may be limited. This study clearly points towards a requirement for larger studies focusing on patients with pancreatic adenocarcinoma at various disease stages and assessing CTCs, whereas patients with esophagogastric adenocarcinomas should be part of further pilot studies. PMID:27446462

  4. MicroRNA-206 inhibits the viability and migration of human lung adenocarcinoma cells partly by targeting MET

    PubMed Central

    Chen, Xi; Tong, Zhong-Kai; Zhou, Jian-Ya; Yao, Ya-Ke; Zhang, Shu-Meng; Zhou, Jian-Ying

    2016-01-01

    MicroRNA (miRNA)-based targeting in cancer has emerged as a potential therapeutic strategy. miR-206 has recently been implicated in cancer. However, the role and molecular mechanism of miR-206 in lung adenocarcinoma are still unclear. The present study revealed that miR-206 was downregulated in human lung adenocarcinoma tissues. Overexpression of miR-206 in human lung adenocarcinoma-derived cells significantly inhibited cell viability and migration. Further experiments indicated that the overexpression of miR-206 decreased the expression of MET at the messenger RNA and protein levels via direct targeting of MET in a 3′-untranslated region-dependent manner. The knockdown of MET by small interfering RNA partly led to a phenocopy effect of miR-206. In conclusion, the present study identified miR-206 as a potential tumor suppressor of lung adenocarcinoma that exerts its functions, in part, by negative regulation of MET.

  5. High and low dose radiation effects on mammary adenocarcinoma cells – an epigenetic connection

    PubMed Central

    Luzhna, Lidia; Filkowski, Jody; Kovalchuk, Olga

    2016-01-01

    The successful treatment of cancer, including breast cancer, depends largely on radiation therapy and proper diagnostics. The effect of ionizing radiation on cells and tissues depends on the radiation dose and energy level, but there is insufficient evidence concerning how tumor cells respond to the low and high doses of radiation that are often used in medical diagnostic and treatment modalities. The purpose of this study was to investigate radiation-induced gene expression changes in the MCF-7 breast adenocarcinoma cell line. Using microarray technology tools, we were able to screen the differential gene expressions profiles between various radiation doses applied to MCF-7 cells. Here, we report the substantial alteration in the expression level of genes after high-dose treatment. In contrast, no dramatic gene expression alterations were noticed after the application of low and medium doses of radiation. In response to a high radiation dose, MCF-7 cells exhibited down-regulation of biological pathways such as cell cycle, DNA replication, and DNA repair and activation of the p53 pathway. Similar dose-dependent responses were seen on the epigenetic level, which was tested by a microRNA expression analysis. MicroRNA analysis showed dose-dependent radiation-induced microRNA expression alterations that were associated with cell cycle arrest and cell death. An increased rate of apoptosis was determined by an Annexin V assay. The results of this study showed that high doses of radiation affect gene expression genetically and epigenetically, leading to alterations in cell cycle, DNA replication, and apoptosis. PMID:27226982

  6. Prognostic effect of different PD-L1 expression patterns in squamous cell carcinoma and adenocarcinoma of the cervix

    PubMed Central

    Heeren, A Marijne; Punt, Simone; Bleeker, Maaike CG; Gaarenstroom, Katja N; van der Velden, Jacobus; Kenter, Gemma G; de Gruijl, Tanja D; Jordanova, Ekaterina S

    2016-01-01

    Programmed death-ligand 1 (PD-L1) is expressed in various immune cells and tumor cells, and is able to bind to PD-1 on T lymphocytes, thereby inhibiting their function. At present, the PD-1/PD-L1 axis is a major immunotherapeutic target for checkpoint inhibition in various cancer types, but information on the clinical significance of PD-L1 expression in cervical cancer is largely lacking. Here, we studied PD-L1 expression in paraffin-embedded samples from two cohorts of patients with cervical cancer: primary tumor samples from cohort I (squamous cell carcinoma, n=156 and adenocarcinoma, n=49) and primary and paired metastatic tumor samples from cohort II (squamous cell carcinoma, n=96 and adenocarcinoma, n=31). Squamous cell carcinomas were more frequently positive for PD-L1 and also contained more PD-L1-positive tumor-associated macrophages as compared with adenocarcinomas (both P<0.001). PD-L1-positive tumor-associated macrophages were found to express CD163 and/or CD14 by triple fluorescent immunohistochemistry, demonstrating an M2-like phenotype. Interestingly, disease-free survival (P=0.022) and disease-specific survival (P=0.046) were significantly poorer in squamous cell carcinoma patients with diffuse PD-L1 expression as compared with patients with marginal PD-L1 expression (i.e., on the interface between tumor and stroma) in primary tumors. Disease-specific survival was significantly worse in adenocarcinoma patients with PD-L1-positive tumor-associated macrophages compared with adenocarcinoma patients without PD-L1-positive tumor-associated macrophages (P=0.014). No differences in PD-L1 expression between primary tumors and paired metastatic lymph nodes were detected. However, PD-L1-positive immune cells were found in greater abundance around the metastatic tumors as compared with the paired primary tumors (P=0.001 for squamous cell carcinoma and P=0.041 for adenocarcinoma). These findings point to a key role of PD-L1 in immune escape of cervical cancer

  7. A Potential Daidzein Derivative Enhances Cytotoxicity of Epirubicin on Human Colon Adenocarcinoma Caco-2 Cells

    PubMed Central

    Lo, Yu-Li

    2013-01-01

    In this study, we evaluated the effects of 8-hydroxydaidzein (8HD), an isoflavone isolated from fermented soy germ koji, and epirubicin (Epi), an antineoplastic agent, on the production of reactive oxygen species (ROS). We subsequently correlated the ROS levels to the anticancer mechanisms of Epi and 8HD in human colon adenocarcinoma Caco-2 cells. 8HD enhanced cytotoxicity of Epi and generated a synergistic effect. Epi and/or 8HD treatments increased the hydrogen peroxide and superoxide levels. Combined treatment markedly decreased mRNA expression levels of multidrug resistance protein 1 (MDR1), MDR-associated protein (MRP) 1, and MRP2. 8HD significantly intensified Epi intracellular accumulation in Caco-2 cells. 8HD and/or Epi-induced apoptosis, as indicated by the reduced mitochondrial membrane potential and increased sub-G1 phase in cell cycle. Moreover, 8HD and Epi significantly enhanced the mRNA expressions of Bax, p53, caspases-3, -8, and -9. To our best knowledge, this study verifies for the first time that 8HD effectively circumvents MDR in Caco-2 cells through the ROS-dependent inhibition of efflux transporters and p53-mediated activation of both death receptor and mitochondrial pathways of apoptosis. Our findings of 8HD shed light on the future search for potential biotransformed isoflavones to intensify the cytotoxicity of anticancer drugs through simultaneous reversal of pump and nonpump resistance. PMID:23344026

  8. p, p′-Dichlorodiphenyldichloroethylene Induces Colorectal Adenocarcinoma Cell Proliferation through Oxidative Stress

    PubMed Central

    Song, Li; Liu, Jianxin; Jin, Xiaoting; Li, Zhuoyu; Zhao, Meirong; Liu, Weiping

    2014-01-01

    p, p′-Dichlorodiphenyldichloroethylene (DDE), the major metabolite of Dichlorodiphenyltrichloroethane (DDT), is an organochlorine pollutant and associated with cancer progression. The present study investigated the possible effects of p,p′-DDE on colorectal cancer and the involved molecular mechanism. The results indicated that exposure to low concentrations of p,p′-DDE from 10−10 to 10−7 M for 96 h markedly enhanced proliferations of human colorectal adenocarcinoma cell lines. Moreover, p,p′-DDE exposure could activate Wnt/β-catenin and Hedgehog/Gli1 signaling cascades, and the expression level of c-Myc and cyclin D1 was significantly increased. Consistently, p,p′-DDE-induced cell proliferation along with upregulated c-Myc and cyclin D1 were impeded by β-catenin siRNA or Gli1 siRNA. In addition, p,p′-DDE was able to activate NADPH oxidase, generate reactive oxygen species (ROS) and reduce GSH content, superoxide dismutase (SOD) and calatase (CAT) activities. Treatment with antioxidants prevented p,p′-DDE-induced cell proliferation and signaling pathways of Wnt/β-catenin and Hedgehog/Gli1. These results indicated that p,p′-DDE promoted colorectal cancer cell proliferation through Wnt/β-catenin and Hedgehog/Gli1 signalings mediated by oxidative stress. The finding suggests an association between p,p′-DDE exposure and the risk of colorectal cancer progression. PMID:25386960

  9. p, p'-Dichlorodiphenyldichloroethylene induces colorectal adenocarcinoma cell proliferation through oxidative stress.

    PubMed

    Song, Li; Liu, Jianxin; Jin, Xiaoting; Li, Zhuoyu; Zhao, Meirong; Liu, Weiping

    2014-01-01

    p, p'-Dichlorodiphenyldichloroethylene (DDE), the major metabolite of Dichlorodiphenyltrichloroethane (DDT), is an organochlorine pollutant and associated with cancer progression. The present study investigated the possible effects of p,p'-DDE on colorectal cancer and the involved molecular mechanism. The results indicated that exposure to low concentrations of p,p'-DDE from 10(-10) to 10(-7) M for 96 h markedly enhanced proliferations of human colorectal adenocarcinoma cell lines. Moreover, p,p'-DDE exposure could activate Wnt/β-catenin and Hedgehog/Gli1 signaling cascades, and the expression level of c-Myc and cyclin D1 was significantly increased. Consistently, p,p'-DDE-induced cell proliferation along with upregulated c-Myc and cyclin D1 were impeded by β-catenin siRNA or Gli1 siRNA. In addition, p,p'-DDE was able to activate NADPH oxidase, generate reactive oxygen species (ROS) and reduce GSH content, superoxide dismutase (SOD) and calatase (CAT) activities. Treatment with antioxidants prevented p,p'-DDE-induced cell proliferation and signaling pathways of Wnt/β-catenin and Hedgehog/Gli1. These results indicated that p,p'-DDE promoted colorectal cancer cell proliferation through Wnt/β-catenin and Hedgehog/Gli1 signalings mediated by oxidative stress. The finding suggests an association between p,p'-DDE exposure and the risk of colorectal cancer progression. PMID:25386960

  10. Molecular Characterization of an Endometrial Endometrioid Adenocarcinoma Metastatic to a Thyroid Hürthle Cell Adenoma Showing Cancerization of Follicles.

    PubMed

    Afrogheh, Amir H; Meserve, Emily; Sadow, Peter M; Stephen, Antonia E; Nosé, Vânia; Berlin, Suzanne; Faquin, William C

    2016-09-01

    Tumor-to-tumor metastasis is rare. Herein, we present a unique case of endometrial endometrioid adenocarcinoma metastatic to a thyroid Hürthle cell adenoma 9 years after initial diagnosis. On histologic examination of the thyroid, the malignant endometrioid glands and single cells (donor tumor) were dispersed within the Hürthle cell adenoma (recipient tumor). In several sections of the adenoma with still preserved microfollicular architecture, malignant endometrial adenocarcinoma cells were admixed within oncocytic adenomatous epithelium (so-called "cancerization of the follicles"). This unusual phenomenon, to our knowledge, is a novel finding in the thyroid gland. Immunohistochemistry, subsequently elicited clinical history, and morphologic comparison of the tumor in the thyroid to the primary endometrial tumor confirmed the origin of the donor tumor cells. Molecular analysis of both the metastatic and primary endometrial tumors demonstrated PIK3CA and PTEN mutations in both tumors, as is characteristic of well-differentiated endometrioid tumors of the endometrium. Amplification of chromosome 1q was detected in both sites; however, only the metastatic tumor showed loss of chromosomes 2, 9, and 22. The morphologic differential diagnosis of metastatic endometrioid adenocarcinoma in the thyroid includes columnar cell variant of papillary thyroid carcinoma (CCVPTC) arising in a preexisting adenoma, endocrine glandular atypia within an adenoma, and metastasis from other anatomic sites. Histomorphologic differences among these entities may be subtle; therefore, knowledge of and morphologic comparison with prior malignancies and immunohistochemistry can be helpful in rendering the correct diagnosis. PMID:26687112

  11. IL-17A-producing T cells are associated with the progression of lung adenocarcinoma

    PubMed Central

    Bao, Zhang; Lu, Guohua; Cui, Dawei; Yao, Yinan; Yang, Guangdie; Zhou, Jianying

    2016-01-01

    Accumulating evidence has shown that T cells are crucial in shaping the tumor microenvironment and regulating tumor development. However, the roles of IL-17A-producing T cells (IL-17A+CD4+ Th17, IL-17A+CD8+ Tc17 and IL-17A+ γδT17 cells) and related cytokines in the progression of lung cancer (LC) remain uncertain. Here, we found that the frequencies of both Th17 and γδT17 cells in the peripheral blood of patients with lung adenocarcinoma (LA) were higher than those in healthy controls (HCs), whereas the frequency of Tc17 cells in the patients with LA was decreased. In addition, the frequencies of circulating Th17 and γδT17 cells, but not Tc17 cells, were positively associated with tumor invasion and metastasis. Furthermore, the major source of IL-17A production was Th17 cells, followed by Tc17 and γδT17 cells, in peripheral blood from patients with LA and HCs; but the percentages of Th17 and γδT17 cells in total intracellular IL-17A+ cells obtained from the patients with LC were higher than those from HCs. Moreover, the protein and corresponding mRNA levels of IL-17A, IL-23, IL-1β, and TGF-β1 were much higher in the patients with LA than those in HCs, and the levels of IL-17A in patients were positively correlated with numbers of both Th17 and γδT17 cells, but not Tc17 cells. Finally, the frequencies of circulating Th17 and γδT17 cells, along with the levels of IL-17A, IL-23, IL-1β, and TGF-β1 were decreased in the patients with LA after tumor resection, whereas the frequency of circulating Tc17 cells was inversely increased in these patients. Our findings indicate that Th17, Tc17, γδT17 cells, and IL-17A-associated cytokines contribute to the development of LA and thus represent promising targets for therapeutic strategies. PMID:27277161

  12. IL-17A-producing T cells are associated with the progression of lung adenocarcinoma.

    PubMed

    Bao, Zhang; Lu, Guohua; Cui, Dawei; Yao, Yinan; Yang, Guangdie; Zhou, Jianying

    2016-08-01

    Accumulating evidence has shown that T cells are crucial in shaping the tumor microenvironment and regulating tumor development. However, the roles of IL-17A‑producing T cells (IL-17A+CD4+ Th17, IL-17A+CD8+ Tc17 and IL-17A+ γδT17 cells) and related cytokines in the progression of lung cancer (LC) remain uncertain. Here, we found that the frequencies of both Th17 and γδT17 cells in the peripheral blood of patients with lung adenocarcinoma (LA) were higher than those in healthy controls (HCs), whereas the frequency of Tc17 cells in the patients with LA was decreased. In addition, the frequencies of circulating Th17 and γδT17 cells, but not Tc17 cells, were positively associated with tumor invasion and metastasis. Furthermore, the major source of IL-17A production was Th17 cells, followed by Tc17 and γδT17 cells, in peripheral blood from patients with LA and HCs; but the percentages of Th17 and γδT17 cells in total intracellular IL-17A+ cells obtained from the patients with LC were higher than those from HCs. Moreover, the protein and corresponding mRNA levels of IL-17A, IL-23, IL-1β, and TGF-β1 were much higher in the patients with LA than those in HCs, and the levels of IL-17A in patients were positively correlated with numbers of both Th17 and γδT17 cells, but not Tc17 cells. Finally, the frequencies of circulating Th17 and γδT17 cells, along with the levels of IL-17A, IL-23, IL-1β, and TGF-β1 were decreased in the patients with LA after tumor resection, whereas the frequency of circulating Tc17 cells was inversely increased in these patients. Our findings indicate that Th17, Tc17, γδT17 cells, and IL-17A-associated cytokines contribute to the development of LA and thus represent promising targets for therapeutic strategies. PMID:27277161

  13. Pancreatic adenocarcinoma upregulated factor serves as adjuvant by activating dendritic cells through stimulation of TLR4.

    PubMed

    Kang, Tae Heung; Kim, Young Seob; Kim, Seokho; Yang, Benjamin; Lee, Je-Jung; Lee, Hyun-Ju; Lee, Jaemin; Jung, In Duk; Han, Hee Dong; Lee, Seung-Hyun; Koh, Sang Seok; Wu, T-C; Park, Yeong-Min

    2015-09-29

    Dendritic cell (DC) based cancer vaccines represent a promising immunotherapeutic strategy against cancer. To enhance the modest immunogenicity of DC vaccines, various adjuvants are often incorporated. Particularly, most of the common adjuvants are derived from bacteria. In the current study, we evaluate the use of a human pancreatic cancer derived protein, pancreatic adenocarcinoma upregulated factor (PAUF), as a novel DC vaccine adjuvant. We show that PAUF can induce activation and maturation of DCs and activate NFkB by stimulating the Toll-like receptor signaling pathway. Furthermore, vaccination with PAUF treated DCs pulsed with E7 or OVA peptides leads to generation of E7 or OVA-specific CD8+ T cells and memory T cells, which correlate with long term tumor protection and antitumor effects against TC-1 and EG.7 tumors in mice. Finally, we demonstrated that PAUF mediated DC activation and immune stimulation are dependent on TLR4. Our data provides evidence supporting PAUF as a promising adjuvant for DC based therapies, which can be applied in conjunction with other cancer therapies. Most importantly, our results serve as a reference for future investigation of human based adjuvants. PMID:26336989

  14. Expression of squamous cell carcinoma markers and adenocarcinoma markers in primary pulmonary neuroendocrine carcinomas.

    PubMed

    Masai, Kyohei; Tsuta, Koji; Kawago, Mitsumasa; Tatsumori, Takahiro; Kinno, Tomoaki; Taniyama, Tomoko; Yoshida, Akihiko; Asamura, Hisao; Tsuda, Hitoshi

    2013-07-01

    Recent clinical trials have revealed that accurate histologic typing of non-small cell lung cancer is essential. Until now, squamous cell carcinoma (SQC) and adenocarcinoma (ADC) markers have not been thoroughly analyzed for pulmonary neuroendocrine carcinomas (NECs). We analyzed the expression of 8 markers [p63, cytokeratin (CK) 5/6, SOX2, CK7, desmocollin 3, thyroid transcription factor-1 (8G7G3/1 and SPT24), and napsin A] in 224 NECs. SOX2 (76.2%) had the greatest expression for NECs. CK5/6 (1.4%), desmocollin 3 (0.5%), and napsin A (0%) were expressed less or not at all in NECs. Although our investigated markers have been reported useful for differentiating between SQC and ADC, some of them were also present in a portion of pulmonary NECs. In our study, CK5/6 and desmocollin 3 were highly specific markers for SQC, and napsin A was highly specific for ADC. These markers are recommended for diagnosis of poorly differentiated non-small cell lung cancer. PMID:23060301

  15. In vitro culture of Cryptosporidium muris in a human stomach adenocarcinoma cell line

    PubMed Central

    Choi, Min-Ho; Hong, Sung-Tae; Chai, Jong-Yil; Park, Woo-Yoon

    2004-01-01

    We investigated the optimal culture conditions for Cryptosporidium muris in a human stomach adenocarcinoma (AGS) cell line by determining the effects of medium pH and of selected supplements on the development of C. muris. The optimum pH of the culture medium required for the development of C. muris was determined to be 6.6. The number of parasites significantly increased during cultivation for 72 hr (p < 0.05) at this level. On the other hand, numbers decreased linearly after 24 hr of incubation at pH 7.5. When cultured in different concentrations of serum, C. muris in media containing 5% FBS induced 4-7 times more parasites than in 1% or 10% serum. Of the six medium supplements examined, only 1 mM pyruvate enhanced the number of C. muris in vitro. Transmission electron microscopic observation showed the developmental stages of C. muris in the cytoplasm of the cells, not in an extracytoplasmic location. The growth of C. muris in AGS cells provides a means of investigating its biological characteristics and of testing its response to therapeutic agents. However, a more optimized culture system is needed for the recovery of oocysts on a large scale in vitro. PMID:15060337

  16. Authentication and characterisation of a new oesophageal adenocarcinoma cell line: MFD-1

    PubMed Central

    Garcia, Edwin; Hayden, Annette; Birts, Charles; Britton, Edward; Cowie, Andrew; Pickard, Karen; Mellone, Massimiliano; Choh, Clarisa; Derouet, Mathieu; Duriez, Patrick; Noble, Fergus; White, Michael J.; Primrose, John N.; Strefford, Jonathan C.; Rose-Zerilli, Matthew; Thomas, Gareth J.; Ang, Yeng; Sharrocks, Andrew D.; Fitzgerald, Rebecca C.; Underwood, Timothy J.; MacRae, Shona; Grehan, Nicola; Abdullahi, Zarah; de la Rue, Rachel; Noorani, Ayesha; Elliott, Rachael Fels; de Silva, Nadeera; Bornschein, Jan; O’Donovan, Maria; Contino, Gianmarco; Yang, Tsun-Po; Chettouh, Hamza; Crawte, Jason; Nutzinger, Barbara; Edwards, Paul A. W.; Smith, Laura; Miremadi, Ahmad; Malhotra, Shalini; Cluroe, Alison; Hardwick, Richard; Davies, Jim; Ford, Hugo; Gilligan, David; Safranek, Peter; Hindmarsh, Andy; Sujendran, Vijayendran; Carroll, Nick; Turkington, Richard; Hayes, Stephen J.; Ang, Yeng; Preston, Shaun R.; Oakes, Sarah; Bagwan, Izhar; Save, Vicki; Skipworth, Richard J. E.; Hupp, Ted R.; O’Neill, J. Robert; Tucker, Olga; Taniere, Philippe; Owsley, Jack; Crichton, Charles; Schusterreiter, Christian; Barr, Hugh; Shepherd, Neil; Old, Oliver; Lagergren, Jesper; Gossage, James; Davies, Andrew; Chang, Fuju; Zylstra, Janine; Sanders, Grant; Berrisford, Richard; Harden, Catherine; Bunting, David; Lewis, Mike; Cheong, Ed; Kumar, Bhaskar; Parsons, Simon L.; Soomro, Irshad; Kaye, Philip; Saunders, John; Lovat, Laurence; Haidry, Rehan; Eneh, Victor; Igali, Laszlo; Welch, Ian; Scott, Michael; Sothi, Shamila; Suortamo, Sari; Lishman, Suzy; Beardsmore, Duncan; Anderson, Charlotte; Smith, Mike L.; Secrier, Maria; Eldridge, Matthew D.; Bower, Lawrence; Achilleos, Achilleas; Lynch, Andy G.; Tavare, Simon

    2016-01-01

    New biological tools are required to understand the functional significance of genetic events revealed by whole genome sequencing (WGS) studies in oesophageal adenocarcinoma (OAC). The MFD-1 cell line was isolated from a 55-year-old male with OAC without recombinant-DNA transformation. Somatic genetic variations from MFD-1, tumour, normal oesophagus, and leucocytes were analysed with SNP6. WGS was performed in tumour and leucocytes. RNAseq was performed in MFD-1, and two classic OAC cell lines FLO1 and OE33. Transposase-accessible chromatin sequencing (ATAC-seq) was performed in MFD-1, OE33, and non-neoplastic HET1A cells. Functional studies were performed. MFD-1 had a high SNP genotype concordance with matched germline/tumour. Parental tumour and MFD-1 carried four somatically acquired mutations in three recurrent mutated genes in OAC: TP53, ABCB1 and SEMA5A, not present in FLO-1 or OE33. MFD-1 displayed high expression of epithelial and glandular markers and a unique fingerprint of open chromatin. MFD-1 was tumorigenic in SCID mouse and proliferative and invasive in 3D cultures. The clinical utility of whole genome sequencing projects will be delivered using accurate model systems to develop molecular-phenotype therapeutics. We have described the first such system to arise from the oesophageal International Cancer Genome Consortium project. PMID:27600491

  17. Pancreatic adenocarcinoma upregulated factor serves as adjuvant by activating dendritic cells through stimulation of TLR4

    PubMed Central

    Yang, Benjamin; Lee, Je-Jung; Lee, Hyun-Ju; Lee, Jaemin; Jung, In Duk; Han, Hee Dong; Lee, Seung-Hyun; Koh, Sang Seok; Wu, T.-C.; Park, Yeong-Min

    2015-01-01

    Dendritic cell (DC) based cancer vaccines represent a promising immunotherapeutic strategy against cancer. To enhance the modest immunogenicity of DC vaccines, various adjuvants are often incorporated. Particularly, most of the common adjuvants are derived from bacteria. In the current study, we evaluate the use of a human pancreatic cancer derived protein, pancreatic adenocarcinoma upregulated factor (PAUF), as a novel DC vaccine adjuvant. We show that PAUF can induce activation and maturation of DCs and activate NFkB by stimulating the Toll-like receptor signaling pathway. Furthermore, vaccination with PAUF treated DCs pulsed with E7 or OVA peptides leads to generation of E7 or OVA-specific CD8+ T cells and memory T cells, which correlate with long term tumor protection and antitumor effects against TC-1 and EG.7 tumors in mice. Finally, we demonstrated that PAUF mediated DC activation and immune stimulation are dependent on TLR4. Our data provides evidence supporting PAUF as a promising adjuvant for DC based therapies, which can be applied in conjunction with other cancer therapies. Most importantly, our results serve as a reference for future investigation of human based adjuvants. PMID:26336989

  18. Authentication and characterisation of a new oesophageal adenocarcinoma cell line: MFD-1.

    PubMed

    Garcia, Edwin; Hayden, Annette; Birts, Charles; Britton, Edward; Cowie, Andrew; Pickard, Karen; Mellone, Massimiliano; Choh, Clarisa; Derouet, Mathieu; Duriez, Patrick; Noble, Fergus; White, Michael J; Primrose, John N; Strefford, Jonathan C; Rose-Zerilli, Matthew; Thomas, Gareth J; Ang, Yeng; Sharrocks, Andrew D; Fitzgerald, Rebecca C; Underwood, Timothy J

    2016-01-01

    New biological tools are required to understand the functional significance of genetic events revealed by whole genome sequencing (WGS) studies in oesophageal adenocarcinoma (OAC). The MFD-1 cell line was isolated from a 55-year-old male with OAC without recombinant-DNA transformation. Somatic genetic variations from MFD-1, tumour, normal oesophagus, and leucocytes were analysed with SNP6. WGS was performed in tumour and leucocytes. RNAseq was performed in MFD-1, and two classic OAC cell lines FLO1 and OE33. Transposase-accessible chromatin sequencing (ATAC-seq) was performed in MFD-1, OE33, and non-neoplastic HET1A cells. Functional studies were performed. MFD-1 had a high SNP genotype concordance with matched germline/tumour. Parental tumour and MFD-1 carried four somatically acquired mutations in three recurrent mutated genes in OAC: TP53, ABCB1 and SEMA5A, not present in FLO-1 or OE33. MFD-1 displayed high expression of epithelial and glandular markers and a unique fingerprint of open chromatin. MFD-1 was tumorigenic in SCID mouse and proliferative and invasive in 3D cultures. The clinical utility of whole genome sequencing projects will be delivered using accurate model systems to develop molecular-phenotype therapeutics. We have described the first such system to arise from the oesophageal International Cancer Genome Consortium project. PMID:27600491

  19. Novel monoclonal antibody against beta 1 integrin enhances cisplatin efficacy in human lung adenocarcinoma cells

    PubMed Central

    Kim, Min-Young; Cho, Woon-Dong; Hong, Kwon Pyo; Choi, Da Bin; Hong, Jeong won; Kim, Soseul; Moon, Yoo Ri; Son, Seung-Myoung; Lee, Ok-Jun; Lee, Ho-Chang; Song, Hyung Geun

    2016-01-01

    Abstract The use of anti-beta 1 integrin monoclonal antibody in lung cancer treatment has proven beneficial. Here, we developed a novel monoclonal antibody (mAb), called P5, by immunizing mice with human peripheral blood mononuclear cells (PBMC). Its anti-tumor effect is now being tested, in a clinical phase III trial, in combinatorial treatments with various chemical drugs. To confirm that P5 indeed binds to beta 1 integrin, cell lysates were immunoprecipitated with commercial anti-beta 1 integrin mAb (TS2/16) and immunoblotted against P5 to reveal a 140 kDa molecular weight band, as expected. Immunoprecipitation with P5 followed by LC/MS protein sequence analysis further verified P5 antigen to be beta 1 integrin. Cisplatin treatment upregulated cell surface expression of beta 1 integrin in A549 cells, while causing inhibition of cell growth. When cells were co-treated with different concentrations of P5 mAb, the cisplatin-mediated inhibitory effect was enhanced in a dose-dependent manner. Our findings show that a combinatorial treatment of P5 mAb and cisplatin in A549 cells resulted in a 30% increase in apoptosis, compared to baseline, and significantly more when compared to either the cisplatin or P5 alone group. The entire peptide sequences in CDR from variable region of Ig heavy and light chain gene for P5 mAb are also disclosed. Together, these results provide evidence of the beneficial effect of P5 mAb in combinatorial treatment of human lung adenocarcinoma.

  20. MicroRNA-135a Inhibits Cell Proliferation by Targeting Bmi1 in Pancreatic Ductal Adenocarcinoma

    PubMed Central

    Dang, Zheng; Xu, Wei-Hua; Lu, Peng; Wu, Nan; Liu, Jie; Ruan, Bai; Zhou, Liang; Song, Wen-Jie; Dou, Ke-Feng

    2014-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal solid tumor due to the lack of reliable early detection markers and effective therapies. MicroRNAs (miRNAs), noncoding RNAs that regulate gene expression, are involved in tumorigenesis and have a remarkable potential for the diagnosis and treatment of malignancy. In this study, we investigated aberrantly expressed miRNAs involved in PDAC by comparing miRNA expression profiles in PDAC cell lines with a normal pancreas cell line and found that miR-135a was significantly down-regulated in the PDAC cell lines. The microarray results were validated by qRT-PCR in PDAC tissues, paired adjacent normal pancreatic tissues, PDAC cell lines, and a normal pancreas cell line. We then defined the tumor-suppressing significance and function of miR-135a by constructing a lentiviral vector to express miR-135a. The overexpression of miR-135a in PDAC cells decreased cell proliferation and clonogenicity and also induced G1 arrest and apoptosis. We predicted Bmi1 may be a target of miR-135a using bioinformatics tools and found that Bmi1 expression was markedly up-regulated in PDAC. Its expression was inversely correlated with miR-135a expression in PDAC. Furthermore, a luciferase activity assay revealed that miR-135a could directly target the 3'-untranslated region (3'-UTR) of Bmi1. Taken together, these results demonstrate that miR-135a targets Bmi1 in PDAC and functions as a tumor suppressor. miR-135a may offer a new perspective for the development of effective miRNA-based therapy for PDAC. PMID:25013381

  1. Iron overload of human colon adenocarcinoma cells studied by synchrotron-based X-ray techniques.

    PubMed

    Mihucz, Victor G; Meirer, Florian; Polgári, Zsófia; Réti, Andrea; Pepponi, Giancarlo; Ingerle, Dieter; Szoboszlai, Norbert; Streli, Christina

    2016-04-01

    Fast- and slow-proliferating human adenocarcinoma colorectal cells, HT-29 and HCA-7, respectively, overloaded with transferrin (Tf), Fe(III) citrate, Fe(III) chloride and Fe(II) sulfate were studied by synchrotron radiation total-reflection X-ray spectrometry (TXRF), TXRF-X-ray absorption near edge structure (TXRF-XANES), and micro-X-ray fluorescence imaging to obtain information on the intracellular storage of overloaded iron (Fe). The determined TfR1 mRNA expression for the investigated cells correlated with their proliferation rate. In all cases, the Fe XANES of cells overloaded with inorganic Fe was found to be similar to that of deliquescent Fe(III) sulfate characterized by a distorted octahedral geometry. A fitting model using a linear combination of the XANES of Tf and deliquescent Fe(III) sulfate allowed to explain the near edge structure recorded for HT-29 cells indicating that cellular overload with inorganic Fe results in a non-ferritin-like fast Fe storage. Hierarchical cluster analysis of XANES spectra recorded for Fe overloaded HT-29 and HCA-7 cells was able to distinguish between Fe treatments performed with different Fe species with a 95 % hit rate, indicating clear differences in the Fe storage system. Micro-X-ray fluorescence imaging of Fe overloaded HT-29 cells revealed that Fe is primarily located in the cytosol of the cells. By characterizing the cellular Fe uptake, Fe/S content ratios were calculated based on the X-ray fluorescence signals of the analytes. These Fe/S ratios were dramatically lower for HCA-7 treated with organic Fe(III) treatments suggesting dissimilarities from the Tf-like Fe uptake. PMID:26759251

  2. Expression profiling of wild type and β-catenin gene disrupted human BxPC-3 pancreatic adenocarcinoma cells

    PubMed Central

    Olsen, Petter Angell; Lund, Kaja; Krauss, Stefan

    2015-01-01

    To study the role of WNT/β-catenin signaling in pancreatic adenocarcinoma, human BxPC-3 cell lines deficient of the central canonical WNT signaling protein β-catenin were established by using zinc-finger nuclease mediated targeted genomic disruption of the β-catenin gene (CTNNB1). Comparison of the global transcription levels in wild type cells with two β-catenin gene disrupted clones identified 85 transcripts that were the most differentially regulated. Gene ontology (GO) term enrichment analysis of these transcripts identified “cell adhesion” as the most significantly enriched GO term. Here we describe the data from the transcription profiling analysis published in the article “Implications of Targeted Genomic Disruption of β-Catenin in BxPC-3 Pancreatic Adenocarcinoma Cells” [1]. Data have been deposited to the Gene Expression Omnibus (GEO) database repository with the dataset identifier GSE63072. PMID:26484203

  3. Network-based approach identified cell cycle genes as predictor of overall survival in lung adenocarcinoma patients.

    PubMed

    Li, Yafei; Tang, Hui; Sun, Zhifu; Bungum, Aaron O; Edell, Eric S; Lingle, Wilma L; Stoddard, Shawn M; Zhang, Mingrui; Jen, Jin; Yang, Ping; Wang, Liang

    2013-04-01

    Lung adenocarcinoma is the most common type of primary lung cancer. The purpose of this study was to delineate gene expression patterns for survival prediction in lung adenocarcinoma. Gene expression profiles of 82 (discovery set) and 442 (validation set 1) lung adenocarcinoma tumor tissues were analyzed using a systems biology-based network approach. We also examined the expression profiles of 78 adjacent normal lung tissues from 82 patients. We found a significant correlation of an expression module with overall survival (adjusted hazard ratio or HR=1.71; 95% CI=1.06-2.74 in discovery set; adjusted HR=1.26; 95% CI=1.08-1.49 in validation set 1). This expression module contained genes enriched in the biological process of the cell cycle. Interestingly, the cell cycle gene module and overall survival association were also significant in normal lung tissues (adjusted HR=1.91; 95% CI, 1.32-2.75). From these survival-related modules, we further defined three hub genes (UBE2C, TPX2, and MELK) whose expression-based risk indices were more strongly associated with poor 5-year survival (HR=3.85, 95% CI=1.34-11.05 in discovery set; HR=1.72, 95% CI=1.21-2.46 in validation set 1; and HR=3.35, 95% CI=1.08-10.04 in normal lung set). The 3-gene prognostic result was further validated using 92 adenocarcinoma tumor samples (validation set 2); patients with a high-risk gene signature have a 1.52-fold increased risk (95% CI, 1.02-2.24) of death than patients with a low-risk gene signature. These results suggest that a network-based approach may facilitate discovery of key genes that are closely linked to survival in patients with lung adenocarcinoma. PMID:23357462

  4. Modulation of AP-1 activity by the human progesterone receptor in endometrial adenocarcinoma cells.

    PubMed Central

    Bamberger, A M; Bamberger, C M; Gellersen, B; Schulte, H M

    1996-01-01

    The composite transcription factor activating protein 1 (AP-1) integrates various mitogenic signals in a large number of cell types, and is therefore a major regulator of cell proliferation. In the normal human endometrium, proliferation and differentiation alternate in a cyclic fashion, with progesterone being largely implicated in the latter process. However, the effects of progesterone and the progesterone receptor (hPR) on AP-1 activity in the human endometrium are not known. To address this issue, HEC-1-B endometrial adenocarcinoma cells, which are devoid of hPR, were transfected with luciferase reporter constructs driven by two different AP-1-dependent promoters. Unexpectedly, cotransfection of hPR caused a marked induction of luciferase activity in the absence of ligand on both promoters. The magnitude of this induction was similar to that observed in response to the phorbol ester TPA. Addition of ligand reversed the stimulating effect of the unliganded hPR on AM activity in these cells. These effects were specific for hPR, and were not observed with either human estrogen receptor or human glucocorticoid receptor. Furthermore, they strictly depended on the presence of AP-1-responsive sequences within target promoters. Finally, the described effects of hPR on AP-1 activity were shown to be cell-type specific, because they could not be demonstrated in SKUT-1-B, JEG-3, and COS-7 cells. To our knowledge this is the first report of an unliganded steroid receptor stimulating AP-1 activity. This effect and its reversal in the presence of ligand suggest a novel mechanism, through which hPR can act as a key regulator of both proliferation and differentiation in the human endometrium. PMID:8650238

  5. Interfacing polymeric scaffolds with primary pancreatic ductal adenocarcinoma cells to develop 3D cancer models

    PubMed Central

    Ricci, Claudio; Mota, Carlos; Moscato, Stefania; D’Alessandro, Delfo; Ugel, Stefano; Sartoris, Silvia; Bronte, Vincenzo; Boggi, Ugo; Campani, Daniela; Funel, Niccola; Moroni, Lorenzo; Danti, Serena

    2014-01-01

    We analyzed the interactions between human primary cells from pancreatic ductal adenocarcinoma (PDAC) and polymeric scaffolds to develop 3D cancer models useful for mimicking the biology of this tumor. Three scaffold types based on two biocompatible polymeric formulations, such as poly(vinyl alcohol)/gelatin (PVA/G) mixture and poly(ethylene oxide terephthalate)/poly(butylene terephthalate) (PEOT/PBT) copolymer, were obtained via different techniques, namely, emulsion and freeze-drying, compression molding followed by salt leaching, and electrospinning. In this way, primary PDAC cells interfaced with different pore topographies, such as sponge-like pores of different shape and size or nanofiber interspaces. The aim of this study was to investigate the influence played by the scaffold architecture over cancerous cell growth and function. In all scaffolds, primary PDAC cells showed good viability and synthesized tumor-specific metalloproteinases (MMPs) such as MMP-2, and MMP-9. However, only sponge-like pores, obtained via emulsion-based and salt leaching-based techniques allowed for an organized cellular aggregation very similar to the native PDAC morphological structure. Differently, these cell clusters were not observed on PEOT/PBT electrospun scaffolds. MMP-2 and MMP-9, as active enzymes, resulted to be increased in PVA/G and PEOT/PBT sponges, respectively. These findings suggested that spongy scaffolds supported the generation of pancreatic tumor models with enhanced aggressiveness. In conclusion, primary PDAC cells showed diverse behaviors while interacting with different scaffold types that can be potentially exploited to create stage-specific pancreatic cancer models likely to provide new knowledge on the modulation and drug susceptibility of MMPs. PMID:25482337

  6. Oxidative stress mediated cytotoxicity of biologically synthesized silver nanoparticles in human lung epithelial adenocarcinoma cell line

    PubMed Central

    2014-01-01

    The goal of the present study was to investigate the toxicity of biologically prepared small size of silver nanoparticles in human lung epithelial adenocarcinoma cells A549. Herein, we describe a facile method for the synthesis of silver nanoparticles by treating the supernatant from a culture of Escherichia coli with silver nitrate. The formation of silver nanoparticles was characterized using various analytical techniques. The results from UV-visible (UV-vis) spectroscopy and X-ray diffraction analysis show a characteristic strong resonance centered at 420 nm and a single crystalline nature, respectively. Fourier transform infrared spectroscopy confirmed the possible bio-molecules responsible for the reduction of silver from silver nitrate into nanoparticles. The particle size analyzer and transmission electron microscopy results suggest that silver nanoparticles are spherical in shape with an average diameter of 15 nm. The results derived from in vitro studies showed a concentration-dependent decrease in cell viability when A549 cells were exposed to silver nanoparticles. This decrease in cell viability corresponded to increased leakage of lactate dehydrogenase (LDH), increased intracellular reactive oxygen species generation (ROS), and decreased mitochondrial transmembrane potential (MTP). Furthermore, uptake and intracellular localization of silver nanoparticles were observed and were accompanied by accumulation of autophagosomes and autolysosomes in A549 cells. The results indicate that silver nanoparticles play a significant role in apoptosis. Interestingly, biologically synthesized silver nanoparticles showed more potent cytotoxicity at the concentrations tested compared to that shown by chemically synthesized silver nanoparticles. Therefore, our results demonstrated that human lung epithelial A549 cells could provide a valuable model to assess the cytotoxicity of silver nanoparticles. PMID:25242904

  7. Celecoxib suppresses fibroblast growth factor-2 expression in pancreatic ductal adenocarcinoma PANC-1 cells.

    PubMed

    Li, Jing; Luo, Miaosha; Wang, Yan; Shang, Boxin; Dong, Lei

    2016-09-01

    The inhibition of cyclooxygenase (COX)-2 has been reported to suppress growth and induce apoptosis in human pancreatic cancer cells. Nevertheless, the precise biological mechanism of how celecoxib, a selective COX-2 inhibitor, regulates the growth and invasion of pancreatic tumors is not completely understood. It has been shown that fibroblast growth factor-2 (FGF-2) and its receptor levels correlate with the inhibition of cancer cell proliferation, migration and invasion in pancreatic ductal adenocarcinoma (PDAC). Therefore, the aim of the present study was to examine the hypothesis that the antitumor activity of celecoxib in PDAC may be exerted through modulation of FGF-2 function. In the present study, we evaluated the effects of celecoxib on the proliferation, migration, invasion and apoptosis of the PANC-1 cell line. Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR) were used to examine the expression of FGF-2, FGFR-2, ERK1/2 and MMPs. In the present study, FGF-2 and FGFR-2 were expressed in PANC-1 cells and FGF-2 exerted a stimulatory effect on phosphorylated extracellular signal regulated kinase (p-ERK) expression. Celecoxib treatment suppressed FGF-2 and FGFR-2 expression and decreased MMP-2, MMP-9 and p-ERK expression in the PANC-1 cells. Furthermore, celecoxib treatment caused the resistance of PANC-1 cells to FGF-2 induced proliferation, migration and invasion ability, as well as the increase in their apoptotic rate. Our data provide evidence that targeting FGF-2 with celecoxib may be used as an effective treatment in PDAC. PMID:27430377

  8. SCF, Regulated by HIF-1α, Promotes Pancreatic Ductal Adenocarcinoma Cell Progression

    PubMed Central

    Chen, Jing; Ren, He; Zhang, Huan; Wang, Xiuchao; Lang, Mingxiao; Liu, Jingcheng; Gao, Song; Zhao, Xiao; Sheng, Jun; Yuan, Zhanna; Hao, Jihui

    2015-01-01

    Stem cell factor (SCF) and hypoxia-inducible factor-1α (HIF-1α) both have important functions in pancreatic ductal adenocarcinoma (PDAC). This study aims to analyze the expression and clinicopathological significance of SCF and HIF-1α in PDAC specimens and explore the molecular mechanism at PDAC cells in vitro and in vivo. We showed that the expression of SCF was significantly correlated with HIF-1α expression via Western blot, PCR, chromatin immunoprecipitation (ChIP) assay, and luciferase assay analysis. The SCF level was also correlated with lymph node metastasis and the pathological tumor node metastasis (pTNM) stage in PDAC samples. The SCF higher-expression group had significantly lower survival rates than the SCF lower-expression group (p<0.05). Hypoxia up-regulated the expression of SCF through the hypoxia-inducible factor (HIF)-1α in PDAC cells at the protein and RNA levels. When HIF-1α was knocked down by RNA interference, the SCF level decreased significantly. Additionally, ChIP and luciferase results demonstrated that HIF-1α can directly bind to the hypoxia response element (HRE) region of the SCF promoter and activate the SCF transcription under hypoxia. The results of colony formation, cell scratch, and transwell migration assay showed that SCF promoted the proliferation and invasion of PANC-1 cells under hypoxia. Furthermore, the down-regulated ability of cell proliferation and invasion following HIF-1α knockdown was rescued by adding exogenous SCF under hypoxia in vitro. Finally, when the HIF-1α expression was inhibited by digoxin, the tumor volume and the SCF level decreased, thereby proving the relationship between HIF-1α and SCF in vivo. In conclusion, SCF is an important factor for the growth of PDAC. In our experiments, we proved that SCF, a downstream gene of HIF-1α, can promote the development of PDAC under hypoxia. Thus, SCF might be a potential therapeutic target for PDAC. PMID:25799412

  9. Oxidative stress mediated cytotoxicity of biologically synthesized silver nanoparticles in human lung epithelial adenocarcinoma cell line

    NASA Astrophysics Data System (ADS)

    Han, Jae Woong; Gurunathan, Sangiliyandi; Jeong, Jae-Kyo; Choi, Yun-Jung; Kwon, Deug-Nam; Park, Jin-Ki; Kim, Jin-Hoi

    2014-09-01

    The goal of the present study was to investigate the toxicity of biologically prepared small size of silver nanoparticles in human lung epithelial adenocarcinoma cells A549. Herein, we describe a facile method for the synthesis of silver nanoparticles by treating the supernatant from a culture of Escherichia coli with silver nitrate . The formation of silver nanoparticles was characterized using various analytical techniques. The results from UV-visible (UV-vis) spectroscopy and X-ray diffraction analysis show a characteristic strong resonance centered at 420 nm and a single crystalline nature, respectively. Fourier transform infrared spectroscopy confirmed the possible bio-molecules responsible for the reduction of silver from silver nitrate into nanoparticles. The particle size analyzer and transmission electron microscopy results suggest that silver nanoparticles are spherical in shape with an average diameter of 15 nm. The results derived from in vitro studies showed a concentration-dependent decrease in cell viability when A549 cells were exposed to silver nanoparticles. This decrease in cell viability corresponded to increased leakage of lactate dehydrogenase (LDH), increased intracellular reactive oxygen species generation (ROS), and decreased mitochondrial transmembrane potential (MTP). Furthermore, uptake and intracellular localization of silver nanoparticles were observed and were accompanied by accumulation of autophagosomes and autolysosomes in A549 cells. The results indicate that silver nanoparticles play a significant role in apoptosis. Interestingly, biologically synthesized silver nanoparticles showed more potent cytotoxicity at the concentrations tested compared to that shown by chemically synthesized silver nanoparticles. Therefore, our results demonstrated that human lung epithelial A549 cells could provide a valuable model to assess the cytotoxicity of silver nanoparticles.

  10. INOSITOL HEXAKISPHOSPHATE MEDIATES APOPTOSIS IN HUMAN BREAST ADENOCARCINOMA MCF-7 CELL LINE VIA INTRINSIC PATHWAY

    SciTech Connect

    Agarwal, Rakhee; Ali, Nawab

    2010-04-12

    Inositol polyphosphates (InsP{sub s}) are naturally occurring compounds ubiquitously present in plants and animals. Inositol hexakisphosphate (InsP{sub 6}) is the most abundant among all InsP{sub s} and constitutes the major portion of dietary fiber in most cereals, legumes and nuts. Certain derivatives of InsP{sub s} also regulate cellular signaling mechanisms. InsP{sub s} have also been shown to reduce tumor formation and induce apoptosis in cancerous cells. Therefore, in this study, the effects of InsPs on apoptosis were studied in an attempt to investigate their potential anti-cancer therapeutic application and understand their mechanism of action. Acridine orange and ethidium bromide staining suggested that InsP{sub 6} dose dependently induced apoptosis in human breast adenocarcinoma MCF-7 cells. Among InsP{sub s} tested (InsP{sub 3}, InsP{sub 4}, InsP{sub 5}, and InsP{sub 6}), InsP{sub 6} was found to be the most effective in inducing apoptosis. Furthermore, effects of InsP{sub 6} were found most potent inducing apoptosis. Etoposide, the drug known to induce apoptosis in both in vivo and in vitro, was used as a positive control. Western blotting experiments using specific antibodies against known apoptotic markers suggested that InsP{sub 6} induced apoptotic changes were mediated via an intrinsic apoptotic pathway.

  11. Inositol Hexakisphosphate Mediates Apoptosis in Human Breast Adenocarcinoma MCF-7 Cell Line via Intrinsic Pathway

    NASA Astrophysics Data System (ADS)

    Agarwal, Rakhee; Ali, Nawab

    2010-04-01

    Inositol polyphosphates (InsPs) are naturally occurring compounds ubiquitously present in plants and animals. Inositol hexakisphosphate (InsP6) is the most abundant among all InsPs and constitutes the major portion of dietary fiber in most cereals, legumes and nuts. Certain derivatives of InsPs also regulate cellular signaling mechanisms. InsPs have also been shown to reduce tumor formation and induce apoptosis in cancerous cells. Therefore, in this study, the effects of InsPs on apoptosis were studied in an attempt to investigate their potential anti-cancer therapeutic application and understand their mechanism of action. Acridine orange and ethidium bromide staining suggested that InsP6 dose dependently induced apoptosis in human breast adenocarcinoma MCF-7 cells. Among InsPs tested (InsP3, InsP4, InsP5, and InsP6), InsP6 was found to be the most effective in inducing apoptosis. Furthermore, effects of InsP6 were found most potent inducing apoptosis. Etoposide, the drug known to induce apoptosis in both in vivo and in vitro, was used as a positive control. Western blotting experiments using specific antibodies against known apoptotic markers suggested that InsP6 induced apoptotic changes were mediated via an intrinsic apoptotic pathway.

  12. Comparative evaluation of cisplatin and carboplatin sensitivity in endometrial adenocarcinoma cell lines.

    PubMed Central

    Rantanen, V.; Grénman, S.; Kulmala, J.; Grénman, R.

    1994-01-01

    Platinum analogues are frequently used in the treatment of advanced or recurrent endometrial cancer. To study the sensitivity of endometrial cancer to cisplatin and carboplatin, we tested two long-established (RL95-2, KLE) and six new cell lines (UM-EC-1, UM-EC-2, UM-EC-3, UT-EC-2A, UT-EC-2B, UT-EC-3) using the 96-well-plate clonogenic assay. This assay has proven to be suitable for testing chemosensitivity of both adenocarcinoma and squamous cell carcinoma. The chemosensitivity was expressed as an IC50 value, the drug concentration causing 50% inhibition of clonogenic survival. IC50 values were obtained from dose-response curves after fitting the data by the linear quadratic equation, F = exp[-(alpha D + beta D2)]. The IC50 values of the two platinum derivatives varied considerably. The values for cisplatin varied between 0.022 microgram ml-1 and 0.56 microgram ml-1 and the corresponding values for carboplatin were 0.096-1.20 microgram ml-1. The range of the ratios between carboplatin IC50 and cisplatin IC50, from 1.5:1 to 4.4:1, was rather narrow. However, no constant ratio between carboplatin IC50 and cisplatin IC50 could be detected. The equivalent doses with regard to efficacy of these two platinum analogues remain to be determined. PMID:8123477

  13. Multicolor fluorescence in situ hybridization and comparative genomic hybridization reveal molecular events in lung adenocarcinomas and squamous cell lung carcinomas.

    PubMed

    Shen, Hua; Gao, Wen; Wu, Yu-jie; Qiu, Hai-rong; Shu, Yong-qian

    2009-07-01

    We have used the molecular cytogenetic techniques of multicolor fluorescence in situ hybridization (M-FISH) and comparative genomic hybridization (CGH) to analyze two established lung cancer cell lines (A549, H520), 80 primary lung adenocarcinoma samples and 80 squamous cell lung carcinoma samples in order to identify common chromosomal aberrations. M-FISH revealed numerous complex chromosomal rearrangements. Chromosomes 5, 6, 11, 12, and 17 were most frequently involved in interchromosomal translocations. CGH revealed regions on 1q, 2p, 3q, 5p, 5q, 7p, 8q, 11q, 12q, 14q, 16p, 17p, 19q, 20q, 21q and 22q to be commonly over-represented and regions on 2q, 3p, 4p, 5q, 7q, 8p, 9p, 13q, 14q, and 17p to be under-represented. In lung adenocarcinomas the most common gains were found in 16p13 (50%); while in squamous cell lung carcinomas the common gains were found in 17q21 (45%) and these alterations were observed to be associated with their specific pathological subtype. In conclusion, the present study contributes to the molecular biological characterization in lung adenocarcinomas and squamous cell lung carcinomas and through evaluation of molecular events to the recently emergent focus on novel markers for lung cancer treatment. PMID:18848758

  14. Glucocorticoids regulate surfactant protein synthesis in a pulmonary adenocarcinoma cell line

    SciTech Connect

    O'Reilly, M.A.; Gazdar, A.F.; Clark, J.C.; Pilot-Matias, T.J.; Wert, S.E.; Hull, W.M.; Whitsett, J.A. )

    1989-12-01

    Synthesis of pulmonary surfactant proteins SP-A, SP-B, and SP-C was demonstrated in a cell line derived from a human adenocarcinoma of the lung. The cells contained numerous lamellar inclusion bodies and formed organized groups of cells containing well-developed junctional complexes and apical microvillous membranes. Synthesis of SP-A was detected in the cells by enzyme-linked immunoabsorbent assay and by immunoprecipitation of (35S)methionine-labeled protein. SP-A was identified as an Mr 31,000-36,000 polypeptide containing asparagine-linked carbohydrate. Northern blot analysis detected SP-A mRNA of 2.2 kb. Dexamethasone (1-10 nM) enhanced the relative abundance of SP-A mRNA. Despite stimulation of SP-A mRNA, intracellular SP-A content was unaltered or inhibited by dexamethasone. SP-B and SP-C mRNAs and synthesis of the SP-B and SP-C precursors were markedly induced by dexamethasone. ProSP-B was synthesized and secreted primarily as an Mr 42,000-46,000 polypeptide. Proteolysis of the proSP-B resulted in the generation of endoglycosidase F-sensitive Mr = 19,000-21,000 and 25,000-27,000 peptides, which were detected both intra- and extracellularly. SP-C proprotein of Mr = 22,000 and smaller SP-C fragments were detected intracellularly but were not detected in the media. Mature forms of SP-B (Mr = 8,000) and SP-C (Mr = 4,000) were not detected. Glucocorticoids directly enhance the relative synthesis and mRNA of the surfactant proteins SP-A, SP-B, and SP-C. Discrepancies among SP-A mRNA, its de novo synthesis, and cell content suggest that glucocorticoid may alter both pre- and posttranslational factors modulating SP-A expression.

  15. Long Noncoding RNA RGMB-AS1 Indicates a Poor Prognosis and Modulates Cell Proliferation, Migration and Invasion in Lung Adenocarcinoma

    PubMed Central

    Li, Ping; Zhang, Guojun; Li, Juan; Yang, Rui; Chen, Shanshan; Wu, Shujun; Zhang, Furui; Bai, Yong; Zhao, Huasi; Wang, Yuanyuan; Dun, Shaozhi; Chen, Xiaonan; Sun, Qianqian; Zhao, Guoqiang

    2016-01-01

    Lung cancer is the most common cause of cancer-related mortality worldwide. It is a complex disease involving multiple genetic and epigenetic alterations. The development of transcriptomics revealed the important role of long non-coding RNAs (lncRNAs) in lung cancer occurrence and development. Here, microarray analysis of lung adenocarcinoma tissues showed the abnormal expression of lncRNA RGMB-AS1. However, the role of lncRNA RGMB-AS1 in lung adenocarcinoma remains largely unknown. We showed that upregulation of lncRNA RGMB-AS1 was significantly correlated with differentiation, TNM stage, and lymph node metastasis. In lung adenocarcinoma cells, downregulation of lncRNA RGMB-AS1 inhibited cell proliferation, migration, invasion, and caused cell cycle arrest at the G1/G0 phase. In vivo experiments showed that lncRNA RGMB-AS1 downregulation significantly suppressed the growth of lung adenocarcinoma. The expression of lncRNA RGMB-AS1 was inversely correlated with that of repulsive guidance molecule b (RGMB) in lung adenocarcinoma tissues, and UCSC analysis and fluorescence detection assay indicated that lncRNA RGMB-AS1 may be involved in the development of human lung adenocarcinoma by regulating RGMB expression though exon2 of RGMB. In summary, our findings indicate that lncRNA RGMB-AS1 may play an important role in lung adenocarcinoma and may serve as a potential therapeutic target. PMID:26950071

  16. Spontaneously Arising Concurrent Ileocaecal Adenocarcinoma and Renal Pelvis Transitional Cell Carcinoma in a Rhesus Macaque (Macaca mulatta)

    PubMed Central

    Gumber, S.; Wood, J. S.; Jones, A. C.; Strobert, E.

    2015-01-01

    Summary A 25-year-old, female rhesus macaque presented with a history of weight loss despite a normal appetite and supportive care. The animal was humanely destroyed due to poor prognosis. Post-mortem examination revealed a focally extensive, firm, white annular constriction at the ileocaecal junction and an incidental finding of a pale white nodule approximately 0.8 cm in diameter in the left renal pelvis. Based on the microscopical findings, ileocaecal adenocarcinoma and renal pelvis transitional cell carcinoma (TCC) was diagnosed. The use of cytokeratin (CK)-7 and-20 and uroplakin III as potential renal TCC markers was evaluated. The neoplastic cells were labelled intensely with antibodies to uroplakin III, but not to CK-7 or -20. Spontaneous intestinal adenocarcinoma has been documented in the rhesus macaque, but concurrent renal pelvis TCC is highly unusual. PMID:24016782

  17. Synchronous gastric and ampullary adenocarcinomas in a hairy cell leukemia patient treated with pentostatin eight years prior.

    PubMed

    Senatore, Frank J; Dasanu, Constantin A

    2016-06-01

    Hairy cell leukemia patients are at increased risk for second malignancies, including both solid and lymphoid neoplasms. Along with other factors, multiple immune defects present in hairy cell leukemia likely contribute to subsequent carcinogenesis. We report herein a case of synchronous high-grade gastric and ampullary adenocarcinomas in a patient with a history of hairy cell leukemia treated eight years prior with pentostatin. We include a review of immune alterations induced by both hairy cell leukemia and its therapies, and link them with the occurrence of second cancers in these patients. PMID:25712625

  18. Differential DNA sequence deletions from chromosomes 3, 11, 13, and 17 in squamous-cell carcinoma, large-cell carcinoma, and adenocarcinoma of the human lung

    SciTech Connect

    Weston, A.; Willey, J.C.; Modali, R.; Sugimura, H.; McDowell, E.M.; Resau, J.; Light, B.; Haugen, A.; Mann, D.L.; Trump, B.F.; Harris, C.C. )

    1989-07-01

    Activation of protooncogens and inactivation of putative tumor suppressor genes are genetic lesions considered to be important in lung carcinogenesis. Fifty-four cases of non-small-cell lung cancer (23 adenocarcinomas, 23 squamous-cell carcinomas, and 8 large-cell carcinomas) were examined for loss of DNA sequences at 13 polymorphic genetic loci. Loss of heterozygosity was seen more frequently in squamous-cell carcinoma than in adenocarcinoma. The loss of DNA sequences from the short arm of chromosome 17 (D17S1 locus) was detected in 8 of 9 heterozygous cases of squamous-cell carcinoma and in only 2 of 11 heterozygous cases of adenocarcinomas. Loss of DNA sequences from chromosome 3 was seen in 16 of 31 cases where the constitutive DNA was heterozygous-i.e., informative. Loss of heterozygosity at the chromosome 13q locus, D13S3, was seen in 9 of 21 informative cases, and in 2 cases, both adenocarcinomas, duplication of the intact DNA sequences suggested the possibility that mitotic recombination had occurred. Frequent DNA sequence deletions, including those from chromosome 17, in squamous-cell carcinomas may reflect the extensive mutagenic and clastogenic effects of tobacco smoke that may lead to inactivation of putative tumor-suppressor genes.

  19. Complexation study and anticellular activity enhancement by doxorubicin-cyclodextrin complexes on a multidrug-resistant adenocarcinoma cell line.

    PubMed

    Al-Omar, A; Abdou, S; De Robertis, L; Marsura, A; Finance, C

    1999-04-19

    Ability of molecular complexes of [Doxorubicin (DX)-cyclodextrin (Cd)] to enhance the anticellular activity of antineoplastic drug Doxorubicin and to reverse its multidrug resistance has been investigated. A spectroscopic study of the alpha, beta, and gamma-[DX-Cds] complexes has been investigated in relation to their biological effects on a multidrug resistant (MDR) human rectal adenocarcinoma cell line (HRT-18). A ten fold enhancement of DX anticellular activity in presence of beta-cyclodextrin alone was detected. PMID:10328296

  20. ALDH1-High Ovarian Cancer Stem-Like Cells Can Be Isolated from Serous and Clear Cell Adenocarcinoma Cells, and ALDH1 High Expression Is Associated with Poor Prognosis

    PubMed Central

    Kuroda, Takafumi; Hirohashi, Yoshihiko; Torigoe, Toshihiko; Yasuda, Kazuyo; Takahashi, Akari; Asanuma, Hiroko; Morita, Rena; Mariya, Tasuku; Asano, Takuya; Mizuuchi, Masahito; Saito, Tsuyoshi; Sato, Noriyuki

    2013-01-01

    Cancer stem-like cells (CSCs)/cancer-initiating cells (CICs) are defined as a small population of cancer cells that have high tumorigenicity. Furthermore, CSCs/CICs are resistant to several cancer therapies, and CSCs/CICs are therefore thought to be responsible for cancer recurrence after treatment and distant metastasis. In epithelial ovarian cancer (EOC) cases, disease recurrence after chemotherapy is frequently observed, suggesting ovarian CSCs/CICs are involved. There are four major histological subtypes in EOC, and serous adenocarcinoma and clear cell adenocarcinoma are high-grade malignancies. We therefore analyzed ovarian CSCs/CICs from ovarian carcinoma cell lines (serous adenocarcinoma and clear cell adenocarcinoma) and primary ovarian cancer cells in this study. We isolated ovarian CSCs/CICs as an aldehyde dehydrogenase 1 high (ALDH1high) population from 6 EOC cell lines (3 serous adenocarcinomas and 3 clear cell adenocarcinomas) by the ALDEFLUOR assay. ALDH1high cells showed greater sphere-forming ability, higher tumorigenicity and greater invasive capability, indicating that ovarian CSCs/CICs are enriched in ALDH1high cells. ALDH1high cells could also be isolated from 8 of 11 primary ovarian carcinoma samples. Immunohistochemical staining revealed that higher ALDH1 expression levels in ovary cancer cases are related to poorer prognosis in both serous adenocarcinoma cases and clear cell adenocarcinoma cases. Taken together, the results indicate that ALDH1 is a marker for ovarian CSCs/CICs and that the expression level of ALDH1 might be a novel biomarker for prediction of poor prognosis. PMID:23762304

  1. Somatic Copy Number Alterations Associated with Japanese or Endometriosis in Ovarian Clear Cell Adenocarcinoma

    PubMed Central

    Okamoto, Aikou; Sehouli, Jalid; Yanaihara, Nozomu; Hirata, Yukihiro; Braicu, Ioana; Kim, Byoung-Gie; Takakura, Satoshi; Saito, Misato; Yanagida, Satoshi; Takenaka, Masataka; Yamaguchi, Noriko; Morikawa, Asuka; Tanabe, Hiroshi; Yamada, Kyosuke; Yoshihara, Kosuke; Enomoto, Takayuki; Itamochi, Hiroaki; Kigawa, Junzo; Matsumura, Noriomi; Konishi, Ikuo; Aida, Satoshi; Aoki, Yuko; Ishii, Nobuya; Ochiai, Kazunori; Akiyama, Tetsu; Urashima, Mitsuyoshi

    2015-01-01

    When compared with other epithelial ovarian cancers, the clinical characteristics of ovarian clear cell adenocarcinoma (CCC) include 1) a higher incidence among Japanese, 2) an association with endometriosis, 3) poor prognosis in advanced stages, and 4) a higher incidence of thrombosis as a complication. We used high resolution comparative genomic hybridization (CGH) to identify somatic copy number alterations (SCNAs) associated with each of these clinical characteristics of CCC. The Human Genome CGH 244A Oligo Microarray was used to examine 144 samples obtained from 120 Japanese, 15 Korean, and nine German patients with CCC. The entire 8q chromosome (minimum corrected p-value: q = 0.0001) and chromosome 20q13.2 including the ZNF217 locus (q = 0.0078) were amplified significantly more in Japanese than in Korean or German samples. This copy number amplification of the ZNF217 gene was confirmed by quantitative real-time polymerase chain reaction (Q-PCR). ZNF217 RNA levels were also higher in Japanese tumor samples than in non-Japanese samples (P = 0.027). Moreover, endometriosis was associated with amplification of EGFR gene (q = 0.047), which was again confirmed by Q-PCR and correlated with EGFR RNA expression. However, no SCNAs were significantly associated with prognosis or thrombosis. These results indicated that there may be an association between CCC and ZNF217 amplification among Japanese patients as well as between endometriosis and EGFR gene amplifications. PMID:25658832

  2. Identification of immunohistochemical markers for distinguishing lung adenocarcinoma from squamous cell carcinoma

    PubMed Central

    Zhan, Cheng; Yan, Li; Wang, Lin; Sun, Yang; Wang, Xingxing; Lin, Zongwu; Zhang, Yongxing; Wang, Qun

    2015-01-01

    Background Immunohistochemical staining has been widely used in distinguishing lung adenocarcinoma (LUAD) from lung squamous cell carcinoma (LUSC), which is of vital importance for the diagnosis and treatment of lung cancer. Due to the lack of a comprehensive analysis of different lung cancer subtypes, there may still be undiscovered markers with higher diagnostic accuracy. Methods Herein first, we systematically analyzed high-throughput data obtained from The Cancer Genome Atlas (TCGA) database. Combining differently expressed gene screening and receiver operating characteristic (ROC) curve analysis, we attempted to identify the genes which might be suitable as immunohistochemical markers in distinguishing LUAD from LUSC. Then we detected the expression of six of these genes (MLPH, TMC5, SFTA3, DSG3, DSC3 and CALML3) in lung cancer sections using immunohistochemical staining. Results A number of genes were identified as candidate immunohistochemical markers with high sensitivity and specificity in distinguishing LUAD from LUSC. Then the staining results confirmed the potentials of the six genes (MLPH, TMC5, SFTA3, DSG3, DSC3 and CALML3) in distinguishing LUAD from LUSC, and their sensitivity and specificity were not less than many commonly used markers. Conclusions The results revealed that the six genes (MLPH, TMC5, SFTA3, DSG3, DSC3 and CALML3) might be suitable markers in distinguishing LUAD from LUSC, and also validated the feasibility of our methods for identification of candidate markers from high-throughput data. PMID:26380766

  3. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas.

    PubMed

    Campbell, Joshua D; Alexandrov, Anton; Kim, Jaegil; Wala, Jeremiah; Berger, Alice H; Pedamallu, Chandra Sekhar; Shukla, Sachet A; Guo, Guangwu; Brooks, Angela N; Murray, Bradley A; Imielinski, Marcin; Hu, Xin; Ling, Shiyun; Akbani, Rehan; Rosenberg, Mara; Cibulskis, Carrie; Ramachandran, Aruna; Collisson, Eric A; Kwiatkowski, David J; Lawrence, Michael S; Weinstein, John N; Verhaak, Roel G W; Wu, Catherine J; Hammerman, Peter S; Cherniack, Andrew D; Getz, Gad; Artyomov, Maxim N; Schreiber, Robert; Govindan, Ramaswamy; Meyerson, Matthew

    2016-06-01

    To compare lung adenocarcinoma (ADC) and lung squamous cell carcinoma (SqCC) and to identify new drivers of lung carcinogenesis, we examined the exome sequences and copy number profiles of 660 lung ADC and 484 lung SqCC tumor-normal pairs. Recurrent alterations in lung SqCCs were more similar to those of other squamous carcinomas than to alterations in lung ADCs. New significantly mutated genes included PPP3CA, DOT1L, and FTSJD1 in lung ADC, RASA1 in lung SqCC, and KLF5, EP300, and CREBBP in both tumor types. New amplification peaks encompassed MIR21 in lung ADC, MIR205 in lung SqCC, and MAPK1 in both. Lung ADCs lacking receptor tyrosine kinase-Ras-Raf pathway alterations had mutations in SOS1, VAV1, RASA1, and ARHGAP35. Regarding neoantigens, 47% of the lung ADC and 53% of the lung SqCC tumors had at least five predicted neoepitopes. Although targeted therapies for lung ADC and SqCC are largely distinct, immunotherapies may aid in treatment for both subtypes. PMID:27158780

  4. The Prognostic Impact of NK/NKT Cell Density in Periampullary Adenocarcinoma Differs by Morphological Type and Adjuvant Treatment

    PubMed Central

    Warfvinge, Carl Fredrik; Elebro, Jacob; Heby, Margareta; Nodin, Björn; Krzyzanowska, Agnieszka; Bjartell, Anders; Leandersson, Karin; Eberhard, Jakob; Jirström, Karin

    2016-01-01

    Background Natural killer (NK) cells and NK T cells (NKT) are vital parts of tumour immunosurveillance. However, their impact on prognosis and chemotherapy response in periampullary adenocarcinoma, including pancreatic cancer, has not yet been described. Methods Immune cell-specific expression of CD56, CD3, CD68 and CD1a was analysed by immunohistochemistry on tissue microarrays with tumours from 175 consecutive cases of periampullary adenocarcinoma, 110 of pancreatobiliary type (PB-type) and 65 of intestinal type (I-type) morphology. Kaplan-Meier and Cox regression analysis were applied to determine the impact of CD56+ NK/NKT cells on 5-year overall survival (OS). Results High density of CD56+ NK/NKT cells correlated with low N-stage and lack of perineural, lymphatic vessel and peripancreatic fat invasion. High density of CD56+ NK/NKT cells was associated with prolonged OS in Kaplan-Meier analysis (p = 0.003), and in adjusted Cox regression analysis (HR = 0.49; 95% CI 0.29–0.86). The prognostic effect of high CD56+ NK/NKT cell infiltration was only evident in cases not receiving adjuvant chemotherapy in PB-type tumours (p for interaction = 0.014). Conclusion This study demonstrates that abundant infiltration of CD56+ NK/NKT cells is associated with a prolonged survival in periampullary adenocarcinoma. However, the negative interaction with adjuvant treatment is noteworthy. NK cell enhancing strategies may prove to be successful in the management of these cancers. PMID:27275582

  5. Knockdown of HNRNPA1 inhibits lung adenocarcinoma cell proliferation through cell cycle arrest at G0/G1 phase.

    PubMed

    Liu, Xianxun; Zhou, Yan; Lou, Yuqing; Zhong, Hua

    2016-02-01

    Heterogeneous nuclear ribonucleoprotein A1 (HNRNPA1), a member of heterogeneous nuclear ribonucleoprotein family in actively growing mammalian cells, is involved in a variety of RNA-related processes. HNRNPA1 can enhance the degradation of inhibitory subunit of nuclear factor κ B alpha (IκBα) and lengthen the telomeres. Recently, it is reported that HNRNPA1 is aberrantly expressed in varied tumors. In this study we found HNRNPA1 protein overexpressed in lung cancer tissues. To explore the exact role of HNRNPA1 in lung cancers, we carried out a loss of function analysis of HNRNPA1 in A549 lung cancer cells by RNA interference (RNAi). The results demonstrated that knockdown of HNRNPA1 inhibited cell viability and colony formation of lung cancer cells and arrested cell cycle in G0/G1 phase. Our study suggested that HNRNPA1 might play an important role in lung adenocarcinoma cells and provided a foundation for further study into the potential of HNRNPA1 for lung cancer therapy. PMID:26581508

  6. Analysis of p21Waf1/Cip1 expression in normal, premalignant, and malignant cells during the development of human lung adenocarcinoma.

    PubMed Central

    Hayashi, H.; Miyamoto, H.; Ito, T.; Kameda, Y.; Nakamura, N.; Kubota, Y.; Kitamura, H.

    1997-01-01

    Our studies suggested that adenocarcinoma of the peripheral lung mostly develops by several steps from atypical adenomatous hyperplasia through early adenocarcinoma to overt adenocarcinoma, and that some p53 abnormalities play an important role in this progression. In the present study, we examined by immunohistochemistry the expression of p53-inducible cyclin-dependent kinase inhibitor p21Waf1/Cip1 (p21) in the cells at various developmental stages of lung adenocarcinoma (32 lesions of adenomatous hyperplasia, 14 of early adenocarcinoma, 23 of well differentiated adenocarcinoma, and 17 of moderately or poorly differentiated adenocarcinoma) in comparison with 19 reactive proliferative lesions and analyzed the relationship between p53 and p21 expression. Bronchioalveolar cells in the normal lung expressed very little or no p21 and no p53 expression. In not only reactive but also neoplastic lesions regardless of their developmental stage, the cells expressed p21 at various frequencies. The average labeling indices ranged from 5.4 to 13.8%, and there was no significant difference between any of these categories. The expression of p21, however, tended to be relatively low in moderately and poorly differentiated adenocarcinomas (5.5%) compared to well differentiated adenocarcinomas (12.2%), and high-level p21 expressors (10% < or = positive cells) were more frequent in the latter group (1 of 17 (6%) versus 3 of 23 (35%), P < 0.05), suggesting that p21 expression is affected by the degree of differentiation of the neoplastic cells. Although the correlation was positive between the expression of p21 and p53 in reactive lesions (r = 0.88; P < 0.001), none was found in neoplastic lesions at any step or grade (-0.12 < or = r < or = 0.26). These results indicated that p21 expression depends upon p53 expression in reactive lung cells, whereas p21 expression is at least in part independent of that of p53 from the earliest to the most fully developed step of lung adenocarcinoma

  7. microRNA-25 Inhibits Cell Apoptosis of Human Gastric Adenocarcinoma Cell Line AGS via Regulating CCNE1 and MYC

    PubMed Central

    Zhang, Yong; Peng, Zheng; Zhao, Yunshan; Chen, Lin

    2016-01-01

    Background Gastric carcinoma is the second leading cause of cancer death. microRNAs play vital roles in regulating expression of related oncogenes. microRNA-25 (miR-25) has been found to be up-regulated in gastric carcinoma. However, its roles in affecting cell apoptosis of gastric carcinoma and the related mechanism remain elusive. This study aimed to uncover the influences of miR-25 on gastric carcinoma cell apoptosis and the possible functional mechanisms involved. Material/Methods Human gastric adenocarcinoma cell line AGS was used and transfected with lentivirus containing miR-25-specifc inhibitor sponge or expression vector to analyze the effects of miR-25. Results miR-25 had higher expression in AGS than in human gastric epithelial cell line GES-1 (P<0.01). Inhibition of miR-25 by its sponge in AGS cells resulted in suppressed cell viability (P<0.01) and promoted cell apoptosis (P<0.01), while overexpression of miR-25 abrogated these effects (P<0.01 and P<0.05), indicating that miR-25 can promote cell viability and inhibit cell apoptosis in AGS cells. Expression analysis of related factors by Western blot showed that inhibiting miR-25 led to the up-regulation of F-box and WD repeat domain-containing 7 (FBXW7, P<0.01) and the down-regulation of FBXW7 substrates, cyclin E1 (CCNE1, P<0.01), and v-myc avian myelocytomatosis viral oncogene homolog (MYC, P<0.001). Conclusions These results indicate that miR-25 has anti-apoptosis roles in AGS cells, possibly via inhibiting FBXW7 and thus promoting oncogenes, such as CCNE1 and MYC. This study provides basic evidence for using miR-25 as a possible therapeutic target in treating gastric carcinoma. PMID:27120728

  8. High Goblet Cell Count Is Inversely Associated with Ploidy Abnormalities and Risk of Adenocarcinoma in Barrett’s Esophagus

    PubMed Central

    Sanchez, Carissa A.; Liu, Karen; Fong, Pui Yee; Li, Xiaohong; Cowan, David S.; Rabinovitch, Peter S.; Reid, Brian J.; Blount, Patricia L.

    2015-01-01

    Purpose Goblet cells may represent a potentially successful adaptive response to acid and bile by producing a thick mucous barrier that protects against cancer development in Barrett's esophagus (BE). The aim of this study was to determine the relationship between goblet cells (GC) and risk of progression to adenocarcinoma, and DNA content flow cytometric abnormalities, in BE patients. Experimental Design Baseline mucosal biopsies (N=2988) from 213 patients, 32 of whom developed cancer during the follow up period, enrolled in a prospective dynamic cohort of BE patients were scored in a blinded fashion, for the total number (#) of GC, mean # of GC/crypt (GC density), # of crypts with ≥ 1 GC, and the proportion of crypts with ≥1 GC, in both dysplastic and non-dysplastic epithelium separately. The relationship between these four GC parameters and DNA content flow cytometric abnormalities and adenocarcinoma outcome was compared, after adjustment for age, gender, and BE segment length. Results High GC parameters were inversely associated with DNA content flow cytometric abnormalities, such as aneuploidy, ploidy >2.7N, and an elevated 4N fraction > 6%, and with risk of adenocarcinoma. However, a Kaplan-Meier analysis showed that the total # of GC and the total # crypts with ≥1 GC were the only significant GC parameters (p<0.001 and 0.003, respectively). Conclusions The results of this study show, for the first time, an inverse relationship between high GC counts and flow cytometric abnormalities and risk of adenocarcinoma in BE. Further studies are needed to determine if GC depleted foci within esophageal columnar mucosa are more prone to neoplastic progression or whether loss of GC occurs secondary to underlying genetic abnormalities. PMID:26230607

  9. E-Cadherin repression increases amount of cancer stem cells in human A549 lung adenocarcinoma and stimulates tumor growth.

    PubMed

    Farmakovskaya, M; Khromova, N; Rybko, V; Dugina, V; Kopnin, B; Kopnin, P

    2016-04-17

    Here we show that cancer stem cells amount in human lung adenocarcinoma cell line A549 depends on E-cadherin expression. In fact, downregulation of E-cadherin expression enhanced expression of pluripotent genes (c-MYC, NESTIN, OCT3/4 and SOX2) and enriched cell population with the cells possessing the properties of so-called 'cancer stem cells' via activation of Wnt/β-catenin signaling. Repression of E-cadherin also stimulated cell proliferation and migration in vitro, decreased cell amount essential for xenografts formation in nude mice, increased tumors vascularization and growth. On the other hand, E-cadherin upregulation caused opposite effects i.e. diminished the number of cancer stem cells, decreased xenograft vascularization and decelerated tumor growth. Therefore, agents restoring E-cadherin expression may be useful in anticancer therapy. PMID:26940223

  10. Selective cyclooxygenase-2 inhibitors show a differential ability to inhibit proliferation and induce apoptosis of colon adenocarcinoma cells.

    PubMed

    Yamazaki, Ryuta; Kusunoki, Natsuko; Matsuzaki, Takeshi; Hashimoto, Shusuke; Kawai, Shinichi

    2002-11-01

    Although the influence of selective cyclooxygenase (COX)-2 inhibitors on the proliferation of colon adenocarcinoma cells have been the subject of much investigation, relatively little research has compared the effects of different COX-2 inhibitors. Celecoxib strongly suppressed the proliferation of COX-2 expressing HT-29 cells at 10-40 microM. NS-398 and nimesulide also inhibited cell proliferation, whereas rofecoxib, meloxicam, and etodolac did not. Only celecoxib induced apoptosis of HT-29 cells, as detected on the basis of DNA fragmentation, TUNEL positivity, and caspase-3/7 activation. DNA fragmentation was also increasd in COX-2 non-expressing cell lines (SW-480 and HCT-116) by exposure to celecoxib for 6-24 h. All six COX-2 inhibitors suppressed the production of prostaglandin E(2) by HT-29 cells, suggesting that the pro-apoptotic effect of celecoxib was unrelated to inhibition of COX-2. Inactivation of Akt might explain the differential pro-apoptotic effect of these selective COX-2 inhibitors on colon adenocarcinoma cells. PMID:12417326

  11. LAP TGF-Beta Subset of CD4+CD25+CD127− Treg Cells is Increased and Overexpresses LAP TGF-Beta in Lung Adenocarcinoma Patients

    PubMed Central

    Islas-Vazquez, Lorenzo; Prado-Garcia, Heriberto; Aguilar-Cazares, Dolores; Meneses-Flores, Manuel; Galicia-Velasco, Miriam; Romero-Garcia, Susana; Camacho-Mendoza, Catalina; Lopez-Gonzalez, Jose Sullivan

    2015-01-01

    Lung cancer is the leading cause of cancer death worldwide. Adenocarcinoma, the most commonly diagnosed histologic type of lung cancer, is associated with smoking. Cigarette smoke promotes inflammation on the airways, which might be mediated by Th17 cells. This inflammatory environment may contribute to tumor development. In contrast, some reports indicate that tumors may induce immunosuppressive Treg cells to dampen immune reactivity, supporting tumor growth and progression. Thus, we aimed to analyze whether chronic inflammation or immunosuppression predominates at the systemic level in lung adenocarcinoma patients, and several cytokines and Th17 and Treg cells were studied. Higher proportions of IL-17-producing CD4+ T-cells were found in smoking control subjects and in lung adenocarcinoma patients compared to nonsmoking control subjects. In addition, lung adenocarcinoma patients increased both plasma concentrations of IL-2, IL-4, IL-6, and IL-10, and proportions of Latency Associated Peptide (LAP) TGF-β subset of CD4+CD25+CD127− Treg cells, which overexpressed LAP TGF-β. This knowledge may lead to the development of immunotherapies that could inhibit the suppressor activity mediated by the LAP TGF-β subset of CD4+CD25+CD127− Treg cells to promote reactivity of immune cells against lung adenocarcinoma cells. PMID:26582240

  12. A propensity score matching analysis of survival following segmentectomy or wedge resection in early-stage lung invasive adenocarcinoma or squamous cell carcinoma

    PubMed Central

    Zhang, Yang; Sun, Yihua; Chen, Haiquan

    2016-01-01

    Purpose: To compare the survival outcomes following segmentectomy or wedge resection in early-stage lung cancer. Methods: A total of 5880 patients with invasive lung adenocarcinoma or squamous cell carcinoma from the Surveillance, Epidemiology, and End Results (SEER) database were included in this study, of which 1156 received segmentectomy. Baseline characteristics were balanced using propensity score methods. Cox regression analysis was used to compare overall survival (OS) and lung cancer-specific survival (LCSS) following segmentectomy or wedge resection after matching patients based on propensity scores. Results: Overall, patients undergoing segmentectomy and wedge resection had no significant different OS and LCSS both in the invasive adenocarcinoma group and the squamous cell carcinoma group. Segmentectomy was associated with improved OS (hazard ratio = 0.626, 95% confidence interval: 0.457-0.858, P = 0.004) and LCSS (hazard ratio = 0.643, 95% CI: 0.440-0.939, P = 0.022) in invasive adenocarcinoma patients ≤ 65 years old. In patients with ≤ 2 cm invasive adenocarcinoma, segmentectomy was associated with significantly better OS (hazard ratio = 0.811, 95% confidence interval: 0.666-0.988, P = 0.038). Conclusion: Survival following segmentectomy or wedge resection was generally equivalent in lung invasive adenocarcinoma and squamous cell carcinoma. However, invasive adenocarcinoma patients who were ≤ 65 years or had tumors ≤ 2 cm in size may have improved survival outcomes after segmentectomy. PMID:26871600

  13. [Urachal adenocarcinoma].

    PubMed

    Dakir, M; Dahami, Z; Sarf, I; Tahri, A; Elmrini, M; Benjelloun, S

    2001-09-01

    Cancer of the urachus is very unusual. The lesion is a mucosecretory adenocarcinoma. The diagnosis is usually established late, and has a serious prognosis because of a long clinical latency. We report a case of metastatic adenocarcinoma of the urachus revealed by hematuria. A review of the literature allows us to demonstrate the rarity of this tumour and to demonstrate its various clinical, histological, radiological and therapeutical aspects. PMID:11761694

  14. Cancer stem cell markers CD133 and CD24 correlate with invasiveness and differentiation in colorectal adenocarcinoma

    PubMed Central

    Choi, Dongho; Lee, Hyo Won; Hur, Kyung Yul; Kim, Jae Joon; Park, Gyeong-Sin; Jang, Si-Hyong; Song, Young Soo; Jang, Ki-Seok; Paik, Seung Sam

    2009-01-01

    AIM: To verify that CD markers are available for detecting cancer stem cell populations and to evaluate their clinical significance in colon cancer. METHODS: Immunohistochemistry for CD133, CD24 and CD44 was performed on the tissue microarray of 523 colorectal adenocarcinomas. Medical records were reviewed and clinicopathological analysis was performed. RESULTS: In colorectal adenocarcinoma, 128 of 523 cases (24.5%) were positive and 395 cases (75.5%) were negative for CD133 expression. Two hundred and sixty-four of 523 cases (50.5%) were positive and 259 cases (49.5%) were negative for CD24 expression. Five hundred and two of 523 cases (96%) were negative and 21 cases (4%) were positive for CD44 expression. Upon clinicopathological analysis, CD133 expression was present more in male patients (P = 0.002) and in advanced T stage cancer (P = 0.024). Correlation between CD24 expression and clinicopathological factors was seen in the degree of differentiation (P = 0.006). Correlation between CD44 expression and clinicopathological factors was seen in the tumor size (P = 0.001). Survival was not significantly related to CD133, CD24 and CD44 expression. CONCLUSION: CD markers were related to invasiveness and differentiation of colorectal adenocarcinoma. However, CD expression was not closely related to survival. PMID:19437567

  15. Eriocalyxin B induces apoptosis and cell cycle arrest in pancreatic adenocarcinoma cells through caspase- and p53-dependent pathways

    SciTech Connect

    Li, Lin; Yue, Grace G.L.; Lau, Clara B.S.; Sun, Handong; Fung, Kwok Pui; Leung, Ping Chung; Han, Quanbin; Leung, Po Sing

    2012-07-01

    Pancreatic cancer is difficult to detect early and responds poorly to chemotherapy. A breakthrough in the development of new therapeutic agents is urgently needed. Eriocalyxin B (EriB), isolated from the Isodon eriocalyx plant, is an ent-kaurane diterpenoid with promise as a broad-spectrum anti-cancer agent. The anti-leukemic activity of EriB, including the underlying mechanisms involved, has been particularly well documented. In this study, we demonstrated for the first time EriB's potent cytotoxicity against four pancreatic adenocarcinoma cell lines, namely PANC-1, SW1990, CAPAN-1, and CAPAN-2. The effects were comparable to that of the chemotherapeutic camptothecin (CAM), but with much lower toxicity against normal human liver WRL68 cells. EriB's cytoxicity against CAPAN-2 cells was found to involve caspase-dependent apoptosis and cell cycle arrest at the G2/M phase. Moreover, the p53 pathway was found to be activated by EriB in these cells. Furthermore, in vivo studies showed that EriB inhibited the growth of human pancreatic tumor xenografts in BALB/c nude mice without significant secondary adverse effects. These results suggest that EriB should be considered a candidate for pancreatic cancer treatment. -- Highlights: ► We study Eriocalyxin B (EriB)'s cytotoxic effects on pancreatic cancer cell lines. ► EriB inhibits cell proliferation via mediation of apoptosis and cell cycle arrest. ► The effects are involved in caspase-dependent apoptosis and p53 pathway. ► In vivo study also shows EriB inhibits the growth of human pancreatic tumor. ► EriB can be a good candidate for chemotherapy in pancreatic cancer.

  16. Comparison of absorption spectra of adenocarcinoma and squamous cell carcinoma cervical tissue

    NASA Astrophysics Data System (ADS)

    Peresunko, O. P.; Zelinska, N. V.; Prydij, O. G.; Zymnyakov, D. A.; Ushakova, O. V.

    2013-12-01

    We studied a methods of assessment of a connective tissue of cervix in terms of specific volume of fibrous component and an optical density of staining of connective tissue fibers in the stroma of squamous cancer and cervix adenocarcinoma. An absorption spectra of blood plasma of the patients suffering from squamous cancer and cervix adenocarcinoma both before the surgery and in postsurgical periods were obtained. Linear dichroism measurements transmittance in polarized light at different orientations of the polarization plane relative to the direction of the dominant orientation in the structure of the sample of biotissues of stroma of squamous cancer and cervix adenocarcinoma were carried. Results of the investigation of the tumor tissues showed that the magnitude of the linear dichroism Δ is insignificant in the researched spectral range λ=280-840 nm and specific regularities in its change observed short-wave ranges.

  17. 4-Nitroquinoline-1-oxide effects human lung adenocarcinoma A549 cells by regulating the expression of POLD4

    PubMed Central

    HUANG, QIN-MIAO; ZENG, YI-MING; ZHANG, HUA-PING; LV, LIANG-CHAO; YANG, DONG-YONG; LIN, HUI-HUANG

    2016-01-01

    The aim of the present study was to explore the expression of POLD4 in human lung adenocarcinoma A549 cells under 4-nitroquinoline-1-oxide (4NQO) stimulation to investigate the role of POLD4 in smoking-induced lung cancer. The lung cancer A549 cell line was treated with 4NQO, with or without MG132 (an inhibitor of proteasome activity), and subsequently the POLD4 level was determined by western blot analysis. Secondly, the cell sensitivity to 4NQO and Taxol was determined when the POLD4 expression level was downregulated by siRNA. The POLD4 protein levels in the A549 cells decreased following treatment with 4NQO; however, MG132 could reverse this phenotype. Downregulation of the POLD4 expression by siRNA enhanced A549 cell sensitivity to 4NQO, but not to Taxol. In conclusion, 4NQO affects human lung adenocarcinoma A549 cells by regulating the expression of POLD4. PMID:26998273

  18. Immature myeloid cells and tolerogenic cytokine profile in lung adenocarcinoma metastatic lymph nodes assessed by endobronchial ultrasound.

    PubMed

    Bugalho, Antonio; Martins, Catarina; Silva, Zelia; Nunes, Gloria; Mendes, Andreia S; Ferreira, Inês; Videira, Paula A

    2016-01-01

    In lung cancer, the immune cell compartment of tumor-draining lymph nodes (TDLNs) dictate the response against tumors. This response is predominantly triggered by myeloid antigen-presenting cells (mAPCs) that capture antigens and, if matured, prime anti-tumor-specific T cell populations. However, the clinical role of mAPCs infiltrated in TDLN from lung cancer patients is poorly understood. The purpose of this study was to study mAPCs in TDLN from lung adenocarcinoma patients, in comparison to individuals with non-malignant diseases, using minimally invasive sampling methods. Mediastinal lymph nodes were assessed by endobronchial ultrasound-transbronchial needle aspiration (EBUS-TBNA). mAPCs were characterized by flow cytometry and cytokine expression by quantitative polymerase chain reaction. The association with tumor burden, overall survival, and response to treatment was assessed. TDLN from lung adenocarcinoma patients (n = 24) showed a reduced immune cell compartment, but a higher level of infiltrating mAPCs, when compared with control lymph nodes (n = 17). A decreased expression of co-stimulatory molecules CD80/CD86 by TDLN and blood mAPC was observed. TDLN showed lower levels of TNF-α and IL-12 and increased levels of immunosuppressive cytokines TGF-β and IL-10. The IL-12 expression was inversely correlated with the percentage of infiltrated tumor cells, while IL-10 was directly correlated. Patients with lower expression of IL-12 in TDLN or lower expression of CD80/86 in blood mAPCs had worse overall survival and response to therapy. mAPCs of lung adenocarcinoma patients express less co-stimulatory molecules, and within TDLN, the cytokine profile is biased towards a tolerance-inducing phenotype. Patients with enhanced immune parameters have better survival and response to treatment. EBUS-TBNA allows the collection of viable specimens from TDLN that may provide further insight on relevant immunological mechanisms. PMID:26264617

  19. Mounting Pressure in the Microenvironment: Fluids, Solids, and Cells in Pancreatic Ductal Adenocarcinoma.

    PubMed

    DuFort, Christopher C; DelGiorno, Kathleen E; Hingorani, Sunil R

    2016-06-01

    The microenvironment influences the pathogenesis of solid tumors and plays an outsized role in some. Our understanding of the stromal response to cancers, particularly pancreatic ductal adenocarcinoma, has evolved from that of host defense to tumor offense. We know that most, although not all, of the factors and processes in the microenvironment support tumor epithelial cells. This reappraisal of the roles of stromal elements has also revealed potential vulnerabilities and therapeutic opportunities to exploit. The high concentration in the stroma of the glycosaminoglycan hyaluronan, together with the large gel-fluid phase and pressures it generates, were recently identified as primary sources of treatment resistance in pancreas cancer. Whereas the relatively minor role of free interstitial fluid in the fluid mechanics and perfusion of tumors has been long appreciated, the less mobile, gel-fluid phase has been largely ignored for historical and technical reasons. The inability of classic methods of fluid pressure measurement to capture the gel-fluid phase, together with a dependence on xenograft and allograft systems that inaccurately model tumor vascular biology, has led to an undue emphasis on the role of free fluid in impeding perfusion and drug delivery and an almost complete oversight of the predominant role of the gel-fluid phase. We propose that a hyaluronan-rich, relatively immobile gel-fluid phase induces vascular collapse and hypoperfusion as a primary mechanism of treatment resistance in pancreas cancers. Similar properties may be operant in other solid tumors as well, so revisiting and characterizing fluid mechanics with modern techniques in other autochthonous cancers may be warranted. PMID:27072672

  20. NMR metabolomics of human lung tumours reveals distinct metabolic signatures for adenocarcinoma and squamous cell carcinoma.

    PubMed

    Rocha, Cláudia M; Barros, António S; Goodfellow, Brian J; Carreira, Isabel M; Gomes, Ana; Sousa, Vitor; Bernardo, João; Carvalho, Lina; Gil, Ana M; Duarte, Iola F

    2015-01-01

    Lung tumour subtyping, particularly the distinction between adenocarcinoma (AdC) and squamous cell carcinoma (SqCC), is a critical diagnostic requirement. In this work, the metabolic signatures of lung carcinomas were investigated through (1)H NMR metabolomics, with a view to provide additional criteria for improved diagnosis and treatment planning. High Resolution Magic Angle Spinning Nuclear Magnetic Resonance (NMR) spectroscopy was used to analyse matched tumour and adjacent control tissues from 56 patients undergoing surgical excision of primary lung carcinomas. Multivariate modeling allowed tumour and control tissues to be discriminated with high accuracy (97% classification rate), mainly due to significant differences in the levels of 13 metabolites. Notably, the magnitude of those differences were clearly distinct for AdC and SqCC: major alterations in AdC were related to phospholipid metabolism (increased phosphocholine, glycerophosphocholine and phosphoethanolamine, together with decreased acetate) and protein catabolism (increased peptide moieties), whereas SqCC had stronger glycolytic and glutaminolytic profiles (negatively correlated variations in glucose and lactate and positively correlated increases in glutamate and alanine). Other tumour metabolic features were increased creatine, glutathione, taurine and uridine nucleotides, the first two being especially prominent in SqCC and the latter in AdC. Furthermore, multivariate analysis of AdC and SqCC profiles allowed their discrimination with a 94% classification rate, thus showing great potential for aiding lung tumours subtyping. Overall, this study has provided new, clear evidence of distinct metabolic signatures for lung AdC and SqCC, which can potentially impact on diagnosis and provide important leads for future research on novel therapeutic targets or imaging tracers. PMID:25368033

  1. Cuminaldehyde from Cinnamomum verum Induces Cell Death through Targeting Topoisomerase 1 and 2 in Human Colorectal Adenocarcinoma COLO 205 Cells.

    PubMed

    Tsai, Kuen-Daw; Liu, Yi-Heng; Chen, Ta-Wei; Yang, Shu-Mei; Wong, Ho-Yiu; Cherng, Jonathan; Chou, Kuo-Shen; Cherng, Jaw-Ming

    2016-01-01

    Cinnamomum verum, also called true cinnamon tree, is employed to make the seasoning cinnamon. Furthermore, the plant has been used as a traditional Chinese herbal medication. We explored the anticancer effect of cuminaldehyde, an ingredient of the cortex of the plant, as well as the molecular biomarkers associated with carcinogenesis in human colorectal adenocarcinoma COLO 205 cells. The results show that cuminaldehyde suppressed growth and induced apoptosis, as proved by depletion of the mitochondrial membrane potential, activation of both caspase-3 and -9, and morphological features of apoptosis. Moreover, cuminaldehyde also led to lysosomal vacuolation with an upregulated volume of acidic compartment and cytotoxicity, together with inhibitions of both topoisomerase I and II activities. Additional study shows that the anticancer activity of cuminaldehyde was observed in the model of nude mice. Our results suggest that the anticancer activity of cuminaldehyde in vitro involved the suppression of cell proliferative markers, topoisomerase I as well as II, together with increase of pro-apoptotic molecules, associated with upregulated lysosomal vacuolation. On the other hand, in vivo, cuminaldehyde diminished the tumor burden that would have a significant clinical impact. Furthermore, similar effects were observed in other tested cell lines. In short, our data suggest that cuminaldehyde could be a drug for chemopreventive or anticancer therapy. PMID:27231935

  2. Cuminaldehyde from Cinnamomum verum Induces Cell Death through Targeting Topoisomerase 1 and 2 in Human Colorectal Adenocarcinoma COLO 205 Cells

    PubMed Central

    Tsai, Kuen-daw; Liu, Yi-Heng; Chen, Ta-Wei; Yang, Shu-Mei; Wong, Ho-Yiu; Cherng, Jonathan; Chou, Kuo-Shen; Cherng, Jaw-Ming

    2016-01-01

    Cinnamomum verum, also called true cinnamon tree, is employed to make the seasoning cinnamon. Furthermore, the plant has been used as a traditional Chinese herbal medication. We explored the anticancer effect of cuminaldehyde, an ingredient of the cortex of the plant, as well as the molecular biomarkers associated with carcinogenesis in human colorectal adenocarcinoma COLO 205 cells. The results show that cuminaldehyde suppressed growth and induced apoptosis, as proved by depletion of the mitochondrial membrane potential, activation of both caspase-3 and -9, and morphological features of apoptosis. Moreover, cuminaldehyde also led to lysosomal vacuolation with an upregulated volume of acidic compartment and cytotoxicity, together with inhibitions of both topoisomerase I and II activities. Additional study shows that the anticancer activity of cuminaldehyde was observed in the model of nude mice. Our results suggest that the anticancer activity of cuminaldehyde in vitro involved the suppression of cell proliferative markers, topoisomerase I as well as II, together with increase of pro-apoptotic molecules, associated with upregulated lysosomal vacuolation. On the other hand, in vivo, cuminaldehyde diminished the tumor burden that would have a significant clinical impact. Furthermore, similar effects were observed in other tested cell lines. In short, our data suggest that cuminaldehyde could be a drug for chemopreventive or anticancer therapy. PMID:27231935

  3. Prolyl isomerase Pin1 promotes survival in EGFR-mutant lung adenocarcinoma cells with an epithelial-mesenchymal transition phenotype.

    PubMed

    Sakuma, Yuji; Nishikiori, Hirotaka; Hirai, Sachie; Yamaguchi, Miki; Yamada, Gen; Watanabe, Atsushi; Hasegawa, Tadashi; Kojima, Takashi; Niki, Toshiro; Takahashi, Hiroki

    2016-04-01

    The secondary epidermal growth factor receptor (EGFR) T790M mutation is the most prominent mechanism that confers resistance to first- or second-generation EGFR tyrosine kinase inhibitors (TKIs) in lung cancer treatment. Although third-generation EGFR TKIs can suppress the kinase activity of T790M-positive EGFR, they still cannot eradicate EGFR-mutated cancer cells. We previously reported that a subpopulation of EGFR-mutant lung adenocarcinomas depends on enhanced autophagy, instead of EGFR, for survival, and in this study we explore another mechanism that contributes to TKI resistance. We demonstrate here that an EGFR-mutant lung adenocarcinoma cell line, H1975 (L858R+T790M), has a subset of cells that exhibits an epithelial-mesenchymal transition (EMT) phenotype and can thrive in the presence of third-generation EGFR TKIs. These cells depend on not only autophagy but also on the isomerase Pin1 for survival in vitro, unlike their parental cells. The Pin1 protein was expressed in an EGFR-mutant lung cancer tissue that has undergone partial EMT and acquired resistance to EGFR TKIs, but not its primary tumor. These findings suggest that inhibition of Pin1 activity can be a novel strategy in lung cancer treatment. PMID:26752745

  4. Primary signet ring cell adenocarcinoma of the uterine cervix - A rare neoplasm that raises the question of metastasis to the cervix.

    PubMed

    Cracchiolo, Bernadette; Kuhn, Theresa; Heller, Debra

    2016-04-01

    Primary signet ring cell adenocarcinoma is extremely rare. Signet ring cell carcinoma is more commonly primary in the stomach or breast, and the more likely metastatic disease to the cervix needs to be ruled out. We present a case of primary signet ring cell carcinoma of the cervix and review the literature. PMID:27331127

  5. Dendritic Cells in Esophageal Adenocarcinoma: The Currently Available Information and Possibilities to use Dendritic Cells for Immunotherapeutic Approaches.

    PubMed

    Chistiakov, Dimitry A; Orekhov, Alexander N; Bobryshev, Yuri V

    2016-01-01

    Esophageal adenocarcinoma (EAC) is the second frequent cancer of the esophagus. Barrett's esophagus (BE) takes precedence over EAC. BE is a metaplastic change of the stratified squamous epithelium to the intestinal columnar epithelium due to the acidic gastrointestinal reflux. Further, the disease takes the hyperplastic stage followed by EAC. An initial immune response is an essential reaction of a body to an occurrence of alien/modified cells to be removed. It has been appreciated that an inflammatory reaction occurs in the early stages of EAC or even in BE. Dendritic cells (DCs) play a key role in a frontier of an immune response due to their advanced ability to recognize foreign antigens and mobilize naive T cells to effectors. However, in a cancer condition, tumor-delivered immunosuppression occurs in a variety of mechanisms that alter/switch the functionality of DCs from immune activating to immune suppressive cells. In this brief review, we consider tumor-induced paths of a capacity of tumor cells to down-regulate DCs, with a focus on EAC, and also discuss a possibility to use DCs for immunotherapeutic approaches. Indeed, DCs represent a promising tool for developing new immunotherapeutic approaches for cancer treatment including EAC. It has been reported to achieve effective DC-mediated immune responses by raising anti-tumor cytotoxic T cell responses against multiple cancer antigens through loading DCs with total tumor RNA. However, more studies should be performed in order to understand a precise role in tumor-induced mechanisms of DC suppression in BE/EAC. Likely, these mechanisms should involve general carcinogenic and EAC-specific pathways. PMID:26561054

  6. Effects of simvastatin on cell viability and proinflammatory pathways in lung adenocarcinoma cells exposed to hydrogen peroxide.

    PubMed

    Gallelli, Luca; Falcone, Daniela; Scaramuzzino, Monica; Pelaia, Girolamo; D'Agostino, Bruno; Mesuraca, Maria; Terracciano, Rosa; Spaziano, Giuseppe; Maselli, Rosario; Navarra, Michele; Savino, Rocco

    2014-01-01

    Lung cancer is characterized by a high mortality rate probably attributable to early metastasis. Oxidative stress is involved in development and progression of lung cancer, through cellular and molecular mechanisms which at least in part overlap with proinflammatory pathways. Simvastatin is a statin with pleiotropic effects that can also act as an anti-oxidant agent, and these pharmacologic properties may contribute to its potential anti-cancer activity. Therefore, the aim of this study was to evaluate, in the human lung adenocarcinoma cell line GLC-82, the effects of a 24-hour treatment with simvastatin on hydrogen peroxide (H2O2)-induced changes in cell viability, ERK phosphorylation, matrix metalloproteinase (MMP) expression, innate immunity signaling, NF-κB activation and IL-8 secretion. Cell counting was performed after trypan blue staining, cell proliferation was assessed using MTT assay, and apoptosis was evaluated through caspase-3 activation and Tunel assay. Western blotting was used to analyze protein extracts, and IL-8 release into cell culture supernatants was assessed by ELISA. Our results show that simvastatin (30 μM) significantly (P <0.01) inhibited the proliferative effect of H2O2 (0.5 mM) and its stimulatory actions on ERK1/2 phosphorylation, NF-κB activation and IL-8 production. Furthermore, simvastatin decreased H2O2-mediated induction of the cellular expression of MMP-2 and MMP-9, as well as of several components of the signaling complex activated by innate immune responses, including MyD88, TRAF2, TRAF6 and TRADD. In conclusion, these findings suggest that simvastatin could play a role in prevention and treatment of lung cancer via modulation of important proinflammatory and tumorigenic events promoted by oxidative stress. PMID:25432084

  7. Telomerase inhibition by siRNA causes senescence and apoptosis in Barrett's adenocarcinoma cells: mechanism and therapeutic potential

    PubMed Central

    Shammas, Masood A; Koley, Hemanta; Batchu, Ramesh B; Bertheau, Robert C; Protopopov, Alexei; Munshi, Nikhil C; Goyal, Raj K

    2005-01-01

    Background In cancer cells, telomerase induction helps maintain telomere length and thereby bypasses senescence and provides enhanced replicative potential. Chemical inhibitors of telomerase have been shown to reactivate telomere shortening and cause replicative senescence and apoptotic cell death of tumor cells while having little or no effect on normal diploid cells. Results We designed siRNAs against two different regions of telomerase gene and evaluated their effect on telomere length, proliferative potential, and gene expression in Barrett's adenocarcinoma SEG-1 cells. The mixture of siRNAs in nanomolar concentrations caused a loss of telomerase activity that appeared as early as day 1 and was essentially complete at day 3. Inhibition of telomerase activity was associated with marked reduction in median telomere length and complete loss of detectable telomeres in more than 50% of the treated cells. Telomere loss caused senescence in 40% and apoptosis in 86% of the treated cells. These responses appeared to be associated with activation of DNA sensor HR23B and subsequent activation of p53 homolog p73 and p63 and E2F1. Changes in these gene regulators were probably the source of observed up-regulation of cell cycle inhibitors, p16 and GADD45. Elevated transcript levels of FasL, Fas and caspase 8 that activate death receptors and CARD 9 that interacts with Bcl10 and NFKB to enhance mitochondrial translocation and activation of caspase 9 were also observed. Conclusion These studies show that telomerase siRNAs can cause effective suppression of telomerase and telomere shortening leading to both cell cycle arrest and apoptosis via mechanisms that include up-regulation of several genes involved in cell cycle arrest and apoptosis. Telomerase siRNAs may therefore be strong candidates for highly selective therapy for chemoprevention and treatment of Barrett's adenocarcinoma. PMID:16022731

  8. In vitro evaluation of the cellular effect of indium tin oxide nanoparticles using the human lung adenocarcinoma A549 cells.

    PubMed

    Tabei, Yosuke; Sonoda, Akinari; Nakajima, Yoshihiro; Biju, Vasudevanpillai; Makita, Yoji; Yoshida, Yasukazu; Horie, Masanori

    2015-05-01

    Indium tin oxide (ITO) is widely used in liquid crystal displays (LCDs) or plasma and mobile phone displays. Elevated production and usage of ITO in such displays have led to increased concerns over the safety of industrial workers exposed to particulate aerosols produced during cutting, grinding and polishing of these materials. However, the cellular effects of ITO nanoparticles (NPs) are still unclear, although it has been reported that micro-scale ITO particles induce cytotoxicity. The aim of this study was to examine the potential of ITO NPs to induce cytotoxicity, oxidative stress, and DNA damage using human lung adenocarcinoma A549 cells. Here, stable dispersions of a medium containing ITO NPs were obtained using pre-adsorption and centrifugal fractionation methods, and the A549 cells were incubated in this medium. The ITO NPs showed low cytotoxic effects as shown by the WST-1 and LDH assays. Transmission electron microscopy observations showed the cellular uptake of ITO NPs. The ITO NPs increased the intracellular level of reactive oxygen species and the expression of the heme oxygenase 1 gene. Further, the results of alkaline comet assays showed that ITO NPs induced DNA damage. Thus, these results suggest that ITO NPs possess a genotoxic potential on human lung adenocarcinoma A549 cells. PMID:25781390

  9. Occupation and risk of oesophageal adenocarcinoma and squamous-cell carcinoma: The Nordic Occupational Cancer Study.

    PubMed

    Jansson, Catarina; Oh, Jin-Kyoung; Martinsen, Jan Ivar; Lagergren, Jesper; Plato, Nils; Kjaerheim, Kristina; Pukkala, Eero; Sparén, Pär; Tryggvadottir, Laufey; Weiderpass, Elisabete

    2015-08-01

    To assess associations between occupation and risk of oesophageal adenocarcinoma (AC) and squamous-cell carcinoma (SCC), data from the Nordic Occupational Cancer Study, a large population-based cohort with long-term follow-up, was used. The Nordic Occupational Cancer Study includes 12.9 million individuals aged 30-64 years who participated in national censuses in Finland, Iceland, Norway and Sweden in 1960-1990. Individuals were assigned to one of the 54 occupational categories, and individuals with oesophageal cancer were identified through nationwide cancer registries with follow-up through 2005. Country-specific standardised incidence ratios (SIRs) with 95% confidence intervals (CIs) were estimated. During follow-up, 4,722 ACs and 14,496 SCCs were observed. Among men, increased risks of AC and SCC were observed among waiters (SIR = 2.58, 95% CI 1.41-4.32 and SIR = 3.22, 95% CI 2.30-4.38 for AC and SCC, respectively), cooks and stewards (1.72, 1.04-2.69 and 2.53, 1.94-3.25), seamen (1.52, 1.16-1.95 and 1.77, 1.53-2.05), food workers (1.51, 1.18-1.90 and 1.21, 1.03-1.42), miscellaneous construction workers (1.24, 1.04-1.48 and 1.39, 1.25-1.54) and drivers (1.16, 1.01-1.33 and 1.23, 1.13-1.34). Decreased risks of AC and SCC were observed among technical workers, physicians, teachers, religious workers and gardeners. The SIR for AC was significantly different from that for SCC in six occupational categories. Among women, increased risks among food workers and waiters and decreased risks among teachers, nurses and assistant nurses were observed for SCC only. In both sexes, increased risks were observed among waiters and food workers, and decreased risks were observed among teachers. This large cohort study indicates that the risk of oesophageal cancer varies by occupation, but not by histological type in most occupational categories. PMID:25557854

  10. [Wogonin inhibits IGF-1-stimulated cell growth and estrogen receptor α expression in breast adenocarcinoma cell and angiogenesis of chick chorioallantoic membrane].

    PubMed

    Ma, Xing; Xie, Kun-Peng; Shang, Fei; Huo, Hong-Nan; Wang, Li-Meng; Xie, Ming-Jie

    2012-04-25

    The aim of the present study was to investigate the involvements of insulin-like growth factor-1 (IGF-1) and estrogen receptor α (ERα) in the inhibitory effect of wogonin on the breast adenocarcinoma growth. Moreover, the effect of wogonin on the angiogenesis of chick chorioallantoic membrane (CAM) was also investigated. MCF-7 cells (human breast adenocarcinoma cell line) were subjected to several drugs, including IGF-1, wogonin and ER inhibitor ICI182780, alone or in combination. MTT assay was used to detect breast cancer proliferation. Western blot was used to analyze ERα and p-Akt expression levels. CAM models prepared from 6-day chicken eggs were employed to evaluate angiogenesis inhibition. The results showed wogonin and ICI182780 both exhibited a potent ability to blunt IGF-1-stimulated MCF-7 cell growth. Either of wogonin and ICI182780 significantly inhibited ERα and p-Akt expressions in IGF-1-treated cells. The inhibitory effect of wogonin showed no difference from that of ICI182780 on IGF-1-stimulated expressions of ERα and p-Akt. Meanwhile, wogonin at different concentrations showed significant inhibitory effect on CAM angiogenesis. These results suggest the inhibitory effect of wogonin on breast adenocarcinoma growth via inhibiting IGF-1-mediated PI3K-Akt pathway and regulating ERα expression. Furthermore, wogonin has a strong anti-angiogenic effect on CAM model. PMID:22513472

  11. Evaluating the effect of four extracts of avocado fruit on esophageal squamous carcinoma and colon adenocarcinoma cell lines in comparison with peripheral blood mononuclear cells.

    PubMed

    Vahedi Larijani, Laleh; Ghasemi, Maryam; AbedianKenari, Saeid; Naghshvar, Farshad

    2014-01-01

    Most patients with gastrointestinal cancers refer to the health centers at advanced stages of the disease and conventional treatments are not significantly effective for these patients. Therefore, using modern therapeutic approaches with lower toxicity bring higher chance for successful treatment and reduced adverse effects in such patients. The aim of this study is to evaluate the effect of avocado fruit extracts on inhibition of the growth of cancer cells in comparison with normal cells. In an experimental study, ethanol, chloroform, ethyl acetate, and petroleum extracts of avocado (Persea americana) fruit were prepared. Then, the effects if the extracts on the growth of esophageal squamous cell carcinoma and colon adenocarcinoma cell lines were evaluated in comparison with the control group using the MTT test in the cell culture medium. Effects of the four extracts of avocado fruit on three cells lines of peripheral blood mononuclear cells, esophageal squamous cell carcinoma, and colon adenocarcinoma were tested. The results showed that avocado fruit extract is effective in inhibition of cancer cell growth in comparison with normal cells (P<0.05). Avocado fruit is rich in phytochemicals, which play an important role in inhibition of growth of cancer cells. The current study for the first time demonstrates the anti-cancer effect of avocado fruit extracts on two cancers common in Iran. Therefore, it is suggested that the fruit extracts can be considered as appropriate complementary treatments in treatment of esophageal and colon cancers. PMID:24901722

  12. Escin reduces cell proliferation and induces apoptosis on glioma and lung adenocarcinoma cell lines.

    PubMed

    Çiftçi, Gülşen Akalin; Işcan, Arzu; Kutlu, Mehtap

    2015-10-01

    Aesculus hippocastanum (the horse chestnut) seed extract has a wide variety of biochemical and pharmacological effects including anti-inflammatory, antianalgesic, and antipyretic activities. The main active compound of this plant is escin. It is known that several medicinal herbs with anti-inflammatory properties have been found to have a role in the prevention and treatment of cancer. In the present study, the cytotoxic effects of escin in the C6 glioma and A549 cell lines were analyzed by MTT. Apoptotic effects of escin on both cell lines were evaluated by Annexin V binding capacity with flow cytometric analysis. Structural and ultrastructural changes were also evaluated using transmission electron microscopy. The results indicated that escin has potent antiproliferative effects against C6 glioma and A549 cells. These effects are both dose and time dependent. Taken together, escin possesses cell cycle arrest on G0/G1 phase and selective apoptotic activity on A549 cells as indicated by increased Annexin V-binding capacity, bax protein expression, caspase-3 activity and morphological changes obtained from micrographs by transmission electron microscopy. PMID:25906387

  13. Small-Cell Lung Cancer Transformation in Patients With Pulmonary Adenocarcinoma: A Case Report and Review of Literature.

    PubMed

    Jiang, Shi-Yu; Zhao, Jing; Wang, Meng-Zhao; Huo, Zhen; Zhang, Jing; Zhong, Wei; Xu, Yan

    2016-02-01

    Despite the demonstrated benefit from epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI) based therapies, EGFR mutant lung adenocarcinoma will eventually acquire drug resistance. Transformation to small-cell lung cancer (SCLC) is considered to be a rare resistance mechanism of EGFR-TKI therapy.We describe a case of a 46-year-old man presenting with refractory cough. Percutaneous transthoracic biopsy was performed and confirmed an EGFR exon 21 L858R lung adenocarcinoma. However, the patient relapsed after successful treatment with gefitinib for 1 year, at which point rebiopsy identified an SCLC and chemotherapy composed of platinum and pemetrexed was started. However, despite the brief success of chemotherapy, our patient died of aggressive cancer progression and complications of chemotherapy.Our case highlights the importance of rebiopsy when managing drug resistance and presents a possible origin of the transformed cells. We also summarize the clinical characteristics of cases involving transformed SCLC from previous studies and discuss whether it could be a new subtype of SCLC. PMID:26871823

  14. Small-Cell Lung Cancer Transformation in Patients With Pulmonary Adenocarcinoma: A Case Report and Review of Literature

    PubMed Central

    Jiang, Shi-Yu; Zhao, Jing; Wang, Meng-Zhao; Huo, Zhen; Zhang, Jing; Zhong, Wei; Xu, Yan

    2016-01-01

    Abstract Despite the demonstrated benefit from epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI) based therapies, EGFR mutant lung adenocarcinoma will eventually acquire drug resistance. Transformation to small-cell lung cancer (SCLC) is considered to be a rare resistance mechanism of EGFR-TKI therapy. We describe a case of a 46-year-old man presenting with refractory cough. Percutaneous transthoracic biopsy was performed and confirmed an EGFR exon 21 L858R lung adenocarcinoma. However, the patient relapsed after successful treatment with gefitinib for 1 year, at which point rebiopsy identified an SCLC and chemotherapy composed of platinum and pemetrexed was started. However, despite the brief success of chemotherapy, our patient died of aggressive cancer progression and complications of chemotherapy. Our case highlights the importance of rebiopsy when managing drug resistance and presents a possible origin of the transformed cells. We also summarize the clinical characteristics of cases involving transformed SCLC from previous studies and discuss whether it could be a new subtype of SCLC. PMID:26871823

  15. Adenocarcinoma

    Cancer.gov

    Compared to adenomas, adenocarcinomas show greater cytological atypia, increased frequency of mitoses, regional variation in growth pattern, more papillary structures, have size over 5 mm in diameter, show invasion of vessels, large airways or pleura, as well as lymphatic and hematogenous metastases.

  16. Cardenolide glycosides from the seeds of Digitalis purpurea exhibit carcinoma-specific cytotoxicity toward renal adenocarcinoma and hepatocellular carcinoma cells.

    PubMed

    Fujino, Tomofumi; Kuroda, Minpei; Matsuo, Yukiko; Kubo, Satoshi; Tamura, Chikako; Sakamoto, Nami; Mimaki, Yoshihiro; Hayakawa, Makio

    2015-01-01

    Four cardenolide glycosides, glucodigifucoside (2), 3'-O-acetylglucoevatromonoside (9), digitoxigenin 3-O-β-D-glucopyranosyl-(1 → 4)-β-D-glucopyranosyl-(1 → 4)-3-O-acetyl-β-D-digitoxopyranoside (11), and purpureaglycoside A (12), isolated from the seeds of Digitalis purpurea, exhibited potent cytotoxicity against human renal adenocarcinoma cell line ACHN. These compounds exhibited significantly lower IC50 values against ACHN than that against normal human renal proximal tubule-derived cell line HK-2. In particular, 2 exhibited the most potent and carcinoma-specific cytotoxicity, with a sixfold lower IC50 value against ACHN than that against HK-2. Measurement of cyclin-dependent kinase inhibitor levels revealed that upregulation of p21/Cip1 expression was involved in the carcinoma-specific cytotoxicity of 2. Further, compound 2 also exhibited the carcinoma-specific cytotoxicity toward hepatocellular carcinoma cell line. PMID:25345317

  17. Specific effect of the HLDF differentiation factor on the cytokine production potential of immunocompetent blood cells in stomach adenocarcinoma.

    PubMed

    Autenshlyus, A I; Kunts, T A; Mikhaylova, E S; Varaksin, N A; Bogachuk, A P; Lipkin, V M

    2016-07-01

    The cytokine production potential of immunocompetent cells from the blood of stomach adenocarcinoma patients was analyzed after the pretreatment of cells with the HLDF differentiation factor with subsequent exposure to polyclonal activators (HLDF+PA). IL-1β, IL-1Ra, TNFα, IL-2, IL-6, IL-8, IL-10, IL-17, IL-18, IL-18BPa, IFNγ, G-CSF, and GM-CSF were quantified in the supernatants after precipitation of the cells. Specific effects of HLDF+PA were manifested as an increase in the production of IL-8, IL-17, and GM-CSF due to suppression of Th1-dependent immune reactions in a Th17-mediated mechanism that is a part of a broader functional antagonism of Th1 and Th17 lymphocyte subpopulations. PMID:27595831

  18. Stromal CD4/CD25 positive T-cells are a strong and independent prognostic factor in non-small cell lung cancer patients, especially with adenocarcinomas.

    PubMed

    Kayser, Gian; Schulte-Uentrop, Luzie; Sienel, Wulf; Werner, Martin; Fisch, Paul; Passlick, Bernward; Zur Hausen, Axel; Stremmel, Christian

    2012-06-01

    Within the concert of immune reactions against tumour cells cytotoxic and regulatory T-cells are of utmost importance. Several studies revealed contradictory results on this issue. We therefore focused on functional expression patterns and localization of tumour-infiltrating T-lymphocytes in non-small cell lung cancer (NSCLC) and their impact on patient's survival. 232 curatively operated NSCLC patients were included. After histological reevaluation and construction of tissue-multi-arrays immunohistochemical doublestains for CD3/CD8 and CD4/CD25 were performed to evaluate the total number of T-cells and their subsets of cytotoxic and activated T-cells. Additionally, the localization of the lymphocytes was included in the analysis. Hereby, T-cells within the tumour stroma were regarded as stromal, those among cancer cells as intraepithelial. The number of lymphocytes differed significantly between the histological subtypes being most prominent in large cell carcinomas. Survival analysis showed that high numbers of stromal T-lymphocytes are of beneficial prognostic influence in NSCLC patients. This also proved to be an independent prognostic factor in adenocarcinomas. Thus, in a large and well characterized cohort of NSCLC this is the first study to determine the prognostic value of stromal T-lymphocytes, as these are an independent prognosticator in NSCLC especially in adenocarcinomas whereas intraepithelial T-cells are not. PMID:22300751

  19. Prognosis of Cervical Cancer in the Era of Concurrent Chemoradiation from National Database in Korea: A Comparison between Squamous Cell Carcinoma and Adenocarcinoma

    PubMed Central

    Lee, Jung-Yun; Kim, Young Tae; Kim, Sunghoon; Lee, Boram; Lim, Myong Cheol; Kim, Jae-Weon; Won, Young-Joo

    2015-01-01

    In 1999, the National Cancer Institute issued a clinical advisory strongly touting the advantage of cisplatin-based chemoradiation (CCRT) for cervical cancer patients requiring radiation for their treatment. This study aimed to compare survival outcomes of cervical squamous cell carcinoma and adenocarcinoma before and after the advent of CCRT. Data were obtained from the Korea National Cancer Incidence Database for patients who were diagnosed with cervical cancers between 1993 and 2012. We compared survival according to histologic subtypes in cervical cancer patients diagnosed before (1993–1997), during (1998–2002), and after (2003–2012) the introduction of CCRT. A total of 80,766 patients were identified, including 64,531 (79.9%) women with squamous cell carcinomas and 7,265 (9.0%) with adenocarcinoma. With the introduction of CCRT, survival trends gradually increased in patients of both histologic subtypes with regional tumors. However, survival was significantly higher in squamous cell carcinoma than in adenocarcinoma patients regardless of treatment modalities (surgery alone, P < 0.001; surgery followed by CCRT, P < 0.001; or primary CCRT, P = 0.003). Multivariate analysis showed that adenocarcinoma was an independent negative prognostic factor for survival regardless of the time period (before CCRT, hazard ratio (HR) = 1.49; 95% confidence interval (CI), 1.37–1.62; after introduction of CCRT, HR = 1.40; 95% CI, 1.30–1.50). Although the survival of adenocarcinoma has improved after the introduction of CCRT, adenocarcinoma is still associated with worse overall survival compared to squamous cell carcinoma in the era of CCRT. PMID:26660311

  20. KLF2 is downregulated in pancreatic ductal adenocarcinoma and inhibits the growth and migration of cancer cells.

    PubMed

    Zhang, Dexiang; Dai, Yuedi; Cai, Yuankun; Suo, Tao; Liu, Han; Wang, Yueqi; Cheng, Zhijian; Liu, Houbao

    2016-03-01

    Members of the Kruppel-like factor (KLF) family have been considered as the tumor suppressors for their inhibitory effects on cell proliferation. Dysregulation of KLF2, a member of KLF family, has been observed in various cancer types. However, its expression pattern and functions in the pancreatic ductal adenocarcinoma (PDAC) are unknown. In this study, we examined the expression of KLF2 in PDAC clinical samples and evaluated the functions of KLF2 in the progression of PDAC. KLF2 is shown to be downregulated in PDAC clinical samples and overexpression of KLF2 inhibits the growth, migration, and metastasis of PDAC cancer cells. KLF2 interacts with beta-catenin and negatively regulates the beta-catenin/TCF signaling. Taken together, this study suggests the suppressive functions of KLF2 in PDAC. PMID:26449825

  1. Distinguishing Lung Adenocarcinoma from Lung Squamous Cell Carcinoma by Two Hypomethylated and Three Hypermethylated Genes: A Meta-Analysis.

    PubMed

    Huang, Tao; Li, Jinyun; Zhang, Cheng; Hong, Qingxiao; Jiang, Danjie; Ye, Meng; Duan, Shiwei

    2016-01-01

    Significant differences in the aberrant methylation of genes exist among various histological types of non-small cell lung cancer (NSCLC), which includes adenocarcinoma (AC) and squamous cell carcinoma (SCC). Different chemotherapeutic regimens should be administered to the two NSCLC subtypes due to their unique genetic and epigenetic profiles. The purpose of this meta-analysis was to generate a list of differentially methylated genes between AC and SCC. Our meta-analysis encompassed 151 studies on 108 genes among 12946 AC and 10243 SCC patients. Our results showed two hypomethylated genes (CDKN2A and MGMT) and three hypermethylated genes (CDH13, RUNX3 and APC) in ACs compared with SCCs. In addition, our results showed that the pooled specificity and sensitivity values of CDH13 and APC were higher than those of CDKN2A, MGMT and RUNX3. Our findings might provide an alternative method to distinguish between the two NSCLC subtypes. PMID:26862903

  2. Two-dimensional culture of human pancreatic adenocarcinoma cells results in an irreversible transition from epithelial to mesenchymal phenotype

    PubMed Central

    Kang, Ya'an; Zhang, Ran; Suzuki, Rei; Li, Shao-qiang; Roife, David; Truty, Mark J.; Chatterjee, Deyali; Thomas, Ryan M.; Cardwell, James; Wang, Yu; Wang, Huamin; Katz, Matthew H.; Fleming, Jason B.

    2015-01-01

    Many commercially available cell lines have been in culture for ages, acquiring phenotypes that differ from the original cancers from which these cell lines were derived. Therefore, research on new cell lines could improve the success rates of translational research in cancer. We have developed methods for the isolation and culture of human pancreatic ductal adenocarcinoma (PDAC) cells from murine xenografts of human PDAC. We hypothesize that phenotypes of PDAC cells are modified by in vitro culture conditions over time and by in vivo implantation. Patient-derived xenografts were created in immunodeficient mice using surgically resected tumor specimens. These murine xenografts were then used to establish human PDAC cell lines in culture. Earlier (<5) passage and later (>20) passage cell lines were evaluated separately regarding proliferation, cell cycle, genetic mutations, invasiveness, chemosensitivity, tumorigenesis, epithelial-mesenchymal transition (EMT) status, and proteomics. Later passage cells accelerated their doubling time and colony formation, and were more concentrated in the G0/G1 phase and less in the G2/M checkpoint phase. Later passage cells were more sensitive to gemcitabine and 5-fluorouracil than earlier passage cells, but all four new cell lines were more chemo-resistant compared to commercial ATCC cell lines. EMT induction was observed when establishing and passaging cell lines in vitro and furthermore by growing them as subcutaneous tumors in vivo. This study demonstrates a novel approach to the establishment of PDAC cell lines and observes a process by which newly established cell lines undergo phenotypic changes during in vitro culture and in vivo tumorigenesis. This may help explain differences of treatment effects often observed between experiments conducted in vitro, in vivo, and in human clinical trials. PMID:25485535

  3. N-Hydroxycinnamide derivatives of osthole presenting genotoxicity and cytotoxicity against human colon adenocarcinoma cells in vitro and in vivo.

    PubMed

    Liu, Ling-Yu; Huang, Wei-Jan; Lin, Ren-Jye; Lin, Shyr-Yi; Liang, Yu-Chih

    2013-11-18

    Osthole is extracted from the Chinese herbs Cnidium monnieri and Angelica pubescens, and it was found to have antitumor activity in vitro and in vivo. A series of osthole derivatives have been synthesized, and the N-hydroxycinnamide derivatives of osthole, WJ1376-1 and WJ1398-1 were found to have the greatest potential against human colon adenocarcinoma cells. In contrast to the parental osthole, both WJ1376-1 and WJ1398-1 were found to induce multinucleation and polyploidy by microscopic observation and flow cytometry. WJ1376-1 and WJ1398-1 significantly activated ataxia telangiectasia and rad3 related (ATR) kinase, which triggered activation of the checkpoint kinase 2 (Chk2) signaling pathway and then down regulated Cdc25 phosphatase and Cdc2/cyclin B kinase activities. WJ1376-1 and WJ1398-1 also inhibited the phosphorylation of Aurora A kinase, which is associated with important processes during mitosis. The presence of a "comet" DNA fragment and phosphorylation of p53 at Ser 15 clearly indicated that DNA damage occurred with WJ1376-1 and WJ1398-1 treatment. WJ1376-1 and WJ1398-1 ultimately induced apoptosis as evidenced by the upregulation of Bad and activation of caspases-3, -7, and -9. Furthermore, WJ1376-1 and WJ1398-1 also showed a great effect in attenuating tumor growth without affecting the body weight of xenograft nude mice. Taken together, these results suggest that the toxic activities of WJ1376-1 and WJ1398-1 were dissimilar to that of the parental osthole, which can induce cell polyploidy and G2/M cell cycle arrest in colon adenocarcinoma cells and may provide a potential therapeutic target for colon cancer treatment in the future. PMID:24127835

  4. Role of YAP and TAZ in pancreatic ductal adenocarcinoma and in stellate cells associated with cancer and chronic pancreatitis

    PubMed Central

    Morvaridi, Susan; Dhall, Deepti; Greene, Mark I.; Pandol, Stephen J.; Wang, Qiang

    2015-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is characterized by a fibrotic and inflammatory microenvironment that is formed primarily by activated, myofibroblast-like, stellate cells. Although the stellate cells are thought to contribute to tumorigenesis, metastasis and drug resistance of PDAC, the signaling events involved in activation of the stellate cells are not well defined. Functioning as transcription co-factors, Yes-associated protein (YAP) and its homolog transcriptional co-activator with PDZ-binding motif (TAZ) modulate the expression of genes involved in various aspects of cellular functions, such as proliferation and mobility. Using human tissues we show that YAP and TAZ expression is restricted to the centroacinar and ductal cells of normal pancreas, but is elevated in cancer cells. In particular, YAP and TAZ are expressed at high levels in the activated stellate cells of both chronic pancreatitis and PDAC patients as well as in the islets of Langerhans in chronic pancreatitis tissues. Of note, YAP is up regulated in both acinar and ductal cells following induction of acute and chronic pancreatitis in mice. These findings indicate that YAP and TAZ may play a critical role in modulating pancreatic tissue regeneration, neoplastic transformation, and stellate cell functions in both PDAC and pancreatitis. PMID:26567630

  5. Role of YAP and TAZ in pancreatic ductal adenocarcinoma and in stellate cells associated with cancer and chronic pancreatitis.

    PubMed

    Morvaridi, Susan; Dhall, Deepti; Greene, Mark I; Pandol, Stephen J; Wang, Qiang

    2015-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is characterized by a fibrotic and inflammatory microenvironment that is formed primarily by activated, myofibroblast-like, stellate cells. Although the stellate cells are thought to contribute to tumorigenesis, metastasis and drug resistance of PDAC, the signaling events involved in activation of the stellate cells are not well defined. Functioning as transcription co-factors, Yes-associated protein (YAP) and its homolog transcriptional co-activator with PDZ-binding motif (TAZ) modulate the expression of genes involved in various aspects of cellular functions, such as proliferation and mobility. Using human tissues we show that YAP and TAZ expression is restricted to the centroacinar and ductal cells of normal pancreas, but is elevated in cancer cells. In particular, YAP and TAZ are expressed at high levels in the activated stellate cells of both chronic pancreatitis and PDAC patients as well as in the islets of Langerhans in chronic pancreatitis tissues. Of note, YAP is up regulated in both acinar and ductal cells following induction of acute and chronic pancreatitis in mice. These findings indicate that YAP and TAZ may play a critical role in modulating pancreatic tissue regeneration, neoplastic transformation, and stellate cell functions in both PDAC and pancreatitis. PMID:26567630

  6. Lung Adenocarcinomas and Lung Cancer Cell Lines Show Association of MMP-1 Expression With STAT3 Activation1

    PubMed Central

    Schütz, Alexander; Röser, Katrin; Klitzsch, Jana; Lieder, Franziska; Aberger, Fritz; Gruber, Wolfgang; Mueller, Kristina M.; Pupyshev, Alexander; Moriggl, Richard; Friedrich, Karlheinz

    2015-01-01

    Signal transducer and activator of transcription 3 (STAT3) is constitutively activated in the majority of lung cancer. This study aims at defining connections between STAT3 function and the malignant properties of non–small cell lung carcinoma (NSCLC) cells. To address possible mechanisms by which STAT3 influences invasiveness, the expression of matrix metalloproteinase-1 (MMP-1) was analyzed and correlated with the STAT3 activity status. Studies on both surgical biopsies and on lung cancer cell lines revealed a coincidence of STAT3 activation and strong expression of MMP-1. MMP-1 and tyrosine-phosphorylated activated STAT3 were found co-localized in cancer tissues, most pronounced in tumor fronts, and in particular in adenocarcinomas. STAT3 activity was constitutive, although to different degrees, in the lung cancer cell lines investigated. Three cell lines (BEN, KNS62, and A549) were identified in which STAT3 activitation was inducible by Interleukin-6 (IL-6). In A549 cells, STAT3 activity enhanced the level of MMP-1 mRNA and stimulated transcription from the MMP-1 promoter in IL-6–stimulated A549 cells. STAT3 specificity of this effect was confirmed by STAT3 knockdown through RNA interference. Our results link aberrant activity of STAT3 in lung cancer cells to malignant tumor progression through up-regulation of expression of invasiveness-associated MMPs. PMID:25926075

  7. Co-Expression of Cancer Stem Cell Markers Corresponds to a Pro-Tumorigenic Expression Profile in Pancreatic Adenocarcinoma.

    PubMed

    Skoda, Jan; Hermanova, Marketa; Loja, Tomas; Nemec, Pavel; Neradil, Jakub; Karasek, Petr; Veselska, Renata

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal malignancies. Its dismal prognosis is often attributed to the presence of cancer stem cells (CSCs) that have been identified in PDAC using various markers. However, the co-expression of all of these markers has not yet been evaluated. Furthermore, studies that compare the expression levels of CSC markers in PDAC tumor samples and in cell lines derived directly from those tumors are lacking. Here, we analyzed the expression of putative CSC markers-CD24, CD44, epithelial cell adhesion molecule (EpCAM), CD133, and nestin-by immunofluorescence, flow cytometry and quantitative PCR in 3 PDAC-derived cell lines and by immunohistochemistry in 3 corresponding tumor samples. We showed high expression of the examined CSC markers among all of the cell lines and tumor samples, with the exception of CD24 and CD44, which were enriched under in vitro conditions compared with tumor tissues. The proportions of cells positive for the remaining markers were comparable to those detected in the corresponding tumors. Co-expression analysis using flow cytometry revealed that CD24+/CD44+/EpCAM+/CD133+ cells represented a significant population of the cells (range, 43 to 72%) among the cell lines. The highest proportion of CD24+/CD44+/EpCAM+/CD133+ cells was detected in the cell line derived from the tumor of a patient with the shortest survival. Using gene expression profiling, we further identified the specific pro-tumorigenic expression profile of this cell line compared with the profiles of the other two cell lines. Together, CD24+/CD44+/EpCAM+/CD133+ cells are present in PDAC cell lines derived from primary tumors, and their increased proportion corresponds with a pro-tumorigenic gene expression profile. PMID:27414409

  8. Co-Expression of Cancer Stem Cell Markers Corresponds to a Pro-Tumorigenic Expression Profile in Pancreatic Adenocarcinoma

    PubMed Central

    Skoda, Jan; Hermanova, Marketa; Loja, Tomas; Nemec, Pavel; Neradil, Jakub; Karasek, Petr; Veselska, Renata

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal malignancies. Its dismal prognosis is often attributed to the presence of cancer stem cells (CSCs) that have been identified in PDAC using various markers. However, the co-expression of all of these markers has not yet been evaluated. Furthermore, studies that compare the expression levels of CSC markers in PDAC tumor samples and in cell lines derived directly from those tumors are lacking. Here, we analyzed the expression of putative CSC markers—CD24, CD44, epithelial cell adhesion molecule (EpCAM), CD133, and nestin—by immunofluorescence, flow cytometry and quantitative PCR in 3 PDAC-derived cell lines and by immunohistochemistry in 3 corresponding tumor samples. We showed high expression of the examined CSC markers among all of the cell lines and tumor samples, with the exception of CD24 and CD44, which were enriched under in vitro conditions compared with tumor tissues. The proportions of cells positive for the remaining markers were comparable to those detected in the corresponding tumors. Co-expression analysis using flow cytometry revealed that CD24+/CD44+/EpCAM+/CD133+ cells represented a significant population of the cells (range, 43 to 72%) among the cell lines. The highest proportion of CD24+/CD44+/EpCAM+/CD133+ cells was detected in the cell line derived from the tumor of a patient with the shortest survival. Using gene expression profiling, we further identified the specific pro-tumorigenic expression profile of this cell line compared with the profiles of the other two cell lines. Together, CD24+/CD44+/EpCAM+/CD133+ cells are present in PDAC cell lines derived from primary tumors, and their increased proportion corresponds with a pro-tumorigenic gene expression profile. PMID:27414409

  9. An iPS Cell Line From Human Pancreatic Ductal Adenocarcinoma Undergoes Early to Invasive Stages of Pancreatic Cancer Progression

    PubMed Central

    Kim, Jungsun; Hoffman, John P.; Alpaugh, R. Katherine; Rhim, Andrew D.; Reichert, Maximilian; Stanger, Ben Z.; Furth, Emma E.; Sepulveda, Antonia R.; Yuan, Chao-Xing; Won, Kyoung-Jae; Donahue, Greg; Sands, Jessica; Gumbs, Andrew A.; Zaret, Kenneth S.

    2013-01-01

    Pancreatic ductal adenocarcinoma (PDAC) carries a dismal prognosis and lacks a human cell model of early disease progression. When human PDAC cells are injected into immunodeficient mice, they generate advanced stage cancer. We hypothesized that if human PDAC cells were converted to pluripotency and then allowed to differentiate back into pancreatic tissue, they might undergo early stages of cancer. Although most induced pluripotent stem (iPS) cell lines were not of the expected cancer genotype, one PDAC line, 10-22 cells, when injected into immunodeficient mice, generates pancreatic intraepithelial neoplasia (PanIN) precursors to PDAC that progress to the invasive stage. The PanIN-like cells secrete or release proteins corresponding to genes and networks expressed in human pancreatic cancer progression and which predicted an HNF4α network also seen a mouse model. Thus, rare events allow iPS technology to provide a live human cell model of early pancreatic cancer and new insights into disease progression. PMID:23791528

  10. Comparative proteomics analysis of the antitumor effect of CIGB-552 peptide in HT-29 colon adenocarcinoma cells.

    PubMed

    Núñez de Villavicencio-Díaz, Teresa; Ramos Gómez, Yassel; Oliva Argüelles, Brizaida; Fernández Masso, Julio R; Rodríguez-Ulloa, Arielis; Cruz García, Yiliam; Guirola-Cruz, Osmany; Perez-Riverol, Yasset; Javier González, Luis; Tiscornia, Inés; Victoria, Sabina; Bollati-Fogolín, Mariela; Besada Pérez, Vladimir; Guerra Vallespi, Maribel

    2015-08-01

    The second generation peptide CIGB-552 has a pro-apoptotic effect on H460 non-small cell lung cancer cells and displays a potent cytotoxic effect in HT-29 colon adenocarcinoma cells though its action mechanism is ill defined. Here, we present the first proteomic study of peptide effect in HT-29 cells using subcellular fractionation, protein and peptide fractionation by DF-PAGE and LC-MS/MS peptide identification. In particular, we explored the nuclear proteome of HT-29 cells at a 5h treatment identifying a total of 68 differentially modulated proteins, 49 of which localize to the nucleus. The differentially modulated proteins were analyzed following a system biology approach. Results pointed to a modulation of apoptosis, oxidative damage removal, NF-κB activation, inflammatory signaling and of cell adhesion and motility. Further Western blot and flow-cytometry experiments confirmed both pro-apoptotic and anti-inflammatory effects of CIGB-552 peptide in HT-29 cells. PMID:26013411

  11. Integrin {beta}1-dependent invasive migration of irradiation-tolerant human lung adenocarcinoma cells in 3D collagen matrix

    SciTech Connect

    Ishihara, Seiichiro; Haga, Hisashi; Yasuda, Motoaki; Mizutani, Takeomi; Kawabata, Kazushige; Shirato, Hiroki; Nishioka, Takeshi

    2010-06-04

    Radiotherapy is one of the effective therapies used for treating various malignant tumors. However, the emergence of tolerant cells after irradiation remains problematic due to their high metastatic ability, sometimes indicative of poor prognosis. In this study, we showed that subcloned human lung adenocarcinoma cells (A549P-3) that are irradiation-tolerant indicate high invasive activity in vitro, and exhibit an integrin {beta}1 activity-dependent migratory pattern. In collagen gel overlay assay, majority of the A549P-3 cells displayed round morphology and low migration activity, whereas a considerable number of A549P-3IR cells surviving irradiation displayed a spindle morphology and high migration rate. Blocking integrin {beta}1 activity reduced the migration rate of A549P-3IR cells and altered the cell morphology allowing them to assume a round shape. These results suggest that the A549P-3 cells surviving irradiation acquire a highly invasive integrin {beta}1-dependent phenotype, and integrin {beta}1 might be a potentially effective therapeutic target in combination with radiotherapy.

  12. Emission spectral analysis of caspase-3 activation during artesunate (ART)-induced apoptosis of human lung adenocarcinoma cell

    NASA Astrophysics Data System (ADS)

    Pan, Wen-liang; Chen, Tong-sheng; Qu, Junle

    2009-02-01

    Artesunate (ART), a semi-synthetic derivative of the sesquiterpene artemisinin extracted from the Chinese herb Artemisia annua, exerts a broad spectrum of clinical activity against human cancers. Artemisinin-derivative combination chemotherapy is recommended by WHO since it acts rapidly and is well tolerated and particularly effective. In present investigation, we used CKK-8 assay to assess the inhibitory effects of ART on human lung adenocarcinoma (ASTC-a-1) cells. Apoptotic activity of ART in ASTC-a-1 cells was detected by means of nuclear staining with Hoechst33258. In order to monitor the activity of caspase-3 during ART-induced ASTC-a-1 cells apoptosis, the dynamical emission spectra of SCAT3, a FRET plasmid based on GFPs, were performed inside living cell expressed stably with SCAT3 after ART treatment. The results showed that (1) ART could inhibit ASTC-a-1 cells proliferation in a dose-dependent manner; (2) chromatin condensation was observed after ART treatment for 48 h; (3) the SCAT3 inside living cells were cleaved after ART treatment for 48 h, implying that caspase-3 was involved in the ART-induced apoptosis.

  13. Bad is not involved in DHA-induced apoptosis in human lung adenocarcinoma ASTC-a-1 cells

    NASA Astrophysics Data System (ADS)

    Yu, Huai-na; Lu, Ying-ying; Chen, Tong-sheng

    2011-03-01

    Dihydroartemisinin (DHA), a first-line anti-malarial drug with low toxicity, has been shown to possess promising anticancer activities and induce cancer cell death through apoptotic pathway, but the molecular mechanisms are not well understood. In this paper, we focus on whether Bad, a BH3-only pro-apoptotic protein, is involved in apoptotic cell death in DHA-treated human lung adenocarcinoma (ASTC-a-1) cells. Confocal fluorescence microscope imaging was used to monitor the temporal and spatial distribution of Bad in single living cells. Our results indicate that Bad is still located in cytoplasm and does not translocate to mitochondria after treatment with DHA for 24 h, while only a small proportion of Bad located in cytoplasm in the STS-treated cells for 6 h. These results show for the first time that Bad is not involved in DHA-induced apoptosis in ASTC-a-1 cells, which could give more evidence for the molecular mechanisms of apoptosis induced by DHA.

  14. Expression of human granulocyte colony stimulating factor (hG-CSF) in colon adenocarcinoma cell line (Caco-2).

    PubMed

    Jana, Snehasis; Patel, Hitesh

    2012-10-01

    Growth and progression of many cancer cells are mediated by alterations in the microenvironment often caused by an aberrant expression of growth factors and receptors. There is no report on expression of growth factor granulocyte colony-stimulating factor (G-CSF) in the experimental model, colon adenocarcinoma cell line (Caco2), that is commonly used in drug permeability assays. We hypothesize that in vitro, the Caco2 model is associated with a constitutive neo-expression of the hematopoietic G-CSF thereby causing an autocrine stimulation of Caco2 growth and proliferation in vitro. To test our hypothesis, we analyzed mRNA and protein expression of G-CSF in Caco2 cells using reverse transcriptase-PCR and SDS-PAGE. G-CSF mRNA and protein were detected in Caco2 cells. Expression of G-CSF protein was similar at different passages of this cell line. The expression of G-CSF has a significant role in the autocrine regulation of Caco2 cell growth and proliferation. PMID:22714276

  15. Anticancer function of α-solanine in lung adenocarcinoma cells by inducing microRNA-138 expression.

    PubMed

    Zhang, Furui; Yang, Rui; Zhang, Guojun; Cheng, Ruirui; Bai, Yong; Zhao, Huasi; Lu, Xinhua; Li, Hui; Chen, Shanshan; Li, Juan; Wu, Shujun; Li, Ping; Chen, Xiaonan; Sun, Qianqian; Zhao, Guoqiang

    2016-05-01

    Currently, lung cancer is still a main cause of malignancy-associated death worldwide. Even though various methods for prevention and treatment of lung cancer have been improved in recent decades, the 5-year survival rate has remained very low. Insights into the anticancer function of small-molecule anticancer compounds have opened our visual field about cancer therapy. α-Solanine has been well studied for its antitumor properties, but its effect in lung cancer and associated molecular mechanisms have not yet been evaluated. To explore the anticancer function of α-solanine, we performed an MTT assay, Transwell arrays, colony-forming survival assay, quantitative reverse transcription PCR (qRT-PCR), Western blotting, and dual luciferase reporter assays in A549 and H1299 cells. We found that α-solanine not only inhibited cell migration and invasion ability but also enhanced the chemosensitivity and radiosensitivity of A549 and H1299 cells. Moreover, we discovered that α-solanine could affect the expression of miR-138 and focal adhesion kinase (FAK), both of which were also found to affect the chemosensitivity and radiosensitivity of A549 and H1299 cells. In conclusion, α-solanine could affect miR-138 and FAK expression to restrict cell migration and invasion and enhance the chemosensitivity and radiosensitivity of A549 and H1299 cells. The α-solanine/miR-138/FAK cascade can probably be a potential therapy target against lung adenocarcinoma. PMID:26631041

  16. Identification of Hyal2 as the cell-surface receptor for jaagsiekte sheep retrovirus and ovine nasal adenocarcinoma virus.

    PubMed

    Miller, A D

    2003-01-01

    Jaagsiekte sheep retrovirus (JSRV) and ovine nasal adenocarcinoma virus (ONAV) replicate in the airway and cause epithelial cell tumors through the activity of their envelope (Env) proteins. Identification of the receptor(s) that mediate cell entry by these viruses is crucial to understanding the oncogenic activity of Env and for the development of gene therapy vectors based on these viruses that are capable of targeting airway cells. To identify the viral receptor(s) and to further study the biology of JSRV and ONAV, we developed retroviral vectors containing Moloney murine leukemia virus components and the Env proteins of JSRV or ONAV. We used a new technique involving positional cloning by phenotypic mapping in radiation hybrid cells to identify and clone the human receptor for JSRV, Hyal2, which also serves as the receptor for ONAV. Hyal2 is a glycosylphosphatidylinositol-anchored cell-surface protein that has low hyaluronidase activity and is a member of a large family that includes sperm hyaluronidase (Spam) and serum hyaluronidase (Hyal1). Hyal2 is located in a region of human chromosome 3p21.3 that is often deleted in lung cancer, suggesting that it may be a tumor suppressor. However, its role in JSRV or ONAV tumorigenesis, if any, is still unclear. JSRV vectors are capable of transducing various human cells, and are being further evaluated for gene therapy purposes. PMID:12596899

  17. Radioresistant human lung adenocarcinoma cells that survived multiple fractions of ionizing radiation are sensitive to HSP90 inhibition.

    PubMed

    Gomez-Casal, Roberto; Epperly, Michael W; Wang, Hong; Proia, David A; Greenberger, Joel S; Levina, Vera

    2015-12-29

    Despite the common usage of radiotherapy for the treatment of NSCLC, outcomes for these cancers when treated with ionizing radiation (IR) are still unsatisfactory. A better understanding of the mechanisms underlying resistance to IR is needed to design approaches to eliminate the radioresistant cells and prevent tumor recurrence and metastases. Using multiple fractions of IR we generated radioresistant cells from T2821 and T2851 human lung adenocarcinoma cells. The radioresistant phenotypes present in T2821/R and T2851/R cells include multiple changes in DNA repair genes and proteins expression, upregulation of EMT markers, alterations of cell cycle distribution, upregulation of PI3K/AKT signaling and elevated production of growth factors, cytokines, important for lung cancer progression, such as IL-6, PDGFB and SDF-1 (CXCL12). In addition to being radioresistant these cells were also found to be resistant to cisplatin.HSP90 is a molecular chaperone involved in stabilization and function of multiple client proteins implicated in NSCLC cell survival and radioresistance. We examined the effect of ganetespib, a novel HSP90 inhibitor, on T2821/R and T2851/R cell survival, migration and radioresistance. Our data indicates that ganetespib has cytotoxic activity against parental T2821 and T2851 cells and radioresistant T2821/R and T2851/R lung tumor cells. Ganetespib does not affect proliferation of normal human lung fibroblasts. Combining IR with ganetespib completely abrogates clonogenic survival of radioresistant cells.Our data show that HSP90 inhibition can potentiate the effect of radiotherapy and eliminate radioresistant and cisplatin -resistant residual cells, thus it may aid in reducing NSCLC tumor recurrence after fractionated radiotherapy. PMID:26517240

  18. Radioresistant human lung adenocarcinoma cells that survived multiple fractions of ionizing radiation are sensitive to HSP90 inhibition

    PubMed Central

    Gomez-Casal, Roberto; Epperly, Michael W.; Wang, Hong; Proia, David A.; Greenberger, Joel S.; Levina, Vera

    2015-01-01

    Despite the common usage of radiotherapy for the treatment of NSCLC, outcomes for these cancers when treated with ionizing radiation (IR) are still unsatisfactory. A better understanding of the mechanisms underlying resistance to IR is needed to design approaches to eliminate the radioresistant cells and prevent tumor recurrence and metastases. Using multiple fractions of IR we generated radioresistant cells from T2821 and T2851 human lung adenocarcinoma cells. The radioresistant phenotypes present in T2821/R and T2851/R cells include multiple changes in DNA repair genes and proteins expression, upregulation of EMT markers, alterations of cell cycle distribution, upregulation of PI3K/AKT signaling and elevated production of growth factors, cytokines, important for lung cancer progression, such as IL-6, PDGFB and SDF-1 (CXCL12). In addition to being radioresistant these cells were also found to be resistant to cisplatin. HSP90 is a molecular chaperone involved in stabilization and function of multiple client proteins implicated in NSCLC cell survival and radioresistance. We examined the effect of ganetespib, a novel HSP90 inhibitor, on T2821/R and T2851/R cell survival, migration and radioresistance. Our data indicates that ganetespib has cytotoxic activity against parental T2821 and T2851 cells and radioresistant T2821/R and T2851/R lung tumor cells. Ganetespib does not affect proliferation of normal human lung fibroblasts. Combining IR with ganetespib completely abrogates clonogenic survival of radioresistant cells. Our data show that HSP90 inhibition can potentiate the effect of radiotherapy and eliminate radioresistant and cisplatin -resistant residual cells, thus it may aid in reducing NSCLC tumor recurrence after fractionated radiotherapy. PMID:26517240

  19. Human papillomavirus-58 and -73-associated digital squamous cell carcinoma in a patient with aggressive digital papillary adenocarcinoma.

    PubMed

    DePond, William; Kure, Kiyoe; Lankachandra, Kamani; Gidwani, Raja; Nelson, Brook V; Zimmerman, Hannah; Talboy, Glenn E; Miranda, Roberto N

    2009-06-01

    Aggressive digital papillary adenocarcinoma (ADPA) is a rare tumor that is considered to arise from eccrine sweat glands of the skin. It occurs predominantly in men with a mean age in the sixth decade. It shows a strong tendency for local recurrence and has the potential to metastasize to distant sites. Prompt diagnosis and regular follow-up are important to ensure the best possible outcome. We discuss a case of recurrent ADPA associated with subsequent squamous cell carcinoma (SCC) in different contralateral digits in a 55-year-old man. One SCC lesion tested positive for human papillomavirus (HPV)-58. HPV-associated digital SCCs have been reported; most cases are HPV-16 positive. This report describes a rare case of an HPV-58-positive invasive digital SCC and an HPV-73-positive SCC in situ associated with ADPA. PMID:19461243

  20. Multivariate SAR and QSAR of cucurbitacin derivatives as cytotoxic compounds in a human lung adenocarcinoma cell line.

    PubMed

    Lang, Karen L; Silva, Izabella T; Machado, Vanessa R; Zimmermann, Lara A; Caro, Miguel S B; Simões, Cláudia M O; Schenkel, Eloir P; Durán, Fernando J; Bernardes, Lílian S C; de Melo, Eduardo B

    2014-03-01

    This article describes structure-activity relationship (SAR/QSAR) studies on the cytotoxic activity in a human lung adenocarcinoma cell line (A549) of 43 cucurbitacin derivatives. Modeling was performed using the methods partial least squares with discriminant analysis (PLS-DA) and PLS. For both studies, the variables were selected using the ordered predictor selection (OPS) algorithm. The SAR study demonstrated that the presence or absence of cytotoxic activity of the cucurbitacins could be described using information derived from their chemical structures. The QSAR study displayed suitable internal and external predictivity, and the selected descriptors indicated that the observed activity might be related to electrophilic attack on cellular structures or genetic material. This study provides improves the understanding of the cytotoxic activity of cucurbitacins and could be used to propose new cytotoxic agents. PMID:24378396

  1. Metastasis-associated lung adenocarcinoma transcript 1 promotes the proliferation of chondrosarcoma cell via activating Notch-1 signaling pathway

    PubMed Central

    Xu, Fengqin; Zhang, Zhi-qiang; Fang, Yong-chao; Li, Xiao-lei; Sun, Yu; Xiong, Chuan-zhi; Yan, Lian-qi; Wang, Qiang

    2016-01-01

    Background Metastasis-associated lung adenocarcinoma transcript 1 (MALAT-1) is identified to be overexpressed in several cancers. However, the role of MALAT-1 in chondrosarcoma is poorly understood. Methods The expression of MALAT-1 and Notch-1 signaling pathway was detected in chondrosarcoma tissues and chondrosarcoma cells by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay was performed to examine the cell viability of chondrosarcoma cells transfected with si-MALAT-1 or pcDNA-MALAT-1. Then the expression of Notch-1 signaling pathway was detected when MALAT-1 was upregulated or downregulated in chondrosarcoma cells. A subcutaneous chondrosarcoma cells xenograft model was used to confirm the effect of MALAT-1 on tumor growth in vivo. Results We found the increased expression of MALAT-1 and Notch-1 signaling pathway in chondrosarcoma tissue and cells. MALAT-1 promoted the proliferation of chondrosarcoma cells. In addition, MALAT-1 activated the Notch-1 signaling pathway at posttranscriptional level in chondrosarcoma cells. Meanwhile, overexpression of Notch-1 reversed the effect of si-MALAT-1 on the proliferation of chondrosarcoma cells. Finally, we found that MALAT-1 promoted the tumor growth in a subcutaneous chondrosarcoma cells xenograft model, which confirmed the promoted effect of MALAT-1 on the tumor growth in vivo. Conclusion Taken together, our study demonstrated that MALAT-1 promoted the proliferation of chondrosarcoma cell via activating Notch-1 signaling pathway. PMID:27110130

  2. Secretory glycoconjugates of a mucin-synthesizing human colonic adenocarcinoma cell line. Analysis using double labeling with lectins.

    PubMed

    Phillips, T E; Frisch, E B

    1990-01-01

    Lectins were used to characterize mucin glycoproteins and other secretory glycoconjugates synthesized by a human colon adenocarcinoma-derived cell line which expresses a goblet cell phenotype. Despite being clonally derived, HT29-18N2 (N2) cells, like normal goblet cells in situ were heterogeneous in their glycosylation of mucin. Only wheat-germ agglutinin, which recognizes N-acetylglucosamine and sialic acid residues, and succinylated wheatgerm agglutinin, which binds N-acetylglucosamine, stained the contents of all secretory granules in all N2 goblet cells. The N-acetylgalactosamine binding lectins Dolichos biflorus and Glycine max stained 20% and 21% of N2 goblet cells respectively. Ricinus communis I, a galactose-binding lectin, stained 67% of N2 goblet cells although staining by another galactose-binding lectin, Bandeiraea simplicifolia I, was limited to 19%. Peanut agglutinin, a lectin whose Gal(beta 1-3)GalNAc binding site is not present on mucins produced in the normal colon but which is found on most mucins of cancerous colonic epithelia, stained 68% of the cells. Ulex europeus I, a fucose-binding lectin, did not stain any N2 goblet cells. Four lectins (Lens culinaris, Pisum sativum, Phaseolus vulgaris E, Phaseolus vulgaris L) which recognize sugars normally present only in N-linked oligosaccharides stained up to 38% of N2 goblet cells. The binding of these lectins indicates either both O-linked and N-linked oligosaccharide chains are present on the mucin protein backbone or the co-existence of non-mucin N-linked glycoproteins and O-linked mucins within the goblet cell secretory granule. PMID:2312359

  3. Detachment of glycolytic enzymes from cytoskeleton of Lewis lung carcinoma and colon adenocarcinoma cells induced by clotrimazole and its correlation to cell viability and morphology.

    PubMed

    Penso, Julia; Beitner, Rivka

    2002-07-01

    Cancer cells are characterized by a high rate of glycolysis, which is their primary energy source. Glycolysis is known to be controlled by allosteric regulators, as well as by reversible binding of glycolytic enzymes to cytoskeleton. We report here that clotrimazole (l-(alpha-2-chlorotrityl)imidazole), the antifungal azole derivative, which was recently recognized as calmodulin antagonist, induced a dose-dependent detachment of the glycolytic enzymes, phosphofructokinase (ATP: D-fructose-6-phosphate 1-phosphotransferase, EC 2.7.1.11) and aldolase (D-fructose-l,6-bisphosphate D-glyceraldehyde-3-phosphate-lyase, EC 4.1.2.13), from cytoskeleton of LL/2 Lewis lung carcinoma cells and CT-26 colon adenocarcinoma cells. The detachment of glycolytic enzymes from cytoskeleton would reduce the provision of local ATP, in the vicinity of the cytoskeleton membrane, and would also affect cytoskeleton structure and cell shape. We show here that clotrimazole decreased the viability of LL/2 Lewis lung carcinoma cells and CT-26 colon adenocarcinoma cells. After 3h of incubation with clotrimazole, complete cell destruction was detected. Ultrastructural cell damage was manifested by disintegration of the outer membrane by scanning electron microscopy (SEM). The detachment of glycolytic enzymes from cytoskeleton, induced by clotrimazole, preceded the decrease in cell viability, which indicates that this is an early effect and not a result of cell death. Since the cytoskeleton is being recognized as an important modulator of cell function, proliferation, differentiation, and neoplasia, detachment of the glycolytic enzymes from cytoskeleton induced by clotrimazole, as well as its reported inhibitory action on cell proliferation, makes this drug the most promising agent in the treatment of cancer. PMID:12126931

  4. Synchrotron FTIR shows evidence of DNA damage and lipid accumulation in prostate adenocarcinoma PC-3 cells following proton irradiation

    NASA Astrophysics Data System (ADS)

    Lipiec, Ewelina; Bambery, Keith R.; Heraud, Phil; Hirschmugl, Carol; Lekki, Janusz; Kwiatek, Wojciech M.; Tobin, Mark J.; Vogel, Christian; Whelan, Donna; Wood, Bayden R.

    2014-09-01

    Synchrotron Radiation Fourier Transform Infrared (SR-FTIR) spectra of single human prostate adenocarcinoma PC-3 cells, irradiated with a defined number of 2 MeV protons generated by a proton microbeam along with non-irradiated control cells, were analysed using multivariate methods. A number of different Principal Component Analysis (PCA) models were tested and the spectral ranges associated with nucleic acids, proteins and lipids were analysed separately. The results show a dose dependent shift of the Osbnd Psbnd O asymmetric stretching mode from 1234 cm-1 to 1237 cm-1, consistent with local disorder in the B-DNA conformation along with a change in intensity of the Osbnd Psbnd O symmetric stretching band at 1083 cm-1 indicative of chromatin fragmentation - the natural consequence of a high number of DNA Double Strand Breaks (DSBs). 2D mapping of characteristic functional groups at the diffraction limit shows evidence of lipid deposition and chromatin condensation in cells exposed to protons indicative of cell apoptosis following irradiation. These studies lay the foundation for understanding the macromolecular changes that occur to cells in response to radiation therapy, which has important implications in the treatment of tumours.

  5. Dendrotoxin-κ suppresses tumor growth induced by human lung adenocarcinoma A549 cells in nude mice

    PubMed Central

    Jang, Soo Hwa; Ryu, Pan Dong

    2011-01-01

    Voltage-gated K+ (Kv) channels have been considered to be a regulator of membrane potential and neuronal excitability. Recently, accumulated evidence has indicated that several Kv channel subtypes contribute to the control of cell proliferation in various types of cells and are worth noting as potential emerging molecular targets of cancer therapy. In the present study, we investigated the effects of the Kv1.1-specific blocker, dendrotoxin-κ (DTX-κ), on tumor formation induced by the human lung adenocarcinoma cell line A549 in a xenograft model. Kv1.1 mRNA and protein was expressed in A549 cells and the blockade of Kv1.1 by DTX-κ, reduced tumor formation in nude mice. Furthermore, treatment with DTX-κ significantly increased protein expression of p21Waf1/Cip1, p27Kip1, and p15INK4B and significantly decreased protein expression of cyclin D3 in tumor tissues compared to the control. These results suggest that DTX-κ has anti-tumor effects in A549 cells through the pathway governing G1-S transition. PMID:21368561

  6. Immunohistochemical and molecular features of primary clear cell-adenocarcinoma of the rectum, as predictive factors for individualized therapy.

    PubMed

    Gurzu, Simona; Jung, Ioan; Bara, Tivadar; Bara, Tivadar; Serester, Orsolya

    2014-01-01

    An 82-year-old male was hospitalized with rectal carcinoma that was confirmed endoscopically. Surgical resection of the rectum was performed. Intraoperative examination showed a solitary hepatic metastasis; metastasectomy was also performed. Histological examination of the surgical specimen showed mainly a trabecular arrangement of the tumor cells, alternating with tubuloglandular areas, the tumor being diagnosed in stage IV. The high-power-view examination showed that the tumor cells presented clear cytoplasm, and were diffusely marked by AE1/AE3 keratin, carcinoembryonic antigen (CEA), and CD10. A focal immunostain was also observed for keratins 7/20, vascular endothelial growth factor (VEGF), and its receptor (VEGF-R2). The tumor was proved to be microsatellite stable, presenting K-ras mutation. Based on the immunoprofile and computer scanning, metastases from clear cell renal cell carcinoma and adrenocortical carcinoma have been excluded. Based on these characteristics and the tumor stage, the final diagnosis was primary clear cell adenocarcinoma (CCA). Bevacizumab-based antiangiogenic therapy was indicated. This is the 12th primary CCA of the colorectum ever reported, and the first from Eastern Europe. PMID:25178336

  7. Mitochondrial thiol modification by a targeted electrophile inhibits metabolism in breast adenocarcinoma cells by inhibiting enzyme activity and protein levels

    PubMed Central

    Smith, M. Ryan; Vayalil, Praveen K.; Zhou, Fen; Benavides, Gloria A.; Beggs, Reena R.; Golzarian, Hafez; Nijampatnam, Bhavitavya; Oliver, Patsy G.; Smith, Robin A.J.; Murphy, Michael P.; Velu, Sadanandan E.; Landar, Aimee

    2016-01-01

    Many cancer cells follow an aberrant metabolic program to maintain energy for rapid cell proliferation. Metabolic reprogramming often involves the upregulation of glutaminolysis to generate reducing equivalents for the electron transport chain and amino acids for protein synthesis. Critical enzymes involved in metabolism possess a reactive thiolate group, which can be modified by certain oxidants. In the current study, we show that modification of mitochondrial protein thiols by a model compound, iodobutyl triphenylphosphonium (IBTP), decreased mitochondrial metabolism and ATP in MDA-MB 231 (MB231) breast adenocarcinoma cells up to 6 days after an initial 24 h treatment. Mitochondrial thiol modification also depressed oxygen consumption rates (OCR) in a dose-dependent manner to a greater extent than a non-thiol modifying analog, suggesting that thiol reactivity is an important factor in the inhibition of cancer cell metabolism. In non-tumorigenic MCF-10A cells, IBTP also decreased OCR; however the extracellular acidification rate was significantly increased at all but the highest concentration (10 µM) of IBTP indicating that thiol modification can have significantly different effects on bioenergetics in tumorigenic versus non-tumorigenic cells. ATP and other adenonucleotide levels were also decreased by thiol modification up to 6 days post-treatment, indicating a decreased overall energetic state in MB231 cells. Cellular proliferation of MB231 cells was also inhibited up to 6 days post-treatment with little change to cell viability. Targeted metabolomic analyses revealed that thiol modification caused depletion of both Krebs cycle and glutaminolysis intermediates. Further experiments revealed that the activity of the Krebs cycle enzyme, aconitase, was attenuated in response to thiol modification. Additionally, the inhibition of glutaminolysis corresponded to decreased glutaminase C (GAC) protein levels, although other protein levels were unaffected. This study

  8. Mitochondrial thiol modification by a targeted electrophile inhibits metabolism in breast adenocarcinoma cells by inhibiting enzyme activity and protein levels.

    PubMed

    Smith, M Ryan; Vayalil, Praveen K; Zhou, Fen; Benavides, Gloria A; Beggs, Reena R; Golzarian, Hafez; Nijampatnam, Bhavitavya; Oliver, Patsy G; Smith, Robin A J; Murphy, Michael P; Velu, Sadanandan E; Landar, Aimee

    2016-08-01

    Many cancer cells follow an aberrant metabolic program to maintain energy for rapid cell proliferation. Metabolic reprogramming often involves the upregulation of glutaminolysis to generate reducing equivalents for the electron transport chain and amino acids for protein synthesis. Critical enzymes involved in metabolism possess a reactive thiolate group, which can be modified by certain oxidants. In the current study, we show that modification of mitochondrial protein thiols by a model compound, iodobutyl triphenylphosphonium (IBTP), decreased mitochondrial metabolism and ATP in MDA-MB 231 (MB231) breast adenocarcinoma cells up to 6 days after an initial 24h treatment. Mitochondrial thiol modification also depressed oxygen consumption rates (OCR) in a dose-dependent manner to a greater extent than a non-thiol modifying analog, suggesting that thiol reactivity is an important factor in the inhibition of cancer cell metabolism. In non-tumorigenic MCF-10A cells, IBTP also decreased OCR; however the extracellular acidification rate was significantly increased at all but the highest concentration (10µM) of IBTP indicating that thiol modification can have significantly different effects on bioenergetics in tumorigenic versus non-tumorigenic cells. ATP and other adenonucleotide levels were also decreased by thiol modification up to 6 days post-treatment, indicating a decreased overall energetic state in MB231 cells. Cellular proliferation of MB231 cells was also inhibited up to 6 days post-treatment with little change to cell viability. Targeted metabolomic analyses revealed that thiol modification caused depletion of both Krebs cycle and glutaminolysis intermediates. Further experiments revealed that the activity of the Krebs cycle enzyme, aconitase, was attenuated in response to thiol modification. Additionally, the inhibition of glutaminolysis corresponded to decreased glutaminase C (GAC) protein levels, although other protein levels were unaffected. This study

  9. Human Genetic Relevance and Potent Antitumor Activity of Heat Shock Protein 90 Inhibition in Canine Lung Adenocarcinoma Cell Lines

    PubMed Central

    Clemente-Vicario, Francisco; Alvarez, Carlos E.; Rowell, Jennie L.; Roy, Satavisha; London, Cheryl A.; Kisseberth, William C.; Lorch, Gwendolen

    2015-01-01

    Background It has been an open question how similar human and canine lung cancers are. This has major implications in availability of human treatments for dogs and in establishing translational models to test new therapies in pet dogs. The prognosis for canine advanced lung cancer is poor and new treatments are needed. Heat shock protein 90 (HSP90) is an ATPase-dependent molecular chaperone ubiquitously expressed in eukaryotic cells. HSP90 is essential for posttranslational conformational maturation and stability of client proteins including protein kinases and transcription factors, many of which are important for the proliferation and survival of cancer cells. We investigated the activity of STA-1474, a HSP90 inhibitor, in two canine lung cancer cell lines, BACA and CLAC. Results Comparative genomic hybridization analysis of both cell lines revealed genetic relevance to human non-small cell lung cancer. STA-1474 inhibited growth and induced apoptosis of both cell lines in a dose- and time-dependent manner. The ICs50 after 72 h treatment with STA-1474 were 0.08 and 0.11 μM for BACA and CLAC, respectively. When grown as spheroids, the IC50 of STA-1474 for BACA cells was approximately two-fold higher than when grown as a monolayer (0.348 μM vs. 0.168 μM), whereas CLAC spheroids were relatively drug resistant. Treatment of tumor-stromal fibroblasts with STA-1474 resulted in a dose-dependent decrease in their relative cell viability with a low IC50 of 0.28 μM. Conclusions Here we first established that lung adenocarcinoma in people and dogs are genetically and biochemically similar. STA1474 demonstrated biological activity in both canine lung cancer cell lines and tumor-stromal fibroblasts. As significant decreases in relative cell viability can be achieved with nanomolar concentrations of STA-1474, investigation into the clinical efficacy of this drug in canine lung cancer patients is warranted. PMID:26560147

  10. The impact of autophagy on cell death modalities in CRL-5876 lung adenocarcinoma cells after their exposure to γ-rays and/or erlotinib.

    PubMed

    Keta, Otilija; Bulat, Tanja; Golić, Igor; Incerti, Sebastien; Korać, Aleksandra; Petrović, Ivan; Ristić-Fira, Aleksandra

    2016-04-01

    In most patients with lung cancer radiation treatment is used either as single agent or in combination with radiosensitizing drugs. However, the mechanisms underlying combined therapy and its impact on different modes of cell death have not yet been fully elucidated. We aimed to examine effects of single and combined treatments with γ-rays and erlotinib on radioresistant CRL-5876 human lung adenocarcinoma cells with particular emphasis on cell death. CRL-5876 cells were treated with γ-rays and/or erlotinib and changes in cell cycle, DNA repair dynamics, ultrastructure, nuclear morphology and protein expression were monitored at different time points. To reveal the relationship between types of cell death that arise after these treatments, autophagy was blocked with chloroquine. We found that higher dose of γ-rays causes G2/M arrest while adding of erlotinib to this treatment decreases the number of cells in S phase. Impact of erlotinib on kinetics of disappearance of irradiation-induced DNA double strand breaks is reflected in the increase of residual γ-H2AX foci after 24 h. γ-rays provoke cytoprotective autophagy which precedes development of senescence. Erlotinib predominantly induces apoptosis and enlarges the number of apoptotic cells in the irradiated CRL-5876 cells. Chloroquine improved cytotoxicity induced by radiation and erlotinib, increased apoptosis and decreased senescence in the CRL-5876 cells. The results obtained on CRL-5876 cells indicate significant radiosensitizing effect of erlotinib and suggest that chloroquine in the combination with the above treatments may have an additional antitumor effect in lung adenocarcinoma. PMID:27026538

  11. Mixed angiosarcoma, clear cell adenocarcinoma and mature teratoma elements in an ovarian tumor: a case report and literature review.

    PubMed

    Takahashi, Hiroyuki; Chaopotong, Pattama; Kajita, Sabine; Hashimura, Miki; Yamazaki, Hitoshi; Saegusa, Makoto

    2012-08-01

    Malignant transformation of a mature teratoma in the ovary is a rare event, with an approximate rate of only 1-2%. Here, we report an ovarian tumor with a unique combination of epithelial and non-epithelial malignant components, including mature teratoma elements. A 59 year-old postmenopusal woman underwent total hysterectomy and bilateral salpingo-oophorectomy to remove a huge solid mass of the right ovary. The ovarian tumor was 16 × 12 × 4.5 cm in dimensions, composed of red-brown and greyish-white tissue with several cystic areas. Microscopically, atypical cells immunopositive for both CD31 and CD34 formed irregular ectatic vascular patterns with a high MIB-1 labeling index in red-brown areas. In contrast, tubule-cystic and papillary structures were lined by HNF-1β-immunopositive atypical cuboidal and hobnail cells with clear cytoplasm in greyish-white areas. In addition, normal-looking epithelial and stromal components, including mature squamous, cuboidal and ciliated epithelial cells, and adipose tissues, were observed in red-brown areas, suggesting an ovarian tumor combining angiosarcoma, clear cell adenocarcinoma, and mature teratoma features. We could demonstrate identical X-chromosome inactivation patterns among all three components by human androgen receptor gene (HUMARA) assays, pointing to complex inter-relationships regarding their pathogenesis. These observations suggest that a malignant tumor composed of two characteristic phenotypes arose in mature teratoma. PMID:22827762

  12. Targeting the mRNA-binding protein HuR impairs malignant characteristics of pancreatic ductal adenocarcinoma cells

    PubMed Central

    Jimbo, Masaya; Blanco, Fernando F.; Screnci, Brad A.; Cosma, Gabriela L.; Alexeev, Vitali; Gonye, Gregory E.; Yeo, Charles J.; Sawicki, Janet A.; Winter, Jordan M.; Brody, Jonathan R.

    2015-01-01

    Post-transcriptional regulation is a powerful mediator of gene expression, and can rapidly alter the expression of numerous transcripts involved in tumorigenesis. We have previously shown that the mRNA-binding protein HuR (ELAVL1) is elevated in human pancreatic ductal adenocarcinoma (PDA) specimens compared to normal pancreatic tissues, and its cytoplasmic localization is associated with increased tumor stage. To gain a better insight into HuR’s role in PDA biology and to assess it as a candidate therapeutic target, we altered HuR expression in PDA cell lines and characterized the resulting phenotype in preclinical models. HuR silencing by short hairpin and small interfering RNAs significantly decreased cell proliferation and anchorage-independent growth, as well as impaired migration and invasion. In comparison, HuR overexpression increased migration and invasion, but had no significant effects on cell proliferation and anchorage-independent growth. Importantly, two distinct targeted approaches to HuR silencing showed marked impairment in tumor growth in mouse xenografts. NanoString nCounter® analyses demonstrated that HuR regulates core biological processes, highlighting that HuR inhibition likely thwarts PDA viability through post-transcriptional regulation of diverse signaling pathways (e.g. cell cycle, apoptosis, DNA repair). Taken together, our study suggests that targeted inhibition of HuR may be a novel, promising approach to the treatment of PDA. PMID:26314962

  13. Identification and subcellular distribution of the Gi-proteins in the enterocytic-differentiated adenocarcinoma cell-line, Caco-2.

    PubMed

    Lacombe, C; Viallard, V; Schaak, S; Paris, H

    1996-01-01

    As evidenced by pertussis toxin-catalysed [32P]ADP-ribosylation, immunoblotting and Northern blot, the human adenocarcinoma intestinal cell line Caco-2 expresses Gi2 and Gi3 proteins. The localization of these two Gis within the cell was investigated by using subcellular fractionation and confocal microscopy on intact cell layer. A brush-border rich fraction and a pellet containing the remaining cellular membranes were prepared. [32P]ADP-ribosylation and immunoblotting demonstrated the presence of both alpha i2 and alpha i3 in these two preparations. Immunofluorescence studies performed on intact cells grown on Transwell filters and viewed by confocal microscopy further confirmed the localization of alpha i3-subunit on basolateral as well as on apical membranes. In contrast, alpha i2-subunit was shown to accumulate mainly in the intra-cellular compartment while only faint staining of the plasma membrane was detectable. Based upon double-labelling experiments with antibody against rough endoplasmic reticulum (RER), there is a strong possibility that intra-cellular sites of alpha i2-subunit correspond to association with RER membranes. PMID:9237368

  14. Targeting the mRNA-binding protein HuR impairs malignant characteristics of pancreatic ductal adenocarcinoma cells.

    PubMed

    Jimbo, Masaya; Blanco, Fernando F; Huang, Yu-Hung; Telonis, Aristeidis G; Screnci, Brad A; Cosma, Gabriela L; Alexeev, Vitali; Gonye, Gregory E; Yeo, Charles J; Sawicki, Janet A; Winter, Jordan M; Brody, Jonathan R

    2015-09-29

    Post-transcriptional regulation is a powerful mediator of gene expression, and can rapidly alter the expression of numerous transcripts involved in tumorigenesis. We have previously shown that the mRNA-binding protein HuR (ELAVL1) is elevated in human pancreatic ductal adenocarcinoma (PDA) specimens compared to normal pancreatic tissues, and its cytoplasmic localization is associated with increased tumor stage. To gain a better insight into HuR's role in PDA biology and to assess it as a candidate therapeutic target, we altered HuR expression in PDA cell lines and characterized the resulting phenotype in preclinical models. HuR silencing by short hairpin and small interfering RNAs significantly decreased cell proliferation and anchorage-independent growth, as well as impaired migration and invasion. In comparison, HuR overexpression increased migration and invasion, but had no significant effects on cell proliferation and anchorage-independent growth. Importantly, two distinct targeted approaches to HuR silencing showed marked impairment in tumor growth in mouse xenografts. NanoString nCounter® analyses demonstrated that HuR regulates core biological processes, highlighting that HuR inhibition likely thwarts PDA viability through post-transcriptional regulation of diverse signaling pathways (e.g. cell cycle, apoptosis, DNA repair). Taken together, our study suggests that targeted inhibition of HuR may be a novel, promising approach to the treatment of PDA. PMID:26314962

  15. Targeting and Killing of Metastatic Cells in the Transgenic Adenocarcinoma of Mouse Prostate Model With Vesicular Stomatitis Virus

    PubMed Central

    Moussavi, Maryam; Tearle, Howard; Fazli, Ladan; Bell, John C; Jia, William; Rennie, Paul S

    2013-01-01

    Vesicular stomatitis virus (VSV) is an oncolytic virus which selectively infects and kills cancer cells. The goal of the present study was to determine whether VSV is capable of targeting metastatic lesions that arise in situ in the transgenic adenocarcinoma of the mouse prostate (TRAMP) model. The interferon (IFN)-responsive luciferase containing VSV(AV3) strain was injected intraprostatically into both control and TRAMP mice. Distribution, infectivity, apoptosis, and status of the IFN response were evaluated at the site of viral injection (prostate), as well as in metastatic lesions (lymph nodes), through plaque, polymerase chain reaction (PCR), and immunohistochemical analysis. Bioluminescence analyses demonstrated that VSV(AV3) persisted at high levels in the prostate region of TRAMP mice for up to 96 hours, but at relatively low levels and for only 48 hours in control mice. Live virus was discovered in the lymph nodes of TRAMP mice, but not in control mice. TUNEL staining revealed increased cell death in VSV(AV3) infected metastatic cells present in the lymph nodes of TRAMP mice. There was an evidence of IFN activation in lymph nodes containing metastatic cells. Our results indicate that intraprostatic injections of VSV(AV3) can be used as a means to infect and kill metastatic lesions associated with advanced prostate cancer. PMID:23337981

  16. Gastric signet-ring cell adenocarcinoma presenting with left arm deep-vein thrombosis and bilateral chylothorax.

    PubMed

    Kayacan, Oya; Karnak, Demet; Ayşe Can, Berna; Dizbay Sak, Serpil; Beder, Sumru

    2008-10-01

    A 28-year-old housewife, a life-long nonsmoker, presented with 3 weeks of pleuritic chest pain along with swollen right leg, left arm, and left breast. Six months previously she had left subclavian vein thrombosis. On admission, bilateral supraclavicular lymphedema on right leg and left arm and breast was observed and bilateral pleural fluid, chylous exudates, was detected. Abdomen computed tomography revealed abundant ascites and right ovarian enlargement. Whole body bone scintigraphy showed bone metastases on left humerus, right femur, and pelvis. Bronchial biopsy, obtained from edematous, hyperemic-irregular mucosa, revealed a carcinoma composed of signet-ring cells with intracytoplasmic mucin. Breast biopsy also showed signet-ring cells within the lymphatics. Pleural fluid cytology showed similar malignant cells. The patient was diagnosed as gastric signet-ring cell adenocarcinoma with endobronchial, mammary, ovarian, pleural, pericardial, peritoneal, and osteal metastases. The authors recommend that deep-vein thrombosis in unusual sites deserves further evaluation for an occult malignancy. PMID:18263634

  17. α2 Integrin-Dependent Suppression of Pancreatic Adenocarcinoma Cell Invasion Involves Ectodomain Regulation of Kallikrein-Related Peptidase-5

    PubMed Central

    Lee, Chia-Yao; Marzan, David; Lin, Grace; Goodison, Steve; Silletti, Steve

    2011-01-01

    Previous reports demonstrate that the α2-integrin (α2) mediates pancreatic ductal adenocarcinoma (PDAC) cell interactions with collagens. We found that while well-differentiated cells use α2 exclusively to adhere and migrate on collagenI, poorly differentiated PDAC cells demonstrate reduced reliance on, or complete loss of, α2. Since well-differentiated PDAC lines exhibit reduced in vitro invasion and α2-blockade suppressed invasion of well-differentiated lines exclusively, we hypothesized that α2 may suppress the malignant phenotype in PDAC. Accordingly, ectopic expression of α2 retarded in vitro invasion and maintenance on collagenI exacerbated this effect. Affymetrix profiling revealed that kallikrein-related peptidase-5 (KLK5) was specifically upregulated by α2, and reduced α2 and KLK5 expression was observed in poorly differentiated PDAC cells in situ. Accordingly, well-differentiated PDAC lines express KLK5, and KLK5 blockade increased the invasion of KLK5-positive lines. The α2-cytoplasmic domain was dispensable for these effects, demonstrating that the α2-ectodomain and KLK5 coordinately regulate a less invasive phenotype in PDAC. PMID:22203845

  18. Doublecortin-Like Kinase 1 Is Elevated Serologically in Pancreatic Ductal Adenocarcinoma and Widely Expressed on Circulating Tumor Cells

    PubMed Central

    Weygant, Nathaniel; May, Randal; Aiello, Nicole; Rhim, Andrew; Zhao, Lichao; Zheng, Wei; Lightfoot, Stanley; Pant, Shubham; Irvan, Jeremy; Postier, Russell; Hocker, James; Hanas, Jay S.; Ali, Naushad; Sureban, Sripathi M.; An, Guangyu; Schlosser, Michael J.; Stanger, Ben; Houchen, Courtney W.

    2015-01-01

    Doublecortin-like kinase 1 (DCLK1) is a putative pancreatic stem cell marker and is upregulated in pancreatic cancer, colorectal cancer, and many other solid tumors. It marks tumor stem cells in mouse models of intestinal neoplasia. Here we sought to determine whether DCLK1 protein can be detected in the bloodstream and if its levels in archived serum samples could be quantitatively assessed in pancreatic cancer patients. DCLK1 specific ELISA, western blotting, and immunohistochemical analyses were used to determine expression levels in the serum and staining intensity in archived tumor tissues of pancreatic ductal adenocarcinoma (PDAC) patients and in pancreatic cancer mouse models. DCLK1 levels in the serum were elevated in early stages of PDAC (stages I and II) compared to healthy volunteers (normal controls). No differences were observed between stages III/IV and normal controls. In resected surgical tissues, DCLK1 expression intensity in the stromal cells was significantly higher than that observed in tumor epithelial cells. Circulating tumor cells were isolated from KPCY mice and approximately 52% of these cells were positive for Dclk1 staining. Dclk1 levels in the serum of KPC mice were also elevated. We have previously demonstrated that DCLK1 plays a potential role in regulating epithelial mesenchymal transition (EMT). Given the increasingly recognized role of EMT derived stem cells in cancer progression and metastasis, we hypothesize that DCLK1 may contribute to the metastatic process. Taken together, our results suggest that DCLK1 serum levels and DCLK1 positive circulating tumor cells should be further assessed for their potential diagnostic and prognostic significance. PMID:25723399

  19. Anti-proliferative effect on a colon adenocarcinoma cell line exerted by a membrane disrupting antimicrobial peptide KL15

    PubMed Central

    Chen, Yu-Ching; Tsai, Tsung-Lin; Ye, Xin-Hong; Lin, Thy-Hou

    2015-01-01

    The antimicrobial and anticancer activities of an antimicrobial peptide (AMP) KL15 obtained through in silico modification on the sequences of 2 previously identified bacteriocins m2163 and m2386 from Lactobacillus casei ATCC 334 by us have been studied. While significant bactericidal effect on the pathogenic bacteria Listeria, Escherichia, Bacillus, Staphylococcus, Enterococcus is exerted by KL15, the AMP can also kill 2 human adenocarcinoma cells SW480 and Caco-2 with measured IC50 as 50 μg/ml or 26.3 μM. However, the IC50 determined for KL15 on killing the normal human mammary epithelial cell H184B5F5/M10 is 150 μg/ml. The conformation of KL15 dissolved in 50% 2,2,2-trifluroroethanol or in 2 large unilamellar vesicle systems determined by circular dichroism spectroscopy appears to be helical. Further, the cell membrane permeability of treated SW480 cells by KL15 appears to be significantly enhanced as studied by both flow cytometry and confocal microscopy. As observed under a scanning electron microscope, the morphology of treated SW480 cells is also significantly changed as treating time by 80 μg/ml KL15 is increased. KL15 appears to be able to pierce the cell membrane of treated SW480 cells so that numerous porous structures are generated and observable. Therefore, KL15 is likely to kill the treated SW480 cells through the necrotic pathway similar to some recently identified AMPs by others. PMID:26147829

  20. Anti-proliferative effect on a colon adenocarcinoma cell line exerted by a membrane disrupting antimicrobial peptide KL15.

    PubMed

    Chen, Yu-Ching; Tsai, Tsung-Lin; Ye, Xin-Hong; Lin, Thy-Hou

    2015-01-01

    The antimicrobial and anticancer activities of an antimicrobial peptide (AMP) KL15 obtained through in silico modification on the sequences of 2 previously identified bacteriocins m2163 and m2386 from Lactobacillus casei ATCC 334 by us have been studied. While significant bactericidal effect on the pathogenic bacteria Listeria, Escherichia, Bacillus, Staphylococcus, Enterococcus is exerted by KL15, the AMP can also kill 2 human adenocarcinoma cells SW480 and Caco-2 with measured IC50 as 50 μg/ml or 26.3 μM. However, the IC50 determined for KL15 on killing the normal human mammary epithelial cell H184B5F5/M10 is 150 μg/ml. The conformation of KL15 dissolved in 50% 2,2,2-trifluroroethanol or in 2 large unilamellar vesicle systems determined by circular dichroism spectroscopy appears to be helical. Further, the cell membrane permeability of treated SW480 cells by KL15 appears to be significantly enhanced as studied by both flow cytometry and confocal microscopy. As observed under a scanning electron microscope, the morphology of treated SW480 cells is also significantly changed as treating time by 80 μg/ml KL15 is increased. KL15 appears to be able to pierce the cell membrane of treated SW480 cells so that numerous porous structures are generated and observable. Therefore, KL15 is likely to kill the treated SW480 cells through the necrotic pathway similar to some recently identified AMPs by others. PMID:26147829

  1. APE1-mediated DNA damage repair provides survival advantage for esophageal adenocarcinoma cells in response to acidic bile salts.

    PubMed

    Hong, Jun; Chen, Zheng; Peng, Dunfa; Zaika, Alexander; Revetta, Frank; Washington, M Kay; Belkhiri, Abbes; El-Rifai, Wael

    2016-03-29

    Chronic Gastroesophageal Reflux Disease (GERD) is the main risk factor for the development of Barrett's esophagus (BE) and its progression to esophageal adenocarcinoma (EAC). Accordingly, EAC cells are subjected to high levels of oxidative stress and subsequent DNA damage. In this study, we investigated the expression and role of Apurinic/apyrimidinic endonuclease 1 (APE1) protein in promoting cancer cell survival by counteracting the lethal effects of acidic bile salts (ABS)-induced DNA damage. Immunohistochemistry analysis of human tissue samples demonstrated overexpression of APE1 in more than half of EACs (70 of 130), as compared to normal esophagus and non-dysplastic BE samples (P < 0.01). To mimic in vivo conditions, we treated in vitro cell models with a cocktail of ABS. The knockdown of endogenous APE1 in EAC FLO-1 cells significantly increased oxidative DNA damage (P < 0.01) and DNA single- and double-strand breaks (P < 0.01), whereas overexpression of APE1 in EAC OE33 cells reversed these effects. Annexin V/PI staining indicated that the APE1 expression in OE33 cells protects against ABS-induced apoptosis. In contrast, knockdown of endogenous APE1 in FLO-1 cells increased apoptosis under the same conditions. Mechanistic investigations indicated that the pro-survival function of APE1 was associated with the regulation of stress response c-Jun N-terminal protein kinase (JNK) and p38 kinases. Pharmacological inhibition of APE1 base excision repair (BER) function decreased cell survival and enhanced activation of JNK and p38 kinases by ABS. Our findings suggest that constitutive overexpression of APE1 in EAC may be an adaptive pro-survival mechanism that protects against the genotoxic lethal effects of bile reflux episodes. PMID:26934647

  2. APE1-mediated DNA damage repair provides survival advantage for esophageal adenocarcinoma cells in response to acidic bile salts

    PubMed Central

    Hong, Jun; Chen, Zheng; Peng, Dunfa; Zaika, Alexander; Revetta, Frank; Washington, M. Kay; Belkhiri, Abbes; El-Rifai, Wael

    2016-01-01

    Chronic Gastroesophageal Reflux Disease (GERD) is the main risk factor for the development of Barrett's esophagus (BE) and its progression to esophageal adenocarcinoma (EAC). Accordingly, EAC cells are subjected to high levels of oxidative stress and subsequent DNA damage. In this study, we investigated the expression and role of Apurinic/apyrimidinic endonuclease 1 (APE1) protein in promoting cancer cell survival by counteracting the lethal effects of acidic bile salts (ABS)-induced DNA damage. Immunohistochemistry analysis of human tissue samples demonstrated overexpression of APE1 in more than half of EACs (70 of 130), as compared to normal esophagus and non-dysplastic BE samples (P < 0.01). To mimic in vivo conditions, we treated in vitro cell models with a cocktail of ABS. The knockdown of endogenous APE1 in EAC FLO-1 cells significantly increased oxidative DNA damage (P < 0.01) and DNA single- and double-strand breaks (P < 0.01), whereas overexpression of APE1 in EAC OE33 cells reversed these effects. Annexin V/PI staining indicated that the APE1 expression in OE33 cells protects against ABS-induced apoptosis. In contrast, knockdown of endogenous APE1 in FLO-1 cells increased apoptosis under the same conditions. Mechanistic investigations indicated that the pro-survival function of APE1 was associated with the regulation of stress response c-Jun N-terminal protein kinase (JNK) and p38 kinases. Pharmacological inhibition of APE1 base excision repair (BER) function decreased cell survival and enhanced activation of JNK and p38 kinases by ABS. Our findings suggest that constitutive overexpression of APE1 in EAC may be an adaptive pro-survival mechanism that protects against the genotoxic lethal effects of bile reflux episodes. PMID:26934647

  3. Intermediate-sized filaments and specific markers in a human salivary gland adenocarcinoma cell line and its nude mouse tumors.

    PubMed

    Sato, M; Hayashi, Y; Yanagawa, T; Yoshida, H; Yura, Y; Azuma, M; Ueno, A

    1985-08-01

    The adenocarcinoma cell line HSG from human salivary gland, which proliferates in vitro or in nude mice, was examined by the immunoperoxidase method for the expression of three different types of intermediate-sized filaments (IFs) and of specific antigens such as carcinoembryonic antigen, S-100 protein, secretory component, lactoferrin, myosin, tropomyosin, and actin. The cultured HSG cells were found to express three different types of IFs defined by antibodies to keratin, vimentin, and desmin. In HSG cells proliferating in vitro at 34 degrees C and 37 degrees C but not at 39 degrees C, the expression of tropomyosin and carcinoembryonic antigen was observed, although myosin and S-100 protein were not detected. The expressions of actin, lactoferrin, and secretory component were restricted to cultured HSG cells at 39 degrees C and 37 degrees C, respectively. Transplantation of HSG cells into nude mice resulted in the establishment of a nude mouse system with malignant characteristics such as invasion and metastasis. The expression of IFs in the primary tumors was restricted to keratin and desmin IFs, whereas coexpression of keratin, vimentin, and desmin IFs was observed in some neoplastic cells present in the metastatic tumors in regional lymph nodes and lung. In addition, expression of actin, myosin, tropomyosin, and S-100 protein was found in the metastatic tumors, whereas myosin and S-100 protein were not detected in the primary tumors. Moreover, the metastatic tumors were almost occupied by the neoplastic cells with oncocytic changes, although oncocytic change was not found in the cultured HSG cells and their primary tumors. PMID:2410104

  4. NF-{kappa}B signaling is activated and confers resistance to apoptosis in three-dimensionally cultured EGFR-mutant lung adenocarcinoma cells

    SciTech Connect

    Sakuma, Yuji; Yamazaki, Yukiko; Nakamura, Yoshiyasu; Yoshihara, Mitsuyo; Matsukuma, Shoichi; Koizume, Shiro; Miyagi, Yohei

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer EGFR-mutant cells in 3D culture resist EGFR inhibition compared with suspended cells. Black-Right-Pointing-Pointer Degradation of I{kappa}B and activation of NF-{kappa}B are observed in 3D-cultured cells. Black-Right-Pointing-Pointer Inhibiting NF-{kappa}B enhances the efficacy of the EGFR inhibitor in 3D-cultured cells. -- Abstract: Epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma cells in suspension undergo apoptosis to a greater extent than adherent cells in a monolayer when EGFR autophosphorylation is inhibited by EGFR tyrosine kinase inhibitors (TKIs). This suggests that cell adhesion to a culture dish may activate an anti-apoptotic signaling pathway other than the EGFR pathway. Since the microenvironment of cells cultured in a monolayer are substantially different to that of cells existing in three-dimension (3D) in vivo, we assessed whether two EGFR-mutant lung adenocarcinoma cell lines, HCC827 and H1975, were more resistant to EGFR TKI-induced apoptosis when cultured in a 3D extracellular matrix (ECM) as compared with in suspension. The ECM-adherent EGFR-mutant cells in 3D were significantly less sensitive to treatment with WZ4002, an EGFR TKI, than the suspended cells. Further, a marked degradation of I{kappa}B{alpha}, the inhibitor of nuclear factor (NF)-{kappa}B, was observed only in the 3D-cultured cells, leading to an increase in the activation of NF-{kappa}B. Moreover, the inhibition of NF-{kappa}B with pharmacological inhibitors enhanced EGFR TKI-induced apoptosis in 3D-cultured EGFR-mutant cells. These results suggest that inhibition of NF-{kappa}B signaling would render ECM-adherent EGFR-mutant lung adenocarcinoma cells in vivo more susceptible to EGFR TKI-induced cell death.

  5. Invasive mouse gastric adenocarcinomas arising from Lgr5+ stem cells are dependent on crosstalk between the Hedgehog/GLI2 and mTOR pathways

    PubMed Central

    Syu, Li-Jyun; Zhao, Xinyi; Zhang, Yaqing; Grachtchouk, Marina; Demitrack, Elise; Ermilov, Alexandre; Wilbert, Dawn M.; Zheng, Xinlei; Kaatz, Ashley; Greenson, Joel K.; Gumucio, Deborah L.; Merchant, Juanita L.; di Magliano, Marina Pasca; Samuelson, Linda C.; Dlugosz, Andrzej A.

    2016-01-01

    Gastric adenocarcinoma is the third most common cause of cancer-related death worldwide. Here we report a novel, highly-penetrant mouse model of invasive gastric cancer arising from deregulated Hedgehog/Gli2 signaling targeted to Lgr5-expressing stem cells in adult stomach. Tumor development progressed rapidly: three weeks after inducing the Hh pathway oncogene GLI2A, 65% of mice harbored in situ gastric cancer, and an additional 23% of mice had locally invasive tumors. Advanced mouse gastric tumors had multiple features in common with human gastric adenocarcinomas, including characteristic histological changes, expression of RNA and protein markers, and the presence of major inflammatory and stromal cell populations. A subset of tumor cells underwent epithelial-mesenchymal transition, likely mediated by focal activation of canonical Wnt signaling and Snail1 induction. Strikingly, mTOR pathway activation, based on pS6 expression, was robustly activated in mouse gastric adenocarcinomas from the earliest stages of tumor development, and treatment with rapamycin impaired tumor growth. GLI2A-expressing epithelial cells were detected transiently in intestine, which also contains Lgr5+ stem cells, but they did not give rise to epithelial tumors in this organ. These findings establish that deregulated activation of Hedgehog/Gli2 signaling in Lgr5-expressing stem cells is sufficient to drive gastric adenocarcinoma development in mice, identify a critical requirement for mTOR signaling in the pathogenesis of these tumors, and underscore the importance of tissue context in defining stem cell responsiveness to oncogenic stimuli. PMID:26859571

  6. Expansion of quiescent lung adenocarcinoma CD8+ T cells by MUC1-8-mer peptide-T2 cell-β2 microglobulin complexes

    PubMed Central

    ATZIN-MÉNDEZ, J.A.; LÓPEZ-GONZÁLEZ, J.S.; BÁEZ, R.; ARENAS-DEL ANGEL, M.C.; MONTAÑO, L.F.; SILVA-ADAYA, D.; LASCURAIN, R.; GOROCICA, P.

    2016-01-01

    Adoptive immunotherapy requires the isolation of CD8+ T cells specific for tumor-associated antigens, their expansion in vitro and their transfusion to the patient to mediate a therapeutic effect. MUC1 is an important adenocarcinoma antigen immunogenic for T cells. The MUC1-derived SAPDTRPA (MUC1-8-mer) peptide is a potent epitope recognized by CD8+ T cells in murine models. Likewise, the T2 cell line has been used as an antigen-presenting cell to activate CD8+ T cells, but so far MUC1 has not been assessed in this context. We evaluated whether the MUC1-8-mer peptide can be presented by T2 cells to expand CD25+CD8+ T cells isolated from HLA-A2+ lung adenocarcinoma patients with stage III or IV tumors. The results showed that MUC1-8-mer peptide-loaded T2 cells activated CD8+ T cells from cancer HLA-A2+ patients when anti-CD2, anti-CD28 antibodies and IL-2 were added. The percentage of CD25+CD8+ T cells was 3-fold higher than those in the non-stimulated cells (P=0.018). HLA-A2+ patient cells showed a significant difference (2.3-fold higher) in activation status than HLA-A2+ healthy control cells (P=0.04). Moreover, 77.6% of MUC1-8-mer peptide-specific CD8+ T cells proliferated following a second stimulation with MUC1-8-mer peptide-loaded T2 cells after 10 days of cell culture. There were significant differences in the percentage of basal CD25+CD8+ T cells in relation to the cancer stage; this difference disappeared after MUC1-8-mer peptide stimulation. In conclusion, expansion of CD25+CD8+ T cells by MUC1-8 peptide-loaded T2 cells plus costimulatory signals via CD2, CD28 and IL-2 can be useful in adoptive immunotherapy. PMID:26498650

  7. High ROR2 expression in tumor cells and stroma is correlated with poor prognosis in pancreatic ductal adenocarcinoma

    PubMed Central

    Huang, Jianfei; Fan, Xiangjun; Wang, Xudong; Lu, Yuhua; Zhu, Huijun; Wang, Wei; Zhang, Shu; Wang, Zhiwei

    2015-01-01

    RTK-like orphan receptor 2 (ROR2) is overexpressed in several cancers and has tumorigenic activity. However, the expression of ROR2 and its functional and prognostic significance have yet to be evaluated in pancreatic ductal adenocarcinoma (PDAC). Quantitative real-time polymerase chain reaction was used to characterize the expression of ROR2 mRNA in PDAC, corresponding peritumoral tissues, and PDAC cell lines. Immunohistochemical analysis with tissue microarrays was used to evaluate ROR2 expression in PDAC and to investigate the relationship of this expression to clinicopathological factors and prognosis. The expression of ROR2 mRNA and protein was significantly higher in PDAC than in normal pancreatic tissues. High cytoplasmic ROR2 expression in cancer cells was significantly associated with a primary tumor, distant metastasis, and TNM stage, and high stromal ROR2 expression was significantly associated with regional lymph node metastasis and TNM stage. The Kaplan–Meier method and Cox regression analyses showed that high ROR2 expression in tumor cytoplasm or stromal cells was significantly associated with malignant attributes and reduced survival in PDAC. We present strong evidence that ROR2 could be used as an indicator of poor prognosis and could represent a novel therapeutic target for PDAC. PMID:26259918

  8. Histone deacetylase inhibitors and transforming growth factor-beta induce 15-hydroxyprostaglandin dehydrogenase expression in human lung adenocarcinoma cells.

    PubMed

    Tong, Min; Ding, Yunfei; Tai, Hsin-Hsiung

    2006-09-14

    Histone deacetylase (HDAC) inhibitors have been actively exploited as potential anticancer agents. To identify gene targets of HDAC inhibitors, we found that HDAC inhibitors such as sodium butyrate, scriptaid, apicidin and oxamflatin induced the expression of 15-hydroxyprostaglandin dehydrogenase (15-PGDH), a potential cyclooxygenase-2 (COX-2) antagonist and tumor suppressor, in a time and concentration dependent manner in A549 and H1435 lung adenocarcinoma cells. Detailed analyses indicated that HDAC inhibitors activated the 15-PGDH promoter-luciferase reporter construct in transfected A549 cells. A representative HDAC inhibitor, scriptaid, and its negative structural analog control, nullscript, were further evaluated at the chromatin level. Scriptaid but not nullscript induced a significant accumulation of acetylated histones H3 and H4 which were associated with the 15-PGDH promoter as determined by chromatin immunoprecipitation assay. Transforming growth factor-beta1 (TGF-beta1) also induced the expression of 15-PGDH in a time and concentration dependent manner in A549 and H1435 cells. Induction of 15-PGDH expression by TGF-beta1 was synergistically stimulated by the addition of Wnt3A which was inactive by itself. However, combination of TGF-beta and an HDAC inhibitor, scriptaid, only resulted in an additive effect. Together, our results indicate that 15-PGDH is one of the target genes that HDAC inhibitors and TGF-beta may induce to exhibit tumor suppressive effects. PMID:16844092

  9. Cellular responses induced in vitro by pestheic acid, a fungal metabolite, in a gastric adenocarcinoma cell line (PG100).

    PubMed

    Sousa, J M C; Matos, L A; Alcântara, D F A; Ribeiro, H F; Santos, L S; Oliveira, M N; Brito-Junior, L C; Khayat, A S; Guimarães, A C; Cunha, L A; Burbano, R R; Bahia, M O

    2013-01-01

    There is a constant search for new cancer treatments that are less aggressive and economically affordable. In this context, natural products extracted from plants, fungi, and microorganisms are of great interest. Pestheic acid, or dihidromaldoxin, is a chlorinated diphenylic ether extracted from the phytopathogenic fungus Pestalotiopsis guepinii (Amphisphaeriaceae). We assessed the cytotoxic, cytostatic, and genotoxic effects of pestheic acid in a gastric adenocarcinoma cell line (PG100). A decrease in clonogenic survival was observed. Pestheic acid also induced significant increases in both micronucleus and nucleoplasmic bridge frequency. However, we did not observe changes in cell cycle kinetics or apoptosis induction. Reactive oxygen species induced by diphenylic ethers may explain the genotoxicity and mutagenicity of pestheic acid. The absence of repair checkpoints that we observed is probably due to the fact that the PG100 cell line lacks the TP53 gene, which is common in gastric cancers. Even though pestheic acid has had a clear cytotoxic effect, the minimal inhibitory concentration was high, which shows that pestheic acid is not an active anticancer compound under these conditions. PMID:24114206

  10. Inhibitory effects of tetrandrine on epidermal growth factor-induced invasion and migration in HT29 human colorectal adenocarcinoma cells.

    PubMed

    Horng, Chi-Ting; Yang, Jai-Sing; Chiang, Jo-Hua; Lu, Chi-Cheng; Lee, Chiu-Fang; Chiang, Ni-Na; Chen, Fu-An

    2016-01-01

    Tetrandrine has been shown to reduce cancer cell proliferation and to inhibit metastatic effects in multiple cancer models in vitro and in vivo. However, the effects of tetrandrine on the underlying mechanism of HT29 human colorectal adenocarcinoma cell metastasis remain to be fully elucidated. The aim of the present study was focused on tetrandrine‑treated HT29 cells following epidermal growth factor (EGF) treatment, and Transwell, gelatin zymography, gene expression and immunoblotting assays were performed to investigate metastatic effects in vitro. Tetrandrine was observed to dose‑dependently inhibit EGF‑induced HT29 cell invasion and migration, however, no effect on cell viability occurred following exposure to tetradrine between 0.5 and 2 µM. Tetrandrine treatment inhibited the enzymatic activity of matrix metalloprotease (MMP)‑2 and MMP‑9 in a concentration‑dependent manner. The present study also found a reduction in the mRNA expression levels of MMP‑2 and MMP‑9 in the tetrandrine‑treated HT29 cells. Tetrandrine also suppressed the phosphorylation of EGF receptor (EGFR) and its downstream pathway, including phosphoinositide‑dependent kinase 1, phosphatidylinositol 3‑kinase and phosphorylated AKT, suppressing the gene expression of MMP‑2 and MMP‑9. Furthermore, tetrandrine triggered mitogen‑activated protein kinase signaling through the suppressing the activation of phosphorylated extracellular signal‑regulated protein kinase. These data suggested that targeting EGFR signaling and its downstream molecules contributed to the inhibition of EGF‑induced HT29 cell metastasis caused by tetrandrine, eventually leading to a reduction in the mRNA and gelatinase activities of MMP-2 and MMP-9, respectively. PMID:26648313

  11. Celecoxib downregulates CD133 expression through inhibition of the Wnt signaling pathway in colon cancer cells.

    PubMed

    Deng, Yanhong; Su, Qiao; Mo, Jianwen; Fu, Xinhui; Zhang, Yan; Lin, Edward H

    2013-02-01

    CD133-positive cancer stem cells in colon cancer are resistant to conventional chemotherapy. The aim of the present study was to investigate the effect of celecoxib, a COX-2 inhibitor, on CD133 expression in HT29 and DLD1 cells. HT29 and DLD1 cells were treated with celecoxib using different concentrations and duration. CD133 expression was detected by flow cytometry, Western blotting, immunofluorescence, and quantitative real-time PCR. Wnt signaling pathway activity was measured by luciferase assay and gene expression changes were monitored using microarray analysis. HT29 cells showed significantly decreasing levels of CD133 expression with increasing concentrations of or duration of exposure to celecoxib. CD133 mRNA relative expression in HT29 and DLD1 cells also decreased with drug exposure. Furthermore, Wnt activation in HT29 and DLD1 cells decreased with celecoxib treatment. Gene expression microarray showed stemness genes, including Lgr5, Oct4, Prominin-1, Prominin-2, CXCR4, E2F8, CDK-2, were downregulated and differentiation genes, including CEACAM5, GDF, ADFP, ICAM1, were upregulated. Our results show that CD133 expression was downregulated by celecoxib through inhibition of the Wnt signaling pathway, which may be lead to cell differentiation. PMID:23245395

  12. Implications of Targeted Genomic Disruption of β-Catenin in BxPC-3 Pancreatic Adenocarcinoma Cells

    PubMed Central

    Olsen, Petter Angell; Solberg, Nina Therese; Lund, Kaja; Vehus, Tore; Gelazauskaite, Monika; Wilson, Steven Ray; Krauss, Stefan

    2014-01-01

    Pancreatic adenocarcinoma (PA) is among the most aggressive human tumors with an overall 5-year survival rate of <5% and available treatments are only minimal effective. WNT/β-catenin signaling has been identified as one of 12 core signaling pathways that are commonly mutated in PA. To obtain more insight into the role of WNT/β-catenin signaling in PA we established human PA cell lines that are deficient of the central canonical WNT signaling protein β-catenin by using zinc-finger nuclease (ZFN) mediated targeted genomic disruption in the β-catenin gene (CTNNB1). Five individual CTNNB1 gene disrupted clones (BxPC3ΔCTNNB1) were established from a BxPC-3 founder cell line. Despite the complete absence of β-catenin, all clones displayed normal cell cycle distribution profiles, overall normal morphology and no elevated levels of apoptosis although increased doubling times were observed in three of the five BxPC3ΔCTNNB1 clones. This confirms that WNT/β-catenin signaling is not mandatory for long term cell growth and survival in BxPC-3 cells. Despite a normal morphology of the β-catenin deficient cell lines, quantitative proteomic analysis combined with pathway analysis showed a significant down regulation of proteins implied in cell adhesion combined with an up-regulation of plakoglobin. Treatment of BxPC3ΔCTNNB1 cell lines with siRNA for plakoglobin induced morphological changes compatible with a deficiency in the formation of functional cell to cell contacts. In addition, a re-localization of E-cadherin from membranous in untreated to accumulation in cytoplasmatic puncta in plakoglobin siRNA treated BxPC3ΔCTNNB1 cells was observed. In conclusion we describe in β-catenin deficient BxPC-3 cells a rescue function for plakoglobin on cell to cell contacts and maintaining the localization of E-cadherin at the cellular surface, but not on canonical WNT signaling as measured by TFC/LEF mediated transcription. PMID:25536063

  13. In vitro and in vivo studies on antitumor effects of gossypol on human stomach adenocarcinoma (AGS) cell line and MNNG induced experimental gastric cancer

    SciTech Connect

    Gunassekaran, G.R.; Kalpana Deepa Priya, D.; Gayathri, R.; Sakthisekaran, D.

    2011-08-12

    Highlights: {yields} Gossypol is a well known polyphenolic compound used for anticancer studies but we are the first to report that gossypol has antitumor effect on MNNG induced gastric cancer in experimental animal models. {yields} Our study shows that gossypol inhibits the proliferation of AGS (human gastric adenocarcinoma) cell line. {yields} In animal models, gossypol extends the survival of cancer bearing animals and also protects the cells from carcinogenic effect. {yields} So we suggest that gossypol would be a potential chemotherapeutic and chemopreventive agent for gastric cancer. -- Abstract: The present study has evaluated the chemopreventive effects of gossypol on N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced gastric carcinogenesis and on human gastric adenocarcinoma (AGS) cell line. Gossypol, C{sub 30}H{sub 30}O{sub 8}, is a polyphenolic compound that has anti proliferative effect and induces apoptosis in various cancer cells. The aim of this work was to delineate in vivo and in vitro anti-initiating mechanisms of orally administered gossypol in target (stomach) tissues and in human gastric adenocarcinoma (AGS) cell line. In vitro results prove that gossypol has potent cytotoxic effect and inhibit the proliferation of adenocarcinoma (AGS) cell line. In vivo results prove gossypol to be successful in prolonging the survival of MNNG induced cancer bearing animals and in delaying the onset of tumor in animals administrated with gossypol and MNNG simultaneously. Examination of the target (stomach) tissues in sacrificed experimental animals shows that administration of gossypol significantly reduces the level of tumor marker enzyme (carcino embryonic antigen) and pepsin. The level of Nucleic acid contents (DNA and RNA) significantly reduces, and the membrane damage of glycoprotein subsides, in the target tissues of cancer bearing animals, with the administration of gossypol. These data suggest that gossypol may create a beneficial effect in patients

  14. Claudin-18 inhibits cell proliferation and motility mediated by inhibition of phosphorylation of PDK1 and Akt in human lung adenocarcinoma A549 cells.

    PubMed

    Shimobaba, Shun; Taga, Saeko; Akizuki, Risa; Hichino, Asami; Endo, Satoshi; Matsunaga, Toshiyuki; Watanabe, Ryo; Yamaguchi, Masahiko; Yamazaki, Yasuhiro; Sugatani, Junko; Ikari, Akira

    2016-06-01

    Abnormal expression of claudin subtypes has been reported in various cancers. However, the pathological role of each claudin has not been clarified in detail. Claudin-18 was absent in human non-small cell and small cell lung cancers, although it is expressed in normal lung tissues. Here, we examined the effect of claudin-18 expression on the expression of junctional proteins, cell proliferation, and cell motility using human lung adenocarcinoma A549 cells. Real-time PCR and western blotting showed that exogenous expression of claudin-18 had no effect on the expression of junctional proteins including claudin-1, zonula occludens-1 (ZO-1), occludin, and E-cadherin. Claudin-18 was mainly distributed in cell-cell contact areas concomitant with ZO-1. Cell proliferation was significantly decreased at 48 and 72h after seeding of claudin 18-expressing cells. Claudin-18 suppressed cell motility, whereas it increased cell death in anoikis. Claudin-18 decreased phosphorylated (p)-3-phosphoinositide-dependent protein kinase-1 (PDK1) and p-Akt levels without affecting p-epidermal growth factor receptor and p-phosphatidylinositol-3 kinase (PI3K) levels. Furthermore, claudin-18 was bound with PDK1 and suppressed the nuclear localization of PDK1. We suggest that claudin-18 suppresses the abnormal proliferation and motility of lung epithelial cells mediated by inhibition of the PI3K/PDK1/Akt signaling pathway. PMID:26919807

  15. In vitro and in vivo studies on the inhibitory effects of myocardial cell culture medium on growth of a human lung adenocarcinoma cell line, A549

    PubMed Central

    Zheng, Y.; Zhou, J.; Fu, S.Z.; Fan, J.; Wu, J.B.

    2016-01-01

    Background Although the heart is one of the body’s vital organs, with an abundant blood supply, metastasis to the heart is considered rare. In a previous study, we found that the myocardial microenvironment might contain a low molecular weight natural tumour suppressor. The present study was designed to investigate the inhibitory effect of cardiac myocyte–conditioned medium (cmcm) on the growth of A549 human lung adenocarcinoma cells in vitro and in vivo. Methods An mtt assay was used to detect the inhibition ratio with respect to A549 proliferation. Human lung adenocarcinoma cells (A549 cell strain) were transplanted subcutaneously into nude mice to produce tumours. The xenograft tumour growth in mice was observed after selected drug administration. Results After treatment with cmcm and cisplatin (Cis), A549 cell viability significantly declined (p < 0.001). The cell viability in the cmcm and Cis groups were 53.42% ± 3.45% and 58.45% ± 6.39% respectively. Growth of implanted tumour cells in vivo was significantly inhibited in the cmcm group, the group treated with recombinant human adenovirus–p53, and the Cis-treated group compared with a control group. The inhibition rates were 41.44% in the cmcm group, 41.34% in the p53 group, and 64.50% in the Cis group. Lung metastasis capacity was significantly reduced in the presence of cmcm (p < 0.05). Lung metastasis inhibition rates in mice were 56.52% in the cmcm group, 47.83% in the p53 group, and 82.61% in the Cis group. With cmcm, the lives of A549-tumour-bearing mice could be significantly prolonged without any effect on weight loss. Conclusions Use of cmcm has the effect of reducing A549 cell viability, tumour volume, and lung metastasis rate, while prolonging survival duration without severe toxicity. PMID:26966411

  16. Circulating Tumor Cells as a Biomarker of Response to Treatment in Patient-Derived Xenograft Mouse Models of Pancreatic Adenocarcinoma

    PubMed Central

    Torphy, Robert J.; Tignanelli, Christopher J.; Kamande, Joyce W.; Moffitt, Richard A.; Herrera Loeza, Silvia G.; Soper, Steven A.; Yeh, Jen Jen

    2014-01-01

    Circulating tumor cells (CTCs) are cells shed from solid tumors into circulation and have been shown to be prognostic in the setting of metastatic disease. These cells are obtained through a routine blood draw and may serve as an easily accessible marker for monitoring treatment effectiveness. Because of the rapid progression of pancreatic ductal adenocarcinoma (PDAC), early insight into treatment effectiveness may allow for necessary and timely changes in treatment regimens. The objective of this study was to evaluate CTC burden as a biomarker of response to treatment with a oral phosphatidylinositol-3-kinase inhibitor, BKM120, in patient-derived xenograft (PDX) mouse models of PDAC. PDX mice were randomized to receive vehicle or BKM120 treatment for 28 days and CTCs were enumerated from whole blood before and after treatment using a microfluidic chip that selected for EpCAM (epithelial cell adhesion molecule) positive cells. This microfluidic device allowed for the release of captured CTCs and enumeration of these cells via their electrical impedance signatures. Median CTC counts significantly decreased in the BKM120 group from pre- to post-treatment (26.61 to 2.21 CTCs/250 µL, p = 0.0207) while no significant change was observed in the vehicle group (23.26 to 11.89 CTCs/250 µL, p = 0.8081). This reduction in CTC burden in the treatment group correlated with tumor growth inhibition indicating CTC burden is a promising biomarker of response to treatment in preclinical models. Mutant enriched sequencing of isolated CTCs confirmed that they harbored KRAS G12V mutations, identical to the matched tumors. In the long-term, PDX mice are a useful preclinical model for furthering our understanding of CTCs. Clinically, mutational analysis of CTCs and serial monitoring of CTC burden may be used as a minimally invasive approach to predict and monitor treatment response to guide therapeutic regimens. PMID:24586805

  17. Epithelial-to-mesenchymal transition in pancreatic ductal adenocarcinoma: Characterization in a 3D-cell culture model

    PubMed Central

    Gagliano, Nicoletta; Celesti, Giuseppe; Tacchini, Lorenza; Pluchino, Stefano; Sforza, Chiarella; Rasile, Marco; Valerio, Vincenza; Laghi, Luigi; Conte, Vincenzo; Procacci, Patrizia

    2016-01-01

    AIM: To analyze the effect of three-dimensional (3D)-arrangement on the expression of epithelial-to-mesenchymal transition markers in pancreatic adenocarcinoma (PDAC) cells. METHODS: HPAF-II, HPAC, and PL45 PDAC cells were cultured in either 2D-monolayers or 3D-spheroids. Ultrastructure was analyzed by transmission electron microscopy. The expression of E-cadherin, β-catenin, N-cadherin, collagen type I (COL-I), vimentin, α-smooth muscle actin (αSMA), and podoplanin was assayed by confocal microscopy in cells cultured on 12-mm diameter round coverslips and in 3D-spheroids. Gene expression for E-cadherin, Snail, Slug, Twist, Zeb1, and Zeb2 was quantified by real-time PCR. E-cadherin protein level and its electrophoretic pattern were studied by Western blot in cell lysates obtained from cells grown in 2D-monolayers and 3D-spheroids. RESULTS: The E-cadherin/β-catenin complex was expressed in a similar way in plasma membrane cell boundaries in both 2D-monolayers and 3D-spheroids. E-cadherin increased in lysates obtained from 3D-spheroids, while cleavage fragments were more evident in 2D-monolayers. N-cadherin expression was observed in very few PDAC cells grown in 2D-monolayers, but was more evident in 3D-spheroids. Some cells expressing COL-I were observed in 3D-spheroids. Podoplanin, expressed in collectively migrating cells, and αSMA were similarly expressed in both experimental conditions. The concomitant maintenance of the E-cadherin/β-catenin complex at cell boundaries supports the hypothesis of a collective migration for these cells, which is consistent with podoplanin expression. CONCLUSION: We show that a 3D-cell culture model could provide deeper insight into understanding the biology of PDAC and allow for the detection of marked differences in the phenotype of PDAC cells grown in 3D-spheroids. PMID:27182158

  18. Role of ATM in bystander signaling between human monocytes and lung adenocarcinoma cells.

    PubMed

    Ghosh, Somnath; Ghosh, Anu; Krishna, Malini

    2015-12-01

    The response of a cell or tissue to ionizing radiation is mediated by direct damage to cellular components and indirect damage mediated by radiolysis of water. Radiation affects both irradiated cells and the surrounding cells and tissues. The radiation-induced bystander effect is defined by the presence of biological effects in cells that were not themselves in the field of irradiation. To establish the contribution of the bystander effect in the survival of the neighboring cells, lung carcinoma A549 cells were exposed to gamma-irradiation, 2Gy. The medium from the irradiated cells was transferred to non-irradiated A549 cells. Irradiated A549 cells as well as non-irradiated A549 cells cultured in the presence of medium from irradiated cells showed decrease in survival and increase in γ-H2AX and p-ATM foci, indicating a bystander effect. Bystander signaling was also observed between different cell types. Phorbol-12-myristate-13-acetate (PMA)-stimulated and gamma-irradiated U937 (human monocyte) cells induced a bystander response in non-irradiated A549 (lung carcinoma) cells as shown by decreased survival and increased γ-H2AX and p-ATM foci. Non-stimulated and/or irradiated U937 cells did not induce such effects in non-irradiated A549 cells. Since ATM protein was activated in irradiated cells as well as bystander cells, it was of interest to understand its role in bystander effect. Suppression of ATM with siRNA in A549 cells completely inhibited bystander effect in bystander A549 cells. On the other hand suppression of ATM with siRNA in PMA stimulated U937 cells caused only a partial inhibition of bystander effect in bystander A549 cells. These results indicate that apart from ATM, some additional factor may be involved in bystander effect between different cell types. PMID:26653982

  19. Silencing of High Mobility Group Isoform I-C (HMGI-C) Enhances Paclitaxel Chemosensitivity in Breast Adenocarcinoma Cells (MDA-MB-468)

    PubMed Central

    Mansoori, Behzad; Mohammadi, Ali; Goldar, Samira; shanehbandi, Dariush; Mohammadnejad, Leila; Baghbani, Elham; Kazemi, Tohid; Kachalaki, Saeed; Baradaran, Behzad

    2016-01-01

    Purpose: HMGI-C (High Mobility Group protein Isoform I-C) protein is a member of the high-mobility group AT-hook (HMGA) family of small non-histone chromosomal protein that can modulate transcription of an ample number of genes. Genome-wide studies revealed up regulation of the HMGI-C gene in many human cancers. We suggested that HMGI-C might play a critical role in the progression and migration of various tumors. However, the exact role of HMGI-C in breast adenocarcinoma has not been cleared. Methods: The cells were transfected with siRNAs using transfection reagent. Relative HMGI-C mRNA and protein levels were measured by quantitative real-time PCR and Western blotting, respectively. The cytotoxic effects of HMGI-C siRNA, Paclitaxel alone and combination on breast adenocarcinoma cells were determined using MTT assay. The migration after treatment by HMGI-C siRNA, Paclitaxel alone and combination were detected by wound-healing respectively. Results: HMGI-C siRNA significantly reduced both mRNA and protein expression levels in a 48 hours after transfection and dose dependent manner. We observed that the knockdown of HMGI-C led to the significant reduced cell viability and inhibited cells migration in MDA-MB-468 cells in vitro. Conclusion: These results propose that HMGI-C silencing and Paclitaxel treatment alone can inhibit the proliferation and migration significantly, furthermore, synergic effect of HMGI-C siRNA and Paclitaxel showed higher inhibition compared to mono treatment. Taken together, HMGI-C could be used as a promising therapeutic agent in the treatment of human breast adenocarcinoma. Therefore HMGI-C siRNA may be an effective adjuvant in human breast adenocarcinoma. PMID:27478778

  20. Comparison of the Effects of Carbon Ion and Photon Irradiation on the Angiogenic Response in Human Lung Adenocarcinoma Cells

    SciTech Connect

    Kamlah, Florentine; Haenze, Joerg; Arenz, Andrea; Seay, Ulrike; Hasan, Diya; Gottschald, Oana R.; Seeger, Werner; Rose, Frank

    2011-08-01

    Purpose: Radiotherapy resistance is a commonly encountered problem in cancer treatment. In this regard, stabilization of endothelial cells and release of angiogenic factors by cancer cells contribute to this problem. In this study, we used human lung adenocarcinoma (A549) cells to compare the effects of carbon ion and X-ray irradiation on the cells' angiogenic response. Methods and Materials: A549 cells were irradiated with biologically equivalent doses for cell survival of either carbon ions (linear energy transfer, 170 keV/{mu}m; energy of 9.8 MeV/u on target) or X-rays and injected with basement membrane matrix into BALB/c nu/nu mice to generate a plug, allowing quantification of angiogenesis by blood vessel enumeration. The expression of angiogenic factors (VEGF, PlGF, SDF-1, and SCF) was assessed at the mRNA and secreted protein levels by using real-time reverse transcription-PCR and enzyme-linked immunosorbent assay. Signal transduction mediated by stem cell factor (SCF) was assessed by phosphorylation of its receptor c-Kit. For inhibition of SCF/c-Kit signaling, a specific SCF/c-Kit inhibitor (ISCK03) was used. Results: Irradiation of A549 cells with X-rays (6 Gy) but not carbon ions (2 Gy) resulted in a significant increase in blood vessel density (control, 20.71 {+-} 1.55; X-ray, 36.44 {+-} 3.44; carbon ion, 16.33 {+-} 1.03; number per microscopic field). Concordantly, irradiation with X-rays but not with carbon ions increased the expression of SCF and subsequently caused phosphorylation of c-Kit in endothelial cells. ISCK03 treatment of A549 cells irradiated with X-rays (6 Gy) resulted in a significant decrease in blood vessel density (X-ray, 36.44 {+-} 3.44; X-ray and ISCK03, 4.33 {+-} 0.71; number of microscopic field). These data indicate that irradiation of A549 cells with X-rays but not with carbon ions promotes angiogenesis. Conclusions: The present study provides evidence that SCF is an X-ray-induced mediator of angiogenesis in A549 cells, a

  1. Epoxylathyrol Derivatives: Modulation of ABCB1-Mediated Multidrug Resistance in Human Colon Adenocarcinoma and Mouse T-Lymphoma Cells.

    PubMed

    Matos, Ana M; Reis, Mariana; Duarte, Noélia; Spengler, Gabriella; Molnár, Joseph; Ferreira, Maria-José U

    2015-09-25

    Epoxyboetirane A (1), a macrocyclic diterpene that was found to be inactive as an ABCB1 modulator, was submitted to several chemical transformations, aimed at generating a series of compounds with improved multidrug resistance (MDR)-modifying activity. Overall, 23 new derivatives were prepared, in addition to the already reported epoxylathyrol (2) and methoxyboetirol (3). Their anti-MDR potential was assessed through both functional and chemosensitivity assays on resistant human colon adenocarcinoma and human ABCB1-gene transfected L5178Y mouse lymphoma cells. Structure-activity relationship analysis showed that different substitution patterns led to distinct ABCB1 inhibitory activities, although intrinsic cellular characteristics seemed to influence the modulatory behavior. A considerable enhancement in MDR-modifying activity was observed for aromatic compounds in both cell lines, particularly in 3,17-disubstituted esters derived from 3, a Payne-rearranged Michael adduct of 2. All compounds tested were revealed to interact synergistically with doxorubicin, and ATPase inhibition by three representative MDR-modifying compounds was also investigated. On account of its outstanding ABCB1 inhibitory activity at 0.2 μM and overall remarkable bioactive profile, methoxyboetirane B (22) was found to be a new promising lead for MDR-reversing anticancer drug development. PMID:26331763

  2. Effect of salivary gland adenocarcinoma cell-derived alpha-N-acetylgalactosaminidase on the bioactivity of macrophage activating factor.

    PubMed

    Matsuura, Takashi; Uematsu, Takashi; Yamaoka, Minoru; Furusawa, Kiyofumi

    2004-03-01

    The aim of this study was to clarify the effects of alpha-N-acetylgalactosaminidase (alpha-NaGalase) produced by human salivary gland adenocarcinoma (SGA) cells on the bioactivity of macrophage-activating factor (GcMAF). High exo-alpha-NaGalase activity was detected in the SGA cell line HSG. HSG alpha-NaGalase had both exo- and endo-enzyme activities, cleaving the Gal-GalNAc and GalNAc residues linked to Thr/Ser but not releasing the [NeuAc2-6]GalNac residue. Furthermore, GcMAF enzymatically prepared from the Gc protein enhanced the superoxide-generation capacity and phagocytic activity of monocytes/macrophages. However, GcMAF treated with purified alpha-NaGalase did not exhibit these effects. Thus, HSG possesses the capacity to produce larger quantities of alpha-NaGalase, which inactivates GcMAF produced from Gc protein, resulting in reduced phagocytic activity and superoxide-generation capacity of monocytes/macrophages. The present data strongly suggest that HSG alpha-NaGalase acts as an immunodeficiency factor in cancer patients. PMID:14767536

  3. Patients with pancreatic adenocarcinoma exhibit elevated levels of myeloid-derived suppressor cells upon progression of disease

    PubMed Central

    Markowitz, Joseph; Brooks, Taylor R.; Duggan, Megan C.; Paul, Bonnie K.; Pan, Xueliang; Wei, Lai; Abrams, Zachary; Luedke, Eric; Lesinski, Gregory B.; Mundy-Bosse, Bethany; Bekaii-Saab, Tanios

    2015-01-01

    Elevated levels of myeloid-derived suppressor cells (MDSCs) induced by tumor-derived factors are associated with inhibition of immune responses in patients with gastrointestinal malignancies. We hypothesized that pro-MDSC cytokines and levels of MDSC in the peripheral blood would be elevated in pancreatic adenocarcinoma patients with progressive disease. Peripheral blood mononuclear cells (PBMCs) were isolated from 16 pancreatic cancer patients undergoing chemotherapy and phenotyped for MDSC using a five antigen panel (CD33, HLA-DR, CD11b, CD14, CD15). Patients with stable disease had significantly lower MDSC levels in the peripheral blood than those with progressive disease (1.41 ± 1.12 vs. 5.14 ± 4.58 %, p = 0.013, Wilcoxon test). A cutoff of 2.5 % MDSC identified patients with progressive disease. Patients with ECOG performance status ≥2 had a weaker association with increased levels of MDSC. Plasma was obtained from 15 chemonaive patients, 13 patients undergoing chemotherapy and 9 normal donors. Increases in the levels of pro-MDSC cytokines were observed for pancreatic cancer patients versus controls, and the pro-MDSC cytokine IL-6 was increased in those patients undergoing chemotherapy. This study suggests that MDSC in peripheral blood may be a predictive biomarker of chemotherapy failure in pancreatic cancer patients. PMID:25305035

  4. Conjugation of chlorambucil with GSH by GST purified from human colon adenocarcinoma cells and its inhibition by plant polyphenols.

    PubMed

    Zhang, Kai; Wong, Kim Ping; Chow, Pierce

    2003-04-25

    Chlorambucil (CMB) combines with glutathione (GSH) spontaneously in vitro to form monochloromonoglutathionyl CMB (MG-CMB). This was identified and quantified by an HPLC-UV method. Glutathione S-transferase (GST) purified from human colon adenocarcinoma cells increased the formation of the conjugate significantly. The GST-mediated conjugation, represented by the difference between total and spontaneous conjugation showed Michaelis-Menten kinetics with apparent Km and Vmax values of 0.2 mM and 75.8 nmol/min/mg for CMB and 5.2 mM and 127.0 nmol/min/mg for GSH respectively. Unexpectedly, we found in our study that both the spontaneous and the enzymatic conjugation of chlorambucil with GSH were affected markedly by a change in pH from 6.0 to 8.0. The optimum for the enzymatic conjugation was about 7.0, above which the spontaneous conjugation increased rapidly, while the enzymatic conjugation became lower. The plant polyphenols namely tannic acid, butein, quercetin, morin, 2-hydroxychalcone and 2'-hydroxychalcone at 40 microM inhibited the GST-mediated conjugation of CMB with GSH by 38 to 62%. Their action in this respect may contribute to sensitisation of tumour cells to anticancer drugs. PMID:12672508

  5. Scaffold-Free Coculture Spheroids of Human Colonic Adenocarcinoma Cells and Normal Colonic Fibroblasts Promote Tumorigenicity in Nude Mice123

    PubMed Central

    Park, Jong-il; Lee, Jisu; Kwon, Ju-Lee; Park, Hong-Bum; Lee, Su-Yel; Kim, Ji-Yeon; Sung, Jaekye; Kim, Jin Man; Song, Kyu Sang; Kim, Kyung-Hee

    2016-01-01

    The aim of this study was to form a scaffold-free coculture spheroid model of colonic adenocarcinoma cells (CACs) and normal colonic fibroblasts (NCFs) and to use the spheroids to investigate the role of NCFs in the tumorigenicity of CACs in nude mice. We analysed three-dimensional (3D) scaffold-free coculture spheroids of CACs and NCFs. CAC Matrigel invasion assays and tumorigenicity assays in nude mice were performed to examine the effect of NCFs on CAC invasive behaviour and tumorigenicity in 3D spheroids. We investigated the expression pattern of fibroblast activation protein-α (FAP-α) by immunohistochemical staining. CAC monocultures did not form densely-packed 3D spheroids, whereas cocultured CACs and NCFs formed 3D spheroids. The 3D coculture spheroids seeded on a Matrigel extracellular matrix showed higher CAC invasiveness compared to CACs alone or CACs and NCFs in suspension. 3D spheroids injected into nude mice generated more and faster-growing tumors compared to CACs alone or mixed suspensions consisting of CACs and NCFs. FAP-α was expressed in NCFs-CACs cocultures and xenograft tumors, whereas monocultures of NCFs or CACs were negative for FAP-α expression. Our findings provide evidence that the interaction between CACs and NCFs is essential for the tumorigenicity of cancer cells as well as for tumor propagation. PMID:26947885

  6. Cancer-initiating cells derived from human rectal adenocarcinoma tissues carry mesenchymal phenotypes and resist drug therapies.

    PubMed

    Fan, C-W; Chen, T; Shang, Y-N; Gu, Y-Z; Zhang, S-L; Lu, R; OuYang, S-R; Zhou, X; Li, Y; Meng, W-T; Hu, J-K; Lu, Y; Sun, X-F; Bu, H; Zhou, Z-G; Mo, X-M

    2013-01-01

    Accumulating evidence indicates that cancer-initiating cells (CICs) are responsible for cancer initiation, relapse, and metastasis. Colorectal carcinoma (CRC) is typically classified into proximal colon, distal colon, and rectal cancer. The gradual changes in CRC molecular features within the bowel may have considerable implications in colon and rectal CICs. Unfortunately, limited information is available on CICs derived from rectal cancer, although colon CICs have been described. Here we identified rectal CICs (R-CICs) that possess differentiation potential in tumors derived from patients with rectal adenocarcinoma. The R-CICs carried both CD44 and CD54 surface markers, while R-CICs and their immediate progenies carried potential epithelial-mesenchymal transition characteristics. These R-CICs generated tumors similar to their tumor of origin when injected into immunodeficient mice, differentiated into rectal epithelial cells in vitro, and were capable of self-renewal both in vitro and in vivo. More importantly, subpopulations of R-CICs resisted both 5-fluorouracil/calcium folinate/oxaliplatin (FolFox) and cetuximab treatment, which are the most common therapeutic regimens used for patients with advanced or metastatic rectal cancer. Thus, the identification, expansion, and properties of R-CICs provide an ideal cellular model to further investigate tumor progression and determine therapeutic resistance in these patients. PMID:24091671

  7. Hypoxia Inducible Factor 1 (HIF-1) Recruits Macrophage to Activate Pancreatic Stellate Cells in Pancreatic Ductal Adenocarcinoma

    PubMed Central

    Li, Na; Li, Yang; Li, Zengxun; Huang, Chongbiao; Yang, Yanhui; Lang, Mingxiao; Cao, Junli; Jiang, Wenna; Xu, Yu; Dong, Jie; Ren, He

    2016-01-01

    Hypoxia inducible factor 1 (HIF-1) is a transcription factor composed of two subunits, namely, HIF-1α and HIF-1β, in which HIF-1β is constitutively expressed. HIF-1 upregulates several hypoxia-responsive proteins, including angiogenesis factors, glycolysis solution enzymes, and cell survival proteins. HIF-1 is also associated with the degree of inflammation in the tumor region, but the exact mechanism remains unclear. This study aims to identify the molecular mechanism of recruiting monocytes/macrophages by HIF-1α in pancreatic ductal adenocarcinoma (PDAC) and the effects of macrophages on pancreatic stellate cells (PSCs). Immunohistochemistry (IHC) was performed for cluster of differentiation 68 (CD68), HIF-1α, and chemical chemokines 2 (CCL2). Western blot, real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR), chromatin immunoprecipitation assay, and The Cancer Genome Atlas (TCGA) were used to verify the correlation between HIF-1α and CCL2 at protein and nucleic acid levels. Monocytes/macrophages were co-cultured with PSCs to observe their interaction. Samples showed significant correlation between CD68 and HIF-1α (t-test, p < 0.05). HIF-1α recruited monocytes/macrophages by promoting CCL2 secretion. Moreover, macrophages could accelerate the activation of PSCs. HIF-1α might promote inflammation and fibrosis of PDAC through CCL2 secretion, which may provide a novel target to treat PDAC patients. PMID:27271610

  8. Cinnamomum verum component 2-methoxycinnamaldehyde: a novel antiproliferative drug inducing cell death through targeting both topoisomerase I and II in human colorectal adenocarcinoma COLO 205 cells

    PubMed Central

    Tsai, Kuen-daw; Cherng, Jonathan; Liu, Yi-Heng; Chen, Ta-Wei; Wong, Ho-Yiu; Yang, Shu-mei; Chou, Kuo-Shen; Cherng, Jaw-Ming

    2016-01-01

    Background Cinnamomum verum is used to manufacture the spice cinnamon. In addition, the plant has been used as a Chinese herbal medication. Methods We investigated the antiproliferative effect of 2-methoxycinnamaldehyde (2-MCA), a constituent of the cortex of the plant, and the molecular biomarkers associated with tumorigenesis in human colorectal adenocarcinoma COLO 205 cells. Specifically, cell viability was evaluated by colorimetric assay; apoptosis was determined by flow cytometry and morphological analysis with bright field, acridine orange, and neutral red stainings, as well as comet assay; topoisomerase I activity was determined by assay based upon DNA relaxation and topoisomerase II by DNA relaxation plus decatentation of kinetoplast DNA; lysosomal vacuolation and volume of acidic compartments (VACs) were determined by neutral red staining. Results The results demonstrate that 2-MCA inhibited proliferation and induced apoptosis as implicated by mitochondrial membrane potential (ΔΨm) loss, activation of both caspase-3 and -9, increase of annexin V+PI+ cells, as well as morphological characteristics of apoptosis. Furthermore, 2-MCA also induced lysosomal vacuolation with elevated VAC, cytotoxicity, and inhibitions of topoisomerase I as well as II activities. Additional study demonstrated the antiproliferative effect of 2-MCA found in a nude mice model. Conclusions Our data implicate that the antiproliferative activity of 2-MCA in vitro involved downregulation of cell growth markers, both topoisomerase I and II, and upregulation of pro-apoptotic molecules, associated with increased lysosomal vacuolation. In vivo 2-MCA reduced the tumor burden that could have significant clinical impact. Indeed, similar effects were found in other tested cell lines, including human hepatocellular carcinoma SK-Hep-1 and Hep 3B, lung adenocarcinoma A549 and squamous cell carcinoma NCI-H520, and T-lymphoblastic MOLT-3 (results not shown). Our data implicate that 2-MCA could be a

  9. Map2k4 Functions as a Tumor Suppressor in Lung Adenocarcinoma and Inhibits Tumor Cell Invasion by Decreasing Peroxisome Proliferator-Activated Receptor γ2 Expression ▿

    PubMed Central

    Ahn, Young-Ho; Yang, Yanan; Gibbons, Don L.; Creighton, Chad J.; Yang, Fei; Wistuba, Ignacio I.; Lin, Wei; Thilaganathan, Nishan; Alvarez, Cristina A.; Roybal, Jonathon; Goldsmith, Elizabeth J.; Tournier, Cathy; Kurie, Jonathan M.

    2011-01-01

    MAP2K4 encodes a dual-specificity kinase (mitogen-activated protein kinase kinase 4, or MKK4) that is mutated in a variety of human malignancies, but the biochemical properties of the mutant kinases and their roles in tumorigenesis have not been fully elucidated. Here we showed that 8 out of 11 cancer-associated MAP2K4 mutations reduce MKK4 protein stability or impair its kinase activity. On the basis of findings from bioinformatic studies on human cancer cell lines with homozygous MAP2K4 loss, we posited that MKK4 functions as a tumor suppressor in lung adenocarcinomas that develop in mice owing to expression of mutant Kras and Tp53. Conditional Map2k4 inactivation in the bronchial epithelium of mice had no discernible effect alone but increased the multiplicity and accelerated the growth of incipient lung neoplasias induced by oncogenic Kras. MKK4 suppressed the invasion and metastasis of Kras-Tp53-mutant lung adenocarcinoma cells. MKK4 deficiency increased peroxisomal proliferator-activated receptor γ2 (PPARγ2) expression through noncanonical MKK4 substrates, and PPARγ2 enhanced tumor cell invasion. We conclude that Map2k4 functions as a tumor suppressor in lung adenocarcinoma and inhibits tumor cell invasion by decreasing PPARγ2 levels. PMID:21896780

  10. 17-AAG suppresses growth and invasion of lung adenocarcinoma cells via regulation of the LATS1/YAP pathway

    PubMed Central

    Ye, Xiang-Yun; Luo, Qing-Quan; Xu, Yun-Hua; Tang, Nai-Wang; Niu, Xiao-Min; Li, Zi-Ming; Shen, Sheng-Ping; Lu, Shun; Chen, Zhi-Wei

    2015-01-01

    The large tumour suppressor 1 (LATS1) signalling network has been proved to be an essential regulator within the cell, participating in multiple cellular phenotypes. However, it is unclear concerning the clinical significance of LATS1 and the regulatory mechanisms of 17-Allylamino-17- demethoxygeldanamycin (17-AAG) in lung adenocarcinoma (LAC). The aim of the present study was to investigate the correlation of LATS1 and yes-associated protein (YAP) expression with clinicopathological characteristics in LAC patients, and the effects of 17-AAG on biological behaviours of LAC cells. Subcutaneous LAC tumour models were further established to observe the tumour growth in nude mice. The results showed that the positive expression of LATS1 was significantly lowered (26.7% versus 68.0%, P < 0.001), while that of YAP was elevated (76.0% versus 56.0%, P + 0.03) in LAC tissues compared to the adjacent non-cancerous tissues; LAST1 expression was negatively correlated with YAP expression (r + 0.432, P < 0.001) and lymphatic invasion of the tumour (P + 0.015). In addition, 17-AAG inhibited proliferation and invasion, and induced cell apoptosis and cycle arrest in LAC cells together with increased expression of E-cadherin and p-LATS1, and decreased expression of YAP and connective tissue growth factor. Tumour volumes and weight were much smaller in 17-AAG-treated groups than those in untreated group (P < 0.01). Taken together, our findings indicate that decreased expression of LATS1 is associated with lymphatic invasion of LAC, and 17-AAG suppresses growth and invasion of LAC cells via regulation of the LATS1/YAP pathway in vitro and in vivo, suggesting that we may provide a promising therapeutic strategy for the treatment of human LAC. PMID:25712415

  11. Drug membrane transporters and CYP3A4 are affected by hypericin, hyperforin or aristoforin in colon adenocarcinoma cells.

    PubMed

    Šemeláková, M; Jendželovský, R; Fedoročko, P

    2016-07-01

    Our previous results have shown that the combination of hypericin-mediated photodynamic therapy (HY-PDT) at sub-optimal dose with hyperforin (HP) (compounds of Hypericum sp.), or its stable derivative aristoforin (AR) stimulates generation of reactive oxygen species (ROS) leading to antitumour activity. This enhanced oxidative stress evoked the need for an explanation for HY accumulation in colon cancer cells pretreated with HP or AR. Generally, the therapeutic efficacy of chemotherapeutics is limited by drug resistance related to the overexpression of drug efflux transporters in tumour cells. Therefore, the impact of non-activated hypericin (HY), HY-PDT, HP and AR on cell membrane transporter systems (Multidrug resistance-associated protein 1-MRP1/ABCC1, Multidrug resistance-associated protein 2-MRP2/ABCC2, Breast cancer resistance protein - BCRP/ABCG2, P-glycoprotein-P-gp/ABCC1) and cytochrome P450 3A4 (CYP3A4) was evaluated. The different effects of the three compounds on their expression, protein level and activity was determined under specific PDT light (T0+, T6+) or dark conditions (T0- T6-). We found that HP or AR treatment affected the protein levels of MRP2 and P-gp, whereas HP decreased MRP2 and P-gp expression mostly in the T0+ and T6+ conditions, while AR decreased MRP2 in T0- and T6+. Moreover, HY-PDT treatment induced the expression of MRP1. Our data demonstrate that HP or AR treatment in light or dark PDT conditions had an inhibitory effect on the activity of individual membrane transport proteins and significantly decreased CYP3A4 activity in HT-29 cells. We found that HP or AR significantly affected intracellular accumulation of HY in HT-29 colon adenocarcinoma cells. These results suggest that HY, HP and AR might affect the efficiency of anti-cancer drugs, through interaction with membrane transporters and CYP3A4. PMID:27261575

  12. SIRT 1 Overexpression is Associated with Metastasis of Pancreatic Ductal Adenocarcinoma (PDAC) and Promotes Migration and Growth of PDAC Cells.

    PubMed

    Li, Siqin; Hong, Hua; Lv, Huicheng; Wu, Guozhu; Wang, Zhigang

    2016-01-01

    BACKGROUND SIRT 1, as a class III histone deacetylase (HDAC), is implicated in the initiation and progression of malignancies. However, the association of SIRT 1 with tumorigenesis or progression of pancreatic ductal adenocarcinoma (PDAC) is not clear. MATERIAL AND METHODS In our study we investigated SIRT 1 expression in PDAC samples and evaluated the association of SIRT 1 level with the clinical and pathological characteristics of PDAC patients. We investigated the role of SIRT 1 in the migration and growth of PDAC PANC-1 or BxPC-3 cells using gain-of-function and loss-of-function approach. RESULTS We demonstrated that SIRT 1 mRNA level was significantly promoted in intra-tumor tissues compared to peri-tumor tissues of PDAC; and SIRT 1 overexpression was markedly associated with distant or lymph node (LN) metastasis of these PDAC tissues. Moreover, the in vitro wound healing assay demonstrated that SIRT 1 overexpression with lentivirus vector markedly promoted the migration of PANC-1 or BxPC-3 cells, whereas SIRT 1 knockdown using SIRT 1 specific siRNA transfection significantly inhibited the migration of PDAC cells. The colony forming assay confirmed SIRT 1 promotion of the growth of PANC-1 or BxPC-3 cells. CONCLUSIONS In summary, SIRT 1 overexpression is significantly associated with metastasis of PDAC, and overexpressed SIRT 1 plays an important role in pancreatic cancer cell migration and growth. Our data warrants further studies on SIRT 1 as a novel chemotherapeutic target in PDAC. PMID:27170223

  13. Chromosome mis-segregation and cytokinesis failure in trisomic human cells

    PubMed Central

    Nicholson, Joshua M; Macedo, Joana C; Mattingly, Aaron J; Wangsa, Darawalee; Camps, Jordi; Lima, Vera; Gomes, Ana M; Dória, Sofia; Ried, Thomas; Logarinho, Elsa; Cimini, Daniela

    2015-01-01

    Cancer cells display aneuploid karyotypes and typically mis-segregate chromosomes at high rates, a phenotype referred to as chromosomal instability (CIN). To test the effects of aneuploidy on chromosome segregation and other mitotic phenotypes we used the colorectal cancer cell line DLD1 (2n = 46) and two variants with trisomy 7 or 13 (DLD1+7 and DLD1+13), as well as euploid and trisomy 13 amniocytes (AF and AF+13). We found that trisomic cells displayed higher rates of chromosome mis-segregation compared to their euploid counterparts. Furthermore, cells with trisomy 13 displayed a distinctive cytokinesis failure phenotype. We showed that up-regulation of SPG20 expression, brought about by trisomy 13 in DLD1+13 and AF+13 cells, is sufficient for the cytokinesis failure phenotype. Overall, our study shows that aneuploidy can induce chromosome mis-segregation. Moreover, we identified a trisomy 13-specific mitotic phenotype that is driven by up-regulation of a gene encoded on the aneuploid chromosome. DOI: http://dx.doi.org/10.7554/eLife.05068.001 PMID:25942454

  14. Deoxycholic acid induces the overexpression of intestinal mucin, MUC2, via NF-kB signaling pathway in human esophageal adenocarcinoma cells

    PubMed Central

    Wu, JianTao; Gong, Jun; Geng, Juan; Song, YinXue

    2008-01-01

    Background Mucin alterations are a common feature of esophageal neoplasia, and alterations in MUC2 mucin have been associated with tumor progression in the esophagus. Bile acids have been linked to esophageal adenocarcinoma and mucin secretion, but their effects on mucin gene expression in human esophageal adenocarcinoma cells is unknown. Methods Human esophageal adenocarcinoma cells were treated 18 hours with 50–300 μM deoxycholic acid, chenodeoxycholic acid, or taurocholic acid. MUC2 transcription was assayed using a MUC2 promoter reporter luciferase construct and MUC2 protein was assayed by Western blot analysis. Transcription Nuclear factor-κB activity was measured using a Nuclear factor-κB reporter construct and confirmed by Western blot analysis for Nuclear factor-κB p65. Results MUC2 transcription and MUC2 protein expression were increased four to five fold by bile acids in a time and dose-dependent manner with no effect on cell viability. Nuclear factor-κB activity was also increased. Treatment with the putative chemopreventive agent aspirin, which decreased Nuclear factor-κB activity, also decreased MUC2 transcription. Nuclear factor-κB p65 siRNA decreased MUC2 transcription, confirming the significance of Nuclear factor-κB in MUC2 induction by deoxycholic acid. Calphostin C, a specific inhibitor of protein kinase C (PKC), greatly decreased bile acid induced MUC2 transcription and Nuclear factor-κB activity, whereas inhibitors of MAP kinase had no effect. Conclusion Deoxycholic acid induced MUC2 overexpression in human esophageal adenocarcinoma cells by activation of Nuclear factor-κB transcription through a process involving PKC-dependent but not PKA, independent of activation of MAP kinase. PMID:19014523

  15. Molecular crosstalk between apoptosis and autophagy induced by a novel 2-methoxyestradiol analogue in cervical adenocarcinoma cells

    PubMed Central

    2013-01-01

    Background 2-Methoxyestradiol has been shown to induce both autophagy and apoptosis in various carcinogenic cell lines. Although a promising anti-cancer agent, it has poor bioavailability and rapid in vivo metabolism which decreases its efficiency. In order to improve 2-methoxyestradiol’s anti-proliferative properties, a novel 2-methoxyestradiol analogue, 2-ethyl-3-O-sulphamoyl-estra-1,3,5 (10)16-tetraene (ESE-16), was previously in silico-designed in our laboratory. This study investigated ESE-16 for its anti-proliferative potential on a cervical adenocarcinoma cell (HeLa) cell line. Additionally, the possible intracellular crosstalk mechanisms between the two types of cell death were investigated. Methods and results HeLa cells exposed to 0.5 μM ESE-16 for 24 hours showed morphological evidence of both apoptotic and autophagic death pathways as assessed by polarization-optical transmitted light differential interference contrast microscopy, fluorescent microscopy and transmission electron microscopy. Flow cytometric cyclin B1 quantification revealed induction of programmed cell death after halting cell cycle progression in metaphase. Confocal microscopy demonstrated that ESE-16 caused microtubule fragmentation. Flow cytometric analysis of cell cycle progression and phosphatidylserine flip determination confirmed induction of apoptosis. Moreover, an increase in aggresome formation and microtubule-associated protein light chain, LC3, was demonstrated indicative of autophagy. Both caspase 8 and 3 were upregulated in a spectrophotometric analysis, indicating the involvement of the extrinsic pathway of apoptotic induction. Conclusions We conclude that the novel in silico-designed compound, ESE-16, exerts its anti-proliferative effect on the tumorigenic human epithelial cervical (HeLa) cells by sequentially targeting microtubule integrity, resulting in a metaphase block, causing induction of both autophagic and apoptotic cell death via a crosstalk mechanism that

  16. Rho Kinase ROCK2 Mediates Acid-Induced NADPH Oxidase NOX5-S Expression in Human Esophageal Adenocarcinoma Cells

    PubMed Central

    Cao, Weibiao

    2016-01-01

    Mechanisms of the progression from Barrett’s esophagus (BE) to esophageal adenocarcinoma (EA) are not fully understood. We have shown that NOX5-S may be involved in this progression. However, how acid upregulates NOX5-S is not well known. We found that acid-induced increase in NOX5-S expression was significantly decreased by the Rho kinase (ROCK) inhibitor Y27632 in BE mucosal biopsies and FLO-1 EA cells. In addition, acid treatment significantly increased the Rho kinase activity in FLO-1 cells. The acid-induced increase in NOX5-S expression and H2O2 production was significantly decreased by knockdown of Rho kinase ROCK2, but not by knockdown of ROCK1. Conversely, the overexpression of the constitutively active ROCK2, but not the constitutively active ROCK1, significantly enhanced the NOX5-S expression and H2O2 production. Moreover, the acid-induced increase in Rho kinase activity and in NOX5-S mRNA expression was blocked by the removal of calcium in both FLO-1 and OE33 cells. The calcium ionophore A23187 significantly increased the Rho kinase activity and NOX5-S mRNA expression. We conclude that acid-induced increase in NOX5-S expression and H2O2 production may depend on the activation of ROCK2, but not ROCK1, in EA cells. The acid-induced activation of Rho kinase may be mediated by the intracellular calcium increase. It is possible that persistent acid reflux present in BE patients may increase the intracellular calcium, activate ROCK2 and thereby upregulate NOX5-S. High levels of reactive oxygen species derived from NOX5-S may cause DNA damage and thereby contribute to the progression from BE to EA. PMID:26901778

  17. Long non-coding RNA HNF1A-AS1 regulates proliferation and migration in oesophageal adenocarcinoma cells

    PubMed Central

    Yang, Xue; Song, Jee Hoon; Cheng, Yulan; Wu, Wenjing; Bhagat, Tushar; Yu, Yiting; Abraham, John M; Ibrahim, Sariat; Ravich, William; Roland, Bani Chander; Khashab, Mouen; Singh, Vikesh K; Shin, Eun Ji; Yang, Xiao; Verma, Amit K; Meltzer, Stephen J; Mori, Yuriko

    2015-01-01

    Objectives Long non-coding RNAs (IncRNA) have been shown to play important roles in the development and progression of cancer. However, functional IncRNAs and their downstream mechanisms are largely unknown in the molecular pathogenesis of oesophageal adenocarcinoma (EAC) and its progression. Design IncRNAs that are abnormally upregulated in EACs were identified by RNA-sequencing analysis, followed by quantitative RT-PCR (qRTPCR) validation using tissues from 25 EAC patients. Cell biological assays in combination with small interfering RNA-mediated knockdown were performed in order to probe the functional relevance of these IncRNAs. Results We discovered that a IncRNA, HNF1A-AS1, is markedly upregulated in human primary EACs relative to their corresponding normal oesophageal tissues (mean fold change 10.6, p<0.01). We further discovered that HNF1A-AS1 knockdown significantly inhibited cell proliferation and anchorage-independent growth, suppressed S-phase entry, and inhibited cell migration and invasion in multiple in vitro EAC models (p<0.05). A gene ontological analysis revealed that HNF1A-AS1 knockdown preferentially affected genes that are linked to assembly of chromatin and the nucleosome, a mechanism essential to cell cycle progression. The well known cancer-related IncRNA, H19, was the gene most markedly inhibited by HNF1A-AS1 knockdown. Consistent to this finding, there was a significant positive correlation between HNF1A-AS1 and H19 expression in primary EACs (p<0.01). Conclusions We have discovered abnormal upregulation of a IncRNA, HNF1A-AS1, in human EAC. Our findings suggest that dysregulation of HNF1A-AS1 participates in oesophageal tumorigenesis, and that this participation may be mediated, at least in part, by modulation of chromatin and nucleosome assembly as well as by H19 induction. PMID:24000294

  18. β, β-Dimethylacrylshikonin induces mitochondria-dependent apoptosis of human lung adenocarcinoma cells in vitro via p38 pathway activation

    PubMed Central

    Wang, Hai-bing; Ma, Xiao-qiong

    2015-01-01

    Aim: β, β-Dimethylacrylshikonin (DMAS) is an anticancer compound extracted from the roots of Lithospermum erythrorhizon. In the present study, we investigated the effects of DMAS on human lung adenocarcinoma cells in vitro and explored the mechanisms of its anti-cancer action. Methods: Human lung adenocarcinoma A549 cells were tested. Cell viability was assessed using an MTT assay, and cell apoptosis was evaluated with flow cytometry and DAPI staining. The expression of the related proteins was detected using Western blotting. The mitochondrial membrane potential was measured using a JC-1 kit, and subcellular distribution of cytochrome c was analyzed using immunofluorescence staining. Results: Treatment of A549 cells with DMAS suppressed the cell viability in dose- and time-dependent manners (the IC50 value was 14.22 and 10.61 μmol/L, respectively, at 24 and 48 h). DMAS (7.5, 10, and 15 μmol/L) dose-dependently induced apoptosis, down-regulated cIAP-2 and XIAP expression, and up-regulated Bax and Bak expression in the cells. Furthermore, DMAS resulted in loss of mitochondrial membrane potential and release of cytochrome c in the cells, and activated caspase-9, caspase-8, and caspase-3, and subsequently cleaved PARP, which was abolished by pretreatment with Z-VAD-FMK, a pan-caspase inhibitor. DMAS induced sustained p38 phosphorylation in the cells, while pretreatment with SB203580, a specific p38 inhibitor, blocked DMAS-induced p38 activation and apoptosis. Conclusion: DMAS inhibits the growth of human lung adenocarcinoma A549 cells in vitro via activation of p38 signaling pathway. PMID:25434989

  19. Chlorpyrifos promotes colorectal adenocarcinoma H508 cell growth through the activation of EGFR/ERK1/2 signaling pathway but not cholinergic pathway.

    PubMed

    Suriyo, Tawit; Tachachartvanich, Phum; Visitnonthachai, Daranee; Watcharasit, Piyajit; Satayavivad, Jutamaad

    2015-12-01

    Aside from the effects on neuronal cholinergic system, epidemiological studies suggest an association between chlorpyrifos (CPF) exposure and cancer risk. This in vitro study examined the effects of CPF and its toxic metabolite, chlorpyrifos oxon (CPF-O), on the growth of human colorectal adenocarcinoma H508, colorectal adenocarcinoma HT-29, normal colon epithelial CCD841, liver hepatocellular carcinoma HepG2, and normal liver hepatocyte THLE-3 cells. The results showed that CPF (5-100 μM) concentration-dependently increased viability of H508 and CCD841 cells in serum-free conditions. This increasing trend was not found in HT-29, HepG2 and THLE-3 cells. In contrast, CPF-O (50-100 μM) reduced the viability of all cell lines. Cell cycle analysis showed the induction of cells in the S phase, and EdU incorporation assay revealed the induction of DNA synthesis in CPF-treated H508 cells indicating that CPF promotes cell cycle progression. Despite the observation of acetylcholinesterase activity inhibition and reactive oxygen species (ROS) generation, atropine (a non-selective muscarinic acetylcholine receptor antagonist) and N-acetylcysteine (a potent antioxidant) failed to inhibit the growth-promoting effect of CPF. CPF increased the phosphorylation of epidermal growth factor receptor (EGFR) and its downstream effector, extracellular signal regulated kinase (ERK1/2), in H508 cells. AG-1478 (a specific EGFR tyrosine kinase inhibitor) and U0126 (a specific MEK inhibitor) completely mitigated the growth promoting effect of CPF. Altogether, these results suggest that EGFR/ERK1/2 signaling pathway but not cholinergic pathway involves in CPF-induced colorectal adenocarcinoma H508 cell growth. PMID:26514924

  20. Taxol induces concentration-dependent apoptotic and paraptosis-like cell death in human lung adenocarcinoma (ASTC-a-1) cells.

    PubMed

    Guo, Wen-Jing; Chen, Tong-Sheng; Wang, Xiao-Ping; Chen, Rong

    2010-01-01

    Taxol (Paclitaxel) is an important natural product for the treatment of solid tumors such as ovarian, breast, non-small-cell lung tumors, and some head and neck carcinomas. Different concentrations of taxol trigger distinct effects on cell death forms. In present study, cell counting kit (CCK-8) assay, confocal fluorescence microscopy imaging, flow cytometry (FCM) and western blotting (WB) analysis were used to analyze the characteristics of cell death induced by low (35 nM) and high (70 microM) concentration of taxol respectively in human lung adenocarcinoma (ASTC-a-1) cells. Our results showed that low concentration of taxol induced cell death dominantly in apoptotic fashion associated with nuclear fragmentation, protein synthesis, phosphatidylserine (PS) externalization, G2/M cell cycle arrest, Bax translocation into mitochondria and caspase-3 activation, whereas high concentration of this drug induced significant cytoplasm vacuolization, mitochondria swelling and paraptosis-like cell death form without protein synthesis that is necessary for paraptosis. Although the mechanism of high concentration of taxol-induced paraptosis-like cell death has not been clear, this finding might have a potential implication for cancer therapy, especially for apoptosis-resistant cancer. PMID:20714087

  1. Epithelial cell adhesion molecule aptamer conjugated PEG-PLGA nanopolymersomes for targeted delivery of doxorubicin to human breast adenocarcinoma cell line in vitro.

    PubMed

    Alibolandi, Mona; Ramezani, Mohammad; Sadeghi, Fatemeh; Abnous, Khalil; Hadizadeh, Farzin

    2015-02-01

    Targeted delivery of anti-cancer agents exclusively to tumor cells introduces an attractive strategy because it increases the therapeutic index compared with untargeted drugs. Aptamer conjugated nanoparticles that can specifically bind to the proteins on a tumor cell surface are capable nanoscale delivery systems for enhancing cellular uptake of chemotherapeutic agents. The epithelial cell adhesion molecule (EpCAM) as a cancer stem cell marker emerges as a versatile target for aptamer-based cancer therapy due to its high expression level in various adenocarcinoma cell lines and its very low expression level in normal cells. We developed EpCAM-targeted PEG-PLGA nanopolymersomes by covalently coupling the EpCAM aptamer to the surface of nanopolymersomes loaded with the anticancer agent doxorubicin via pH gradient method. The results indicated that doxorubicin was entrapped in PEG-PLGA nanopolymersomes with encapsulation efficiency and loading content of 91.25±4.27% and 7.3±0.34%, respectively. Over a period of 5 days, up to 8% of the DOX was released through this system. The doxorubicin-loaded aptamer conjugated nanopolymersomes exhibited efficient cell uptake and internalization, and were significantly more cytotoxic (P<0.01) toward EpCAM-positive tumor cells (MCF-7) than non-targeted nanopolymersomes. Our data suggest that EpCAM-targeted nanopolymersomes will lead to an improved therapeutic index of doxorubicin to EpCAM positive cancer cells. PMID:25529433

  2. Short-Chain Fatty Acids Stimulate Angiopoietin-Like 4 Synthesis in Human Colon Adenocarcinoma Cells by Activating Peroxisome Proliferator-Activated Receptor γ

    PubMed Central

    Alex, Sheril; Lange, Katja; Amolo, Tom; Grinstead, Jeffrey S.; Haakonsson, Anders K.; Szalowska, Ewa; Koppen, Arjen; Mudde, Karin; Haenen, Daniëlle; Al-Lahham, Sa'ad; Roelofsen, Han; Houtman, René; van der Burg, Bart; Mandrup, Susanne; Bonvin, Alexandre M. J. J.; Kalkhoven, Eric; Müller, Michael; Hooiveld, Guido J.

    2013-01-01

    Angiopoietin-like protein 4 (ANGPTL4/FIAF) has been proposed as a circulating mediator between the gut microbiota and fat storage. Here, we show that transcription and secretion of ANGPTL4 in human T84 and HT29 colon adenocarcinoma cells is highly induced by physiological concentrations of short-chain fatty acids (SCFA). SCFA induce ANGPTL4 by activating the nuclear receptor peroxisome proliferator activated receptor γ (PPARγ), as demonstrated using PPARγ antagonist, PPARγ knockdown, and transactivation assays, which show activation of PPARγ but not PPARα and PPARδ by SCFA. At concentrations required for PPARγ activation and ANGPTL4 induction in colon adenocarcinoma cells, SCFA do not stimulate PPARγ in mouse 3T3-L1 and human SGBS adipocytes, suggesting that SCFA act as selective PPARγ modulators (SPPARM), which is supported by coactivator peptide recruitment assay and structural modeling. Consistent with the notion that fermentation leads to PPAR activation in vivo, feeding mice a diet rich in inulin induced PPAR target genes and pathways in the colon. We conclude that (i) SCFA potently stimulate ANGPTL4 synthesis in human colon adenocarcinoma cells and (ii) SCFA transactivate and bind to PPARγ. Our data point to activation of PPARs as a novel mechanism of gene regulation by SCFA in the colon, in addition to other mechanisms of action of SCFA. PMID:23339868

  3. Differentiating bronchioloalveolar carcinoma from adenocarcinoma.

    PubMed

    Schraufnagel, D; Peloquin, A; Paré, J A; Wang, N S

    1982-01-01

    The recognition of bronchioloalveolar carcinoma (BAC) as distinct from adenocarcinoma of the lung, is controversial. Using strict pathologic criteria, 43 consecutive patients with BAC were matched by year of diagnosis and compared with a similar number of patients with adenocarcinoma, and for contrast, with those with squamous and oat cell carcinoma of the lung. We demonstrated that BAC is not sex related, and is not as smoking related as the other neoplasms. Unlike epidermoid carcinoma, BAC does not show a predilection for those occupations requiring manual labor. Also, BAC is frequently distinguishable radiologically from the other three by being smaller and peripheral. A pleural tag and an air bronchogram in a mass are rather specific, and BAC is less likely to have large airway involvement and adenopathy. The percentage of patients who were free of tumor after 2 yr was greater in the BAC group than in the others, but the overall survival rate between the BAC group and the adenocarcinoma group was not. Based on inter-observer variability, there is some overlap pathologically between these 2 groups. However, when the overlap between the adenocarcinoma and the BAC groups is compared with that between the adenocarcinoma and the squamous cell carcinoma groups, the difference is not significant. We conclude that BAC should be considered a distinct clinical entity. PMID:6278997

  4. Extracts of Opuntia humifusa Fruits Inhibit the Growth of AGS Human Gastric Adenocarcinoma Cells

    PubMed Central

    Hahm, Sahng-Wook; Park, Jieun; Park, Kun-Young; Son, Yong-Suk; Han, Hyungchul

    2016-01-01

    Opuntia humifusa (OHF) has been used as a nutraceutical source for the prevention of chronic diseases. In the present study, the inhibitory effects of ethyl acetate extracts of OHF on the proliferation of AGS human gastric cancer cells and the mode of action were investigated. To elucidate the antiproliferative mechanisms of OHF in cancer cells, the expression of genes related to apoptosis and cell cycle arrest were determined with real-time PCR and western blot. The cytotoxic effect of OHF on AGS cells was observed in a dose-dependent manner. Exposure to OHF (100 μg/mL) significantly induced (P<0.05) the G1 phase cell cycle arrest. Additionally, the apoptotic cell population was greater (P<0.05) in OHF (200 μg/mL) treated AGS cells when compared to the control. The expression of genes associated with cell cycle progression (Cdk4, Cdk2, and cyclin E) was significantly downregulated (P<0.05) by the OHF treatment. Moreover, the expression of Bax and caspase-3 in OHF treated cells was higher (P<0.05) than in the control. These findings suggest that OHF induces the G1 phase cell cycle arrest and activation of mitochondria-mediated apoptosis pathway in AGS human gastric cancer cells. PMID:27069903

  5. New Alkyl Phloroglucinol Derivatives from Rhus trichocarpa Roots and Their Cytotoxic Effects on Human Gastric Adenocarcinoma AGS Cells.

    PubMed

    Lee, Ki Yong; Choi, Ji Hoon; Kim, Hyeon Woo; Yan, Xi-Tao; Shin, Hyeji; Jeon, Young Ho; Sung, Sang Hyun

    2016-05-01

    The phytochemical investigation of the roots of Rhus trichocarpa led to this isolation of five new alkyl phloroglucinol derivatives, characterized as (Z)-15-hydroxy-1-(2,4,6-trihydroxyphenyl)-9-octadecen-1-one (named trichocarpol A, 1), (Z)-15-hydroxy-1-(2,6-dihydroxy-4-methoxyphenyl)-9-octadecen-1-one (named trichocarpol B, 2), (Z)-17-hydroxy-1-(2,4,6-trihydroxyphenyl)-9-octadecen-1-one (named trichocarpol C, 3), (Z)-18-hydroxy-1-(2,4,6-trihydroxyphenyl)-9-octadecen-1-one (named trichocarpol D, 4), and (9Z,12Z)-18-hydroxy-1-(2,4,6-trihydroxyphenyl)-9,12-octadecadien-1-one (named trichocarpol E, 5), together with a known compound, 4-(2,6-dihydroxy-4-methoxyphenyl)-4-oxobutanoic acid (6). In vitro cytotoxic activity of compounds 1-6 was evaluated in the human gastric adenocarcinoma AGS cell line and compounds 1-5 showed significant cytotoxicity. Our results indicate that R. trichocarpa, especially the alkyl phloroglucinol derivatives in it, is a good source of promising natural agents for the treatment of gastric cancer. PMID:26845711

  6. A CDK4/6 inhibitor enhances cytotoxicity of paclitaxel in lung adenocarcinoma cells harboring mutant KRAS as well as wild-type KRAS.

    PubMed

    Zhang, Xiang-Hua; Cheng, Ying; Shin, Jung-Young; Kim, Jeong-Oh; Oh, Ji-Eun; Kang, Jin-Hyoung

    2013-07-01

    The KRAS gain-of-function mutation confers intrinsic resistance to targeted anti-cancer drugs and cytotoxic chemotherapeutic agents, ultimately leading to treatment failure. KRAS mutation frequency in lung adenocarcinoma is ~15-30%. Novel therapeutic strategies should be developed to improve clinical outcomes in these cases. Deregulation of the p16/cyclin-dependent kinase (CDK) 4/retinoblastoma (Rb) pathway is frequently observed in various cancers and it represents an attractive therapeutic target. We compared the anti-tumor efficacy of genetically knocked-down CDK4 and a pharmacological inhibitor of CDK4/6, CINK4, in KRAS mutation-positive lung adenocarcinoma cells. We also investigated changes in anti-proliferative activity and downstream molecules with these treatments in combination with paclitaxel. CDK4 short interfering RNA (siRNA) significantly increased paclitaxel sensitivity in KRAS mutation-positive H23 cells. CINK4 demonstrated concentration- and time-dependent anti-proliferative activity in 5 adenocarcinoma lines. CINK4 induced G 1 arrest by downregulating the p16/cyclin D1/Rb pathway, resulting in apoptotic induction via increased expression of cleaved caspase3, cleaved PARP and Bax. Combined CINK4 and paclitaxel produced synergistic anti-proliferative activity and increased apoptosis through reduced cyclin D1 and Bcl-2 in KRAS mutation-positive cancer cells. These data suggest CDK4 is a promising target for development of anti-cancer drugs and CINK4 combined with paclitaxel may be an effective therapeutic strategy for enhancing anti-tumor efficacy in KRAS mutation-positive lung adenocarcinoma. PMID:23792647

  7. Effects of Fatty Acids on Benzo[a]pyrene Uptake and Metabolism in Human Lung Adenocarcinoma A549 Cells

    PubMed Central

    Barhoumi, Rola; Mouneimne, Youssef; Chapkin, Robert S.; Burghardt, Robert C.

    2014-01-01

    Dietary supplementation with natural chemoprotective agents is receiving considerable attention because of health benefits and lack of toxicity. In recent in vivo and in vitro experimental studies, diets rich in n-3 polyunsaturated fatty acids have been shown to provide significant anti-tumor action. In this investigation, the effects of control fatty acids (oleic acid (OA), linoleic acid (LA)) and n-3 PUFA, e.g., docosahexaenoic acid (DHA) on the uptake and metabolism of the carcinogenic polycyclic aromatic hydrocarbon, benzo[a]pyrene (BaP) was investigated in A549 cells, a human adenocarcinoma alveolar basal epithelial cell line. A549 cells activate BaP through the cytochrome P450 enzyme system to form reactive metabolites, a few of which covalently bind to DNA and proteins. Therefore, multiphoton microscopy spectral analysis combined with linear unmixing was used to identify the parent compound and BaP metabolites formed in cells, in the presence and absence of fatty acids. The relative abundance of select metabolites was associated with altered P450 activity as determined using ethoxyresorufin-O-deethylase activity in cells cultured in the presence of BSA-conjugated fatty acids. In addition, the parent compound within cellular membranes increases significantly in the presence of each of the fatty acids, with the greatest accumulation observed following DHA treatment. DHA treated cells exhibit significantly lower pyrene-like metabolites indicative of lower adducts including DNA adducts compared to control BSA, OA or LA treated cells. Further, DHA reduced the abundance of the proximate carcinogen BaP 7,8-dihydrodiol and the 3-hydroxybenzo[a]pyene metabolites compared to other treatments. The significant changes in BaP metabolites in DHA treated cells may be mediated by the effects on the physicochemical properties of the membrane known to affect enzyme activity related to phase I and phase II metabolism. In summary, DHA is a highly bioactive chemo

  8. The cytotoxic effects of titanium oxide and zinc oxide nanoparticles oh Human Cervical Adenocarcinoma cell membranes

    NASA Astrophysics Data System (ADS)

    Mironava, Tatsiana; Applebaum, Ariella; Applebaum, Eliana; Guterman, Shoshana; Applebaum, Kayla; Grossman, Daniel; Gordon, Chris; Brink, Peter; Wang, H. Z.; Rafailovich, Miriam

    2013-03-01

    The importance of titanium dioxide (TiO2) and zinc oxide (ZnO), inorganic metal oxides nanoparticles (NPs) stems from their ubiquitous applications in personal care products, solar cells and food whitening agents. Hence, these NPs come in direct contact with the skin, digestive tracts and are absorbed into human tissues. Currently, TiO2 and ZnO are considered safe commercial ingredients by the material safety data sheets with no reported evidence of carcinogenicity or ecotoxicity, and do not classify either NP as a toxic substance. This study examined the direct effects of TiO2 and ZnO on HeLa cells, a human cervical adenocarcinonma cell line, and their membrane mechanics. The whole cell patch-clamp technique was used in addition to immunohistochemistry staining, TEM and atomic force microscopy (AFM). Additionally, we examined the effects of dexamethasone (DXM), a glucocorticoid steroid known to have an effect on cell membrane mechanics. Overall, TiO2 and ZnO seemed to have an adverse effect on cell membrane mechanics by effecting cell proliferation, altering cellular structure, decreasing cell-cell adhesion, activating existing ion channels, increasing membrane permeability, and possibly disrupting cell signaling.

  9. Effect of fucoidan from Turbinaria conoides on human lung adenocarcinoma epithelial (A549) cells.

    PubMed

    Alwarsamy, Madhavarani; Gooneratne, Ravi; Ravichandran, Ramanibai

    2016-11-01

    Fucoidan was purified from seaweed, Turbinaria conoides. Isolated fragments were characterized with NMR ((13)C, (1)H), Gas Chromatography-Mass Spectronomy (GC-MS) and HPLC analysis. The autohydrolysate of fucoidans consisted of sulfated fuco-oligosaccharides having the backbone of α-(1, 3)-linked fuco-pyranose derivatives and minor components of galactose, glucose, mannose and xylose sugars. Fucoidan induced a dose-dependent reduction in cell survival of lung cancer A549 cells by MTT assay (GI50, 75μg/mL). However, it was not cytotoxic to a non-tumorigenic human keratinocyte cell line of skin tissue (HaCaT) (GI50>1.0mg/mL). The apoptotic cells in fucoidan-treated A549 cells were visualized by laser confocal microscopy and cell cycle analysis showed induction of G0/G1 phase arrest of the cell progression cycle. Further, CFSE labeling and flow cytometry highlighted that fucoidan significantly (P<0.05) inhibited the proliferation rate of A549 cells by up to 2-fold compared with the control cells. It is concluded that fucoidan has the potential to act as an anti-proliferative agent on lung carcinoma (A549) cells. PMID:27516266

  10. Altered expression of glycosaminoglycans in metastatic 13762NF rat mammary adenocarcinoma cells

    SciTech Connect

    Steck, P.A.; Cheong, P.H.; Nakajima, M.; Yung, W.K.A.; Moser, R.P.; Nicolson, G.L.

    1987-02-24

    A difference in the expression and metabolism of (/sup 35/S)sulfated glycosaminoglycans between rat mammary tumor cells derived from a primary tumor and those from its metastatic lesions has been observed. Cells from the primary tumor possessed about equal quantities of chondroitin sulfate and heparan sulfate on their cell surfaces but released fourfold more chondroitin sulfate than heparan sulfate into their medium. In contrast, cells from distal metastatic lesions expressed approximately 5 times more heparan sulfate than chondroitin sulfate in both medium and cell surface fractions. This was observed to be the result of differential synthesis of the glycosaminoglycans and not of major structural alterations of the individual glycosaminoglycans. The degree of sulfation and size of heparan sulfate were similar for all cells examined. However, chondroitin sulfate, observed to be only chondroitin 4-sulfate, from the metastases-derived cells had a smaller average molecular weight on gel filtration chromatography and showed a decreased quantity of sulfated disaccharides upon degradation with chondroitin ABC lyase compared to the primary tumor derived cells. Major qualitative or quantitative alterations were not observed for hyaluronic acid among the various 13762NF cells. The metabolism of newly synthesized sulfated glycosaminoglycans was also different between cells from primary tumor and metastases. A pulse-chase kinetics study demonstrated that both heparan sulfate and chondroitin sulfate were degraded by the metastases-derived cells, whereas the primary tumor derived cells degraded only heparan sulfate and degraded it at a slower rate. These results suggested that altered glycosaminoglycan expression and metabolism may be associated with the metastatic process in 13762NF rat mammary tumor cells.

  11. Role of Rad52 in fractionated irradiation induced signaling in A549 lung adenocarcinoma cells.

    PubMed

    Ghosh, Somnath; Krishna, Malini

    2012-01-01

    The effect of fractionated doses of γ-irradiation (2Gy per fraction over 5 days), as delivered in cancer radiotherapy, was compared with acute doses of 10 and 2Gy, in A549 cells. A549 cells were found to be relatively more radioresistant if the 10Gy dose was delivered as a fractionated regimen. Microarray analysis showed upregulation of DNA repair and cell cycle arrest genes in the cells exposed to fractionated irradiation. There was intense activation of DNA repair pathway-associated genes (DNA-PK, ATM, Rad52, MLH1 and BRCA1), efficient DNA repair and phospho-p53 was found to be translocated to the nucleus of A549 cells exposed to fractionated irradiation. MCF-7 cells responded differently in fractionated regimen. Silencing of the Rad52 gene in fractionated group of A549 cells made the cells radiosensitive. The above result indicated increased radioresistance in A549 cells due to the activation of Rad52 gene. PMID:22001234

  12. Valproic acid, an inhibitor of class I histone deacetylases, reverses acquired Erlotinib-resistance of lung adenocarcinoma cells: a Connectivity Mapping analysis and an experimental study.

    PubMed

    Zhuo, Wenlei; Zhang, Liang; Zhu, Yi; Xie, Qichao; Zhu, Bo; Chen, Zhengtang

    2015-01-01

    Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI) have been used as a powerful targeting therapeutic agent for treatment of lung adenocarcinoma for years. Nevertheless, the efficacy of TKI was hampered by the appearance of acquired TKI-resistance. In the present study, we aimed to search, predict, and screen the agents that can overcome the acquired TKI-resistance of lung adenocarcinoma by using the expression profiles of differentially expressed genes (DEGs) and Connectivity map (CMAP). The profiles of DEGs were obtained by searching GEO microarray database, and then, they were submitted to CMAP for analysis in order to predict and screen the agent that might reverse the TKI-resistance of lung cancer cells. Next, the effects of the selected agent on TKI-resistant cancer cells were tested and the possible signaling pathways were also evaluated. As a result, valproic acid (VPA) was selected. Then, we used a low-concentration of VPA that has little effect on the cell growth for analysis. Interestingly, the results showed that treatment with a combination of VPA and Erlotinib significantly led to a decrease in cell viability and an increase in cell apoptosis for TKI-resistant HCC827-ER cells, relative to those treated with VPA or Erlotinib alone. Further experiments confirmed that inhibition of MAPK and AKT might be involved in this process. Analyzing the DEGs through the CMAP is a good strategy for exploitation of anti-tumor agents. VPA might markedly increase the sensitivity of TKI-resistant lung adenocarcinoma cells to Erlotinib, thus reversing the acquired TKI-resistance of cancer cells and raising VPA as a potential agent for TKI-resistant lung cancer therapy. PMID:26328250

  13. Epithelial cell adhesion molecule aptamer functionalized PLGA-lecithin-curcumin-PEG nanoparticles for targeted drug delivery to human colorectal adenocarcinoma cells

    PubMed Central

    Li, Lei; Xiang, Dongxi; Shigdar, Sarah; Yang, Wenrong; Li, Qiong; Lin, Jia; Liu, Kexin; Duan, Wei

    2014-01-01

    To improve the efficacy of drug delivery, active targeted nanotechnology-based drug delivery systems are gaining considerable attention as they have the potential to reduce side effects, minimize toxicity, and improve efficacy of anticancer treatment. In this work CUR-NPs (curcumin-loaded lipid-polymer-lecithin hybrid nanoparticles) were synthesized and functionalized with ribonucleic acid (RNA) Aptamers (Apts) against epithelial cell adhesion molecule (EpCAM) for targeted delivery to colorectal adenocarcinoma cells. These CUR-encapsulated bioconjugates (Apt-CUR-NPs) were characterized for particle size, zeta potential, drug encapsulation, stability, and release. The in vitro specific cell binding, cellular uptake, and cytotoxicity of Apt-CUR-NPs were also studied. The Apt-CUR-NP bioconjugates exhibited increased binding to HT29 colon cancer cells and enhancement in cellular uptake when compared to CUR-NPs functionalized with a control Apt (P<0.01). Furthermore, a substantial improvement in cytotoxicity was achieved toward HT29 cells with Apt-CUR-NP bioconjugates. The encapsulation of CUR in Apt-CUR-NPs resulted in the increased bioavailability of delivered CUR over a period of 24 hours compared to that of free CUR in vivo. These results show that the EpCAM Apt-functionalized CUR-NPs enhance the targeting and drug delivery of CUR to colorectal cancer cells. Further development of CUR-encapsulated, nanosized carriers will lead to improved targeted delivery of novel chemotherapeutic agents to colorectal cancer cells. PMID:24591829

  14. NF-{kappa}B p50 promotes tumor cell invasion through negative regulation of invasion suppressor gene CRMP-1 in human lung adenocarcinoma cells

    SciTech Connect

    Gao Ming; Yeh, P.Y.; Lu, Y.-S.; Chang, W.C.; Kuo, M.-L.; Cheng, A.-L.

    2008-11-14

    Lung adenocarcinoma Cl1-5 cells were selected from parental Cl1-0 cells based on their high metastatic potential. In a previous study, CRMP-1, an invasion suppressor gene, was shown to be suppressed in Cl1-5 cells. However, the regulation of CRMP-1 expression has not been explored. In this study, we showed nuclear factor-{kappa}B controls CRMP-1 expression. The electromobility shift assay showed that while Cl1-0 cells exhibited low NF-{kappa}B activity in response to TNF-{alpha}, an abundance of basal and TNF-{alpha}-induced NF-{kappa}B-DNA complex was detected in Cl1-5 cells. Supershift-coupled EMSA and Western blotting of nuclear proteins, however, revealed p50 protein, but not classic p65/p50 heterodimer in the complex. ChIP and EMSA demonstrated that p50 binds to a {kappa}B site residing between -1753 and -1743 of the CRMP-1 promoter region. Transfection of antisense p50 gene into Cl1-5 cells increased the CRMP-1 protein level and decreased the invasive activity of Cl1-5 cells.

  15. Glycosaminoglycan synthesis by subpopulations of epithelial cells from a mammary adenocarcinoma

    SciTech Connect

    Angello, J.C.; Danielson, K.G.; Anderson, L.W.; Hosick, H.L.

    1982-06-01

    Glycosaminoglycan synthesis by two subpopulations of a mouse mammary tumor cell line was compared. The two sublines express distinctly different growth characteristics in vitro and in vivo which indicate differences in growth regulation. Newly made glycosaminoglycans were recovered from the culture media, the cell surfaces, and residual cellular material. The cell population which grows more aggressively in vivo (+SA subline, a subline that grows in soft agarose) incorporated about 8 times more (/sup 14/C)glucosamine per cell into total glycosaminoglycans than did the slower-growing population (-SA subline, which does not grow in soft agarose). Appropriate control experiments indicated that the apparent difference in rates of synthesis was not due to discrepancies in glucosamine uptake. The main residual cellular molecule labeled was heparan sulfate, but the predominant molecule at the cell surface and in the culture fluid was hyaluronic acid. Overall, +SA cells synthesized more hyaluronic acid and -SA cells synthesized more heparan sulfate; in both cell populations, these two molecules accounted for about 90% of total glycosaminoglycans produced.

  16. Bax translocation into mitochondria during dihydroartemisinin(DHA)-induced apoptosis in human lung adenocarcinoma cells

    NASA Astrophysics Data System (ADS)

    Lu, Ying-ying; Chen, Tong-sheng; Qu, Jun-Le

    2009-02-01

    Dihydroartemisinin (DHA), a semi-synthetic derivative of artemisinin, isolated from the traditional Chinese herb Artemisia annua, has been shown to possess promising anticancer activities and induce cancer cell death through apoptotic pathways. However, the molecular mechanisms are not well understood. This study was investigated in human lung adenocarconoma ASTC-a-1 cell line and aimed to determine whether the apoptotic process was mediated by Bax activation and translocation during DHA-induced apoptosis. In this study, DHA induced a time-dependent apoptotic cell death, which was assayed by Cell Counting Kit (CCK-8) and Hoechst 33258 staining. Detection of Bax aggregation and translocation to mitochondria was observed in living cells which were co-transfected with GFP-Bax and Dsred-mito plasmid using confocal fluorescence microscope technique. Overall, these results demonstrated that Bax activation and translocation to mitochondria occurred during DHA-induced apoptosis.

  17. Aged garlic extract inhibits 1,2-dimethylhydrazine-induced colon tumor development by suppressing cell proliferation.

    PubMed

    Jikihara, Hiroshi; Qi, Guangying; Nozoe, Koichiro; Hirokawa, Mayumi; Sato, Hiromi; Sugihara, Yuka; Shimamoto, Fumio

    2015-03-01

    Garlic and its constituents are reported to have a preventive effect against colorectal cancer in animal models. Aged garlic extract (AGE), which is produced by natural extraction from fresh garlic for more than 10 months in aqueous ethanol, also has reputed chemopreventive effects on colon carcinogenesis, but has never been studied for its effects on colon cancer development. We investigated the antitumor effects of AGE in rats with 1,2-dimethylhydrazine (DMH)-induced carcinogenesis, and the mechanism of AGE in human colon cancer cell proliferation. F344 rats randomly divided into three groups were administered DMH (20 mg/kg weight) subcutaneously once a week for 8 weeks in a basal diet. After the last injection, one group of rats was then moved onto a basal diet containing 3% wt/wt AGE, and rats were sacrificed at 8 or 31 weeks. The number of aberrant crypt foci (ACF), histological type of tumor and proliferative activity of the tumor lesions were analyzed by macroscopic, pathological and immunohistochemical methods. DLD-1 human colon cancer cells were utilized to investigate the effect of AGE on anti-cell proliferation. AGE decreased the number of ACF but had no effect on gross tumor pathology. AGE showed a lower number of adenoma and adenocarcinoma lesions by histological analysis. Immunohistochemical staining indicated that AGE suppressed the proliferative activity in adenoma and adenocarcinoma lesions, but showed no effect on normal colon mucosa. Moreover, we demonstrated that AGE delayed cell cycle progression by downregulating cyclin B1 and cdk1 expression via inactivation of NF-κB in the human colorectal cancer cells but did not induce apoptosis. These findings suggest that AGE has an antitumor effect through suppression of cell proliferation. PMID:25573280

  18. Paranuaclear E-cadherin in gastric adenocarcinoma.

    PubMed

    Carpenter, Philip M; Al-Kuran, Rasha A; Theuer, Charles P

    2002-12-01

    Decreased E-cadherin expression permits dissociation and widespread dissemination of gastric adenocarcinoma cells. We studied the relationship between paranuclear E-cadherin distribution and the histopathologic characteristics of gastric adenocarcinomas. E-cadherin immunostains of 173 gastric adenocarcinoma sections revealed paranuclear; punctate to vesicular staining in 18% (16/87) of the intestinal-type adenocarcinomas, 30% (17/56) of the diffuse-type adenocarcinomas, and 30% (9/30) of the mired adenocarcinomas. These data suggest that in some gastric adenocarcinomas, there is a defect in transport of E-cadherin to the cell surface, which may prevent intercellular adhesion and encourage dissemination. Of 34 cancers with paranuclear E-cadherin staining, 20 (59%) had paranuclear staining within the nonneoplastic epithelium, but only 22.0% of 100 carcinomas with absent or membranous E-cadherin staining were accompanied by morphologically benign epithelium with paranuclear E-cadherin. In surface epithelium, paranuclear E-cadherin staining colocalized with Griffonia simplicifolia lectin II in the Golgi apparatus. The presence of paranuclear E-cadherin in cancer-associated benign epithelium suggests that the alteration in the E-cadherin molecule responsible for the paranuclear distribution may be an early change in gastric adenocarcinoma progression. PMID:12472282

  19. Targeting Cellular Metabolism Chemosensitizes the Doxorubicin-Resistant Human Breast Adenocarcinoma Cells.

    PubMed

    Ma, Shulan; Jia, Rongfei; Li, Dongju; Shen, Bo

    2015-01-01

    Metabolic energy preferentially produced by glycolysis was an advantageous metabolic phenotype of cancer cells. It is also an essential contributor to the progression of multidrug resistance in cancer cells. By developing human breast cancer MCF-7 cells resistant to doxorubicin (DOX) (MCF-7/MDR cells), the effects and mechanisms of 2-deoxy-D-glucose (2DG), a glucose analogue, on reversing multidrug resistance were investigated. 2DG significantly inhibited the viability of MCF-7/MDR cells and enhanced DOX-induced apoptosis by upregulating protein expression of AMPKα, P53, and caspase-3. The study demonstrated that energy restriction induced by 2DG was relevant to the synergistic effect of 2DG and DOX. The proteins of multidrug gene (the MDR-related protein, MRP1) and P-glycoprotein (P-gp) in MCF-7/MDR cells were downregulated after exposure to 2DG, accompanied with the suppression of the activity of ATP-dependent drug-efflux pump and transmembrane transporter, increasing the intracellular accumulation of DOX to reverse the chemoresistance in multidrug cancer cells. PMID:26558272

  20. Anticancer Effects of Sinulariolide-Conjugated Hyaluronan Nanoparticles on Lung Adenocarcinoma Cells.

    PubMed

    Hsiao, Kuan Yin; Wu, Yi-Jhen; Liu, Zi Nong; Chuang, Chin Wen; Huang, Han Hsiang; Kuo, Shyh Ming

    2016-01-01

    Lung cancer is one of the most clinically challenging malignant diseases worldwide. Sinulariolide (SNL), extracted from the farmed coral species Sinularia flexibilis, has been used for suppressing malignant cells. For developing anticancer therapeutic agents, we aimed to find an alternative for non-small cell lung cancer treatment by using SNL as the target drug. We investigated the SNL bioactivity on A549 lung cancer cells by conjugating SNL with hyaluronan nanoparticles to form HA/SNL aggregates by using a high-voltage electrostatic field system. SNL was toxic on A549 cells with an IC50 of 75 µg/mL. The anticancer effects of HA/SNL aggregates were assessed through cell viability assay, apoptosis assays, cell cycle analyses, and western blotting. The size of HA/SNL aggregates was approximately 33-77 nm in diameter with a thin continuous layer after aggregating numerous HA nanoparticles. Flow cytometric analysis revealed that the HA/SNL aggregate-induced apoptosis was more effective at a lower SNL dose of 25 µg/mL than pure SNL. Western blotting indicated that caspases-3, -8, and -9 and Bcl-xL and Bax played crucial roles in the apoptotic signal transduction pathway. In summary, HA/SNL aggregates exerted stronger anticancer effects on A549 cells than did pure SNL via mitochondria-related pathways. PMID:26950100

  1. Cryptosporidium parvum induces an endoplasmic stress response in the intestinal adenocarcinoma HCT-8 cell line.

    PubMed

    Morada, Mary; Pendyala, Lakhsmi; Wu, Gang; Merali, Salim; Yarlett, Nigel

    2013-10-18

    Invasion of human intestinal epithelial cells (HCT-8) by Cryptosporidium parvum resulted in a rapid induction of host cell spermidine/spermine N(1)-acetyltransferase 1 (hSSAT-1) mRNA, causing a 4-fold increase in SSAT-1 enzyme activity after 24 h of infection. In contrast, host cell SSAT-2, spermine oxidase, and acetylpolyamine oxidase (hAPAO) remained unchanged during this period. Intracellular polyamine levels of C. parvum-infected human epithelial cells were determined, and it was found that spermidine remained unchanged and putrescine increased by 2.5-fold after 15 h and then decreased after 24 h, whereas spermine decreased by 3.9-fold after 15 h. Concomitant with these changes, N(1)-acetylspermine and N(1)-acetylspermidine both increased by 115- and 24-fold, respectively. Increased SSAT-1 has previously been shown to be involved in the endoplasmic reticulum (ER) stress response leading to apoptosis. Several stress response proteins were increased in HCT-8 cells infected with C. parvum, including calreticulin, a major calcium-binding chaperone in the ER; GRP78/BiP, a prosurvival ER chaperone; and Nrf2, a transcription factor that binds to antioxidant response elements, thus activating them. However, poly(ADP-ribose) polymerase, a protein involved in DNA repair and programmed cell death, was decreased. Cumulatively, these results suggest that the invasion of HCT-8 cells by C. parvum results in an ER stress response by the host cell that culminates in overexpression of host cell SSAT-1 and elevated N(1)-acetylpolyamines, which can be used by a parasite that lacks ornithine decarboxylase. PMID:23986438

  2. Multifaceted preventive effects of single agent quercetin on a human prostate adenocarcinoma cell line (PC-3): implications for nutritional transcriptomics and multi-target therapy.

    PubMed

    Noori-Daloii, Mohammad R; Momeny, Majid; Yousefi, Mehdi; Shirazi, Forough Golsaz; Yaseri, Mehdi; Motamed, Nasrin; Kazemialiakbar, Nazanin; Hashemi, Saeed

    2011-12-01

    The aim of the present study is to evaluate the effects of quercetin, a dietary flavonoid, on human prostate adenocarcinoma PC-3 cells. Lactate dehydrogenase (LDH) release, microculture tetrazolium test (MTT assay) and real-time PCR array were employed to evaluate the effects of quercetin on cell cytotoxicity, cell proliferation and expression of various genes in PC-3 cell line. Quercetin inhibited cell proliferation and modulated the expression of genes involved in DNA repair, matrix degradation and tumor invasion, angiogenesis, apoptosis, cell cycle, metabolism and glycolysis. No cytotoxicity of quercetin on PC-3 cells was observed. Taken together, as shown by the issues of the current study, the manifold inhibitory effects of quercetin on PC-3 cells may introduce quercetin as an efficacious anticancer agent in order to be used in the future nutritional transcriptomic investigations and multi-target therapy to overcome the therapeutic impediments against prostate cancer. PMID:20596804

  3. Primary adenocarcinoma of cervical esophagus.

    PubMed

    Alrawi, S J; Winston, J; Tan, D; Gibbs, J; Loree, T R; Hicks, W; Rigual, N; Lorè, J M

    2005-06-01

    Most upper esophageal malignancies are squamous cell carcinomas, rarely adenocarcinomas arising from Barrett's esophagus and very rarely adenocarcinomas from heterotopic gastric mucosa without evidence of Barrett's especially in the cervical part of the esophagus. We report a case of adenocarcinoma of the polypoid type in the upper esophagus (cervical esophagus) arising from ectopic gastric mucosa, in a 60 year-old man who presented with progressive dysphagia. Accurate diagnosis by esophagogram revealed a large mass in the cervical esophagus; CAT scan showed intraluminal mass at the level of thoracic inlet, esophagogastroscopy showed a fleshy polyp (3.2cm x 3.0cm) at 20 cm from the incisors with a biopsy confirming moderately differentiated adenocarcinoma with no evidence of Barrett's esophagus. Through a left cervical approach and resection of medial third of clavicle, the tumor was removed by partial esophagectomy followed by lymph node dissection, and proved to be T1NOMO, stage I (AJCC staging 6th ed.). Post operatively, the patient received chemoradiation with no evidence of recurrence or metastasis in six years of follow up. It seems this tumor has a much better prognosis than adenocarcinomas arising from Barrett's. To our knowledge only 19 cases have been reported in literature so far. PMID:16110768

  4. CytoregR inhibits growth and proliferation of human adenocarcinoma cells via induction of apoptosis

    PubMed Central

    Kumi-Diaka, J; Hassanhi, M; Brown, J; Merchant, K; Garcia, C; Jimenez, W

    2006-01-01

    Background Cancer is one of the devastating neovascular diseases that incapacitate so many people the world over. Recent reports from the National Cancer Institute indicate some significant gain therapy and cancer management as seen in the increase in the 5-year survival rate over the past two decades. Although near-perfect cure rate have been reported in the early-stage disease, these data reveal high recurrence rate and serious side effects including second malignancies and fatalities. Most of the currently used anticancer agents are only effective against proliferating cancer cells. Thus attention has been focused on potential anti-cancer agents capable of killing cancer cells independent of the cell cycle state, to ensure effective elimination of most cancer cells. The objective of this study was to test the chemosensitivity and potential mechanism of action of a novel cancer drug, CytoregR, in a panel of human cancer cells. Methods the study was performed using a series of bioassays including Trypan blue exclusion, MTS Growth inhibition, LDH-cytotoxicity, TUNEL-Terminal DNA fragmentation Apoptosis Assay, and the Caspase protease CPP32 activity assays. Results CytoregR induced significant dose- and time-dependent inhibition of growth in all the cells; with significant differences in chemosensitivity (P < 0.05) between the target cells becoming more apparent at 48 hr exposure. CytoregR showed no significant effect on normal cells relative to the tumor cells. Growth inhibition in all the cells was due to induction of apoptosis at lower concentrations of cytoregR (> 1:300). CytoregR-induced caspase protease-3 (CPP32) activation significantly and positively correlated with apoptosis induction and growth inhibition; thus implicating CPP32 as the principal death pathway in cytoregR-induced apoptosis. Conclusion CytoregR exerted a dose-and time-dependent growth inhibitory effect in all the target cells through induction of apoptosis via the CPP32 death pathway

  5. Reflux composition influences the level of NF-κB activation and upstream kinase preference in oesophageal adenocarcinoma cells.

    PubMed

    McAdam, E; Haboubi, H N; Griffiths, A P; Baxter, J N; Spencer-Harty, S; Davies, C; Jenkins, G J

    2015-02-01

    Oesophageal adenocarcinoma (OA) incidence is rising and prognosis is poor. Understanding the molecular basis of this malignancy is key to finding new prevention and treatment strategies. Gastroesophageal reflux disease is the primary cause of OA, usually managed with acid suppression therapy. However, this often does little to control carcinogenic bile acid reflux. The transcription factor nuclear factor kappa B (NF-κB) plays a key role in the pathogenesis of OA and its activity is associated with a poor response to chemotherapy, making it an attractive therapeutic target. We sought to decipher the role of different bile acids in NF-κB activation in oesophageal cell lines using short, physiologically relevant exposure times. The effect of an acidic or neutral extracellular pH was investigated concurrently, to mimic in vivo conditions associated with or without acid suppression. We found that some bile acids activated NF-κB to a greater extent when combined with acid, whereas others did so in its absence, at neutral pH. The precise composition of an individual's reflux, coupled with whether they are taking acid suppressants may therefore dictate the extent of NF-κB activation in the oesophagus, and hence the likelihood of histological progression and chemotherapy success. Regardless of pH, the kinase inhibitor of κB kinase was pivotal in mediating reflux induced NF-κB activation. Its importance was confirmed further as its increased activation was associated with histological progression in patient samples. We identified further kinases important in acid or bile induced NF-κB signalling in oesophageal cells, which may provide suitable targets for therapeutic intervention. PMID:24931696

  6. Trans- and cis-2-phenylindole platinum(II) complexes as cytotoxic agents against human breast adenocarcinoma cell lines

    NASA Astrophysics Data System (ADS)

    Tomé, Maria; López, Concepción; González, Asensio; Ozay, Bahadir; Quirante, Josefina; Font-Bardía, Mercè; Calvet, Teresa; Calvis, Carme; Messeguer, Ramon; Baldomá, Laura; Badía, Josefa

    2013-09-01

    The synthesis and characterization of the new 2-phenylindole derivative: C8H3N-2-C6H5-3NOMe-5OMe (3c) and the trans- and cis-isomers of [Pt(3c)Cl2(DMSO)] complexes (4c and 5c, respectively) are described. The crystal structures of 4c·CH2Cl2 and 5c confirm: (a) the existence of a Pt-Nindole bond, (b) the relative arrangement of the Cl- ligands [trans- (in 4c) or cis- (in 5c)] and (c) the anti-(E) configuration of the oxime. The cytotoxic assessment of C8H3N-2-(C6H4-4‧R1)-3NOMe-5R2 [with R1 = R2 = H (3a); R1 = Cl, R2 = H (3b) and R1 = H, R2 = OMe (3c)] and the geometrical isomers of [Pt(L)Cl2(DMSO)] with L = 3a-3c [trans- (4a-4c) and cis- (5a-5c), respectively] against human breast adenocarcinoma cell lines (MDA-MB231 and MCF-7) is also reported and reveals that all the platinum(II) complexes (except 4a) are more cytotoxic than cisplatin in front of the MCF7 cell line. Electrophoretic DNA migration studies of the synthesized compounds in the absence and in the presence of topoisomerase-I have been performed, in order to get further insights into their mechanism of action.

  7. Transcriptional Regulation of Cytosolic Sulfotransferase 1C2 by Vitamin D Receptor in LS180 Human Colorectal Adenocarcinoma Cells.

    PubMed

    Barrett, Kathleen G; Fang, Hailin; Kocarek, Thomas A; Runge-Morris, Melissa

    2016-08-01

    The factors that regulate expression of genes in the 1C family of human cytosolic sulfotransferases (SULT1C) are not well understood. In a recent study evaluating the effects of a panel of transcription factor activators on SULT1C family member expression in LS180 human colorectal adenocarcinoma cells, we found that SULT1C2 expression was significantly increased by 1α,25-dihydroxyvitamin D3 (VitD3) treatment. The objective of our current study was to identify the mechanism responsible for VitD3-mediated activation of SULT1C2 transcription. VitD3 treatment of LS180 cells activated transcription of a transfected luciferase reporter plasmid that contained ∼5 kilobase pairs (kbp) of the SULT1C2 gene, which included 402 nucleotides (nt) of the noncoding exon 1, all of intron 1, and 21 nt of exon 2. Although computational analysis of the VitD3-responsive region of the SULT1C2 gene identified a pregnane X receptor (PXR)-binding site within exon 1, the transfected 5 kbp SULT1C2 reporter was not activated by treatment with rifampicin, a prototypical PXR agonist. However, deletion or mutation of the predicted PXR-binding site abolished VitD3-mediated SULT1C2 transcriptional activation, identifying the site as a functional vitamin D response element (VDRE). We further demonstrated that vitamin D receptor (VDR) can interact directly with the SULT1C2 VDRE sequence using an enzyme-linked immunosorbent assay-based transcription factor binding assay. In conclusion, VitD3-inducible SULT1C2 transcription is mediated through a VDRE in exon 1. These results suggest a role for SULT1C2 in VitD3-regulated physiologic processes in human intestine. PMID:27130351

  8. Dying tumor cells stimulate proliferation of living tumor cells via caspase-dependent protein kinase Cδ activation in pancreatic ductal adenocarcinoma.

    PubMed

    Cheng, Jin; Tian, Ling; Ma, Jingjing; Gong, Yanping; Zhang, Zhengxiang; Chen, Zhiwei; Xu, Bing; Xiong, Hui; Li, Chuanyuan; Huang, Qian

    2015-01-01

    Pancreatic cancer is one of the most lethal human cancers, and radiotherapy is often implemented for locally advanced pancreatic ductal adenocarcinoma. Tumor cell repopulation is a major challenge in treating cancers after radiotherapy. In order to address the problem of tumor repopulation, our previous studies have demonstrated that dying cells stimulate the proliferation of living tumor cells after radiotherapy. In particular, dying cells undergoing apoptosis also activate survival or proliferation signals and release growth factors to surrounding living cells. In the present study, we used an in vitro model to examine the possible mechanisms for dying cell stimulated tumor repopulation in pancreatic cancer. In this model, a small number of living, luciferase-labeled pancreatic cancer cells (reporter) were seeded onto a layer of a much larger number of irradiated, unlabeled pancreatic cancer cells and the growth of the living cells was measured over time as a gage of tumor repopulation. Our results indicate that irradiated, dying Panc1 feeder cells significantly stimulated the proliferation of living Panc1 reporter cells. Importantly, we identified that the percentage of apoptotic cells and the cleavage of caspases 3 and 7 and protein kinase Cδ (PKCδ) were increased in irradiated Panc1 cells. We presumed that caspases 3 and 7 and PKCδ as integral mediators in the process of dying pancreatic cancer cell stimulation of living tumor cell growth. In order to demonstrate the importance of caspases 3, 7 and PKCδ, we introduced dominant-negative mutants of caspase 3 (DN_C3), caspase 7 (DN_C7), or PKCδ (DN_PKCδ) into Panc1 cells using lentiviral vectors. The stably transduced Panc1 cells were irradiated and used as feeders and we found a significant decrease in the growth of living Panc1 reporter cells when compared with irradiated wild-type Panc1 cells as feeders. Moreover, the role of PKCδ in the growth stimulation of living tumor cells was further confirmed

  9. Curcuminoids and ω-3 fatty acids with anti-oxidants potentiate cytotoxicity of natural killer cells against pancreatic ductal adenocarcinoma cells and inhibit interferon γ production

    PubMed Central

    Halder, Ramesh C.; Almasi, Anasheh; Sagong, Bien; Leung, Jessica; Jewett, Anahid; Fiala, Milan

    2015-01-01

    Pancreatic cancer has a poor prognosis attributed in part to immune suppression and deactivation of natural killer (NK) cells. Curcuminoids have a potential for improving the therapy of pancreatic cancer given promising results in cancer models and a clinical trial, but their oral absorption is limited. Our objective in this study is to show curcuminoid anti-oncogenic effects alone and together with human NK cells. We tested curcuminoids in an emulsion of ω-3 fatty acids and anti-oxidants (“Smartfish”) regarding their direct cytocidal effect and enhancement of the cytocidal activity of NK cells in pancreatic ductal adenocarcinoma (PDAC) cells (Mia Paca 2 and L3.6). Curcuminoids (at ≥10 μM) with ω-3 fatty acids and anti-oxidants or with the lipidic mediator resolvin D1 (RvD1) (26 nM) induced high caspase-3 activity in PDAC cells. Importantly, curcuminoids with ω-3 fatty acids and anti-oxidants or with RvD1 significantly potentiated NK cell cytocidal function and protected them against degradation. In a co-culture of cancer cells with NK cells, interferon-γ (IFN-γ) production by NK cells was not altered by ω-3 fatty acids with anti-oxidants or by RvD1 but was inhibited by curcuminoids. The inhibition was not eliminated by ω-3 fatty acids or RvD1 but was relieved by removing curcuminoids after adding NK cells. In conclusion, curcuminoids with ω-3 fatty acids and anti-oxidants or with RvD1 have increased cytotoxic activity on PDAC cells alone and with NK cells. The effects of curcuminoids with ω-3 fatty acids and anti-oxidants on pancreatic cancer will be investigated in a mouse model with humanized immune system. PMID:26052286

  10. Role of intracellular calcium and NADPH oxidase NOX5-S in acid-induced DNA damage in Barrett's cells and Barrett's esophageal adenocarcinoma cells

    PubMed Central

    Li, Dan

    2014-01-01

    Mechanisms whereby acid reflux may accelerate the progression from Barrett's esophagus (BE) to esophageal adenocarcinoma (EA) are not fully understood. Acid and reactive oxygen species (ROS) have been reported to cause DNA damage in Barrett's cells. We have previously shown that NADPH oxidase NOX5-S is responsible for acid-induced H2O2 production in Barrett's cells and in EA cells. In this study we examined the role of intracellular calcium and NADPH oxidase NOX5-S in acid-induced DNA damage in a Barrett's EA cell line FLO and a Barrett's cell line CP-A. We found that pulsed acid treatment significantly increased tail moment in FLO and CP-A cells and histone H2AX phosphorylation in FLO cells. In addition, acid treatment significantly increased intracellular Ca2+ in FLO cells, an increase that is blocked by Ca2+-free medium with EGTA and thapsigargin. Acid-induced increase in tail moment was significantly decreased by NADPH oxidase inhibitor diphenylene iodonium in FLO cells, and by blockade of intracellular Ca2+ increase or knockdown of NOX5-S with NOX5 small-interfering RNA (siRNA) in FLO and CP-A cells. Acid-induced increase in histone H2AX phosphorylation was significantly decreased by NOX5 siRNA in FLO cells. Conversely, overexpression of NOX5-S significantly increased tail moment and histone H2AX phosphorylation in FLO cells. We conclude that pulsed acid treatment causes DNA damage via increase of intracellular calcium and activation of NOX5-S. It is possible that in BE acid reflux increases intracellular calcium, activates NOX5-S, and increases ROS production, which causes DNA damage, thereby contributing to the progression from BE to EA. PMID:24699332

  11. EGFR-L858R mutant enhances lung adenocarcinoma cell invasive ability and promotes malignant pleural effusion formation through activation of the CXCL12-CXCR4 pathway

    PubMed Central

    Tsai, Meng-Feng; Chang, Tzu-Hua; Wu, Shang-Gin; Yang, Hsiao-Yin; Hsu, Yi-Chiung; Yang, Pan-Chyr; Shih, Jin-Yuan

    2015-01-01

    Malignant pleural effusion (MPE) is a common clinical problem in non-small cell lung carcinoma (NSCLC) patients; however, the underlying mechanisms are still largely unknown. Recent studies indicate that the frequency of the L858R mutant form of the epidermal growth factor receptor (EGFR-L858R) is higher in lung adenocarcinoma with MPE than in surgically resected specimens, suggesting that lung adenocarcinoma cells harboring this mutation tend to invade the adjacent pleural cavity. The purpose of this study was to clarify the relationship between the EGFR-L858R mutation and cancer cell invasion ability and to investigate the molecular mechanisms involved in the formation of MPE. We found that expression of EGFR-L858R in lung cancer cells resulted in up-regulation of the CXCR4 in association with increased cancer cell invasive ability and MPE formation. Ectopic expression of EGFR-L858R in lung cancer cells acted through activation of ERK signaling pathways to induce the expression of CXCR4. We also indicated that Inhibition of CXCR4 with small interfering RNA, neutralizing antibody, or receptor antagonist significantly suppressed the EGFR-L858R–dependent cell invasion. These results suggest that targeting the production of CXCR4 and blocking the CXCL12-CXCR4 pathway might be effective strategies for treating NSCLCs harboring a specific type of EGFR mutation. PMID:26338423

  12. Nitrophenols isolated from diesel exhaust particles promote the growth of MCF-7 breast adenocarcinoma cells

    SciTech Connect

    Furuta, Chie; Suzuki, Akira K.; Watanabe, Gen; Li, ChunMei; Taneda, Shinji; Taya, Kazuyoshi

    2008-08-01

    Diesel exhaust particles (DEPs) cause many adverse health problems, and reports indicate increased risk of breast cancer in men and women through exposure to gasoline and vehicle exhaust. However, DEPs include vast numbers of compounds, and the specific compound(s) responsible for these actions are not clear. We recently isolated two nitrophenols from DEPs-3-methyl-4-nitrophenol (4-nitro-m-cresol; PNMC) and 4-nitro-3-phenylphenol (PNMPP)-and showed that they had estrogenic and anti-androgenic activities. Here, we tried to clarify the involvement of these two nitrophenols in promoting the growth of the MCF-7 breast cancer cell line. First, comet assay was used to detect the genotoxicity of PNMC and PNMPP in a CHO cell line. At all doses tested, PNMC and PNMPP showed negative genotoxicity, indicating that they had no tumor initiating activity. Next, the estrogen-responsive breast cancer cell line MCF-7 was used to assess cell proliferation. Proliferation of MCF-7 cells was stimulated by PNMC, PNMPP, and estradiol-17{beta} and the anti-estrogens 4-hydroxytamoxifen and ICI 182,780 inhibited the proliferation. To further investigate transcriptional activity through the estrogen receptor, MCF-7 cells were transfected with a receptor gene that allowed expression of luciferase enzyme under the control of the estrogen regulatory element. PNMC and PNMPP induced luciferase activity in a dose-dependent manner at submicromolar concentrations. ICI 182,780 inhibited the luciferase activity induced by PNMC and PNMPP. These results clearly indicate that PNMC and PNMPP do not show genotoxicity but act as tumor promoters in an estrogen receptor {alpha}-predominant breast cancer cell line.

  13. [New WHO classification of lung adenocarcinoma and preneoplasia].

    PubMed

    Lantuejoul, Sylvie; Rouquette, Isabelle; Brambilla, Elisabeth; Travis, William D

    2016-01-01

    The 2015 WHO classification of tumors of the lung, pleura, thymus and heart has just been published with numerous important changes from the 2004 WHO classification. The most significant changes involve (1) use of immunohistochemistry throughout the classification, (2) integration of molecular testing for personalized strategies for advanced lung cancer patients, (3) a new classification for small biopsies and cytology, (4) a new classification of lung adenocarcinoma as proposed by the 2011 IASLC/ATS/ERS, (5) restriction of the diagnosis of large cell carcinoma only to resected tumors that lack any clear morphologic or immunohistochemical differentiation. Regarding adenocarcinoma, the terms bronchioloalveolar carcinoma (BAC) and mixed subtype adenocarcinoma have been suppressed and replaced for the former by the term adenocarcinoma in situ (AIS) as a preinvasive lesion to join atypical adenomatous hyperplasia (AAH). A new category has been defined, the minimally invasive adenocarcinoma (MIA), and invasive adenocarcinomas are now classified according to the predominant subtype after subtyping by semi-quantitatively percentage of various subtypes present in 5% increments. The term "lepidic" is restricted to a non-invasive component (previously classified as BAC) present as part of an invasive adenocarcinoma. "Invasive mucinous adenocarcinoma" is used for formerly adenocarcinomas classified as mucinous BAC, excluding tumors that meet criteria for AIS or MIA. The subtypes of clear cell and signet ring adenocarcinoma are discontinued, as well the term of mucinous cystadenocarcinoma, included in the category of colloid adenocarcinoma. Thus new classification of lung adenocarcinoma is sustained by genetics and has clinical impact for therapeutic strategies. PMID:26791238

  14. Sphingosine kinase-1 as a chemotherapy sensor in prostate adenocarcinoma cell and mouse models.

    PubMed

    Pchejetski, Dimitri; Golzio, Muriel; Bonhoure, Elisabeth; Calvet, Cyril; Doumerc, Nicolas; Garcia, Virginie; Mazerolles, Catherine; Rischmann, Pascal; Teissié, Justin; Malavaud, Bernard; Cuvillier, Olivier

    2005-12-15

    Systemic chemotherapy was considered of modest efficacy in prostate cancer until the recent introduction of taxanes. We took advantage of the known differential effect of camptothecin and docetaxel on human PC-3 and LNCaP prostate cancer cells to determine their effect on sphingosine kinase-1 (SphK1) activity and subsequent ceramide/sphingosine 1-phosphate (S1P) balance in relation with cell survival. In vitro, docetaxel and camptothecin induced strong inhibition of SphK1 and elevation of the ceramide/S1P ratio only in cell lines sensitive to these drugs. SphK1 overexpression in both cell lines impaired the efficacy of chemotherapy by decreasing the ceramide/S1P ratio. Alternatively, silencing SphK1 by RNA interference or pharmacologic inhibition induced apoptosis coupled with ceramide elevation and loss of S1P. The differential effect of both chemotherapeutics was confirmed in an orthotopic PC-3/green fluorescent protein model established in nude mice. Docetaxel induced a stronger SphK1 inhibition and ceramide/S1P ratio elevation than camptothecin. This was accompanied by a smaller tumor volume and the reduced occurrence and number of metastases. SphK1-overexpressing PC-3 cells implanted in animals developed remarkably larger tumors and resistance to docetaxel treatment. These results provide the first in vivo demonstration of SphK1 as a sensor of chemotherapy. PMID:16357178

  15. Paris Saponins enhance radiosensitivity in a gefitinib‑resistant lung adenocarcinoma cell line by inducing apoptosis and G2/M cell cycle phase arrest.

    PubMed

    Zhao, Peng-Jun; Song, Shui-Chuan; Du, Lei-Wen; Zhou, Guo-Hua; Ma, Sheng-Lin; Li, Jin-Hui; Feng, Jian-Guo; Zhu, Xin-Hai; Jiang, Hao

    2016-03-01

    Acquired resistance to epidermal growth factor inhibitors has been reported to be associated with cross‑resistance to radiation. Paris Saponins (PSs) exert a wide range of pharmacological activities, including cell apoptosis induction, multidrug resistance inhibition, angiogenesis inhibition and tumor cell migration by modulating various signaling pathways. The present study aimed to investigate the radiosensitization effects of PSII, PSVI and PSVII in a gefitinib‑resistant PC‑9‑ZD lung adenocarcinoma cell line, and the possible mechanism underlying their function. A clonogenic assay was performed to determine the effects of PS radiosensitization on the PC‑9‑ZD cell line. The cell cycle was analyzed by flow cytometry, and cell apoptosis was analyzed with Annexin V/propidium iodide and Hoechst staining. Protein expression levels were detected by western blotting. The results of the present study revealed a significant increase in PC‑9‑ZD cell line radiosensitivity following treatment with PSs. PSs induced G2/M cell cycle phase arrest and apoptosis of the irradiated PC‑9‑ZD cells. Notably, the expression levels of B cell lymphoma 2 (Bcl‑2) were downregulated, and those of caspase‑3, Bcl‑2‑associated X protein (Bax) and p21/Waf1/Cip1 were upregulated following treatment with PSs. The present results demonstrated that PSs induced radiosensitivity in gefitinib‑resistant cells by inducing G2/M phase arrest and by enhancing the apoptotic response via the modulation of caspase‑3, Bax, Bcl‑2 and p21/Waf1/Cip1 expression. PMID:26846193

  16. Ajwa Date (Phoenix dactylifera L.) Extract Inhibits Human Breast Adenocarcinoma (MCF7) Cells In Vitro by Inducing Apoptosis and Cell Cycle Arrest

    PubMed Central

    Khan, Fazal; Ahmed, Farid; Pushparaj, Peter Natesan; Abuzenadah, Adel; Kumosani, Taha; Barbour, Elie; AlQahtani, Mohammed; Gauthaman, Kalamegam

    2016-01-01

    Introduction Phoenix dactylifera L (Date palm) is a native plant of the Kingdom of Saudi Arabia (KSA) and other Middle Eastern countries. Ajwa date has been described in the traditional and alternative medicine to provide several health benefits including anticholesteremic, antioxidant, hepatoprotective and anticancer effects, but most remains to be scientifically validated. Herein, we evaluated the anticancer effects of the Methanolic Extract of Ajwa Date (MEAD) on human breast adenocarcinoma (MCF7) cells in vitro. Methods MCF7 cells were treated with various concentrations (5, 10, 15, 20 and 25 mg/ml) of MEAD for 24, 48 and 72 h and changes in cell morphology, cell cycle, apoptosis related protein and gene expression were studied. Results Phase contrast microscopy showed various morphological changes such as cell shrinkage, vacuolation, blebbing and fragmentation. MTT (2-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay demonstrated statistically significant dose-dependent inhibitions of MCF7 cell proliferation from 35% to 95%. Annexin V-FITC and TUNEL assays showed positive staining for apoptosis of MCF7 cells treated with MEAD (15 mg and 25 mg for 48 h). Flow cytometric analyses of MCF7 cells with MEAD (15 mg/ml and 20 mg/ml) for 24 h demonstrated cell cycle arrest at 'S' phase; increased p53, Bax protein expression; caspase 3activation and decreased the mitochondrial membrane potential (MMP). Quantitative real time PCR (qRT-PCR) analysis showed up-regulation of p53, Bax, Fas, and FasL and down-regulation of Bcl-2. Conclusions MEAD inhibited MCF7 cells in vitro by the inducing cell cycle arrest and apoptosis. Our results indicate the anticancer effects of Ajwa dates, which therefore may be used as an adjunct therapy with conventional chemotherapeutics to achieve a synergistic effect against breast cancer. PMID:27441372

  17. miR-141 and miR-200c as Markers of Overall Survival in Early Stage Non-Small Cell Lung Cancer Adenocarcinoma

    PubMed Central

    Campayo, Marc; Viñolas, Nuria; Marrades, Ramon M.; Cordeiro, Anna; Ruíz-Martínez, Marc; Santasusagna, Sandra; Molins, Laureano; Ramirez, Josep; Monzó, Mariano

    2014-01-01

    Background Several treatments in non-small cell lung cancer (NSCLC) are histology-dependent, and the need for histology-related markers is increasing. MicroRNAs (miRNAs) are promising molecular markers in multiple cancers and show differences in expression depending on histological subtype. The miRNA family miR-200 has been associated with the regulation of epithelial-mesenchymal (EMT)/mesenchymal-epithelial transition (MET). EMT involves profound phenotypic changes that include the loss of cell-cell adhesion, the loss of cell polarity, and the acquisition of migratory and invasive properties that facilitates metastasis. A dual role for the miR-200 family in the prognosis of several tumors has been related to tumor cell origin. However, the prognostic role and function of miR-200 family in early-stage NSCLC adenocarcinoma and squamous cell carcinoma (SCC) have not been well established. Methods miRNA expression was determined using TaqMan assays in 155 tumors from resected NSCLC patients. Functional studies were conducted in three NSCLC cell lines: H23, A-549 and HCC-44. Results High miR-200c expression was associated with shorter overall survival (OS) in the entire cohort (p = 0.024). High miR-200c (p = 0.0004) and miR-141 (p = 0.009) expression correlated with shorter OS in adenocarcinoma – but not in SCC. In the multivariate analysis, a risk score based on miR-141 and miR-200c expression emerged as an independent prognostic factor for OS in the entire cohort (OR, 2.787; p = 0.033) and in adenocarcinoma patients (OR, 10.649; p = 0.002). Functional analyses showed that miR-200c, was related to mesenchymal-epithelial transition (MET) and affected cell migration and E-cadherin levels, while overexpression of miR-141 reduced KLF6 protein levels and produced an increase of secretion of VEGFA in vitro (H23, p = 0.04; A-549, p = 0.03; HCC-44, p = 0.02) and was associated with higher blood microvessel density in patient tumor samples (p

  18. Boletus edulis ribonucleic acid - a potent apoptosis inducer in human colon adenocarcinoma cells.

    PubMed

    Lemieszek, Marta Kinga; Ribeiro, Miguel; Guichard Alves, Helena; Marques, Guilhermina; Nunes, Fernando Milheiro; Rzeski, Wojciech

    2016-07-13

    Despite the large popularity of the Boletus edulis mushroom, little is known about its influence on human health and the possibilities of its therapeutic use. Nevertheless, several reports revealed the usefulness of biopolymers isolated from it in cancer treatment. Our previous studies have shown that B. edulis water soluble biopolymers are not toxic against normal colon epithelial cells (CCD841 CoTr) and at the same concentration range elicited a very prominent antiproliferative effect in colon cancer cells (LS180) which was accompanied with cell cycle arrest in the G0/G1 phase. The purpose of the present study was to verify the proapoptotic properties of a selected fraction from B. edulis - BE3, as well as determine its chemical nature. The BE3 fraction was extracted with hot water and purified by anion-exchange chromatography. Further chemical examinations revealed that BE3 consists mainly of ribonucleic acid (59.1%). The ability of BE3 to induce programmed cell death was examined in human colon cancer cell lines LS180 and HT-29 by measuring caspase activation, DNA fragmentation and expression of BAX, BCL2, TP53 and CDKN1A genes. The sensitivity of colon cancer cells with silenced BAX, TP53 and CDKN1A expression to BE3 treatment was also evaluated. We have demonstrated for the first time that the BE3 fraction is a potent apoptosis inducer in human colon cancer cells. The revealed mechanism of apoptosis triggering was dependent on the presence of functional p53 and consequently was a little different in investigated cell lines. Our results indicated that BE3 stimulated proapoptotic genes BAX (LS180, HT-29), TP53 (LS180) and CDKN1A (HT-29) while at the same time silenced the expression of the key prosurvival gene BCL2 (LS180, HT-29). The obtained results indicate the high therapeutic potential of the BE3 fraction against colon cancer, yet it is necessary to further confirm fraction efficacy and safety in animal and clinical studies. PMID:27302173

  19. DAG/PKCδ and IP3/Ca2+/CaMK IIβ Operate in Parallel to Each Other in PLCγ1-Driven Cell Proliferation and Migration of Human Gastric Adenocarcinoma Cells, through Akt/mTOR/S6 Pathway

    PubMed Central

    Dai, Lianzhi; Zhuang, Luhua; Zhang, Bingchang; Wang, Fen; Chen, Xiaolei; Xia, Chun; Zhang, Bing

    2015-01-01

    Phosphoinositide specific phospholipase Cγ (PLCγ) activates diacylglycerol (DAG)/protein kinase C (PKC) and inositol 1,4,5-trisphosphate (IP3)/Ca2+/calmodulin-dependent protein kinase II (CaMK II) axes to regulate import events in some cancer cells, including gastric adenocarcinoma cells. However, whether DAG/PKCδ and IP3/Ca2+/CaMK IIβ axes are simultaneously involved in PLCγ1-driven cell proliferation and migration of human gastric adenocarcinoma cells and the underlying mechanism are not elucidated. Here, we investigated the role of DAG/PKCδ or CaMK IIβ in PLCγ1-driven cell proliferation and migration of human gastric adenocarcinoma cells, using the BGC-823 cell line. The results indicated that the inhibition of PKCδ and CaMK IIβ could block cell proliferation and migration of BGC-823 cells as well as the effect of inhibiting PLCγ1, including the decrease of cell viability, the increase of apoptotic index, the down-regulation of matrix metalloproteinase (MMP) 9 expression level, and the decrease of cell migration rate. Both DAG/PKCδ and CaMK IIβ triggered protein kinase B (Akt)/mammalian target of rapamycin (mTOR)/S6 pathway to regulate protein synthesis. The data indicate that DAG/PKCδ and IP3/Ca2+/CaMK IIβ operate in parallel to each other in PLCγ1-driven cell proliferation and migration of human gastric adenocarcinoma cells through Akt/mTOR/S6 pathway, with important implication for validating PLCγ1 as a molecular biomarker in early gastric cancer diagnosis and disease surveillance. PMID:26633375

  20. Increased expression of the Th17-IL-6R/pSTAT3/BATF/RorγT-axis in the tumoural region of adenocarcinoma as compared to squamous cell carcinoma of the lung.

    PubMed

    Balabko, Ljubov; Andreev, Katerina; Burmann, Nadine; Schubert, Melanie; Mathews, Martina; Trufa, Denis I; Reppert, Sarah; Rau, Tilmann; Schicht, Martin; Sirbu, Horia; Hartmann, Arndt; Finotto, Susetta

    2014-01-01

    Here we describe increased expression of IL6R in the tumoural region of lung tissue from patients affected by lung adenocarcinoma as compared to squamous cell lung carcinoma. Moreover, here we found increased IL6R in the tumour free part of the lung. By using a murine model of lung adenocarcinoma, we discovered that few lung tumour cells expressed IL-6R and CD4+CD25+Foxp-3+ T regulatory cells down-regulated IL-6R in the tumour bearing lungs. Downstream of IL-6R, the Th17 lineage-specification factors: Signal transducer and activator of transcription 3 (STAT3), Basic leucine zipper transcription factor, BATF and a protein encoded by the RORC in human (RAR-related orphan receptor C) (RORγT), were also found induced in the tumoural region of lung tissue from patients affected by lung adenocarcinoma as compared to those carrying squamous cell carcinoma. Moreover, pSTAT3 protein was found phosphorylated and auto-phosphorylated in the tumoural region of patients with adeno cell carcinoma of the lung as compared to the tumoural region of patients with squamous cell carcinoma of the lung. Intranasal application of anti-IL-6R antibodies in a murine model of lung adenocarcinoma, induced T regulatory cell markers such as Foxp3, Ctla4, Icos, Il10, Il21, Folr4 and Lag3 and inhibited Rorc in lung adenocarcinoma. PMID:25491772

  1. Proteasome inhibitor MG-132 lowers gastric adenocarcinoma TMK1 cell proliferation via bone morphogenetic protein signaling

    SciTech Connect

    Wu, William Ka Kei; Sung, Joseph Jao Yiu; Yu Le; Cho, C.H.

    2008-06-27

    Proteasome inhibitor is a novel class of cancer therapeutics, of which the mechanism of action is not fully understood. It is reported that proteasome inhibitor enhances bone morphogenetic protein (BMP) signaling in osteoblasts to stimulate bone formation. BMP signaling is also an important tumor-suppressing pathway in gastric carcinogenesis. We therefore sought to determine the anti-mitogenic effect of proteasome inhibition in relation to BMP signaling in gastric cancer cells. Results showed that proteasome inhibitor MG-132 significantly suppressed the proliferation and the colony-forming ability of gastric cancer TMK1 cells. In this connection, MG-132 activated BMP signaling, manifested as an increase in Smad1/5/8 phosphorylation and up-regulation of p21{sup Waf1/Cip1} mRNA and protein expression. Knockdown of BMP receptor II by RNA interference abolished Smad1/5/8 phosphorylation, p21{sup Waf1/Cip1} induction, and the inhibition of cell proliferation induced by MG-132. Further analysis revealed that MG-132 up-regulated the expression of BMP1 and BMP4 and suppressed the expression of Smad6. Knockdown of Smad6 also mimicked the effect of MG-132 on BMP signaling. Collectively, these findings suggest that inhibition of proteasome suppresses gastric cancer cell proliferation via activation of BMP signaling. This discovery may open up a novel therapeutic avenue to proteasome inhibitors for the management of gastric cancer.

  2. Macrophages increase the resistance of pancreatic adenocarcinoma cells to gemcitabine by upregulating cytidine deaminase

    PubMed Central

    Amit, Moran; Gil, Ziv

    2013-01-01

    Tumor-associated macrophages play a central role in tumor progression and metastasis. Macrophages can also promote the resistance of malignant cells to chemotherapy by stimulating the upregulation of cytidine deaminase, an intracellular enzyme that catabolizes the active form of gemcitabine. Targeting macrophage-dependent chemoresistance may reduce tumor-associated morbidity and mortality. PMID:24498570

  3. Curcumin promotes apoptosis in A549/DDP multidrug-resistant human lung adenocarcinoma cells through an miRNA signaling pathway

    SciTech Connect

    Zhang, Jian; Zhang, Tao; Ti, Xinyu; Shi, Jieran; Wu, Changgui; Ren, Xinling; Yin, Hong

    2010-08-13

    Research highlights: {yields} Curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells {yields} Curcumin promotes apoptosis in A549/DDP cells through a miRNA signaling pathway {yields} Curcumin induces A549/DDP cell apoptosis by downregulating miR-186* {yields} miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin -- Abstract: Curcumin extracted from the rhizomes of Curcuma longa L. has been shown to have inhibitory effects on cancers through its anti-proliferative and pro-apoptotic activities. Emerging evidence demonstrates that curcumin can overcome drug resistance to classical chemotherapies. Thus, the mechanisms underlying the anti-tumor activities of curcumin require further study. In our study, we first demonstrated that curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells. Further studies showed that curcumin altered miRNA expression; in particular, significantly downregulated the expression of miR-186* in A549/DDP. In addition, transfection of cells with a miR-186* inhibitor promoted A549/DDP apoptosis, and overexpression of miR-186* significantly inhibited curcumin-induced apoptosis in A549/DDP cells. These observations suggest that miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin.

  4. Prolonged survival of a patient affected by pancreatic adenocarcinoma with massive lymphocyte and dendritic cell infiltration after interleukin-2 immunotherapy. Report of a case.

    PubMed

    Nobili, Cinzia; Degrate, Luca; Caprotti, Roberto; Franciosi, Claudio; Leone, Biagio Eugenio; Trezzi, Rosangela; Romano, Fabrizio; Uggeri, Fabio; Uggeri, Franco

    2008-01-01

    Several studies have shown that there is a paucity of immune cells within the stroma of pancreatic adenocarcinoma, a very aggressive cancer with a median survival of about 18 months. A 65-year-old man presented with jaundice. Abdominal ultrasound revealed intra- and extrahepatic bile duct dilatation and a 45-mm diameter hypoechoic solid mass within the pancreatic head; a computed tomography scan excluded vascular infiltration and metastatic lesions. The patient received immunotherapy consisting of 6,000,000 IU human recombinant interleukin-2 administered subcutaneously twice a day for 3 consecutive days. Thirty-six hours after the last dose, he underwent a pylorus-preserving pancreatoduodenectomy. Because of the presence of high-grade dysplasia detected by intraoperative histological examination of a distal section, a spleen preserving total pancreatectomy was performed. The postoperative course was uneventful. The patient died 32 months after surgery because of local recurrence. Histopathology showed G3 pancreatic ductal adenocarcinoma infiltrating the anterior and posterior peripancreatic tissue, duodenal wall and intrapancreatic common bile duct, with sarcoma-like foci and a component of intraductal tumor involving the common bile duct. In the distal pancreas, widespread foci of pancreatic intraepithelial neoplasia (PanI2-3) were found. The Ki-67 proliferation index was 16%. TNM staging was pT3 pN1 R1. Sections were immunostained for the T-lymphocyte marker CD3 and for the dendritic cell marker CD1a. Intratumoral infiltration was high for CD1a+ cells and mild for CD3+ cells. Preoperative immunotherapy with interleukin-2 may contribute to massive stromal infiltration of immune cells in pancreatic adenocarcinoma. This may prolong the survival even in the presence of negative prognostic factors (age >65 years, tumor diameter >20 mm, R1, tumor grade G3). PMID:18705415

  5. Sensitivity and mechanisms of taxol-resistant prostate adenocarcinoma cells to Vernonia amygdalina extract

    PubMed Central

    Cameron, Keyuna S.; Howard, Carolyn B.; Izevbigie, Ernest B.; Hill, Brandon J.; Tchounwou, Paul B.

    2012-01-01

    Prostate cancer (PC) patients once Paclitaxel (TAX) treatment responsive later develop hormone refractory PC, thus becoming TAX-insensitive. This underscores the urgent need to develop novel anti-PC therapies. Vernonia amygdalina (VA) could be one such candidate agent. We have shown that androgen-independent PC-3 cells are sensitive to VA treatment in-vitro. VA extract (0.01, 0.1 and 1mg/ml) inhibited DNA synthesis by 12%, 45%, (P<0.05), and 73% (P<0.01) respectively. In contrast, TAX (0.01, 0.1, and 1μM) failed to significantly affect cell growth, suggesting TAX resistance. We tested molecular mechanisms which may lend to the observed PC-3 cell VA sensitivity/TAX resistance. Though both VA and TAX stimulated MAPK activity, VA’s induction was more intense, but transient, compared to TAX’s sustained action. NF-κB activation was inhibited on average by 50% by either 1mg/ml VA or 1 μM TAX. VA extract caused 35% and 45% increases in c-Myc activity at 10 and 60 min intervals respectively, with the highest stimulation attained 1 hr after treatment. In contrast, similar levels were attained by TAX rapidly (within 5 min) and were sustained compared to the slow/multiphasic action of VA. VA extract treatments had no effect on AKT gene expression, while TAX treatments yielded a four-fold (P<0.01) increase; and P-glycoprotein (P-gp) activity was inhibited by VA and stimulated by TAX, compared to control (basal ATPase activity). This study shows that TAX-resistant PC-3 cells are sensitive to VA, perhaps explained by differential regulatory patterns of MAPK, c-Myc, AKT, and Pgp activities/expressions. PMID:23238229

  6. Mitochondrial localization of cyclooxygenase-2 and calcium-independent phospholipase A{sub 2} in human cancer cells: Implication in apoptosis resistance

    SciTech Connect

    Liou, J.-Y.; Aleksic, Nena; Chen, S.-F.; Han, T.-J.; Shyue, Song-Kun . E-mail: skshyue@ibms.sinica.edu.tw; Wu, Kenneth K. . E-mail: Kenneth.K.Wu@uth.tmc.edu

    2005-05-15

    Cyclooxygenase-2 (COX-2) is inducible by myriad stimuli. The inducible COX-2 in primary cultured human cells has been reported to localize to nuclear envelope, endoplasmic reticulum, nucleus and caveolae. As COX-2 plays an important role in tumor growth, we were interested in its subcellular location in cancer cells. We examined COX-2 localization in several cancer cell lines by confocal microscopy. A majority of COX-2 was colocalized with heat shock protein 60, a mitochondrial protein, in colon cancer (HT-29, HCT-15 and DLD-1), breast cancer (MCF7), hepatocellular cancer (HepG2) and lung cancer cells (A549) with a similar distribution pattern. By contrast, COX-2 was not localized to mitochondria in human foreskin fibroblasts or endothelial cells. Immunoblot analysis of COX-2 in mitochondrial and cytosolic fractions confirmed localization of COX-2 to mitochondria in HT-29 and DLD-1 cells but not in fibroblasts. Calcium-independent phospholipase A2 was colocalized with heat shock protein 60 to mitochondria not only in cancer cells (HT-29 and DLD-1) but also in fibroblasts. HT-29 which expressed more abundant mitochondrial COX-2 than DLD-1 was highly resistant to arachidonic acid and H{sub 2}O{sub 2}-induced apoptosis whereas DLD-1 was less resistant and human fibroblasts were highly susceptible. Treatment of HT-29 cells with sulindac or SC-236, a selective COX-2 inhibitor, resulted in loss of resistance to apoptosis. These results suggest that mitochondrial COX-2 in cancer cells confer resistance to apoptosis by reducing the proapoptotic arachidonic acid.

  7. NAMPT inhibition sensitizes pancreatic adenocarcinoma cells to tumor-selective, PAR-independent metabolic catastrophe and cell death induced by β-lapachone

    PubMed Central

    Moore, Z; Chakrabarti, G; Luo, X; Ali, A; Hu, Z; Fattah, F J; Vemireddy, R; DeBerardinis, R J; Brekken, R A; Boothman, D A

    2015-01-01

    Nicotinamide phosphoribosyltransferase (NAMPT) inhibitors (e.g., FK866) target the most active pathway of NAD+ synthesis in tumor cells, but lack tumor-selectivity for use as a single agent. Reducing NAD+ pools by inhibiting NAMPT primed pancreatic ductal adenocarcinoma (PDA) cells for poly(ADP ribose) polymerase (PARP1)-dependent cell death induced by the targeted cancer therapeutic, β-lapachone (β-lap, ARQ761), independent of poly(ADP ribose) (PAR) accumulation. β-Lap is bioactivated by NADPH:quinone oxidoreductase 1 (NQO1) in a futile redox cycle that consumes oxygen and generates high levels of reactive oxygen species (ROS) that cause extensive DNA damage and rapid PARP1-mediated NAD+ consumption. Synergy with FK866+β-lap was tumor-selective, only occurring in NQO1-overexpressing cancer cells, which is noted in a majority (∼85%) of PDA cases. This treatment strategy simultaneously decreases NAD+ synthesis while increasing NAD+ consumption, reducing required doses and treatment times for both drugs and increasing potency. These complementary mechanisms caused profound NAD(P)+ depletion and inhibited glycolysis, driving down adenosine triphosphate levels and preventing recovery normally observed with either agent alone. Cancer cells died through an ROS-induced, μ-calpain-mediated programmed cell death process that kills independent of caspase activation and is not driven by PAR accumulation, which we call NAD+-Keresis. Non-overlapping specificities of FK866 for PDA tumors that rely heavily on NAMPT-catalyzed NAD+ synthesis and β-lap for cancer cells with elevated NQO1 levels affords high tumor-selectivity. The concept of reducing NAD+ pools in cancer cells to sensitize them to ROS-mediated cell death by β-lap is a novel strategy with potential application for pancreatic and other types of NQO1+ solid tumors. PMID:25590809

  8. hnRNPK inhibits GSK3β Ser9 phosphorylation, thereby stabilizing c-FLIP and contributes to TRAIL resistance in H1299 lung adenocarcinoma cells

    PubMed Central

    Gao, Xuejuan; Feng, Junxia; He, Yujiao; Xu, Fengmei; Fan, Xiaoqin; Huang, Wensi; Xiong, Haiting; Liu, Qiuyu; Liu, Wanting; Liu, Xiaohui; Sun, Xuesong; He, Qing-Yu; Zhang, Qihao; Liu, Langxia

    2016-01-01

    c-FLIP (cellular FLICE-inhibitory protein) is the pivotal regulator of TRAIL resistance in cancer cells, It is a short-lived protein degraded through the ubiquitin/proteasome pathway. The discovery of factors and mechanisms regulating its protein stability is important for the comprehension of TRAIL resistance by tumor cells. In this study, we show that, when H1299 lung adenocarcinoma cells are treated with TRAIL, hnRNPK is translocated from nucleus to cytoplasm where it interacts and co-localizes with GSK3β. We find that hnRNPK is able to inhibit the Ser9 phosphorylation of GSK3β by PKC. This has the effect of activating GSK3β and thereby stabilizing c-FLIP protein which contributes to the resistance to TRAIL in H1299 cells. Our immunohistochemical analysis using tissue microarray provides the clinical evidence of this finding by establishing a negative correlation between the level of hnRNPK expression and the Ser9 phosphorylation of GSK3β in both lung adenocarcinoma tissues and normal tissues. Moreover, in all cancer tissues examined, hnRNPK was found in the cytoplasm whereas it is exclusively nuclear in the normal tissues. Our study sheds new insights on the molecular mechanisms governing the resistance to TRAIL in tumor cells, and provides new clues for the combinatorial chemotherapeutic interventions with TRAIL. PMID:26972480

  9. Co-expression of autophagic markers following photodynamic therapy in SW620 human colon adenocarcinoma cells.

    PubMed

    Ziółkowska, Barbara; Woźniak, Marta; Ziółkowski, Piotr

    2016-09-01

    Photodynamic therapy (PDT) is a minimally invasive cancer treatment. It involves the combination of a photosensitizer and light of a specific wavelength to generate singlet oxygen and other reactive oxygen species that lead to tumor cell death. Autophagy is one of the pathways that tumor cells undergo during photodamage and it is common in photodynamic therapy. The aim of this study was to examine the effect of in vitro PDT on the expression of autophagy‑related proteins, autophagy related 7 (Atg7), light chain 3 (LC3) and Beclin‑1. Human SW620 colon carcinoma cells were treated with 5-aminolevulinic acid (ALA)‑based PDT at a dose of 3 mM. The irradiation was performed using 4.5 J/cm2 total light and a fluence rate of 60 mW/cm2. Autophagy was evaluated by immunocytochemistry using specific antibodies to Atg7, Beclin‑1 and LC3. The evaluation was repeated at several time points (0, 4, 8 and 24 h) following irradiation. The induction of autophagy was observed directly following the 5‑ALA‑mediated PDT procedure with the strongest expression of autophagy-related proteins at 4 and 8 h after irradiation as demonstrated using immunocytochemistry. It was characterized by significantly increased expression of Beclin‑1, Atg7 and LC3. To the best of our knowledge this is the first study to analyze Beclin‑1, Atg7 and LC3 expression in a PDT‑related experiment. This study enhances the understanding of the role of autophagy in PDT, which may contribute to better and more effective tumor responses to this therapy. PMID:27485939

  10. Co-expression of autophagic markers following photodynamic therapy in SW620 human colon adenocarcinoma cells

    PubMed Central

    Ziółkowska, Barbara; Woźniak, Marta; Ziółkowski, Piotr

    2016-01-01

    Photodynamic therapy (PDT) is a minimally invasive cancer treatment. It involves the combination of a photosensitizer and light of a specific wavelength to generate singlet oxygen and other reactive oxygen species that lead to tumor cell death. Autophagy is one of the pathways that tumor cells undergo during photodamage and it is common in photodynamic therapy. The aim of this study was to examine the effect of in vitro PDT on the expression of autophagy-related proteins, autophagy related 7 (Atg7), light chain 3 (LC3) and Beclin-1. Human SW620 colon carcinoma cells were treated with 5-aminolevulinic acid (ALA)-based PDT at a dose of 3 mM. The irradiation was performed using 4.5 J/cm2 total light and a fluence rate of 60 mW/cm2. Autophagy was evaluated by immunocytochemistry using specific antibodies to Atg7, Beclin-1 and LC3. The evaluation was repeated at several time points (0, 4, 8 and 24 h) following irradiation. The induction of autophagy was observed directly following the 5-ALA-mediated PDT procedure with the strongest expression of autophagy-related proteins at 4 and 8 h after irradiation as demonstrated using immunocytochemistry. It was characterized by significantly increased expression of Beclin-1, Atg7 and LC3. To the best of our knowledge this is the first study to analyze Beclin-1, Atg7 and LC3 expression in a PDT-related experiment. This study enhances the understanding of the role of autophagy in PDT, which may contribute to better and more effective tumor responses to this therapy. PMID:27485939

  11. A turn-on fluorescent chemosensor for Zn2+ ion: X-ray structure and application in cell imaging study

    NASA Astrophysics Data System (ADS)

    Ghosh, Koushik; Dey, Sudipto; Halder, Shibashis; Bhattacharjee, Aradhita; Rizzoli, Corrado; Roy, Partha

    2016-08-01

    The selective fluorescence zinc(II) sensing properties of a Schiff-base compound, 2-methoxy-6-(2-morpholinoethyliminomethyl)phenol (HL) have been explored. The emission intensity of HL in the presence of one equivalent of Zn2+ ion increases by about 25 times. Several other metal ions, except Cd2+ and Ni2+, have not been able to increase the emission intensity of HL significantly. The quantum yield and life-time of HL have also been increased in the presence of Zn2+ ions. The enhancement in fluorescence intensity of HL is mainly due to the restriction of ESIPT, CHEF and PET on complex formation. HL forms a complex with Zn2+ in 1:1 ratio as evidenced by Job's plot analysis and X-ray single crystal structure determination. Some theoretical calculations have been performed to get a better view on the nature of the observed electronic transitions. The probe has been applied for imaging of DLD-1, human colorectal adenocarcinoma cell.

  12. Liposome armed with herpes virus-derived gH625 peptide to overcome doxorubicin resistance in lung adenocarcinoma cell lines

    PubMed Central

    Falanga, Annarita; Zappavigna, Silvia; Stiuso, Paola; Tirino, Virginia; Desiderio, Vincenzo; Papaccio, Gianpaolo; Galdiero, Massimiliano; Giordano, Antonio; Galdiero, Stefania; Caraglia, Michele

    2016-01-01

    New delivery systems including liposomes have been developed to circumvent drug resistance. To enhance the antitumor efficacy of liposomes encapsulating anti-cancer agents, we used liposomes externally conjugated to the 20 residue peptide gH625. Physicochemical characterization of the liposome system showed a size of 140 nm with uniform distribution and high doxorubicin encapsulation efficiency. We evaluated the effects of increasing concentrations of liposomes encapsulating Doxo (LipoDoxo), liposomes encapsulating Doxo conjugated to gH625 (LipoDoxo-gH625), empty liposomes (Lipo) or free Doxo on growth inhibition of either wild type (A549) or doxorubicin-resistant (A549 Dx) human lung adenocarcinoma. After 72 h, we found that the growth inhibition induced by LipoDoxo-gH625 was higher than that caused by LipoDoxo with an IC50 of 1 and 0.3 μM in A549 and A549 Dx cells, respectively. The data on cell growth inhibition were paralleled by an higher oxidative stress and an increased uptake of Doxo induced by LipoDoxo-gH625 compared to LipoDoxo, above all in A549 Dx cells. Cytometric analysis showed that the antiproliferative effects of each drug treatment were mainly due to the induction of apoptosis. In conclusion, liposomes armed with gH625 are able to overcome doxorubicin resistance in lung adenocarcinoma cell lines. PMID:26554306

  13. Synthesis of CdTe quantum dot-conjugated CC49 and their application for in vitro imaging of gastric adenocarcinoma cells

    NASA Astrophysics Data System (ADS)

    Zhang, Yun-Peng; Sun, Peng; Zhang, Xu-Rui; Yang, Wu-Li; Si, Cheng-Shuai

    2013-06-01

    The purpose of this experiment was to investigate the visible imaging of gastric adenocarcinoma cells in vitro by targeting tumor-associated glycoprotein 72 (TAG-72) with near-infrared quantum dots (QDs). QDs with an emission wavelength of about 550 to 780 nm were conjugated to CC49 monoclonal antibodies against TAG-72, resulting in a probe named as CC49-QDs. A gastric adenocarcinoma cell line (MGC80-3) expressing high levels of TAG-72 was cultured for fluorescence imaging, and a gastric epithelial cell line (GES-1) was used for the negative control group. Transmission electron microscopy indicated that the average diameter of CC49-QDs was 0.2 nm higher compared with that of the primary QDs. Also, fluorescence spectrum analysis indicated that the CC49-QDs did not have different optical properties compared to the primary QDs. Immunohistochemical examination and in vitro fluorescence imaging of the tumors showed that the CC49-QDs probe could bind TAG-72 expressed on MGC80-3 cells.

  14. An Unusual Recurrence of Signet Ring Cell Gastric Adenocarcinoma Treated by Right Hemicolectomy, Pancreaticoduodenectomy, and IVC Resection: Controversies and Dilemmas of Following Standard Treatment Pathways.

    PubMed

    Sodergren, Mikael; Brammer, Kirsty; Zentler-Munro, Patrick L; Cunningham, David; Mudan, Satvinder

    2015-01-01

    We present the case of a 67-year-old male patient with a past history of previously resected T3 right adrenocortical carcinoma and T3N1 signet ring cell adenocarcinoma of the stomach who presented with recurrence of gastric cancer in the form of a large solitary mass in the right abdomen. He was treated with ECX (epirubicin, cisplatin and capecitabine) chemotherapy and multivisceral resection. This recurrence pattern is the first such description in the literature, and we discuss the controversies and arguments in favour of offering surgical resection. PMID:26848413

  15. Activated Pancreatic Stellate Cells Sequester CD8+ T-Cells to Reduce Their Infiltration of the Juxtatumoral Compartment of Pancreatic Ductal Adenocarcinoma

    PubMed Central

    Ene-Obong, Abasi; Clear, Andrew J.; Watt, Jennifer; Wang, Jun; Fatah, Rewas; Riches, John C.; Marshall, John F.; Chin-Aleong, Joanne; Chelala, Claude; Gribben, John G.; Ramsay, Alan G.; Kocher, Hemant M.

    2013-01-01

    Background & Aims Pancreatic ductal adenocarcinoma (PDAC) is characterized by a prominent desmoplastic microenvironment that contains many different immune cells. Activated pancreatic stellate cells (PSCs) contribute to the desmoplasia. We investigated whether distinct stromal compartments are differentially infiltrated by different types of immune cells. Method We used tissue microarray analysis to compare immune cell infiltration of different pancreatico-biliary diseased tissues (PDAC, ampullary carcinoma, cholangiocarcinoma, mucinous cystic neoplasm, chronic inflammation, and chronic pancreatitis), and juxtatumoral stromal (<100 μm from tumor) and panstromal compartments. We investigated the association between immune infiltrate and patient survival times. We analyzed T-cell migration and tumor infiltration in LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx-1-Cre (KPC) mice, and the effects of all-trans retinoic acid (ATRA) on these processes. Results Juxtatumoral compartments in PDAC samples from 2 independent groups of patients contained increased numbers of myeloperoxidase+ and CD68+ cells, compared with panstromal compartments. However, juxtatumoral compartments of PDACs contained fewer CD8+, FoxP3+, CD56+, or CD20+ cells than panstromal compartments, a distinction absent in ampullary carcinomas and cholangiocarcinomas. Patients with PDACs that had high densities of CD8+ T-cells in the juxtatumoral compartment had longer survival times than patients with lower densities. In KPC mice, administration of ATRA, which renders PSCs quiescent, increased numbers of CD8+ T-cells in juxtatumoral compartments. We found that activated PSCs express cytokines, chemokines, and adhesion molecules that regulate T-cell migration. In vitro migration assays showed that CD8+ T-cells from PDAC patients had increased chemotaxis towards activated PSCs, which secrete CXCL12, compared with quiescent PSC or tumor cells. These effects could be reversed by knockdown of CXCL12 or treatment of

  16. Metformin inhibits 17β-estradiol-induced epithelial-to-mesenchymal transition via βKlotho-related ERK1/2 signaling and AMPKα signaling in endometrial adenocarcinoma cells

    PubMed Central

    Liu, Zhao; Qi, Shasha; Zhao, Xingbo; Li, Mingjiang; Ding, Sentai; Lu, Jiaju; Zhang, Hui

    2016-01-01

    The potential role of metformin in treating endometrial cancer remains to be explored. The current study investigated the role of metformin in 17β-estradiol-induced epithelial-mesenchymal transition (EMT) in endometrial adenocarcinoma cells. We found that 17β-estradiol promoted proliferation and migration, attenuated apoptosis in both estrogen receptor (ER) positive and ER negative endometrial adenocarcinoma cells (Ishikawa and KLE cells, respectively). Metformin abolished 17β-estradiol-induced cell proliferation and reversed 17β-estradiol-induced EMT in Ishikawa cells. In addition, metformin increased the expression of βKlotho, a fibroblast growth factors (FGFs) coreceptor, and decreased ERK1/2 phosphorylation in both Ishikawa and KLE cells. Decreased expression of βKlotho was noted in human endometrial adenocarcinomas, and plasmid-driven expression of βKlotho in Ishikawa cells abolished 17β-estradiol-induced EMT via inhibiting ERK1/2 signaling. βKlotho expression and metformin show synergetic effects on the proliferation and the EMT in Ishikawa cells. Furthermore, we demonstrated that the anti-EMT effects of metformin could be partly abolished by introducing Compound C, a specific AMPKα signaling inhibitor. In conclusion, metformin abolishes 17β-estradiol-induced cell proliferation and EMT in endometrial adenocarcinoma cells by upregulating βKlotho expression, inhibiting ERK1/2 signaling, and activating AMPKα signaling. Our study provides novel mechanistic insight into the anti-tumor effects of metformin. PMID:26824324

  17. The fermented non-digestible fraction of common bean (Phaseolus vulgaris L.) triggers cell cycle arrest and apoptosis in human colon adenocarcinoma cells.

    PubMed

    Cruz-Bravo, R K; Guevara-González, R G; Ramos-Gómez, M; Oomah, B D; Wiersma, P; Campos-Vega, R; Loarca-Piña, G

    2014-01-01

    Cancer is a leading cause of death worldwide with colorectal cancer (CRC) ranking as the third contributing to overall cancer mortality. Non-digestible compounds such as dietary fiber have been inversely associated with CRC in epidemiological in vivo and in vitro studies. In order to investigate the effect of fermentation products from a whole non-digestible fraction of common bean versus the short-chain fatty acid (SCFAs) on colon cancer cells, we evaluated the human gut microbiota fermented non-digestible fraction (hgm-FNDF) of cooked common bean (Phaseolus vulgaris L.) cultivar Negro 8025 and a synthetic mixture SCFAs, mimicking their concentration in the lethal concentration 50 (SCFA-LC50) of FNDF (hgm-FNDF-LC50), on the molecular changes in human colon adenocarcinoma cells (HT-29). Total mRNA from hgm-FNDF-LC50 and SCFA-LC50 treated HT-29 cells were used to perform qPCR arrays to determine the effect of the treatments on the transcriptional expression of 84 genes related to the p53-pathway. This study showed that both treatments inhibited cell proliferation in accordance with modulating RB1, CDC2, CDC25A, NFKB and E2F genes. Furthermore, we found an association between the induction of apoptosis and the modulation of APAF1, BID, CASP9, FASLG, TNFR10B and BCL2A genes. The results suggest a mechanism of action by which the fermentation of non-digestible compounds of common bean exert a beneficial effect better than the SCFA mixture by modulating the expression of antiproliferative and pro-apoptotic genes in HT-29 cells to a greater extent, supporting previous results on cell behavior, probably due to the participation of other compounds, such as phenolic fatty acids derivatives and biopetides. PMID:24293398

  18. Nexrutine inhibits azoxymethane-induced colonic aberrant crypt formation in rat colon and induced apoptotic cell death in colon adenocarcinoma cells.

    PubMed

    Alam, Shamshad; Pal, Anu; Kumar, Rahul; Mir, Snober S; Ansari, Kausar M

    2016-08-01

    Colon cancer is the third most common cause of death in the United States. Therefore, new preventive strategies are warranted for preventing colon cancer. Nexrutine (NX), an herbal extract from Phellodendron amurense, has been shown to have anti-inflammatory, anti-microbial and anti-cancer activity for various tissue specific cancers, but its chemopreventive efficacy has not been evaluated against colon cancer. Here, we explored the mechanism of chemopreventive/chemotherapeutic efficacy of NX against colon cancer. We found that dietary exposure of NX significantly reduced the number of azoxymethane (AOM)-induced aberrant crypt foci (ACF) in rats. In addition, significant inhibition in AOM-induced cell proliferation and reduced expression of the inflammatory markers COX-2, iNOS as well as the proliferative markers PCNA and cyclin D1 were also seen. Moreover, NX exposure significantly enhanced apoptosis in the colon of AOM treated rats. Furthermore, in in vitro studies, NX (2.5, 5, 10 μg/ml, 48 h) decreased cell survival and colony formation while inducing G0/G1 cell cycle arrest and apoptosis in colon adenocarcinoma cells COLO205 and HCT-15. However, NX had minimal cytotoxic effect on IEC-6 normal rat intestinal cells, suggesting its high therapeutic index. NX treatment also modulates the level of Bax and Bcl-2 proteins along with cytochrome c release, cleavage and enhanced expression of poly (adenosine diphosphate-ribose) polymerase as well as the catalytic activity of caspase 3 and caspase 9 in both COLO205 and HCT-15 cells. Based on these in vivo and in vitro findings, we suggest that NX could be useful candidate agent for colon cancer chemoprevention and treatment. © 2015 Wiley Periodicals, Inc. PMID:26259065

  19. Osthole inhibits the invasive ability of human lung adenocarcinoma cells via suppression of NF-κB-mediated matrix metalloproteinase-9 expression

    SciTech Connect

    Kao, Shang-Jyh; Su, Jen-Liang; Chen, Chi-Kuan; Yu, Ming-Chih; Bai, Kuan-Jen; Chang, Jer-Hua; Bien, Mauo-Ying; Yang, Shun-Fa; Chien, Ming-Hsien

    2012-05-15

    The induction of matrix metalloproteinase (MMP)-9 is particularly important for the invasiveness of various cancer cells. Osthole, a natural coumarin derivative extracted from traditional Chinese medicines, is known to inhibit the proliferation of a variety of tumor cells, but the effect of osthole on the invasiveness of tumor cells is largely unknown. This study determines whether and by what mechanism osthole inhibits invasion in CL1-5 human lung adenocarcinoma cells. Herein, we found that osthole effectively inhibited the migratory and invasive abilities of CL1-5 cells. A zymographic assay showed that osthole inhibited the proteolytic activity of MMP-9 in CL1-5 cells. Inhibition of migration, invasion, and MMP2 and/or MMP-9 proteolytic activities was also observed in other lung adenocarcinoma cell lines (H1299 and A549). We further found that osthole inhibited MMP-9 expression at the messenger RNA and protein levels. Moreover, a chromatin immunoprecipitation assay showed that osthole inhibited the transcriptional activity of MMP-9 by suppressing the DNA binding activity of nuclear factor (NF)-κB in the MMP-9 promoter. Using reporter assays with point-mutated promoter constructs further confirmed that the inhibitory effect of osthole requires an NF-κB binding site on the MMP-9 promoter. Western blot and immunofluorescence assays demonstrated that osthole inhibited NF-κB activity by inhibiting IκB-α degradation and NF-κB p65 nuclear translocation. In conclusion, we demonstrated that osthole inhibits NF-κB-mediated MMP-9 expression, resulting in suppression of lung cancer cell invasion and migration, and osthole might be a potential agent for preventing the invasion and metastasis of lung cancer. -- Highlights: ► Osthole treatment inhibits lung adenocarcinoma cells migration and invasion. ► Osthole reduces the expression and proteolytic activity of MMP-9. ► Osthole inhibits MMP-9 transcription via suppression of NF-κB binding activity. ► Osthole

  20. The role of JAK/STAT3 signaling pathway on apoptosis of lung adenocarcinoma cell line PC-9 induced by icotinib

    PubMed Central

    Zhang, Yuping; Meng, Xia; Shi, Hongyang; Li, Wei; Ming, Zongjuan; Zhong, Yujie; Deng, Wenjing; Zhang, Qiuhong; Fan, Na; Niu, Zequn; Chen, Guo’an; Yang, Shuanying

    2016-01-01

    Objective: The aim of this study is to estimate the role of JAK/STAT3 signaling pathway on apoptosis of lung adenocarcinoma induced by icotinib. Methods: EGFR mutation was detected in lung adenocarcinoma cell line PC-9 by ARMS assay; The inhibitory rates of cell proliferation of PC-9 cells which were exposed to different concentrations of icotinib (0~100 μMol/L) for different time (24~72 h) respectively were evaluated by MTT assay; Apoptosis of PC-9 cells exposed to different concentrations of icotinib (0, 0.1, 1 and 10 μMol/L) for 48 h were evaluated by TUNEL assay; JAK2, STAT3, Bcl-2, Bax mRNA expressions were evaluated by Real-time PCR assay; The protein levels of P-STAT3 and IL-6 were evaluated by Western-blot assay. Results: Human lung adenocarcinoma cell line PC-9 had an exon 19 deletion mutation in EGFR gene; Followed by treatment of icotinib, the proliferation of PC-9 cells were all inhibited significantly, especially in 48 and 72 h (P<0.01) in all concentrations; The inhibitory rates of cell proliferation in different treating time had statistical significance (P<0.01); Cell apoptosis in different concentrations were increased significantly (P<0.05); Along with the increasing concentrations, gene expression levels of JAK2, STAT3 and Bcl-2 decreased significantly (P<0.05), Bax increased significantly (P<0.05), JAK2/STAT3 ratios increased significantly (P<0.01), and Bcl-2/bax ratios decreased significantly (P<0.01); P-STAT3 and IL-6 protein levels were inhibited significantly in higher concentration. Conclusions: JAK/STAT3 signaling pathway participates in apoptosis of PC-9 cells induced by icotinib. The most likely mechanism is icotinib inhibited the gene expression levels of JAK2, STAT3 and Bcl-2, so with the P-STAT3 and IL-6 protein levels, and mediated gene Bax overexpression. PMID:27186296

  1. Identification of potential erythrocyte phospholipid fatty acid biomarkers of advanced lung adenocarcinoma, squamous cell lung carcinoma, and small cell lung cancer.

    PubMed

    Sánchez-Rodríguez, Patricia; Rodríguez, Marina C; Sánchez-Yagüe, Jesús

    2015-07-01

    New biomarkers for lung cancer would be valuable. Our aim was to analyze the fatty acid profiles of the main phospholipid species in erythrocytes from patients with advanced squamous cell lung carcinoma (SCC), lung adenocarcinoma (ADC), and small cell lung cancer (SCLC) and benign lung diseases (chronic obstructive pulmonary disease (COPD) and asthma) to determine the fatty acids that could be use as lung cancer markers. Twenty-eight, 18, 14, 16, and 15 patients with, respectively, SCC, ADC, SCLC, asthma, and COPD and 50 healthy subjects were enrolled in the study. Fatty acid profiles were investigated using gas chromatography/mass spectrometry followed by receiver operating characteristic (ROC) curve analysis. The fatty acid profiles changed significantly in the different pathologies analyzed. Based on the diagnostic yields and operating characteristics, the most significant fatty acids that might be used as biomarkers were as follows: ADC--arachidonic acid (20:4n6) in phosphatidylcholine and oleic acid (18:1n9) in phosphatidylethanolamine (PE); SCC--eicosapentaenoic acid (20:5n3) in PE and palmitic acid (16:0) in phosphatidylserine + phosphatidylinositol (PS+PI); SCLC--eicosadienoic acid (20:2n6) in PS+PI and lignoceric acid (24:0) in sphingomyelin. In conclusion, fatty acids from erythrocyte phospholipid species might serve as biomarkers in the diagnosis, and probably in other aspects related to clinical disease management, of ADC, SCC, and SCLC. PMID:25702090

  2. Osthole inhibits the invasive ability of human lung adenocarcinoma cells via suppression of NF-κB-mediated matrix metalloproteinase-9 expression.

    PubMed

    Kao, Shang-Jyh; Su, Jen-Liang; Chen, Chi-Kuan; Yu, Ming-Chih; Bai, Kuan-Jen; Chang, Jer-Hua; Bien, Mauo-Ying; Yang, Shun-Fa; Chien, Ming-Hsien

    2012-05-15

    The induction of matrix metalloproteinase (MMP)-9 is particularly important for the invasiveness of various cancer cells. Osthole, a natural coumarin derivative extracted from traditional Chinese medicines, is known to inhibit the proliferation of a variety of tumor cells, but the effect of osthole on the invasiveness of tumor cells is largely unknown. This study determines whether and by what mechanism osthole inhibits invasion in CL1-5 human lung adenocarcinoma cells. Herein, we found that osthole effectively inhibited the migratory and invasive abilities of CL1-5 cells. A zymographic assay showed that osthole inhibited the proteolytic activity of MMP-9 in CL1-5 cells. Inhibition of migration, invasion, and MMP2 and/or MMP-9 proteolytic activities was also observed in other lung adenocarcinoma cell lines (H1299 and A549). We further found that osthole inhibited MMP-9 expression at the messenger RNA and protein levels. Moreover, a chromatin immunoprecipitation assay showed that osthole inhibited the transcriptional activity of MMP-9 by suppressing the DNA binding activity of nuclear factor (NF)-κB in the MMP-9 promoter. Using reporter assays with point-mutated promoter constructs further confirmed that the inhibitory effect of osthole requires an NF-κB binding site on the MMP-9 promoter. Western blot and immunofluorescence assays demonstrated that osthole inhibited NF-κB activity by inhibiting IκB-α degradation and NF-κB p65 nuclear translocation. In conclusion, we demonstrated that osthole inhibits NF-κB-mediated MMP-9 expression, resulting in suppression of lung cancer cell invasion and migration, and osthole might be a potential agent for preventing the invasion and metastasis of lung cancer. PMID:22503731

  3. Cytoplasmic sequestration of the tumor suppressor p53 by a heat shock protein 70 family member, mortalin, in human colorectal adenocarcinoma cell lines

    SciTech Connect

    Gestl, Erin E.; Anne Boettger, S.

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer Eight human colorectal cell lines were evaluated for p53 and mortalin localization. Black-Right-Pointing-Pointer Six cell lines displayed cytoplasmic sequestration of the tumor suppressor p53. Black-Right-Pointing-Pointer Direct interaction between mortalin and p53 was shown in five cell lines. Black-Right-Pointing-Pointer Cell lines positive for p53 sequestration yielded elevated p53 expression levels. Black-Right-Pointing-Pointer This study yields the first evidence of cytoplasmic sequestration p53 by mortalin. -- Abstract: While it is known that cytoplasmic retention of p53 occurs in many solid tumors, the mechanisms responsible for this retention have not been positively identified. Since heatshock proteins like mortalin have been associated with p53 inactivation in other tumors, the current study sought to characterize this potential interaction in never before examined colorectal adenocarcinoma cell lines. Six cell lines, one with 3 different fractions, were examined to determine expression of p53 and mortalin and characterize their cellular localization. Most of these cell lines displayed punctate p53 and mortalin localization in the cell cytoplasm with the exception of HCT-8 and HCT116 379.2 cells, where p53 was not detected. Nuclear p53 was only observed in HCT-116 40-16, LS123, and HT-29 cell lines. Mortalin was only localized in the cytoplasm in all cell lines. Co-immunoprecipitation and immunohistochemistry revealed that p53 and mortalin were bound and co-localized in the cytoplasmic fraction of four cell lines, HCT-116 (40-16 and 386; parental and heterozygous fractions respectively of the same cell line), HT-29, LS123 and LoVo, implying that p53 nuclear function is limited in those cell lines by being restricted to the cytoplasm. Mortalin gene expression levels were higher than gene expression levels of p53 in all cell lines. Cell lines with cytoplasmic sequestration of p53, however, also displayed elevated p53

  4. Pancreatic adenocarcinoma upregulated factor (PAUF) confers resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNA receptor-mediated signaling

    SciTech Connect

    Kaowinn, Sirichat; Cho, Il-Rae; Moon, Jeong; Jun, Seung Won; Kim, Chang Seok; Kang, Ho Young; Kim, Manbok; Koh, Sang Seok; Chung, Young-Hwa

    2015-04-03

    Pancreatic adenocarcinoma upregulated factor (PAUF), a novel oncogene, plays a crucial role in the development of pancreatic cancer, including its metastasis and proliferation. Therefore, PAUF-expressing pancreatic cancer cells could be important targets for oncolytic virus-mediated treatment. Panc-1 cells expressing PAUF (Panc-PAUF) showed relative resistance to parvovirus H-1 infection compared with Panc-1 cells expressing an empty vector (Panc-Vec). Of interest, expression of type I IFN-α receptor (IFNAR) was higher in Panc-PAUF cells than in Panc-Vec cells. Increased expression of IFNAR in turn increased the activation of Stat1 and Tyk2 in Panc-PAUF cells compared with that in Panc-Vec cells. Suppression of Tyk2 and Stat1, which are important downstream molecules for IFN-α signaling, sensitized pancreatic cancer cells to parvovirus H-1-mediated apoptosis. Further, constitutive suppression of PAUF sensitized Bxpc3 pancreatic cancer cells to parvovirus H-1 infection. Taken together, these results suggested that PAUF conferred resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNAR-mediated signaling. - Highlights: • PAUF confers resistance against oncolytic parvovirus H-1 infection. • PAUF enhances the expression of IFNAR in Panc-1 cells. • Increased activation of Tyk2 or Stat1 by PAUF provides resistance to parvovirus H-1-mediated apoptosis. • Constitutive inhibition of PAUF enhances parvovirus H-1-mediated oncolysis of Bxpc3 pancreatic cancer cells.

  5. Arsenite and Cadmium Activate MAPK/ERK via Membrane Estrogen Receptors and G-Protein Coupled Estrogen Receptor Signaling in Human Lung Adenocarcinoma Cells.

    PubMed

    Huff, Mary O; Todd, Sarah L; Smith, Aaron L; Elpers, Julie T; Smith, Alexander P; Murphy, Robert D; Bleser-Shartzer, Allison S; Hoerter, Jacob E; Radde, Brandie N; Klinge, Carolyn M

    2016-07-01

    Epidemiological evidence indicates that cadmium and arsenic exposure increase lung cancer risk. Cadmium and arsenic are environmental contaminants that act as endocrine disruptors (EDs) by activating estrogen receptors (ERs) in breast and other cancer cell lines but their activity as EDs in lung cancer is untested. Here, we examined the effect of cadmium chloride (CdCl2) and sodium arsenite (NaAsO2) on the proliferation of human lung adenocarcinoma cell lines. Results demonstrated that both CdCl2 and NaAsO2 stimulated cell proliferation at environmentally relevant nM concentrations in a similar manner to 17β-estradiol (E2) in H1793, H2073, and H1944 cells but not in H1792 or H1299 cells. Further studies in H1793 cells showed that 100 nM CdCl2 and NaAsO2 rapidly stimulated mitogen-activated protein kinase (MAPK, extracellular-signal-regulated kinases) phosphorylation with a peak detected at 15 min. Inhibitor studies suggest that rapid MAPK phosphorylation by NaAsO2, CdCl2, and E2 involves ER, Src, epidermal growth factor receptor, and G-protein coupled ER (GPER) in a pertussis toxin-sensitive pathway. CdCl2 and E2 activation of MAPK may also involve ERβ. This study supports the involvement of membrane ER and GPER signaling in mediating cellular responses to environmentally relevant nM concentrations of CdCl2 and NaAsO2 in lung adenocarcinoma cells. PMID:27071941

  6. Combined treatment with Denbinobin and Fas ligand has a synergistic cytotoxic effect in human pancreatic adenocarcinoma BxPC-3 cells

    PubMed Central

    Yang, CR; Guh, JH; Teng, CM; Chen, CC; Chen, PH

    2009-01-01

    Background and purpose: Human pancreatic carcinoma is a highly malignant cancer. Previous studies have shown that the decoy receptor 3 (DcR3) for Fas ligand (FasL) plays significant roles in tumour progression and immune suppression. In the present study, we evaluated the anti-cancer activity of a natural compound, denbinobin (5-hydroxy-3,7-dimethoxy-1,4-phenanthraquinone), through decreasing DcR3 levels in human pancreatic adenocarcinoma cell lines. Experimental approach: We used immunoprecipitation and ELISA assays to examine DcR3 levels, and used FACS to determine the percentage of cells with a sub-G1 DNA content. Key results: AsPC-1 and BxPC-3 human pancreatic cancer cells express high levels of DcR3. Denbinobin concentration-dependently decreased DcR3 levels in BxPC-3 cells. MTT and flow cytometry assays indicated that BxPC-3 was FasL-resistant because high concentrations (100 ng·mL−1) of soluble FasL did not inhibit cell growth. However, combinations of denbinobin (3 µmol·L−1) with lower concentrations of soluble FasL (10, 30 and 50 ng·mL−1) or membrane-bound FasL, were synergistic on cell growth inhibition and apoptosis. Exogenous excess DcR3 reversed this synergistic effect. We observed no significant increase in the levels of surface Fas, cleaved forms of caspase-8, -3, -9, Bax, Bid, Bcl-xL, cytochrome c or mitochondrial membrane potentials following denbinobin treatment. However, denbinobin treatment increased the levels of apoptosis-inducing factor. Conclusions and implications: Denbinobin and FasL trigger a synergistic cytotoxic effect in human pancreatic adenocarcinoma cells. Denbinobin mediated a decrease in levels of DcR3, which played a major role in this synergistic effect, and also increased caspase-independent apoptosis, via apoptosis-inducing factor. PMID:19466993

  7. Immunohistochemical identification method of tumour cells in the S phase of mitotic cycle and its usefulness in diagnostics of mammary gland adenocarcinomas in bitches.

    PubMed

    Nowak, M; Madej, J A; Dziegiel, P; Kanzawa, H

    2006-01-01

    The studies aimed at identification of neoplastic cells at the S phase of mitotic cycle in mammary gland adenocarcinomas of bitches. The material was sampled from bitches of various races, aging 6 to 12 years, in which the mammary gland tumours developed spontaneously. The tumours were verified histopathologically and, then, immunohistochemical reactions were performed in order to detect cells which had incorporated BrdU (bromodeoxyuridine), contained Ki-67 or PCNA antigen. The histological preparations were photographed and obtained pictures were subjected to computer-assisted image analysis using Axiophot microscope (Carl Zeiss) coupled to a computer and the Multi-ScaneBase V 8.08 software, working under Windows. Fifty percent of sections from mammary gland adenocarcinomas demonstrated BrdU labelling index of 4-5%, 40% of 1-3%, while in the remaining 10% of examined tumours no BrdU incorporation could be demonstrated. No evident relationship could be detected between the presence of BrdU incorporation and Ki-67 or PCNA antigen presence but a significant correlation was demonstrated between the expression of Ki-67 and PCNA. PMID:16573276

  8. Monitoring KRAS mutations in circulating DNA and tumor cells using digital droplet PCR during treatment of KRAS-mutated lung adenocarcinoma.

    PubMed

    Guibert, Nicolas; Pradines, Anne; Farella, Magali; Casanova, Anne; Gouin, Sandrine; Keller, Laura; Favre, Gilles; Mazieres, Julien

    2016-10-01

    Liquid biopsies are a new non-invasive strategy to detect and monitor the biology of non-small-cell lung cancer (NSCLC) in the era of personalized medicine. KRAS is an oncogenic driver that is mutated in 30% of NSCLCs and is associated with a poor prognosis. 62 samples from 32 patients, treated for metastatic KRAS-mutated lung adenocarcinoma, had DNA extracted from plasma and circulating tumor cells (CTCs) prospectively tested for the presence of KRAS mutations using droplet digital PCR. A KRAS mutation was detected in 82% of patients. Sensitivity was 78% for circulating free DNA (cfDNA) and 34% for CTCs. The presence of a KRAS mutation in cfDNA was correlated with a poor response to chemotherapy or targeted therapy. When a KRAS-mutated-DNA was detected and then monitored in cfDNA, its variation during targeted or conventional therapy was correlated with response, according to RECIST criteria, in 87.5% of cases (n=14/16), whereas this correlation was observed in 37.5% of cases for CTCs (n=3/8). We report the usefulness of using digital droplet PCR on liquid biopsies to predict and monitor responses to treatment of KRAS-mutated lung adenocarcinoma. ctDNA was much more sensitive than CTCs in this context. PMID:27597273

  9. A Lactose-Binding Lectin from the Marine Sponge Cinachyrella Apion (Cal) Induces Cell Death in Human Cervical Adenocarcinoma Cells

    PubMed Central

    Rabelo, Luciana; Monteiro, Norberto; Serquiz, Raphael; Santos, Paula; Oliveira, Ruth; Oliveira, Adeliana; Rocha, Hugo; Morais, Ana Heloneida; Uchoa, Adriana; Santos, Elizeu

    2012-01-01

    Cancer represents a set of more than 100 diseases, including malignant tumors from different locations. Strategies inducing differentiation have had limited success in the treatment of established cancers. Marine sponges are a biological reservoir of bioactive molecules, especially lectins. Several animal and plant lectins were purified with antitumor activity, mitogenic, anti-inflammatory and antiviral, but there are few reports in the literature describing the mechanism of action of lectins purified from marine sponges to induce apoptosis in human tumor cells. In this work, a lectin purified from the marine sponge Cinachyrella apion (CaL) was evaluated with respect to its hemolytic, cytotoxic and antiproliferative properties, besides the ability to induce cell death in tumor cells. The antiproliferative activity of CaL was tested against HeLa, PC3 and 3T3 cell lines, with highest growth inhibition for HeLa, reducing cell growth at a dose dependent manner (0.5–10 µg/mL). Hemolytic activity and toxicity against peripheral blood cells were tested using the concentration of IC50 (10 µg/mL) for both trials and twice the IC50 for analysis in flow cytometry, indicating that CaL is not toxic to these cells. To assess the mechanism of cell death caused by CaL in HeLa cells, we performed flow cytometry and western blotting. Results showed that lectin probably induces cell death by apoptosis activation by pro-apoptotic protein Bax, promoting mitochondrial membrane permeabilization, cell cycle arrest in S phase and acting as both dependent and/or independent of caspases pathway. These results indicate the potential of CaL in studies of medicine for treating cancer. PMID:22690140

  10. An Increased Abundance of Tumor-Infiltrating Regulatory T Cells Is Correlated with the Progression and Prognosis of Pancreatic Ductal Adenocarcinoma

    PubMed Central

    Tang, Yichen; Xu, Xuejun; Guo, Shixiang; Zhang, Chaobin; Tang, Yan; Tian, Yi; Ni, Bing; Lu, Binfeng; Wang, Huaizhi

    2014-01-01

    CD4+CD25+Foxp3+ regulatory T cells (Tregs) can inhibit cytotoxic responses. Though several studies have analyzed Treg frequency in the peripheral blood mononuclear cells (PBMCs) of pancreatic ductal adenocarcinoma (PDA) patients using flow cytometry (FCM), few studies have examined how intratumoral Tregs might contribute to immunosuppression in the tumor microenvironment. Thus, the potential role of intratumoral Tregs in PDA patients remains to be elucidated. In this study, we found that the percentages of Tregs, CD4+ T cells and CD8+ T cells were all increased significantly in tumor tissue compared to control pancreatic tissue, as assessed via FCM, whereas the percentages of these cell types in PBMCs did not differ between PDA patients and healthy volunteers. The percentages of CD8+ T cells in tumors were significantly lower than in PDA patient PBMCs. In addition, the relative numbers of CD4+CD25+Foxp3+ Tregs and CD8+ T cells were negatively correlated in the tissue of PDA patients, and the abundance of Tregs was significantly correlated with tumor differentiation. Additionally, Foxp3+ T cells were observed more frequently in juxtatumoral stroma (immediately adjacent to the tumor epithelial cells). Patients showing an increased prevalence of Foxp3+ T cells had a poorer prognosis, which was an independent factor for patient survival. These results suggest that Tregs may promote PDA progression by inhibiting the antitumor immunity of CD8+ T cells at local intratumoral sites. Moreover, a high proportion of Tregs in tumor tissues may reflect suppressed antitumor immunity. PMID:24637664

  11. 7,8-Dihydroxycoumarin inhibits A549 human lung adenocarcinoma cell proliferation by inducing apoptosis via suppression of Akt/NF-κB signaling

    PubMed Central

    WANG, YUE; LI, CHANG-FENG; PAN, LI-MING; GAO, ZHONG-LI

    2013-01-01

    The Akt/NF-κB pathways are involved in numerous anti-apoptotic and drug-resistance events that occur in non-small cell lung cancer (NSCLC). In the present study, the role of 7,8-dihydroxycoumarin in the regulation of the anti-apoptotic Akt and NF-κBp65 signaling pathways was explored. A549 human lung adenocarcinoma cells were exposed to 7,8-dihydroxycoumarin with a final concentration of 25, 50 and 100 μmol/l for 48 h. Quantitative polymerase chain reaction (PCR) and western blotting were performed to detect mRNA and protein expression, respectively. The MTT assay was performed to detect cell proliferation. The results demonstrated that anti-apoptotic phospho-Akt1 (pAkt1), phospho-IκBα (pIκBα), NF-κBp65 and Bcl-2 were inhibited and pro-apoptotic caspase-3 was upregulated in a concentration-dependent manner. At a concentration of 100 μmol/l, the anti-apoptotic NF-κBp65 and Bcl-2 mRNA expression levels decreased 0.12 (5.82/48.5, treated/control)-fold and 0.17 (6.7/39.4, treated/control)-fold, respectively. The pro-apoptotic caspase-3 mRNA was upregulated 4.43 (39.4/8.9, treated/control)-fold. The anti-apoptotic pAkt1, pIκBα, NF-κBp65 and Bcl-2 proteins were downregulated, with blot grayscale values of 7.3 (vs. 52.4 control), 4.3 (vs. 42.2 control), 5.08 (vs. 44.5 control) and 5.92 (vs. 38.5 control), respectively. The proapoptotic caspase-3 was upregulated to a blot grayscale value of 27.8 (vs. 5.8 control). The proliferative activity of A549 cells was reduced significantly compared with that of the control cells (83.7, 27.2 and 9.5 vs. 100%, respectively; P<0.05 for each). 7,8-Dihydroxycoumarin plays an important role in the induction of apoptosis via suppression of Akt/NF-κB signaling in A549 human lung adenocarcinoma cells in a concentration-dependent manner. 7,8-Dihydroxycoumarin may be a candidate naturally-occurring drug for the treatment and prevention of lung adenocarcinoma. PMID:23837071

  12. Responses of genes involved in cell cycle control to diverse DNA damaging chemicals in human lung adenocarcinoma A549 cells

    PubMed Central

    Zhu, Huijun; Smith, Catherine; Ansah, Charles; Gooderham, Nigel J

    2005-01-01

    Background Many anticancer agents and carcinogens are DNA damaging chemicals and exposure to such chemicals results in the deregulation of cell cycle progression. The molecular mechanisms of DNA damage-induced cell cycle alteration are not well understood. We have studied the effects of etoposide (an anticancer agent), cryptolepine (CLP, a cytotoxic alkaloid), benzo [a]pyrene (BaP, a carcinogenic polycyclic aromatic hydrocarbon) and 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine (PhIP, a cooked-meat derived carcinogen) on the expression of cell cycle regulatory genes to understand the molecular mechanisms of the cell cycle disturbance. Results A549 cells were treated with DMSO or chemicals for up to 72 h and periodically sampled for cell cycle analysis, mRNA and protein expression. DMSO treated cells showed a dominant G1 peak in cell cycle at all times examined. Etoposide and CLP both induced G2/M phase arrest yet the former altered the expression of genes functioning at multiple phases, whilst the latter was more effective in inhibiting the expression of genes in G2-M transition. Both etoposide and CLP induced an accumulation of p53 protein and upregulation of p53 transcriptional target genes. Neither BaP nor PhIP had substantial phase-specific cell cycle effect, however, they induced distinctive changes in gene expression. BaP upregulated the expression of CYP1B1 at 6–24 h and downregulated many cell cycle regulatory genes at 48–72 h. By contrast, PhIP increased the expression of many cell cycle regulatory genes. Changes in the expression of key mRNAs were confirmed at protein level. Conclusion Our experiments show that DNA damaging agents with different mechanisms of action induced distinctive changes in the expression pattern of a panel of cell cycle regulatory genes. We suggest that examining the genomic response to chemical exposure provides an exceptional opportunity to understand the molecular mechanism involved in cellular response to toxicants. PMID

  13. Pancreatic adenocarcinoma upregulated factor (PAUF) confers resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNA receptor-mediated signaling.

    PubMed

    Kaowinn, Sirichat; Cho, Il-Rae; Moon, Jeong; Jun, Seung Won; Kim, Chang Seok; Kang, Ho Young; Kim, Manbok; Koh, Sang Seok; Chung, Young-Hwa

    2015-04-01

    Pancreatic adenocarcinoma upregulated factor (PAUF), a novel oncogene, plays a crucial role in the development of pancreatic cancer, including its metastasis and proliferation. Therefore, PAUF-expressing pancreatic cancer cells could be important targets for oncolytic virus-mediated treatment. Panc-1 cells expressing PAUF (Panc-PAUF) showed relative resistance to parvovirus H-1 infection compared with Panc-1 cells expressing an empty vector (Panc-Vec). Of interest, expression of type I IFN-α receptor (IFNAR) was higher in Panc-PAUF cells than in Panc-Vec cells. Increased expression of IFNAR in turn increased the activation of Stat1 and Tyk2 in Panc-PAUF cells compared with that in Panc-Vec cells. Suppression of Tyk2 and Stat1, which are important downstream molecules for IFN-α signaling, sensitized pancreatic cancer cells to parvovirus H-1-mediated apoptosis. Further, constitutive suppression of PAUF sensitized Bxpc3 pancreatic cancer cells to parvovirus H-1 infection. Taken together, these results suggested that PAUF conferred resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNAR-mediated signaling. PMID:25727013

  14. Aspirin induces cell death and caspase-dependent phosphatidylserine externalization in HT-29 human colon adenocarcinoma cells

    PubMed Central

    Castaño, E; Dalmau, M; Barragán, M; Pueyo, G; Bartrons, R; Gil, J

    1999-01-01

    The induction of cell death by aspirin was analysed in HT-29 colon carcinoma cells. Aspirin induced two hallmarks of apoptosis: nuclear chromatin condensation and increase in phosphatidylserine externalization. However, aspirin did not induce either oligonucleosomal fragmentation of DNA, decrease in DNA content or nuclear fragmentation. The effect of aspirin on Annexin V binding was inhibited by the caspase inhibitor Z-VAD.fmk, indicating the involvement of caspases in the apoptotic action of aspirin. However, aspirin did not induce proteolysis of PARP, suggesting that aspirin does not increase nuclear caspase 3-like activity in HT-29 cells. This finding may be related with the ‘atypical’ features of aspirin-induced apoptosis in HT-29 cells. © 1999 Cancer Research Campaign PMID:10496355

  15. Treatment with HIF-1α Antagonist PX-478 Inhibits Progression and Spread of Orthotopic Human Small Cell Lung Cancer and Lung Adenocarcinoma in Mice

    PubMed Central

    Jacoby, Jörg J.; Erez, Baruch; Korshunova, Maria V.; Williams, Ryan R.; Furutani, Kazuhisa; Takahashi, Osamu; Kirkpatrick, Lynn; Lippman, Scott M.; Powis, Garth; O’Reilly, Michael S.; Herbst, Roy S.

    2011-01-01

    Introduction PX-478 is a potent small-molecule inhibitor of HIF-1α. In preclinical studies, it had antitumor activity against various solid tumors in subcutaneous xenografts but had no measurable activity against a non-small cell lung cancer (NSCLC) xenograft. To determine the effectiveness of PX-478 against lung tumors, we investigated HIF-1α expression in several lung cancer cell lines, both in vitro and in vivo, and treated orthotopic mouse models of human lung cancer with PX-478. Methods Cells from two human lung adenocarcinoma cell models (PC14-PE6 and NCI-H441) or two human small cell lung cancer (SCLC) models (NCI-H187 and NCI-N417) were injected into the left lungs of nude mice and were randomized 16 to 18 days after injection with daily oral treatment with PX-478 or vehicle for 5 days. Results In the PC14-PE6 NSCLC model, treatment with 20 mg/kg PX-478 significantly reduced the median primary lung tumor volume by 87% (p = 0.005) compared with the vehicle-treated group. PX-478 treatment also markedly reduced mediastinal metastasis and prolonged survival. Similar results were obtained in a second NSCLC model. In SCLC models, PX-478 was even more effective. In the NCI-H187 model, the median primary lung tumor volume was reduced by 99% (p = 0.0001). The median survival duration was increased by 132%. In the NCI-N417 model, the median primary lung tumor volume was reduced by 97% (p = 0.008). Conclusions We demonstrated that the PX-478, HIF-1α inhibitor, had significant antitumor activity against two orthotopic models of lung adenocarcinomas and two models of SCLC. These results suggest the inclusion of lung cancer patients in phase I clinical trials of PX-478. PMID:20512076

  16. The novel HSP90 inhibitor AT13387 potentiates radiation effects in squamous cell carcinoma and adenocarcinoma cells.

    PubMed

    Spiegelberg, Diana; Dascalu, Adrian; Mortensen, Anja C; Abramenkovs, Andris; Kuku, Gamze; Nestor, Marika; Stenerlöw, Bo

    2015-11-01

    Overexpression of heat shock protein 90 (HSP90) is associated with increased tumor cell survival and radioresistance. In this study we explored the efficacy of the novel HSP90 inhibitor AT13387 and examined its radiosensitizing effects in combination with gamma-radiation in 2D and 3D structures as well as mice-xenografts. AT13387 induced effective cytotoxic activity and radiosensitized cancer cells in monolayer and tumor spheroid models, where low drug doses triggered significant synergistic effects on cell survival together with radiation. Furthermore, AT13387 treatment resulted in G2/M-phase arrest and significantly reduced the migration capacity. The expression of selected client proteins involved in DNA repair, cell-signaling and cell growth was downregulated in vitro, though the expression of most investigated proteins recurred after 8-24 h. These results were confirmed in vivo where AT13387 treated tumors displayed effective downregulation of HSP90 and its oncogenic client proteins.In conclusion, our results demonstrate that AT13387 is a potent new cancer drug and effective radiosensitizer in vitro with an excellent in vivo efficacy. AT13387 treatment has the potential to improve external beam therapy and radionuclide therapy outcomes and restore treatment efficacy in cancers that are resistant to initial therapeutic regimes. PMID:26452257

  17. The novel HSP90 inhibitor AT13387 potentiates radiation effects in squamous cell carcinoma and adenocarcinoma cells

    PubMed Central

    Spiegelberg, Diana; Dascalu, Adrian; Mortensen, Anja C.; Abramenkovs, Andris; Kuku, Gamze; Nestor, Marika; Stenerlöw, Bo

    2015-01-01

    Overexpression of heat shock protein 90 (HSP90) is associated with increased tumor cell survival and radioresistance. In this study we explored the efficacy of the novel HSP90 inhibitor AT13387 and examined its radiosensitizing effects in combination with gamma-radiation in 2D and 3D structures as well as mice-xenografts. AT13387 induced effective cytotoxic activity and radiosensitized cancer cells in monolayer and tumor spheroid models, where low drug doses triggered significant synergistic effects on cell survival together with radiation. Furthermore, AT13387 treatment resulted in G2/M-phase arrest and significantly reduced the migration capacity. The expression of selected client proteins involved in DNA repair, cell-signaling and cell growth was downregulated in vitro, though the expression of most investigated proteins recurred after 8–24 h. These results were confirmed in vivo where AT13387 treated tumors displayed effective downregulation of HSP90 and its oncogenic client proteins. In conclusion, our results demonstrate that AT13387 is a potent new cancer drug and effective radiosensitizer in vitro with an excellent in vivo efficacy. AT13387 treatment has the potential to improve external beam therapy and radionuclide therapy outcomes and restore treatment efficacy in cancers that are resistant to initial therapeutic regimes. PMID:26452257

  18. Neohesperidin induces cellular apoptosis in human breast adenocarcinoma MDA-MB-231 cells via activating the Bcl-2/Bax-mediated signaling pathway.

    PubMed

    Xu, Fei; Zang, Jia; Chen, Daozhen; Zhang, Ting; Zhan, Huiying; Lu, Mudan; Zhuge, Hongxiang

    2012-11-01

    Neohesperidin, a flavonoid compound found in high amounts in Poncirus trifoliata, has free radical scavenging activity. For the first time, our study indicated that neohesperidin also induces cell apoptosis in human breast adenocarcinoma MDA-MB-231 cells, which was possibly mediated by regulating the P53/Bcl-2/Bax pathway. MDA-MB-231 cells were subjected to treatment with neohesperidin. MTT and Trypan blue exclusion assays were applied to assess the cell viability. The morphological changes of cells were observed using an inverted microscope, and cell apoptosis was detected by flow cytometric analysis. Immunoblot analysis was conducted to evaluate the protein expressions of apoptosis-related genes, including P53, Bcl-2 and Bax. Our results indicated that the proliferation of MDA-MB-231 cells was inhibited by the treatment with neohesperidin in a time- and dose-dependent manner. The IC50 values of neohesperidin at 24 and 48 h were 47.4 +/- 2.6 microM and 32.5 +/- 1.8 microM, respectively. The expressions of P53 and Bax in the neohesperidin-treated cells were significantly up-regulated, while that of Bcl-2 was down-regulated. Our study suggested that neohesperidin could induce apoptosis of MDA-MB-231 cells, a process which was associated with the activation of the Bcl-2/Bax-mediated signaling pathway. PMID:23285810

  19. Exosome cargo reflects TGF-β1-mediated epithelial-to-mesenchymal transition (EMT) status in A549 human lung adenocarcinoma cells.

    PubMed

    Kim, Jiyeon; Kim, Tae Yeon; Lee, Myung Shin; Mun, Ji Young; Ihm, Chunhwa; Kim, Soon Ae

    2016-09-16

    It has been suggested that tumor cells secrete exosomes to modify the local microenvironment, which then promotes intercellular communication and metastasis. Although exosomes derived from cancer cells may contribute to the epithelial-mesenchymal transition (EMT) in untransformed cells, few studies have defined exosome cargo upon induction of EMT. In this study, we investigated the changes in exosomal cargo from the epithelial to mesenchymal cell phenotype by inducing EMT with transforming growth factor (TGF)-β1 in A549 human lung adenocarcinoma cells. The protein content of the exosomes reflects the change in the cell phenotype. In addition, miR-23a was significantly enriched in the exosomes after mesenchymal transition. Following treatment of exosomes from mesenchymal cells via EMT induction with TGF-β1 to the epithelial cell type, phenotypic changes in protein expression level and cell morphology were observed. Autologous treatment of exosomes enhanced the transcriptional activity and abundance of β-catenin. Our results suggest that the exosomal protein and miRNA content reflects the physiological condition of its source and that exosomes induce phenotypic changes via autocrine signaling. PMID:27492069

  20. Daucus carota Pentane-Based Fractions Suppress Proliferation and Induce Apoptosis in Human Colon Adenocarcinoma HT-29 Cells by Inhibiting the MAPK and PI3K Pathways.

    PubMed

    Shebaby, Wassim N; Bodman-Smith, K B; Mansour, Anthony; Mroueh, Mohamad; Taleb, Robin I; El-Sibai, Mirvat; Daher, Costantine F

    2015-07-01

    Daucus carota L. ssp. carota (Apiacea, wild carrot, Queen Anne's lace) has been used in folk medicine throughout the world and recently was shown to possess anticancer and antioxidant activities. This study aims to determine the anticancer activity of the pentane fraction (F1) and the 1:1 pentane:diethyl ether fraction (F2) of the Daucus Carota oil extract (DCOE) against human colon adenocarcinoma cell lines (HT-29 and Caco-2). Treatment of cells with various concentrations of F1 or F2 fractions produced a dose-dependent inhibition of cell proliferation. Flow cytometric analysis indicated that both fractions induced sub-G1 phase accumulation and increased apoptotic cell death. Western blot revealed the activation of caspase-3, PARP cleavage, and a considerable increase in Bax and p53 levels, and a decrease in Bcl-2 level. Treatment of HT-29 cells with either fraction markedly decreased the levels of both phosphorylated Erk and Akt. Furthermore, the combined treatment of F1 or F2 with wortmannin showed no added inhibition of cell survival suggesting an effect of F1 or F2 through the phosphatidyl inositol 3-kinase (PI3K) pathway. This study proposes that DCOE fractions (F1 and F2) inhibit cell proliferation by inducing cell cycle arrest and apoptosis in HT-29 cells through the suppression of mitogen-activated protein kinase (MAPK)/Erk and PI3K/Akt pathways. PMID:25599142

  1. Comprehensive genetic testing identifies targetable genomic alterations in most patients with non-small cell lung cancer, specifically adenocarcinoma, single institute investigation

    PubMed Central

    Won, Brian M.; Patton, Kathryn Alexa; Villaflor, Victoria M.; Hoffman, Philip C.; Hensing, Thomas; Hogarth, D. Kyle; Malik, Renuka; MacMahon, Heber; Mueller, Jeffrey; Simon, Cassie A.; Vigneswaran, Wickii T.; Wigfield, Christopher H.; Ferguson, Mark K.; Husain, Aliya N.; Vokes, Everett E.; Salgia, Ravi

    2016-01-01

    This study reviews extensive genetic analysis in advanced non-small cell lung cancer (NSCLC) patients in order to: describe how targetable mutation genes interrelate with the genes identified as variants of unknown significance; assess the percentage of patients with a potentially targetable genetic alterations; evaluate the percentage of patients who had concurrent alterations, previously considered to be mutually exclusive; and characterize the molecular subset of KRAS. Thoracic Oncology Research Program Databases at the University of Chicago provided patient demographics, pathology, and results of genetic testing. 364 patients including 289 adenocarcinoma underwent genotype testing by various platforms such as FoundationOne, Caris Molecular Intelligence, and Response Genetics Inc. For the entire adenocarcinoma cohort, 25% of patients were African Americans; 90% of KRAS mutations were detected in smokers, including current and former smokers; 46% of EGFR and 61% of ALK alterations were detected in never smokers. 99.4% of patients, whose samples were analyzed by next-generation sequencing (NGS), had genetic alterations identified with an average of 10.8 alterations/tumor throughout different tumor subtypes. However, mutations were not mutually exclusive. NGS in this study identified potentially targetable genetic alterations in the majority of patients tested, detected concurrent alterations and provided information on variants of unknown significance at this time but potentially targetable in the future. PMID:26934441

  2. Targeting of the β6 gene to suppress degradation of ECM via inactivation of the MAPK pathway in breast adenocarcinoma cells.

    PubMed

    Zhang, Yuhua; Wei, Lijing; Yu, Jin; Li, Guang; Zhang, Xiuru; Wang, Anliu; He, Yanjiao; Li, Hongli; Yin, Deling

    2014-11-01

    Integrin ανβ6 has emerged as a potential novel target for anticancer and plays a major role in promoting malignant tumor progression. Recent studies indicate that integrin ανβ6 occurs in many cancers. However, whether and how ανβ6 is regulated by genetic and epigenetic mechanisms in breast cancer remain unknown. In the present study, two different short hairpin RNAs (shRNAs) targeting the β6 gene were designed and constructed into pSUPER, respectively, which were transfected into the MCF-7 human breast adenocarcinoma cell line. The β6-shRNA stably transfected cells were successfully established, and significant lower levels of ανβ6 mRNA and protein expression were confirmed. Furthermore, inhibition of integrin ανβ6 markedly downregulated the expression of matrix metalloproteinase-9 (MMP-9), matrix metalloproteinase-3 (MMP-3) and urokinase plasminogen activator (uPA) in tumor conditioned medium. Furthermore, β6-shRNA-mediated silencing of the ανβ6 gene obviously decreased the expression of ERK1/2. In particular, supression of integrin ανβ6 caused significant downregulation of the degradation of basement membrane type IV collagen secretion via modulation of the plasminogen activation cascade. Our results thus indicate that ανβ6 plays a fundamental role in promoting invasion and growth of breast adenocarcinoma cells. Taken together, this study revealed that targeting of the β6 gene by RNA interference (RNAi) could efficiently downregulate ανβ6 expression and suppress the ERK1/2-dependent extracellular matrix degradation in vitro, which is dependent upon inactivation of the mitogen-activated protein kinase (MAPK) pathway. These findings may offer a useful therapeutic approach to block invasion and migration of breast cancer cells. PMID:25176506

  3. Peroxisome proliferator-activated receptor gamma overexpression suppresses proliferation of human colon cancer cells

    SciTech Connect

    Tsukahara, Tamotsu; Haniu, Hisao

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer We examined the correlation between PPAR{gamma} expression and cell proliferation. Black-Right-Pointing-Pointer PPAR{gamma} overexpression reduces cell viability. Black-Right-Pointing-Pointer We show the synergistic effect of cell growth inhibition by a PPAR{gamma} agonist. -- Abstract: Peroxisome proliferator-activated receptor gamma (PPAR{gamma}) plays an important role in the differentiation of intestinal cells and tissues. Our previous reports indicate that PPAR{gamma} is expressed at considerable levels in human colon cancer cells. This suggests that PPAR{gamma} expression may be an important factor for cell growth regulation in colon cancer. In this study, we investigated PPAR{gamma} expression in 4 human colon cancer cell lines, HT-29, LOVO, DLD-1, and Caco-2. Real-time polymerase chain reaction (PCR) and Western blot analysis revealed that the relative levels of PPAR{gamma} mRNA and protein in these cells were in the order HT-29 > LOVO > Caco-2 > DLD-1. We also found that PPAR{gamma} overexpression promoted cell growth inhibition in PPAR{gamma} lower-expressing cell lines (Caco-2 and DLD-1), but not in higher-expressing cells (HT-29 and LOVO). We observed a correlation between the level of PPAR{gamma} expression and the cells' sensitivity for proliferation.

  4. Artemisinin induces caspase-8/9-mediated and Bax/Bak-independent apoptosis in human lung adenocarcinoma (ASTC-a-1) cells.

    PubMed

    Xiao, Feng-Lian; Gao, Wei-Jie; Liu, Cheng-Yi; Wang, Xiao-Ping; Chen, Tong-Sheng

    2011-01-01

    Artemisinin (ARTE), an antimalarial phytochemical component from the sweet wormwood plant, has been shown a potential anticancer activity by inducing cell apoptosis. The aim of this report is to explore the mechanism of ARTE-induced human lung adenocarcinoma (ASTC-a-1) cell apoptosis. Cell counting kit (CCK-8) assay showed that ARTE induced cytotoxcity in a dose- and time-dependent manner. Confocal microscopy fluorescence imaging of cells stained with Hoechst 33258 and flow cytometry (FCM) analysis of cells stained with Annexin V-FITC/propidium iodide (PI) showed that ARTE induced reactive oxygen species (ROS)-dependent apoptosis. Confocal fluorescence resonance energy transfer (FRET) imaging of single living cells expressing SCAT3, SCAT9 or CFP-Bid-YFP and fluorometic substrate assay showed that ARTE induced the activation of caspase-3, -8 and -9. Moreover, inhibition of caspase-8 or -9 completely blocked ARTE-induced apoptosis which was only partially attenuated by caspase-3 inhibitor. Interestingly, silencing Bax and Bak by RNA interference (RNAi) did not attenuate ARTE-induced apoptosis. Collectively, ARTE induces caspase-dependent but Bax/Bak-independent apoptosis in ASTC-a-1 cells. PMID:25214386

  5. Genomic evolution in Barrett’s adenocarcinoma cells: critical roles of elevated hsRAD51, homologous recombination and Alu sequences in the genome

    PubMed Central

    Pal, J; Bertheau, R; Buon, L; Qazi, A; Batchu, RB; Bandyopadhyay, S; Ali-Fehmi, R; Beer, DG; Weaver, DW; Reis, RJ Shmookler; Goyal, RK; Huang, Q; Munshi, NC; Shammas, MA

    2012-01-01

    A prominent feature of most cancers including Barrett’s adenocarcinoma (BAC) is genetic instability, which is associated with development and progression of disease. In this study, we investigated the role of recombinase (hsRAD51), a key component of homologous recombination (HR)/repair, in evolving genomic changes and growth of BAC cells. We show that the expression of RAD51 is elevated in BAC cell lines and tissue specimens, relative to normal cells. HR activity is also elevated and significantly correlates with RAD51 expression in BAC cells. The suppression of RAD51 expression, by short hairpin RNA (shRNA) specifically targeting this gene, significantly prevented BAC cells from acquiring genomic changes to either copy number or heterozygosity (P<0.02) in several independent experiments employing single-nucleotide polymorphism arrays. The reduction in copy-number changes, following shRNA treatment, was confirmed by Comparative Genome Hybridization analyses of the same DNA samples. Moreover, the chromosomal distributions of mutations correlated strongly with frequencies and locations of Alu interspersed repetitive elements on individual chromosomes. We conclude that the hsRAD51 protein level is systematically elevated in BAC, contributes significantly to genomic evolution during serial propagation of these cells and correlates with disease progression. Alu sequences may serve as substrates for elevated HR during cell proliferation in vitro, as they have been reported to do during the evolution of species, and thus may provide additional targets for prevention or treatment of this disease. PMID:21423218

  6. Vinca alkaloids cause aberrant ROS-mediated JNK activation, Mcl-1 downregulation, DNA damage, mitochondrial dysfunction, and apoptosis in lung adenocarcinoma cells.

    PubMed

    Chiu, Wei-Hsin; Luo, Sheng-Jei; Chen, Chia-Ling; Cheng, Jai-Hong; Hsieh, Chia-Yuan; Wang, Chi-Yun; Huang, Wei-Ching; Su, Wu-Chou; Lin, Chiou-Feng

    2012-05-01

    Vinca alkaloids are clinically used to inhibit the growth of malignancy by interfering with microtubule polymerization. The purpose of this study was to identify the molecular mechanisms underlying growth inhibition as well as apoptosis in vinca alkaloid-treated lung adenocarcinoma cells. Consistent with nocodazole, treatment with vinorelbine (VNR) caused mitotic prometaphase arrest in a time-dependent manner, accompanied by cell apoptosis, dependent on both dose and time. VNR sequentially induced mitochondrial transmembrane potential (MTP) loss and caspase-dependent apoptosis following myeloid cell leukemia (Mcl) 1 downregulation. Prolonged activation of c-Jun N-terminal kinase (JNK) was required for vinca alkaloid- and nocodazole-induced apoptosis but not cell cycle arrest. Vinca alkaloids and nocodazole caused glutathione/reactive oxygen species (ROS) imbalance, and inhibiting ROS prevented prolonged JNK activation, decreased Mcl-1 levels, MTP loss, and apoptosis. Notably, cell size and granularity were enlarged in stimulated cells; unexpectedly, many ROS-producing mitochondria were accumulated followed by aberrant JNK-mediated mitochondrial dysfunction. Unlike cisplatin, which causes DNA damage in each phase of the cell cycle, VNR and nocodazole induced aberrant JNK-regulated DNA damage in prometaphase; however, inhibiting ATM (ataxia telangiectasia, mutated) and ATR (ATM and Rad3-related) did not reverse mitotic arrest or apoptosis. These results demonstrate an essential role of ROS in vinca alkaloid-induced aberrant JNK-mediated Mcl-1 downregulation and DNA damage followed by mitochondrial dysfunction-related apoptosis but not mitotic arrest. PMID:22285910

  7. Lung adenocarcinoma and human papillomavirus infection.

    PubMed

    Chen, Yen-Ching; Chen, Jen-Hau; Richard, Kradin; Chen, Pao-Yang; Christiani, David C

    2004-09-15

    Over the past three decades, the incidence of lung adenocarcinoma has increased worldwide. Most individuals with lung adenocarcinoma (especially women) are nonsmokers. Reported risk factors for the development of lung adenocarcinoma include cigarette smoking; exposure to cooking fumes, air pollution, second-hand smoke, asbestos, and radon; nutritional status; genetic susceptibility; immunologic dysfunction; tuberculosis infection; and asthma. Human papillomavirus (HPV) infection is a known risk factor for the development of squamous cell carcinoma (SCC), but it has not been thoroughly assessed as a potential risk factor for the development of pulmonary adenocarcinoma. More than 50% of people are infected with HPV during their lifetimes, either via intrauterine or postnatal infection. Recent studies involving Taiwanese patients have demonstrated a possible association between HPV infection and the risk of developing pulmonary adenocarcinoma. HPV transmission pathways have not yet been conclusively identified. The observation of certain types of HPV in association with cervical and oral SCC raises the possibility of sexual transmission of HPV from the cervix to the oral cavity, with subsequent transmission to the larynx and then to the lung. HPV infection and metaplasia in lung tissue may increase an individual's susceptibility to the tumorigenesis of pulmonary adenocarcinoma. Further epidemiologic and pathologic investigations will be necessary to establish a causal relation. PMID:15368331

  8. OSI-027 inhibits pancreatic ductal adenocarcinoma cell proliferation and enhances the therapeutic effect of gemcitabine both in vitro and in vivo

    PubMed Central

    Xue, Fei; Liang, Chao; Chen, Bryan Wei; Zhou, Yue; Wen, Liang; Hu, Liqiang; Shen, Jian; Bai, Xueli; Liang, Tingbo

    2015-01-01

    Despite its relative rarity, pancreatic ductal adenocarcinoma (PDAC) accounts for a large percentage of cancer deaths. In this study, we investigated the in vitro efficacy of OSI-027, a selective inhibitor of mammalian target of rapamycin complex 1 (mTORC1) and mTORC2, to treat PDAC cell lines alone, and in combination with gemcitabine (GEM). Similarly, we tested the efficacy of these two compounds in a xenograft mouse model of PDAC. OSI-027 significantly arrested cell cycle in G0/G1 phase, inhibited the proliferation of Panc-1, BxPC-3, and CFPAC-1 cells, and downregulated mTORC1, mTORC2, phospho-Akt, phospho-p70S6K, phospho-4E-BP1, cyclin D1, and cyclin-dependent kinase 4 (CDK4) in these cells. Moreover, OSI-027 also downregulated multidrug resistance (MDR)-1, which has been implicated in chemotherapy resistance in PDAC cells and enhanced apoptosis induced by GEM in the three PDAC cell lines. When combined, OSI-027 with GEM showed synergistic cytotoxic effects both in vitro and in vivo. This is the first evidence of the efficacy of OSI-027 in PDAC and may provide the groundwork for a new clinical PDAC therapy. PMID:26213847

  9. OSI-027 inhibits pancreatic ductal adenocarcinoma cell proliferation and enhances the therapeutic effect of gemcitabine both in vitro and in vivo.

    PubMed

    Zhi, Xiao; Chen, Wei; Xue, Fei; Liang, Chao; Chen, Bryan Wei; Zhou, Yue; Wen, Liang; Hu, Liqiang; Shen, Jian; Bai, Xueli; Liang, Tingbo

    2015-09-22

    Despite its relative rarity, pancreatic ductal adenocarcinoma (PDAC) accounts for a large percentage of cancer deaths. In this study, we investigated the in vitro efficacy of OSI-027, a selective inhibitor of mammalian target of rapamycin complex 1 (mTORC1) and mTORC2, to treat PDAC cell lines alone, and in combination with gemcitabine (GEM). Similarly, we tested the efficacy of these two compounds in a xenograft mouse model of PDAC. OSI-027 significantly arrested cell cycle in G0/G1 phase, inhibited the proliferation of Panc-1, BxPC-3, and CFPAC-1 cells, and downregulated mTORC1, mTORC2, phospho-Akt, phospho-p70S6K, phospho-4E-BP1, cyclin D1, and cyclin-dependent kinase 4 (CDK4) in these cells. Moreover, OSI-027 also downregulated multidrug resistance (MDR)-1, which has been implicated in chemotherapy resistance in PDAC cells and enhanced apoptosis induced by GEM in the three PDAC cell lines. When combined, OSI-027 with GEM showed synergistic cytotoxic effects both in vitro and in vivo. This is the first evidence of the efficacy of OSI-027 in PDAC and may provide the groundwork for a new clinical PDAC therapy. PMID:26213847

  10. Scopadulciol, Isolated from Scoparia dulcis, Induces β-Catenin Degradation and Overcomes Tumor Necrosis Factor-Related Apoptosis Ligand Resistance in AGS Human Gastric Adenocarcinoma Cells.

    PubMed

    Fuentes, Rolly G; Toume, Kazufumi; Arai, Midori A; Sadhu, Samir K; Ahmed, Firoj; Ishibashi, Masami

    2015-04-24

    Scopadulciol (1), a scopadulan-type diterpenoid, was isolated from Scoparia dulcis along with three other compounds (2-4) by an activity-guided approach using the TCF reporter (TOP) luciferase-based assay system. A fluorometric microculture cytotoxicity assay (FMCA) revealed that compound 1 was cytotoxic to AGS human gastric adenocarcinoma cells. The treatment of AGS cells with 1 decreased β-catenin levels and also inhibited its nuclear localization. The pretreatment of AGS cells with a proteasome inhibitor, either MG132 or epoxomicin, protected against the degradation of β-catenin induced by 1. The 1-induced degradation of β-catenin was also abrogated in the presence of pifithrin-α, an inhibitor of p53 transcriptional activity. Compound 1 inhibited TOP activity in AGS cells and downregulated the protein levels of cyclin D1, c-myc, and survivin. Compound 1 also sensitized AGS cells to tumor necrosis factor-related apoptosis ligand (TRAIL)-induced apoptosis by increasing the levels of the death receptors, DR4 and DR5, and decreasing the level of the antiapoptotic protein Bcl-2. Collectively, our results demonstrated that 1 induced the p53- and proteasome-dependent degradation of β-catenin, which resulted in the inhibition of TCF/β-catenin transcription in AGS cells. Furthermore, 1 enhanced apoptosis in TRAIL-resistant AGS when combined with TRAIL. PMID:25793965

  11. Costunolide induces lung adenocarcinoma cell line A549 cells apoptosis through ROS (reactive oxygen species)-mediated endoplasmic reticulum stress.

    PubMed

    Wang, Zhen; Zhao, Xin; Gong, Xingguo

    2016-03-01

    Costunolide is an active sesquiterpene lactone derived from many herbal medicines. It has a broad spectrum of bioactivities, including anti-inflammatory and potential anti-tumor effects. The aims of the present study were to evaluate the inhibitory effects of costunolide on A549 cell growth and to explore the underlying molecular mechanisms. Annexin V-FITC/PI flow cytometry analysis revealed that costunolide induced apoptosis. To study the mechanism, we found that costunolide exposure activated the unfolded protein response (UPR) signaling pathways, as shown by the up-regulation of GRP78 and IRE1α and the activation of ASK1 and JNK. Meanwhile, siRNA knockdown of IRE1α significantly attenuated costunolide-induced apoptosis and partly restored the mitochondrial membrane potential. ER stress-activated JNK phosphorylated Bcl-2 at Ser70, which changes the anti-apoptotic function of Bcl-2, resulting in mitochondrial dysfunction and leading to mitochondrial activation of apoptosis. Furthermore, costunolide induced ROS generation, while the antioxidant N-acetyl cysteine (NAC) effectively blocked ER stress and apoptosis activation, suggesting that ROS acts as an upstream signaling molecule in triggering ER stress and mitochondrial apoptotic pathways. Taken together, our research demonstrates that costunolide exhibits its anti-tumor activity though inducing apoptosis, which is mediated by ER stress. We further confirm that Bcl-2 is a key molecule connecting the ER stress and mitochondrial pathways. PMID:26609913

  12. Is the shape of the decline in risk following quitting smoking similar for squamous cell carcinoma and adenocarcinoma of the lung? A quantitative review using the negative exponential model.

    PubMed

    Fry, John S; Lee, Peter N; Forey, Barbara A; Coombs, Katharine J

    2015-06-01

    One possible contributor to the reported rise in the ratio of adenocarcinoma to squamous cell carcinoma of the lung may be differences in the pattern of decline in risk following quitting for the two lung cancer types. Earlier, using data from 85 studies comparing overall lung cancer risks in current smokers, quitters (by time quit) and never smokers, we fitted the negative exponential model, deriving an estimate of 9.93years for the half-life - the time when the excess risk for quitters compared to never smokers becomes half that for continuing smokers. Here we applied the same techniques to data from 16 studies providing RRs specific for lung cancer type. From the 13 studies where the half-life was estimable for each type, we derived estimates of 11.68 (95% CI 10.22-13.34) for squamous cell carcinoma and 14.45 (11.92-17.52) for adenocarcinoma. The ratio of the half-lives was estimated as 1.32 (95% CI 1.20-1.46, p<0.001). The slower decline in quitters for adenocarcinoma, evident in subgroups by sex, age and other factors, may be one of the factors contributing to the reported rise in the ratio of adenocarcinoma to squamous cell carcinoma. Others include changes in the diagnosis and classification of lung cancer. PMID:25703436

  13. Growth-stimulatory activity of TIMP-2 is mediated through c-Src activation followed by activation of FAK, PI3-kinase/AKT, and ERK1/2 independent of MMP inhibition in lung adenocarcinoma cells

    PubMed Central

    Kim, Tae Hyun; Lee, Ju-Seog; Lee, Seung-Taek; Lee, Seo-Jin

    2015-01-01

    Tissue inhibitors of metalloproteinases (TIMPs) control extracellular matrix (ECM) homeostasis by inhibiting the activity of matrix metalloproteinases (MMPs), which are associated with ECM turnover. Recent studies have revealed that TIMPs are implicated in tumorigenesis in both MMP-dependent and MMP-independent manners. We examined a mechanism by which TIMP-2 stimulated lung adenocarcinoma cell proliferation, independent of MMP inhibition. The stimulation of growth by TIMP-2 in A549 cells required c-Src kinase activation. c-Src kinase activity, induced by TIMP-2, concomitantly increased FAK, phosphoinositide 3-kinase (PI3-kinase)/AKT, and ERK1/2 activation. Selective knockdown of integrin α3β1, known as a TIMP-2 receptor, did not significantly change TIMP-2 growth promoting activity. Furthermore, we showed that high TIMP-2 expression in lung adenocarcinomas is associated with a worse prognosis from multiple cohorts, especially for stage I lung adenocarcinoma. Through integrated analysis of The Cancer Genome Atlas data, TIMP-2 expression was significantly associated with the alteration of driving genes, c-Src activation, and PI3-kinase/AKT pathway activation. Taken together, our results demonstrate that TIMP-2 stimulates lung adenocarcinoma cell proliferation through c-Src, FAK, PI3-kinase/AKT, and ERK1/2 pathway activation in an MMP-independent manner. PMID:26556867

  14. Downregulation of MDM2 expression by RNAi inhibits LoVo human colorectal adenocarcinoma cells growth and the treatment of LoVo cells with mdm2siRNA3 enhances the sensitivity to cisplatin

    SciTech Connect

    Yu Yan . E-mail: gyfyuyan@hotmail.com; Sun Ping . E-mail: sunny19750502@hotmail.com; Sun Lichun; Liu Guoyi; Chen Guohua . E-mail: olivebranch_82@hotmail.com; Shang Lihua . E-mail: leval1000@sina.com; Wu Hongbo . E-mail: whpwl@sina.com; Hu Jing; Li Yue; Mao Yinling; Sui Guangjie; Sun Xiwen

    2006-01-06

    To investigate the biological effect of mdm2 in human colorectal adenocarcinoma LoVo cells, three mdm2siRNA constructions were recombinated and transient transfected into human colorectal adenocarcinoma LoVo cells with low differentiation character in vitro. The results showed that mdm2siRNA3 reduced mRNA level of mdm2 and protein level of mdm2, leading to proliferation inhibition on LoVo cells, and reduced tumor growth in nude mice. It was found that depletion of MDM2 in this pattern promoted apoptosis of LoVo cells and Cisplatin (DDP) treated in the mdm2siRNA3 transfected cell population would result in a substantial decrease by MTT colorimetry. Decreasing the MDM2 protein level in LoVo cells by RNAi could significantly inhibit tumor growth both in vitro and in vivo, which indicated that mdm2 gene played a definite role in the development and aggressiveness of human colon carcinoma. It also could be a therapeutic target in colorectal carcinoma. The synergistic activation of RNAi and cell toxicity agents indicated that the combination of chemotherapy and gene therapy will be a promising approach in the future.

  15. Differential expression of complement proteins and regulatory decay accelerating factor in relation to differentiation of cultured human colon adenocarcinoma cell lines.

    PubMed Central

    Bernet-Camard, M F; Coconnier, M H; Hudault, S; Servin, A L

    1996-01-01

    Self protection of host cells against inadvertent injury resulting from attack by autologous complement proteins is well reported for vascular epithelium. In intestinal epithelium, the expression of C complement proteins and regulatory proteins remains currently poorly reported. This study looked at the distribution of C complement proteins and regulatory decay accelerating factor (DAF) in four cultured human intestinal cell lines of embryogenic or colon cancer origins. C3 and C4 proteins and DAF were widely present in human colon adenocarcinoma T84, HT-29 glc-/+ cells compared with human embryonic INT407 cells. In contrast, no expression of C5, C5b-9, and CR1 was seen for any of the cell lines. Taking advantage of the Caco-2 cells, which spontaneously differentiate in culture, it was seen that the C3, C4, and DAF were present in undifferentiated cells and that their expression increased as a function of the cell differentiation. These results, taken together with other reports on the presence of C complement proteins and DAF in the intestinal cells infer that the expression of regulatory C complement proteins develops in parallel with the expression of C proteins to protect these cells against the potential injury resulting from the activation of these local C proteins. Moreover, the finding that the pathogenic C1845 Escherichia coli binds to the membrane bound DAF in the cultured human intestinal cells synthetising locally C proteins and regulatory C proteins supports the hypothesis that E coli could promote inflammatory disorders by blocking local regulatory protein function. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:8801206

  16. Cervical adenocarcinoma identification by testing for chromosomal abnormalities.

    PubMed

    Dittus, Janet L; Dudley, Bunyan S; Upender, Madhvi; Endress, Gregory A

    2013-12-01

    We report on a case of cervical adenocarcinoma in situ in a 42-year-old woman with a history of human papillomavirus infection. Repeat cytology, human papillomavirus testing, and colposcopy failed to identify the lesion. Testing of the cervical cell DNA identified chromosomal abnormalities, prompting a cervical cone biopsy, which identified adenocarcinoma in situ. PMID:24283864

  17. Hygrolidin induces p21 expression and abrogates cell cycle progression at G1 and S phases.

    PubMed

    Kawada, Manabu; Usami, Ihomi; Ohba, Shun; Someno, Tetsuya; Kim, Jin; Hayakawa, Yoichi; Nose, Kiyoshi; Ishizuka, Masaaki

    2002-10-18

    Hygrolidin family antibiotics showed selective cytotoxicity against both cyclin E- and cyclin A-overexpressing cells. Among them, hygrolidin was the most potent and inhibited growth of solid tumor-derived cell lines such as DLD-1 human colon cancer cells efficiently more than that of hematopoietic tumor cells and normal fibroblasts. FACS analysis revealed that hygrolidin increased cells in G1 and S phases in DLD-1 cells. While hygrolidin decreased amounts of cyclin-dependent kinase (cdk) 4, cyclin D, and cyclin B, it increased cyclin E and p21 levels. Hygrolidin-induced p21 bound to and inhibit cyclin A-cdk2 complex more strongly than cyclin E-cdk2 complex. Furthermore, hygrolidin was found to increase p21 mRNA in DLD-1 cells, but not in normal fibroblasts. Thus, hygrolidin inhibited tumor cell growth through induction of p21. In respect to p21 induction, inhibition of vacuolar-type (H+)-ATPase by hygrolidin was suggested to be involved. PMID:12379237

  18. CpG-ODN 7909 increases radiation sensitivity of radiation-resistant human lung adenocarcinoma cell line by overexpression of Toll-like receptor 9.

    PubMed

    Yan, Li; Xu, Guoxiong; Qiao, Tiankui; Chen, Wei; Yuan, Sujuan; Li, Xuan

    2013-09-01

    Radioresistance is one of the main reasons for the failure of radiotherapy in lung cancer. The aim of this study was to establish a radiation-resistant lung cancer cell line, to evaluate whether CpG oligodeoxyribonucleotide (CpG-ODN) 7909 could increase its radiosensitivity and to explore the relevant mechanisms. The radioresistant cell line, referred to as R-A549, was generated by reduplicative fractionated irradiation from the human lung adenocarcinoma cell line A549. The radioresistance of R-A549 cells were confirmed by the Cell Counting Kit-8 (CCK-8), cell viability assay, and clonogenic assay. Cell growth kinetics, morphological feature, and radiosensitivity were compared between the original A549 cells and R-A549 cells treated with or without CpG-ODN 7909 or radiation. To further explore the potential mechanisms of radiosensitivity, the cell cycle distributions and the expression of Toll-like receptor 9 (TLR-9) were examined by Western blot and flow cytometry. The R-A549 cell line was generated and its radioresistance was further confirmed. CpG-ODN 7909 was found to increase much more radiosensitivity of R-A549 cells under combined treatments with CpG-ODN 7909 and radiation compared with its control group without any treatments. They presented their respective D0 1.33 ± 0.20 Gy versus 1.76 ± 0.25 Gy with N 3.44 ± 1.01 versus 4.96 ± 0.32. Further, there was a larger cell population of R-A549 cells under combined treatment in the G2/M phase compared with the control group after treatment with CpG-ODN7909 or radiation alone at 24 and 48 hour. The expression level of TLR-9 in R-A549 cells was found higher than in A549 cells. These results suggested that CpG-ODN 7909 increased the radiosensitivity of R-A549 cells, which might be mediated via the upregulated TLR-9 and prolonged cell cycle arrest in the G2/M phase compared with A549 cells. PMID:23705865

  19. Impact of PTEN on the expression of insulin-like growth factors (IGFs) and IGF-binding proteins in human gastric adenocarcinoma cells

    SciTech Connect

    Yi, Ho-Keun; Kim, Sun-Young; Hwang, Pyoung-Han; Kim, Chan-Young; Yang, Doo-Hyun; Oh, Youngman; Lee, Dae-Yeol . E-mail: leedy@chonbuk.ac.kr

    2005-05-13

    PTEN is a tumor suppressor gene that is frequently mutated or deleted in a variety of human cancers including human gastric cancer. PTEN functions primarily as a lipid phosphatase and plays a key role in the regulation of the PI3 kinase/Akt pathway, thereby modulating cell proliferation and cell survival. On the other hand, the IGF system plays an important role in cell proliferation and cell survival via the PI3 kinase/Akt and MAP kinase pathways in many cancer cells. To characterize the impact of PTEN on the IGF-IGFR-IGFBP axis in gastric cancer, we overexpressed PTEN using an adenovirus gene transfer system in human gastric adenocarcinoma cells, SNU-484 and SNU-663, which lack PTEN. Overexpression of PTEN inhibited serum-induced as well as IGF-I-induced cell proliferation as compared to control cells. PTEN overexpression resulted in a significant decrease in the expression of IGF-I, -II, and IGF-IR. Interestingly, amongst the six IGFBPs, only IGFBP-3 was upregulated by PTEN, whereas IGFBP-4 and -6 were reduced. The IGFBP-3 promoter activity assay and Western immunoblotting demonstrate that PTEN regulates IGFBP-3 at the transcriptional level. In addition, the PI3 kinase inhibitor, LY294002, upregulates IGFBP-3 expression but downregulates IGF-I and IGF-II, indicating that PTEN controls IGFBP-3 and IGFs by an Akt-dependent pathway. These findings suggest that PTEN may inhibit antiapoptotic IGF actions not only by blocking the IGF-IGFR-induced Akt activity, but also by regulating expression of components of the IGF system, in particular, upregulation of IGFBP-3, which is known to exert antiproliferative effects through IGF-dependent and IGF-independent mechanisms in cancer cells.

  20. Identification of a lung adenocarcinoma cell line with CCDC6-RET fusion gene and the effect of RET inhibitors in vitro and in vivo.

    PubMed

    Suzuki, Makito; Makinoshima, Hideki; Matsumoto, Shingo; Suzuki, Ayako; Mimaki, Sachiyo; Matsushima, Koutatsu; Yoh, Kiyotaka; Goto, Koichi; Suzuki, Yutaka; Ishii, Genichiro; Ochiai, Atsushi; Tsuta, Koji; Shibata, Tatsuhiro; Kohno, Takashi; Esumi, Hiroyasu; Tsuchihara, Katsuya

    2013-07-01

    Rearrangements of the proto-oncogene RET are newly identified potential driver mutations in lung adenocarcinoma (LAD). However, the absence of cell lines harboring RET fusion genes has hampered the investigation of the biological relevance of RET and the development of RET-targeted therapy. Thus, we aimed to identify a RET fusion positive LAD cell line. Eleven LAD cell lines were screened for RET fusion transcripts by reverse transcription-polymerase chain reaction. The biological relevance of the CCDC6-RET gene products was assessed by cell growth, survival and phosphorylation of ERK1/2 and AKT with or without the suppression of RET expression using RNA interference. The efficacy of RET inhibitors was evaluated in vitro using a culture system and in an in vivo xenograft model. Expression of the CCDC6-RET fusion gene in LC-2/ad cells was demonstrated by the mRNA and protein levels, and the genomic break-point was confirmed by genomic DNA sequencing. Mutations in KRAS and EGFR were not observed in the LC-2/ad cells. CCDC6-RET was constitutively active, and the introduction of a siRNA targeting the RET 3' region decreased cell proliferation by downregulating RET and ERK1/2 phosphorylation. Moreover, treatment with RET-inhibitors, including vandetanib, reduced cell viability, which was accompanied by the downregulation of the AKT and ERK1/2 signaling pathways. Vandetanib exhibited anti-tumor effects in the xenograft model. Endogenously expressing CCDC6-RET contributed to cell growth. The inhibition of kinase activity could be an effective treatment strategy for LAD. LC-2/ad is a useful model for developing fusion RET-targeted therapy. PMID:23578175

  1. Benzyl Isothiocyanate Inhibits Prostate Cancer Development in the Transgenic Adenocarcinoma Mouse Prostate (TRAMP) Model, Which Is Associated with the Induction of Cell Cycle G1 Arrest

    PubMed Central

    Cho, Han Jin; Lim, Do Young; Kwon, Gyoo Taik; Kim, Ji Hee; Huang, Zunnan; Song, Hyerim; Oh, Yoon Sin; Kang, Young-Hee; Lee, Ki Won; Dong, Zigang; Park, Jung Han Yoon

    2016-01-01

    Benzyl isothiocyanate (BITC) is a hydrolysis product of glucotropaeolin, a compound found in cruciferous vegetables, and has been shown to have anti-tumor properties. In the present study, we investigated whether BITC inhibits the development of prostate cancer in the transgenic adenocarcinoma mouse prostate (TRAMP) mice. Five-week old, male TRAMP mice and their nontransgenic littermates were gavage-fed with 0, 5, or 10 mg/kg of BITC every day for 19 weeks. The weight of the genitourinary tract increased markedly in TRAMP mice and this increase was suppressed significantly by BITC feeding. H and E staining of the dorsolateral lobes of the prostate demonstrated that well-differentiated carcinoma (WDC) was a predominant feature in the TRAMP mice. The number of lobes with WDC was reduced by BITC feeding while that of lobes with prostatic intraepithelial neoplasia was increased. BITC feeding reduced the number of cells expressing Ki67 (a proliferation marker), cyclin A, cyclin D1, and cyclin-dependent kinase (CDK)2 in the prostatic tissue. In vitro cell culture results revealed that BITC decreased DNA synthesis, as well as CDK2 and CDK4 activity in TRAMP-C2 mouse prostate cancer cells. These results indicate that inhibition of cell cycle progression contributes to the inhibition of prostate cancer development in TRAMP mice treated with BITC. PMID:26907265

  2. Benzyl Isothiocyanate Inhibits Prostate Cancer Development in the Transgenic Adenocarcinoma Mouse Prostate (TRAMP) Model, Which Is Associated with the Induction of Cell Cycle G1 Arrest.

    PubMed

    Cho, Han Jin; Lim, Do Young; Kwon, Gyoo Taik; Kim, Ji Hee; Huang, Zunnan; Song, Hyerim; Oh, Yoon Sin; Kang, Young-Hee; Lee, Ki Won; Dong, Zigang; Park, Jung Han Yoon

    2016-01-01

    Benzyl isothiocyanate (BITC) is a hydrolysis product of glucotropaeolin, a compound found in cruciferous vegetables, and has been shown to have anti-tumor properties. In the present study, we investigated whether BITC inhibits the development of prostate cancer in the transgenic adenocarcinoma mouse prostate (TRAMP) mice. Five-week old, male TRAMP mice and their nontransgenic littermates were gavage-fed with 0, 5, or 10 mg/kg of BITC every day for 19 weeks. The weight of the genitourinary tract increased markedly in TRAMP mice and this increase was suppressed significantly by BITC feeding. H and E staining of the dorsolateral lobes of the prostate demonstrated that well-differentiated carcinoma (WDC) was a predominant feature in the TRAMP mice. The number of lobes with WDC was reduced by BITC feeding while that of lobes with prostatic intraepithelial neoplasia was increased. BITC feeding reduced the number of cells expressing Ki67 (a proliferation marker), cyclin A, cyclin D1, and cyclin-dependent kinase (CDK)2 in the prostatic tissue. In vitro cell culture results revealed that BITC decreased DNA synthesis, as well as CDK2 and CDK4 activity in TRAMP-C2 mouse prostate cancer cells. These results indicate that inhibition of cell cycle progression contributes to the inhibition of prostate cancer development in TRAMP mice treated with BITC. PMID:26907265

  3. Suppression of c-Myc is involved in multi-walled carbon nanotubes' down-regulation of ATP-binding cassette transporters in human colon adenocarcinoma cells

    SciTech Connect

    Wang, Zhaojing; Xu, Yonghong; Meng, Xiangning; Watari, Fumio; Liu, Hudan; Chen, Xiao

    2015-01-01

    Over-expression of ATP-binding cassette (ABC) transporters, a large family of integral membrane proteins that decrease cellular drug uptake and accumulation by active extrusion, is one of the major causes of cancer multi-drug resistance (MDR) that frequently leads to failure of chemotherapy. Carbon nanotubes (CNTs)-based drug delivery devices hold great promise in enhancing the efficacy of cancer chemotherapy. However, CNTs' effects on the ABC transporters remain under-investigated. In this study, we found that multiwalled carbon nanotubes (MWCNTs) reduced transport activity and expression of ABC transporters including ABCB1/Pgp and ABCC4/MRP4 in human colon adenocarcinoma Caco-2 cells. Proto-oncogene c-Myc, which directly regulates ABC gene expression, was concurrently decreased in MWCNT-treated cells and forced over-expression of c-Myc reversed MWCNTs' inhibitory effects on ABCB1 and ABCC4 expression. MWCNT-cell membrane interaction and cell membrane oxidative damage were observed. However, antioxidants such as vitamin C, β-mecaptoethanol and dimethylthiourea failed to antagonize MWCNTs' down-regulation of ABC transporters. These data suggest that MWCNTs may act on c-Myc, but not through oxidative stress, to down-regulate ABC transporter expression. Our findings thus shed light on CNTs' novel cellular effects that may be utilized to develop CNTs-based drug delivery devices to overcome ABC transporter-mediated cancer chemoresistance.

  4. In-vitro cytotoxicity study of methanolic fraction from Ajuga Bracteosa wall ex. benth on MCF-7 breast adenocarcinoma and hep-2 larynx carcinoma cell lines

    PubMed Central

    Pal, Akiriti; Toppo, Fedelic Aahish; Chaurasiya, Pradeep K.; Singour, Pradeep K.; Pawar, Rajesh S.

    2014-01-01

    Objective: Ajuga bracteosa Wall ex Benth (Labiatae) is popularly known in India as Neelkanthi. A decoction of the leaves, flowers, and barks is used in India for the treatment of cancer including diabetes, malaria, and inflammation etc. The main objective of this study is to investigate the cytotoxic potential of Ajuga bracteosa. Materials and Methods: Successive solvent extraction of Ajuga bracteosa in petroleum ether, methanol, and water extracts was done. These extracts were tested against human breast adenocarcinoma (MCF-7) and larynx carcinoma (Hep-2) tumor cell lines, using the thiazolyl blue test (MTT) assay. Results: The methanolic fraction of Ajuga bracteosa had shown the significant results against MCF-7 and Hep-2 tumor cell lines. The methanolic, petroleum ether and aqueous extract from Ajuga bracteosa, presented an IC50 value at 24 h of 10, 65, 70 μg/ml and 5, 30, 15 μg/ml on MCF-7 and Hep-2 cells, respectively. Steroids compounds namely β-sitosterol and unknown constituents were identified in the most active methanol extract of Ajuga bracteosa wall ex Benth. These known and unknown compounds exhibited cytotoxic potential against MCF-7 and Hep-2 cancer cells. Conclusion: Among all the tested extracts, methanolic extract can be considered as potential sources of anti-cancer compounds. Further studies are necessary for more extensive biological evaluations. PMID:24497749

  5. Reduction in membranous immunohistochemical staining for the intracellular domain of epithelial cell adhesion molecule correlates with poor patient outcome in primary colorectal adenocarcinoma

    PubMed Central

    Wang, A.; Ramjeesingh, R.; Chen, C.H.; Hurlbut, D.; Hammad, N.; Mulligan, L.M.; Nicol, C.; Feilotter, H.E.; Davey, S.

    2016-01-01

    Background Epithelial cell adhesion molecule (epcam) is a multifunctional transmembrane glycoprotein expressed on both normal epithelium and epithelial neoplasms such as gastric, breast, and renal carcinomas. Recent studies have proposed that the proteolytic cleavage of the intracellular domain of epcam (epcam-icd) can trigger signalling cascades leading to aggressive tumour behavior. The expression profile of epcam-icd has not been elucidated for primary colorectal carcinoma. In the present study, we examined epcam-icd immunohistochemical staining in a large cohort of patients with primary colorectal adenocarcinoma and assessed its performance as a potential prognostic marker. Methods Immunohistochemical staining for epcam-icd was assessed on tissue microarrays consisting of 137 primary colorectal adenocarcinoma samples. Intensity of staining for each core was scored by 3 independent pathologists. The membranous epcam-icd staining score was calculated as a weighted average from 3 core samples per tumour. Univariate analysis of the average scores and clinical outcome measures was performed. Results The level of membranous epcam-icd staining was positively associated with well-differentiated tumours (p = 0.01); low preoperative carcinoembryonic antigen (p = 0.001); and several measures of survival, including 2-year (p = 0.02) and 5-year survival (p = 0.05), and length of time post-diagnosis (p = 0.03). A number of other variables—including stage, grade, and lymph node status—showed correlations with epcam staining and markers of poor outcome, but did not reach statistical significance. Conclusions Low membranous epcam-icd staining might be a useful marker to identify tumours with aggressive clinical behavior and potential poor prognosis and might help to select candidates who could potentially benefit from treatment targeting epcam. PMID:27330354

  6. Impact of tissue type and content of neoplastic cells of samples on the quality of epidermal growth factor receptor mutation analysis among patients with lung adenocarcinoma

    PubMed Central

    PALIOGIANNIS, PANAGIOTIS; ATTENE, FEDERICO; COSSU, ANTONIO; DEFRAIA, EFISIO; PORCU, GIUSEPPE; CARTA, ANNAMARIA; SOTGIU, MARIA IGNAZIA; PAZZOLA, ANTONIO; CORDERO, LORENZO; CAPELLI, FRANCESCA; FADDA, GIOVANNI MARIA; ORTU, SALVATORE; SOTGIU, GIOVANNI; PALOMBA, GRAZIA; SINI, MARIA CRISTINA; PALMIERI, GIUSEPPE; COLOMBINO, MARIA

    2015-01-01

    Assessment of the epidermal growth factor receptor (EGFR) mutational status has become crucial in recent years in the molecular classification of patients with lung cancer. The impact of the type and quantity of malignant cells of the neoplastic specimen on the quality of mutation analysis remains to be elucidated, and only empirical and sporadic data are available. The aim of the present study was to investigate the impact of tissue type and content of neoplastic cells in the specimen on the quality of EGFR mutation analysis among patients with lung adenocarcinoma. A total of 515 patients with histologically-confirmed disease were included in the present study. Formalin-fixed paraffin embedded tissue samples were used for the mutation analysis and the content of the neoplastic cells was evaluated using light microscopy. Genomic DNA was isolated using a standard protocol. The coding sequences and splice junctions of exons 18, 19 and 21 in the EGFR gene were then screened for mutations by direct automated sequencing. The mean age of the patients examined was 64.9 years and 357 (69.3%) were male. A total of 429 tissue samples (83.3%) were obtained by biopsy and the remaining samples were obtained by surgery. A total of 456 samples (88.5%) were observed from primary lung adenocarcinomas, while 59 (11.5%) were from metastatic lesions. EGFR mutations occurred in 59 cases (11.5%); exon 18 mutations were detected in one case (1.7%), whereas exon 19 and 21 mutations were detected in 30 (51%) and 28 (47.3%) cases, respectively. EGFR mutations were more frequent in females and patients that had never smoked. The distribution of the mutations among primary and metastatic tissues exhibited no significant differences in the proportions of EGFR mutations detected. However, a statistically significant difference in the number of mutations detected was found between samples with at least 50% of neoplastic cells (450 cases-57 mutations; 12.7%) and those with <50% of neoplastic

  7. Correlation of Histologic Subtypes and Molecular Alterations in Pulmonary Adenocarcinoma: Therapeutic and Prognostic Implications.

    PubMed

    Kim, Jiyoon; Jang, Se Jin; Choi, Chang Min; Ro, Jae Y

    2016-09-01

    Major driver mutations of pulmonary adenocarcinomas have been identified and highlighted as actionable targets for precision cancer medicine. As phenotype is largely determined by genotype, genetic changes associated with morphologic features have recently received more attention from both pathologists and clinicians. The morphologic features of adenocarcinomas with mutations in EGFR or KRAS, or translocated ALK, have rarely been described. Pulmonary adenocarcinomas with EGFR mutations, the most common driver mutation encountered in Asian patients with pulmonary adenocarcinoma, show lepidic or papillary organotypic growth patterns. KRAS-mutated adenocarcinomas demonstrate nonorganotypic growth patterns, especially mucin-containing cells. P53 mutations are associated with aggressiveness rather than growth patterns. HER2 mutations are observed in mucinous adenocarcinoma and adenocarcinoma with micropapillary features. The histologic features of BRAF-mutated adenocarcinomas have not yet been established, but papillary, lepidic, solid, and acinar patterns have been observed. Adenocarcinomas with rearrangement of ALK, ROS1, and RET genes share similar histologic features, such as solid signet-ring cells and cribriform formation. However, adenocarcinomas with NRG1 rearrangements frequently show mucinous morphology. The histologic features and related mutations of adenocarcinomas with expression of programmed cell death-1 and programmed cell death ligands-1 may be helpful in guiding immunotherapeutic treatment. This review describes histopathologic features of adenocarcinomas and their correlation with molecular alterations. PMID:27403614

  8. α-Actinin-4 Enhances Colorectal Cancer Cell Invasion by Suppressing Focal Adhesion Maturation

    PubMed Central

    Yamada, Tesshi; Takenawa, Tadaomi

    2015-01-01

    α-Actinins (ACTNs) are known to crosslink actin filaments at focal adhesions in migrating cells. Among the four isoforms of mammalian ACTNs, ACTN1 and ACTN4 are ubiquitously expressed. Recently, ACTN4 was reported to enhance cancer cell motility, invasion, and metastasis. However, the mechanism by which ACTN4 drives these malignant phenotypes remains unclear. Here, we show that ACTN4, but not ACTN1, induces the formation of immature focal adhesions in DLD-1 cells, leading to the rapid turnover of focal adhesions. Interestingly, zyxin (ZYX) assembly to focal adhesions was markedly decreased in ACTN4-expressing DLD-1 cells, while the recruitment of paxillin (PAX) occurred normally. On the other hand, in ACTN1-expressing DLD-1 cells, PAX and ZYX were normally recruited to focal adhesions, suggesting that ACTN4 specifically impairs focal adhesion maturation by inhibiting the recruitment of ZYX to focal complexes. Using purified recombinant proteins, we found that ZYX binding to ACTN4 was defective under conditions where ZYX binding to ACTN1 was observed. Furthermore, Matrigel invasion of SW480 cells that express high endogenous levels of ACTN4 protein was inhibited by ectopic expression of ACTN1. Altogether, our results suggest that ZYX defective binding to ACTN4, which occupies focal adhesions instead of ACTN1, induces the formation of immature focal adhesions, resulting in the enhancement of cell motility and invasion. PMID:25860875

  9. Cranberry proanthocyanidins inhibit esophageal adenocarcinoma in vitro and in vivo through pleiotropic cell death induction and PI3K/AKT/mTOR inactivation.

    PubMed

    Kresty, Laura A; Weh, Katherine M; Zeyzus-Johns, Bree; Perez, Laura N; Howell, Amy B

    2015-10-20

    Cranberries are rich in bioactive constituents known to improve urinary tract health and more recent evidence supports cranberries possess cancer inhibitory properties. However, mechanisms of cancer inhibition by cranberries remain to be elucidated, particularly in vivo. Properties of a purified cranberry-derived proanthocyanidin extract (C-PAC) were investigated utilizing acid-sensitive and acid-resistant human esophageal adenocarcinoma (EAC) cell lines and esophageal tumor xenografts in athymic NU/NU mice. C-PAC induced caspase-independent cell death mainly via autophagy and low levels of apoptosis in acid-sensitive JHAD1 and OE33 cells, but resulted in cellular necrosis in acid-resistant OE19 cells. Similarly, C-PAC induced necrosis in JHAD1 cells pushed to acid-resistance via repeated exposures to an acidified bile cocktail. C-PAC associated cell death involved PI3K/AKT/mTOR inactivation, pro-apoptotic protein induction (BAX, BAK1, deamidated BCL-xL, Cytochrome C, PARP), modulation of MAPKs (P-P38/P-JNK) and G2-M cell cycle arrest in vitro. Importantly, oral delivery of C-PAC significantly inhibited OE19 tumor xenograft growth via modulation of AKT/mTOR/MAPK signaling and induction of the autophagic form of LC3B supporting in vivo efficacy against EAC for the first time. C-PAC is a potent inducer of EAC cell death and is efficacious in vivo at non-toxic behaviorally achievable concentrations, holding promise for preventive or therapeutic interventions in cohorts at increased risk for EAC, a rapidly rising and extremely deadly malignancy. PMID:26378019

  10. Cranberry proanthocyanidins inhibit esophageal adenocarcinoma in vitro and in vivo through pleiotropic cell death induction and PI3K/AKT/mTOR inactivation

    PubMed Central

    Kresty, Laura A.; Weh, Katherine M.; Zeyzus-Johns, Bree; Perez, Laura N.; Howell, Amy B.

    2015-01-01

    Cranberries are rich in bioactive constituents known to improve urinary tract health and more recent evidence supports cranberries possess cancer inhibitory properties. However, mechanisms of cancer inhibition by cranberries remain to be elucidated, particularly in vivo. Properties of a purified cranberry-derived proanthocyanidin extract (C-PAC) were investigated utilizing acid-sensitive and acid-resistant human esophageal adenocarcinoma (EAC) cell lines and esophageal tumor xenografts in athymic NU/NU mice. C-PAC induced caspase-independent cell death mainly via autophagy and low levels of apoptosis in acid-sensitive JHAD1 and OE33 cells, but resulted in cellular necrosis in acid-resistant OE19 cells. Similarly, C-PAC induced necrosis in JHAD1 cells pushed to acid-resistance via repeated exposures to an acidified bile cocktail. C-PAC associated cell death involved PI3K/AKT/mTOR inactivation, pro-apoptotic protein induction (BAX, BAK1, deamidated BCL-xL, Cytochrome C, PARP), modulation of MAPKs (P-P38/P-JNK) and G2-M cell cycle arrest in vitro. Importantly, oral delivery of C-PAC significantly inhibited OE19 tumor xenograft growth via modulation of AKT/mTOR/MAPK signaling and induction of the autophagic form of LC3B supporting in vivo efficacy against EAC for the first time. C-PAC is a potent inducer of EAC cell death and is efficacious in vivo at non-toxic behaviorally achievable concentrations, holding promise for preventive or therapeutic interventions in cohorts at increased risk for EAC, a rapidly rising and extremely deadly malignancy. PMID:26378019

  11. Urachal Adenocarcinoma in a Dog.

    PubMed

    Shrader, S; Lauridson, J; King, Z; Loch, J

    2016-05-01

    An 8-year-old neutered female Labrador retriever was presented with a 3-year history of intermittent haematuria. Ultrasonographic evaluation of the urinary bladder revealed a 2 × 3 × 0.5 cm intraluminal mass arising at the dome. The mass was excised via partial cystectomy. Histopathological examination revealed neoplastic epithelial cells arranged in sheets, irregularly-branching tubules and acini within a fibrovascular stroma. Neoplastic cells were cuboidal to polygonal with abundant foamy amphophilic cytoplasm, typically with a single, large, clear intracytoplasmic vacuole and eccentric nucleus ('signet ring' cells). Neoplastic tubules were often ectatic and contained abundant mucin. Immunohistochemically, the neoplastic cells had weak, cytoplasmic immunoreactivity for cytokeratin 7 and rare, but strong, nuclear immunoreactivity for CDX2. Based on the cellular morphology, immunolabelling characteristics and anatomical location, a diagnosis of adenocarcinoma of urachal origin was made. To the authors' knowledge, this is the first reported case of urachal adenocarcinoma in a dog. PMID:27009748

  12. Enhanced invasion of lung adenocarcinoma cells after co-culture with THP-1-derived macrophages via the induction of EMT by IL-6.

    PubMed

    Dehai, Che; Bo, Pan; Qiang, Tian; Lihua, Shang; Fang, Liu; Shi, Jin; Jingyan, Cao; Yan, Yu; Guangbin, Wang; Zhenjun, Yuan

    2014-07-01

    Lung cancer is the leading cause of cancer mortality worldwide, and the cause of death is metastasis. The epithelial-to-mesenchymal transition (EMT) plays a key role in the process of metastasis. Macrophages within the lung cancer microenvironment release cytokines, such as interleukin-6 (IL-6), and promote lung cancer cell invasion and metastasis. However, the interaction between macrophages and lung cancer cells and the effect of this interaction on the expression of IL-6, EMT, and the invasiveness of lung cancer cells remain unclear. Therefore, we established an in vitro co-culture model of human lung adenocarcinoma A549 or H1299 cells with THP-1-derived macrophages to illuminate the important role of macrophages in the invasion of lung cancer. In this study, we demonstrated that the concentrations of IL-6 in the co-culture supernatants were significantly increased compared with controls. Thus, a complex chemical cross-talk is induced by the indirect cell-to-cell contact between lung cancer cells and THP-1-derived macrophages. THP-1-derived macrophages appeared to play an important initiator role in the process. The analysis of the mRNA expression profiles of the sorted cells from the co-culture system revealed that the co-cultured lung cancer cells are the main source of the observed increase in IL-6 secretion. In addition, the interactions between lung cancer cells and THP-1-derived macrophages are bidirectional. The THP-1-derived macrophages underwent differentiation towards the M2-macrophage phenotype during the co-culture process. The expression of IL-6 was correlated with the induction of EMT, which contributed to a significant increase in the invasiveness of the A549 and H1299 cells in vitro. In addition, the addition of an anti-IL-6 antibody reversed these changes. In summary, we demonstrated that the in vitro co-culture of A549 or H1299 cells with THP-1-derived macrophages upregulates IL-6 expression, which increases the invasion ability of the A549 and

  13. Molecular cloning and functional characterization of a cell-permeable superoxide dismutase targeted to lung adenocarcinoma cells. Inhibition cell proliferation through the Akt/p27kip1 pathway.

    PubMed

    Lu, Min; Gong, Xingguo; Lu, Yuwen; Guo, Jianjun; Wang, Chenhui; Pan, Yuanjiang

    2006-05-12

    In clinical oncology, many trials with superoxide dismutase (SOD) have failed to demonstrate antitumor ability and in many cases even caused deleterious effects because of low tumor-targeting ability. In the current research, the Nostoc commune Fe-SOD coding sequence was amplified from genomic DNA. In addition, the single chain variable fragment (ScFv) was constructed from the cDNA of an LC-1 hybridoma cell line secreting anti-lung adenocarcinoma monoclonal antibody. After modification, the SOD and ScFv were fused and co-expressed, and the resulting fusion protein produced SOD and LC-1 antibody activity. Tracing SOD-ScFv by fluorescein isothiocyanate and superoxide anions (O2*-) in SPC-A-1 cells showed that the fusion protein could recognize and enter SPC-A-1 cells to eliminate O2*-. The lower oxidative stress resulting from the decrease in cellular O2*- delayed the cell cycle at G1 and significantly slowed SPC-A-1 cell growth in association with the dephosphorylation of the serine-threonine protein kinase Akt and expression of p27kip1. The tumor-targeting fusion protein resulting from this research overcomes two disadvantages of SODs previously used in the clinical setting, the inability to target tumor cells or permeate the cell membrane. These findings lay the groundwork for development of an efficient antitumor drug targeted by the ScFv. PMID:16551617

  14. Human gut flora-fermented nondigestible fraction from cooked bean ( Phaseolus vulgaris L.) modifies protein expression associated with apoptosis, cell cycle arrest, and proliferation in human adenocarcinoma colon cancer cells.

    PubMed

    Campos-Vega, Rocio; García-Gasca, Teresa; Guevara-Gonzalez, Ramón; Ramos-Gomez, Minerva; Oomah, B Dave; Loarca-Piña, Guadalupe

    2012-12-26

    Metabolism of the nondigested fraction (NDF) from common bean ( Phaseolus vulgaris L.) by the human gut flora (hgf) produces short-chain fatty acids (SCFAs) that may benefit cancer by reducing colorectal tumor risks. This paper reports the effect of fermentation products (FP) by hgf (FP-hgf) from NDF of cooked beans on survival and protein expression associated with apoptosis, cell cycle arrest, and proliferation in human adenocarcinoma colon cancer cells. FP-hgf was the only inoculum eliciting butyrate production after 24 h of NDF fermentation using different bacterial sources. FP-hgf inhibited HT-29 cell growth and modulated protein expression associated with apoptosis, cell cycle arrest, and proliferation, as well as morphological changes linked to apoptosis evaluated by TUNEL and hematoxylin and eosin stains, confirming previous results on gene expression. The current results suggest that fermentation of NDF from common beans can elicit beneficial chemoprotective effects in colon cancer by modulating protein expression in HT-29 cells. PMID:23194196

  15. Phyto-synthesis of silver nanoparticles using Alternanthera tenella leaf extract: an effective inhibitor for the migration of human breast adenocarcinoma (MCF-7) cells.

    PubMed

    Sathishkumar, Palanivel; Vennila, Krishnan; Jayakumar, Rajarajeswaran; Yusoff, Abdull Rahim Mohd; Hadibarata, Tony; Palvannan, Thayumanavan

    2016-04-01

    In this study, phyto-synthesis of silver nanoparticles (AgNPs) was achieved using an aqueous leaf extract of Alternanthera tenella. The phytochemical screening results revealed that flavonoids are responsible for the AgNPs formation. The AgNPs were characterised using UV-visible spectrophotometer, field emission scanning microscopy/energy dispersive X-ray, transmission electron microscopy, fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction. The average size of the nanoparticles was found to be ≈48 nm. The EDX results show that strong signals were observed for the silver atoms. The strong band appearing at 1601-1595 cm(-1) correspond to C-C stretching vibration from dienes in FT-IR spectrum indicating the formation of AgNPs. Human breast adenocarcinoma (MCF-7) cells treated with various concentrations of AgNPs showed a dose-dependent increase in cell inhibition. The IC50 value of the AgNPs was calculated to be 42.5 μg mL(-1). The AgNPs showed a significant reduction in the migration of MCF-7 cells. PMID:26801668

  16. Anticancer Activity of Cobra Venom Polypeptide, Cytotoxin-II, against Human Breast Adenocarcinoma Cell Line (MCF-7) via the Induction of Apoptosis

    PubMed Central

    Shirazi, Farshad H.; Vatanpour, Hosein; zare, Abas; Kobarfard, Farzad; Rabiei, Hadi

    2014-01-01

    Purpose Breast cancer is a significant health problem worldwide, accounting for a quarter of all cancer diagnoses in women. Current strategies for breast cancer treatment are not fully effective, and there is substantial interest in the identification of novel anticancer agents especially from natural products including toxins. Cytotoxins are polypeptides found in the venom of cobras and have various physiological effects. In the present study, the anticancer potential of cytotoxin-II against the human breast adenocarcinoma cell line (MCF-7) was investigated. Methods The cytotoxic effects of cytotoxin-II were determined by morphological analysis and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The mode and mechanism of cell death were investigated via acridine orange/ethidium bromide (AO/EtBr) double staining, flow cytometric analysis of cell death, detection of mitochondrial membrane potential, measurement of intracellular reactive oxygen species (ROS), annexin V/propidium iodide staining, and caspase-9 activity assays. Results The half maximal inhibitory concentration (IC50) of cytotoxin-II in MCF-7 cells was 4.18±1.23 µg/mL, while the value for cisplatin was approximately 28.02±1.87 µg/mL. Morphological analysis and AO/EtBr double staining showed typical manifestations of apoptotic cell death (in doses lower than 8 µg/mL). Dose- and time-dependent ROS generation, loss of mitochondrial membrane potential, caspase-9 activation, and cell cycle arrest were observed in their respective tests. Conclusion In conclusion, cytotoxin-II has potent anticancer effects in the MCF-7 cell line, which are induced via the intrinsic pathways of apoptosis. Based on these findings, cytotoxin-II is a suitable choice for breast cancer treatment. PMID:25548578

  17. Combination of Nimbolide and TNF-α-Increases Human Colon Adenocarcinoma Cell Death through JNK-mediated DR5 Up- regulation.

    PubMed

    Chantana, Chantana; Yenjai, Chavi; Reubroycharoen, Prasert; Waiwut, Pornthip

    2016-01-01

    Tumor necrosis factor (TNF-α), an inflammatory cytokine that plays an important role in the control of cell proliferation, differentiation, and apoptosis, has previously been used in anti-cancer therapy. However, the therapeutic applications of TNF-α are largely limited due to its general toxicity and anti-apoptotic influence. To overcome this problem, the present study focused on the effect of active constituents isolated from a medicinal plant on TNF-α-induced apoptosis in human colon adenocarcinoma (HT-29) cells. Nimbolide from Azadirachta indica was evaluated for cytotoxicity by methyl tetrazolium 3-[4,5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT) assay and phase contrast microscopy. Effects on apoptotic signaling proteins were investigated using Western blot analysis. Nimbolide showed cytotoxicity against HT-29 cells that was significantly different from the control group (<0.01), a concentration of 10 μM significantly inducing cell death (<0.01). In combination with TNF-α, nimbolide significantly enhanced-induced cell death. In apoptotic pathway, nimbolide activated c-Jun N-terminal kinase (JNK) phosphorylation, BH3 interacting-domain death agonist (Bid) and up-regulated the death receptor 5 (DR5) level. In the combination group, nimbolide markedly sensitized TNF-α-induced JNK, Bid, caspase-3 activation and the up-regulation of DR5. Our findings overall indicate that nimbolide may enhance TNF-α-mediated cellular proliferation inhibition through increasing cell apoptosis of HT-29 cells by up-reglation of DR5 expression via the JNK pathway. PMID:27268643

  18. Genetically engineered Newcastle disease virus expressing human interferon-λ1 induces apoptosis in gastric adenocarcinoma cells and modulates the Th1/Th2 immune response.

    PubMed

    Bu, Xuefeng; Li, Mi; Zhao, Yinghai; Liu, Sha; Wang, Mubin; Ge, Jinying; Bu, Zhigao; Yan, Yulan

    2016-09-01

    Interferon-λ1 (IFN-λ1), a recently discovered cytokine of the type III IFN family, was found to be a therapeutic alternative to type I IFN in terms of tumors. Using reverse genetics technique, we generated a recombinant Newcastle disease virus (NDV) LaSota strains named as human IFN‑λ1 recombinant adenovirus (rL-hIFN-λ1) containing human IFN-λ1 gene and further evaluated the expressing of IFN-λ1 in human gastric adenocarcinoma cell line SGC-7901 after infected with rL-hIFN-λ1 by using western blot analysis, RT-PCR and immunofluorescence analyses. IFN-λl specific receptor IFNLR1 was detected on several gastric tumor cell lines including SGC-7901 and AGS and on PBMCs.The expression of the IFN-λ1 proteins reached a high level detected in the supernatant harvested 24 h after the infection of tumor cells. The proliferation changes of SGC infected with rL-hIFN-λ1 was significantly inhibited compared with NDV-infected group. Apoptosis was significantly induced by rL-hIFN-λ1 in gastric cancer cells compared with NDV virus tested by TUNEL assay, western blot analysis and Annexin V flow cytometry. Due to the high dose of IFN-λ1 expressed by the rL-hIFN-λ1-infected tumor cells, the immune study showed that rL-hIFN-λ1 increased IFN-γ production [the T helper cell subtype 1 (Th1) response] and inhibited interleukin (IL)-13 production [the T helper cell subtype 2 (Th2) response] to change the Th1/Th2 response of tumor microenvironment which inhibited tumor growth. This study aims at building recombinant NDV rL-hIFN-λ1 as an efficient antitumor agent. PMID:27430534

  19. Radio-sensitization effect of an mTOR inhibitor, temsirolimus, on lung adenocarcinoma A549 cells under normoxic and hypoxic conditions

    PubMed Central

    Ushijima, Hiroki; Suzuki, Yoshiyuki; Oike, Takahiro; Komachi, Mayumi; Yoshimoto, Yuya; Ando, Ken; Okonogi, Noriyuki; Sato, Hiro; Noda, Shin-ei; Saito, Jun-ichi; Nakano, Takashi

    2015-01-01

    The mammalian target of rapamycin (mTOR) correlates with cell survival under hypoxia and regulates hypoxia-inducible factor-1α (HIF-1α), a key protein in hypoxia-related events. However, the role of mTOR in radio-resistance has not been fully investigated. Therefore, the effect of mTOR on the radio-resistance of cancer cells under hypoxia was evaluated using the mTOR inhibitor temsirolimus. Clonogenic survival was examined in the A549 human lung adenocarcinoma cell line under normoxia or hypoxia, with or without temsirolimus. An oxygen enhancement ratio (OER) was calculated using the D10 values, the doses giving 10% survival. Western blotting was performed to investigate the effect of temsirolimus on mTOR and the HIF-1α pathway under normoxia and hypoxia. A549 cells showed a radio-resistance of 5.1 and 14.2 Gy, as indicated by D10 values under normoxia and hypoxia, respectively; the OER was 2.8. The cell survival rates under hypoxia and with temsirolimus remarkably decreased compared with those under normoxia. The D10 values of the cells under normoxia and hypoxia were 4.8 and 5.4 Gy, respectively (OER = 1.1). mTOR expression was suppressed by temsirolimus under both normoxia and hypoxia. HIF-1α expression decreased under hypoxia in the presence of temsirolimus. These results suggest that temsirolimus can overcome the radio-resistance induced by hypoxia. When the fact that mTOR acts upstream of HIF-1α is considered, our data suggest that the restoration of radiation sensitivity by temsirolimus under hypoxia may be associated with the suppression of the HIF-1α pathway. Temsirolimus could therefore be used as a hypoxic cell radio-sensitizer. PMID:25887043

  20. Urinary Bladder Adenocarcinoma Metastatic to the Abdominal Wall: Report of a Case with Cytohistologic Correlation.

    PubMed

    Nath, Vikas; Baliga, Mithra

    2016-01-01

    We report a case of adenocarcinoma metastatic to the abdominal wall in a 71-year-old man with a history of primary bladder adenocarcinoma. CT-guided core biopsy was performed; imprints and histologic sections showed malignant glands lined by tumor cells with hyperchromatic nuclei and prominent nucleoli, infiltrating through skeletal muscle. Immunohistochemistry revealed positivity for CK7, membranous/cytoplasmic β-catenin, caudal-type homeobox transcription factor 2 (CDX2), and α-methylacyl coenzyme A racemase and negativity for CK20, p63, prostate-specific antigen (PSA), and prostate-specific acid phosphatase (PSAP). These findings were interpreted as metastatic adenocarcinoma, consistent with bladder primary. Primary bladder adenocarcinoma is a rare malignancy arising within glandular metaplasia and is associated with cystitis cystica and cystitis glandularis. Predisposing factors include bladder exstrophy, schistosomiasis, and other causes of chronic bladder irritation. This tumor is divided into intestinal, clear cell, and signet ring cell subtypes. Treatment involves radical cystectomy with pelvic lymph node dissection, and prognosis is unfavorable. Primary bladder adenocarcinoma should be differentiated from urachal adenocarcinoma, which arises from urachal remnants near the bladder dome, and secondary adenocarcinoma, or vesical involvement by adenocarcinoma from a different primary. CK7, CK20, CDX2, thrombomodulin, and β-catenin can help distinguish primary bladder adenocarcinoma from colonic adenocarcinoma; PSA and PSAP can help distinguish primary bladder adenocarcinoma from prostate adenocarcinoma. PMID:27006847

  1. Urinary Bladder Adenocarcinoma Metastatic to the Abdominal Wall: Report of a Case with Cytohistologic Correlation

    PubMed Central

    Baliga, Mithra

    2016-01-01

    We report a case of adenocarcinoma metastatic to the abdominal wall in a 71-year-old man with a history of primary bladder adenocarcinoma. CT-guided core biopsy was performed; imprints and histologic sections showed malignant glands lined by tumor cells with hyperchromatic nuclei and prominent nucleoli, infiltrating through skeletal muscle. Immunohistochemistry revealed positivity for CK7, membranous/cytoplasmic β-catenin, caudal-type homeobox transcription factor 2 (CDX2), and α-methylacyl coenzyme A racemase and negativity for CK20, p63, prostate-specific antigen (PSA), and prostate-specific acid phosphatase (PSAP). These findings were interpreted as metastatic adenocarcinoma, consistent with bladder primary. Primary bladder adenocarcinoma is a rare malignancy arising within glandular metaplasia and is associated with cystitis cystica and cystitis glandularis. Predisposing factors include bladder exstrophy, schistosomiasis, and other causes of chronic bladder irritation. This tumor is divided into intestinal, clear cell, and signet ring cell subtypes. Treatment involves radical cystectomy with pelvic lymph node dissection, and prognosis is unfavorable. Primary bladder adenocarcinoma should be differentiated from urachal adenocarcinoma, which arises from urachal remnants near the bladder dome, and secondary adenocarcinoma, or vesical involvement by adenocarcinoma from a different primary. CK7, CK20, CDX2, thrombomodulin, and β-catenin can help distinguish primary bladder adenocarcinoma from colonic adenocarcinoma; PSA and PSAP can help distinguish primary bladder adenocarcinoma from prostate adenocarcinoma. PMID:27006847

  2. [18F]2-Fluoro-2-deoxy-D-glucose incorporation by AGS gastric adenocarcinoma cells in vitro during response to epirubicin, cisplatin and 5-fluorouracil

    PubMed Central

    Suttie, S A; Park, K G M; Smith, T A D

    2007-01-01

    Decreased tumour [18F]2-fluoro-2-deoxy-D-glucose (18FDG) incorporation is related to response however its significance at the cell level in gastro-oesophageal cancer and how it relates to cell death is unknown. Here human gastric adenocarcinoma (AGS) cells were treated with lethal dose 10 and 50 (LD10 and LD50), determined by using the MTT assay, of the three drugs, epirubicin, 5-fluorouracil and cisplatin, commonly used in the treatment of patients with gastro-oesophageal cancer. 18FDG incorporation was determined after 48 and 72 h of treatment with each drug and related to drug-induced changes in glucose transport, hexokinase activity, cell cycle distribution and annexin V-PE binding (a measure of apoptosis). Treatment of cells for 48 and 72 h with LD50 doses of cisplatin resulted in reductions in 18FDG incorporation of 27 and 25% respectively and of 5-fluorouracil reduced 18FDG incorporation by 34 and 33% respectively: epirubicin treatment reduced incorporation by 30 and 69% respectively. Cells that had been treated for 72 h with each drug were incubated in drug-free media for a further 6 days to determine their ability to recover. Comparison of the ability to recover from the chemotherapy agent, with 18FDG incorporation before the recovery period allowed an assessment of the predictive ability of 18FDG incorporation. Cells treated with either 5-fluorouracil or cisplatin demonstrated recovery on removal of the drug. In contrast, cells treated with epirubicin did not recover corresponding with the greatest 72 h treatment decrease in 18FDG incorporation. In contrast to adherent cells treated with cisplatin or 5-fluorouracil, adherent epirubicin-treated cells also exhibited very high levels of apoptosis. Glucose transport was decreased after each treatment whilst hexokinase activity was only decreased after 72 h of treatment with each drug. There was no consistent relationship observed between 18FDG incorporation and cell cycle distribution. Our results

  3. The combination of 5-fluorouracil plus p53 pathway restoration is associated with depletion of p53-deficient or mutant p53-expressing putative colon cancer stem cells.

    PubMed

    Huang, Catherine; Zhang, Xiang M; Tavaluc, Raluca T; Hart, Lori S; Dicker, David T; Wang, Wenge; El-Deiry, Wafik S

    2009-11-01

    The cancer stem cell hypothesis suggests that rare populations of tumor-initiating cells may be resistant to therapy, lead to tumor relapse and contribute to poor prognosis for cancer patients. We previously demonstrated the feasibility of p53 pathway restoration in p53-deficient tumor cell populations using small molecules including ellipticine or its derivatives. We now establish a single cell p53-regulated green fluorescent protein (EGFP)-reporter system in human DLD1 colon tumor cells expressing mutant p53 protein. We use these p53-EGFP reporter DLD1 cells to investigate the status of p53 transcriptional activity in putative colon cancer stem cell populations following exposure to p53 pathway-restoring drugs and/or classical chemotherapy. We demonstrate induction of p53-specific EGFP reporter fluorescence following overexpression of p53 family member p73 by an Adenovirus vector. We further show that p53-reporter activity is induced in DLD1 putative cancer stem cell side-populations analyzed by their Hoechst dye efflux properties following treatment with the p53 pathway restoring drug ellipticine. Combination of ellipticine with the cytotoxic agent 5-fluorouracil resulted in increased cytotoxicity as compared to either agent alone and this was associated with depletion of putative cancer stem cell populations as compared with 5-FU alone treatment. Our results support the feasibility of therapeutic targeting of mutant p53 in putative cancer stem cells as well as the potential to enhance cytotoxic chemotherapy. PMID:19923910

  4. miR-107 and miR-25 simultaneously target LATS2 and regulate proliferation and invasion of gastric adenocarcinoma (GAC) cells

    SciTech Connect

    Zhang, Mingjun; Wang, Xiaolei; Li, Wanhu; Cui, Yongchun

    2015-05-08

    Although a series of oncogenes and tumor suppressors were identified in the pathological de